Synthesis and characterization of rare-earth-doped calcium tungstate nanocrystals
NASA Astrophysics Data System (ADS)
Suneeta, P.; Rajesh, Ch.; Ramana, M. V.
2018-02-01
In this paper, we report synthesis and characterization of rare-earth-ion-doped calcium tungstate (CaWO4) nanocrystals (NCs). Rare-earth ions, such as gadolinium (Gd), neodymium (Nd), praseodymium (Pr), samarium (Sm) and holmium (Ho), were successfully doped in the CaWO4 NCs by changing the synthesis conditions. The adopted synthesis route was found to be fast and eco-friendly. Structural characterizations, such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and compositional analysis, were performed using energy dispersive analysis of X-rays (EDAX) on as-synthesized NCs. The results indicate the size of the NCs ranging between 47 to 68nm and incorporation of rare-earth ions in CaWO4 NCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Michael K; Parish, Chad M
Helium accumulation negatively impacts structural materials used in neutron-irradiated environments, such as fission and fusion reactors. Next-generation fission and fusion reactors will require structural materials, such as steels, resistant to large neutron doses yet see service temperatures in the range most affected by helium embrittlement. Previous work has indicated the difficulty of experimentally differentiating nanometer-sized helium bubbles from the Ti-Y-O rich nanoclustsers (NCs) in radiation-tolerant nanostructured ferritic alloys (NFAs). Because the NCs are expected to sequester helium away from grain boundaries and reduce embrittlement, experimental methods to study simultaneously the NC and bubble populations are needed. In this study, aberration-correctedmore » scanning transmission electron microscopy (STEM) results combining high-collection-efficiency X-ray spectrum images (SIs), multivariate statistical analysis (MVSA), and Fresnel-contrast bright-field STEM imaging have been used for such a purpose. Results indicate that Fresnel-contrast imaging, with careful attention to TEM-STEM reciprocity, differentiates bubbles from NCs, and MVSA of X-ray SIs unambiguously identifies NCs. Therefore, combined Fresnel-contrast STEM and X-ray SI is an effective STEM-based method to characterize helium-bearing NFAs.« less
Silk fibroin/gold nanocrystals: a new example of biopolymer-based nanocomposites
NASA Astrophysics Data System (ADS)
Noinville, S.; Garnier, A.; Courty, A.
2017-05-01
The dispersion of nanoparticles in ordered polymer nanostructures can provide control over particle location and orientation, and pave the way for tailored nanomaterials that have enhanced mechanical, electrical, or optical properties. Here we used silk fibroin, a natural biopolymer, to embed gold nanocrystals (NCs), so as to obtain well-ordered structures such as nanowires and self-assembled triangular nanocomposites. Monodisperse gold NCs synthesized in organic media are mixed to silk fibroin and the obtained nanocomposites are characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and Infrared spectroscopy. The optical properties study of gold NCs and silk-gold nanocomposites shows that the Surface Plasmon band is blue shifted compared to gold NCs. The size and shape of NCs gold superlattices can be well controlled by the presence of silk fibroin giving nanowires and also self-assembled triangular nanocomposites as characterized by TEM, FE-SEM and AFM. The strong interaction between gold NCs and silk fibroin is also revealed by the conformation change of silk protein in presence of gold NCs, as shown by FTIR analysis. The formation of such ordered nanocomposites (gold NCs/silk fibroin) will provide new nanoplasmonic devices.
An approach to designing a national climate service
Miles, E. L.; Snover, A. K.; Whitely Binder, L. C.; Sarachik, E. S.; Mote, P. W.; Mantua, N.
2006-01-01
Climate variability and change are considerably important for a wide range of human activities and natural ecosystems. Climate science has made major advances during the last two decades, yet climate information is neither routinely useful for nor used in planning. What is needed is a mechanism, a national climate service (NCS), to connect climate science to decision-relevant questions and support building capacity to anticipate, plan for, and adapt to climate fluctuations. This article contributes to the national debate for an NCS by describing the rationale for building an NCS, the functions and services it would provide, and how it should be designed and evaluated. The NCS is most effectively achieved as a federal interagency partnership with critically important participation by regional climate centers, state climatologists, the emerging National Integrated Drought Information System, and the National Oceanic and Atmospheric Administration (NOAA) Regional Integrated Sciences Assessment (RISA) teams in a sustained relationship with a wide variety of stakeholders. Because the NCS is a service, and because evidence indicates that the regional spatial scale is most important for delivering climate services, given subnational geographical/geophysical complexity, attention is focused on lessons learned from the University of Washington Climate Impacts Group's 10 years of experience, the first of the NOAA RISA teams. PMID:17158218
An approach to designing a national climate service.
Miles, E L; Snover, A K; Whitely Binder, L C; Sarachik, E S; Mote, P W; Mantua, N
2006-12-26
Climate variability and change are considerably important for a wide range of human activities and natural ecosystems. Climate science has made major advances during the last two decades, yet climate information is neither routinely useful for nor used in planning. What is needed is a mechanism, a national climate service (NCS), to connect climate science to decision-relevant questions and support building capacity to anticipate, plan for, and adapt to climate fluctuations. This article contributes to the national debate for an NCS by describing the rationale for building an NCS, the functions and services it would provide, and how it should be designed and evaluated. The NCS is most effectively achieved as a federal interagency partnership with critically important participation by regional climate centers, state climatologists, the emerging National Integrated Drought Information System, and the National Oceanic and Atmospheric Administration (NOAA) Regional Integrated Sciences Assessment (RISA) teams in a sustained relationship with a wide variety of stakeholders. Because the NCS is a service, and because evidence indicates that the regional spatial scale is most important for delivering climate services, given subnational geographical/geophysical complexity, attention is focused on lessons learned from the University of Washington Climate Impacts Group's 10 years of experience, the first of the NOAA RISA teams.
The National Comorbidity Survey Adolescent Supplement (NCS-A): I. Background and Measures
Merikangas, Kathleen R.; Avenevoli, Shelli; Costello, E. Jane; Koretz, Doreen; Kessler, Ronald C.
2009-01-01
Objective This paper presents an overview of the background and measures used in the National Comorbidity Survey Replication Adolescent Supplement (NCS-A). Methods The NCS-A is a national psychiatric epidemiological survey of adolescents ages 13–17. Results The NCS-A was designed to provide the first nationally representative estimates of the prevalence, correlates and patterns of service use for DSM-V mental disorders among US adolescents and to lay the groundwork for follow-up studies of risk-protective factors, consequences, and early expressions of adult mental disorders. The core NCS-A diagnostic interview, the World Health Organization (WHO) Composite International Diagnostic Interview (CIDI), is a fully-structured research diagnostic interview designed for use by trained lay interviewers. A multi-construct, multi-method, multi-informant battery was also included to assess risk and protective factors and barriers to service use. Design limitations due to the NCS-A evolving as a supplement to an ongoing survey of mental disorders of US adults include restricted age range of youth, cross-sectional assessment, and lack of full parental/surrogate informant reports on youth mental disorders and correlates. Conclusions Despite these limitations, the NCS-A contains unparalleled information that can be used to generate national estimates of prevalence and correlates of adolescent mental disorders, risk and protective factors, patterns of service use, and barriers to receiving treatment for these disorders. The retrospective NCS-A data on the development of psychopathology can additionally complement data from longitudinal studies based on more geographically restricted samples and serve as a useful baseline for future prospective studies of the onset and progression of mental disorders in adulthood. PMID:19242382
Noncompete clauses: a contract provision that has exhausted its usefulness?
Mezrich, Jonathan L; Siegel, Eliot L
2014-02-01
Noncompete clauses (NCs) are common in many physician employment agreements, including those of radiologists. NCs restrict radiologists' ability to perform services for anyone other than their employers, not only during the term of employment but also for a period of time after employment ends. Although courts frown on the post-termination portion as a restraint of trade, in most states, NCs will be enforced if they are deemed reasonable in duration and geography. However the practice of radiology has changed. Teleradiology is common, and improvements in telecommunications and portable devices allow radiologists to perform their services virtually anywhere. In light of these changes, are NCs still necessary for radiologists? Eighty-six University of Maryland radiology residency alumni for whom e-mail information was available were asked to complete an online survey regarding whether they are subject to NCs, the key terms of their NCs, and their views on the continuing usefulness of NCs. A review of all state and federal cases published in the Westlaw law database in which radiologists' NCs were adjudicated was also performed. Twenty-one alumni from our residency program completed the survey, representing a 24.4% response rate; 57.1% of respondents are subject to NCs. Of that group, post-termination restrictions ranged from 1 to 2 years in duration, and geographic limitations ranged from 7 to >50 miles from the employer's practice. Respondents were split as to the impact of teleradiology, with 36.8% feeling that NCs are now more necessary and 26.3% feeling that NCs are less necessary. Searches of Westlaw revealed 7 cases on point, which upheld as reasonable NCs ranging from 1 to 5 years in duration and imposing geographic limitations of 15 to 40 miles from the employer's practice. Although the practice of radiology has undergone significant changes, this survey shows that NCs are still widely used and are still being enforced in many courts. It is unclear whether NCs still make sense in today's practice, but it may be important to modify them to explicitly address the practice of teleradiology. NCs are common and have been upheld in court, although radiologists are split on their usefulness in this era of teleradiology. Contracts should specifically address teleradiology in NC provisions. Copyright © 2014 American College of Radiology. All rights reserved.
NASA Astrophysics Data System (ADS)
Khan, Shahanavaj; Ansari, Anees A.; Rolfo, Christian; Coelho, Andreia; Abdulla, Maha; Al-Khayal, Khayal; Ahmad, Rehan
2017-12-01
Cerium oxide nanocrystals (CeO2-NCs) exhibit superoxide dismutase and catalase mimetic activities. Based on these catalytic activities, CeO2-NCs have been suggested to have the potential to treat various diseases. The crystalline size of these materials is an important factor that influences the performance of CeO2-NCs. Previous reports have shown that several metal-based nanocrystals, including CeO2-NCs, can induce cytotoxicity in cancer cells. However, the underlying mechanisms have remained unclear. To characterize the anticancer activities of CeO2-NCs, several assays related to the mechanism of cytotoxicity and induction of apoptosis has been performed. Here, we have carried out a systematic study to characterize CeO2-NCs phase purity (X-ray diffraction), morphology (electron microscopy), and optical features (optical absorption, Raman scattering, and photoluminescence) to better establish their potential as anticancer drugs. Our study revealed anticancer effects of CeO2-NCs in HT29 and SW620 colorectal cancer cell lines with half-maximal inhibitory concentration (IC50) values of 2.26 and 121.18 μg ml-1, respectively. Reductions in cell viability indicated the cytotoxic potential of CeO2-NCs in HT29 cells based on inverted and florescence microscopy assessments. The mechanism of cytotoxicity confirmed by estimating possible changes in the expression levels of Bcl2, BclxL, Bax, PARP, cytochrome c, and β-actin (control) proteins in HT29 cells. Down-regulation of Bcl2 and BclxL and up-regulation of Bax, PARP, and cytochrome c proteins suggested the significant involvement of CeO2-NCs exposure in the induction of apoptosis. Furthermore, biocompatibility assay showed minimum effect of CeO2-NCs on human red blood cells.
Zhang, Kexin; Zhang, Rui; Yu, Yaxin; Sun, Shuqing
2012-04-01
In this paper, we report a facile method to synthesize high quality CdS: Eu nanocrystals (NCs) and CdS: Eu/ZnS NCs with strong photoluminescence (PL). The influence of various experimental variables including the concentration of Eu3+ ions, the reaction time and the reaction temperature were investigated systematically. In addition, the PL properties of CdS: Eu NCs exhibited pH sensitive. Under the acid condition, pH value of the CdS: Eu NCs solution played an important role in determining PL emission intensity. However, under the alkaline condition, the obtained CdS: Eu NCs exhibited a tunable PL emission wavelength (from 490 nm to 610 nm) when pH value was adjusted from pH 7 to 10. After coating with ZnS shell, the CdS: Eu/ZnS NCs showed enhanced PL intensity compare with one of the CdS: Eu NCs. The CdS: Eu NCs and CdS: Eu/ZnS NCs were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). In addition, the biocompatibility of these NCs was measured by hemolytic test, which indicated that CdS: Eu/ZnS NCs were more biocompatible than CdS: Eu NCs at the same conditions. It can be expected that CdS: Eu/ZnS NCs are promising biolabeling materials.
NASA Astrophysics Data System (ADS)
Li, Lun; Dou, Liguang; Zhang, Hui
2014-03-01
M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 +/- 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ~0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity or selectivity. The AuNCs/M(= Ni, Co)3Al-LDH catalysts present even higher alcohol oxidation activity than AuNCs/Mg3Al-LDH. Particularly, AuNCs/Ni3Al-LDH-0.22 exhibits the highest activity (46 500 h-1) for the aerobic oxidation of 1-phenylethanol under solvent-free conditions attributed to its strongest Au-support synergy. The excellent activity and stability of AuNCs/M3Al-LDH catalysts render these materials promising candidates for green base-free selective oxidation of alcohols by molecular oxygen.M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 +/- 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ~0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity or selectivity. The AuNCs/M(= Ni, Co)3Al-LDH catalysts present even higher alcohol oxidation activity than AuNCs/Mg3Al-LDH. Particularly, AuNCs/Ni3Al-LDH-0.22 exhibits the highest activity (46 500 h-1) for the aerobic oxidation of 1-phenylethanol under solvent-free conditions attributed to its strongest Au-support synergy. The excellent activity and stability of AuNCs/M3Al-LDH catalysts render these materials promising candidates for green base-free selective oxidation of alcohols by molecular oxygen. Electronic supplementary information (ESI) available: Details in experimental and further characterization. See DOI: 10.1039/c3nr05604j
NASA Astrophysics Data System (ADS)
Alinger, Matthew J.
Iron powders containing ≈14wt%Cr and smaller amounts of W and Ti were mechanically alloyed (MA) by ball milling with Y2O3 and subsequently either hot consolidated by hot extrusion or isostatic pressing, or powder annealed, producing very high densities of nm-scale coherent transition phase precipitates, or Y-Ti-O nano-clusters (NCs), along with fine-scale grains. These so-called nanostructured ferritic alloys (NFAs) manifest very high strength (static and creep) and corrosion-oxidation resistance up to temperatures in excess of 800°C. We used a carefully designed matrix of model MA powders and consolidated alloys to systematically assess the NC evolutions during each processing step, and to explore the combined effects of alloy composition and a number of processing variables, including the milling energy, consolidation method and the time and temperature of annealing of the as-milled powders. The stability of the NCs was also characterized during high-temperate post-consolidation annealing of a commercial NFA, MA957. The micro-nanostructural evolutions, and their effects on the alloy strength, were characterized by a combination of techniques, including XRD, TEM, atom-probe tomography (APT) and positron annihilation spectroscopy (PAS). However, small angle neutron scattering (SANS) was the primary tool used to characterize the nm-scale precipitates. The effect of the micro-nanostructure on the alloy strength was assessed by microhardness measurements. The studies revealed the critical sequence-of-events in forming the NCs, involves dissolution of Y, Ti and O during ball milling. The supersaturated solutes then precipitate during hot consolidation or powder annealing. The precipitate volume fraction increases with both the milling energy and Ti additions at lower consolidation and annealing temperatures (850°C), and at higher processing temperatures (1150°C) both are needed to produce NCs. The non-equilibrium kinetics of NC formation are nucleation controlled and independent of time with an effective activation energy of ≈60 kJ/mole. High temperature precipitate coarsening and transformations to oxide phases show a high effective activation energy (≈880 kJ/mole) and have a time dependence characteristic of a dislocation pipe diffusion mechanism. The NCs act as weak to moderately strong (alpha = 0.1 to 0.5) obstacles that can be sheared by dislocations, where the obstacle strength increases with alpha ≈0.37log(r/2b).
Size Dependence of Metal-Insulator Transition in Stoichiometric Fe₃O4₄Nanocrystals.
Lee, Jisoo; Kwon, Soon Gu; Park, Je-Geun; Hyeon, Taeghwan
2015-07-08
Magnetite (Fe3O4) is one of the most actively studied materials with a famous metal-insulator transition (MIT), so-called the Verwey transition at around 123 K. Despite the recent progress in synthesis and characterization of Fe3O4 nanocrystals (NCs), it is still an open question how the Verwey transition changes on a nanometer scale. We herein report the systematic studies on size dependence of the Verwey transition of stoichiometric Fe3O4 NCs. We have successfully synthesized stoichiometric and uniform-sized Fe3O4 NCs with sizes ranging from 5 to 100 nm. These stoichiometric Fe3O4 NCs show the Verwey transition when they are characterized by conductance, magnetization, cryo-XRD, and heat capacity measurements. The Verwey transition is weakly size-dependent and becomes suppressed in NCs smaller than 20 nm before disappearing completely for less than 6 nm, which is a clear, yet highly interesting indication of a size effect of this well-known phenomena. Our current work will shed new light on this ages-old problem of Verwey transition.
Calcium Sensor, NCS-1, Promotes Tumor Aggressiveness and Predicts Patient Survival.
Moore, Lauren M; England, Allison; Ehrlich, Barbara E; Rimm, David L
2017-07-01
Neuronal Calcium Sensor 1 (NCS-1) is a multi-functional Ca 2+ -binding protein that affects a range of cellular processes beyond those related to neurons. Functional characterization of NCS-1 in neuronal model systems suggests that NCS-1 may influence oncogenic processes. To this end, the biological role of NCS-1 was investigated by altering its endogenous expression in MCF-7 and MB-231 breast cancer cells. Overexpression of NCS-1 resulted in a more aggressive tumor phenotype demonstrated by a marked increase in invasion and motility, and a decrease in cell-matrix adhesion to collagen IV. Overexpression of NCS-1 was also shown to increase the efficacy of paclitaxel-induced cell death in a manner that was independent of cellular proliferation. To determine the association between NCS-1 and clinical outcome, NCS-1 expression was measured in two independent breast cancer cohorts by the Automated Quantitative Analysis method of quantitative immunofluorescence. Elevated levels of NCS-1 were significantly correlated with shorter survival rates. Furthermore, multivariate analysis demonstrated that NCS-1 status was prognostic, independent of estrogen receptor, progesterone receptor, HER2, and lymph node status. These findings indicate that NCS-1 plays a role in the aggressive behavior of a subset of breast cancers and has therapeutic or biomarker potential. Implications: NCS-1, a calcium-binding protein, is associated with clinicopathologic features of aggressiveness in breast cancer cells and worse outcome in two breast cancer patient cohorts. Mol Cancer Res; 15(7); 942-52. ©2017 AACR . ©2017 American Association for Cancer Research.
Guillet, Jesse L; Bhowmick, Indrani; Shores, Matthew P; Daley, Christopher J A; Gembicky, Milan; Golen, James A; Rheingold, Arnold L; Doerrer, Linda H
2016-08-15
A series of heterobimetallic lantern complexes with the central unit {PtM(SAc)4(NCS)} have been prepared and thoroughly characterized. The {Na(15C5)}[PtM(SAc)4(NCS)] series, 1 (Co), 2 (Ni), 3 (Zn), are discrete compounds in the solid state, whereas the {Na(12C4)2)}[PtM(SAc)4(NCS)] series, 4 (Co), 5 (Ni), 6 (Zn), and 7 (Mn), are ion-separated species. Compound 7 is the first {PtMn} lantern of any bridging ligand (carboxylate, amide, etc.). Monomeric 1-7 have M(2+), necessitating counter cations that have been prepared as {(15C5)Na}(+) and {(12C4)2Na}(+) variants, none of which form extended structures. In contrast, neutral [PtCr(tba)4(NCS)]∞ 8 forms a coordination polymer of {PtCr}(+) units linked by (NCS)(-) in a zigzag chain. All eight compounds have been thoroughly characterized and analyzed in comparison to a previously reported family of compounds. Crystal structures are presented for compounds 1-6 and 8, and solution magnetic susceptibility measurements are presented for compounds 1, 2, 4, 5, and 7. Further structural analysis of dimerized {PtM} units reinforces the empirical observation that greater charge density along the Pt-M vector leads to more Pt···Pt interactions in the solid state. Four structural classes, one new, of {MPt}···{PtM} units are presented. Solid state magnetic characterization of 8 reveals a ferromagnetic interaction in the {PtCr(NCS)} chain between the Cr centers of J/kB = 1.7(4) K.
Liang, Jichao; Luo, Ailing; Wang, Lingqian; Zhu, Jing; Xiong, Huayu; Chen, Yong
2017-01-01
Efficient and safe nonviral gene delivery systems are a prerequisite for the clinical application of therapeutic genes. In this paper, polyethyleneimine-capped silver nanoclusters (PEI-AgNCs) were prepared for the purpose of microRNA (miRNA) delivery. The resultant PEI-AgNCs were characterized by a photoluminescence assay and transmission electron microscopy. A cytotoxicity assay showed that PEI-AgNCs exhibit relatively low cytotoxicity. Interestingly, PEI-AgNCs were confirmed to transfect miRNA mimics more effectively than PEI in HepG2 and 293A cells. In this regard, hsa-miR-21 or hsa-miR-221 mimics (miR-21/221m) were transported into HepG2 cells by using PEI-AgNCs. The miR-21/221 expression was determined post-transfection by quantitative real-time polymerase chain reaction. Compared with the negative control, PEI-AgNCs/miR-21/221m groups exhibited higher miR-21/221 levels. In addition, AgNCs endow PEI with stronger antibacterial activity, and this advantage provided PEI-AgNCs the potential to prevent bacterial contamination during the transfection process. Furthermore, we showed that PEI-AgNCs are viable nanomaterials for plain imaging of the cells by laser scanning confocal microscopy, indicating great potential as an ideal fluorescent probe to track the transfection behavior. These results demonstrated that PEI-AgNCs are promising and novel nonviral vectors for gene delivery. PMID:29238194
NASA Astrophysics Data System (ADS)
Palanisamy, Sivakumar
2014-12-01
CeO2 is well known for being an active material to support the growth of Au nanoclusters (Au NCs). In this work, three dimensional (3D) Au NCs were deposited on three different shaped CeO2 nanostructures such as nanoparticles (NPs), nanorod arrays (NRAs) and nanoflowers (NFs) modified Ti substrate for electrochemical simultaneous detection of dopamine (DA) and uric acid (UA). The electrodeposition of 3D Au NCs were carried out via cyclic voltammetric (CV) method at over-potential, while CeO2 nanostructures were deposited by galvanostatic constant current method under the optimized conditions. The morphology and elemental composition analysis of 3D Au NCs with CeO2 nanostructures were characterized by SEM, XRD, XPS and EDAX measurements. The electrocatalytic activity of 3D Au NCs on different CeO2 supports were thoroughly investigated by using voltammetric and amperometric techniques. According to the obtained results, CeO2 NPs supported 3D Au NCs (3D Au NCs@CeO2 NPs) displayed strong signal for DA as compared to that of CeO2 NRAs (3D Au NCs@CeO2 NRAs) and CeO2 NFs supported 3D Au NCs (3D Au NCs@CeO2 NFs). In addition, the 3D Au NCs@CeO2 NPs electrode resulted in more sensitive and simultaneous detection of DA in the presence of excess UA. Thus, the 3D Au NCs@CeO2 NPs electrode can practically be applied for the detection of DA using biological samples.
PD-L1 expression in colorectal cancer defines three subsets of tumor immune microenvironments.
Valentini, Anna Maria; Di Pinto, Federica; Cariola, Filomena; Guerra, Vito; Giannelli, Gianluigi; Caruso, Maria Lucia; Pirrelli, Michele
2018-02-02
We investigated the PD-L1 expression in colorectal cancer (CRC) and in its microenvironment. PD-L1 was expressed in neoplastic cells (NCs) and tumor-infiltrating immune cells (IICs). All samples PD-L1+ on NCs were also on IICs. Three types of cancers could be grouped: group A(NCs-/ IICs-); group B (NCs-/ IICs+); group C (NCs+/IICs+). To group A belong tumors characterized by poorly immunogenic competence, poor immune response but massive granulocyte infiltrate, justifying the absence of PD-L1 as an immunoinhibitor receptor. To Group B probably belong more immunogenic CRCs, justifying the strong IICs-mediated immune response, and up-regulation of PD-L1 expression only on IICs. To group C belong CRCs probably characterized by a large amount of tumor neoantigens resulting in a marked infiltration of lymphocytes and PD-L1 upregulation also in NCs. Sixty-three colorectal cancer specimens from a cohort of 61 patients were retrospectively reviewed. Thirty-seven MSS and 26 MSI-H CRCs enrolled in this study. Immunohistochemical staining to PD-L1 was performed by using MAb E1L3N. Our study calls attention to the importance to assess PD-L1 expression in tumor microenvironment also evaluating type and density of infiltrating immune cells to better stratify CRCs with different immunological patterns.
PD-L1 expression in colorectal cancer defines three subsets of tumor immune microenvironments
Valentini, Anna Maria; Di Pinto, Federica; Cariola, Filomena; Guerra, Vito; Giannelli, Gianluigi; Caruso, Maria Lucia; Pirrelli, Michele
2018-01-01
Objectives We investigated the PD-L1 expression in colorectal cancer (CRC) and in its microenvironment. Results PD-L1 was expressed in neoplastic cells (NCs) and tumor-infiltrating immune cells (IICs). All samples PD-L1+ on NCs were also on IICs. Three types of cancers could be grouped: group A(NCs-/ IICs-); group B (NCs-/ IICs+); group C (NCs+/IICs+). To group A belong tumors characterized by poorly immunogenic competence, poor immune response but massive granulocyte infiltrate, justifying the absence of PD-L1 as an immunoinhibitor receptor. To Group B probably belong more immunogenic CRCs, justifying the strong IICs-mediated immune response, and up-regulation of PD-L1 expression only on IICs. To group C belong CRCs probably characterized by a large amount of tumor neoantigens resulting in a marked infiltration of lymphocytes and PD-L1 upregulation also in NCs. Materials and Methods Sixty-three colorectal cancer specimens from a cohort of 61 patients were retrospectively reviewed. Thirty-seven MSS and 26 MSI-H CRCs enrolled in this study. Immunohistochemical staining to PD-L1 was performed by using MAb E1L3N. Conclusions Our study calls attention to the importance to assess PD-L1 expression in tumor microenvironment also evaluating type and density of infiltrating immune cells to better stratify CRCs with different immunological patterns. PMID:29492219
NASA Astrophysics Data System (ADS)
Chattopadhyay, Soumi; Bhar, Kishalay; Das, Sumitra; Chantrapromma, Suchada; Fun, Hoong-Kun; Ghosh, Barindra Kumar
2010-04-01
A 2:2:1:6 molar ratio of Zn(ClO 4) 2·6H 2O, tris(2-aminoethyl)amine (tren), Zn(ClO 4) 2·6H 2O/Cu(ClO 4) 2·6H 2O and NH 4NCS in methanol-water solution mixtures affords homo-/heterobimetallic compounds of the type [Zn(tren)NCS] 2[M(NCS) 4] (M = Zn, 1; M = Cu, 2) which have been characterized using microanalytical, spectroscopic, magnetic and other physicochemical results. The structures of the compounds are determined by X-ray diffraction measurements. Structural analyses reveal that 1 and 2 are isomorphous and consist of two discrete [Zn(tren)NCS] + cations and a [M(NCS) 4] 2- (M = Zn/Cu) anion. Zinc(II) centers in the [Zn(tren)NCS] + units adopt distorted trigonal bipyramidal geometry with ZnN 5 chromophores coordinated through four N atoms of tren and one N atom of terminal thiocyanate. Each metal(II) center in [M(NCS) 4] 2- has a distorted tetrahedral coordination environment with an MN 4 chromophore ligated by four N atoms of the terminal thiocyanates. In solid state, doubly N-H…S hydrogen bonded 1D chains of [Zn(tren)NCS] + cations are interconnected by tetrahedral [Zn(NCS) 4] 2-/[Cu(NCS) 4] 2- anions through cooperative N-H…S and N-H…N (in 1) and N-H…S and C-H…S (in 2) hydrogen bonds resulting in 3D network structures. Establishment of such networks seems to be aiding the crystallization.
NASA Astrophysics Data System (ADS)
Burroughs, J.; Baldwin, R.; Herring, D.; Lott, N.; Boyd, J.; Handel, S.; Niepold, F.; Shea, E.
2010-09-01
With the rapid rise in the development of Web technologies and climate services across NOAA, there has been an increasing need for greater collaboration regarding NOAA's online climate services. The drivers include the need to enhance NOAA's Web presence in response to customer requirements, emerging needs for improved decision-making capabilities across all sectors of society facing impacts from climate variability and change, and the importance of leveraging climate data and services to support research and public education. To address these needs, NOAA (during fiscal year 2009) embarked upon an ambitious program to develop a NOAA Climate Services Portal (NCS Portal). Four NOAA offices are leading the effort: 1) the NOAA Climate Program Office (CPO), 2) the National Ocean Service's Coastal Services Center (CSC), 3) the National Weather Service's Climate Prediction Center (CPC), and 4) the National Environmental Satellite, Data, and Information Service's (NESDIS) National Climatic Data Center (NCDC). Other offices and programs are also contributing in many ways to the effort. A prototype NCS Portal is being placed online for public access in January 2010, http://www.climate.gov. This website only scratches the surface of the many climate services across NOAA, but this effort, via direct user engagement, will gradually expand the scope and breadth of the NCS Portal to greatly enhance the accessibility and usefulness of NOAA's climate data and services.
Crystal that remembers: several ways to utilize nanocrystals in resistive switching memory
NASA Astrophysics Data System (ADS)
Banerjee, Writam; Liu, Qi; Long, Shibing; Lv, Hangbing; Liu, Ming
2017-08-01
The attractive usability of quantum phenomena in futuristic devices is possible by using zero-dimensional systems like nanocrystals (NCs). The performance of nonvolatile flash memory devices has greatly benefited from the use of NCs over recent decades. The quantum abilities of NCs have been used to improve the reliability of flash devices. Its appeal is extended to the design of emerging devices such as resistive random-access memory (RRAM), a technology where the use of silicon is optional. Here, we are going to review the recent progress in the design, characterization, and utilization of NCs in RRAM devices. We will first introduce the physical design of the RRAM devices using NCs and the improvement of electrical performance in NC-RRAM over conventional ones. In particular, special care has been taken to review the ways of development provided by the NCs in the RRAM devices. In a broad sense, the NCs can play a charge trapping role in the NC-RRAM structure or it can be responsible for the localization and improvement of the stability of the conductive filament or it can play a part in the formation of the conductive filament chain by the NC migration under applied bias. Finally, the scope of NCs in the RRAM devices has also been discussed.
NASA Astrophysics Data System (ADS)
Wrzeszcz, Grzegorz; Muzioł, Tadeusz M.; Tereba, Natalia
2015-03-01
In this paper we report the synthesis method and the structure of a one-dimensional thiocyanato bridged heterometallic compound, [Cu(en)2Zn(NCS)4]ṡH2O (1). Moreover, we compare the structure of (1) with the previously described structures of [Cu(en)2Zn(NCS)4]ṡ0.5H2O (2) and [Cu(en)2Zn(NCS)4]ṡCH3CN (3) Pryma et al. (2003) [7]. The compound (1) has been characterized by thermal decomposition, IR, Vis and EPR spectra, and magnetic studies. Structure has been determined by X-ray analysis. Described coordination polymer crystallizes in the orthorhombic Cmcm space group with a = 12.414(2), b = 10.3276(14), c = 14.967(2) Å, α = β = γ = 90°, V = 1918.8(5) Å3 and Z = 4. Each distorted tetrahedral zinc(II) centre (with N-bonded NCS-) links two tetragonally distorted octahedral copper(II) centres by two end-to-end thiocyanato bridges and vice versa forming a zigzag type of CuZn chain. The structures of (1), (2) and (3) differ in crystallographic system, space group and/or CuZn chain type as well as in details. Variable temperature magnetic susceptibility measurements show very weak antiferromagnetic interactions between the paramagnetic copper(II) ions for compound (1).
Mir, Wasim J.; Warankar, Avinash; Acharya, Ashutosh; Das, Shyamashis
2017-01-01
Colloidal lead halide based perovskite nanocrystals (NCs) have been recently established as an interesting class of defect-tolerant NCs with potential for superior optoelectronic applications. The electronic band structure of thallium halides (TlX, where X = Br and I) show a strong resemblance to lead halide perovskites, where both Pb2+ and Tl+ exhibit a 6s2 inert pair of electrons and strong spin–orbit coupling. Although the crystal structure of TlX is not perovskite, the similarities of its electronic structure with lead halide perovskites motivated us to prepare colloidal TlX NCs. These TlX NCs exhibit a wide bandgap (>2.5 eV or <500 nm) and the potential to exhibit a reduced density of deep defect states. Optical pump terahertz (THz) probe spectroscopy with excitation fluence in the range of 0.85–5.86 × 1013 photons per cm2 on NC films shows that the TlBr NCs possess high effective carrier mobility (∼220 to 329 cm2 V–1 s–1), long diffusion length (∼0.77 to 0.98 μm), and reasonably high photoluminescence efficiency (∼10%). This combination of properties is remarkable compared to other wide-bandgap (>2.5 eV) semiconductor NCs, which suggests a reduction in the deep-defect states in the TlX NCs. Furthermore, the ultrafast carrier dynamics and temperature-dependent reversible structural phase transition together with its influence on the optical properties of the TlX NCs are studied. PMID:28970882
NASA Astrophysics Data System (ADS)
Yadav, Manoj; Velampati, Ravi Shankar R.; Mandal, D.; Sharma, Rohit
2018-03-01
Colloidal synthesis and size control of nickel (Ni) nanocrystals (NCs) below 10 nm are reported using a microwave synthesis method. The synthesised colloidal NCs have been characterized using x-ray diffraction, transmission electron microscopy (TEM) and dynamic light scattering (DLS). XRD analysis highlights the face centred cubic crystal structure of synthesised NCs. The size of NCs observed using TEM and DLS have a distribution between 2.6 nm and 10 nm. Furthermore, atomic force microscopy analysis of spin-coated NCs over a silicon dioxide surface has been carried out to identify an optimum spin condition that can be used for the fabrication of a metal oxide semiconductor (MOS) non-volatile memory (NVM) capacitor. Subsequently, the fabrication of a MOS NVM capacitor is reported to demonstrate the potential application of colloidal synthesized Ni NCs in NVM devices. We also report the capacitance-voltage (C-V) and capacitance-time (C-t) response of the fabricated MOS NVM capacitor. The C-V and C-t characteristics depict a large flat band voltage shift (V FB) and high retention time, respectively, which indicate that colloidal Ni NCs are excellent candidates for applications in next-generation NVM devices.
Zhang, Chunlei; Zhou, Zhijun; Zhi, Xiao; Ma, Yue; Wang, Kan; Wang, Yuxia; Zhang, Yingge; Fu, Hualin; Jin, Weilin; Pan, Fei; Cui, Daxiang
2015-01-01
Chiral gold nanoclusters (Au NCs) exhibit attracting properties owing to their unique physical and chemical properties. Herein we report for the first time chiral gold nanoclusters' cytotoxicity and potential molecular mechanism. The L-glutathione (i.e. L-GSH) and D-glutathione (i.e. D-GSH)-capped Au NCs were prepared and characterized by HRTEM, UV-vis, photoluminescence and circular dichroism (CD) spectroscopy. Results showed that the CD spectra of L-glutathione (i.e. L-GSH) and D-glutathione (i.e. D-GSH)-capped Au NCs exhibited multiple bands which were identically mirror-imaged, demonstrating that the chirality of GSH-capped NCs had contributions from both the metal core and the ligand. The effects of AuNCs@L-GSH and AuNCs@D-GSH on cells were similar based on the cell physiology related cytotoxicity, although the effects became more prominent in AuNCs@D-GSH treated cells, including ROS generation, mitochondrial membrane depolarization, cell cycle arrest and apoptosis. Global gene expression and pathway analysis displayed that both AuNCs@L-GSH and AuNCs@D-GSH caused the up-regulation of genes involved in cellular rescue and stress response, while AuNCs@D-GSH individually induced up-regulation of transcripts involved in some metabolic- and biosynthetic-related response. MGC-803 cells were more sensitive to the oxidative stress damage induced by chiral Au NCs than GES-1 cells, which was associated with GSTP1 hypermethylation. In conclusion, chiral gold nanoclusters exhibit this chirality-associated regulation of cytotoxicity, different gene expression profiling and epigenetic changes should be responsible for observed phenomena. Our study highlights the importance of the interplays between chiral materials and biological system at sub-nano level. PMID:25553104
Nanosecond nonlinear optical and optical limiting properties of hollow gold nanocages
NASA Astrophysics Data System (ADS)
Zheng, Chan; Huang, Jiaxin; Lei, Li; Chen, Wenzhe; Wang, Haiyan; Li, Wei
2018-01-01
Gold nanocages (NCs) were prepared using the galvanic replacement reaction. Transmission electron microscopy images confirmed the porous morphology and completely hollow interior of the gold NCs. The nanosecond nonlinear optical and optical limiting (OL) properties of the NCs were characterized using the open-aperture Z-scan technique with 8-ns laser pulses at 532 nm. The gold NCs exhibited intensity-dependent transformation from saturable absorption to reverse-saturable absorption. The nonlinear absorption coefficient and saturable energy of the NCs were 5 × 10- 12 m/W and 2.5 × 1010 W/m2, respectively. Meanwhile, the gold NCs were found to display strong OL properties towards nanosecond laser pulses. The OL threshold of the gold NCs was lower than that of solid gold nanoparticles and comparable with that of a carbon nanotube suspension. Input fluence and angle-dependent scattering measurements indicated that nonlinear scattering plays an important role in the OL behavior of the gold nanostructures at high laser excitation. The improved OL response in gold NCs was discussed from the viewpoint of structural characteristic. The ultrathin and highly porous walls of the gold NCs can effectively transfer the photon-induced heat to the surrounding solvent, resulting in enhanced OL properties compared with those of solid gold nanoparticles. The intensity-dependent transformation from saturable absorption to reverse-saturable absorption and excellent OL response indicate that the smart gold NCs with ultrathin and highly porous walls can be considered as potential candidate in pulse shaping, passive mode locking, and eye protection against powerful lasers.
One-pot size-controlled growth of graphene-encapsulated germanium nanocrystals
NASA Astrophysics Data System (ADS)
Lee, Jae-Hyun; Lee, Eun-Kyung; Kang, Seog-Gyun; Jung, Su-Ho; Son, Seok-Kyun; Nam, Woo Hyun; Kim, Tae-Hoon; Choi, Byong Lyong; Whang, Dongmok
2018-05-01
To realize graphene-encapsulated semiconductor nanocrystals (NCs), an additional graphene coating process, which causes shape destruction and chemical contamination, has so far been inevitable. We report herein one-pot growth of uniform graphene-germanium core-shell nanocrystals (Ge@G NCs) in gram scale by the addition of methane as a carbon source during the thermal pyrolysis of germane. The methane plays a critical role in the growth of the graphene shell, as well as in the determination of the nucleation density and diameter of the NCs, similar to a surfactant in the liquid-phase growth of monodisperse NCs. By adjusting the gas ratio of precursors, a mixture of germane and methane, we can control the size of the Ge@G NCs in the range of ∼5-180 nm. The Ge@G NCs were characterized by various microscopic and spectroscopic tools, which indicated that the Ge core is single crystalline, and is completely covered by the graphene shell. We further investigated the merits of the graphene shell, which can enhance the electrical conductivity of nanocrystalline materials.
Hao, H L; Wu, W S; Zhang, Y; Wu, L K; Shen, W Z
2016-08-12
We present a detailed investigation into the origin of blue emission from colloidal silicon (Si) nanocrystals (NCs) fabricated by femtosecond laser ablation of Si powder in 1-hexene. High resolution transmission electron microscopy and Raman spectroscopy observations confirm that Si NCs with average size 2.7 nm are produced and well dispersed in 1-hexene. Fourier transform infrared spectrum and x-ray photoelectron spectra have been employed to reveal the passivation of Si NCs surfaces with organic molecules. On the basis of the structural characterization, UV-visible absorption, temperature-dependent photoluminescence (PL), time-resolved PL, and PL excitation spectra investigations, we deduce that room-temperature blue luminescence from colloidal Si NCs originates from the following two processes: (i) under illumination, excitons first form within colloidal Si NCs by direct transition at the X or Γ (Γ25 → Γ'2) point; (ii) and then some trapped excitons migrate to the surfaces of colloidal Si NCs and further recombine via the surface states associated with the Si-C or Si-C-H2 bonds.
Zhang, Zhihong; Guo, Chuanpan; Zhang, Shuai; He, Linghao; Wang, Minghua; Peng, Donglai; Tian, Junfeng; Fang, Shaoming
2017-03-15
We synthesized two kinds of carbon-based nanocomposites of silver nanoclusters (AgNCs). An aptamer for targeted platelet-derived growth factor-BB (PDGF-BB) detection was used as the organic phase to produce AgNCs@Apt, three dimensional reduced graphene oxide@AgNCs@Aptamer (3D-rGO@AgNCs@Apt), and graphene quantum dots@AgNCs@Aptamer (GQD@AgNCs@Apt) nanocomposites. The formation mechanism of the developed nanocomposites was described by detailed characterizations of their chemical and crystal structures. Subsequently, the as-synthesized nanoclusters containing aptamer strands were applied as the sensitive layers to fabricate a novel electrochemical aptasensor for the detection of PDGF-BB, which may be directly used to determine the target protein. Electrochemical impedance spectra showed that the developed 3D-rGO@AgNCs@Apt-based biosensor exhibited the highest sensitivity for PDGF-BB detection among three kinds of fabricated aptasensors, with an extremely low detection limit of 0.82pgmL -1 . In addition, the 3D-rGO@AgNCs@Apt-based biosensor showed high selectivity, stability, and applicability for the detection of PDGF-BB. This finding indicated that the AgNC-based nanocomposites prepared by a one-step method could be used as an electrochemical biosensor for various detection procedures in the biomedical field. Copyright © 2016 Elsevier B.V. All rights reserved.
Davari, Seyyed Ali; Hu, Sheng; Mukherjee, Dibyendu
2017-03-01
Intermetallic nanoalloys (NAs) and nanocomposites (NCs) have increasingly gained prominence as efficient catalytic materials in electrochemical energy conversion and storage systems. But their morphology and chemical compositions play critical role in tuning their catalytic activities, and precious metal contents. While advanced microscopy techniques facilitate morphological characterizations, traditional chemical characterizations are either qualitative or extremely involved. In this study, we apply Laser Induced Breakdown Spectroscopy (LIBS) for quantitative compositional analysis of NAs and NCs synthesized with varied elemental ratios by our in-house built pulsed laser ablation technique. Specifically, elemental ratios of binary PtNi, PdCo (NAs) and PtCo (NCs) of different compositions are determined from LIBS measurements employing an internal calibration scheme using the bulk matrix species as internal standards. Morphology and qualitative elemental compositions of the aforesaid NAs and NCs are confirmed from Transmission Electron Microscopy (TEM) images and Energy Dispersive X-ray Spectroscopy (EDX) measurements. LIBS experiments are carried out in ambient conditions with the NA and NC samples drop cast on silicon wafers after centrifugation to increase their concentrations. The technique does not call for cumbersome sample preparations including acid digestions and external calibration standards commonly required in Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) techniques. Yet the quantitative LIBS results are in good agreement with the results from ICP-OES measurements. Our results indicate the feasibility of using LIBS in future for rapid and in-situ quantitative chemical characterizations of wide classes of synthesized NAs and NCs. Copyright © 2016 Elsevier B.V. All rights reserved.
Synthesis and characterization of some metal oxide nanocrystals by microwave irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rashad, M.; Gaber, A.; Abdelrahim, M. A.
2013-12-16
Copper oxide and cobalt oxide (CuO, Co3O4) nanocrystals (NCs) have been successfully prepared in a short time using microwave irradiation. The resulted powders of nanocrystals (NCs) were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Thermogravimetric analysis (TGA) measurements are also studied. Fourier-transform infrared (FT-IR) and UV–visible absorption spectroscopy of both kind of nanoparticels are illustrated. Optical absorption analysis indicated the direct band gap for both kinds of nanocrystals.
Bhamore, Jigna R; Jha, Sanjay; Singhal, Rakesh Kumar; Kailasa, Suresh Kumar
2017-01-01
In this work, water dispersible fluorescent carbon nanocrystals (NCs) were synthesized by a simple, green and low cost hydrothermal method using Syzygium cumini (jamun) as a carbon source at 180 °C for 6 h. The average size of carbon NCs was found to be 2.1 ± 0.5 nm and shown bright blue fluorescence when excited at 365 nm under UV lamp. The carbon NCs were characterized by spectroscopic (UV-visible and fluorescence, Fourier transform infrared and dynamic light scattering) and high resolution transmission electron microscopic techniques. The quantum yield of carbon NCs was found to be ~5.9 % at 438 nm emission wavelength when excited at 360 nm. It was noticed that none of the metal ions quenched the fluorescence intensity of carbon NCs at 438 nm except for Fe 3+ , indicating the formation of Fe 3+ ion-carbon NCs complexes. The linear range was observed in the concentration range of 0.01-100 μM with the corresponding detection limits of 0.001 μM, respectively. Furthermore, the carbon NCs were used as probes for imaging of fungal (Fusarium avenaceum) cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vukoje, Ivana D., E-mail: ivanav@vinca.rs; Vodnik, Vesna V., E-mail: vodves@vinca.rs; Džunuzović, Jasna V., E-mail: jasnav2002@googlemail.com
2014-01-01
Graphical abstract: - Highlights: • Synthesis and characterization of polystyrene nanocomposites based on Ag nanoparticles. • The glass transition temperature decreased in nanocomposites with respect to the pure polymer. • Resistance of the polymer to thermal degradation enhanced with Ag nanoparticles content. - Abstract: Nanocomposites (NCs) with different content of silver nanoparticles (Ag NPs) embeded in polystyrene (PS) matrix were prepared by in situ bulk radical polymerization. The nearly monodisperse Ag NPs protected with oleylamine were synthesized via organic solvo-thermal method and further used as a filler. The as-prepared spherical Ag NPs with diameter of 7.0 ± 1.5 nm weremore » well dispersed in the PS matrix. The structural properties of the resulting Ag/PS NCs were characterized by transmission electron microscope (TEM) and Fourier transform infrared (FTIR) spectroscopy, while optical properties were characterized using optical absorption measurements. The gel permeation chromatography (GPC) measurements showed that the presence of Ag NPs stabilized with oleylamine has no influence on the molecular weight and polydispersity of the PS matrix. The influence of silver content on the thermal properties of Ag/PS NCs was investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results indicated that resistance of PS to thermal degradation was improved upon incorporation of Ag NPs. The Ag/PS NCs have lower glass transition temperatures than neat PS because loosely packed oleylamine molecules at the interface caused the increase of free volume and chain segments mobility near the surface of Ag NPs.« less
Polyethyleneimine Capped Silver Nanoclusters as Efficient Antibacterial Agents.
Xu, Dong; Wang, Qingyun; Yang, Tao; Cao, Jianzhong; Lin, Qinlu; Yuan, Zhiqin; Li, Le
2016-03-18
Development of efficient antibacterial agents is critical for human health. In the present study, we investigated the antibacterial activity of polyethyleneimine (PEI)-capped silver nanoclusters (PEI-AgNCs), based on the fact that nanoclusters normally have higher surface-to-volume ratios than traditional nanomaterials and PEI itself has a strong antimicrobial capacity. We synthesized stable silver nanoclusters by altering PEI molecular weight from 0.6 kDa to 25 kDa and characterized them by UV-Vis absorption and fluorescence spectroscopy and high resolution transmission electron microscopy. The sizes of AgNCs were around 2 nm in diameter and were little influenced by the molecular weight of PEIs. The antibacterial abilities of the four PEI-AgNCs were explored on agar plate and in liquid systems. Our results revealed that the antibacterial activity of PEI-AgNCs is excellent and the reduction of PEI molecular weight could result in the increased antibacterial capacity of PEI-AgNCs. Such proposed new materials might be useful as efficient antibacterial agents in practical clinical applications.
Label-Free Ferrocene-Loaded Nanocarrier Engineering for In Vivo Cochlear Drug Delivery and Imaging.
Youm, Ibrahima; Musazzi, Umberto M; Gratton, Michael Anne; Murowchick, James B; Youan, Bi-Botti C
2016-10-01
It is hypothesized that ferrocene (FC)-loaded nanocarriers (FC-NCs) are safe label-free contrast agents for cochlear biodistribution study by transmission electron microscopy (TEM). To test this hypothesis, after engineering, the poly(epsilon-caprolactone)/polyglycolide NCs are tested for stability with various types and ratios of sugar cryoprotectants during freeze-drying. Their physicochemical properties are characterized by UV-visible spectroscopy, dynamic light scattering, Fourier transform infrared spectroscopy, and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDS). The biodistribution of the FC-NCs in the cochlear tissue after intratympanic injection in guinea pigs is visualized by TEM. Auditory brainstem responses are measured before and after 4-day treatments. These FC-NCs have 153.4 ± 8.7 nm, 85.5 ± 11.2%, and -22.1 ± 1.1 mV as mean diameters, percent drug association efficiency, and zeta potential, respectively (n = 3). The incorporation of FC into the NCs is confirmed by Fourier transform infrared spectroscopy and SEM/EDS spectra. Lactose (3:1 ratio, v/v) is the most effective stabilizer after a 12-day study. The administered NCs are visible by TEM in the scala media cells of the cochlea. Based on auditory brainstem response data, FC-NCs do not adversely affect hearing. Considering the electrondense, radioactive, and magnetic properties of iron inside FC, FC-NCs are promising nanotemplate for future inner ear theranostics. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jia, Lei; Zhou, Tao; Xu, Jun; Li, Xiaohui; Dong, Kun; Huang, Jiancui; Xu, Zhouqing
2016-02-01
Janus particles (JPs) are unique among the nano-/microobjects because they provide asymmetry and can thus impart drastically different chemical or physical properties. In this work, we have fabricated the magnetic halloysite nanotube (HNT)-based HNTs@Fe3O4 nanocomposite (NCs) and then anchored the Janus Au-Ni or isotropic Au nanoparticles (NPs) to the surface of external wall of sulfydryl modified magnetic nanotubes. The characterization by physical methods authenticates the successful fabrication of two different magnetic HNTs@Fe3O4@Au and HNTs@Fe3O4@Au-Ni NCs. The catalytic activity and recyclability of the two NCs have been evaluated considering the degradation of Congo red (CR) and 4-nitrophenol (4-NP) using sodium borohydride as a model reaction. The results reveal that the symmetric Au NPs participated NCs display low activity in the degradation of the above organic dyes. However, a detailed kinetic study demonstrates that the employ of bimetallic Janus Au-Ni NPs in the NCs indicates enhanced catalytic activity, owing to the structurally specific nature. Furthermore, the magnetic functional NCs reported here can be used as recyclable catalyst which can be recovered simply by magnet.
Neocarzinostatin as a probe for DNA protection activity--molecular interaction with caffeine.
Chin, Der-Hang; Li, Huang-Hsien; Kuo, Hsiu-Maan; Chao, Pei-Dawn Lee; Liu, Chia-Wen
2012-04-01
Neocarzinostatin (NCS), a potent mutagen and carcinogen, consists of an enediyne prodrug and a protein carrier. It has a unique double role in that it intercalates into DNA and imposes radical-mediated damage after thiol activation. Here we employed NCS as a probe to examine the DNA-protection capability of caffeine, one of common dietary phytochemicals with potential cancer-chemopreventive activity. NCS at the nanomolar concentration range could induce significant single- and double-strand lesions in DNA, but up to 75 ± 5% of such lesions were found to be efficiently inhibited by caffeine. The percentage of inhibition was caffeine-concentration dependent, but was not sensitive to the DNA-lesion types. The well-characterized activation reactions of NCS allowed us to explore the effect of caffeine on the enediyne-generated radicals. Postactivation analyses by chromatographic and mass spectroscopic methods identified a caffeine-quenched enediyne-radical adduct, but the yield was too small to fully account for the large inhibition effect on DNA lesions. The affinity between NCS chromophore and DNA was characterized by a fluorescence-based kinetic method. The drug-DNA intercalation was hampered by caffeine, and the caffeine-induced increases in DNA-drug dissociation constant was caffeine-concentration dependent, suggesting importance of binding affinity in the protection mechanism. Caffeine has been shown to be both an effective free radical scavenger and an intercalation inhibitor. Our results demonstrated that caffeine ingeniously protected DNA against the enediyne-induced damages mainly by inhibiting DNA intercalation beforehand. The direct scavenging of the DNA-bound NCS free radicals by caffeine played only a minor role. Copyright © 2011 Wiley Periodicals, Inc.
Transmission electron microscopy as a tool for nanocrystal characterization pre- and post-injector
Stevenson, H. P.; DePonte, D. P.; Makhov, A. M.; Conway, James F.; Zeldin, O. B.; Boutet, S.; Calero, G.; Cohen, A. E.
2014-01-01
Recent advancements at the Linac Coherent Light Source X-ray free-electron laser (XFEL) enabling successful serial femtosecond diffraction experiments using nanometre-sized crystals (NCs) have opened up the possibility of X-ray structure determination of proteins that produce only submicrometre crystals such as many membrane proteins. Careful crystal pre-characterization including compatibility testing of the sample delivery method is essential to ensure efficient use of the limited beamtime available at XFEL sources. This work demonstrates the utility of transmission electron microscopy for detecting and evaluating NCs within the carrier solutions of liquid injectors. The diffraction quality of these crystals may be assessed by examining the crystal lattice and by calculating the fast Fourier transform of the image. Injector reservoir solutions, as well as solutions collected post-injection, were evaluated for three types of protein NCs (i) the membrane protein PTHR1, (ii) the multi-protein complex Pol II-GFP and (iii) the soluble protein lysozyme. Our results indicate that the concentration and diffraction quality of NCs, particularly those with high solvent content and sensitivity to mechanical manipulation may be affected by the delivery process. PMID:24914151
Dananjaya, S H S; Erandani, W K C U; Kim, Cheol-Hee; Nikapitiya, Chamilani; Lee, Jehee; De Zoysa, Mahanama
2017-12-01
Though the metal nanoparticles (NPs) have been shown favorable results against fungal diseases, erratic environmental toxicity of NPs have raised serious concerns against their applications. Hence, it is vital to modify antifungal compounds into safe substitutes over synthetic chemicals. In this study, antifungal effects of chitosan nanoparticles (CNPs) and chitosan silver nanocomposites (CAgNCs) were compared against Fusarium oxysporum species complex. CNPs and CAgNCs were synthesized, characterized and compared based on the transmission electron microscope, X-ray diffraction, UV-vis absorbance spectra, particle size distribution, zeta potential and thermal stability analysis. Ultra-structural analysis on mycelium membrane of treated F. oxysporum showed that CNPs and CAgNCs could induce a pronounced membrane damage and disruption of the mycelium surface, increase the membrane permeability, and even cell disintegration. CAgNCs showed a significantly higher radial growth inhibition than CNPs in all the tested concentrations. Both CNPs and CAgNCs were not only effective in reducing the fungal growth, but also caused morphological and ultrastructural changes in the pathogen, thereby suggesting its usage as an antifungal dispersion system to control F. oxysporum. Additionally, CNPs and CAgNCs therapy reduced the F. oxysporum infection in zebrafish. Data demonstrates biologically active CNPs and CAgNCs are promising antifungal agents against F. oxysporum. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Lun; Dou, Liguang; Zhang, Hui
2014-04-07
M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 ± 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ∼0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity or selectivity. The AuNCs/M(= Ni, Co)3Al-LDH catalysts present even higher alcohol oxidation activity than AuNCs/Mg3Al-LDH. Particularly, AuNCs/Ni3Al-LDH-0.22 exhibits the highest activity (46 500 h(-1)) for the aerobic oxidation of 1-phenylethanol under solvent-free conditions attributed to its strongest Au-support synergy. The excellent activity and stability of AuNCs/M3Al-LDH catalysts render these materials promising candidates for green base-free selective oxidation of alcohols by molecular oxygen.
NASA Astrophysics Data System (ADS)
Chen, Zhuo; Tian, Changyong; Bo, Shuhui; Liu, Xinhou; Zhen, Zhen
2015-10-01
Oleic acid (OA)-modified LaF3:Nd, NaYF4:Nd and CaF2:Nd nanocrystals (NCs) with the different Nd3+ ion concentration (2% and 5%) have been prepared. The structure and morphology of NCs were identified by XRD, TEM, FT-IR and TGA. The size of OA-modified NC is a mean diameter of 5-10 nm and can be dispersed in common organic solvents to form a transparent solution. The optical loss of NCs in organic solvent is the first time to discuss in this work. The luminescence properties of NCs were also characterized and studied by fluorescence spectrometer. The nanoparticles in solid and in the solution all exhibited the strong emission at the 1060 nm when the materials were excited around 800 nm. Compared with the LaF3 and CaF2 matrix, NaYF4 as the host can protect the Nd3+ ions more efficiently away from the nonradiative transitions. The longest luminescent lifetime of the solid NaYF4:2%Nd NCs was up to 136 μs, and the little difference of the fluorescence lifetime existed between the NCs in solid state and in solution. The low optical loss in organic solvent indicated that the Nd3+ ions-doped fluoride NCs are promising materials for optical amplification fields.
Xu, Shuhua
2015-01-01
Noncoding DNA sequences (NCS) have attracted much attention recently due to their functional potentials. Here we attempted to reveal the functional roles of noncoding sequences from the point of view of natural selection that typically indicates the functional potentials of certain genomic elements. We analyzed nearly 37 million single nucleotide polymorphisms (SNPs) of Phase I data of the 1000 Genomes Project. We estimated a series of key parameters of population genetics and molecular evolution to characterize sequence variations of the noncoding genome within and between populations, and identified the natural selection footprints in NCS in worldwide human populations. Our results showed that purifying selection is prevalent and there is substantial constraint of variations in NCS, while positive selectionis more likely to be specific to some particular genomic regions and regional populations. Intriguingly, we observed larger fraction of non-conserved NCS variants with lower derived allele frequency in the genome, indicating possible functional gain of non-conserved NCS. Notably, NCS elements are enriched for potentially functional markers such as eQTLs, TF motif, and DNase I footprints in the genome. More interestingly, some NCS variants associated with diseases such as Alzheimer's disease, Type 1 diabetes, and immune-related bowel disorder (IBD) showed signatures of positive selection, although the majority of NCS variants, reported as risk alleles by genome-wide association studies, showed signatures of negative selection. Our analyses provided compelling evidence of natural selection forces on noncoding sequences in the human genome and advanced our understanding of their functional potentials that play important roles in disease etiology and human evolution. PMID:26053627
NASA Astrophysics Data System (ADS)
Bahmani, Baharak; Guerrero, Yadir; Vullev, Valentine; Singh, Sheela P.; Kundra, Vikas; Anvari, Bahman
2013-03-01
Optical nano-materials present a promising platform for targeted molecular imaging of cancer biomarkers and its photodestruction. Our group is investigating the use of polymeric nanoparticles, loaded with indocyanine green, an FDA-approved chromophore, as a theranostic agent for targeted intraoperative optical imaging and laser-mediated destruction of ovarian cancer. These ICG-loaded nanocapsules (ICG-NCs) can be functionalized by covalent attachment of targeting moieties onto their surface. Here, we investigate ICG-NCs functionalized with anti-HER2 for targeted fluorescence imaging and laser-mediated destruction of ovarian cancer cells in vitro. ICG-NCs are formed through ionic cross-linking between polyallylamine hydrochloride chains and sodium phosphate ions followed by diffusion-mediated loading with ICG. Before functionalization with antibodies, the surface of ICG-NCs is coated with single and double aldehyde terminated polyethylene glycol (PEG). The monoclonal anti-HER2 is covalently coupled to the PEGylated ICG-NCs using reductive amination to target the HER2 receptor, a biomarker whose over-expression is associated with increased risk of cancer progression. We quantify uptake of anti-HER2 conjugated ICG-NCs by ovarian cancer cells using flow cytometery. The in-vitro laser-mediated destruction of SKOV3 cells incubated with anti-HER2 functionalized ICG-NCs is performed using an 808 nm diode laser. Cell viability is characterized using the Calcein and Ethidium homodimer-1 assays following laser irradiation. Our results indicate that anti-HER2 functionalized ICG-NCs can be used as theranostic agents for optical molecular imaging and photodestruction of ovarian cancers in-vitro.
NASA Astrophysics Data System (ADS)
Bilal Taşyürek, Lütfi; Sevim, Melike; Çaldıran, Zakir; Aydogan, Sakir; Metin, Önder
2018-01-01
A perovskite type of strontium titanate (SrTiO3) nanocubes (NCs) were synthesized by using a hydrothermal process and the thin films of these NCs were deposited on an n-type silicon wafer by spin coating technique. As-synthesized SrTiO3 NCs were characterized by transmission electron microscope, scanning electron microscope, energy dispersive x-ray, x-ray diffraction and Raman spectroscopy. After evaporation of 12 Ni dots on the SrTiO3 NCs thin films deposited on n-Si, the Ni/SrTiO3 NCs/n-Si heterojunction devices were fabricated for the first time. The ideality factors of the twelve fabricated devices were vary from 1.05 to 1.22 and the barrier height values varied from 0.64 to 0.68 eV. Furthermore, since all devices yielded similar characteristics, only the current-voltage and the capacitance-voltage of one selected device (named H1) were investigated in detailed. The series resistance of this device was calculated as 96 Ω.
NASA Astrophysics Data System (ADS)
Nguyen, Minh-Kha; Su, Wei-Nien; Chen, Ching-Hsiang; Rick, John; Hwang, Bing-Joe
2017-03-01
Surface-enhanced Raman scattering (SERS) and fluorescence microscopy are a widely used biological and chemical characterization techniques. However, the peak overlapping in multiplexed experiments and rapid photobleaching of fluorescent organic dyes is still the limitations. When compared to Ag nanocubes (NCs), higher SERS sensitivities can be obtained with thin shelled silica Ag@SiO2 NCs, in contrast metal-enhanced photoluminescence (MEPL) is only found with NCs that have thicker silica shells. A 'dual functionality' represented by the simultaneous strengthening of SERS and MEPL signals can be achieved by mixing Ag@SiO2 NCs, with a silica shell thickness of 1.5 nm and 4.4 nm. This approach allows both the Ag@SiO2 NCs SERS and MEPL sensitivities to be maintained at 90% after 12 weeks of storage. Based on the distinguished detection of creatinine and flavin adenine dinucleotide in the mixture, the integration of SERS and MEPL together on a stable single plasmonic nanoparticle platform offers an opportunity to enhance both biomarker detection sensitivity and specificity.
NASA Astrophysics Data System (ADS)
Zhang, Xiaoming; Quan, Zewei; Yang, Jun; Yang, Piaoping; Lian, Hongzhou; Lin, Jun
2008-02-01
MF2 (M = Ca,Sr,Ba) nanocrystals (NCs) were synthesized via a solvothermal process in the presence of oleic acid and characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectra, UV/vis absorption spectra, photoluminescence (PL) excitation and emission spectra, and lifetimes, respectively. In the synthetic process, oleic acid as a surfactant played a crucial role in confining the growth and solubility of the MF2 NCs. The as-prepared CaF2, SrF2 and BaF2 NCs present morphologies of truncated octahedron, cube and sheet in a narrow distribution, respectively. Possible growth mechanisms were proposed to explain these results. The as-prepared NCs are highly crystalline and can be well dispersed in cyclohexane to form stable and clear colloidal solutions, which demonstrate strong emission bands centred at 400 nm in photoluminescence (PL) spectra compared with the cyclohexane solvent. The PL properties of the colloidal solutions of the as-prepared NCs can be ascribed to the trap states of surface defects.
Characterizing the biocompatibility and tumor-imaging capability of Cu2S nanocrystals in vivo
NASA Astrophysics Data System (ADS)
Poulose, Aby Cheruvathoor; Veeranarayanan, Srivani; Mohamed, M. Sheikh; Sakamoto, Yasushi; Hirosawa, Narumi; Suzuki, Yuko; Zhang, Minfang; Yudasaka, Masako; Radhakrishnan, Neelima; Maekawa, Toru; Mohanan, P. V.; Sakthi Kumar, D.
2015-07-01
Multifunctional nanomaterial-based probes have had key impacts on high-resolution and high-sensitivity bioimaging and therapeutics. Typically, NIR-absorbing metal sulfide-based nanocrystals (NCs) are highly assuring due to their unique optical properties. Yet, their in vivo behavior remains undetermined, which in turn undermines their potential bioapplications. Herein, we have examined the application of PEGylated Cu2S NCs as tumor contrast optical nanoprobes as well as investigated the short- and long-term in vivo compatibility focusing on anti-oxidant defense mechanism, genetic material, immune system, and vital organs. The studies revealed an overall safe profile of the NCs with no apparent toxicity even at longer exposure periods. The acquired observations culminate into a set of primary safety data of this nanomaterial and the use of PEGylated Cu2S NCs as promising optical nanoprobes with immense futuristic bioapplications.
Cellular roles of neuronal calcium sensor-1 and calcium/calmodulin-dependent kinases in fungi.
Tamuli, Ranjan; Kumar, Ravi; Deka, Rekha
2011-04-01
The neuronal calcium sensor-1 (NCS-1) possesses a consensus signal for N-terminal myristoylation and four EF-hand Ca(2+)-binding sites, and mediates the effects of cytosolic Ca(2+). Minute changes in free intracellular Ca(2+) are quickly transformed into changes in the activity of several kinases including calcium/calmodulin-dependent protein kinases (Ca(2+)/CaMKs) that are involved in regulating many eukaryotic cell functions. However, our current knowledge of NCS-1 and Ca(2+)/CaMKs comes mostly from studies of the mammalian enzymes. Thus far very few fungal homologues of NCS-1 and Ca(2+)/CaMKs have been characterized and little is known about their cellular roles. In this minireview, we describe the known sequences, interactions with target proteins and cellular roles of NCS-1 and Ca(2+)/CaMKs in fungi. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Antimicrobial Lemongrass Essential Oil-Copper Ferrite Cellulose Acetate Nanocapsules.
Liakos, Ioannis L; Abdellatif, Mohamed H; Innocenti, Claudia; Scarpellini, Alice; Carzino, Riccardo; Brunetti, Virgilio; Marras, Sergio; Brescia, Rosaria; Drago, Filippo; Pompa, Pier Paolo
2016-04-20
Cellulose acetate (CA) nanoparticles were combined with two antimicrobial agents, namely lemongrass (LG) essential oil and Cu-ferrite nanoparticles. The preparation method of CA nanocapsules (NCs), with the two antimicrobial agents, was based on the nanoprecipitation method using the solvent/anti-solvent technique. Several physical and chemical analyses were performed to characterize the resulting NCs and to study their formation mechanism. The size of the combined antimicrobial NCs was found to be ca. 220 nm. The presence of Cu-ferrites enhanced the attachment of LG essential oil into the CA matrix. The magnetic properties of the combined construct were weak, due to the shielding of Cu-ferrites from the polymeric matrix, making them available for drug delivery applications where spontaneous magnetization effects should be avoided. The antimicrobial properties of the NCs were significantly enhanced with respect to CA/LG only. This work opens novel routes for the development of organic/inorganic nanoparticles with exceptional antimicrobial activities.
75 FR 53665 - Hydrographic Services Review Panel Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-01
..., National Ocean Service (NOS), NOAA (N/CS), 1315 East West Highway, Silver Spring, Maryland 20910; Telephone... Review Panel Meeting AGENCY: National Ocean Service, National Oceanic and Atmospheric Administration..., National Ocean Service, National Oceanic and Atmospheric Administration. [FR Doc. 2010-21882 Filed 8-31-10...
Dongargaonkar, Alpana A.; Bowlin, Gary L.; Yang, Hu
2013-01-01
In this work, we report a new nanofiber construct based on electrospun blends of gelatin and gelatin-dendrimer conjugates. Highly branched star-shaped polyamidoamine (PAMAM) dendrimer G3.5 was covalently conjugated to gelatin via EDC/NHS chemistry. Blends of gelatin and gelatin-dendrimer conjugates mixed with various loading levels of silver acetate (0, 0.83, 1.65, and 3.30% w/w) were successfully electrospun into nanofiber constructs (NCs). The NCs were further converted into semi-interpenetrating networks (sIPNs) with photoreactive polyethylene glycol diacrylate (Mn=575 gmol-1) (PEG DA575). They were characterized in terms of fiber morphology, diameter, pore size, permeability, degradation, and mechanical properties. The resulting sIPN NCs retained nanofiber morphology, possessed similar fiber diameters to counterpart NCs, and gained improved structural stability. The sIPN NCs also showed good swelling capacity owing to porous structures and were permeable to aqueous solutions. Silvercontaining sIPN NCs allowed sustained silver release and showed antimicrobial activity against two common types of pathogens—Staphylococcus aureus and Pseudomonas aeruginosa. Incorporation of dendrimers into the gelatin nanofibers through covalent conjugation not only expands drug loading capacity of nanofiber constructs but provides tremendous flexibility for developing multifunctional electrospun dressing materials. PMID:24127747
Weerawatanakorn, Monthana; Asikin, Yonathan; Takahashi, Makoto; Tamaki, Hajime; Wada, Koji; Ho, Chi-Tang; Chuekittisak, Raweewan
2016-11-01
Non-centrifugal cane sugar (NCS) is globally consumed and has various health benefits. It is mostly produced in hardened block form, which is less convenient than in granulated form for food applications. In terms of the traditional processing of NCS, preparation of granulated products is difficult due to the impurities found in the cane juice extracted from the whole stalk. Therefore, the aim of this study was to characterize and determine the physico-chemical properties, wax composition (policosanols and long-chain aldehydes), volatile aroma profiles, and antioxidant activity of traditional NCS in granular form made from four different cane cultivars of Thailand. The total soluble solid, pH, color, and mineral content varied among the sugarcane cultivars, whereas there was no significant difference in the total sugar, phenolic and flavonoid content. The total policosanol, a cholesterol-lowering nutraceutical wax component, and long-chain aldehyde contents were similar in the NCS products amongst three cultivars, and ranged from 2.63 to 3.69 mg/100 g. The granulated NCS products, in which acetaldehyde and dimethyl sulfide were the main volatile compounds, gave less aroma components than traditional NCS. The use of different sugarcane cultivars thus influenced the quality attributes of granulated non-centrifugal sugar products.
Farace, Cristiano; Sánchez-Moreno, Paola; Orecchioni, Marco; Manetti, Roberto; Sgarrella, Francesco; Asara, Yolande; Peula-García, José M.; Marchal, Juan A.; Madeddu, Roberto; Delogu, Lucia G.
2016-01-01
Lipid nanocapsules (NCs) represent promising tools in clinical practice for diagnosis and therapy applications. However, the NC appropriate functionalization is essential to guarantee high biocompatibility and molecule loading ability. In any medical application, the immune system-impact of differently functionalized NCs still remains to be fully understood. A comprehensive study on the action exerted on human peripheral blood mononuclear cells (PBMCs) and major immune subpopulations by three different NC coatings: pluronic, chitosan and polyethylene glycol-polylactic acid (PEG) is reported. After a deep particle characterization, the uptake was assessed by flow-cytometry and confocal microscopy, focusing then on apoptosis, necrosis and proliferation impact in T cells and monocytes. Cell functionality by cell diameter variations, different activation marker analysis and cytokine assays were performed. We demonstrated that the NCs impact on the immune cell response is strongly correlated to their coating. Pluronic-NCs were able to induce immunomodulation of innate immunity inducing monocyte activations. Immunomodulation was observed in monocytes and T lymphocytes treated with Chitosan-NCs. Conversely, PEG-NCs were completely inert. These findings are of particular value towards a pre-selection of specific NC coatings depending on biomedical purposes for pre-clinical investigations; i.e. the immune-specific action of particular NC coating can be excellent for immunotherapy applications. PMID:26728491
Farace, Cristiano; Sánchez-Moreno, Paola; Orecchioni, Marco; Manetti, Roberto; Sgarrella, Francesco; Asara, Yolande; Peula-García, José M; Marchal, Juan A; Madeddu, Roberto; Delogu, Lucia G
2016-01-05
Lipid nanocapsules (NCs) represent promising tools in clinical practice for diagnosis and therapy applications. However, the NC appropriate functionalization is essential to guarantee high biocompatibility and molecule loading ability. In any medical application, the immune system-impact of differently functionalized NCs still remains to be fully understood. A comprehensive study on the action exerted on human peripheral blood mononuclear cells (PBMCs) and major immune subpopulations by three different NC coatings: pluronic, chitosan and polyethylene glycol-polylactic acid (PEG) is reported. After a deep particle characterization, the uptake was assessed by flow-cytometry and confocal microscopy, focusing then on apoptosis, necrosis and proliferation impact in T cells and monocytes. Cell functionality by cell diameter variations, different activation marker analysis and cytokine assays were performed. We demonstrated that the NCs impact on the immune cell response is strongly correlated to their coating. Pluronic-NCs were able to induce immunomodulation of innate immunity inducing monocyte activations. Immunomodulation was observed in monocytes and T lymphocytes treated with Chitosan-NCs. Conversely, PEG-NCs were completely inert. These findings are of particular value towards a pre-selection of specific NC coatings depending on biomedical purposes for pre-clinical investigations; i.e. the immune-specific action of particular NC coating can be excellent for immunotherapy applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooke, H.; Guenther, E; Luo, Y
2009-01-01
The small molecule component of chromoprotein enediyne antitumor antibiotics is biosynthesized through a convergent route, incorporating amino acid, polyketide, and carbohydrate building blocks around a central enediyne hydrocarbon core. The naphthoic acid moiety of the enediyne neocarzinostatin plays key roles in the biological activity of the natural product by interacting with both the carrier protein and duplex DNA at the site of action. We have previously described the in vitro characterization of an S-adenosylmethionine-dependent O-methyltransferase (NcsB1) in the neocarzinostatin biosynthetic pathway [Luo, Y., Lin, S., Zhang, J., Cooke, H. A., Bruner, S. D., and Shen, B. (2008) J. Biol. Chem.more » 283, 14694-14702]. Here we provide a structural basis for NcsB1 activity, illustrating that the enzyme shares an overall architecture with a large family of S-adenosylmethionine-dependent proteins. In addition, NcsB1 represents the first enzyme to be structurally characterized in the biosynthetic pathway of neocarzinostatin. By cocrystallizing the enzyme with various combinations of the cofactor and substrate analogues, details of the active site structure have been established. Changes in subdomain orientation were observed via comparison of structures in the presence and absence of substrate, suggesting that reorientation of the enzyme is involved in binding of the substrate. In addition, residues important for substrate discrimination were predicted and probed through site-directed mutagenesis and in vitro biochemical characterization.« less
Mallakpour, Shadpour; Mansourzadeh, Soheila
2018-05-01
The aim of this paper was to blend the polymers, poly(N-vinyl-2-pyrrolidone) (PVP) and poly(vinyl alcohol) (PVA) to produce a novel composite materials possessing the benefits of both. CuO nanoparticles (NPs) were used as a suitable filler to fabricate the blend nanocomposites (NCs) with desired properties. First, the surface of NPs, was modified with vitamin B 1 (VB 1 ) as a bio-safe coupling agent. Then, the blend NCs with various ratios of modified CuO (3, 5, and 7 wt%) were fabricated under ultrasonic irradiations followed by casting/solvent evaporation method. These processes are fast and green way to disperse the NPs sufficiently. Several techniques were applied for the characterization of the obtained NCs. morphology examination demonstrated the morphology of NCs and compatibility of NPs with the blend polymer. EDX results indicated the weight and atomic percentage of the achieved materials. TGA analysis verified that the NCs show higher thermal properties than the neat blend polymer. Also embedding the modified NPs into the blend polymer had effected on optical absorbance of the obtained NCs. The contact angle measurements confirmed that the hydrophilicity decreased for different proportions of the modified NPs loaded in the blend polymer. Finally, NCs show better bactericidal effects against gram-positive than gram-negative bacteria. Copyright © 2018 Elsevier B.V. All rights reserved.
Chun, Ho-Hwan; Jo, Wan-Kuen
2016-05-01
In this study, a N-, C-, and S-doped titania (NCS-TiO2) composite was prepared by combining the titanium precursor with a single dopant source, and the photocatalytic activity of this system for the decomposition of volatile organic compounds (VOCs) at indoor-concentration levels, under exposure to visible light, was examined. The NCS-TiO2 composite and the pure TiO2 photocatalyst, used as a reference, were characterized via X-ray diffraction, scanning electron microscopy, ultraviolet-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The average efficiencies of benzene, toluene, ethyl benzene, and o-xylene decomposition using NCS-TiO2 for were 70, 87, -100, and -100%, respectively, whereas the values obtained using the pure TiO2 powder were -0, 18, 49, and 51%, respectively. These results suggested that, for the photocatalytic decomposition of toxic VOCs under visible-light exposure conditions, NCS-TiO2 was superior to the reference photocatalyst. The decomposition efficiencies of the target VOCs were inversely related to the initial concentration and relative humidity as well as to the air-flow rate. The decomposition efficiencies of the target chemicals achieved with a conventional lamp/NCS-TiO2 system were higher than those achieved with a light emitting diode/NCS-TiO2 system. Overall, NCS-TiO2 can be used for the efficient decomposition of VOCs under visible-light exposure, if the operational conditions are optimized.
Heo, Jungho; Hwang, Cheong-Soo
2016-01-01
Water-dispersible ZnS:Mn nanocrystals (NCs) were synthesized by capping the surface with polar L-aspartic acid (Asp) molecules. The obtained ZnS:Mn-Asp NC product was optically and physically characterized using the corresponding spectroscopic methods. The ultra violet-visible (UV-VIS) absorption spectrum and photoluminescence (PL) emission spectrum of the NCs showed broad peaks at 320 and 590 nm, respectively. The average particle size measured from the obtained high resolution-transmission electron microscopy (HR-TEM) image was 5.25 nm, which was also in accordance with the Debye-Scherrer calculations using the X-ray diffraction (XRD) data. Moreover, the surface charge and degree of aggregation of the ZnS:Mn-Asp NCs were determined by electrophoretic and hydrodynamic light scattering methods, respectively. These results indicated the formation of agglomerates in water with an average size of 19.8 nm, and a negative surface charge (−4.58 mV) in water at ambient temperature. The negatively-charged NCs were applied as a photosensor for the detection of specific cations in aqueous solution. Accordingly, the ZnS:Mn-Asp NCs showed an exclusive luminescence quenching upon addition of copper (II) cations. The kinetic mechanism study on the luminescence quenching of the NCs by the addition of the Cu2+ ions proposed an energy transfer through the ionic binding between the two oppositely-charged ZnS:Mn-Asp NCs and Cu2+ ions. PMID:28335210
Abbas, Muhammad A; Kim, Tea-Yon; Lee, Sang Uck; Kang, Yong Soo; Bang, Jin Ho
2016-01-13
Gold nanoclusters (Au NCs) with molecule-like behavior have emerged as a new light harvester in various energy conversion systems. Despite several important strides made recently, efforts toward the utilization of NCs as a light harvester have been primarily restricted to proving their potency and feasibility. In solar cell applications, ground-breaking research with a power conversion efficiency (PCE) of more than 2% has recently been reported. Because of the lack of complete characterization of metal cluster-sensitized solar cells (MCSSCs), however, comprehensive understanding of the interfacial events and limiting factors which dictate their performance remains elusive. In this regard, we provide deep insight into MCSSCs for the first time by performing in-depth electrochemical impedance spectroscopy (EIS) analysis combined with physical characterization and density functional theory (DFT) calculations of Au NCs. In particular, we focused on the effect of the size of the Au NCs and electrolytes on the performance of MCSSCs and reveal that they are significantly influential on important solar cell characteristics such as the light absorption capability, charge injection kinetics, interfacial charge recombination, and charge transport. Besides offering comprehensive insights, this work represents an important stepping stone toward the development of MCSSCs by accomplishing a new PCE record of 3.8%.
NASA Astrophysics Data System (ADS)
Zhou, Wenjuan; Cao, Yuqing; Sui, Dandan; Guan, Weijiang; Lu, Chao; Xie, Jianping
2016-05-01
The prevalence of reactive oxygen species (ROS) production and the enzyme-containing intracellular environment could lead to the fluorescence quenching of bovine serum albumin (BSA)-capped gold nanoclusters (AuNCs). Here we report an efficient strategy to address this issue, where a polymer-like shielding layer is designed to wrap around the Au core to significantly improve the stability of AuNCs against ROS and protease degradation. The key of our design is to covalently incorporate a thiolated AuNC into the BSA-AuNC via carbodiimide-activated coupling, leading to the formation of a AuNC pair inside the cross-linked BSA molecule. The as-designed paired AuNCs in BSA (or BSA-p-AuNCs for short) show improved performances in living cells.The prevalence of reactive oxygen species (ROS) production and the enzyme-containing intracellular environment could lead to the fluorescence quenching of bovine serum albumin (BSA)-capped gold nanoclusters (AuNCs). Here we report an efficient strategy to address this issue, where a polymer-like shielding layer is designed to wrap around the Au core to significantly improve the stability of AuNCs against ROS and protease degradation. The key of our design is to covalently incorporate a thiolated AuNC into the BSA-AuNC via carbodiimide-activated coupling, leading to the formation of a AuNC pair inside the cross-linked BSA molecule. The as-designed paired AuNCs in BSA (or BSA-p-AuNCs for short) show improved performances in living cells. Electronic supplementary information (ESI) available: Detailed experimental materials, apparatus, experimental procedures and characterization data. See DOI: 10.1039/c6nr02178f
Wakefield, Jerome C.; Schmitz, Mark F.
2014-01-01
Community prevalence rates of alcohol use disorders (AUDs) provided by epidemiological studies using DSM-based diagnostic criteria pose several challenges: the rates appear implausibly high to many epidemiologists; they do not converge across similar studies; and, due to low service utilization by those diagnosed as disordered, they yield estimates of unmet need for services so high that credibility for planning purposes is jeopardized. For example, two early community studies using DSM diagnostic criteria, the Epidemiologic Catchment Area Study (ECA) and the National Comorbidity Survey (NCS), yielded lifetime AUD prevalence rates of 14 and 24%, respectively, with NCS unmet need for services 19% of the entire population. Attempts to address these challenges by adding clinical significance requirements to diagnostic criteria have proven unsuccessful. Hypothesizing that these challenges are due to high rates of false-positive diagnoses of problem drinking as AUDs, we test an alternative approach. We use the harmful dysfunction (HD) analysis of the concept of mental disorder as a guide to construct more valid criteria within the framework of the standard out-of-control model of AUD. The proposed HD criteria require harm and dysfunction, where harm can be any negative social, personal, or physical outcome, and dysfunction requires either withdrawal symptoms or inability to stop drinking. Using HD criteria, ECA and NCS lifetime prevalences converge to much-reduced rates of 6 and 6.8%, respectively. Due to higher service utilization rates, NCS lifetime unmet need is reduced to 3.4%. Service use and duration comparisons suggest that HD criteria possess increased diagnostic validity. Moreover, HD criteria eliminate 90% of transient teenage drinking from disorder status. The HD version of the out-of-control model thus potentially resolves the three classic prevalence challenges while offering a more rigorous approach to distinguishing AUDs from problematic drinking. PMID:24550847
Atomically monodisperse nickel nanoclusters as highly active electrocatalysts for water oxidation
NASA Astrophysics Data System (ADS)
Joya, Khurram S.; Sinatra, Lutfan; Abdulhalim, Lina G.; Joshi, Chakra P.; Hedhili, M. N.; Bakr, Osman M.; Hussain, Irshad
2016-05-01
Achieving water splitting at low overpotential with high oxygen evolution efficiency and stability is important for realizing solar to chemical energy conversion devices. Herein we report the synthesis, characterization and electrochemical evaluation of highly active nickel nanoclusters (Ni NCs) for water oxidation at low overpotential. These atomically precise and monodisperse Ni NCs are characterized by using UV-visible absorption spectroscopy, single crystal X-ray diffraction and mass spectrometry. The molecular formulae of these Ni NCs are found to be Ni4(PET)8 and Ni6(PET)12 and are highly active electrocatalysts for oxygen evolution without any pre-conditioning. Ni4(PET)8 are slightly better catalysts than Ni6(PET)12 which initiate oxygen evolution at an amazingly low overpotential of ~1.51 V (vs. RHE; η ~ 280 mV). The peak oxygen evolution current density (J) of ~150 mA cm-2 at 2.0 V (vs. RHE) with a Tafel slope of 38 mV dec-1 is observed using Ni4(PET)8. These results are comparable to the state-of-the-art RuO2 electrocatalyst, which is highly expensive and rare compared to Ni-based materials. Sustained oxygen generation for several hours with an applied current density of 20 mA cm-2 demonstrates the long-term stability and activity of these Ni NCs towards electrocatalytic water oxidation. This unique approach provides a facile method to prepare cost-effective, nanoscale and highly efficient electrocatalysts for water oxidation.Achieving water splitting at low overpotential with high oxygen evolution efficiency and stability is important for realizing solar to chemical energy conversion devices. Herein we report the synthesis, characterization and electrochemical evaluation of highly active nickel nanoclusters (Ni NCs) for water oxidation at low overpotential. These atomically precise and monodisperse Ni NCs are characterized by using UV-visible absorption spectroscopy, single crystal X-ray diffraction and mass spectrometry. The molecular formulae of these Ni NCs are found to be Ni4(PET)8 and Ni6(PET)12 and are highly active electrocatalysts for oxygen evolution without any pre-conditioning. Ni4(PET)8 are slightly better catalysts than Ni6(PET)12 which initiate oxygen evolution at an amazingly low overpotential of ~1.51 V (vs. RHE; η ~ 280 mV). The peak oxygen evolution current density (J) of ~150 mA cm-2 at 2.0 V (vs. RHE) with a Tafel slope of 38 mV dec-1 is observed using Ni4(PET)8. These results are comparable to the state-of-the-art RuO2 electrocatalyst, which is highly expensive and rare compared to Ni-based materials. Sustained oxygen generation for several hours with an applied current density of 20 mA cm-2 demonstrates the long-term stability and activity of these Ni NCs towards electrocatalytic water oxidation. This unique approach provides a facile method to prepare cost-effective, nanoscale and highly efficient electrocatalysts for water oxidation. Electronic supplementary information (ESI) available: CCDC 1419754 and 1419731. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6nr00709k
Lin, Liyun; Hu, Yuefang; Zhang, Liangliang; Huang, Yong; Zhao, Shulin
2017-08-15
In this work, we prepared glutathione (GSH)-capped copper nanoclusters (Cu NCs) with red emission by simply adjusting the pH of GSH/Cu 2+ mixture at room temperature. A photoluminescence light-up method for detecting Zn 2+ was then developed based on the aggregation induced emission enhancement of GSH-capped Cu NCs. Zn 2+ could trigger the aggregation of Cu NCs, inducing the enhancement of luminescence and the increase of absolute quantum yield from 1.3% to 6.2%. GSH-capped Cu NCs and the formed aggregates were characterized, and the possible mechanism was also discussed. The prepared GSH-capped Cu NCs exhibited a fast response towards Zn 2+ and a wider detection range from 4.68 to 2240μM. The detection limit (1.17μM) is much lower than that of the World Health Organization permitted in drinking water. Furthermore, taking advantages of the low cytotoxicity, large Stokes shift, red emission and light-up detection mode, we explored the use of the prepared GSH-capped Cu NCs in the imaging of Zn 2+ in living cells. The developed luminescence light-up nanoprobe may hold the potentials for Zn 2+ -related drinking water safety and biological applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Prospects of nanoscience with nanocrystals
Kovalenko, Maksym V.; Manna, Liberato; Cabot, Andreu; ...
2015-01-22
Colloidal nanocrystals (NCs, i.e., crystalline nanoparticles) have become an important class of materials with great potential for applications ranging from medicine to electronic and optoelectronic devices. Today’s strong research focus on NCs has been prompted by the tremendous progress in their synthesis. Impressively narrow size distributions of just a few percent, rational shape-engineering, compositional modulation, electronic doping, and tailored surface chemistries are now feasible for a broad range of inorganic compounds. The performance of inorganic NC-based photovoltaic and light-emitting devices has become competitive to other state-of-the-art materials. Semiconductor NCs hold unique promise for near- and mid-infrared technologies, where very fewmore » semiconductor materials are available. On a purely fundamental side, new insights into NC growth, chemical transformations, and self-organization can be gained from rapidly progressing in situ characterization and direct imaging techniques. In addition, new phenomena are constantly being discovered in the photophysics of NCs and in the electronic properties of NC solids. In this Nano Focus, we review the state of the art in research on colloidal NCs focusing on the most recent works published in the last 2 years.« less
NASA Astrophysics Data System (ADS)
Rodríguez-Galván, Andrés; Heredia, Alejandro; Amelines-Sarria, Oscar; Rivera, Margarita; Medina, Luis A.; Basiuk, Vladimir A.
2015-03-01
The attachment of silver nanoclusters (AgNCs) onto single-walled carbon nanotubes (SWNTs) for the formation of integrated fluorescence sites has attracted much attention due their potential applications as biological probes and nanovectors in theragnosis. Here, we report the preparation through assembly of fluorescent quasi 1-D nanomaterial based on SWNTs and silver nanoclusters (AgNCs) non-covalently attached to human serum albumin as biological linker. The fluorescent SWNT-AgNCs-HSA conjugates were characterized by atomic force microscopy, high-resolution transmission electron microscopy (HRTEM), high angle annular dark field scanning TEM (HAADF-STEM), fluorescent and UV-vis spectroscopy. The above techniques confirmed that AgNCs were non-covalently attached onto the external surface of SWNTs. In addition, it was observed that the modification did not affect the optical properties of the synthesized AgNCs since the absorption spectra and fluorescence under UV irradiation (λ = 365 nm) remain the same. The effect of the functionalized systems was tested on mammal red blood cells (RBCs) and it was found that their structural integrity was compromised by the conjugates, limiting their biological and medical applications.
Prospects of nanoscience with nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovalenko, Maksym V.; Manna, Liberato; Cabot, Andreu
Colloidal nanocrystals (NCs, i.e., crystalline nanoparticles) have become an important class of materials with great potential for applications ranging from medicine to electronic and optoelectronic devices. Today’s strong research focus on NCs has been prompted by the tremendous progress in their synthesis. Impressively narrow size distributions of just a few percent, rational shape-engineering, compositional modulation, electronic doping, and tailored surface chemistries are now feasible for a broad range of inorganic compounds. The performance of inorganic NC-based photovoltaic and light-emitting devices has become competitive to other state-of-the-art materials. Semiconductor NCs hold unique promise for near- and mid-infrared technologies, where very fewmore » semiconductor materials are available. On a purely fundamental side, new insights into NC growth, chemical transformations, and self-organization can be gained from rapidly progressing in situ characterization and direct imaging techniques. In addition, new phenomena are constantly being discovered in the photophysics of NCs and in the electronic properties of NC solids. In this Nano Focus, we review the state of the art in research on colloidal NCs focusing on the most recent works published in the last 2 years.« less
Numb chin syndrome: A reflection of malignancy or a harbinger of MRONJ? A multicenter experience.
Fortunato, Leonzio; Amato, Massimo; Simeone, Michele; Bennardo, Francesco; Barone, Selene; Giudice, Amerigo
2018-04-20
Numb chin syndrome (NCS) or mental neuropathy (MN) is a disorder characterized by sensory neuropathy on the distribution of the inferior alveolar nerve or mental nerve. The most frequent causes are of odontogenic origin (infections, wrong therapies). Other etiologies are related to primary tumor, metastasis, osteoradionecrosis and medication-related osteonecrosis of the jaw (MRONJ). The aim of this study is to highlight the clinical importance of NCS as one of the first symptoms of cancer or as consequence of drug therapy. The present study was conducted from 2010 to 2016 by recruiting patients who present NCS as one of the symptoms, having excluded those in which it depends on a clear odontogenic cause, on systemic degenerative diseases or metabolic disorders. Data collection included suspected diagnosis at the time of presentation of the symptom, final diagnosis, mandibular localization, treatment performed and diagnostic delay between the first medical examination and the definitive diagnosis. This study included 29 patients in which NCS had not a clear odontogenic cause. NCS was the first symptom of malignancy in 11 cases and the clinical sign of metastasis in 4 cases. In a single patient, it was the first symptom of an immune-mediated disease. In the remaining 13 patients, NCS represented the symptom of MRONJ. NCS can be the first symptom of malignancy, especially in patients with a previous history of cancer, but also a prodromal sign of MRONJ. It should be recognized in order to require deeper examinations for early diagnosis of the disease. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Intensity statistics in the presence of translational noncrystallographic symmetry.
Read, Randy J; Adams, Paul D; McCoy, Airlie J
2013-02-01
In the case of translational noncrystallographic symmetry (tNCS), two or more copies of a component in the asymmetric unit of the crystal are present in a similar orientation. This causes systematic modulations of the reflection intensities in the diffraction pattern, leading to problems with structure determination and refinement methods that assume, either implicitly or explicitly, that the distribution of intensities is a function only of resolution. To characterize the statistical effects of tNCS accurately, it is necessary to determine the translation relating the copies, any small rotational differences in their orientations, and the size of random coordinate differences caused by conformational differences. An algorithm to estimate these parameters and refine their values against a likelihood function is presented, and it is shown that by accounting for the statistical effects of tNCS it is possible to unmask the competing statistical effects of twinning and tNCS and to more robustly assess the crystal for the presence of twinning.
Gold nanocages for imaging and therapy of prostate cancer cells
NASA Astrophysics Data System (ADS)
Sironi, Laura; Avvakumova, Svetlana; Galbiati, Elisabetta; Locarno, Silvia A.; Macchi, Chiara; D'Alfonso, Laura; Ruscica, Massimiliano; Magni, Paolo; Collini, Maddalena; Romeo, Sergio; Chirico, Giuseppe; Prosperi, Davide
2016-04-01
Gold nanocages (AuNCs) have been shown to be a useful tool both for imaging and hyperthermia therapy of cancer, thanks to their outstanding optical properties, low toxicity and facile functionalization with targeting molecules, including peptides and antibodies. In particular, hyperthermia is a minimally invasive therapy which takes advantage of the peculiar properties of gold nanoparticles to efficiently convert the absorbed light into heat. Here, we use AuNCs for the selective targeting and imaging of prostate cancer cells. Moreover, we report the hyperthermic effect characterization of the AuNCs both in solution and internalized in cells. Prostate cancer cells were irradiated at different exposure times, with a pulsed near infrared laser, and the cellular viability was evaluated by confocal microscopy.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-22
... Draft NOAA Climate Service Strategic Vision and Framework for Public Review, and Notice of Informational Webinar Meetings ACTION: Notice of availability of a draft NOAA Climate Service strategic vision and... to establish a new NOAA Climate Service (NCS). The new service will directly support NOAA's vision of...
Multifunctional Cu2-xTe Nanocubes Mediated Combination Therapy for Multi-Drug Resistant MDA MB 453
NASA Astrophysics Data System (ADS)
Poulose, Aby Cheruvathoor; Veeranarayanan, Srivani; Mohamed, M. Sheikh; Aburto, Rebeca Romero; Mitcham, Trevor; Bouchard, Richard R.; Ajayan, Pulickel M.; Sakamoto, Yasushi; Maekawa, Toru; Kumar, D. Sakthi
2016-10-01
Hypermethylated cancer populations are hard to treat due to their enhanced chemo-resistance, characterized by aberrant methylated DNA subunits. Herein, we report on invoking response from such a cancer lineage to chemotherapy utilizing multifunctional copper telluride (Cu2-XTe) nanocubes (NCs) as photothermal and photodynamic agents, leading to significant anticancer activity. The NCs additionally possessed photoacoustic and X-ray contrast imaging abilities that could serve in image-guided therapeutic studies.
PyNCS: a microkernel for high-level definition and configuration of neuromorphic electronic systems
Stefanini, Fabio; Neftci, Emre O.; Sheik, Sadique; Indiveri, Giacomo
2014-01-01
Neuromorphic hardware offers an electronic substrate for the realization of asynchronous event-based sensory-motor systems and large-scale spiking neural network architectures. In order to characterize these systems, configure them, and carry out modeling experiments, it is often necessary to interface them to workstations. The software used for this purpose typically consists of a large monolithic block of code which is highly specific to the hardware setup used. While this approach can lead to highly integrated hardware/software systems, it hampers the development of modular and reconfigurable infrastructures thus preventing a rapid evolution of such systems. To alleviate this problem, we propose PyNCS, an open-source front-end for the definition of neural network models that is interfaced to the hardware through a set of Python Application Programming Interfaces (APIs). The design of PyNCS promotes modularity, portability and expandability and separates implementation from hardware description. The high-level front-end that comes with PyNCS includes tools to define neural network models as well as to create, monitor and analyze spiking data. Here we report the design philosophy behind the PyNCS framework and describe its implementation. We demonstrate its functionality with two representative case studies, one using an event-based neuromorphic vision sensor, and one using a set of multi-neuron devices for carrying out a cognitive decision-making task involving state-dependent computation. PyNCS, already applicable to a wide range of existing spike-based neuromorphic setups, will accelerate the development of hybrid software/hardware neuromorphic systems, thanks to its code flexibility. The code is open-source and available online at https://github.com/inincs/pyNCS. PMID:25232314
PyNCS: a microkernel for high-level definition and configuration of neuromorphic electronic systems.
Stefanini, Fabio; Neftci, Emre O; Sheik, Sadique; Indiveri, Giacomo
2014-01-01
Neuromorphic hardware offers an electronic substrate for the realization of asynchronous event-based sensory-motor systems and large-scale spiking neural network architectures. In order to characterize these systems, configure them, and carry out modeling experiments, it is often necessary to interface them to workstations. The software used for this purpose typically consists of a large monolithic block of code which is highly specific to the hardware setup used. While this approach can lead to highly integrated hardware/software systems, it hampers the development of modular and reconfigurable infrastructures thus preventing a rapid evolution of such systems. To alleviate this problem, we propose PyNCS, an open-source front-end for the definition of neural network models that is interfaced to the hardware through a set of Python Application Programming Interfaces (APIs). The design of PyNCS promotes modularity, portability and expandability and separates implementation from hardware description. The high-level front-end that comes with PyNCS includes tools to define neural network models as well as to create, monitor and analyze spiking data. Here we report the design philosophy behind the PyNCS framework and describe its implementation. We demonstrate its functionality with two representative case studies, one using an event-based neuromorphic vision sensor, and one using a set of multi-neuron devices for carrying out a cognitive decision-making task involving state-dependent computation. PyNCS, already applicable to a wide range of existing spike-based neuromorphic setups, will accelerate the development of hybrid software/hardware neuromorphic systems, thanks to its code flexibility. The code is open-source and available online at https://github.com/inincs/pyNCS.
Bhamore, Jigna R; Jha, Sanjay; Basu, Hirakendu; Singhal, Rakesh Kumar; Murthy, Z V P; Kailasa, Suresh Kumar
2018-04-01
Herein, fluorescent gold nanoclusters (Au NCs) were obtained by one-pot synthetic method using bovine serum albumin (BSA) and bromelain as templates. As-synthesized fluorescent Au NCs were stable and showed bright red fluorescence under UV lamp at 365 nm. The fluorescent Au NCs exhibit the emission intensity at 648 nm when excited at 498 nm. Various techniques were used such as spectroscopy (UV-visible, fluorescence, and Fourier-transform infrared), high-resolution transmission electron microscopy, and dynamic light scattering for the characterization of fluorescent Au NCs. The values of I 0 /I at 648 nm are proportional to the concentrations of Hg 2+ ion in the range from 0.00075 to 5.0 μM and of lambda-cyhalothrin in the range from 0.01 to 10 μM with detection limits of 0.0003 and 0.0075 μM for Hg 2+ ion and lambda-cyhalothrin, respectively. The practical application of the probe was successfully demonstrated by analyzing Hg 2+ ion and lambda-cyhalothrin in water samples. In addition, Au NCs used as probes for imaging of Simplicillium fungal cells. These results indicated that the as-synthesized Au NCs have proven to be promising fluorescent material for the sensing of Hg 2+ ion and lambda-cyhalothrin in environmental and for imaging of microorganism cells in biomedical applications.
Neuronal calcium sensor proteins are direct targets of the insulinotropic agent repaglinide.
Okada, Miki; Takezawa, Daisuke; Tachibanaki, Shuji; Kawamura, Satoru; Tokumitsu, Hiroshi; Kobayashi, Ryoji
2003-01-01
The NCS (neuronal calcium sensor) proteins, including neurocalcins, recoverins and visinin-like proteins are members of a family of Ca2+-sensitive regulators, each with three Ca2+-binding EF-hand motifs. In plants, lily CCaMK [chimaeric Ca2+/CaM (calmodulin)-dependent protein kinase] and its PpCaMK ( Physcomitrella patens CCaMK) homologue are characterized by a visinin-like domain with three EF-hands. In the present study, in an effort to discover NCS antagonists, we screened a total of 43 compounds using Ca2+-dependent drug affinity chromatography and found that the insulinotropic agent repaglinide targets the NCS protein family. Repaglinide was found to bind to NCS proteins, but not to CaM or S100 proteins, in a Ca2+-dependent manner. Furthermore, the drug antagonized the inhibitory action of recoverin in a rhodopsin kinase assay with IC50 values of 400 microM. Moreover, repaglinide tightly bound to the visinin-like domain of CCaMK and PpCaMK in a Ca2+-dependent manner and antagonized the regulatory function of the domain with IC50 values of 55 and 4 microM for CCaMK and PpCaMK respectively. Although both repaglinide and a potent insulin secretagogue, namely glibenclamide, blocked K(ATP) channels with similar potency, glibenclamide had no antagonizing effect on the Ca2+-stimulated CCaMK and PpCaMK autophosphorylation, mediated by their visinin-like domain. In addition, a typical CaM antagonist, trifluoperazine, had no effect on the CCaMK and PpCaMK autophosphorylation. Repaglinide appears to be the first antagonist of NCS proteins and visinin-like domain-bearing enzymes. It may serve as a useful tool for evaluating the physiological functions of the NCS protein family. In addition, since repaglinide selectively targets NCS proteins among the EF-hand Ca2+-binding proteins, it is a potential lead compound for the development of more potent NCS antagonists. PMID:12844348
NASA Astrophysics Data System (ADS)
Alotaibi, Mshari A.; Alharthi, Abdulrahman I.; Zierkiewicz, Wiktor; Akhtar, Muhammad; Tahir, Muhammad Nawaz; Mazhar, Muhammad; Isab, Anvarhusein A.; Ahmad, Saeed
2017-04-01
A zinc(II) complex of 1,3-diaminopropane (Dap), [Zn(Dap)(NCS)2][Zn(Dap)(NCS)2]n (1) has been prepared and characterized by elemental analysis, IR, 1H &13C NMR spectroscopy, and its crystal structure was determined by X-ray crystallography. The crystal structure of 1 consists of two types of molecules, a discrete monomer and a polymeric one. In the monomeric unit, the zinc atom is bound to one terminal Dap molecule and to two N-bound thiocyanate ions, while in the polymeric unit, Dap acts as a bridging ligand forming a linear chain. The Zn(II) ions in both assume a slightly distorted tetrahedral geometry. The structures of two systems: the [Zn(Dap)(NCS)2][Zn(Dap)(NCS)2]3 complex as a model of 1 and [Zn(Dap)(NCS)2]4 as a simple polymeric structure were optimized with the B3LYP-D3 method. The DFT results support that the experimentally determined structure (1) is more stable in comparison to a simple polymeric structure, [Zn(Dap)(NCS)2]n (2). The interaction energies (ΔE) for NCS anions obtained by B3LYP-D3 method are about -145 kcal mol-1, while the calculated ΔE values for neutral organic ligands are about twice smaller. The X-ray structure of 1 shows that the complex is stabilized mainly by hydrogen bonds. We also found that weak chalcogen bonds play an additional role in stabilization of compound 1. Some of the intermolecular S⋯N distances are smaller than the sum of the van der Waals radii of the corresponding atoms. To the best of our knowledge, this is the first study that shows the structure where the trivalent sulfur is involved in formation of a S⋯π chalcogen bond. The NBO and NCI analyses confirm the existence of this kind of interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Bo; Zhang, Xiaosong, E-mail: zhangxiaosong@tjut.edu.cn; Li, Lan
Trap-rich CdS nanocrystals were synthesized by employing CdSt{sub 2} and sulfur as precursors via thermal decomposition. Furthermore, X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), absorption and photoluminescence (PL) spectra were used to characterize structure, morphology and luminescence properties of CdS nanocrystals (NCs). CdS NCs have a broad emission across 500–700 nm under the excitation of blue light with 460 nm, consequently, white light can be produced by mixing broad emission from CdS NCs excited by blue light, with the remaining blue light. In addition, the broad emission generation is closely and inseparably related to surface defects. Moreover, LaMer modelmore » was used to explain the phenomenon that the intensity of the trap emission gradually decreases as the reaction time increases in contrast with that of the band-edge emission. - Graphical abstract: Trap-rich CdS nanocrystals were synthesized. Furthermore, white light is produced by mixing broad emission across 500–700 nm from CdS NCs excited by blue light, in combination with the remaining blue light. - Highlights: • Trap-rich CdS nanocrystals were synthesized. • CdS NCs have a broad emission across 500–700 nm under the excitation of blue light. • White light can be produced by mixing broad emission with the remaining blue light.« less
Application of hybrid SiO2-coated CdTe nanocrystals for sensitive sensing of Cu2+ and Ag+ ions.
Cao, Yongqiang; Zhang, Aiyu; Ma, Qian; Liu, Ning; Yang, Ping
2013-01-01
A new ion sensor based on hybrid SiO2 -coated CdTe nanocrystals (NCs) was prepared and applied for sensitive sensing of Cu(2+) and Ag(+) for the selective quenching of photoluminescence (PL) of NCs in the presence of ions. As shown by ion detection experiments conducted in pure water rather than buffer solution, PL responses of NCs were linearly proportional to concentrations of Cu(2+) and Ag(+) ions < 3 and 7 uM, respectively. Much lower detection limits of 42.37 nM for Cu(2+) and 39.40 nM for Ag(+) were also observed. In addition, the NC quenching mechanism was discussed in terms of the characterization of static and transient optical spectra. The transfer and trapping of photoinduced charges in NCs by surface energy levels of CuS and Ag2 S clusters as well as surface defects generated by the exchange of Cu(2+) and Ag(+) ions with Cd(2+) ion in NCs, resulted in PL quenching and other optical spectra changes, including steady-state absorption and transient PL spectra. It is our hope that these results will be helpful in the future preparation of new ion sensors. Copyright © 2012 John Wiley & Sons, Ltd.
Lignos, Ioannis; Protesescu, Loredana; Emiroglu, Dilara Börte; Maceiczyk, Richard; Schneider, Simon; Kovalenko, Maksym V; deMello, Andrew J
2018-02-14
Hybrid organic-inorganic perovskites and in particular formamidinium lead halide (FAPbX 3 , X = Cl, Br, I) perovskite nanocrystals (NCs) have shown great promise for their implementation in optoelectronic devices. Specifically, the Br and I counterparts have shown unprecedented photoluminescence properties, including precise wavelength tuning (530-790 nm), narrow emission linewidths (<100 meV) and high photoluminescence quantum yields (70-90%). However, the controlled formation of blue emitting FAPb(Cl 1-x Br x ) 3 NCs lags behind their green and red counterparts and the mechanism of their formation remains unclear. Herein, we report the formation of FAPb(Cl 1-x Br x ) 3 NCs with stable emission between 440 and 520 nm in a fully automated droplet-based microfluidic reactor and subsequent reaction upscaling in conventional laboratory glassware. The thorough parametric screening allows for the elucidation of parametric zones (FA-to-Pb and Br-to-Cl molar ratios, temperature, and excess oleic acid) for the formation of nanoplatelets and/or NCs. In contrast to CsPb(Cl 1-x Br x ) 3 NCs, based on online parametric screening and offline structural characterization, we demonstrate that the controlled synthesis of Cl-rich perovskites (above 60 at% Cl) with stable emission remains a challenge due to fast segregation of halide ions.
NASA Astrophysics Data System (ADS)
Knights, A. P.; Bradley, J. D. B.; Hulko, O.; Stevanovic, D. V.; Edwards, C. J.; Kallis, A.; Coleman, P. G.; Crowe, I. F.; Halsall, M. P.; Gwilliam, R. M.
2011-01-01
We describe preliminary results from studies of the formation of silicon nano-crystals (Si-ncs) embedded in stoichiometric, thermally grown SiO2 using Variable Energy Positron Annihilation Spectroscopy (VEPAS). We show that the VEPAS technique is able to monitor the introduction of structural damage. In SiO2 through the high dose Si+ ion implantation required to introduce excess silicon as a precursor to Si-nc formation. VEPAS is also able to characterize the rate of the removal of this damage with high temperature annealing, showing strong correlation with photoluminescence. Finally, VEPAS is shown to be able to selectively probe the interface between Si-ncs and the host oxide. Introduction of hydrogen at these interfaces suppresses the trapping of positrons at the interfaces.
76 FR 32980 - Telecommunications Service Priority (TSP) System
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-07
... of Cybersecurity and Communications (CS&C), National Communications System (NCS), will submit the... Protection and Programs Directorate, Office of Cybersecurity and Communications, National Communications...
NASA Astrophysics Data System (ADS)
Qiu, Teng; Xie, Huxiao; Zhang, Jiangru; Zahoor, Amad; Li, Xiaoyu
2011-03-01
Ag/polypyrrole (PPy) coaxial nanocables (NCs) were synthesized by an ion adsorption method. In this method, the pre-made Ag nanowires (NWs) were dispersed in the aqueous solution of copper acetate (Cu(Ac)2), and the Cu2+ ions adsorbed onto the surface of Ag NWs can oxidize pyrrole monomers to polymerize into uniform PPy sheath outside Ag NWs after the Cu(Ac)2-treated Ag NWs were re-dispersed in the aqueous solution of pyrrole. The morphology of NCs was characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). The relationship between the thickness of polymer sheath and the concentration of Cu(Ac)2 was established. As Cu(Ac)2 which served as the oxidant can also be replaced by AgNO3 in this synthesis, the differences on the structure of polymer sheath caused by different oxidants were studied by surface-enhanced Raman scattering (SERS), high-resolution transmission electron microscope (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). Comparing with the characterization results of Ag/PPy NCs synthesized using AgNO3 as the oxidant which indicates the random arrangement of PPy chains at the interface between polymer sheath and Ag NWs, PPy chain oxidized by Cu2+ tends to show a relatively ordered conformation at the interface with the pyrrole rings identically taking the plane vertical to the surface of Ag NWs. In addition, although the main part of the polymer sheath was composed of PPy whatever kind of oxidant was used, the sheath of the NCs oxidized by Cu2+ is typical for the existence of Cu(I)-pyrrole coordinate structures with strong Cu(I)-N bond signal shown in XPS characterization.
2013-01-01
Introduction Notochordal cells (NCs) pattern aneural and avascular intervertebral discs (IVDs), and their disappearance, is associated with onset of IVD degeneration. This study induced and characterized the maturation of nucleus pulposus (NP) tissue from a gelatinous NC-rich structure to a matrix-rich structure populated by small NP cells using dynamic pressurization in an ex vivo culture model, and also identified soluble factors from NCs with therapeutic potential. Methods Porcine NC-rich NP tissue was cultured and loaded with hydrostatic pressure (0.5 to 2 MPa at 0.1 Hz for 2 hours) either Daily, for 1 Dose, or Control (no pressurization) groups for up to eight days. Cell phenotype and tissue maturation was characterized with measurements of cell viability, cytomorphology, nitric oxide, metabolic activity, matrix composition, gene expression, and proteomics. Results Daily pressurization induced transition of NCs to small NP cells with 73.8%, 44%, and 28% NCs for Control, 1 Dose and Daily groups, respectively (P < 0.0002) and no relevant cell death. Dynamic loading matured NP tissue by significantly increasing metabolic activity and accumulating Safranin-O-stained matrix. Load-induced maturation was also apparent from the significantly decreased glycolytic, cytoskeletal (Vimentin) and stress-inducible (HSP70) proteins assessed with proteomics. Loading increased the production of bioactive proteins Sonic Hedgehog (SHH) and Noggin, and maintained Semaphorin3A (Sema3A). Discussion NP tissue maturation was induced from dynamic hydrostatic pressurization in a controlled ex vivo environment without influence from systemic effects or surrounding structures. NCs transitioned into small nonvacuolated NP cells probably via differentiation as evidenced by high cell viability, lack of nitric oxide and downregulation of stress-inducible and cytoskeletal proteins. SHH, Sema3A, and Noggin, which have patterning and neurovascular-inhibiting properties, were produced in both notochordal and matured porcine NP. Results therefore provide an important piece of evidence suggesting the transition of NCs to small NP cells is a natural part of aging and not the initiation of degeneration. Bioactive candidates identified from young porcine IVDs may be isolated and harnessed for therapies to target discogenic back pain. PMID:24427812
Purmessur, Devina; Guterl, Clare C; Cho, Samuel K; Cornejo, Marisa C; Lam, Ying W; Ballif, Bryan A; Laudier, James C Iatridis; Iatridis, James C
2013-01-01
Notochordal cells (NCs) pattern aneural and avascular intervertebral discs (IVDs), and their disappearance, is associated with onset of IVD degeneration. This study induced and characterized the maturation of nucleus pulposus (NP) tissue from a gelatinous NC-rich structure to a matrix-rich structure populated by small NP cells using dynamic pressurization in an ex vivo culture model, and also identified soluble factors from NCs with therapeutic potential. Porcine NC-rich NP tissue was cultured and loaded with hydrostatic pressure (0.5 to 2 MPa at 0.1 Hz for 2 hours) either Daily, for 1 Dose, or Control (no pressurization) groups for up to eight days. Cell phenotype and tissue maturation was characterized with measurements of cell viability, cytomorphology, nitric oxide, metabolic activity, matrix composition, gene expression, and proteomics. Daily pressurization induced transition of NCs to small NP cells with 73.8%, 44%, and 28% NCs for Control, 1 Dose and Daily groups, respectively (P < 0.0002) and no relevant cell death. Dynamic loading matured NP tissue by significantly increasing metabolic activity and accumulating Safranin-O-stained matrix. Load-induced maturation was also apparent from the significantly decreased glycolytic, cytoskeletal (Vimentin) and stress-inducible (HSP70) proteins assessed with proteomics. Loading increased the production of bioactive proteins Sonic Hedgehog (SHH) and Noggin, and maintained Semaphorin3A (Sema3A). NP tissue maturation was induced from dynamic hydrostatic pressurization in a controlled ex vivo environment without influence from systemic effects or surrounding structures. NCs transitioned into small nonvacuolated NP cells probably via differentiation as evidenced by high cell viability, lack of nitric oxide and downregulation of stress-inducible and cytoskeletal proteins. SHH, Sema3A, and Noggin, which have patterning and neurovascular-inhibiting properties, were produced in both notochordal and matured porcine NP. Results therefore provide an important piece of evidence suggesting the transition of NCs to small NP cells is a natural part of aging and not the initiation of degeneration. Bioactive candidates identified from young porcine IVDs may be isolated and harnessed for therapies to target discogenic back pain.
NASA Astrophysics Data System (ADS)
Gupta, Jagriti; Barick, K. C.; Hassan, P. A.; Bahadur, Dhirendra
2018-04-01
Ag decorated silica coated ZnO nanocomposite (Ag@SiO2@ZnO NCs) has been synthesized by soft chemical approach. The physico-chemical properties of Ag@SiO2@ZnO NCs are investigated by various sophisticated characterization techniques such as X-ray diffraction, Transmission electron microscopy, X-ray photoelectron spectroscopy, UV-visible absorption and photoluminescent spectroscopy. X-ray diffraction confirms the phase formation of ZnO and Ag in nanocomposite. TEM micrograph clearly shows that Ag nanodots are well decorated over silica coated ZnO NCs. The photoluminescent study reveals the enhancement in the photoluminance property when the Ag nanodots are decorated over silica coated ZnO nanocomposite due to an electromagnetic coupling between excitons and plasmons. Furthermore, the photoluminescent property is an important tool for bio-imaging application, reveal that NCs give green and red emission after excitation with 488 and 535 nm. Therefore, low cytotoxicity and excellent fluorescence stability in vitro makes it a more suitable material for both cellular imaging and therapy for biomedical applications.
NASA Astrophysics Data System (ADS)
Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki
2016-08-01
Understanding of the “structure-activity” relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au3+ ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size.
Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki
2016-01-01
Understanding of the “structure-activity” relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au3+ ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size. PMID:27476577
NASA Astrophysics Data System (ADS)
Aldeek, Fadi; Muhammed, M. A. H.; Mattoussi, Hedi
2013-02-01
We describe the growth and characterization of a set of gold and silver nanoparticles (NPs) as well as fluorescent nanoclusters (NCs) using one-step reduction (in aqueous phase) of Au and Ag precursors in the presence of modular bifunctional ligands. These ligands are made of bidentate (lipoic acid) anchoring groups appended with poly(ethylene glycol) segment, LA-PEG. The particle size can be easily controlled by varying the metal-to-ligand molar ratio during growth. We found that while high metal-to-ligand molar ratios promote the formation of NPs, small size and highly fluorescent NCs are exclusively formed when molar excesses of ligands are used. Both sets of NCs emit in the red to near infrared (NIR) region of the optical spectrum, though the exact location of the emission depends on the material used. The growth strategy further permitted the in-situ functionalization of the NCs with reactive groups (e.g., carboxylic acid or amine), which opens up the opportunity to conjugate these materials to biomolecules using simple to implement coupling chemistries.
Copper-containing ceramic precursor synthesis: Solid-state transformations and materials technology
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Eckles, William E.; Duraj, Stan A.; Andras, Maria T.; Fanwick, Phillip E.; Richman, Robert M.; Sabat, Michael L.; Power, Michael B.; Gordon, Edward M.; Barron, Andrew
1994-01-01
Three copper systems with relevance to materials technology are discussed. In the first, a CuS precursor, Cu4S1O (4-methylpyridine)(sub 4)- (4-MePy), was prepared by three routes: reaction of Cu2S, reaction of CuBr-SMe2, and oxidation of copper powder with excess sulfur in 4-methylpyridine by sulfur. In the second, copper powder was found to react with excess thiourea (H2NC(S)NH2) in 4-methylpyridine to produce thiocyanate (NCS(-)) complexes. Three isolated and characterized compounds are: Cu(NCS)(4-MePy)(sub 2), a polymer, (4-MePy-H)(Cu(NCS)(sub 3)(4-MePy)(sub 2)), a salt, and t-Cu(NCS)(sub 2)(4-MePy)(sub 4). Finally, an attempt to produce a mixed-metal sulfide precursor of Cu and Ga in N-methylimidazole (N-MeIm) resulted in the synthesis of a Cu-containing polymer, Cu(SO4)(N-MeIm). The structures are presented; the chemistry will be briefly discussed in the context of preparation and processing of copper-containing materials for aerospace applications.
Ahmad, Mansor Bin; Gharayebi, Yadollah; Salit, Mohd. Sapuan; Hussein, Mohd. Zobir; Shameli, Kamyar
2011-01-01
In this paper, Polyimide/Montmorillonite Nanocomposites (PI/MMT NCs), based on aromatic diamine (4-Aminophenyl sulfone) (APS) and aromatic dianhydride (3,3′,4,4′-benzophenonetetracarboxylic dianhydride) (BTDA) were prepared using in situ polymerization and solution-dispersion techniques. The prepared PI/MMT NCs films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The XRD results showed that at the content of 1.0 wt % Organo Montmorillonite (OMMT) for two techniques and 3.0 wt % OMMT for the in situ polymerization technique, the OMMT was well-intercalated, exfoliated and dispersed into polyimide matrix. The OMMT agglomerated when its amount exceeded 10 wt % and 3.0 wt % for solution-dispersion and in situ polymerization techniques respectively. These results were confirmed by the TEM images of the prepared PI/MMT NCs. The TGA thermograms indicated that thermal stability of prepared PI/MMT NCs were increased with the increase of loading that, the effect is higher for the samples prepared by in situ polymerization technique. PMID:22016643
Ahmad, Mansor Bin; Gharayebi, Yadollah; Salit, Mohd Sapuan; Hussein, Mohd Zobir; Shameli, Kamyar
2011-01-01
In this paper, Polyimide/Montmorillonite Nanocomposites (PI/MMT NCs), based on aromatic diamine (4-Aminophenyl sulfone) (APS) and aromatic dianhydride (3,3',4,4'-benzophenonetetracarboxylic dianhydride) (BTDA) were prepared using in situ polymerization and solution-dispersion techniques. The prepared PI/MMT NCs films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The XRD results showed that at the content of 1.0 wt % Organo Montmorillonite (OMMT) for two techniques and 3.0 wt % OMMT for the in situ polymerization technique, the OMMT was well-intercalated, exfoliated and dispersed into polyimide matrix. The OMMT agglomerated when its amount exceeded 10 wt % and 3.0 wt % for solution-dispersion and in situ polymerization techniques respectively. These results were confirmed by the TEM images of the prepared PI/MMT NCs. The TGA thermograms indicated that thermal stability of prepared PI/MMT NCs were increased with the increase of loading that, the effect is higher for the samples prepared by in situ polymerization technique.
Novel Rhenium(III, IV, and V) Tetradentate N2O2 Schiff Base Mononuclear and Dinuclear Complexes
Rotsch, David A.; Reinig, Kimberly M.; Weis, Eric M.; Taylor, Anna B.; Barnes, Charles L.
2013-01-01
Reaction of (Bu4N)[ReOCl4] with the tetradentate Schiff base ligand α, α’-[(1,1-dimethylethylene)dinitrilo]di-o-cresol (sal2ibnH2) yields cis-[ReVOCl(sal2ibn)], which quickly forms trans-[μ-O(ReVO(sal2ibn))2] in solution. The dinuclear complex can also be isolated by the addition of base (Et3N) to the reaction mixture. Conversely, the mononuclear complex can be trapped as cis-[ReVO(NCS)(sal2ibn)] by addition of (Bu4N)SCN to the reaction mixture. Reduction of cis-[ReVO(NCS)sal2ibn] with triphenylphosphine gives the unique trans-[ReIII(NCS)(PPh3)(sal2ibn)] and rare μ-oxo Re(IV) dimer trans-[μ-O(ReIV(NCS)(sal2ibn))2]. All of the complexes were characterized by 1H and 13C NMR, FT-IR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), cyclic voltammetry and single crystal X-ray diffraction. PMID:23824208
The economic and social burden of compulsive hoarding
Tolin, David F.; Frost, Randy O.; Steketee, Gail; Gray, Krista D.; Fitch, Kristin E.
2011-01-01
The aim of the present study was to determine the economic and social burden of compulsive hoarding in a large sample of individuals with self-identified hoarding, as well as a separate sample of family members of individuals who hoard. Self-identified hoarding participants (N = 864, 94% female, 65% met research criteria for clinically relevant compulsive hoarding) and family informants (N = 655, 58% described a relative who appeared to meet research criteria for compulsive hoarding), completed an internet survey. Questions were derived in part from those used in the National Comorbidity Survey (NCS), and when possible, hoarding participants were compared to NCS participants. Compulsive hoarding was associated with an average 7.0 work impairment days in the past month, equivalent to that reported by individuals with psychotic disorders and significantly greater than that reported by female NCS participants with all other anxiety, mood, and substance use disorders. Severity of hoarding predicted the degree of work impairment after controlling for age, sex, and nonpsychiatric medical conditions. Hoarding participants were nearly three times as likely to be overweight or obese as were family members. Compared to female NCS participants, hoarding participants were significantly more likely to report a broad range of chronic and severe medical concerns and had a fivefold higher rate of mental health service utilization. Eight to 12 percent had been evicted or threatened with eviction due to hoarding, and 0.1–3.0% had a child or elder removed from the home. These results suggest that compulsive hoarding represents a profound public health burden in terms of occupational impairment, poor physical health, and social service involvement. PMID:18597855
Size-controlled synthesis of Pd nanocrystals using a specific multifunctional peptide
NASA Astrophysics Data System (ADS)
Chiu, Chin-Yi; Li, Yujing; Huang, Yu
2010-06-01
Here we report a peptide-mediated synthesis of Pd NCs in aqueous solution with controllable size in the sub-10 nanometre regime. The specific multifunctional peptide Q7 selected using the phage display technique can bind to the Pd NC surface and act as a stabilizer to mediate Pd crystal nucleation and growth. At the nucleation stage, Q7 bound to and helped stabilize the different-sized small Pd NC nuclei achieved using different concentrations of the external reducing agent, NaBH4. At the growth stage, Q7 played the dual role of binding to and reducing the precursor onto the existing nuclei, which led to the further controllable growth of the Pd NCs. By using the variable sizes of nuclei as seeds, and by introducing different amounts of precursors Pd NCs with tunable sizes from 2.6 to 6.6 nm were achieved with good size distribution.Here we report a peptide-mediated synthesis of Pd NCs in aqueous solution with controllable size in the sub-10 nanometre regime. The specific multifunctional peptide Q7 selected using the phage display technique can bind to the Pd NC surface and act as a stabilizer to mediate Pd crystal nucleation and growth. At the nucleation stage, Q7 bound to and helped stabilize the different-sized small Pd NC nuclei achieved using different concentrations of the external reducing agent, NaBH4. At the growth stage, Q7 played the dual role of binding to and reducing the precursor onto the existing nuclei, which led to the further controllable growth of the Pd NCs. By using the variable sizes of nuclei as seeds, and by introducing different amounts of precursors Pd NCs with tunable sizes from 2.6 to 6.6 nm were achieved with good size distribution. Electronic Supplementary Information (ESI) available. Experimental details for peptide selection, peptide synthesis and Pd NCs synthesis; Q7 peptide sequence molecular structure and characterization; TEM images of Pd NCs. See DOI: 10.1039/c0nr00194e/
One-step aqueous synthesis of fluorescent copper nanoclusters by direct metal reduction
NASA Astrophysics Data System (ADS)
Fernández-Ujados, Mónica; Trapiella-Alfonso, Laura; Costa-Fernández, José M.; Pereiro, Rosario; Sanz-Medel, Alfredo
2013-12-01
A one-step aqueous synthesis of highly fluorescent water-soluble copper nanoclusters (CuNCs) is here described, based on direct reduction of the metal precursor with NaBH4 in the presence of bidentate ligands (made of lipoic acid anchoring groups, appended with a poly(ethylene glycol) short chain). A complete optical and structural characterization was carried out: the optical emission was centred at 416 nm, with a luminescence quantum yield in water of 3.6% (the highest one reported so far in water for this kind of nanocluster). The structural characterization reveals a homogeneous size distribution (of 2.5 nm diameter) with spherical shape. The CuNCs obtained offer long-term stability (the luminescence emission remained unaltered after more than two months) under a broad range of chemical conditions (e.g. stored at pH 3-12 or even in a high ionic strength medium such as 1 M NaCl) and high photostability, keeping their fluorescence emission intact after more than 2 h of daylight and UV-light exposition. All those advantageous features warrant synthesized CuNCs being promising fluorescent nanoprobes for further developments including (bio)applications.
Skibitzki, Oliver; Prieto, Ivan; Kozak, Roksolana; Capellini, Giovanni; Zaumseil, Peter; Arroyo Rojas Dasilva, Yadira; Rossell, Marta D; Erni, Rolf; von Känel, Hans; Schroeder, Thomas
2017-03-01
We present the nanoheteroepitaxial growth of gallium arsenide (GaAs) on nano-patterned silicon (Si) (001) substrates fabricated using a CMOS technology compatible process. The selective growth of GaAs nano-crystals (NCs) was achieved at 570 °C by MOVPE. A detailed structure and defect characterization study of the grown nano-heterostructures was performed using scanning transmission electron microscopy, x-ray diffraction, micro-Raman, and micro-photoluminescence (μ-PL) spectroscopy. The results show single-crystalline, nearly relaxed GaAs NCs on top of slightly, by the SiO 2 -mask compressively strained Si nano-tips (NTs). Given the limited contact area, GaAs/Si nanostructures benefit from limited intermixing in contrast to planar GaAs films on Si. Even though a few growth defects (e.g. stacking faults, micro/nano-twins, etc) especially located at the GaAs/Si interface region were detected, the nanoheterostructures show intensive light emission, as investigated by μ-PL spectroscopy. Achieving well-ordered high quality GaAs NCs on Si NTs may provide opportunities for superior electronic, photonic, or photovoltaic device performances integrated on the silicon technology platform.
ERIC Educational Resources Information Center
Merikangas, Kathleen Ries; He, Jian-ping; Burstein, Marcy; Swendsen, Joel; Avenevoli, Shelli; Case, Brady; Georgiades, Katholiki; Heaton, Leanne; Swanson, Sonja; Olfson, Mark
2011-01-01
Objective: Mental health policy for youth has been constrained by a paucity of nationally representative data concerning patterns and correlates of mental health service utilization in this segment of the population. The objectives of this investigation were to examine the rates and sociodemographic correlates of lifetime mental health service use…
Zhang, Yingxiong; Wu, Wenshun; Hao, Huilian; Shen, Wenzhong
2018-06-19
Colloidal silicon (Si) nanocrystals (NCs) with different sizes were successfully prepared by femtosecond laser ablation under different laser ablation time (LAT). The mean size decreases from 4.23 to 1.42 nm with increasing LAT from 30 to 120 min. In combination with structural characterization, temperature-dependent photoluminescence (PL), time-resolved PL, and PL excitation spectra, we attribute room temperature blue emissions peaked at 405 and 430 nm to the radiative recombination of electron-hole pairs via the oxygen deficient centers related to Si-C-H2 and Si-O-Si bonds of colloidal Si NCs prepared in 1-octene, respectively. In particular, the measured PL quantum yield of colloidal Si NCs has been enhanced significantly from 23.6% to 55.8% with prolonging LAT from 30 to 120 min. © 2018 IOP Publishing Ltd.
Benzocaine-loaded polymeric nanocapsules: study of the anesthetic activities.
De Melo, Nathalie Ferreira Silva; De Araújo, Daniele Ribeiro; Grillo, Renato; Moraes, Carolina Morales; De Matos, Angélica Prado; de Paula, Eneida; Rosa, André Henrique; Fraceto, Leonardo Fernandes
2012-03-01
This paper describes a comparison of different polymeric nanocapsules (NCs) prepared with the polymers poly(D,L-lactide-co-glycolide), poly(L-lactide) (PLA), and poly(ε-caprolactone) and used as carrier systems for the local anesthetic (LA) benzocaine (BZC). The systems were characterized and their anesthetic activities investigated. The results showed particle size distributions with polydispersity indices below 0.135, average diameters up to 120 nm, zeta potentials up to -30 mV, and entrapment efficiencies around 70%. Formulations of BZC using the polymeric NCs presented slower release profiles, compared with that of free BZC. Slowest release (release constant, k = 0.0016 min(-1)) was obtained using the PLA NC system. Pharmacological evaluation showed that encapsulation of BZC in PLA NCs prolonged its anesthetic action. This new formulation could potentially be used in future applications involving the gradual release of local anesthetics (LAs). Copyright © 2011 Wiley Periodicals, Inc.
Aqueous synthesis of near-infrared highly fluorescent platinum nanoclusters
NASA Astrophysics Data System (ADS)
García Fernández, Jenifer; Trapiella-Alfonso, Laura; Costa-Fernández, José M.; Pereiro, Rosario; Sanz-Medel, Alfredo
2015-05-01
A one-step synthesis of near infrared fluorescent platinum nanoclusters (PtNCs) in aqueous medium is described. The proposed optimized procedure for PtNC synthesis is rather simple, fast and it is based on the direct metal reduction with NaBH4. Bidentated thiol ligands (lipoic acid) were selected as nanoclusters stabilizers in water media. The structural characterization revealed attractive features of the PtNCs, including small size, high water solubility, near-infrared luminescence centered at 680 nm, long-term stability and the highest quantum yield in water reported so far (47%) for PtNCs. Moreover, their stability in different pH media and an ionic strength of 0.2 M NaCl was studied and no significant changes in fluorescence emission were detected. In brief, they offer a new type of fluorescent noble metal nanoprobe with a great potential to be applied in several fields, including biolabeling and imaging experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bie Haiying; Lu Jing; Yu Jiehui
Three novel thiocyanate supramolecular compounds have been synthesized and characterized by X-ray diffraction and fluorescent spectra. Compound [pipH]{sub 2}[Co(NCS){sub 4}] (pip=piperazine) 1 possesses a two-dimensional layer connected by the combination of N-H...N hydrogen bonds and weak S...S contacts. Under the same conditions, using nickel salt instead of cobalt salt as a starting material, we obtained a different two-dimensional supramolecular layer [pipH]{sub 2}[Ni(NCS){sub 4}] 2 connected by unusual N-H...S hydrogen bonds and weak S...S contacts. In order to observe the influence of the dimension of ligand on the self-assembly structure, dabco was used for substituting pip, and compound [dabcoH]{sub 2}[Ni(NCS){sub 4}]more » (dabco=1,4-Diazabicyclo[2.2.2] octane) 3 was gained, which constructed two-dimensional, highly wavy network with hourglass-shaped cavities only through N-H...S hydrogen bonds.« less
Binkley, Teresa L; Thiex, Natalie W; Specker, Bonny L
2015-05-01
The objective of this study was to provide evidence to evaluate the proposed National Children's Study (NCS) protocol for household water sampling in rural study areas. Day-to-day variability in total trihalomethane (TTHM) concentrations in community water supplies (CWS) in rural areas was determined, and the correlation between TTHM concentrations from household taps and CWS monitoring reports was evaluated. Daily water samples were collected from 7 households serviced by 7 different CWS for 15 days. Coefficients of variation for TTHM concentration over 15 days ranged from 8% to 20% depending on the household. Correlations were tested between TTHM household concentrations and the closest date- and location-matched CWS monitoring reports for the 15-day mean (R=0.85, P<0.01). To simulate the NCS-proposed protocol, correlations were tested for 30 additional NCS household samples (polynomial fit: R=0.74, P=0.04). CWS reported TTHM concentrations >50 μg/l corresponded to measured NCS household concentrations ranging from 2 to 60 μg/l. TTHM concentrations were higher in CWS than NCS samples (11.2±3.2 μg/l, mean difference±SE, P<0.01). These results show that in rural areas there is high variability within households and poor correlation at higher concentrations, suggesting that TTHM concentrations from CWS monitoring reports are not an accurate measure of exposure in the household.
NASA Astrophysics Data System (ADS)
Cichos, J.; Karbowiak, M.
2012-05-01
For electronic or biomedical applications it is desirable to have ligand-free water-dispersible nanocrystals (NCs). The commonly used FTIR spectroscopy often provides a direct evidence for molecules on the surface. In some cases, however, the strong bands of solvent molecules may obscure the peaks of surface bounded ligands. We show that in this regard the emission spectroscopy may be used as a more reliable probing tool. The relevant information can be obtained from emission and excitation spectra, emission decay times as well as from analysis of relative efficiency of excitation energy transfer from Gd3+ to Eu3+ ions. Using these methods we tested samples obtained by various synthetic routes and indicated that only nitrosonium tetrafluoroborate (NOBF4) removes successfully the organic ligands from the nanocrystals surface, yielding organic ligand-free NCs dispersible in aqueous solutions. The conclusions drawn from emission spectroscopy are useful for interpretation of results of FTIR, Raman and NMR studies. The detailed assignment of FTIR peaks for oleate-capped and oleate-free NCs is also provided. Finally, we point to the risk of drawing erroneous conclusions about colloidal stability of nanocrystals if refractive indexes of NCs and medium are similar.
Rapp, Micah; Schein, Jessica; Hunt, Kevin A; Nalam, Vamsi; Mourad, George S; Schultes, Neil P
2016-03-01
The solute specificity profiles (transport and binding) for the nucleobase cation symporter 1 (NCS1) proteins, from the closely related C4 grasses Zea mays and Setaria viridis, differ from that of Arabidopsis thaliana and Chlamydomonas reinhardtii NCS1. Solute specificity profiles for NCS1 from Z. mays (ZmNCS1) and S. viridis (SvNCS1) were determined through heterologous complementation studies in NCS1-deficient Saccharomyces cerevisiae strains. The four Viridiplantae NCS1 proteins transport the purines adenine and guanine, but unlike the dicot and algal NCS1, grass NCS1 proteins fail to transport the pyrimidine uracil. Despite the high level of amino acid sequence similarity, ZmNCS1 and SvNCS1 display distinct solute transport and recognition profiles. SvNCS1 transports adenine, guanine, hypoxanthine, cytosine, and allantoin and competitively binds xanthine and uric acid. ZmNCS1 transports adenine, guanine, and cytosine and competitively binds, 5-fluorocytosine, hypoxanthine, xanthine, and uric acid. The differences in grass NCS1 profiles are due to a limited number of amino acid alterations. These amino acid residues do not correspond to amino acids essential for overall solute and cation binding or solute transport, as previously identified in bacterial and fungal NCS1, but rather may represent residues involved in subtle solute discrimination. The data presented here reveal that within Viridiplantae, NCS1 proteins transport a broad range of nucleobase compounds and that the solute specificity profile varies with species.
NASA Astrophysics Data System (ADS)
Huang, Shi-Hua; Liu, Jian
2014-05-01
Si-rich Si1—xCx /SiC multilayer thin films are prepared using magnetron sputtering, subsequently followed by thermal annealing in the range of 800-1200 °C. The influences of annealing temperature (Ta) on the formation of Si and/or SiC nanocrystals (NCs) and on the electrical characteristics of the multilayer film are investigated by using a variety of analytical techniques, including X-ray diffraction (XRD), Raman spectroscopy and Fourier transform infrared spectrometry (FT-IR), current—voltage (I—V) technique, and capacitance-voltage (C—V) technique. XRD and Raman analyses indicate that Si NCs begin to form in samples for Ta >= 800 °C. At annealing temperatures of 1000 °C or higher, the formation of Si NCs is accompanied by the formation of SiC NCs. With the increase in the annealing temperature, the shift of FT-IR Si—C bond absorption spectra toward a higher wave number along with the change of band shape can be explained by a Si—C transitional phase between the loss of substitutional carbon and the formation of SiC precipitates and a precursor for the growth of SiC crystalline. The C—V and I—V results indicate that the interface quality of Si1—xCx/SiC multilayer film is improved significantly and the leakage current is reduced rapidly for Ta >= 1000 °C, which can be ascribed to the formation of Si and SiC NCs.
Dong, Qiuchen; Huang, Yikun; Song, Donghui; Wu, Huixiang; Cao, Fei; Lei, Yu
2018-07-30
Both pH-sensitive and glucose-responsive rhodium oxide nanocorals (Rh 2 O 3 NCs) were synthesized through electrospinning followed by high-temperature calcination. The as-prepared Rh 2 O 3 NCs were systematically characterized using various advanced techniques including scanning electron microscopy, X-ray powder diffraction and Raman spectroscopy, and then employed as a dual functional nanomaterial to fabricate a dual sensor for both non-enzymatic glucose sensing and solid-state pH monitoring. The sensing performance of the Rh 2 O 3 NCs based dual sensor toward pH and glucose was evaluated using open circuit potential, cyclic voltammetry and amperometric techniques, respectively. The results show that the as-prepared Rh 2 O 3 NCs not only maintain accurate and reversible pH sensitivity of Rh 2 O 3 , but also demonstrate a good electrocatalytic activity toward glucose oxidation in alkaline medium with a sensitivity of 11.46 μA mM -1 cm -2 , a limit of detection of 3.1 μM (S/N = 3), and a reasonable selectivity against various interferents in non-enzymatic glucose detection. Its accuracy in determining glucose in human serum samples was further demonstrated. These features indicate that the as-prepared Rh 2 O 3 NCs hold great promise as a dual-functional sensing material in the development of a high-performance sensor forManjakkal both solid-state pH and non-enzymatic glucose sensing. Copyright © 2018 Elsevier B.V. All rights reserved.
Yang, Xiupei; Su, Yan; Paau, Man Chin; Choi, Martin M F
2012-02-07
This paper presents a simple and convenient methodology to separate and characterize water-soluble gold nanocluster stabilized with penicillamine ligands (AuNC-SR) in aqueous medium by sequential size-selective precipitation (SSSP) and mass spectrometry (MS). The highly polydisperse crude AuNC-SR product with an average core diameter of 2.1 nm was initially synthesized by a one-phase solution method. AuNCs were then precipitated and separated successively from larger to smaller ones by progressively increasing the concentration of acetone in the aqueous AuNCs solution. The SSSP fractions were analyzed by UV-vis spectroscopy, matrix-assisted laser desorption/ionization time-of-flight-MS, and thermogravimetric analysis (TGA). The MS and TGA data confirmed that the fractions precipitated from 36, 54, 72, and 90% v/v acetone (F(36%), F(54%), F(72%), and F(90%)) comprised families of close core size AuNCs with average molecular formulas of Au(38)(SR)(18), Au(28)(SR)(15), Au(18)(SR)(12), and Au(11)(SR)(8), respectively. In addition, F(36%), F(54%), F(72%), and F(90%) contained also the typical magic-sized gold nanoparticles of Au(38), Au(25), Au(18), and Au(11), respectively, together with some other AuNCs. This study shed light on the potential use of SSSP for simple and large-scale preliminary separation of polydisperse water-soluble AuNCs into different fractions with a relatively narrower size distribution. © 2012 American Chemical Society
Characterization of Semiconductor Nanocrystal Assemblies as Components of Optoelectronic Devices
NASA Astrophysics Data System (ADS)
Malfavon-Ochoa, Mario
This dissertation presents new insight into the ability of small molecule passivated NCs to achieve intimate approach distances, despite being well passivated, while developing guiding principles in the area of ligand mediated microstructure control and the resulting macroscopic optical and electronic properties that close packing of high quality NCs enables. NC ligand coverage will be characterized quantitatively through thermogravimetric analysis (TGA), and qualitatively by photoluminescence and electroluminescence, in the case of functional devices; illustrating the importance of practitioner dependent control of ligand coverage through variations in the dispersion precipitation purification procedure. A unique examination of the relative contribution of energy and charge transfer in NC LEDs will demonstrate the ability to achieve charge transfer, at a level competitive with energy transfer, to well passivated NCs at various wt% loading in a polymer matrix. The observation of potential dependent recombination zones within an active layer further suggest novel, NC surface passivation mediated control of blend microstructure during solution processing towards the development of a bi-continuous network. Next, NC self-assembly and resulting microstructure dependent optical and electronic properties will be examined through electroluminescence and high-resolution transmission electron microscopy (TEM) micrographs of functional NC/polymer bulk heterojunction LEDs. The joint characterization of NC optical properties, and self-assembly microstructure provide a deeper understanding of the significant and inseparable effects of minimal changes in NC surface passivation on structure and function, and emphasize the potential to rely on strongly passivating ligands to control physical properties and processing parameters concurrently towards higher efficiency devices via low cost processing. Finally, micro-contact printing of blazed transmission gratings, using stable dispersions of core and core/shell NCs will be shown to produce close packed assemblies of NCs forming near-wavelength luminescent superstructures separated in space. We show the dominant contribution of a two-monolayer thick sharp interface CdS shell to the diffraction efficiency, and necessarily the refractive index, of the NCs, independent of core size. Utilization of these gratings as in-coupling elements at various positions within a device architecture are also examined. These new observations were achieved by unprecedented control of NC architecture during dispersion processing, while maintaining high luminescence, made possible by optimized NC surface passivation. These studies enable the formation of new LED architectures, and new optoelectronic devices based on angle resolved, monochromatic fluorescence from diffraction gratings prepared from simple solution processing approaches. Further, the novel observation of angle amplified interfering fluorescence from these features is argued to be a result of long range radiative coupling and superradiance enabled by the monodispersity and high-quality NC surface passivation described herein.
Norcoclaurine synthase is a member of the pathogenesis-related 10/Bet v1 protein family.
Lee, Eun-Jeong; Facchini, Peter
2010-10-01
Norcoclaurine synthase (NCS) catalyzes the first committed step in the biosynthesis of benzylisoquinoline alkaloids (BIAs). NCS from Thalictrum flavum (Tf NCS), Papaver somniferum (Ps NCS1 and Ps NCS2), and Coptis japonica (Cj PR10A) share substantial identity with pathogen-related 10 (PR10) and Bet v1 proteins, whose functions are not well understood. A distinct enzyme (Cj NCS1) with similarity to 2-oxoglutarate-dependent dioxygenases was suggested as the bona fide NCS in C. japonica. Here, we validate the exclusive role of PR10/Bet v1-type NCS enzymes in BIA metabolism. Immunolocalization of Ps NCS2 revealed its cell type-specific occurrence in phloem sieve elements, which contain all other known BIA biosynthetic enzymes. In opium poppy, NCS transcripts and proteins were abundant in root and stem, but at low levels in leaf and carpel. Silencing of NCS in opium poppy profoundly reduced alkaloid levels compared with controls. Immunoprecipitation of NCS from total protein extracts of T. flavum cells resulted in a nearly complete attenuation of NCS activity. A Ps NCS2-green fluorescent protein fusion introduced by microprojectile bombardment into opium poppy cells initially localized to the endoplasmic reticulum but subsequently sorted to the vacuole. In our hands, Cj NCS1 did not catalyze the formation of (S)-norcoclaurine from dopamine and 4-hydroxyphenylacetaldehyde.
Zhang, Yuanyuan; Jiang, Hui; Ge, Wei; Li, Qiwei; Wang, Xuemei
2014-09-16
Fluorescent gold/silver nanoclusters templated by DNA or oligonucleotides have been widely reported since DNA or oligonucleotides could be designed to position a few metal ions at close proximity prior to their reduction, but nucleoside-templated synthesis is more challenging. In this work, a novel type of strategy taking cytidine (C) as template to rapid synthesis of fluorescent, water-soluble gold and silver nanoclusters (C-AuAg NCs) has been developed. The as-prepared C-AuAg NCs have been characterized by UV-vis absorption spectroscopy, fluorescence, transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and inductively coupled plasma mass spectroscopy (ICP-MS). The characterizations demonstrate that C-AuAg NCs with a diameter of 1.50 ± 0.31 nm, a quantum yield ∼9%, and an average lifetime ∼6.07 μs possess prominent fluorescence properties, good dispersibility, and easy water solubility, indicating the promising application in bioanalysis and biomedical diagnosis. Furthermore, this strategy by rapid producing of highly fluorescent nanoclusters could be explored for the possible recognition of some disease-related changes in blood serum. This raises the possibility of their promising application in bioanalysis and biomedical diagnosis.
NASA Astrophysics Data System (ADS)
Xie, Shunping; Paau, Man Chin; Zhang, Yan; Shuang, Shaomin; Chan, Wan; Choi, Martin M. F.
2012-08-01
Reverse-phase high-performance liquid chromatographic (RP-HPLC) separation and analysis of polydisperse water-soluble gold nanoclusters (AuNCs) stabilised with N,N'-dimethylformamide (DMF) were investigated. Under optimal elution gradient conditions, the separation of DMF-AuNCs was monitored by absorption and fluorescence spectroscopy. The UV-vis spectral characteristics of the separated DMF-AuNCs have been captured and they do not possess distinct surface plasmon resonance bands, indicating that all DMF-AuNCs are small AuNCs. The photoluminescence emission spectra of the separated DMF-AuNCs are in the blue-light region. Moreover, cationic DMF-AuNCs are for the first time identified by ion chromatography. Our proposed RP-HPLC methodology has been successfully applied to separate AuNCs of various Au atoms as well as DMF-stabilised ligands. Finally, the composition of the separated DMF-AuNCs was confirmed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry and electrospray ionisation mass spectrometry, proving that the as-synthesised DMF-AuNCs product consists of Au10+, Au10, Au11, Au12, Au13, and Au14 NCs stabilised with various numbers of DMF ligands.Reverse-phase high-performance liquid chromatographic (RP-HPLC) separation and analysis of polydisperse water-soluble gold nanoclusters (AuNCs) stabilised with N,N'-dimethylformamide (DMF) were investigated. Under optimal elution gradient conditions, the separation of DMF-AuNCs was monitored by absorption and fluorescence spectroscopy. The UV-vis spectral characteristics of the separated DMF-AuNCs have been captured and they do not possess distinct surface plasmon resonance bands, indicating that all DMF-AuNCs are small AuNCs. The photoluminescence emission spectra of the separated DMF-AuNCs are in the blue-light region. Moreover, cationic DMF-AuNCs are for the first time identified by ion chromatography. Our proposed RP-HPLC methodology has been successfully applied to separate AuNCs of various Au atoms as well as DMF-stabilised ligands. Finally, the composition of the separated DMF-AuNCs was confirmed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry and electrospray ionisation mass spectrometry, proving that the as-synthesised DMF-AuNCs product consists of Au10+, Au10, Au11, Au12, Au13, and Au14 NCs stabilised with various numbers of DMF ligands. This article was submitted as part of a Themed Issue on metallic clusters. Other papers on this topic can be found in issue 14 of vol. 4 (2012). This issue can be found from the Nanoscale homepage [http://www.rsc.org/nanoscale].
The Small RNA ncS35 Regulates Growth in Burkholderia cenocepacia J2315
Kiekens, Sanne; Sass, Andrea; Van Nieuwerburgh, Filip; Deforce, Dieter
2018-01-01
ABSTRACT Burkholderia cenocepacia J2315 is a member of the B. cepacia complex. It has a large genome with three replicons and one plasmid; 7,261 genes code for annotated proteins, while 113 code for functional RNAs. Small regulatory RNAs of B. cenocepacia have not yet been functionally characterized. We investigated a small regulatory RNA, designated ncS35, that was discovered by differential RNA sequencing. Its expression under various conditions was quantified, and a deletion mutant, ΔncS35, was constructed. Compared to planktonic growth in a rich medium, the expression of ncS35 was elevated when B. cenocepacia J2315 was grown in biofilms and in minimal medium. Cells of the deletion mutant showed increased aggregation, higher metabolic activity, a higher growth rate, and an increased susceptibility to tobramycin. A transcriptomic analysis revealed upregulation of the phenylacetic acid and tryptophan degradation pathways in ΔncS35. Computational target prediction indicated that ncS35 likely interacts with the first gene of the tryptophan degradation pathway. Overall, we demonstrated that small RNA ncS35 is a noncoding RNA with an attenuating effect on the metabolic rate and growth. It is possible that slower growth protects B. cenocepacia J2315 against stressors acting on fast-dividing cells and enhances survival under unfavorable conditions. IMPORTANCE Small RNAs play an important role in the survival of bacteria in diverse environments. We explored the physiological role of ncS35, a small RNA expressed in B. cenocepacia J2315, an opportunistic pathogen in cystic fibrosis patients. In cystic fibrosis patients, infections can lead to “cepacia syndrome,” a rapidly progressing and often fatal pneumonia. Infections with Burkholderia spp. are difficult to threat with antibiotics because of their high intrinsic resistance and ability to form biofilms. We show that ncS35 attenuates the growth and reduces the metabolic rate of B. cenocepacia and influences biofilm structure. This demonstrates that as-yet-uncharacterized small RNAs with regulatory function can influence physiological traits of B. cenocepacia that are relevant for infection. PMID:29359187
Ultra-small plutonium oxide nanocrystals: an innovative material in plutonium science.
Hudry, Damien; Apostolidis, Christos; Walter, Olaf; Janssen, Arne; Manara, Dario; Griveau, Jean-Christophe; Colineau, Eric; Vitova, Tonya; Prüssmann, Tim; Wang, Di; Kübel, Christian; Meyer, Daniel
2014-08-11
Apart from its technological importance, plutonium (Pu) is also one of the most intriguing elements because of its non-conventional physical properties and fascinating chemistry. Those fundamental aspects are particularly interesting when dealing with the challenging study of plutonium-based nanomaterials. Here we show that ultra-small (3.2±0.9 nm) and highly crystalline plutonium oxide (PuO2 ) nanocrystals (NCs) can be synthesized by the thermal decomposition of plutonyl nitrate ([PuO2 (NO3 )2 ]⋅3 H2 O) in a highly coordinating organic medium. This is the first example reporting on the preparation of significant quantities (several tens of milligrams) of PuO2 NCs, in a controllable and reproducible manner. The structure and magnetic properties of PuO2 NCs have been characterized by a wide variety of techniques (powder X-ray diffraction (PXRD), X-ray absorption fine structure (XAFS), X-ray absorption near edge structure (XANES), TEM, IR, Raman, UV/Vis spectroscopies, and superconducting quantum interference device (SQUID) magnetometry). The current PuO2 NCs constitute an innovative material for the study of challenging problems as diverse as the transport behavior of plutonium in the environment or size and shape effects on the physics of transuranium elements. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caliandro, Rocco; Sibillano, Teresa; Belviso, B. Danilo
In this study, we have developed a general X-ray powder diffraction (XPD) methodology for the simultaneous structural and compositional characterization of inorganic nanomaterials. The approach is validated on colloidal tungsten oxide nanocrystals (WO 3-x NCs), as a model polymorphic nanoscale material system. Rod-shaped WO 3-x NCs with different crystal structure and stoichiometry are comparatively investigated under an inert atmosphere and after prolonged air exposure. An initial structural model for the as-synthesized NCs is preliminarily identified by means of Rietveld analysis against several reference crystal phases, followed by atomic pair distribution function (PDF) refinement of the best-matching candidates (static analysis). Subtlemore » stoichiometry deviations from the corresponding bulk standards are revealed. NCs exposed to air at room temperature are monitored by XPD measurements at scheduled time intervals. The static PDF analysis is complemented with an investigation into the evolution of the WO 3-x NC structure, performed by applying the modulation enhanced diffraction technique to the whole time series of XPD profiles (dynamical analysis). Prolonged contact with ambient air is found to cause an appreciable increase in the static disorder of the O atoms in the WO 3-x NC lattice, rather than a variation in stoichiometry. Finally, the time behavior of such structural change is identified on the basis of multivariate analysis.« less
Kataria, Navish; Garg, V K
2018-06-04
This study focused on the synthesis and characterization of novel magnetic iron oxide nanoparticles loaded sawdust carbon (Fe 3 O 4 /SC) and EDTA modified Fe 3 O 4 /SC (EDTA@Fe 3 O 4 /SC) nanocomposites (ncs) by low cost biogenic green synthesis approach and their application for Cd (II) removal from aqueous medium in batch mode. In isotherm studies, Langmuir and Freundlich models are best fitted to Cd (II) removal data. Langmuir maximum adsorption capacity of EDTA@Fe 3 O 4 /SC ncs was found to be 63.3, 22.4 and 25 mg/g that is greater than maximum adsorption capacity of Fe 3 O 4 /SC ncs that is 51, 18.9 and 15 mg/g at the adsorbent doses of 0.4, 1.2 and 2.0 g/L, respectively. Cd (II) adsorption rate is well explained by Pseudo-second order model. Cd (II) adsorption process is spontaneous and endothermic in nature expressed by Enthalpy, Entropy and Free Energy change. The results of regeneration studies showed that EDTA modified Fe 3 O 4 /SC ncs is promising, low cost and eco-friendly for heavy metal adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.
Toddlers - Background & Validation Studies - NCS Dietary Assessment Literature Review
This stage of development is characterized by the slowing of the growth velocity and a rapid increase in fine and gross motor skills supporting increases in independence, exploration of the environment, and language skills.
Paczkowska, Edyta; Kaczyńska, Katarzyna; Pius-Sadowska, Ewa; Rogińska, Dorota; Kawa, Miłosz; Ustianowski, Przemysław; Safranow, Krzysztof; Celewicz, Zbigniew; Machaliński, Bogusław
2013-01-01
Background Stem/progenitor cells (SPCs) demonstrate neuro-regenerative potential that is dependent upon their humoral activity by producing various trophic factors regulating cell migration, growth, and differentiation. Herein, we compared the expression of neurotrophins (NTs) and their receptors in specific umbilical cord blood (UCB) SPC populations, including lineage-negative, CD34+, and CD133+ cells, with that in unsorted, nucleated cells (NCs). Methods and Results The expression of NTs and their receptors was detected by QRT-PCR, western blotting, and immunofluorescent staining in UCB-derived SPC populations (i.e., NCs vs. lineage-negative, CD34+, and CD133+ cells). To better characterize, global gene expression profiles of SPCs were determined using genome-wide RNA microarray technology. Furthermore, the intracellular production of crucial neuro-regenerative NTs (i.e., BDNF and NT-3) was assessed in NCs and lineage-negative cells after incubation for 24, 48, and 72 h in both serum and serum-free conditions. We discovered significantly higher expression of NTs and NT receptors at both the mRNA and protein level in lineage-negative, CD34+, and CD133+ cells than in NCs. Global gene expression analysis revealed considerably higher expression of genes associated with the production and secretion of proteins, migration, proliferation, and differentiation in lineage-negative cells than in CD34+ or CD133+ cell populations. Notably, after short-term incubation under serum-free conditions, lineage-negative cells and NCs produced significantly higher amounts of BDNF and NT-3 than under steady-state conditions. Finally, conditioned medium (CM) from lineage-negative SPCs exerted a beneficial impact on neural cell survival and proliferation. Conclusions Collectively, our findings demonstrate that UCB-derived SPCs highly express NTs and their relevant receptors under steady-state conditions, NT expression is greater under stress-related conditions and that CM from SPCs favorable influence neural cell proliferation and survival. Understanding the mechanisms governing the characterization and humoral activity of subsets of SPCs may yield new therapeutic strategies that might be more effective in treating neurodegenerative disorders. PMID:24391835
Paczkowska, Edyta; Kaczyńska, Katarzyna; Pius-Sadowska, Ewa; Rogińska, Dorota; Kawa, Miłosz; Ustianowski, Przemysław; Safranow, Krzysztof; Celewicz, Zbigniew; Machaliński, Bogusław
2013-01-01
Stem/progenitor cells (SPCs) demonstrate neuro-regenerative potential that is dependent upon their humoral activity by producing various trophic factors regulating cell migration, growth, and differentiation. Herein, we compared the expression of neurotrophins (NTs) and their receptors in specific umbilical cord blood (UCB) SPC populations, including lineage-negative, CD34(+), and CD133(+) cells, with that in unsorted, nucleated cells (NCs). The expression of NTs and their receptors was detected by QRT-PCR, western blotting, and immunofluorescent staining in UCB-derived SPC populations (i.e., NCs vs. lineage-negative, CD34(+), and CD133(+) cells). To better characterize, global gene expression profiles of SPCs were determined using genome-wide RNA microarray technology. Furthermore, the intracellular production of crucial neuro-regenerative NTs (i.e., BDNF and NT-3) was assessed in NCs and lineage-negative cells after incubation for 24, 48, and 72 h in both serum and serum-free conditions. We discovered significantly higher expression of NTs and NT receptors at both the mRNA and protein level in lineage-negative, CD34(+), and CD133(+) cells than in NCs. Global gene expression analysis revealed considerably higher expression of genes associated with the production and secretion of proteins, migration, proliferation, and differentiation in lineage-negative cells than in CD34(+) or CD133(+) cell populations. Notably, after short-term incubation under serum-free conditions, lineage-negative cells and NCs produced significantly higher amounts of BDNF and NT-3 than under steady-state conditions. Finally, conditioned medium (CM) from lineage-negative SPCs exerted a beneficial impact on neural cell survival and proliferation. Collectively, our findings demonstrate that UCB-derived SPCs highly express NTs and their relevant receptors under steady-state conditions, NT expression is greater under stress-related conditions and that CM from SPCs favorable influence neural cell proliferation and survival. Understanding the mechanisms governing the characterization and humoral activity of subsets of SPCs may yield new therapeutic strategies that might be more effective in treating neurodegenerative disorders.
Methods for measuring utilization of mental health services in two epidemiologic studies
NOVINS, DOUGLAS K.; BEALS, JANETTE; CROY, CALVIN; MANSON, SPERO M.
2015-01-01
Objectives of Study Psychiatric epidemiologic studies often include two or more sets of questions regarding service utilization, but the agreement across these different questions and the factors associated with their endorsement have not been examined. The objectives of this study were to describe the agreement of different sets of mental health service utilization questions that were included in the American Indian Service Utilization Psychiatric Epidemiology Risk and Protective Factors Project (AI-SUPERPFP), and compare the results to similar questions included in the baseline National Comorbidity Survey (NCS). Methods Responses to service utilization questions by 2878 AI-SUPERPFP and 5877 NCS participants were examined by calculating estimates of service use and agreement (κ) across the different sets of questions. Logistic regression models were developed to identify factors associated with endorsement of specific sets of questions. Results In both studies, estimates of mental health service utilization varied across the different sets of questions. Agreement across the different question sets was marginal to good (κ = 0.27–0.69). Characteristics of identified service users varied across the question sets. Limitations Neither survey included data to examine the validity of participant responses to service utilization questions. Recommendations for Further Research Question wording and placement appear to impact estimates of service utilization in psychiatric epidemiologic studies. Given the importance of these estimates for policy-making, further research into the validity of survey responses as well as impacts of question wording and context on rates of service utilization is warranted. PMID:18767205
Shah, Dhaval A; Patel, Manan; Murdande, Sharad B; Dave, Rutesh H
2016-11-01
The purpose for the current research is to compare and evaluate physiochemical properties of spray-dried (SD) microcrystals (MCs), nanocrystals (NCs), and nanocrystals with a dispersion agent (NCm) from a poorly soluble compound. The characterization was carried out by performing size and surface analysis, interfacial tension (at particle moisture interface), and in-vitro drug dissolution rate experiments. Nanosuspensions were prepared by media milling and were spray-dried. The SD powders that were obtained were characterized morphologically using scanning electron microscopy (SEM), polarized light microscopy (PLM), and Flowchem. Solid-state characterization was performed using X-ray powder diffraction (XRPD), Fourier transfer infrared spectroscopy (FT-IR), and differential scanning calorimetry (DSC) for the identification of the crystalline nature of all the SD powders. The powders were characterized for their redispersion tendency in the water and in pH 1.2. Significant differences in redispersion were noted for both the NCs in both dissolution media. The interfacial tension for particle moisture interface was determined by applying the BET (Braunauer-Emmett-Teller) equation to the vapor sorption data. No significant reduction in the interfacial tension was observed between MCs and NCs; however, a significant reduction in the interfacial tension was observed for NCm at both 25 °C and 35 °C temperatures. The difference in interfacial tension and redispersion behavior can be attributed to a difference in the wetting tendency for all the SD powders. The dissolution studies were carried out under sink and under non-sink conditions. The non-sink dissolution approach was found suitable for quantification of the dissolution rate enhancement, and also for providing the rank order to the SD formulations.
Mume, Eskender; Asad, Ali; Di Bartolo, Nadine M; Kong, Linggen; Smith, Christopher; Sargeson, Alan M; Price, Roger; Smith, Suzanne V
2013-10-28
A novel hexa aza cage, N(1)-(4-isothiocyanatobenzyl)-3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane-1,8-diamine (SarAr-NCS) was synthesized in good yield and characterized by (1)H NMR and electrospray mass spectrometry. A new method for the synthesis of the related N(1)-(4-carboxybenzyl)-3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane-1,8-diamine (AmBaSar) using the p-carboxybenzaldehyde is reported. The complexation of Cu(2+), Co(2+) and Zn(2+) by the two ligands over a range of pHs was found to be similar to the parent derivative SarAr. SarAr-NCS was conjugated to both silica particles (≈90 nm diam.) and the model B72.3 murine antibody. The SarAr-NCSN-silica particles were radiolabeled with Cu(2+) doped (64)Cu and the number of ligands conjugated was calculated to be an average of 7020 ligands per particle. Conjugation of SarAr-NCS to the B72.3 antibody was optimized over a range of conditions. The SarAr-NCSN-B72.3 conjugate was stored in buffer and as a lyophilized powder at 4 °C over 38 days. Its radiolabeling efficiency, stability and immunoreactivity were maintained. The development of a high yielding synthesis of SarAr-NCS should provide an entry point for a wide range of Cu and Zn radiometal PET imaging agents and potentially radiotherapeutic agents with (67)Cu.
Nam, Suyeong; Lee, Song Yi; Kim, Jung-Jin; Kang, Wie-Soo; Yoon, In-Soo; Cho, Hyun-Jong
2018-05-01
Polydopamine (PD)-coated nanocomposites (NCs) based on the ethanol extract of Angelica gigas Nakai (AGN EtOH ext) were fabricated and evaluated for breast cancer therapy. AGN NCs were prepared using a modified emulsification-solvent evaporation method and were further incubated in dopamine solution (at pH 8.6) to be covered with the PD layer. PD-AGN NCs with a 213-nm mean diameter, narrow size distribution, and negative zeta potential values were fabricated in this study. Less negative (close to zero) zeta potential value of PD-AGN NCs than that of AGN NCs implied the existence of the PD layer in the outer surface of NCs. The PD layer in PD-AGN NCs was also identified by X-ray photoelectron spectroscopy (XPS) and ultraviolet (UV)/visible absorption analyses. The sustained release of decursin (D) and decursinol angelate (DA), as major active pharmacological components of AGN, was observed in both AGN NCs and PD-AGN NCs. Enhanced cellular binding property of PD-AGN NCs, compared to AGN NCs, in MDA-MB-231 (human breast adenocarcinoma; triple-negative breast cancer) cells was observed. Improved anticancer activities of PD-AGN NCs compared with those of AGN EtOH ext and AGN NCs were also shown in MDA-MB-231 cells. The developed PD-AGN NCs may be used as remarkable platform nanocarriers for efficient breast cancer therapy. Copyright © 2018 Elsevier B.V. All rights reserved.
Aghajanzadeh, Mozhgan; Zamani, Mostafa; Rashidzadeh, Hamid; Rostamizadeh, Kobra; Sharafi, Ali; Danafar, Hossein
2018-06-16
In this project, a core-shell Polymersome based on miktoarm star-copolymer: methoxy Poly Ethylene Glycol-Lysine-(Poly Caprolactone) 2 (PEG-Lys-PCL 2 ) was synthesized by a new method as controlled targeted drug delivery systems for co-delivery of the chemotherapeutic methotrexate (MTX) and curcumin (CUR). Some properties of these nano carriers (NCs) such as surface morphology, structure, surface charge, stability and biocompatibility were evaluated by Proton nuclear magnetic resonance ( 1 HNMR), dynamic scanning colorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), Dynamic light scattering (DLS), atomic force microscopy (AFM), Critical aggregation concentration (CAC), hemolysis test, MTT assay and lethal dose 50 (LD50). The AFM results showed the uniform spherical morphology of NCs have with average size about ∼60 nm. The drug loading of NCs was about 14.13% and 10.93% for CUR and MTX, respectively. The NCs revealed pH-sensitivity in drug release. Release of drugs from miktoarm-based NCs in neutral pH were lower than in acidic medium, because of faster degradation of Polymersome in acidic environment. MTT assay results showed that the drug-loaded NCs didn't show significant toxicity due to which cell viability maintain over 82% at 300 μg/mL concentration. Also, synthesized miktoarm showed hemolysis lower than 3%. This result was repeat in LD50 and all mice which treat with 5000mg/Kg were still alive after 24 hours. These result confirmed safety of miktoarm star copolymer. Eventually, goal of this study is the application of water-soluble star copolymers miktoarm with pH dependent release properties for design a new drug delivery carrier and using CUR for enhancing anti-cancer properties of MTX. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
Banchelli, Martina; Tiribilli, Bruno; Pini, Roberto; Dei, Luigi
2016-01-01
Summary Hybrid graphene oxide/silver nanocubes (GO/AgNCs) arrays for surface-enhanced Raman spectroscopy (SERS) applications were prepared by means of two procedures differing for the method used in the assembly of the silver nanocubes onto the surface: Langmuir–Blodgett (LB) transfer and direct sequential physisorption of silver nanocubes (AgNCs). Adsorption of graphene oxide (GO) flakes on the AgNC assemblies obtained with both procedures was monitored by quartz crystal microbalance (QCM) technique as a function of GO bulk concentration. The experiment provided values of the adsorbed GO mass on the AgNC array and the GO saturation limit as well as the thickness and the viscoelastic properties of the GO film. Atomic force microscopy (AFM) measurements of the resulting samples revealed that a similar surface coverage was achieved with both procedures but with a different distribution of silver nanoparticles. In the GO covered LB film, the AgNC distribution is characterized by densely packed regions alternating with empty surface areas. On the other hand, AgNCs are more homogeneously dispersed over the entire sensor surface when the nanocubes spontaneously adsorb from solution. In this case, the assembly results in less-packed silver nanostructures with higher inter-cube distance. For the two assembled substrates, AFM of silver nanocubes layers fully covered with GO revealed the presence of a homogeneous, flexible and smooth GO sheet folding over the silver nanocubes and extending onto the bare surface. Preliminary SERS experiments on adenine showed a higher SERS enhancement factor for GO on Langmuir–Blodgett films of AgNCs with respect to bare AgNC systems. Conversely, poor SERS enhancement for adenine resulted for GO-covered AgNCs obtained by spontaneous adsorption. This indicated that the assembly and packing of AgNCs obtained in this way, although more homogeneous over the substrate surface, is not as effective for SERS analysis. PMID:26925348
Preschool Children (Ages 2 to 4 Years) - NCS Dietary Assessment Literature Review
The preschool years are characterized as a time of increasing autonomy, expanding language skills, increasing ability to control behavior, and broadening social circumstances, such as attending preschool or staying with friends or relatives.
Comparing Psychiatric Service Use among Low-Income Women and Women in a General Household Population
ERIC Educational Resources Information Center
Rosen, Daniel; Warner, Lynn A.; Tolman, Richard M.
2006-01-01
This article examines the use of outpatient mental health services in a sample of low-income women (Mothers' Well-Being Study [MWS]) and compares the findings with a sample of similar-aged women in the general population (National Comorbidity Survey [NCS]). Overall, the prevalence of any 12-month mental health disorder was significantly greater…
Bio-NCs--the marriage of ultrasmall metal nanoclusters with biomolecules.
Goswami, Nirmal; Zheng, Kaiyuan; Xie, Jianping
2014-11-21
Ultrasmall metal nanoclusters (NCs) have attracted increasing attention due to their fascinating physicochemical properties. Today, functional metal NCs are finding growing acceptance in biomedical applications. To achieve a better performance in biomedical applications, metal NCs can be interfaced with biomolecules, such as proteins, peptides, and DNA, to form a new class of biomolecule-NC composites (or bio-NCs in short), which typically show synergistic or novel physicochemical and physiological properties. This feature article focuses on the recent studies emerging at the interface of metal NCs and biomolecules, where the interactions could impart unique physicochemical properties to the metal NCs, as well as mutually regulate biological functions of the bio-NCs. In this article, we first provide a broad overview of key concepts and developments in the novel biomolecule-directed synthesis of metal NCs. A special focus is placed on the key roles of biomolecules in metal NC synthesis. In the second part, we describe how the encapsulated metal NCs affect the structure and function of biomolecules. Followed by that, we discuss several unique synergistic effects observed in the bio-NCs, and illustrate them with examples highlighting their potential biomedical applications. Continued interdisciplinary efforts are required to build up in-depth knowledge about the interfacial chemistry and biology of bio-NCs, which could further pave their ways toward biomedical applications.
Bio-NCs - the marriage of ultrasmall metal nanoclusters with biomolecules
NASA Astrophysics Data System (ADS)
Goswami, Nirmal; Zheng, Kaiyuan; Xie, Jianping
2014-10-01
Ultrasmall metal nanoclusters (NCs) have attracted increasing attention due to their fascinating physicochemical properties. Today, functional metal NCs are finding growing acceptance in biomedical applications. To achieve a better performance in biomedical applications, metal NCs can be interfaced with biomolecules, such as proteins, peptides, and DNA, to form a new class of biomolecule-NC composites (or bio-NCs in short), which typically show synergistic or novel physicochemical and physiological properties. This feature article focuses on the recent studies emerging at the interface of metal NCs and biomolecules, where the interactions could impart unique physicochemical properties to the metal NCs, as well as mutually regulate biological functions of the bio-NCs. In this article, we first provide a broad overview of key concepts and developments in the novel biomolecule-directed synthesis of metal NCs. A special focus is placed on the key roles of biomolecules in metal NC synthesis. In the second part, we describe how the encapsulated metal NCs affect the structure and function of biomolecules. Followed by that, we discuss several unique synergistic effects observed in the bio-NCs, and illustrate them with examples highlighting their potential biomedical applications. Continued interdisciplinary efforts are required to build up in-depth knowledge about the interfacial chemistry and biology of bio-NCs, which could further pave their ways toward biomedical applications.
Rep. Hayworth, Nan A. S. [R-NY-19
2011-12-07
Senate - 08/29/2012 Committee on Homeland Security and Governmental Affairs referred to Subcommittee on Federal Financial Management, Government Information, Federal Services, and International Security. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:
Mojtabai, Ramin; Stuart, Elizabeth A.; Hwang, Irving; Eaton, William W.; Sampson, Nancy; Kessler, Ronald C.
2016-01-01
Purpose The study sought to examine the association of mental disorders with educational attainment in a community sample. Methods Data were from 5,001 respondents aged 15–54 in the 1990–1992 National Comorbidity Survey (NCS), re-interviewed in the 2001–2003 NCS follow-up (NCS-2). Discrete-time survival analysis was used to examine the association of disorders present at baseline (NCS) or having first onset after the baseline (assessed in NCS-2) with educational outcomes among 3,954 eligible respondents. Mental disorders were categorized into internalizing fear disorders (simple phobia, social phobia, panic disorder with/without agoraphobia and agoraphobia without panic disorder), internalizing anxiety-misery disorders (major depressive disorder, generalized anxiety disorder and post-traumatic stress disorder), externalizing disorders (alcohol and drug use disorders, conduct disorder) and bipolar disorder. Analyses were conducted separately in students and non-students at baseline. Results Among students, baseline bipolar and externalizing disorders, and fear, anxiety-misery and externalizing disorders with onset after baseline were associated with lower odds of high school graduation; baseline anxiety-misery disorders with lower odds of going to college; and baseline externalizing disorders and bipolar disorder with onset after baseline with lower odds of college graduation. Among non-students, baseline fear disorders were associated with lower odds of high school graduation and bipolar disorder with lower odds of going to college. Assuming that the regression coefficients represent causal effects, mental disorders accounted for 5.8–11.0% of high school and 3.2–11.4% of college non-completion. Conclusions Expanding access to mental health services for youth might have a net positive societal value by helping to prevent some of these adverse educational outcomes. PMID:26082040
Mojtabai, Ramin; Stuart, Elizabeth A; Hwang, Irving; Eaton, William W; Sampson, Nancy; Kessler, Ronald C
2015-10-01
The study sought to examine the association of mental disorders with educational attainment in a community sample. Data were from 5001 respondents aged 15-54 in the 1990-1992 National Comorbidity Survey (NCS), re-interviewed in the 2001-2003 NCS follow-up (NCS-2). Discrete-time survival analysis was used to examine the association of disorders present at baseline (NCS) or having first onset after the baseline (assessed in NCS-2) with educational outcomes among 3954 eligible respondents. Mental disorders were categorized into internalizing fear disorders (simple phobia, social phobia, panic disorder with/without agoraphobia and agoraphobia without panic disorder), internalizing anxiety-misery disorders (major depressive disorder, generalized anxiety disorder and post-traumatic stress disorder), externalizing disorders (alcohol and drug use disorders, conduct disorder) and bipolar disorder. Analyses were conducted separately in students and non-students at baseline. Among students, baseline bipolar and externalizing disorders, as well as fear, anxiety-misery and externalizing disorders with onset after baseline were associated with lower odds of high school graduation; baseline anxiety-misery disorders with lower odds of going to college; and baseline externalizing disorders and bipolar disorder with onset after baseline with lower odds of college graduation. Among non-students, baseline fear disorders were associated with lower odds of high school graduation and bipolar disorder with lower odds of going to college. Assuming that the regression coefficients represent causal effects, mental disorders accounted for 5.8-11.0% of high school and 3.2-11.4% of college non-completion. Expanding access to mental health services for youth might have a net positive societal value by helping to prevent some of these adverse educational outcomes.
Shear, Deborah A.; Potter, Brittney; Marcsisin, Sean R.; Sousa, Jason; Melendez, Victor; Tortella, Frank C.; Lu, Xi-Chun M.
2013-01-01
Abstract Acute seizures frequently occur following severe traumatic brain injury (TBI) and have been associated with poor patient prognosis. Silent or nonconvulsive seizures (NCS) manifest in the absence of motor convulsion, can only be detected via continuous electroencephalographic (EEG) recordings, and are often unidentified and untreated. Identification of effective anti-epileptic drugs (AED) against post-traumatic NCS remains crucial to improve neurological outcome. Here, we assessed the anti-seizure profile of ethosuximide (ETX, 12.5–187.5 mg/kg) and phenytoin (PHT, 5–30 mg/kg) in a spontaneously occurring NCS model associated with penetrating ballistic-like brain injury (PBBI). Rats were divided between two drug cohorts, PHT or ETX, and randomly assigned to one of four doses or vehicle within each cohort. Following PBBI, NCS were detected by continuous EEG monitoring for 72 h post-injury. Drug efficacy was evaluated on NCS parameters of incidence, frequency, episode duration, total duration, and onset latency. Both PHT and ETX attenuated NCS in a dose-dependent manner. In vehicle-treated animals, 69–73% experienced NCS (averaging 9–10 episodes/rat) with average onset of NCS occurring at 30 h post-injury. Compared with control treatment, the two highest PHT and ETX doses significantly reduced NCS incidence to 13–40%, reduced NCS frequency (1.8–6.2 episodes/rat), and delayed seizure onset: <20% of treated animals exhibited NCS within the first 48 h. NCS durations were also dose-dependently mitigated. For the first time, we demonstrate that ETX and PHT are effective against spontaneously occurring NCS following PBBI, and suggest that these AEDs may be effective at treating post-traumatic NCS. PMID:23822888
High-Bandgap Silicon Nanocrystal Solar Cells: Device Fabrication, Characterization, and Modeling
NASA Astrophysics Data System (ADS)
Löper, Philipp; Canino, Mariaconcetta; Schnabel, Manuel; Summonte, Caterina; Janz, Stefan; Zacharias, Margit
Silicon nanocrystals (Si NCs) embedded in Si-based dielectrics provide a Si-based high-bandgap material (1.7 eV) and enable the construction of crystalline Si tandem solar cells. This chapter focusses on Si NC embedded in silicon carbide, because silicon carbide offers electrical conduction through the matrix material. The material development is reviewed, and optical modeling is introduced as a powerful method to monitor the four material components, amorphous and crystalline silicon as well as amorphous and crystalline silicon carbide. In the second part of this chapter, recent device developments for the photovoltaic characterization of Si NCs are examined. The controlled growth of Si NCs involves high-temperature annealing which deteriorates the properties of any previously established selective contacts. A membrane-based device is presented to overcome these limitations. In this approach, the formation of both selective contacts is carried out after high-temperature annealing and is therefore not affected by the latter. We examine p-i-n solar cells with an intrinsic region made of Si NCs embedded in silicon carbide. Device failure due to damaged insulation layers is analyzed by light beam-induced current measurements. An optical model of the device is presented for improving the cell current. A characterization scheme for Si NC p-i-n solar cells is presented which aims at determining the fundamental transport and recombination properties, i.e., the effective mobility lifetime product, of the nanocrystal layer at device level. For this means, an illumination-dependent analysis of Si NC p-i-n solar cells is carried out within the framework of the constant field approximation. The analysis builds on an optical device model, which is used to assess the photogenerated current in each of the device layers. Illumination-dependent current-voltage curves are modelled with a voltage-dependent current collection function with only two free parameters, and excellent agreement is found between theory and experiment. An effective mobility lifetime product of 10-10 cm2/V is derived and confirmed independently from an alternative method. The procedure discussed in this chapter is proposed as a characterization scheme for further material development, providing an optimization parameter (the effective mobility lifetime product) relevant for the photovoltaic performance of Si NC films.
Size-dependent characterization of embedded Ge nanocrystals: Structural and thermal properties
NASA Astrophysics Data System (ADS)
Araujo, L. L.; Giulian, R.; Sprouster, D. J.; Schnohr, C. S.; Llewellyn, D. J.; Kluth, P.; Cookson, D. J.; Foran, G. J.; Ridgway, M. C.
2008-09-01
A combination of conventional and synchrotron-based techniques has been used to characterize the size-dependent structural and thermal properties of Ge nanocrystals (NCs) embedded in a silica (a-SiO2) matrix. Ge NC size distributions with four different diameters ranging from 4.0 to 9.0 nm were produced by ion implantation and thermal annealing as characterized with small-angle x-ray scattering and transmission electron microscopy. The NCs were well represented by the superposition of bulklike crystalline and amorphous environments, suggesting the formation of an amorphous layer separating the crystalline NC core and the a-SiO2 matrix. The amorphous fraction was quantified with x-ray-absorption near-edge spectroscopy and increased as the NC diameter decreased, consistent with the increase in surface-to-volume ratio. The structural parameters of the first three nearest-neighbor shells were determined with extended x-ray-absorption fine-structure (EXAFS) spectroscopy and evolved linearly with inverse NC diameter. Specifically, increases in total disorder, interatomic distance, and the asymmetry in the distribution of distances were observed as the NC size decreased, demonstrating that finite-size effects govern the structural properties of embedded Ge NCs. Temperature-dependent EXAFS measurements in the range of 15-300 K were employed to probe the mean vibrational frequency and the variation of the interatomic distance distribution (mean value, variance, and asymmetry) with temperature for all NC distributions. A clear trend of increased stiffness (higher vibrational frequency) and decreased thermal expansion with decreasing NC size was evident, confirming the close relationship between the variation of structural and thermal/vibrational properties with size for embedded Ge NCs. The increase in surface-to-volume ratio and the presence of an amorphous Ge layer separating the matrix and crystalline NC core are identified as the main factors responsible for the observed behavior, with the surrounding a-SiO2 matrix also contributing to a lesser extent. Such results are compared to previous reports and discussed in terms of the influence of the surface-to-volume ratio in objects of nanometer dimensions.
NASA Astrophysics Data System (ADS)
Lalegani, Arash; Khaledi Sardashti, Mohammad; Gajda, Roman; Woźniak, Krzysztof
2017-12-01
Zinc(II) coordination polymers [Zn(bip)2(NCS)2]n (1) and [Zn(μ-bbd)(N3)2]n (2) were synthesized by using the neutral flexible bidentate N-donor ligands 1,4-bis(3,5-dimethylpyrazolyl)butane (bbd) and 1,3-bis(imidazolyl)propane (bip), mono-anionic NCS- or N3-ligand and zinc(II) chloride salts. The results of the X-ray analyses demonstrate that in the structure of 1, the zinc(II) ion is located on an inversion center and exhibits an ZnN6 octahedral arrangement while, in the structure of 2, the zinc(II) ion adopts an ZnN4 tetrahedral geometry. In the polymer 1, the NCS groups are terminally N-bonded to the metal center and the each bip with anti-gauche conformation acts as bridging connecting four zinc(II) ions to form a two-dimensional network with a sql [point symbol (44.62)] topology while, in the polymer 1, the N3 groups are terminally bonded to the metal center and each bbd with anti-anti-anti conformation acts as bridging ligand connecting two zinc(II) ions to form a one-dimensional zig-zag chain. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction. Thermal analyses of polymers were also presented.
Hussain, Mohammad Musarraf; Rahman, Mohammed M; Asiri, Abdullah M
2017-03-01
Nickel oxide nanoparticles decorated carbon nanotube nanocomposites (NiO·CNT NCs) were prepared in a basic medium by using facile wet-chemical routes. The optical, morphological, and structural properties of NiO·CNT NCs were characterized using Fourier transformed infra-red (FT-IR), Ultra-violet visible (UV/Vis) spectroscopy, field-emission scanning electron microscopy (FESEM), X-ray energy dispersed spectroscopy (XEDS), X-ray photoelectron spectroscopy (XPS), and powder X-ray diffraction (XRD) methods. Selective 4-aminophenol (4-AP) chemical sensor was developed by a flat glassy carbon electrode (GCE, surface area: 0.0316cm 2 ) fabricated with a thin-layer of NCs. Electrochemical responses including higher sensitivity, large dynamic range (LDR), limit of detection (LOD), and long-term stability towards 4-AP were obtained using the fabricated chemical sensors. The calibration curve was found linear (R 2 =0.914) over a wide range of 4-AP concentration (0.1nmol/L-0.1mol/L). In perspective of slope (2×10 -5 μA/μM), LOD and sensitivity were calculated as 15.0±0.1pM and ~6.33×10 -4 μA/(μM·cm) respectively. The synthesized NiO·CNT NCs using a wet-chemical method is a significant route for the development of ultrasensitive and selective phenolic sensor based on nano-materials for environmental toxic substances. It is suggested that a pioneer and selective development of 4-AP sensitive sensor using NiO·CNT NCs by a facile and reliable current vs voltage (I-V) method for the major application of toxic agents in biological, green environmental, and health-care fields in near future. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Kalaiyarasan, Gopi; K, Anusuya; Joseph, James
2017-10-01
Companies processing the milk for the further production of powdered infant formulation normally check the protein level through a test measuring nitrogen content. The addition of melamine which is a nitrogen-rich organic chemical in milk increases the nitrogen content and therefore enhances its apparent protein content. However, the melamine causes kidney failure and death owing to the formation of kidney stone. Thus the determination of melamine in humans and milk products have gained great significance in recent years. The gold nanoclusters (AuNCs) have attracting features due to its unique electronic and optical properties like fluorescence nature. Therefore one can use AuNCs in the field of biosensor, bio-imaging, nanobiotechnology, drug delivery, diagnosis etc. We report, a new ratiometric nanosensor established for the selective and sensitive detection of melamine based optical sensing using glutathione stabilized AuNCs. The AuNCs were characterized by high-resolution transmission electron microscopy (HR-TEM), UV-visible and Photoluminescence (PL) spectroscopic techniques. In the presence of melamine, the PL intensity at 430 nm increases owing to the (turn-on) enhancement in fluorescence, whereas PL intensity at 610 nm decreases due to the melamine-induced aggregation and subsequent aggregation-enhanced emission quenching. The observed changes were ascribed to the hydrogen bonding interaction between melamine and AuNCs, which led to the aggregation of the nanoclusters. This was confirmed by dynamic light scattering and HR-TEM measurements. The present probe showed an extreme selectivity towards the determination of 28.2 μM melamine in the presence of 100-fold excess of common interfering molecules such as Alanine, Glycine, Glucose, Cystine etc. The proposed method was successfully applied to determine melamine in cow milk.
Mohammadnezhad, Gholamhossein; Abad, Saeed; Soltani, Roozbeh; Dinari, Mohammad
2017-11-01
In this study, two common industrial polymers, poly(methyl methacrylate) (PMMA) and polystyrene (PS), were incorporated into amine-functionalized MCM-41 mesoporous silica as reinforcement agents via an ultrasonic assisted method as a facile, fast, eco-friendly, and versatile synthetic tool. Amino functionalization of MCM-41 were performed by 3-aminopropyl triethoxysilane as a coupling agent and it is denoted as APTS-MCM-41. The obtained nanocomposites (NCs), APTS-MCM-41/PMMA and APTS-MCM-41/PS, were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning and transmission electron microscopies (SEM and TEM), and thermogravimetric analysis (TGA). Their mechanical properties were also probed via stress-strain curves and improved tensile properties were observed in the NCs relative to the neat polymers. Additionally, APTS-MCM-41/PMMA exhibited better mechanical properties than APTS-MCM-41/PS. Sorption studies were carried out on the two NCs and the effect of different process parameters, namely, pH, contact time, and initial Cd(II) concentration investigated in batch mode. Pseudo-second order and intraparticle diffusion models explain the Cd(II) kinetics more effectively for APTS-MCM-41/PMMA and APTS-MCM-41/PS, respectively. The adsorption isotherm data fitted well to Langmuir isotherm for both NCs and the maximum monolayer adsorption capacities were found to be 24.75mg/g and 10.42mg/g for APTS-MCM-41/PMMA and APTS-MCM-41/PS, respectively. The results demonstrate that the NCs show potential for use in adsorption of heavy metal ion such as Cd(II) from aqueous media. Copyright © 2017 Elsevier B.V. All rights reserved.
Fighting cancer with nanomedicine---drug-polyester nanoconjugates for targeted cancer therapy
NASA Astrophysics Data System (ADS)
Yin, Qian
The aim of my Ph. D. research is to develop drug-polyester nanoconjugates (NCs) as a novel translational polymeric drug delivery system that can successfully evade non-specific uptake by reticuloendothelial system (RES) and facilitate targeted cancer diagnosis and therapy. By uniquely integrating well-established chemical reaction-controlled ring opening polymerization (ROP) with nanoprecipitation technique, I successfully developed a polymeric NC system based on poly(lactic acid) and poly(O-carboxyanhydrides) (OCA) that allows for the quantitative loading and controlled release of a variety of anticancer drugs. The developed NC system could be easily modified with parmidronate, one of bisphosphonates commonly used as the treatment for disease characterized by osteolysis, to selectively deliver doxorubicin (Doxo) to the bone tissues and substantially to improve their therapeutic efficiency in inhibiting the growth of osteosarcoma in both murine and canine models. More importantly, the developed NCs could avidly bind to human serum albumin, a ubiquitous protein in the blood, to bypass the endothelium barrier and penetrate into tumor tissues more deeply and efficiently. When compared with PEGylated NCs, these albumin-bound NCs showed significantly reduced accumulation in RES and enhanced tumor accumulation, which consequently contributed to higher their tumor inhibition capabilities. In addition, the developed NC system allows easy incorporation of X-ray computed tomography (CT) contrast agents to largely facilitate personalized therapy by improving diagnosis accuracy and monitoring therapeutic efficacy. Through the synthetic and formulation strategy I developed, a large quantity (grams or larger-scale) of drug-polyester NCs can be easily obtained, which can be used as a model drug delivery system for fundamental studies as well as a real drug delivery system for disease treatment in clinical settings.
Wang, Junhui; Ding, Tao; Leng, Jing; Jin, Shengye; Wu, Kaifeng
2018-06-21
Carrier doping is important for semiconductor nanocrystals (NCs) as it offers a new knob to tune NCs' functionalities, in addition to size and shape control. Also, extensive studies on NC devices have revealed that under operating conditions NCs are often unintentionally doped with electrons or holes. Thus, it is essential to be able to control the doping of NCs and study the carrier dynamics of doped NCs. The extension of previously reported redox-doping methods to chemically sensitive materials, such as recently introduced perovskite NCs, has remained challenging. We introduce an "intact" carrier-doping method by performing pump-pump-probe transient absorption spectroscopy on NC-acceptor complexes. The first pump pulse is used to trigger charge transfer from the NC to the acceptor, leading to NCs doped with a band edge carrier; the following pump-probe pulses measure the dynamics of carrier-doped NCs. We performed this measurement on CsPbBr 3 NCs and deduced positive and negative trion lifetimes of 220 ± 50 and 150 ± 40 ps, respectively, for 10 nm diameter NCs, both dominated by Auger recombination. It also allowed us to identify randomly photocharged excitons in CsPbBr 3 NCs as positive trions.
Single cytidine units-templated syntheses of multi-colored water-soluble Au nanoclusters
NASA Astrophysics Data System (ADS)
Jiang, Hui; Zhang, Yuanyuan; Wang, Xuemei
2014-08-01
Ultra-small metallic nanoparticles, or so-called ``nanoclusters'' (NCs), have attracted considerable interest due to their unique optical properties that are different from both larger nanoparticles and single atoms. To prepare high-quality NCs, the stabilizing agent plays an essential role. In this work, we have revealed and validated that cytidine and its nucleotides (cytidine 5'-monophosphate or cytidine 5'-triphosphate) can act as efficient stabilizers for syntheses of multicolored Au NCs. Interestingly, Au NCs with blue, green and yellow fluorescence emissions are simultaneously obtained using various pH environments or reaction times. The transmission electron microscopy verifies that the size of Au NCs ranges from 1.5 to 3 nm. The X-ray photoelectron spectroscopy confirms that only Au (0) species are present in NCs. Generally, the facile preparation of multicolored Au NCs that are stabilized by cytidine units provides access to promising candidates for multiple biolabeling applications.Ultra-small metallic nanoparticles, or so-called ``nanoclusters'' (NCs), have attracted considerable interest due to their unique optical properties that are different from both larger nanoparticles and single atoms. To prepare high-quality NCs, the stabilizing agent plays an essential role. In this work, we have revealed and validated that cytidine and its nucleotides (cytidine 5'-monophosphate or cytidine 5'-triphosphate) can act as efficient stabilizers for syntheses of multicolored Au NCs. Interestingly, Au NCs with blue, green and yellow fluorescence emissions are simultaneously obtained using various pH environments or reaction times. The transmission electron microscopy verifies that the size of Au NCs ranges from 1.5 to 3 nm. The X-ray photoelectron spectroscopy confirms that only Au (0) species are present in NCs. Generally, the facile preparation of multicolored Au NCs that are stabilized by cytidine units provides access to promising candidates for multiple biolabeling applications. Electronic supplementary information (ESI) available: The feed amount for preparation of Au NCs, photophysical properties of Au NCs, the FL spectra under different pH and reaction time, and XPS results are included. See DOI: 10.1039/c4nr02180k
Norman, Tracy E; Chaffin, M Keith; Bisset, Wesley T; Thompson, James A
2012-03-15
To characterize the associations between clinical signs of nasopharyngeal cicatrix syndrome (NCS) and endoscopic findings in horses. Retrospective, case-control study. 239 horses (118 case horses and 121 control horses). Medical records of horses that had an endoscopic evaluation of the upper airway performed between January 2003 and December 2008 were reviewed. Clinical signs and the appearance and anatomic locations of lesions identified during endoscopic evaluation were reviewed and recorded for each horse. The associations between clinical signs and endoscopic findings were evaluated by the use of a prospective logistic model that used a Bayesian method for inference and was implemented by a Markov chain Monte Carlo method. Nasal discharge was associated with acute inflammation of the pharynx and larynx. Exercise intolerance was associated with circumferential pharyngeal lesions. Respiratory noise was associated with chronic scarring of the pharynx, a combination of pharyngeal and laryngeal scarring, and circumferential scarring of the pharynx. Respiratory distress was associated with acute inflammation of all portions of the airway, especially when there was preexisting scarring and narrowing of the airway by ≥ 50%. Cough did not have any significant association with NCS, compared with results in control horses. Associations between the endoscopic appearance of NCS lesions and relevant clinical signs will help practitioners identify horses with NCS and allow them to select appropriate treatment.
NASA Astrophysics Data System (ADS)
Del Rosso, T.; Rey, N. A.; Rosado, T.; Landi, S.; Larrude, D. G.; Romani, E. C.; Freire Junior, F. L.; Quinteiro, S. M.; Cremona, M.; Aucelio, R. Q.; Margheri, G.; Pandoli, O.
2016-06-01
Colloidal suspensions of oxocarbon-encapsulated gold nanoparticles have been synthesized in a one-step procedure by pulsed-laser ablation (PLA) at 532 nm of a solid gold target placed in aqueous solution containing CO2 absorbers, but without any stabilizing agent. Multi-wavelength surface enhanced Raman spectroscopy allows the identification of adsorbed amorphous carbon and graphite, Au-carbonyl, Au coordinated CO2-derived bicarbonates/carbonates and hydroxyl groups around the AuNPs core. Scanning electron microscopy, energy dispersive x-ray analysis and high resolution transmission electron microscopy highlight the organic shell structure around the crystalline metal core. The stability of the colloidal solution of nanocomposites (NCs) seems to be driven by solvation forces and is achieved only in neutral or basic pH using monovalent hydroxide counter-ions (NaOH, KOH). The NCs are characterized by a blue shift of the localized surface plasmon resonance (LSPR) band typical of metal-ligand stabilization by terminal π-back bonding, attributed to a core charging effect caused by Au-carbonyls. Total organic carbon measurements detect the final content of organic carbon in the colloidal solution of NCs that is about six times higher than the value of the water solution used to perform PLA. The colloidal dispersions of NCs are stable for months and are applied as analytical probes in amino glycoside antibiotic LSPR based sensing.
Del Rosso, T; Rey, N A; Rosado, T; Landi, S; Larrude, D G; Romani, E C; Junior, F L Freire; Quinteiro, S M; Cremona, M; Aucelio, R Q; Margheri, G; Pandoli, O
2016-06-24
Colloidal suspensions of oxocarbon-encapsulated gold nanoparticles have been synthesized in a one-step procedure by pulsed-laser ablation (PLA) at 532 nm of a solid gold target placed in aqueous solution containing CO2 absorbers, but without any stabilizing agent. Multi-wavelength surface enhanced Raman spectroscopy allows the identification of adsorbed amorphous carbon and graphite, Au-carbonyl, Au coordinated CO2-derived bicarbonates/carbonates and hydroxyl groups around the AuNPs core. Scanning electron microscopy, energy dispersive x-ray analysis and high resolution transmission electron microscopy highlight the organic shell structure around the crystalline metal core. The stability of the colloidal solution of nanocomposites (NCs) seems to be driven by solvation forces and is achieved only in neutral or basic pH using monovalent hydroxide counter-ions (NaOH, KOH). The NCs are characterized by a blue shift of the localized surface plasmon resonance (LSPR) band typical of metal-ligand stabilization by terminal π-back bonding, attributed to a core charging effect caused by Au-carbonyls. Total organic carbon measurements detect the final content of organic carbon in the colloidal solution of NCs that is about six times higher than the value of the water solution used to perform PLA. The colloidal dispersions of NCs are stable for months and are applied as analytical probes in amino glycoside antibiotic LSPR based sensing.
Caliandro, Rocco; Sibillano, Teresa; Belviso, B. Danilo; ...
2016-02-02
In this study, we have developed a general X-ray powder diffraction (XPD) methodology for the simultaneous structural and compositional characterization of inorganic nanomaterials. The approach is validated on colloidal tungsten oxide nanocrystals (WO 3-x NCs), as a model polymorphic nanoscale material system. Rod-shaped WO 3-x NCs with different crystal structure and stoichiometry are comparatively investigated under an inert atmosphere and after prolonged air exposure. An initial structural model for the as-synthesized NCs is preliminarily identified by means of Rietveld analysis against several reference crystal phases, followed by atomic pair distribution function (PDF) refinement of the best-matching candidates (static analysis). Subtlemore » stoichiometry deviations from the corresponding bulk standards are revealed. NCs exposed to air at room temperature are monitored by XPD measurements at scheduled time intervals. The static PDF analysis is complemented with an investigation into the evolution of the WO 3-x NC structure, performed by applying the modulation enhanced diffraction technique to the whole time series of XPD profiles (dynamical analysis). Prolonged contact with ambient air is found to cause an appreciable increase in the static disorder of the O atoms in the WO 3-x NC lattice, rather than a variation in stoichiometry. Finally, the time behavior of such structural change is identified on the basis of multivariate analysis.« less
Shuster, Sara M.; Davey, Cynthia S.
2014-01-01
Objective: Determine the percentage of subjects taking antipsychotics who meet criteria for metabolic syndrome based on point-of-care testing analyses. Evaluate pharmacist comprehensive medication management services using point-of-care tests to reduce the mean difference in number of metabolic syndrome risk parameters at 6 and 12 months. Method: This 12-month, prospective, multisite, randomized, controlled study included 120 subjects taking antipsychotics (mean [SD] age of 42.9 [11.3] years) recruited from 3 community mental health clinics in Minnesota. Subjects consented to receive either pharmacist (PCS; n = 60) or no pharmacist (NCS; n = 60) comprehensive medication management services. Data were collected from February 2010 to January 2012. Results: No statistical differences in metabolic syndrome based on point-of-care tests were observed between the 2 groups at baseline (PCS: 85.2%, n = 46 versus NCS: 71.2%, n = 42, P = .073) or at 12 months (PCS: 84.4%, n = 38 versus NCS: 70.2%, n = 33, P = .104). Subjects, overall, screened positive at baseline for dyslipidemia (85.8%, n = 106), hypertension (52.5%, n = 63), and diabetes (22.5%, n = 27) based on point-of-care testing for metabolic risk criteria. After 12 months, a nonsignificant (P = .099) higher adjusted mean number of metabolic syndrome parameters in PCS subjects compared to NCS subjects (mean difference [95% CI] = 0.41 [−0.08 to 0.90]) were found. Conclusions: A relatively high proportion of subjects met criteria for metabolic syndrome, although no significant improvement was observed between the groups after 12 months. Point-of-care test analyses identified a high proportion of subjects meeting criteria for dyslipidemia, hypertension, and diabetes. Utilizing point-of-care tests in mental health settings and fostering interprofessional partnerships with comprehensive medication management pharmacists may improve identification and long-term management of metabolic risks among patients prescribed antipsychotics. Trial Registration: ClinicalTrials.gov identifier: NCT02029989 PMID:25667811
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Min Ju; Kim, Hee-Dong; Man Hong, Seok
2014-03-07
The metal nanocrystals (NCs) embedded-NiN-based resistive random access memory cells are demonstrated using several metal NCs (i.e., Pt, Ni, and Ti) with different physical parameters in order to investigate the metal NC's dependence on resistive switching (RS) characteristics. First, depending on the electronegativity of metal, the size of metal NCs is determined and this affects the operating current of memory cells. If metal NCs with high electronegativity are incorporated, the size of the NCs is reduced; hence, the operating current is reduced owing to the reduced density of the electric field around the metal NCs. Second, the potential wells aremore » formed by the difference of work function between the metal NCs and active layer, and the barrier height of the potential wells affects the level of operating voltage as well as the conduction mechanism of metal NCs embedded memory cells. Therefore, by understanding these correlations between the active layer and embedded metal NCs, we can optimize the RS properties of metal NCs embedded memory cells as well as predict their conduction mechanisms.« less
Library of Norcoclaurine Synthases and Their Immobilization for Biocatalytic Transformations.
Lechner, Horst; Soriano, Pablo; Poschner, Roman; Hailes, Helen C; Ward, John M; Kroutil, Wolfgang
2018-03-01
Norcoclaurine synthases (NCS), catalyzing a Pictet-Spengler reaction in plants as one of the first enzymes in the biosynthetic benzylisoquinoline pathway, are investigated for biocatalytic transformations. The library of NCS available is extended by two novel NCSs from Argemone mexicana (AmNCS1, AmNCS2) and one new NCS from Corydalis saxicola (CsNCS); furthermore, it is shown that the NCS from Papaver bracteatum (PbNCS) is a highly productive catalyst leading to the isoquinoline product with up to >99% e.e. Under certain conditions lyophilized whole Escherichia coli cells containing the various overexpressed NCS turned out to be suitable catalysts. The reaction using dopamine as substrate bears several challenges such as the spontaneous non-stereoselective background reaction and side reactions. The PbNCS enzyme is successfully immobilized on various carriers whereby EziG3 proved to be the best suited for biotransformations. Dopamine showed limited stability in solution resulting in the coating of the catalyst over time, which could be solved by the addition of ascorbic acid (e.g., 1 mg ml -1 ) as antioxidant. © 2017 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH &Co. KGaA.
Inorganic colloidal nanocrystals: Synthesis and bioapplications
NASA Astrophysics Data System (ADS)
Wu, Huimeng
Nanocrystals (NCs) are very small particles, which contain from a few hundred to thousands of atoms depending on the size of NCs. Because of their special properties compared with the bulk materials, NCs have found many promising applications in areas, such as biomedical diagnosis, catalysis, plasmonics, high-density data storage and solar energy conversion. This dissertation presents studies on the syntheses of metal oxide NCs and hybrid NCs, the surface functionalization of NCs by dual-interaction ligands, and gold-NC-based assay for the detection of beta-galactosidase. Monodisperse colloidal uranium dioxide NCs (UO2 NCs) were synthesized by decomposition of uranyl acetylacetonate. By changing the amount of added surfactant, the sizes of the NCs could vary from 2 ˜ 8 nm. Mechanistic studies of the formation of UO2 NCs showed that the condensation product (amide) of oleic acid and oleylamine plays an important role in controlling the particle size. Normally, high-quality NCs are synthesized in organic phase, but most of NC-based bio-applications require water-soluble NCs. To convert these hydrophobic NCs to hydrophilic particles, surface modification is employed. Here dual interaction ligands based on the Tween-derivatives (TDs) were synthesized. Stability tests on TD-capped NCs showed that these dual interaction ligands can significantly increase the stability of NCs compared to single interaction ligands. Further, These TD-capped QDs were further tested as fluorescent labels to detect virusprotein expression in cells. To exploit bio-applications of nanocrystals, gold nanocrystal-based assay to detect enzyme activity was designed. The optical properties of Au-NCs are not only dependent on the particle sizes and shapes, but also the distances between the particles. Here, Lipoic acid-tyramine-beta-galactopyranosyl (LTbeta-gal) was synthesized, as ligands, to cap Au-NCs; and the resultant LTbeta-gal-capped Au-NCs could disperse in water. After the hydrolysis of the ligands with beta-galactosidase, these Au-NCs become to aggregate, which exhibit a red-shift in the absorption spectrum of the Au-NC suspension. The detection of beta-galactosidase was further studies by varying the amounts of beta-galactosidase. Hybrid nanocrystals (HNCs) are attractive candidates for advanced nanomaterials because they contain two or more different nanoscale functionalities, which are expected to possess novel physical and chemical properties. Two kinds of heterodimers (FePt/In2O3 and UO2/In 2O3) were prepared using a similar procedure and the synthesized HNCs exhibited different shapes. The studies of high-resolution transmission electron microscopy (HRTEM) indicate that the shapes of these two dimers were controlled by the interfacial structures. The amorphous iron oxide layers on the FePt NC surfaces act as glue to interconnect the FePt with the indium oxide parts and led to a core-seed-shaped heterodimer. Using completely crystalline UO2 NCs as seeds resulted in a peanut-shapd HNC.
Hashem, Emtithal; Platts, James A; Hartl, František; Lorusso, Giulia; Evangelisti, Marco; Schulzke, Carola; Baker, Robert J
2014-08-18
A comprehensive study of the complexes A4[U(NCS)8] (A = Cs, Et4N, (n)Bu4N) and A3[UO2(NCS)5] (A = Cs, Et4N) is described, with the crystal structures of [(n)Bu4N]4[U(NCS)8]·2MeCN and Cs3[UO2(NCS)5]·O0.5 reported. The magnetic properties of square antiprismatic Cs4[U(NCS)8] and cubic [Et4N]4[U(NCS)8] have been probed by SQUID magnetometry. The geometry has an important impact on the low-temperature magnetic moments: at 2 K, μeff = 1.21 μB and 0.53 μB, respectively. Electronic absorption and photoluminescence spectra of the uranium(IV) compounds have been measured. The redox chemistry of [Et4N]4[U(NCS)8] has been explored using IR and UV-vis spectroelectrochemical methods. Reversible 1-electron oxidation of one of the coordinated thiocyanate ligands occurs at +0.22 V vs Fc/Fc(+), followed by an irreversible oxidation to form dithiocyanogen (NCS)2 which upon back reduction regenerates thiocyanate anions coordinating to UO2(2+). NBO calculations agree with the experimental spectra, suggesting that the initial electron loss of [U(NCS)8](4-) is delocalized over all NCS(-) ligands. Reduction of the uranyl(VI) complex [Et4N]3[UO2(NCS)5] to uranyl(V) is accompanied by immediate disproportionation and has only been studied by DFT methods. The bonding in [An(NCS)8](4-) (An = Th, U) and [UO2(NCS)5](3-) has been explored by a combination of DFT and QTAIM analysis, and the U-N bonds are predominantly ionic, with the uranyl(V) species more ionic that the uranyl(VI) ion. Additionally, the U(IV)-NCS ion is more ionic than what was found for U(IV)-Cl complexes.
Synthesis of Copper-Antimony-Sulfide Nanocrystals for Solution-Processed Solar Cells.
Suehiro, Satoshi; Horita, Keisuke; Yuasa, Masayoshi; Tanaka, Tooru; Fujita, Katsuhiko; Ishiwata, Yoichi; Shimanoe, Kengo; Kida, Tetsuya
2015-08-17
The p-type nanocrystals (NCs) of copper-based chalcogenides, such as CuInSe2 and Cu2ZnSnS4, have attracted increasing attention in photovoltaic applications due to their potential to produce cheap solution-processed solar cells. Herein, we report the synthesis of copper-antimony-sulfide (CAS) NCs with different crystal phases including CuSbS2, Cu3SbS4, and Cu12Sb4S13. In addition, their morphology, crystal phase, and optical properties were characterized using transmission electron microscopy, X-ray diffractometry, UV-vis-near-IR spectroscopy, and photoemission yield spectroscopy. The morphology, crystal phase, and electronic structure were significantly dependent on the chemical composition in the CAS system. Devices were fabricated using particulate films consisting of CAS NCs prepared by spin coating without a high-temperature treatment. The CAS NC-based devices exhibited a diode-like current-voltage characteristic when coupled with an n-type CdS layer. In particular, the CuSbS2 NC devices exhibited photovoltaic responses under simulated sunlight, demonstrating its applicability for use in solution-processed solar cells.
Mallakpour, Shadpour; Nazari, Hossein Yazdan
2017-11-01
In this work, SiO 2 nanoparticles (NPs) were modified with bovine serum albumin (BSA) under ultrasound irradiations as a green and fast route to achieve their good dispersion. Subsequently, different weight percentages of the modified NPs (3, 6, and 9wt%) were incorporated in poly(vinyl chloride) (PVC) as the matrix. Thermogravimetric analysis of the SiO 2 -BSA NPs indicated that 12wt% of the modifier was loaded on the surface of SiO 2 NPs. Encapsulation of the SiO 2 -BSA resulted in a meaningful improvement in the optical, mechanical and thermal characteristics of the prepared PVC nanocomposites (NCs). X-ray diffraction (XRD) patterns for the PVC/SiO 2 -BSA NCs showed a crystalline behavior for the NC with 6wt% of the SiO 2 -BSA originated from the phosphate buffer on the NPs. Water contact angle of the PVC/SiO 2 -BSA NCs showed that the hydrophilicity enhanced with increasing of the NPs contents. Copyright © 2017 Elsevier B.V. All rights reserved.
Norwegian or Crusted Sarcoptic Mange in Two Leishmanial Dogs.
Kaltsogianni, Flora; Farmaki, Rania; Koutinas, Alexander F
Norwegian or crusted scabies (N/CS) is a rare skin disease with very few cases reported in the dog or the cat. Two adult, stray dogs were admitted in our clinic with a generalized, multifocal to diffuse and nonpruritic dermatitis that was characterized by severe crusting, scaling, and ulceration. In both instances, leishmaniosis and N/CS were diagnosed by immunofluorescent antibody test serology, lymph node cytology, and skin scrapings in which high numbers of Sarcoptes mites were found. The combination of miticidal and antileishmanial treatment, supported by topical treatment and nutritional support, resulted in the complete resolution of the skin lesions and spectacular improvement of the body condition in both cases. Dog 1 eventually died from end-stage kidney disease attributed to leishmaniosis-associated glomerulonephritis, whereas the also proteinuric dog 2 remains clinically healthy. The manifestation of the rare type of N/CS in these dogs could be attributed to cell-mediated immunosuppression, which was most likely induced by leishmaniosis and malnutrition. The necessity of searching for leishmaniosis in those scabietic cases, especially in the endemic areas of leishmaniosis, is strongly recommended.
Formation of highly luminescent Zn1-xCdxSe nanocrystals using CdSe and ZnSe seeds
NASA Astrophysics Data System (ADS)
Zhang, Ruili; Yang, Ping
2013-05-01
High-quality colloidal Zn1-xCdxSe nanocrystals (NCs) with tunable photoluminescence (PL) from blue to orange were synthesized using oleic acid as a capping agent. The Zn1-xCdxSe NCs were prepared through two approaches: using CdSe or ZnSe seeds. In the case of CdSe NCs as seeds, Zn1-xCdxSe NCs were fabricated by the reaction of Zn, Cd, and Se precursors in the coordinating solvent system at high temperature. The Zn1-xCdxSe NCs revealed orange emitting. A significant blue-shift of absorption and PL spectra were observed with time, indicating the formation of ternary NCs. In contrast, Zn1-xCdxSe NCs revealed blue to green PL for ZnSe NCs as seeds. This is ascribed to an embryonic nuclei-induced alloying process. With increasing time, the Zn1-xCdxSe NCs exhibited a red-shift both in their absorption and PL spectra. This is attributed to the engineering in band gap energy via the control of NC composition. The PL properties of as-prepared alloyed NCs are comparable or even better than those for the parent binary systems. The PL peak wavelength of the Zn1-xCdxSe NCs depended strongly on reaction time and the molar ratio of Cd/Zn. The Zn1-xCdxSe NCs revealed a spherical morphology and exhibited a wurtzite structure according to transmission electron microscopy observation and an X-ray diffraction analysis.
Matrix photochemical study and conformational analysis of CH3C(O)NCS and CF3C(O)NCS.
Ramos, Luis A; Ulic, Sonia E; Romano, Rosana M; Beckers, Helmut; Willner, Helge; Della Védova, Carlos O
2014-01-30
The vapor of acetyl isocyanide, CH3C(O)NCS, and trifluoroacetyl isocyanide, CF3C(O)NCS, were isolated in solid Ar at 15 K. The existence of rotational isomerism was confirmed when the matrixes were irradiated with broad-band UV-vis light (200 ≤ λ ≤ 800 nm) and also by temperature-dependent Ar-matrix IR spectroscopy. The initial spectra showed the vapor of CH3C(O)NCS and CF3C(O)NCS consist of two conformers syn-syn and syn-anti (with the C═O bond syn with respect to the C-H or C-F bond and syn or anti with respect to the N═C double bond). When CH3C(O)NCS is irradiated, simultaneously with the randomization process, H2CCO and HSCN are produced. In the case of the photolysis of CF3C(O)NCS, the main products are CF3NCS and CO. The assignment of the IR bands to the different photoproducts was made on the basis of the usual criteria, taking account reported antecedents in the literature.
47 CFR Appendix to Part 216 - NCS Directives
Code of Federal Regulations, 2011 CFR
2011-10-01
...—Telecommunications Operations—Shared Resources (SHARES) High Frequency (HF) Radio Program Note: NCS Directives and... Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL NATIONAL COMMUNICATIONS..., Membership and Administration—National Communications System (NCS) Issuance System NCS Directive 1-2...
47 CFR Appendix to Part 216 - NCS Directives
Code of Federal Regulations, 2013 CFR
2013-10-01
...—Telecommunications Operations—Shared Resources (SHARES) High Frequency (HF) Radio Program Note: NCS Directives and... Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL NATIONAL COMMUNICATIONS..., Membership and Administration—National Communications System (NCS) Issuance System NCS Directive 1-2...
47 CFR Appendix to Part 216 - NCS Directives
Code of Federal Regulations, 2010 CFR
2010-10-01
...—Telecommunications Operations—Shared Resources (SHARES) High Frequency (HF) Radio Program Note: NCS Directives and... Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL NATIONAL COMMUNICATIONS..., Membership and Administration—National Communications System (NCS) Issuance System NCS Directive 1-2...
47 CFR Appendix to Part 216 - NCS Directives
Code of Federal Regulations, 2012 CFR
2012-10-01
...—Telecommunications Operations—Shared Resources (SHARES) High Frequency (HF) Radio Program Note: NCS Directives and... Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL NATIONAL COMMUNICATIONS..., Membership and Administration—National Communications System (NCS) Issuance System NCS Directive 1-2...
47 CFR Appendix to Part 216 - NCS Directives
Code of Federal Regulations, 2014 CFR
2014-10-01
...—Telecommunications Operations—Shared Resources (SHARES) High Frequency (HF) Radio Program Note: NCS Directives and... Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL NATIONAL COMMUNICATIONS..., Membership and Administration—National Communications System (NCS) Issuance System NCS Directive 1-2...
NASA Astrophysics Data System (ADS)
Song, Yahui; Miao, Tingting; Zhang, Peina; Bi, Cuixia; Xia, Haibing; Wang, Dayang; Tao, Xutang
2015-04-01
We investigate the effect of gold (Au) seeds prepared in cetyltrimethylammonium chloride solution (CTAC-Au seeds) on the index facets of trisoctahedral gold nanocrystals (TOH Au NCs). We demonstrate that monodisperse {331}-faceted TOH Au NCs with controllable sizes (from 60 to 255 nm) can be successfully prepared in high yield by using 3.0 nm CTAC-Au seeds or as-prepared 70 nm TOH Au NCs as seeds. We find that the electrocatalytic performance on methanol oxidation and surface enhancement Raman spectroscopy (SERS) activity of {331}-faceted TOH Au NCs is size-dependent. In comparison with well-known nanoporous gold (0.088 mA cm-2), {331}-faceted TOH Au NCs with sizes of 110 nm exhibit fairly high catalytic activity (0.178 mA cm-2) on methanol oxidation (1.0 M) in alkaline media due to the presence of increasing density of atomic steps, ledges, and kinks on the NC surfaces. Their current density is reduced by less than 7% after 500 cycling tests. {331}-Faceted TOH Au NCs with sizes of 175 nm exhibit the highest SERS activity for 4-aminothiophenol (4-ATP) molecules. The enhancement factors of a1 modes of 4-ATP molecules can reach the order of 109 when the 4-ATP concentration is 3 × 10-6 M. Moreover, Raman signals (ag modes) of 4,4'-dimercaptoazobenzene (DMAB) molecules on TOH Au NCs are stronger than those on spherical Au NCs of comparable size due to the enhanced laser-induced transformation of 4-ATP molecules by high-index {331}-facets during SERS measurement. Furthermore, the SERS intensities of 4-methylbenzenethiol (4-MTP) molecules on TOH Au NCs are also higher than those on spherical Au NCs of comparable size due to sharp extremities.We investigate the effect of gold (Au) seeds prepared in cetyltrimethylammonium chloride solution (CTAC-Au seeds) on the index facets of trisoctahedral gold nanocrystals (TOH Au NCs). We demonstrate that monodisperse {331}-faceted TOH Au NCs with controllable sizes (from 60 to 255 nm) can be successfully prepared in high yield by using 3.0 nm CTAC-Au seeds or as-prepared 70 nm TOH Au NCs as seeds. We find that the electrocatalytic performance on methanol oxidation and surface enhancement Raman spectroscopy (SERS) activity of {331}-faceted TOH Au NCs is size-dependent. In comparison with well-known nanoporous gold (0.088 mA cm-2), {331}-faceted TOH Au NCs with sizes of 110 nm exhibit fairly high catalytic activity (0.178 mA cm-2) on methanol oxidation (1.0 M) in alkaline media due to the presence of increasing density of atomic steps, ledges, and kinks on the NC surfaces. Their current density is reduced by less than 7% after 500 cycling tests. {331}-Faceted TOH Au NCs with sizes of 175 nm exhibit the highest SERS activity for 4-aminothiophenol (4-ATP) molecules. The enhancement factors of a1 modes of 4-ATP molecules can reach the order of 109 when the 4-ATP concentration is 3 × 10-6 M. Moreover, Raman signals (ag modes) of 4,4'-dimercaptoazobenzene (DMAB) molecules on TOH Au NCs are stronger than those on spherical Au NCs of comparable size due to the enhanced laser-induced transformation of 4-ATP molecules by high-index {331}-facets during SERS measurement. Furthermore, the SERS intensities of 4-methylbenzenethiol (4-MTP) molecules on TOH Au NCs are also higher than those on spherical Au NCs of comparable size due to sharp extremities. Electronic supplementary information (ESI) available: Extra TEM images and extinction spectra of the corresponding TOH Au NCs obtained with CTAB-Au seeds and CTAC-Au seeds, cyclic voltammograms of the corresponding TOH Au NCs with {221} facets and {331} facets in 0.50 M H2SO4 medium, cyclic voltammograms of TOH Au NCs with different sizes in 0.50 M H2SO4 medium and in 0.50 M KOH medium, the variation of oxidation peak current density of the GCEs modified by the 110 nm TOH Au NCs at different scanning cycle numbers, experimental extinction spectra of TOH Au NCs of different sizes, SERS spectra of 4-ATP molecules on the aggregates of 175 nm TOH Au NCs and 170 nm spherical Au NCs, the normal Raman spectrum of the neat film of the 4-ATP molecule, and summarized data of the Raman intensity and SERS enhancement factors of the TOH Au NCs with different sizes in specific Raman bands. See DOI: 10.1039/c5nr01049g
Chen, Chuanyu; You, Peijun
2017-01-01
Barrier properties of the skin and physicochemical properties of drugs are the main factors for the delivery of local anesthetic molecules. The present work evaluates the anesthetic efficacy of drug-loaded nanocarrier (NC) systems for the delivery of local anesthetic drug, ropivacaine (RVC). In this study, transcriptional transactivator peptide (TAT)-decorated RVC-loaded NCs (TAT-RVC/NCs) were successfully fabricated. Physicochemical properties of NCs were determined in terms of particle size, zeta potential, drug encapsulation efficiency, drug-loading capacity, stability, and in vitro drug release. The skin permeation of NCs was examined using a Franz diffusion cell mounted with depilated mouse skin in vitro, and in vivo anesthetic effect was evaluated in mice. The results showed that TAT-RVC/NCs have a mean diameter of 133.2 nm and high drug-loading capacity of 81.7%. From the in vitro skin permeation results, it was observed that transdermal flux of TAT-RVC/NCs was higher than that of RVC-loaded NCs (RVC/NCs) and RVC injection. The evaluation of in vivo anesthetic effect illustrated that TAT-RVC/NCs can enhance the transdermal delivery of RVC by reducing the pain threshold in mice. These results indicate that TAT-decorated NCs systems are useful for overcoming the barrier function of the skin, decreasing the dosage of RVC and enhancing the anesthetic effect. Therefore, TAT-decorated NCs can be used as an effective transdermal delivery system for local anesthesia.
Xu, Yiren; Xu, Shuhong; Shao, Haibao; Jiang, Han; Cui, Yiping; Wang, Chunlei
2018-06-08
CH 3 NH 3 PbBr 3 perovskite nanocrystals (NCs) suffer from poor stability because of their high sensitivity to environmental moisture and water. To solve this problem, previous works mainly focus on embedding perovskite NCs into water-resistant matrix to form large composites (size of microns or larger). As an alternative solution without serious changing of NC size, enhancing the stability of perovskite NCs themselves by ligand engineering is rarely reported. In this work, we used hyperbranched polyamidoamine (PAMAM) dendrimers with two different generations (G0 and G4) to synthesize CH 3 NH 3 PbBr 3 perovskite NCs with high photoluminescence (PL) quantum yields (QY) above 70% and a new record stability. A novel dendrimers generation-dependent stability of perovskite NCs was observed. The water-resistance time is 18 h (27 h) for perovskite NCs capped by G0 (G4) generation of PAMAM, which is 7 times (11 times) longer than that of traditional oleic acid-capped NCs. Similar PAMAM generation-related stability is also observed in moisture-resistance tests. The stability time against moisture is 500 h (800 h) for G0 (G4) generation of PAMAM-capped perovskite NCs, which is a new record stability time against moisture for CH 3 NH 3 PbBr 3 perovskite NCs. In addition, our results also indicate that PAMAM ligands outside perovskite NCs can dramatically slow down the speed of halide exchange. Even for the mixture of perovskite NCs with two different halide composition, the original luminescence properties of PAMAM-capped perovskite NCs can retain after mixing. In view of slow halide exchange speed, excellent water and moisture stability, PAMAM dendrimers-capped perovskite NCs and their mixture are available as color conversion single layer in fabrication of light-emitting diodes (LED).
NASA Astrophysics Data System (ADS)
Xu, Yiren; Xu, Shuhong; Shao, Haibao; Jiang, Han; Cui, Yiping; Wang, Chunlei
2018-06-01
CH3NH3PbBr3 perovskite nanocrystals (NCs) suffer from poor stability because of their high sensitivity to environmental moisture and water. To solve this problem, previous works mainly focus on embedding perovskite NCs into water-resistant matrix to form large composites (size of microns or larger). As an alternative solution without serious changing of NC size, enhancing the stability of perovskite NCs themselves by ligand engineering is rarely reported. In this work, we used hyperbranched polyamidoamine (PAMAM) dendrimers with two different generations (G0 and G4) to synthesize CH3NH3PbBr3 perovskite NCs with high photoluminescence (PL) quantum yields (QY) above 70% and a new record stability. A novel dendrimers generation-dependent stability of perovskite NCs was observed. The water-resistance time is 18 h (27 h) for perovskite NCs capped by G0 (G4) generation of PAMAM, which is 7 times (11 times) longer than that of traditional oleic acid-capped NCs. Similar PAMAM generation-related stability is also observed in moisture-resistance tests. The stability time against moisture is 500 h (800 h) for G0 (G4) generation of PAMAM-capped perovskite NCs, which is a new record stability time against moisture for CH3NH3PbBr3 perovskite NCs. In addition, our results also indicate that PAMAM ligands outside perovskite NCs can dramatically slow down the speed of halide exchange. Even for the mixture of perovskite NCs with two different halide composition, the original luminescence properties of PAMAM-capped perovskite NCs can retain after mixing. In view of slow halide exchange speed, excellent water and moisture stability, PAMAM dendrimers-capped perovskite NCs and their mixture are available as color conversion single layer in fabrication of light-emitting diodes (LED).
Takahashi, Makoto; Ishmael, Mutanda; Asikin, Yonathan; Hirose, Naoto; Mizu, Masami; Shikanai, Takesi; Tamaki, Hajime; Wada, Koji
2016-10-25
In this study, 2 types of solidified noncentrifugal brown sugars (W-NCS and P-NCS) were prepared from the whole stalk and separated pith, respectively, of raw sugarcane (Saccharum officinarum L.). These products were discriminated in terms of their quality attributes, including color, sugars and minerals composition, taste, aroma, and antioxidant activity. The brown color of P-NCS was clearly different compared with that of W-NCS with a color difference value (ΔE * ) of 9.36. There was no difference in the sugars and minerals composition between the 2 types of sugar, which led to very similar taste profiles. However, P-NCS had a weaker aroma intensity than W-NCS did. Moreover, P-NCS retained more than 60% of the antioxidant activity of W-NCS. The information gleaned from this study might be used to select appropriate end-uses for these 2 types of sugars. © 2016 Institute of Food Technologists®.
NASA Astrophysics Data System (ADS)
Zhou, Shu; Ding, Yi; Pi, Xiaodong; Nozaki, Tomohiro
2014-11-01
Doped silicon nanocrystals (Si NCs) are of great interest in demanding low-cost nanodevices because of the abundance and nontoxicity of Si. Here, we demonstrate a cost-effective gas phase approach to synthesize phosphorous (P)-doped Si NCs in which the precursors used, i.e., SiCl4, trimethyl phosphite (TMP), are both safe and economical. It is found that the TMP-enabled P-doping does not change the crystalline structure of Si NCs. The surface of P-doped Si NCs is terminated by both Cl and H. The Si-H bond density at the surface of P-doped Si NCs is found to be much higher than that of undoped Si NCs. The X-ray photoelectron spectroscopy and electron spin resonance results indicate that P atoms are doped into the substitutional sites of the Si-NC core and electrically active in Si NCs. Unintentional impurities, such as carbon contained in TMP, are not introduced into Si NCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elimelech, Orian; Liu, Jing; Plonka, Anna M.
Doping of nanocrystals (NCs) is a key, yet underexplored, approach for tuning of the electronic properties of semiconductors. An important route for doping of NCs is by vacancy formation. The size and concentration dependence of doping was studied in copper(I) sulfide (Cu2S) NCs through a redox reaction with iodine molecules (I2), which formed vacancies accompanied by a localized surface plasmon response. X-ray spectroscopy and diffraction reveal transformation from Cu2S to Cu-depleted phases, along with CuI formation. Greater reaction efficiency was observed for larger NCs. This behavior is attributed to interplay of the vacancy formation energy, which decreases for smaller sizedmore » NCs, and the growth of CuI on the NC surface, which is favored on well-defined facets of larger NCs. This doping process allows tuning of the plasmonic properties of a semiconductor across a wide range of plasmonic frequencies by varying the size of NCs and the concentration of iodine. Controlled vacancy doping of NCs may be used to tune and tailor semiconductors for use in optoelectronic applications.« less
Dielectric characterization of CuxS-NiySz/FNBR and CuS-NiySz/FNBR nanocomposites
NASA Astrophysics Data System (ADS)
Balayeva, Ofeliya O.; Azizov, Abdulsaid A.; Muradov, Mustafa B.; Eyvazova, Goncha M.
2017-06-01
CuxS-NiySz/FNBR and CuS-NiySz/FNBR nanocomposites (NCs) were prepared from β-NiS/FNBR by ion exchange method and dielectric characterized. Dielectric properties of NCs were investigated at the temperature of 26 °C-120 °C in 120-106 Hz frequency range. With measuring electric capacity and resistance of the samples at different frequency we have studied the dielectric permittivity, dielectric loss tangent, dielectric modulus, conductivity, relaxation times and Cole-Cole plots were obtained. At 120 °C measurement temperature, some of the destruction processes in polymers affect to interfacial interaction between the polymer and particles surface. After high temperature measurement all three samples were cooled to room temperature and their dielectric measurements were carried out at room temperature. It is observed that at high measurement temperature some of carriers transfer from one energy level to another and the dipole orientation did not return completely to the previous situation.
Chitosan-hyaluronan/nano chondroitin sulfate ternary composite sponges for medical use.
Anisha, B S; Sankar, Deepthi; Mohandas, Annapoorna; Chennazhi, K P; Nair, Shantikumar V; Jayakumar, R
2013-02-15
In this work chitosan-hyaluronan composite sponge incorporated with chondroitin sulfate nanoparticle (nCS) was developed. The fabrication of hydrogel was based on simple ionic cross-linking using EDC, followed by lyophilization to obtain the composite sponge. nCS suspension was characterized using DLS and SEM and showed a size range of 100-150 nm. The composite sponges were characterized using SEM, FT-IR and TG-DTA. Porosity, swelling, biodegradation, blood clotting and platelet activation of the prepared sponges were also evaluated. Nanocomposites showed a porosity of 67% and showed enhanced swelling and blood clotting ability. Cytocompatibility and cell adhesion studies of the sponges were done using human dermal fibroblast (HDF) cells and the nanocomposite sponges showed more than 90% viability. Nanocomposite sponges also showed enhanced proliferation of HDF cells within two days of study. These results indicated that this nanocomposite sponges would be a potential candidate for wound dressing. Copyright © 2012 Elsevier Ltd. All rights reserved.
Colloidal Synthesis and Thermoelectric Properties of CuFeSe2 Nanocrystals
Zhang, Bing-Qian; Zuo, Yong; Chen, Jing-Shuai; Niu, He-Lin; Mao, Chang-Jie
2017-01-01
Copper-based chalcogenides that contain abundant, low-cost and environmentally-friendly elements, are excellent materials for numerous energy conversion applications, such as photocatalysis, photovoltaics, photoelectricity and thermoelectrics (TE). Here, we present a high-yield and upscalable colloidal synthesis route for the production of monodisperse ternary I-III-VI2 chalcogenides nanocrystals (NCs), particularly stannite CuFeSe2, with uniform shape and narrow size distributions by using selenium powder as the anion precursor and CuCl2·2H2O and FeCl3 as the cationic precursors. The composition, the state of valence, size and morphology of the CuFeSe2 materials were examined by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM) and high resolution transmission electron microscope (HRTEM), respectively. Furthermore, the TE properties characterization of these dense nanomaterials compacted from monodisperse CuFeSe2 NCs by hot press at 623 K were preliminarily studied after ligand removal by means of hydrazine and hexane solution. The TE performances of the sintered CuFeSe2 pellets were characterized in the temperature range from room temperature to 653 K. Finally, the dimensionless TE figure of merit (ZT) of this Earth-abundant and intrinsic p-type CuFeSe2 NCs is significantly increased to 0.22 at 653 K in this work, which is demonstrated to show a promising TE materialand makes it a possible p-type candidate for medium-temperature TE applications. PMID:29278381
Neutron Compton scattering from selectively deuterated acetanilide
NASA Astrophysics Data System (ADS)
Wanderlingh, U. N.; Fielding, A. L.; Middendorf, H. D.
With the aim of developing the application of neutron Compton scattering (NCS) to molecular systems of biophysical interest, we are using the Compton spectrometer EVS at ISIS to characterize the momentum distribution of protons in peptide groups. In this contribution we present NCS measurements of the recoil peak (Compton profile) due to the amide proton in otherwise fully deuterated acetanilide (ACN), a widely studied model system for H-bonding and energy transfer in biomolecules. We obtain values for the average width of the potential well of the amide proton and its mean kinetic energy. Deviations from the Gaussian form of the Compton profile, analyzed on the basis of an expansion due to Sears, provide data relating to the Laplacian of the proton potential.
Growth Patterns of the Neurocentral Synchondrosis (NCS) in Immature Cadaveric Vertebra.
Blakemore, Laurel; Schwend, Richard; Akbarnia, Behrooz A; Dumas, Megan; Schmidt, John
2018-03-01
Gross anatomic study of osteological specimens. To evaluate the age of closure for the neurocentral synchondrosis (NCS) in all 3 regions of the spine in children aged 1 to 18 years old. The ossification of the human vertebra begins from a vertebral body ossification center and a pair of neural ossification centers located within the centrum called the NCS. These bipolar cartilaginous centers of growth contribute to the growth of the vertebral body, spinal canal, and posterior elements of the spine. The closure of the synchondroses is dependent upon location of the vertebra and previous studies range from 2 to 16 years of age. Although animal and cadaveric studies have been performed regarding NCS growth and early instrumentation's effect on its development, the effects of NCS growth disturbances are still not completely understood. The vertebrae of 32 children (1 to 18 y old) from the Hamann-Todd Osteological collection were analyzed (no 2 or 9 y old specimens available). Vertebrae studied ranged from C1 to L5. A total of 768 vertebral specimens were photographed on a background grid to allow for measurement calibration. Measurements of the right and left NCS, pedicle width at the NCS, and spinal canal area were taken using Scandium image-analysis software (Olympus Soft Imaging Solutions, Germany). The percentage of the growth plate still open was found by dividing the NCS by the pedicle width and multiplying by 100. Data were analyzed with JMP 11 software (SAS Institute Inc., Cary, NC). The NCS was 100% open in all 3 regions of the spine in the 1- to 3-year age group. The cervical NCS closed first with completion around 5 years of age. The lumbar NCS was nearly fully closed by age 11. Only the thoracic region remained open through age 17 years. The left and right NCS closed simultaneously as there was no statistical difference between them. In all regions of the spine, the NCS appeared to close sooner in males than in females. Spinal canal area increased with age up to 12 years old in the cervical and thoracic spine but did not significantly change after age 3 in the lumbar spine. In conclusion, closure of the NCS differed among the cervical, thoracic, and lumbar spine regions. The NCS reached closure in males before females even though females mature faster and reach skeletal maturity sooner than males. However, it is not determined whether the continued open NCS in females to a later age may be a factor in their increased rate of scoliosis.
Effects of PEGylated paclitaxel nanocrystals on breast cancer and its lung metastasis
NASA Astrophysics Data System (ADS)
Zhang, Hua; Hu, Hongxiang; Zhang, Haoran; Dai, Wenbing; Wang, Xinglin; Wang, Xueqing; Zhang, Qiang
2015-06-01
As an attractive strategy developed rapidly in recent years, nanocrystals are used to deliver insoluble drugs. PEGylation may further prolong the circulation time of nanoparticles and improve the therapeutic outcome of drugs. In this study, paclitaxel (PTX) nanocrystals (PTX-NCs) and PEGylated PTX nanocrystals (PEG-PTX-NCs) were prepared using antisolvent precipitation augmented by probe sonication. The characteristics and antitumor efficacy of nanocrystals were investigated. The results indicated that the nanocrystals showed rod-like morphology, and the average particle size was 240 nm and 330 nm for PTX-NCs and PEG-PTX-NCs, respectively. The PEG molecules covered the surface of nanocrystals with an 11.54 nm fixed aqueous layer thickness (FALT), much higher than that of PTX-NCs (0.2 nm). PEG-PTX-NCs showed higher stability than PTX-NCs under both storage and physiological conditions. In breast cancer xenografted mice, PEG-PTX-NCs showed significantly better tumor inhibition compared to saline (p < 0.001) and PTX-NC groups (p < 0.05) after intravenous administration. In a model of lung tumor metastasis quantified by the luciferase activity, the PEG-PTX-NCs group showed higher anticancer efficacy not only than saline and PTX-NCs groups, but also than Taxol®, achieving an 82% reduction at the end of the experiment. These studies suggested the potential advantages of PEGylated PTX nanocrystals as alternative drug delivery systems for anticancer therapy.
Mallakpour, Shadpour; Abdolmaleki, Amir; Tabebordbar, Hashem
2018-03-01
This work explains the production, morphology, and features of novel nanocomposite (NC) established on poly(vinyl pyrrolidone) (PVP) as polymer background and modified alpha manganese dioxide (α-MnO 2 ) nanorod (NR) asan efficient filler. At first, one-dimensional α-MnO 2 nanorods (NRs) were produced by a hydrothermal technique and then they were amended with stearic acid (SA) by a solvothermal process. In following, the NCs were made by adding different volumes of α-MnO 2 -SA NR (1, 3 and 5wt%) in the PVP matrix through ultrasonic irradiation as a green, low-cost, fast, and useful technique. Structural and morphological descriptions confirm crystallinity of α-MnO 2 -SA NRs and showed that NRs have been separately dispersed in PVP matrix with rod-like morphology and diameter of about 40-60nm. The use of modifier and ultrasonic waves is accountable for good homogeneities of NRs. Thermogravimetric analysis revealed that thermal permanency of the obtained NCs has grown with increasing the α-MnO 2 -SA content. Also, the UV-vis absorption of NCs was enhanced with the incorporation of the modified α-MnO 2 NR in PVP matrix. The substantial perfections in NCs properties are associated to compatible intermolecular relations between the surface modifying groups of the α-MnO 2 -SA and PVP chain. Copyright © 2017 Elsevier B.V. All rights reserved.
Modelling the protocol stack in NCS with deterministic and stochastic petri net
NASA Astrophysics Data System (ADS)
Hui, Chen; Chunjie, Zhou; Weifeng, Zhu
2011-06-01
Protocol stack is the basis of the networked control systems (NCS). Full or partial reconfiguration of protocol stack offers both optimised communication service and system performance. Nowadays, field testing is unrealistic to determine the performance of reconfigurable protocol stack; and the Petri net formal description technique offers the best combination of intuitive representation, tool support and analytical capabilities. Traditionally, separation between the different layers of the OSI model has been a common practice. Nevertheless, such a layered modelling analysis framework of protocol stack leads to the lack of global optimisation for protocol reconfiguration. In this article, we proposed a general modelling analysis framework for NCS based on the cross-layer concept, which is to establish an efficiency system scheduling model through abstracting the time constraint, the task interrelation, the processor and the bus sub-models from upper and lower layers (application, data link and physical layer). Cross-layer design can help to overcome the inadequacy of global optimisation based on information sharing between protocol layers. To illustrate the framework, we take controller area network (CAN) as a case study. The simulation results of deterministic and stochastic Petri-net (DSPN) model can help us adjust the message scheduling scheme and obtain better system performance.
Gold Nanocluster-Mediated Cellular Death under Electromagnetic Radiation.
Cifuentes-Rius, Anna; Ivask, Angela; Das, Shreya; Penya-Auladell, Nuria; Fabregas, Laura; Fletcher, Nicholas L; Houston, Zachary H; Thurecht, Kristofer J; Voelcker, Nicolas H
2017-11-29
Gold nanoclusters (Au NCs) have become a promising nanomaterial for cancer therapy because of their biocompatibility and fluorescent properties. In this study, the effect of ultrasmall protein-stabilized 2 nm Au NCs on six types of mammalian cells (fibroblasts, B-lymphocytes, glioblastoma, neuroblastoma, and two types of prostate cancer cells) under electromagnetic radiation is investigated. Cellular association of Au NCs in vitro is concentration-dependent, and Au NCs have low intrinsic toxicity. However, when Au NC-incubated cells are exposed to a 1 GHz electromagnetic field (microwave radiation), cell viability significantly decreases, thus demonstrating that Au NCs exhibit specific microwave-dependent cytotoxicity, likely resulting from localized heating. Upon i.v. injection in mice, Au NCs are still present at 24 h post administration. Considering the specific microwave-dependent cytotoxicity and low intrinsic toxicity, our work suggests the potential of Au NCs as effective and safe nanomedicines for cancer therapy.
Macroscopic hematuria caused by congenital portosystemic shunt and concomitant nutcracker syndrome.
Lee, Sang Hyub; Lee, Dong-Gi
2015-06-01
Nutcracker syndrome (NCS) is an uncommon vascular abnormality that causes a variety of symptoms that range from asymptomatic microscopic hematuria to severe pelvic congestion. Congenital portosystemic shunt (CPSS) is an extremely rare anomaly that causes serious complications. Many cases of NCS and CPSS that have presented separately have been reported, but no cases of concomitant NCS and CPSS have been reported. We present a case of intermittent macroscopic hematuria in a patient with both NCS and CPSS. We diagnosed NCS on pressure gradient between the left renal vein (LRV) and the inferior vena cava. The presence of CPSS, which emerged from the LRV and connected to the extrahepatic portal vein, was confirmed on computed tomography. The interaction between NCS and CPSS resulted in mild intermittent macroscopic hematuria only, rather than the more common symptoms that occur when NCS or CPSS present separately. © 2015 Japan Pediatric Society.
Single cytidine units-templated syntheses of multi-colored water-soluble Au nanoclusters.
Jiang, Hui; Zhang, Yuanyuan; Wang, Xuemei
2014-09-07
Ultra-small metallic nanoparticles, or so-called "nanoclusters" (NCs), have attracted considerable interest due to their unique optical properties that are different from both larger nanoparticles and single atoms. To prepare high-quality NCs, the stabilizing agent plays an essential role. In this work, we have revealed and validated that cytidine and its nucleotides (cytidine 5'-monophosphate or cytidine 5'-triphosphate) can act as efficient stabilizers for syntheses of multicolored Au NCs. Interestingly, Au NCs with blue, green and yellow fluorescence emissions are simultaneously obtained using various pH environments or reaction times. The transmission electron microscopy verifies that the size of Au NCs ranges from 1.5 to 3 nm. The X-ray photoelectron spectroscopy confirms that only Au (0) species are present in NCs. Generally, the facile preparation of multicolored Au NCs that are stabilized by cytidine units provides access to promising candidates for multiple biolabeling applications.
Advanced light-trapping effect of thin-film solar cell with dual photonic crystals
NASA Astrophysics Data System (ADS)
Zhang, Anjun; Guo, Zhongyi; Tao, Yifei; Wang, Wei; Mao, Xiaoqin; Fan, Guanghua; Zhou, Keya; Qu, Shiliang
2015-05-01
A thin-film solar cell with dual photonic crystals has been proposed, which shows an advanced light-trapping effect and superior performance in ultimate conversion efficiency (UCE). The shapes of nanocones have been optimized and discussed in detail by self-definition. The optimized shape of nanocone arrays (NCs) is a parabolic shape with a nearly linearly graded refractive index (GRI) profile from the air to Si, and the corresponding UCE is 30.3% for the NCs with a period of 300 nm and a thickness of only 2 μm. The top NCs and bottom NCs of the thin film have been simulated respectively to investigate their optimized shapes, and their separate contributions to the light harvest have also been discussed fully. The height of the top NCs and bottom NCs will also influence the performances of the thin-film solar cell greatly, and the result indicates that the unconformal NCs have better light-trapping ability with an optimal UCE of 32.3% than the conformal NCs with an optimal UCE of 30.3%.
Size Dependence of Doping by a Vacancy Formation Reaction in Copper Sulfide Nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elimelech, Orian; Liu, Jing; Plonka, Anna M.
Doping of nanocrystals (NCs) is a key, yet underexplored, approach for tuning of the electronic properties of semiconductors. An important route for doping of NCs is by vacancy formation. The size and concentration dependence of doping was studied in copper(I) sulfide (Cu2S) NCs through a redox reaction with iodine molecules (I2), which formed vacancies accompanied by a localized surface plasmon response. X-ray spectroscopy and diffraction reveal transformation from Cu2S to Cu-depleted phases, along with CuI formation. Greater reaction efficiency was observed for larger NCs. This behavior is attributed to interplay of the vacancy formation energy, which decreases for smaller sizedmore » NCs, and the growth of CuI on the NC surface, which is favored on well-defined facets of larger NCs. This doping process allows tuning of the plasmonic properties of a semiconductor across a wide range of plasmonic frequencies by varying the size of NCs and the concentration of iodine. Controlled vacancy doping of NCs may be used to tune and tailor semiconductors for use in optoelectronic applications.« less
Tabak, Ying P.; Johannes, Richard S.; Sun, Xiaowu; Crosby, Cynthia T.
2016-01-01
The Centers for Medicare and Medicaid Services (CMS) Hospital Compare central line-associated bloodstream infection (CLABSI) data and private databases containing new-generation intravenous needleless connector (study NC) use at the hospital level were linked. The relative risk (RR) of CLABSI associated with the study NCs was estimated, adjusting for hospital characteristics. Among 3074 eligible hospitals in the 2013 CMS database, 758 (25%) hospitals used the study NCs. The study NC hospitals had a lower unadjusted CLABSI rate (1.03 vs 1.13 CLABSIs per 1000 central line days, P < .0001) compared with comparator hospitals. The adjusted RR for CLABSI was 0.94 (95% confidence interval: 0.86, 1.02; P = .11). PMID:27598072
NASA Astrophysics Data System (ADS)
Vora, Lalit; Tyagi, Monica; Patel, Ketan; Gupta, Sanjay; Vavia, Pradeep
2014-12-01
The amalgamation of chemotherapy and gene therapy is promising treatment option for cancer. In this study, novel biocompatible self-assembled nanocomplexes (NCs) between carboxylmethylated pullulan t335 (CMP) with polyallylamine (CMP-PAA NCs) were developed for plasmid DNA (pDNA) and pH-sensitive doxorubicin (DOX) delivery. DOX was conjugated to CMP (DOX-CMP) via hydrazone and confirmed by FTIR and 1H-NMR. In vitro release studies of pH-sensitive DOX-CMP conjugate showed 23 and 85 % release after 48 h at pH 7.4 (physiological pH) and pH 5 (intracellular/tumoral pH), respectively. The CMP-PAA NCs or DOX-CMP-PAA NCs self-assembled into a nanosized (<250 nm) spherical shape as confirmed by DLS and TEM. The hemolysis and cytotoxicity study indicated that the CMP-PAA NCs did not show cytotoxicity in comparison with plain polyallylamine. Gel retardation assay showed complete binding of pDNA with CMP-PAA NCs at 1:2 weight ratio. CMP-PAA NCs/pDNA showed significantly higher transfection in HEK293 cells compared to PAA/pDNA complexes. Confocal imaging demonstrated successful cellular uptake of DOX-CMP-PAA NCs in HEK293 cells. Thus, NCs hold great potential for targeted pDNA and pH-sensitive intratumoral drug delivery.
NASA Astrophysics Data System (ADS)
Lü, Xiaodan; Yang, Jing; Fu, Yuqin; Liu, Qianqian; Qi, Bin; Lü, Changli; Su, Zhongmin
2010-03-01
White light emitting semiconductor nanocrystals (NCs) have been successfully synthesized from 8-hydroxyquinoline-5-sulfonic acid (HQS) decorated manganese doped ZnS NCs through fine tuning the surface-coordination emission and dopant emission of the NC host. The HQS functionalized manganese doped ZnS NCs (QS-ZnS:Mn), with a cubic crystal structure, have the same diameter of about 4.0 nm as ZnS:Mn NCs without HQS. The intensity of the surface-coordination emission peak increased with increasing HQS content or augmenting excited wavelength. The emission of white light was achieved by carefully controlling the dosage of HQS in NCs and appropriately tuning the excited wavelength. The color coordinates (0.35, 0.34) for the efficient white light emitting NCs were very close to the ideal Commission Internationale de l'Eclairage (CIE) chromaticity coordinates for pure white light (0.33, 0.33). The photoluminescence (PL) decay study revealed that the white light emitting NCs exhibited maximum lifetime values at different emission peaks for different NC samples. The study results also indicated that the HQS molecules were attached to the surface of ZnS:Mn NCs in a single coordination fashion due to the steric hindrance effect of the special spherical surface of NCs, which made the QS-ZnS:Mn NCs possess stable and high fluorescent properties in different organic solvents as compared with the conventional small molecule complexes.
NASA Astrophysics Data System (ADS)
Misra, Sushil K.; Li, Lin; Mukherjee, Sudip; Ghosh, Goutam
2015-12-01
Iron oxide nanoparticles (IONPs) have been synthesized by chemical co-precipitation method and coated with three citrates, namely, tri-lithium citrate (TLC), tri-sodium citrate (TSC), or tri-potassium citrate (TKC). In these `core-shell' structures, the `core' is a cluster of average 3 IONPs which is enveloped by a `shell' of citrate molecules and counterions, and thus called `core-shell' nano-clusters (CS-NCs), of average size 20 to 22 nm. The counterions in the three CS-NCs differ in ionic radii (r_{{ion}}), in the order of Li+ < Na+ < K+. Our aim was to investigate the effect of counterions on magnetic interactions between CS-NCs in different powder samples at 300 K, using vibrating sample magnetometer and electron magnetic resonance (EMR) techniques. The hysteresis loops showed negligible coercivity field ( H c) in all samples. The saturation magnetization ( M S) was the highest for TLC-coated CS-NCs. The blocking temperature ( T B), obtained from zero-field-cooled measurements, was >300 K for TLC-coated CS-NCs and <300 K for TSC- and TKC-coated CS-NCs. The EMR linewidth (∆ B PP), measured at 300 K, was also the broadest for TLC-coated CS-NCs. At low temperatures, Δ B PP was found to increase more significantly for TSC- and TKC-coated CS-NCs than for TLC-coated CS-NCs. These results indicate a significant anisotropic field effect; arising due to thermal motion of counterions at 300 K, on the magnetic interactions in TLC-coated CS-NCs. To our knowledge, this is the first report on the effect of counterions on magnetic interactions between CS-NCs.
Sinha, S; Ghildiyal, R; Mehta, V S; Sen, E
2013-05-02
Gliomas are resistant to radiation therapy, as well as to TNFα induced killing. Radiation-induced TNFα triggers Nuclear factor κB (NFκB)-mediated radioresistance. As inhibition of NFκB activation sensitizes glioma cells to TNFα-induced apoptosis, we investigated whether TNFα modulates the responsiveness of glioma cells to ionizing radiation-mimetic Neocarzinostatin (NCS). TNFα enhanced the ability of NCS to induce glioma cell apoptosis. NCS-mediated death involved caspase-9 activation, reduction of mitochondrial copy number and lactate production. Death was concurrent with NFκB, Akt and Erk activation. Abrogation of Akt and NFκB activation further potentiated the death inducing ability of NCS in TNFα cotreated cells. NCS-induced p53 expression was accompanied by increase in TP53-induced glycolysis and apoptosis regulator (TIGAR) levels and ATM phosphorylation. siRNA-mediated knockdown of TIGAR abrogated NCS-induced apoptosis. While DN-IκB abrogated NCS-induced TIGAR both in the presence and absence of TNFα, TIGAR had no effect on NFκB activation. Transfection with TIGAR mutant (i) decreased apoptosis and γH2AX foci formation (ii) decreased p53 (iii) elevated ROS and (iv) increased Akt/Erk activation in cells cotreated with NCS and TNFα. Heightened TIGAR expression was observed in GBM tumors. While NCS induced ATM phosphorylation in a NFκB independent manner, ATM inhibition abrogated TIGAR and NFκB activation. Metabolic gene profiling indicated that TNFα affects NCS-mediated regulation of several genes associated with glycolysis. The existence of ATM-NFκB axis that regulate metabolic modeler TIGAR to overcome prosurvival response in NCS and TNFα cotreated cells, suggests mechanisms through which inflammation could affect resistance and adaptation to radiomimetics despite concurrent induction of death.
Sinha, S; Ghildiyal, R; Mehta, V S; Sen, E
2013-01-01
Gliomas are resistant to radiation therapy, as well as to TNFα induced killing. Radiation-induced TNFα triggers Nuclear factor κB (NFκB)-mediated radioresistance. As inhibition of NFκB activation sensitizes glioma cells to TNFα-induced apoptosis, we investigated whether TNFα modulates the responsiveness of glioma cells to ionizing radiation-mimetic Neocarzinostatin (NCS). TNFα enhanced the ability of NCS to induce glioma cell apoptosis. NCS-mediated death involved caspase-9 activation, reduction of mitochondrial copy number and lactate production. Death was concurrent with NFκB, Akt and Erk activation. Abrogation of Akt and NFκB activation further potentiated the death inducing ability of NCS in TNFα cotreated cells. NCS-induced p53 expression was accompanied by increase in TP53-induced glycolysis and apoptosis regulator (TIGAR) levels and ATM phosphorylation. siRNA-mediated knockdown of TIGAR abrogated NCS-induced apoptosis. While DN-IκB abrogated NCS-induced TIGAR both in the presence and absence of TNFα, TIGAR had no effect on NFκB activation. Transfection with TIGAR mutant (i) decreased apoptosis and γH2AX foci formation (ii) decreased p53 (iii) elevated ROS and (iv) increased Akt/Erk activation in cells cotreated with NCS and TNFα. Heightened TIGAR expression was observed in GBM tumors. While NCS induced ATM phosphorylation in a NFκB independent manner, ATM inhibition abrogated TIGAR and NFκB activation. Metabolic gene profiling indicated that TNFα affects NCS-mediated regulation of several genes associated with glycolysis. The existence of ATM-NFκB axis that regulate metabolic modeler TIGAR to overcome prosurvival response in NCS and TNFα cotreated cells, suggests mechanisms through which inflammation could affect resistance and adaptation to radiomimetics despite concurrent induction of death. PMID:23640457
G-quadruplex enhanced fluorescence of DNA-silver nanoclusters and their application in bioimaging
NASA Astrophysics Data System (ADS)
Zhu, Jinbo; Zhang, Libing; Teng, Ye; Lou, Baohua; Jia, Xiaofang; Gu, Xiaoxiao; Wang, Erkang
2015-07-01
Guanine proximity based fluorescence enhanced DNA-templated silver nanoclusters (AgNCs) have been reported and applied for bioanalysis. Herein, we studied the G-quadruplex enhanced fluorescence of DNA-AgNCs and gained several significant conclusions, which will be helpful for the design of future probes. Our results demonstrate that a G-quadruplex can also effectively stimulate the fluorescence potential of AgNCs. The major contribution of the G-quadruplex is to provide guanine bases, and its special structure has no measurable impact. The DNA-templated AgNCs were further analysed by native polyacrylamide gel electrophoresis and the guanine proximity enhancement mechanism could be visually verified by this method. Moreover, the fluorescence emission of C3A (CCCA)4 stabilized AgNCs was found to be easily and effectively enhanced by G-quadruplexes, such as T30695, AS1411 and TBA, especially AS1411. Benefiting from the high brightness of AS1411 enhanced DNA-AgNCs and the specific binding affinity of AS1411 for nucleolin, the AS1411 enhanced AgNCs can stain cancer cells for bioimaging.Guanine proximity based fluorescence enhanced DNA-templated silver nanoclusters (AgNCs) have been reported and applied for bioanalysis. Herein, we studied the G-quadruplex enhanced fluorescence of DNA-AgNCs and gained several significant conclusions, which will be helpful for the design of future probes. Our results demonstrate that a G-quadruplex can also effectively stimulate the fluorescence potential of AgNCs. The major contribution of the G-quadruplex is to provide guanine bases, and its special structure has no measurable impact. The DNA-templated AgNCs were further analysed by native polyacrylamide gel electrophoresis and the guanine proximity enhancement mechanism could be visually verified by this method. Moreover, the fluorescence emission of C3A (CCCA)4 stabilized AgNCs was found to be easily and effectively enhanced by G-quadruplexes, such as T30695, AS1411 and TBA, especially AS1411. Benefiting from the high brightness of AS1411 enhanced DNA-AgNCs and the specific binding affinity of AS1411 for nucleolin, the AS1411 enhanced AgNCs can stain cancer cells for bioimaging. Electronic supplementary information (ESI) available: Experiment details, Tables S1-3 and Fig. S1-4. See DOI: 10.1039/c5nr03092g
NASA Astrophysics Data System (ADS)
Dalui, Amit; Pradhan, Bapi; Thupakula, Umamahesh; Khan, Ali Hossain; Kumar, Gundam Sandeep; Ghosh, Tanmay; Satpati, Biswarup; Acharya, Somobrata
2015-05-01
Artificial enzyme mimetics have attracted immense interest recently because natural enzymes undergo easy denaturation under environmental conditions restricting practical usefulness. We report for the first time chalcopyrite CuZnFeS (CZIS) alloyed nanocrystals (NCs) as novel biomimetic catalysts with efficient intrinsic peroxidase-like activity. Novel peroxidase activities of CZIS NCs have been evaluated by catalytic oxidation of the peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). CZIS NCs demonstrate the synergistic effect of elemental composition and photoactivity towards peroxidase-like activity. The quaternary CZIS NCs show enhanced intrinsic peroxidase-like activity compared to the binary NCs with the same constituent elements. Intrinsic peroxidase-like activity has been correlated with the energy band position of CZIS NCs extracted using scanning tunneling spectroscopy and ultraviolet photoelectron spectroscopy. Kinetic analyses indicate Michaelis-Menten enzyme kinetic model catalytic behavior describing the rate of the enzymatic reaction by correlating the reaction rate with substrate concentration. Typical color reactions arising from the catalytic oxidation of TMB over CZIS NCs with H2O2 have been utilized to establish a simple and sensitive colorimetric assay for detection of H2O2 and glucose. CZIS NCs are recyclable catalysts showing high efficiency in multiple uses. Our study may open up the possibility of designing new photoactive multi-component alloyed NCs as enzyme mimetics in biotechnology applications.Artificial enzyme mimetics have attracted immense interest recently because natural enzymes undergo easy denaturation under environmental conditions restricting practical usefulness. We report for the first time chalcopyrite CuZnFeS (CZIS) alloyed nanocrystals (NCs) as novel biomimetic catalysts with efficient intrinsic peroxidase-like activity. Novel peroxidase activities of CZIS NCs have been evaluated by catalytic oxidation of the peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). CZIS NCs demonstrate the synergistic effect of elemental composition and photoactivity towards peroxidase-like activity. The quaternary CZIS NCs show enhanced intrinsic peroxidase-like activity compared to the binary NCs with the same constituent elements. Intrinsic peroxidase-like activity has been correlated with the energy band position of CZIS NCs extracted using scanning tunneling spectroscopy and ultraviolet photoelectron spectroscopy. Kinetic analyses indicate Michaelis-Menten enzyme kinetic model catalytic behavior describing the rate of the enzymatic reaction by correlating the reaction rate with substrate concentration. Typical color reactions arising from the catalytic oxidation of TMB over CZIS NCs with H2O2 have been utilized to establish a simple and sensitive colorimetric assay for detection of H2O2 and glucose. CZIS NCs are recyclable catalysts showing high efficiency in multiple uses. Our study may open up the possibility of designing new photoactive multi-component alloyed NCs as enzyme mimetics in biotechnology applications. Electronic supplementary information (ESI) available: Fig. S1-S13. See DOI: 10.1039/c5nr01728a
Quasi-aromatic Möbius Metal Chelates.
Mahmoudi, Ghodrat; Afkhami, Farhad A; Castiñeiras, Alfonso; García-Santos, Isabel; Gurbanov, Atash; Zubkov, Fedor I; Mitoraj, Mariusz P; Kukułka, Mercedes; Sagan, Filip; Szczepanik, Dariusz W; Konyaeva, Irina A; Safin, Damir A
2018-04-16
We report the design as well as structural and spectroscopic characterizations of two new coordination compounds obtained from Cd(NO 3 ) 2 ·4H 2 O and polydentate ligands, benzilbis(pyridin-2-yl)methylidenehydrazone (L I ) and benzilbis(acetylpyridin-2-yl)methylidenehydrazone (L II ), in a mixture with two equivalents of NH 4 NCS in MeOH, namely [Cd(SCN)(NCS)(L I )(MeOH)] (1) and [Cd(NCS) 2 (L II )(MeOH)] (2). Both L I and L II are bound via two pyridyl-imine units yielding a tetradentate coordination mode giving rise to the 12 π electron chelate ring. It has been determined for the first time (qualitatively and quantitatively), using the EDDB electron population-based method, the HOMA index, and the ETS-NOCV charge and energy decomposition scheme, that the chelate ring containing Cd II can be classified as a quasi-aromatic Möbius motif. Notably, using the methyl-containing ligand L II controls the exclusive presence of the NCS - connected with the Cd II atom (structure 2), while applying L I allows us to simultaneously coordinate NCS - and SCN - ligands (structure 1). Both systems are stabilized mostly by hydrogen bonding, C-H···π interactions, aromatic π···π stacking, and dihydrogen C-H···H-C bonds. The optical properties have been investigated by diffused reflectance spectroscopy as well as molecular and periodic DFT/TD-DFT calculations. The DFT-based ETS-NOCV analysis as well as periodic calculations led us to conclude that the monomers which constitute the obtained chelates are extremely strongly bonded to each other, and the calculated interaction energies are found to be in the regime of strong covalent connections. Intramolecular van der Waals dispersion forces, due to the large size of L I and L II , appeared to significantly stabilize these systems as well as amplify the aromaticity phenomenon.
Characterization of Silicon Nanocrystal Surfaces by Multidimensional Solid-State NMR Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanrahan, Michael P.; Fought, Ellie L.; Windus, Theresa L.
The chemical and photophysical properties of silicon nanocrystals (Si NCs) are strongly dependent on the chemical composition and structure of their surfaces. Here we use fast magic angle spinning (MAS) and proton detection to enable the rapid acquisition of dipolar and scalar 2D 1H– 29Si heteronuclear correlation (HETCOR) solid-state NMR spectra and reveal a molecular picture of hydride-terminated and alkyl-functionalized surfaces of Si NCs produced in a nonthermal plasma. 2D 1H– 29Si HETCOR and dipolar 2D 1H– 1H multiple-quantum correlation spectra illustrate that resonances from surface mono-, di-, and trihydride groups cannot be resolved, contrary to previous literature assignments. Insteadmore » the 2D NMR spectra illustrate that there is large distribution of 1H and 29Si chemical shifts for the surface hydride species in both the as-synthesized and functionalized Si NCs. However, proton-detected 1H– 29Si refocused INEPT experiments can be used to unambiguously differentiate NMR signals from the different surface hydrides. Varying the 29Si evolution time in refocused INEPT experiments and fitting the oscillation of the NMR signals allows for the relative populations of the different surface hydrides to be estimated. This analysis confirms that monohydride species are the predominant surface species on the as-synthesized Si NCs. A reduction in the populations of the di- and trihydrides is observed upon functionalization with alkyl groups, consistent with our previous hypothesis that the trihydride, or silyl (*SiH 3), group is primarily responsible for initiating surface functionalization reactions. Density functional theory (DFT) calculations were used to obtain quantum chemical structural models of the Si NC surface and reproduce the observed 1H and 29Si chemical shifts. Furthermore, the approaches outlined here will be useful to obtain a more detailed picture of surface structures for Si NCs and other hydride-passivated nanomaterials.« less
Characterization of Silicon Nanocrystal Surfaces by Multidimensional Solid-State NMR Spectroscopy
Hanrahan, Michael P.; Fought, Ellie L.; Windus, Theresa L.; ...
2017-11-22
The chemical and photophysical properties of silicon nanocrystals (Si NCs) are strongly dependent on the chemical composition and structure of their surfaces. Here we use fast magic angle spinning (MAS) and proton detection to enable the rapid acquisition of dipolar and scalar 2D 1H– 29Si heteronuclear correlation (HETCOR) solid-state NMR spectra and reveal a molecular picture of hydride-terminated and alkyl-functionalized surfaces of Si NCs produced in a nonthermal plasma. 2D 1H– 29Si HETCOR and dipolar 2D 1H– 1H multiple-quantum correlation spectra illustrate that resonances from surface mono-, di-, and trihydride groups cannot be resolved, contrary to previous literature assignments. Insteadmore » the 2D NMR spectra illustrate that there is large distribution of 1H and 29Si chemical shifts for the surface hydride species in both the as-synthesized and functionalized Si NCs. However, proton-detected 1H– 29Si refocused INEPT experiments can be used to unambiguously differentiate NMR signals from the different surface hydrides. Varying the 29Si evolution time in refocused INEPT experiments and fitting the oscillation of the NMR signals allows for the relative populations of the different surface hydrides to be estimated. This analysis confirms that monohydride species are the predominant surface species on the as-synthesized Si NCs. A reduction in the populations of the di- and trihydrides is observed upon functionalization with alkyl groups, consistent with our previous hypothesis that the trihydride, or silyl (*SiH 3), group is primarily responsible for initiating surface functionalization reactions. Density functional theory (DFT) calculations were used to obtain quantum chemical structural models of the Si NC surface and reproduce the observed 1H and 29Si chemical shifts. Furthermore, the approaches outlined here will be useful to obtain a more detailed picture of surface structures for Si NCs and other hydride-passivated nanomaterials.« less
NASA Astrophysics Data System (ADS)
Kshirasagar, Krushna J.; Markad, Uddhav S.; Saha, Abhijit; Sharma, Kiran Kumar K.; Sharma, Geeta K.
2017-02-01
Palladium nanoparticles doped polyaniline (Pd-PANI) nanocomposite (NCs) is synthesized in surfactant based liquid crystalline mesophase by chemical oxidation followed by radiolysis. The confinement of the liquid crystalline mesophase facilitates polymerization of aniline monomers and their 1D growth into polyaniline (PANI) nanowires by using ammonium persulfate. The PANI nanowires have an average diameter of 30-40 nm. The in situ radiolytic reduction of palladium ions ensures uniform size distribution of the palladium (Pd) nanoparticles on the surface of the PANI nanowires. The synthesized Pd-PANI nanocomposites show wire like structures of PANI (diameter ~30-40 nm) on which Pd nanoparticles of the size 10 nm are decorated. The identical average diameter of the PANI nanowires before and post gamma irradiation suggest high stability of the PANI nanowires in liquid crystalline mesophase. Surface characterization of the NCs were carried out using BET and XPS. The catalytic activity of Pd-PANI NCs are investigated in the reduction of methylene blue (MB) and 4-nitro phenol (4-NP) by sodium borohydride (NaBH4). The kinetics of the Pd-PANI NCs catalysed reactions are analysed using the Langmuir-Hinshelwood model. The apparent rate constant (k app) for the MB and 4-NP reduction reactions is 29 × 10-3 s-1 and 20 × 10-3 s-1 respectively with an actual Pd catalyst loading of 2.665 × 10-4 ppm. Further, the recyclability of the Pd-PANI NCs catalyst in both the reduction reactions shows the stability of the catalyst up to four reaction cycles tested in this investigation and the multifunctional nature of the catalyst. The study provides a new approach for the directional synthesis of conducting polymer-metal nanocomposites and their possible application as a nanocatalyst in environmental remediation.
NASA Astrophysics Data System (ADS)
Yadav, Reena; Awasthi, Mahendra Kumar; Singh, Amita; Kociok-Köhn, Gabriele; Trivedi, Manoj; Prasad, Rajendra; Shahid, Mohammad; Kumar, Abhinav
2017-10-01
Three new chlorodiorganotin(IV) methylferrocenyl dithiocarbamate complexes viz. [(FcCH2)(CH2CH2OH)NCS2SnMe2(Cl)] (1), [(FcCH2)(CH2CH2OH)NCS2SnnBu2(Cl)] (2) and [(FcCH2)(CH2CH2OH)NCS2SnPh2(Cl)] (3) have been synthesized and characterized by elemental analysis, IR, UV-Vis, 1H, 13C and 119Sn NMR spectroscopy and X-ray crystallography. The crystal structure of 1 indicates that the coordination geometries around the tin(IV) center is intermediate between ideal trigonal-bipyramidal and square pyramidal coordination polyhedra bonded through two sulfur atoms of the dithiocarbamate ligand in an isobidentate mode, two CH3 groups and one chlorine atom. Since, in 2 and 3 only alkyl and aryl fragments have been changed we infer that both 2 and 3 would also have the same behaviors in the solution state as observed in 1. Ionic interactions abilities of 1-3 are examined in acetonitrile through UV-vis absorption spectroscopy which offers reasonably good selectivity and sensitivity towards the detection of the acetate ion. Compounds 1-3 exhibit a bathochromic shift with the acetate ion with a moderate association constant.
Kim, E J; Kim, M J; Im, N R; Park, S N
2015-08-01
A protection of the skin from harmful UV rays is important in preventing the skin damage and skin aging when exposed to sunlight. Titanium dioxide composites are used as a UV filter in sunscreen products combined with organic compounds such as butyl methoxydibenzoyl methane (avobenzone) and octyl methoxycinnamate (OMC) to improve the function of the sunscreen. In this study, the photolysis of avobenzone and OMC caused by the photocatalytic TiO2 nano composites (NCs) is investigated. Three different types of oil/water (O/W) sunscreen formulations containing avobenzone and OMC were prepared. Each formulation contained one of three different types of surface modified TiO2 NCs, which were WP-S (small sized hydrophilic TiO2NCs, ~10nm), OP-S (small sized hydrophobic TiO2NCs, ~15nm), and OP-L (large sized hydrophobic TiO2NCs, ~200nm). The physicochemical properties of the NCs were analyzed using biophysical tools. Addition of a different size of TiO2NCs into O/W sunscreen formulations significantly increased the photolysis of OMC. Effect of quercetin on degradation of avobenzone and OMC by the NCs was also studied for all three formulations. Although the OP-S NCs showed the lowest photocatalytic ability and the highest UV blocking capability, the NCs promoted the photolysis of OMC to the greatest extent. These results can be utilized to design more effective sunscreens, which could potentially ensure optimal photo-protection. Copyright © 2015 Elsevier B.V. All rights reserved.
Influences of CdSe NCs on the photovoltaic parameters of BHJ organic solar cells
NASA Astrophysics Data System (ADS)
Ongul, Fatih; Yuksel, Sureyya Aydin; Allahverdi, Cagdas; Bozar, Sinem; Kazici, Mehmet; Gunes, Serap
2018-04-01
In this study, the high quality CdSe nanocrystals (NCs) capped with stearic acid were synthesized in a solvent and then purified four times by using the precipitation and redissolution process. The average size of the synthesized CdSe NCs was determined 3.0 nm via transmission electron microscopy (TEM) measurement and their corresponding optical band edge energy was also calculated as 2.1 eV using ultraviolet-visible (UV-Vis) absorption spectroscopy. The bulk heterojunction (BHJ) hybrid solar cells based on a ternary system including P3HT, PCBM and CdSe NCs at different weight concentrations (0 wt%, 0.1 wt%, 0.5 wt%, 1 wt% and 2 wt%) were fabricated by spin-casting process. The effect of the concentration of CdSe NCs on the photovoltaic parameters of these BHJ organic solar cells was investigated. The surface morphology of the photoactive layer modified by the incorporation of CdSe NCs into P3HT:PCBM matrix was observed with scanning electron microscopy (SEM). It was shown that when the concentration of CdSe NCs increases above 0.1 wt% in this ternary system, the photovoltaic performance of the devices significantly decreases. The power conversion efficiency of the organic photovoltaic (OPV) device was enhanced 20% by incorporating CdSe NCs with 0.1 wt% with respect to those without CdSe NCs.
Wang, Chan; Yao, Yagang; Song, Qijun
2016-04-01
The copper nanoclusters (CuNCs) offer excellent potential as functional biological probes due to their unique photoluminescence (PL) properties. Herein, CuNCs capped with hyperbranched polyethylenimine (PEI) were prepared by the interfacial etching approach. The resultant PEI-CuNCs exhibited good dispersion and strong fluorescence with high quantum yields (QYs, up to 7.5%), which would be endowed for bioimaging system. By changing the reaction temperatures from 25 to 150 °C, the size of PEI-CuNCs changed from 1.8 to 3.5 nm, and thus tunable PL were achieved, which was confirmed by transmission electron microscopy (TEM) imagings and PL spectra. Besides, PEI-CuNCs had smart absorption characteristics that the color changes from colorless to blue with changing the pH value from 2.0 to 13.2, and thus they could be used as color indicator for pH detection. In addition, the PEI-CuNCs exhibited good biocompatibility and low cytotoxicity to 293T cells through MTT assay. Owing to the positively charged of PEI-CuNCs surface, they had the ability to capture DNA, and the PEI-CuNCs/DNA complexes could get access to cells for efficient gene expression. Armed with these attractive properties, the synthesized PEI-CuNCs are quite promising in biological applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Influences of CdSe NCs on the photovoltaic parameters of BHJ organic solar cells.
Ongul, Fatih; Yuksel, Sureyya Aydin; Allahverdi, Cagdas; Bozar, Sinem; Kazici, Mehmet; Gunes, Serap
2018-04-05
In this study, the high quality CdSe nanocrystals (NCs) capped with stearic acid were synthesized in a solvent and then purified four times by using the precipitation and redissolution process. The average size of the synthesized CdSe NCs was determined ~3.0nm via transmission electron microscopy (TEM) measurement and their corresponding optical band edge energy was also calculated as ~2.1eV using ultraviolet-visible (UV-Vis) absorption spectroscopy. The bulk heterojunction (BHJ) hybrid solar cells based on a ternary system including P3HT, PCBM and CdSe NCs at different weight concentrations (0wt%, 0.1wt%, 0.5wt%, 1wt% and 2wt%) were fabricated by spin-casting process. The effect of the concentration of CdSe NCs on the photovoltaic parameters of these BHJ organic solar cells was investigated. The surface morphology of the photoactive layer modified by the incorporation of CdSe NCs into P3HT:PCBM matrix was observed with scanning electron microscopy (SEM). It was shown that when the concentration of CdSe NCs increases above 0.1wt% in this ternary system, the photovoltaic performance of the devices significantly decreases. The power conversion efficiency of the organic photovoltaic (OPV) device was enhanced ~20% by incorporating CdSe NCs with 0.1wt% with respect to those without CdSe NCs. Copyright © 2017 Elsevier B.V. All rights reserved.
Risk factors associated with nasopharyngeal cicatrix syndrome in horses.
Norman, Tracy E; Chaffin, M Keith; Bissett, Wesley T; Thompson, James A
2013-05-01
To determine risk factors associated with the development of nasopharyngeal cicatrix syndrome (NCS) in horses. Retrospective case-control study. 242 horses referred for endoscopic evaluation of the upper portion of the respiratory tract (121 horses with NCS and 121 control horses). Medical records of horses that had an endoscopic evaluation of the upper airway performed between January 2003 and December 2008 were reviewed. Signalment, housing management, and season of evaluation were recorded and reviewed for each horse. The associations between clinical signs and endoscopic findings were evaluated by the use of a prospective logistic model that included a Bayesian method for inference. Results-Breed and sex had no significant effect on the risk of having NCS. The risk that a horse had NCS increased significantly with age. Exclusive housing in a stall was protective against the development of NCS. In addition, the amount of pasture turnout had a dose-related effect, with exclusive pasture turnout positively correlated with increased risk of developing NCS, compared with a mixture of pasture turnout and stall confinement. Horses were significantly more likely to be evaluated because of clinical signs of the syndrome during the warm months of the year. The risk factors for NCS identified in this study may support chronic environmental exposure to an irritant or infectious agent as the cause of NCS. Information gained from this study should be useful for investigating the cause of NCS.
Han, Lu; Li, Ying; Fan, Aiping
2018-06-01
Peroxidase is a commonly used catalyst in luminol-H 2 O 2 chemiluminescence (CL) reactions. Natural peroxidase has a sophisticated separation process, short shelf life and unstable activity, therefore it is important to develop peroxidases that have both high catalytic activity and good stability as alternatives to the natural enzyme. Gold nanoclusters (Au NCs) are an alternative peroxidase with catalytic activity in the luminol-H 2 O 2 CL reaction. In the present study, ethanediamine was modified on the surface of Au NCs forming cationic Au NCs. The zeta potential of the cationic Au NCs maintained its positive charge when the pH of the solution was between 4 and 9. The cationic Au NCs showed higher catalytic activity in the luminol-H 2 O 2 CL reaction than did unmodified Au NCs. A mechanism study showed that the better performance of cationic Au NCs may be attributed to the generation of 1 O 2 on the surface of cationic Au NCs and a positive surface charge, for better affinity to luminol. Cationic Au NC, acting as a peroxidase mimic, has much better stability than horseradish peroxidase over a wide range of temperatures. We believe that cationic Au NCs may be useful as an artificial peroxidase for a wide range of potential applications in CL and bioanalysis. Copyright © 2018 John Wiley & Sons, Ltd.
Mansilla, Alicia; Chaves-Sanjuan, Antonio; Campillo, Nuria E; Semelidou, Ourania; Martínez-González, Loreto; Infantes, Lourdes; González-Rubio, Juana María; Gil, Carmen; Conde, Santiago; Skoulakis, Efthimios M C; Ferrús, Alberto; Martínez, Ana; Sánchez-Barrena, María José
2017-02-07
The protein complex formed by the Ca 2+ sensor neuronal calcium sensor 1 (NCS-1) and the guanine exchange factor protein Ric8a coregulates synapse number and probability of neurotransmitter release, emerging as a potential therapeutic target for diseases affecting synapses, such as fragile X syndrome (FXS), the most common heritable autism disorder. Using crystallographic data and the virtual screening of a chemical library, we identified a set of heterocyclic small molecules as potential inhibitors of the NCS-1/Ric8a interaction. The aminophenothiazine FD44 interferes with NCS-1/Ric8a binding, and it restores normal synapse number and associative learning in a Drosophila FXS model. The synaptic effects elicited by FD44 feeding are consistent with the genetic manipulation of NCS-1. The crystal structure of NCS-1 bound to FD44 and the structure-function studies performed with structurally close analogs explain the FD44 specificity and the mechanism of inhibition, in which the small molecule stabilizes a mobile C-terminal helix inside a hydrophobic crevice of NCS-1 to impede Ric8a interaction. Our study shows the drugability of the NCS-1/Ric8a interface and uncovers a suitable region in NCS-1 for development of additional drugs of potential use on FXS and related synaptic disorders.
Zhang, Changbo; Yan, Cong; Xue, Zhenjie; Yu, Wei; Xie, Yinde; Wang, Tie
2016-10-01
Copper sulfides (Cu 2-x S), are a novel kind of photothermal material exhibiting significant photothermal conversion efficiency, making them very attractive in various energy conversion related devices. Preparing high quality uniform Cu 2-x S nanocrystals (NCs) is a top priority for further energy-and sustainability relevant nanodevices. Here, a shape-controlled high quality Cu 7 S 4 NCs synthesis strategy is reported using sulfur in 1-octadecene as precursor by varying the heating temperature, as well as its forming mechanism. The performance of the Cu 7 S 4 NCs is further explored for light-driven water evaporation without the need of heating the bulk liquid to the boiling point, and the results suggest that as-synthesized highly monodisperse NCs perform higher evaporation rate than polydisperse NCs under the identical morphology. Furthermore, disk-like NCs exhibit higher water evaporation rate than spherical NCs. The water evaporation rate can be further enhanced by assembling the organic phase Cu 7 S 4 NCs into a dense film on the aqueous solution surface. The maximum photothermal conversion efficiency is as high as 77.1%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nano-bio assemblies for artificial light harvesting systems
NASA Astrophysics Data System (ADS)
Bain, Dipankar; Maity, Subarna; Patra, Amitava
2018-02-01
Ultrasmall fluorescent gold nanoclusters (Au NCs) have drawn considerable research interest owing to their molecular like properties such as d-sp and sp-sp transitions, and intense fluorescence. Fluorescent Au NCs have especial attraction in biological system owing to their biocompatibility and high photostability. Recently, several strategies have been adapted to design an artificial light-harvesting system using Au NCs for potential applications. Here, we have designed Au nanoclusters based dsDNA (double stranded deoxyribonucleic acid) nano assemblies where the Au nanocluster is covalently attached with Alexa Fluor 488 (A488) dye tagged dsDNA. Investigation reveals that the incorporation of Ag+ into dsDNA enhances the rate of energy transfer from A488 to Au NCs. In addition cadmium telluride quantum dot (CdTe QDs) based Au NCs hybrid material shows the significant enhancement of energy transfer 35% to 83% with changing the capping ligand of Au NCs from glutathione (GSH) to bovine serum albumin (BSA) protein. Another hybrid system is developed using carbon dots and dye encapsulated BSA-protein capped Au NCs for efficient light harvesting system with 83% energy transfer efficiency. Thus, Au NCs base nano bio assemblies may open up new possibilities for the construction of artificial light harvesting system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Bangquan; Wang, Hailong; Xing, Guozhong
We report on the structural evolution and atomic inter-diffusion characteristics of the bimetallic Ni-Au nanocrystals (NCs) by molecular dynamics simulations studies. Our results reveal that the thermal stability dynamics of Ni-Au NCs strongly depends on the atomic configurations. By engineering the structural construction with Ni:Au = 1:1 atomic composition, compared with core-shell Au@Ni and alloy NCs, the melting point of core-shell Ni@Au NCs is significantly enhanced up to 1215 K. Unexpectedly, with atomic ratio of Au:Ni= 1:9, the melting process initiates from the atoms in the shell of Ni@Au and alloy NCs, while starts from the core of Au@Ni NCs.more » The corresponding features and evolution process of structural motifs, mixing and segregation are illustrated via a series of dynamic simulations videos. Moreover, our results revealed that the face centered cubic phase Au{sub 0.75}Ni{sub 0.25} favorably stabilizes in NCs form but does not exist in the bulk counterpart, which elucidates the anomalies of previously reported experimental results on such bimetallic NCs.« less
Polylactic Acid—Lemongrass Essential Oil Nanocapsules with Antimicrobial Properties
Liakos, Ioannis L.; Grumezescu, Alexandru Mihai; Holban, Alina Maria; Florin, Iordache; D’Autilia, Francesca; Carzino, Riccardo; Bianchini, Paolo; Athanassiou, Athanassia
2016-01-01
Polylactic acid was combined with lemongrass essential oil (EO) to produce functional nanocapsules (NCs). The obtained polylactic acid nanoparticles showed antimicrobial activity both with and without the presence of lemongrass oil; however, the presence of EO improved the activity of the NCs. The presence of lemongrass assisted the formation of well-separated NCs and also provided enhanced antimicrobial properties, since lemongrass is known for its antimicrobial character. Fluorescence microscopy was used to optically observe the nanoparticles and NCs and revealed the attachment of lemongrass oil with the polylactic acid NCs. Dynamic light scattering was used to determine their size. UV absorption was used to determine the exact amount of lemongrass oil found in the polylactic acid—lemongrass oil NCs, which was important for understanding the minimum inhibitory concentration for the antimicrobial experiments. A series of clinically important microbial species were used in the study and the obtained NCs proved to have very good antimicrobial properties against all tested strains. Such NCs can be used for the design of ecological strategies, based on natural alternatives, which may be efficient against severe infections, including those that involve resistant pathogens and biofilms or those with difficult to reach localization. PMID:27399724
Polylactic Acid-Lemongrass Essential Oil Nanocapsules with Antimicrobial Properties.
Liakos, Ioannis L; Grumezescu, Alexandru Mihai; Holban, Alina Maria; Florin, Iordache; D'Autilia, Francesca; Carzino, Riccardo; Bianchini, Paolo; Athanassiou, Athanassia
2016-07-07
Polylactic acid was combined with lemongrass essential oil (EO) to produce functional nanocapsules (NCs). The obtained polylactic acid nanoparticles showed antimicrobial activity both with and without the presence of lemongrass oil; however, the presence of EO improved the activity of the NCs. The presence of lemongrass assisted the formation of well-separated NCs and also provided enhanced antimicrobial properties, since lemongrass is known for its antimicrobial character. Fluorescence microscopy was used to optically observe the nanoparticles and NCs and revealed the attachment of lemongrass oil with the polylactic acid NCs. Dynamic light scattering was used to determine their size. UV absorption was used to determine the exact amount of lemongrass oil found in the polylactic acid-lemongrass oil NCs, which was important for understanding the minimum inhibitory concentration for the antimicrobial experiments. A series of clinically important microbial species were used in the study and the obtained NCs proved to have very good antimicrobial properties against all tested strains. Such NCs can be used for the design of ecological strategies, based on natural alternatives, which may be efficient against severe infections, including those that involve resistant pathogens and biofilms or those with difficult to reach localization.
Dong, Angang; Ye, Xingchen; Chen, Jun; Kang, Yijin; Gordon, Thomas; Kikkawa, James M; Murray, Christopher B
2011-02-02
The ability to engineer surface properties of nanocrystals (NCs) is important for various applications, as many of the physical and chemical properties of nanoscale materials are strongly affected by the surface chemistry. Here, we report a facile ligand-exchange approach, which enables sequential surface functionalization and phase transfer of colloidal NCs while preserving the NC size and shape. Nitrosonium tetrafluoroborate (NOBF4) is used to replace the original organic ligands attached to the NC surface, stabilizing the NCs in various polar, hydrophilic media such as N,N-dimethylformamide for years, with no observed aggregation or precipitation. This approach is applicable to various NCs (metal oxides, metals, semiconductors, and dielectrics) of different sizes and shapes. The hydrophilic NCs obtained can subsequently be further functionalized using a variety of capping molecules, imparting different surface functionalization to NCs depending on the molecules employed. Our work provides a versatile ligand-exchange strategy for NC surface functionalization and represents an important step toward controllably engineering the surface properties of NCs.
Leng, Khoo Miew; Vijayarathna, Soundararajan; Jothy, Subramanion L; Sasidharan, Sreenivasan; Kanwar, Jagat R
2018-01-01
Aim: To study the in vitro and in vivo anticandidal activity of nanocapsulated bovine lactoferrin. Materials & methods: In vitro and in vivo antimicrobial activities were conducted to study the anticandidal activities of nanocapsules (NCs). Results: The NCs showed good anticandidal activities. The disruption of cell wall and cell membrane was noted via microscopy studies. The NCs changed the normal growth profile of Candida albicans. NCs reduced the colony forming unit in kidney and blood samples. Histopathological examination showed better cell structure and coordination compared with untreated mice kidney. NCs also enhanced the natural killing properties of C. albicans by epithelial cells. Conclusion: NCs have effective anticandidal properties and have the potential as a therapeutic agent against candidiasis. PMID:29379633
Pan, Jun; Shang, Yuequn; Yin, Jun; De Bastiani, Michele; Peng, Wei; Dursun, Ibrahim; Sinatra, Lutfan; El-Zohry, Ahmed M; Hedhili, Mohamed N; Emwas, Abdul-Hamid; Mohammed, Omar F; Ning, Zhijun; Bakr, Osman M
2018-01-17
Although halide perovskite nanocrystals (NCs) are promising materials for optoelectronic devices, they suffer severely from chemical and phase instabilities. Moreover, the common capping ligands like oleic acid and oleylamine that encapsulate the NCs will form an insulating layer, precluding their utility in optoelectronic devices. To overcome these limitations, we develop a postsynthesis passivation process for CsPbI 3 NCs by using a bidentate ligand, namely 2,2'-iminodibenzoic acid. Our passivated NCs exhibit narrow red photoluminescence with exceptional quantum yield (close to unity) and substantially improved stability. The passivated NCs enabled us to realize red light-emitting diodes (LEDs) with 5.02% external quantum efficiency and 748 cd/m 2 luminance, surpassing by far LEDs made from the nonpassivated NCs.
Niu, Zhigao; Tedesco, Erik; Benetti, Federico; Mabondzo, Aloïse; Montagner, Isabella Monia; Marigo, Ilaria; Gonzalez-Touceda, David; Tovar, Sulay; Diéguez, Carlos; Santander-Ortega, Manuel J; Alonso, María J
2017-10-10
The aim of this work was to rationally design and characterize nanocapsules (NCs) composed of an oily core and a polyarginine (PARG) shell, intended for oral peptide delivery. The cationic polyaminoacid, PARG, and the oily core components were selected based on their penetration enhancing properties. Insulin was adopted as a model peptide to assess the performance of the NCs. After screening numerous formulation variables, including different oils and surfactants, we defined a composition consisting of oleic acid, sodium deoxycholate (SDC) and Span 80. This selected NCs composition, produced by the solvent displacement technique, exhibited the following key features: (i) an average size of 180nm and a low polydispersity (0.1), (ii) a high insulin association efficacy (80-90% AE), (iii) a good colloidal stability upon incubation in simulated intestinal fluids (SIF, FaSSIF-V2, FeSSIF-V2), and (iv) the capacity to control the release of the associated insulin for >4h. Furthermore, using the Caco-2 model cell line, PARG nanocapsules were able to interact with the enterocytes, and reversibly modify the TEER of the monolayer. Both cell adhesion and membrane permeabilization could account for the pronounced transport of the NCs-associated insulin (3.54%). This improved interaction was also visualized by confocal fluorescent microscopy following oral administration of PARG nanocapsulesto mice. Finally, in vivo efficacy studies performed in normoglycemic rats showed a significant decrease in their plasma glucose levels after treatment. In conclusion, here we disclose key formulation elements for making possible the oral administration of peptides. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Palmer, Barton W; Moore, Raeanne C; Eyler, Lisa T; Pinto, Luz L; Saks, Elyn R; Jeste, Dilip V
2018-06-01
To determine the clinical and biological characteristics of an exceptionally high functioning index person (IP) with schizophrenia in her mid-50s, which may represent compensatory mechanisms, and potentially, avoidance of the accelerated aging typically associated with schizophrenia. IP, 11 other women with schizophrenia, and 11 non-psychiatric comparison (NC) women were assessed with standard ratings of psychopathology, neurocognitive function, decisional capacity, and functional brain imaging. IP was also compared to a sample of demographically similar NCs (N=45) and persons with schizophrenia (N=42) on a set of blood-based biomarkers of aging related to metabolic function, oxidative stress, and inflammation. IP's scores on working memory, and levels of brain activation during an affective face matching task in the left fusiform, right lingual, and left precentral gyri, exceeded NCs. IP was similar to NCs in severity of negative symptoms, most neurocognitive functions, decisional capacity, and brain activation in the left inferior occipital gyrus during a selective stopping task. IP's levels on 11 of 14 metabolic and inflammatory biomarkers of aging were better than NCs and the schizophrenia group. Although speculative, results suggest a possible model in which superior working memory permits a person to be aware of the potentially psychotic nature of a thought or perception, and adjust response accordingly. Compensatory overactivity of brain regions during affective processing may also reflect heightened meta-awareness in emotional situations. Biomarker levels raise the possibility that IP partially avoided the accelerated biological aging associated with schizophrenia. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Gu, Daguo; Zhou, Yao; Ma, Ruguang; Wang, Fangfang; Liu, Qian; Wang, Jiacheng
2018-06-01
A series of N-doped carbon materials (NCs) were synthesized by using biomass citric acid and dicyandiamide as renewable raw materials via a facile one-step pyrolysis method. The characterization of microstructural features shows that the NCs samples are composed of few-layered graphene-like nanoflakes with controlled in situ N doping, which is attributed to the confined pyrolysis of citric acid within the interlayers of the dicyandiamide-derived g-C3N4 with high nitrogen contents. Evidently, the pore volumes of the NCs increased with the increasing content of dicyandiamide in the precursor. Among these samples, the NCs nanoflakes prepared with the citric acid/dicyandiamide mass ratio of 1:6, NC-6, show the highest N content of 6.2 at%, in which pyridinic and graphitic N groups are predominant. Compared to the commercial Pt/C catalyst, the as-prepared NC-6 exhibits a small negative shift of 66 mV at the half-wave potential, demonstrating excellent electrocatalytic activity in the oxygen reduction reaction. Moreover, NC-6 also shows better long-term stability and resistance to methanol crossover compared to Pt/C. The efficient and stable performance are attributed to the graphene-like microstructure and high content of pyridinic and graphitic doped nitrogen in the sample, which creates more active sites as well as facilitating charge transfer due to the close four-electron reaction pathway. The superior electrocatalytic activity coupled with the facile synthetic method presents a new pathway to cost-effective electrocatalysts for practical fuel cells or metal-air batteries.
Irfanullah, Mir; Bhardwaj, Navneet; Chowdhury, Arindam
2016-08-02
Water dispersible citrate-capped LaF3:Eu(5%) nanocrystals (NCs) have been partially surface-functionalized by 1,10-phenanthroline (phen) via a ligand exchange method to produce novel water dispersed citrate/phen-capped LaF3:Eu(5%) NCs in which citrate ligands preserve the water dispersibility of the NCs and phen ligands act as sensitizers of surface Eu(3+)-dopant sites. The partial ligand exchange and the formation of water dispersed NCs have been monitored by (1)H NMR spectroscopy, as well as luminescence measurements at different time intervals during the reaction. These NCs display a distinct phen-sensitized Eu(3+)-emission profile with enhanced intensity in water as compared to the emission profile and intensity obtained upon direct excitation. Time-resolved (or time-gated) emission spectroscopy (TRES) has been used to probe PL dynamics of Eu(3+)-sites of LaF3:Eu(5%) NCs by taking advantage of selectively sensitizing surface Eu(3+)-dopant sites by phen ligands as well as by exciting all the Eu(3+)-sites in the NCs upon direct excitation. TRES upon direct excitation of the citrate-capped LaF3:Eu(5%) NCs reveals that Eu(3+)-dopants occupy at least three different sites, each with a different emission profile and lifetime, and emission from purely interior Eu(3+)-sites has been resolved due to their long lifetime as compared to the lifetime of purely surface and near surface Eu(3+)-sites. In contrast, the phen-sensitized emission from citrate/phen-capped LaF3:Eu(5%) NCs displays similar emission profiles and lifetimes in TRES measurements, which reveal that phen truly sensitizes purely surface dopant sites of the NCs in water, all of which have nearly the same local environment. The phen-sensitized Eu(3+)-emission of the NCs in water remains stable even upon addition of various buffer solutions at physiological pH, as well as upon addition of water-miscible organic solvents. Furthermore, the two-photon excitation (λex. = 720 nm) of these water-soluble phen-capped NCs produces bright red Eu(3+) emission, which reveals that these NCs are promising for potential applications in biological imaging.
... 20855043 Statistical Methods and Measurement Caveats National Comorbidity Survey Replication (NCS-R) Diagnostic Assessment and Population: The ... the NIMH NCS-R study page . National Comorbidity Survey Adolescent Supplement (NCS-A) Diagnostic Assessment and Population: ...
Liu, Jing-Min; Chen, Jia-Tong; Yan, Xiu-Ping
2013-03-19
The simplicity of the green-synthesized routine and the availability of surface modification of diverse bioactive molecules make noble metal nanostructures highly suitable as multifunctional biomaterials for biological and biomedical application. Here, we report the preparation of trypsin stabilized gold nanoclusters (try-AuNCs) with near-infrared fluorescence for biosensing heparin based on surface plasmon enhanced energy transfer (SPEET) and folic acid (FA) modified try-AuNCs for in vivo cancer bioimaging. The SPEET/try-AuNCs fluorescence biosensor was designed via heparin mediated energy transfer between try-AuNCs and cysteamine modified gold nanoparticles (cyst-AuNPs). The developed SPEET/try-AuNCs fluorescence biosensor allowed sensitive and selective detection of heparin with a linear range of 0.1-4.0 μg mL(-1) and a detection limit (3s) of 0.05 μg mL(-1). The relative standard deviation for eleven replicate detections of 2.5 μg mL(-1) heparin was 1.1%, and the recoveries of the spiked heparin in human serum samples ranged from 97% to 100%. In addition, folic acid was immobilized on the surface of try-AuNCs to ameliorate the specific affinity of AuNCs for tumors, and the near-infrared fluorescent FA-try-AuNCs were applied for in vivo cancer imaging of high folate receptor (FR) expressing Hela tumor. In vivo study of the dynamic behavior and targeting ability of FA-try-AuNCs probe to Hela tumor bearing mice and normal nude mice validated the high specific affinity of FA-try-AuNCs probe to FR positive tumors. The results show that the prepared try-AuNCs have great potential as multifunctional biomaterials for biosensing biomolecules with SPEET mode and in vivo cancer imaging with high targeting ability.
Nakamura, Tomoe Y; Nakao, Shu; Nakajo, Yukako; Takahashi, Jun C; Wakabayashi, Shigeo; Yanamoto, Hiroji
2017-01-01
Intracellular Ca2+ signaling regulates diverse functions of the nervous system. Many of these neuronal functions, including learning and memory, are regulated by neuronal calcium sensor-1 (NCS-1). However, the pathways by which NCS-1 regulates these functions remain poorly understood. Consistent with the findings of previous reports, we revealed that NCS-1 deficient (Ncs1-/-) mice exhibit impaired spatial learning and memory function in the Morris water maze test, although there was little change in their exercise activity, as determined via treadmill-analysis. Expression of brain-derived neurotrophic factor (BDNF; a key regulator of memory function) and dopamine was significantly reduced in the Ncs1-/- mouse brain, without changes in the levels of glial cell-line derived neurotrophic factor or nerve growth factor. Although there were no gross structural abnormalities in the hippocampi of Ncs1-/- mice, electron microscopy analysis revealed that the density of large dense core vesicles in CA1 presynaptic neurons, which release BDNF and dopamine, was decreased. Phosphorylation of Ca2+/calmodulin-dependent protein kinase II-α (CaMKII-α, which is known to trigger long-term potentiation and increase BDNF levels, was significantly reduced in the Ncs1-/- mouse brain. Furthermore, high voltage electric potential stimulation, which increases the levels of BDNF and promotes spatial learning, significantly increased the levels of NCS-1 concomitant with phosphorylated CaMKII-α in the hippocampus; suggesting a close relationship between NCS-1 and CaMKII-α. Our findings indicate that NCS-1 may regulate spatial learning and memory function at least in part through activation of CaMKII-α signaling, which may directly or indirectly increase BDNF production.
Nakamura, Tomoe Y; Nakao, Shu; Wakabayashi, Shigeo
2016-10-01
Identification of the molecules involved in cell death/survival pathways is important for understanding the mechanisms of cell loss in cardiac disease, and thus is clinically relevant. Ca 2+ -dependent signals are often involved in these pathways. Here, we found that neuronal Ca 2+ -sensor-1 (NCS-1), a Ca 2+ -binding protein, has an important role in cardiac survival during stress. Cardiomyocytes derived from NCS-1-deficient (Ncs1 -/- ) mice were more susceptible to oxidative and metabolic stress than wild-type (WT) myocytes. Cellular ATP levels and mitochondrial respiration rates, as well as the levels of mitochondrial marker proteins, were lower in Ncs1 -/- myocytes. Although oxidative stress elevated mitochondrial proton leak, which exerts a protective effect by inhibiting the production of reactive oxygen species in WT myocytes, this response was considerably diminished in Ncs1 -/- cardiomyocytes, and this would be a major reason for cell death. Consistently, H 2 O 2 -induced loss of mitochondrial membrane potential, a critical early event in cell death, was accelerated in Ncs1 -/- myocytes. Furthermore, NCS-1 was upregulated in hearts subjected to ischemia-reperfusion, and ischemia-reperfusion injury was more severe in Ncs1 -/- hearts. Activation of stress-induced Ca 2+ -dependent survival pathways, such as Akt and PGC-1α (which promotes mitochondrial biogenesis and function), was diminished in Ncs1 -/- hearts. Overall, these data demonstrate that NCS-1 contributes to stress tolerance in cardiomyocytes at least in part by activating certain Ca 2+ -dependent survival pathways that promote mitochondrial biosynthesis/function and detoxification pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.
A near-infrared BSA coated DNA-AgNCs for cellular imaging.
Mu, Wei-Yu; Yang, Rui; Robertson, Akrofi; Chen, Qiu-Yun
2018-02-01
Near-infrared silver nanoclusters, have potential applications in the field of biosensing and biological imaging. However, less stability of most DNA-AgNCs limits their application. To obtain stable near-infrared fluorescence DNA-AgNCs for biological imaging, a new kind of near-infrared fluorescent DNA-Ag nanoclusters was constructed using the C3A rich aptamer as a synthesis template, GAG as the enhancer. In particular, a new DNA-AgNCs-Trp@BSA was obtained based on the self-assembly of bovine serum albumin (BSA) and tryptophan loaded DNA-AgNCs by hydrophobic interaction. This self-assembly method can be used to stabilize DNAn-Ag (n = 1-3) nanoclusters. Hence, the near-infrared fluorescence DNA-AgNCs-Trp@BSA was applied in cellular imaging of HepG-2 cells. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Wanrong; Zhou, Min; Lu, Fei; Liu, Hongfei; Zhou, Yuxue; Zhu, Jun; Zeng, Xianghua
2018-06-01
Microwave-absorbing materials with light weight and high efficiency are desirable in addressing electromagnetic interference (EMI) problems. Herein, a nickel–cobalt sulfide (NCS) nanostructure was employed as a robust microwave absorber, which displayed an optimized reflection loss of ‑49.1 dB in the gigahertz range with a loading of only 20 wt% in an NCS/paraffin wax composite. High electrical conductivity was found to contribute prominent conductive loss in NCS, leading to intense dielectric loss within a relatively low mass loading. Furthermore, owing to its high electrical conductivity and remarkable dielectric loss to microwaves, the prepared NCS exhibited excellent performance in EMI shielding. The EMI shielding efficiency of the 50 wt% NCS/paraffin composite exceeded 55 dB at the X-band, demonstrating NCS is a versatile candidate for solving EMI problems.
Huang, Liu; Wan, Xiaodong; Rong, Hongpan; Yao, Yuan; Xu, Meng; Liu, Jia; Ji, Muwei; Liu, Jiajia; Jiang, Lan; Zhang, Jiatao
2018-04-01
High-efficient charge and energy transfer between nanocrystals (NCs) in a bottom-up assembly are hard to achieve, resulting in an obstacle in application. Instead of the ligands exchange strategies, the advantage of a continuous laser is taken with optimal wavelength and power to irradiate the film-scale NCs superlattices at solid-liquid interfaces. Owing to the Au-based NCs' surface plasmon resonance (SPR) effect, the gentle laser irradiation leads the Au NCs or Au@CdS core/shell NCs to attach each other with controlled pattern at the interfaces between solid NCs phase and liquid ethanol/ethylene glycol. A continuous wave 532 nm laser (6.68-13.37 W cm -2 ), to control Au-based superlattices, is used to form the monolayer with uniformly reduced interparticle distance followed by welded superstructures. Considering the size effect to Au NCs' melting, when decreasing the Au NCs size to ≈5 nm, stronger welding nanostructures are obtained with diverse unprecedented shapes which cannot be achieved by normal colloidal synthesis. With the help of facile scale-up and formation at solid-liquid interfaces, and a good connection of crystalline between NCs, the obtained plasmonic superstructured films that could be facilely transferred onto different substrates exhibit broad SPR absorption in the visible and near-infrared regime, enhanced electric conductivities, and wide applications as surface enhanced Raman scattering (SERS)-active substrates. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Uptake and effect of highly fluorescent silver nanoclusters on Scenedesmus obliquus.
Zhang, Li; He, Yiliang; Goswami, Nirmal; Xie, Jianping; Zhang, Bo; Tao, Xianji
2016-06-01
The release of silver nanoparticles (Ag NPs) in aquatic environment has caused wide public concern about their effects on living organisms (e.g., algae). However, how these small NPs exert cytotoxicity in the living organisms has always been under heated debate. In this study, the uptake and toxicity effects of strongly red-emitting fluorescent silver nanoclusters (r-Ag NCs) exposed to the green algae Scenedesmus obliquus was investigated. Upon exposure to pure r-Ag NCs and r-Ag NCs containing l-cysteine, the algae growth inhibition test showed that Ag(+) ions released from r-Ag NCs played an important role in the toxicity of r-Ag NCs along with the toxicity of intact r-Ag NCs. Furthermore, no signals of intracellular reactive oxygen species (ROS) were observed indicating that r-Ag NCs or released Ag(+) ions - mediated growth inhibition of algae cells was independent of ROS production. Transmission electron microscopy (TEM) and laser scanning confocal microscopy (LSCM) were employed to study cellular uptake and cytotoxicity. Furthermore, analysis of differential expressed gene demonstrated that r-Ag NCs as well as the released Ag(+) ions can simultaneously exist inside the algae cells, and inhibit the transcriptomic process of genes by their "joint-toxicity" mechanism. Taken together, our study provides a new insight into the molecular mechanisms of r-Ag NCs and Ag(+) ions exposure to the aquatic organism and can be applied to early diagnosis of ecologic risk mediated by others metal-based NPs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Use of caloric and non-caloric sweeteners in US consumer packaged foods, 2005–9
Ng, Shu Wen; Slining, Meghan M.; Popkin, Barry M.
2012-01-01
Our understanding of the use of caloric (CS) and non-caloric sweeteners (NCS) in the US food supply is limited. This study utilizes full ingredient list and nutrition facts panel (NFP) data from Gladson Nutrition Database, and nationally representative purchases of consumer packaged foods from Nielsen Homescan in 2005 through 2009 to understand the use of CS (including FJC) and NCS in CPG foods. Of the 85,451 uniquely formulated foods purchased during 2005–2009, 75% contain sweeteners (68% with CS only, 1% with NCS only, 6% with both CS and NCS). CS are in >95% of cakes/cookies/pies, granola/protein/energy bars, ready-to-eat cereals, sweet snacks, and sugar-sweetened beverages. NCS are in >33% of yogurts and sports/energy drinks, 42% of waters (plain or flavored), and most diet sweetened beverages. Across unique products, corn syrup is the most commonly listed sweetener, followed by sorghum, cane sugar, high fructose corn syrup and FJC. Also, 77% of all calories purchased in the US in 2005–2009 contained CS and 3% contained NCS, while 73% of the volume of foods purchased contained CS and 15% contained NCS. Trends during this period suggest a shift towards the purchase of NCS-containing products.Our study poses a challenge toward monitoring sweetener consumption in the US by discussing the need and options available to improve measures of CS and NCS, and additional requirements on NFPs on CPG foods. PMID:23102182
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petkov, Valeri; Prasai, Binay; Shastri, Sarvjit
2017-09-12
Practical applications require the production and usage of metallic nanocrystals (NCs) in large ensembles. Besides, due to their cluster-bulk solid duality, metallic NCs exhibit a large degree of structural diversity. This poses the question as to what atomic-scale basis is to be used when the structure–function relationship for metallic NCs is to be quantified precisely. In this paper, we address the question by studying bi-functional Fe core-Pt skin type NCs optimized for practical applications. In particular, the cluster-like Fe core and skin-like Pt surface of the NCs exhibit superparamagnetic properties and a superb catalytic activity for the oxygen reduction reaction,more » respectively. We determine the atomic-scale structure of the NCs by non-traditional resonant high-energy X-ray diffraction coupled to atomic pair distribution function analysis. Using the experimental structure data we explain the observed magnetic and catalytic behavior of the NCs in a quantitative manner. Lastly, we demonstrate that NC ensemble-averaged 3D positions of atoms obtained by advanced X-ray scattering techniques are a very proper basis for not only establishing but also quantifying the structure–function relationship for the increasingly complex metallic NCs explored for practical applications.« less
Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications.
Luo, Zhentao; Zheng, Kaiyuan; Xie, Jianping
2014-05-25
Gold and silver nanoclusters or Au/Ag NCs with core sizes smaller than 2 nm have been an attractive frontier of nanoparticle research because of their unique physicochemical properties such as well-defined molecular structure, discrete electronic transitions, quantized charging, and strong luminescence. As a result of these unique properties, ultrasmall size, and good biocompatibility, Au/Ag NCs have great potential for a variety of biomedical applications, such as bioimaging, biosensing, antimicrobial agents, and cancer therapy. In this feature article, we will first discuss some critical biological considerations, such as biocompatibility and renal clearance, of Au/Ag NCs that are applied for biomedical applications, leading to some design criteria for functional Au/Ag NCs in the biological settings. According to these biological considerations, we will then survey some efficient synthetic strategies for the preparation of protein- and peptide-protected Au/Ag NCs with an emphasis on our recent contributions in this fast-growing field. In the last part, we will highlight some potential biomedical applications of these protein- and peptide-protected Au/Ag NCs. It is believed that with continued efforts to understand the interactions of biomolecule-protected Au/Ag NCs with the biological systems, scientists can largely realize the great potential of Au/Ag NCs for biomedical applications, which could finally pave their way towards clinical use.
NASA Astrophysics Data System (ADS)
Li, Xiaoqin; Xiang, Xinxin; Liu, Yunhua; Xiao, Dan
2018-06-01
Asymmetric supercapacitors (ASCs) based on pseudocapacitor electrode materials are vital to improve the electrochemical properties of devices in aqueous electrolytes. This study fabricates hollow N-doped carbon sphere (h-NCS) to produce h-NCS@PANI nanocomposite as positive electrode and α-MoO3 as negative electrode to assemble ASC device. In particular, a facile template-free synthesis method, catalyzed by Cu2+, is used to prepare hollow PANI nanosphere precursor to build h-NCS. The mechanism of the precursor formation is illustrated in detail. After polymerization of PANI on the surface of h-NCS, the capacitance increases to 327 F g-1 at 1 A g-1. Furthermore, a hydrothermal reaction is carried out to produce α-MoO3 negative electrode material. The maximum specific capacitance of 720 F g-1 is achieved at 1 A g-1. The obtained h-NCS@PANI and α-MoO3 are utilized to construct an ASC device. The electrochemical properties of this device are investigated comprehensively. The maximum energy density of 34.1 W h kg-1 and power density of 9350.6 W kg-1 are observed, which provide an insight into the development of ASCs.
Warren, Christopher M; Knight, Roger; Holl, Jane L; Gupta, Ruchi S
2014-05-01
The National Children's Study (NCS) is a prospective observational study examining the effects of environmental influences on child health and development in the United States. Videovoice is a health advocacy and promotion methodology wherein participants use participatory videography and interviewing techniques to identify issues of concern, communicate knowledge, and advocate for community health. This study describes a videovoice project, implemented in six Cook County, IL, communities targeted by the NCS for participant recruitment. A 6-week, videovoice training was conducted to train and empower NCS community outreach and engagement personnel. Pre/post evaluations were administered, and participant footage was qualitatively analyzed to identify overarching themes informing future outreach. Participants reported significant increases (p < .05) in videography/photography skills, community outreach/communication abilities, and awareness of important community health issues. Major themes included the following: high community knowledge of local health issues, low community knowledge of the NCS, and identification of barriers to participation. Two promotional videos were created to address these barriers and educate communities about the NCS. A 6-week, videovoice project was effective in training NCS community outreach personnel and enhancing NCS community engagement within six target Cook County, IL, communities via the production of community-engaged NCS promotional videos.
Zhang, Si; Liang, Yuzhang; Jing, Qiang; Lu, Zhenda; Lu, Yanqing; Xu, Ting
2017-11-07
Metal halide perovskite nanocrystals (NCs) as a new kind of promising optoelectronic material have attracted wide attention due to their high photoluminescence (PL) quantum yield, narrow emission linewidth and wideband color tunability. Since the PL intensity always has a direct influence on the performance of optoelectronic devices, it is of vital importance to improve the perovskite NCs' fluorescence emission efficiency. Here, we synthesize three inorganic perovskite NCs and experimentally demonstrate a broadband fluorescence enhancement of perovskite NCs by exploiting plasmonic nanostructured surface consisting of nanogrooves array. The strong near-field optical localization associated with surface plasmon polariton-coupled emission effect generated by the nanogrooves array can significantly boost the absorption of perovskite NCs and tailor the fluorescence emissions. As a result, the PL intensities of perovskite NCs are broadband enhanced with a maximum factor higher than 8-fold achieved in experimental demonstration. Moreover, the high efficiency PL of perovskite NCs embedded in the polymer matrix layer on the top of plasmonic nanostructured surface can be maintained for more than three weeks. These results imply that plasmonic nanostructured surface is a good candidate to stably broadband enhance the PL intensity of perovskite NCs and further promote their potentials in the application of visible-light-emitting devices.
Vergara-Lopez, Chrystal; Lopez-Vergara, Hector I; Roberts, John E
2016-03-01
MacCoon and Newman's (2006) "content meets process" model posits that deficits in cognitive control make it difficult to disengage from negative cognitions caused by a negative cognitive style (NCS). The present study examined if the interactive effect of cognitive set-shifting abilities and NCS predicts rumination and past history of depression. Participants were 90 previously depressed individuals and 95 never depressed individuals. We administered three laboratory tasks that assess set-shifting: the Wisconsin Card-Sorting Task, the Emotional Card-Sorting Task, and the Internal Switch Task, and self-report measures of NCS and rumination. Shifting ability in the context of emotional distractors moderated the association between NCS and depressive rumination. Although previously depressed individuals had more NCS and higher trait rumination relative to never depressed individuals, shifting ability did not moderate the association between NCS and depression history. The cross-sectional correlational design cannot address the causal direction of effects. It is also not clear whether findings will generalize beyond college students. NCS was elevated in previously depressed individuals consistent with its theoretical role as trait vulnerability to the disorder. Furthermore, NCS may be particularly likely to trigger rumination among individuals with poor capacity for cognitive control in the context of emotional distraction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sen. Schumer, Charles E. [D-NY
2014-07-24
Senate - 07/24/2014 Read twice and referred to the Committee on Homeland Security and Governmental Affairs. (All Actions) Notes: For further action, see H.R.2112, which became Public Law 113-209 on 12/16/2014. Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
The National Children's Study (NCS) is proposed to be the largest and most ambitious study of the health and development of children ever to be undertaken in the United States. The Study is led by the U.S. Department of Health and Human Services - through the National Institutes...
33 CFR Appendix A to Part 325 - Permit Form and Special Conditions
Code of Federal Regulations, 2010 CFR
2010-07-01
...). () Section 404 of the Clean Water Act (33 U.S.C. 1344). () Section 103 of the Marine Protection, Research and... unpermitted activities or structures caused by the activity authorized by this permit. d. Design or... Ocean Service, Office of Coast Survey, N/CS261, 1315 East West Highway, Silver Spring, Maryland 20910...
33 CFR Appendix A to Part 325 - Permit Form and Special Conditions
Code of Federal Regulations, 2011 CFR
2011-07-01
...). () Section 404 of the Clean Water Act (33 U.S.C. 1344). () Section 103 of the Marine Protection, Research and... unpermitted activities or structures caused by the activity authorized by this permit. d. Design or... Ocean Service, Office of Coast Survey, N/CS261, 1315 East West Highway, Silver Spring, Maryland 20910...
33 CFR Appendix A to Part 325 - Permit Form and Special Conditions
Code of Federal Regulations, 2013 CFR
2013-07-01
...). () Section 404 of the Clean Water Act (33 U.S.C. 1344). () Section 103 of the Marine Protection, Research and... unpermitted activities or structures caused by the activity authorized by this permit. d. Design or... Ocean Service, Office of Coast Survey, N/CS261, 1315 East West Highway, Silver Spring, Maryland 20910...
33 CFR Appendix A to Part 325 - Permit Form and Special Conditions
Code of Federal Regulations, 2012 CFR
2012-07-01
...). () Section 404 of the Clean Water Act (33 U.S.C. 1344). () Section 103 of the Marine Protection, Research and... unpermitted activities or structures caused by the activity authorized by this permit. d. Design or... Ocean Service, Office of Coast Survey, N/CS261, 1315 East West Highway, Silver Spring, Maryland 20910...
Analysis of phases in the structure determination of an icosahedral virus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plevka, Pavel; Kaufmann, Bärbel; Rossmann, Michael G.
2012-03-15
The constraints imposed on structure-factor phases by noncrystallographic symmetry (NCS) allow phase improvement, phase extension to higher resolution and hence ab initio phase determination. The more numerous the NCS redundancy and the greater the volume used for solvent flattening, the greater the power for phase determination. In a case analyzed here the icosahedral NCS phasing appeared to have broken down, although later successful phase extension was possible when the envelope around the NCS region was tightened. The phases from the failed phase-determination attempt fell into four classes, all of which satisfied the NCS constraints. These four classes corresponded to themore » correct solution, opposite enantiomorph, Babinet inversion and opposite enantiomorph with Babinet inversion. These incorrect solutions can be seeded from structure factors belonging to reciprocal-space volumes that lie close to icosahedral NCS axes where the structure amplitudes tend to be large and the phases tend to be 0 or {pi}. Furthermore, the false solutions can spread more easily if there are large errors in defining the envelope designating the region in which NCS averaging is performed.« less
Analysis of phases in the structure determination of an icosahedral virus.
Plevka, Pavel; Kaufmann, Bärbel; Rossmann, Michael G
2011-06-01
The constraints imposed on structure-factor phases by noncrystallographic symmetry (NCS) allow phase improvement, phase extension to higher resolution and hence ab initio phase determination. The more numerous the NCS redundancy and the greater the volume used for solvent flattening, the greater the power for phase determination. In a case analyzed here the icosahedral NCS phasing appeared to have broken down, although later successful phase extension was possible when the envelope around the NCS region was tightened. The phases from the failed phase-determination attempt fell into four classes, all of which satisfied the NCS constraints. These four classes corresponded to the correct solution, opposite enantiomorph, Babinet inversion and opposite enantiomorph with Babinet inversion. These incorrect solutions can be seeded from structure factors belonging to reciprocal-space volumes that lie close to icosahedral NCS axes where the structure amplitudes tend to be large and the phases tend to be 0 or π. Furthermore, the false solutions can spread more easily if there are large errors in defining the envelope designating the region in which NCS averaging is performed. © 2011 International Union of Crystallography
Analysis of phases in the structure determination of an icosahedral virus
Plevka, Pavel; Kaufmann, Bärbel; Rossmann, Michael G.
2011-01-01
The constraints imposed on structure-factor phases by noncrystallographic symmetry (NCS) allow phase improvement, phase extension to higher resolution and hence ab initio phase determination. The more numerous the NCS redundancy and the greater the volume used for solvent flattening, the greater the power for phase determination. In a case analyzed here the icosahedral NCS phasing appeared to have broken down, although later successful phase extension was possible when the envelope around the NCS region was tightened. The phases from the failed phase-determination attempt fell into four classes, all of which satisfied the NCS constraints. These four classes corresponded to the correct solution, opposite enantiomorph, Babinet inversion and opposite enantiomorph with Babinet inversion. These incorrect solutions can be seeded from structure factors belonging to reciprocal-space volumes that lie close to icosahedral NCS axes where the structure amplitudes tend to be large and the phases tend to be 0 or π. Furthermore, the false solutions can spread more easily if there are large errors in defining the envelope designating the region in which NCS averaging is performed. PMID:21636897
2013-01-01
Si heterojunction solar cells were fabricated on p-type single-crystal Si (sc-Si) substrates using phosphorus-doped Si nanocrystals (Si-NCs) embedded in SiNx (Si-NCs/SiNx) films as emitters. The Si-NCs were formed by post-annealing of silicon-rich silicon nitride films deposited by electron cyclotron resonance chemical vapor deposition. We investigate the influence of the N/Si ratio in the Si-NCs/SiNx films on their electrical and optical properties, as well as the photovoltaic properties of the fabricated heterojunction devices. Increasing the nitrogen content enhances the optical gap E04 while deteriorating the electrical conductivity of the Si-NCs/SiNx film, leading to an increased short-circuit current density and a decreased fill factor of the heterojunction device. These trends could be interpreted by a bi-phase model which describes the Si-NCs/SiNx film as a mixture of a high-transparency SiNx phase and a low-resistivity Si-NC phase. A preliminary efficiency of 8.6% is achieved for the Si-NCs/sc-Si heterojunction solar cell. PMID:24188725
Light, Gregory A; Swerdlow, Neal R; Rissling, Anthony J; Radant, Allen; Sugar, Catherine A; Sprock, Joyce; Pela, Marlena; Geyer, Mark A; Braff, David L
2012-01-01
Endophenotypes are quantitative, laboratory-based measures representing intermediate links in the pathways between genetic variation and the clinical expression of a disorder. Ideal endophenotypes exhibit deficits in patients, are stable over time and across shifts in psychopathology, and are suitable for repeat testing. Unfortunately, many leading candidate endophenotypes in schizophrenia have not been fully characterized simultaneously in large cohorts of patients and controls across these properties. The objectives of this study were to characterize the extent to which widely-used neurophysiological and neurocognitive endophenotypes are: 1) associated with schizophrenia, 2) stable over time, independent of state-related changes, and 3) free of potential practice/maturation or differential attrition effects in schizophrenia patients (SZ) and nonpsychiatric comparison subjects (NCS). Stability of clinical and functional measures was also assessed. Participants (SZ n = 341; NCS n = 205) completed a battery of neurophysiological (MMN, P3a, P50 and N100 indices, PPI, startle habituation, antisaccade), neurocognitive (WRAT-3 Reading, LNS-forward, LNS-reorder, WCST-64, CVLT-II). In addition, patients were rated on clinical symptom severity as well as functional capacity and status measures (GAF, UPSA, SOF). 223 subjects (SZ n = 163; NCS n = 58) returned for retesting after 1 year. Most neurophysiological and neurocognitive measures exhibited medium-to-large deficits in schizophrenia, moderate-to-substantial stability across the retest interval, and were independent of fluctuations in clinical status. Clinical symptoms and functional measures also exhibited substantial stability. A Longitudinal Endophenotype Ranking System (LERS) was created to rank neurophysiological and neurocognitive biomarkers according to their effect sizes across endophenotype criteria. The majority of neurophysiological and neurocognitive measures exhibited deficits in patients, stability over a 1-year interval and did not demonstrate practice or time effects supporting their use as endophenotypes in neural substrate and genomic studies. These measures hold promise for informing the "gene-to-phene gap" in schizophrenia research.
Light, Gregory A.; Swerdlow, Neal R.; Rissling, Anthony J.; Radant, Allen; Sugar, Catherine A.; Sprock, Joyce; Pela, Marlena; Geyer, Mark A.; Braff, David L.
2012-01-01
Background Endophenotypes are quantitative, laboratory-based measures representing intermediate links in the pathways between genetic variation and the clinical expression of a disorder. Ideal endophenotypes exhibit deficits in patients, are stable over time and across shifts in psychopathology, and are suitable for repeat testing. Unfortunately, many leading candidate endophenotypes in schizophrenia have not been fully characterized simultaneously in large cohorts of patients and controls across these properties. The objectives of this study were to characterize the extent to which widely-used neurophysiological and neurocognitive endophenotypes are: 1) associated with schizophrenia, 2) stable over time, independent of state-related changes, and 3) free of potential practice/maturation or differential attrition effects in schizophrenia patients (SZ) and nonpsychiatric comparison subjects (NCS). Stability of clinical and functional measures was also assessed. Methods Participants (SZ n = 341; NCS n = 205) completed a battery of neurophysiological (MMN, P3a, P50 and N100 indices, PPI, startle habituation, antisaccade), neurocognitive (WRAT-3 Reading, LNS-forward, LNS-reorder, WCST-64, CVLT-II). In addition, patients were rated on clinical symptom severity as well as functional capacity and status measures (GAF, UPSA, SOF). 223 subjects (SZ n = 163; NCS n = 58) returned for retesting after 1 year. Results Most neurophysiological and neurocognitive measures exhibited medium-to-large deficits in schizophrenia, moderate-to-substantial stability across the retest interval, and were independent of fluctuations in clinical status. Clinical symptoms and functional measures also exhibited substantial stability. A Longitudinal Endophenotype Ranking System (LERS) was created to rank neurophysiological and neurocognitive biomarkers according to their effect sizes across endophenotype criteria. Conclusions The majority of neurophysiological and neurocognitive measures exhibited deficits in patients, stability over a 1-year interval and did not demonstrate practice or time effects supporting their use as endophenotypes in neural substrate and genomic studies. These measures hold promise for informing the “gene-to-phene gap” in schizophrenia research. PMID:22802938
Chattoraj, Shyamtanu; Amin, Asif; Jana, Batakrishna; Mohapatra, Saswat; Ghosh, Surajit; Bhattacharyya, Kankan
2016-01-18
Fluorescent gold nanoclusters (AuNCs) capped with lysozymes are used to deliver the anticancer drug doxorubicin to cancer and noncancer cells. Doxorubicin-loaded AuNCs cause the highly selective and efficient killing (90 %) of breast cancer cells (MCF7) (IC50 =155 nm). In contrast, the killing of the noncancer breast cells (MCF10A) by doxorubicin-loaded AuNCs is only 40 % (IC50 =4500 nm). By using a confocal microscope, the fluorescence spectrum and decay of the AuNCs were recorded inside the cell. The fluorescence maxima (at ≈490-515 nm) and lifetime (≈2 ns), of the AuNCs inside the cells correspond to Au10-13 . The intracellular release of doxorubicin from AuNCs is monitored by Förster resonance energy transfer (FRET) imaging. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhang, Lingyan; Han, Fei
2018-04-01
Bovine serum albumin (BSA) modified gold nanoparticles (AuNPs) was selected as template for the synthesis of AuNPs@gold nanoclusters (AuNCs) core/shell nanoparticles, in which BSA not only acted as dual functions agent for both anchoring and reducing Au3+ ions, but also was employed as a bridge between the AuNPs and AuNCs. Optical properties of AuNPs@AuNCs core/shell nanoparticles were studied using UV-visible and fluorescence spectroscopy. The prepared AuNPs@AuNCs core/shell nanoparticles exhibited sphere size uniformity with improved monodispersity, excellent fluorescence and fluorescent stability. Compared with AuNCs, AuNPs@AuNCs core/shell nanoparticles possessed large size and strong fluorescence intensity due to the effect of AuNPs as core. Moreover, the mechanism of the AuNPs induced fluorescence changes of the core/shell nanoparticles was first explored.
Gas-phase synthesis of semiconductor nanocrystals and its applications
NASA Astrophysics Data System (ADS)
Mandal, Rajib
Luminescent nanomaterials is a newly emerging field that provides challenges not only to fundamental research but also to innovative technology in several areas such as electronics, photonics, nanotechnology, display, lighting, biomedical engineering and environmental control. These nanomaterials come in various forms, shapes and comprises of semiconductors, metals, oxides, and inorganic and organic polymers. Most importantly, these luminescent nanomaterials can have different properties owing to their size as compared to their bulk counterparts. Here we describe the use of plasmas in synthesis, modification, and deposition of semiconductor nanomaterials for luminescence applications. Nanocrystalline silicon is widely known as an efficient and tunable optical emitter and is attracting great interest for applications in several areas. To date, however, luminescent silicon nanocrystals (NCs) have been used exclusively in traditional rigid devices. For the field to advance towards new and versatile applications for nanocrystal-based devices, there is a need to investigate whether these NCs can be used in flexible and stretchable devices. We show how the optical and structural/morphological properties of plasma-synthesized silicon nanocrystals (Si NCs) change when they are deposited on stretchable substrates made of polydimethylsiloxane (PDMS). Synthesis of these NCs was performed in a nonthermal, low-pressure gas phase plasma reactor. To our knowledge, this is the first demonstration of direct deposition of NCs onto stretchable substrates. Additionally, in order to prevent oxidation and enhance the luminescence properties, a silicon nitride shell was grown around Si NCs. We have demonstrated surface nitridation of Si NCs in a single step process using non?thermal plasma in several schemes including a novel dual-plasma synthesis/shell growth process. These coated NCs exhibit SiNx shells with composition depending on process parameters. While measurements including photoluminescence (PL), surface analysis, and defect identification indicate the shell is protective against oxidation compared to Si NCs without any shell growth. Gallium Nitride (GaN) is one of the most well-known semiconductor material and the industry standard for fabricating LEDs. The problem is that epitaxial growth of high-quality GaN requires costly substrates (e.g. sapphire), high temperatures, and long processing times. Synthesizing freestanding NCs of GaN, on the other hand, could enable these novel device morphologies, as the NCs could be incorporated into devices without the requirements imposed by epitaxial GaN growth. Synthesis of GaN NCs was performed using a fully gas-phase process. Different sizes of crystalline GaN nanoparticles were produced indicating versatility of this gas-phase process. Elemental analysis using X-ray photoelectron spectroscopy (XPS) indicated a possible nitrogen deficiency in the NCs; addition of secondary plasma for surface treatment indicates improving stoichiometric ratio and points towards a unique method for creating high-quality GaN NCs with ultimate alloying and doping for full-spectrum luminescence.
Ligand induced shape transformation of thorium dioxide nanocrystals.
Wang, Gaoxue; Batista, Enrique R; Yang, Ping
2018-04-27
Nanocrystals (NCs) with size and shape dependent properties are a thriving research field. Remarkable progress has been made in the controlled synthesis of NCs of stable elements in the past two decades; however, the knowledge of the NCs of actinide compounds has been considerably limited due the difficulties in handling them both experimentally and theoretically. Actinide compounds, especially actinide oxides, play a critical role in many stages of the nuclear fuel cycle. Recently, a non-aqueous surfactant assisted approach has been developed for the synthesis of actinide oxide NCs with different morphologies, but an understanding of its control factors is still missing to date. Herein we present a comprehensive study on the low index surfaces of thorium dioxide (ThO2) and their interactions with relevant surfactant ligands using density functional calculations. A systematic picture on the thermodynamic stability of ThO2 NCs of different sizes and shapes is obtained employing empirical models based on the calculated surface energies. It is found that bare ThO2 NCs prefer the octahedral shape terminated by (111) surfaces. Oleic acid displays selective adsorption on the (110) surface, leading to the shape transformation from octahedrons to nanorods. Other ligands such as acetylacetone, oleylamine, and trioctylphosphine oxide do not modify the equilibrium shape of ThO2 NCs. This work provides atomic level insights into the anisotropic growth of ThO2 NCs that was recently observed in experiments, and thus may contribute to the controlled synthesis of actinide oxide NCs with well-defined size and shape for future applications.
Sun, Hongsheng; Xing, Yugui; Wu, Qinan; Yang, Ping
2015-02-01
A highly luminescent silica film was fabricated using tetraethyl orthosilicate (TEOS) and 3-aminopropyltrimethoxysilane (APS) through a controlled sol-gel reaction. The pre-hydrolysis of TEOS and APS which resulted in the mixture of TEOS and APS in a molecular level is a key for the formation of homogenous films. The aminopropyl groups in APS play an important role for obtaining homogeneous film with high photoluminescence (PL). Red-emitting hybrid SiO2-coated CdTe nano-crystals (NCs) were fabricated by a two-step synthesis including a thin SiO2 coating via a sol-gel process and a subsequent refluxing using green-emitting CdTe NCs. The hybrid SiO2-coated CdTe NCs were embedded in a functional SiO2 film via a two-step process including adding the NCs in SiO2 sol with a high viscosity and almost without ethanol and a subsequent spinning coating. The hybrid SiO2-coated CdTe NCs retained their initial PL efficiency (54%) in the film. Being encapsulated with the hybrid NCs in the film, no change on the absorption and PL spectra of red-emitting CdTe NCs (632 nm) was observed. This indicates the hybrid NCs is stable enough during preparation. This phenomenon is ascribed to the controlled sol-gel process and a hybrid SiO2 shell on CdTe NCs. Because these films exhibited high PL efficiency and stability, they will be utilizable for potential applications in many fields.
Cao, Haiyan; Chen, Zhaohui; Huang, Yuming
2015-10-01
This paper reports an "off-to-on" fluorescence (FL) probe for sensitively and selectively detecting phosphate ions (Pi's). Fabrication of the probe was based on the competition between Pi's and tannic acid-stabilized copper nanoclusters (TA-Cu NCs) for Eu(3+) binding. The addition of Eu(3+) ions to TA-Cu NCs triggered the aggregation of TA-Cu NCs, which quenched the FL of TA-Cu NCs. After Pi addition, the aggregated TA-Cu NCs solubilized into the aqueous solution to facilitate the Pi-triggered dispersion of TA-Cu NCs. This phenomenon was due to the stronger binding ability between Pi's and Eu(3+) than that between TA and Eu(3+), leading to FL recovery of Cu NCs. The degree of redispersion of TA-Cu NCs was directly related to Pi concentration. Thus, Pi concentration can be quantitatively determined by the change in FL of the TA-Cu NCs dispersion. Under the optimized conditions, the change in FL presented a linear relationship with Pi concentration from 0.07 μmol L(-1) to 80 μmol L(-1). The limit of detection for Pi was 9.6×10(-3) μmol L(-1) at a signal-to-noise ratio of 3. For Pi determination in real samples, only 1 mL water sample was needed. The proposed probe was highly sensitive, free from the interference of other common species in aqueous media, and particularly useful for the fast and simple diagnosis of water-eutrophication extent. Copyright © 2015 Elsevier B.V. All rights reserved.
Vascellari, Alberto; Schiavetti, Stefano; Rebuzzi, Enrico; Coletti, Nicolò
2015-11-01
The Nottingham Clavicle Score (NCS) is a specific Patient Reported Outcome Measure of injuries to the clavicle, acromio-clavicular joint (ACJ) and sterno-clavicular joint. The purpose of this study was to translate the NCS into Italian and establish its cultural adaptiveness and validity. The original version of the NCS was translated into Italian in accordance with the cross-cultural adaptation guidelines described by Guillemin. Sixty-six patients [average age 45.7 years (SD 11.3)] who had received surgical treatment for injuries of the ACJ and the clavicle were included in the study. The study population completed the NCS twice within 5 days, the Oxford Shoulder Score (OSS), the Disability of the Arm, Shoulder and Hand (DASH) questionnaire and the short-form 36 (SF-36). Statistical tests assessed the construct validity, discriminant validity, internal consistency, reliability and feasibility of the NCS. The translation and adaptation of the NCS for an Italian context required no major cultural adaptation. Internal consistency was high (Cronbach's α, 0.86). Test-retest reproducibility was excellent (ρ = 0.981, p < 0.00001). Administration time was 45 s (range 1 min 32 s-8 min), and all items were answered. The Italian NCS showed strong correlation with the DASH (-0.87), the OSS (-0.84) and those subscales of the SF-36 (physical functioning, role physical and bodily pain) which aim to measure similar constructs. The Italian NCS scale is a reliable, valid, consistent shoulder assessment form that can be used to assess the functional limitations of patients with injuries of clavicle or ACJ. III.
Luminescent Organometallic Nanomaterials with Aggregation-Induced Emission.
Shu, Tong; Wang, Jianxing; Su, Lei; Zhang, Xueji
2018-07-04
Recent researches in metal nanoclusters (NCs) have prompted their promising practical applications in biomedical fields as novel inorganic luminophores. More recently, to further improve the photoluminescence (PL) performance of NCs, the aggregation-induced emission (AIE) effect has been introduced to develop highly luminescent metal NCs and metal complex materials. In this review, we start our discussion from recent progresses on AIE materials developments. Then, we address our understandings on the PL properties of thiolated metal NCs. Subsequently, we link thiolated metal NCs with AIE effect. We also highlight some recent advances in synthesizing the AIE-type metal complex nanomaterials. We finally discuss visions and directions for future development of AIE-type metal complex nanomaterials.
Structural, optical and Carrier dynamics of self-assembled InGaN nanocolumns on Si(111)
NASA Astrophysics Data System (ADS)
Kumar, Praveen; Devi, Pooja; Soto Rodriguez, P. E. D.; Jain, Rishabh; Jaggi, Neena; Sinha, R. K.; Kumar, Mahesh
2018-05-01
We investigated the morphological, structural, optical, electrical and carrier relaxation dynamic changes on the self-assembled grown InGaN nanocolumns (NCs) directly on p-Si(111) substrate at two different substrate temperature, namely 580 °C (A) and 500 °C (B). The emission wavelength of comparably low temperature (LT) grown NCs was red-shifted from 3.2eV to 2.4eV. First observations on the charge carrier dynamics of these directly grown NCs show comparable broad excited state absorption (ESA) for LT gown NCs, which manifest bi-exponential decay due to the radiative defects generated during the coalescence of these NCs.
Wang, Yong; Chen, Jia-Tong; Yan, Xiu-Ping
2013-02-19
Transferrin (Tf)-functionalized gold nanoclusters (Tf-AuNCs)/graphene oxide (GO) nanocomposite (Tf-AuNCs/GO) was fabricated as a turn-on near-infrared (NIR) fluorescent probe for bioimaging cancer cells and small animals. A one-step approach was developed to prepare Tf-AuNCs via a biomineralization process with Tf as the template. Tf acted not only as a stabilizer and a reducer but also as a functional ligand for targeting the transferrin receptor (TfR). The prepared Tf-AuNCs gave intense NIR fluorescence that can avoid interference from biological media such as tissue autofluorescence and scattering light. The assembly of Tf-AuNCs and GO gave the Tf-AuNCs/GO nanocomposite, a turn-on NIR fluorescent probe with negligible background fluorescence due to the super fluorescence quenching property of GO. The NIR fluorescence of the Tf-AuNCs/GO nanocomposite was effectively restored in the presence of TfR, due to the specific interaction between Tf and TfR and the competition of TfR with the GO for the Tf in Tf-AuNCs/GO composite. The developed turn-on NIR fluorescence probe offered excellent water solubility, stability, and biocompatibility, and exhibited high specificity to TfR with negligible cytotoxicity. The probe was successfully applied for turn-on fluorescent bioimaging of cancer cells and small animals.
Third-order optical nonlinearity of N-doped graphene oxide nanocomposites at different GO ratios
NASA Astrophysics Data System (ADS)
Kimiagar, Salimeh; Abrinaei, Fahimeh
2018-05-01
In the present work, the influence of GO ratios on the structural, linear and nonlinear optical properties of nitrogen-doped graphene oxide nanocomposites (N-GO NCs) has been studied. N-GO NCs were synthesized by hydrothermal method. The XRD, FTIR, SEM, and TEM results confirmed the reduction of GO by nitrogen doping. The energy band gaps of N-GO NCs calculated from UV-Vis analyzed by using Tauc plot. To obtain further insight into potential optical changes in the N-GO NCs by increasing GO contents, Z-scan analysis was performed with nanosecond Nd-YAG laser at 532 nm. The nonlinear absorption coefficient, β, and nonlinear refractive index, n2, for N-GO NCs at the laser intensity of 113 MW/cm were measured and an increase was observed in both parameters after addition of nitrogen to GO. The third-order nonlinear optical susceptibilities of N-GO NCs were measured in the order of 10-9 esu. The results showed that N-GO NCs have negative nonlinearity which can be controlled by GO contents to obtain the highest values for nonlinear optical parameters. The nonlinear optical results not only imply that N-GO NCs can serve as an important material in the advancing of optoelectronics but also open new possibilities for the design of new graphene-based materials by variation of N and GO ratios as well as manufacturing conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petkov, Valeri; Prasai, Binay; Shastri, Sarvjit
Practical applications require the production and usage of metallic nanocrystals (NCs) in large ensembles. Besides, due to their cluster-bulk solid duality, metallic NCs exhibit a large degree of structural diversity. This poses the question as to what atomic-scale basis is to be used when the structure–function relationship for metallic NCs is to be quantified precisely. In this paper, we address the question by studying bi-functional Fe core-Pt skin type NCs optimized for practical applications. In particular, the cluster-like Fe core and skin-like Pt surface of the NCs exhibit superparamagnetic properties and a superb catalytic activity for the oxygen reduction reaction,more » respectively. We determine the atomic-scale structure of the NCs by non-traditional resonant high-energy X-ray diffraction coupled to atomic pair distribution function analysis. Using the experimental structure data we explain the observed magnetic and catalytic behavior of the NCs in a quantitative manner. Lastly, we demonstrate that NC ensemble-averaged 3D positions of atoms obtained by advanced X-ray scattering techniques are a very proper basis for not only establishing but also quantifying the structure–function relationship for the increasingly complex metallic NCs explored for practical applications.« less
Mechanistic aspects of fluorescent gold nanocluster internalization by live HeLa cells
NASA Astrophysics Data System (ADS)
Yang, Linxiao; Shang, Li; Nienhaus, G. Ulrich
2013-01-01
We have studied cellular uptake of ultrasmall fluorescent gold nanoclusters (AuNCs) by HeLa cells by confocal fluorescence microscopy in combination with quantitative image analysis. Water solubilized, lipoic acid-protected AuNCs, which had an overall hydrodynamic diameter of 3.3 nm and emitted fluorescence in the near-infrared region at ~700 nm, were observed to accumulate on the cell membrane prior to internalization. The internalization mechanisms were analyzed using inhibitors known to interfere with specific pathways. Cellular uptake of AuNCs is energy-dependent and involves multiple mechanisms: clathrin-mediated endocytosis and macropinocytosis appear to play a significant role, whereas the caveolin-mediated pathway contributes only to a lesser extent. Co-labeling of different cell organelles showed that intracellular trafficking of AuNCs mainly follows through endosomal pathways. The AuNCs were ultimately transferred to lysosomes; they were completely excluded from the nucleus even after 24 h.We have studied cellular uptake of ultrasmall fluorescent gold nanoclusters (AuNCs) by HeLa cells by confocal fluorescence microscopy in combination with quantitative image analysis. Water solubilized, lipoic acid-protected AuNCs, which had an overall hydrodynamic diameter of 3.3 nm and emitted fluorescence in the near-infrared region at ~700 nm, were observed to accumulate on the cell membrane prior to internalization. The internalization mechanisms were analyzed using inhibitors known to interfere with specific pathways. Cellular uptake of AuNCs is energy-dependent and involves multiple mechanisms: clathrin-mediated endocytosis and macropinocytosis appear to play a significant role, whereas the caveolin-mediated pathway contributes only to a lesser extent. Co-labeling of different cell organelles showed that intracellular trafficking of AuNCs mainly follows through endosomal pathways. The AuNCs were ultimately transferred to lysosomes; they were completely excluded from the nucleus even after 24 h. Electronic supplementary information (ESI) available: Effect of serum on the AuNC uptake by HeLa cells and colocalization result of AuNCs with the cell nucleus for 2-24 h. See DOI: 10.1039/c2nr33147k
An ontology-based nurse call management system (oNCS) with probabilistic priority assessment
2011-01-01
Background The current, place-oriented nurse call systems are very static. A patient can only make calls with a button which is fixed to a wall of a room. Moreover, the system does not take into account various factors specific to a situation. In the future, there will be an evolution to a mobile button for each patient so that they can walk around freely and still make calls. The system would become person-oriented and the available context information should be taken into account to assign the correct nurse to a call. The aim of this research is (1) the design of a software platform that supports the transition to mobile and wireless nurse call buttons in hospitals and residential care and (2) the design of a sophisticated nurse call algorithm. This algorithm dynamically adapts to the situation at hand by taking the profile information of staff members and patients into account. Additionally, the priority of a call probabilistically depends on the risk factors, assigned to a patient. Methods The ontology-based Nurse Call System (oNCS) was developed as an extension of a Context-Aware Service Platform. An ontology is used to manage the profile information. Rules implement the novel nurse call algorithm that takes all this information into account. Probabilistic reasoning algorithms are designed to determine the priority of a call based on the risk factors of the patient. Results The oNCS system is evaluated through a prototype implementation and simulations, based on a detailed dataset obtained from Ghent University Hospital. The arrival times of nurses at the location of a call, the workload distribution of calls amongst nurses and the assignment of priorities to calls are compared for the oNCS system and the current, place-oriented nurse call system. Additionally, the performance of the system is discussed. Conclusions The execution time of the nurse call algorithm is on average 50.333 ms. Moreover, the oNCS system significantly improves the assignment of nurses to calls. Calls generally have a nurse present faster and the workload-distribution amongst the nurses improves. PMID:21294860
Trap Modulated Charge Carrier Transport in Polyethylene/Graphene Nanocomposites.
Li, Zhonglei; Du, Boxue; Han, Chenlei; Xu, Hang
2017-06-21
The role of trap characteristics in modulating charge transport properties is attracting much attentions in electrical and electronic engineering, which has an important effect on the electrical properties of dielectrics. This paper focuses on the electrical properties of Low-density Polyethylene (LDPE)/graphene nanocomposites (NCs), as well as the corresponding trap level characteristics. The dc conductivity, breakdown strength and space charge behaviors of NCs with the filler content of 0 wt%, 0.005 wt%, 0.01 wt%, 0.1 wt% and 0.5 wt% are studied, and their trap level distributions are characterized by isothermal discharge current (IDC) tests. The experimental results show that the 0.005 wt% LDPE/graphene NCs have a lower dc conductivity, a higher breakdown strength and a much smaller amount of space charge accumulation than the neat LDPE. It is indicated that the graphene addition with a filler content of 0.005 wt% introduces large quantities of deep carrier traps that reduce charge carrier mobility and result in the homocharge accumulation near the electrodes. The deep trap modulated charge carrier transport attributes to reduce the dc conductivity, suppress the injection of space charges into polymer bulks and enhance the breakdown strength, which is of great significance in improving electrical properties of polymer dielectrics.
Ren, Keyu; Zhang, Wenlin; Cao, Shurui; Wang, Guomin; Zhou, Zhiqin
2018-05-06
Carbon-based Fe₃O₄ nanocomposites (C/Fe₃O₄ NCs) were synthesized by a simple one-step hydrothermal method using waste pomelo peels as the carbon precursors. The characterization results showed that they had good structures and physicochemical properties. The prepared C/Fe₃O₄ NCs could be applied as excellent and recyclable adsorbents for magnetic solid phase extraction (MSPE) of 11 triazole fungicides in fruit samples. In the MSPE procedure, several parameters including the amount of adsorbents, extraction time, the type and volume of desorption solvent, and desorption time were optimized in detail. Under the optimized conditions, the good linearity ( R ² > 0.9916), the limits of detection (LOD), and quantification (LOQ) were obtained in the range of 1⁻100, 0.12⁻0.55, and 0.39⁻1.85 μg/kg for 11 pesticides, respectively. Lastly, the proposed MSPE method was successfully applied to analyze triazole fungicides in real apple, pear, orange, peach, and banana samples with recoveries in the range of 82.1% to 109.9% and relative standard deviations (RSDs) below 8.4%. Therefore, the C/Fe₃O₄ NCs based MSPE method has a great potential for isolating and pre-concentrating trace levels of triazole fungicides in fruits.
Jo, Hongil; Kim, Yeong Hun; Lee, Dong Woo; Ok, Kang Min
2014-08-14
Y(3+)-doped noncentrosymmetric (NCS) bismuth tellurite materials, Bi(2-x)Y(x)TeO5 (x = 0, 0.1, and 0.2), have been synthesized through standard solid-state reactions and structurally characterized by powder neutron diffraction. The reported NCS materials crystallize in the orthorhombic space group Abm2 (no. 39), and exhibit pseudo-three-dimensional frameworks that are composed of BiO3, BiO5, and TeO3 polyhedra. Detailed diffraction studies show that the cell volume of Bi(2-x)Y(x)TeO5 decreases with an increasing amount of Y(3+)on the Bi(3+) sites. However, no ordering between Bi(3+) and Y(3+) was observed in the Bi(2-x)Y(x)TeO5. Powder second-harmonic generation (SHG) measurements, using 1064 nm radiation, reveal that Bi2TeO5, Bi(1.9)Y(0.1)TeO5, and Bi(1.8)Y(0.2)TeO5 exhibit SHG efficiencies of approximately 300, 200, and 60 times that of α-SiO2, respectively. The reduction in SHG for Y(3+)-doped materials is consistent with the lack of net moment originating from polyhedra with a polarizable Bi(3+) cation.
NASA Astrophysics Data System (ADS)
Solanki, Ankita; Monfort, Montserrat; Kumar, Sujit Baran
2013-10-01
Two mononuclear nickel(II) complexes [NiL1(NCS)2] (1) and [NiL2(NCS)2] (2) and two azido bridged binuclear nickel(II) complexes [Ni(()2()2] (3) and [Ni(()2()2] (4), where L1, L2, L1‧ and L2‧ are N,N-diethyl-N‧,N‧-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1,2-diamine (L1), N,N-bis((1H-pyrazol-1-yl)methyl)-N‧,N‧-diethylethane-1,2-diamine (L2), N,N-diethyl-N‧-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1,2-diamine (L1‧) and N-((1H-pyrazol-1-yl)methyl)-N‧,N‧-diethylethane-1,2-diamine (L2‧) have been synthesized and characterized by microanalyses and physico-chemical methods. Single crystal X-ray diffraction analyses revealed that complexes 1 and 2 are mononuclear NCS- containing Ni(II) complex with octahedral geometry and complexes 3 and 4 are end-on (μ-1,1) azido bridged binuclear Ni(II) complexes with distorted octahedral geometry. Variable temperature magnetic studies of the complexes 3 and 4 display ferromagnetic interaction with J values 19 and 32 cm-1, respectively.
NASA Astrophysics Data System (ADS)
Chatbouri, S.; Troudi, M.; Kalboussi, A.; Souifi, A.
2018-02-01
The transport phenomena in metal-oxide-semiconductor (MOS) structures having silicon nanocrystals (Si-NCs) inside the dielectric layer have been investigated, in dark condition and under visible illumination. At first, using deep-level transient spectroscopy (DLTS), we find the presence of series electron traps having very close energy levels (comprised between 0.28 and 0.45 eV) for ours devices (with/without Si-NCs). And a single peak appears at low temperature only for MOS with Si-NCs related to Si-NCs DLTS response. In dark condition, the conduction mechanism is dominated by the thermionic fast emission/capture of charge carriers from the highly doped polysilicon layer to Si-substrate through interface trap states for MOS without Si-NCs. The tunneling of charge carriers from highly poly-Si to Si substrate trough the trapping/detrapping mechanism in the Si-NCs, at low temperature, contributed to the conduction mechanism for MOS with Si-NCs. The light effect on transport mechanisms has been investigated using current-voltage ( I- V), and high frequency capacitance-voltage ( C- V) methods. We have been marked the photoactive trap effect in inversion zone at room temperature in I- V characteristics, which confirm the contribution of photo-generated charge on the transport mechanisms from highly poly-Si to Si substrate trough the photo-trapping/detrapping mechanism in the Si-NCs and interfaces traps levels. These results have been confirmed by an increasing about 10 pF in capacity's values for the C- V characteristics of MOS with Si-NCs, in the inversion region for inverse high voltage applied under photoexcitation at low temperature. These results are helpful to understand the principle of charge transport in dark condition and under illumination, of MOS structures having Si-NCs in the SiO x = 1.5 oxide matrix.
Koklioti, Malamatenia A; Skaltsas, Theodosis; Sato, Yuta; Suenaga, Kazu; Stergiou, Anastasios; Tagmatarchis, Nikos
2017-07-13
Metal nanoclusters (M NCs ) based on silver and gold, abbreviated as Ag NCs and Au NCs , respectively, were synthesized and combined with functionalized graphene, abbreviated as f-G, forming novel M NC /f-G ensembles. The preparation of M NCs /f-G was achieved by employing attractive electrostatic interactions developed between negatively charged M NCs , attributed to the presence of carboxylates due to α-lipoic acid employed as a stabilizer, and positively charged f-G, attributed to the presence of ammonium units as addends. The realization of M NC /f-G ensembles was established via titration assays as evidenced by electronic absorption and photoluminescence spectroscopy as well as scanning transmission electron microscopy (STEM) and energy-dispersive X-ray (EDX) spectroscopy analyses. Photoinduced charge-transfer phenomena were inferred within M NCs /f-G, attributed to the suppression of M NC photoluminescence by the presence of f-G. Next, the M NC /f-G ensembles were successfully employed as proficient catalysts for the model reduction of 4-nitrophenol to the corresponding 4-aminophenol as proof for the photoinduced hydrogen production. Particularly, the reduction kinetics decelerated by half when bare M NCs were employed vs. the M NC /f-G ensembles, highlighting the beneficial role of M NCs /f-G in catalysing the process. Furthermore, Au NCs /f-G displayed exceptionally higher catalytic activity both in the dark and under visible light illumination conditions, which is ascribed to three synergistic mechanisms, namely, (a) hydride transfer from Au-H, (b) hydride transfer from photogenerated Au-H species, and (c) hydrogen produced by the photoreduction of water. Finally, recycling and re-employing M NCs /f-G in successive catalytic cycles without loss of activity toward the reduction of 4-nitrophenol was achieved, thereby highlighting their wider applicability.
Cellular Uptake and Tissue Biodistribution of Functionalized Gold Nanoparticles and Nanoclusters.
Escudero-Francos, María A; Cepas, Vanesa; González-Menédez, Pedro; Badía-Laíño, Rosana; Díaz-García, Marta E; Sainz, Rosa M; Mayo, Juan C; Hevia, David
2017-02-01
In this study, the in vitro uptake by fibroblasts and in vivo biodistribution of 15 nm 11-mercaptoundecanoicacid-protected gold nanoparticles (AuNPs-MUA) and 3 nm glutathione- and 3 nm bovine serum albumin-protected gold nanoclusters (AuNCs@GSH and AuNCs@BSA, respectively) were evaluated. In vitro cell viability was examined after gold nanoparticle treatment for 48 h, based on MTT assays and analyses of morphological structure, the cycle cell, cellular doubling time, and the gold concentration in cells. No potential toxicity was observed at any studied concentration (up to 10 ppm) for AuNCs@GSH and AuNCs@BSA, whereas lower cell viability was observed for AuNPs-MUA at 10 ppm than for other treatments. Neither morphological damage nor modifications to the cell cycle and doubling time were detected after contact with nanoparticles. Associations between cells and AuNPs and AuNCs were demonstrated by inductively coupled plasma mass spectrometry (ICP-MS). AuNCs@GSH exhibited fluorescence emission at 611 nm, whereas AuNCs@BSA showed a band at 640 nm. These properties were employed to confirm their associations with cells by fluorescence confocal microscopy; both clusters were observed in cells and maintained their original fluorescence. In vivo assays were performed using 9 male mice treated with 1.70 μg Au/g body weight gold nanoparticles for 24 h. ICP-MS measurements showed a different biodistribution for each type of nanoparticle; AuNPs-MUA mainly accumulated in the brain, AuNCs@GSH in the kidney, and AuNCs@BSA in the liver and spleen. Spleen indexes were not affected by nanoparticle treatment; however, AuNCs@BSA increased the thymus index significantly from 1.28 to 1.79, indicating an immune response. These nanoparticles have great potential as organ-specific drug carriers and for diagnosis, photothermal therapy, and imaging.
Long, X-A; Karuna, T; Zhang, X; Luo, B; Duan, C-Z
2012-01-01
Objective This paper mainly focuses on our preliminary experience and short-term outcome evaluation of embolisation of non-cavernous dural arteriovenous fistulas (ncsDAVFs) and cavernous sinus dural arteriovenous fistulas (csDAVFs) using Onyx 18 (ev3, Plymouth, MN), and in combination with coils, via arterial and venous approaches, respectively. Methods Between August 2008 and March 2010, 21 DAVFs (11 ncsDAVFs and 10 csDAVFs; age range: 28–68 years; 12 females and 9 males) were undertaken. Borden classification showed Type III in 1 and Type II in 10 ncsDAVFs, and Type II in 4 and Type I in 6 csDAVFs. Onyx 18 was used in 11 ncsDAVFs (10 via single feeder and 1 via 2 feeders). Onyx 18 or in combination with coils was used in 10 csDAVFs (9 via the inferior petrosal sinus and 1 via the superior ophthalmic vein). Results Total occlusion in immediate angiography was achieved in 18 cases (85.7%; 10 ncsDAVFs and 8 csDAVFs), and near-total occlusion in 1 ncsDAVF and 2 csDAVFs. Onyx 18 was migrated into normal vasculature in two ncsDAVFs without any sequelae. One csDAVF had VI cranial nerve palsy post-operatively, which completely recovered 2 weeks post-embolisation. Follow-up angiography at 3–12 months showed complete occlusion in 20 cases (95.2%; 10 ncsDAVFs and 10 csDAVFs). One ncsDAVF (4.8%) recurred after 3 months and was successfully re-embolised. Conclusion Preliminary results achieved after embolising 11 ncsDAVFs and 10 csDAVFs using Onyx 18 and in combination with coils via arterial and venous pathways, respectively, appeared to be safe, feasible and effective, as 95.2% of cases were totally occluded without any clinical sequelae. PMID:22374275
Autoclave and beta-amylolysis lead to reduced in vitro digestibility of starch.
Hickman, B Elliot; Janaswamy, Srinivas; Yao, Yuan
2009-08-12
In this study, a combination of autoclave and beta-amylolysis was used to modulate the digestibility of normal corn starch (NCS) and wheat starch (WS). The modification procedure comprised three cycles of autoclave at 35% moisture content and 121 degrees C, beta-amylolysis, and one additional cycle of autoclave. Starch materials were sampled at each stage and characterized. The fine structure of starch was determined using high-performance size-exclusion chromatography, the micromorphology of starch dispersion was imaged using cryo-SEM, the crystalline pattern was evaluated using wide-angle X-ray powder diffraction, and the digestibility was measured using Englyst assay. After beta-amylolysis, amylose was enriched (from 25.4 to 33.2% for NCS and from 27.5 to 32.8% for WS) and the branch density was increased (from 5.2 to 7.7% for NCS and from 5.3 to 7.9% for WS). Cryo-SEM images showed that the autoclave treatment led to the formation of a low-swelling, high-density gel network, whereas beta-amylolysis nearly demolished the network structure. The loss of A-type crystalline structure and the formation of B- and V-type structures resulted from autoclave, which suggests the formation of amylose-based ordered structure. Englyst assay indicated that, due to beta-amylolysis, the resistant starch (RS) content was increased to 30 from 11% of native NCS and to 23 from 9% of native WS. In contrast, autoclave showed only minor impact on RS levels. The increase of RS observed in this study is associated with enhanced branch density, which is different from the four types of RS commonly defined.
Oxygen sensitive polymeric nanocapsules for optical dissolved oxygen sensors
NASA Astrophysics Data System (ADS)
Sun, Zhijuan; Cai, Chenxin; Guo, Fei; Ye, Changhuai; Luo, Yingwu; Ye, Shuming; Luo, Jianchao; Zhu, Fan; Jiang, Chunyue
2018-04-01
Immobilization of the oxygen-sensitive probes (OSPs) in the host matrix greatly impacts the performance and long-term usage of the optical dissolved oxygen (DO) sensors. In this work, fluorescent dyes, as the OSPs, were encapsulated with a crosslinked fluorinated polymer shell by interfacial confined reversible addition fragmentation chain transfer miniemulsion polymerization to fabricate oxygen sensitive polymeric nanocapsules (NCs). The location of fluorescent dyes and the fluorescent properties of the NCs were fully characterized by fourier transform infrared spectrometer, x-ray photoelectron spectrometer and fluorescent spectrum. Dye-encapsulated capacity can be precisely tuned from 0 to 1.3 wt% without self-quenching of the fluorescent dye. The crosslinked fluorinated polymer shell is not only extremely high gas permeability, but also prevents the fluorescent dyes from leakage in aqueous as well as in various organic solvents, such as ethanol, acetone and tetrahydrofuran (THF). An optical DO sensor based on the oxygen sensitive NCs was fabricated, showing high sensitivity, short response time, full reversibility, and long-term operational stability of online monitoring DO. The sensitivity of the optical DO sensor is 7.02 (the ratio of the response value in fully deoxygenated and saturated oxygenated water) in the range 0.96-14.16 mg l-1 and the response time is about 14.3 s. The sensor’s work curve was fit well using the modified Stern-Volmer equation by two-site model, and its response values are hardly affected by pH ranging from 2 to 12 and keep constant during continuous measurement for 3 months. It is believed that the oxygen sensitive polymeric NCs-based optical DO sensor could be particularly useful in long-term online DO monitoring in both aqueous and organic solvent systems.
Matar, Samir F.; Guionneau, Philippe; Chastanet, Guillaume
2015-01-01
For spin crossover (SCO) complexes, computation results are reported and confirmed with experiments at multiscale levels of the isolated molecule and extended solid on the one hand and theory on the other hand. The SCO phenomenon which characterizes organometallics based on divalent iron in an octahedral FeN6-like environment with high spin (HS) and low spin (LS) states involves the LS/HS switching at the cost of small energies provided by temperature, pressure or light, the latter connected with Light-Induced Excited Spin-State Trapping (LIESST) process. Characteristic infra red (IR) and Raman vibration frequencies are computed within density functional theory (DFT) framework. In [Fe(phen)2(NCS)2] a connection of selected frequencies is established with an ultra-fast light-induced LS → HS photoswitching mechanism. In the extended solid, density of state DOS and electron localization function (ELF) are established for both LS and HS forms, leading to characterizion of the compound as an insulator in both spin states with larger gaps for LS configuration, while keeping molecular features in the solid. In [Fe(PM-BiA)2(NCS)2], by combining DFT and classical molecular dynamics, the properties and the domains of existence of the different phases are obtained by expressing the potential energy surfaces in a short range potential for Fe–N interactions. Applying such Fe–N potentials inserted in a classical force field and carrying out molecular dynamics (MD) in so-called “semi-classical MD” calculations, lead to the relative energies of HS/LS configurations of the crystal and to the assessment of the experimental (P, T) phase diagram. PMID:25686037
Han, Nami; Yabroudi, Mohammad A.; Stearns-Reider, Kristen; Helkowski, Wendy; Sicari, Brian M.; Rubin, J. Peter; Badylak, Stephen F.; Boninger, Michael L.
2016-01-01
Background Electrodiagnosis can reveal the nerve and muscle changes following surgical placement of an extracellular matrix (ECM) bioscaffold for treatment of volumetric muscle loss (VML). Objective The purpose of this study was to characterize nerve conduction study (NCS) and electromyography (EMG) changes following ECM bioscaffold placement in individuals with VML. The ability of presurgical NCS and EMG to be used as a tool to help identify candidates who are likely to display improvements postsurgically also was explored. Design A longitudinal case series design was used. Methods The study was conducted at the McGowan Institute for Regenerative Medicine at the University of Pittsburgh. Eight individuals with a history of chronic VML participated. The intervention was surgical placement of an ECM bioscaffold at the site of VML. The strength of the affected region was measured using a handheld dynamometer, and electrophysiologic evaluation was conducted on the affected limb with standard method of NCS and EMG. All measurements were obtained the day before surgery and repeated 6 months after surgery. Results Seven of the 8 participants had a preoperative electrodiagnosis of incomplete mononeuropathy within the site of VML. After ECM treatment, 5 of the 8 participants showed improvements in NCS amplitude or needle EMG parameters. The presence of electrical activity within the scaffold remodeling site was concomitant with clinical improvement in muscle strength. Limitations This study had a small sample size, and participants served as their own controls. The electromyographers and physical therapists performing the evaluation were not blinded. Conclusions Electrodiagnostic data provide objective evidence of physiological improvements in muscle function following ECM placement at sites of VML. Future studies are warranted to further investigate the potential of needle EMG as a predictor of successful outcomes following ECM treatment for VML. PMID:26564252
Ding, Yanan; Chen, Miaomiao; Wu, Kaili; Chen, Mingxing; Sun, Lifang; Liu, Zhenxue; Shi, Zhiqiang; Liu, Qingyun
2017-11-01
N,N'-di-caboxy methyl perylene diimides (PDI), as one of the most promising functional materials in optional chemosensing, was first used to combine with Co 3 O 4 nanoparticles through a facile two-step hydrothermal method and obtain the PDI functionalized Co 3 O 4 nanocomposites (PDI-Co 3 O 4 NCs). PDI-Co 3 O 4 NCs were characterized by a series of technical analysis including transmission electron microscope (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR), respectively. The experimental results indicated that the as-prepared PDI-Co 3 O 4 NCs possessed the higher peroxidase-like activity than that of Co 3 O 4 nanoparticles without PDI, and could rapidly catalyze oxidation reaction of the chromogenic substrate TMB in the presence of H 2 O 2 to a blue product (oxTMB) observed by the naked eye. The improved catalytic activity of PDI-Co 3 O 4 NCs for colorimetric reactions could be attributed to the synergistic effects of PDI and Co 3 O 4 nanoparticles. On the basis of these experimental results, a convenient colorimetric system based on PDI-Co 3 O 4 as enzyme mimic that is highly sensitive and selective was developed for glucose detection. Meanwhile, the electron transfer between H 2 O 2 and TMB was responsible for the oxidation of TMB. The present work demonstrates a general strategy for the design of organic molecules functionalized oxide for different applications, such as nanocatalysts, biosensors and nanomedicine. Copyright © 2017 Elsevier B.V. All rights reserved.
Coordination Chemistry of Homoleptic Actinide(IV)-Thiocyanate Complexes
Carter, Tyler J.; Wilson, Richard E.
2015-09-10
Here, the synthesis, X-ray crystal structure, vibrational and optical spectroscopy for the eight-coordinate thiocyanate compounds, [Et 4N] 4[Pu IV(NCS) 8], [Et 4N] 4[Th IV(NCS) 8], and [Et 4N] 4[Ce III(NCS) 7(H 2O)] are reported. Thiocyanate was found to rapidly reduce plutonium to Pu III in acidic solutions (pH<1) in the presence of NCS –. The optical spectrum of [Et 4N][SCN] containing Pu III solution was indistinguishable from that of aquated Pu III suggesting that inner-sphere complexation with [Et 4N][SCN] does not occur in water. However, upon concentration, the homoleptic thiocyanate complex [Et 4N] 4[Pu IV(NCS) 8] was crystallized when amore » large excess of [Et 4N][NCS] was present. This compound, along with its U IV analogue, maintains inner-sphere thiocyanate coordination in acetonitrile based on the observation of intense ligand-to-metal charge-transfer bands. Spectroscopic and crystallographic data do not support the interaction of the metal orbitals with the ligand π system, but support an enhanced An IV–NCS interaction, as the Lewis acidity of the metal ion increases from Th to Pu.« less
NASA Astrophysics Data System (ADS)
Wang, Haonan; Huang, Zhenzhen; Guo, Zilong; Yang, Wensheng
2017-07-01
In this paper, we reported an approach for efficient incorporation of glutathione-capped gold nanoclusters (GSH-Au NCs) into silica particles with the assistance of a polyelectrolyte, poly-diallyldimethyl-ammoniumchloride (PDDA). In this approach, the negatively charged GSH-Au NCs were firstly mixed with the positively charged PDDA to form PDDA-Au NC complexes. Then, the complexes were added into a pre-hydrolyzed Stöber system to get the Au NCs-doped silica particles. With increased ratio of PDDA in the complexes, the negative charges on surface of the Au NCs were neutralized gradually and finally reversed to positive in presence of excess PDDA, which facilitated the incorporation of the Au NCs into the negatively charged silica matrix. Under the optimal amount of PDDA in the complexes, the incorporation efficiency of Au NCs could be as high as 88%. After being incorporated into the silica matrix, the Au NCs become much robust against pH and heavy metal ions attributed to the protection effect of silica and PDDA. This approach was also extendable to highly efficient incorporation of other negatively charged metal nanoclusters, such as bovine serum albumin-capped Cu nanoclusters, into silica matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bentley, C.L.; Dunn, M.E.; Goluoglu, S.
1996-12-31
The nuclear criticality safety (NCS) program at the University of Tennessee-Knoxville (UTK) emphasizes the {open_quotes}real world{close_quotes} in the NCS courses that are offered and also the NCS research that is conducted. Two NCS courses are offered at UTK. The first course is an introduction to the NCS field, which uses the text by Knief and includes an overview of criticality accidents that have actually happened, standards that are currently in use and being developed, and state-of-the-art computer methods and codes. The students learn the same codes, including both theory and application, that are used by most professionals in the NCSmore » field. Thus, if a student accepts a job offer in the NCS area after graduation, he or she is capable of doing productive NCS work the first day on the job. Subcritical limits, hand-calculation methods, current regulations [both U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC)] and current practices are also discussed in the introductory course. The second course emphasizes real world experience and is taught by five instructors with over 100 years of combined experience.« less
Copper nanoclusters as probes for turn-on fluorescence sensing of L-lysine.
Zhang, Mingming; Qiao, Juan; Zhang, Shufeng; Qi, Li
2018-05-15
Herein, a unique protocol based on copper nanoclusters (CuNCs) probe for turn-on fluorescence sensing of L-lysine was developed. The fluorescent CuNCs with ovalbumin as the stabilizer was prepared by a simple, one-step and green method. When 370 nm was used as the excitation wavelength, the resultant CuNCs exhibited a pale blue fluorescence with the maximum emission at 440 nm. Interestingly, existence of L-lysine evoked the obvious fluorescence intensity increase of CuNCs. The detection limit of the proposed method for L-lysine was 5.5 μM, with a good linear range from 10.0 μM to 1.0 mM (r 2 = 0.999). Moreover, the possible mechanism for enhanced fluorescence intensity of CuNCs by addition of L-lysine was explored and discussed briefly. Further, the as-prepared fluorescent CuNCs was successfully applied in detection of L-lysine in urine. Our results demonstrated that L-lysine could be monitored by the probe, providing new path for construction of CuNCs as fluorescent probes and showing great potential in quantification of L-lysine in real samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Lu, Peng; Mu, Weiwei; Xu, Jun; Zhang, Xiaowei; Zhang, Wenping; Li, Wei; Xu, Ling; Chen, Kunji
2016-01-01
Doping in semiconductors is a fundamental issue for developing high performance devices. However, the doping behavior in Si nanocrystals (Si NCs) has not been fully understood so far. In the present work, P-doped Si NCs/SiO2 multilayers are fabricated. As revealed by XPS and ESR measurements, P dopants will preferentially passivate the surface states of Si NCs. Meanwhile, low temperature ESR spectra indicate that some P dopants are incorporated into Si NCs substitutionally and the incorporated P impurities increase with the P doping concentration or annealing temperature increasing. Furthermore, a kind of defect states will be generated with high doping concentration or annealing temperature due to the damage of Si crystalline lattice. More interestingly, the incorporated P dopants can generate deep levels in the ultra-small sized (~2 nm) Si NCs, which will cause a new subband light emission with the wavelength compatible with the requirement of the optical telecommunication. The studies of P-doped Si NCs/SiO2 multilayers suggest that P doping plays an important role in the electronic structures and optoelectronic characteristics of Si NCs. PMID:26956425
One-step engineered self-assembly Co3O4 nanoparticles to nanocubes for supercapacitors
NASA Astrophysics Data System (ADS)
Nagajyothi, P. C.; Pandurangan, M.; Sreekanth, T. V. M.; Shim, Jaesool
2018-02-01
Tricobalt tetraoxide or cobalt oxide (Co3O4) nanocubes (NCs) were synthesized from the self-assemblies of Co3O4 nanoparticles (NPs) via a simple one-step hydrothermal method. X-ray diffraction analysis confirmed the cubic crystal structure of Co3O4 NCs. The surface properties were investigated by x-ray photoelectron spectroscopy, which suggests the co-existence of Co in +2 and +3 states. The self-assemblies of aggregation of NPs to NCs were inspected using scanning electron microscopy, which is supported by transmission electron microscopy. The electrochemical properties of Co3O4 NCs were carried out by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) curves and impedance analysis. The areal capacitance of 3.04 mF cm-2 was obtained at current density of 10 μA cm-2. The Co3O4 NCs electrode exhibits good long-cyclic stability with 92.1% capacitance retention over 3000 cycles. The CV, GCD and impedance curves of Co3O4 NCs were recorded after cyclic test, which are similar to the curves recorded before the test. Therefore, the Co3O4 NCs serves good candidate as positive electrode materials for asymmetric supercapacitors.
Sharma, V K; Alipour, A; Soran-Erdem, Z; Kelestemur, Y; Aykut, Z G; Demir, H V
2016-05-18
In this work, we report Mn-Fe heterodoped ZnSe tetrapod nanocrystals (NCs) synthesized to synergistically enhance contrast in both T1- and T2-weighted magnetic resonance imaging (MRI). The proposed NCs were prepared using a customized heteroarchitecture such that the manganese (Mn) is confined in the core and iron (Fe) in the branches of the tetrapods. The elemental composition and profile of these NCs were studied using X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, and inductively coupled plasma mass spectroscopy. Photoluminescence quantum yield of these heterodoped NCs in water is ∼30%. Magnetic measurements reveal the simultaneous presence of superparamagnetic and paramagnetic behavior in these NCs because of the coexistence of Mn(2+) and Fe(2+) dopants. Their potential as simultaneous positive and negative MRI contrast agents was demonstrated by relaxivity measurements and in vivo MRI. From the in vivo studies, we also found that these NCs (with a hydrodynamic diameter of 20 nm) are excreted from the body within 24 h after the injection. Therefore, these heterodoped tetrapods NCs, while being fluorescent and safe, hold great future as a synergistically enhancing dual-modal MRI contrast agent.
Surfaces of nanomaterials for sustainable energy applications: thin-film 2D-ACAR and PALS studies
NASA Astrophysics Data System (ADS)
Barbiellini, B.; Chai, L.; Al-Sawai, W.; Eijt, S. W. H.; Mijnarends, P. E.; Schut, H.; Gao, Y.; Houtepen, A. J.; Ravelli, L.; Egger, W.; van Huis, M. A.; Bansil, A.
2013-03-01
Positron (e+) annihilation spectroscopy is one of only a few techniques to probe the surfaces of nanoparticles. We investigated thin films of PbSe colloidal semiconductor nanocrystals (NCs) in the range 2-10 nm as prospective highly efficient absorbers for solar cells. We compare and contrast our findings with previous studies on CdSe NCs. Evidence obtained from our e+ lifetime spectroscopy study using the PLEPS spectrometer shows that 90-95% of the implanted positrons are effectively trapped and confined at the surfaces of these NCs. The remaining 5-10% of the e+ annihilate in the relatively large oleic acid ligands, in fair agreement with the estimated positron stopping power of the PbSe nanoparticle ``core'' relative to the ligand ``shell.'' 2D-ACAR measurements on the same set of films using the low-energy e+ beam POSH showed that the e+ wavefunction at the surfaces of the PbSe NCs is more localized than for the case of CdSe NCs. Comparison with calculated e+ - e- momentum densities indicates a Pb deficiency at the surfaces of the PbSe NCs, which correlates with e+ lifetime and the NCs morphology. Work supported in part by the US Department of Energy.
Secure voice for mobile satellite applications
NASA Technical Reports Server (NTRS)
Vaisnys, Arvydas; Berner, Jeff
1990-01-01
The initial system studies are described which were performed at JPL on secure voice for mobile satellite applications. Some options are examined for adapting existing Secure Telephone Unit III (STU-III) secure telephone equipment for use over a digital mobile satellite link, as well as for the evolution of a dedicated secure voice mobile earth terminal (MET). The work has included some lab and field testing of prototype equipment. The work is part of an ongoing study at JPL for the National Communications System (NCS) on the use of mobile satellites for emergency communications. The purpose of the overall task is to identify and enable the technologies which will allow the NCS to use mobile satellite services for its National Security Emergency Preparedness (NSEP) communications needs. Various other government agencies will also contribute to a mobile satellite user base, and for some of these, secure communications will be an essential feature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Anusree; Chatterjee, Souvik; Das, Dipankar, E-mail: ddas@alpha.iuc.res.in
2016-06-21
Nanocomposites (NCs) comprising (1−x) BiFeO{sub 3} (BFO) and x SrFe{sub 12}O{sub 19} (SRF) (x = 0.1, 0.2, 0.3, and 0.4) have been prepared by a sol-gel route. Presence of pure phases of both BiFeO{sub 3} (BFO) and SrFe{sub 12}O{sub 19} (SRF) in the NCs for x = 0.3 and 0.4 has been confirmed by Rietveld analysis of XRD data though a minor impurity phase is observed in the case of x = 0.1 and 0.2 NCs. Transmission electron micrographs of the NCs show that particles are mostly spherical with average size of 30 nm. M-H measurements at 300 and 10 K indicate predominantly ferrimagnetic behavior of all themore » NCs with an increasing trend of saturation magnetization values with increasing content of SRF. Dielectric constant (ε{sub r}) of the NCs at room temperature shows a dispersive behavior with frequency and attains a constant value at higher frequency. ε{sub r} − T measurements reveal an increasing trend of dielectric constant of the NCs with increasing temperature and show an anomaly around the antiferromagnetic transition temperature of BFO, which indicates magnetoelectric coupling in the NCs. The variation of capacitance in the presence of magnetic field confirms the enhancement of magnetoelectric effect in the NCs. {sup 57}Fe Mössbauer spectroscopy results indicate the presence of only Fe{sup 3+} ions in usual crystallographic sites of BFO and SRF.« less
Barbara, David W; Wetzel, David R; Pulido, Juan N; Pershing, Bryan S; Park, Soon J; Stulak, John M; Zietlow, Scott P; Morris, David S; Boilson, Barry A; Mauermann, William J
2013-07-01
To describe the perioperative management of patients with left ventricular assist devices (LVADs) who require general anesthesia while undergoing noncardiac surgery (NCS) at a single, large tertiary referral center. Electronic medical records from September 2, 2005, through May 31, 2012, were retrospectively reviewed to evaluate the perioperative management and outcomes in LVAD patients undergoing NCS. Patients were included only if they required a general anesthetic and had previously been discharged from the hospital after initial LVAD implantation. Thirty-three patients with LVADs underwent general anesthesia for 67 noncardiac operations. The mean ± SD time from LVAD implantation to NCS was 317 ± 349 days. All but 1 patient had axial flow LVADs. Anticoagulation or antiplatelet agents were present within 7 days before NCS in 49 procedures (73%) and reversed in 32 of 49 (65%). No perioperative thrombotic complications related to anticoagulation or antiplatelet reversal were noted. Red blood cell, fresh frozen plasma, and platelet transfusions were administered during 10, 6, and 4 operations, respectively. The only intraoperative complication was surgical bleeding. Postoperative complications were present in 12 patients after NCS and were mainly composed of bleeding. Three patients died within 30 days of NCS, with the causes of death not attributed to NCS. Patients with LVAD safely underwent NCS in a multidisciplinary setting that included preoperative optimization by cardiologists familiar with LVADs when feasible. Anticoagulation or antiplatelet agents were present preoperatively in most patients with LVADs and were safely reversed when necessary for NCS. The relatively high occurrence of postoperative bleeding is consistent with previous series. Copyright © 2013 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Yujing; Wang, Zhi Wei; Chiu, Chin-Yi; Ruan, Lingyan; Yang, Wenbing; Yang, Yang; Palmer, Richard E.; Huang, Yu
2012-01-01
Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more resistant to the CO poisoning than Pt NCs and Pt black. It is also demonstrated that the bimetallic Pt-Pd core-shell NCs can enhance the current density of the methanol oxidation reaction, lowering the over-potential by 35 mV with respect to the Pt core NCs. Further investigation reveals that the Pd/Pt ratio of 1/3, which corresponds to nearly monolayer Pd deposition on Pt core NCs, gives the highest oxidation current density and lowest over-potential. This study shows for the first time the systematic investigation of effects of Pd atomic shells on Pt-Pd bimetallic nanocatalysts, providing valuable guidelines for designing high-performance catalysts for fuel cell applications.Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more resistant to the CO poisoning than Pt NCs and Pt black. It is also demonstrated that the bimetallic Pt-Pd core-shell NCs can enhance the current density of the methanol oxidation reaction, lowering the over-potential by 35 mV with respect to the Pt core NCs. Further investigation reveals that the Pd/Pt ratio of 1/3, which corresponds to nearly monolayer Pd deposition on Pt core NCs, gives the highest oxidation current density and lowest over-potential. This study shows for the first time the systematic investigation of effects of Pd atomic shells on Pt-Pd bimetallic nanocatalysts, providing valuable guidelines for designing high-performance catalysts for fuel cell applications. Electronic supplementary information (ESI) available: Supplementary TEM, EELS, EDS, Electro-chemical measurement data can be found. See DOI: 10.1039/c1nr11374g
Methods for preparing colloidal nanocrystal-based thin films
Kagan, Cherie R.; Fafarman, Aaron T.; Choi, Ji-Hyuk; Koh, Weon-kyu; Kim, David K.; Oh, Soong Ju; Lai, Yuming; Hong, Sung-Hoon; Saudari, Sangameshwar Rao; Murray, Christopher B.
2016-05-10
Methods of exchanging ligands to form colloidal nanocrystals (NCs) with chalcogenocyanate (xCN)-based ligands and apparatuses using the same are disclosed. The ligands may be exchanged by assembling NCs into a thin film and immersing the thin film in a solution containing xCN-based ligands. The ligands may also be exchanged by mixing a xCN-based solution with a dispersion of NCs, flocculating the mixture, centrifuging the mixture, discarding the supernatant, adding a solvent to the pellet, and dispersing the solvent and pellet to form dispersed NCs with exchanged xCN-ligands. The NCs with xCN-based ligands may be used to form thin film devices and/or other electronic, optoelectronic, and photonic devices. Devices comprising nanocrystal-based thin films and methods for forming such devices are also disclosed. These devices may be constructed by depositing NCs on to a substrate to form an NC thin film and then doping the thin film by evaporation and thermal diffusion.
Zhu, Wenli; Li, Huili; Wan, Ajun; Liu, Lanbo
2017-01-01
In present work, the Au nanoclusters-modified polylactic acid fiber (PLA-Au NCs) with bright red fluorescence were fabricated by the encapsulation of Au nanoclusters (Au NCs) in the PLA fiber treated with H 2 O 2 . The Au 25 nanoclusters stabilized by bovine serum albumin (BSA-Au NCs) were prepared via an improved "green" synthetic routine. With pretreatment of the PLA fiber in H 2 O 2 concentration of 12 and 18 %, the as-prepared PLA-Au NCs exhibited brighter red emission with a strong peak centered at ~640 nm than BSA-Au NCs. The fluorescence can be quenched by nitric oxide (NO). A good linear relationship between the relative fluorescence quenching intensity of the as-prepared PLA-Au NCs and the concentration of NO can be obtained in the range of 0.0732 to 0.7320 mM, and the detection limit was 0.0070 mM.
NASA Astrophysics Data System (ADS)
Bodnarchuk, Maryna I.; Yakunin, Sergii; Piveteau, Laura; Kovalenko, Maksym V.
2015-12-01
Colloidal inorganic nanocrystals (NCs), functionalized with inorganic capping ligands, such as metal chalcogenide complexes (MCCs), have recently emerged as versatile optoelectronic materials. As-prepared, highly charged MCC-capped NCs are dispersible only in highly polar solvents, and lack the ability to form long-range ordered NC superlattices. Here we report a simple and general methodology, based on host-guest coordination of MCC-capped NCs with macrocyclic ethers (crown ethers and cryptands), enabling the solubilization of inorganic-capped NCs in solvents of any polarity and improving the ability to form NC superlattices. The corona of organic molecules can also serve as a convenient knob for the fine adjustment of charge transport and photoconductivity in films of NCs. In particular, high-infrared-photon detectivities of up to 3.3 × 1011 Jones with a fast response (3 dB cut-off at 3 kHz) at the wavelength of 1,200 nm were obtained with films of PbS/K3AsS4/decyl-18-crown-6 NCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Getman, Konstantin V.; Broos, Patrick S.; Feigelson, Eric D.
The Star Formation in Nearby Clouds (SFiNCs) project is aimed at providing a detailed study of the young stellar populations and of star cluster formation in the nearby 22 star-forming regions (SFRs) for comparison with our earlier MYStIX survey of richer, more distant clusters. As a foundation for the SFiNCs science studies, here, homogeneous data analyses of the Chandra X-ray and Spitzer mid-infrared archival SFiNCs data are described, and the resulting catalogs of over 15,300 X-ray and over 1,630,000 mid-infrared point sources are presented. On the basis of their X-ray/infrared properties and spatial distributions, nearly 8500 point sources have been identifiedmore » as probable young stellar members of the SFiNCs regions. Compared to the existing X-ray/mid-infrared publications, the SFiNCs member list increases the census of YSO members by 6%–200% for individual SFRs and by 40% for the merged sample of all 22 SFiNCs SFRs.« less
Jeong, Byeong Guk; Park, Young-Shin; Chang, Jun Hyuk; Cho, Ikjun; Kim, Jai Kyeong; Kim, Heesuk; Char, Kookheon; Cho, Jinhan; Klimov, Victor I; Park, Philip; Lee, Doh C; Bae, Wan Ki
2016-10-02
Thick inorganic shell endows colloidal nanocrystals (NCs) with enhanced photochemical stability and suppression of photoluminescence intermittency (also known as blinking). However, the progress of using thick-shell heterostructure NCs in applications has been limited, due to low photoluminescence quantum yield (PL QY 60%) at room temperature. Here, we demonstrate thick-shell NCs with CdS/CdSe/CdS seed/spherical quantum well/shell (SQW) geometry that exhibit near-unity PL QY at room temperature and suppression of blinking. In SQW NCs, the lattice mismatch is diminished between the emissive CdSe layer and the surrounding CdS layers as a result of coherent strain, which suppresses the formation of misfit defects and consequently permits ~ 100% PL QY for SQW NCs with thick CdS shell (≥ 5 nm). High PL QY of thick-shell SQW NCs are preserved even in concentrated dispersion and in film under thermal stress, which makes them promising candidates for applications in solid-state lightings and luminescent solar concentrators.
Effect of protons on the redox chemistry of colloidal zinc oxide nanocrystals.
Valdez, Carolyn N; Braten, Miles; Soria, Ashley; Gamelin, Daniel R; Mayer, James M
2013-06-12
Electron transfer (ET) reactions of colloidal 3-5 nm diameter ZnO nanocrystals (NCs) with molecular reagents are explored in aprotic solvents. Addition of an excess of the one-electron reductant Cp*2Co (Cp* = pentamethylcyclopentadienyl) gives NCs that are reduced by up to 1-3 electrons per NC. Protons can be added stoichiometrically to the NCs by either a photoreduction/oxidation sequence or by addition of acid. The added protons facilitate the reduction of the ZnO NCs. In the presence of acid, NC reduction by Cp*2Co can be increased to over 15 electrons per NC. The weaker reductant Cp*2Cr transfers electrons only to ZnO NCs in the presence of protons. Cp*2M(+) counterions are much less effective than protons at stabilizing reduced NCs. With excess Cp*2Co or Cp*2Cr, the extent of reduction increases roughly linearly with the number of protons added. Some of the challenges in understanding these results are discussed.
Geetha, D; Kavitha, S; Ramesh, P S
2015-11-01
In the present work we defined a novel method of TiO2 doped silver nanocomposite synthesis and stabilization using bio-degradable polymers viz., chitosan (Cts) and polyethylene glycol (PEG). These polymers are used as reducing agents. The instant formation of AgNPs was analyzed by visual observation and UV-visible spectrophotometer. TiO2 nanoparticles doped at different concentrations viz., 0.03, 0.06 and 0.09mM on PEG/Cts stabilized silver (0.04wt%) were successfully synthesized. This study presents a simple route for the in situ synthesis of both metal and polymer confined within the nanomaterial, producing ternary hybrid inorganic-organic nanomaterials. The results reveal that they have higher photocatalytic efficiencies under natural sun light. The synthesized TiO2 doped Ag nanocomposites (NCs) were characterized by SEM/EDS, TEM, XRD, FTIR and DLS with zeta potential. The stability of Ag/TiO2 nanocomposite is due to the high negative values of zeta potential and capping of constituents present in the biodegradable polymer which is evident from zeta potential and FT-IR studies. The XRD and EDS pattern of synthesized Ag/TiO2 NCs showed their crystalline structure, with face centered cubic geometry oriented in (111) plane. AFM and DLS studies revealed that the diameter of stable Ag/TiO2 NCs was approximately 35nm. Moreover the catalytic activity of synthesize Ag/TiO2 NCs in the reduction of methylene blue was studied by UV-visible spectrophotometer. The synthesized Ag/TiO2 NCs are observed to have a good catalytic activity on the reduction of methylene blue by bio-degradable which is confirmed by the decrease in absorbance maximum value of methylene blue with respect to time using UV-vis spectrophotometer. The significant enhancement in the photocatalytic activity of Ag/TiO2 nanocomposites under sun light irradiation can be ascribed to the effect of noble metal Ag by acting as electron traps in TiO2 band gap. Copyright © 2015. Published by Elsevier Inc.
Mir, Wasim J; Warankar, Avinash; Acharya, Ashutosh; Das, Shyamashis; Mandal, Pankaj; Nag, Angshuman
2017-06-01
Colloidal lead halide based perovskite nanocrystals (NCs) have been recently established as an interesting class of defect-tolerant NCs with potential for superior optoelectronic applications. The electronic band structure of thallium halides (TlX, where X = Br and I) show a strong resemblance to lead halide perovskites, where both Pb 2+ and Tl + exhibit a 6s 2 inert pair of electrons and strong spin-orbit coupling. Although the crystal structure of TlX is not perovskite, the similarities of its electronic structure with lead halide perovskites motivated us to prepare colloidal TlX NCs. These TlX NCs exhibit a wide bandgap (>2.5 eV or <500 nm) and the potential to exhibit a reduced density of deep defect states. Optical pump terahertz (THz) probe spectroscopy with excitation fluence in the range of 0.85-5.86 × 10 13 photons per cm 2 on NC films shows that the TlBr NCs possess high effective carrier mobility (∼220 to 329 cm 2 V -1 s -1 ), long diffusion length (∼0.77 to 0.98 μm), and reasonably high photoluminescence efficiency (∼10%). This combination of properties is remarkable compared to other wide-bandgap (>2.5 eV) semiconductor NCs, which suggests a reduction in the deep-defect states in the TlX NCs. Furthermore, the ultrafast carrier dynamics and temperature-dependent reversible structural phase transition together with its influence on the optical properties of the TlX NCs are studied.
Zhou, Jia-Cai; Yang, Zheng-Lin; Dong, Wei; Tang, Ruo-Jin; Sun, Ling-Dong; Yan, Chun-Hua
2011-12-01
In vitro or in vivo bioimaging utilizing the upconversion (UC) luminescence of rare earth fluoride nanocrystals (NCs) has attracted much attention, especially for Yb(3+)/Tm(3+) doped NCs with a near-infrared (NIR) UC emission at 800 nm. Herein, water-soluble NaYF(4):Yb,Tm NCs with strong NIR UC emission were synthesized with a solvothermal method. In vitro and in vivo bioimaging and toxicity assessments were carried out with HeLa cell and Caenorhabditis elegans (C. elegans) cases, respectively. NaYF(4):Yb,Tm NCs afforded an efficient NIR image of the HeLa cells with an incubation concentration of 10 μg mL(-1), and CCK-8 assay revealed a low cytotoxicity. Fed with Escherichia coli (E. coli) and NCs together, the C. elegans showed a NIR image in the gut from the pharynx to the anus. Further, these NCs could be excreted out when those worms were then fed with only E. coli. Toxicity studies were further addressed with protein expression, life span, egg production, egg viability, and growth rate of the worms in comparison with those of the intact ones. The feeding of rare earth fluoride NCs with a dose of 100 μg does not arise obvious toxicity effect from the growth to procreation. The in vitro and in vivo studies confirm that NaYF(4):Yb,Tm NCs could be served as an excellent NIR emission bioprobe with low toxicity. Copyright © 2011 Elsevier Ltd. All rights reserved.
Greenberg, Benjamin L; Ganguly, Shreyashi; Held, Jacob T; Kramer, Nicolaas J; Mkhoyan, K Andre; Aydil, Eray S; Kortshagen, Uwe R
2015-12-09
Metal oxide semiconductor nanocrystals (NCs) exhibit localized surface plasmon resonances (LSPRs) tunable within the infrared (IR) region of the electromagnetic spectrum by vacancy or impurity doping. Although a variety of these NCs have been produced using colloidal synthesis methods, incorporation and activation of dopants in the liquid phase has often been challenging. Herein, using Al-doped ZnO (AZO) NCs as an example, we demonstrate the potential of nonthermal plasma synthesis as an alternative strategy for the production of doped metal oxide NCs. Exploiting unique, thoroughly nonequilibrium synthesis conditions, we obtain NCs in which dopants are not segregated to the NC surfaces and local doping levels are high near the NC centers. Thus, we achieve overall doping levels as high as 2 × 10(20) cm(-3) in NCs with diameters ranging from 12.6 to 3.6 nm, and for the first time experimentally demonstrate a clear quantum confinement blue shift of the LSPR energy in vacancy- and impurity-doped semiconductor NCs. We propose that doping of central cores and heavy doping of small NCs are achievable via nonthermal plasma synthesis, because chemical potential differences between dopant and host atoms-which hinder dopant incorporation in colloidal synthesis-are irrelevant when NC nucleation and growth proceed via irreversible interactions among highly reactive gas-phase ions and radicals and ligand-free NC surfaces. We explore how the distinctive nucleation and growth kinetics occurring in the plasma influences dopant distribution and activation, defect structure, and impurity phase formation.
Cheng, C H; Huang, H Y; Talite, M J; Chou, W C; Yeh, J M; Yuan, C T
2017-12-15
Colloidal nano-materials, such as quantum dots (QDs) have been applied to light-conversion nano-phosphors due to their unique tunable emission. However, most of the QDs involve toxic elements and are synthesized in a hazardous solvent. In addition, conventional QD nano-phosphors with a small Stokes shift suffered from reabsorption losses and aggregation-induced quenching in the solid state. Here, we demonstrate a facile, matrix-free method to prepare eco-friendly nano-phosphors with a large Stokes shift based on aqueous thiolate-stabilized gold nanoclusters (GSH-AuNCs) with simple surface modifications. Our method is just to drop GSH-AuNCs solution on the aluminum foil and then surface-modified AuNCs (Al-GSH-AuNCs) can be spontaneously precipitated out of the aqueous solution. Compared with pristine GSH-AuNCs in solution, the Al-GSH-AuNCs exhibit enhanced solid-state PL quantum yields, lengthened PL lifetime, and spectral blue shift, which can be attributed to the aggregation-induced emission enhancement facilitated by surface modifications. Such surface-treatment induced aggregation of AuNCs can restrict the surface-ligand motion, leading to the enhancement of PL properties in the solid state. In addition, the Al-GSH-AuNCs nano-phosphors with a large Stokes shift can mitigate the aggregation-induced PL quenching and reabsorption losses, which would be potential candidates for "green" nano-phosphors. Copyright © 2017 Elsevier Inc. All rights reserved.
Chavarria, Nikita E.; Hwang, Sungmin; Cao, Shiyun; Fu, Xian; Holman, Mary; Elbanna, Dina; Rodriguez, Suzanne; Arrington, Deanna; Englert, Markus; Uthandi, Sivakumar; Söll, Dieter; Maupin-Furlow, Julie A.
2014-01-01
While cytoplasmic tRNA 2-thiolation protein 1 (Tuc1/Ncs6) and ubiquitin-related modifier-1 (Urm1) are important in the 2-thiolation of 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) at wobble uridines of tRNAs in eukaryotes, the biocatalytic roles and properties of Ncs6/Tuc1 and its homologs are poorly understood. Here we present the first report of an Ncs6 homolog of archaea (NcsA of Haloferax volcanii) that is essential for maintaining cellular pools of thiolated tRNALys UUU and for growth at high temperature. When purified from Hfx. volcanii, NcsA was found to be modified at Lys204 by isopeptide linkage to polymeric chains of the ubiquitin-fold protein SAMP2. The ubiquitin-activating E1 enzyme homolog of archaea (UbaA) was required for this covalent modification. Non-covalent protein partners that specifically associated with NcsA were also identified including UbaA, SAMP2, proteasome activating nucleotidase (PAN)-A/1, translation elongation factor aEF-1α and a β-CASP ribonuclease homolog of the archaeal cleavage and polyadenylation specificity factor 1 family (aCPSF1). Together, our study reveals that NcsA is essential for growth at high temperature, required for formation of thiolated tRNALys UUU and intimately linked to homologs of ubiquitin-proteasome, translation and RNA processing systems. PMID:24906001
Chavarria, Nikita E; Hwang, Sungmin; Cao, Shiyun; Fu, Xian; Holman, Mary; Elbanna, Dina; Rodriguez, Suzanne; Arrington, Deanna; Englert, Markus; Uthandi, Sivakumar; Söll, Dieter; Maupin-Furlow, Julie A
2014-01-01
While cytoplasmic tRNA 2-thiolation protein 1 (Tuc1/Ncs6) and ubiquitin-related modifier-1 (Urm1) are important in the 2-thiolation of 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) at wobble uridines of tRNAs in eukaryotes, the biocatalytic roles and properties of Ncs6/Tuc1 and its homologs are poorly understood. Here we present the first report of an Ncs6 homolog of archaea (NcsA of Haloferax volcanii) that is essential for maintaining cellular pools of thiolated tRNA(Lys)UUU and for growth at high temperature. When purified from Hfx. volcanii, NcsA was found to be modified at Lys204 by isopeptide linkage to polymeric chains of the ubiquitin-fold protein SAMP2. The ubiquitin-activating E1 enzyme homolog of archaea (UbaA) was required for this covalent modification. Non-covalent protein partners that specifically associated with NcsA were also identified including UbaA, SAMP2, proteasome activating nucleotidase (PAN)-A/1, translation elongation factor aEF-1α and a β-CASP ribonuclease homolog of the archaeal cleavage and polyadenylation specificity factor 1 family (aCPSF1). Together, our study reveals that NcsA is essential for growth at high temperature, required for formation of thiolated tRNA(Lys)UUU and intimately linked to homologs of ubiquitin-proteasome, translation and RNA processing systems.
Heterostructures Prepared by Surface Modification of Nanocrystals
ERIC Educational Resources Information Center
Lee, Bo Hyun
2009-01-01
Inorganic nanocrystals (NCs) have drawn the attention from many researchers due to their promising potentials for next generation technologies, from photovoltaics to biological applications. Various types of NCs have become available by synthetic protocols developed in the last two decades. In addition, multicomponent hybrid NCs which can be…
Advances of NOAA Training Program in Climate Services
NASA Astrophysics Data System (ADS)
Timofeyeva, M. M.
2012-12-01
Since 2002, NOAA's National Weather Service (NWS) Climate Services Division (CSD) has offered numerous training opportunities to NWS staff. After eight-years of development, the training program offers three instructor-led courses and roughly 25 online (distance learning) modules covering various climate topics, such as: climate data and observations, climate variability and change, and NWS national / local climate products (tools, skill, and interpretation). Leveraging climate information and expertise available at all NOAA line offices and partners allows for the delivery of the most advanced knowledge and is a very critical aspect of the training program. The emerging NOAA Climate Service (NCS) requires a well-trained, climate-literate workforce at the local level capable of delivering NOAA's climate products and services as well as providing climate-sensitive decision support. NWS Weather Forecast Offices and River Forecast Centers presently serve as local outlets for the NCS climate services. Trained NWS climate service personnel use proactive and reactive approaches and professional education methods in communicating climate variability and change information to local users. Both scientifically-sound messages and amiable communication techniques are important in developing an engaged dialog between the climate service providers and users. Several pilot projects have been conducted by the NWS CSD this past year that apply the program's training lessons and expertise to specialized external user group training. The technical user groups included natural resources managers, engineers, hydrologists, and planners for transportation infrastructure. Training of professional user groups required tailoring instructions to the potential applications for each group of users. Training technical users identified the following critical issues: (1) knowledge of target audience expectations, initial knowledge status, and potential use of climate information; (2) leveraging partnership with climate services providers; and, (3) applying 3H training approach, where the first H stands for Head (trusted science), the second H stands for Heart (make it easy), and the third H for Hand (support with applications).
NASA Astrophysics Data System (ADS)
Bahmani, Baharak; Jung, Bongsu; Gupta, Sharad; Anvari, Bahman
2010-02-01
Indocyanine green (ICG) is an FDA approved near infrared dye used in assessment of hepatic function and ophthalmological vascular imaging. However, given the rapid clearance of ICG from the blood stream, its imaging and phototherapeutic applications remain very limited. As a potential method to increase circulation time of ICG, and extend its clinical applications, we have encapsulated ICG within polymeric based nanoconstructs whose surface can be coated with various materials including polyethylene glycol (PEG). To gain an understanding of the interaction between ICG-containing nanocapsules (ICG-NCs) and vascular cells, we are characterizing the uptake of the nanocapsules coated with various materials by human peripheral blood monocytes and human spleen macrophages using fluorescence microscopy. Results of these studies will be useful in identifying the appropriate coating material that will result in increased circulation time of ICG-NCs within the vasculature.
Synthesis and Biological Response of Size-Specific, Monodisperse Drug-Silica Nanoconjugates
Tang, Li; Fan, Timothy M.; Borst, Luke B.; Cheng, Jianjun
2012-01-01
Drug-containing nanoparticles (NPs) with monodisperse, controlled particle sizes are highly desirable for drug delivery. Accumulating evidence suggests that NPs with sizes less than 50 nm demonstrate superior performance in vitro and in vivo. However, it is difficult to fabricate monodisperse, drug-containing NPs with discrete and incremental difference in sizes required for studying and characterizing existing relationships among particle size, biologic processing, and therapeutic functionality. Here, we report a scalable process of fabricating drug-silica conjugated nanoparticles, termed drug-silica nanoconjugates (drug-NCs), which possess monodisperse size distributions and desirable particle sizes as small as 20 nm. We found that 20-nm NCs are superior to their 50-nm and 200-nm NC analogues by 2–5 and 10–20 folds, respectively, with regard to tumor accumulation and penetration, and cellular internalization. These fundamental findings underscore the importance and necessity of further miniaturizing nanomedicine size for optimized drug delivery applications. PMID:22494403
QUALITY MANAGEMENT PLAN FOR THE NATIONAL CHILDREN'S STUDY
EPA has taken the lead, in consort with NIH, in developing the Quality Management Plan (QMP) for the National Children's Study (NCS); the QMP will delineate a systematic planning process for the implementation of the NCS. The QMP will state the goals and objectives of the NCS, th...
Purpose The National Children's Study (NCS), a large longitudinal cohort study of environmental exposures among children, is currently in the planning stage. Prior to enrollment of 100,000 pregnant women across the United Sates for this study, a better understanding of the partic...
Yeryukov, Nikolay A; Sveshnikova, Larisa L; Duda, Tatyana A; Rodyakina, Ekaterina E; Gridchin, Victor A; Sheremet, Evgeniya S; Zahn, Dietrich R T
2015-01-01
Summary We present the results of a Raman study of optical phonons in CuS nanocrystals (NCs) with a low areal density fabricated through the Langmuir–Blodgett technology on nanopatterned Au nanocluster arrays using a combination of surface- and interference-enhanced Raman scattering (SERS and IERS, respectively). Micro-Raman spectra of one monolayer of CuS NCs deposited on a bare Si substrate reveal only features corresponding to crystalline Si. However, a new relatively strong peak occurs in the Raman spectrum of CuS NCs on Au nanocluster arrays at 474 cm−1. This feature is related to the optical phonon mode in CuS NCs and manifests the SERS effect. For CuS NCs deposited on a SiO2 layer this phonon mode is also observed due to the IERS effect. Its intensity changes periodically with increasing SiO2 layer thickness for different laser excitation lines and is enhanced by a factor of about 30. CuS NCs formed on Au nanocluster arrays fabricated on IERS substrates combine the advantages of SERS and IERS and demonstrate stronger SERS enhancement allowing for the observation of Raman signals from CuS NCs with an ultra-low areal density. PMID:25977845
NASA Astrophysics Data System (ADS)
Roychowdhury, A.; Pati, S. P.; Mishra, A. K.; Kumar, S.; Das, D.
2013-06-01
Fe3O4/ZnO nanocomposites (NCs) are prepared by a wet chemical route. X-ray diffraction, transmission electron microscopy and Fourier transform infrared spectroscopy studies confirm the coexistence of Fe3O4 and ZnO phases in the NCs. The UV-vis absorption spectra show a red shift of the absorption peak with increase in Fe3O4 content indicating a modification of the band structure of ZnO in the NCs. Photoluminescence emission spectra of the NCs display strong excitonic emission in the UV region along with weak emission bands in the visible range caused by electronic transitions involving defect-related energy levels in the band gap of ZnO. Positron annihilation lifetimes indicate that cation vacancies in the ZnO structure are the strong traps for positrons and the overall defect concentration in the NCs decreases with increase in Fe3O4 content. Dc magnetization measurements reveal an anomalous temperature dependence of the coercivity of the NCs that is argued to be due to the anomalous variation of magnetocrystalline anisotropy at lower temperature. The irreversibility observed in the temperature dependent ZFC-FC magnetization points to the presence of a spin-glass phase in the NCs.
NASA Astrophysics Data System (ADS)
Peng, Jun; Ling, Jian; Zhang, Xiu-Qing; Bai, Hui-Ping; Zheng, Liyan; Cao, Qiu-E.; Ding, Zhong-Tao
2015-02-01
In this work, we designed a new fluorescent oligonucleotides-stabilized silver nanoclusters (DNA/AgNCs) probe for sensitive detection of mercury and copper ions. This probe contains two tailored DNA sequence. One is a signal probe contains a cytosine-rich sequence template for AgNCs synthesis and link sequence at both ends. The other is a guanine-rich sequence for signal enhancement and link sequence complementary to the link sequence of the signal probe. After hybridization, the fluorescence of hybridized double-strand DNA/AgNCs is 200-fold enhanced based on the fluorescence enhancement effect of DNA/AgNCs in proximity of guanine-rich DNA sequence. The double-strand DNA/AgNCs probe is brighter and stable than that of single-strand DNA/AgNCs, and more importantly, can be used as novel fluorescent probes for detecting mercury and copper ions. Mercury and copper ions in the range of 6.0-160.0 and 6-240 nM, can be linearly detected with the detection limits of 2.1 and 3.4 nM, respectively. Our results indicated that the analytical parameters of the method for mercury and copper ions detection are much better than which using a single-strand DNA/AgNCs.
Leibowitz, David; Cohen, Maurice; Planer, David; Mosseri, Morris; Rott, David; Lotan, Chaim; Weiss, A Teddy
2006-04-15
Previous studies have shown a high incidence of cardiovascular complications when noncardiac surgery (NCS) is performed after coronary stenting. No study has compared the outcomes of NCS after stenting compared with percutaneous transluminal coronary angioplasty (PTCA) alone. The records of all patients who underwent NCS within 3 months of percutaneous coronary intervention at our institution were reviewed for adverse clinical events with the end points of acute myocardial infarction, major bleeding, and death < or = 6 months after NCS. A total of 216 consecutive patients were included in the study. Of these, 122 (56%) underwent PTCA and 94 (44%) underwent stenting. A total of 26 patients (12%) died, 13 in the stent group (14%) and 13 in the PTCA group (11%), a nonsignificant difference. The incidence of acute myocardial infarction and major bleeding was 7% and 16% in the stent group and 6% and 13% in the PTCA group (p = NS), respectively. Significantly more events occurred in the 2 groups when NCS was performed within 2 weeks of percutaneous coronary intervention. In conclusion, our study has demonstrated high rates of perioperative morbidity and mortality after NCS in patients undergoing PTCA alone, as well as stenting. These findings support the current guidelines regarding the risk of NCS after stenting but suggest they be extended to PTCA as well.
A simple route for making surfactant free lead sulfide (PbS) quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, Firoz; Kumar, Neetesh; Dutta, Viresh, E-mail: vdutta@ces.iitd.ac.in
2015-05-15
Highlights: • Surfactant free PbS NCs were successfully synthesised using CoSP technique. • The technique eliminates the requirements of washing to remove the ligands. • Grinding using mortar and pestle creates well separated PbS QDs. • Surfactant free PbS NCs are stable and do not show any degradation with time. - Abstract: An efficient, cost effective and less time consuming method suitable for mass production of surfactant free quantum dots (QDs) of lead sulfide (PbS) is reported. PbS nanocrystals (NCs) are first synthesised by continuous spray pyrolysis (CoSP) technique and de-agglomeration into PbS quantum dots (QDs) is achieved by vigorousmore » mechanical grinding using mortar and pestle. Lead acetate and thiourea were used as the precursor materials for preparation of surfactant free PbS NCs. The broadening in XRD peaks of ground NCs as compared to as synthesized PbS NCs clearly indicated the reduction in particle size to be QDs of PbS. The TEM images also showed that ground PbS NCs were nearly spherical in shape having an average diameter in the range of 4–6 nm. The shift in optical gap from 0.41 eV to 1.47 eV supported the QD formation.« less
Xia, Xiaodong; Hao, Yuanqiang; Hu, Shengqiang; Wang, Jianxiu
2014-01-15
A facile strategy for the assay of target miRNA using fluorescent silver nanoclusters (AgNCs) has been described. Due to the preferable interaction between cytosine residues and Ag(+), a short cytosine-rich oligonucleotide (ODN) with only six bases 5'-TCCCCC-3' served as an efficient scaffold for the creation of the AgNCs. The AgNCs displayed a bright red emission when excited at 545nm. Such ODN base-stabilized AgNCs have been exploited for miRNA sensing. Overhangs of TCC at the 5' end (5'-TCC) and CCC at the 3' end (CCC-3') (denoted as 5'-TCC/CCC-3') appended to the hairpin ODN probe which also contains recognition sequences for target miRNA were included. Interestingly, the AgNCs/hairpin ODN probe showed similar spectral properties as that templated by 5'-TCCCCC-3'. The formation of the hairpin ODN probe/miRNA duplex separated the 5'-TCC/CCC-3' overhangs, thus disturbing the optical property or structure of the AgNCs. As a result, fluorescence quenching of the AgNCs/hairpin ODN probe was obtained, which allows for facile determination of target miRNA. The proposed method is simple and cost-effective, holding great promise for clinical applications. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Yun-Tse; Shanmugam, Chandirasekar; Tseng, Wei-Bin; Hiseh, Ming-Mu; Tseng, Wei-Lung
2016-05-01
Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a good linear response over the temperature range 1-71 °C and offered temperature-independent spectral shifts, temperature accuracy, activation energy, and reusability. The possible mechanism for high temperature-induced fluorescence quenching of FITC/BSA-AuNCs could be attributed to a weakening of the Au-S bond, thereby lowering the charge transfer from BSA to AuNCs. Additionally, the pH- and temperature-responsive properties of FITC/BSA-AuNCs allow simultaneous temperature sensing from 21 to 41 °C (at intervals of 5 °C) and pH from 6.0 to 8.0 (at intervals of 0.5 pH unit), facilitating the construction of two-input AND logic gates. Three-input AND logic gates were also designed using temperature, pH, and trypsin as inputs. The practicality of using FITC/BSA-AuNCs to determine the temperature and pH changes in HeLa cells is also validated.Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a good linear response over the temperature range 1-71 °C and offered temperature-independent spectral shifts, temperature accuracy, activation energy, and reusability. The possible mechanism for high temperature-induced fluorescence quenching of FITC/BSA-AuNCs could be attributed to a weakening of the Au-S bond, thereby lowering the charge transfer from BSA to AuNCs. Additionally, the pH- and temperature-responsive properties of FITC/BSA-AuNCs allow simultaneous temperature sensing from 21 to 41 °C (at intervals of 5 °C) and pH from 6.0 to 8.0 (at intervals of 0.5 pH unit), facilitating the construction of two-input AND logic gates. Three-input AND logic gates were also designed using temperature, pH, and trypsin as inputs. The practicality of using FITC/BSA-AuNCs to determine the temperature and pH changes in HeLa cells is also validated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02341j
Russell, B A; Jachimska, B; Komorek, P; Mulheran, P A; Chen, Y
2017-03-08
The study of gold nanoclusters (AuNCs) has seen much interest in recent history due to their unique fluorescence properties and environmentally friendly synthesis method using proteins as a growth scaffold. The differences in the physicochemical properties of lysozyme encapsulated AuNCs in comparison to natural lysozyme are characterised in order to determine the effects AuNCs have on natural protein behaviour. The hydrodynamic radius (dynamic light scattering), light absorbance (UV-Vis), electrophoretic mobility, relative density, dynamic viscosity, adsorption (quartz crystal microbalance) and circular dichroism (CD) characteristics of the molecules were studied. It was found that lysozyme forms small dimer/trimer aggregates upon the synthesis of AuNCs within the protein. The diameter of Ly-AuNCs was found to be 8.0 nm across a pH range of 2-11 indicating dimer formation, but larger aggregates with diameters >20 nm were formed between pH 3 and 6. The formation of larger aggregates limits the use of Ly-AuNCs as a fluorescent probe in this pH range. A large shift in the protein's isoelectric point was also observed, shifting from 11.0 to 4.0 upon AuNC synthesis. This resulted in major changes to the adsorption characteristics of lysozyme, observed using a QCM. A monolayer of 8 nm was seen for Ly-AuNCs at pH 4, offering further evidence that the proteins form small aggregates, unlike the natural monomer form of lysozyme. The adsorption of Ly-AuNCs was seen to decrease as pH was increased; this is in major contrast to the lysozyme adsorption behaviour. A decrease in the α-helix content was observed from 25% in natural lysozyme to 1% in Ly-AuNCs. This coincided with an increase in the β-sheet content after AuNC synthesis indicating that the natural structure of lysozyme was lost. The formation of protein dimers, the change in the protein surface charge from positive to negative, and secondary structure alteration caused by the AuNC synthesis must be considered before attempting to utilise Ly-AuNCs as in vivo probes.
Protesescu, Loredana; Yakunin, Sergii; Kumar, Sudhir; Bär, Janine; Bertolotti, Federica; Masciocchi, Norberto; Guagliardi, Antonietta; Grotevent, Matthias; Shorubalko, Ivan; Bodnarchuk, Maryna I; Shih, Chih-Jen; Kovalenko, Maksym V
2017-03-28
Colloidal nanocrystals (NCs) of APbX 3 -type lead halide perovskites [A = Cs + , CH 3 NH 3 + (methylammonium or MA + ) or CH(NH 2 ) 2 + (formamidinium or FA + ); X = Cl - , Br - , I - ] have recently emerged as highly versatile photonic sources for applications ranging from simple photoluminescence down-conversion (e.g., for display backlighting) to light-emitting diodes. From the perspective of spectral coverage, a formidable challenge facing the use of these materials is how to obtain stable emissions in the red and infrared spectral regions covered by the iodide-based compositions. So far, red-emissive CsPbI 3 NCs have been shown to suffer from a delayed phase transformation into a nonluminescent, wide-band-gap 1D polymorph, and MAPbI 3 exhibits very limited chemical durability. In this work, we report a facile colloidal synthesis method for obtaining FAPbI 3 and FA-doped CsPbI 3 NCs that are uniform in size (10-15 nm) and nearly cubic in shape and exhibit drastically higher robustness than their MA- or Cs-only cousins with similar sizes and morphologies. Detailed structural analysis indicated that the FAPbI 3 NCs had a cubic crystal structure, while the FA 0.1 Cs 0.9 PbI 3 NCs had a 3D orthorhombic structure that was isostructural to the structure of CsPbBr 3 NCs. Bright photoluminescence (PL) with high quantum yield (QY > 70%) spanning red (690 nm, FA 0.1 Cs 0.9 PbI 3 NCs) and near-infrared (near-IR, ca. 780 nm, FAPbI 3 NCs) regions was sustained for several months or more in both the colloidal state and in films. The peak PL wavelengths can be fine-tuned by using postsynthetic cation- and anion-exchange reactions. Amplified spontaneous emissions with low thresholds of 28 and 7.5 μJ cm -2 were obtained from the films deposited from FA 0.1 Cs 0.9 PbI 3 and FAPbI 3 NCs, respectively. Furthermore, light-emitting diodes with a high external quantum efficiency of 2.3% were obtained by using FAPbI 3 NCs.
2017-01-01
Colloidal nanocrystals (NCs) of APbX3-type lead halide perovskites [A = Cs+, CH3NH3+ (methylammonium or MA+) or CH(NH2)2+ (formamidinium or FA+); X = Cl–, Br–, I–] have recently emerged as highly versatile photonic sources for applications ranging from simple photoluminescence down-conversion (e.g., for display backlighting) to light-emitting diodes. From the perspective of spectral coverage, a formidable challenge facing the use of these materials is how to obtain stable emissions in the red and infrared spectral regions covered by the iodide-based compositions. So far, red-emissive CsPbI3 NCs have been shown to suffer from a delayed phase transformation into a nonluminescent, wide-band-gap 1D polymorph, and MAPbI3 exhibits very limited chemical durability. In this work, we report a facile colloidal synthesis method for obtaining FAPbI3 and FA-doped CsPbI3 NCs that are uniform in size (10–15 nm) and nearly cubic in shape and exhibit drastically higher robustness than their MA- or Cs-only cousins with similar sizes and morphologies. Detailed structural analysis indicated that the FAPbI3 NCs had a cubic crystal structure, while the FA0.1Cs0.9PbI3 NCs had a 3D orthorhombic structure that was isostructural to the structure of CsPbBr3 NCs. Bright photoluminescence (PL) with high quantum yield (QY > 70%) spanning red (690 nm, FA0.1Cs0.9PbI3 NCs) and near-infrared (near-IR, ca. 780 nm, FAPbI3 NCs) regions was sustained for several months or more in both the colloidal state and in films. The peak PL wavelengths can be fine-tuned by using postsynthetic cation- and anion-exchange reactions. Amplified spontaneous emissions with low thresholds of 28 and 7.5 μJ cm–2 were obtained from the films deposited from FA0.1Cs0.9PbI3 and FAPbI3 NCs, respectively. Furthermore, light-emitting diodes with a high external quantum efficiency of 2.3% were obtained by using FAPbI3 NCs. PMID:28231432
Synthesis of new nanocrystal materials
NASA Astrophysics Data System (ADS)
Hassan, Yasser Hassan Abd El-Fattah
Colloidal semiconductor nanocrystals (NCs) have sparked great excitement in the scientific community in last two decades. NCs are useful for both fundamental research and technical applications in various fields owing to their size and shape-dependent properties and their potentially inexpensive and excellent chemical processability. These NCs are versatile fluorescence probes with unique optical properties, including tunable luminescence, high extinction coefficient, broad absorption with narrow photoluminescence, and photobleaching resistance. In the past few years, a lot of attention has been given to nanotechnology based on using these materials as building blocks to design light harvesting assemblies. For instant, the pioneering applications of NCs are light-emitting diodes, lasers, and photovoltaic devices. Synthesis of the colloidal stable semiconductor NCs using the wet method of the pyrolysis of organometallic and chalcogenide precursors, known as hot-injection approach, is the chart-topping preparation method in term of high quality and monodisperse sized NCs. The advancement in the synthesis of these artificial materials is the core step toward their applications in a broad range of technologies. This dissertation focuses on exploring various innovative and novel synthetic methods of different types of colloidal nanocrystals, both inorganic semiconductors NCs, also known as quantum dots (QDs), and organic-inorganic metal halide-perovskite materials, known as perovskites. The work presented in this thesis focuses on pursuing fundamental understanding of the synthesis, material properties, photophysics, and spectroscopy of these nanostructured semiconductor materials. This thesis contains 6 chapters and conclusions. Chapters 1?3 focus on introducing theories and background of the materials being synthesized in the thesis. Chapter 4 demonstrates our synthesis of colloidal linker--free TiO2/CdSe NRs heterostructures with CdSe QDs grown in the presence of TiO2 NRs using seeded--growth type colloidal injection approach. Chapter 5 explores a novel approach of directly synthesized CdSe NCs with electroactive ligands. The last Chapter focuses on a new class of perovskites. I describe my discovery of a (bottom-up) simple method to synthesize colloidally stable methyl ammonium lead halide perovskite nanocrystals seeded from high quality PbX2 NCs with a pre-targeted size. This chapter reports advances in preparation of both these materials (PbX2, and lead halide perovskite NCs).
He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho
2017-06-16
In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g -1 at a scan rate of 20 mV s -1 , which is almost twice that of ZnO NWs (191.5 F g -1 ). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g -1 at a current density of 1.33 A g -1 with an energy density of 25.2 W h kg -1 at the power density of 896.44 W kg -1 . In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.
Oketch, Jecinter Akinyi; Paterson, Marie; Maunder, Eleni Winfred; Rollins, Nigel Campbell
2011-03-01
Compare the nutritional vulnerability, risk of malnutrition, nutritional status and quality of life (QoL) between recipients and non-recipients of nutrition care and support (NCS) of HIV-positive adults. In 2009, a household-based cross-sectional study of HIV-positive adults, NCS recipients (n=97) and non-NCS recipients (n=203) from KwaZulu-Natal was conducted. Nutritional vulnerability (socio-economic status; food security; self-reported health status; nutritional knowledge and attitude), risk of malnutrition (nutrition assessment screening tool), anthropometry (body mass index; mid-upper arm circumference; waist-to-hip ratio) and QoL (general health; self-care; physical functioning) were compared between the two groups. Although the result suggests a modest impairment of QoL, NCS recipients were twice as likely to have severe impairment of general health; self-care functioning and QoL. Overweight and obesity were common despite indications of high prevalence of food insecurity, possible-risk of malnutrition and diets predominantly of cereals. NCS recipients were more frequently taking anti-retroviral drugs, receiving social grants, reporting good eating plans and owning kitchen gardens. Non-NCS recipients had been generally sick, reported fatigue, nausea, appetite loss and diarrhoea. NCS recipients were twice as likely to experience oral thrush. Contextual factors such as low dietary diversity and household food insecurity that exacerbates nutritional vulnerability and malnutrition should be considered when providing NCS to fully achieve nutritional recovery and QoL of HIV-positive adults. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho
2017-06-01
In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g-1 at a scan rate of 20 mV s-1, which is almost twice that of ZnO NWs (191.5 F g-1). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g-1 at a current density of 1.33 A g-1 with an energy density of 25.2 W h kg-1 at the power density of 896.44 W kg-1. In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.
Highly Sensitive Sensors Based on Metal-Oxide Nanocolumns for Fire Detection.
Lee, Kwangjae; Shim, Young-Seok; Song, Young Geun; Han, Soo Deok; Lee, Youn-Sung; Kang, Chong-Yun
2017-02-07
A fire detector is the most important component in a fire alarm system. Herein, we present the feasibility of a highly sensitive and rapid response gas sensor based on metal oxides as a high performance fire detector. The glancing angle deposition (GLAD) technique is used to make the highly porous structure such as nanocolumns (NCs) of various metal oxides for enhancing the gas-sensing performance. To measure the fire detection, the interface circuitry for our sensors (NiO, SnO₂, WO₃ and In₂O₃ NCs) is designed. When all the sensors with various metal-oxide NCs are exposed to fire environment, they entirely react with the target gases emitted from Poly(vinyl chlorides) (PVC) decomposed at high temperature. Before the emission of smoke from the PVC (a hot-plate temperature of 200 °C), the resistances of the metal-oxide NCs are abruptly changed and SnO₂ NCs show the highest response of 2.1. However, a commercial smoke detector did not inform any warning. Interestingly, although the NiO NCs are a p -type semiconductor, they show the highest response of 577.1 after the emission of smoke from the PVC (a hot-plate temperature of 350 °C). The response time of SnO₂ NCs is much faster than that of a commercial smoke detector at the hot-plate temperature of 350 °C. In addition, we investigated the selectivity of our sensors by analyzing the responses of all sensors. Our results show the high potential of a gas sensor based on metal-oxide NCs for early fire detection.
NASA Astrophysics Data System (ADS)
Ren, Xiaohu; Fan, Huiqing; Ma, Jiangwei; Wang, Chao; Zhang, Mingchang; Zhao, Nan
2018-05-01
Hierarchically hollow Co3O4/polyaniline nanocages (Co3O4/PANI NCs) with enhanced specific capacitance and cycle performance for electrode material of supercapacitors are fabricated by combining self-sacrificing template and in situ polymerization route. Benefiting from the good conductivity of PANI improving an electron transport rate as well as high specific surface area from such a hollow structure, the electrode made of Co3O4/PANI NCs exhibits a large specific capacitance of 1301 F/g at the current density of 1 A/g, a much enhancement is obtained as compared with the pristine Co3O4 NCs electrode. The contact resistance (Re), charge-transfer (Rct) and Warburg resistance of Co3O4/PANI NCs electrode is significantly lower than that of the pristine Co3O4 NCs electrode, indicating the enhanced electrical conductivity. In addition, the Co3O4/PANI NCs electrode also displays superior cycling stability with 90 % capacitance retention after 2000 cycles. Moreover, an aqueous asymmetric supercapacitor was successfully assembled using Co3O4/PANI NCs as the positive electrode and activated carbon (AC) as the negative electrode, the assembled device exhibits a superior energy density of 41.5 Wh/kg at 0.8 kW/kg, outstanding power density of 15.9 kW/kg at 18.4 Wh/kg, which significantly transcending those of most previously reported. These results demonstrate that the hierarchically hollow Co3O4/PANI NCs composites have a potential for fabricating electrode of supercapacitors.
Abend, Nicholas S.; Dlugos, Dennis J.; Hahn, Cecil D.; Hirsch, Lawrence J.; Herman, Susan T.
2010-01-01
Background Continuous EEG monitoring (cEEG) of critically ill patients is frequently utilized to detect non-convulsive seizures (NCS) and status epilepticus (NCSE). The indications for cEEG, as well as when and how to treat NCS, remain unclear. We aimed to describe the current practice of cEEG in critically ill patients to define areas of uncertainty that could aid in designing future research. Methods We conducted an international survey of neurologists focused on cEEG utilization and NCS management. Results Three-hundred and thirty physicians completed the survey. 83% use cEEG at least once per month and 86% manage NCS at least five times per year. The use of cEEG in patients with altered mental status was common (69%), with higher use if the patient had a prior convulsion (89%) or abnormal eye movements (85%). Most respondents would continue cEEG for 24 h. If NCS or NCSE is identified, the most common anticonvulsants administered were phenytoin/fosphenytoin, lorazepam, or levetiracetam, with slightly more use of levetiracetam for NCS than NCSE. Conclusions Continuous EEG monitoring (cEEG) is commonly employed in critically ill patients to detect NCS and NCSE. However, there is substantial variability in current practice related to cEEG indications and duration and to management of NCS and NCSE. The fact that such variability exists in the management of this common clinical problem suggests that further prospective study is needed. Multiple points of uncertainty are identified that require investigation. PMID:20198513
Abeyasinghe, Neranga; Kumar, Santosh; Sun, Kai; Mansfield, John F; Jin, Rongchao; Goodson, Theodore
2016-12-21
New approaches in molecular nanoscopy are greatly desired for interrogation of biological, organic, and inorganic objects with sizes below the diffraction limit. Our current work investigates emergent monolayer-protected gold quantum dots (nanoclusters, NCs) composed of 25 Au atoms by utilizing two-photon-excited fluorescence (TPEF) near-field scanning optical microscopy (NSOM) at single NC concentrations. Here, we demonstrate an approach to synthesize and isolate single NCs on solid glass substrates. Subsequent investigation of the NCs using TPEF NSOM reveals that, even when they are separated by distances of several tens of nanometers, we can excite and interrogate single NCs individually. Interestingly, we observe an enhanced two-photon absorption (TPA) cross section for single Au 25 NCs that can be attributed to few-atom local field effects and to local field-induced microscopic cascading, indicating their potential for use in ultrasensitive sensing, disease diagnostics, cancer cell therapy, and molecular computers. Finally, we report room-temperature aperture-based TPEF NSOM imaging of these NCs for the first time at 30 nm point resolution, which is a ∼5-fold improvement compared to the previous best result for the same technique. This report unveils the unique combination of an unusually large TPA cross section and the high photostability of Au NCs to (non-destructively) investigate stable isolated single NCs using TPEF NSOM. This is the first reported optical study of monolayer-protected single quantum clusters, opening some very promising opportunities in spectroscopy of nanosized objects, bioimaging, ultrasensitive sensing, molecular computers, and high-density data storage.
Bodnarchuk, Maryna I; Yakunin, Sergii; Piveteau, Laura; Kovalenko, Maksym V
2015-12-09
Colloidal inorganic nanocrystals (NCs), functionalized with inorganic capping ligands, such as metal chalcogenide complexes (MCCs), have recently emerged as versatile optoelectronic materials. As-prepared, highly charged MCC-capped NCs are dispersible only in highly polar solvents, and lack the ability to form long-range ordered NC superlattices. Here we report a simple and general methodology, based on host-guest coordination of MCC-capped NCs with macrocyclic ethers (crown ethers and cryptands), enabling the solubilization of inorganic-capped NCs in solvents of any polarity and improving the ability to form NC superlattices. The corona of organic molecules can also serve as a convenient knob for the fine adjustment of charge transport and photoconductivity in films of NCs. In particular, high-infrared-photon detectivities of up to 3.3 × 10(11) Jones with a fast response (3 dB cut-off at 3 kHz) at the wavelength of 1,200 nm were obtained with films of PbS/K3AsS4/decyl-18-crown-6 NCs.
Ng, Enoch; Varaschin, Rafael K; Su, Ping; Browne, Caleb J; Hermainski, Joanna; Le Foll, Bernard; Pongs, Olaf; Liu, Fang; Trudeau, Louis-Eric; Roder, John C; Wong, Albert H C
2016-03-15
Calcium sensors detect intracellular calcium changes and interact with downstream targets to regulate many functions. Neuronal Calcium Sensor-1 (NCS-1) or Frequenin is widely expressed in the nervous system, and involved in neurotransmission, synaptic plasticity and learning. NCS-1 interacts with and regulates dopamine D2 receptor (D2R) internalization and is implicated in disorders like schizophrenia and substance abuse. However, the role of NCS-1 in behaviors dependent on dopamine signaling in the striatum, where D2R is most highly expressed, is unknown. We show that Ncs-1 deletion in the mouse decreases willingness to work for food. Moreover, Ncs-1 knockout mice have significantly lower activity-dependent dopamine release in the nucleus accumbens core in acute slice recordings. In contrast, food preference, responding for conditioned reinforcement, ability to represent changes in reward value, and locomotor response to amphetamine are not impaired. These studies identify novel roles for NCS-1 in regulating activity-dependent striatal dopamine release and aspects of motivated behavior. Copyright © 2015 Elsevier B.V. All rights reserved.
Liang, Xu; Nie, Kaiwen; Ding, Xian; Dang, Liqin; Sun, Jie; Shi, Feng; Xu, Hua; Jiang, Ruibin; He, Xuexia; Liu, Zonghuai; Lei, Zhibin
2018-03-28
The development of compressible supercapacitor highly relies on the innovative design of electrode materials with both superior compression property and high capacitive performance. This work reports a highly compressible supercapacitor electrode which is prepared by growing electroactive NiCo 2 S 4 (NCS) nanosheets on the compressible carbon sponge (CS). The strong adhesion of the metallic conductive NCS nanosheets to the highly porous carbon scaffolds enable the CS-NCS composite electrode to exhibit an enhanced conductivity and ideal structural integrity during repeated compression-release cycles. Accordingly, the CS-NCS composite electrode delivers a specific capacitance of 1093 F g -1 at 0.5 A g -1 and remarkable rate performance with 91% capacitance retention in the range of 0.5-20 A g -1 . Capacitance performance under the strain of 60% shows that the incorporation of NCS nanosheets in CS scaffolds leads to over five times enhancement in gravimetric capacitance and 17 times enhancement in volumetric capacitance. These performances enable the CS-NCS composite to be one of the promising candidates for potential applications in compressible electrochemical energy storage devices.
Bodnarchuk, Maryna I.; Yakunin, Sergii; Piveteau, Laura; Kovalenko, Maksym V.
2015-01-01
Colloidal inorganic nanocrystals (NCs), functionalized with inorganic capping ligands, such as metal chalcogenide complexes (MCCs), have recently emerged as versatile optoelectronic materials. As-prepared, highly charged MCC-capped NCs are dispersible only in highly polar solvents, and lack the ability to form long-range ordered NC superlattices. Here we report a simple and general methodology, based on host–guest coordination of MCC-capped NCs with macrocyclic ethers (crown ethers and cryptands), enabling the solubilization of inorganic-capped NCs in solvents of any polarity and improving the ability to form NC superlattices. The corona of organic molecules can also serve as a convenient knob for the fine adjustment of charge transport and photoconductivity in films of NCs. In particular, high-infrared-photon detectivities of up to 3.3 × 1011 Jones with a fast response (3 dB cut-off at 3 kHz) at the wavelength of 1,200 nm were obtained with films of PbS/K3AsS4/decyl-18-crown-6 NCs. PMID:26647828
Femtosecond Measurements Of Size-Dependent Spin Crossover In FeII(pyz)Pt(CN)4 Nanocrystals
Sagar, D. M.; Baddour, Frederick G.; Konold, Patrick; ...
2016-01-07
We report a femtosecond time-resolved spectroscopic study of size-dependent dynamics in nanocrystals (NCs) of Fe(pyz)Pt(CN) 4. We observe that smaller NCs (123 or 78 nm cross section and < 25 nm thickness) exhibit signatures of spin crossover (SCO) with time constants of ~ 5-10 ps whereas larger NCs with 375 nm cross section and 43 nm thickness exhibit a weaker SCO signature accompanied by strong spectral shifting on a ~20 ps time scale. For the small NCs, the fast dynamics appear to result from thermal promotion of residual low-spin states to high-spin states following nonradiative decay, and the size dependencemore » is postulated to arise from differing high-spin vs low-spin fractions in domains residing in strained surface regions. The SCO is less efficient in larger NCs owing to their larger size and hence lower residual LS/HS fractions. Our results suggest that size-dependent dynamics can be controlled by tuning surface energy in NCs with dimensions below ~25 nm for use in energy harvesting, spin switching, and other applications.« less
In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages.
Kim, Chulhong; Cho, Eun Chul; Chen, Jingyi; Song, Kwang Hyun; Au, Leslie; Favazza, Christopher; Zhang, Qiang; Cobley, Claire M; Gao, Feng; Xia, Younan; Wang, Lihong V
2010-08-24
Early diagnosis, accurate staging, and image-guided resection of melanomas remain crucial clinical objectives for improving patient survival and treatment outcomes. Conventional techniques cannot meet this demand because of the low sensitivity, low specificity, poor spatial resolution, shallow penetration, and/or ionizing radiation. Here we overcome such limitations by combining high-resolution photoacoustic tomography (PAT) with extraordinarily optical absorbing gold nanocages (AuNCs). When bioconjugated with [Nle(4),D-Phe(7)]-alpha-melanocyte-stimulating hormone, the AuNCs can serve as a novel contrast agent for in vivo molecular PAT of melanomas with both exquisite sensitivity and high specificity. The bioconjugated AuNCs enhanced contrast approximately 300% more than the control, PEGylated AuNCs. The in vivo PAT quantification of the amount of AuNCs accumulated in melanomas was further validated with inductively coupled plasma mass spectrometry (ICP-MS).
VizieR Online Data Catalog: SFiNCs: X-ray, IR and membership catalogs (Getman+, 2017)
NASA Astrophysics Data System (ADS)
Getman, K. V.; Broos, P. S.; Kuhn, M. A.; Feigelson, E. D.; Richert, A. J. W.; Ota, Y.; Bate, M. R.; Garmire, G. P.
2017-06-01
Sixty five X-ray observations for the 22 Star Formation in Nearby Clouds (SFiNCs) star-forming regions (SFRs) (see tables 1 and 2), made with the imaging array on the Advanced CCD Imaging Spectrometer (ACIS), were pulled from the Chandra archive (spanning 2000 Jan to 2015 Apr; see table 2). Our final Chandra-ACIS catalog for the 22 SFiNCs SFRs comprises 15364 X-ray sources (Tables 3 and 4 and section 3.2). To obtain MIR photometry for X-ray objects and to identify and measure MIR photometry for additional non-Chandra disky stars that were missed in previous studies of the SFiNCs regions (typically faint YSOs), we have reduced the archived Spitzer-IRAC data by homogeneously applying the MYStIX-based Spitzer-IRAC data reduction methods of Kuhn+ (2013, J/ApJS/209/29) to the 423 Astronomical Object Request (AORs) data sets for the 22 SFiNCs SFRs (Table 5). As in MYStIX, here the SFiNCs IRAC source catalog retains all point sources with the photometric signal-to-noise ratio >5 in both [3.6] and [4.5] channels. This catalog covers the 22 SFiNCs SFRs and their vicinities on the sky and comprises 1638654 IRAC sources with available photometric measurements for 100%, 100%, 29%, and 23% of these sources in the 3.6, 4.5, 5.8, and 8.0um bands, respectively (see table 6 and section 3.4). Source position cross correlations between the SFiNCs Chandra X-ray source catalog and an IR catalog, either the "cut-out" IRAC or 2MASS, were made using the steps described in section 3.5. Tables 7 and 8 provide the list of 8492 SFiNCs probable cluster members (SPCMs) and their main IR and X-ray properties (see section 4). (9 data files).
2015-01-01
Synthesis approaches to colloidal Cu3P nanocrystals (NCs) have been recently developed, and their optical absorption features in the near-infrared (NIR) have been interpreted as arising from a localized surface plasmon resonance (LSPR). Our pump–probe measurements on platelet-shaped Cu3-xP NCs corroborate the plasmonic character of this absorption. In accordance with studies on crystal structure analysis of Cu3P dating back to the 1970s, our density functional calculations indicate that this material is substoichiometric in copper, since the energy of formation of Cu vacancies in certain crystallographic sites is negative, that is, they are thermodynamically favored. Also, thermoelectric measurements point to a p-type behavior of the majority carriers from films of Cu3-xP NCs. It is likely that both the LSPR and the p-type character of our Cu3-xP NCs arise from the presence of a large number of Cu vacancies in such NCs. Motivated by the presence of Cu vacancies that facilitate the ion diffusion, we have additionally exploited Cu3-xP NCs as a starting material on which to probe cation exchange reactions. We demonstrate here that Cu3-xP NCs can be easily cation-exchanged to hexagonal wurtzite InP NCs, with preservation of the anion framework (the anion framework in Cu3-xP is very close to that of wurtzite InP). Intermediate steps in this reaction are represented by Cu3-xP/InP heterostructures, as a consequence of the fact that the exchange between Cu+ and In3+ ions starts from the peripheral corners of each NC and gradually evolves toward the center. The feasibility of this transformation makes Cu3-xP NCs an interesting material platform from which to access other metal phosphides by cation exchange. PMID:25960605
Zuo, Xiayun; Lou, Chaohua; Gao, Ersheng; Lian, Qiguo; Shah, Iqbal H
2018-03-15
Non-consensual sex (NCS) among young people, an important subject with public health and human rights implications, was less studied in China. This study is to investigate the NCS awareness and victimization of university students in Shanghai, China and whether they were associated with adolescent gender-role attitudes. Gender-role attitudes, awareness and victimization of different forms of NCS were examined among 1099 undergraduates (430 males and 669 females) in four universities in Shanghai using computer-assisted self-interview approach. University students held relatively egalitarian attitude to gender roles. Gender difference existed that girls desired to be more equal in social status and resource sharing while more endorsed the submissiveness for women in sexual interaction than boys. They held low vigilance on the risk of various forms of NCS, with the mean score on perception of NCS among boys (5.67) lower than that among girls (6.37). Boys who adhered to traditional gender norms were less likely to aware the nature of NCS (β = - 0.6107, p = 0.0389). Compared with boys, higher proportion of girls had been the victims of verbal harassment, unwanted touch, fondling, and penetrative sexual intercourse. Multivariable analysis revealed that girls who held more traditional gender-role attitudes were more vulnerable to physical NCS (OR = 1.41, p = 0.0558). The weakening but still existing traditional gender norms had contributions in explaining the gender difference on the low vigilance of NCS and higher prevalence of victimization among university students in Shanghai, China. Interventions should be taken to challenge the traditional gender norms in individual and structural level, and promote the society to understand the nature of NCS better as well as enhance negotiation skills of adolescents and young people that prevent them from potentially risky situations or relationships.
Lei, Lei; Chen, Daqin; Huang, Ping; Xu, Ju; Zhang, Rui; Wang, Yuansheng
2013-11-21
NaGdF4 is regarded as an ideal upconversion (UC) host material for lanthanide (Ln(3+)) activators because of its unique crystal structure, high Ln(3+) solubility, low phonon energy and high photochemical stability, and Ln(3+)-doped NaGdF4 UC nanocrystals (NCs) have been widely investigated as bio-imaging and magnetic resonance imaging agents recently. To realize their practical applications, controlling the size and uniformity of the monodisperse Ln(3+)-doped NaGdF4 UC NCs is highly desired. Unlike the routine routes by finely adjusting the multiple experimental parameters, herein we provide a facile and straightforward strategy to modify the size and uniformity of NaGdF4 NCs via alkaline-earth doping for the first time. With the increase of alkaline-earth doping content, the size of NaGdF4 NCs increases gradually, while the size-uniformity is still retained. We attribute this "focusing" of size distribution to the diffusion controlled growth of NaGdF4 NCs induced by alkaline-earth doping. Importantly, adopting the Ca(2+)-doped Yb/Er:NaGdF4 NCs as cores, the complete Ca/Yb/Er:NaGdF4@NaYF4 core-shell particles with excellent size-uniformity can be easily achieved. However, when taking the Yb/Er:NaGdF4 NCs without Ca(2+) doping as cores, they could not be perfectly covered by NaYF4 shells, and the obtained products are non-uniform in size. As a result, the UC emission intensity of the complete core-shell NCs increases by about 30 times in comparison with that of the cores, owing to the effective surface passivation of the Ca(2+)-doped cores and therefore protection of Er(3+) in the cores from the non-radiative decay caused by surface defects, whereas the UC intensity of the incomplete core-shell NCs is enhanced by only 3 times.
Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals
NASA Astrophysics Data System (ADS)
Akkerman, Quinten A.; Rainò, Gabriele; Kovalenko, Maksym V.; Manna, Liberato
2018-05-01
Lead halide perovskites (LHPs) in the form of nanometre-sized colloidal crystals, or nanocrystals (NCs), have attracted the attention of diverse materials scientists due to their unique optical versatility, high photoluminescence quantum yields and facile synthesis. LHP NCs have a `soft' and predominantly ionic lattice, and their optical and electronic properties are highly tolerant to structural defects and surface states. Therefore, they cannot be approached with the same experimental mindset and theoretical framework as conventional semiconductor NCs. In this Review, we discuss LHP NCs historical and current research pursuits, challenges in applications, and the related present and future mitigation strategies explored.
Nutcracker Syndrome and Sickle Cell Trait: A Perfect Storm for Hematuria.
Ahmad, Amier; McElwee, Samuel K; Kraemer, Ryan R
2017-05-01
We describe the case of a 27-year-old woman with a history of sickle cell trait (SCT) who presented with several months of hematuria and was found to have nutcracker syndrome (NCS). While SCT is a common cause of hematuria resulting from renal papillary necrosis, our patient had concomitant abdominal pain and anemia, prompting further evaluation and the subsequent diagnosis of NCS. Interestingly, the anoxia in the left renal vein from NCS predisposes patients with SCT to sickling. Our case highlights key clinical features of both NCS and SCT and the relationship between the two disease processes.
NASA Astrophysics Data System (ADS)
Liu, Jing; Ren, Xiangling; Meng, Xianwei; Fang, Zheng; Tang, Fangqiong
2013-09-01
An easily prepared fluorescent Ag nanoclusters (Ag NCs) probe for the sensitive and selective detection of Hg2+ and Cu2+ ions was developed here. The Ag NCs were synthesized by using polymethacrylic acid sodium salt as a template via a convenient hydrothermal process. The as-prepared fluorescent Ag NCs were monodispersed, uniform and less than 2 nm in diameter, and can be quenched in the presence of mercury (Hg2+) or copper (Cu2+) ions. Excellent linear relationships existed between the quenching degree of the Ag NCs and the concentrations of Hg2+ or Cu2+ ions in the range of 10 nM to 20 μM or 10 nM to 30 μM, respectively. By using ethylenediaminetetraacetate (EDTA) as the masking agent of Cu2+, Hg2+ was exclusively detected in coexistence with Cu2+ with high sensitivity (LOD = 10 nM), which also provided a reusable detection method for Cu2+. Furthermore, the different quenching phenomena caused by the two metals ions such as changes in visible colour, shifts of UV absorbance peaks and changes in size of Ag NCs make it easy to distinguish between them. Therefore the easily synthesized fluorescent Ag NCs may have great potential as Hg2+ and Cu2+ ions sensors.An easily prepared fluorescent Ag nanoclusters (Ag NCs) probe for the sensitive and selective detection of Hg2+ and Cu2+ ions was developed here. The Ag NCs were synthesized by using polymethacrylic acid sodium salt as a template via a convenient hydrothermal process. The as-prepared fluorescent Ag NCs were monodispersed, uniform and less than 2 nm in diameter, and can be quenched in the presence of mercury (Hg2+) or copper (Cu2+) ions. Excellent linear relationships existed between the quenching degree of the Ag NCs and the concentrations of Hg2+ or Cu2+ ions in the range of 10 nM to 20 μM or 10 nM to 30 μM, respectively. By using ethylenediaminetetraacetate (EDTA) as the masking agent of Cu2+, Hg2+ was exclusively detected in coexistence with Cu2+ with high sensitivity (LOD = 10 nM), which also provided a reusable detection method for Cu2+. Furthermore, the different quenching phenomena caused by the two metals ions such as changes in visible colour, shifts of UV absorbance peaks and changes in size of Ag NCs make it easy to distinguish between them. Therefore the easily synthesized fluorescent Ag NCs may have great potential as Hg2+ and Cu2+ ions sensors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03329e
Synthesis of quantum dots via microreaction: structure optimization for microreactor system
NASA Astrophysics Data System (ADS)
Yang, Hongwei; Luan, Weiling; Cheng, Rui; Chu, Haijian; Tu, Shan-tung
2011-08-01
Microreactor systems existed as a powerful tool for the continuous synthesis of quantum dots. However, the lack of structure optimization for the discrete units led to empirical determination of the length scale, and the properties of the formed products varied in different cases. In this article, the optimizations for the micromixer volume and capillary diameter were presented based on the synthesis of CdSe nanocrystals (NCs). Spectra investigation revealed that the application of a small convective mixer of 36 μL led to 1/3 increase of CdSe concentration in the crude solution. The enhanced mixing of the precursors in this case was also demonstrated favorable to achieve CdSe NCs with narrow PL width. Fast heating and uniform reaction condition achieved in a narrow channel favored the preparation of high quality CdSe NCs under short residence time. However, the application of wide channel did not necessarily result in CdSe NCs with poor quality. Here, we demonstrated that high-quality CdSe NCs with narrow full width at half maximum (FWHM) as 32 nm and high quantum yield (QY) 34.7% could be prepared using an 844 μm inner diameter capillary. Based on the obtained results, the scaled-up synthesis of CdSe NCs was demonstrated, and a high quantity of 0.8 g dry CdSe NCs powder (3.5 nm, σ 8.2%) was obtained within 1 h.
Matulionyte, Marija; Dapkute, Dominyka; Budenaite, Laima; Jarockyte, Greta; Rotomskis, Ricardas
2017-02-10
In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters.
Noncardiac Surgical Procedures After Left Ventricular Assist Device Implantation.
Taghavi, Sharven; Jayarajan, Senthil N; Ambur, Vishnu; Mangi, Abeel A; Chan, Elaine; Dauer, Elizabeth; Sjoholm, Lars O; Pathak, Abhijit; Santora, Thomas A; Goldberg, Amy J; Rappold, Joseph F
2016-01-01
As left ventricular assist devices (LVADs) are increasingly used for patients with end-stage heart failure, the need for noncardiac surgical procedures (NCSs) in these patients will continue to rise. We examined the various types of NCS required and its outcomes in LVAD patients requiring NCS. The National Inpatient Sample Database was examined for all patients implanted with an LVAD from 2007 to 2010. Patients requiring NCS after LVAD implantation were compared to all other patients receiving an LVAD. There were 1,397 patients undergoing LVAD implantation. Of these, 298 (21.3%) required 459 NCS after LVAD implantation. There were 153 (33.3%) general surgery procedures, with abdominal/bowel procedures (n = 76, 16.6%) being most common. Thoracic (n = 141, 30.7%) and vascular (n = 140, 30.5%) procedures were also common. Patients requiring NCS developed more wound infections (9.1 vs. 4.6%, p = 0.004), greater bleeding complications (44.0 vs. 24.8%, p < 0.001) and were more likely to develop any complication (87.2 vs. 82.0%, p = 0.001). On multivariate analysis, the requirement of NCSs (odds ratio: 1.45, 95% confidence interval: 0.95-2.20, p = 0.08) was not associated with mortality. Noncardiac surgical procedures are commonly required after LVAD implantation, and the incidence of complications after NCS is high. This suggests that patients undergoing even low-risk NCS should be cared at centers with treating surgeons and LVAD specialists.
Glutathione-stabilized Cu nanoclusters as fluorescent probes for sensing pH and vitamin B1.
Luo, Yawen; Miao, Hong; Yang, Xiaoming
2015-11-01
Glutathione (GSH), playing roles as both a reducing reagent and protecting ligand, has been successfully employed for synthesizing Cu nanoclusters (CuNCs@GSH) on the basis of a simple and facile approach. The as-prepared CuNCs exhibited a fluorescence emission at 600nm with a quantum yield (QY) of approximately 3.6%. Subsequently, the CuNCs described here was employed as a broad-range pH sensor by virtue of the fluorescence intensity of CuNCs responding sensitively to pH fluctuating in a linear range of 4.0-12.0. Meanwhile, these prepared CuNCs were applied for detections of vitamin B1 (VB1) on the basis of positively charged VB1 neutralizing the negative surface charge of CuNCs, thus leading to the instability and aggregations of CuNCs, and further facilitating to quench their fluorescence. In addition, the proposed analytical method permitted detecting VB1 with a linear range of 2.0×10(-8)-1.0×10(-4) mol L(-1) as well as a detection limit of 4.6×10(-9) mol L(-1). Eventually, the practicability of this sensing approach was validated by assaying VB1 in human urine samples and pharmaceutical tablets, confirming its potential to broaden avenues for assaying VB1. Copyright © 2015 Elsevier B.V. All rights reserved.
Matulionyte, Marija; Dapkute, Dominyka; Budenaite, Laima; Jarockyte, Greta; Rotomskis, Ricardas
2017-01-01
In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)-capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters. PMID:28208642
NASA Astrophysics Data System (ADS)
Chetty, S. Shashank; Praneetha, S.; Basu, Sandeep; Sachidanandan, Chetana; Murugan, A. Vadivel
2016-05-01
Near-infrared (NIR) luminescent CuInS2-ZnS alloyed nanocrystals (CIZS-NCs) for highly fluorescence bioimaging have received considerable interest in recent years. Owing, they became a desirable alternative to heavy-metal based-NCs and organic dyes with unique optical properties and low-toxicity for bioimaging and optoelectronic applications. In the present study, bright and robust CIZS-NCs have been synthesized within 5 min, as-high-as 230 °C without requiring any inert-gas atmosphere via microwave-solvothermal (MW-ST) method. Subsequently, the in vitro and in vivo nano-xenotoxicity and cellular uptake of the MUA-functionalized CIZS-NCs were investigated in L929, Vero, MCF7 cell lines and zebrafish-embryos. We observed minimal toxicity and acute teratogenic consequences upto 62.5 μg/ml of the CIZS-NCs in zebrafish-embryos. We also observed spontaneous uptake of the MUA-functionalized CIZS-NCs by 3 dpf older zebrafish-embryos that are evident through bright red fluorescence-emission at a low concentration of 7.8 μg/mL. Hence, we propose that the rapid, low-cost, large-scale “sustainable” MW-ST synthesis of CIZS-NCs, is an ideal bio-nanoprobe with good temporal and spatial resolution for rapid labeling, long-term in vivo tracking and intravital-fluorescence-bioimaging (IVBI).
Debnath, Tushar; Maity, Partha; Dana, Jayanta; Ghosh, Hirendra N
2016-03-03
Wide-band-gap ZnS nanocrystals (NCs) were synthesized, and after sensitizing the NCs with series of triphenyl methane (TPM) dyes, ultrafast charge-transfer dynamics was demonstrated. HRTEM images of ZnS NCs show the formation of aggregate crystals with a flower-like structure. Exciton absorption and lumimescence, due to quantum confinement of the ZnS NCs, appear at approximately 310 and 340 nm, respectively. Interestingly, all the TPM dyes (pyrogallol red, bromopyrogallol red, and aurin tricarboxylic acid) form charge-transfer complexes with the ZnS NCs, with the appearance of a red-shifted band. Electron injection from the photoexcited TPM dyes into the conduction band of the ZnS NCs is shown to be a thermodynamically viable process, as confirmed by steady-state and time-resolved emission studies. To unravel charge-transfer (both electron injection and charge recombination) dynamics and the effect of molecular coupling, femtosecond transient absorption studies were carried out in TPM-sensitized ZnS NCs. The electron-injection dynamics is pulse-width-limited in all the ZnS/TPM dye systems, however, the back electron transfer differs, depending on the molecular coupling of the sensitizers (TPM dyes). The detailed mechanisms for the above-mentioned processes are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stress evolution of Ge nanocrystals in dielectric matrices.
Bahariqushchi, Rahim; Raciti, Rosario; Kasapoğlu, Ahmet Emre; Gür, Emre; Sezen, Meltem; Kalay, Eren; Mirabella, Salvatore; Aydinli, A
2018-05-04
Germanium nanocrystals (Ge NCs) embedded in single and multilayer silicon oxide and silicon nitride matrices have been synthesized using plasma enhanced chemical vapor deposition followed by conventional furnace annealing or rapid thermal processing in N 2 ambient. Compositions of the films were determined by Rutherford backscattering spectrometry and x-ray photoelectron spectroscopy. The formation of NCs under suitable process conditions was observed with high resolution transmission electron microscope micrographs and Raman spectroscopy. Stress measurements were done using Raman shifts of the Ge optical phonon line at 300.7 cm -1 . The effect of the embedding matrix and annealing methods on Ge NC formation were investigated. In addition to Ge NCs in single layer samples, the stress on Ge NCs in multilayer samples was also analyzed. Multilayers of Ge NCs in a silicon nitride matrix separated by dielectric buffer layers to control the size and density of NCs were fabricated. Multilayers consisted of SiN y :Ge ultrathin films sandwiched between either SiO 2 or Si 3 N 4 by the proper choice of buffer material. We demonstrated that it is possible to tune the stress state of Ge NCs from compressive to tensile, a desirable property for optoelectronic applications. We also observed that there is a correlation between the stress and the crystallization threshold in which the compressive stress enhances the crystallization, while the tensile stress suppresses the process.
Stress evolution of Ge nanocrystals in dielectric matrices
NASA Astrophysics Data System (ADS)
Bahariqushchi, Rahim; Raciti, Rosario; Emre Kasapoğlu, Ahmet; Gür, Emre; Sezen, Meltem; Kalay, Eren; Mirabella, Salvatore; Aydinli, A.
2018-05-01
Germanium nanocrystals (Ge NCs) embedded in single and multilayer silicon oxide and silicon nitride matrices have been synthesized using plasma enhanced chemical vapor deposition followed by conventional furnace annealing or rapid thermal processing in N2 ambient. Compositions of the films were determined by Rutherford backscattering spectrometry and x-ray photoelectron spectroscopy. The formation of NCs under suitable process conditions was observed with high resolution transmission electron microscope micrographs and Raman spectroscopy. Stress measurements were done using Raman shifts of the Ge optical phonon line at 300.7 cm-1. The effect of the embedding matrix and annealing methods on Ge NC formation were investigated. In addition to Ge NCs in single layer samples, the stress on Ge NCs in multilayer samples was also analyzed. Multilayers of Ge NCs in a silicon nitride matrix separated by dielectric buffer layers to control the size and density of NCs were fabricated. Multilayers consisted of SiN y :Ge ultrathin films sandwiched between either SiO2 or Si3N4 by the proper choice of buffer material. We demonstrated that it is possible to tune the stress state of Ge NCs from compressive to tensile, a desirable property for optoelectronic applications. We also observed that there is a correlation between the stress and the crystallization threshold in which the compressive stress enhances the crystallization, while the tensile stress suppresses the process.
Heo, Jungho; Hwang, Cheong-Soo
2015-01-01
Water-dispersible ZnS:Mn nanocrystals (NC) were synthesized by capping the surface with mercaptoacetic acid (MAA) molecules at three different pH conditions. The obtained ZnS:Mn-MAA NC products were physically and optically characterized by corresponding spectroscopic methods. The UV-Visible absorption spectra and PL emission spectra showed broad peaks at 310 and 590 nm, respectively. The average particle sizes measured from the HR-TEM images were 5 nm, which were also supported by the Debye-Scherrer calculations using the X-ray diffraction (XRD) data. Moreover, the surface charges and the degrees of aggregation of the ZnS:Mn-MAA NCs were determined by electrophoretic and hydrodynamic light scattering methods, indicating formation of agglomerates in water with various sizes (50–440 nm) and different surface charge values accordingly the preparation conditions of the NCs (−7.59 to −24.98 mV). Finally, the relative photocatalytic activities of the ZnS:Mn-MAA NCs were evaluated by measuring the degradation rate of methylene blue (MB) molecule in a pseudo first-order reaction condition under the UV-visible light irradiation. As a result, the ZnS:Mn-MAA NC prepared at the pH 7 showed the best photo-degradation efficiency of the MB molecule with the first-order rate constant (kobs) of 2.0 × 10−3·min−1. PMID:28347105
Passively Targeted Curcumin-Loaded PEGylated PLGA Nanocapsules for Colon Cancer Therapy In Vivo
Klippstein, Rebecca; Wang, Julie Tzu-Wen; El-Gogary, Riham I; Bai, Jie; Mustafa, Falisa; Rubio, Noelia; Bansal, Sukhvinder; Al-Jamal, Wafa T; Al-Jamal, Khuloud T
2015-01-01
Clinical applications of curcumin for the treatment of cancer and other chronic diseases have been mainly hindered by its short biological half-life and poor water solubility. Nanotechnology-based drug delivery systems have the potential to enhance the efficacy of poorly soluble drugs for systemic delivery. This study proposes the use of poly(lactic-co-glycolic acid) (PLGA)-based polymeric oil-cored nanocapsules (NCs) for curcumin loading and delivery to colon cancer in mice after systemic injection. Formulations of different oil compositions are prepared and characterized for their curcumin loading, physico-chemical properties, and shelf-life stability. The results indicate that castor oil-cored PLGA-based NC achieves high drug loading efficiency (≈18% w(drug)/w(polymer)%) compared to previously reported NCs. Curcumin-loaded NCs internalize more efficiently in CT26 cells than the free drug, and exert therapeutic activity in vitro, leading to apoptosis and blocking the cell cycle. In addition, the formulated NC exhibits an extended blood circulation profile compared to the non-PEGylated NC, and accumulates in the subcutaneous CT26-tumors in mice, after systemic administration. The results are confirmed by optical and single photon emission computed tomography/computed tomography (SPECT/CT) imaging. In vivo growth delay studies are performed, and significantly smaller tumor volumes are achieved compared to empty NC injected animals. This study shows the great potential of the formulated NC for treating colon cancer. PMID:26140363
Akamatsu, Ken; Shikazono, Naoya; Saito, Takeshi
2017-11-01
We have developed a new method for estimating the localization of DNA damage such as apurinic/apyrimidinic sites (APs) on DNA using fluorescence anisotropy. This method is aimed at characterizing clustered DNA damage produced by DNA-damaging agents such as ionizing radiation and genotoxic chemicals. A fluorescent probe with an aminooxy group (AlexaFluor488) was used to label APs. We prepared a pUC19 plasmid with APs by heating under acidic conditions as a model for damaged DNA, and subsequently labeled the APs. We found that the observed fluorescence anisotropy (r obs ) decreases as averaged AP density (λ AP : number of APs per base pair) increases due to homo-FRET, and that the APs were randomly distributed. We applied this method to three DNA-damaging agents, 60 Co γ-rays, methyl methanesulfonate (MMS), and neocarzinostatin (NCS). We found that r obs -λ AP relationships differed significantly between MMS and NCS. At low AP density (λ AP < 0.001), the APs induced by MMS seemed to not be closely distributed, whereas those induced by NCS were remarkably clustered. In contrast, the AP clustering induced by 60 Co γ-rays was similar to, but potentially more likely to occur than, random distribution. This simple method can be used to estimate mutagenicity of ionizing radiation and genotoxic chemicals. Copyright © 2017 Elsevier Inc. All rights reserved.
Ren, Keyu; Zhang, Wenlin; Cao, Shurui; Wang, Guomin; Zhou, Zhiqin
2018-01-01
Carbon-based Fe3O4 nanocomposites (C/Fe3O4 NCs) were synthesized by a simple one-step hydrothermal method using waste pomelo peels as the carbon precursors. The characterization results showed that they had good structures and physicochemical properties. The prepared C/Fe3O4 NCs could be applied as excellent and recyclable adsorbents for magnetic solid phase extraction (MSPE) of 11 triazole fungicides in fruit samples. In the MSPE procedure, several parameters including the amount of adsorbents, extraction time, the type and volume of desorption solvent, and desorption time were optimized in detail. Under the optimized conditions, the good linearity (R2 > 0.9916), the limits of detection (LOD), and quantification (LOQ) were obtained in the range of 1–100, 0.12–0.55, and 0.39–1.85 μg/kg for 11 pesticides, respectively. Lastly, the proposed MSPE method was successfully applied to analyze triazole fungicides in real apple, pear, orange, peach, and banana samples with recoveries in the range of 82.1% to 109.9% and relative standard deviations (RSDs) below 8.4%. Therefore, the C/Fe3O4 NCs based MSPE method has a great potential for isolating and pre-concentrating trace levels of triazole fungicides in fruits. PMID:29734765
Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity
Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa
2011-01-01
Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12–3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO3. The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller–Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications. PMID:21383858
Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity.
Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa
2011-01-01
Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12-3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO(3). The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller-Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications.
Plasmonic doped semiconductor nanocrystals: Properties, fabrication, applications and perspectives
NASA Astrophysics Data System (ADS)
Kriegel, Ilka; Scotognella, Francesco; Manna, Liberato
2017-02-01
Degenerately doped semiconductor nanocrystals (NCs) are of recent interest to the NC community due to their tunable localized surface plasmon resonances (LSPRs) in the near infrared (NIR). The high level of doping in such materials with carrier densities in the range of 1021cm-3 leads to degeneracy of the doping levels and intense plasmonic absorption in the NIR. The lower carrier density in degenerately doped semiconductor NCs compared to noble metals enables LSPR tuning over a wide spectral range, since even a minor change of the carrier density strongly affects the spectral position of the LSPR. Two classes of degenerate semiconductors are most relevant in this respect: impurity doped semiconductors, such as metal oxides, and vacancy doped semiconductors, such as copper chalcogenides. In the latter it is the density of copper vacancies that controls the carrier concentration, while in the former the introduction of impurity atoms adds carriers to the system. LSPR tuning in vacancy doped semiconductor NCs such as copper chalcogenides occurs by chemically controlling the copper vacancy density. This goes in hand with complex structural modifications of the copper chalcogenide crystal lattice. In contrast the LSPR of degenerately doped metal oxide NCs is modified by varying the doping concentration or by the choice of host and dopant atoms, but also through the addition of capacitive charge carriers to the conduction band of the metal oxide upon post-synthetic treatments, such as by electrochemical- or photodoping. The NIR LSPRs and the option of their spectral fine-tuning make accessible important new features, such as the controlled coupling of the LSPR to other physical signatures or the enhancement of optical signals in the NIR, sensing application by LSPR tracking, energy production from the NIR plasmon resonance or bio-medical applications in the biological window. In this review we highlight the recent advances in the synthesis of various different plasmonic semiconductor NCs with LSPRs covering the entire spectral range, from the mid- to the NIR. We focus on copper chalcogenide NCs and impurity doped metal oxide NCs as the most investigated alternatives to noble metals. We shed light on the structural changes upon LSPR tuning in vacancy doped copper chalcogenide NCs and deliver a picture for the fundamentally different mechanism of LSPR modification of impurity doped metal oxide NCs. We review on the peculiar optical properties of plasmonic degenerately doped NCs by highlighting the variety of different optical measurements and optical modeling approaches. These findings are merged in an exhaustive section on new and exciting applications based on the special characteristics that plasmonic semiconductor NCs bring along.
Young star clusters in nearby molecular clouds
NASA Astrophysics Data System (ADS)
Getman, K. V.; Kuhn, M. A.; Feigelson, E. D.; Broos, P. S.; Bate, M. R.; Garmire, G. P.
2018-06-01
The SFiNCs (Star Formation in Nearby Clouds) project is an X-ray/infrared study of the young stellar populations in 22 star-forming regions with distances ≲ 1 kpc designed to extend our earlier MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) survey of more distant clusters. Our central goal is to give empirical constraints on cluster formation mechanisms. Using parametric mixture models applied homogeneously to the catalogue of SFiNCs young stars, we identify 52 SFiNCs clusters and 19 unclustered stellar structures. The procedure gives cluster properties including location, population, morphology, association with molecular clouds, absorption, age (AgeJX), and infrared spectral energy distribution (SED) slope. Absorption, SED slope, and AgeJX are age indicators. SFiNCs clusters are examined individually, and collectively with MYStIX clusters, to give the following results. (1) SFiNCs is dominated by smaller, younger, and more heavily obscured clusters than MYStIX. (2) SFiNCs cloud-associated clusters have the high ellipticities aligned with their host molecular filaments indicating morphology inherited from their parental clouds. (3) The effect of cluster expansion is evident from the radius-age, radius-absorption, and radius-SED correlations. Core radii increase dramatically from ˜0.08 to ˜0.9 pc over the age range 1-3.5 Myr. Inferred gas removal time-scales are longer than 1 Myr. (4) Rich, spatially distributed stellar populations are present in SFiNCs clouds representing early generations of star formation. An appendix compares the performance of the mixture models and non-parametric minimum spanning tree to identify clusters. This work is a foundation for future SFiNCs/MYStIX studies including disc longevity, age gradients, and dynamical modelling.
Zhang, Peng; Liu, Hui; Li, Xiaocheng; Ma, Suzhen; Men, Shuai; Wei, Heng; Cui, Jingjing; Wang, Hongning
2017-01-15
The harm of Salmonella typhimurium (S. typhimurium) to public health mainly by the consumption of contaminated agricultural products or water stresses an urgent need for rapid detection methods to help control the spread of S. typhimurium. In this work, an intelligently designed sensor system took creative advantage of triple trigger sequences-regenerated strand displacement amplification and self-protective hairpin template-generated-scaffolded silver nanoclusters (AgNCs) for the first time. In the presence of live S. typhimurium, single-stranded trigger sequences were released from aptamer-trigger sequences complex, initiating a branch migration to open the hairpin template I containing complementary scaffolds of AgNCs. Then the first strand displacement amplification was induced to produce numerous scaffolds of AgNCs and reporter strands which initiated a branch migration to open the hairpin template II containing complementary scaffolds of AgNCs. Then the second strand displacement amplification was induced to generate numerous scaffolds of AgNCs and trigger sequences which initiated the third branch migration and strand displacement amplification to produce numerous scaffolds of AgNCs and reporter strands in succession. Cyclically, the reproduction of the trigger sequences and cascade successive production of scaffolds were achieved successfully, forming highly fluorescent AgNCs, thus providing significantly enhanced fluorescent signals to achieve ultrasensitive detection of live S. typhimurium down to 50 CFU/mL with a linear range from 10 2 to 10 7 CFU/mL. It is the first report on a fluorescent biosensor for detecting viable S. typhimurium directly, which can distinguish from heat denatured S. typhimurium. And it develops a new strategy to generate the DNA-scaffolds for forming AgNCs. Copyright © 2016 Elsevier B.V. All rights reserved.
Dumontel, B; Canta, M; Engelke, H; Chiodoni, A; Racca, L; Ancona, A; Limongi, T; Canavese, G; Cauda, V
2017-11-28
The widespread use of ZnO nanomaterials for biomedical applications, including therapeutic drug delivery or stimuli-responsive activation, as well as imaging, imposes a careful control over the colloidal stability and long-term behaviour of ZnO in biological media. Moreover, the effect of ZnO nanostructures on living cells, in particular cancer cells, is still under debate. This paper discusses the role of surface chemistry and charge of zinc oxide nanocrystals, of around 15 nm in size, which influence their behaviour in biological fluids and effect on cancer cells. In particular, we address this problem by modifying the surface of pristine ZnO nanocrystals (NCs), rich of hydroxyl groups, with positively charged amino-propyl chains or, more innovatively, by self-assembling a double-lipidic membrane, shielding the ZnO NCs. Our findings show that the prolonged immersion in simulated human plasma and in the cell culture medium leads to highly colloidally dispersed ZnO NCs only when coated by the lipidic bilayer. In contrast, the pristine and amine-functionalized NCs form huge aggregates after already one hour of immersion. Partial dissolution of these two samples into potentially cytotoxic Zn 2+ cations takes place, together with the precipitation of phosphate and carbonate salts on the NCs' surface. When exposed to living HeLa cancer cells, higher amounts of lipid-shielded ZnO NCs are internalized with respect to the other samples, thus showing a reduced cytotoxicity, based on the same amount of internalized NCs. These results pave the way for the development of novel theranostic platforms based on ZnO NCs. The new formulation of ZnO shielded with a lipid-bilayer will prevent strong aggregation and premature degradation into toxic by-products, and promote a highly efficient cell uptake for further therapeutic or diagnostic functions.
Red-luminescence band: A tool for the quality assessment of germanium and silicon nanocrystals
NASA Astrophysics Data System (ADS)
Fraj, I.; Favre, L.; David, T.; Abbarchi, M.; Liu, K.; Claude, J. B.; Ronda, A.; Naffouti, M.; Saidi, F.; Hassen, F.; Maaref, H.; Aqua, J. N.; Berbezier, I.
2017-10-01
We present the photoluminescence (PL) emission of Silicon and Germanium nanocrystals (NCs) of different sizes embedded in two different matrices. Formation of the NCs is achieved via solid-state dewetting during annealing in a molecular beam epitaxy ultra-high vacuum system of ultrathin amorphous Si and Ge layers deposited at room temperature on SiO2. During the dewetting process, the bi-dimensional amorphous layers transform into small pseudo-spherical islands whose mean size can be tuned directly with the deposited thickness. The nanocrystals are capped either ex situ by silicon dioxide or in situ by amorphous Silicon. The surface-state dependent emission (typically in the range 1.74 eV-1.79 eV) exhibited higher relative PL quantum yields compared to the emission originating from the band gap transition. This red-PL emission comes from the radiative transitions between a Si band and an interface level. It is mainly ascribed to the NCs and environment features deduced from morphological and structural analyses. Power dependent analysis of the photoluminescence intensity under continuous excitation reveals a conventional power law with an exponent close to 1, in agreement with the type II nature of the emission. We show that Ge-NCs exhibit much lower quantum efficiency than Si-NCs due to non-radiative interface states. Low quantum efficiency is also obtained when NCs have been exposed to air before capping, even if the exposure time is very short. Our results indicate that a reduction of the non-radiative surface states is a key strategy step in producing small NCs with increased PL emission for a variety of applications. The red-PL band is then an effective tool for the quality assessment of NCs based structures.
NASA Astrophysics Data System (ADS)
Caschera, Daniela; Federici, Fulvio; de Caro, Tilde; Cortese, Barbara; Calandra, Pietro; Mezzi, Alessio; Lo Nigro, Raffaella; Toro, Roberta G.
2018-01-01
A modified one step and cost-effective chemical green route has been used to synthesize oleate-capped TiO2 anatase nanocrystals (NCs) doped with different amounts of europium, with high yields and without high-temperature post-calcination processes. Europium doping endowed TiO2 NCs with an intense red luminescence associated with the 5D0 → 7F2 transition of the electronic structure of Eu3+ and was responsible for both the morphological change of the NCs structure (from nanorods to spherical nanoparticles) and the blue shift in the absorption edge respect to the undoped TiO2 NCs. Furthermore, photocatalytic experiments revealed that a low-content (0.5 mol%) Eu3+ doped TiO2 NCs showed the best ability as photocatalyst for the degradation of methylene blue (MB) under both UV and visible light irradiation, even if all the Eu3+ doped oleate-capped TiO2 NCs were more effective under visible light. Moreover, taking advantage of their photocatalytic activity, the 0.5% Eu3+ doped oleate-capped TiO2 photocatalysts has been employed on cotton fabrics. Our results highlighted that functionalization of cotton textile with Eu3+ doped oleate-capped TiO2 NCs imparted new functionalities, such as a high photocatalytic activity toward MB degradation under visible light. In addition, it determined also the change in the wetting behaviour of cotton that switches to a superhydrophobic nature. The obtained fabric also showed stable and robust superhydrophobicity against strong acid and alkaline environments. Multifunctional materials having simultaneously luminescence, superhydrophobicity and visible light photocatalysis are expected to be very useful in many technological applications.
NASA Astrophysics Data System (ADS)
Del Rosso, T.; Louro, S. R. W.; Deepak, F. L.; Romani, E. C.; Zaman, Q.; Tahir; Pandoli, O.; Cremona, M.; Freire Junior, F. L.; De Beule, P. A. A.; De St. Pierre, T.; Aucelio, R. Q.; Mariotto, G.; Gemini-Piperni, S.; Ribeiro, A. R.; Landi, S. M.; Magalhães, A.
2018-05-01
Ligand-free carbynoid-encapsulated gold nanocomposites (Au@Carbynoid NCs) with blue-shifted localized surface plasmon resonance (LSPR) have been synthesized by CO2 recycling induced by pulsed laser ablation (PLA) of a solid gold target in aqueous solution with NaOH at pH 7.0. High Resolution Transmission Electron Microscopy (HRTEM) images at not destructive acceleration voltage of 80 kV revealed carbynoid nanocrystals around the gold core, associated to the intense bond length alternation (BLA) Raman mode of the carbon atomic wires (CAWs), centered at 2124 cm-1, observed in the Surface Enhanced Raman Scattering (SERS) spectra. It was verified that interlinking process with sp to sp2 conversion of the CAWs is induced both by high acceleration voltage in HRTEM and high irradiance of the excitation beam used in SERS measurements. Post synthesis mixing of Pluronic-F127 copolymer with pre-synthesized Au@Carbynoid NCs allows the formation of a fully biocompatible colloidal solution of Au@Carbynoid/Copolymer NCs. SERS investigation highlights that the Raman band of the BLA mode can be used as efficient Raman tag to monitor the functionalization of the NCs with the copolymer. The biocompatibility of the NCs was demonstrated performing a study of cytotoxicity using human skin fibroblasts. As proof of principle, it was demonstrated that the photodynamic activity of the bifunctional Au@Carbynoid/PF127 NCs in the presence of chlorin e6 (Ce6) drug can be enhanced inducing the aggregation state of the colloidal suspension. The stability of the colloidal dispersions of Au@Carbynoid NCs functionalized with Pluronic-F127 is verified after centrifugation in PBS (0.15 mol L-1 NaCl) solutions, confirming the possibility to use the green carbynoid based NCs as drug-carrier in biological applications.
Chatelle, Camille; Hauger, Solveig L; Martial, Charlotte; Becker, Frank; Eifert, Bernd; Boering, Dana; Giacino, Joseph T; Laureys, Steven; Løvstad, Marianne; Maurer-Karattup, Petra
2018-04-10
Investigate the relationship between consciousness and nociceptive responsiveness (i.e., Nociception Coma Scale-Revised [NCS-R]), examine the suitability of the NCS-R for assessing nociception in participants with disorders of consciousness (DoC) and replicate previous findings on psychometric properties of the scale. We prospectively assessed consciousness with the Coma Recovery Scale-Revised (CRS-R). Responses during baseline, non-noxious and noxious stimulations were scored with the NCS-R, CRS-R oromotor and motor subscales. Specialized DoC program and university hospitals. Eighty-five participants diagnosed with DoCs. Correlation between CRS-R total scores and CRS-R and NCS-R (sub)scores to noxious stimulation, proportion of grimace and/or cry in participants with minimally consciousness (MCS) and unresponsive wakefulness syndrome (UWS) during non-noxious and noxious conditions. Not applicable RESULTS: CRS-R total scores correlated with NCS-R total scores and subscores. CRS-R motor subscale correlated with NCS-R total scores and motor subscale and CRS-R oromotor subscale correlated with NCS-R total scores, as well as verbal and facial expression. There was a difference between participants with UWS and MCS in the proportion of grimace and/or crying during the noxious condition. We replicated previous findings on psychometric properties of the scale, but found a different score as the best threshold for nociception. We report a strong relationship between responsiveness to nociception and the level of consciousness. The NCS-R seems to offer a valuable tool to assess nociception in an efficient manner, but additional studies are needed to allow recommendations for clinical assessment of subjective pain experience. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Micro-electrophoresis: a noninvasive method of sperm selection based on membrane charge.
Simon, Luke; Murphy, Kristin; Aston, Kenneth I; Emery, Benjamin R; Hotaling, James M; Carrell, Douglas T
2015-02-01
To develop a technique with the potential of isolating genetically fit sperm for assisted reproductive technology (ART) treatment without compromising its structural or functional competence. Observational study. University hospital. Fifty patients undergoing infertility diagnosis and 88 couples undergoing ART treatment. None. Under an electric field, the percentage of positively charged sperm (PCS), negatively charged sperm (NCS), and neutrally charged sperm was determined for each ejaculate before and after density gradient centrifugation (DGC), and evaluated for sperm DNA damage, histone retention, and couples' ART outcomes. Subsequently, PCS, NCS, and neutrally charged sperm were selected using an intracytoplasmic sperm injection needle and directly analyzed for DNA damage. There was a reduction in the NCS population (95.10% ± 0.94% vs. 54.48% ± 2.39%) and an increase in the PCS population (4.28% ± 0.58% vs. 42.52% ± 2.36%) after DGC. The DNA damage was inversely proportional to %NCS (r(2) = -0.242) and directly proportional to the %PCS (r(2) = 0.206). When sperm were picked according to their charge and directly analyzed, sperm DNA damage was lower in the NCS population (3.9% ± 1.5%) compared with control (17.3% ± 3.2%) and %PCS populations (27.8% ± 6.0%). The %NCS was positively associated with fertilization rate (r(2) = 0.469) and blastocyst development (r(2) = 0.308) and inversely associated with embryo arrest (r(2) = -0.253). Implantation rate and clinical pregnancies were higher in patient groups with increased NCS. Selection of NCS through micro-electrophoresis has the potential to isolate sperm relatively free of DNA damage to be used in ART. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Xu, Xiaozhe; Qiao, Juan; Li, Nan; Qi, Li; Zhang, Shufeng
2015-06-16
A new fluorescent probe based on ensemble of gold nanoclusters (AuNCs) and polymer protected gold nanoparticles (AuNPs) for turn-on sensing of L-cysteine was designed and prepared. The AuNCs were protected by bovine serum albumin and had strong fluorescence. The polymer protected AuNPs were synthesized by a facile in situ strategy at room temperature and could quench the fluorescence of AuNCs due to the Förster resonance energy transfer. Interestingly, it has been observed that the quenched fluorescence of AuNCs was recovered by L-cysteine, which could induce the aggregation of polymer protected AuNPs by sulfur group. Then the prepared fluorescent probe was successfully used for determination of L-Cys in human urines, which would have an evolving aspect and promote the subsequent exploration. Copyright © 2015 Elsevier B.V. All rights reserved.
Au–CsPbBr 3 Hybrid Architecture: Anchoring Gold Nanoparticles on Cubic Perovskite Nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakrishnan, Subila K.; Kamat, Prashant V.
A selective growth of gold (Au) nanoparticles on the corners of CsPbBr 3 nanocrystals (NCs) is made possible with the treatment of Au(III) salts such as Au(III) bromide and Au(III) chloride in solution. The surface bound oleylamine ligands not only stabilize NCs but also facilitate reduction of the Au(III) salts followed by nucleation of the Au nanoparticles on the corners of the perovskite NCs. The luminescence quantum yield of NCs is decreased when Au nanoparticles are formed on the corners of CsPbBr 3 NCs, suggesting interaction between the two systems. Formation of Au nanoparticles as well as an anion exchangemore » is seen when Au(III) bromide was replaced with Au(III) chloride as a precursor. This simple strategy of designing perovskite-gold hybrid nanostructures with good colloidal stability offers new opportunities to explore their photocatalytic properties.« less
Schein, Jessica R; Hunt, Kevin A; Minton, Janet A; Schultes, Neil P; Mourad, George S
2013-09-01
The single cell alga Chlamydomonas reinhardtii is capable of importing purines as nitrogen sources. An analysis of the annotated C. reinhardtii genome reveals at least three distinct gene families encoding for known nucleobase transporters. In this study the solute transport and binding properties for the lone C. reinhardtii nucleobase cation symporter 1 (CrNCS1) are determined through heterologous expression in Saccharomyces cerevisiae. CrNCS1 acts as a transporter of adenine, guanine, uracil and allantoin, sharing similar - but not identical - solute recognition specificity with the evolutionary distant NCS1 from Arabidopsis thaliana. The results suggest that the solute specificity for plant NCS1 occurred early in plant evolution and are distinct from solute transport specificities of single cell fungal NCS1 proteins. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
da Cruz, Andrea de Mello Pereira; Almeida, Miriam de Abreu
2010-12-01
This is a qualitative, exploratory and descriptive study whose general objective was to learn, considering the perspective of the nursing technician who works in school hospitals, the competencies developed during their educational process to implement the Nursing Care Systematization (NCS). Data collection and analysis were carried out through a focal group, with content analysis and nursing technicians. Two thematic categories emerged: The participation of the nursing technician in the NCS and The competencies in the education of the nursing technician. Each one received two subcategories: Conception of the NCS and (De)valuation of the NCS, Technical-scientific competency and Competency in the interpersonal relationship, respectively. It was observed that the NCS must be shared, discussed and made public among nursing professionals, so that they may acknowledge themselves as the leading actors of their methodology and be aware that their practices determine the results.
In vivo molecular photoacoustic tomography of melanomas targeted by bio-conjugated gold nanocages
Kim, Chulhong; Cho, Eun Chul; Chen, Jingyi; Song, Kwang Hyun; Au, Leslie; Favazza, Christopher; Zhang, Qiang; Cobley, Claire M.; Gao, Feng; Xia, Younan; Wang, Lihong V.
2010-01-01
Early diagnosis, accurate staging, and image-guided resection of melanomas remain crucial clinical objectives for improving patient survival and treatment outcomes. Conventional techniques cannot meet this demand because of the low sensitivity, low specificity, poor spatial resolution, shallow penetration, and/or ionizing radiation. Here we overcome such limitations by combining high-resolution photoacoustic tomography (PAT) with extraordinarily optical absorbing gold nanocages (AuNCs). When bio-conjugated with [Nle4,D-Phe7]-α-melanocyte-stimulating hormone, the AuNCs can serve as a novel contrast agent for in vivo molecular PAT of melanomas with both exquisite sensitivity and high specificity. The bio-conjugated AuNCs enhanced contrast ~300% more than the control, PEGylated AuNCs. The in vivo PAT quantification of the amount of AuNCs accumulated in melanomas was further validated with inductively coupled plasma mass spectrometry (ICP-MS). PMID:20731439
The soft X-ray coronal mass ejection above solar limb of 1998 April 23
NASA Astrophysics Data System (ADS)
Chen, Xiao-juan
Using the observational materials of SXT/HXT aboard satellite Yohkoh and the Nobeyama Radioheliograph (NoRH) on 1998-04-23, a comprehensive study of the soft X-ray coronal mass ejection (CME) above solar SE limb shows that there were two magnetic dipolar sources (MDSs), one magnetic capacity belt (MCB) between the MDSs, one neutral current sheet (NCS) and some rare activation sources (ASs). When the MCB was changed by the ASs to become a magnetic energy belt (MEB), both mass and energy were concentrated to form the NCS. When the MDSs were connected by the MEB, the NCS was formed and the CME occurred. Mass was ejected not only from the NCS, but also from the whole MEB. The expanding loop of the CME had the two MDSs as footpoints. The top of the loop was always inclined towards the footpoint of the weaker source, and its locus marks the NCS.
Engineering the architectural diversity of heterogeneous metallic nanocrystals.
Yu, Yue; Zhang, Qingbo; Xie, Jianping; Lee, Jim Yang
2013-01-01
Similar to molecular engineering where structural diversity is used to create more property variations for application explorations, the architectural engineering of heterogeneous metallic nanocrystals (HMNCs) can likewise increase the versatility of metallic nanocrystals (NCs). Here we present a synthesis strategy capable of engineering the architectural diversity of HMNCs through rational and independent programming of every architecture-determining element, that is, the shape and size of the component NCs and their spatial arrangement. The strategy is based on the galvanic replacement reaction of a self-sustaining layer formed by underpotential deposition on a polyhedral NC. The selective deposition of satellite NCs on specific site of the central NC is realized by creating a geometry-dependent heterogeneous electron distribution. This site-selective deposition approach is applicable to central NCs in various polyhedral shapes and sizes. The satellite NCs can further develop their own shape and size through crystal growth kinetics control.
Au–CsPbBr 3 Hybrid Architecture: Anchoring Gold Nanoparticles on Cubic Perovskite Nanocrystals
Balakrishnan, Subila K.; Kamat, Prashant V.
2016-11-29
A selective growth of gold (Au) nanoparticles on the corners of CsPbBr 3 nanocrystals (NCs) is made possible with the treatment of Au(III) salts such as Au(III) bromide and Au(III) chloride in solution. The surface bound oleylamine ligands not only stabilize NCs but also facilitate reduction of the Au(III) salts followed by nucleation of the Au nanoparticles on the corners of the perovskite NCs. The luminescence quantum yield of NCs is decreased when Au nanoparticles are formed on the corners of CsPbBr 3 NCs, suggesting interaction between the two systems. Formation of Au nanoparticles as well as an anion exchangemore » is seen when Au(III) bromide was replaced with Au(III) chloride as a precursor. This simple strategy of designing perovskite-gold hybrid nanostructures with good colloidal stability offers new opportunities to explore their photocatalytic properties.« less
Structure control of tungsten nanocontacts through pulsed-voltage application
NASA Astrophysics Data System (ADS)
Suzuki, Yasuchika; Kizuka, Tokushi
2018-05-01
The structural variation in tungsten nanocontacts (NCs) during a pulsed-voltage application was observed in situ by high-resolution transmission electron microscopy. The direction of electromigration in the NCs changed from the well-known direction to the opposite direction at a critical voltage of 0.9 V. Upon applying a higher pulsed voltage of 2.5 V, the NC structure changed to amorphous, with an average conductance density decreased to 82% of that of the crystalline NCs. We demonstrated that the external shape and texture of tungsten NCs can be controlled with an atomic precision through electromigration and amorphization by a pulsed-voltage application.
Park, Byoungnam; Whitham, Kevin; Bian, Kaifu; Lim, Yee-Fun; Hanrath, Tobias
2014-12-21
We used a bilayer field effect transistor (FET) consisting of a thin PbS nanocrystals (NCs) film interfaced with vacuum-deposited pentacene to probe trap states in NCs. We interpret the observed threshold voltage shift in context of charge carrier trapping by PbS NCs and relate the magnitude of the threshold voltage shift to the number of trapped carriers. We explored a series of NC surface ligands to modify the interface between PbS NCs and pentacene and demonstrate the impact of interface chemistry on charge carrier density and the FET mobility in a pentacene FET.
Xiong, Xiaoli; Tang, Yan; Zhao, Jingjin; Zhao, Shulin
2016-02-21
A novel biotin fluorescent probe based on oligonucleotide-stabilized silver nanoclusters (DNA-AgNCs) was synthesized by employing a biotinylated cytosine-rich sequence as a synthesized template. The fluorescence properties of the DNA-AgNCs are related to the modified position of the DNA. When biotin is linked to the middle thymine base of the DNA sequence, the DNA-AgNCs emit the strongest fluorescence. Moreover, the stability of the DNA-AgNCs was affected by avidin through biotin-avidin binding, quenching the fluorescence of the DNA-AgNCs. In contrast, if free biotin is further introduced into this system, the quenching is apparently weakened by competition, leading to the restoration of fluorescence. This phenomenon can be utilized for the detection of biotin. Under the optimal conditions, the fluorescence recovery is linearly proportional to the concentration of biotin in the range of 10 nM-1.0 μM with a detection limit of 6.0 nM. This DNA-AgNCs probe with excellent fluorescent properties is sensitive and selective for the detection of biotin and has been applied for the determination of biotin in wheat flour.
Viviano, Jeffrey; Krishnan, Anuradha; Wu, Hao; Venkataraman, Venkat
2016-02-01
In proteins of the neuronal calcium sensor (NCS) family, changes in structure as well as function are brought about by the binding of calcium. In this article, we demonstrate that these structural changes, solely due to calcium binding, can be assessed through electrophoresis in native gels. The results demonstrate that the NCS proteins undergo ligand-dependent conformational changes that are detectable in native gels as a gradual decrease in mobility with increasing calcium but not other tested divalent cations such as magnesium, strontium, and barium. Surprisingly, such a gradual change over the entire tested range is exhibited only by the NCS proteins but not by other tested calcium-binding proteins such as calmodulin and S100B, indicating that the change in mobility may be linked to a unique NCS family feature--the calcium-myristoyl switch. Even within the NCS family, the changes in mobility are characteristic of the protein, indicating that the technique is sensitive to the individual features of the protein. Thus, electrophoretic mobility on native gels provides a simple and elegant method to investigate calcium (small ligand)-induced structural changes at least in the superfamily of NCS proteins. Copyright © 2015 Elsevier Inc. All rights reserved.
Design and mechanistic study of a novel gold nanocluster-based drug delivery system.
Li, Qinzhen; Pan, Yiting; Chen, Tiankai; Du, Yuanxin; Ge, Honghua; Zhang, Buchang; Xie, Jianping; Yu, Haizhu; Zhu, Manzhou
2018-05-22
Chemically-triggered drug delivery systems (DDSs) have been extensively studied as they do not require specialized equipment to deliver the drug and can deeply penetrate human tissue. However, their syntheses are complicated and they tend to be cytotoxic, which restricts their clinical utility. In this work, the self-regulated drug loading and release capabilities of peptide-protected gold nanoclusters (Pep-Au NCs) are investigated using vancomycin (Van) as the model drug. Gold nanoclusters (Au NCs) coated with a custom-designed pentapeptide are synthesized as drug delivery nanocarriers and loaded with Van - a spontaneous process reliant on the specific binding between Van and the custom-designed peptide. The Van-loaded Au NCs show comparable antimicrobial activity with Van on its own, and the number of Van released by the Pep-Au NCs is found to be proportional to the amount of bacteria present. The controlled nature of the Van release is very encouraging, and predominantly due to the stronger binding affinity of Van with bacteria than that with Au NCs. In addition, these fluorescent Au NCs could also be used to construct temperature sensors, which enable the in vitro and in vivo bioimaging.
Charge Trapping Properties of Ge Nanocrystals Grown via Solid-State Dewetting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Steven; Jadli, I.; Aouassa, M.
2018-05-04
In the present work, we report on the charge trapping properties of Germanium Nanocrystals (Ge NCs) self assembled on SiO2 thin layer for promising applications in next-generation non volatile memory by the means of Deep Level Transient Spectroscopy (DLTS) and high frequency C-V method. The Ge NCs were grown via dewetting phenomenon at solid state by Ultra-High Vacuum (UHV) annealing and passivated with silicon before SiO2 capping. The role of the surface passivation is to reduce the electrical defect density at the Ge NCs-SiO2 interface. The presence of the Ge NCs in the oxide of the MOS capacitors strongly affectsmore » the C-V characteristics and increases the accumulation capacitance, causes a negative flat band voltage (VFB) shift. The DLTS has been used to study the individual Ge NCs as a single point deep level defect in the oxide. DLTS reveals two main features: the first electron traps around 255 K could correspond to dangling bonds at the Si/SiO2 interface and the second, at high-temperature (>300 K) response, could be originated from minority carrier generation in Ge NCs.« less
Zhang, Yuanyuan; Jiang, Hui; Wang, Xuemei
2015-04-22
In this study, we have developed a label-free, dual functional detection strategy for highly selective and sensitive determination of aqueous Ag(+) and Hg(2+) by using cytidine stabilized Au NCs and AuAg NCs as fluorescent turn-on and turn off probes, respectively. The Au NCs and AuAg NCs showed a remarkably rapid response and high selectivity for Ag(+) and Hg(2+) over other metal ions, and relevant detection limit of Ag(+) and Hg(2+) is ca. 10 nM and 30 nM, respectively. Importantly, the fluorescence enhanced Au NCs by doping Ag(+) can be conveniently reusable for the detection of Hg(2+) based on the corresponding fluorescence quenching. The sensing mechanism was based on the high-affinity metallophilic Hg(2+)-Ag(+) interaction, which effectively quenched the fluorescence of AuAg NCs. Furthermore, these fluorescent nanoprobes could be readily applied to Ag(+) and Hg(2+) detection in environmental water samples, indicating their possibility to be utilized as a convenient, dual functional, rapid response, and label-free fluorescence sensor for related environmental and health monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.
Photoluminescence of CuInS2 nanocrystals: effect of surface modification
NASA Astrophysics Data System (ADS)
Kim, Young-Kuk; Cho, Young-Sang; Chung, Kookchae; Choi, Chul-Jin
2011-09-01
We have synthesized highly luminescent Cu-In-S(CIS) nanocrystals (NCs) by heating the mixture of metal carboxylates and alkylthiol under inert atmosphere. We modified the surface of CIS NCs with zinc carboxylate and subsequent injection of alkylthiol. As a result of the surface modification, highly luminescent CIS@ZnS core/shell nanocrystals were synthesized. The luminescence quantum yield (QY) of best CIS@ZnS NCs was above 50%, which is 10 times higher than the initial QY of CIS NCs before surface modification (QY=3%). Detailed study on the luminescence mechanism implies that etching of the surface of NCs by dissociated carboxylate group (CH3COO-) and formation of epitaxial shell by Zn with sulfur from alkylthiol efficiently removed the surface defects which are known to be major non-radiative recombination sites in semiconductor nanocrystals. In this study, we developed a novel surface modification route for monodispersed highly luminescent Cu-In-S NCs with less toxic and highly stable precursors. Investigation with the timeand the temperature-dependent photoluminescence showed that the trap related emission was minimized by surface modification and the donor-acceptor pair recombination was enhanced by controlling copper stoichiometry.xb
NASA Astrophysics Data System (ADS)
Sasidharan, Abhilash; Chandran, Parwathy; Menon, Deepthy; Raman, Sreerekha; Nair, Shantikumar; Koyakutty, Manzoor
2011-09-01
The microenvironment of cancer plays a very critical role in the survival, proliferation and drug resistance of solid tumors. Here, we report an interesting, acidic cancer microenvironment-mediated dissolution-induced preferential toxicity of ZnO nanocrystals (NCs) against cancer cells while leaving primary cells unaffected. Irrespective of the size-scale (5 and 200 nm) and surface chemistry differences (silica, starch or polyethylene glycol coating), ZnO NCs exhibited multiple stress mechanisms against cancer cell lines (IC50 ~150 μM) while normal human primary cells (human dermal fibroblast, lymphocytes, human umbilical vein endothelial cells) remain less affected. Flow cytometry and confocal microscopy studies revealed that ZnO NCs undergo rapid preferential dissolution in acidic (pH ~5-6) cancer microenvironment causing elevated ROS stress, mitochondrial superoxide formation, depolarization of mitochondrial membrane, and cell cycle arrest at S/G2 phase leading to apoptosis. In effect, by elucidating the unique toxicity mechanism of ZnO NCs, we show that ZnO NCs can destabilize cancer cells by utilizing its own hostile acidic microenvironment, which is otherwise critical for its survival.The microenvironment of cancer plays a very critical role in the survival, proliferation and drug resistance of solid tumors. Here, we report an interesting, acidic cancer microenvironment-mediated dissolution-induced preferential toxicity of ZnO nanocrystals (NCs) against cancer cells while leaving primary cells unaffected. Irrespective of the size-scale (5 and 200 nm) and surface chemistry differences (silica, starch or polyethylene glycol coating), ZnO NCs exhibited multiple stress mechanisms against cancer cell lines (IC50 ~150 μM) while normal human primary cells (human dermal fibroblast, lymphocytes, human umbilical vein endothelial cells) remain less affected. Flow cytometry and confocal microscopy studies revealed that ZnO NCs undergo rapid preferential dissolution in acidic (pH ~5-6) cancer microenvironment causing elevated ROS stress, mitochondrial superoxide formation, depolarization of mitochondrial membrane, and cell cycle arrest at S/G2 phase leading to apoptosis. In effect, by elucidating the unique toxicity mechanism of ZnO NCs, we show that ZnO NCs can destabilize cancer cells by utilizing its own hostile acidic microenvironment, which is otherwise critical for its survival. Electronic supplementary information (ESI) available: FTIR data, MTT assay and zinc ion release. See DOI: 10.1039/c1nr10272a
Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
Kanemitsu, Yoshihiko
2013-06-18
Semiconducting nanomaterials such as single-walled carbon nanotubes (SWCNTs) and nanocrystals (NCs) exhibit unique size-dependent quantum properties. They have therefore attracted considerable attention from the viewpoints of fundamental physics and functional device applications. SWCNTs and NCs also provide an excellent new stage for experimental studies of many-body effects of electrons and excitons on optical processes in nanomaterials. In this Account, we discuss multiple exciton generation and recombination in SWCNTs and NCs for next-generation photovoltaics. Strongly correlated ensembles of conduction-band electrons and valence-band holes in semiconductors are complex quantum systems that exhibit unique optical phenomena. In bulk crystals, the carrier recombination dynamics can be described by a simple model, which includes the nonradiative single-carrier trapping rate, the radiative two-carrier recombination rate, and the nonradiative three-carrier Auger recombination rate. The nonradiative Auger recombination rate determines the carrier recombination dynamics at high carrier density and depends on the spatial localization of carriers in two-dimensional quantum wells. The Auger recombination and multiple exciton generation rates can be advantageously manipulated by nanomaterials with designated energy structures. In addition, SWCNTs and NCs show quantized recombination dynamics of multiple excitons and carriers. In one-dimensional SWCNTs, excitons have large binding energies and are very stable at room temperature. The extremely rapid Auger recombination between excitons determines the photoluminescence (PL) intensity, the PL linewidth, and the PL lifetime. SWCNTs can undergo multiple exciton generation, while strong exciton-exciton interactions and complicated exciton structures affect the quantized Auger rate and the multiple exciton generation efficiency. Interestingly, in zero-dimensional NC quantum dots, quantized Auger recombination causes unique optical phenomena. The breakdown of the k-conversion rule and strong Coulomb interactions between carriers in NCs enhance Auger recombination rate and decrease the energy threshold for multiple exciton generation. We discuss this impact of the k-conservation rule on two-carrier radiative recombination and the three-carrier Auger recombination processes in indirect-gap semiconductor Si NCs. In NCs and SWCNTs, multiple exciton generation competes with Auger recombination, surface trapping of excitons, and cooling of hot electrons or excitons. In addition, we explore heterostructured NCs and impurity-doped NCs in the context of the optimization of charge carrier extraction from excitons in NCs.
Mao, Xiaoli; Zhou, Ru; Zhang, Shouwei; Ding, Liping; Wan, Lei; Qin, Shengxian; Chen, Zhesheng; Xu, Jinzhang; Miao, Shiding
2016-01-13
An efficient photo-anode for the dye-sensitized solar cells (DSSCs) should have features of high loading of dye molecules, favorable band alignments and good efficiency in electron transport. Herein, the 3.4 nm-sized SnO2 nanocrystals (NCs) of high crystallinity, synthesized via the hot-bubbling method, were incorporated with the commercial TiO2 (P25) particles to fabricate the photo-anodes. The optimal percentage of the doped SnO2 NCs was found at ~7.5% (SnO2/TiO2, w/w), and the fabricated DSSC delivers a power conversion efficiency up to 6.7%, which is 1.52 times of the P25 based DSSCs. The ultra-small SnO2 NCs offer three benefits, (1) the incorporation of SnO2 NCs enlarges surface areas of the photo-anode films, and higher dye-loading amounts were achieved; (2) the high charge mobility provided by SnO2 was confirmed to accelerate the electron transport, and the photo-electron recombination was suppressed by the highly-crystallized NCs; (3) the conduction band minimum (CBM) of the SnO2 NCs was uplifted due to the quantum size effects, and this was found to alleviate the decrement in the open-circuit voltage. This work highlights great contributions of the SnO2 NCs to the improvement of the photovoltaic performances in the DSSCs.
NASA Astrophysics Data System (ADS)
Chaudhury, Chandana Roy; Roychowdhury, Anirban; Das, Anusree; Das, Dipankar
2016-05-01
Magnetic-fluorescent nanocomposites (NCs) with 10 wt% of α-Fe2O3 in ZnO have been prepared by the high energy ball-milling. The crystallite sizes of α-Fe2O3 and ZnO in the NCs are found to vary from 65 nm to 20 nm and 47 nm to 15 nm respectively as milling time is increased from 2 to 30 h. XRD analysis confirms presence of α-Fe2O3 and ZnO in pure form in all the NCs. UV-vis study of the NCs shows a continuous blue-shift of the absorption peak and a steady increase of band gap of ZnO with increasing milling duration that are assigned to decreasing particle size of ZnO in the NCs. Photoluminescence (PL) spectra of the NCs reveal three weak emission bands in the visible region at 421, 445 and 485 nm along with the strong near band edge emission at 391 nm. These weak emission bands are attributed to different defect - related energy levels e.g. Zn-vacancy, Zn interstitial and oxygen vacancy. Dc and ac magnetization measurements show presence of weakly interacting superparamagnetic (SPM) α-Fe2O3 particles in the NCs. 57Fe-Mössbauer study confirms presence of SPM hematite in the sample milled for 30 h. Positron annihilation lifetime measurements indicate presence of cation vacancies in ZnO nanostructures confirming results of PL studies.
Wu, Yun-Tse; Shanmugam, Chandirasekar; Tseng, Wei-Bin; Hiseh, Ming-Mu; Tseng, Wei-Lung
2016-06-07
Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a good linear response over the temperature range 1-71 °C and offered temperature-independent spectral shifts, temperature accuracy, activation energy, and reusability. The possible mechanism for high temperature-induced fluorescence quenching of FITC/BSA-AuNCs could be attributed to a weakening of the Au-S bond, thereby lowering the charge transfer from BSA to AuNCs. Additionally, the pH- and temperature-responsive properties of FITC/BSA-AuNCs allow simultaneous temperature sensing from 21 to 41 °C (at intervals of 5 °C) and pH from 6.0 to 8.0 (at intervals of 0.5 pH unit), facilitating the construction of two-input AND logic gates. Three-input AND logic gates were also designed using temperature, pH, and trypsin as inputs. The practicality of using FITC/BSA-AuNCs to determine the temperature and pH changes in HeLa cells is also validated.
Mao, Xiaoli; Zhou, Ru; Zhang, Shouwei; Ding, Liping; Wan, Lei; Qin, Shengxian; Chen, Zhesheng; Xu, Jinzhang; Miao, Shiding
2016-01-01
An efficient photo-anode for the dye-sensitized solar cells (DSSCs) should have features of high loading of dye molecules, favorable band alignments and good efficiency in electron transport. Herein, the 3.4 nm-sized SnO2 nanocrystals (NCs) of high crystallinity, synthesized via the hot-bubbling method, were incorporated with the commercial TiO2 (P25) particles to fabricate the photo-anodes. The optimal percentage of the doped SnO2 NCs was found at ~7.5% (SnO2/TiO2, w/w), and the fabricated DSSC delivers a power conversion efficiency up to 6.7%, which is 1.52 times of the P25 based DSSCs. The ultra-small SnO2 NCs offer three benefits, (1) the incorporation of SnO2 NCs enlarges surface areas of the photo-anode films, and higher dye-loading amounts were achieved; (2) the high charge mobility provided by SnO2 was confirmed to accelerate the electron transport, and the photo-electron recombination was suppressed by the highly-crystallized NCs; (3) the conduction band minimum (CBM) of the SnO2 NCs was uplifted due to the quantum size effects, and this was found to alleviate the decrement in the open-circuit voltage. This work highlights great contributions of the SnO2 NCs to the improvement of the photovoltaic performances in the DSSCs. PMID:26758941
NASA Astrophysics Data System (ADS)
Zhu, Jiajie; Yin, Haoyong; Gong, Jianying; Al-Furjan, M. S. H.; Nie, Qiulin
2018-06-01
The NiO/Nitrogen doped carbon sphere (NiO/NCS) composites were successfully achieved via an easy one pot synthetic method with urea acting as both nitrogen source and Ni precipitator. The electrocatalytic performances of the obtained NiO/NCS modified glass carbon electrodes showed superior activity for direct electrocatalytic oxidation of glucose than that of nitrogen free NiO/carbon sphere (NiO/CS), which might be due to the synergistic effect of the properties of NCS and NiO nanoparticles. The introduce of nitrogen can improve the conductivity of the NiO/NCS and accordingly accelerate the electron transport within the composites, which was very beneficial to improve the sensitivity to glucose detection for NiO/NCS modified electrodes. The NiO/NCS electrodes exhibited two corresponding linear regions of 1-800 μM and 4-9 mM with the sensitivity of 398.57 μA mM-1 cm-2 and 17.81 μA mM-1 cm-2, and the detection limit of 0.25 μM and 0.05 mM respectively. Moreover, the NiO/NCS composites have also exhibited good selectivity by adding certain amount of urea, NaCl, L-proline, L-valine, L-Leucine and ascorbic acid into the 0.1 M NaOH solution, respectively. The high sensitivity, wide glucose detection range and good selectivity of the electrodes may ensure its potential applications in the clinical diagnosis of diabetes.
Optimization of microelectrophoresis to select highly negatively charged sperm.
Simon, Luke; Murphy, Kristin; Aston, Kenneth I; Emery, Benjamin R; Hotaling, James M; Carrell, Douglas T
2016-06-01
The sperm membrane undergoes extensive surface remodeling as it matures in the epididymis. During this process, the sperm is encapsulated in an extensive glycocalyx layer, which provides the membrane with its characteristic negative electrostatic charge. In this study, we develop a method of microelectrophoresis and standardize the protocol to isolate sperm with high negative membrane charge. Under an electric field, the percentage of positively charged sperm (PCS), negatively charged sperm (NCS), and neutrally charged sperm was determined for each ejaculate prior to and following density gradient centrifugation (DGC), and evaluated for sperm DNA damage, and histone retention. Subsequently, PCS, NCS, and neutrally charged sperm were selected using an ICSI needle and directly analyzed for DNA damage. When raw semen was analyzed using microelectrophoresis, 94 % were NCS. In contrast, DGC completely or partially stripped the negative membrane charge from sperm resulting PCS and neutrally charged sperm, while the charged sperm populations are increased with an increase in electrophoretic current. Following DGC, high sperm DNA damage and abnormal histone retention were inversely correlated with percentage NCS and directly correlated with percentage PCS. NCS exhibited significantly lower DNA damage when compared with control (P < 0.05) and PCS (P < 0.05). When the charged sperm population was corrected for neutrally charged sperm, sperm DNA damage was strongly associated with NCS at a lower electrophoretic current. The results suggest that selection of NCS at lower current may be an important biomarker to select healthy sperm for assisted reproductive treatment.
NASA Astrophysics Data System (ADS)
Zhang, Yumeng; Fan, Baolu; Liu, Yuzhen; Li, Hongxia; Deng, Kaiming; Fan, Jiyang
2018-04-01
Inorganic lead halide perovskite nanocrystals (NCs) have attracted great interest owing to their superior luminescence and optoelectronic properties. In comparison to cubic CsPbX3 (X = Cl, Br, or I) that has visible luminescence, trigonal Cs4PbX6 has a much larger bandgap and distinct optical properties. Little has been known about the luminescence properties of the Cs4PbX6 NCs. In this study, we synthesize the well-crystallized Cs4PbCl6 NCs with sizes of 2.2-11.8 nm, which exhibit stable and near-UV luminescence (with a lifetime of 19.7-24.2 ns) with a remarkable quantum confinement effect at room temperature. In comparison to the negligible Stokes shift in the CsPbCl3 NCs, the Stokes shift of the Cs4PbCl6 NCs is very large (0.91 eV). The experimental results in combination with the first-principles calculations reveal that the near-UV luminescence of the Cs4PbCl6 NCs stems from the Frenkel excitons self-trapped in the isolated PbCl64- octahedrons. This is different from the CsPbCl3 NCs whose luminescence originates from the free Wannier excitons. The theoretical model based on the lattice relaxation is proposed to account for the large Stokes shift and its abnormal decrease with the decreasing particle size.
A Study of Utah's New Century Scholarship (NCS) Program
ERIC Educational Resources Information Center
Kearl, Christine; Byrnes, Deborah; Maahs-Fladung, Cathy
2013-01-01
This was a study about the New Century Scholarship (NCS) program offered to Utah high school students at commencement for earning an Associate of Arts (AA) degree by the time they graduate from high school. An Associate of Arts degree is earning 60 college credits toward a specific AA program. The goal of the NCS program was to assist students to…
de Assis, Danielle Nogueira; Araújo, Raquel Silva; Fuscaldi, Leonardo Lima; Fernandes, Simone Odília Antunes; Mosqueira, Vanessa Carla Furtado; Cardoso, Valbert Nascimento
2018-03-01
Candida spp is an etiologic agent of fungal infections in hospitals and resistance to treatment with antifungals has been extensively reported. Thus, it is very important to develop formulations that increase effectiveness with low toxicity. In this sense, nanocarriers have been investigated, once they modify drug biodistribution profile. Thus, this study aimed to evaluate the biodistribution of free and encapsulated 99m Tc-fluconazole into nanocapsules (NCs) in an experimental immunosuppressed murine model of Candida albicans infection. Fluconazole was radiolabeled with technetium-99 metastable ( 99m Tc) and encapsulated into conventional ( 99m Tc-Fluconazole-PLA-POLOX) and surface-modified ( 99m Tc-Fluconazole-PLA-PEG) NCs by the interfacial deposition of the preformed biodegradable polymer [poly (D,L-lactic acid) (PLA) and PLA-PEG (polyethyleneglycol)] followed by solvent evaporation. The size distribution and zeta potential of the NCs preparations were determined in a Zetasizer by photon correlation spectroscopy and laser Doppler anemometry, respectively. Free and encapsulated 99m Tc-fluconazole were administered intravenously in immunosuppressed mice bearing a local infection induced by Candida Albicans inoculation in the right thigh muscle. At pre-established time intervals, tissues and organs of interest were removed and radioactivity was measured in an automatic gamma radiation counter. The NCs diameter was between 200 and 400 nm with negative zeta potential values. Free 99m Tc-fluconazole was more rapidly eliminated by the renal system compared to the encapsulated drug in NCs, which remained longer in blood circulation. The uptake of conventional NCs by mononuclear phagocyte system organs was higher than the one demonstrated by the surface-modified NCs. Both NCs remained longer in the infectious focus when compared to free 99m Tc-fluconazole, but the results did not show a significant difference between NC formulations. These data indicate that these NCs might represent a therapeutic alternative for the treatment of candidiasis, once they remain more time in the infectious focus, allowing high retention of 99m Tc-fluconazole at this site. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Pensel, Patricia; Paredes, Alejandro; Albani, Clara M; Allemandi, Daniel; Sanchez Bruni, Sergio; Palma, Santiago D; Elissondo, María C
2018-02-15
Human alveolar echinococcosis is caused by the fox tapeworm Echinococcus multilocularis and is usually fatal if left untreated. Medical treatment with albendazole (ABZ) remains an effective option. However, due to its low aqueous solubility, ABZ is poorly and erratically absorbed following oral administration resulting in low drug levels in plasma and liver distribution. Thus, there arises the need to find a simple, efficient and scalable method to produce new ABZ formulations with increased bioavailability. Bearing this in mind, ABZ nanocrystals (ABZ-NCs) appears to be a useful tool to achieve this goal. The aim of the current study was to investigate the chemoprophylactic and clinical efficacy of an ABZ-NC formulation on mice infected with E. multilocularis. In the chemoprophylactic efficacy study, mean weight of the cysts recovered from the ABZ-NC group was 50% lower than that recorded from untreated mice, whereas the treatment with ABZ suspension did not show preventive effect. The viability of protoscoleces isolated from ABZ-NC treated mice was significantly lower than control groups. In the clinical efficacy studies, both ABZ formulations resulted in a reduction in the mean weight of the cysts obtained from mice, however only the treatment with the nanosuspension revealed significant differences (P < 0.05) compared to the control groups. Treatment with ABZ-NCs reduced the weight of the cysts by 77% and the viability of their protoscoleces to 34%. All these results coincided with the tissue damage determined at the ultrastructural level. The enhanced chemoprophylactic and clinical efficacy of ABZ-NCs observed in this study could be attributed to an increase in the oral bioavailability of the drug. In a next step, we will characterize the cyst concentration profile after the administration of ABZ-NCs in mice infected with E. multilocularis. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kudo, Kozo; Yoshida, Yuko; Yoshimura, Noboru; Ishida, Nakao
1993-11-01
The yield of the antitumor antibiotic neocarzinostatin (NCS), produced by Streptomyces carzinostaticus var. F-41, was sensitive to an external magnetic flux. When this strain was cultivated at 28°C in a NCS-producing medium under various magnetic flux densities, good NCS yield was observed at below 250 G magnetic flux density during the exponential growth phase as compared with that obtained in the same medium without magnetic flux, but was not observed at more than 500 G. However, no definite effect on the physiological characteristics and carbohydrate utilization of this strain, and primary physicochemical properties of NCS from magnetic flux could be detected.
Site-controlled GaN nanocolumns with InGaN insertions grown by MBE
NASA Astrophysics Data System (ADS)
Nechaev, D. V.; Semenov, A. N.; Koshelev, O. A.; Jmerik, V. N.; Davydov, V. Yu; Smirnov, A. N.; Pozina, G.; Shubina, T. V.; Ivanov, S. V.
2017-11-01
The site-controlled plasma-assisted molecular beam epitaxy (PA MBE) has been developed to fabricate the regular array of GaN nanocolumns (NCs) with InGaN insertions on micro-cone patterned sapphire substrates (μ-CPSSs). Two-stage growth of GaN NCs, including a nucleation layer grown at metal-rich conditions and high temperature GaN growth in strong N-rich condition, has been developed to achieve the selective growth of the NCs. Microcathodoluminescence measurements have demonstrated pronounced emission from the InGaN insertions in 450-600 nm spectral range. The optically isolated NCs can be used as effective nano-emitters operating in the visible range.
The affects of doping Eu 3+ on structures and morphology of ZrO 2 nanocrystals
NASA Astrophysics Data System (ADS)
Yu, Lixin; Liu, Hai; Nogami, Masayuki
2010-07-01
The ZrO 2 and ZrO 2:Eu 3+ nanocrystals (NCs) were prepared by a hydrothermal method. The samples were sintered at different temperatures (500, 800 and 1100 °C). The results indicate that the Eu 3+ ions affect not only the structures of hosts (ZrO 2), but also the morphology of hosts. The shape of ZrO 2:Eu 3+ NCs heated at 1100 °C is the one-dimensional nanorod, while is the zero-dimensional nanoparticle for pure ZrO 2 samples sintered at the same temperature. The excitation and emission spectra of ZrO 2:Eu 3+ NCs were studied. In excitation spectra, the charge transfer band of Eu 3+ in ZrO 2 NCs heated at 1100 °C evidently blue-shifts in comparison with the NCs calcined at 500 and 800 °C. The relative intensity of 5D-7F transitions of Eu 3+ ions and color chromaticity for nanorods are increased in comparison with the nanoparticles.
Multi-Shell Nano-CarboScavengers for Petroleum Spill Remediation
Daza, Enrique A.; Misra, Santosh K.; Scott, John; Tripathi, Indu; Promisel, Christine; Sharma, Brajendra K.; Topczewski, Jacek; Chaudhuri, Santanu; Pan, Dipanjan
2017-01-01
Increasingly frequent petroleum contamination in water bodies continues to threaten our ecosystem, which lacks efficient and safe remediation tactics both on macro and nanoscales. Current nanomaterial and dispersant remediation methods neglect to investigate their adverse environmental and biological impact, which can lead to a synergistic chemical imbalance. In response to this rising threat, a highly efficient, environmentally friendly and biocompatible nano-dispersant has been developed comprising a multi-shelled nanoparticle termed ‘Nano-CarboScavengers’ (NCS) with native properties for facile recovery via booms and mesh tools. NCS treated different forms of petroleum oil (raw and distillate form) with considerable efficiency (80% and 91%, respectively) utilizing sequestration and dispersion abilities in tandem with a ~10:1 (oil: NCS; w/w) loading capacity. In extreme contrast with chemical dispersants, the NCS was found to be remarkably benign in in vitro and in vivo assays. Additionally, the carbonaceous nature of NCS broke down by human myeloperoxidase and horseradish peroxidase enzymes, revealing that incidental biological uptake can enzymatically digest the sugar based core. PMID:28157204
Shape-controlled narrow-gap SnTe nanostructures: From nanocubes to nanorods and nanowires
Guo, Shaojun; Andrew F. Fidler; He, Kai; ...
2015-11-06
In this study, the rational design and synthesis of narrow-gap colloidal semiconductor nanocrystals (NCs) is an important step toward the next generation of solution-processable photovoltaics, photodetectors, and thermoelectric devices. SnTe NCs are particularly attractive as a Pb-free alternative to NCs of narrow-gap lead chalcogenides. Previous synthetic efforts on SnTe NCs have focused on spherical nanoparticles. Here we report new strategies for synthesis of SnTe NCs with shapes tunable from highly monodisperse nanocubes, to nanorods (NRs) with variable aspect ratios, and finally to long, straight nanowires (NWs). Reaction at high temperature quickly forms thermodynamically favored nanocubes, but low temperatures lead tomore » elongated particles. Transmission electron microscopy studies of reaction products at various stages of the synthesis reveal that the growth and shape-focusing of monodisperse SnTe nanocubes likely involves interparticle ripening, while directional growth of NRs and NWs may be initiated by particle dimerization via oriented attachment.« less
Trapping time of excitons in Si nanocrystals embedded in a SiO2 matrix
NASA Astrophysics Data System (ADS)
de Jong, E. M. L. D.; de Boer, W. D. A. M.; Yassievich, I. N.; Gregorkiewicz, T.
2017-05-01
Silicon (Si) nanocrystals (NCs) are of great interest for many applications, ranging from photovoltaics to optoelectonics. The photoluminescence quantum yield of Si NCs dispersed in SiO2 is limited, suggesting the existence of very efficient processes of nonradiative recombination, among which the formation of a self-trapped exciton state on the surface of the NC. In order to improve the external quantum efficiency of these systems, the carrier relaxation and recombination need to be understood more thoroughly. For that purpose, we perform transient-induced absorption spectroscopy on Si NCs embedded in a SiO2 matrix over a broad probe range for NCs of average sizes from 2.5 to 5.5 nm. The self-trapping of free excitons on surface-related states is experimentally and theoretically discussed and found to be dependent on the NC size. These results offer more insight into the self-trapped exciton state and are important to increase the optical performance of Si NCs.
New bifunctional chelator for 64Cu-immuno-positron emission tomography.
Pandya, Darpan N; Bhatt, Nikunj; Dale, Ajit V; Kim, Jung Young; Lee, Hochun; Ha, Yeong Su; Lee, Ji-Eun; An, Gwang Il; Yoo, Jeongsoo
2013-08-21
A new tetraazamacrocyclic bifunctional chelator, TE2A-Bn-NCS, was synthesized in high overall yield from cyclam. An extra functional group (NCS) was introduced to the N-atom of TE2A for specific conjugation with antibody. The Cu complex of TE2A-Bn-NCS showed high kinetic stability in acidic decomplexation and cyclic voltammetry studies. X-ray structure determination of the Cu-TE2A-Bn-NH2 complex confirmed octahedral geometry, in which copper atom is strongly coordinated by four macrocyclic nitrogens in equatorial positions and two carboxylate oxygen atoms occupy the elongated axial positions. Trastuzumab was conjugated with TE2A-Bn-NCS and then radiolabeled with 64Cu quantitatively at room temperature within 10 min. Biodistribution studies showed that the 64Cu-labeled TE2A-Bn-NCS-trastuzumab conjugates maintain high stability in physiological conditions, and NIH3T6.7 tumors were clearly visualized up to 3 days by 64Cu-immuno-positron emission tomography imaging in animal models.
Water-soluble CdTe nanocrystals under high pressure
NASA Astrophysics Data System (ADS)
Lin, Yan-Cheng
2015-02-01
The application of static high pressure provides a method for precisely controlling and investigating many fundamental and unique properties of semiconductor nanocrystals (NCs). This study systematically investigates the high-pressure photoluminescence (PL) and time-resolved carrier dynamics of thiol-capped CdTe NCs of different sizes, at different concentrations, and in various stress environments. The zincblende-to-rocksalt phase transition in thiol-capped CdTe NCs is observed at a pressure far in excess of the bulk phase transition pressure. Additionally, the process of transformation depends strongly on NC size, and the phase transition pressure increases with NC size. These peculiar phenomena are attributed to the distinctive bonding of thiols to the NC surface. In a nonhydrostatic environment, considerable flattening of the PL energy of CdTe NCs powder is observed above 3.0 GPa. Furthermore, asymmetric and double-peak PL emissions are obtained from a concentrated solution of CdTe NCs under hydrostatic pressure, implying the feasibility of pressure-induced interparticle coupling.
Chen, Yang; Tao, Guangyu; Lin, Ruoyun; Pei, Xiaojing; Liu, Feng; Li, Na
2016-06-06
The rationale for the preparation of DNA-templated gold nanoclusters (DNA-Au NCs) has not been well understood, thereby slowing down the advancement of the synthesis and applications of DNA-Au NCs. The interaction between metal ions and the DNA template seems to be the key factor for the successful preparation of DNA-templated metal nanoclusters. With the help of circular dichroism in this contribution, we put efforts into interrogating the necessity of pre-incubation of HAuCl4 with poly-adenine template in the formation of Au NCs by citrate reduction. Our results revealed that the pre-incubation of HAuCl4 with poly-adenine is not favorable for the formation of Au NCs, which is distinctly different from the formation process for silver nanoclusters. It is our hope that this study can provide guidance in the preparation of Au NCs with more DNA templates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multi-Shell Nano-CarboScavengers for Petroleum Spill Remediation
NASA Astrophysics Data System (ADS)
Daza, Enrique A.; Misra, Santosh K.; Scott, John; Tripathi, Indu; Promisel, Christine; Sharma, Brajendra K.; Topczewski, Jacek; Chaudhuri, Santanu; Pan, Dipanjan
2017-02-01
Increasingly frequent petroleum contamination in water bodies continues to threaten our ecosystem, which lacks efficient and safe remediation tactics both on macro and nanoscales. Current nanomaterial and dispersant remediation methods neglect to investigate their adverse environmental and biological impact, which can lead to a synergistic chemical imbalance. In response to this rising threat, a highly efficient, environmentally friendly and biocompatible nano-dispersant has been developed comprising a multi-shelled nanoparticle termed ‘Nano-CarboScavengers’ (NCS) with native properties for facile recovery via booms and mesh tools. NCS treated different forms of petroleum oil (raw and distillate form) with considerable efficiency (80% and 91%, respectively) utilizing sequestration and dispersion abilities in tandem with a ~10:1 (oil: NCS; w/w) loading capacity. In extreme contrast with chemical dispersants, the NCS was found to be remarkably benign in in vitro and in vivo assays. Additionally, the carbonaceous nature of NCS broke down by human myeloperoxidase and horseradish peroxidase enzymes, revealing that incidental biological uptake can enzymatically digest the sugar based core.
Effect of Zinc Incorporation on the Performance of Red Light Emitting InP Core Nanocrystals.
Xi, Lifei; Cho, Deok-Yong; Besmehn, Astrid; Duchamp, Martial; Grützmacher, Detlev; Lam, Yeng Ming; Kardynał, Beata E
2016-09-06
This report presents a systematic study on the effect of zinc (Zn) carboxylate precursor on the structural and optical properties of red light emitting InP nanocrystals (NCs). NC cores were assessed using X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), energy-dispersive X-ray spectroscopy (EDX), and high-resolution transmission electron microscopy (HRTEM). When moderate Zn:In ratios in the reaction pot were used, the incorporation of Zn in InP was insufficient to change the crystal structure or band gap of the NCs, but photoluminescence quantum yield (PLQY) increased dramatically compared with pure InP NCs. Zn was found to incorporate mostly in the phosphate layer on the NCs. PL, PLQY, and time-resolved PL (TRPL) show that Zn carboxylates added to the precursors during NC cores facilitate the synthesis of high-quality InP NCs by suppressing nonradiative and sub-band-gap recombination, and the effect is visible also after a ZnS shell is grown on the cores.
The structure of neuronal calcium sensor-1 in solution revealed by molecular dynamics simulations.
Bellucci, Luca; Corni, Stefano; Di Felice, Rosa; Paci, Emanuele
2013-01-01
Neuronal calcium sensor-1 (NCS-1) is a protein able to trigger signal transduction processes by binding a large number of substrates and re-shaping its structure depending on the environmental conditions. The X-ray crystal structure of the unmyristoilated NCS-1 shows a large solvent-exposed hydrophobic crevice (HC); this HC is partially occupied by the C-terminal tail and thus elusive to the surrounding solvent. We studied the native state of NCS-1 by performing room temperature molecular dynamics (MD) simulations starting from the crystal and the solution structures. We observe relaxation to a state independent of the initial structure, in which the C-terminal tail occupies the HC. We suggest that the C-terminal tail shields the HC binding pocket and modulates the affinity of NCS-1 for its natural targets. By analyzing the topology and nature of the inter-residue potential energy, we provide a compelling description of the interaction network that determines the three-dimensional organization of NCS-1.
Dasog, Mita; Yang, Zhenyu; Regli, Sarah; Atkins, Tonya M.; Faramus, Angelique; Singh, Mani P.; Muthuswamy, Elayaraja; Kauzlarich, Susan M.; Tilley, Richard D.; Veinot, Jonathan G. C.
2013-01-01
Silicon nanocrystals (Si NCs) are attractive functional materials. They are compatible with standard electronics and communications platforms as well being biocompatible. Numerous methods have been developed to realize size-controlled Si NC synthesis. While these procedures produce Si NCs that appear identical, their optical responses can differ dramatically. Si NCs prepared using high-temperature methods routinely exhibit photoluminescence agreeing with the effective mass approximation (EMA), while those prepared via solution methods exhibit blue emission that is somewhat independent of particle size. Despite many proposals, a definitive explanation for this difference has been elusive for no less than a decade. This apparent dichotomy brings into question our understanding of Si NC properties and potentially limits the scope of their application. The present contribution takes a substantial step forward toward identifying the origin of the blue emission that is not expected based upon EMA predictions. It describes a detailed comparison of Si NCs obtained from three of the most widely cited procedures as well as the conversion of red-emitting Si NCs to blue-emitters upon exposure to nitrogen containing reagents. Analysis of the evidence is consistent with the hypothesis that the presence of trace nitrogen and oxygen even at the ppm level in Si NCs gives rise to the blue emission. PMID:23394574
Dasog, Mita; Yang, Zhenyu; Regli, Sarah; Atkins, Tonya M; Faramus, Angelique; Singh, Mani P; Muthuswamy, Elayaraja; Kauzlarich, Susan M; Tilley, Richard D; Veinot, Jonathan G C
2013-03-26
Silicon nanocrystals (Si NCs) are attractive functional materials. They are compatible with standard electronics and communications platforms and are biocompatible. Numerous methods have been developed to realize size-controlled Si NC synthesis. While these procedures produce Si NCs that appear identical, their optical responses can differ dramatically. Si NCs prepared using high-temperature methods routinely exhibit photoluminescence agreeing with the effective mass approximation (EMA), while those prepared via solution methods exhibit blue emission that is somewhat independent of particle size. Despite many proposals, a definitive explanation for this difference has been elusive for no less than a decade. This apparent dichotomy brings into question our understanding of Si NC properties and potentially limits the scope of their application. The present contribution takes a substantial step forward toward identifying the origin of the blue emission that is not expected based upon EMA predictions. It describes a detailed comparison of Si NCs obtained from three of the most widely cited procedures as well as the conversion of red-emitting Si NCs to blue emitters upon exposure to nitrogen-containing reagents. Analysis of the evidence is consistent with the hypothesis that the presence of trace nitrogen and oxygen even at the parts per million level in Si NCs gives rise to the blue emission.
Zhu, Yuzhen; Ma, Buyong; Qi, Ruxi; Nussinov, Ruth; Zhang, Qingwen
2016-04-14
Neuronal calcium sensor-1 (NCS-1) protein has orthologues from Saccharomyces cerevisiae to human with highly conserved amino acid sequences. NCS-1 is an important factor controlling the animal's response to temperature change. This leads us to investigate the temperature effects on the conformational dynamics of human NCS-1 at 310 and 316 K by all-atom molecular dynamics (MD) simulations and dynamic community network analysis. Four independent 500 ns MD simulations show that secondary structure content at 316 K is similar to that at 310 K, whereas the global protein structure is expanded. Loop 3 (L3) adopts an extended state occuping the hydrophobic crevice, and the number of suboptimal communication paths between residue D176 and V190 is reduced at 316 K. The dynamic community network analysis suggests that the interdomain correlation is weakened, and the intradomain coupling is strengthened at 316 K. The elevated temperature reduces the number of the salt bridges, especially in C-domain. This study suggests that the elevated temperature affects the conformational dynamics of human NCS-1 protein. Comparison of the structural dynamics of R102Q mutant and Δ176-190 truncated NCS-1 suggests that the structural and dynamical response of NCS-1 protein to elevated temperature may be one of its intrinsic functional properties.
Red-ultraviolet photoluminescence tuning by Ni nanocrystals in epitaxial SrTiO3 matrix
NASA Astrophysics Data System (ADS)
Xiong, Z. W.; Cao, L. H.
2018-07-01
In this work, the self-organized Ni nanocrystals (NCs) were embedded in the epitaxial SrTiO3 matrix using pulsed laser deposition method. With the in-situ monitoring of reflection high-energy electron diffraction, both matrix and NCs could be precisely engineered with desired qualities by regulating the growth conditions according to the full release of stress energy at the interfaces of Ni NCs and SrTiO3. We achieved a controllable strained system according to the transformation of growth modes from three dimensional (3D) islands of Ni NCs to 2D layer-by-layer of SrTiO3, corresponding to the (1 1 1) and (0 0 l) orientation for Ni and SrTiO3, respectively. With the increase of Ni NCs concentration, the absorption intensity is increasing in the regions of 190-300 nm, and the band gap is gradually decreased. Besides, photoluminescence (PL) spectra reveal that the energy levels of Ni 3d bands contribute to the different PL colors, further inducing the enhancement of PL intensity and red-shift of emission peaks. Compared with the pure SrTiO3 published in the literature, much wider ranges of PL emission from red to ultraviolet can be tuned by the Ni NCs.
Debotton, Nir; Badihi, Amit; Robinpour, Mano; Enk, Claes D; Benita, Simon
2017-05-30
The percutaneous passage of poorly skin absorbed molecules can be improved using nanocarriers, particularly biodegradable polymeric nanospheres (NSs) or nanocapsules (NCs). However, penetration of the encapsulated molecules may be affected by other factors than the nanocarrier properties. To gain insight information on the skin absorption of two fluorescent cargos, DiIC 18 (5) and coumarin-6 were incorporated in NSs or NCs and topically applied on various human and porcine skin samples. 3D imaging techniques suggest that NSs and NCs enhanced deep dermal penetration of both probes similarly, when applied on excised human skin irrespective of the nature of the cargo. However, when ex vivo pig skin was utilized, the cutaneous absorption of DiIC 18 (5) was more pronounced by means of PLGA NCs than NSs. In contrast, PLGA NSs noticeably improved the porcine skin penetration of coumarin-6, as compared to the NCs. Furthermore, the porcine skin results were reproducible when triplicated whereas from various human skin samples, as expected, the results were not sufficiently reproducible and large deviations were observed. The overall findings from this comprehensive comparison emphasize the potential of PLGA NCs or NSs to promote cutaneous bioavailability of encapsulated drugs, exhibiting different physicochemical properties but depending on the nature of the skin. Copyright © 2017 Elsevier B.V. All rights reserved.
Kinetics and mechanism of vanadium catalysed asymmetric cyanohydrin synthesis in propylene carbonate
Omedes-Pujol, Marta
2010-01-01
Summary Propylene carbonate can be used as a green solvent for the asymmetric synthesis of cyanohydrin trimethylsilyl ethers from aldehydes and trimethylsilyl cyanide catalysed by VO(salen)NCS, though reactions are slower in this solvent than the corresponding reactions carried out in dichloromethane. A mechanistic study has been undertaken, comparing the catalytic activity of VO(salen)NCS in propylene carbonate and dichloromethane. Reactions in both solvents obey overall second-order kinetics, the rate of reaction being dependent on the concentration of both the aldehyde and trimethylsilyl cyanide. The order with respect to VO(salen)NCS was determined and found to decrease from 1.2 in dichloromethane to 1.0 in propylene carbonate, indicating that in propylene carbonate, VO(salen)NCS is present only as a mononuclear species, whereas in dichloromethane dinuclear species are present which have previously been shown to be responsible for most of the catalytic activity. Evidence from 51V NMR spectroscopy suggested that propylene carbonate coordinates to VO(salen)NCS, blocking the free coordination site, thus inhibiting its Lewis acidity and accounting for the reduction in catalytic activity. This explanation was further supported by a Hammett analysis study, which indicated that Lewis base catalysis made a much greater contribution to the overall catalytic activity of VO(salen)NCS in propylene carbonate than in dichloromethane. PMID:21085513
Fluorescent Gold Nanoclusters for Selective Detection of Dopamine in Cerebrospinal fluid
Govindaraju, Saravanan; Ankireddy, Seshadri Reddy; Viswanath, Buddolla; Kim, Jongsung; Yun, Kyusik
2017-01-01
Since the last two decades, protein conjugated fluorescent gold nanoclusters (NCs) owe much attention in the field of medical and nanobiotechnology due to their excellent photo stability characteristics. In this paper, we reported stable, nontoxic and red fluorescent emission BSA-Au NCs for selective detection of L-dopamine (DA) in cerebrospinal fluid (CSF). The evolution was probed by various instrumental techniques such as UV-vis spectroscopy, High resolution transmission electron microscopy (HTEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), photoluminescence spectroscopy (PL). The synthesised BSA-Au NCs were showing 4–6 nm with high fluorescent ~8% Quantum yield (QY). The fluorescence intensity of BSA-Au NCs was quenched upon the addition of various concentrations of DA via an electron transfer mechanism. The decrease in BSA-Au NCs fluorescence intensity made it possible to determine DA in PBS buffer and the spiked DA in CSF in the linear range from 0 to 10 nM with the limit of detection (LOD) 0.622 and 0.830 nM respectively. Best of our knowledge, as-prepared BSA-Au NCs will gain possible strategy and good platform for biosensor, drug discovery, and rapid disease diagnosis such as Parkinson’s and Alzheimer diseases. PMID:28067307
Serial electrophysiological studies in a Guillain-Barré subtype with bilateral facial neuropathy.
Chan, Yee-Cheun; Therimadasamy, Aravind-Kannan; Sainuddin, Nurul M; Wilder-Smith, Einar; Yuki, Nobuhiro
2016-02-01
Bifacial weakness with paraesthesias subtype of Guillain-Barré syndrome (GBS) is thought to be demyelinating in nature but the evolution of serial nerve conduction study (NCS) findings has not been studied. We retrospectively analyzed the changes on serial NCS of patients with bilateral facial neuropathy. We described the clinical features, serial blink reflex, facial nerve and limb NCS of such patients. Five patients fulfilled our study criteria. Patients 1 and 2 were diagnosed clinically to have bilateral Bell's palsy, patients 3 and 4 as bifacial GBS subtype and patient 5 as facial palsy associated with acute HIV infection. In all, the initial neurophysiological tests showed absent blink response and normal facial NCS. Patient 1's repeat tests were normal. Patient 2's repeat blink reflex showed mildly prolonged latency. Repeat blink reflex latency of patients 3, 4 and 5 were in the demyelinating range. Patient 3 also had prolonged facial nerve latency. Patients 3 and 4 had serial limb NCS showing progressively prolonged latency. Serial NCS suggests that the bifacial GBS subtype is demyelinating in nature. This study provides further evidence for a bifacial subtype of GBS with a demyelinating pathophysiology. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yan, Zhengyu; Niu, Qianqian; Mou, Mingyao; Wu, Yi; Liu, Xiaoxuan; Liao, Shenghua
2017-07-01
A facile strategy for detecting xanthine in serum samples by copper nanocluster (CuNCs) with high intrinsic peroxidase-like activity was reported. Firstly, a simple, mild and time-saving method for preparing CuNCs was developed, in which dithiothreitol (DTT) and bovine serum albumin (BSA) were used as reductant and stabilizer, respectively. The as-prepared CuNCs exhibited a fluorescence emission at 590 nm with a quantum yield (QY) of approximately 5.29%, the fluorescence intensity of the as-prepared CuNCs exhibited no considerable change when stored under ambient condition with the lifetime is 1.75 μs. Moreover, the as-prepared CuNCs exhibited high intrinsic peroxidase-like activity with lower K m ( K m = 8.90 × 10-6 mol L-1) for H2O2, which indicated that CuNCs have a higher affinity for H2O2. Compared with natural enzyme, the as-synthesized CuNCs are more catalytic stable over a wide range of pH (4.0 13.0) and temperature (4 80 °C). Finally, an indirect method for sensing xanthine was established because xanthine oxidase can catalyse the oxidation of xanthine to produce H2O2. Xanthine could be detected as low as 3.8 × 10-7 mol L-1 with a linear range from 5.0 × 10-7 to 1.0 × 10-4 mol L-1. These results proved that the proposed method is sensitive and accurate and could be successfully applied to the determination of xanthine in the serum sample with satisfaction.
Garnacho, Carmen; Albelda, Steven M.; Muzykantov, Vladimir R.; Muro, Silvia
2008-01-01
Coupling drug carriers to antibodies for targeting endothelial cells (ECs) may improve treatment of vascular and pulmonary diseases. Selecting antibodies that deliver carriers to the cell surface or intracellularly may further optimize specifcity of interventions. We studied antibody-directed targeting of nanocarriers to platelet–endothelial cell adhesion molecule (PECAM)-1, an endothelial glycoprotein containing 6 Ig-like extracellular domains. PECAM-1 antibodies bind to ECs without internalization, but ECs internalize by endocytosis nanocarriers carrying multiple copies of anti-PECAM (anti-PECAM/NCs). To determine whether binding and intracellular transport of anti-PECAM/NCs depend on the epitope engaged, we targeted five PECAM-1 epitopes: mAb35, mAb37 and mAb62 (membrane-distal Ig domain 1), mAbGi34 (Ig domains 2/3), and mAb4G6 (membrane-proximal Ig domain 6). The antibodies bound to ECs regardless of the epitope proximity to the plasmalemma, whereas 130 nm diameter nanocarriers only targeted effectively distal domains (mAb4G6/NCs did not bind to ECs). ECs internalized mAb35, mAb62, and mAbGi34 carriers regardless of their size (0.13 to 5 µm diameter), yet they did not internalize mAb37/NCs. After internalization, mAb62/NCs trafficked to lysosomes within 2–3 h, whereas mAb35/NCs had prolonged residence in pre-lysosomal vesicles. Therefore, endothelial binding, endocytosis, and intracellular transport of anti-PECAM/NCs are epitope-specific. This paradigm will guide the design of endothelial drug delivery systems providing specific cellular localizations. PMID:18606202
Rahman, Mohammed M; Khan, Sher Bahadar; Marwani, Hadi M; Asiri, Abdullah M
2014-01-01
Here, we have synthesized Ag2O3-ZnO nanocones (NCs) by a wet-chemical route using reducing agents at low temperature. The structural, optical and morphological properties of Ag2O3-ZnO NCs were investigated by several conventional techniques such as powder XRD, XPS, FESEM, XEDS, FTIR and UV/vis. spectroscopy. The analytical parameters of prepared NCs were also calculated for a selective detection of divalent cobalt [Co(II)] prior to its determination by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of NCs toward various metal ions, including Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Ni(II), and Zn(II) was studied. Results of the selectivity study demonstrated that Ag2O3-ZnO NC phase was the most selective towards Co(II) ion. The uptake capacity for Co(II) ion was experimentally calculated to be ∼76.69 mgg-1. Moreover, adsorption isotherm data provided that the adsorption process was mainly monolayer on homogeneous adsorbent surfaces of Ag2O3-ZnO NCs. Kinetic study revealed that the adsorption of Co(II) on Ag2O3-ZnO NCs phase followed the pseudo-second-order kinetic model. In addition, thermodynamic results provided that the adsorption mechanism of Co(II) ions on Ag2O3-ZnO NCs was a spontaneous process and thermodynamically favorable. Finally, the proposed method was validated by applying it to real environmental water samples with reasonable results.
Liu, Ching-Ping; Wu, Te-Haw; Lin, Yu-Lung; Liu, Chia-Yeh; Wang, Sabrina; Lin, Shu-Yi
2016-08-01
The cytotoxicity of nanozymes has drawn much attention recently because their peroxidase-like activity can decompose hydrogen peroxide (H2 O2 ) to produce highly toxic hydroxyl radicals (•OH) under acidic conditions. Although catalytic activities of nanozymes are highly associated with their surface properties, little is known about the mechanism underlying the surface coating-mediated enzyme-like activities. Herein, it is reported for the first time that amine-terminated PAMAM dendrimer-entrapped gold nanoclusters (AuNCs-NH2 ) unexpectedly lose their peroxidase-like activity while still retaining their catalase-like activity in physiological conditions. Surprisingly, the methylated form of AuNCs-NH2 (i.e., MAuNCs-N(+) R3 , where R = H or CH3 ) results in a dramatic recovery of the intrinsic peroxidase-like activity while blocking most primary and tertiary amines (1°- and 3°-amines) of dendrimers to form quaternary ammonium ions (4°-amines). However, the hidden peroxidase-like activity is also found in hydroxyl-terminated dendrimer-encapsulated AuNCs (AuNCs-OH, inside backbone with 3°-amines), indicating that 3°-amines are dominant in mediating the peroxidase-like activity. The possible mechanism is further confirmed that the enrichment of polymeric 3°-amines on the surface of dendrimer-encapsulated AuNCs provides sufficient suppression of the critical mediator •OH for the peroxidase-like activity. Finally, it is demonstrated that AuNCs-NH2 with diminished cytotoxicity have great potential for use in primary neuronal protection against oxidative damage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Lai-Guo; Cao, Zheng-Yi; Qian, Xu; Zhu, Lin; Cui, Da-Peng; Li, Ai-Dong; Wu, Di
2017-02-22
Al 2 O 3 - or HfO 2 -based nanocomposite structures with embedded CoPt x nanocrystals (NCs) on TiN-coated Si substrates have been prepared by combination of thermal atomic layer deposition (ALD) and plasma-enhanced ALD for resistive random access memory (RRAM) applications. The impact of CoPt x NCs and their average size/density on the resistive switching properties has been explored. Compared to the control sample without CoPt x NCs, ALD-derived Pt/oxide/100 cycle-CoPt x NCs/TiN/SiO 2 /Si exhibits a typical bipolar, reliable, and reproducible resistive switching behavior, such as sharp distribution of RRAM parameters, smaller set/reset voltages, stable resistance ratio (≥10 2 ) of OFF/ON states, better switching endurance up to 10 4 cycles, and longer data retention over 10 5 s. The possible resistive switching mechanism based on nanocomposite structures of oxide/CoPt x NCs has been proposed. The dominant conduction mechanisms in low- and high-resistance states of oxide-based device units with embedded CoPt x NCs are Ohmic behavior and space-charge-limited current, respectively. The insertion of CoPt x NCs can effectively improve the formation of conducting filaments due to the CoPt x NC-enhanced electric field intensity. Besides excellent resistive switching performances, the nanocomposite structures also simultaneously present ferromagnetic property. This work provides a flexible pathway by combining PEALD and TALD compatible with state-of-the-art Si-based technology for multifunctional electronic devices applications containing RRAM.
Rahman, Mohammed M.; Khan, Sher Bahadar; Marwani, Hadi M.; Asiri, Abdullah M.
2014-01-01
Here, we have synthesized Ag2O3-ZnO nanocones (NCs) by a wet-chemical route using reducing agents at low temperature. The structural, optical and morphological properties of Ag2O3-ZnO NCs were investigated by several conventional techniques such as powder XRD, XPS, FESEM, XEDS, FTIR and UV/vis. spectroscopy. The analytical parameters of prepared NCs were also calculated for a selective detection of divalent cobalt [Co(II)] prior to its determination by inductively coupled plasma-optical emission spectrometry (ICP-OES). The selectivity of NCs toward various metal ions, including Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Ni(II), and Zn(II) was studied. Results of the selectivity study demonstrated that Ag2O3-ZnO NC phase was the most selective towards Co(II) ion. The uptake capacity for Co(II) ion was experimentally calculated to be ∼76.69 mgg−1. Moreover, adsorption isotherm data provided that the adsorption process was mainly monolayer on homogeneous adsorbent surfaces of Ag2O3-ZnO NCs. Kinetic study revealed that the adsorption of Co(II) on Ag2O3-ZnO NCs phase followed the pseudo-second-order kinetic model. In addition, thermodynamic results provided that the adsorption mechanism of Co(II) ions on Ag2O3-ZnO NCs was a spontaneous process and thermodynamically favorable. Finally, the proposed method was validated by applying it to real environmental water samples with reasonable results. PMID:25464507
[Variability and opportunity costs among the surgical alternatives for breast cancer].
Angulo-Pueyo, Ester; Ridao-López, Manuel; Martínez-Lizaga, Natalia; García-Armesto, Sandra; Bernal-Delgado, Enrique
2014-01-01
To analyze medical practice variation in breast cancer surgery (either inpatient-based or day-case surgery), by comparing conservative surgery (CS) plus radiotherapy vs. non-conservative surgery (NCS). We also analyzed the opportunity costs associated with CS and NCS. We performed an observational study of age- and sex-standardized rates of CS and NCS, performed in 199 Spanish healthcare areas in 2008-2009. Costs were calculated by using two techniques: indirectly, by using All-Patients Diagnosis Related Groups (AP-DRG) based on hospital admissions, and directly by using full costing from the Spanish Network of Hospital Costs (SNHC) data. Standardized surgery rates for CS and NCS were 6.84 and 4.35 per 10,000 women, with variation across areas ranging from 2.95 to 3.11 per 10,000 inhabitants. In 2009, 9% of CS was performed as day-case surgery, although a third of the health care areas did not perform this type of surgery. Taking the SNHC as a reference, the cost of CS was estimated at 7,078 € and that of NCS was 6,161 €. Using AP-DRG, costs amounted to 9,036 € and 8,526 €, respectively. However, CS had lower opportunity costs than NCS when day-case surgery was performed frequently-more than 46% of cases (following SNHC estimates) or 23% of cases (following AP-DRG estimates). Day-case CS for breast cancer was found to be the best option in terms of opportunity-costs beyond a specific threshold, when both CS and NCS are elective. Copyright © 2013 SESPAS. Published by Elsevier Espana. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Xiyan; Lei, Yongqian; Li, Xiaona; Song, Shuyan; Wang, Cheng; Zhang, Hongjie
2011-12-01
α-Fe 2O 3 nanocrystals (NCs) with different morphologies are successfully synthesized via a facile template-free hydrothermal route. By simply changing the volume ratio of ethanol to water, we obtained three different α-Fe 2O 3 nanostructures of rhombohedra, truncated rhombohedra and hexagonal sheet. The morphologies and structures of the as-obtained products have been confirmed by varieties of characterizations such as X-ray diffraction (XRD), X-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The influences of the experimental conditions, such as the amount of NaOH and reaction temperature on the morphologies of the as-prepared α-Fe 2O 3 NCs, have been well investigated. Additionally, magnetic investigations show that the as-obtained α-Fe 2O 3 nanostructures show structure-dependent magnetic properties. Furthermore, the electrochemical experiments indicate that the as-prepared α-Fe 2O 3 hexagonal sheets exhibit strong electrocatalytic reduction activity for H 2O 2.
Wang, Cheng Yan; Tan, Xing Rong; Chen, Shi Hong; Hu, Fang Xin; Zhong, Hua An; Zhang, Yu
2012-02-01
One-step synthesis method was proposed to obtain the nanocomposites of platinum nanoclusters and multiwalled carbon nanotubes (PtNCs-MWNTs), which were used as a novel immobilization matrix for the enzyme to fabricate glucose biosensor. The fabrication process of the biosensor was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, atomic force microscopy and scanning electron microscope. Due to the favorable characteristic of PtNCs-MWNTs nanocomposites, the biosensor exhibited good characteristics, such as wide linear range (3.0 μM-12.1 mM), low detection limit (1.0 μM), high sensitivity (12.8 μA mM⁻¹), rapid response time (within 6 s). The apparent Michaelis-Menten constant (K(app)(m)) is 2.1 mM. The performance of the resulting biosensor is more prominent than that of most of the reported glucose biosensors. Furthermore, it was demonstrated that this biosensor can be used for the assay of glucose in human serum samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mortensen, Mary E., E-mail: MMortensen@cdc.gov; Calafat, Antonia M.; Ye, Xiaoyun
Environmental phenols are a group of chemicals with widespread uses in consumer and personal care products, food and beverage processing, and in pesticides. We assessed exposure to benzophenone-3, bisphenol A (BPA), triclosan, methyl- and propyl parabens, and 2,4- and 2,5-dichlorophenol or their precursors in 506 pregnant women enrolled in the National Children's Study (NCS) Vanguard Study. We measured the urinary concentrations of the target phenols by using online solid-phase extraction–isotope dilution high performance liquid chromatography–tandem mass spectrometry. NCS women results were compared to those of 524 similar-aged women in the National Health and Nutrition Examination Survey (NHANES) 2009–2010, and tomore » 174 pregnant women in NHANES 2005–2010. In the NCS women, we found significant racial/ethnic differences (p<0.05) in regression adjusted mean concentrations of benzophenone-3, triclosan, 2,4- and 2,5-dichlorophenol, but not of BPA. Urinary 2,4- and 2,5-dichlorophenol concentrations were highly correlated (r=0.66, p<0.0001). Except for BPA and triclosan, adjusted mean concentrations were significantly different across the 7 study sites. Education was marginally significant for benzophenone-3, triclosan, propyl paraben, and 2,5-dichlorophenol. Urinary concentrations of target phenols in NCS pregnant women and U.S. women and pregnant women were similar. In NCS pregnant women, race/ethnicity and geographic location determined urinary concentrations of most phenols (except BPA), suggesting differential exposures. NCS Main Study protocols should collect urine biospecimens and information about exposures to environmental phenols. - Highlights: • Limited biomonitoring data are available in pregnant women. • Seven urinary phenols were measured in 506 third trimester women enrolled in the NCS. • Urine benzophenone-3, triclosan, 2,4- and 2,5-dichlorophenol differed by race/ethnicity. • Urinary concentrations of 2,4- and 2,5-dichlorophenol were highly correlated. • Exposure information can expand the utility of biospecimens in the NCS Main Study.« less
Ghosh, Ramesh; Giri, P K; Imakita, Kenji; Fujii, Minoru
2014-01-31
Arrays of vertically aligned single crystalline Si nanowires (NWs) decorated with arbitrarily shaped Si nanocrystals (NCs) have been fabricated by a silver assisted wet chemical etching method. Scanning electron microscopy and transmission electron microscopy are performed to measure the dimensions of the Si NWs as well as the Si NCs. A strong broad band and tunable visible (2.2 eV) to near-infrared (1.5 eV) photoluminescence (PL) is observed from these Si NWs at room temperature (RT). Our studies reveal that the Si NCs are primarily responsible for the 1.5-2.2 eV emission depending on the cross-sectional area of the Si NCs, while the large diameter Si/SiOx NWs yield distinct NIR PL consisting of peaks at 1.07, 1.10 and 1.12 eV. The latter NIR peaks are attributed to TO/LO phonon assisted radiative recombination of free carriers condensed in the electron-hole plasma in etched Si NWs observed at RT for the first time. Since the shape of the Si NCs is arbitrary, an analytical model is proposed to correlate the measured PL peak position with the cross-sectional area (A) of the Si NCs, and the bandgap (E(g)) of nanostructured Si varies as E(g) = E(g) (bulk) + 3.58 A(-0.52). Low temperature PL studies reveal the contribution of non-radiative defects in the evolution of PL spectra at different temperatures. The enhancement of PL intensity and red-shift of the PL peak at low temperatures are explained based on the interplay of radiative and non-radiative recombinations at the Si NCs and Si/SiO(x) interface. Time resolved PL studies reveal bi-exponential decay with size correlated lifetimes in the range of a few microseconds. Our results help to resolve a long standing debate on the origin of visible-NIR PL from Si NWs and allow quantitative analysis of PL from arbitrarily shaped Si NCs.
Pandalaneni, Sravan; Karuppiah, Vijaykumar; Saleem, Muhammad; Haynes, Lee P; Burgoyne, Robert D; Mayans, Olga; Derrick, Jeremy P; Lian, Lu-Yun
2015-07-24
Neuronal calcium sensor-1 (NCS-1) is the primordial member of the neuronal calcium sensor family of EF-hand Ca(2+)-binding proteins. It interacts with both the G-protein-coupled receptor (GPCR) dopamine D2 receptor (D2R), regulating its internalization and surface expression, and the cognate kinases GRK1 and GRK2. Determination of the crystal structures of Ca(2+)/NCS-1 alone and in complex with peptides derived from D2R and GRK1 reveals that the differential recognition is facilitated by the conformational flexibility of the C-lobe-binding site. We find that two copies of the D2R peptide bind within the hydrophobic crevice on Ca(2+)/NCS-1, but only one copy of the GRK1 peptide binds. The different binding modes are made possible by the C-lobe-binding site of NCS-1, which adopts alternative conformations in each complex. C-terminal residues Ser-178-Val-190 act in concert with the flexible EF3/EF4 loop region to effectively form different peptide-binding sites. In the Ca(2+)/NCS-1·D2R peptide complex, the C-terminal region adopts a 310 helix-turn-310 helix, whereas in the GRK1 peptide complex it forms an α-helix. Removal of Ser-178-Val-190 generated a C-terminal truncation mutant that formed a dimer, indicating that the NCS-1 C-terminal region prevents NCS-1 oligomerization. We propose that the flexible nature of the C-terminal region is essential to allow it to modulate its protein-binding sites and adapt its conformation to accommodate both ligands. This appears to be driven by the variability of the conformation of the C-lobe-binding site, which has ramifications for the target specificity and diversity of NCS-1. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Pandalaneni, Sravan; Karuppiah, Vijaykumar; Saleem, Muhammad; Haynes, Lee P.; Burgoyne, Robert D.; Mayans, Olga; Derrick, Jeremy P.; Lian, Lu-Yun
2015-01-01
Neuronal calcium sensor-1 (NCS-1) is the primordial member of the neuronal calcium sensor family of EF-hand Ca2+-binding proteins. It interacts with both the G-protein-coupled receptor (GPCR) dopamine D2 receptor (D2R), regulating its internalization and surface expression, and the cognate kinases GRK1 and GRK2. Determination of the crystal structures of Ca2+/NCS-1 alone and in complex with peptides derived from D2R and GRK1 reveals that the differential recognition is facilitated by the conformational flexibility of the C-lobe-binding site. We find that two copies of the D2R peptide bind within the hydrophobic crevice on Ca2+/NCS-1, but only one copy of the GRK1 peptide binds. The different binding modes are made possible by the C-lobe-binding site of NCS-1, which adopts alternative conformations in each complex. C-terminal residues Ser-178–Val-190 act in concert with the flexible EF3/EF4 loop region to effectively form different peptide-binding sites. In the Ca2+/NCS-1·D2R peptide complex, the C-terminal region adopts a 310 helix-turn-310 helix, whereas in the GRK1 peptide complex it forms an α-helix. Removal of Ser-178–Val-190 generated a C-terminal truncation mutant that formed a dimer, indicating that the NCS-1 C-terminal region prevents NCS-1 oligomerization. We propose that the flexible nature of the C-terminal region is essential to allow it to modulate its protein-binding sites and adapt its conformation to accommodate both ligands. This appears to be driven by the variability of the conformation of the C-lobe-binding site, which has ramifications for the target specificity and diversity of NCS-1. PMID:25979333
Gold nanocluster-based vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides
NASA Astrophysics Data System (ADS)
Tao, Yu; Zhang, Yan; Ju, Enguo; Ren, Hui; Ren, Jinsong
2015-07-01
We here report a facile one-pot synthesis of fluorescent gold nanoclusters (AuNCs) via the peptide biomineralization method, which can elicit specific immunological responses. The as-prepared peptide-protected AuNCs (peptide-AuNCs) display strong red fluorescence, and more importantly, as compared to the peptide alone, the immune stimulatory ability of the resulting peptide-AuNCs can not only be retained, but can also be efficaciously enhanced. Moreover, through a dual-delivery of antigen peptides and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), the as-prepared peptide-AuNC-CpG conjugates can also act as smart self-vaccines to assist in the generation of high immunostimulatory activity, and be applied as a probe for intracellular imaging. Both in vitro and in vivo studies provide strong evidence that the AuNC-based vaccines may be utilized as safe and efficient immunostimulatory agents that are able to prevent and/or treat a variety of ailments.We here report a facile one-pot synthesis of fluorescent gold nanoclusters (AuNCs) via the peptide biomineralization method, which can elicit specific immunological responses. The as-prepared peptide-protected AuNCs (peptide-AuNCs) display strong red fluorescence, and more importantly, as compared to the peptide alone, the immune stimulatory ability of the resulting peptide-AuNCs can not only be retained, but can also be efficaciously enhanced. Moreover, through a dual-delivery of antigen peptides and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), the as-prepared peptide-AuNC-CpG conjugates can also act as smart self-vaccines to assist in the generation of high immunostimulatory activity, and be applied as a probe for intracellular imaging. Both in vitro and in vivo studies provide strong evidence that the AuNC-based vaccines may be utilized as safe and efficient immunostimulatory agents that are able to prevent and/or treat a variety of ailments. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02240a
Zhu, Yuzhen; Wu, Ying; Luo, Yin; Zou, Yu; Ma, Buyong; Zhang, Qingwen
2014-11-20
Neuronal calcium sensor-1 (NCS-1) protein has a variety of different neuronal functions and interacts with multiple binding partners mostly through a large solvent-exposed hydrophobic crevice (HC). A single R102Q mutation in human NCS-1 protein was demonstrated to be associated with autism disease. Solution NMR study reported that this R102Q mutant had long-range chemical shift effects on the HC and the C-terminal tail (L3). To understand the influence of the R102Q mutation on the HC and L3 of NCS-1, we have investigated the conformational dynamics and the structural flexibility of wild type (WT) NCS-1 and its R102Q mutant by conducting extensive all-atom molecular dynamics (MD) simulations. On the basis of six independent 450 ns MD simulations, we have found that the R102Q mutation in NCS-1 protein (1) dramatically reduces the flexibility of loops L2 and L3, (2) facilitates L3 in a more extended state to occupy the hydrophobic crevice to a larger extent, (3) significantly affects the intersegment salt bridges, and (4) changes the subspace of the free energy landscape of NCS-1 protein. Analysis of the salt bridge network in both WT and the R102Q variant demonstrates that the R102Q-mutation-induced salt bridge alternations play a critical role on the reduced flexibility of L2 and L3. These results reveal the important role of salt bridges on the structural properties of NCS-1 protein and that R102Q mutation disables the dynamic relocation of C-terminus, which may block the binding of NCS-1 protein to its receptors. This study may provide structural insights into the autistic spectrum disorder associated with R102Q mutation.
Lignos, Ioannis; Morad, Viktoriia; Shynkarenko, Yevhen; Bernasconi, Caterina; Maceiczyk, Richard M; Protesescu, Loredana; Bertolotti, Federica; Kumar, Sudhir; Ochsenbein, Stefan T; Masciocchi, Norberto; Guagliardi, Antonietta; Shih, Chih-Jen; Bodnarchuk, Maryna I; deMello, Andrew J; Kovalenko, Maksym V
2018-05-22
Hybrid organic-inorganic and fully inorganic lead halide perovskite nanocrystals (NCs) have recently emerged as versatile solution-processable light-emitting and light-harvesting optoelectronic materials. A particularly difficult challenge lies in warranting the practical utility of such semiconductor NCs in the red and infrared spectral regions. In this context, all three archetypal A-site monocationic perovskites-CH 3 NH 3 PbI 3 , CH(NH 2 ) 2 PbI 3 , and CsPbI 3 -suffer from either chemical or thermodynamic instabilities in their bulk form. A promising approach toward the mitigation of these challenges lies in the formation of multinary compositions (mixed cation and mixed anion). In the case of multinary colloidal NCs, such as quinary Cs x FA 1- x Pb(Br 1- y I y ) 3 NCs, the outcome of the synthesis is defined by a complex interplay between the bulk thermodynamics of the solid solutions, crystal surface energies, energetics, dynamics of capping ligands, and the multiple effects of the reagents in solution. Accordingly, the rational synthesis of such NCs is a formidable challenge. Herein, we show that droplet-based microfluidics can successfully tackle this problem and synthesize Cs x FA 1- x PbI 3 and Cs x FA 1- x Pb(Br 1- y I y ) 3 NCs in both a time- and cost-efficient manner. Rapid in situ photoluminescence and absorption measurements allow for thorough parametric screening, thereby permitting precise optical engineering of these NCs. In this showcase study, we fine-tune the photoluminescence maxima of such multinary NCs between 700 and 800 nm, minimize their emission line widths (to below 40 nm), and maximize their photoluminescence quantum efficiencies (up to 89%) and phase/chemical stabilities. Detailed structural analysis revealed that the Cs x FA 1- x Pb(Br 1- y I y ) 3 NCs adopt a cubic perovskite structure of FAPbI 3 , with iodide anions partially substituted by bromide ions. Most importantly, we demonstrate the excellent transference of reaction parameters from microfluidics to a conventional flask-based environment, thereby enabling up-scaling and further implementation in optoelectronic devices. As an example, Cs x FA 1- x Pb(Br 1- y I y ) 3 NCs with an emission maximum at 735 nm were integrated into light-emitting diodes, exhibiting a high external quantum efficiency of 5.9% and a very narrow electroluminescence spectral bandwidth of 27 nm.
Germanium Nanocrystal Solar Cells
NASA Astrophysics Data System (ADS)
Holman, Zachary Charles
Greenhouse gas concentrations in the atmosphere are approaching historically unprecedented levels from burning fossil fuels to meet the ever-increasing world energy demand. A rapid transition to clean energy sources is necessary to avoid the potentially catastrophic consequences of global warming. The sun provides more than enough energy to power the world, and solar cells that convert sunlight to electricity are commercially available. However, the high cost and low efficiency of current solar cells prevent their widespread implementation, and grid parity is not anticipated to be reached for at least 15 years without breakthrough technologies. Semiconductor nanocrystals (NCs) show promise for cheap multi-junction photovoltaic devices. To compete with photovoltaic materials that are currently commercially available, NCs need to be inexpensively cast into dense thin films with bulk-like electrical mobilities and absorption spectra that can be tuned by altering the NC size. The Group II-VI and IV-VI NC communities have had some success in achieving this goal by drying and then chemically treating colloidal particles, but the more abundant and less toxic Group IV NCs have proven more challenging. This thesis reports thin films of plasma-synthesized Ge NCs deposited using three different techniques, and preliminary solar cells based on these films. Germanium tetrachloride is dissociated in the presence of hydrogen in a nonthermal plasma to nucleate Ge NCs. Transmission electron microscopy and X-ray diffraction indicate that the particles are nearly monodisperse (standard deviations of 10-15% the mean particle diameter) and the mean diameter can be tuned from 4-15 nm by changing the residence time of the Ge NCs in the plasma. In the first deposition scheme, a Ge NC colloid is formed by reacting nanocrystalline powder with 1-dodecene and dispersing the functionalized NCs in a solvent. Films are then formed on substrates by drop-casting the colloid and allowing it to dry. As-deposited films are electrically insulating due to the long hydrocarbon molecules separating neighboring particles; however, mass spectrometry shows that annealing treatments successfully decompose these molecules. After annealing at 250 °C, Ge NC films exhibit conductivities as large as 10-6 S/cm. In the second film deposition scheme, a Ge NC colloid is formed by dispersing Ge NCs in select solvents without further surface modification. While these "bare" NCs quickly agglomerate and flocculate in nearly all non-polar solvents, they remain stable in benzonitrile and 1,2-dichlorobenzene, among others. Thin-film field-effect transistors have been fabricated by spinning Ge NC colloids onto substrates and the films have been subjected to various annealing procedures. The devices show n-type, p -type, or ambipolar behavior depending on the annealing conditions, with Ge NC films annealed at 300°C exhibiting electron saturation mobilities greater than 10-2 cm2/Vs and on-to-off ratios of 104. The final film deposition scheme involves the impaction of Ge NCs onto substrates downstream of the synthesis plasma via acceleration of the NCs through an orifice. This technique produces highly uniform films with densities greater than 50% of the density of bulk Ge. By varying the size of the Ge NCs, we have measured films with band gaps ranging from the bulk value of 0.7 eV to over 1.1 eV for films of 4 nm Ge NCs. Having deposited dense thin films with tunable band gaps and respectable mobilities, we have begun fabricating bilayer solar cells consisting of heterojunctions between Ge NC films and P3HT, Si NCs, or Si wafers. Preliminary devices exhibit opencircuit voltages and short-circuit currents as large as 0.3 V and 4 mA/cm 2, respectively.
Passively Targeted Curcumin-Loaded PEGylated PLGA Nanocapsules for Colon Cancer Therapy In Vivo.
Klippstein, Rebecca; Wang, Julie Tzu-Wen; El-Gogary, Riham I; Bai, Jie; Mustafa, Falisa; Rubio, Noelia; Bansal, Sukhvinder; Al-Jamal, Wafa T; Al-Jamal, Khuloud T
2015-09-01
Clinical applications of curcumin for the treatment of cancer and other chronic diseases have been mainly hindered by its short biological half-life and poor water solubility. Nanotechnology-based drug delivery systems have the potential to enhance the efficacy of poorly soluble drugs for systemic delivery. This study proposes the use of poly(lactic-co-glycolic acid) (PLGA)-based polymeric oil-cored nanocapsules (NCs) for curcumin loading and delivery to colon cancer in mice after systemic injection. Formulations of different oil compositions are prepared and characterized for their curcumin loading, physico-chemical properties, and shelf-life stability. The results indicate that castor oil-cored PLGA-based NC achieves high drug loading efficiency (≈18% w(drug)/w(polymer)%) compared to previously reported NCs. Curcumin-loaded NCs internalize more efficiently in CT26 cells than the free drug, and exert therapeutic activity in vitro, leading to apoptosis and blocking the cell cycle. In addition, the formulated NC exhibits an extended blood circulation profile compared to the non-PEGylated NC, and accumulates in the subcutaneous CT26-tumors in mice, after systemic administration. The results are confirmed by optical and single photon emission computed tomography/computed tomography (SPECT/CT) imaging. In vivo growth delay studies are performed, and significantly smaller tumor volumes are achieved compared to empty NC injected animals. This study shows the great potential of the formulated NC for treating colon cancer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kartsonakis, I. A.; Koumoulos, E. P.; Charitidis, C. A.; Kordas, G.
2013-08-01
This study is focused on the fabrication, characterization, and application of corrosion protective coatings to magnesium alloy ZK30. Hybrid organic-inorganic coatings were synthesized using organic-modified silicates together with resins based on bisphenol A diglycidyl ether. Cerium molybdate nanocontainers (ncs) with diameter 100 ± 20 nm were loaded with corrosion inhibitor 2-mercaptobenzothiazole and incorporated into the coatings in order to improve their anticorrosion properties. The coatings were investigated for their anticorrosion and nanomechanical properties. The morphology of the coatings was examined by scanning electron microscopy. The composition was estimated by energy-dispersive X-ray analysis. The mechanical integrity of the coatings was studied through nanoindentation and nanoscratch techniques. Scanning probe microscope imaging of the coatings revealed that the addition of ncs creates surface incongruity; however, the hardness to modulus ratio revealed significant strengthening of the coating with increase of ncs. Studies on their corrosion behavior in 0.5 M sodium chloride solutions at room temperature were made using electrochemical impedance spectroscopy. Artificial defects were formatted on the surface of the films in order for possible self-healing effects to be evaluated. The results showed that the coated magnesium alloys exhibited only capacitive response after exposure to corrosive environment for 16 months. This behavior denotes that the coatings have enhanced barrier properties and act as an insulator. Finally, the scratched coatings revealed a partial recovery due to the increase of charge-transfer resistance as the immersion time elapsed.
The impact of reward on attention in schizophrenia.
Bansal, Sonia; Robinson, Benjamin M; Geng, Joy J; Leonard, Carly J; Hahn, Britta; Luck, Steven J; Gold, James M
2018-06-01
Traditionally, attention was thought to be directed by either top-down goals or bottom-up salience. Recent studies have shown that the reward history of a stimulus feature also acts as a powerful attentional cue. This is particularly relevant in schizophrenia, which is characterized by motivational and attentional deficits. Here, we examine the impact of reward on selective attention. Forty-eight people with schizophrenia (PSZ) and 34 non-psychiatric control subject (NCS) discriminated the location of a target dot appearing inside a left circle or right circle. The circles were different colors, one of which was associated with reward via pre-training. In the first 2 blocks, targets were equally likely to appear in the left or right circle. In the last 4 blocks, the target was 75% likely on one side, thus allowing us to separately examine how attention was impacted by reward (color) and probability (location). PSZ had slower overall reaction times (RTs) than NCS. Both groups showed robust effects of spatial probability and reward history, with faster RTs for the rewarded color and for the more probable location. These effects were similar in PSZ and NCS. Negative symptom severity correlated with overall RT slowing, but there were no correlations between symptoms and reward-associated biasing of attention. PSZ demonstrated RT slowing but normal reward history and spatial probability-driven RT facilitation. These results are conceptually similar to prior findings showing intact implicit reward effects on response bias, and suggest that implicit processing of reward and probability is intact in PSZ.
Fernández-Rosas, Elisabet; Vilar, Gemma; Janer, Gemma; González-Gálvez, David; Puntes, Victor; Jamier, Vincent; Aubouy, Laurent; Vázquez-Campos, Socorro
2016-03-01
The incorporation of small amounts of nanofillers in polymeric matrices has enabled new applications in several industrial sectors. The nanofiller dispersion can be improved by modifying the nanomaterial (NM) surface or predispersing the NMs to enhance compatibility. This study evaluates the effect of these compatibilization strategies on migration/release of the nanofiller and transformation of polyamide-6 (PA6), a thermoplastic polymer widely used in industry during simulated outdoors use. Two nanocomposites (NCs) containing SiO2 nanoparticles (NPs) with different surface properties and two multiwalled carbon nanotube (MWCNT) NCs obtained by different addition methods were produced and characterized, before and after accelerated wet aging conditions. Octyl-modified SiO2 NPs, though initially more aggregated than uncoated SiO2 NPs, reduced PA6 hydrolysis and, consequently, NM release. Although no clear differences in dispersion were observed between the two types of MWCNT NCs (masterbatch vs direct addition) after manufacture, the use of the MWCNT masterbatch reduced PA6 degradation during aging, preventing MWCNT accumulation on the surface and further release or potential exposure by direct contact. The amounts of NM released were lower for MWCNTs (36 and 108 mg/m(2)) than for SiO2 NPs (167 and 730 mg/m(2)), being lower in those samples where the NC was designed to improve the nanofiller-matrix interaction. Hence, this study shows that optimal compatibilization between NM and matrix can improve NC performance, reducing polymer degradation and exposure and/or release of the nanofiller.
Enhanced red photoluminescence of quartz by silicon nanocrystals thin film deposition
NASA Astrophysics Data System (ADS)
Momeni, A.; Pourgolestani, M.; Taheri, M.; Mansour, N.
2018-03-01
The room-temperature photoluminescence properties of silicon nanocrystals (SiNCs) thin film on a quartz substrate were investigated, which presents the red emission enhancement of quartz. We show that the photoluminescence intensity of quartz, in the wavelength range of 640-700 nm, can be enhanced as much as 15-fold in the presence of the SiNCs thin film. Our results reveal that the defect states at the SiNCs/SiO2 interface can be excited more efficiently by indirect excitation via the SiNCs, leading to the prominent red photoluminescence enhancement under the photo-excitation in the range of 440-470 nm. This work suggests a simple pathway to improve silicon-based light emitting devices for photonic applications.
NASA Astrophysics Data System (ADS)
Baker, Jared Scott
2011-12-01
The development of novel nanomaterials and the understanding of their fundamental physical and chemical properties represent an exciting area of research. These materials are continuously being sought for ever-increasing applications; finding their way into uses that influence mankind on a daily basis. Combining elements from traditional nanoparticle characterization with electrophoretic-based techniques, this dissertation presents the analysis of carbon nanoparticles (CNPs) generated from a novel source (candle soot) as well as a unique perspective on the reactivity and degradation process of magic-sized cadmium chalcogenide nanocrystals. One potential application of CNPs is their use as an alternative fluorophore in a separation-based sensor system. Laser-induced-fluorescence (LIF) is a commonly used manner of detection in this type of platform, but is limited in many cases by problems associated with the fluorophore. Carbon-based nanoparticles have the potential to improve upon traditional fluorophores in applications that make use of LIF as the detection scheme. CNPs were extracted from the carbonaceous material produced by the incomplete combustion of a candle. The soot was submitted to an oxidizing treatment and extraction/filtration procedures rendering watersoluble luminescent species. Electron microscopy was used to identify globular, amorphous structures in the nanometer size-range. An aqueous suspension of CNPs demonstrated excellent stability in terms of its electronic properties, showing little change in absorption and emission spectra upon storage under ambient conditions over a two-year period. Capitalizing on the strengths of capillary electrophoresis (CE) as a characterization technique, we have analyzed the negatively-charged CNPs in terms of charge and size by studying the influence of variable CE conditions on the resulting separation. Separations at different pH revealed a highly complex mixture of CNPs, containing species with large electrophoretic mobilities under a wide range of pH values. The mobility of these nanoparticles as a function of ionic strength was compared to classical electrokinetic theory, suggesting that the species are small, highly charged particles with appreciable zeta potentials, even at low pH. In an attempt to reduce the complexity of the CNP solution, two molecular-weight based fractionation techniques were employed and evaluated. Traditional dialysis and ultracentrifugation filtration techniques were modified to generate multiple CNPs fractions based on size. Analysis of the fractions by absorption and photoluminescence spectroscopy as well as CE revealed specific characteristics for a given sized-fraction. Namely, a strong correlation between the size of the CNPs and their luminescent emission was observed. CE was utilized to characterize each fraction and to ultimately judge the effectiveness of the fractionation techniques. The characterization of the persistence and degradation of magic-sized CdSe nanocrystals (NCs) after their removal from the original reaction mixture and dispersion into basic aqueous solutions was performed by absorption spectroscopy. NCs degraded after dilution into aqueous NaOH, resulting in red-shifted excitonic absorption bands and eventual flocculation. Dilution of NCs into basic aqueous solutions of cysteinate resulted in degradation via a different mechanism with an absence of flocculation; kinetics varied with concentration of cysteinate. The chemical fate of NCs after dilution into basic aqueous solutions containing both Cd2+ and cysteinate varied with the cysteinate-to-Cd 2+ molar ratio, which determined the relative solute mole fractions of various Cd2+-cysteinate complexes. CdSe NCs persisted on long timescales only when dispersed in solutions containing [Cd(cysteinate) 3]4-. Equilibria are presented to account for the observed spectral changes after dilution of CdSe into various basic media. Cadmium(II)-cysteinate complex-formation equilibria influenced the temporal persistence of the nanocrystals; the pathway through which CdSe NCs degraded depended on the concentration of free, uncoordinated cysteinate. These findings indicate that solution-phase chemistry can determine whether NCs remain intact upon removal from their original reaction mixtures. Departing from the analysis of nanomaterials, an additional chapter focuses on the evaluation of a new chromatographic packing material. Two chromatographic columns packed with superficially porous packing material, Kinetex(TM) 1.7 mum and 2.6 mum C18 particles were evaluated in terms of their physical properties and performance characteristics. These columns were compared to a column packed with a sub-2 mum totally porous material and to a Halo(TM) column packed with 2.7 mum C18 superficially porous packing. The columns packed with superficially porous particles displayed a comparably narrower size distribution, which is narrower than the distribution of the totally porous sub-2 mum particles. Physical characteristics of the Kinetex(TM) particles were evaluated in terms of surface area, pore diameter, and specific pore volume. Total, external, internal and shell porosities among the four different columns were evaluated and compared. The specific permeability for the Kinetex columns showed values close to those predicted by the Kozeny-Carman equation. All four columns were evaluated in terms of their chromatographic performance and compared using the Knox equation. The columns packed with the 2.6 mum and 2.7 mum superficially porous materials showed reduced plate heights below 2, while the sub-2 mum particles showed values of 2.2 and above.
Kaw, Roop; Pasupuleti, Vinay; Deshpande, Abhishek; Hamieh, Tarek; Walker, Esteban; Minai, Omar A
2011-04-01
Perioperative risk associated with pulmonary hypertension (PH) in patients undergoing non-cardiac surgery (NCS) remains poorly defined. We report perioperative outcomes in a large cohort of patients undergoing NCS, comparing those with and without PH. Patients undergoing NCS at our institution between January 2002 and December 2006, were cross matched with a Right Heart Catheterization (RHC) database for the same period. Patients were excluded if they were <18 years old and if they underwent cardiac surgery prior to NCS or minor procedures using local anesthesia or sedation. Controls were defined as patients who underwent similar NCS with mean pulmonary arterial pressure (MPAP) ≤ 25 mmHg. 173 patients underwent RHC and NCS during the specified period and were included in the analysis. Of these 96 (55%) had PH. Mean pulmonary arterial pressure (p = 0.001), American Association of Anesthesiology Class (p = 0.02), and chronic renal insufficiency (p = 0.03) were determined as independent risk factors for post-operative morbidity. Patients with PH were more likely to develop congestive heart failure (p < 0.001; OR: 11.9), hemodynamic instability (p < 0.002), sepsis (p < 0.0005), and respiratory failure (p < 0.004). Patients with PH needed longer ventilatory support (p < 0.002), stayed longer in the ICU (p < 0.04), and were more frequently readmitted to the hospital within 30 days (p < 008; OR 2.4). In addition to the traditionally known risk factors for outcomes after NCS such as coronary artery disease, diabetes mellitus, chronic renal insufficiency, American Society of Anesthesiology class, the presence of underlying PH can have a significant negative impact on perioperative outcomes. Copyright © 2010 Elsevier Ltd. All rights reserved.
Mid-Gap States and Normal vs Inverted Bonding in Luminescent Cu+- and Ag+-Doped CdSe Nanocrystals.
Nelson, Heidi D; Hinterding, Stijn O M; Fainblat, Rachel; Creutz, Sidney E; Li, Xiaosong; Gamelin, Daniel R
2017-05-10
Mid-gap luminescence in copper (Cu + )-doped semiconductor nanocrystals (NCs) involves recombination of delocalized conduction-band electrons with copper-localized holes. Silver (Ag + )-doped semiconductor NCs show similar mid-gap luminescence at slightly (∼0.3 eV) higher energy, suggesting a similar luminescence mechanism, but this suggestion appears inconsistent with the large difference between Ag + and Cu + ionization energies (∼1.5 eV), which should make hole trapping by Ag + highly unfavorable. Here, Ag + -doped CdSe NCs (Ag + :CdSe) are studied using time-resolved variable-temperature photoluminescence (PL) spectroscopy, magnetic circularly polarized luminescence (MCPL) spectroscopy, and time-dependent density functional theory (TD-DFT) to address this apparent paradox. In addition to confirming that Ag + :CdSe and Cu + :CdSe NCs display similar broad PL with large Stokes shifts, we demonstrate that both also show very similar temperature-dependent PL lifetimes and magneto-luminescence. Electronic-structure calculations further predict that both dopants generate similar localized mid-gap states. Despite these strong similarities, we conclude that these materials possess significantly different electronic structures. Specifically, whereas photogenerated holes in Cu + :CdSe NCs localize primarily in Cu(3d) orbitals, formally oxidizing Cu + to Cu 2+ , in Ag + :CdSe NCs they localize primarily in 4p orbitals of the four neighboring Se 2- ligands, and Ag + is not oxidized. This difference reflects a shift from "normal" to "inverted" bonding going from Cu + to Ag + . The spectroscopic similarities are explained by the fact that, in both materials, photogenerated holes are localized primarily within covalent [MSe 4 ] dopant clusters (M = Ag + , Cu + ). These findings reconcile the similar spectroscopies of Ag + - and Cu + -doped semiconductor NCs with the vastly different ionization potentials of their Ag + and Cu + dopants.
Markovian robots: Minimal navigation strategies for active particles
NASA Astrophysics Data System (ADS)
Nava, Luis Gómez; Großmann, Robert; Peruani, Fernando
2018-04-01
We explore minimal navigation strategies for active particles in complex, dynamical, external fields, introducing a class of autonomous, self-propelled particles which we call Markovian robots (MR). These machines are equipped with a navigation control system (NCS) that triggers random changes in the direction of self-propulsion of the robots. The internal state of the NCS is described by a Boolean variable that adopts two values. The temporal dynamics of this Boolean variable is dictated by a closed Markov chain—ensuring the absence of fixed points in the dynamics—with transition rates that may depend exclusively on the instantaneous, local value of the external field. Importantly, the NCS does not store past measurements of this value in continuous, internal variables. We show that despite the strong constraints, it is possible to conceive closed Markov chain motifs that lead to nontrivial motility behaviors of the MR in one, two, and three dimensions. By analytically reducing the complexity of the NCS dynamics, we obtain an effective description of the long-time motility behavior of the MR that allows us to identify the minimum requirements in the design of NCS motifs and transition rates to perform complex navigation tasks such as adaptive gradient following, detection of minima or maxima, or selection of a desired value in a dynamical, external field. We put these ideas in practice by assembling a robot that operates by the proposed minimalistic NCS to evaluate the robustness of MR, providing a proof of concept that is possible to navigate through complex information landscapes with such a simple NCS whose internal state can be stored in one bit. These ideas may prove useful for the engineering of miniaturized robots.
Human Neuronal Calcium Sensor-1 Protein Avoids Histidine Residues To Decrease pH Sensitivity.
Gong, Yehong; Zhu, Yuzhen; Zou, Yu; Ma, Buyong; Nussinov, Ruth; Zhang, Qingwen
2017-01-26
pH is highly regulated in mammalian central nervous systems. Neuronal calcium sensor-1 (NCS-1) can interact with numerous target proteins. Compared to that in the NCS-1 protein of Caenorhabditis elegans, evolution has avoided the placement of histidine residues at positions 102 and 83 in the NCS-1 protein of humans and Xenopus laevis, possibly to decrease the conformational sensitivity to pH gradients in synaptic processes. We used all-atom molecular dynamics simulations to investigate the effects of amino acid substitutions between species on human NCS-1 by substituting Arg102 and Ser83 for histidine at neutral (R102H and S83H) and acidic pHs (R102H p and S83H p ). Our cumulative 5 μs simulations revealed that the R102H mutation slightly increases the structural flexibility of loop L2 and the R102H p mutation decreases protein stability. Community network analysis illustrates that the R102H and S83H mutations weaken the interdomain and strengthen the intradomain communications. Secondary structure contents in the S83H and S83H p mutants are similar to those in the wild type, whereas the global structural stabilities and salt-bridge probabilities decrease. This study highlights the conformational dynamics effects of the R102H and S83H mutations on the local structural flexibility and global stability of NCS-1, whereas protonated histidine decreases the stability of NCS-1. Thus, histidines at positions 102 and 83 may not be compatible with the function of NCS-1 whether in the neutral or protonated state.
Xia, Dengning; Tao, Jinsong; He, Yuan; Zhu, Quanlei; Chen, Dan; Yu, Miaorong; Cui, Fude; Gan, Yong
2015-01-01
Ligand grafted nanoparticles have been shown to enhance drug transport across epithelium barrier and are expected to improve drug delivery. However, grafting of these ligands to the surface of pure nanodrug, i.e., nanocrystals (NCs), is a critical challenge due to the shedding of ligands along with the stabilizer upon high dilution or dissolving of the drug. Herein, a non-sheddable nanocage-like stabilizer was designed by covalent cross-linking of poly(acrylic acid)-b-poly(methyl acrylate) on drug nanocrystal surface, and a ligand, wheat germ agglutinin (WGA), was successfully anchored to the surface of itraconazole (ITZ) NCs by covalent conjugation to the nanocage (WGA-cage-NCs). The cellular study showed that large amount of WGA-cage-NCs were adhered to Caco-2 cell membrane, and invaded into cells, resulting in a higher drug uptake than that of ordinary NCs (ONCs). After oral administration to rats, WGA-cage-NC were largely accumulated on the apical side of epithelium cells, facilitating drug diffusing across epithelium barrier. Interestingly, WGA-cage-NCs were capable of invading rat intestinal villi and reaching to lamina propria by transcytosis across goblet cells, which behaved like a foodborne pathogen, Listeria monocytogenes. The WGA-cage-NCs showed an improved oral bioavailability, which was 17.5- and 2.41-folds higher than that of coarse crystals and ONCs, respectively. To our best knowledge, this may represent the first report that a functional ligand was successfully anchored to the surface of pure nanodrug by using a cage-like stabilizer, showing unique biological functions in gastrointestinal tract and having an important significance in oral drug delivery. Copyright © 2014 Elsevier Ltd. All rights reserved.
Al-Said, Youssef A; Baeesa, Saleh S; Shivji, Zaitoon; Kayyali, Husam; Alqadi, Khalid; Kadi, Ghada; Cupler, Edward J; Abuzinadah, Ahmad R
2018-06-05
Electroencephalography (EEG) in the intensive care unit (ICU) is often done to detect non-convulsive seizures (NCS). The outcome of ICU patients with NCS strongly depends on the underlying etiology. The implication of NCS and other EEG findings on clinical outcome independent from their etiology is not well understood and our aim to investigate it. We retrospectively identified all adult patients in the ICU who underwent EEG monitoring between January 2008 and December 2011. The main goals were to define the rate of NCS or non-convulsive status epilepticus (NCSE) occurrence in our center among patients who underwent EEG monitoring and to examine if NCS/NCSE are associated with poor outcome [defined as death or dependence] with and without adjustment for underlying etiology. The rate of poor outcome among different EEG categories were also investigated. During the study period, 177 patients underwent EEG monitoring in our ICU. The overall outcome was poor in 62.7% of those undergoing EEG. The rate of occurrence of NCS/NCSE was 8.5% and was associated with poor outcome in 86.7% with an odds ratio (OR) of 5.1 (95% confidence interval [CI] 1.09-23.8). This association was maintained after adjusting for underlying etiologies with OR 5.6 (95% CI 1.05-29.6). The rate of poor outcome was high in the presence of periodic discharges and sharp and slow waves of 75% and 61.5%, respectively. Our cohort of ICU patients undergoing EEGs had a poor outcome. Those who developed NCS/NCSE experienced an even worse outcome regardless of the underlying etiology. Copyright © 2018 Elsevier B.V. All rights reserved.
Photoelectrochemical processes in polymer-tethered CdSe nanocrystals.
Shallcross, R Clayton; D'Ambruoso, Gemma D; Pyun, Jeffrey; Armstrong, Neal R
2010-03-03
We demonstrate the electrochemical capture of CdSe semiconductor nanocrystals (NCs), with thiophene-terminated carboxylic acid capping ligands, at the surfaces of electrodeposited poly(thiophene) films (i) poly((diethyl)propylenedixoythiophene), P(Et)(2)ProDOT; (ii) poly(propylenedioxythiophene), PProDOT; and (iii) poly(ethylenedioxythiophene), PEDOT, coupled with the exploration of their photoelectrochemical properties. Host polymer films were created using a kinetically controlled electrodeposition protocol on activated indium-tin oxide electrodes (ITO), producing conformal films that facilitate high rates of electron transfer. ProDOT-terminated, ligand-capped CdSe-NCs were captured at the outer surface of the host polymer films using a unique pulse-potential step electrodeposition protocol, providing for nearly close-packed monolayers of the NCs at the host polymer/solution interface. These polymer-confined CdSe NCs were used as sensitizers in the photoelectrochemical reduction of methyl viologen (MV(+2)). High internal quantum efficiencies (IQEs) are estimated for photoelectrochemical sensitized MV(+2) reduction using CdSe NCs ranging from 3.1 to 7.0 nm diameters. Cathodic photocurrent at high MV(+2) concentrations are limited by the rate of hole-capture by the host polymer from photoexcited NCs. The rate of this hole-capture process is determined by (a) the onset potential for reductive dedoping of the host polymer film; (b) the concentration ratio of neutral to oxidized forms of the host polymer ([P(n)]/[P(ox)]); and (c) the NC diameter, which controls its valence band energy, E(VB). These relationships are consistent with control of photoinduced electron transfer by Marcus-like excess free energy relationships. Our electrochemical assembly methods provide an enabling route to the capture of functional NCs in conducting polymer hosts in both photoelectrochemical and photovoltaic energy conversion systems.
NASA Astrophysics Data System (ADS)
Shen, Huaibin; Yuan, Hang; Niu, Jin Zhong; Xu, Shasha; Zhou, Changhua; Ma, Lan; Li, Lin Song
2011-09-01
Highly photoluminescent (PL) reverse type-I ZnSe/CdSe nanocrystals (NCs) and ZnSe/CdSe/CdS/CdxZn1 - xS/ZnS core/multishell NCs were successfully synthesized by a phosphine-free method. By this low-cost, 'green' synthesis route, more than 10 g of high-quality ZnSe/CdSe/CdS/CdxZn1 - xS/ZnS NCs were synthesized in a large scale synthesis. After the overgrowth of a CdS/CdxZn1 - xS/ZnS multishell on ZnSe/CdSe cores, the PL quantum yields (QYs) increased from 28% to 75% along with the stability improvement. An amphiphilic oligomer was used as a surface coating agent to conduct a phase transfer experiment, core/multishell NCs were dissolved in water by such surface modification and the QYs were still kept above 70%. The as-prepared water dispersible ZnSe/CdSe/CdS/CdxZn1 - xS/ZnS core/multishell NCs not only have high fluorescence QYs but also are extremely stable in various physiological conditions. Furthermore, a biosensor system (lateral flow immunoassay system, LFIA) for the detection of human hepatitis B surface antigen (HBsAg) was developed by using this water-soluble core/multishell NCs as a fluorescent label and a nitrocellulose filter membrane for lateral flow. The result showed that such ZnSe/CdSe/CdS/CdxZn1 - xS/ZnS core/multishell NCs were excellent fluorescent labels to detect HBsAg. The sensitivity of HBsAg detection could reach as high as 0.05 ng ml - 1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sainato, Michela; Shevitski, Brian; Sahu, Ayaskanta
Self-assembly of semiconductor nanocrystals (NCs) into two-dimensional patterns or three-dimensional (2- 3D) superstructures has emerged as a promising low-cost route to generate thin-film transistors and solar cells with superior charge transport because of enhanced electronic coupling between the NCs. Here, we show that lead sulfide (PbS) NCs solids featuring either short-range (disordered glassy solids, GSs) or long-range (superlattices, SLs) packing order are obtained solely by controlling deposition conditions of colloidal solution of NCs. In this study, we demonstrate the use of the evaporation-driven self-assembly method results in PbS NC SL structures that are observed over an area of 1 mmmore » × 100 μm, with long-range translational order of up to 100 nm. A number of ordered domains appear to have nucleated simultaneously and grown together over the whole area, imparting a polycrystalline texture to the 3D SL films. By contrast, a conventional, optimized spin-coating deposition method results in PbS NC glassy films with no translational symmetry and much shorter-range packing order in agreement with state-of-the-art reports. Further, we investigate the electronic properties of both SL and GS films, using a field-effect transistor configuration as a test platform. The long-range ordering of the PbS NCs into SLs leads to semiconducting NC-based solids, the mobility (μ) of which is 3 orders of magnitude higher than that of the disordered GSs. Furthemore, although spin-cast GSs of PbS NCs have weak ambipolar behavior with limited gate tunability, SLs of PbS NCs show a clear p-type behavior with significantly higher conductivities.« less
Long-Range Order in Nanocrystal Assemblies Determines Charge Transport of Films
Sainato, Michela; Shevitski, Brian; Sahu, Ayaskanta; ...
2017-07-18
Self-assembly of semiconductor nanocrystals (NCs) into two-dimensional patterns or three-dimensional (2- 3D) superstructures has emerged as a promising low-cost route to generate thin-film transistors and solar cells with superior charge transport because of enhanced electronic coupling between the NCs. Here, we show that lead sulfide (PbS) NCs solids featuring either short-range (disordered glassy solids, GSs) or long-range (superlattices, SLs) packing order are obtained solely by controlling deposition conditions of colloidal solution of NCs. In this study, we demonstrate the use of the evaporation-driven self-assembly method results in PbS NC SL structures that are observed over an area of 1 mmmore » × 100 μm, with long-range translational order of up to 100 nm. A number of ordered domains appear to have nucleated simultaneously and grown together over the whole area, imparting a polycrystalline texture to the 3D SL films. By contrast, a conventional, optimized spin-coating deposition method results in PbS NC glassy films with no translational symmetry and much shorter-range packing order in agreement with state-of-the-art reports. Further, we investigate the electronic properties of both SL and GS films, using a field-effect transistor configuration as a test platform. The long-range ordering of the PbS NCs into SLs leads to semiconducting NC-based solids, the mobility (μ) of which is 3 orders of magnitude higher than that of the disordered GSs. Furthemore, although spin-cast GSs of PbS NCs have weak ambipolar behavior with limited gate tunability, SLs of PbS NCs show a clear p-type behavior with significantly higher conductivities.« less
NASA Astrophysics Data System (ADS)
Wang, Hui; Li, Xu; Gao, Liang; Zhai, Jiao; Liu, Ru; Gao, Xueyun; Wang, Dongqi; Zhao, Lina
2016-06-01
Peptide coated gold nanoclusters (AuNCs) have a precise molecular formula and atomic structure, which are critical for their unique applications in targeting specific proteins either for protein analysis or drug design. To date, a study of the crystal structure of peptide coated AuNCs is absent primarily due to the difficulty of obtaining their crystalline phases in an experiment. Here we study a typical peptide coated AuNC (Au24Peptide8, Peptide = H2N-CCYKKKKQAGDV-COOH, Anal. Chem., 2015, 87, 2546) to figure out its atomic structure and electronic structure using a theoretical method for the first time. In this work, we identify the explicit configuration of the essential structure of Au24Peptide8, Au24(Cys-Cys)8, using density functional theory (DFT) computations and optical spectroscopic experiments, where Cys denotes cysteine without H bonded to S. As the first multidentate ligand binding AuNC, Au24(Cys-Cys)8 is characterized as a distorted Au13 core with Oh symmetry covered by two Au(Cys-Cys) and three Au3(Cys-Cys)2 staple motifs in its atomic structure. The most stable configuration of Au24(Cys-Cys)8 is confirmed by comparing its UV-vis absorption spectrum from time-dependent density-functional theory (TDDFT) calculations with optical absorption measurements, and these results are consistent with each other. Furthermore, we carry out frontier molecular orbital (FMO) calculations to elucidate that the electronic structure of Au24(Cys-Cys)8 is different from that of Au24(SR)20 as they have a different Au/S ratio, where SR represents alkylthiolate. Importantly, the different ligand coatings, Cys-Cys and SR, in Au24(Cys-Cys)8 and Au24(SR)20 cause the different Au/S ratios in the coated Au24. The reason is that the Au/S ratio is crucial in determining the size of the Au core of the ligand protected AuNC, and the size of the Au core corresponds to a specific electronic structure. By the adjustment of ligand coatings from alkylthiolate to peptide, the Au/S ratio could be controlled to generate different AuNCs with versatile electronic structures, optical properties and reaction stabilities. Therefore, we propose a universal approach to obtain a specific Au/S ratio of ligand coated AuNCs by adjusting the ligand composition, thus controlling the chemicophysical properties of AuNCs with ultimately the same number of Au atoms.Peptide coated gold nanoclusters (AuNCs) have a precise molecular formula and atomic structure, which are critical for their unique applications in targeting specific proteins either for protein analysis or drug design. To date, a study of the crystal structure of peptide coated AuNCs is absent primarily due to the difficulty of obtaining their crystalline phases in an experiment. Here we study a typical peptide coated AuNC (Au24Peptide8, Peptide = H2N-CCYKKKKQAGDV-COOH, Anal. Chem., 2015, 87, 2546) to figure out its atomic structure and electronic structure using a theoretical method for the first time. In this work, we identify the explicit configuration of the essential structure of Au24Peptide8, Au24(Cys-Cys)8, using density functional theory (DFT) computations and optical spectroscopic experiments, where Cys denotes cysteine without H bonded to S. As the first multidentate ligand binding AuNC, Au24(Cys-Cys)8 is characterized as a distorted Au13 core with Oh symmetry covered by two Au(Cys-Cys) and three Au3(Cys-Cys)2 staple motifs in its atomic structure. The most stable configuration of Au24(Cys-Cys)8 is confirmed by comparing its UV-vis absorption spectrum from time-dependent density-functional theory (TDDFT) calculations with optical absorption measurements, and these results are consistent with each other. Furthermore, we carry out frontier molecular orbital (FMO) calculations to elucidate that the electronic structure of Au24(Cys-Cys)8 is different from that of Au24(SR)20 as they have a different Au/S ratio, where SR represents alkylthiolate. Importantly, the different ligand coatings, Cys-Cys and SR, in Au24(Cys-Cys)8 and Au24(SR)20 cause the different Au/S ratios in the coated Au24. The reason is that the Au/S ratio is crucial in determining the size of the Au core of the ligand protected AuNC, and the size of the Au core corresponds to a specific electronic structure. By the adjustment of ligand coatings from alkylthiolate to peptide, the Au/S ratio could be controlled to generate different AuNCs with versatile electronic structures, optical properties and reaction stabilities. Therefore, we propose a universal approach to obtain a specific Au/S ratio of ligand coated AuNCs by adjusting the ligand composition, thus controlling the chemicophysical properties of AuNCs with ultimately the same number of Au atoms. Electronic supplementary information (ESI) available: The MALDI-TOF-MS identification of Au24Peptide8, the structural divisions of Au24(Cys-Cys)8 obtained based on the ``divide and protect'' approach, the structure of level-1 and -3 staple motifs, the relative energies of all stable configurations of Au24(Cys-Cys)8, orbital components of Iso1 of Au24(Cys-Cys)8, electronic structure comparison between Au24(Cys-Cys)8 and Au24(SR)20, and the coordination of Iso1. See DOI: 10.1039/c5nr08727a
Elzoghby, Ahmed O; Mostafa, Shaimaa K; Helmy, Maged W; ElDemellawy, Maha A; Sheweita, Salah A
2017-09-01
In the current work, we propose a combined delivery nanoplatform for letrozole (LTZ) and celecoxib (CXB). Multi-reservoir nanocarriers were developed by enveloping protamine nanocapsules (PRM-NCs) within drug-phospholipid complex bilayer. Encapsulation of NCs within phospholipid bilayer was confirmed by both size increase from 109.7 to 179.8 nm and reduction of surface charge from +19.0 to +7.78 mV. The multi-compartmental core-shell structure enabled biphasic CXB release with initial fast release induced by complexation with phospholipid shell followed by prolonged release from oily core. Moreover, phospholipid coating provided protection for cationic PRM-NCs against interaction with RBCs and serum proteins enabling their systemic administration. Pharmacokinetic analysis demonstrated prolonged circulation and delayed clearance of both drugs after intravenous administration into rats. The superior anti-tumor efficacy of multi-reservoir NCs was manifested as powerful cytotoxicity against MCF-7 breast cancer cells and marked reduction in the mammary tumor volume in Ehrlich ascites bearing mice compared with free LTZ-CXB combination. Moreover, the NCs induced apoptotic caspase activation and marked inhibition of aromatase expression and angiogenic marker, VEGF as well as inhibition of both NFκB and TNFα. Multi-reservoir phospholipid shell coating PRM-NCs could serve as a promising nanocarrier for parenteral combined delivery of LTZ and CXB.
Antunes, Joana C; Pereira, Catarina Leite; Teixeira, Graciosa Q; Silva, Ricardo V; Caldeira, Joana; Grad, Sibylle; Gonçalves, Raquel M; Barbosa, Mário A
2017-01-01
Intervertebral disc (IVD) degeneration often leads to low back pain, which is one of the major causes of disability worldwide, affecting more than 80% of the population. Although available treatments for degenerated IVD decrease symptoms' progression, they fail to address the underlying causes and to restore native IVD properties. Poly(γ-glutamic acid) (γ-PGA) has recently been shown to support the production of chondrogenic matrix by mesenchymal stem/stromal cells. γ-PGA/chitosan (Ch) nanocomplexes (NCs) have been proposed for several biomedical applications, showing advantages compared with either polymer alone. Hence, this study explores the potential of γ-PGA and γ-PGA/Ch NCs for IVD regeneration. Nucleotomised bovine IVDs were cultured ex vivo upon injection of γ-PGA (pH 7.4) and γ-PGA/Ch NCs (pH 5.0 and pH 7.4). Tissue metabolic activity and nucleus pulposus DNA content were significantly reduced when NCs were injected in acidic-buffered solution (pH 5.0). However, at pH 7.4, both γ-PGA and NCs promoted sulphated glycosaminoglycan production and significant type II collagen synthesis, as determined at the protein level. This study is a first proof of concept that γ-PGA and γ-PGA/Ch NCs promote recovery of IVD native matrix, opening new perspectives on the development of alternative therapeutic approaches for IVD degeneration.
Multi-applicative tetragonal TiO2/SnO2 nanocomposites for photocatalysis and gas sensing
NASA Astrophysics Data System (ADS)
Patil, S. M.; Dhodamani, A. G.; Vanalakar, S. A.; Deshmukh, S. P.; Delekar, S. D.
2018-04-01
TiO2-based mixed metal oxide heteronanostructures have multiple applications in photocatalysis and gas sensing because of their charge transport properties. In this study, we prepared tetragonal TiO2/SnO2 nanocomposites (NCs) with different weight percentages using a simple wet impregnation method. The physicochemical properties of the NCs were investigated using X-ray diffraction, Fourier transform-infrared spectroscopy, ultraviolet-visible spectroscopy, field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and Brunauer-Emmett-Teller surface area analysis. The results showed that the surface area of the NCs increased significantly and the anatase TiO2 was sensitized after the addition of a small amount of cassiterite SnO2 NPs. We systematically studied the as-prepared NCs during the photocatalytic degradation of Congo Red dye under visible light irradiation (λ > 420 nm) and NH3 gas sensing, which demonstrated the efficient photocatalytic performance and the superior sensing response of the catalyst with a weight composition of 25% SnO2 in TiO2 (4:1) compared with the other NCs or the bare individual nanoparticles. The improved photocatalytic and gas sensing performance of the TiO2/SnO2 (4:1) NCs may be attributed to the increased active surface area, the increased adsorption of the dye and target gas molecules, as well as efficient electron-hole charge separation and transfer.
Dextran-encapsulated photoluminescent gold nanoclusters: synthesis and application
NASA Astrophysics Data System (ADS)
Chiu, Wei-Ju; Chen, Wei-Yu; Lai, Hong-Zheng; Wu, Ching-Yi; Chiang, Hsiang-Lin; Chen, Yu-Chie
2014-07-01
Dextrans are widely used as additives in food, pharmaceutical, and cosmetics because of their hydrophilicity, biocompatibility, and low toxicity. These features allow the use of dextrans to modify the surface of nanoparticles to improve cell compatibility for biomedical applications. Additionally, dextran molecules covalently bound with fluorescent dyes are frequently used as tracers in animal studies. These facts show that dextrans are useful compounds for biomedicine-related applications and research. Our aim was to explore a facile way to generate dextran-derived nanoparticles with photoluminescent property for the use in fluorescence imaging of bacteria and cancer cells. Dextran-encapsulated gold nanoclusters (AuNCs@dextran) were generated through a one-pot reaction by stirring dextrans and aqueous tetrachloroauric acid overnight. The generated AuNCs exhibit bright and green photoluminescence under the illumination of an ultraviolet lamp ( λ max = 365 nm), and high cell biocompatibility was found as well. Therefore, the generated AuNCs can be used as fluorescence tracers and nanoprobes. We explored the suitability of AuNCs@dextran as labeling agents for bacteria, such as Staphylococcus aureus and Escherichia coli. After the bacteria were labeled by AuNCs@dextran, they became quite visible under a fluorescence microscope. Additionally, we demonstrated that nanocomposites composed of AuNCs@dextran and silica beads can be readily internalized by cancer cells. The nanocomposites can be readily detected in the cells through their photoluminescence, suggesting possible applications in drug delivery and fluorescence imaging.
Bezinge, Leonard; Maceiczyk, Richard M; Lignos, Ioannis; Kovalenko, Maksym V; deMello, Andrew J
2018-06-06
Recent advances in the development of hybrid organic-inorganic lead halide perovskite (LHP) nanocrystals (NCs) have demonstrated their versatility and potential application in photovoltaics and as light sources through compositional tuning of optical properties. That said, due to their compositional complexity, the targeted synthesis of mixed-cation and/or mixed-halide LHP NCs still represents an immense challenge for traditional batch-scale chemistry. To address this limitation, we herein report the integration of a high-throughput segmented-flow microfluidic reactor and a self-optimizing algorithm for the synthesis of NCs with defined emission properties. The algorithm, named Multiparametric Automated Regression Kriging Interpolation and Adaptive Sampling (MARIA), iteratively computes optimal sampling points at each stage of an experimental sequence to reach a target emission peak wavelength based on spectroscopic measurements. We demonstrate the efficacy of the method through the synthesis of multinary LHP NCs, (Cs/FA)Pb(I/Br) 3 (FA = formamidinium) and (Rb/Cs/FA)Pb(I/Br) 3 NCs, using MARIA to rapidly identify reagent concentrations that yield user-defined photoluminescence peak wavelengths in the green-red spectral region. The procedure returns a robust model around a target output in far fewer measurements than systematic screening of parametric space and additionally enables the prediction of other spectral properties, such as, full-width at half-maximum and intensity, for conditions yielding NCs with similar emission peak wavelength.
Wang, Jiamian; Wang, Xiuyun; Wu, Shuo; Song, Jie; Zhao, Yanqiu; Ge, Yanqiu; Meng, Changgong
2016-02-04
Silver nanoclusters and graphene oxide nanocomposite (AgNCs/GRO) is synthesized and functionalized with detection antibody for highly sensitive electrochemical sensing of carcinoembryonic antigen (CEA), a model tumor marker involved in many cancers. AgNCs with large surface area and abundant amount of low-coordinated sites are synthesized with DNA as template and exhibit high catalytic activity towards the electrochemical reduction of H2O2. GRO is employed to assemble with AgNCs because it has large specific surface area, super electronic conductivity and strong π-π stacking interaction with the hydrophobic bases of DNA, which can further improve the catalytic ability of the AgNCs. Using AgNCs/GRO as signal amplification tag, an enzyme-free electrochemical immunosensing protocol is designed for the highly sensitive detection of CEA on the capture antibody functionalized immunosensing interface. Under optimal conditions, the designed immunosensor exhibits a wide linear range from 0.1 pg mL(-1) to 100 ng mL(-1) and a low limit of detection of 0.037 pg mL(-1). Practical sample analysis reveals the sensor has good accuracy and reproducibility, indicating the great application prospective of the AgNCs/GRO in fabricating highly sensitive immunosensors, which can be extended to the detection of various kinds of low abundance disease related proteins. Copyright © 2015 Elsevier B.V. All rights reserved.
Raji, Parvin; Ansari, Noureddin Nakhostin; Naghdi, Soofia; Forogh, Bijan; Hasson, Scott
2014-01-01
The Semmes-Weinstein Monofilament Test (SWMT) is a clinical widely used test to quantify the sensibility in patients with Carpal Tunnel Syndrome (CTS). No study has investigated the relationship between the SWMT and sensory nerve conduction studies (SNCS) in patients with CTS. To assess the relationship between the SWMT and SNCS findings in patients with CTS. This cross-sectional clinical measurement study included 35 patients with CTS (55 hands) with a mean age of 45 ± 12 years. The outcome measures were the SWMT and SNCS measures of distal latency (DLs), amplitude (AMPs), and nerve conduction velocity (NCV). The median innervated fingers were tested using SWMT and electrodiagnostic tests. The primary outcome was the correlations between the SWMTs and NCS measures. All of the patients/hands had abnormal NCS findings. When looking at the three digits of interest (thumb, index and middle), the thumb SWMTs had the highest number of abnormal findings (58.2%), with the middle digit having the lowest (45.5%). All NCS findings were statistically different between abnormal and normal thumb SWMTs and abnormal and normal total summed SWMTs. There were significant moderate correlations between thumb SWMT scores and all NCS outcomes. Although only approximately 50% of the CTS diagnosed through NCS are corroborated through SWMT; the significant associations between SWMT and NCS measures suggest that SWMT is a valid test for assessing sensations in patients with CTS.
Bagnato, Sergio; Boccagni, Cristina; Sant'Angelo, Antonino; Alito, Angelo; Galardi, Giuseppe
2018-06-01
The aim of this study was to evaluate whether standardized responses to nociceptive pain, assessed with the revised Nociception Coma Scale (NCS-R), were correlated with the outcomes of patients with unresponsive wakefulness syndrome (UWS) 6 months after admission to a rehabilitation department. We recruited 24 consecutive patients with UWS. Patients' consciousness levels were assessed with the revised Coma Recovery Scale (CRS-R) at admission and 6 months later, and their CRS-R scores were correlated with the NCS-R scores at admission. Ten of the 24 patients with UWS recovered consciousness after 6 months. The NCS-R score at admission was correlated with the CRS-R score at admission (P = 0.02), but not after 6 months (P = 0.6). Patients with and without consciousness improvement after 6 months showed no significant difference in the NCS-R total score and sub-scores at admission (P values > 0.05). In conclusion, the correlation between NCS-R and CRS-R scores at admission suggests that the standardized assessment of pain parallels patients' levels of consciousness, and may be helpful in the clinical evaluation of patients with UWS. Pain response assessed with the NCS-R was not related to the 6-month outcomes of patients with UWS.
Electrical and Plasmonic Properties of Ligand-Free Sn(4+) -Doped In2 O3 (ITO) Nanocrystals.
Jagadeeswararao, Metikoti; Pal, Somnath; Nag, Angshuman; Sarma, D D
2016-03-03
Sn(4+) -doped In2 O3 (ITO) is a benchmark transparent conducting oxide material. We prepared ligand-free but colloidal ITO (8 nm, 10 % Sn(4+) ) nanocrystals (NCs) by using a post-synthesis surface-modification reaction. (CH3 )3 OBF4 removes the native oleylamine ligand from NC surfaces to give ligand-free, positively charged NCs that form a colloidal dispersion in polar solvents. Both oleylamine-capped and ligand-free ITO NCs exhibit intense absorption peaks, due to localized surface plasmon resonance (LSPR) at around λ=1950 nm. Compared with oleylamine-capped NCs, the electrical resistivity of ligand-free ITO NCs is lower by an order of magnitude (≈35 mΩ cm(-1) ). Resistivity over a wide range of temperatures can be consistently described as a composite of metallic ITO grains embedded in an insulating matrix by using a simple equivalent circuit, which provides an insight into the conduction mechanism in these systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nag, Angshuman; Chung, Dae Sung; Dolzhnikov, Dmitriy S; Dimitrijevic, Nada M; Chattopadhyay, Soma; Shibata, Tomohiro; Talapin, Dmitri V
2012-08-22
Colloidal semiconductor nanocrystals (NCs) provide convenient "building blocks" for solution-processed solar cells, light-emitting devices, photocatalytic systems, etc. The use of inorganic ligands for colloidal NCs dramatically improved inter-NC charge transport, enabling fast progress in NC-based devices. Typical inorganic ligands (e.g., Sn(2)S(6)(4-), S(2-)) are represented by negatively charged ions that bind covalently to electrophilic metal surface sites. The binding of inorganic charged species to the NC surface provides electrostatic stabilization of NC colloids in polar solvents without introducing insulating barriers between NCs. In this work we show that cationic species needed for electrostatic balance of NC surface charges can also be employed for engineering almost every property of all-inorganic NCs and NC solids, including photoluminescence efficiency, electron mobility, doping, magnetic susceptibility, and electrocatalytic performance. We used a suite of experimental techniques to elucidate the impact of various metal ions on the characteristics of all-inorganic NCs and developed strategies for engineering and optimizing NC-based materials.
Ganassin, Rayane; Horst, Frederico Hillesheim; Camargo, Nichollas Serafim; Chaves, Sacha Braun; Morais, Paulo César; Mosiniewicz-Szablewska, Ewa; Suchocki, Piotr; Figueiró Longo, João Paulo; Azevedo, Ricardo Bentes; Muehlmann, Luis Alexandre
2018-05-29
Nanocapsules containing selol and doxorubicin (NCS-DOX) with an oily core of selol and a shell of poly(methyl vinyl ether-co-maleic anhydride) covalently conjugated to doxorubicin were developed in a previous work. In this study, these nanocapsules showed a similar antitumour effect in comparison to the free doxorubicin (DOX) treatment, but showed no evident DOX-related cardiotoxicity, as evidenced by serum creatine kinase-MB (CK-MB) activity. The histopathological analysis showed that the free DOX treatment induced more intense morphological damage to myocardial tissues in comparison to NCS-DOX treatment. Animals treated with free DOX presented important muscle fibre degradation and animals treated with NCS-DOX, heart tissue did not present signals of muscle fibre degeneration. These results indicate that the cardiotoxicity related to DOX is reduced when this drug is carried by the NCS-DOX. Noteworthy, biodistribution analyses showed that NCS-DOX accumulated more intensely in tumours than the free DOX. Thus, this study reinforces the importance of the development of nanocapsules as drug carriers for the treatment of cancer.
Zambrano-Zaragoza, María L; Quintanar-Guerrero, David; Del Real, Alicia; Piñon-Segundo, Elizabeth; Zambrano-Zaragoza, José F
2017-02-10
The main aim of this work was to evaluate the effect of the β-carotene release rate from nanocapsules incorporated into a xanthan gumcoating on the physical and physicochemical properties of fresh-cut melon (var. cantaloupe). Several coatings were studied: xanthan gum alone (XG), xanthan gum combined with nanocapsules (Ncs/XG), xanthan gum combined with nanospheres (Nsp/XG), nanocapsules (Ncs), and nanospheres (Nsp), all of which were compared to untreated fresh-cut melon in order to determine their preservation efficiency. The β-carotene release profiles from the Ncs and Ncs/XG treatments corresponded better to a Higuchi-type behavior (t 1/2 ) for matrix systems (R2>0.95). Also observed was a good correlation between the release of β-carotene by the Ncs/XG treatment and the minor changes observed in the whiteness index (≤10%) and firmness (≤2%). These results lead to the conclusion that incorporating β-carotene nanocapsules into a polysaccharide matrix improves the properties of the coatings, thereby increasing storage time to 21days at 4°C. Copyright © 2016 Elsevier Ltd. All rights reserved.
Surface Chemistry and Nano-/Microstructure Engineering on Photocatalytic In2S3 Nanocrystals.
Berestok, Taisiia; Guardia, Pablo; Portals, Javier Blanco; Estradé, Sònia; Llorca, Jordi; Peiró, Francesca; Cabot, Andreu; Brock, Stephanie L
2018-06-05
Colloidal nanocrystals (NCs) compete with molecular catalysts in the field of homogenous catalysis, offering easier recyclability and a number of potentially advantageous functionalities, such as tunable band gaps, plasmonic properties, or a magnetic moment. Using high-throughput printing technologies, colloidal NCs can also be supported onto substrates to produce cost-effective electronic, optoelectronic, electrocatalytic, and sensing devices. For both catalytic and technological application, NC surface chemistry and supracrystal organization are key parameters determining final performance. Here, we study the influence of the surface ligands and the NC organization on the catalytic properties of In 2 S 3 , both as a colloid and as a supported layer. As a colloid, NCs stabilized by inorganic ligands show the highest photocatalytic activities, which we associate with their large and more accessible surfaces. On the other hand, when NCs are supported on a substrate, their organization becomes an essential parameter determining performance. For instance, NC-based films produced through a gelation process provided five-fold higher photocurrent densities than those obtained from dense films produced by the direct printing of NCs.
The determination of extinction coefficient of CuInS2, and ZnCuInS3 multinary nanocrystals.
Qin, Lei; Li, Dongze; Zhang, Zhuolei; Wang, Kefei; Ding, Hong; Xie, Renguo; Yang, Wensheng
2012-10-21
A pioneering work for determining the extinction coefficient of colloidal semiconductor nanocrystals (NCs) has been cited over 1500 times (W. Yu, W. Guo, X. G. Peng, Chem. Mater., 2003, 15, 2854-2860), indicating the importance of calculating NC concentration for further research and applications. In this study, the size-dependent nature of the molar extinction coefficient of "greener" CuInS(2) and ZnCuInS(3) NCs with emission covering the whole visible to near infrared (NIR) is presented. With the increase of NC size, the resulting quantitative values of the extinction coefficients of ternary CuInS(2) and quaternary ZnCuInS(3) NCs are found to follow a power function with exponents of 2.1 and 2.5, respectively. Obviously, a larger value of extinction coefficient is observed in quaternary NCs for the same size of particles. The difference of the extinction coefficient from both samples is clearly demonstrated due to incorporating ZnS with a much larger extinction coefficient into CuInS(2) NCs.
Colloidal nanocrystals for photoelectrochemical and photocatalytic water splitting
NASA Astrophysics Data System (ADS)
Gadiyar, Chethana; Loiudice, Anna; Buonsanti, Raffaella
2017-02-01
Colloidal nanocrystals (NCs) are among the most modular and versatile nanomaterial platforms for studying emerging phenomena in different fields thanks to their superb compositional and morphological tunability. A promising, yet challenging, application involves the use of colloidal NCs as light absorbers and electrocatalysts for water splitting. In this review we discuss how the tunability of these materials is ideal to understand the complex phenomena behind storing energy in chemical bonds and to optimize performance through structural and compositional modification. First, we describe the colloidal synthesis method as a means to achieve a high degree of control over single material NCs and NC heterostructures, including examples of the role of the ligands in modulating size and shape. Next, we focus on the use of NCs as light absorbers and catalysts to drive both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), together with some of the challenges related to the use of colloidal NCs as model systems and/or technological solution in water splitting. We conclude with a broader prospective on the use of colloidal chemistry for new material discovery.
A soft x-ray coronal mass ejection occurred on solar limb on 1998 April 23
NASA Astrophysics Data System (ADS)
Cheng, X. J.
2001-11-01
Using some data observed with SXT/HXT aboard Yohkoh and the Nobeyama Radioheliograph (NoRH) on 1998 April 23, a comprehensive study on the soft X-ray coronal mass ejection (CME) on solar SE limb shows there were two magnetic dipole sources (MDSs), one magnetic capacity belt (MCB) between MDSs, one neutral current sheet (NCS) and only a few activation sources (ASs). During the MCB was changed by the ASs into a magnetic energy belt (MEB), the material and energy both concentrated to the NCS in the course of its formation. When the MDSs were put through by the MEB, the NCS formed and the CME occurred. The matter ejected not only from the NCS, but also from the whole MEB. The expanding loop of the CME had two footprints, they were just the MDSs. The head of the expanding loop always tended to the foot point of weak source. The locus of the head was just neutral line. From this, the position of NCS also could be determined.
Tao, Yu; Lin, Youhui; Huang, Zhenzhen; Ren, Jinsong; Qu, Xiaogang
2012-01-15
An easy prepared fluorescence turn-on and colorimetric dual channel probe was developed for rapid assay of Hg(2+) ions with high sensitivity and selectivity by using poly(acrylic acid)-templated silver nanoclusters (PAA-AgNCs). The PAA-AgNCs exhibited weak fluorescence, while upon the addition of Hg(2+) ions, AgNCs gives a dramatic increase in fluorescence as a result of the changes of the AgNCs states. The detection limit was estimated to be 2 nM, which is much lower than the Hg(2+) detection requirement for drinking water of U.S. Environmental Protection Agency, and the turn-on sensing mode offers additional advantage to efficiently reduce background noise. Also, a colorimetric assay of Hg(2+) ions can be realized due to the observed absorbance changes of the AgNCs. More importantly, the method was successfully applied to the determination of Hg(2+) ions in real water samples, which suggests our proposed method has a great potential of application in environmental monitoring. Copyright © 2011 Elsevier B.V. All rights reserved.
Graphene-Reinforced Aluminum Matrix Composites: A Review of Synthesis Methods and Properties
NASA Astrophysics Data System (ADS)
Chen, Fei; Gupta, Nikhil; Behera, Rakesh K.; Rohatgi, Pradeep K.
2018-06-01
Graphene-reinforced aluminum (Gr-Al) matrix nanocomposites (NCs) have attracted strong interest from both research and industry in high-performance weight-sensitive applications. Due to the vastly different bonding characteristics of the Al matrix (metallic) and graphene (in-plane covalent + inter-plane van der Waals), the graphene phase has a general tendency to agglomerate and phase separate in the metal matrix, which is detrimental for the mechanical and chemical properties of the composite. Thus, synthesis of Gr-Al NCs is extremely challenging. This review summarizes the different methods available to synthesize Gr-Al NCs and the resulting properties achieved in these NCs. Understanding the effect of processing parameters on the realized properties opens up the possibility of tailoring the synthesis methods to achieve the desired properties for a given application.
Yao, Dong; Liu, Yi; Zhao, Wujun; Wei, Haotong; Luo, Xintao; Wu, Zhennan; Dong, Chunwei; Zhang, Hao; Yang, Bai
2013-10-21
Despite the developments in the wet chemical synthesis of high-quality semiconductor nanocrystals (NCs) with diverse elemental compositions, telluride NCs are still irreplaceable materials owing to their excellent photovoltaic and thermoelectric performances. Herein we demonstrate the dissolution of elemental tellurium (Te) in a series of alkylamides by sodium borohydride (NaBH4) reduction at relatively low temperature to produce highly reactive precursors for hot-injection synthesis of telluride NCs. The capability to tune the reactivity of Te precursors by selecting injection temperature permits control of NC size over a broad range. The current preparation of Te precursors is simple, economical, and totally phosphine-free, which will promote the commercial synthesis and applications of telluride NCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamanaka, Alan Joseph Jr.
Guidance has been requested from the Nuclear Criticality Safety Division (NCSD) regarding processes that involve 520 grams of fissionable material or less. This Level-3 evaluation was conducted and documented in accordance with NCS-AP-004 (Ref. 1), formerly NCS-GUIDE-01. This evaluation is being written as a generic evaluation for all operations that will be able to operate using a 520-gram mass limit. Implementation for specific operations will be performed using a Level 1 CSED, which will confirm and document that this CSED can be used for the specific operation as discussed in NCS-MEMO-17-007 (Ref. 2). This Level 3 CSED updates and supersedesmore » the analysis performed in NCS-TECH-14-014 (Ref. 3).« less
Graphene-Reinforced Aluminum Matrix Composites: A Review of Synthesis Methods and Properties
NASA Astrophysics Data System (ADS)
Chen, Fei; Gupta, Nikhil; Behera, Rakesh K.; Rohatgi, Pradeep K.
2018-03-01
Graphene-reinforced aluminum (Gr-Al) matrix nanocomposites (NCs) have attracted strong interest from both research and industry in high-performance weight-sensitive applications. Due to the vastly different bonding characteristics of the Al matrix (metallic) and graphene (in-plane covalent + inter-plane van der Waals), the graphene phase has a general tendency to agglomerate and phase separate in the metal matrix, which is detrimental for the mechanical and chemical properties of the composite. Thus, synthesis of Gr-Al NCs is extremely challenging. This review summarizes the different methods available to synthesize Gr-Al NCs and the resulting properties achieved in these NCs. Understanding the effect of processing parameters on the realized properties opens up the possibility of tailoring the synthesis methods to achieve the desired properties for a given application.
Synthesis and characterization of colloidal CdTe nanocrystals
NASA Astrophysics Data System (ADS)
Semendy, Fred; Jaganathan, Gomatam; Dhar, Nibir; Trivedi, Sudhir; Bhat, Ishwara; Chen, Yuanping
2008-08-01
We synthesized CdTe nano crystals (NCs) in uniform sizes and in good quality as characterized by photoluminescence (PL), AFM, and X-ray diffraction. In this growth procedure, CdTe nano-crystal band gap is strongly dependent on the growth time and not on the injection temperature or organic ligand concentration. This is very attractive because of nano-crystal size can be easily controlled by the growth time only and is very attractive for large scale synthesis. The color of the solution changes from greenish yellow to light orange then to deep orange and finally grayish black to black over a period of one hour. This is a clear indication of the gradual growth of different size (and different band gap) of CdTe nano-crystals as a function of the growth time. In other words, the size of the nano-crystal and its band gap can be controlled by adjusting the growth time after injection of the tellurium. The prepared CdTe NCs were characterized by absorption spectra, photoluminescence (PL), AFM and X-ray diffraction. Measured absorption maxima are at 521, 560, 600 and 603 nm corresponding to band gaps of 2.38, 2.21,2,07 and 2.04 eV respectively for growth times of 15, 30, 45 and 60 minutes. From the absorption data nano-crystal growth size saturates out after 45 minutes. AFM scanning of these materials indicate that the size of these particles is between 4 - 10 nm in diameter for growth time of 45 minutes. XD-ray diffraction indicates that these nano crystals are of cubic zinc blende phase. This paper will present growth and characterization data on CdTe nano crystals for various growth times.
Shojaeifard, Zahra; Hemmateenejad, Bahram; Shamsipur, Mojtaba
2016-06-22
A new ratiometric fluorescent sensor was developed for the sensitive and selective detection of cyanide ion (CN(-)) in aqueous media. The ratiometric sensing system is based on CN(-) modulated recovery of copper(II) phthalocyanine (Cu(PcTs)) fluorescence signal at the expense of diminished fluorescence intensity of gold nanoclusters (AuNCs). Preliminary experiments revealed that the AuNCs and Cu(PcTs) possess a turn-off effect on each other, the interaction of which being verified through studying their interactions by principle component analysis (PCA) and multivariate cure resolution-alternating least-squares (MCR-ALS) methods. In the presence of CN(-) anion, the AuNCs and Cu(PcTs) interaction was perturbed, so that the fluorescence of Cu (PcTs), already quenched by AuNCs, was found to be efficiently recovered, while the fluorescence intensity of AuNCs was quenched via the formation of a stable [Au(CN)2](-) species. The ratiometric variation of AuNCs and Cu(PcTs) fluorescence intensities leads to designing a highly sensitive probe for CN(-) ion detection. Under the optimal conditions, CN(-) anion was detected without needing any etching time, over the concentration range of 100 nM-220 μM, with a detection limit of 75 nM, which is much lower than the allowable level of CN(-) in water permitted by the World Health Organization (WHO). Moreover, the detection of CN(-) was developed based on the CN(-) effects on the blue and red florescent colors of Cu(PcTs) and AuNCs, respectively. The designed probe displays a continuous color change from red to blue by addition of CN(-), which can be clearly observed by the naked eye in the range of 7-350 μM, under UV lamp. The prepared AuNCs/Cu(PcTs) probe was successfully utilized for the selective and sensitive determination of CN(-) anion in two different types of natural water (Rodbal dam and rainwater) and also in blood serum as a biological sample.
NASA Astrophysics Data System (ADS)
Miao, Hong; Zhong, Dan; Zhou, Zinan; Yang, Xiaoming
2015-11-01
Herein, papain-functionalized Cu nanoclusters (CuNCs@Papain) were originally synthesized in aqueous solution together with a quantum yield of 14.3%, and showed obviously red fluorescence at 620 nm. Meanwhile, their corresponding fluorescence mechanism was fully elucidated by fluorescence spectroscopy, HR-TEM, FTIR spectroscopy, and XPS. Subsequently, the as-prepared CuNCs were employed as probes for detecting H2O2. Using CuNCs as probes, H2O2 was determined in the range from 1 μM to 50 μM based on a linear decrease of fluorescence intensity as well as a detection limit of 0.2 μM with a signal-to-noise ratio of 3. More significantly, it has been proved that CuNCs could convert H2O2 to &z.rad;OH, which exhibited dramatic antibacterial activity. Both in vitro and in vivo experiments were performed to validate their antibacterial activity against Gram-positive/negative bacteria and actual wound infection, suggesting their potential for serving as one type of promising antibacterial material.Herein, papain-functionalized Cu nanoclusters (CuNCs@Papain) were originally synthesized in aqueous solution together with a quantum yield of 14.3%, and showed obviously red fluorescence at 620 nm. Meanwhile, their corresponding fluorescence mechanism was fully elucidated by fluorescence spectroscopy, HR-TEM, FTIR spectroscopy, and XPS. Subsequently, the as-prepared CuNCs were employed as probes for detecting H2O2. Using CuNCs as probes, H2O2 was determined in the range from 1 μM to 50 μM based on a linear decrease of fluorescence intensity as well as a detection limit of 0.2 μM with a signal-to-noise ratio of 3. More significantly, it has been proved that CuNCs could convert H2O2 to &z.rad;OH, which exhibited dramatic antibacterial activity. Both in vitro and in vivo experiments were performed to validate their antibacterial activity against Gram-positive/negative bacteria and actual wound infection, suggesting their potential for serving as one type of promising antibacterial material. Electronic supplementary information (ESI) available: Relevant figures. See DOI: 10.1039/c5nr05362e
NASA Astrophysics Data System (ADS)
Yuan, Ye
TiO2 nanomaterials can carry a multitude of therapeutic and diagnostic agents and the semiconductor properties of TiO2 allow for the production of cytotoxic reactive oxygen species following photoactivation. However, the delivery of these nanomaterials to specific cancer cells and specific subcellular organelles within these cells can have a substantial impact on the efficacy and safety of TiO2 nanoparticle therapeutics. Targeting cell surface receptors that are overexpressed by cancer cells is one strategy to improve the specificity of nanoparticle delivery. Therefore we decided to target the Epidermal Growth Factor Receptor (EGFR) because ligand- binding induces rapid receptor endocytosis and ligand-bound EGFR can translocate to the nucleus of cancer cells. To create NPs that can bind EGFR, we identified a peptide derived from the B-loop of Epidermal Growth Factor (EGF) that has been shown to bind and activate EGFR and conjugated it to the surface of Fe3O4 core-TiO2 shell NPs to produce B-loop NCs. We then devised a pulldown assay to show that B-loop NCs, but not bare NPs or NCs carrying a scrambled B-loop peptide, can bind and extract EGFR from HeLa cell protein extracts. Interestingly, B-loop NCs can also pulldown importin-beta, a protein that can transport EGFR to the nucleus. Furthermore, we used flow cytometry and fluorescently labeled NPs to show that B-loop peptides can significantly improve the internalization of NPs by EGFR-expressing HeLa cells. We determined that B-loop NCs can bind EGFR on the membrane of HeLa cells and that these NCs can be transported to the nucleus, by using a combination of confocal microscopy and X-ray Fluorescence Microscopy (XFM) to indirectly and directly track the subcellular distribution of NCs. Finally, we demonstrate how the Bionanoprobe, a novel high-resolution XFM apparatus that can scan whole-mounted, frozen-hydrated cells at multiple angles can be used to verify the subcellular distribution of B-loop NCs.
NASA Astrophysics Data System (ADS)
Walter, Marc; Zünd, Tanja; Kovalenko, Maksym V.
2015-05-01
In light of the impeding depletion of fossil fuels and necessity to lower carbon dioxide emissions, economically viable high-performance batteries are urgently needed for numerous applications ranging from electric cars to stationary large-scale electricity storage. Due to its low raw material cost, non-toxicity and potentially high charge-storage capacity pyrite (FeS2) is a highly promising material for such next-generation batteries. In this work we present the electrochemical performance of FeS2 nanocrystals (NCs) as lithium-ion and sodium-ion storage materials. First, we show that nanoscopic FeS2 is a promising lithium-ion cathode material, delivering a capacity of 715 mA h g-1 and average energy density of 1237 Wh kg-1 for 100 cycles, twice higher than for commonly used LiCoO2 cathodes. Then we demonstrate, for the first time, that FeS2 NCs can serve as highly reversible sodium-ion anode material with long cycling life. As sodium-ion anode material, FeS2 NCs provide capacities above 500 mA h g-1 for 400 cycles at a current rate of 1000 mA g-1. In all our tests and control experiments, the performance of chemically synthesized nanoscale FeS2 clearly surpasses bulk FeS2 as well as large number of other nanostructured metal sulfides.In light of the impeding depletion of fossil fuels and necessity to lower carbon dioxide emissions, economically viable high-performance batteries are urgently needed for numerous applications ranging from electric cars to stationary large-scale electricity storage. Due to its low raw material cost, non-toxicity and potentially high charge-storage capacity pyrite (FeS2) is a highly promising material for such next-generation batteries. In this work we present the electrochemical performance of FeS2 nanocrystals (NCs) as lithium-ion and sodium-ion storage materials. First, we show that nanoscopic FeS2 is a promising lithium-ion cathode material, delivering a capacity of 715 mA h g-1 and average energy density of 1237 Wh kg-1 for 100 cycles, twice higher than for commonly used LiCoO2 cathodes. Then we demonstrate, for the first time, that FeS2 NCs can serve as highly reversible sodium-ion anode material with long cycling life. As sodium-ion anode material, FeS2 NCs provide capacities above 500 mA h g-1 for 400 cycles at a current rate of 1000 mA g-1. In all our tests and control experiments, the performance of chemically synthesized nanoscale FeS2 clearly surpasses bulk FeS2 as well as large number of other nanostructured metal sulfides. Electronic supplementary information (ESI) available: Materials and methods, additional structural and electrochemical characterization. See DOI: 10.1039/c5nr00398a
NASA Astrophysics Data System (ADS)
Singh, Shashi B.; Wang, Yu-Fu; Shao, Yu-Cheng; Lai, Hsuan-Yu; Hsieh, Shang-Hsien; Limaye, Mukta V.; Chuang, Chen-Hao; Hsueh, Hung-Chung; Wang, Hsaiotsu; Chiou, Jau-Wern; Tsai, Hung-Ming; Pao, Chih-Wen; Chen, Chia-Hao; Lin, Hong-Ji; Lee, Jyh-Fu; Wu, Chun-Te; Wu, Jih-Jen; Pong, Way-Faung; Ohigashi, Takuji; Kosugi, Nobuhiro; Wang, Jian; Zhou, Jigang; Regier, Tom; Sham, Tsun-Kong
2014-07-01
Efforts have been made to elucidate the origin of d0 magnetism in ZnO nanocactuses (NCs) and nanowires (NWs) using X-ray-based microscopic and spectroscopic techniques. The photoluminescence and O K-edge and Zn L3,2-edge X-ray-excited optical luminescence spectra showed that ZnO NCs contain more defects than NWs do and that in ZnO NCs, more defects are present at the O sites than at the Zn sites. Specifically, the results of O K-edge scanning transmission X-ray microscopy (STXM) and the corresponding X-ray-absorption near-edge structure (XANES) spectroscopy demonstrated that the impurity (non-stoichiometric) region in ZnO NCs contains a greater defect population than the thick region. The intensity of O K-edge STXM-XANES in the impurity region is more predominant in ZnO NCs than in NWs. The increase in the unoccupied (occupied) density of states at/above (at/below) the conduction-band minimum (valence-band maximum) or the Fermi level is related to the population of defects at the O sites, as revealed by comparing the ZnO NCs to the NWs. The results of O K-edge and Zn L3,2-edge X-ray magnetic circular dichroism demonstrated that the origin of magnetization is attributable to the O 2p orbitals rather than the Zn d orbitals. Further, the local density approximation (LDA) + U verified that vacancies in the form of dangling or unpaired 2p states (due to Zn vacancies) induced a significant local spin moment in the nearest-neighboring O atoms to the defect center, which was determined from the uneven local spin density by analyzing the partial density of states of O 2p in ZnO.Efforts have been made to elucidate the origin of d0 magnetism in ZnO nanocactuses (NCs) and nanowires (NWs) using X-ray-based microscopic and spectroscopic techniques. The photoluminescence and O K-edge and Zn L3,2-edge X-ray-excited optical luminescence spectra showed that ZnO NCs contain more defects than NWs do and that in ZnO NCs, more defects are present at the O sites than at the Zn sites. Specifically, the results of O K-edge scanning transmission X-ray microscopy (STXM) and the corresponding X-ray-absorption near-edge structure (XANES) spectroscopy demonstrated that the impurity (non-stoichiometric) region in ZnO NCs contains a greater defect population than the thick region. The intensity of O K-edge STXM-XANES in the impurity region is more predominant in ZnO NCs than in NWs. The increase in the unoccupied (occupied) density of states at/above (at/below) the conduction-band minimum (valence-band maximum) or the Fermi level is related to the population of defects at the O sites, as revealed by comparing the ZnO NCs to the NWs. The results of O K-edge and Zn L3,2-edge X-ray magnetic circular dichroism demonstrated that the origin of magnetization is attributable to the O 2p orbitals rather than the Zn d orbitals. Further, the local density approximation (LDA) + U verified that vacancies in the form of dangling or unpaired 2p states (due to Zn vacancies) induced a significant local spin moment in the nearest-neighboring O atoms to the defect center, which was determined from the uneven local spin density by analyzing the partial density of states of O 2p in ZnO. Electronic supplementary information (ESI) available: Scanning photoelectron microscopy (SPEM) results of ZnO NCs and NWs. Computational details and calculated total and partial density of states (PDOS) of bulk wurtzite ZnO with oxygen anion vacancies (VO). See DOI: 10.1039/c4nr01961j
Low-dimensional quantum magnetism in Cu (NCS) 2: A molecular framework material
NASA Astrophysics Data System (ADS)
Cliffe, Matthew J.; Lee, Jeongjae; Paddison, Joseph A. M.; Schott, Sam; Mukherjee, Paromita; Gaultois, Michael W.; Manuel, Pascal; Sirringhaus, Henning; Dutton, Siân E.; Grey, Clare P.
2018-04-01
Low-dimensional magnetic materials with spin-1/2 moments can host a range of exotic magnetic phenomena due to the intrinsic importance of quantum fluctuations to their behavior. Here, we report the structure, magnetic structure, and magnetic properties of copper ii thiocyanate, Cu(NCS ) 2, a one-dimensional coordination polymer which displays low-dimensional quantum magnetism. Magnetic susceptibility, electron paramagnetic resonance spectroscopy, 13C magic-angle spinning nuclear magnetic resonance spectroscopy, and density functional theory investigations indicate that Cu(NCS ) 2 behaves as a two-dimensional array of weakly coupled antiferromagnetic spin chains [J2=133 (1 ) K , α =J1/J2=0.08 ] . Powder neutron-diffraction measurements confirm that Cu(NCS ) 2 orders as a commensurate antiferromagnet below TN=12 K , with a strongly reduced ordered moment (0.3 μB ) due to quantum fluctuations.
Photoinduced phase separation with local structural ordering in organic molecular conductors
NASA Astrophysics Data System (ADS)
Tsuchiya, S.; Nakagawa, K.; Yamada, J.; Taniguchi, H.; Toda, Y.
2017-10-01
In this work, polarized pump-probe spectroscopy was carried out to investigate the effects of a structural ordering of molecules on photoinduced phase separation (PIPS) in the organic conductors κ -(BEDT-TTF ) 2X [X =Cu [N (CN) 2]Br (κ -B r ) and Cu (NCS) 2 (κ -NCS)]. We found that the anisotropic response for the probe polarization appeared at around Tg, where the glasslike structural transition occurs. The anisotropy can be a result of a transient destruction of the local ordering of molecules, indicating a connection between the glasslike transition and PIPS. Moreover, we found that the PIPS response gradually develops with decreasing temperature in κ -Br, whereas it steeply increases in κ -NCS. This qualitative difference suggests that the structural ordering caused by a PIPS is more crucial in κ -NCS than in κ -Br.
Xu, Shenghao; Feng, Xiuying; Gao, Teng; Wang, Ruizhi; Mao, Yaning; Lin, Jiehua; Yu, Xijuan; Luo, Xiliang
2017-03-15
A novel ultrasensitive dual-functional biosensor for highly sensitive detection of inorganic pyrophosphate (PPi) and pyrophosphatase (PPase) activity was developed based on the fluorescent variation of globulin protected gold nanoclusters (Glo@Au NCs) with the assistance of Cu 2+ . Glo@Au NCs and PPi were used as the fluorescent indicator and substrate for PPase activity evaluation, respectively. In the presence of Cu 2+ , the fluorescence of the Glo@Au NCs will be quenched owing to the formation of Cu 2+ -Glo@Au NCs complex, while PPi can restore the fluorescence of the Cu 2+ -Glo@Au NCs complex because of its higher binding affinity with Cu 2+ . As PPase can catalyze the hydrolysis of PPi, it will lead to the release of Cu 2+ and re-quench the fluorescence of the Glo@Au NCs. Based on this mechanism, quantitative evaluation of the PPi and PPase activity can be achieved ranging from 0.05 μM to 218.125 μM for PPi and from 0.1 to 8 mU for PPase, with detection limits of 0.02 μM and 0.04 mU, respectively, which is much lower than that of other PPi and PPase assay methods. More importantly, this ultrasensitive dual-functional biosensor can also be successfully applied to evaluate the PPase activity in human serum, showing great promise for practical diagnostic applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Huang, Guangguang; Wang, Chunlei; Xu, Shuhong; Zong, Shenfei; Lu, Ju; Wang, Zhuyuan; Lu, Changgui; Cui, Yiping
2017-08-01
Unlike widely used postsynthetic halide exchange for CsPbX 3 (X is halide) perovskite nanocrystals (NCs), cation exchange of Pb is of a great challenge due to the rigid nature of the Pb cationic sublattice. Actually, cation exchange has more potential for rendering NCs with peculiar properties. Herein, a novel halide exchange-driven cation exchange (HEDCE) strategy is developed to prepare dually emitting Mn-doped CsPb(Cl/Br) 3 NCs via postsynthetic replacement of partial Pb in preformed perovskite NCs. The basic idea for HEDCE is that the partial cation exchange of Pb by Mn has a large probability to occur as a concomitant result for opening the rigid halide octahedron structure around Pb during halide exchange. Compared to traditional ionic exchange, HEDCE is featured by proceeding of halide exchange and cation exchange at the same time and lattice site. The time and space requirements make only MnCl 2 molecules (rather than mixture of Mn and Cl ions) capable of doping into perovskite NCs. This special molecular doping nature results in a series of unusual phenomenon, including long reaction time, core-shell structured mid states with triple emission bands, and dopant molecules composition-dependent doping process. As-prepared dual-emitting Mn-doped CsPb(Cl/Br) 3 NCs are available for ratiometric temperature sensing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Prevalence of doping in sports: doping control in Norway, 1977-1995.
Bahr, R; Tjørnhom, M
1998-01-01
To examine the results from doping controls conducted by the Norwegian Confederation of Sport (NCS) from 1977 to 1995. Data were collected by combining three computerized databases and manual records on samples taken and results from analyses in the International Olympic Committee (IOC)-accredited laboratories in London, Huddinge, Cologne, and Oslo. Samples were declared positive if they contained any banned substance on the IOC list that was in effect at any given time. A total of 15,208 samples were taken; most of them (12,870; 85%) were from Norwegian athletes (90% unannounced tests) belonging to national federations under NCS jurisdiction (NCS members), 461 (3%) were from external Norwegian athletes (either users of private gyms or athletes in organized sports federations not affiliated with the NCS), and 1,874 (12%) were from foreign athletes (three cases with unknown affiliation). There were 130 positive samples and 24 refusals among NCS members (1.2%; men, 1.4%; women, 0.3%), 86 positive samples and 8 refusals among external Norwegian athletes (20%; men, 24%; women, 8%), and 39 positive samples and 1 refusal among foreign athletes (1.6%; men, 2.1%; women, 0.7%). A gradual decrease in the percentage of positive samples was observed among NCS members as testing frequency was increased gradually from 1987 to 1995 in the three high-prevalence sports: powerlifting, weightlifting, and athletics. An increase in the test frequency of doping tests was associated with a decrease in the percentage of positive samples in targeted sports.
Qureshi, Nilam; Chaudhari, Ravindra; Mane, Pramod; Shinde, Manish; Jadakar, Sandesh; Rane, Sunit; Kale, Bharat; Bhalerao, Anand; Amalnerkar, Dinesh
2016-04-01
In our contemporary endeavor, metallic molybdenum (Mo) and semiconducting molybdenum trioxide (MoO3) nanostructures have been simultaneously generated via solid state reaction between molybdenum (III) chloride (MoCl3) and polyphenylene sulfide (PPS) at 285 (°)C in unimolar ratio for different time durations, namely, 6 h, 24 h, and 48 h. The resultant nanocomposites (NCs) revealed formation of predominantly metallic Mo for all the samples. However, MoO3 gradually gained prominent position as secondary phase with rise in reaction time. The present study was intended to investigate the antibacterial potential of metal-metal oxide-polymer NCs, i.e., Mo- MoO3-PPS against microorganisms, viz., Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae, and Aspergillus fumigatus. The antibacterial activity of the NCs was evaluated by agar well diffusion investigation. Maximum sensitivity concentrations of NCs were determined by finding out minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC). Moreover, the NCs prepared at reaction time of 48 h exhibited best MBC values and were tested with time kill assay which revealed that the growth of S. aureus was substantially inhibited by Mo- MoO3-PPS NCs. This synchronized formation of Mo- MoO3 nanostructures in an engineering thermoplastic may have potential antimicrobial applications in biomedical devices and components. Prima facie results on antifungal activity are indicative of the fact that these materials can show anti-cancer behavior.
NASA Astrophysics Data System (ADS)
Kameyama, Tatsuya; Ishigami, Yujiro; Yukawa, Hiroshi; Shimada, Taisuke; Baba, Yoshinobu; Ishikawa, Tetsuya; Kuwabata, Susumu; Torimoto, Tsukasa
2016-03-01
Rod-shaped AgInTe2 nanocrystals (NCs) exhibiting intense near-band edge photoluminescence in the near-infrared (NIR) wavelength region, were successfully prepared by the thermal reaction of metal acetates and Te precursors in 1-dodecanethiol. Increasing the reaction temperature resulted in the formation of larger AgInTe2 NCs with crystal structures varying from hexagonal to tetragonal at reaction temperatures of 280 °C or higher. The energy gap was increased from 1.13 to 1.20 eV with a decrease in rod width from 8.3 to 5.6 nm, accompanied by a blue shift in the photoluminescence (PL) peak wavelength from 1097 to 1033 nm. The optimal PL quantum yield was approximately 18% for AgInTe2 NCs with rod widths of 5.6 nm. The applicability of AgInTe2 NCs as a NIR-emitting material for in vivo biological imaging was examined by injecting AgInTe2 NC-incorporated liposomes into the back of a C57BL/6 mouse, followed by in vivo photoluminescence imaging in the NIR region.Rod-shaped AgInTe2 nanocrystals (NCs) exhibiting intense near-band edge photoluminescence in the near-infrared (NIR) wavelength region, were successfully prepared by the thermal reaction of metal acetates and Te precursors in 1-dodecanethiol. Increasing the reaction temperature resulted in the formation of larger AgInTe2 NCs with crystal structures varying from hexagonal to tetragonal at reaction temperatures of 280 °C or higher. The energy gap was increased from 1.13 to 1.20 eV with a decrease in rod width from 8.3 to 5.6 nm, accompanied by a blue shift in the photoluminescence (PL) peak wavelength from 1097 to 1033 nm. The optimal PL quantum yield was approximately 18% for AgInTe2 NCs with rod widths of 5.6 nm. The applicability of AgInTe2 NCs as a NIR-emitting material for in vivo biological imaging was examined by injecting AgInTe2 NC-incorporated liposomes into the back of a C57BL/6 mouse, followed by in vivo photoluminescence imaging in the NIR region. Electronic supplementary information (ESI) available: A detailed synthesis procedure of DSPC-AgInTe2 and analytical data of AgInTe2 NCs. See DOI: 10.1039/c5nr07532g
NASA Astrophysics Data System (ADS)
Honda, M.; Yanagida, M.; Han, L.; Miyano, K.
2014-11-01
The interface between Ru(tcterpy)(NCS)3TBA2 [black dye (BD); tcterpy = 4,4',4″-tricarboxy-2,2':6',2″-terpyridine, NCS = thiocyanato, TBA = tetrabutylammonium cation] and nanocrystalline TiO2, as found in dye-sensitized solar cells, is investigated by soft-X-ray synchrotron radiation and compared with the adsorption structure of cis-Ru(Hdcbpy)2(NCS)2TBA2 (N719; dcbpy = 4,4'-dicarboxy-2,2'-bipyridine) on TiO2 to elucidate the relationship between the adsorption mode of BD and the photocurrent with and without coadsorbed indoline dye D131. The depth profile is characterized with X-ray photoelectron spectroscopy and S K-edge X-ray absorption fine structure using synchrotron radiation. Both datasets indicate that one of the isothiocyanate groups of BD interacts with TiO2 via its S atom when the dye is adsorbed from a single-component solution. In contrast, the interaction is slightly suppressed when D131 is coadsorbed, indicated by the fact that the presence of D131 changes the adsorption mode of BD. Based upon these results, the number of BD dye molecules interacting with the substrate is shown to decrease by 10% when D131 is coadsorbed, and the dissociation is shown to be related to the short-circuit photocurrent in the 600-800 nm region. The design of a procedure to promote the preferential adsorption of D131 therefore leads to an improvement of the short-circuit current and conversion efficiency.
2017-01-01
Paper-based lateral flow immunoassays (LFIAs) are one of the most widely used point-of-care (PoC) devices; however, their application in early disease diagnostics is often limited due to insufficient sensitivity for the requisite sample sizes and the short time frames of PoC testing. To address this, we developed a serum-stable, nanoparticle catalyst-labeled LFIA with a sensitivity surpassing that of both current commercial and published sensitivities for paper-based detection of p24, one of the earliest and most conserved biomarkers of HIV. We report the synthesis and characterization of porous platinum core–shell nanocatalysts (PtNCs), which show high catalytic activity when exposed to complex human blood serum samples. We explored the application of antibody-functionalized PtNCs with strategically and orthogonally modified nanobodies with high affinity and specificity toward p24 and established the key larger nanoparticle size regimes needed for efficient amplification and performance in LFIA. Harnessing the catalytic amplification of PtNCs enabled naked-eye detection of p24 spiked into sera in the low femtomolar range (ca. 0.8 pg·mL–1) and the detection of acute-phase HIV in clinical human plasma samples in under 20 min. This provides a versatile absorbance-based and rapid LFIA with sensitivity capable of significantly reducing the HIV acute phase detection window. This diagnostic may be readily adapted for detection of other biomolecules as an ultrasensitive screening tool for infectious and noncommunicable diseases and can be capitalized upon in PoC settings for early disease detection. PMID:29215864
Elmowafy, Enas; Osman, Rihab; El-Shamy, Abdel Hameed; Awad, Gehanne AS
2014-01-01
The aim of the present work was to test the ability of two non-diabetogenic carbohydrates to intranasally deliver the insulinotropic drug repaglinide (REP) for controlling blood glucose level. REP was loaded onto chitosan/alginate nanocomplexes (NCs) suitable for mucosal delivery and uptake. Improved stability and delivery characteristics were obtained by spray drying the selected NCs, yielding microparticles. A statistical experimental design was adopted to investigate the effects of the formulations’ variables on two critical responses: NC size and drug entrapment efficiency. Physicochemical characterizations of the network’s structures were done, and in vitro cytotoxicity and histopathological studies were conducted. The potential of the developed system to prolong the drug effect was tested on diabetic rats. The results showed that to attain particles suitable for nasal delivery, alginate should be used at its lowest level used in this study (0.6 mg/mL). A low level of chitosan (0.5 mg/mL) was needed when the drug was cation-loaded, while the high chitosan level (1 mg/mL) was more suitable when REP was anion-loaded. The best entrapment efficiency was achieved at a theoretical drug loading of 0.025 mg/mL. Discrete NCs could be rapidly recovered from the spray-dried microparticles. The cytotoxicity and histopathological studies indicated that such formulations were well tolerated. The antihyperglycemic activity of the nasally administered formulae was gradual but was significantly sustained over 24 hours, suggesting NC mucosal uptake. Nasal delivery of such dry powders achieved better glycemic control compared with the conventional oral tablets. PMID:25258534
Goyal, Ritu; Tripathi, S K; Tyagi, Shilpa; Ravi Ram, K; Ansari, K M; Shukla, Y; Kar Chowdhuri, D; Kumar, Pradeep; Gupta, K C
2011-09-01
Branched Polyethylenimine, 25 kDa (PEI), was blended with gellan gum, an anionic heteropolysaccharide, for partial neutralization of its excess positive charge to form gellan gum-polyethylenimine (GP) nanocomposites (NCs). Subsequently, we manipulated the amount of gellan gum for obtaining a series of NCs and characterized them for their size, charge and morphology. Among all the NCs, one member, named GP3, showed the best transfection efficiency in tested cell lines in comparison with the rest of the series, PEI, Lipofectamine and other commercial transfection agents and also exhibited minimum cytotoxicity. It was found to transfect primary cells of mouse skin with better efficiency than PEI and Lipofectamine and was able to protect the plasmid DNA from nucleases and serum proteins present in the blood. GP3 exhibited efficient intracellular delivery of plasmid as revealed by confocal studies while its intracellular presence was also confirmed by the knockdown of GFP expression (using GFP specific siRNA) and JNKII by quantifying proteins in cell lysates and by western blotting and hybridization, respectively. In vivo cytotoxicity studies in Drosophila showed lack of induction of stress response in the exposed organisms. Further, exposed organisms did not show any developmental delay or mortality and no morphological defects were observed in the emerged flies. In vivo gene expression studies in Balb/c mice revealed maximum expression of luciferase enzyme in spleen. The study suggests that GP3 may act as an efficient non-viral gene carrier with diverse biomedical applications. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adkins, Harold; Geelhood, Ken; Koeppel, Brian
2013-09-30
This document addresses Oak Ridge National Laboratory milestone M2FT-13OR0822015 Demonstration of Approach and Results on Used Nuclear Fuel Performance Characterization. This report provides results of the initial demonstration of the modeling capability developed to perform preliminary deterministic evaluations of moderate-to-high burnup used nuclear fuel (UNF) mechanical performance under normal conditions of storage (NCS) and normal conditions of transport (NCT) conditions. This report also provides results from the sensitivity studies that have been performed. Finally, discussion on the long-term goals and objectives of this initiative are provided.
NASA Astrophysics Data System (ADS)
Xu, Ruilin; Zhang, Jiayu
Usually, exciton-Mn energy transfer in Mn-doped CdS/ZnS nanocrystals (NCs) can readily outcompete the exciton trapping by an order of magnitude. However, with the accumulation of non-radiative defects in the giant shell during the rapid growth of the thick shell (up to ~20 monolayers in no more than 10 minutes), the photoluminescence (PL) quantum yield of this kind of ``giant'' NCs is significantly reduced by the accumulation of non-radiative defects during the rapid growth of thick shell. That is because the exciton-Mn energy transfer in Mn-doped CdS/ZnS NCs is significantly inhibited by the hole trapping as the major competing process, resulting from the insufficient hole-confinement in CdS/ZnS NCs. Accordingly ``flash'' synthesis of giant Mn-doped CdS/ZnSe/ZnS NCs with ZnSe layer as hole quantum-well is developed to suppress the inhibition. Meanwhile Mn2+ PL peak changes profoundly from ~620 nm to ~540 nm after addition of ZnSe layer. Studies are under the way to explore the relevant mechanisms.
Self-directed exploration provides a Ncs1-dependent learning bonus
Mun, Ho-Suk; Saab, Bechara J.; Ng, Enoch; McGirr, Alexander; Lipina, Tatiana V.; Gondo, Yoichi; Georgiou, John; Roder, John C.
2015-01-01
Understanding the mechanisms of memory formation is fundamental to establishing optimal educational practices and restoring cognitive function in brain disease. Here, we show for the first time in a non-primate species, that spatial learning receives a special bonus from self-directed exploration. In contrast, when exploration is escape-oriented, or when the full repertoire of exploratory behaviors is reduced, no learning bonus occurs. These findings permitted the first molecular and cellular examinations into the coupling of exploration to learning. We found elevated expression of neuronal calcium sensor 1 (Ncs1) and dopamine type-2 receptors upon self-directed exploration, in concert with increased neuronal activity in the hippocampal dentate gyrus and area CA3, as well as the nucleus accumbens. We probed further into the learning bonus by developing a point mutant mouse (Ncs1P144S/P144S) harboring a destabilized NCS-1 protein, and found this line lacked the equivalent self-directed exploration learning bonus. Acute knock-down of Ncs1 in the hippocampus also decoupled exploration from efficient learning. These results are potentially relevant for augmenting learning and memory in health and disease, and provide the basis for further molecular and circuit analyses in this direction. PMID:26639399
Voltage-Controlled Reconfigurable Spin-Wave Nanochannels and Logic Devices
NASA Astrophysics Data System (ADS)
Rana, Bivas; Otani, YoshiChika
2018-01-01
Propagating spin waves (SWs) promise to be a potential information carrier in future spintronics devices with lower power consumption. Here, we propose reconfigurable nanochannels (NCs) generated by voltage-controlled magnetic anisotropy (VCMA) in an ultrathin ferromagnetic waveguide for SW propagation. Numerical micromagnetic simulations are performed to demonstrate the confinement of magnetostatic forward volumelike spin waves in NCs by VCMA. We demonstrate that the NCs, with a width down to a few tens of a nanometer, can be configured either into a straight or curved structure on an extended SW waveguide. The key advantage is that either a single NC or any combination of a number of NCs can be easily configured by VCMA for simultaneous propagation of SWs either with the same or different wave vectors according to our needs. Furthermore, we demonstrate the logic operation of a voltage-controlled magnonic xnor and universal nand gate and propose a voltage-controlled reconfigurable SW switch for the development of a multiplexer and demultiplexer. We find that the NCs and logic devices can even be functioning in the absence of the external-bias magnetic field. These results are a step towards the development of all-voltage-controlled magnonic devices with an ultralow power consumption.
NASA Astrophysics Data System (ADS)
Chen, Xiaobo; Tang, Yu; Hao, Jiabo
Sb-doped silicon nanocrystals (Si-NCs) films were fabricated by magnetron co-sputtering combined with rapid-thermal annealing. The effects of Sb content on the structural and electrical properties of the films were studied. The dot size increased with the increasing Sb content, and could be correlated to the effect of Sb-induced crystallization. The variation in the concentration of Sb shows a significant impact on the film properties, where as doped with 0.8at.% of Sb exhibited major property improvements when compared with other films. By employing Sb-doped Si-NCs films as emitter layers, Si-NCs/monocrystalline silicon heterojunction solar cells were fabricated and the effect of the Sb doping concentration on the photovoltaic properties was studied. It is found that the doping level in the Si-NCs layer is a key factor in determining the short-circuit current density and power conversion efficiency (PCE). With an optimized doping concentration of 0.8at.% of Sb, a maximal PCE of 7.10% was obtained. This study indicates that the Sb-doped Si-NCs can be good candidates for all-silicon tandem solar cells.
Ultrafast Carrier dynamics of InxGa1-xN nanostructures grown directly on Si(111)
NASA Astrophysics Data System (ADS)
Kumar, Praveen; Devi, Pooja; Rodriguez, P. E. D. S.; Kumar, Manish; Shivling, V. D.; Noetzel, Richard; Sharma, Chhavi; Sinha, R. K.; Kumar, Mahesh
2018-05-01
We show a flux dependence changes in structural, optical and electronic properties of InxGa1-xN nanostructures (NSs) namely nanocolumns (NCs), nanoflakes (NFs) and nanowall network (NWN) grown directly on Si(111) surface. Field emission scanning electron microscopy (FESEM) images were recorded to see morphological changes from NFs to NCs and NWNc etc, while high-resolution X-ray diffraction (HRXRD) ω-2θ scans were used to determine In incorporation. The maximum In incorporation was observed to be 20, 33 and 38% for the sharp transition from NFs to NCs and NWNs, respectively. The charge carrier dynamics of these grown NSs were probed using Ultrafast Femtosecond Transient Absorption Spectroscopy (UFTAS) with excitation at 350 nm pump wavelength. The UFTAS studies show the comparative charge carriers dynamics of the NWS, NCs and NFs. The charge carrier studies show a higher lifetime in NWNs as compare to NCs and NFs. Further, to examine electronic structure and level of degeneracy of these NSs, core-level and valence band spectra were analyzed by X-ray photoelectron spectroscopy (XPS), which manifest the upward band bending ranging from 0.2 eV to 0.4 eV.
Real-Space Mapping of Surface Trap States in CIGSe Nanocrystals Using 4D Electron Microscopy.
Bose, Riya; Bera, Ashok; Parida, Manas R; Adhikari, Aniruddha; Shaheen, Basamat S; Alarousu, Erkki; Sun, Jingya; Wu, Tom; Bakr, Osman M; Mohammed, Omar F
2016-07-13
Surface trap states in copper indium gallium selenide semiconductor nanocrystals (NCs), which serve as undesirable channels for nonradiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with subpicosecond temporal and nanometer spatial resolutions. Here, we precisely map the collective surface charge carrier dynamics of copper indium gallium selenide NCs as a function of the surface trap states before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, the removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs.
Do Nuclear Star Clusters and Supermassive Black Holes Follow the Same Host-Galaxy Correlations?
Erwin, Peter; Gadotti, Dimitri Alexei
2012-01-01
Smore » tudies have suggested that there is a strong correlation between the masses of nuclear star clusters (NCs) and their host galaxies, a correlation which is said to be an extension of the well-known correlations between supermassive black holes (MBHs) and their host galaxies. But careful analysis of disk galaxies—including 2D bulge/disk/bar decompositions—shows that while MBHs correlate with the stellar mass of the bulge component of galaxies, the masses of NCs correlate much better with the total galaxy stellar mass. In addition, the mass ratio M NC / M ⋆ , tot for NCs in spirals (at least those with Hubble types c and later) is typically an order of magnitude smaller than the mass ratio M BH / M ⋆ , bul of MBHs. The absence of a universal “central massive object” correlation argues against common formation and growth mechanisms for both MBHs and NCs. We also discuss evidence for a break in the NC-host galaxy correlation, galaxies with Hubble types earlier than bc appear to host systematically more massive NCs than do types c and later.« less
NASA Astrophysics Data System (ADS)
Bahmani, Baharak; Vullev, Valentine; Anvari, Bahman
2012-03-01
Targeted delivery of therapeutic and imaging agents using surface modified nanovectors has been explored immensely in recent years. The growing demand for site-specific and efficient delivery of nanovectors entails stable surface conjugation of targeting moieties. We have developed a polymeric nanocapsule doped with Indocyanine green (ICG) with potential for targeted and deep tissue optical imaging and phototherapy. Our ICG-loaded nanocapsules (ICG-NCs) have potential for covalent coupling of various targeting moieties and materials due to presence of amine groups on the surface. Here, we covalently bioconjugate polyethylene glycol(PEG)-coated ICG-NCs with monoclonal antibody against HER2 through reductive amination-mediated procedures. The irreversible and stable bonds are formed between anti- EGFR and aldehyde termini of PEG chains on the surface of ICG-NCs. We confirm the uptake of conjugated ICG-NCs by ovarian cancer cells over-expressing HER2 using fluorescent confocal microscopy. The proposed process for covalent attachment of anti-HER2 to PEGylated ICG-NCs can be used as a methodology for bioconjugation of various antibodies to such nano-constrcuts, and provides the capability to use these optically active nano-probes for targeted optical imaging of ovarian and other cancer types.
Patel, Ravi; Bothra, Shilpa; Kumar, Rajender; Crisponi, Guido; Sahoo, Suban K
2018-04-15
The present work reports the interaction of various vitamin B 6 cofactors with the red emitting glutathione stabilized copper nanoclusters (GSH-CuNCs). Addition of pyridoxamine (PM) resulted a new turn-on band at 410nm due to the possible adsorption over the surface of GSH-CuNCs. The nano-assembly PM-GSH-CuNCs was applied for the selective detection of nitro-aromatic compounds. Upon addition of picric acid (PA), the fluorescence of PM-GSH-CuNCs was selectively quenched at 410nm and ~ 625nm among the other tested nitro-aromatic compounds. With a linearity range from 9.9μM to 43μM, the concentration of PA can be detected down to 2.74μM. The high selectivity exhibited by the nano-assembly allows to detect PA in real samples like tap water, river water and matchstick. Advantageously, the nano-assembly PM-GSH-CuNCs was chemically adsorbed over the cellulosic strips and applied for the naked-eye detection of PA down to 1μM. Copyright © 2017 Elsevier B.V. All rights reserved.
Energy and charge transfer dynamics between Alq3 and CdSeS nanocrystals.
Zhang, Shuping; Liu, Yuqiang; Yang, Yanqiang
2010-03-01
The photoluminescence properties of the blend films consisting of organic small molecules and nanocrystals (NCs)--Alq3 and CdSeS NCs--were studied by steady-state and time-resolved photoluminescence (PL) spectroscopy with different excited wavelengths. Both the fluorescence intensity and lifetime are intensively dependent on the NC concentration. The detailed analysis of experiment data proves that Forster energy transfer from the Alq3 to the NCs exists simultaneously with the charge transfer and both compete with each other in the blend films.
NASA Astrophysics Data System (ADS)
Li, Yumin; Iwata, Suehiro
1997-07-01
For astronomically interesting molecules, HCCS and NCS, the equilibrium geometries and potential energy curves of three states (X 2Π, A 2Π and B 2Σ+) as well as vertical excitation energies are studied using complete active space SCF (CASSCF), multi-reference configuration interaction (MRCI) and coupled cluster (CCSD(T)) methods with cc-pVTZ basis sets. The difference and similarity in the three states of HCCS and NCS are illustrated. The results obtained are in good agreement with available experimental data.
Shumakova, A A; Shipelin, V A; Sidorova, Yu S; Trushina, E N; Mustafina, O K; Pridvorova, S M; Gmoshinsky, I V; Khotimchenko, S A
2015-01-01
Nano-sized colloidal silver (NCS) is currently one of the most widely used nanomaterials in medicine and consumer’s products. Nanoparticles (NPs) of silver, in addition to the direct exposition through products may expose human via various environmental objects. The aim of the study is to assess the safe doses of silver NP received orally. The investigated NCS contained silver NPs with diameter of 10–60 nm, predominantly with a nearly spherical form stabilized with polyvinylpyrrolidone (PVP). The experiment was performed during 92 days in 5 groups of male Wistar rats (n=15 in each group), receiving a balanced semisynthetic diet. Animal of group 1 (control) received vehicle (deionized water) intragastrically for 30 days and then with food, groups from 2nd to 4th – PVP and groups from 3rd to 5th NCS, in doses respectively, 0.1; 1.0 and 10 mg/kg body weight (b.w.) in terms of silver. The dose of PVP in groups from 2nd to 5th did not differ, amounting to 200 mg/kg b.w. During the experiment, the weight gain, skin condition, activity, stool, cognitive function were assessed. At the end of the feeding period weight of internal organs, intestinal wall permeability to protein macromolecules, liver thiols, standard values of blood erythrocytes, leukocytes and platelets, hepatocyte apoptosis by flow cytometry were studied. These results suggest that in terms of weight gain, lung relative mass, average erythrocyte volume, hemoglobin content and concentration in erythrocytes, the relative proportion of lymphocytes and neutrophils adverse changes have been observed at a dose of 10 mg NPs per kg of b.w. At lower levels of exposure (0.1 and 1.0 mg/kg b.w.) some specific changes were also observed (in terms of thiols pool in liver, cognitive function, relative abundance of monocytes, the number of dead hepatocytes), which, however, did not possess an unambiguous dependence on the dose. Possible mechanisms of the toxic action of the NCS have been discussed.
Haghparasti, Zeinab; Mahdavi Shahri, Mahnaz
2018-06-01
The use of nontoxic biological compounds in the synthesis of nanomaterials is an ecofriendly and cost-effective approach in nanotechnology. The present work was carried out to develop silver nanoparticles (Ag-NPs) by a green method using white tea (Wt) extract as reducing agent for reduction of silver nitrate as silver precursor into the lamellar space of inorganic polymer montmorillonite (Mt) as an effective protective reagent and support as well. The bioformed Wt/Ag@Mt nanocomposite (NCs) was compared with pure biosynthesized Wt/Ag-NPs under free stabilizer condition and effect of Mt stabilizer on antioxidant, cytotoxicity and structural properties were also investigated. The prepared Wt/Ag-NPs and Wt/Ag@Mt-NCs were characterized by UV-vis spectroscopy, FTIR, XRD, TEM, SEM and EDX. The interlamellar space limits were without many changes, therefore Ag-NPs formed on the exterior surface of Mt. The XRD study showed that the particles are crystalline structure in nature, with a facecentered cubic (fcc) structure. The TEM result shows the bioformed Ag-NPs are spherical in shapes with mean particle size of 19.77 ± 3.82 for Wt/Ag-NPs and 15.87 ± 2.38 nm for Wt/Ag@Mt-NCs. In vitro cytotoxicity studies on MOLT-4 cells, a dose dependent toxicity with non-toxic effect of concentration below 40 μg/mL was shown. The outcome shows that IC 50 of our green synthesized Wt/Ag@Mt-NCs was 0.0039 in comparison to 2.13329 for Doxorubicin and 0.013 μM for Cisplatin which is much better than IC 50 of these anticancer drugs and more active than them for MOLT-4 cell line. Antioxidant activity indicated that they can be applied as potential radical scavenger and also showed that DPPH activity increased in a dose dependent manner. The bio-synthesized nanoparticles can potentially useful in pharmaceutical and biomedical applications. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yoshida, M.; McKee, G. R.; Murakami, M.; Grierson, B. A.; Nakata, M.; Davis, E. M.; Marinoni, A.; Ono, M.; Rhodes, T. L.; Sung, C.; Schmitz, L.; Petty, C. C.; Ferron, J. R.; Turco, F.; Garofalo, A. M.; Holcomb, C. T.; Collins, C. M.; Solomon, W. M.
2017-05-01
Negative magnetic shear has been demonstrated in DIII-D and JT-60U to mitigate the confinement degradation typically observed with increasing the electron to ion temperature ratio (T e/T i). In recent experiments in DIII-D negative central magnetic shear (NCS) discharges, the thermal transport in the internal transport barrier formed around the radius of the minimum safety factor (q min) remained almost constant and modestly increased in the region outside of q min compared to the positive shear (PS) case, when T e/T i increased from about 0.8 to 1.1 through electron cyclotron heating (ECH). The benefit of NCS extending into the region outside of q min can be explained by the lower magnetic shear in the NCS plasma over the plasma radius relative to the PS plasma. Reduced confinement degradation at high T e/T i with NCS plasmas was commonly observed in DIII-D and JT-60U. The mechanism of the different transport responses between the NCS and PS plasmas has been assessed in terms of fluctuation measurements and gyrokinetic simulations in DIII-D; NCS gave a smaller rise in the low-wavenumber broadband turbulent fluctuations with the increase in T e/T i compared with the PS case. This is consistent with gyrokinetic simulations, which show a smaller rise in the growth rates of the ion temperature gradient mode in the NCS plasmas, with increasing T e/T i. Gyrokinetic simulations also showed a change in the stability of the electron modes with ECH applied, consistent with higher-wavenumber fluctuation measurements, although more detailed simulations are needed to give a quantitative explanation for the experimental observations. Control of q-profile and magnetic shear will allow confinement improvement in future machines with dominant electron heating.
Bovine leukemia virus nucleocapsid protein is an efficient nucleic acid chaperone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qualley, Dominic F., E-mail: dqualley@berry.edu; Sokolove, Victoria L.; Ross, James L.
2015-03-13
Nucleocapsid proteins (NCs) direct the rearrangement of nucleic acids to form the most thermodynamically stable structure, and facilitate many steps throughout the life cycle of retroviruses. NCs bind strongly to nucleic acids (NAs) and promote NA aggregation by virtue of their cationic nature; they also destabilize the NA duplex via highly structured zinc-binding motifs. Thus, they are considered to be NA chaperones. While most retroviral NCs are structurally similar, differences are observed both within and between retroviral genera. In this work, we compare the NA binding and chaperone activity of bovine leukemia virus (BLV) NC to that of two othermore » retroviral NCs: human immunodeficiency virus type 1 (HIV-1) NC, which is structurally similar to BLV NC but from a different retrovirus genus, and human T-cell leukemia virus type 1 (HTLV-1) NC, which possesses several key structural differences from BLV NC but is from the same genus. Our data show that BLV and HIV-1 NCs bind to NAs with stronger affinity in relation to HTLV-1 NC, and that they also accelerate the annealing of complementary stem-loop structures to a greater extent. Analysis of kinetic parameters derived from the annealing data suggests that while all three NCs stimulate annealing by a two-step mechanism as previously reported, the relative contributions of each step to the overall annealing equilibrium are conserved between BLV and HIV-1 NCs but are different for HTLV-1 NC. It is concluded that while BLV and HTLV-1 belong to the same genus of retroviruses, processes that rely on NC may not be directly comparable. - Highlights: • BLV NC binds strongly to DNA and RNA. • BLV NC promotes mini-TAR annealing as well as HIV-1 NC. • Annealing kinetics suggest a low degree of similarity between BLV NC and HTLV-1 NC.« less
Yoshida, Maiko; McKee, George R.; Murakami, Masanori; ...
2017-03-30
We demonstrated negative magnetic shear in DIII-D and JT-60U in order to mitigate the confinement degradation typically observed with increasing the electron to ion temperature ratio (T-e/T-i). In recent experiments in DIII-D negative central magnetic shear (NCS) discharges, the thermal transport in the internal transport barrier formed around the radius of the minimum safety factor (q(min)) remained almost constant and modestly increased in the region outside of q(min) compared to the positive shear (PS) case, when T-e/T-i increased from about 0.8 to 1.1 through electron cyclotron heating (ECH). The benefit of NCS extending into the region outside of qmin canmore » be explained by the lower magnetic shear in the NCS plasma over the plasma radius relative to the PS plasma. Reduced confinement degradation at high T-e/T-i with NCS plasmas was commonly observed in DIII-D and JT-60U. Furthermore, the mechanism of the different transport responses between the NCS and PS plasmas has been assessed in terms of fluctuation measurements and gyrokinetic simulations in DIII-D; NCS gave a smaller rise in the low-wavenumber broadband turbulent fluctuations with the increase in T-e/T-i compared with the PS case. This is consistent with gyrokinetic simulations, and this shows a smaller rise in the growth rates of the ion temperature gradient mode in the NCS plasmas, with increasing T-e/T-i. Gyrokinetic simulations also showed a change in the stability of the electron modes with ECH applied, consistent with higher-wavenumber fluctuation measurements, although more detailed simulations are needed to give a quantitative explanation for the experimental observations. Control of q-profile and magnetic shear will allow confinement improvement in future machines with dominant electron heating.« less
Zhang, Xiaoliang; Santra, Pralay Kanti; Tian, Lei; Johansson, Malin B; Rensmo, Håkan; Johansson, Erik M J
2017-08-22
Colloidal quantum dot (CQD) solar cells have high potential for realizing an efficient and lightweight energy supply for flexible or wearable electronic devices. To achieve highly efficient and flexible CQD solar cells, the electron transport layer (ETL), extracting electrons from the CQD solid layer, needs to be processed at a low-temperature and should also suppress interfacial recombination. Herein, a highly stable MgZnO nanocrystal (MZO-NC) layer is reported for efficient flexible PbS CQD solar cells. Solar cells fabricated with MZO-NC ETL give a high power conversion efficiency (PCE) of 10.4% and 9.4%, on glass and flexible plastic substrates, respectively. The reported flexible CQD solar cell has the record efficiency to date of flexible CQD solar cells. Detailed theoretical simulations and extensive characterizations reveal that the MZO-NCs significantly enhance charge extraction from CQD solids and diminish the charge accumulation at the ETL/CQD interface, suppressing charge interfacial recombination. These important results suggest that the low-temperature processed MZO-NCs are very promising for use in efficient flexible solar cells or other flexible optoelectronic devices.
NASA Astrophysics Data System (ADS)
Yang, Tingting; Wang, Zhong; Li, Kexun; Liu, Yi; Liu, Di; Wang, Junjie
2017-09-01
Herein, we report a simplistic method to fabricate the surface-oxidized cobalt phosphide (CoP) nanocrystals (NCs), which is used as electrocatalyst for oxygen reduction reaction (ORR) in microbial fuel cell (MFC) for the first time. The corallite-like CoP NCs are successfully prepared by a hydrothermal reaction following a phosphating treatment in N2 atmosphere. When used as an ORR catalyst, cobalt phosphide shows comparable onset potential, inferior resistance, as well as a small Tafel slope with long-term stability in neutral media. The maximum power density of MFC embellished with 10% CoP reached 1914.4 ± 59.7 mW m-2, which is 108.5% higher than the control. The four-electron pathway, observed by the RDE, plays a crucial role in electrochemical catalytic activity. In addition, material characterizations indicate that the surface oxide layer (CoOx) around the metallic CoP core is important and beneficial for ORR. Accordingly, it can be expected that the as-synthesized CoP will be a promising candidate of the non-precious metal ORR electrocatalysts for electrochemical energy applications.
Plasmon-enhanced Raman detection of body-fluid components
NASA Astrophysics Data System (ADS)
Matteini, Paolo; Banchelli, Martina; De Angelis, Marella; D'Andrea, Cristiano; Pini, Roberto
2018-02-01
Plasmon-enhanced spectroscopies such as surface-enhanced Raman spectroscopy (SERS) concern the detection of enhanced optical responses of molecules in close proximity to plasmonic structures, which results in a strong increase in sensitivity. Recent advancements in nanofabrication methods have paved the way for a controlled design of tailor-made nanostructures with fine-tuning of their optical and surface properties. Among these, silver nanocubes (AgNCs) represent a convenient choice in SERS owing to intense electromagnetic fields localized at their extremities, which are further intensified in the gap regions between closely spaced nanoparticles. The integration of AgNCs assemblies within an optofluidic platform may confer potential for superior optical investigation due to a molecular enrichment on the plasmonic structures to collect an enhanced photonic response. We developed a novel sensing platform based on an optofluidic system involving assembled silver nanocubes of 50 nm in size for ultrasensitive SERS detection of biomolecules in wet conditions. The proposed system offers the perspective of advanced biochemical and biological characterizations of molecules as well as of effective detection of body fluid components and other molecules of biomedical interest in their own environment.
Route to the Smallest Doped Semiconductor: Mn(2+)-Doped (CdSe)13 Clusters.
Yang, Jiwoong; Fainblat, Rachel; Kwon, Soon Gu; Muckel, Franziska; Yu, Jung Ho; Terlinden, Hendrik; Kim, Byung Hyo; Iavarone, Dino; Choi, Moon Kee; Kim, In Young; Park, Inchul; Hong, Hyo-Ki; Lee, Jihwa; Son, Jae Sung; Lee, Zonghoon; Kang, Kisuk; Hwang, Seong-Ju; Bacher, Gerd; Hyeon, Taeghwan
2015-10-14
Doping semiconductor nanocrystals with magnetic transition-metal ions has attracted fundamental interest to obtain a nanoscale dilute magnetic semiconductor, which has unique spin exchange interaction between magnetic spin and exciton. So far, the study on the doped semiconductor NCs has usually been conducted with NCs with larger than 2 nm because of synthetic challenges. Herein, we report the synthesis and characterization of Mn(2+)-doped (CdSe)13 clusters, the smallest doped semiconductors. In this study, single-sized doped clusters are produced in large scale. Despite their small size, these clusters have semiconductor band structure instead of that of molecules. Surprisingly, the clusters show multiple excitonic transitions with different magneto-optical activities, which can be attributed to the fine structure splitting. Magneto-optically active states exhibit giant Zeeman splittings up to elevated temperatures (128 K) with large g-factors of 81(±8) at 4 K. Our results present a new synthetic method for doped clusters and facilitate the understanding of doped semiconductor at the boundary of molecules and quantum nanostructure.
Alswat, Abdullah A; Ahmad, Mansor Bin; Saleh, Tawfik A; Hussein, Mohd Zobir Bin; Ibrahim, Nor Azowa
2016-11-01
Nanocomposites of zinc oxide loaded on a zeolite (Zeolite/ZnO NCs) were prepared using co-precipitation method. The ratio effect of ZnO wt.% to the Zeolite on the antibacterial activities was investigated. Various techniques were used for the nanocomposite characterization, including UV-vis, FTIR, XRD, EDX, FESEM and TEM. XRD patterns showed that ZnO peak intensity increased while the intensities of Zeolite peaks decreased. TEM images indicated a good distribution of ZnO-NPs onto the Zeolite framework and the cubic structure of the zeolite was maintained. The average particle size of ZnO-nanoparticles loaded on the surface of the Zeolite was in the range of 1-10nm. Moreover, Zeolite/ZnO NCs showed noticeable antibacterial activities against the tested bacteria; Gram- positive and Gram- negative bacteria, under normal light. The efficiency of the antibacterial increased with increasing the wt.% from 3 to 8 of ZnO NPs, and it reached 87% against Escherichia coli E266. Copyright © 2016 Elsevier B.V. All rights reserved.
Mukherjee, Pampa; Drew, Michael G B; Estrader, Marta; Ghosh, Ashutosh
2008-09-01
Formation of a quasi-symmetrical mu 3-carbonato-bridged self-assembled heteromolecular triangle of Ni(II), [(mu 3-CO 3){Ni 2(salmeNH) 2(NCS) 2}{Ni(salmeNH 2) 2].Et 2O.H 2O (HsalmeNH = 2-[(3-methylamino-propylimino)-methyl]-phenol) involves atmospheric CO 2 uptake in a neutral medium, by spontaneous self-reorganization of the starting mononuclear Ni(II)-Schiff-base complex, [Ni(salmeNH) 2]. The environment around Ni(II) in two of the subunits is different from the third one. The starting complex, [Ni(salmeNH) 2], and one of the possible intermediate species, [Ni(salmeNH 2) 2(NCS) 2], which has a very similar coordination environment to that in the third Ni(II) center, have been characterized structurally. A plausible mechanism for the formation of such a triangle has also been proposed. The compound shows a very strong antiferromagnetic coupling. Fit as a regular triangular arrangement gave J = -53.1, g = 2.24, and R = 1.5 x 10 (-4).
Ionescu, Emanuel; Kleebe, Hans-Joachim; Riedel, Ralf
2012-08-07
Composites consist by definition of at least two materials (Gibbsian phases) with rather different properties. They exhibit a heterogeneous microstructure and possess improved properties with respect to their components. Furthermore, the design of their microstructure allows for tailoring their overall properties. In the last decades, intense work was performed on the synthesis of nanocomposites, which have the feature that at least one of their components is nanoscaled. However, the microstructure-property relationship of nanocomposite materials is still a challenging topic. This tutorial review paper deals with a special class of nanocomposites, i.e. polymer-derived ceramic nanocomposites (PDC-NCs), which have been shown to be promising materials for various structural and functional applications. Within this context, different preparative approaches for PDC-NCs as well as some of their properties will be presented and discussed. Furthermore, recent results concerning the relationship between the nano/microstructure of PDC-NCs and their properties will be highlighted.
Kulkarni, Aditya; Evers, Wiel H; Tomić, Stanko; Beard, Matthew C; Vanmaekelbergh, Daniel; Siebbeles, Laurens D A
2018-01-23
Carrier multiplication (CM) is a process in which a single photon excites two or more electrons. CM is of interest to enhance the efficiency of a solar cell. Until now, CM in thin films and solar cells of semiconductor nanocrystals (NCs) has been found at photon energies well above the minimum required energy of twice the band gap. The high threshold of CM strongly limits the benefits for solar cell applications. We show that CM is more efficient in a percolative network of directly connected PbSe NCs. The CM threshold is at twice the band gap and increases in a steplike fashion with photon energy. A lower CM efficiency is found for a solid of weaker coupled NCs. This demonstrates that the coupling between NCs strongly affects the CM efficiency. According to device simulations, the measured CM efficiency would significantly enhance the power conversion efficiency of a solar cell.
The effect of non-caloric sweeteners on cognition, choice, and post-consumption satisfaction.
Hill, Sarah E; Prokosch, Marjorie L; Morin, Amanda; Rodeheffer, Christopher D
2014-12-01
Consumers often turn to non-caloric sweeteners (NCS) as a means of promoting a healthy body weight. However, several studies have now linked their long-term use to increased weight gain, raising the question of whether these products produce unintended psychological, physiological, or behavioral changes that have implications for weight management goals. In the following, we present the results of three experiments bearing on this issue, testing whether NCS-consumption influences how individuals think about and respond to food. Participants in each of our three experiments were randomly assigned to consume a sugar-sweetened beverage, an unsweetened beverage, or a beverage sweetened with NCS. We then measured their cognition (Experiment 1), product choice (Experiment 2), and subjective responses to a sugar-sweetened food (Experiment 3). Results revealed that consuming NCS-sweetened beverages influences psychological processes in ways that - over time - may increase calorie intake. Copyright © 2014 Elsevier Ltd. All rights reserved.
Exploring luminescence-based temperature sensing using protein-passivated gold nanoclusters
NASA Astrophysics Data System (ADS)
Chen, Xi; Essner, Jeremy B.; Baker, Gary A.
2014-07-01
We explore the analytical performance and limitations of optically monitoring aqueous-phase temperature using protein-protected gold nanoclusters (AuNCs). Although not reported elsewhere, we find that these bio-passivated AuNCs show pronounced hysteresis upon thermal cycling. This unwanted behaviour can be eliminated by several strategies, including sol-gel coating and thermal denaturation of the biomolecular template, introducing protein-templated AuNC probes as viable nanothermometers.We explore the analytical performance and limitations of optically monitoring aqueous-phase temperature using protein-protected gold nanoclusters (AuNCs). Although not reported elsewhere, we find that these bio-passivated AuNCs show pronounced hysteresis upon thermal cycling. This unwanted behaviour can be eliminated by several strategies, including sol-gel coating and thermal denaturation of the biomolecular template, introducing protein-templated AuNC probes as viable nanothermometers. Electronic supplementary information (ESI) available: Supplemental figures and experimental details. See DOI: 10.1039/c4nr02069c
Kehrle, Julian; Purkait, Tapas K; Kaiser, Simon; Raftopoulos, Konstantinos N; Winnacker, Malte; Ludwig, Theresa; Aghajamali, Maryam; Hanzlik, Marianne; Rodewald, Katia; Helbich, Tobias; Papadakis, Christine M; Veinot, Jonathan G C; Rieger, Bernhard
2018-04-24
Silicon nanocrystals (SiNCs) are abundant and exhibit exquisitely tailorable optoelectronic properties. The incorporation of SiNCs into highly porous and lightweight substrates such as aerogels leads to hybrid materials possessing the attractive features of both materials. This study describes the covalent deposition of SiNCs on and intercalation into silica aerogels, explores the properties, and demonstrates a prototype sensing application of the composite material. SiNCs of different sizes were functionalized with triethoxyvinylsilane (TEVS) via a radical grafting approach and subsequently used for the synthesis of photoluminescent silica hybrids. The resulting SiNC-containing aerogels possess high porosities, SiNC-based size-dependent photoluminescence, transparency, and a superhydrophobic macroscopic surface. The materials were used to examine the photoluminescence response toward low concentrations of 3-nitrotoluene (270 μM), demonstrating their potential as a sensing platform for high-energy materials.