Sample records for characterization techniques include

  1. Techniques for characterizing lignin

    Treesearch

    Nicole M. Stark; Daniel J. Yelle; Umesh P. Agarwal

    2016-01-01

    Many techniques are available to characterize lignin. The techniques presented in this chapter are considered nondegradative, which are commonly applied to lignin. A brief discussion of lignin structure is included with this chapter to aid the reader in understanding why the discussed characterization techniques are appropriate for the study of lignin. Because the...

  2. Ambient air contamination: Characterization and detection techniques

    NASA Technical Reports Server (NTRS)

    Nulton, C. P.; Silvus, H. S.

    1985-01-01

    Techniques to characterize and detect sources of ambient air contamination are described. Chemical techniques to identify indoor contaminants are outlined, they include gas chromatography, or colorimetric detection. Organics generated from indoor materials at ambient conditions and upon combustion are characterized. Piezoelectric quartz crystals are used as precision frequency determining elements in electronic oscillators.

  3. XPS Protocol for the Characterization of Pristine and Functionalized Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Sosa, E. D.; Allada, R.; Huffman, C. B.; Arepalli, S.

    2009-01-01

    Recent interest in developing new applications for carbon nanotubes (CNT) has fueled the need to use accurate macroscopic and nanoscopic techniques to characterize and understand their chemistry. X-ray photoelectron spectroscopy (XPS) has proved to be a useful analytical tool for nanoscale surface characterization of materials including carbon nanotubes. Recent nanotechnology research at NASA Johnson Space Center (NASA-JSC) helped to establish a characterization protocol for quality assessment for single wall carbon nanotubes (SWCNTs). Here, a review of some of the major factors of the XPS technique that can influence the quality of analytical data, suggestions for methods to maximize the quality of data obtained by XPS, and the development of a protocol for XPS characterization as a complementary technique for analyzing the purity and surface characteristics of SWCNTs is presented. The XPS protocol is then applied to a number of experiments including impurity analysis and the study of chemical modifications for SWCNTs.

  4. On-Wafer Characterization of Millimeter-Wave Antennas for Wireless Applications

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1998-01-01

    The paper demonstrates a de-embedding technique and a direct on-substrate measurement technique for fast and inexpensive characterization of miniature antennas for wireless applications at millimeter-wave frequencies. The technique is demonstrated by measurements on a tapered slot antenna (TSA). The measured results at Ka-Band frequencies include input impedance, mutual coupling between two TSAs and absolute gain of TSA.

  5. Preparation and characterization of silver nanoparticles homogenous thin films

    NASA Astrophysics Data System (ADS)

    Hegazy, Maroof A.; Borham, E.

    2018-06-01

    The wet chemical method by metal salt reduction has been widely used to synthesize nanoparticles. Accordingly the silver nitrate used as silver precursor and sodium borohydrate as reduction agent. The silver nanoparticles were characterized by different characterization techniques including UV-VIS spectrometry, Transmission electron microscope (TEM), and Zeta potential technique. Thin films of the colloidal solution were fabricated using direct precipitation technique on ITO glass, silicon substrate and commercial glass substrate and characterized by imaging technique. The absorption peak of the silver nanoparticles colloidal solution was around 400 nm. The TEM images indicate that the silver nanoparticles had spherical shape and their sizes were from 10 to 17 nm. The particle size of the silver nanoparticles was confirmed by Zeta potential technique. The imaging technique indicated that the homogeneous distribution of the colloidal silver solution thin film on the silicon substrate was stronger than the ITO glass and inhomogeneous film was emerged on the commercial glass.

  6. Invited article: Dielectric material characterization techniques and designs of high-Q resonators for applications from micro to millimeter-waves frequencies applicable at room and cryogenic temperatures.

    PubMed

    Le Floch, Jean-Michel; Fan, Y; Humbert, Georges; Shan, Qingxiao; Férachou, Denis; Bara-Maillet, Romain; Aubourg, Michel; Hartnett, John G; Madrangeas, Valerie; Cros, Dominique; Blondy, Jean-Marc; Krupka, Jerzy; Tobar, Michael E

    2014-03-01

    Dielectric resonators are key elements in many applications in micro to millimeter wave circuits, including ultra-narrow band filters and frequency-determining components for precision frequency synthesis. Distributed-layered and bulk low-loss crystalline and polycrystalline dielectric structures have become very important for building these devices. Proper design requires careful electromagnetic characterization of low-loss material properties. This includes exact simulation with precision numerical software and precise measurements of resonant modes. For example, we have developed the Whispering Gallery mode technique for microwave applications, which has now become the standard for characterizing low-loss structures. This paper will give some of the most common characterization techniques used in the micro to millimeter wave regime at room and cryogenic temperatures for designing high-Q dielectric loaded cavities.

  7. Analysis of Synthetic Polymers.

    ERIC Educational Resources Information Center

    Smith, Charles G.; And Others

    1989-01-01

    Reviews techniques for the characterization and analysis of synthetic polymers, copolymers, and blends. Includes techniques for structure determination, separation, and quantitation of additives and residual monomers; determination of molecular weight; and the study of thermal properties including degradation mechanisms. (MVL)

  8. Study to perform preliminary experiments to evaluate particle generation and characterization techniques for zero-gravity cloud physics experiments

    NASA Technical Reports Server (NTRS)

    Katz, U.

    1982-01-01

    Methods of particle generation and characterization with regard to their applicability for experiments requiring cloud condensation nuclei (CCN) of specified properties were investigated. Since aerosol characterization is a prerequisite to assessing performance of particle generation equipment, techniques for characterizing aerosol were evaluated. Aerosol generation is discussed, and atomizer and photolytic generators including preparation of hydrosols (used with atomizers) and the evaluation of a flight version of an atomizer are studied.

  9. Micromechanical Characterization and Texture Analysis of Direct Cast Titanium Alloys Strips

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This research was conducted to determine a post-processing technique to optimize mechanical and material properties of a number of Titanium based alloys and aluminides processed via Melt Overflow Solidification Technique (MORST). This technique was developed by NASA for the development of thin sheet titanium and titanium aluminides used in high temperature applications. The materials investigated in this study included conventional titanium alloy strips and foils, Ti-1100, Ti-24Al-11Nb (Alpha-2), and Ti-48Al-2Ta (Gamma). The methodology used included micro-characterization, heat-treatment, mechanical processing and mechanical testing. Characterization techniques included optical, electron microscopy, and x-ray texture analysis. The processing included heat-treatment and mechanical deformation through cold rolling. The initial as-cast materials were evaluated for their microstructure and mechanical properties. Different heat-treatment and rolling steps were chosen to process these materials. The properties were evaluated further and a processing relationship was established in order to obtain an optimum processing condition. The results showed that the as-cast material exhibited a Widmanstatten (fine grain) microstructure that developed into a microstructure with larger grains through processing steps. The texture intensity showed little change for all processing performed in this investigation.

  10. LANDSAT-4 and LANDSAT-5 Multispectral Scanner Coherent Noise Characterization and Removal

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Alford, William L.

    1988-01-01

    A technique is described for characterizing the coherent noise found in LANDSAT-4 and LANDSAT-5 MSS data and a companion technique for filtering out the coherent noise. The techniques are demonstrated on LANDSAT-4 and LANDSAT-5 MSS data sets, and explanations of the noise pattern are suggested in Appendix C. A cookbook procedure for characterizing and filtering the coherent noise using special NASA/Goddard IDIMS functions is included. Also presented are analysis results from the retrofitted LANDSAT-5 MSS sensor, which shows that the coherent noise has been substantially reduced.

  11. Lidar Measurements for Desert Dust Characterization: An Overview

    NASA Technical Reports Server (NTRS)

    Mona, L.; Liu, Z.; Mueller, D.; Omar, A.; Papayannis, A.; Pappalardo, G.; Sugimoto, N.; Vaughan, M.

    2012-01-01

    We provide an overview of light detection and ranging (lidar) capability for describing and characterizing desert dust. This paper summarizes lidar techniques, observations, and fallouts of desert dust lidar measurements. The main objective is to provide the scientific community, including non-practitioners of lidar observations with a reference paper on dust lidar measurements. In particular, it will fill the current gap of communication between research-oriented lidar community and potential desert dust data users, such as air quality monitoring agencies and aviation advisory centers. The current capability of the different lidar techniques for the characterization of aerosol in general and desert dust in particular is presented. Technical aspects and required assumptions of these techniques are discussed, providing readers with the pros and cons of each technique. Information about desert dust collected up to date using lidar techniques is reviewed. Lidar techniques for aerosol characterization have a maturity level appropriate for addressing air quality and transportation issues, as demonstrated by some first results reported in this paper

  12. Automated quantitative micro-mineralogical characterization for environmental applications

    USGS Publications Warehouse

    Smith, Kathleen S.; Hoal, K.O.; Walton-Day, Katherine; Stammer, J.G.; Pietersen, K.

    2013-01-01

    Characterization of ore and waste-rock material using automated quantitative micro-mineralogical techniques (e.g., QEMSCAN® and MLA) has the potential to complement traditional acid-base accounting and humidity cell techniques when predicting acid generation and metal release. These characterization techniques, which most commonly are used for metallurgical, mineral-processing, and geometallurgical applications, can be broadly applied throughout the mine-life cycle to include numerous environmental applications. Critical insights into mineral liberation, mineral associations, particle size, particle texture, and mineralogical residence phase(s) of environmentally important elements can be used to anticipate potential environmental challenges. Resources spent on initial characterization result in lower uncertainties of potential environmental impacts and possible cost savings associated with remediation and closure. Examples illustrate mineralogical and textural characterization of fluvial tailings material from the upper Arkansas River in Colorado.

  13. Opto-electronic characterization of third-generation solar cells.

    PubMed

    Neukom, Martin; Züfle, Simon; Jenatsch, Sandra; Ruhstaller, Beat

    2018-01-01

    We present an overview of opto-electronic characterization techniques for solar cells including light-induced charge extraction by linearly increasing voltage, impedance spectroscopy, transient photovoltage, charge extraction and more. Guidelines for the interpretation of experimental results are derived based on charge drift-diffusion simulations of solar cells with common performance limitations. It is investigated how nonidealities like charge injection barriers, traps and low mobilities among others manifest themselves in each of the studied cell characterization techniques. Moreover, comprehensive parameter extraction for an organic bulk-heterojunction solar cell comprising PCDTBT:PC 70 BM is demonstrated. The simulations reproduce measured results of 9 different experimental techniques. Parameter correlation is minimized due to the combination of various techniques. Thereby a route to comprehensive and accurate parameter extraction is identified.

  14. Universal test fixture for monolithic mm-wave integrated circuits calibrated with an augmented TRD algorithm

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.; Shalkhauser, Kurt A.

    1989-01-01

    The design and evaluation of a novel fixturing technique for characterizing millimeter wave solid state devices is presented. The technique utilizes a cosine-tapered ridge guide fixture and a one-tier de-embedding procedure to produce accurate and repeatable device level data. Advanced features of this technique include nondestructive testing, full waveguide bandwidth operation, universality of application, and rapid, yet repeatable, chip-level characterization. In addition, only one set of calibration standards is required regardless of the device geometry.

  15. Nanoporous Gold: Fabrication, Characterization, and Applications

    PubMed Central

    Seker, Erkin; Reed, Michael L.; Begley, Matthew R.

    2009-01-01

    Nanoporous gold (np-Au) has intriguing material properties that offer potential benefits for many applications due to its high specific surface area, well-characterized thiol-gold surface chemistry, high electrical conductivity, and reduced stiffness. The research on np-Au has taken place on various fronts, including advanced microfabrication and characterization techniques to probe unusual nanoscale properties and applications spanning from fuel cells to electrochemical sensors. Here, we provide a review of the recent advances in np-Au research, with special emphasis on microfabrication and characterization techniques. We conclude the paper with a brief outline of challenges to overcome in the study of nanoporous metals.

  16. RF Testing Of Microwave Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Ponchak, G. E.; Shalkhauser, K. A.; Bhasin, K. B.

    1988-01-01

    Fixtures and techniques are undergoing development. Four test fixtures and two advanced techniques developed in continuing efforts to improve RF characterization of MMIC's. Finline/waveguide test fixture developed to test submodules of 30-GHz monolithic receiver. Universal commercially-manufactured coaxial test fixture modified to enable characterization of various microwave solid-state devices in frequency range of 26.5 to 40 GHz. Probe/waveguide fixture is compact, simple, and designed for non destructive testing of large number of MMIC's. Nondestructive-testing fixture includes cosine-tapered ridge, to match impedance wavequide to microstrip. Advanced technique is microwave-wafer probing. Second advanced technique is electro-optical sampling.

  17. Characterizing Materials Sources and Sinks; Current Approaches: Part II. Chemical and Physical Characterization

    EPA Science Inventory

    The paper discusses methods for characterizing chemical emissions from material sources, including laboratory, dynamic chamber, and full-scale studies. Indoor sources and their interaction with sinks play a major role in determining indoor air quality (IAQ). Techniques for evalua...

  18. Non-destructive evaluation of laboratory scale hydraulic fracturing using acoustic emission

    NASA Astrophysics Data System (ADS)

    Hampton, Jesse Clay

    The primary objective of this research is to develop techniques to characterize hydraulic fractures and fracturing processes using acoustic emission monitoring based on laboratory scale hydraulic fracturing experiments. Individual microcrack AE source characterization is performed to understand the failure mechanisms associated with small failures along pre-existing discontinuities and grain boundaries. Individual microcrack analysis methods include moment tensor inversion techniques to elucidate the mode of failure, crack slip and crack normal direction vectors, and relative volumetric deformation of an individual microcrack. Differentiation between individual microcrack analysis and AE cloud based techniques is studied in efforts to refine discrete fracture network (DFN) creation and regional damage quantification of densely fractured media. Regional damage estimations from combinations of individual microcrack analyses and AE cloud density plotting are used to investigate the usefulness of weighting cloud based AE analysis techniques with microcrack source data. Two granite types were used in several sample configurations including multi-block systems. Laboratory hydraulic fracturing was performed with sample sizes ranging from 15 x 15 x 25 cm3 to 30 x 30 x 25 cm 3 in both unconfined and true-triaxially confined stress states using different types of materials. Hydraulic fracture testing in rock block systems containing a large natural fracture was investigated in terms of AE response throughout fracture interactions. Investigations of differing scale analyses showed the usefulness of individual microcrack characterization as well as DFN and cloud based techniques. Individual microcrack characterization weighting cloud based techniques correlated well with post-test damage evaluations.

  19. General Analytical Schemes for the Characterization of Pectin-Based Edible Gelled Systems

    PubMed Central

    Haghighi, Maryam; Rezaei, Karamatollah

    2012-01-01

    Pectin-based gelled systems have gained increasing attention for the design of newly developed food products. For this reason, the characterization of such formulas is a necessity in order to present scientific data and to introduce an appropriate finished product to the industry. Various analytical techniques are available for the evaluation of the systems formulated on the basis of pectin and the designed gel. In this paper, general analytical approaches for the characterization of pectin-based gelled systems were categorized into several subsections including physicochemical analysis, visual observation, textural/rheological measurement, microstructural image characterization, and psychorheological evaluation. Three-dimensional trials to assess correlations among microstructure, texture, and taste were also discussed. Practical examples of advanced objective techniques including experimental setups for small and large deformation rheological measurements and microstructural image analysis were presented in more details. PMID:22645484

  20. Opto-electronic characterization of third-generation solar cells

    PubMed Central

    Jenatsch, Sandra

    2018-01-01

    Abstract We present an overview of opto-electronic characterization techniques for solar cells including light-induced charge extraction by linearly increasing voltage, impedance spectroscopy, transient photovoltage, charge extraction and more. Guidelines for the interpretation of experimental results are derived based on charge drift-diffusion simulations of solar cells with common performance limitations. It is investigated how nonidealities like charge injection barriers, traps and low mobilities among others manifest themselves in each of the studied cell characterization techniques. Moreover, comprehensive parameter extraction for an organic bulk-heterojunction solar cell comprising PCDTBT:PC70BM is demonstrated. The simulations reproduce measured results of 9 different experimental techniques. Parameter correlation is minimized due to the combination of various techniques. Thereby a route to comprehensive and accurate parameter extraction is identified. PMID:29707069

  1. Composite Characterization Using Ultrasonic Wavefield Techniques

    NASA Technical Reports Server (NTRS)

    Leckey, Cara A. C.; Juarez, Peter D.; Seebo, Jeffrey P.

    2016-01-01

    The large-scale use of composite components in aerospace applications is expected to continue due to the benefits of composite materials, such as reduced weight, increased strength, and tailorability. NASA's Advanced Composites Project (ACP) has the goals of reducing the timeline for certification of composite materials and enabling the expanded use of advanced composite materials. A key technical challenge area for accomplishing these goals is the need for nondestructive evaluation and materials characterization techniques that are optimized for rapid inspection and detailed defect/damage characterization in composite materials. This presentation will discuss ongoing research investigating the use of ultrasonic wavefield techniques for the characterization of defects such as fiber waviness and delamination damage. Ongoing work includes the development of realistic ultrasonic simulation tools for use in predicting the inspectability of composites and optimizing inspection methodologies. Recent studies on detecting/characterizing delamination damage and fiber waviness via wavefield methods will be described.

  2. Optical characterization of synthetic faceted gem materials grown from hydrothermal solutions

    NASA Astrophysics Data System (ADS)

    Lu, Taijin; Shigley, James E.

    1998-10-01

    Various non-destructive optical characterization techniques have been used to characterize and identify synthetic gem materials grown from hydrothermal solutions, to include ruby, sapphire, emerald, amethyst and ametrine (amethyst-citrine), from their natural counterparts. The ability to observe internal features, such as inclusions, dislocations, twins, color bands, and growth zoning in gem materials is strongly dependent on the observation techniques and conditions, since faceted gemstones have many polished surfaces which can reflect and scatter light in various directions which can make observation difficult. However, diagnostic gemological properties of these faceted synthetic gem materials can be obtained by choosing effective optical characterization methods, and by modifying optical instruments. Examples of some of the distinctive features of synthetic amethyst, ametrine, pink quartz, ruby and emerald are presented to illustrate means of optical characterization of gemstones. The ability to observe defects by light scattering techniques is discussed.

  3. High strain rate characterization of soft materials: past, present and possible futures

    NASA Astrophysics Data System (ADS)

    Siviour, Clive

    2015-06-01

    The high strain rate properties of low impedance materials have long been of interest to the community: the very first paper by Kolsky on his eponymous bars included data from man-made polymers and natural rubber. However, it has also long been recognized that characterizing soft or low impedance specimens under dynamic loading presents a number of challenges, mainly owing to the low sound speed in, and low stresses supported by, these materials. Over the past 20 years, significant progress has been made in high rate testing techniques, including better experimental design, more sensitive data acquisition and better understanding of specimen behavior. Further, a new generation of techniques, in which materials are characterized using travelling waves, rather than in a state of static equilibrium, promise to turn those properties that were previously a drawback into an advantage. This paper will give an overview of the history of high rate characterization, the current state of the art after an exciting couple of decades and some of the techniques currently being developed that have the potential to offer increased quality data in the future.

  4. Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review.

    PubMed

    Singh, Vivek Kumar; Rai, Awadhesh Kumar

    2011-09-01

    We review the different spectroscopic techniques including the most recent laser-induced breakdown spectroscopy (LIBS) for the characterization of materials in any phase (solid, liquid or gas) including biological materials. A brief history of the laser and its application in bioscience is presented. The development of LIBS, its working principle and its instrumentation (different parts of the experimental set up) are briefly summarized. The generation of laser-induced plasma and detection of light emitted from this plasma are also discussed. The merit and demerits of LIBS are discussed in comparison with other conventional analytical techniques. The work done using the laser in the biomedical field is also summarized. The analysis of different tissues, mineral analysis in different organs of the human body, characterization of different types of stone formed in the human body, analysis of biological aerosols using the LIBS technique are also summarized. The unique abilities of LIBS including detection of molecular species and calibration-free LIBS are compared with those of other conventional techniques including atomic absorption spectroscopy, inductively coupled plasma atomic emission spectroscopy and mass spectroscopy, and X-ray fluorescence.

  5. Comparison of Metal-Backed Free-Space and Open-Ended Coaxial Probe Techniques for the Dielectric Characterization of Aeronautical Composites †

    PubMed Central

    López-Rodríguez, Patricia; Escot-Bocanegra, David; Poyatos-Martínez, David; Weinmann, Frank

    2016-01-01

    The trend in the last few decades is that current unmanned aerial vehicles are completely made of composite materials rather than metallic, such as carbon-fiber or fiberglass composites. From the electromagnetic point of view, this fact forces engineers and scientists to assess how these materials may affect their radar response or their electronics in terms of electromagnetic compatibility. In order to evaluate this, electromagnetic characterization of different composite materials has become a need. Several techniques exist to perform this characterization, all of them based on the utilization of different sensors for measuring different parameters. In this paper, an implementation of the metal-backed free-space technique, based on the employment of antenna probes, is utilized for the characterization of composite materials that belong to an actual drone. Their extracted properties are compared with those given by a commercial solution, an open-ended coaxial probe (OECP). The discrepancies found between both techniques along with a further evaluation of the methodologies, including measurements with a split-cavity resonator, conclude that the implemented free-space technique provides more reliable results for this kind of composites than the OECP technique. PMID:27347966

  6. Standardization of chemical analytical techniques for pyrolysis bio-oil: history, challenges, and current status of methods

    DOE PAGES

    Ferrell, Jack R.; Olarte, Mariefel V.; Christensen, Earl D.; ...

    2016-07-05

    Here, we discuss the standardization of analytical techniques for pyrolysis bio-oils, including the current status of methods, and our opinions on future directions. First, the history of past standardization efforts is summarized, and both successful and unsuccessful validation of analytical techniques highlighted. The majority of analytical standardization studies to-date has tested only physical characterization techniques. In this paper, we present results from an international round robin on the validation of chemical characterization techniques for bio-oils. Techniques tested included acid number, carbonyl titrations using two different methods (one at room temperature and one at 80 °C), 31P NMR for determination ofmore » hydroxyl groups, and a quantitative gas chromatography–mass spectrometry (GC-MS) method. Both carbonyl titration and acid number methods have yielded acceptable inter-laboratory variabilities. 31P NMR produced acceptable results for aliphatic and phenolic hydroxyl groups, but not for carboxylic hydroxyl groups. As shown in previous round robins, GC-MS results were more variable. Reliable chemical characterization of bio-oils will enable upgrading research and allow for detailed comparisons of bio-oils produced at different facilities. Reliable analytics are also needed to enable an emerging bioenergy industry, as processing facilities often have different analytical needs and capabilities than research facilities. We feel that correlations in reliable characterizations of bio-oils will help strike a balance between research and industry, and will ultimately help to -determine metrics for bio-oil quality. Lastly, the standardization of additional analytical methods is needed, particularly for upgraded bio-oils.« less

  7. Standardization of chemical analytical techniques for pyrolysis bio-oil: history, challenges, and current status of methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrell, Jack R.; Olarte, Mariefel V.; Christensen, Earl D.

    Here, we discuss the standardization of analytical techniques for pyrolysis bio-oils, including the current status of methods, and our opinions on future directions. First, the history of past standardization efforts is summarized, and both successful and unsuccessful validation of analytical techniques highlighted. The majority of analytical standardization studies to-date has tested only physical characterization techniques. In this paper, we present results from an international round robin on the validation of chemical characterization techniques for bio-oils. Techniques tested included acid number, carbonyl titrations using two different methods (one at room temperature and one at 80 °C), 31P NMR for determination ofmore » hydroxyl groups, and a quantitative gas chromatography–mass spectrometry (GC-MS) method. Both carbonyl titration and acid number methods have yielded acceptable inter-laboratory variabilities. 31P NMR produced acceptable results for aliphatic and phenolic hydroxyl groups, but not for carboxylic hydroxyl groups. As shown in previous round robins, GC-MS results were more variable. Reliable chemical characterization of bio-oils will enable upgrading research and allow for detailed comparisons of bio-oils produced at different facilities. Reliable analytics are also needed to enable an emerging bioenergy industry, as processing facilities often have different analytical needs and capabilities than research facilities. We feel that correlations in reliable characterizations of bio-oils will help strike a balance between research and industry, and will ultimately help to -determine metrics for bio-oil quality. Lastly, the standardization of additional analytical methods is needed, particularly for upgraded bio-oils.« less

  8. A high temperature testing system for ceramic composites

    NASA Technical Reports Server (NTRS)

    Hemann, John

    1994-01-01

    Ceramic composites are presently being developed for high temperature use in heat engine and space power system applications. The operating temperature range is expected to be 1090 to 1650 C (2000 F to 3000 F). Very little material data is available at these temperatures and, therefore, it is desirable to thoroughly characterize the basic unidirectional fiber reinforced ceramic composite. This includes testing mainly for mechanical material properties at high temperatures. The proper conduct of such characterization tests requires the development of a tensile testing system includes unique gripping, heating, and strain measuring devices which require special considerations. The system also requires an optimized specimen shape. The purpose of this paper is to review various techniques for measuring displacements or strains, preferably at elevated temperatures. Due to current equipment limitations it is assumed that the specimen is to be tested at a temperature of 1430 C (2600F) in an oxidizing atmosphere. For the most part, previous high temperature material characterization tests, such as flexure and tensile tests, have been performed in inert atmospheres. Due to the harsh environment in which the ceramic specimen is to be tested, many conventional strain measuring techniques can not be applied. Initially a brief description of the more commonly used mechanical strain measuring techniques is given. Major advantages and disadvantages with their application to high temperature tensile testing of ceramic composites are discussed. Next, a general overview is given for various optical techniques. Advantages and disadvantages which are common to these techniques are noted. The optical methods for measuring strain or displacement are categorized into two sections. These include real-time techniques. Finally, an optical technique which offers optimum performance with the high temperature tensile testing of ceramic composites is recommended.

  9. The History of Electromagnetic Induction Techniques in Soil Survey

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Doolittle, Jim

    2014-05-01

    Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; assessing variations in soil texture, compaction, organic matter content, and pH; and determining the depth to subsurface horizons, stratigraphic layers or bedrock, among other uses. In all cases the soil property being investigated must influence soil apparent electrical conductivity (ECa) either directly or indirectly for EMI techniques to be effective. An increasing number and diversity of EMI sensors have been developed in response to users' needs and the availability of allied technologies, which have greatly improved the functionality of these tools. EMI investigations provide several benefits for soil studies. The large amount of georeferenced data that can be rapidly and inexpensively collected with EMI provides more complete characterization of the spatial variations in soil properties than traditional sampling techniques. In addition, compared to traditional soil survey methods, EMI can more effectively characterize diffuse soil boundaries and identify included areas of dissimilar soils within mapped soil units, giving soil scientists greater confidence when collecting spatial soil information. EMI techniques do have limitations; results are site-specific and can vary depending on the complex interactions among multiple and variable soil properties. Despite this, EMI techniques are increasingly being used to investigate the spatial variability of soil properties at field and landscape scales.

  10. Far-Field High-Energy Diffraction Microscopy: A Non-Destructive Tool for Characterizing the Microstructure and Micromechanical State of Polycrystalline Materials

    DOE PAGES

    Park, Jun-Sang; Zhang, Xuan; Kenesei, Peter; ...

    2017-08-31

    A suite of non-destructive, three-dimensional X-ray microscopy techniques have recently been developed and used to characterize the microstructures of polycrystalline materials. These techniques utilize high-energy synchrotron radiation and include near-field and far-field diffraction microscopy (NF- and FF-HEDM, respectively) and absorption tomography. Several compatible sample environments have also been developed, enabling a wide range of 3D studies of material evolution. In this article, the FF-HEDM technique is described in detail, including its implementation at the 1-ID beamline of the Advanced Photon Source. Examples of how the information obtained from FF-HEDM can be used to deepen our understanding of structure-property-processing relationships inmore » selected materials are presented.« less

  11. Fracture Characterization

    EPA Science Inventory

    The goal of this volume is to compare and assess various techniques for understanding fracture patterns at a site at Pease International Tradeport, NH, and to give an overview of the site as a whole. Techniques included are: core logging, geophysical logging, radar studies, and...

  12. Size characterization of airborne SiO2 nanoparticles with on-line and off-line measurement techniques: an interlaboratory comparison study

    NASA Astrophysics Data System (ADS)

    Motzkus, C.; Macé, T.; Gaie-Levrel, F.; Ducourtieux, S.; Delvallee, A.; Dirscherl, K.; Hodoroaba, V.-D.; Popov, I.; Popov, O.; Kuselman, I.; Takahata, K.; Ehara, K.; Ausset, P.; Maillé, M.; Michielsen, N.; Bondiguel, S.; Gensdarmes, F.; Morawska, L.; Johnson, G. R.; Faghihi, E. M.; Kim, C. S.; Kim, Y. H.; Chu, M. C.; Guardado, J. A.; Salas, A.; Capannelli, G.; Costa, C.; Bostrom, T.; Jämting, Å. K.; Lawn, M. A.; Adlem, L.; Vaslin-Reimann, S.

    2013-10-01

    Results of an interlaboratory comparison on size characterization of SiO2 airborne nanoparticles using on-line and off-line measurement techniques are discussed. This study was performed in the framework of Technical Working Area (TWA) 34—"Properties of Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS) in the project no. 3 "Techniques for characterizing size distribution of airborne nanoparticles". Two types of nano-aerosols, consisting of (1) one population of nanoparticles with a mean diameter between 30.3 and 39.0 nm and (2) two populations of non-agglomerated nanoparticles with mean diameters between, respectively, 36.2-46.6 nm and 80.2-89.8 nm, were generated for characterization measurements. Scanning mobility particle size spectrometers (SMPS) were used for on-line measurements of size distributions of the produced nano-aerosols. Transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were used as off-line measurement techniques for nanoparticles characterization. Samples were deposited on appropriate supports such as grids, filters, and mica plates by electrostatic precipitation and a filtration technique using SMPS controlled generation upstream. The results of the main size distribution parameters (mean and mode diameters), obtained from several laboratories, were compared based on metrological approaches including metrological traceability, calibration, and evaluation of the measurement uncertainty. Internationally harmonized measurement procedures for airborne SiO2 nanoparticles characterization are proposed.

  13. Characterizing multi-photon quantum interference with practical light sources and threshold single-photon detectors

    NASA Astrophysics Data System (ADS)

    Navarrete, Álvaro; Wang, Wenyuan; Xu, Feihu; Curty, Marcos

    2018-04-01

    The experimental characterization of multi-photon quantum interference effects in optical networks is essential in many applications of photonic quantum technologies, which include quantum computing and quantum communication as two prominent examples. However, such characterization often requires technologies which are beyond our current experimental capabilities, and today's methods suffer from errors due to the use of imperfect sources and photodetectors. In this paper, we introduce a simple experimental technique to characterize multi-photon quantum interference by means of practical laser sources and threshold single-photon detectors. Our technique is based on well-known methods in quantum cryptography which use decoy settings to tightly estimate the statistics provided by perfect devices. As an illustration of its practicality, we use this technique to obtain a tight estimation of both the generalized Hong‑Ou‑Mandel dip in a beamsplitter with six input photons and the three-photon coincidence probability at the output of a tritter.

  14. In-line charge-trapping characterization of dielectrics for sub-0.5-um CMOS technologies

    NASA Astrophysics Data System (ADS)

    Roy, Pradip K.; Chacon, Carlos M.; Ma, Yi; Horner, Gregory

    1997-09-01

    The advent of ultra-large and giga-scale-integration (ULSI/GSI) has placed considerable emphasis on the development of new gate oxides and interlevel dielectrics capable of meeting strict performance and reliability requirements. The costs and demands associated with ULSI fabrication have in turn fueled the need for cost-effective, rapid and accurate in-line characterization techniques for evaluating dielectric quality. The use of non-contact surface photovoltage characterization techniques provides cost-effective rapid feedback on dielectric quality, reducing costs through the reutilization of control wafers and the elimination of processing time. This technology has been applied to characterize most of the relevant C-V parameters, including flatband voltage (Vfb), density of interface traps (Dit), mobile charge density (Qm), oxide thickness (Tox), oxide resistivity (pox) and total charge (Qtot) for gate and interlevel (ILO) oxides. A novel method of measuring tunneling voltage by this technique on various gate oxides is discussed. For ILO, PECVD and high density plasma dielectrics, surface voltage maps are also presented. Measurements of near-surface silicon quality are described, including minority carrier generation lifetime, and examples of their application in diagnosing manufacturing problems.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balke, Nina; Bassiri-Gharb, Nazanin; Lichtensteiger, Céline

    Almost two decades beyond the inception of piezoresponse force microscopy (PFM) and the seminal papers by G€uthner and Dransfeld1 and Gruverman et al., the technique has become the prevailing approach for nanoscale functional characterization of polar materials and has been extended to the probing of other electromechanical effects through the advent of electrochemical strain microscopy (ESM). This focus issue celebrates some of the recent advances in the field and offers a wider outlook of polar materials and their overall characterization. In this paper, we cover topics that include discussions of the properties of traditional ferroelectrics, such as lead zirconate titanatemore » (PZT) and lithium niobate, relaxorferroelectrics, as well as more “exotic” ferroelectric oxides such as hafnia, ferroelectric biological matter, and multiferroic materials. Technique-oriented contributions include papers on the coupling of PFM with other characterization methods such as x-ray diffraction (XRD) and superconducting quantum interface device (SQUID), in addition to considerations on the open questions on the electromechanical response in biased scanning probe microscopy (SPM) techniques, including the effects of the laser spot placement on the readout cantilever displacement, the influence of the tip on the creation of the domain shapes, and the impact of ionic and electronic dynamics on the observed nanoscale hysteretic phenomena.« less

  16. A Novel Microcharacterization Technique in the Measurement of Strain and Orientation Gradient in Advanced Materials

    NASA Technical Reports Server (NTRS)

    Garmestai, H.; Harris, K.; Lourenco, L.

    1997-01-01

    Representation of morphology and evolution of the microstructure during processing and their relation to properties requires proper experimental techniques. Residual strains, lattice distortion, and texture (micro-texture) at the interface and the matrix of a layered structure or a functionally gradient material and their variation are among parameters important in materials characterization but hard to measure with present experimental techniques. Current techniques available to measure changes in interred material parameters (residual stress, micro-texture, microplasticity) produce results which are either qualitative or unreliable. This problem becomes even more complicated in the case of a temperature variation. These parameters affect many of the mechanical properties of advanced materials including stress-strain relation, ductility, creep, and fatigue. A review of some novel experimental techniques using recent advances in electron microscopy is presented here to measure internal stress, (micro)texture, interracial strength and (sub)grain formation and realignment. Two of these techniques are combined in the chamber of an Environmental Scanning Electron Microscope to measure strain and orientation gradients in advanced materials. These techniques which include Backscattered Kikuchi Diffractometry (BKD) and Microscopic Strain Field Analysis are used to characterize metallic and intermetallic matrix composites and superplastic materials. These techniques are compared with the more conventional x-ray diffraction and indentation techniques.

  17. Recent Experience Using Active Love Wave Techniques to Characterize Seismographic Station Sites

    NASA Astrophysics Data System (ADS)

    Martin, A. J.; Yong, A.; Salomone, L.

    2014-12-01

    Active-source Love waves recorded by the multi-channel analysis of surface wave (MASLW) technique were recently analyzed in two site characterization projects. Between 2010 and 2011, the 2009 American Recovery and Reinvestment Act (ARRA) funded GEOVision to conduct geophysical investigations at 189 seismographic stations—185 in California and 4 in the Central Eastern U.S. (CEUS). The original project plan was to utilize active and passive Rayleigh wave-based techniques to obtain shear-wave velocity (VS) profiles to a minimum depth of 30 m and the time-averaged VS of the upper 30 meters (VS30). Early in the investigation it became evident that Rayleigh wave techniques, such as multi-channel analysis of surface waves (MASRW), were not effective at characterizing all sites. Shear-wave seismic refraction and MASLW techniques were therefore applied. The MASLW technique was deployed at a total of 38 sites, in addition to other methods, and used as the primary technique to characterize 22 sites, 5 of which were also characterized using Rayleigh wave techniques. In 2012, the Electric Power Research Institute funded characterization of 33 CEUS station sites. Based on experience from the ARRA investigation, both MASRW and MASLW data were acquired by GEOVision at 24 CEUS sites—the remaining 9 sites and 2 overlapping sites were characterized by University of Texas, Austin. Of the 24 sites characterized by GEOVision, 16 were characterized using MASLW data, 4 using both MASLW and MASRW data and 4 using MASRW data. Love wave techniques were often found to perform better, or at least yield phase velocity data that could be more readily modeled using the fundamental mode assumption, at shallow rock sites, sites with steep velocity gradients, and, sites with a thin, low velocity, surficial soil layer overlying stiffer sediments. These types of velocity structure often excite dominant higher modes in Rayleigh wave data, but not in Love wave data. At such sites, it may be possible to model Rayleigh wave data using multi- or effective-mode techniques; however, in many cases extraction of adequate Rayleigh wave dispersion data for modeling was difficult. These results imply that field procedures should include careful scrutiny of Rayleigh wave-based dispersion data in order to collect Love wave data when warranted.

  18. Advanced NDE techniques for quantitative characterization of aircraft

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.; Winfree, William P.

    1990-01-01

    Recent advances in nondestructive evaluation (NDE) at NASA Langley Research Center and their applications that have resulted in quantitative assessment of material properties based on thermal and ultrasonic measurements are reviewed. Specific applications include ultrasonic determination of bolt tension, ultrasonic and thermal characterization of bonded layered structures, characterization of composite materials, and disbonds in aircraft skins.

  19. Advanced Modeling and Uncertainty Quantification for Flight Dynamics; Interim Results and Challenges

    NASA Technical Reports Server (NTRS)

    Hyde, David C.; Shweyk, Kamal M.; Brown, Frank; Shah, Gautam

    2014-01-01

    As part of the NASA Vehicle Systems Safety Technologies (VSST), Assuring Safe and Effective Aircraft Control Under Hazardous Conditions (Technical Challenge #3), an effort is underway within Boeing Research and Technology (BR&T) to address Advanced Modeling and Uncertainty Quantification for Flight Dynamics (VSST1-7). The scope of the effort is to develop and evaluate advanced multidisciplinary flight dynamics modeling techniques, including integrated uncertainties, to facilitate higher fidelity response characterization of current and future aircraft configurations approaching and during loss-of-control conditions. This approach is to incorporate multiple flight dynamics modeling methods for aerodynamics, structures, and propulsion, including experimental, computational, and analytical. Also to be included are techniques for data integration and uncertainty characterization and quantification. This research shall introduce new and updated multidisciplinary modeling and simulation technologies designed to improve the ability to characterize airplane response in off-nominal flight conditions. The research shall also introduce new techniques for uncertainty modeling that will provide a unified database model comprised of multiple sources, as well as an uncertainty bounds database for each data source such that a full vehicle uncertainty analysis is possible even when approaching or beyond Loss of Control boundaries. Methodologies developed as part of this research shall be instrumental in predicting and mitigating loss of control precursors and events directly linked to causal and contributing factors, such as stall, failures, damage, or icing. The tasks will include utilizing the BR&T Water Tunnel to collect static and dynamic data to be compared to the GTM extended WT database, characterizing flight dynamics in off-nominal conditions, developing tools for structural load estimation under dynamic conditions, devising methods for integrating various modeling elements into a real-time simulation capability, generating techniques for uncertainty modeling that draw data from multiple modeling sources, and providing a unified database model that includes nominal plus increments for each flight condition. This paper presents status of testing in the BR&T water tunnel and analysis of the resulting data and efforts to characterize these data using alternative modeling methods. Program challenges and issues are also presented.

  20. Exploring a Nearby Habitable World...Orbiting an M-Dwarf Star

    NASA Technical Reports Server (NTRS)

    Deming, Drake

    2010-01-01

    Topics include: the landscape of extrasolar planets and detection techniques, direct and indirect detection methods, summary of the known exoplanets, exploiting transits to characterize super earth atmospheres, how to characterize exoplanet atmospheres, and emitted or reflected spectra of hot Jupiters.

  1. Assessment of scaffold porosity: the new route of micro-CT.

    PubMed

    Bertoldi, Serena; Farè, Silvia; Tanzi, Maria Cristina

    2011-01-01

    A complete morphologic characterization of porous scaffolds for tissue engineering application is fundamental, as the architectural parameters, in particular porosity, strongly affect the mechanical and biological performance of the structures. Therefore, appropriate techniques for this purpose need to be selected. Several techniques for the assessment of scaffold porosity have been proposed, including Scanning Electron Microscopy observation, mercury and liquid extrusion porosimetry, gas pycnometry, and capillary flow porometry. Each of these techniques has several drawbacks and, a combination of different techniques is often required so as to achieve an in depth study of the morphologic properties of the scaffold. A single technique is often limited and suitable only for the assessment of a specific parameter. To overcome this limit, the most attractive option would be a single nondestructive technique, yet capable of providing a comprehensive set of data. It appears that micro-computed tomography (micro-CT) can potentially fulfill this role. Initially developed to characterize the 3D trabecular microarchitecture of bone, its use has been recently exploited by researchers for the morphologic characterization of porous biomaterials, as it enables obtaining a full assessment of the porous structures both in terms of pore size and interconnected porosity. This review aims to explore the use of micro-CT in scaffold characterization, comparing it with other previously developed techniques; we also focus on the contribution of this innovative tool to the development of scaffold-based tissue engineering application.

  2. UTILIZATION OF T-RFLP (TERMINAL RESTRICTION FRAGMENT LENGTH POLYMORPHISM) TO CHARACTERIZE MIXED ECTOMYCORRHIZAL FUNGAL COMMUNITIES

    EPA Science Inventory

    Studies of ectomycorrhizal community structure have used a variety of analytical regimens including sole or partial reliance on gross morphological characterization of colonized root tips. Depending on the rigor of the classification protocol, this technique can incorrectly assig...

  3. Measurement Sets and Sites Commonly Used for Characterization

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Ryan, Robert; Sellers, Richard; Davis, Bruce; Zanoni, Vicki

    2002-01-01

    Scientists at NASA's Earth Science Applications Directorate are creating a well-characterized Verification & Validation (V&V) site at the Stennis Space Center. This site enables the in-flight characterization of remote sensing systems and the data they acquire. The data are predominantly acquired by commercial, high spatial resolution satellite systems, such as IKONOS and QuickBird 2, and airborne systems. The smaller scale of these newer high resolution remote sensing systems allows scientists to characterize the geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active LIDAR systems. SSC employs geodetic targets, edge targets, radiometric tarps, and thermal calibration ponds to characterize remote sensing data products. This paper presents a proposed set of required measurements for visible through long-wave infrared remote sensing systems and a description of the Stennis characterization. Other topics discussed include: 1) The use of ancillary atmospheric and solar measurements taken at SSC that support various characterizations; 2) Additional sites used for radiometric, geometric, and spatial characterization in the continental United States; 3) The need for a standardized technique to be adopted by CEOS and other organizations.

  4. Physical characterization of uranium oxide pellets and powder applied in the Nuclear Forensics International Technical Working Group Collaborative Materials Exercise 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffiths, Grant; Keegan, E.; Young, E.

    Physical characterization is one of the most broad and important categories of techniques to apply in a nuclear forensic examination. Physical characterization techniques vary from simple weighing and dimensional measurements to complex sample preparation and scanning electron microscopy-electron backscatter diffraction analysis. This paper reports on the physical characterization conducted by several international laboratories participating in the fourth Collaborative Materials Exercise, organized by the Nuclear Forensics International Technical Working Group. Methods include a range of physical measurements, microscopy-based observations, and profilometry. In conclusion, the value of these results for addressing key investigative questions concerning two uranium dioxide pellets and a uraniummore » dioxide powder is discussed.« less

  5. Physical characterization of uranium oxide pellets and powder applied in the Nuclear Forensics International Technical Working Group Collaborative Materials Exercise 4

    DOE PAGES

    Griffiths, Grant; Keegan, E.; Young, E.; ...

    2018-01-06

    Physical characterization is one of the most broad and important categories of techniques to apply in a nuclear forensic examination. Physical characterization techniques vary from simple weighing and dimensional measurements to complex sample preparation and scanning electron microscopy-electron backscatter diffraction analysis. This paper reports on the physical characterization conducted by several international laboratories participating in the fourth Collaborative Materials Exercise, organized by the Nuclear Forensics International Technical Working Group. Methods include a range of physical measurements, microscopy-based observations, and profilometry. In conclusion, the value of these results for addressing key investigative questions concerning two uranium dioxide pellets and a uraniummore » dioxide powder is discussed.« less

  6. Techniques of Novel Writing.

    ERIC Educational Resources Information Center

    Burack, A. S., Ed.

    Forty novelists share their ideas and experience on various aspects of writing book-length fiction in this volume. Problems of technique, plotting, theme, characterization, planning, flashbacks, pace, suspense, dialogue, setting, and point of view are discussed by these contemporary authors. Some of the chapters and authors include: (1)…

  7. Updates on measurements and modeling techniques for expendable countermeasures

    NASA Astrophysics Data System (ADS)

    Gignilliat, Robert; Tepfer, Kathleen; Wilson, Rebekah F.; Taczak, Thomas M.

    2016-10-01

    The potential threat of recently-advertised anti-ship missiles has instigated research at the United States (US) Naval Research Laboratory (NRL) into the improvement of measurement techniques for visual band countermeasures. The goal of measurements is the collection of radiometric imagery for use in the building and validation of digital models of expendable countermeasures. This paper will present an overview of measurement requirements unique to the visual band and differences between visual band and infrared (IR) band measurements. A review of the metrics used to characterize signatures in the visible band will be presented and contrasted to those commonly used in IR band measurements. For example, the visual band measurements require higher fidelity characterization of the background, including improved high-transmittance measurements and better characterization of solar conditions to correlate results more closely with changes in the environment. The range of relevant engagement angles has also been expanded to include higher altitude measurements of targets and countermeasures. In addition to the discussion of measurement techniques, a top-level qualitative summary of modeling approaches will be presented. No quantitative results or data will be presented.

  8. Bayesian Integrated Microbial Forensics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarman, Kristin H.; Kreuzer-Martin, Helen W.; Wunschel, David S.

    2008-06-01

    In the aftermath of the 2001 anthrax letters, researchers have been exploring ways to predict the production environment of unknown source microorganisms. Different mass spectral techniques are being developed to characterize components of a microbe’s culture medium including water, carbon and nitrogen sources, metal ions added, and the presence of agar. Individually, each technique has the potential to identify one or two ingredients in a culture medium recipe. However, by integrating data from multiple mass spectral techniques, a more complete characterization is possible. We present a Bayesian statistical approach to integrated microbial forensics and illustrate its application on spores grownmore » in different culture media.« less

  9. Metalloproteomics: Forward and Reverse Approaches in Metalloprotein Structural and Functional Characterization

    PubMed Central

    Shi, Wuxian; Chance, Mark R.

    2010-01-01

    About one-third of all proteins are associated with a metal. Metalloproteomics is defined as the structural and functional characterization of metalloproteins on a genome-wide scale. The methodologies utilized in metalloproteomics, including both forward (bottom-up) and reverse (top-down) technologies, to provide information on the identity, quantity and function of metalloproteins are discussed. Important techniques frequently employed in metalloproteomics include classical proteomics tools such as mass spectrometry and 2-D gels, immobilized-metal affinity chromatography, bioinformatics sequence analysis and homology modeling, X-ray absorption spectroscopy and other synchrotron radiation based tools. Combinative applications of these techniques provide a powerful approach to understand the function of metalloproteins. PMID:21130021

  10. NMR characterization of polymers: Review and update

    USDA-ARS?s Scientific Manuscript database

    NMR spectroscopy is a major technique for the characterization and analysis of polymers. A large number of methodologies have been developed in both the liquid and the solid state, and the literature has grown considerably (1-5). The field now covers a broad spectrum of activities, including polym...

  11. Temporal and modal characterization of DoD source air toxic emission factors: final report

    EPA Science Inventory

    This project tested three, real-/near real-time monitoring techniques to develop air toxic emission factors for Department of Defense (DoD) platform sources. These techniques included: resonance enhanced multi photon ionization time of flight mass spectrometry (REMPI-TOFMS) for o...

  12. Myoglobin structure and function: A multiweek biochemistry laboratory project.

    PubMed

    Silverstein, Todd P; Kirk, Sarah R; Meyer, Scott C; Holman, Karen L McFarlane

    2015-01-01

    We have developed a multiweek laboratory project in which students isolate myoglobin and characterize its structure, function, and redox state. The important laboratory techniques covered in this project include size-exclusion chromatography, electrophoresis, spectrophotometric titration, and FTIR spectroscopy. Regarding protein structure, students work with computer modeling and visualization of myoglobin and its homologues, after which they spectroscopically characterize its thermal denaturation. Students also study protein function (ligand binding equilibrium) and are instructed on topics in data analysis (calibration curves, nonlinear vs. linear regression). This upper division biochemistry laboratory project is a challenging and rewarding one that not only exposes students to a wide variety of important biochemical laboratory techniques but also ties those techniques together to work with a single readily available and easily characterized protein, myoglobin. © 2015 International Union of Biochemistry and Molecular Biology.

  13. Characterization of Metal Powders Used for Additive Manufacturing.

    PubMed

    Slotwinski, J A; Garboczi, E J; Stutzman, P E; Ferraris, C F; Watson, S S; Peltz, M A

    2014-01-01

    Additive manufacturing (AM) techniques can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process.

  14. Quantitative Ultrasound for Nondestructive Characterization of Engineered Tissues and Biomaterials

    PubMed Central

    Dalecki, Diane; Mercado, Karla P.; Hocking, Denise C.

    2015-01-01

    Non-invasive, non-destructive technologies for imaging and quantitatively monitoring the development of artificial tissues are critical for the advancement of tissue engineering. Current standard techniques for evaluating engineered tissues, including histology, biochemical assays and mechanical testing, are destructive approaches. Ultrasound is emerging as a valuable tool for imaging and quantitatively monitoring the properties of engineered tissues and biomaterials longitudinally during fabrication and post-implantation. Ultrasound techniques are rapid, non-invasive, non-destructive and can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, high-frequency quantitative ultrasound techniques can enable volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation. This review provides an overview of ultrasound imaging, quantitative ultrasound techniques, and elastography, with representative examples of applications of these ultrasound-based techniques to the field of tissue engineering. PMID:26581347

  15. Biophotonic techniques for manipulation and characterization of drug delivery nanosystems in cancer therapy.

    PubMed

    Spyratou, E; Makropoulou, M; Mourelatou, E A; Demetzos, C

    2012-12-31

    Reactive oxygen species (ROS) are usually involved in two opposite procedures related to cancer: initiation, progression and metastasis of cancer, as well as in all non-surgical therapeutic approaches for cancer, including chemotherapy, radiotherapy and photodynamic therapy. This review is concentrated in new therapeutic strategies that take advantage of increased ROS in cancer cells to enhance therapeutic activity and selectivity. Novel biophotonic techniques for manipulation and characterization of drug delivery nanosystems in cancer therapy are discussed, including optical tweezers and atomic force microscopy. This review highlights how these techniques are playing a critical role in recent and future cancer fighting applications. We can conclude that Biophotonics and nanomedicine are the future for cancer biology and disease management, possessing unique potential for early detection, accurate diagnosis, dosimetry and personalized treatment of biomedical applications targeting cancer. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Preface to Special Topic: Piezoresponse Force Microscopy

    DOE PAGES

    Balke, Nina; Bassiri-Gharb, Nazanin; Lichtensteiger, Céline

    2015-08-19

    Almost two decades beyond the inception of piezoresponse force microscopy (PFM) and the seminal papers by G€uthner and Dransfeld1 and Gruverman et al., the technique has become the prevailing approach for nanoscale functional characterization of polar materials and has been extended to the probing of other electromechanical effects through the advent of electrochemical strain microscopy (ESM). This focus issue celebrates some of the recent advances in the field and offers a wider outlook of polar materials and their overall characterization. In this paper, we cover topics that include discussions of the properties of traditional ferroelectrics, such as lead zirconate titanatemore » (PZT) and lithium niobate, relaxorferroelectrics, as well as more “exotic” ferroelectric oxides such as hafnia, ferroelectric biological matter, and multiferroic materials. Technique-oriented contributions include papers on the coupling of PFM with other characterization methods such as x-ray diffraction (XRD) and superconducting quantum interface device (SQUID), in addition to considerations on the open questions on the electromechanical response in biased scanning probe microscopy (SPM) techniques, including the effects of the laser spot placement on the readout cantilever displacement, the influence of the tip on the creation of the domain shapes, and the impact of ionic and electronic dynamics on the observed nanoscale hysteretic phenomena.« less

  17. Speciation of individual mineral particles of micrometer size by the combined use of attenuated total reflectance-Fourier transform-infrared imaging and quantitative energy-dispersive electron probe X-ray microanalysis techniques.

    PubMed

    Jung, Hae-Jin; Malek, Md Abdul; Ryu, JiYeon; Kim, BoWha; Song, Young-Chul; Kim, HyeKyeong; Ro, Chul-Un

    2010-07-15

    Our previous work demonstrated for the first time the potential of the combined use of two techniques, attenuated total reflectance FT-IR (ATR-FT-IR) imaging and a quantitative energy-dispersive electron probe X-ray microanalysis, low-Z particle EPMA, for the characterization of individual aerosol particles. In this work, the speciation of mineral particles was performed on a single particle level for 24 mineral samples, including kaolinite, montmorillonite, vermiculite, talc, quartz, feldspar, calcite, gypsum, and apatite, by the combined use of ATR-FT-IR imaging and low-Z particle EPMA techniques. These two single particle analytical techniques provide complementary information, the ATR-FT-IR imaging on mineral types and low-Z particle EPMA on the morphology and elemental concentrations, on the same individual particles. This work demonstrates that the combined use of the two single particle analytical techniques can powerfully characterize externally heterogeneous mineral particle samples in detail and has great potential for the characterization of airborne mineral dust particles.

  18. Module Degradation Mechanisms Studied by a Multi-Scale Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Steve; Al-Jassim, Mowafak; Hacke, Peter

    2016-11-21

    A key pathway to meeting the Department of Energy SunShot 2020 goals is to reduce financing costs by improving investor confidence through improved photovoltaic (PV) module reliability. A comprehensive approach to further understand and improve PV reliability includes characterization techniques and modeling from module to atomic scale. Imaging techniques, which include photoluminescence, electroluminescence, and lock-in thermography, are used to locate localized defects responsible for module degradation. Small area samples containing such defects are prepared using coring techniques and are then suitable and available for microscopic study and specific defect modeling and analysis.

  19. SUBSURFACE CHARACTERIZATION AND MONITORING TECHNIQUES: A DESK REFERENCE GUIDE - VOLUME I: SOLIDS AND GROUND WATER - APPENDICES A AND B

    EPA Science Inventory

    Many EPA programs, including those under the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Response, Compensation, and Liability Act (CERCLA), require subsurface characterization and monitoring to detect ground-water contamination and provide data to devel...

  20. Infrared Imaging and Characterization of Exoplanets: Can we Detect Earth-Twins on a Budget?

    NASA Technical Reports Server (NTRS)

    Danchi, William

    2010-01-01

    During the past decade considerable progress has been made developing techniques that can be used to detect and characterize Earth twins in the mid- infrared (7-20 microns). The principal technique is called nulling interferometry, and it was invented by Bracewell in the late 1970's. The nulling technique is an interferometric equivalent of an optical coronagraph. At the present time most of the technological hurdles have been overcome for a space mission to be able to begin Phase A early in the next decade, and it is possible to detect and characterize Earth-twins on a mid- sized strategic mission budget ($600-800 million). I will review progress on this exciting method of planet detection in the context of recent work on the Exoplanet Community Forum and the US Decadal Survey (Astro2010), including biomarkers, technological progress, mission concepts, the theory of these instruments, and a.comparison of the discovery space of this technique with others also under consideration.

  1. Physicochemical characterization of allergens: quantity, identity, purity, aggregation and conformation.

    PubMed

    Koppelman, Stef J; Luykx, Dion M A M; de Jongh, Harmen H J; Veldhuizen, Willem Jan

    2009-01-01

    Allergens and allergoids can be characterized by means of physicochemical methods, resulting in a description of the protein on different structural levels. Several techniques are available and their suitability depends on the composition of the particular sample. Current European legislation on allergen products demands characterization of final products in particular focusing on identity, degree of modification (for allergoids) and stability of the composition. Structural parameters of allergens may be used to investigate the stability of an allergen product. The challenge is to identify and optimize techniques that allow determination of protein structure in the context of a formulated pharmaceutical product. As the majority of the products currently marketed are formulated with aluminium hydroxide or aluminium phosphate as a depot, most of the methods and techniques used for protein characterization in solution are not applicable. An additional hurdle is that allergen products are based on natural extracts, comprising a mixture of proteins, both allergens and non-allergens, sometimes in the presence of other uncharacterized components from the raw material. This paper describes which methods are suitable for the different stages of allergen product manufacturing, and how these relate to the current regulatory requirements. Some of the techniques are demonstrated using a model allergen, cod parvalbumin, and a chemically modified form thereof. We conclude that a variety of methods is available for characterization of proteins in solution, and that a limited number of techniques appear to be suitable for modified allergens (allergoids). Adaptation of existing methods, e.g. mass spectroscopy and infrared spectroscopy may be helpful to obtain protein parameters of allergens in a formulated allergen product. By choosing a combination of techniques, including those additional to physicochemical approaches, relevant parameters of allergens in formulated allergen products can be assessed in order to achieve a well-characterized pharmaceutical product.

  2. Self-Injury in the De Lange Syndrome.

    ERIC Educational Resources Information Center

    Singh, N. N.; Pulman, Ruth M.

    1979-01-01

    Psychological treatment techniques for the control of self-injury in a 13-year-old male with de Lange syndrome (a rare disorder characterized by retarded mental and physical development) are presented. Techniques, which included mild punishment, time out, and differential reinforcement, produced a clinically significant control of self-injurious…

  3. Non-destructive characterization of SiC coated carbon-carbon composites by multiple techniques

    NASA Astrophysics Data System (ADS)

    Nixon, Thomas D.; Hemstad, Stan N.; Pfeifer, William H.

    SiC coated carbon-carbon composites were evaluated using several non-destructive techniques as a means of quantifying the quality of both the coating and substrate. The techniques employed included dye penetrant infiltration, eddy current measurement, C-scan, and computed tomography (CT). The NDE results were then correlated to oxidation performance and destructive evaluations by electron and optical microscopy.

  4. Nondestructive Evaluation Techniques for Development and Characterization of Carbon Nanotube Based Superstructures

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz; Kim, Jae-Woo; Sauti, Godfrey; Wainwright, Elliot; Williams, Phillip; Siochi, Emile J.

    2014-01-01

    Recently, multiple commercial vendors have developed capability for the production of large-scale quantities of high-quality carbon nanotube sheets and yarns. While the materials have found use in electrical shielding applications, development of structural systems composed of a high volume fraction of carbon nanotubes is still lacking. A recent NASA program seeks to address this by prototyping a structural nanotube composite with strength-toweight ratio exceeding current state-of-the-art carbon fiber composites. Commercially available carbon nanotube sheets, tapes, and yarns are being processed into high volume fraction carbon nanotube-polymer nanocomposites. Nondestructive evaluation techniques have been applied throughout this development effort for material characterization and process control. This paper will report on the progress of these efforts, including magnetic characterization of residual catalyst content, Raman scattering characterization of nanotube diameter, defect ratio, and nanotube strain, and polarized Raman scattering for characterization of nanotube alignment.

  5. Steady-state low thermal resistance characterization apparatus: The bulk thermal tester

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burg, Brian R.; Kolly, Manuel; Blasakis, Nicolas

    The reliability of microelectronic devices is largely dependent on electronic packaging, which includes heat removal. The appropriate packaging design therefore necessitates precise knowledge of the relevant material properties, including thermal resistance and thermal conductivity. Thin materials and high conductivity layers make their thermal characterization challenging. A steady state measurement technique is presented and evaluated with the purpose to characterize samples with a thermal resistance below 100 mm{sup 2} K/W. It is based on the heat flow meter bar approach made up by two copper blocks and relies exclusively on temperature measurements from thermocouples. The importance of thermocouple calibration is emphasizedmore » in order to obtain accurate temperature readings. An in depth error analysis, based on Gaussian error propagation, is carried out. An error sensitivity analysis highlights the importance of the precise knowledge of the thermal interface materials required for the measurements. Reference measurements on Mo samples reveal a measurement uncertainty in the range of 5% and most accurate measurements are obtained at high heat fluxes. Measurement techniques for homogeneous bulk samples, layered materials, and protruding cavity samples are discussed. Ultimately, a comprehensive overview of a steady state thermal characterization technique is provided, evaluating the accuracy of sample measurements with thermal resistances well below state of the art setups. Accurate characterization of materials used in heat removal applications, such as electronic packaging, will enable more efficient designs and ultimately contribute to energy savings.« less

  6. Autonomous characterization of plastic-bonded explosives

    NASA Astrophysics Data System (ADS)

    Linder, Kim Dalton; DeRego, Paul; Gomez, Antonio; Baumgart, Chris

    2006-08-01

    Plastic-Bonded Explosives (PBXs) are a newer generation of explosive compositions developed at Los Alamos National Laboratory (LANL). Understanding the micromechanical behavior of these materials is critical. The size of the crystal particles and porosity within the PBX influences their shock sensitivity. Current methods to characterize the prominent structural characteristics include manual examination by scientists and attempts to use commercially available image processing packages. Both methods are time consuming and tedious. LANL personnel, recognizing this as a manually intensive process, have worked with the Kansas City Plant / Kirtland Operations to develop a system which utilizes image processing and pattern recognition techniques to characterize PBX material. System hardware consists of a CCD camera, zoom lens, two-dimensional, motorized stage, and coaxial, cross-polarized light. System integration of this hardware with the custom software is at the core of the machine vision system. Fundamental processing steps involve capturing images from the PBX specimen, and extraction of void, crystal, and binder regions. For crystal extraction, a Quadtree decomposition segmentation technique is employed. Benefits of this system include: (1) reduction of the overall characterization time; (2) a process which is quantifiable and repeatable; (3) utilization of personnel for intelligent review rather than manual processing; and (4) significantly enhanced characterization accuracy.

  7. In situ attosecond pulse characterization techniques to measure the electromagnetic phase

    NASA Astrophysics Data System (ADS)

    Spanner, M.; Bertrand, J. B.; Villeneuve, D. M.

    2016-08-01

    A number of techniques have been developed to characterize the attosecond emission from high-order-harmonic sources. These techniques are broadly classified as ex situ, where the attosecond pulse train photoionizes a target gas in the presence of an infrared field, and in situ, where the measurement takes place in the medium in which the attosecond pulses are generated. It is accepted that ex situ techniques measure the characteristics of the electromagnetic field, including the phase of the recombination transition moment of the emitting atom or molecule, when the phase of the second medium is known. However, there is debate about whether in situ techniques measure the electromagnetic field, or only the characteristics of the recolliding electron before recombination occurs. We show numerically that in situ measurements are not sensitive to the recombination phase, when implemented in the perturbative regime as originally envisioned, and that they do not measure the electromagnetic phase of the emission.

  8. SUBSURFACE CHARACTERIZATION AND MONITORING TECHNIQUES: A DESK REFERENCE GUIDE - VOLUME II: THE VADOSE ZONE, FIELD SCREENING AND ANALYTICAL METHODS - APPENDICES C AND D

    EPA Science Inventory

    Many EPA programs, including those under the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Response, Compensation, and Liability Act (CERCLA), require subsurface characterization and monitoring to detect ground-water contamination and provide data to deve...

  9. Characterization of Bond Strength of U-Mo Fuel Plates Using the Laser Shockwave Technique: Capabilities and Preliminary Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. A. Smith; D. L. Cottle; B. H. Rabin

    2013-09-01

    This report summarizes work conducted to-date on the implementation of new laser-based capabilities for characterization of bond strength in nuclear fuel plates, and presents preliminary results obtained from fresh fuel studies on as-fabricated monolithic fuel consisting of uranium-10 wt.% molybdenum alloys clad in 6061 aluminum by hot isostatic pressing. Characterization involves application of two complementary experimental methods, laser-shock testing and laser-ultrasonic imaging, collectively referred to as the Laser Shockwave Technique (LST), that allows the integrity, physical properties and interfacial bond strength in fuel plates to be evaluated. Example characterization results are provided, including measurement of layer thicknesses, elastic properties ofmore » the constituents, and the location and nature of generated debonds (including kissing bonds). LST provides spatially localized, non-contacting measurements with minimum specimen preparation, and is ideally suited for applications involving radioactive materials, including irradiated materials. The theoretical principles and experimental approaches employed in characterizing nuclear fuel plates are described, and preliminary bond strength measurement results are discussed, with emphasis on demonstrating the capabilities and limitations of these methods. These preliminary results demonstrate the ability to distinguish bond strength variations between different fuel plates. Although additional development work is necessary to validate and qualify the test methods, these results suggest LST is viable as a method to meet fuel qualification requirements to demonstrate acceptable bonding integrity.« less

  10. Analysis of in-service failures and advances in microstructural characterization. Microstructural science Volume 26

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramovici, E.; Northwood, D.O.; Shehata, M.T.

    1999-01-01

    The contents include Analysis of In-Service Failures (tutorials, transportation industry, corrosion and materials degradation, electronic and advanced materials); 1998 Sorby Award Lecture by Kay Geels, Struers A/S (Metallographic Preparation from Sorby to the Present); Advances in Microstructural Characterization (characterization techniques using high resolution and focused ion beam, characterization of microstructural clustering and correlation with performance); Advanced Applications (advanced alloys and intermetallic compounds, plasma spray coatings and other surface coatings, corrosion, and materials degradation).

  11. Chemical Fingerprinting of Materials Developed Due To Environmental Issues

    NASA Technical Reports Server (NTRS)

    Smith, Doris A.; McCool, A. (Technical Monitor)

    2000-01-01

    This paper presents viewgraphs on chemical fingerprinting of materials developed due to environmental issues. Some of the topics include: 1) Aerospace Materials; 2) Building Blocks of Capabilities; 3) Spectroscopic Techniques; 4) Chromatographic Techniques; 5) Factors that Determine Fingerprinting Approach; and 6) Fingerprinting: Combination of instrumental analysis methods that diagnostically characterize a material.

  12. Biochemistry and Molecular Biology Techniques for Person Characterization

    ERIC Educational Resources Information Center

    Herrero, Salvador; Ivorra, Jose Luis; Garcia-Sogo, Magdalena; Martinez-Cortina, Carmen

    2008-01-01

    Using the traditional serological tests and the most novel techniques for DNA fingerprinting, forensic scientists scan different traits that vary from person to person and use the data to include or exclude suspects based on matching with the evidence obtained in a criminal case. Although the forensic application of these methods is well known,…

  13. Characterization of Metal Powders Used for Additive Manufacturing

    PubMed Central

    Slotwinski, JA; Garboczi, EJ; Stutzman, PE; Ferraris, CF; Watson, SS; Peltz, MA

    2014-01-01

    Additive manufacturing (AM) techniques1 can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process. PMID:26601040

  14. The diagnostic capability of laser induced fluorescence in the characterization of excised breast tissues

    NASA Astrophysics Data System (ADS)

    Galmed, A. H.; Elshemey, Wael M.

    2017-08-01

    Differentiating between normal, benign and malignant excised breast tissues is one of the major worldwide challenges that need a quantitative, fast and reliable technique in order to avoid personal errors in diagnosis. Laser induced fluorescence (LIF) is a promising technique that has been applied for the characterization of biological tissues including breast tissue. Unfortunately, only few studies have adopted a quantitative approach that can be directly applied for breast tissue characterization. This work provides a quantitative means for such characterization via introduction of several LIF characterization parameters and determining the diagnostic accuracy of each parameter in the differentiation between normal, benign and malignant excised breast tissues. Extensive analysis on 41 lyophilized breast samples using scatter diagrams, cut-off values, diagnostic indices and receiver operating characteristic (ROC) curves, shows that some spectral parameters (peak height and area under the peak) are superior for characterization of normal, benign and malignant breast tissues with high sensitivity (up to 0.91), specificity (up to 0.91) and accuracy ranking (highly accurate).

  15. Characterization of Axial Inducer Cavitation Instabilities via High Speed Video Recordings

    NASA Technical Reports Server (NTRS)

    Arellano, Patrick; Peneda, Marinelle; Ferguson, Thomas; Zoladz, Thomas

    2011-01-01

    Sub-scale water tests were undertaken to assess the viability of utilizing high resolution, high frame-rate digital video recordings of a liquid rocket engine turbopump axial inducer to characterize cavitation instabilities. These high speed video (HSV) images of various cavitation phenomena, including higher order cavitation, rotating cavitation, alternating blade cavitation, and asymmetric cavitation, as well as non-cavitating flows for comparison, were recorded from various orientations through an acrylic tunnel using one and two cameras at digital recording rates ranging from 6,000 to 15,700 frames per second. The physical characteristics of these cavitation forms, including the mechanisms that define the cavitation frequency, were identified. Additionally, these images showed how the cavitation forms changed and transitioned from one type (tip vortex) to another (sheet cavitation) as the inducer boundary conditions (inlet pressures) were changed. Image processing techniques were developed which tracked the formation and collapse of cavitating fluid in a specified target area, both in the temporal and frequency domains, in order to characterize the cavitation instability frequency. The accuracy of the analysis techniques was found to be very dependent on target size for higher order cavitation, but much less so for the other phenomena. Tunnel-mounted piezoelectric, dynamic pressure transducers were present throughout these tests and were used as references in correlating the results obtained by image processing. Results showed good agreement between image processing and dynamic pressure spectral data. The test set-up, test program, and test results including H-Q and suction performance, dynamic environment and cavitation characterization, and image processing techniques and results will be discussed.

  16. Characterization of Structure and Damage in Materials in Four Dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, I. M.; Schuh, C. A.; Vetrano, J. S.

    2010-09-30

    The materials characterization toolbox has recently experienced a number of parallel revolutionary advances, foreshadowing a time in the near future when materials scientists can quantify material structure across orders of magnitude in length and time scales (i.e., in four dimensions) completely. This paper presents a viewpoint on the materials characterization field, reviewing its recent past, evaluating its present capabilities, and proposing directions for its future development. Electron microscopy; atom-probe tomography; X-ray, neutron and electron tomography; serial sectioning tomography; and diffraction-based analysis methods are reviewed, and opportunities for their future development are highlighted. Particular attention is paid to studies that havemore » pioneered the synergetic use of multiple techniques to provide complementary views of a single structure or process; several of these studies represent the state-of-the-art in characterization, and suggest a trajectory for the continued development of the field. Based on this review, a set of grand challenges for characterization science is identified, including suggestions for instrumentation advances, scientific problems in microstructure analysis, and complex structure evolution problems involving materials damage. The future of microstructural characterization is proposed to be one not only where individual techniques are pushed to their limits, but where the community devises strategies of technique synergy to address complex multiscale problems in materials science and engineering.« less

  17. Characterization of Type Three Secretion System Translocator Interactions with Phospholipid Membranes.

    PubMed

    Adam, Philip R; Barta, Michael L; Dickenson, Nicholas E

    2017-01-01

    In vitro characterization of type III secretion system (T3SS) translocator proteins has proven challenging due to complex purification schemes and their hydrophobic nature that often requires detergents to provide protein solubility and stability. Here, we provide experimental details for several techniques that overcome these hurdles, allowing for the direct characterization of the Shigella translocator protein IpaB with respect to phospholipid membrane interaction. The techniques specifically discussed in this chapter include membrane interaction/liposome flotation, liposome sensitive fluorescence quenching, and protein-mediated liposome disruption assays. These assays have provided valuable insight into the role of IpaB in T3SS-mediated phospholipid membrane interactions by Shigella and should readily extend to other members of this important class of proteins.

  18. Composite Materials Characterization and Development at AFWAL

    NASA Technical Reports Server (NTRS)

    Browning, C. E.

    1984-01-01

    The development of test methodology for characterizing matrix dominated failure modes is discussed emphasizing issues of matrix cracking, delamination under static loading, and the relationship of composite properties to matrix properties. Both strength characterization and classical techniques of linear elastic fracture mechanics were examined. Materials development studies are also discussed. Major areas of interest include acetylene-terminated and bismaleimide resins for 350 to 450 deg use, thermoplastics development, and failure resistant composite concepts.

  19. Application of thermal analysis techniques in activated carbon production

    USGS Publications Warehouse

    Donnals, G.L.; DeBarr, J.A.; Rostam-Abadi, M.; Lizzio, A.A.; Brady, T.A.

    1996-01-01

    Thermal analysis techniques have been used at the ISGS as an aid in the development and characterization of carbon adsorbents. Promising adsorbents from fly ash, tires, and Illinois coals have been produced for various applications. Process conditions determined in the preparation of gram quantities of carbons were used as guides in the preparation of larger samples. TG techniques developed to characterize the carbon adsorbents included the measurement of the kinetics of SO2 adsorption, the performance of rapid proximate analyses, and the determination of equilibrium methane adsorption capacities. Thermal regeneration of carbons was assessed by TG to predict the life cycle of carbon adsorbents in different applications. TPD was used to determine the nature of surface functional groups and their effect on a carbon's adsorption properties.

  20. Radar polarimetry - Analysis tools and applications

    NASA Technical Reports Server (NTRS)

    Evans, Diane L.; Farr, Tom G.; Van Zyl, Jakob J.; Zebker, Howard A.

    1988-01-01

    The authors have developed several techniques to analyze polarimetric radar data from the NASA/JPL airborne SAR for earth science applications. The techniques determine the heterogeneity of scatterers with subregions, optimize the return power from these areas, and identify probable scattering mechanisms for each pixel in a radar image. These techniques are applied to the discrimination and characterization of geologic surfaces and vegetation cover, and it is found that their utility varies depending on the terrain type. It is concluded that there are several classes of problems amenable to single-frequency polarimetric data analysis, including characterization of surface roughness and vegetation structure, and estimation of vegetation density. Polarimetric radar remote sensing can thus be a useful tool for monitoring a set of earth science parameters.

  1. Food sensing: selection and characterization of DNA aptamers to Alicyclobacillus spores for trapping and detection from orange juice.

    PubMed

    Hünniger, Tim; Fischer, Christin; Wessels, Hauke; Hoffmann, Antonia; Paschke-Kratzin, Angelika; Haase, Ilka; Fischer, Markus

    2015-03-04

    The quality of the beverage industry's products has to be constantly monitored to fulfill consumers' high expectations. The thermo-acidophilic Gram-positive Alicyclobacillus spp. are not pathogenic, but their heat-resistant endospores can survive juice-processing conditions and have become a major economic concern for the fruit juice industry. Current detection methods rely on cultivation, isolation, and organism identification, which can take up to a week, resulting in economic loss. This work presents the selection and identification of DNA aptamers targeting Alicyclobacillus spores by spore-SELEX (systematic evolution of ligands by exponential enrichment) in orange-juice-simulating buffer. The selection process was verified by various techniques, including flow cytometric binding assays, radioactive binding assays, and agarose gel electrophoresis. The subsequent aptamer characterization included the determination of dissociations constants and selectivity by different techniques, such as surface plasmon resonance spectroscopy and fluorescence microscopy. In summary, 10 different aptamers with an affinity to Alicyclobacillus spp. have been developed, analyzed, and characterized in terms of affinity and specificity.

  2. Real-time holographic deconvolution techniques for one-way image transmission through an aberrating medium: characterization, modeling, and measurements.

    PubMed

    Haji-Saeed, B; Sengupta, S K; Testorf, M; Goodhue, W; Khoury, J; Woods, C L; Kierstead, J

    2006-05-10

    We propose and demonstrate a new photorefractive real-time holographic deconvolution technique for adaptive one-way image transmission through aberrating media by means of four-wave mixing. In contrast with earlier methods, which typically required various codings of the exact phase or two-way image transmission for correcting phase distortion, our technique relies on one-way image transmission through the use of exact phase information. Our technique can simultaneously correct both amplitude and phase distortions. We include several forms of image degradation, various test cases, and experimental results. We characterize the performance as a function of the input beam ratios for four metrics: signal-to-noise ratio, normalized root-mean-square error, edge restoration, and peak-to-total energy ratio. In our characterization we use false-color graphic images to display the best beam-intensity ratio two-dimensional region(s) for each of these metrics. Test cases are simulated at the optimal values of the beam-intensity ratios. We demonstrate our results through both experiment and computer simulation.

  3. Raman microspectroscopy, surface-enhanced Raman scattering microspectroscopy, and stable-isotope Raman microspectroscopy for biofilm characterization.

    PubMed

    Ivleva, Natalia P; Kubryk, Patrick; Niessner, Reinhard

    2017-07-01

    Biofilms represent the predominant form of microbial life on our planet. These aggregates of microorganisms, which are embedded in a matrix formed by extracellular polymeric substances, may colonize nearly all interfaces. Detailed knowledge of microorganisms enclosed in biofilms as well as of the chemical composition, structure, and functions of the complex biofilm matrix and their changes at different stages of the biofilm formation and under various physical and chemical conditions is relevant in different fields. Important research topics include the development and improvement of antibiotics and medical devices and the optimization of biocides, antifouling strategies, and biological wastewater treatment. Raman microspectroscopy is a capable and nondestructive tool that can provide detailed two-dimensional and three-dimensional chemical information about biofilm constituents with the spatial resolution of an optical microscope and without interference from water. However, the sensitivity of Raman microspectroscopy is rather limited, which hampers the applicability of Raman microspectroscopy especially at low biomass concentrations. Fortunately, the resonance Raman effect as well as surface-enhanced Raman scattering can help to overcome this drawback. Furthermore, the combination of Raman microspectroscopy with other microscopic techniques, mass spectrometry techniques, or particularly with stable-isotope techniques can provide comprehensive information on monospecies and multispecies biofilms. Here, an overview of different Raman microspectroscopic techniques, including resonance Raman microspectroscopy and surface-enhanced Raman scattering microspectroscopy, for in situ detection, visualization, identification, and chemical characterization of biofilms is given, and the main feasibilities and limitations of these techniques in biofilm research are presented. Future possibilities of and challenges for Raman microspectroscopy alone and in combination with other analytical techniques for characterization of complex biofilm matrices are discussed in a critical review. Graphical Abstract Applicability of Raman microspectroscopy for biofilm analysis.

  4. An integrated approach using orthogonal analytical techniques to characterize heparan sulfate structure.

    PubMed

    Beccati, Daniela; Lech, Miroslaw; Ozug, Jennifer; Gunay, Nur Sibel; Wang, Jing; Sun, Elaine Y; Pradines, Joël R; Farutin, Victor; Shriver, Zachary; Kaundinya, Ganesh V; Capila, Ishan

    2017-02-01

    Heparan sulfate (HS), a glycosaminoglycan present on the surface of cells, has been postulated to have important roles in driving both normal and pathological physiologies. The chemical structure and sulfation pattern (domain structure) of HS is believed to determine its biological function, to vary across tissue types, and to be modified in the context of disease. Characterization of HS requires isolation and purification of cell surface HS as a complex mixture. This process may introduce additional chemical modification of the native residues. In this study, we describe an approach towards thorough characterization of bovine kidney heparan sulfate (BKHS) that utilizes a variety of orthogonal analytical techniques (e.g. NMR, IP-RPHPLC, LC-MS). These techniques are applied to characterize this mixture at various levels including composition, fragment level, and overall chain properties. The combination of these techniques in many instances provides orthogonal views into the fine structure of HS, and in other instances provides overlapping / confirmatory information from different perspectives. Specifically, this approach enables quantitative determination of natural and modified saccharide residues in the HS chains, and identifies unusual structures. Analysis of partially digested HS chains allows for a better understanding of the domain structures within this mixture, and yields specific insights into the non-reducing end and reducing end structures of the chains. This approach outlines a useful framework that can be applied to elucidate HS structure and thereby provides means to advance understanding of its biological role and potential involvement in disease progression. In addition, the techniques described here can be applied to characterization of heparin from different sources.

  5. Microstructural and Defect Characterization in Ceramic Composites Using an Ultrasonic Guided Wave Scan System

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Cosgriff, L. M.; Martin, R. E.; Verrilli, M. J.; Bhatt, R. T.

    2003-01-01

    In this study, an ultrasonic guided wave scan system was used to characterize various microstructural and flaw conditions in two types of ceramic matrix composites, SiC/SiC and C/SiC. Rather than attempting to isolate specific lamb wave modes to use for characterization (as is desired for many types of guided wave inspection problems), the guided wave scan system utilizes the total (multi-mode) ultrasonic response in its inspection analysis. Several time and frequency-domain parameters are calculated from the ultrasonic guided wave signal at each scan location to form images. Microstructural and defect conditions examined include delamination, density variation, cracking, and pre/ post-infiltration. Results are compared with thermographic imaging methods. Although the guided wave technique is commonly used so scanning can be eliminated, applying the technique in the scanning mode allows a more precise characterization of defect conditions.

  6. The Characterization of Biosignatures in Caves Using an Instrument Suite

    NASA Astrophysics Data System (ADS)

    Uckert, Kyle; Chanover, Nancy J.; Getty, Stephanie; Voelz, David G.; Brinckerhoff, William B.; McMillan, Nancy; Xiao, Xifeng; Boston, Penelope J.; Li, Xiang; McAdam, Amy; Glenar, David A.; Chavez, Arriana

    2017-12-01

    The search for life and habitable environments on other Solar System bodies is a major motivator for planetary exploration. Due to the difficulty and significance of detecting extant or extinct extraterrestrial life in situ, several independent measurements from multiple instrument techniques will bolster the community's confidence in making any such claim. We demonstrate the detection of subsurface biosignatures using a suite of instrument techniques including IR reflectance spectroscopy, laser-induced breakdown spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy. We focus our measurements on subterranean calcium carbonate field samples, whose biosignatures are analogous to those that might be expected on some high-interest astrobiology targets. In this work, we discuss the feasibility and advantages of using each of the aforementioned instrument techniques for the in situ search for biosignatures and present results on the autonomous characterization of biosignatures using multivariate statistical analysis techniques.

  7. The Characterization of Biosignatures in Caves Using an Instrument Suite.

    PubMed

    Uckert, Kyle; Chanover, Nancy J; Getty, Stephanie; Voelz, David G; Brinckerhoff, William B; McMillan, Nancy; Xiao, Xifeng; Boston, Penelope J; Li, Xiang; McAdam, Amy; Glenar, David A; Chavez, Arriana

    2017-12-01

    The search for life and habitable environments on other Solar System bodies is a major motivator for planetary exploration. Due to the difficulty and significance of detecting extant or extinct extraterrestrial life in situ, several independent measurements from multiple instrument techniques will bolster the community's confidence in making any such claim. We demonstrate the detection of subsurface biosignatures using a suite of instrument techniques including IR reflectance spectroscopy, laser-induced breakdown spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy. We focus our measurements on subterranean calcium carbonate field samples, whose biosignatures are analogous to those that might be expected on some high-interest astrobiology targets. In this work, we discuss the feasibility and advantages of using each of the aforementioned instrument techniques for the in situ search for biosignatures and present results on the autonomous characterization of biosignatures using multivariate statistical analysis techniques. Key Words: Biosignature suites-Caves-Mars-Life detection. Astrobiology 17, 1203-1218.

  8. Optical technique to study the impact of heavy rain on aircraft performance

    NASA Technical Reports Server (NTRS)

    Hess, C. F.; Li, F.

    1985-01-01

    A laser based technique was investigated and shown to have the potential to obtain measurements of the size and velocity of water droplets used in a wind tunnel to simulate rain. A theoretical model was developed which included some simple effects due to droplet nonsphericity. Parametric studies included the variation of collection distance (up to 4 m), angle of collection, effect of beam interference by the spray, and droplet shape. Accurate measurements were obtained under extremely high liquid water content and spray interference. The technique finds applications in the characterization of two phase flows where the size and velocity of particles are needed.

  9. Diluted magnetic oxides

    NASA Astrophysics Data System (ADS)

    Li, XiaoLi; Qi, ShiFei; Jiang, FengXian; Quan, ZhiYong; Xu, XiaoHong

    2013-01-01

    In this review, we review the progress of research on ZnO- and In2O3-based diluted magnetic oxides (DMOs). Firstly, we present the preparation and characterization of DMOs. The former includes the preparation methods and conditions, and the latter includes the characterization techniques for measuring microstructures. Secondly, we introduce the magnetic and transport properties of DMOs, as well as the relationship between them. Thirdly, the origin and mechanism of the ferromagnetism are discussed. Fourthly, we introduce other related work, including computational work and pertinent heterogeneous structures, such as multilayers and magnetic tunnel junctions. Finally, we provide an overview and outlook for DMOs.

  10. The Effects of Practice-Based Training on Graduate Teaching Assistants’ Classroom Practices

    PubMed Central

    Becker, Erin A.; Easlon, Erin J.; Potter, Sarah C.; Guzman-Alvarez, Alberto; Spear, Jensen M.; Facciotti, Marc T.; Igo, Michele M.; Singer, Mitchell; Pagliarulo, Christopher

    2017-01-01

    Evidence-based teaching is a highly complex skill, requiring repeated cycles of deliberate practice and feedback to master. Despite existing well-characterized frameworks for practice-based training in K–12 teacher education, the major principles of these frameworks have not yet been transferred to instructor development in higher educational contexts, including training of graduate teaching assistants (GTAs). We sought to determine whether a practice-based training program could help GTAs learn and use evidence-based teaching methods in their classrooms. We implemented a weekly training program for introductory biology GTAs that included structured drills of techniques selected to enhance student practice, logic development, and accountability and reduce apprehension. These elements were selected based on their previous characterization as dimensions of active learning. GTAs received regular performance feedback based on classroom observations. To quantify use of target techniques and levels of student participation, we collected and coded 160 h of video footage. We investigated the relationship between frequency of GTA implementation of target techniques and student exam scores; however, we observed no significant relationship. Although GTAs adopted and used many of the target techniques with high frequency, techniques that enforced student participation were not stably adopted, and their use was unresponsive to formal feedback. We also found that techniques discussed in training, but not practiced, were not used at quantifiable frequencies, further supporting the importance of practice-based training for influencing instructional practices. PMID:29146664

  11. Supramolecular Systems and Chemical Reactions in Single-Molecule Break Junctions.

    PubMed

    Li, Xiaohui; Hu, Duan; Tan, Zhibing; Bai, Jie; Xiao, Zongyuan; Yang, Yang; Shi, Jia; Hong, Wenjing

    2017-04-01

    The major challenges of molecular electronics are the understanding and manipulation of the electron transport through the single-molecule junction. With the single-molecule break junction techniques, including scanning tunneling microscope break junction technique and mechanically controllable break junction technique, the charge transport through various single-molecule and supramolecular junctions has been studied during the dynamic fabrication and continuous characterization of molecular junctions. This review starts from the charge transport characterization of supramolecular junctions through a variety of noncovalent interactions, such as hydrogen bond, π-π interaction, and electrostatic force. We further review the recent progress in constructing highly conductive molecular junctions via chemical reactions, the response of molecular junctions to external stimuli, as well as the application of break junction techniques in controlling and monitoring chemical reactions in situ. We suggest that beyond the measurement of single molecular conductance, the single-molecule break junction techniques provide a promising access to study molecular assembly and chemical reactions at the single-molecule scale.

  12. Joint spectral characterization of photon-pair sources

    NASA Astrophysics Data System (ADS)

    Zielnicki, Kevin; Garay-Palmett, Karina; Cruz-Delgado, Daniel; Cruz-Ramirez, Hector; O'Boyle, Michael F.; Fang, Bin; Lorenz, Virginia O.; U'Ren, Alfred B.; Kwiat, Paul G.

    2018-06-01

    The ability to determine the joint spectral properties of photon pairs produced by the processes of spontaneous parametric downconversion (SPDC) and spontaneous four-wave mixing (SFWM) is crucial for guaranteeing the usability of heralded single photons and polarization-entangled pairs for multi-photon protocols. In this paper, we compare six different techniques that yield either a characterization of the joint spectral intensity or of the closely related purity of heralded single photons. These six techniques include: (i) scanning monochromator measurements, (ii) a variant of Fourier transform spectroscopy designed to extract the desired information exploiting a resource-optimized technique, (iii) dispersive fibre spectroscopy, (iv) stimulated-emission-based measurement, (v) measurement of the second-order correlation function ? for one of the two photons, and (vi) two-source Hong-Ou-Mandel interferometry. We discuss the relative performance of these techniques for the specific cases of a SPDC source designed to be factorable and SFWM sources of varying purity, and compare the techniques' relative advantages and disadvantages.

  13. Experimental analysis of computer system dependability

    NASA Technical Reports Server (NTRS)

    Iyer, Ravishankar, K.; Tang, Dong

    1993-01-01

    This paper reviews an area which has evolved over the past 15 years: experimental analysis of computer system dependability. Methodologies and advances are discussed for three basic approaches used in the area: simulated fault injection, physical fault injection, and measurement-based analysis. The three approaches are suited, respectively, to dependability evaluation in the three phases of a system's life: design phase, prototype phase, and operational phase. Before the discussion of these phases, several statistical techniques used in the area are introduced. For each phase, a classification of research methods or study topics is outlined, followed by discussion of these methods or topics as well as representative studies. The statistical techniques introduced include the estimation of parameters and confidence intervals, probability distribution characterization, and several multivariate analysis methods. Importance sampling, a statistical technique used to accelerate Monte Carlo simulation, is also introduced. The discussion of simulated fault injection covers electrical-level, logic-level, and function-level fault injection methods as well as representative simulation environments such as FOCUS and DEPEND. The discussion of physical fault injection covers hardware, software, and radiation fault injection methods as well as several software and hybrid tools including FIAT, FERARI, HYBRID, and FINE. The discussion of measurement-based analysis covers measurement and data processing techniques, basic error characterization, dependency analysis, Markov reward modeling, software-dependability, and fault diagnosis. The discussion involves several important issues studies in the area, including fault models, fast simulation techniques, workload/failure dependency, correlated failures, and software fault tolerance.

  14. Exploring Characterizations of Learning Object Repositories Using Data Mining Techniques

    NASA Astrophysics Data System (ADS)

    Segura, Alejandra; Vidal, Christian; Menendez, Victor; Zapata, Alfredo; Prieto, Manuel

    Learning object repositories provide a platform for the sharing of Web-based educational resources. As these repositories evolve independently, it is difficult for users to have a clear picture of the kind of contents they give access to. Metadata can be used to automatically extract a characterization of these resources by using machine learning techniques. This paper presents an exploratory study carried out in the contents of four public repositories that uses clustering and association rule mining algorithms to extract characterizations of repository contents. The results of the analysis include potential relationships between different attributes of learning objects that may be useful to gain an understanding of the kind of resources available and eventually develop search mechanisms that consider repository descriptions as a criteria in federated search.

  15. Emerging technologies for the non-invasive characterization of physical-mechanical properties of tablets.

    PubMed

    Dave, Vivek S; Shahin, Hend I; Youngren-Ortiz, Susanne R; Chougule, Mahavir B; Haware, Rahul V

    2017-10-30

    The density, porosity, breaking force, viscoelastic properties, and the presence or absence of any structural defects or irregularities are important physical-mechanical quality attributes of popular solid dosage forms like tablets. The irregularities associated with these attributes may influence the drug product functionality. Thus, an accurate and efficient characterization of these properties is critical for successful development and manufacturing of a robust tablets. These properties are mainly analyzed and monitored with traditional pharmacopeial and non-pharmacopeial methods. Such methods are associated with several challenges such as lack of spatial resolution, efficiency, or sample-sparing attributes. Recent advances in technology, design, instrumentation, and software have led to the emergence of newer techniques for non-invasive characterization of physical-mechanical properties of tablets. These techniques include near infrared spectroscopy, Raman spectroscopy, X-ray microtomography, nuclear magnetic resonance (NMR) imaging, terahertz pulsed imaging, laser-induced breakdown spectroscopy, and various acoustic- and thermal-based techniques. Such state-of-the-art techniques are currently applied at various stages of development and manufacturing of tablets at industrial scale. Each technique has specific advantages or challenges with respect to operational efficiency and cost, compared to traditional analytical methods. Currently, most of these techniques are used as secondary analytical tools to support the traditional methods in characterizing or monitoring tablet quality attributes. Therefore, further development in the instrumentation and software, and studies on the applications are necessary for their adoption in routine analysis and monitoring of tablet physical-mechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A Brief History of the use of Electromagnetic Induction Techniques in Soil Survey

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Doolittle, James

    2017-04-01

    Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; assessing variations in soil texture, compaction, organic matter content, and pH; and determining the depth to subsurface horizons, stratigraphic layers or bedrock, among other uses. In all cases the soil property being investigated must influence soil apparent electrical conductivity (ECa) either directly or indirectly for EMI techniques to be effective. An increasing number and diversity of EMI sensors have been developed in response to users' needs and the availability of allied technologies, which have greatly improved the functionality of these tools and increased the amount and types of data that can be gathered with a single pass. EMI investigations provide several benefits for soil studies. The large amount of georeferenced data that can be rapidly and inexpensively collected with EMI provides more complete characterization of the spatial variations in soil properties than traditional sampling techniques. In addition, compared to traditional soil survey methods, EMI can more effectively characterize diffuse soil boundaries and identify included areas of dissimilar soils within mapped soil units, giving soil scientists greater confidence when collecting spatial soil information. EMI techniques do have limitations; results are site-specific and can vary depending on the complex interactions among multiple and variable soil properties. Despite this, EMI techniques are increasingly being used to investigate the spatial variability of soil properties at field and landscape scales. The future should witness a greater use of multiple-frequency and multiple-coil EMI sensors and integration with other sensors to assess the spatial variability of soil properties. Data analysis will be improved with advanced processing and presentation systems and more sophisticated geostatistical modeling algorithms will be developed and used to interpolate EMI data, improve the resolution of subsurface features, and assess soil properties.

  17. Proceedings of Damping 1993, volume 3

    NASA Astrophysics Data System (ADS)

    Portis, Bonnie L.

    1993-06-01

    Presented are individual papers of Damping '93, held 24-26 February 1993 in San Francisco. The subjects included: passive damping concepts; passive damping analysis and design techniques; optimization; damped control/structure interaction; viscoelastic material testing and characterization; highly damped materials; vibration suppression techniques; damping identification and dynamic testing; applications to aircraft; space structures; Marine structures; and commercial products; defense applications; and payoffs of vibration suppression.

  18. Proceedings of Damping 1993, volume 1

    NASA Astrophysics Data System (ADS)

    Portis, Bonnie L.

    1993-06-01

    Presented are individual papers of Damping '93 held 24-26 February, 1993, in San Francisco. The subjects included: passive damping concepts; passive damping analysis and design techniques; optimization; damped control/structure interaction; viscoelastic material testing and characterization; highly damped materials; vibration suppression techniques; damping identification and dynamic testing; application to aircraft; space structures; marine structures; commercial products; defense applications; and payoffs of vibration suppression.

  19. Recent trends in particle size analysis techniques

    NASA Technical Reports Server (NTRS)

    Kang, S. H.

    1984-01-01

    Recent advances and developments in the particle-sizing technologies are briefly reviewed in accordance with three operating principles including particle size and shape descriptions. Significant trends of the particle size analysing equipment recently developed show that compact electronic circuitry and rapid data processing systems were mainly adopted in the instrument design. Some newly developed techniques characterizing the particulate system were also introduced.

  20. Studying metal impurities (Mn2+, Cu2+, Fe3+) in calcium phosphates by electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Iskhakova, K.; Murzakhanov, F.; Mamin, G.; Putlyaev, V.; Klimashina, E.; Fadeeva, I.; Fomin, A.; Barinov, S.; Maltsev, A.; Bakhteev, S.; Yusupov, R.; Gafurov, M.; Orlinskii, S.

    2018-05-01

    Calcium phosphates (CaP) are exploited in many fields of science, including geology, chemistry, biology and medicine due to their abundance in the nature and presence in the living organism. Various analytical and biochemical methods are used for controlling their chemical content, structure, morphology, etc. Unfortunately, magnetic resonance techniques are usually not even considered as necessary tools for CaP inspection. Some aspects of application of the commercially realized electron paramagnetic resonance (EPR) approaches for characterization of CaP powders and ceramics (including the nanosized materails) such as hydroxyapatite and tricalcium phosphates of biogenic and synthetic origins containing intrinsic impurities or intentional dopants are demonstrated. The key features and advantages of the EPR techniques for CaP based materials characterization that could compliment the data obtained with the recognized analytical methods are pointed out.

  1. Identifying and Characterizing Kinetic Instabilities using Solar Wind Observations of Non-Maxwellian Plasmas

    NASA Astrophysics Data System (ADS)

    Klein, K. G.

    2016-12-01

    Weakly collisional plasmas, of the type typically observed in the solar wind, are commonly in a state other than local thermodynamic equilibrium. This deviation from a Maxwellian velocity distribution can be characterized by pressure anisotropies, disjoint beams streaming at differing speeds, leptokurtic distributions at large energies, and other non-thermal features. As these features may be artifacts of dynamic processes, including the the acceleration and expansion of the solar wind, and as the free energy contained in these features can drive kinetic micro-instabilities, accurate measurement and modeling of these features is essential for characterizing the solar wind. After a review of these features, a technique is presented for the efficient calculation of kinetic instabilities associated with a general, non-Maxwellian plasma. As a proof of principle, this technique is applied to bi-Maxwellian systems for which kinetic instability thresholds are known, focusing on parameter scans including beams and drifting heavy minor ions. The application of this technique to fits of velocity distribution functions from current, forthcoming, and proposed missions including WIND, DSCOVR, Solar Probe Plus, and THOR, as well as the underlying measured distribution functions, is discussed. Particular attention is paid to the effects of instrument pointing and integration time, as well as potential deviation between instabilities associated with the Maxwellian fits and those associated with the observed, potentially non-Maxwellian, velocity distribution. Such application may further illuminate the role instabilities play in the evolution of the solar wind.

  2. Dynamic Loading and Characterization of Fiber-Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Sierakowski, Robert L.; Chaturvedi, Shive K.

    1997-02-01

    Emphasizing polymer based fiber-reinforced composites, this book is designed to provide readers with a significant understanding of the complexities involved in characterizing dynamic events and the corresponding response of advanced fiber composite materials and structures. These elements include dynamic loading devices, material properties characterization, analytical and experimental techniques to assess the damage and failure modes associated with various dynamic loading events. Concluding remarks are presented throughout the text which summarize key points and raise issues related to important research needed.

  3. Characterization of agricultural land using singular value decomposition

    NASA Astrophysics Data System (ADS)

    Herries, Graham M.; Danaher, Sean; Selige, Thomas

    1995-11-01

    A method is defined and tested for the characterization of agricultural land from multi-spectral imagery, based on singular value decomposition (SVD) and key vector analysis. The SVD technique, which bears a close resemblance to multivariate statistic techniques, has previously been successfully applied to problems of signal extraction for marine data and forestry species classification. In this study the SVD technique is used as a classifier for agricultural regions, using airborne Daedalus ATM data, with 1 m resolution. The specific region chosen is an experimental research farm in Bavaria, Germany. This farm has a large number of crops, within a very small region and hence is not amenable to existing techniques. There are a number of other significant factors which render existing techniques such as the maximum likelihood algorithm less suitable for this area. These include a very dynamic terrain and tessellated pattern soil differences, which together cause large variations in the growth characteristics of the crops. The SVD technique is applied to this data set using a multi-stage classification approach, removing unwanted land-cover classes one step at a time. Typical classification accuracy's for SVD are of the order of 85-100%. Preliminary results indicate that it is a fast and efficient classifier with the ability to differentiate between crop types such as wheat, rye, potatoes and clover. The results of characterizing 3 sub-classes of Winter Wheat are also shown.

  4. Advanced solid-state NMR spectroscopy of natural organic matter.

    PubMed

    Mao, Jingdong; Cao, Xiaoyan; Olk, Dan C; Chu, Wenying; Schmidt-Rohr, Klaus

    2017-05-01

    Solid-state NMR is essential for the characterization of natural organic matter (NOM) and is gaining importance in geosciences and environmental sciences. This review is intended to highlight advanced solid-state NMR techniques, especially a systematic approach to NOM characterization, and their applications to the study of NOM. We discuss some basics of how to acquire high-quality and quantitative solid-state 13 C NMR spectra, and address some common technical mistakes that lead to unreliable spectra of NOM. The identification of specific functional groups in NOM, primarily based on 13 C spectral-editing techniques, is described and the theoretical background of some recently-developed spectral-editing techniques is provided. Applications of solid-state NMR to investigating nitrogen (N) in NOM are described, focusing on limitations of the widely used 15 N CP/MAS experiment and the potential of improved advanced NMR techniques for characterizing N forms in NOM. Then techniques used for identifying proximities, heterogeneities and domains are reviewed, and some examples provided. In addition, NMR techniques for studying segmental dynamics in NOM are reviewed. We also briefly discuss applications of solid-state NMR to NOM from various sources, including soil organic matter, aquatic organic matter, organic matter in atmospheric particulate matter, carbonaceous meteoritic organic matter, and fossil fuels. Finally, examples of NMR-based structural models and an outlook are provided. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. High strain-rate soft material characterization via inertial cavitation

    NASA Astrophysics Data System (ADS)

    Estrada, Jonathan B.; Barajas, Carlos; Henann, David L.; Johnsen, Eric; Franck, Christian

    2018-03-01

    Mechanical characterization of soft materials at high strain-rates is challenging due to their high compliance, slow wave speeds, and non-linear viscoelasticity. Yet, knowledge of their material behavior is paramount across a spectrum of biological and engineering applications from minimizing tissue damage in ultrasound and laser surgeries to diagnosing and mitigating impact injuries. To address this significant experimental hurdle and the need to accurately measure the viscoelastic properties of soft materials at high strain-rates (103-108 s-1), we present a minimally invasive, local 3D microrheology technique based on inertial microcavitation. By combining high-speed time-lapse imaging with an appropriate theoretical cavitation framework, we demonstrate that this technique has the capability to accurately determine the general viscoelastic material properties of soft matter as compliant as a few kilopascals. Similar to commercial characterization algorithms, we provide the user with significant flexibility in evaluating several constitutive laws to determine the most appropriate physical model for the material under investigation. Given its straightforward implementation into most current microscopy setups, we anticipate that this technique can be easily adopted by anyone interested in characterizing soft material properties at high loading rates including hydrogels, tissues and various polymeric specimens.

  6. Defect Characterization, Imaging, and Control in Wide-Bandgap Semiconductors and Devices

    NASA Astrophysics Data System (ADS)

    Brillson, L. J.; Foster, G. M.; Cox, J.; Ruane, W. T.; Jarjour, A. B.; Gao, H.; von Wenckstern, H.; Grundmann, M.; Wang, B.; Look, D. C.; Hyland, A.; Allen, M. W.

    2018-03-01

    Wide-bandgap semiconductors are now leading the way to new physical phenomena and device applications at nanoscale dimensions. The impact of defects on the electronic properties of these materials increases as their size decreases, motivating new techniques to characterize and begin to control these electronic states. Leading these advances have been the semiconductors ZnO, GaN, and related materials. This paper highlights the importance of native point defects in these semiconductors and describes how a complement of spatially localized surface science and spectroscopy techniques in three dimensions can characterize, image, and begin to control these electronic states at the nanoscale. A combination of characterization techniques including depth-resolved cathodoluminescence spectroscopy, surface photovoltage spectroscopy, and hyperspectral imaging can describe the nature and distribution of defects at interfaces at both bulk and nanoscale surfaces, their metal interfaces, and inside nanostructures themselves. These features as well as temperature and mechanical strain inside wide-bandgap device structures at the nanoscale can be measured even while these devices are operating. These advanced capabilities enable several new directions for describing defects at the nanoscale, showing how they contribute to device degradation, and guiding growth processes to control them.

  7. Thermal characterization of gallium nitride p-i-n diodes

    NASA Astrophysics Data System (ADS)

    Dallas, J.; Pavlidis, G.; Chatterjee, B.; Lundh, J. S.; Ji, M.; Kim, J.; Kao, T.; Detchprohm, T.; Dupuis, R. D.; Shen, S.; Graham, S.; Choi, S.

    2018-02-01

    In this study, various thermal characterization techniques and multi-physics modeling were applied to understand the thermal characteristics of GaN vertical and quasi-vertical power diodes. Optical thermography techniques typically used for lateral GaN device temperature assessment including infrared thermography, thermoreflectance thermal imaging, and Raman thermometry were applied to GaN p-i-n diodes to determine if each technique is capable of providing insight into the thermal characteristics of vertical devices. Of these techniques, thermoreflectance thermal imaging and nanoparticle assisted Raman thermometry proved to yield accurate results and are the preferred methods of thermal characterization of vertical GaN diodes. Along with this, steady state and transient thermoreflectance measurements were performed on vertical and quasi-vertical GaN p-i-n diodes employing GaN and Sapphire substrates, respectively. Electro-thermal modeling was performed to validate measurement results and to demonstrate the effect of current crowding on the thermal response of quasi-vertical diodes. In terms of mitigating the self-heating effect, both the steady state and transient measurements demonstrated the superiority of the tested GaN-on-GaN vertical diode compared to the tested GaN-on-Sapphire quasi-vertical structure.

  8. Quality Characterization of Silicon Bricks using Photoluminescence Imaging and Photoconductive Decay: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, S.; Yan, F.; Zaunbrecher, K.

    2012-06-01

    Imaging techniques can be applied to multicrystalline silicon solar cells throughout the production process, which includes as early as when the bricks are cut from the cast ingot. Photoluminescence (PL) imaging of the band-to-band radiative recombination is used to characterize silicon quality and defects regions within the brick. PL images of the brick surfaces are compared to minority-carrier lifetimes measured by resonant-coupled photoconductive decay (RCPCD). Photoluminescence images on silicon bricks can be correlated to lifetime measured by photoconductive decay and could be used for high-resolution characterization of material before wafers are cut. The RCPCD technique has shown the longest lifetimesmore » of any of the lifetime measurement techniques we have applied to the bricks. RCPCD benefits from the low-frequency and long-excitation wavelengths used. In addition, RCPCD is a transient technique that directly monitors the decay rate of photoconductivity and does not rely on models or calculations for lifetime. The measured lifetimes over brick surfaces have shown strong correlations to the PL image intensities; therefore, this correlation could then be used to transform the PL image into a high-resolution lifetime map.« less

  9. DIFFUSION-WEIGHTED IMAGING OF THE LIVER: TECHNIQUES AND APPLICATIONS

    PubMed Central

    Lewis, Sara; Dyvorne, Hadrien; Cui, Yong; Taouli, Bachir

    2014-01-01

    SYNOPSIS Diffusion weighted MRI (DWI) is a technique that assesses the cellularity, tortuosity of the extracellular/extravascular space and cell membrane density based upon differences in water proton mobility in tissues. The strength of the diffusion weighting is reflected by the b-value. DWI using several b-values enables quantification of the apparent diffusion coefficient (ADC). DWI is increasingly employed in liver imaging for multiple reasons: it can add useful qualitative and quantitative information to conventional imaging sequences, it is acquired relatively quickly, it is easily incorporated into existing clinical protocols, and it is a non-contrast technique. DWI is useful for focal liver lesion detection and characterization, for the assessment of post-treatment tumor response and for evaluation of diffuse liver disease. ADC quantification can be used to characterize lesions as cystic/necrotic or solid and for predicting tumor response to therapy. Advanced diffusion methods such as IVIM (intravoxel incoherent motion) may have potential for detection, staging and evaluation of the progression of liver fibrosis and for liver lesion characterization. The lack of standardization of DWI technique including choice of b-values and sequence parameters has somewhat limited its widespread adoption. PMID:25086935

  10. Diagnosis of toxoplasmosis and typing of Toxoplasma gondii.

    PubMed

    Liu, Quan; Wang, Ze-Dong; Huang, Si-Yang; Zhu, Xing-Quan

    2015-05-28

    Toxoplasmosis, caused by the obligate intracellular protozoan Toxoplasma gondii, is an important zoonosis with medical and veterinary importance worldwide. The disease is mainly contracted by ingesting undercooked or raw meat containing viable tissue cysts, or by ingesting food or water contaminated with oocysts. The diagnosis and genetic characterization of T. gondii infection is crucial for the surveillance, prevention and control of toxoplasmosis. Traditional approaches for the diagnosis of toxoplasmosis include etiological, immunological and imaging techniques. Diagnosis of toxoplasmosis has been improved by the emergence of molecular technologies to amplify parasite nucleic acids. Among these, polymerase chain reaction (PCR)-based molecular techniques have been useful for the genetic characterization of T. gondii. Serotyping methods based on polymorphic polypeptides have the potential to become the choice for typing T. gondii in humans and animals. In this review, we summarize conventional non-DNA-based diagnostic methods, and the DNA-based molecular techniques for the diagnosis and genetic characterization of T. gondii. These techniques have provided foundations for further development of more effective and accurate detection of T. gondii infection. These advances will contribute to an improved understanding of the epidemiology, prevention and control of toxoplasmosis.

  11. A far-infrared spatial/spectral Fourier interferometry laboratory-based testbed instrument

    NASA Astrophysics Data System (ADS)

    Spencer, Locke D.; Naylor, David A.; Scott, Jeremy P.; Weiler, Vince F.; MacCrimmon, Roderick K.; Sitwell, Geoffrey R. H.; Ade, Peter A. R.

    2016-07-01

    We describe the current status, including preliminary design, characterization efforts, and recent progress, in the development of a spatial/spectral double Fourier laboratory-based interferometer testbed instrument within the Astronomical Instrumentation Group (AIG) laboratories at the University of Lethbridge, Canada (UL). Supported by CRC, CFI, and NSERC grants, this instrument development will provide laboratory demonstration of spatial-spectral interferometry with a concentration of furthering progress in areas including the development of spatial/spectral interferometry observation, data processing, characterization, and analysis techniques in the Far-Infrared (FIR) region of the electromagnetic spectrum.

  12. Evaluating software development by analysis of changes: The data from the software engineering laboratory

    NASA Technical Reports Server (NTRS)

    1982-01-01

    An effective data collection methodology for evaluating software development methodologies was applied to four different software development projects. Goals of the data collection included characterizing changes and errors, characterizing projects and programmers, identifying effective error detection and correction techniques, and investigating ripple effects. The data collected consisted of changes (including error corrections) made to the software after code was written and baselined, but before testing began. Data collection and validation were concurrent with software development. Changes reported were verified by interviews with programmers.

  13. 10.3 High-temperature Instrumentation

    NASA Technical Reports Server (NTRS)

    Piazza, Anthony

    2008-01-01

    This viewgraph presentation describes high temperature instrumentation development from 1960-1970, 1980-1990 and 2000-present. The contents include: 1) Background; 2) Objective; 3) Application and Sensor; 4) Attachment Techniques; 5) Evaluation/Characterization Testing; and 6) Future testing.

  14. ATLAS OF SOURCE EMISSION PARTICLES

    EPA Science Inventory

    An atlas of various source emission particles characterized by electron optical techniques has been compiled for use by air pollution investigators. The particles studied were emitted by mobile, stationary, and natural sources. Sources included automobiles, manufacturing operatio...

  15. Characterization and measurement of polymer wear

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Aron, P. R.

    1984-01-01

    Analytical tools which characterize the polymer wear process are discussed. The devices discussed include: visual observation of polymer wear with SEM, the quantification with surface profilometry and ellipsometry, to study the chemistry with AES, XPS and SIMS, to establish interfacial polymer orientation and accordingly bonding with QUARTIR, polymer state with Raman spectroscopy and stresses that develop in polymer films using a X-ray double crystal camera technique.

  16. Vapor phase diamond growth technology

    NASA Technical Reports Server (NTRS)

    Angus, J. C.

    1981-01-01

    Ion beam deposition chambers used for carbon film generation were designed and constructed. Features of the developed equipment include: (1) carbon ion energies down to approx. 50 eV; (2) in suit surface monitoring with HEED; (3) provision for flooding the surface with ultraviolet radiation; (4) infrared laser heating of substrate; (5) residual gas monitoring; (6) provision for several source gases, including diborane for doping studies; and (7) growth from either hydrocarbon source gases or from carbon/argon arc sources. Various analytical techniques for characterization of from carbon/argon arc sources. Various analytical techniques for characterization of the ion deposited carbon films used to establish the nature of the chemical bonding and crystallographic structure of the films are discussed. These include: H2204/HN03 etch; resistance measurements; hardness tests; Fourier transform infrared spectroscopy; scanning auger microscopy; electron spectroscopy for chemical analysis; electron diffraction and energy dispersive X-ray analysis; electron energy loss spectroscopy; density measurements; secondary ion mass spectroscopy; high energy electron diffraction; and electron spin resonance. Results of the tests are summarized.

  17. Characterization of the Roman curse tablet

    NASA Astrophysics Data System (ADS)

    Liu, Wen; Zhang, Boyang; Fu, Lin

    2017-08-01

    The Roman curse tablet, produced in ancient Rome period, is a metal plate that inscribed with curses. In this research, several techniques were used to find out the physical structure and chemical composition of the Roman curse tablet, and testified the hypothesis that whether the tablet is made of pure lead or lead alloy. A sample of Roman Curse Tablet from the Johns Hopkins Archaeological Museum was analyzed using several different characterization techniques to determine the physical structure and chemical composition. The characterization techniques used were including optical microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). Because of the small sample size, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and X-ray fluorescence (XRF) cannot test the sample. Results from optical microscopy and SEM, enlarged images of the sample surface were studied. The result revealed that the sample surface has a rough, non-uniform, and grainy surface. AFM provides three-dimensional topography of the sample surface, studying the sample surface in atomic level. DSC studies the thermal property, which is most likely a lead-alloy, not a pure lead. However, none of these tests indicated anything about the chemical composition. Future work will be required due to the lack of measures finding out its chemical composition. Therefore, from these characterization techniques above, the Roman curse tablet sample is consisted of lead alloy, not pure lead.

  18. Proceedings of Damping 1993, volume 2

    NASA Astrophysics Data System (ADS)

    Portis, Bonnie L.

    1993-06-01

    Presented are individual papers of Damping '93, held 24-26 Feb. 1993 in San Francisco. The subjects included the following: passive damping concepts; passive damping analysis and design techniques; optimization; damped control/structure interaction; viscoelastic material testing and characterization; highly damped materials; vibration suppression techniques; damping identification and dynamic testing; applications to aircraft; space structures; marine structures; and commercial products; defense applications; and payoffs of vibration suppression.

  19. Review of quantitative ultrasound: envelope statistics and backscatter coefficient imaging and contributions to diagnostic ultrasound

    PubMed Central

    Oelze, Michael L.; Mamou, Jonathan

    2017-01-01

    Conventional medical imaging technologies, including ultrasound, have continued to improve over the years. For example, in oncology, medical imaging is characterized by high sensitivity, i.e., the ability to detect anomalous tissue features, but the ability to classify these tissue features from images often lacks specificity. As a result, a large number of biopsies of tissues with suspicious image findings are performed each year with a vast majority of these biopsies resulting in a negative finding. To improve specificity of cancer imaging, quantitative imaging techniques can play an important role. Conventional ultrasound B-mode imaging is mainly qualitative in nature. However, quantitative ultrasound (QUS) imaging can provide specific numbers related to tissue features that can increase the specificity of image findings leading to improvements in diagnostic ultrasound. QUS imaging techniques can encompass a wide variety of techniques including spectral-based parameterization, elastography, shear wave imaging, flow estimation and envelope statistics. Currently, spectral-based parameterization and envelope statistics are not available on most conventional clinical ultrasound machines. However, in recent years QUS techniques involving spectral-based parameterization and envelope statistics have demonstrated success in many applications, providing additional diagnostic capabilities. Spectral-based techniques include the estimation of the backscatter coefficient, estimation of attenuation, and estimation of scatterer properties such as the correlation length associated with an effective scatterer diameter and the effective acoustic concentration of scatterers. Envelope statistics include the estimation of the number density of scatterers and quantification of coherent to incoherent signals produced from the tissue. Challenges for clinical application include correctly accounting for attenuation effects and transmission losses and implementation of QUS on clinical devices. Successful clinical and pre-clinical applications demonstrating the ability of QUS to improve medical diagnostics include characterization of the myocardium during the cardiac cycle, cancer detection, classification of solid tumors and lymph nodes, detection and quantification of fatty liver disease, and monitoring and assessment of therapy. PMID:26761606

  20. InGaAsSb Detectors' Characterization for 2-Micron CO2 Lidar/DIAL Applications

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Abedin, M. Nurul; Koch, Grady J.; Singh, Upendra N.

    2003-01-01

    Recent interest in monitoring atmospheric CO2 focuses attention on infrared remote sensing using the 2-micron lidar/differential absorption lidar (DIAL) technique. Quantum detectors are critical components in this technique, and many research efforts concentrate on developing such devices for the 2-micron wavelength. Characterization results of InGaAsSb quantum detectors for the 2-micron wavelength range are presented, including experimental setup and procedure. Detectors are prototype devices manufactured by using separate absorption and multiplication (SAM) structures. Characterization experiments include V-I measurements, spectral response and its variation with bias voltage and temperature, noise measurements, noise-equivalent-power (NEP) and detectivity calculations, and signal-to-noise ratio (SNR) estimation. A slight increase in the output signal occurred with increased bias voltage and was associated with a noise level increase. Cooling down the detectors reduces noise and shifts the cutoff wavelength to shorter values. Further improvement in the design and manufacturing process, by increasing the device gain and lowering its noise level, is necessary to meet the required CO2 lidar/DIAL specifications.

  1. Applied Routh approximation

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.

    1978-01-01

    The Routh approximation technique for reducing the complexity of system models was applied in the frequency domain to a 16th order, state variable model of the F100 engine and to a 43d order, transfer function model of a launch vehicle boost pump pressure regulator. The results motivate extending the frequency domain formulation of the Routh method to the time domain in order to handle the state variable formulation directly. The time domain formulation was derived and a characterization that specifies all possible Routh similarity transformations was given. The characterization was computed by solving two eigenvalue-eigenvector problems. The application of the time domain Routh technique to the state variable engine model is described, and some results are given. Additional computational problems are discussed, including an optimization procedure that can improve the approximation accuracy by taking advantage of the transformation characterization.

  2. Techniques for physicochemical characterization of nanomaterials

    PubMed Central

    Lin, Ping-Chang; Lin, Stephen; Wang, Paul C.; Sridhar, Rajagopalan

    2014-01-01

    Advances in nanotechnology have opened up a new era of diagnosis, prevention and treatment of diseases and traumatic injuries. Nanomaterials, including those with potential for clinical applications, possess novel physicochemical properties that have an impact on their physiological interactions, from the molecular level to the systemic level. There is a lack of standardized methodologies or regulatory protocols for detection or characterization of nanomaterials. This review summarizes the techniques that are commonly used to study the size, shape, surface properties, composition, purity and stability of nanomaterials, along with their advantages and disadvantages. At present there are no FDA guidelines that have been developed specifically for nanomaterial based formulations for diagnostic or therapeutic use. There is an urgent need for standardized protocols and procedures for the characterization of nanoparticles, especially those that are intended for use as theranostics. PMID:24252561

  3. Characterization of Contrast Agent Microbubbles for Ultrasound Imaging and Therapy Research.

    PubMed

    Mulvana, Helen; Browning, Richard J; Luan, Ying; de Jong, Nico; Tang, Meng-Xing; Eckersley, Robert J; Stride, Eleanor

    2017-01-01

    The high efficiency with which gas microbubbles can scatter ultrasound compared with the surrounding blood pool or tissues has led to their widespread employment as contrast agents in ultrasound imaging. In recent years, their applications have been extended to include super-resolution imaging and the stimulation of localized bio-effects for therapy. The growing exploitation of contrast agents in ultrasound and in particular these recent developments have amplified the need to characterize and fully understand microbubble behavior. The aim in doing so is to more fully exploit their utility for both diagnostic imaging and potential future therapeutic applications. This paper presents the key characteristics of microbubbles that determine their efficacy in diagnostic and therapeutic applications and the corresponding techniques for their measurement. In each case, we have presented information regarding the methods available and their respective strengths and limitations, with the aim of presenting information relevant to the selection of appropriate characterization methods. First, we examine methods for determining the physical properties of microbubble suspensions and then techniques for acoustic characterization of both suspensions and single microbubbles. The next section covers characterization of microbubbles as therapeutic agents, including as drug carriers for which detailed understanding of their surface characteristics and drug loading capacity is required. Finally, we discuss the attempts that have been made to allow comparison across the methods employed by various groups to characterize and describe their microbubble suspensions and promote wider discussion and comparison of microbubble behavior.

  4. In-Situ Characterization of Underwater Radioactive Sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, A.P.; Clapham, M.J.; Swinson, B.

    2008-07-01

    A fundamental requirement underpinning safe clean-up technologies for legacy spent nuclear fuel (SNF) ponds, pools and wet silos is the ability to characterize the radioactive waste form prior to retrieval. The corrosion products resulting from the long term underwater storage of spent nuclear fuel, reactor components and reprocessing debris present a major hazard to facility decontamination and decommissioning in terms of their radioactive content and physical / chemical reactivity. The ability to perform in-situ underwater non-destructive characterization of sludge and debris in a safe and cost-effective manner offers significant benefits over traditional destructive sampling methods. Several techniques are available formore » underwater measurements including (i) Gross gamma counting, (ii) Low-, Medium- and High- Resolution Gamma Spectroscopy, (iii) Passive neutron counting and (iv) Active Neutron Interrogation. The optimum technique depends on (i) the radioactive inventory (ii) mechanical access restrictions for deployment of the detection equipment, interrogation sources etc. (iii) the integrity of plant records and (iv) the extent to which Acceptable Knowledge which may be used for 'fingerprinting' the radioactive contents to a marker nuclide. Prior deployments of underwater SNF characterization equipment around the world have been reviewed with respect to recent developments in gamma and neutron detection technologies, digital electronics advancements, data transfer techniques, remote operation capabilities and improved field ruggedization. Modeling and experimental work has been performed to determine the capabilities, performance envelope and operational limitations of the future generation of non-destructive underwater sludge characterization techniques. Recommendations are given on the optimal design of systems and procedures to provide an acceptable level of confidence in the characterization of residual sludge content of legacy wet storage facilities such that retrieval and repackaging of SNF sludges may proceed safely and efficiently with support of the regulators and the public. (author)« less

  5. High-Temperature Strain Sensing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Piazza, Anthony; Richards, Lance W.; Hudson, Larry D.

    2008-01-01

    Thermal protection systems (TPS) and hot structures are utilizing advanced materials that operate at temperatures that exceed abilities to measure structural performance. Robust strain sensors that operate accurately and reliably beyond 1800 F are needed but do not exist. These shortcomings hinder the ability to validate analysis and modeling techniques and hinders the ability to optimize structural designs. This presentation examines high-temperature strain sensing for aerospace applications and, more specifically, seeks to provide strain data for validating finite element models and thermal-structural analyses. Efforts have been made to develop sensor attachment techniques for relevant structural materials at the small test specimen level and to perform laboratory tests to characterize sensor and generate corrections to apply to indicated strains. Areas highlighted in this presentation include sensors, sensor attachment techniques, laboratory evaluation/characterization of strain measurement, and sensor use in large-scale structures.

  6. An acoustic emission and acousto-ultrasonic analysis of impact damaged composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Workman, Gary L. (Principal Investigator); Walker, James L.

    1996-01-01

    The use of acoustic emission to characterize impact damage in composite structures is being performed on composite bottles wrapped with graphite epoxy and kevlar bottles. Further development of the acoustic emission methodology will include neural net analysis and/or other multivariate techniques to enhance the capability of the technique to identify dominant failure mechanisms during fracture. The acousto-ultrasonics technique will also continue to be investigated to determine its ability to predict regions prone to failure prior to the burst tests. Characterization of the stress wave factor before, and after impact damage will be useful for inspection purposes in manufacturing processes. The combination of the two methods will also allow for simple nondestructive tests capable of predicting the performance of a composite structure prior to its being placed in service and during service.

  7. Apparatus and method for characterizing ultrafast polarization varying optical pulses

    DOEpatents

    Smirl, Arthur; Trebino, Rick P.

    1999-08-10

    Practical techniques are described for characterizing ultrafast potentially ultraweak, ultrashort optical pulses. The techniques are particularly suited to the measurement of signals from nonlinear optical materials characterization experiments, whose signals are generally too weak for full characterization using conventional techniques.

  8. Characterizing odors from cattle feedlots with different odor techniques

    USDA-ARS?s Scientific Manuscript database

    Odors from cattle feedlots negatively affect local communities. The purpose of this study was to characterize odors and odorants using different odor sampling techniques. Odors were characterized with field olfactometers (Nasal Ranger®), sensory techniques (GC-O) and analytical techniques (sorbent t...

  9. Applications of Real Space Crystallography in Characterization of Dislocations in Geological Materials in a Scanning Electron Microscope (SEM)

    NASA Astrophysics Data System (ADS)

    Kaboli, S.; Burnley, P. C.

    2017-12-01

    Imaging and characterization of defects in crystalline materials is of significant importance in various disciplines including geoscience, materials science, and applied physics. Linear defects such as dislocations and planar defects such as twins and stacking faults, strongly influence many of the properties of crystalline materials and also reflect the conditions and degree of deformation. Dislocations have been conventionally imaged in thin foils in a transmission electron microscope (TEM). Since the development of field emission scanning electron microscopes (FE-SEM) with high gun brightness and small spot size, extensive efforts have been dedicated to the imaging and characterization of dislocations in semi-conductors using electron channeling contrast imaging (ECCI) in the SEM. The obvious advantages of using SEM over TEM include easier and non-destructive sample preparation and a large field of view enabling statistical examination of the density and distribution of dislocations and other defects. In this contribution, we extend this technique to geological materials and introduce the Real Space Crystallography methodology for imaging and complete characterization of dislocations based on bend contour contrast obtained by ECCI in FE-SEM. Bend contours map out the distortion in the crystal lattice across a deformed grain. The contrast of dislocations is maximum in the vicinity of bend contours where crystal planes diffract at small and positive deviations from the Bragg positions (as defined by Bragg's law of electron diffraction). Imaging is performed in a commercial FE-SEM equipped with a standard silicon photodiode backscattered (BSE) detector and an electron backscatter diffraction (EBSD) system for crystal orientation measurements. We demonstrate the practice of this technique in characterization of a number of geological materials in particular quartz, forsterite olivine and corundum, experimentally deformed at high pressure-temperature conditions. This new approach in microstructure characterization of deformed geologic materials in FE-SEM, without the use of etching or decoration techniques, has valuable applications to both experimentally deformed and naturally deformed specimens.

  10. Apparatus and method for characterizing ultrafast polarization varying optical pulses

    DOEpatents

    Smirl, A.; Trebino, R.P.

    1999-08-10

    Practical techniques are described for characterizing ultrafast potentially ultraweak, ultrashort optical pulses. The techniques are particularly suited to the measurement of signals from nonlinear optical materials characterization experiments, whose signals are generally too weak for full characterization using conventional techniques. 2 figs.

  11. Technical note: Simultaneous fully dynamic characterization of multiple input–output relationships in climate models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravitz, Ben; MacMartin, Douglas G.; Rasch, Philip J.

    We introduce system identification techniques to climate science wherein multiple dynamic input–output relationships can be simultaneously characterized in a single simulation. This method, involving multiple small perturbations (in space and time) of an input field while monitoring output fields to quantify responses, allows for identification of different timescales of climate response to forcing without substantially pushing the climate far away from a steady state. We use this technique to determine the steady-state responses of low cloud fraction and latent heat flux to heating perturbations over 22 regions spanning Earth's oceans. We show that the response characteristics are similar to thosemore » of step-change simulations, but in this new method the responses for 22 regions can be characterized simultaneously. Moreover, we can estimate the timescale over which the steady-state response emerges. The proposed methodology could be useful for a wide variety of purposes in climate science, including characterization of teleconnections and uncertainty quantification to identify the effects of climate model tuning parameters.« less

  12. Technical note: Simultaneous fully dynamic characterization of multiple input–output relationships in climate models

    DOE PAGES

    Kravitz, Ben; MacMartin, Douglas G.; Rasch, Philip J.; ...

    2017-02-17

    We introduce system identification techniques to climate science wherein multiple dynamic input–output relationships can be simultaneously characterized in a single simulation. This method, involving multiple small perturbations (in space and time) of an input field while monitoring output fields to quantify responses, allows for identification of different timescales of climate response to forcing without substantially pushing the climate far away from a steady state. We use this technique to determine the steady-state responses of low cloud fraction and latent heat flux to heating perturbations over 22 regions spanning Earth's oceans. We show that the response characteristics are similar to thosemore » of step-change simulations, but in this new method the responses for 22 regions can be characterized simultaneously. Moreover, we can estimate the timescale over which the steady-state response emerges. The proposed methodology could be useful for a wide variety of purposes in climate science, including characterization of teleconnections and uncertainty quantification to identify the effects of climate model tuning parameters.« less

  13. Ion-exchange chromatography for the characterization of biopharmaceuticals.

    PubMed

    Fekete, Szabolcs; Beck, Alain; Veuthey, Jean-Luc; Guillarme, Davy

    2015-09-10

    Ion-exchange chromatography (IEX) is a historical technique widely used for the detailed characterization of therapeutic proteins and can be considered as a reference and powerful technique for the qualitative and quantitative evaluation of charge heterogeneity. The goal of this review is to provide an overview of theoretical and practical aspects of modern IEX applied for the characterization of therapeutic proteins including monoclonal antibodies (Mabs) and antibody drug conjugates (ADCs). The section on method development describes how to select a suitable stationary phase chemistry and dimensions, the mobile phase conditions (pH, nature and concentration of salt), as well as the temperature and flow rate, considering proteins isoelectric point (pI). In addition, both salt-gradient and pH-gradient approaches were critically reviewed and benefits as well as limitations of these two strategies were provided. Finally, several applications, mostly from pharmaceutical industries, illustrate the potential of IEX for the characterization of charge variants of various types of biopharmaceutical products. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Two-Photon Excitation, Fluorescence Microscopy, and Quantitative Measurement of Two-Photon Absorption Cross Sections

    NASA Astrophysics Data System (ADS)

    DeArmond, Fredrick Michael

    As optical microscopy techniques continue to improve, most notably the development of super-resolution optical microscopy which garnered the Nobel Prize in Chemistry in 2014, renewed emphasis has been placed on the development and use of fluorescence microscopy techniques. Of particular note is a renewed interest in multiphoton excitation due to a number of inherent properties of the technique including simplified optical filtering, increased sample penetration, and inherently confocal operation. With this renewed interest in multiphoton fluorescence microscopy, comes an increased demand for robust non-linear fluorescent markers, and characterization of the associated tool set. These factors have led to an experimental setup to allow a systematized approach for identifying and characterizing properties of fluorescent probes in the hopes that the tool set will provide researchers with additional information to guide their efforts in developing novel fluorophores suitable for use in advanced optical microscopy techniques as well as identifying trends for their synthesis. Hardware was setup around a software control system previously developed. Three experimental tool sets were set up, characterized, and applied over the course of this work. These tools include scanning multiphoton fluorescence microscope with single molecule sensitivity, an interferometric autocorrelator for precise determination of the bandwidth and pulse width of the ultrafast Titanium Sapphire excitation source, and a simplified fluorescence microscope for the measurement of two-photon absorption cross sections. Resulting values for two-photon absorption cross sections and two-photon absorption action cross sections for two standardized fluorophores, four commercially available fluorophores, and ten novel fluorophores are presented as well as absorption and emission spectra.

  15. Characterization of a complex near-surface structure using well logging and passive seismic measurements

    NASA Astrophysics Data System (ADS)

    Benjumea, Beatriz; Macau, Albert; Gabàs, Anna; Figueras, Sara

    2016-04-01

    We combine geophysical well logging and passive seismic measurements to characterize the near-surface geology of an area located in Hontomin, Burgos (Spain). This area has some near-surface challenges for a geophysical study. The irregular topography is characterized by limestone outcrops and unconsolidated sediments areas. Additionally, the near-surface geology includes an upper layer of pure limestones overlying marly limestones and marls (Upper Cretaceous). These materials lie on top of Low Cretaceous siliciclastic sediments (sandstones, clays, gravels). In any case, a layer with reduced velocity is expected. The geophysical data sets used in this study include sonic and gamma-ray logs at two boreholes and passive seismic measurements: three arrays and 224 seismic stations for applying the horizontal-to-vertical amplitude spectra ratio method (H/V). Well-logging data define two significant changes in the P-wave-velocity log within the Upper Cretaceous layer and one more at the Upper to Lower Cretaceous contact. This technique has also been used for refining the geological interpretation. The passive seismic measurements provide a map of sediment thickness with a maximum of around 40 m and shear-wave velocity profiles from the array technique. A comparison between seismic velocity coming from well logging and array measurements defines the resolution limits of the passive seismic techniques and helps it to be interpreted. This study shows how these low-cost techniques can provide useful information about near-surface complexity that could be used for designing a geophysical field survey or for seismic processing steps such as statics or imaging.

  16. Surface and Flow Field Measurements on the FAITH Hill Model

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Heineck, James T.; Zilliac, Gregory; Mehta, Rabindra D.; Long, Kurtis R.

    2012-01-01

    A series of experimental tests, using both qualitative and quantitative techniques, were conducted to characterize both surface and off-surface flow characteristics of an axisymmetric, modified-cosine-shaped, wall-mounted hill named "FAITH" (Fundamental Aero Investigates The Hill). Two separate models were employed: a 6" high, 18" base diameter machined aluminum model that was used for wind tunnel tests and a smaller scale (2" high, 6" base diameter) sintered nylon version that was used in the water channel facility. Wind tunnel and water channel tests were conducted at mean test section speeds of 165 fps (Reynolds Number based on height = 500,000) and 0.1 fps (Reynolds Number of 1000), respectively. The ratio of model height to boundary later height was approximately 3 for both tests. Qualitative techniques that were employed to characterize the complex flow included surface oil flow visualization for the wind tunnel tests, and dye injection for the water channel tests. Quantitative techniques that were employed to characterize the flow included Cobra Probe to determine point-wise steady and unsteady 3D velocities, Particle Image Velocimetry (PIV) to determine 3D velocities and turbulence statistics along specified planes, Pressure Sensitive Paint (PSP) to determine mean surface pressures, and Fringe Imaging Skin Friction (FISF) to determine surface skin friction (magnitude and direction). This initial report summarizes the experimental set-up, techniques used, data acquired and describes some details of the dataset that is being constructed for use by other researchers, especially the CFD community. Subsequent reports will discuss the data and their interpretation in more detail

  17. Color characterization of cine film

    NASA Astrophysics Data System (ADS)

    Noriega, Leonardo; Morovic, Jan; MacDonald, Lindsay W.; Lempp, Wolfgang

    2002-06-01

    This paper describes the characterization of cine film, by identifying the relationship between the Status A density values of positive print film and the XYZ values of conventional colorimetry. Several approaches are tried including least-squares modeling, tetrahedral interpolation, and distance weighted interpolation. The distance weighted technique has been improved by the use of the Mahalanobis distance metric in order to perform the interpolation, and this is presented as an innovation.

  18. Characterization of Thermal and Mechanical Impact on Aluminum Honeycomb Structures

    NASA Technical Reports Server (NTRS)

    Robinson, Christen M.

    2013-01-01

    This study supports NASA Kennedy Space Center's research in the area of intelligent thermal management systems and multifunctional thermal systems. This project addresses the evaluation of the mechanical and thermal properties of metallic cellular solid (MCS) materials; those that are lightweight; high strength, tunable, multifunctional and affordable. A portion of the work includes understanding the mechanical properties of honeycomb structured cellular solids upon impact testing under ambient, water-immersed, liquid nitrogen-cooled, and liquid nitrogen-immersed conditions. Additionally, this study will address characterization techniques of the aluminum honeycomb's ability to resist multiple high-rate loadings or impacts in varying environmental conditions, using various techniques for the quantitative and qualitative determination for commercial applicability.

  19. Evolution and enabling capabilities of spatially resolved techniques for the characterization of heterogeneously catalyzed reactions

    DOE PAGES

    Morgan, Kevin; Touitou, Jamal; Choi, Jae -Soon; ...

    2016-01-15

    The development and optimization of catalysts and catalytic processes requires knowledge of reaction kinetics and mechanisms. In traditional catalyst kinetic characterization, the gas composition is known at the inlet, and the exit flow is measured to determine changes in concentration. As such, the progression of the chemistry within the catalyst is not known. Technological advances in electromagnetic and physical probes have made visualizing the evolution of the chemistry within catalyst samples a reality, as part of a methodology commonly known as spatial resolution. Herein, we discuss and evaluate the development of spatially resolved techniques, including the evolutions and achievements ofmore » this growing area of catalytic research. The impact of such techniques is discussed in terms of the invasiveness of physical probes on catalytic systems, as well as how experimentally obtained spatial profiles can be used in conjunction with kinetic modeling. Moreover, some aims and aspirations for further evolution of spatially resolved techniques are considered.« less

  20. Characterization of near-terahertz complementary metal-oxide semiconductor circuits using a Fourier-transform interferometer

    DOE PAGES

    Arenas, D. J.; Shim, Dongha; Koukis, D. I.; ...

    2011-10-24

    Optical methods for measuring of the emission spectra of oscillator circuits operating in the 400-600 GHz range are described. The emitted power from patch antennas included in the circuits is measured by placing the circuit in the source chamber of a Fourier-transform interferometric spectrometer. The results show that this optical technique is useful for measuring circuits pushing the frontier in operating frequency. The technique also allows the characterization of the circuit by measuring the power radiated in the fundamental and in the harmonics. This capability is useful for oscillator architectures designed to cancel the fundamental and use higher harmonics. Themore » radiated power was measured using two techniques: direct measurement of the power by placing the device in front of a bolometer of known responsivity, and by comparison to the estimated power from blackbody sources. The latter technique showed that these circuits have higher emission than blackbody sources at the operating frequencies, and, therefore, offer potential spectroscopy applications.« less

  1. A new systematic and quantitative approach to characterization of surface nanostructures using fuzzy logic

    NASA Astrophysics Data System (ADS)

    Al-Mousa, Amjed A.

    Thin films are essential constituents of modern electronic devices and have a multitude of applications in such devices. The impact of the surface morphology of thin films on the device characteristics where these films are used has generated substantial attention to advanced film characterization techniques. In this work, we present a new approach to characterize surface nanostructures of thin films by focusing on isolating nanostructures and extracting quantitative information, such as the shape and size of the structures. This methodology is applicable to any Scanning Probe Microscopy (SPM) data, such as Atomic Force Microscopy (AFM) data which we are presenting here. The methodology starts by compensating the AFM data for some specific classes of measurement artifacts. After that, the methodology employs two distinct techniques. The first, which we call the overlay technique, proceeds by systematically processing the raster data that constitute the scanning probe image in both vertical and horizontal directions. It then proceeds by classifying points in each direction separately. Finally, the results from both the horizontal and the vertical subsets are overlaid, where a final decision on each surface point is made. The second technique, based on fuzzy logic, relies on a Fuzzy Inference Engine (FIE) to classify the surface points. Once classified, these points are clustered into surface structures. The latter technique also includes a mechanism which can consistently distinguish crowded surfaces from those with sparsely distributed structures and then tune the fuzzy technique system uniquely for that surface. Both techniques have been applied to characterize organic semiconductor thin films of pentacene on different substrates. Also, we present a case study to demonstrate the effectiveness of our methodology to identify quantitatively particle sizes of two specimens of gold nanoparticles of different nominal dimensions dispersed on a mica surface. A comparison with other techniques like: thresholding, watershed and edge detection is presented next. Finally, we present a systematic study of the fuzzy logic technique by experimenting with synthetic data. These results are discussed and compared along with the challenges of the two techniques.

  2. Automatic Fault Characterization via Abnormality-Enhanced Classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronevetsky, G; Laguna, I; de Supinski, B R

    Enterprise and high-performance computing systems are growing extremely large and complex, employing hundreds to hundreds of thousands of processors and software/hardware stacks built by many people across many organizations. As the growing scale of these machines increases the frequency of faults, system complexity makes these faults difficult to detect and to diagnose. Current system management techniques, which focus primarily on efficient data access and query mechanisms, require system administrators to examine the behavior of various system services manually. Growing system complexity is making this manual process unmanageable: administrators require more effective management tools that can detect faults and help tomore » identify their root causes. System administrators need timely notification when a fault is manifested that includes the type of fault, the time period in which it occurred and the processor on which it originated. Statistical modeling approaches can accurately characterize system behavior. However, the complex effects of system faults make these tools difficult to apply effectively. This paper investigates the application of classification and clustering algorithms to fault detection and characterization. We show experimentally that naively applying these methods achieves poor accuracy. Further, we design novel techniques that combine classification algorithms with information on the abnormality of application behavior to improve detection and characterization accuracy. Our experiments demonstrate that these techniques can detect and characterize faults with 65% accuracy, compared to just 5% accuracy for naive approaches.« less

  3. Positron annihilation spectroscopy: Applications to Si, ZnO, and multilayer semiconductor structures

    NASA Astrophysics Data System (ADS)

    Schaffer, J. P.; Rohatgi, A.; Dewald, A. B.; Frost, R. L.; Pang, S. K.

    1989-11-01

    The potential of positron annihilation spectroscopy (PAS) for defect characterization at the atomic scale in semiconductors is demonstrated for Si, ZnO, and multilayer structures, such as an AlGaAs/GaAs solar cell. The types of defects discussed include: i) vacancy complexes, oxygen impurities and dopants, ii) the influence of cooling rates on spatial non-uniformities in defects, and iii) characterization of buried interfaces. In sev-eral instances, the results of the PAS investigations are correlated with data from other established semiconductor characterization techniques.

  4. CURRENT AND EMERGING TECHNIQUES FOR CHARACTERIZING TROPOSPHERIC AEROSOLS

    EPA Science Inventory

    Particulate matter generally includes dust, smoke, soot, or aerosol particles. Environmental research addresses the origin, size, chemical composition, and the formation mechanics of aerosols. In the troposphere, fine aerosols (e.g. with diameters < 2.5 um) remain suspended until...

  5. Dielectric property measurements in the Electromagnetic Properties Measurement Laboratory

    NASA Technical Reports Server (NTRS)

    Cravey, Robin L.; Tiemsin, Pacita I.; Bussell, Kerri; Dudley, Kenneth L.

    1995-01-01

    The capability to measure the dielectric properties of various materials has been developed in the Electromagnetic Properties Measurement Laboratory (EPML) of the Electromagnetics Research Branch (ERB). Two measurement techniques which have been implemented in the EPML to characterize materials are the dielectric probe and waveguide techniques. Several materials, including some for which the dielectric properties are well known, have been measured in an attempt to establish the capabilities of the EPML in determining dielectric properties. Brief descriptions of the two techniques are presented in this report, along with representative results obtained during these measurements.

  6. Fluorescence Lifetime Techniques in Medical Applications

    PubMed Central

    Marcu, Laura

    2012-01-01

    This article presents an overview of time-resolved (lifetime) fluorescence techniques used in biomedical diagnostics. In particular, we review the development of time-resolved fluorescence spectroscopy (TRFS) and fluorescence lifetime imaging (FLIM) instrumentation and associated methodologies which allows for in vivo characterization and diagnosis of biological tissues. Emphasis is placed on the translational research potential of these techniques and on evaluating whether intrinsic fluorescence signals provide useful contrast for the diagnosis of human diseases including cancer (gastrointestinal tract, lung, head and neck, and brain), skin and eye diseases, and atherosclerotic cardiovascular disease. PMID:22273730

  7. Focused attention, open monitoring and automatic self-transcending: Categories to organize meditations from Vedic, Buddhist and Chinese traditions.

    PubMed

    Travis, Fred; Shear, Jonathan

    2010-12-01

    This paper proposes a third meditation-category--automatic self-transcending--to extend the dichotomy of focused attention and open monitoring proposed by Lutz. Automatic self-transcending includes techniques designed to transcend their own activity. This contrasts with focused attention, which keeps attention focused on an object; and open monitoring, which keeps attention involved in the monitoring process. Each category was assigned EEG bands, based on reported brain patterns during mental tasks, and meditations were categorized based on their reported EEG. Focused attention, characterized by beta/gamma activity, included meditations from Tibetan Buddhist, Buddhist, and Chinese traditions. Open monitoring, characterized by theta activity, included meditations from Buddhist, Chinese, and Vedic traditions. Automatic self-transcending, characterized by alpha1 activity, included meditations from Vedic and Chinese traditions. Between categories, the included meditations differed in focus, subject/object relation, and procedures. These findings shed light on the common mistake of averaging meditations together to determine mechanisms or clinical effects. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Improvements to III-nitride light-emitting diodes through characterization and material growth

    NASA Astrophysics Data System (ADS)

    Getty, Amorette Rose Klug

    A variety of experiments were conducted to improve or aid the improvement of the efficiency of III-nitride light-emitting diodes (LEDs), which are a critical area of research for multiple applications, including high-efficiency solid state lighting. To enhance the light extraction in ultraviolet LEDs grown on SiC substrates, a distributed Bragg reflector (DBR) optimized for operation in the range from 250 to 280 nm has been developed using MBE growth techniques. The best devices had a peak reflectivity of 80% with 19.5 periods, which is acceptable for the intended application. DBR surfaces were sufficiently smooth for subsequent epitaxy of the LED device. During the course of this work, pros and cons of AlGaN growth techniques, including analog versus digital alloying, were examined. This work highlighted a need for more accurate values of the refractive index of high-Al-content AlxGa1-xNin the UV wavelength range. We present refractive index results for a wide variety of materials pertinent to the fabrication of optical III-nitride devices. Characterization was done using Variable-Angle Spectroscopic Ellipsometry. The three binary nitrides, and all three ternaries, have been characterized to a greater or lesser extent depending on material compositions available. Semi-transparent p-contact materials and other thin metals for reflecting contacts have been examined to allow optimization of deposition conditions and to allow highly accurate modeling of the behavior of light within these devices. Standard substrate materials have also been characterized for completeness and as an indicator of the accuracy of our modeling technique. We have demonstrated a new technique for estimating the internal quantum efficiency (IQE) of nitride light-emitting diodes. This method is advantageous over the standard low-temperature photoluminescence-based method of estimating IQE, as the new method is conducted under the same conditions as normal device operation. We have developed processing techniques and have characterized patternable absorbing materials which eliminate scattered light within the device, allowing an accurate simulation of the device extraction efficiency. This efficiency, with measurements of the input current and optical output power, allow a straightforward calculation of the IQE. Two sets of devices were measured, one of material grown in-house, with a rough p-GaN surface, and one of commercial LED material, with smooth interfaces and very high internal quantum efficiency.

  9. Shallow Reflection Method for Water-Filled Void Detection and Characterization

    NASA Astrophysics Data System (ADS)

    Zahari, M. N. H.; Madun, A.; Dahlan, S. H.; Joret, A.; Hazreek, Z. A. M.; Mohammad, A. H.; Izzaty, R. A.

    2018-04-01

    Shallow investigation is crucial in enhancing the characteristics of subsurface void commonly encountered in civil engineering, and one such technique commonly used is seismic-reflection technique. An assessment of the effectiveness of such an approach is critical to determine whether the quality of the works meets the prescribed requirements. Conventional quality testing suffers limitations including: limited coverage (both area and depth) and problems with resolution quality. Traditionally quality assurance measurements use laboratory and in-situ invasive and destructive tests. However geophysical approaches, which are typically non-invasive and non-destructive, offer a method by which improvement of detection can be measured in a cost-effective way. Of this seismic reflection have proved useful to assess void characteristic, this paper evaluates the application of shallow seismic-reflection method in characterizing the water-filled void properties at 0.34 m depth, specifically for detection and characterization of void measurement using 2-dimensional tomography.

  10. Correction of Stahl ear deformity using a suture technique.

    PubMed

    Khan, Muhammad Adil Abbas; Jose, Rajive M; Ali, Syed Nadir; Yap, Lok Huei

    2010-09-01

    Correction of partial ear deformities can be a challenging task for the plastic surgeon. There are no standard techniques for correcting many of these deformities, and several different techniques are described in literature. Stahl ear is one such anomaly, characterized by an accessory third crus in the ear cartilage, giving rise to an irregular helical rim. The conventional techniques of correcting this deformity include either excision of the cartilage, repositioning of the cartilage, or scoring techniques. We recently encountered a case of Stahl ear deformity and undertook correction using internal sutures with very good results. The technical details of the surgery are described along with a review of literature on correcting similar anomalies.

  11. Combining in situ characterization methods in one set-up: looking with more eyes into the intricate chemistry of the synthesis and working of heterogeneous catalysts.

    PubMed

    Bentrup, Ursula

    2010-12-01

    Several in situ techniques are known which allow investigations of catalysts and catalytic reactions under real reaction conditions using different spectroscopic and X-ray methods. In recent years, specific set-ups have been established which combine two or more in situ methods in order to get a more detailed understanding of catalytic systems. This tutorial review will give a summary of currently available set-ups equipped with multiple techniques for in situ catalyst characterization, catalyst preparation, and reaction monitoring. Besides experimental and technical aspects of method coupling including X-ray techniques, spectroscopic methods (Raman, UV-vis, FTIR), and magnetic resonance spectroscopies (NMR, EPR), essential results will be presented to demonstrate the added value of multitechnique in situ approaches. A special section is focussed on selected examples of use which show new developments and application fields.

  12. Lunar mineral feedstocks from rocks and soils: X-ray digital imaging in resource evaluation

    NASA Technical Reports Server (NTRS)

    Chambers, John G.; Patchen, Allan; Taylor, Lawrence A.; Higgins, Stefan J.; Mckay, David S.

    1994-01-01

    The rocks and soils of the Moon provide raw materials essential to the successful establishment of a lunar base. Efficient exploitation of these resources requires accurate characterization of mineral abundances, sizes/shapes, and association of 'ore' and 'gangue' phases, as well as the technology to generate high-yield/high-grade feedstocks. Only recently have x-ray mapping and digital imaging techniques been applied to lunar resource evaluation. The topics covered include inherent differences between lunar basalts and soils and quantitative comparison of rock-derived and soil-derived ilmenite concentrates. It is concluded that x-ray digital-imaging characterization of lunar raw materials provides a quantitative comparison that is unattainable by traditional petrographic techniques. These data are necessary for accurately determining mineral distributions of soil and crushed rock material. Application of these techniques will provide an important link to choosing the best raw material for mineral beneficiation.

  13. Review of progress in quantitative NDE

    NASA Astrophysics Data System (ADS)

    s of 386 papers and plenary presentations are included. The plenary sessions are related to the national technology initiative. The other sessions covered the following NDE topics: corrosion, electromagnetic arrays, elastic wave scattering and backscattering/noise, civil structures, material properties, holography, shearography, UT wave propagation, eddy currents, coatings, signal processing, radiography, computed tomography, EM imaging, adhesive bonds, NMR, laser ultrasonics, composites, thermal techniques, magnetic measurements, nonlinear acoustics, interface modeling and characterization, UT transducers, new techniques, joined materials, probes and systems, fatigue cracks and fracture, imaging and sizing, NDE in engineering and process control, acoustics of cracks, and sensors. An author index is included.

  14. Advantages of active love wave techniques in geophysical characterizations of seismographic station - Case studies in California and the central and eastern United States

    USGS Publications Warehouse

    Martin, Antony; Yong, Alan K.; Salomone, Larry A.

    2014-01-01

    Active-source Love waves, recorded by the multi-channel analysis of surface wave (MASLW) technique, were recently analyzed in two site characterization projects. Between 2010 and 2012, the 2009 American Recovery and Reinvestment Act (ARRA) funded GEOVision to conduct geophysical investigations at 191 seismographic stations in California and the Central Eastern U.S. (CEUS). The original project plan was to utilize active and passive Rayleigh wave-based techniques to obtain shear-wave velocity (VS) profiles to a minimum depth of 30 m and the time-averaged VS of the upper 30 meters (VS30). Early in this investigation it became clear that Rayleigh wave techniques, such as multi-channel analysis of surface waves (MASRW), were not suited for characterizing all sites. Shear-wave seismic refraction and MASLW techniques were therefore applied. In 2012, the Electric Power Research Institute funded characterization of 33 CEUS station sites. Based on experience from the ARRA investigation, both MASRW and MASLW data were acquired by GEOVision at 24 CEUS sites. At shallow rock sites, sites with steep velocity gradients, and, sites with a thin, low velocity, surficial soil layer overlying stiffer sediments, Love wave techniques generally were found to be easier to interpret, i.e., Love wave data typically yielded unambiguous fundamental mode dispersion curves and thus, reduce uncertainty in the resultant VS model. These types of velocity structure often excite dominant higher modes in Rayleigh wave data, but not in the Love wave data. It is possible to model Rayleigh wave data using multi- or effective-mode techniques; however, extraction of Rayleigh wave dispersion data was found to be difficult in many cases. These results imply that field procedures should include careful scrutiny of Rayleigh wave-based dispersion data in order to also collect Love wave data when warranted.

  15. Materials-by-design: computation, synthesis, and characterization from atoms to structures

    NASA Astrophysics Data System (ADS)

    Yeo, Jingjie; Jung, Gang Seob; Martín-Martínez, Francisco J.; Ling, Shengjie; Gu, Grace X.; Qin, Zhao; Buehler, Markus J.

    2018-05-01

    In the 50 years that succeeded Richard Feynman’s exposition of the idea that there is ‘plenty of room at the bottom’ for manipulating individual atoms for the synthesis and manufacturing processing of materials, the materials-by-design paradigm is being developed gradually through synergistic integration of experimental material synthesis and characterization with predictive computational modeling and optimization. This paper reviews how this paradigm creates the possibility to develop materials according to specific, rational designs from the molecular to the macroscopic scale. We discuss promising techniques in experimental small-scale material synthesis and large-scale fabrication methods to manipulate atomistic or macroscale structures, which can be designed by computational modeling. These include recombinant protein technology to produce peptides and proteins with tailored sequences encoded by recombinant DNA, self-assembly processes induced by conformational transition of proteins, additive manufacturing for designing complex structures, and qualitative and quantitative characterization of materials at different length scales. We describe important material characterization techniques using numerous methods of spectroscopy and microscopy. We detail numerous multi-scale computational modeling techniques that complements these experimental techniques: DFT at the atomistic scale; fully atomistic and coarse-grain molecular dynamics at the molecular to mesoscale; continuum modeling at the macroscale. Additionally, we present case studies that utilize experimental and computational approaches in an integrated manner to broaden our understanding of the properties of two-dimensional materials and materials based on silk and silk-elastin-like proteins.

  16. The Partial Purification and Characterization of Lactate Dehydrogenase.

    ERIC Educational Resources Information Center

    Wolf, Edward C.

    1988-01-01

    Offers several advantages over other possibilities as the enzyme of choice for a student's first exposure to a purification scheme. Uses equipment and materials normally found in biochemistry laboratories. Incorporates several important biochemical techniques including spectrophotometry, chromatography, centrifugation, and electrophoresis. (MVL)

  17. Full wave characterization of microstrip open end discontinuities patterned on anisotropic substrates using potential theory

    NASA Technical Reports Server (NTRS)

    Toncich, S. S.; Collin, R. E.; Bhasin, K. B.

    1993-01-01

    A technique for a full wave characterization of microstrip open end discontinuities fabricated on uniaxial anisotropic substrates using potential theory is presented. The substrate to be analyzed is enclosed in a cutoff waveguide, with the anisotropic axis aligned perpendicular to the air-dielectric interface. A full description of the sources on the microstrip line is included with edge conditions built in. Extention to other discontinuities is discussed.

  18. Current techniques for the real-time processing of complex radar signatures

    NASA Astrophysics Data System (ADS)

    Clay, E.

    A real-time processing technique has been developed for the microwave receiver of the Brahms radar station. The method allows such target signatures as the radar cross section (RCS) of the airframes and rotating parts, the one-dimensional tomography of aircraft, and the RCS of electromagnetic decoys to be characterized. The method allows optimization of experimental parameters including the analysis frequency band, the receiver gain, and the wavelength range of EM analysis.

  19. Dual-energy CT revisited with multidetector CT: review of principles and clinical applications.

    PubMed

    Karçaaltıncaba, Muşturay; Aktaş, Aykut

    2011-09-01

    Although dual-energy CT (DECT) was first conceived in the 1970s, it was not widely used for CT indications. Recently, the simultaneous acquisition of volumetric dual-energy data has been introduced using multidetector CT (MDCT) with two X-ray tubes and rapid kVp switching (gemstone spectral imaging). Two major advantages of DECT are material decomposition by acquiring two image series with different kVp and the elimination of misregistration artifacts. Hounsfield unit measurements by DECT are not absolute and can change depending on the kVp used for an acquisition. Typically, a combination of 80/140 kVp is used for DECT, but for some applications, 100/140 kVp is preferred. In this study, we summarized the clinical applications of DECT and included images that were acquired using the dual-source CT and rapid kVp switching. In general, unenhanced images can be avoided by using DECT for body and neurological applications; iodine can be removed from the image, and a virtual, non-contrast (water) image can be obtained. Neuroradiological applications allow for the removal of bone and calcium from the carotid and brain CT angiography. Thorax applications include perfusion imaging in patients with pulmonary thromboemboli and other chest diseases, xenon ventilation-perfusion imaging and solitary nodule characterization. Cardiac applications include dual-energy cardiac perfusion, viability and cardiac iron detection. The removal of calcific plaques from arteries, bone removal and aortic stent graft evaluation may be achieved in the vascular system. Abdominal applications include the detection and characterization of liver and pancreas masses, the diagnosis of steatosis and iron overload, DECT colonoscopy and CT cholangiography. Urinary system applications are urinary calculi characterization (uric acid vs. non-uric acid), renal cyst characterization and mass characterization. Musculoskeletal applications permit the differentiation of gout from pseudogout and a reduction of metal artifacts. Recent introduction of iterative reconstruction techniques can increase the use of DECT techniques; the use of dual energy in patients with a high BMI is limited due to noise and the radiation dose. DECT may be a good alternative to PET-CT. Iodine map images can quantify iodine uptake, and this approach may be more effective than obtaining non-contrast and post-contrast images for the diagnosis of a solid mass. Thus, computer-aided detection may be used more effectively in CT applications. DECT is a promising technique with potential clinical applications.

  20. Chrysin cocrystals: Characterization and evaluation.

    PubMed

    Chadha, Renu; Bhalla, Yashika; Nandan, Avdesh; Chadha, Kunal; Karan, Maninder

    2017-02-05

    Solvent free mechanochemical approach is utilized to synthesise new cocrystals of chrysin using supramolecular chemistry based upon reliable synthons. Chrysin, a flavone nutraceutical with wide range of beneficial effects has critically low bioavailability on account of its poor aqueous solubility and consequently poor absorption from the gastrointestinal tract. The present study focuses on this critical aspect and has exploited non covalent interactions to prepare its cocrystals with cytosine and thiamine hydrochloride. Various techniques were used for characterization including Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FT-IR), Solid State NMR Spectroscopy (SSNMR) and Powder X-Ray Diffraction (PXRD). The molecules in the cocrystals crystallized in neutral forms and assembled in a molecular layer by means of hydrogen bonding which was confirmed by structural characterization. The cocrystals share a common supramolecular motif being the OH⋯N arom interaction, involving phenolic moiety of C7 functionality of the parent molecule. Approximately 3-4 fold increase in solubility and dissolution profile of cocrystals was observed which was further corroborated by improved in vitro and in vivo activities including antioxidant, antihaemolytic and anti-inflammatory thus, opening a new viable technique for the exploitation of useful phytonutrients. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Thermal and Chemical Characterization of Non-Metallic Materials Using Coupled Thermogravimetric Analysis and Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Huff, Timothy L.

    2002-01-01

    Thermogravimetric analysis (TGA) is widely employed in the thermal characterization of non-metallic materials, yielding valuable information on decomposition characteristics of a sample over a wide temperature range. However, a potential wealth of chemical information is lost during the process, with the evolving gases generated during thermal decomposition escaping through the exhaust line. Fourier Transform-Infrared spectroscopy (FT-IR) is a powerful analytical technique for determining many chemical constituents while in any material state, in this application, the gas phase. By linking these two techniques, evolving gases generated during the TGA process are directed into an appropriately equipped infrared spectrometer for chemical speciation. Consequently, both thermal decomposition and chemical characterization of a material may be obtained in a single sample run. In practice, a heated transfer line is employed to connect the two instruments while a purge gas stream directs the evolving gases into the FT-IR. The purge gas can be either high purity air or an inert gas such as nitrogen to allow oxidative and pyrolytic processes to be examined, respectively. The FT-IR data is collected realtime, allowing continuous monitoring of chemical compositional changes over the course of thermal decomposition. Using this coupled technique, an array of diverse materials has been examined, including composites, plastics, rubber, fiberglass epoxy resins, polycarbonates, silicones, lubricants and fluorocarbon materials. The benefit of combining these two methodologies is of particular importance in the aerospace community, where newly developing materials have little available data with which to refer. By providing both thermal and chemical data simultaneously, a more definitive and comprehensive characterization of the material is possible. Additionally, this procedure has been found to be a viable screening technique for certain materials, with the generated data useful in the selection of other appropriate analytical procedures for further material characterization.

  2. Research progress of Ge on insulator grown by rapid melting growth

    NASA Astrophysics Data System (ADS)

    Liu, Zhi; Wen, Juanjuan; Li, Chuanbo; Xue, Chunlai; Cheng, Buwen

    2018-06-01

    Ge is an attractive material for Si-based microelectronics and photonics due to its high carries mobility, pseudo direct bandgap structure, and the compatibility with complementary metal oxide semiconductor (CMOS) processes. Based on Ge, Ge on insulator (GOI) not only has these advantages, but also provides strong electronic and optical confinement. Recently, a novel technique to fabricate GOI by rapid melting growth (RMG) has been described. Here, we introduce the RMG technique and review recent efforts and progress in RMG. Firstly, we will introduce process steps of RMG. We will then review the researches which focus on characterizations of the GOI including growth dimension, growth mechanism, growth orientation, concentration distribution, and strain status. Finally, GOI based applications including high performance metal–oxide–semiconductor field effect transistors (MOSFETs) and photodetectors will be discussed. These results show that RMG is a promising technique for growth of high quality GOIs with different characterizations. The GOI grown by RMG is a potential material for the next-generation of integrated circuits and optoelectronic circuits. Project supported in part by the National Key Research and Development Program of China (No. 2017YFA0206404) and the National Natural Science Foundation of China (Nos. 61435013, 61534005, 61534004, 61604146).

  3. Exploratory investigations of hypervelocity intact capture spectroscopy

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Griffiths, D. J.

    1993-01-01

    The ability to capture hypervelocity projectiles intact opens a new technique available for hypervelocity research. A determination of the reactions taking place between the projectile and the capture medium during the process of intact capture is extremely important to an understanding of the intact capture phenomenon, to improving the capture technique, and to developing a theory describing the phenomenon. The intact capture of hypervelocity projectiles by underdense media generates spectra, characteristic of the material species of projectile and capture medium involved. Initial exploratory results into real-time characterization of hypervelocity intact capture techniques by spectroscopy include ultra-violet and visible spectra obtained by use of reflecting gratings, transmitting gratings, and prisms, and recorded by photographic and electronic means. Spectrometry proved to be a valuable real-time diagnostic tool for hypervelocity intact capture events, offering understanding of the interactions of the projectile and the capture medium during the initial period and providing information not obtainable by other characterizations. Preliminary results and analyses of spectra produced by the intact capture of hypervelocity aluminum spheres in polyethylene (PE), polystyrene (PS), and polyurethane (PU) foams are presented. Included are tentative emission species identifications, as well as gray body temperatures produced in the intact capture process.

  4. Current state of knowledge: the canine gastrointestinal microbiome.

    PubMed

    Hooda, Seema; Minamoto, Yasushi; Suchodolski, Jan S; Swanson, Kelly S

    2012-06-01

    Gastrointestinal (GI) microbes have important roles in the nutritional, immunological, and physiologic processes of the host. Traditional cultivation techniques have revealed bacterial density ranges from 10(4) to 10(5) colony forming units (CFU)/g in the stomach, from 10(5) to 10(7) CFU/g in the small intestine, and from 10(9) to 10(11) CFU/g in the colon of healthy dogs. As a small number of bacterial species can be grown and studied in culture, however, progress was limited until the recent emergence of DNA-based techniques. In recent years, DNA sequencing technology and bioinformatics have allowed for better phylogenetic and functional/metabolic characterization of the canine gut microbiome. Predominant phyla include Firmicutes, Bacteroidetes, Fusobacteria, Proteobacteria, and Actinobacteria. Studies using 16S ribosomal RNA (rRNA) gene pyrosequencing have demonstrated spatial differences along the GI tract and among microbes adhered to the GI mucosa compared to those in intestinal contents or feces. Similar to humans, GI microbiome dysbiosis is common in canine GI diseases such as chronic diarrhea and inflammatory bowel diseases. DNA-based assays have also identified key pathogens contributing to such conditions, including various Clostridium, Campylobacter, Salmonella, and Escherichia spp. Moreover, nutritionists have applied DNA-based techniques to study the effects of dietary interventions such as dietary fiber, prebiotics, and probiotics on the canine GI microbiome and associated health indices. Despite recent advances in the field, the canine GI microbiome is far from being fully characterized and a deeper characterization of the phylogenetic and functional/metabolic capacity of the GI microbiome in health and disease is needed. This paper provides an overview of recent studies performed to characterize the canine GI microbiome.

  5. Analytical characterization of bioactive N-benzyl-substituted phenethylamines and 5-methoxytryptamines.

    PubMed

    Brandt, Simon D; Elliott, Simon P; Kavanagh, Pierce V; Dempster, Nicola M; Meyer, Markus R; Maurer, Hans H; Nichols, David E

    2015-04-15

    Substances based on the N-(2-methoxybenzyl)phenethylamine template ('NBOMe' derivatives) play an important role in medicinal research but some of these derivatives have also appeared as 'research chemicals' for recreational use which has attracted attention worldwide. A major challenge associated with newly emerging substances includes the lack of analytical data and the ability to correctly identify positional isomers. Six N-benzylphenethylamines based on the 2,5-dimethoxy-4-iodophenethylamine structure ('25I') and twelve substituted N-benzyl-5-methoxytryptamines ('5MT') have been prepared and extensively characterized. Techniques used for characterization were gas chromatography/ion trap mass spectrometry in electron and chemical ionization mode, liquid chromatography/diode array detection (DAD), infrared spectroscopy, electrospray high mass accuracy quadrupole time-of-flight tandem mass spectrometry, and triple quadrupole tandem mass spectrometry. The characterization of 18 'NBOMe' compounds provided a comprehensive collection of chromatographic and spectral data. Four groups of three positional isomers, i.e. 25I-NB2OMe, 25I-NB3OMe, 25I-NB4OMe, 25I-NB2B, 25I-NB3B, 25I-NB4B and their 5-methoxytryptamine counterparts, were included and assessed for ability to obtain differentiation. Six meta-substituted N-benzyl derivatives of 5-methoxytryptamine (CF3, F, CH3, Cl, I, SCH3) were also studied. The implementation of mass spectral techniques was helpful for the differentiation between isomers, for example, when considering the difference in a number of ion ratios. This was considered beneficial in cases where chromatographic separation was only partially achieved under liquid chromatography (LC) conditions. The use of LC/DAD analysis was also found to be valuable for this particular purpose, which confirmed the integrative value of complementary techniques used in areas related to forensic toxicology. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Myoglobin Structure and Function: A Multiweek Biochemistry Laboratory Project

    ERIC Educational Resources Information Center

    Silverstein, Todd P.; Kirk, Sarah R.; Meyer, Scott C.; Holman, Karen L. McFarlane

    2015-01-01

    We have developed a multiweek laboratory project in which students isolate myoglobin and characterize its structure, function, and redox state. The important laboratory techniques covered in this project include size-exclusion chromatography, electrophoresis, spectrophotometric titration, and FTIR spectroscopy. Regarding protein structure,…

  7. Determine new design and construction techniques for transportation of ethanol and ethanol/gasoline blends in new pipelines.

    DOT National Transportation Integrated Search

    2013-02-15

    The technical tasks in this study included activities to characterize the impact of selected : metallurgical processing and fabrication variables on ethanol stress corrosion cracking (ethanol : SCC) of new pipeline steels, develop a better understand...

  8. Activity-Based Protein Profiling of Microbes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadler, Natalie C.; Wright, Aaron T.

    Activity-Based Protein Profiling (ABPP) in conjunction with multimodal characterization techniques has yielded impactful findings in microbiology, particularly in pathogen, bioenergy, drug discovery, and environmental research. Using small molecule chemical probes that react irreversibly with specific proteins or protein families in complex systems has provided insights in enzyme functions in central metabolic pathways, drug-protein interactions, and regulatory protein redox, for systems ranging from photoautotrophic cyanobacteria to mycobacteria, and combining live cell or cell extract ABPP with proteomics, molecular biology, modeling, and other techniques has greatly expanded our understanding of these systems. New opportunities for application of ABPP to microbial systems include:more » enhancing protein annotation, characterizing protein activities in myriad environments, and reveal signal transduction and regulatory mechanisms in microbial systems.« less

  9. Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited).

    PubMed

    Follett, R K; Delettrez, J A; Edgell, D H; Henchen, R J; Katz, J; Myatt, J F; Froula, D H

    2016-11-01

    Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10 21 cm -3 , which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.

  10. The role of chromatographic and chiroptical spectroscopic techniques and methodologies in support of drug discovery for atropisomeric drug inhibitors of Bruton's tyrosine kinase.

    PubMed

    Dai, Jun; Wang, Chunlei; Traeger, Sarah C; Discenza, Lorell; Obermeier, Mary T; Tymiak, Adrienne A; Zhang, Yingru

    2017-03-03

    Atropisomers are stereoisomers resulting from hindered bond rotation. From synthesis of pure atropisomers, characterization of their interconversion thermodynamics to investigation of biological stereoselectivity, the evaluation of drug candidates subject to atropisomerism creates special challenges and can be complicated in both early drug discovery and later drug development. In this paper, we demonstrate an array of analytical techniques and systematic approaches to study the atropisomerism of drug molecules to meet these challenges. Using a case study of Bruton's tyrosine kinase (BTK) inhibitor drug candidates at Bristol-Myers Squibb, we present the analytical strategies and methodologies used during drug discovery including the detection of atropisomers, the determination of their relative composition, the identification of relative chirality, the isolation of individual atropisomers, the evaluation of interconversion kinetics, and the characterization of chiral stability in the solid state and in solution. In vivo and in vitro stereo-stability and stereo-selectivity were investigated as well as the pharmacological significance of any changes in atropisomer ratios. Techniques applied in these studies include analytical and preparative enantioselective supercritical fluid chromatography (SFC), enantioselective high performance liquid chromatography (HPLC), circular dichroism (CD), and mass spectrometry (MS). Our experience illustrates how atropisomerism can be a very complicated issue in drug discovery and why a thorough understanding of this phenomenon is necessary to provide guidance for pharmaceutical development. Analytical techniques and methodologies facilitate key decisions during the discovery of atropisomeric drug candidates by characterizing time-dependent physicochemical properties that can have significant biological implications and relevance to pharmaceutical development plans. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. TOPICAL REVIEW: Human soft tissue analysis using x-ray or gamma-ray techniques

    NASA Astrophysics Data System (ADS)

    Theodorakou, C.; Farquharson, M. J.

    2008-06-01

    This topical review is intended to describe the x-ray techniques used for human soft tissue analysis. X-ray techniques have been applied to human soft tissue characterization and interesting results have been presented over the last few decades. The motivation behind such studies is to provide improved patient outcome by using the data obtained to better understand a disease process and improve diagnosis. An overview of theoretical background as well as a complete set of references is presented. For each study, a brief summary of the methodology and results is given. The x-ray techniques include x-ray diffraction, x-ray fluorescence, Compton scattering, Compton to coherent scattering ratio and attenuation measurements. The soft tissues that have been classified using x-rays or gamma rays include brain, breast, colon, fat, kidney, liver, lung, muscle, prostate, skin, thyroid and uterus.

  12. Detection and characterization of uranium-humic complexes during 1D transport studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesher, Emily K.; Honeyman, Bruce D.; Ranville, James F.

    2013-05-01

    The speciation and transport of uranium (VI) through porous media is highly dependent on solution conditions, the presence of complexing ligands, and the nature of the porous media. The dependency on many variables makes prediction of U transport in bench-scale experiments and in the field difficult. In particular, the identification of colloidal U phases poses a technical challenge. Transport of U in the presence and absence of natural organic matter (Suwannee River humic acid, SRHA) through silica sand and hematite coated silica sand was tested at pH 4 and 5 using static columns, where flow is controlled by gravity andmore » residence time between advective pore volume exchanges can be strictly controlled. The column effluents were characterized by traditional techniques including ICPMS quantification of total [U] and [Fe], TOC analysis of [DOC], and pH analysis, and also by non-traditional techniques: flow field flow fractionation with online ICPMS detection (FlFFF-ICPMS) and specific UV absorbance (SUVA) characterization of effluent fractions. Key results include that the transport of U through the columns was enhanced by pre-equilibration with SRHA, and previously deposited U was remobilized by the addition of SRHA. The advanced techniques yielded important insights on the mechanisms of transport: FlFFF-ICPMS identified a U-SRHA complex as the mobile U species and directly quantified relative amounts of the complex, while specific UV absorbance (SUVA) measurements indicated a composition-based fractionation onto the porous media.« less

  13. High Definition Confocal Imaging Modalities for the Characterization of Tissue-Engineered Substitutes.

    PubMed

    Mayrand, Dominique; Fradette, Julie

    2018-01-01

    Optimal imaging methods are necessary in order to perform a detailed characterization of thick tissue samples from either native or engineered tissues. Tissue-engineered substitutes are featuring increasing complexity including multiple cell types and capillary-like networks. Therefore, technical approaches allowing the visualization of the inner structural organization and cellular composition of tissues are needed. This chapter describes an optical clearing technique which facilitates the detailed characterization of whole-mount samples from skin and adipose tissues (ex vivo tissues and in vitro tissue-engineered substitutes) when combined with spectral confocal microscopy and quantitative analysis on image renderings.

  14. Propagation issues for emerging mobile and portable communications: A systems perspective

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser

    1993-01-01

    The viewpoint of a system engineer regarding the format of propagation information and models suitable for the design of mobile and portable satellite communications systems for the following services: audio broadcast, two way voice, and packet data is presented. Topics covered include: propagation impairments for portable indoor reception in satellite communications systems; propagation impairments and mitigation techniques for mobile satellite communications systems; characterization of mobile satellite communications channels in the presence of roadside blockage when interleaving and FEC coding are implemented; characterization of short-term mobile satellite signal variations; and characterization of long-term signal variations.

  15. Review of Quantitative Ultrasound: Envelope Statistics and Backscatter Coefficient Imaging and Contributions to Diagnostic Ultrasound.

    PubMed

    Oelze, Michael L; Mamou, Jonathan

    2016-02-01

    Conventional medical imaging technologies, including ultrasound, have continued to improve over the years. For example, in oncology, medical imaging is characterized by high sensitivity, i.e., the ability to detect anomalous tissue features, but the ability to classify these tissue features from images often lacks specificity. As a result, a large number of biopsies of tissues with suspicious image findings are performed each year with a vast majority of these biopsies resulting in a negative finding. To improve specificity of cancer imaging, quantitative imaging techniques can play an important role. Conventional ultrasound B-mode imaging is mainly qualitative in nature. However, quantitative ultrasound (QUS) imaging can provide specific numbers related to tissue features that can increase the specificity of image findings leading to improvements in diagnostic ultrasound. QUS imaging can encompass a wide variety of techniques including spectral-based parameterization, elastography, shear wave imaging, flow estimation, and envelope statistics. Currently, spectral-based parameterization and envelope statistics are not available on most conventional clinical ultrasound machines. However, in recent years, QUS techniques involving spectral-based parameterization and envelope statistics have demonstrated success in many applications, providing additional diagnostic capabilities. Spectral-based techniques include the estimation of the backscatter coefficient (BSC), estimation of attenuation, and estimation of scatterer properties such as the correlation length associated with an effective scatterer diameter (ESD) and the effective acoustic concentration (EAC) of scatterers. Envelope statistics include the estimation of the number density of scatterers and quantification of coherent to incoherent signals produced from the tissue. Challenges for clinical application include correctly accounting for attenuation effects and transmission losses and implementation of QUS on clinical devices. Successful clinical and preclinical applications demonstrating the ability of QUS to improve medical diagnostics include characterization of the myocardium during the cardiac cycle, cancer detection, classification of solid tumors and lymph nodes, detection and quantification of fatty liver disease, and monitoring and assessment of therapy.

  16. Damage evaluation of proton irradiated titanium deuteride thin films to be used as neutron production targets

    NASA Astrophysics Data System (ADS)

    Suarez Anzorena, Manuel; Bertolo, Alma A.; Gagetti, Leonardo; Gaviola, Pedro A.; del Grosso, Mariela F.; Kreiner, Andrés J.

    2018-06-01

    Titanium deuteride thin films have been manufactured under different conditions specified by deuterium gas pressure, substrate temperature and time. The films were characterized by different techniques to evaluate the deuterium content and the homogeneity of such films. Samples with different concentrations of deuterium, including non deuterated samples, were irradiated with a 150 keV proton beam. Both deposits, pristine and irradiated, were characterized by optical profilometry and scanning electron microscopy.

  17. Delayed Gamma-ray Spectroscopy for Safeguards Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mozin, Vladimir

    The delayed gamma-ray assay technique utilizes an external neutron source (D-D, D-T, or electron accelerator-driven), and high-resolution gamma-ray spectrometers to perform characterization of SNM materials behind shielding and in complex configurations such as a nuclear fuel assembly. High-energy delayed gamma-rays (2.5 MeV and above) observed following the active interrogation, provide a signature for identification of specific fissionable isotopes in a mixed sample, and determine their relative content. Potential safeguards applications of this method are: 1) characterization of fresh and spent nuclear fuel assemblies in wet or dry storage; 2) analysis of uranium enrichment in shielded or non-characterized containers or inmore » the presence of a strong radioactive background and plutonium contamination; 3) characterization of bulk and waste and product streams at SNM processing plants. Extended applications can include warhead confirmation and warhead dismantlement confirmation in the arms control area, as well as SNM diagnostics for the emergency response needs. In FY16 and prior years, the project has demonstrated the delayed gamma-ray measurement technique as a robust SNM assay concept. A series of empirical and modeling studies were conducted to characterize its response sensitivity, develop analysis methodologies, and analyze applications. Extensive experimental tests involving weapons-grade Pu, HEU and depleted uranium samples were completed at the Idaho Accelerator Center and LLNL Dome facilities for various interrogation time regimes and effects of the neutron source parameters. A dedicated delayed gamma-ray response modeling technique was developed and its elements were benchmarked in representative experimental studies, including highresolution gamma-ray measurements of spent fuel at the CLAB facility in Sweden. The objective of the R&D effort in FY17 is to experimentally demonstrate the feasibility of the delayed gamma-ray interrogation of shielded SNM samples with portable neutron sources suitable for field applications.« less

  18. Ultra-High Temperature Materials Characterization for Space and Missile Applications

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Hyers, Robert

    2007-01-01

    Numerous advanced space and missile technologies including propulsion systems require operations at high temperatures. Some very high-temperature materials are being developed to meet these needs, including refractory metal alloys, carbides, borides, and silicides. System design requires data for materials properties at operating temperatures. Materials property data are not available at the desired operating temperatures for many materials of interest. The objective of this work is to provide important physical property data at ultra-high temperatures. The MSFC Electrostatic Levitation (ESL) facility can provide measurements of thermophysical properties which include: creep strength, emissivity, density and thermal expansion. ESL uses electrostatic fields to position samples between electrodes during processing and characterization experiments. Samples float between the electrodes during studies and are free from any contact with a container or test apparatus. This provides a high purity environment for the study of high-temperature, reactive materials. ESL can be used to process a wide variety of materials including metals, alloys, ceramics, glasses and semiconductors. A system for the determination of total hemispherical emissivity is being developed for the MSFC ESL facility by AZ Technology Inc. The instrument has been designed to provide emissivity measurements for samples during ESL experiments over the temperature range 700-3400K. A novel non-contact technique for the determination of high-temperature creep strength has been developed. Data from selected ESL-based characterization studies will be presented. The ESL technique could advance space and missile technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials. Applications include non-eroding nozzle materials and lightweight, high-temperature alloys for turbines and structures.

  19. N-Scan®: New Vibro-Modulation System for Crack Detection, Monitoring and Characterization

    NASA Astrophysics Data System (ADS)

    Zagrai, Andrei; Donskoy, Dimitri; Lottiaux, Jean-Louis

    2004-02-01

    In recent years, an innovative vibro-modulation technique has been introduced for the detection of contact-type interfaces such as cracks, debondings, and delaminations. The technique utilizes the effect of nonlinear interaction of ultrasound and vibrations at the interface of the defect. Vibration varies the contact area of the interface, modulating a passing ultrasonic wave. The modulation manifests itself as additional side-band spectral components with the combination frequencies in the spectrum of the received signal. The presence of these components allows for the detection and differentiation of the contact-type defects from other structural and material inhomogeneities. The vibro-modulation technique has been implemented in the N-SCAN® damage detection system providing a cost effective solution for the complex NDT problems. N-SCAN® proved to be very effective for damage detection and characterization in structures and structural components of simple and complex geometries made of steel, aluminum, composites, and other materials. Examples include 24 foot-long gun barrels, stainless steel pipes used in nuclear power plants, aluminum automotive parts, steel train couplers, etc. This paper describes the basic principles of the nonlinear vibro-modulation NDE technique, some theoretical background for nonlinear interaction, and justification of signal processing algorithms. The laboratory experiment is presented for a set of specimens with the calibrated cracks and the quantitative characterization of fatigue damage is given in terms of a modulation index. The paper also discusses examples of practical implementation and application of the technique.

  20. A Tape Method for Fast Characterization and Identification of Active Pharmaceutical Ingredients in the 2-18 THz Spectral Range

    NASA Astrophysics Data System (ADS)

    Kissi, Eric Ofosu; Bawuah, Prince; Silfsten, Pertti; Peiponen, Kai-Erik

    2015-03-01

    In order to find counterfeit drugs quickly and reliably, we have developed `tape method' a transmission spectroscopic terahertz (THz) measurement technique and compared it with a standard attenuated total reflection (ATR) THz spectroscopic measurement. We used well-known training samples, which include commercial paracetamol and aspirin tablets to check the validity of these two measurement techniques. In this study, the spectral features of some active pharmaceutical ingredients (APIs), such as aspirin and paracetamol are characterized for identification purpose. This work covers a wide THz spectral range namely, 2-18 THz. This proposed simple but novel technique, the tape method, was used for characterizing API and identifying their presence in their dosage forms. By comparing the spectra of the APIs to their dosage forms (powder samples), all distinct fingerprints present in the APIs are also present in their respective dosage forms. The positions of the spectral features obtained with the ATR techniques were akin to that obtained from the tape method. The ATR and the tape method therefore, complement each other. The presence of distinct fingerprints in this spectral range has highlighted the possibility of developing fast THz sensors for the screening of pharmaceuticals. It is worth noting that, the ATR method is applicable to flat faced tablets whereas the tape method is suitable for powders in general (e.g. curved surface tablets that require milling before measurement). Finally, we have demonstrated that ATR techniques can be used to screen counterfeit antimalarial tablets.

  1. Various extraction and analytical techniques for isolation and identification of secondary metabolites from Nigella sativa seeds.

    PubMed

    Liu, X; Abd El-Aty, A M; Shim, J-H

    2011-10-01

    Nigella sativa L. (black cumin), commonly known as black seed, is a member of the Ranunculaceae family. This seed is used as a natural remedy in many Middle Eastern and Far Eastern countries. Extracts prepared from N. sativa have, for centuries, been used for medical purposes. Thus far, the organic compounds in N. sativa, including alkaloids, steroids, carbohydrates, flavonoids, fatty acids, etc. have been fairly well characterized. Herein, we summarize some new extraction techniques, including microwave assisted extraction (MAE) and supercritical extraction techniques (SFE), in addition to the classical method of hydrodistillation (HD), which have been employed for isolation and various analytical techniques used for the identification of secondary metabolites in black seed. We believe that some compounds contained in N. sativa remain to be identified, and that high-throughput screening could help to identify new compounds. A study addressing environmentally-friendly techniques that have minimal or no environmental effects is currently underway in our laboratory.

  2. Base-Catalyzed Linkage Isomerization: An Undergraduate Inorganic Kinetics Experiment.

    ERIC Educational Resources Information Center

    Jackson, W. G.; And Others

    1981-01-01

    Describes kinetics experiments completed in a single two-hour laboratory period at 25 degrees Centigrade of nitrito to nitro rearrangement, based on the recently discovered base-catalysis path. Includes information on synthesis and characterization of linkage isomers, spectrophotometric techniques, and experimental procedures. (SK)

  3. Growth and characterization of binary and pseudo-binary 3-5 compounds exhibiting non-linear optical behavior. Undergraduate research opportunities in microgravity science and technology

    NASA Technical Reports Server (NTRS)

    Witt, August F.

    1992-01-01

    In line with the specified objectives, a Bridgman-type growth configuration in which unavoidable end effects - conventionally leading to growth interface relocation - are compensated by commensurate input-power changes is developed; the growth rate on a microscale is predictable and unaffected by changes in heat transfer conditions. To permit quantitative characterization of the growth furnace cavity (hot-zone), a 3-D thermal field mapping technique, based on the thermal image, is being tested for temperatures up to 1100 C. Computational NIR absorption analysis was modified to now permit characterization of semi-insulating single crystals. Work on growth and characterization of bismuth-silicate was initiated. Growth of BSO (B12SiO20) for seed material by the Czochralski technique is currently in progress. Undergraduate research currently in progress includes: ground based measurements of the wetting behavior (contact angles) of semiconductor melts on substrates consisting of potential confinement materials for solidification experiments in a reduced gravity environment. Hardware modifications required for execution of the wetting experiments in a KC-135 facility are developed.

  4. The role of ultrasound elastographic techniques in chronic liver disease: current status and future perspectives.

    PubMed

    Piscaglia, Fabio; Marinelli, Sara; Bota, Simona; Serra, Carla; Venerandi, Laura; Leoni, Simona; Salvatore, Veronica

    2014-03-01

    This review illustrates the state of the art clinical applications and the future perspectives of ultrasound elastographic methods for the evaluation of chronic liver diseases, including the most widely used and validated technique, transient elastography, followed by shear wave elastography and strain imaging elastography. Liver ultrasound elastography allows the non-invasive evaluation of liver stiffness, providing information regarding the stage of fibrosis, comparable to liver biopsy which is still considered the gold standard; in this way, it can help physicians in managing patients, including the decision as to when to start antiviral treatment. The characterization of focal liver lesions and the prognostic role of the elastographic technique in the prediction of complications of cirrhosis are still under investigation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    PubMed Central

    Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo

    2015-01-01

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications. PMID:25938973

  6. Pulmonary nodule characterization, including computer analysis and quantitative features.

    PubMed

    Bartholmai, Brian J; Koo, Chi Wan; Johnson, Geoffrey B; White, Darin B; Raghunath, Sushravya M; Rajagopalan, Srinivasan; Moynagh, Michael R; Lindell, Rebecca M; Hartman, Thomas E

    2015-03-01

    Pulmonary nodules are commonly detected in computed tomography (CT) chest screening of a high-risk population. The specific visual or quantitative features on CT or other modalities can be used to characterize the likelihood that a nodule is benign or malignant. Visual features on CT such as size, attenuation, location, morphology, edge characteristics, and other distinctive "signs" can be highly suggestive of a specific diagnosis and, in general, be used to determine the probability that a specific nodule is benign or malignant. Change in size, attenuation, and morphology on serial follow-up CT, or features on other modalities such as nuclear medicine studies or MRI, can also contribute to the characterization of lung nodules. Imaging analytics can objectively and reproducibly quantify nodule features on CT, nuclear medicine, and magnetic resonance imaging. Some quantitative techniques show great promise in helping to differentiate benign from malignant lesions or to stratify the risk of aggressive versus indolent neoplasm. In this article, we (1) summarize the visual characteristics, descriptors, and signs that may be helpful in management of nodules identified on screening CT, (2) discuss current quantitative and multimodality techniques that aid in the differentiation of nodules, and (3) highlight the power, pitfalls, and limitations of these various techniques.

  7. Isolation and characterization of anti ROR1 single chain fragment variable antibodies using phage display technique.

    PubMed

    Aghebati-Maleki, Leili; Younesi, Vahid; Jadidi-Niaragh, Farhad; Baradaran, Behzad; Majidi, Jafar; Yousefi, Mehdi

    2017-01-01

    Receptor tyrosine kinase-like orphan receptor (ROR1) belongs to one of the families of receptor tyrosine kinases (RTKs). RTKs are involved in the various physiologic cellular functions including proliferation, migration, survival, signaling and differentiation. Several RTKs are deregulated in various cancers implying the targeting potential of these molecules in cancer therapy. ROR1 has recently been shown to be expressed in various types of cancer cells but not in normal adult cells. Hence a molecular inhibitor of extracellular domain of ROR1 that inhibits ROR1-cell surface interaction is of great therapeutic importance. In an attempt to develop molecular inhibitors of ROR1, we screened single chain variable fragment (scFv) phage display libraries, Tomlinson I + J, against one specific synthetic oligopeptide from extracellular domain of ROR1 and selected scFvs were characterized using various immunological techniques. Several ROR1 specific scFvs were selected following five rounds of panning procedure. The scFvs showed specific binding to ROR1 using immunological techniques. Our results demonstrate successful isolation and characterization of specific ROR1 scFvs that may have great therapeutic potential in cancer immunotherapy.

  8. Morphological and compositional study of 238U thin film targets for nuclear experiments

    NASA Astrophysics Data System (ADS)

    Sibbens, Goedele; Ernstberger, Markus; Gouder, Thomas; Marouli, Maria; Moens, André; Seibert, Alice; Vanleeuw, David; Zúñiga, Martin Vargas; Wiss, Thierry; Zampella, Mariavittoria; Zuleger, Evelyn

    2018-05-01

    The uncertainty in neutron cross section values strongly depends on the quality and characteristics of the deposited actinide films which are used as "targets" in the nuclear experiments. Until recently, at the Joint Research Centre in Geel (JRC-Geel), mass and areal densities of actinide layers were determined by measuring activity (using alpha-particle counting), isotopic composition (using thermal ionisation mass spectrometry) and diameter. In this study a series of 238U deposits, prepared by molecular plating and vacuum deposition on different substrates, were characterized with additional non-destructive and destructive analysis techniques. The quality of the deposits was investigated by autoradiography, high-resolution alpha-particle spectrometry, and scanning electron microscopy. The elemental composition was determined by x-ray photoelectron spectroscopy and inductively coupled plasma mass spectrometry. The latter technique was also applied on the U3O8 starting material and the converted UF4 powder. This paper compares the quality and morphology of deposited 238U films prepared by molecular plating and vacuum deposition on various backings, including their elemental composition determined by different characterization techniques. Also discussed are problems in target preparation and characterization.

  9. Algorithms for the analysis and characterization of convective structures relative to extreme rainfall events

    NASA Astrophysics Data System (ADS)

    Sabatino, Pietro; Fedele, Giuseppe; Procopio, Antonio; Chiaravalloti, Francesco; Gabriele, Salvatore

    2016-10-01

    Among many weather phenomena, convective storms are one of the most dangerous since they are able to cause, in a relatively small time window, great damages. Convective precipitations are in fact characterized by relatively small spatial and temporal scales, and as a consequence, the task of forecasting such phenomena turns out to be an elusive one. Nonetheless, given their dangerousness, the identification and tracking of meteorological convective systems are of paramount importance and are the subject of several studies. In particular, the early detection of the areas where deep convection is about to appear, and the prediction of the development and path of existing convective thunderstorms represent two focal research topics. The aim of the present work is to outline a framework employing various techniques apt to the task of monitoring and characterization of convective clouds. We analyze meteorological satellite images and data in order to evaluate the potential occurring of strong precipitation. Techniques considered include numerical, machine learning, image processing. The techniques are tested on data coming from real convective events captured in the last years on the Italian peninsula by the Meteosat meteorological satellites and weather radar.

  10. High-resolution vascular tissue characterization in mice using 55 MHz ultrasound hybrid imaging

    PubMed Central

    Mahmoud, Ahmed M.; Sandoval, Cesar; Teng, Bunyen; Schnermann, Jurgen B.; Martin, Karen H.; Mustafa, S. Jamal; Mukdadi, Osama M.

    2012-01-01

    Ultrasound and Duplex ultrasonography in particular are routinely used to diagnose cardiovascular disease (CVD), which is the leading cause of morbidity and mortality worldwide. However, these techniques may not be able to characterize vascular tissue compositional changes due to CVD. This work describes an ultrasound-based hybrid imaging technique that can be used for vascular tissue characterization and the diagnosis of atherosclerosis. Ultrasound radiofrequency (RF) data were acquired and processed in time, frequency, and wavelet domains to extract six parameters including time integrated backscatter (TIB), time variance (Tvar), time entropy (TE), frequency integrated backscatter (FIB), wavelet root mean square value (Wrms), and wavelet integrated backscatter (WIB). Each parameter was used to reconstruct an image co-registered to morphological B-scan. The combined set of hybrid images were used to characterize vascular tissue in vitro and in vivo using three mouse models including control (C57BL/6), and atherosclerotic apolipoprotein E-knockout (APOE-KO) and APOE/A1 adenosine receptor double knockout (DKO) mice. The technique was tested using high-frequency ultrasound including single-element (center frequency = 55 MHz) and commercial array (center frequency = 40 MHz) systems providing superior spatial resolutions of 24 μm and 40 μm, respectively. Atherosclerotic vascular lesions in the APOE-KO mouse exhibited the highest values (contrast) of −10.11 ± 1.92 dB, −12.13 ± 2.13 dB, −7.54 ± 1.45 dB, −5.10 ± 1.06 dB, −5.25 ± 0.94 dB, and −10.23 ± 2.12 dB in TIB, Tvar, TE, FIB, Wrms, WIB hybrid images (n = 10, p < 0.05), respectively. Control segments of normal vascular tissue showed the lowest values of −20.20 ± 2.71 dB, −22.54 ± 4.54 dB, −14.94 ± 2.05 dB, −9.64 ± 1.34 dB, −10.20 ± 1.27 dB, and −19.36 ± 3.24 dB in same hybrid images (n = 6, p < 0.05). Results from both histology and optical images showed good agreement with ultrasound findings within a maximum error of 3.6% in lesion estimation. This study demonstrated the feasibility of a high-resolution hybrid imaging technique to diagnose atherosclerosis and characterize plaque components in mouse. In the future, it can be easily implemented on commercial ultrasound systems and eventually translated into clinics as a screening tool for atherosclerosis and the assessment of vulnerable plaques. PMID:23218908

  11. Advanced techniques for characterization of ion beam modified materials

    DOE PAGES

    Zhang, Yanwen; Debelle, Aurélien; Boulle, Alexandre; ...

    2014-10-30

    Understanding the mechanisms of damage formation in materials irradiated with energetic ions is essential for the field of ion-beam materials modification and engineering. Utilizing incident ions, electrons, photons, and positrons, various analysis techniques, including Rutherford backscattering spectrometry (RBS), electron RBS, Raman spectroscopy, high-resolution X-ray diffraction, small-angle X-ray scattering, and positron annihilation spectroscopy, are routinely used or gaining increasing attention in characterizing ion beam modified materials. The distinctive information, recent developments, and some perspectives in these techniques are reviewed in this paper. Applications of these techniques are discussed to demonstrate their unique ability for studying ion-solid interactions and the corresponding radiationmore » effects in modified depths ranging from a few nm to a few tens of μm, and to provide information on electronic and atomic structure of the materials, defect configuration and concentration, as well as phase stability, amorphization and recrystallization processes. Finally, such knowledge contributes to our fundamental understanding over a wide range of extreme conditions essential for enhancing material performance and also for design and synthesis of new materials to address a broad variety of future energy applications.« less

  12. Reflective small angle electron scattering to characterize nanostructures on opaque substrates

    NASA Astrophysics Data System (ADS)

    Friedman, Lawrence H.; Wu, Wen-Li; Fu, Wei-En; Chien, Yunsan

    2017-09-01

    Feature sizes in integrated circuits (ICs) are often at the scale of 10 nm and are ever shrinking. ICs appearing in today's computers and hand held devices are perhaps the most prominent examples. These smaller feature sizes demand equivalent advances in fast and accurate dimensional metrology for both development and manufacturing. Techniques in use and continuing to be developed include X-ray based techniques, optical scattering, and of course the electron and scanning probe microscopy techniques. Each of these techniques has their advantages and limitations. Here, the use of small angle electron beam scattering measurements in a reflection mode (RSAES) to characterize the dimensions and the shape of nanostructures on flat and opaque substrates is demonstrated using both experimental and theoretical evidence. In RSAES, focused electrons are scattered at angles smaller than 1 ° with the assistance of electron optics typically used in transmission electron microscopy. A proof-of-concept experiment is combined with rigorous electron reflection simulations to demonstrate the efficiency and accuracy of RSAES as a method of non-destructive measurement of shapes of features less than 10 nm in size on flat and opaque substrates.

  13. Reflective Small Angle Electron Scattering to Characterize Nanostructures on Opaque Substrates.

    PubMed

    Friedman, Lawrence H; Wu, Wen-Li; Fu, Wei-En; Chien, Yunsan

    2017-09-01

    Features sizes in integrated circuits (ICs) are often at the scale of 10 nm and are ever shrinking. ICs appearing in today's computers and hand held devices are perhaps the most prominent examples. These smaller feature sizes demand equivalent advances in fast and accurate dimensional metrology for both development and manufacturing. Techniques in use and continuing to be developed include X-ray based techniques, optical scattering and of course the electron and scanning probe microscopy techniques. Each of these techniques have their advantages and limitations. Here the use of small angle electron beam scattering measurements in a reflection mode (RSAES) to characterize the dimensions and the shape of nanostructures on flat and opaque substrates is demonstrated using both experimental and theoretical evidence. In RSAES, focused electrons are scattered at angles smaller than 1° with the assistance of electron optics typically used in transmission electron microscopy. A proof-of-concept experiment is combined with rigorous electron reflection simulations to demonstrate the efficiency and accuracy of RSAES as a method of non-destructive measurement of shapes of features less than 10 nm in size on flat and opaque substrates.

  14. Nondestructive evaluation of defects in carbon fiber reinforced polymer (CFRP) composites

    NASA Astrophysics Data System (ADS)

    Ngo, Andrew C. Y.; Goh, Henry K. H.; Lin, Karen K.; Liew, W. H.

    2017-04-01

    Carbon fiber reinforced polymer (CFRP) composites are increasingly used in aerospace applications due to its superior mechanical properties and reduced weight. Adhesive bonding is commonly used to join the composite parts since it is capable of joining incompatible or dissimilar components. However, insufficient adhesive or contamination in the adhesive bonds might occur and pose as threats to the integrity of the plane during service. It is thus important to look for suitable nondestructive testing (NDT) techniques to detect and characterize the sub-surface defects within the CFRP composites. Some of the common NDT techniques include ultrasonic techniques and thermography. In this work, we report the use of the abovementioned techniques for improved interpretation of the results.

  15. Topical Issue on Optical Particle Characterization and Remote Sensing of the Atmosphere: Part I

    NASA Technical Reports Server (NTRS)

    Videen, Gorden; Kocifaj, Miroslav; Sun, Wenbo; Kai, Kenji; Kawamoto, Kazuaki; Horvath, Helmuth; Mishchenko, Michael

    2015-01-01

    Increasing our understanding of the Earth-atmosphere system has been a scientific and political priority for the last few decades. This system not only touches on environmental science, but it has applicability to our broader understanding of planetary atmospheres in general. While this issue focuses primarily on electromagnetics, other fundamental fields of science, including fluid and thermodynamics play major roles. In recent years, significant research efforts have led to advances in the fields of radiative transfer and electromagnetic scattering from irregularly shaped particles. Recently, several workshops and small conferences have taken place to promote the fusion of these efforts. Late in 2013, for instance, two such meetings took place. The Optical Characterization of Atmospheric Aerosols (OCAA) meeting took place in Smolenice, Slovakia to promote a better understanding of microphysical properties of aerosol particles, and the characterization of such atmospheric particles using optical techniques. A complementary conference was organized in Nagoya, Japan, the 3rd International Symposium on Atmospheric Light Scattering and Remote Sensing (ISALSaRS), whose goal is to fuse the advances achieved in particle characterization with remote-sensing techniques. While the focus of these meetings is slightly different, they represent the same aspects of this rapidly growing field. This Topical Issue is the first of two parts. Within this issue we analyze different aspects of the problem of atmospheric characterization and present a broad overview of the topical area. Research includes theory and experiment, ranging from fundamental microphysical properties of individual aerosol particles to broad characterizations of atmospheric properties. Since this is an active field, we also have encouraged the submission of ideas for new methodologies that may represent the future of the field.

  16. Unlocking the proteomic information encoded in MALDI-TOF-MS data used for microbial identification and characterization

    USDA-ARS?s Scientific Manuscript database

    Introduction: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS)is increasingly utilized as a rapid technique to identify microorganisms including pathogenic bacteria. However, little attention has been paid to the significant proteomic information encoded in ...

  17. Living aboard the Space Shuttle

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The crew habitat of the Space Shuttle is briefly characterized. Subjects discussed include the overall layout of the crew quarters; the air-purification and climate-control facilities; menus and food-preparation techniques; dishwashing, laundry, toilet, bathing, and shaving procedures; and recreation and sleeping accommodations. Drawings and a photograph are provided.

  18. The Federal Program in Population Research, Parts 1 and 2.

    ERIC Educational Resources Information Center

    Federal Council for Science and Technology, Washington, DC.

    The first part of this report characterizes the many facets of the population problem (including biological, economic, and social aspects), suggests a list of areas in which the Federal Government should emphasize research (reproductive biology; fertility regulation techniques and materials; description, determinants, consequences of population…

  19. A simplified regional-scale electromagnetic induction - Salinity calibration model using ANOCOVA modeling techniques

    USDA-ARS?s Scientific Manuscript database

    Directed soil sampling based on geospatial measurements of apparent soil electrical conductivity (ECa) is a potential means of characterizing the spatial variability of any soil property that influences ECa including soil salinity, water content, texture, bulk density, organic matter, and cation exc...

  20. Experimental characterization of the perceptron laser rangefinder

    NASA Technical Reports Server (NTRS)

    Kweon, I. S.; Hoffman, Regis; Krotkov, Eric

    1991-01-01

    In this report, we characterize experimentally a scanning laser rangefinder that employs active sensing to acquire three-dimensional images. We present experimental techniques applicable to a wide variety of laser scanners, and document the results of applying them to a device manufactured by Perceptron. Nominally, the sensor acquires data over a 60 deg x 60 deg field of view in 256 x 256 pixel images at 2 Hz. It digitizes both range and reflectance pixels to 12 bits, providing a maximum range of 40 m and a depth resolution of 1 cm. We present methods and results from experiments to measure geometric parameters including the field of view, angular scanning increments, and minimum sensing distance. We characterize qualitatively problems caused by implementation flaws, including internal reflections and range drift over time, and problems caused by inherent limitations of the rangefinding technology, including sensitivity to ambient light and surface material. We characterize statistically the precision and accuracy of the range measurements. We conclude that the performance of the Perceptron scanner does not compare favorably with the nominal performance, that scanner modifications are required, and that further experimentation must be conducted.

  1. Collaborative Research and Development (CR&D). Delivery Order 0051: Atomic Scale Transmission Electron Microscope Image Modeling and Application to Semiconductor Heterointerface Characterization

    DTIC Science & Technology

    2008-01-01

    information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD...microscopy ( AEM ), to characterize a variety of III-V semiconductor thin films. The materials investigated include superlattices based on the InAs- GaSb...technique. TEM observations were performed using a Philips-CM 200 FEG transmission electron microscope equipped with a field emission gun, operated at an

  2. Characterization and properties of micro- and nanowires of controlled size, composition, and geometry fabricated by electrodeposition and ion-track technology

    PubMed Central

    2012-01-01

    Summary The combination of electrodeposition and polymeric templates created by heavy-ion irradiation followed by chemical track etching provides a large variety of poly- and single-crystalline nanowires of controlled size, geometry, composition, and surface morphology. Recent results obtained by our group on the fabrication, characterization and size-dependent properties of nanowires synthesized by this technique are reviewed, including investigations on electrical resistivity, surface plasmon resonances, and thermal instability. PMID:23365800

  3. The Effects of Practice-Based Training on Graduate Teaching Assistants' Classroom Practices.

    PubMed

    Becker, Erin A; Easlon, Erin J; Potter, Sarah C; Guzman-Alvarez, Alberto; Spear, Jensen M; Facciotti, Marc T; Igo, Michele M; Singer, Mitchell; Pagliarulo, Christopher

    2017-01-01

    Evidence-based teaching is a highly complex skill, requiring repeated cycles of deliberate practice and feedback to master. Despite existing well-characterized frameworks for practice-based training in K-12 teacher education, the major principles of these frameworks have not yet been transferred to instructor development in higher educational contexts, including training of graduate teaching assistants (GTAs). We sought to determine whether a practice-based training program could help GTAs learn and use evidence-based teaching methods in their classrooms. We implemented a weekly training program for introductory biology GTAs that included structured drills of techniques selected to enhance student practice, logic development, and accountability and reduce apprehension. These elements were selected based on their previous characterization as dimensions of active learning. GTAs received regular performance feedback based on classroom observations. To quantify use of target techniques and levels of student participation, we collected and coded 160 h of video footage. We investigated the relationship between frequency of GTA implementation of target techniques and student exam scores; however, we observed no significant relationship. Although GTAs adopted and used many of the target techniques with high frequency, techniques that enforced student participation were not stably adopted, and their use was unresponsive to formal feedback. We also found that techniques discussed in training, but not practiced, were not used at quantifiable frequencies, further supporting the importance of practice-based training for influencing instructional practices. © 2017 E. A. Becker et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Atomic oxygen effects on thin film space coatings studied by spectroscopic ellipsometry, atomic force microscopy, and laser light scattering

    NASA Technical Reports Server (NTRS)

    Synowicki, R. A.; Hale, Jeffrey S.; Woollam, John A.

    1992-01-01

    The University of Nebraska is currently evaluating Low Earth Orbit (LEO) simulation techniques as well as a variety of thin film protective coatings to withstand atomic oxygen (AO) degradation. Both oxygen plasma ashers and an electron cyclotron resonance (ECR) source are being used for LEO simulation. Thin film coatings are characterized by optical techniques including Variable Angle Spectroscopic Ellipsometry, Optical spectrophotometry, and laser light scatterometry. Atomic Force Microscopy (AFM) is also used to characterize surface morphology. Results on diamondlike carbon (DLC) films show that DLC degrades with simulated AO exposure at a rate comparable to Kapton polyimide. Since DLC is not as susceptible to environmental factors such as moisture absorption, it could potentially provide more accurate measurements of AO fluence on short space flights.

  5. Characterization of novel preclinical dose distributions for micro irradiator

    NASA Astrophysics Data System (ADS)

    Kodra, J.; Miles, D.; Yoon, S. W.; Kirsch, D. G.; Oldham, M.

    2017-05-01

    This work explores and demonstrates the feasibility of utilizing new 3D printing techniques to implement advanced micro radiation therapy for pre-clinical small animal studies. 3D printed blocks and compensators were designed and printed from a strong x-ray attenuating material at sub-millimeter resolution. These techniques enable a powerful range of new preclinical treatment capabilities including grid therapy, lattice therapy, and IMRT treatment. At small scales, verification of these treatments is exceptionally challenging, and high resolution 3D dosimetry (0.5mm3) is an essential capability to characterize and verify these capabilities, Here, investigate the 2D and 3D dosimetry of several novel pre-clinical treatments using a combination of EBT film and Presage/optical-CT 3D dosimetry in rodent-morphic dosimeters.

  6. Methods for molecular surveillance of influenza.

    PubMed

    Wang, Ruixue; Taubenberger, Jeffery K

    2010-05-01

    Molecular-based techniques for detecting influenza viruses have become an integral component of human and animal surveillance programs in the last two decades. The recent pandemic of the swine-origin influenza A virus (H1N1) and the continuing circulation of highly pathogenic avian influenza A virus (H5N1) further stress the need for rapid and accurate identification and subtyping of influenza viruses for surveillance, outbreak management, diagnosis and treatment. There has been remarkable progress on the detection and molecular characterization of influenza virus infections in clinical, mammalian, domestic poultry and wild bird samples in recent years. The application of these techniques, including reverse transcriptase-PCR, real-time PCR, microarrays and other nucleic acid sequencing-based amplifications, have greatly enhanced the capability for surveillance and characterization of influenza viruses.

  7. Characterization of Spanish biomass wastes for energy use.

    PubMed

    García, Roberto; Pizarro, Consuelo; Lavín, Antonio G; Bueno, Julio L

    2012-01-01

    Energy plays an important role in the world's present and future. The best way to absorb the huge increase in energy demands is through diversification. In this context biomass appears as an attractive source for a number of environmental, economical, political and social reasons. There are several techniques used to obtain energy from biomass. Among these techniques, the most commonly used throughout the world is a thermo-chemical process to obtain heat. To optimize the combustion process in adequate reactors, a comprehensive study of the characterization of biomass fuel properties is needed, which includes proximate analysis (determination of moisture, ash, volatile and fixed carbon content), ultimate analysis (C, H, N, S and O composition) and calorimetry, focusing on biomass fuels obtained in Spain. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Pre-clinical MR elastography: Principles, techniques, and applications

    NASA Astrophysics Data System (ADS)

    Bayly, P. V.; Garbow, J. R.

    2018-06-01

    Magnetic resonance elastography (MRE) is a method for measuring the mechanical properties of soft tissue in vivo, non-invasively, by imaging propagating shear waves in the tissue. The speed and attenuation of waves depends on the elastic and dissipative properties of the underlying material. Tissue mechanical properties are essential for biomechanical models and simulations, and may serve as markers of disease, injury, development, or recovery. MRE is already established as a clinical technique for detecting and characterizing liver disease. The potential of MRE for diagnosing or characterizing disease in other organs, including brain, breast, and heart is an active research area. Studies involving MRE in the pre-clinical setting, in phantoms and artificial biomaterials, in the mouse, and in other mammals, are critical to the development of MRE as a robust, reliable, and useful modality.

  9. Optical fiber characteristics and standards; Proceedings of the Meeting, Cannes, France, November 25-27, 1985

    NASA Technical Reports Server (NTRS)

    Bouillie, Remy (Editor)

    1986-01-01

    Papers are presented on outside vapor deposition, the plasma activated CVD process for large scale production of telecommunication fibers, axial lateral plasma deposition technology from plastic clad silica, coatings for optical fibers, primary coating characterization, and radiation-induced time dependent attenuation in a fiber. Topics discussed include fibers with high tensile strength, the characteristics and specifications of airborne fiber optic components, the baseband frequency response of multimode fibers, and fibers for local and broadband networks. Consideration is given to industrial measurements for single mode and multimode fibers, the characterization of source power distribution in a multimode fiber by a splice offset technique, the measurement of chromatic dispersion in a single mode optical, and the effect of temperature on the refracted near-field optical fiber profiling technique.

  10. Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follett, R. K., E-mail: rfollett@lle.rochester.edu; Delettrez, J. A.; Edgell, D. H.

    2016-11-15

    Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10{sup 21} cm{sup −3}, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra tomore » show the improvements in plasma characterization.« less

  11. Recent Advances in Cardiovascular Magnetic Resonance Techniques and Applications

    PubMed Central

    Salerno, Michael; Sharif, Behzad; Arheden, Håkan; Kumar, Andreas; Axel, Leon; Li, Debiao; Neubauer, Stefan

    2018-01-01

    Cardiovascular magnetic resonance imaging has become the gold standard for evaluating myocardial function, volumes, and scarring. Additionally, cardiovascular magnetic resonance imaging is unique in its comprehensive tissue characterization, including assessment of myocardial edema, myocardial siderosis, myocardial perfusion, and diffuse myocardial fibrosis. Cardiovascular magnetic resonance imaging has become an indispensable tool in the evaluation of congenital heart disease, heart failure, cardiac masses, pericardial disease, and coronary artery disease. This review will highlight some recent novel cardiovascular magnetic resonance imaging techniques, concepts, and applications. PMID:28611116

  12. Battery Test Manual For 48 Volt Mild Hybrid Electric Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Lee Kenneth

    2017-03-01

    This manual details the U.S. Advanced Battery Consortium and U.S. Department of Energy Vehicle Technologies Program goals, test methods, and analysis techniques for a 48 Volt Mild Hybrid Electric Vehicle system. The test methods are outlined stating with characterization tests, followed by life tests. The final section details standardized analysis techniques for 48 V systems that allow for the comparison of different programs that use this manual. An example test plan is included, along with guidance to filling in gap table numbers.

  13. Laboratory-based characterization of plutonium in soil particles using micro-XRF and 3D confocal XRF

    DOE PAGES

    McIntosh, Kathryn Gallagher; Cordes, Nikolaus Lynn; Patterson, Brian M.; ...

    2015-03-29

    The investigation of plutonium (Pu) in a soil matrix is of interest in safeguards, nuclear forensics, and environmental remediation activities. The elemental composition of two plutonium contaminated soil particles was characterized nondestructively using a pair of micro X-ray fluorescence spectrometry (micro-XRF) techniques including high resolution X-ray (hiRX) and 3D confocal XRF. The three dimensional elemental imaging capability of confocal XRF permitted the identification two distinct Pu particles within the samples: one external to the Ferich soil matrix and another co-located with Cu within the soil matrix. The size and morphology of the particles was assessed with X-ray transmission microscopy andmore » micro X-ray computed tomography (micro-CT) providing complementary morphological information. Limits of detection for a 30 μm Pu particle are <10 ng for each of the XRF techniques. Ultimately, this study highlights the capability for lab-based, nondestructive, spatially resolved characterization of heterogeneous matrices on the micrometer scale with nanogram sensitivity.« less

  14. Vadose Zone Transport Field Study: Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gee, Glendon W.; Ward, Anderson L.

    2001-11-30

    Studies were initiated at the Hanford Site to evaluate the process controlling the transport of fluids in the vadose zone and to develop a reliable database upon which vadose-zone transport models can be calibrated. These models are needed to evaluate contaminant migration through the vadose zone to underlying groundwaters at Hanford. A study site that had previously been extensively characterized using geophysical monitoring techniques was selected in the 200 E Area. Techniques used previously included neutron probe for water content, spectral gamma logging for radionuclide tracers, and gamma scattering for wet bulk density. Building on the characterization efforts of themore » past 20 years, the site was instrumented to facilitate the comparison of nine vadose-zone characterization methods: advanced tensiometers, neutron probe, electrical resistance tomography (ERT), high-resolution resistivity (HRR), electromagnetic induction imaging (EMI), cross-borehole radar (XBR), and cross-borehole seismic (XBS). Soil coring was used to obtain soil samples for analyzing ionic and isotopic tracers.« less

  15. Poliovirus strain characterization: a WHO Memorandum*

    PubMed Central

    1980-01-01

    Reliable laboratory techniques for the intratypic characterization of poliovirus types 1, 2, and 3 isolates have an important role in the epidemiological surveillance of poliomyelitis and in studies of the safety and efficacy of poliovirus vaccines. Of the techniques available for poliovirus strain characterization, those potentially most useful are intratypic serodifferentiation and the biochemical techniques. The value of strain-specific (absorbed) antisera for antigenic characterization of strains has been clearly established for the identification of both vaccine-like viruses and different epidemic wild strains. Single-radial-diffusion techniques appear to be promising and should be further explored. Biochemical techniques involving studies of both virus polypeptides and nucleic acids are also capable of providing valuable information for strain characterization. Biological and physico-chemical tests are generally of limited value but their application may be useful in certain circumstances. PMID:6170471

  16. Development of a high capacity bubble domain memory element and related epitaxial garnet materials for application in spacecraft data recorders. Item 2: The optimization of material-device parameters for application in bubble domain memory elements for spacecraft data recorders

    NASA Technical Reports Server (NTRS)

    Besser, P. J.

    1976-01-01

    Bubble domain materials and devices are discussed. One of the materials development goals was a materials system suitable for operation of 16 micrometer period bubble domain devices at 150 kHz over the temperature range -10 C to +60 C. Several material compositions and hard bubble suppression techniques were characterized and the most promising candidates were evaluated in device structures. The technique of pulsed laser stroboscopic microscopy was used to characterize bubble dynamic properties and device performance at 150 kHz. Techniques for large area LPE film growth were developed as a separate task. Device studies included detector optimization, passive replicator design and test and on-chip bridge evaluation. As a technology demonstration an 8 chip memory cell was designed, tested and delivered. The memory elements used in the cell were 10 kilobit serial registers.

  17. In-situ monitoring of acoustic linear and nonlinear behavior of titanium alloys during cycling loading

    NASA Astrophysics Data System (ADS)

    Frouin, Jerome; Matikas, Theodore E.; Na, Jeong K.; Sathish, Shamachary

    1999-02-01

    An in-situ technique to measure sound velocity, ultrasonic attenuation and acoustic nonlinear property has been developed for characterization and early detection of fatigue damage in aerospace materials. A previous experiment using the f-2f technique on Ti-6Al-4V dog bone specimen fatigued at different stage of fatigue has shown that the material nonlinearity exhibit large change compared to the other ultrasonic parameter. Real-time monitoring of the nonlinearity may be a future tool to characterize early fatigue damage in the material. For this purpose we have developed a computer software and measurement technique including hardware for the automation of the measurement. New transducer holder and special grips are designed. The automation has allowed us to test the long-term stability of the electronics over a period of time and so proof of the linearity of the system. For the first time, a real-time experiment has been performed on a dog-bone specimen from zero fatigue al the way to the final fracture.

  18. Photoacoustic characterization of human ovarian tissue

    NASA Astrophysics Data System (ADS)

    Aguirre, Andres; Ardeshirpour, Yasaman; Sanders, Mary M.; Brewer, Molly; Zhu, Quing

    2010-02-01

    Ovarian cancer has a five-year survival rate of only 30%, which represents the highest mortality of all gynecologic cancers. The reason for that is that the current imaging techniques are not capable of detecting ovarian cancer early. Therefore, new imaging techniques, like photoacoustic imaging, that can provide functional and molecular contrasts are needed for improving the specificity of ovarian cancer detection and characterization. Using a coregistered photoacoustic and ultrasound imaging system we have studied thirty-one human ovaries ex vivo, including normal and diseased. In order to compare the photoacoustic imaging results from all the ovaries, a new parameter using the RF data has been derived. The preliminary results show higher optical absorption for abnormal and malignant ovaries than for normal postmenopausal ones. To estimate the quantitative optical absorption properties of the ovaries, additional ultrasound-guided diffuse optical tomography images have been acquired. Good agreement between the two techniques has been observed. These results demonstrate the potential of a co-registered photoacoustic and ultrasound imaging system for the diagnosis of ovarian cancer.

  19. Green synthesis and characterization of alginate nanoparticles and its role as a biosorbent for Cr(VI) ions

    NASA Astrophysics Data System (ADS)

    Geetha, P.; Latha, M. S.; Pillai, Saumya S.; Deepa, B.; Santhosh Kumar, K.; Koshy, Mathew

    2016-02-01

    Green synthesis of nanoparticles has attained considerable attention in recent years because of its myriad of applications including drug delivery, tissue engineering and water purification. In the present study, alginate nanoparticles stabilized by honey were prepared by cross-linking aqueous solution of alginate with calcium ions. Honey mediated synthesis has been reported earlier for the production of metal nanoparticles. However no literature is available on the use of this technique for polymeric nanoparticles. Highly stable nanoparticles of 10-100 nm size were generated by this technique. The synthesised nanoparticles were characterized by transmission electron microscopy, scanning electron microscopy, atomic force microscopy, dynamic light scattering and Fourier transform infrared spectroscopic techniques. Potential of using these nanoparticles for heavy metal removal was studied by using Cr(VI) from aqueous solution, where a maximum removal efficiency of 93.5% was obtained. This method was also successfully employed for the production of other polymeric nanoparticles like casein, chitosan and albumin.

  20. Image processing developments and applications for water quality monitoring and trophic state determination

    NASA Technical Reports Server (NTRS)

    Blackwell, R. J.

    1982-01-01

    Remote sensing data analysis of water quality monitoring is evaluated. Data anaysis and image processing techniques are applied to LANDSAT remote sensing data to produce an effective operational tool for lake water quality surveying and monitoring. Digital image processing and analysis techniques were designed, developed, tested, and applied to LANDSAT multispectral scanner (MSS) data and conventional surface acquired data. Utilization of these techniques facilitates the surveying and monitoring of large numbers of lakes in an operational manner. Supervised multispectral classification, when used in conjunction with surface acquired water quality indicators, is used to characterize water body trophic status. Unsupervised multispectral classification, when interpreted by lake scientists familiar with a specific water body, yields classifications of equal validity with supervised methods and in a more cost effective manner. Image data base technology is used to great advantage in characterizing other contributing effects to water quality. These effects include drainage basin configuration, terrain slope, soil, precipitation and land cover characteristics.

  1. Confocal Imaging of porous media

    NASA Astrophysics Data System (ADS)

    Shah, S.; Crawshaw, D.; Boek, D.

    2012-12-01

    Carbonate rocks, which hold approximately 50% of the world's oil and gas reserves, have a very complicated and heterogeneous structure in comparison with sandstone reservoir rock. We present advances with different techniques to image, reconstruct, and characterize statistically the micro-geometry of carbonate pores. The main goal here is to develop a technique to obtain two dimensional and three dimensional images using Confocal Laser Scanning Microscopy. CLSM is used in epi-fluorescent imaging mode, allowing for the very high optical resolution of features well below 1μm size. Images of pore structures were captured using CLSM imaging where spaces in the carbonate samples were impregnated with a fluorescent, dyed epoxy-resin, and scanned in the x-y plane by a laser probe. We discuss the sample preparation in detail for Confocal Imaging to obtain sub-micron resolution images of heterogeneous carbonate rocks. We also discuss the technical and practical aspects of this imaging technique, including its advantages and limitation. We present several examples of this application, including studying pore geometry in carbonates, characterizing sub-resolution porosity in two dimensional images. We then describe approaches to extract statistical information about porosity using image processing and spatial correlation function. We have managed to obtain very low depth information in z -axis (~ 50μm) to develop three dimensional images of carbonate rocks with the current capabilities and limitation of CLSM technique. Hence, we have planned a novel technique to obtain higher depth information to obtain high three dimensional images with sub-micron resolution possible in the lateral and axial planes.

  2. Skin sensitization in chemical risk assessment: Report of aWHO/IPCS international workshop focusing on dose–responseassessment

    EPA Science Inventory

    An international workshop was held in 2006 to evaluate experimental techniques for hazard identification and hazard characterization of sensitizing agents in terms of their ability to produce data, including dose–response information, to inform risk assessment. Human testing to i...

  3. Characteristics of Home: Perspectives of Women Who Are Homeless

    ERIC Educational Resources Information Center

    Walsh, Christine A.; Rutherford, Gayle E.; Kuzmak, Natasha

    2009-01-01

    We employed participatory, community-based research methods to explore the perceptions of home among women who are homeless. Twenty women engaged in one or more techniques including qualitative interviews, digital story telling, creative writing, photovoice, and design charrette to characterize their perceptions of home. Analysis of the data…

  4. Polyoxygenated ursane and oleanane triterpenes from Siphonodon celastrineus.

    PubMed

    Kaweetripob, Wirongrong; Mahidol, Chulabhorn; Thongnest, Sanit; Prawat, Hunsa; Ruchirawat, Somsak

    2016-09-01

    Twenty polyoxygenated triterpenes, including nineteen ursanes and one oleanane, were characterized from the stem material of Siphonodon celastrineus (Celastraceae) through the application of spectroscopic techniques and chemical transformation. Three of the ursane-type triterpenoids possessed the rare 13,27-cyclopropane ring skeleton. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Inquiry in the Physical Geology Classroom: Supporting Students' Conceptual Model Development

    ERIC Educational Resources Information Center

    Miller, Heather R.; McNeal, Karen S.; Herbert, Bruce E.

    2010-01-01

    This study characterizes the impact of an inquiry-based learning (IBL) module versus a traditionally structured laboratory exercise. Laboratory sections were randomized into experimental and control groups. The experimental group was taught using IBL pedagogical techniques and included manipulation of large-scale data-sets, use of multiple…

  6. Characterizing Student Perceptions of and Buy-In toward Common Formative Assessment Techniques

    ERIC Educational Resources Information Center

    Brazeal, Kathleen R.; Brown, Tanya L.; Couch, Brian A.

    2016-01-01

    Formative assessments (FAs) can occur as preclass assignments, in-class activities, or postclass homework. FAs aim to promote student learning by accomplishing key objectives, including clarifying learning expectations, revealing student thinking to the instructor, providing feedback to the student that promotes learning, facilitating peer…

  7. High Temperature Superconductor/Semiconductor Hybrid Microwave Devices and Circuits

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.; Miranda, Felix A.

    1999-01-01

    Contents include following: film deposition technique; laser ablation; magnetron sputtering; sequential evaporation; microwave substrates; film characterization at microwave frequencies; complex conductivity; magnetic penetration depth; surface impedance; planar single-mode filters; small antennas; antenna arrays phase noise; tunable oscillations; hybrid superconductor/semiconductor receiver front ends; and noise modeling.

  8. Mass spectrometry for fragment screening.

    PubMed

    Chan, Daniel Shiu-Hin; Whitehouse, Andrew J; Coyne, Anthony G; Abell, Chris

    2017-11-08

    Fragment-based approaches in chemical biology and drug discovery have been widely adopted worldwide in both academia and industry. Fragment hits tend to interact weakly with their targets, necessitating the use of sensitive biophysical techniques to detect their binding. Common fragment screening techniques include differential scanning fluorimetry (DSF) and ligand-observed NMR. Validation and characterization of hits is usually performed using a combination of protein-observed NMR, isothermal titration calorimetry (ITC) and X-ray crystallography. In this context, MS is a relatively underutilized technique in fragment screening for drug discovery. MS-based techniques have the advantage of high sensitivity, low sample consumption and being label-free. This review highlights recent examples of the emerging use of MS-based techniques in fragment screening. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  9. The Chameleon Effect: characterization challenges due to the variability of nanoparticles and their surfaces of nanoparticles and their surfaces

    NASA Astrophysics Data System (ADS)

    Baer, Donald R.

    2018-05-01

    Nanoparticles in a variety of forms are increasing important in fundamental research, technological and medical applications, and environmental or toxicology studies. Physical and chemical drivers that lead to multiple types of particle instabilities complicate both the ability to produce, appropriately characterize, and consistently deliver well-defined particles, frequently leading to inconsistencies and conflicts in the published literature. This perspective suggests that provenance information, beyond that often recorded or reported, and application of a set of core characterization methods, including a surface sensitive technique, consistently applied at critical times can serve as tools in the effort minimize reproducibility issues.

  10. A spectroscopic study of Brazilwood paints in medieval books of hours.

    PubMed

    Melo, Maria João; Otero, Vanessa; Vitorino, Tatiana; Araújo, Rita; Muralha, Vânia S F; Lemos, Ana; Picollo, Marcello

    2014-01-01

    In this work, microspectrofluorimetry was for the first time applied to the identification of the red organic lakes that are characteristic of the lavish illuminations found in 15(th) century books of hours. Microspectrofluorimetry identified those red paints, ranging from opaque pink to dark red glazes, as brazilwood lakes. An unequivocal characterization was achieved by comparison with reference paints produced following recipes from the medieval treatise The Book on How to Make Colours, and was further confirmed by fiber optic reflectance spectroscopy (FORS). For these treasured cultural objects, microspectrofluorimetry and FORS proved to be the only techniques that could identify, in situ or in microsamples, the chromophore responsible for the pinkish hues: a brazilein-Al(3+) complex. Additionally, a multi-analytical approach provided a full characterization of the color paints, including pigments, additives, and binders. Microspectroscopic techniques, based on infrared and X-ray radiation, enabled us to disclose the full palette of these medieval manuscripts, including the elusive greens, for which, besides malachite, basic copper sulfates were found; Raman microscopy suggested a mixture of brochantite and langite. Infrared analysis proved invaluable for a full characterization of the additives that were applied as fillers or whites (chalk, gypsum, and white lead) as well as the proteinaceous and polysaccharide binders that were found pure or in mixture.

  11. Measurement and image processing evaluation of surface modifications of dental implants G4 pure titanium created by different techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulutsuz, A. G., E-mail: asligunaya@gmail.com; Demircioglu, P., E-mail: pinar.demircioglu@adu.edu.tr; Bogrekci, I., E-mail: ismail.bogrekci@adu.edu.tr

    Foreign substances and organic tissue interaction placed into the jaw in order to eliminate tooth loss involves a highly complex process. Many biological reactions take place as well as the biomechanical forces that influence this formation. Osseointegration denotes to the direct structural and functional association between the living bone and the load-bearing artificial implant's surface. Taking into consideration of the requirements in the manufacturing processes of the implants, surface characterizations with high precise measurement techniques are investigated and thus long-term success of dental implant is emphasized on the importance of these processes in this study. In this research, the detailedmore » surface characterization was performed to identify the dependence of the manufacturing techniques on the surface properties by using the image processing methods and using the scanning electron microscope (SEM) for morphological properties in 3D and Taylor Hobson stylus profilometer for roughness properties in 2D. Three implant surfaces fabricated by different manufacturing techniques were inspected, and a machined surface was included into the study as a reference specimen. The results indicated that different surface treatments were strongly influenced surface morphology. Thus 2D and 3D precise inspection techniques were highlighted on the importance for surface characterization. Different image analyses techniques such as Dark-light technique were used to verify the surface measurement results. The computational phase was performed using image processing toolbox in Matlab with precise evaluation of the roughness for the implant surfaces. The relationship between the number of black and white pixels and surface roughness is presented. FFT image processing and analyses results explicitly imply that the technique is useful in the determination of surface roughness. The results showed that the number of black pixels in the image increases with increase in surface roughness.« less

  12. A progress report on the ARRA-funded geotechnical site characterization project

    NASA Astrophysics Data System (ADS)

    Martin, A. J.; Yong, A.; Stokoe, K.; Di Matteo, A.; Diehl, J.; Jack, S.

    2011-12-01

    For the past 18 months, the 2009 American Recovery and Reinvestment Act (ARRA) has funded geotechnical site characterizations at 189 seismographic station sites in California and the central U.S. This ongoing effort applies methods involving surface-wave techniques, which include the horizontal-to-vertical spectral ratio (HVSR) technique and one or more of the following: spectral analysis of surface wave (SASW), active and passive multi-channel analysis of surface wave (MASW) and passive array microtremor techniques. From this multi-method approach, shear-wave velocity profiles (VS) and the time-averaged shear-wave velocity of the upper 30 meters (VS30) are estimated for each site. To accommodate the variability in local conditions (e.g., rural and urban soil locales, as well as weathered and competent rock sites), conventional field procedures are often modified ad-hoc to fit the unanticipated complexity at each location. For the majority of sites (>80%), fundamental-mode Rayleigh wave dispersion-based techniques are deployed and where complex geology is encountered, multiple test locations are made. Due to the presence of high velocity layers, about five percent of the locations require multi-mode inversion of Rayleigh wave (MASW-based) data or 3-D array-based inversion of SASW dispersion data, in combination with shallow P-wave seismic refraction and/or HVSR results. Where a strong impedance contrast (i.e. soil over rock) exists at shallow depth (about 10% of sites), dominant higher modes limit the use of Rayleigh wave dispersion techniques. Here, use of the Love wave dispersion technique, along with seismic refraction and/or HVSR data, is required to model the presence of shallow bedrock. At a small percentage of the sites, surface wave techniques are found not suitable for stand-alone deployment and site characterization is limited to the use of the seismic refraction technique. A USGS Open File Report-describing the surface geology, VS profile and the calculated VS30 for each site-will be prepared after the completion of the project in November 2011.

  13. Instruction-Level Characterization of Scientific Computing Applications Using Hardware Performance Counters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Y.; Cameron, K.W.

    1998-11-24

    Workload characterization has been proven an essential tool to architecture design and performance evaluation in both scientific and commercial computing areas. Traditional workload characterization techniques include FLOPS rate, cache miss ratios, CPI (cycles per instruction or IPC, instructions per cycle) etc. With the complexity of sophisticated modern superscalar microprocessors, these traditional characterization techniques are not powerful enough to pinpoint the performance bottleneck of an application on a specific microprocessor. They are also incapable of immediately demonstrating the potential performance benefit of any architectural or functional improvement in a new processor design. To solve these problems, many people rely on simulators,more » which have substantial constraints especially on large-scale scientific computing applications. This paper presents a new technique of characterizing applications at the instruction level using hardware performance counters. It has the advantage of collecting instruction-level characteristics in a few runs virtually without overhead or slowdown. A variety of instruction counts can be utilized to calculate some average abstract workload parameters corresponding to microprocessor pipelines or functional units. Based on the microprocessor architectural constraints and these calculated abstract parameters, the architectural performance bottleneck for a specific application can be estimated. In particular, the analysis results can provide some insight to the problem that only a small percentage of processor peak performance can be achieved even for many very cache-friendly codes. Meanwhile, the bottleneck estimation can provide suggestions about viable architectural/functional improvement for certain workloads. Eventually, these abstract parameters can lead to the creation of an analytical microprocessor pipeline model and memory hierarchy model.« less

  14. Ultrasonic characterization of granites obtained from industrial quarries of Extremadura (Spain).

    PubMed

    del Río, L M; López, F; Esteban, F J; Tejado, J J; Mota, M; González, I; San Emeterio, J L; Ramos, A

    2006-12-22

    The industry of ornamental rocks, such as granites, represents one of the most important industrial activities in the region of Extremadura, SW Spain. A detailed knowledge of the intrinsic properties of this natural stone and its environmental evolution is a required goal in order to fully characterize its quality. In this work, two independent NDT acoustic techniques have been used to measure the acoustic velocity of longitudinal waves in different prismatic granitic-samples of industrial quarries. A low-frequency transceiver set-up, based on a high-voltage BPV Steinkamp instrument and two 50 kHz probes, has been used to measure pulse travel times by ultrasonic through-transmission testing. In complementary fashion, an Erudite MK3 test equipment with an electromagnetic vibrator and two piezoelectric sensors has also been employed to measure ultrasonic velocity by means of a resonance-based method, using the same types of granite varieties. In addition, a comprehensive set of physical/mechanical properties have also been analyzed, according to Spanish regulations in force, by means of alternative methods including destructive techniques such as strength, porosity, absorption, etc. A large number of samples, representing the most important varieties of granites from quarries of Extremadura, have been analyzed using the above-mentioned procedures. Some results obtained by destructive techniques have been correlated with those found using ultrasonic techniques. Our experimental setting allowed a complementary characterization of granite samples and a thorough validation of the different techniques employed, thus providing the industry of ornamental rocks with a non-destructive tool that will facilitate a more detailed insight on the properties of the rocks under study.

  15. Acoustic method of damage sensing in composite materials

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Walker, James; Lansing, Matthew

    1994-01-01

    The use of acoustic emission and acousto-ultrasonics to characterize impact damage in composite structures is being performed on both graphite epoxy and kevlar bottles. Further development of the acoustic emission methodology to include neural net analysis and/or other multivariate techniques will enhance the capability of the technique to identify failure mechanisms during fracture. The acousto-ultrasonics technique will be investigated to determine its ability to predict regions prone to failure prior to the burst tests. The combination of the two methods will allow for simple nondestructive tests to be capable of predicting the performance of a composite structure prior to being placed in service and during service.

  16. Spectroscopic study of Pbs nano-structured layer prepared by Pld utilized as a Hall-effect magnetic sensor

    NASA Astrophysics Data System (ADS)

    Atwa, D. M.; Aboulfotoh, N.; El-magd, A. Abo; Badr, Y.

    2013-10-01

    Lead sulfide (PbS) nano-structured films have been grown on quartz substrates using PLD technique. The deposited films were characterized by several structural techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Selected-area electron diffraction patterns (SAED). The results prove the formation of cubic phase of PbS nanocrystals. Elemental analysis of the deposited films compared to the bulk target was obtained via laser induced fluorescence of the produced plasma particles and the energy dispersive X-ray "EDX" technique. The Hall coefficient measurements indicate an efficient performance of the deposited films as a magnetic sensor.

  17. Solid State Division progress report for period ending September 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, P.H.; Hinton, L.W.

    1994-08-01

    This report covers research progress in the Solid State Division from April 1, 1992, to September 30, 1993. During this period, the division conducted a broad, interdisciplinary materials research program with emphasis on theoretical solid state physics, neutron scattering, synthesis and characterization of materials, ion beam and laser processing, and the structure of solids and surfaces. This research effort was enhanced by new capabilities in atomic-scale materials characterization, new emphasis on the synthesis and processing of materials, and increased partnering with industry and universities. The theoretical effort included a broad range of analytical studies, as well as a new emphasismore » on numerical simulation stimulated by advances in high-performance computing and by strong interest in related division experimental programs. Superconductivity research continued to advance on a broad front from fundamental mechanisms of high-temperature superconductivity to the development of new materials and processing techniques. The Neutron Scattering Program was characterized by a strong scientific user program and growing diversity represented by new initiatives in complex fluids and residual stress. The national emphasis on materials synthesis and processing was mirrored in division research programs in thin-film processing, surface modification, and crystal growth. Research on advanced processing techniques such as laser ablation, ion implantation, and plasma processing was complemented by strong programs in the characterization of materials and surfaces including ultrahigh resolution scanning transmission electron microscopy, atomic-resolution chemical analysis, synchrotron x-ray research, and scanning tunneling microscopy.« less

  18. The mixed low-level waste problem in BE/NWN capsule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensley, D.C.

    1999-07-01

    The Boh Environmental, LLC (BE) and Northwest Nuclear, LLC (NWN) program addresses the problem of diminishing capacity in the United States to store mixed waste. A lack of an alternative program has caused the US Department of Energy (DOE) to indefinitely store all of its mixed waste in Resource Conservation and Recovery Act (RCRA) compliant storage facilities. Unfortunately, this capacity is fast approaching the administrative control limit. The combination of unique BE encapsulation and NWN waste characterization technologies provides an effective solution to DOE's mixed-waste dilemma. The BE ARROW-PAK technique encapsulates mixed low-level waste (MLLW) in extra-high molecular weight, high-densitymore » polyethylene, pipe-grade resin cylinders. ARROW-PAK applications include waste treatment, disposal, transportation (per 49 CFR 173), vault encasement, and interim/long-term storage for 100 to 300 yr. One of the first demonstrations of this treatment/storage technique successfully treated 880 mixed-waste debris drums at the DOE Hanford Site in 1997. NWN, deploying the APNea neutron assay technology, provides the screening and characterization capability necessary to ensure that radioactive waste is correctly categorized as either transuranic (TRU) or LLW. MLLW resulting from D and D activities conducted at the Oak Ridge East Tennessee Technology Park will be placed into ARROW-PAK containers following comprehensive characterization of the waste by NWN. The characterized and encapsulated waste will then be shipped to a commercial disposal facility, where the shipments meet all waste acceptance criteria of the disposal facility including treatment criteria.« less

  19. Ultrasonic Characterization of Aerospace Composites

    NASA Technical Reports Server (NTRS)

    Leckey, Cara; Johnston, Patrick; Haldren, Harold; Perey, Daniel

    2015-01-01

    Composite materials have seen an increased use in aerospace in recent years and it is expected that this trend will continue due to the benefits of reduced weight, increased strength, and other factors. Ongoing work at NASA involves the investigation of the large-scale use of composites for spacecraft structures (SLS components, Orion Composite Crew Module, etc). NASA is also involved in work to enable the use of composites in advanced aircraft structures through the Advanced Composites Project (ACP). In both areas (space and aeronautics) there is a need for new nondestructive evaluation and materials characterization techniques that are appropriate for characterizing composite materials. This paper will present an overview of NASA's needs for characterizing aerospace composites, including a description of planned and ongoing work under ACP for the detection of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking. The research approaches include investigation of angle array, guided wave, and phase sensitive ultrasonic methods. The use of ultrasonic simulation tools for optimizing and developing methods will also be discussed.

  20. Characterization of noncontact piezoelectric transducer with conically shaped piezoelement

    NASA Technical Reports Server (NTRS)

    Williams, James H., Jr.; Ochi, Simeon C. U.

    1988-01-01

    The characterization of a dynamic surface displacement transducer (IQI Model 501) by a noncontact method is presented. The transducer is designed for ultrasonic as well as acoustic emission measurements and, according to the manufacturer, its characteristic features include a flat frequency response range which is from 50 to 1000 kHz and a quality factor Q of less than unity. The characterization is based on the behavior of the transducer as a receiver and involves exciting the transducer directly by transient pulse input stress signals of quasi-electrostatic origin and observing its response in a digital storage oscilloscope. Theoretical models for studying the response of the transducer to pulse input stress signals and for generating pulse stress signals are presented. The characteristic features of the transducer which include the central frequency f sub o, quality factor Q, and flat frequency response range are obtained by this noncontact characterization technique and they compare favorably with those obtained by a tone burst method which are also presented.

  1. Fuels characterization studies. [jet fuels

    NASA Technical Reports Server (NTRS)

    Seng, G. T.; Antoine, A. C.; Flores, F. J.

    1980-01-01

    Current analytical techniques used in the characterization of broadened properties fuels are briefly described. Included are liquid chromatography, gas chromatography, and nuclear magnetic resonance spectroscopy. High performance liquid chromatographic ground-type methods development is being approached from several directions, including aromatic fraction standards development and the elimination of standards through removal or partial removal of the alkene and aromatic fractions or through the use of whole fuel refractive index values. More sensitive methods for alkene determinations using an ultraviolet-visible detector are also being pursued. Some of the more successful gas chromatographic physical property determinations for petroleum derived fuels are the distillation curve (simulated distillation), heat of combustion, hydrogen content, API gravity, viscosity, flash point, and (to a lesser extent) freezing point.

  2. A geologic approach to field methods in fluvial geomorphology

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Thornbush, Mary J; Allen, Casey D; Fitzpatrick, Faith A.

    2014-01-01

    A geologic approach to field methods in fluvial geomorphology is useful for understanding causes and consequences of past, present, and possible future perturbations in river behavior and floodplain dynamics. Field methods include characterizing river planform and morphology changes and floodplain sedimentary sequences over long periods of time along a longitudinal river continuum. Techniques include topographic and bathymetric surveying of fluvial landforms in valley bottoms and describing floodplain sedimentary sequences through coring, trenching, and examining pits and exposures. Historical sediment budgets that include floodplain sedimentary records can characterize past and present sources and sinks of sediment along a longitudinal river continuum. Describing paleochannels and floodplain vertical accretion deposits, estimating long-term sedimentation rates, and constructing historical sediment budgets can assist in management of aquatic resources, habitat, sedimentation, and flooding issues.

  3. Bioforensics: Characterization of biological weapons agents by NanoSIMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, P K; Ghosal, S; Leighton, T J

    2007-02-26

    The anthrax attacks of Fall 2001 highlight the need to develop forensic methods based on multiple identifiers to determine the origin of biological weapons agents. Genetic typing methods (i.e., DNA and RNA-based) provide one attribution technology, but genetic information alone is not usually sufficient to determine the provenance of the material. Non-genetic identifiers, including elemental and isotopic signatures, provide complementary information that can be used to identify the means, geographic location and date of production. Under LDRD funding, we have successfully developed the techniques necessary to perform bioforensic characterization with the NanoSIMS at the individual spore level. We have developedmore » methods for elemental and isotopic characterization at the single spore scale. We have developed methods for analyzing spore sections to map elemental abundance within spores. We have developed rapid focused ion beam (FIB) sectioning techniques for spores to preserve elemental and structural integrity. And we have developed a high-resolution depth profiling method to characterize the elemental distribution in individual spores without sectioning. We used these newly developed methods to study the controls on elemental abundances in spores, characterize the elemental distribution of in spores, and to study elemental uptake by spores. Our work under this LDRD project attracted FBI and DHS funding for applied purposes.« less

  4. A facile alternative technique for large-area graphene transfer via sacrificial polymer

    DOE PAGES

    Auchter, Eric; Marquez, Justin; Yarbro, Stephen L.; ...

    2017-12-07

    A novel method of transferring large-area graphene sheets onto a variety of substrates using Formvar (polyvinyl formal) is presented. Due to the ease at which formvar can be dissolved in chloroform this method allows for a consistent, a clean, and a more rapid transfer than other techniques including the PMMA assisted one. This novel transfer method is demonstrated by transferring large-area graphene onto a range of substrates including commercial TEM grids, silicon dioxide and glass. Raman spectroscopy was used to confirm the presence of graphene and characterize the morphological properties of the large-area sheets. SEM and AFM analyses demonstrated themore » effectiveness of our rapid transfer technique for clean crystalline large-area graphene sheets. The removal of the sacrificial polymer was found to be one to two orders of magnitude faster than PMMA methods. Ultimately this facile transfer technique offers new opportunities for a wide range of applications for large-area graphene through the utilization of a new sacrificial polymer.« less

  5. A facile alternative technique for large-area graphene transfer via sacrificial polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auchter, Eric; Marquez, Justin; Yarbro, Stephen L.

    A novel method of transferring large-area graphene sheets onto a variety of substrates using Formvar (polyvinyl formal) is presented. Due to the ease at which formvar can be dissolved in chloroform this method allows for a consistent, a clean, and a more rapid transfer than other techniques including the PMMA assisted one. This novel transfer method is demonstrated by transferring large-area graphene onto a range of substrates including commercial TEM grids, silicon dioxide and glass. Raman spectroscopy was used to confirm the presence of graphene and characterize the morphological properties of the large-area sheets. SEM and AFM analyses demonstrated themore » effectiveness of our rapid transfer technique for clean crystalline large-area graphene sheets. The removal of the sacrificial polymer was found to be one to two orders of magnitude faster than PMMA methods. Ultimately this facile transfer technique offers new opportunities for a wide range of applications for large-area graphene through the utilization of a new sacrificial polymer.« less

  6. Quantitative optical metrology with CMOS cameras

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Kolenovic, Ervin; Ferguson, Curtis F.

    2004-08-01

    Recent advances in laser technology, optical sensing, and computer processing of data, have lead to the development of advanced quantitative optical metrology techniques for high accuracy measurements of absolute shapes and deformations of objects. These techniques provide noninvasive, remote, and full field of view information about the objects of interest. The information obtained relates to changes in shape and/or size of the objects, characterizes anomalies, and provides tools to enhance fabrication processes. Factors that influence selection and applicability of an optical technique include the required sensitivity, accuracy, and precision that are necessary for a particular application. In this paper, sensitivity, accuracy, and precision characteristics in quantitative optical metrology techniques, and specifically in optoelectronic holography (OEH) based on CMOS cameras, are discussed. Sensitivity, accuracy, and precision are investigated with the aid of National Institute of Standards and Technology (NIST) traceable gauges, demonstrating the applicability of CMOS cameras in quantitative optical metrology techniques. It is shown that the advanced nature of CMOS technology can be applied to challenging engineering applications, including the study of rapidly evolving phenomena occurring in MEMS and micromechatronics.

  7. Method for automatically evaluating a transition from a batch manufacturing technique to a lean manufacturing technique

    DOEpatents

    Ivezic, Nenad; Potok, Thomas E.

    2003-09-30

    A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.

  8. Review on physical and chemical characterizations of contaminated sediments from urban stormwater infiltration basins within the framework of the French observatory for urban hydrology (SOERE URBIS).

    PubMed

    El-Mufleh, Amelène; Béchet, Béatrice; Ruban, Véronique; Legret, Michel; Clozel, Blandine; Barraud, Sylvie; Gonzalez-Merchan, Carolina; Bedell, Jean-Philippe; Delolme, Cécile

    2014-04-01

    Urban stormwater infiltration basins are designed to hold runoff from impervious surfaces and allow the settling of sediments and associated pollutants. However concerns have been expressed about the environmental impacts that may be exerted by the trapped pollutants on groundwater, soils and ecosystems. In this context, sediment characterization represents a key issue for local authorities in terms of management strategies. During the last two decades, several studies were launched including either physical or chemical characterization of stormwater sediments but without real synthesis of data and methods used. Consequently, there is an important need for reviewing the current experimental techniques devoted to the physico-chemical characterization of sediment. The review is based on the outcomes of two experimental sites for which long term monitoring and data collection have been done: the Cheviré basin (near Nantes) and the Django Reinhardt basin (near Lyon). The authors summarize the studies dealing with bulk properties, pollutant contents, their potential mobility and speciation. This paper aims at promoting the significant progresses that were made through a multidisciplinary approach involving multi-scaled and combined experimental techniques.

  9. Microscopic Characterization of the Brazilian Giant Samba Virus.

    PubMed

    Schrad, Jason R; Young, Eric J; Abrahão, Jônatas S; Cortines, Juliana R; Parent, Kristin N

    2017-02-14

    Prior to the discovery of the mimivirus in 2003, viruses were thought to be physically small and genetically simple. Mimivirus, with its ~750-nm particle size and its ~1.2-Mbp genome, shattered these notions and changed what it meant to be a virus. Since this discovery, the isolation and characterization of giant viruses has exploded. One of the more recently discovered giant viruses, Samba virus, is a Mimivirus that was isolated from the Rio Negro in the Brazilian Amazon. Initial characterization of Samba has revealed some structural information, although the preparation techniques used are prone to the generation of structural artifacts. To generate more native-like structural information for Samba, we analyzed the virus through cryo-electron microscopy, cryo-electron tomography, scanning electron microscopy, and fluorescence microscopy. These microscopy techniques demonstrated that Samba particles have a capsid diameter of ~527 nm and a fiber length of ~155 nm, making Samba the largest Mimivirus yet characterized. We also compared Samba to a fiberless mimivirus variant. Samba particles, unlike those of mimivirus, do not appear to be rigid, and quasi-icosahedral, although the two viruses share many common features, including a multi-layered capsid and an asymmetric nucleocapsid, which may be common amongst the Mimiviruses .

  10. Microscopic Characterization of the Brazilian Giant Samba Virus

    PubMed Central

    Schrad, Jason R.; Young, Eric J.; Abrahão, Jônatas S.; Cortines, Juliana R.; Parent, Kristin N.

    2017-01-01

    Prior to the discovery of the mimivirus in 2003, viruses were thought to be physically small and genetically simple. Mimivirus, with its ~750-nm particle size and its ~1.2-Mbp genome, shattered these notions and changed what it meant to be a virus. Since this discovery, the isolation and characterization of giant viruses has exploded. One of the more recently discovered giant viruses, Samba virus, is a Mimivirus that was isolated from the Rio Negro in the Brazilian Amazon. Initial characterization of Samba has revealed some structural information, although the preparation techniques used are prone to the generation of structural artifacts. To generate more native-like structural information for Samba, we analyzed the virus through cryo-electron microscopy, cryo-electron tomography, scanning electron microscopy, and fluorescence microscopy. These microscopy techniques demonstrated that Samba particles have a capsid diameter of ~527 nm and a fiber length of ~155 nm, making Samba the largest Mimivirus yet characterized. We also compared Samba to a fiberless mimivirus variant. Samba particles, unlike those of mimivirus, do not appear to be rigid, and quasi-icosahedral, although the two viruses share many common features, including a multi-layered capsid and an asymmetric nucleocapsid, which may be common amongst the Mimiviruses. PMID:28216551

  11. Multifarious applications of atomic force microscopy in forensic science investigations.

    PubMed

    Pandey, Gaurav; Tharmavaram, Maithri; Rawtani, Deepak; Kumar, Sumit; Agrawal, Y

    2017-04-01

    Forensic science is a wide field comprising of several subspecialties and uses methods derived from natural sciences for finding criminals and other evidence valid in a legal court. A relatively new area; Nano-forensics brings a new era of investigation in forensic science in which instantaneous results can be produced that determine various agents such as explosive gasses, biological agents and residues in different crime scenes and terrorist activity investigations. This can be achieved by applying Nanotechnology and its associated characterization techniques in forensic sciences. Several characterization techniques exist in Nanotechnology and nano-analysis is one such technique that is used in forensic science which includes Electron microscopes (EM) like Transmission (TEM) and Scanning (SEM), Raman microscopy (Micro -Raman) and Scanning Probe Microscopes (SPMs) like Atomic Force Microscope (AFM). Atomic force microscopy enables surface characterization of different materials by examining their morphology and mechanical properties. Materials that are immeasurable such as hair, body fluids, textile fibers, documents, polymers, pressure sensitive adhesives (PSAs), etc. are often encountered during forensic investigations. This review article will mainly focus on the use of AFM in the examination of different evidence such as blood stains, forged documents, human hair samples, ammunitions, explosives, and other such applications in the field of Forensic Science. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Thermal and Chemical Characterization of Non-metallic Materials Using Coupled Thermogravimetric Analysis and Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Huff, Timothy L.; Griffin, Dennis E. (Technical Monitor)

    2001-01-01

    Thermogravimetric analysis (TGA) is widely employed in the thermal characterization of non-metallic materials, yielding valuable information on decomposition characteristics of a sample over a wide temperature range. However, a potential wealth of chemical information is lost during the process, with the evolving gases generated during thermal decomposition escaping through the exhaust line. Fourier Transform-Infrared spectroscopy (FT-IR) is a powerful analytical technique for determining many chemical constituents while in any material state, in this application, the gas phase. By linking these two techniques, evolving gases generated during the TGA process are directed into an appropriately equipped infrared spectrometer for chemical speciation. Consequently, both thermal decomposition and chemical characterization of a material may be obtained in a single sample run. In practice, a heated transfer line is employed to connect the two instruments while a purge gas stream directs the evolving gases into the FT-IR, The purge gas can be either high purity air or an inert gas such as nitrogen to allow oxidative and pyrolytic processes to be examined, respectively. The FT-IR data is collected real-time, allowing continuous monitoring of chemical compositional changes over the course of thermal decomposition. Using this coupled technique, an array of diverse materials has been examined, including composites, plastics, rubber, fiberglass epoxy resins, polycarbonates, silicones, lubricants and fluorocarbon materials. The benefit of combining these two methodologies is of particular importance in the aerospace community, where newly developing materials have little available data with which to refer. By providing both thermal and chemical data simultaneously, a more definitive and comprehensive characterization of the material is possible. Additionally, this procedure has been found to be a viable screening technique for certain materials, with the generated data useful in the selection of other appropriate analytical procedures for further material characterization.

  13. Laser Shockwave Technique For Characterization Of Nuclear Fuel Plate Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James A. Smith; Barry H. Rabin; Mathieu Perton

    2012-07-01

    The US National Nuclear Security Agency is tasked with minimizing the worldwide use of high-enriched uranium. One aspect of that effort is the conversion of research reactors to monolithic fuel plates of low-enriched uranium. The manufacturing process includes hot isostatic press bonding of an aluminum cladding to the fuel foil. The Laser Shockwave Technique (LST) is here evaluated for characterizing the interface strength of fuel plates using depleted Uranium/Mo foils. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves and is therefore well adapted to the quality assurance of this process.more » Preliminary results show a clear signature of well-bonded and debonded interfaces and the method is able to classify/rank the bond strength of fuel plates prepared under different HIP conditions.« less

  14. Laser shockwave technique for characterization of nuclear fuel plate interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perton, M.; Levesque, D.; Monchalin, J.-P.

    2013-01-25

    The US National Nuclear Security Agency is tasked with minimizing the worldwide use of high-enriched uranium. One aspect of that effort is the conversion of research reactors to monolithic fuel plates of low-enriched uranium. The manufacturing process includes hot isostatic press bonding of an aluminum cladding to the fuel foil. The Laser Shockwave Technique (LST) is here evaluated for characterizing the interface strength of fuel plates using depleted Uranium/Mo foils. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves and is therefore well adapted to the quality assurance of this process.more » Preliminary results show a clear signature of well-bonded and debonded interfaces and the method is able to classify/rank the bond strength of fuel plates prepared under different HIP conditions.« less

  15. Atomization and vaporization characteristics of airblast fuel injection inside a venturi tube

    NASA Technical Reports Server (NTRS)

    Sun, H.; Chue, T.-H.; Lai, M.-C.; Tacina, R. R.

    1993-01-01

    This paper describes the experimental and numerical characterization of the capillary fuel injection, atomization, dispersion, and vaporization of liquid fuel in a coflowing air stream inside a single venturi tube. The experimental techniques used are all laser-based. Phase Doppler analyzer was used to characterize the atomization and vaporization process. Planar laser-induced fluorescence visualizations give good qualitative picture of the fuel droplet and vapor distribution. Limited quantitative capabilities of the technique are also demonstrated. A modified version of the KIVA-II was used to simulate the entire spray process, including breakup and vaporization. The advantage of venturi nozzle is demonstrated in terms of better atomization, more uniform F/A distribution, and less pressure drop. Multidimensional spray calculations can be used as a design tool only if care is taken for the proper breakup model, and wall impingement process.

  16. Seismic site-response characterization of high-velocity sites using advanced geophysical techniques: application to the NAGRA-Net

    NASA Astrophysics Data System (ADS)

    Poggi, V.; Burjanek, J.; Michel, C.; Fäh, D.

    2017-08-01

    The Swiss Seismological Service (SED) has recently finalised the installation of ten new seismological broadband stations in northern Switzerland. The project was led in cooperation with the National Cooperative for the Disposal of Radioactive Waste (Nagra) and Swissnuclear to monitor micro seismicity at potential locations of nuclear-waste repositories. To further improve the quality and usability of the seismic recordings, an extensive characterization of the sites surrounding the installation area was performed following a standardised investigation protocol. State-of-the-art geophysical techniques have been used, including advanced active and passive seismic methods. The results of all analyses converged to the definition of a set of best-representative 1-D velocity profiles for each site, which are the input for the computation of engineering soil proxies (traveltime averaged velocity and quarter-wavelength parameters) and numerical amplification models. Computed site response is then validated through comparison with empirical site amplification, which is currently available for any station connected to the Swiss seismic networks. With the goal of a high-sensitivity network, most of the NAGRA stations have been installed on stiff-soil sites of rather high seismic velocity. Seismic characterization of such sites has always been considered challenging, due to lack of relevant velocity contrast and the large wavelengths required to investigate the frequency range of engineering interest. We describe how ambient vibration techniques can successfully be applied in these particular conditions, providing practical recommendations for best practice in seismic site characterization of high-velocity sites.

  17. Photographic techniques for characterizing streambed particle sizes

    USGS Publications Warehouse

    Whitman, Matthew S.; Moran, Edward H.; Ourso, Robert T.

    2003-01-01

    We developed photographic techniques to characterize coarse (>2-mm) and fine (≤2-mm) streambed particle sizes in 12 streams in Anchorage, Alaska. Results were compared with current sampling techniques to assess which provided greater sampling efficiency and accuracy. The streams sampled were wadeable and contained gravel—cobble streambeds. Gradients ranged from about 5% at the upstream sites to about 0.25% at the downstream sites. Mean particle sizes and size-frequency distributions resulting from digitized photographs differed significantly from those resulting from Wolman pebble counts for five sites in the analysis. Wolman counts were biased toward selecting larger particles. Photographic analysis also yielded a greater number of measured particles (mean = 989) than did the Wolman counts (mean = 328). Stream embeddedness ratings assigned from field and photographic observations were significantly different at 5 of the 12 sites, although both types of ratings showed a positive relationship with digitized surface fines. Visual estimates of embeddedness and digitized surface fines may both be useful indicators of benthic conditions, but digitizing surface fines produces quantitative rather than qualitative data. Benefits of the photographic techniques include reduced field time, minimal streambed disturbance, convenience of postfield processing, easy sample archiving, and improved accuracy and replication potential.

  18. Multimodal 3D cancer-mimicking optical phantom

    PubMed Central

    Smith, Gennifer T.; Lurie, Kristen L.; Zlatev, Dimitar V.; Liao, Joseph C.; Ellerbee Bowden, Audrey K.

    2016-01-01

    Three-dimensional (3D) organ-mimicking phantoms provide realistic imaging environments for testing various aspects of optical systems, including for evaluating new probe designs, characterizing the diagnostic potential of new technologies, and assessing novel image processing algorithms prior to validation in real tissue. We introduce and characterize the use of a new material, Dragon Skin (Smooth-On Inc.), and fabrication technique, air-brushing, for fabrication of a 3D phantom that mimics the appearance of a real organ under multiple imaging modalities. We demonstrate the utility of the material and technique by fabricating the first 3D, hollow bladder phantom with realistic normal and multi-stage pathology features suitable for endoscopic detection using the gold standard imaging technique, white light cystoscopy (WLC), as well as the complementary imaging modalities of optical coherence tomography and blue light cystoscopy, which are aimed at improving the sensitivity and specificity of WLC to bladder cancer detection. The flexibility of the material and technique used for phantom construction allowed for the representation of a wide range of diseased tissue states, ranging from inflammation (benign) to high-grade cancerous lesions. Such phantoms can serve as important tools for trainee education and evaluation of new endoscopic instrumentation. PMID:26977369

  19. Cartographic and geodetic methods to characterize the potential landing sites for the future Russian missions Luna-Glob and Luna-Resurs

    NASA Astrophysics Data System (ADS)

    Karachevtseva, I. P.; Kokhanov, A. A.; Konopikhin, A. A.; Nadezhdina, I. E.; Zubarev, A. E.; Patratiy, V. D.; Kozlova, N. A.; Uchaev, D. V.; Uchaev, Dm. V.; Malinnikov, V. A.; Oberst, J.

    2015-04-01

    Characterization of the potential landing sites for the planned Luna-Glob and Luna-Resurs Russian missions requires cartographic and geodetic support prepared with special methods and techniques that are briefly overviewed here. The data used in the analysis, including the digital terrain models (DTMs) and the orthoimages acquired in the survey carried out from the Lunar Reconnaissance Orbiter and Kaguya spacecraft, are described and evaluated. By way of illustration, different regions of the lunar surface, including the subpolar regions of the Moon, are characterized with the suggested methods and the GIS-technologies. The development of the information support for the future lunar missions started in 2011, and it is now carried on in MIIGAiK Extraterrestrial Laboratory (MExLab), which is a department of the Moscow State University of Geodesy and Cartography (MIIGAiK).

  20. Enhanced characterization of singly protonated phosphopeptide ions by femtosecond laser-induced ionization/dissociation tandem mass spectrometry (fs-LID-MS/MS).

    PubMed

    Smith, Scott A; Kalcic, Christine L; Safran, Kyle A; Stemmer, Paul M; Dantus, Marcos; Reid, Gavin E

    2010-12-01

    To develop an improved understanding of the regulatory role that post-translational modifications (PTMs) involving phosphorylation play in the maintenance of normal cellular function, tandem mass spectrometry (MS/MS) strategies coupled with ion activation techniques such as collision-induced dissociation (CID) and electron-transfer dissociation (ETD) are typically employed to identify the presence and site-specific locations of the phosphate moieties within a given phosphoprotein of interest. However, the ability of these techniques to obtain sufficient structural information for unambiguous phosphopeptide identification and characterization is highly dependent on the ion activation method employed and the properties of the precursor ion that is subjected to dissociation. Herein, we describe the application of a recently developed alternative ion activation technique for phosphopeptide analysis, termed femtosecond laser-induced ionization/dissociation (fs-LID). In contrast to CID and ETD, fs-LID is shown to be particularly suited to the analysis of singly protonated phosphopeptide ions, yielding a wide range of product ions including a, b, c, x, y, and z sequence ions, as well as ions that are potentially diagnostic of the positions of phosphorylation (e.g., 'a(n)+1-98'). Importantly, the lack of phosphate moiety losses or phosphate group 'scrambling' provides unambiguous information for sequence identification and phosphorylation site characterization. Therefore, fs-LID-MS/MS can serve as a complementary technique to established methodologies for phosphoproteomic analysis. Copyright © 2010. Published by Elsevier Inc.

  1. Poly(vinyl alcohol)/cellulose nanofibril hybrid aerogels with an aligned microtubular porous structure and their composites with polydimethylsiloxane

    Treesearch

    Tianliang Zhai; Qifeng Zheng; Zhiyong Cai; Lih-Sheng Turng; Hesheng Xia; Shaoqin Gong

    2015-01-01

    Superhydrophobic poly(vinyl alcohol) (PVA)/ cellulose nanofibril (CNF) aerogels with a unidirectionally aligned microtubular porous structure were prepared using a unidirectional freeze-drying process, followed by the thermal chemical vapor deposition of methyltrichlorosilane. The silanized aerogels were characterized using various techniques including scanning...

  2. Growth and characterization of tunable solid state lasers in the near infrared spectral region

    NASA Technical Reports Server (NTRS)

    Powell, Richard C.; Martin, Joel J.

    1990-01-01

    This research resulted in the publication of two major papers. The major results include the development of improved crystal growth techniques for rare earth-doped LiYF4 crystals and the determination of laser-pumped laser characteristics of Tm:Ho:Y3Al5O12 crystals.

  3. Dynamic Bidirectional Reflectance Distribution Functions: Measurement and Representation

    DTIC Science & Technology

    2008-02-01

    be included in the harmonic fits. Other sets of orthogonal functions such as Zernike polynomials have also been used to characterize BRDF and could...reflectance spectra of 3D objects,” Proc. SPIE 4663, 370–378 2001. 13J. R. Shell II, C. Salvagio, and J. R. Schott, “A novel BRDF measurement technique

  4. Signal Processing Methods for Liquid Rocket Engine Combustion Stability Assessments

    NASA Technical Reports Server (NTRS)

    Kenny, R. Jeremy; Lee, Erik; Hulka, James R.; Casiano, Matthew

    2011-01-01

    The J2X Gas Generator engine design specifications include dynamic, spontaneous, and broadband combustion stability requirements. These requirements are verified empirically based high frequency chamber pressure measurements and analyses. Dynamic stability is determined with the dynamic pressure response due to an artificial perturbation of the combustion chamber pressure (bomb testing), and spontaneous and broadband stability are determined from the dynamic pressure responses during steady operation starting at specified power levels. J2X Workhorse Gas Generator testing included bomb tests with multiple hardware configurations and operating conditions, including a configuration used explicitly for engine verification test series. This work covers signal processing techniques developed at Marshall Space Flight Center (MSFC) to help assess engine design stability requirements. Dynamic stability assessments were performed following both the CPIA 655 guidelines and a MSFC in-house developed statistical-based approach. The statistical approach was developed to better verify when the dynamic pressure amplitudes corresponding to a particular frequency returned back to pre-bomb characteristics. This was accomplished by first determining the statistical characteristics of the pre-bomb dynamic levels. The pre-bomb statistical characterization provided 95% coverage bounds; these bounds were used as a quantitative measure to determine when the post-bomb signal returned to pre-bomb conditions. The time for post-bomb levels to acceptably return to pre-bomb levels was compared to the dominant frequency-dependent time recommended by CPIA 655. Results for multiple test configurations, including stable and unstable configurations, were reviewed. Spontaneous stability was assessed using two processes: 1) characterization of the ratio of the peak response amplitudes to the excited chamber acoustic mode amplitudes and 2) characterization of the variability of the peak response's frequency over the test duration. This characterization process assists in evaluating the discreteness of a signal as well as the stability of the chamber response. Broadband stability was assessed using a running root-mean-square evaluation. These techniques were also employed, in a comparative analysis, on available Fastrac data, and these results are presented here.

  5. Inducible laryngeal obstruction during exercise: moving beyond vocal cords with new insights.

    PubMed

    Olin, James Tod; Clary, Matthew S; Deardorff, Emily H; Johnston, Kristina; Morris, Michael J; Sokoya, Mofiyinfolu; Staudenmayer, Herman; Christopher, Kent L

    2015-02-01

    Exercise as an important part of life for the health and wellness of children and adults. Inducible laryngeal obstruction (ILO) is a consensus term used to describe a group of disorders previously called vocal cord dysfunction, paradoxical vocal fold motion, and numerous other terms. Exercise-ILO can impair one's ability to exercise, can be confused with asthma, leading to unnecessary prescription of asthma controller and rescue medication, and results in increased healthcare resource utilization including (rarely) emergency care. It is characterized by episodic shortness of breath and noisy breathing that generally occurs at high work rates. The present diagnostic gold standard for all types of ILO is laryngoscopic visualization of inappropriate glottic or supraglottic movement resulting in airway narrowing during a spontaneous event or provocation challenge. A number of different behavioral techniques, including speech therapy, biofeedback, and cognitive-behavioral psychotherapy, may be appropriate to treat individual patients. A consensus nomenclature, which will allow for better characterization of patients, coupled with new diagnostic techniques, may further define the epidemiology and etiology of ILO as well as enable objective evaluation of therapeutic modalities.

  6. Preparation of gold nanocluster bioconjugates for electron microscopy.

    PubMed

    Heinecke, Christine L; Ackerson, Christopher J

    2013-01-01

    In this chapter, we describe types of gold nanoparticle-biomolecule conjugates and their use in electron microscopy. Included are two detailed protocols for labeling an IgG antibody with gold monolayer protected clusters. The first approach is a direct bonding approach that utilizes the ligand place exchange reaction. The second approach describes NHS-EDC coupling of Au(144)(pMBA)(60) with IgG. Also included are various characterization techniques for determining labeling efficiency.

  7. High-resolution vascular tissue characterization in mice using 55MHz ultrasound hybrid imaging.

    PubMed

    Mahmoud, Ahmed M; Sandoval, Cesar; Teng, Bunyen; Schnermann, Jurgen B; Martin, Karen H; Mustafa, S Jamal; Mukdadi, Osama M

    2013-03-01

    Ultrasound and Duplex ultrasonography in particular are routinely used to diagnose cardiovascular disease (CVD), which is the leading cause of morbidity and mortality worldwide. However, these techniques may not be able to characterize vascular tissue compositional changes due to CVD. This work describes an ultrasound-based hybrid imaging technique that can be used for vascular tissue characterization and the diagnosis of atherosclerosis. Ultrasound radiofrequency (RF) data were acquired and processed in time, frequency, and wavelet domains to extract six parameters including time integrated backscatter (T(IB)), time variance (T(var)), time entropy (T(E)), frequency integrated backscatter (F(IB)), wavelet root mean square value (W(rms)), and wavelet integrated backscatter (W(IB)). Each parameter was used to reconstruct an image co-registered to morphological B-scan. The combined set of hybrid images were used to characterize vascular tissue in vitro and in vivo using three mouse models including control (C57BL/6), and atherosclerotic apolipoprotein E-knockout (APOE-KO) and APOE/A(1) adenosine receptor double knockout (DKO) mice. The technique was tested using high-frequency ultrasound including single-element (center frequency=55 MHz) and commercial array (center frequency=40 MHz) systems providing superior spatial resolutions of 24 μm and 40 μm, respectively. Atherosclerotic vascular lesions in the APOE-KO mouse exhibited the highest values (contrast) of -10.11±1.92 dB, -12.13±2.13 dB, -7.54±1.45 dB, -5.10±1.06 dB, -5.25±0.94 dB, and -10.23±2.12 dB in T(IB), T(var), T(E), F(IB), W(rms), W(IB) hybrid images (n=10, p<0.05), respectively. Control segments of normal vascular tissue showed the lowest values of -20.20±2.71 dB, -22.54±4.54 dB, -14.94±2.05 dB, -9.64±1.34 dB, -10.20±1.27 dB, and -19.36±3.24 dB in same hybrid images (n=6, p<0.05). Results from both histology and optical images showed good agreement with ultrasound findings within a maximum error of 3.6% in lesion estimation. This study demonstrated the feasibility of a high-resolution hybrid imaging technique to diagnose atherosclerosis and characterize plaque components in mouse. In the future, it can be easily implemented on commercial ultrasound systems and eventually translated into clinics as a screening tool for atherosclerosis and the assessment of vulnerable plaques. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Photovoltaic Science and Engineering Conference in Japan, 2nd, Tokyo, Japan, December 2-4, 1980, Proceedings

    NASA Astrophysics Data System (ADS)

    The state-of-the-art in amorphous solar cells is reviewed in terms of polycrystalline silicon solar cells, single crystal silicon solar cells, and methods of characterizing solar cells, including dielectric liquid immersion to increase cell efficiency. Compound semiconductor solar cells are explored, and new structures and advanced solar cell materials are discussed. Film deposition techniques for fabricating amorphous solar cells are presented, and the characterization, in addition to the physics and the performance, of amorphous solar cells are examined.

  9. Optical Studies and Poling of DNA NLO Waveguides

    NASA Astrophysics Data System (ADS)

    Heckman, Emily; Grote, James

    2005-04-01

    Deoxyribonucleic acid (DNA), extracted from salmon sperm through an enzyme isolation process, is precipitated with a surfactant complex, cetyltrimethl-ammonium (CTMA), for application as a nonlinear optical material. Preliminary characterization studies suggest that DNA-CTMA may be suitable for use as the host material in the poled core layer of electro-optically-active waveguide devices. Poling results and techniques for poled chromophore-DNA-CTMA films will be discussed. Optical characterization studies of the DNA-CTMA films, including optical propagation losses and considerations in making DNA-CTMA an optical quality material, will be presented.

  10. Millimeter-wave monolithic integrated circuit characterization by a picosecond optoelectronic technique

    NASA Astrophysics Data System (ADS)

    Hung, Hing-Loi A.; Smith, Thane; Huang, Ho C.; Polak-Dingels, Penny; Webb, Kevin J.

    1989-08-01

    The characterization of microwave and millimeter-wave monolithic integrated circits (MIMICs) using picosecond pulse-sampling techniques is developed with emphasis on improving broadband coverage and measurement accuracy. GaAs photoconductive swithces are used for signal generation and sampling operations. The measured time-domain response allows the spectral transfer function of the MIMIC to be obtained. This measurement technique is verified by characterization of the frequency response (magnitude and phase) of a reference 50-ohm microstrip line and a two-stage Ka-band MIMIC amplifier. The measured broadband results agree with those obtained from conventional frequency-domain measurements using a network analyzer. The application of this optical technique to on-wafer MIMIC characterization is described.

  11. Fluorescence lifetime in cardiovascular diagnostics

    NASA Astrophysics Data System (ADS)

    Marcu, Laura

    2010-01-01

    We review fluorescence lifetime techniques including time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and fluorescence lifetime imaging microscopy (FLIM) instrumentation and associated methodologies that allow for characterization and diagnosis of atherosclerotic plaques. Emphasis is placed on the translational research potential of TR-LIFS and FLIM and on determining whether intrinsic fluorescence signals can be used to provide useful contrast for the diagnosis of high-risk atherosclerotic plaque. Our results demonstrate that these techniques allow for the discrimination of important biochemical features involved in atherosclerotic plaque instability and rupture and show their potential for future intravascular applications.

  12. Fluorescence lifetime in cardiovascular diagnostics.

    PubMed

    Marcu, Laura

    2010-01-01

    We review fluorescence lifetime techniques including time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and fluorescence lifetime imaging microscopy (FLIM) instrumentation and associated methodologies that allow for characterization and diagnosis of atherosclerotic plaques. Emphasis is placed on the translational research potential of TR-LIFS and FLIM and on determining whether intrinsic fluorescence signals can be used to provide useful contrast for the diagnosis of high-risk atherosclerotic plaque. Our results demonstrate that these techniques allow for the discrimination of important biochemical features involved in atherosclerotic plaque instability and rupture and show their potential for future intravascular applications.

  13. Structural analysis of cell wall polysaccharides using PACE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mortimer, Jennifer C.

    The plant cell wall is composed of many complex polysaccharides. The composition and structure of the polysaccharides affect various cell properties including cell shape, cell function and cell adhesion. Many techniques to characterize polysaccharide structure are complicated, requiring expensive equipment and specialized operators e.g. NMR, MALDI-MS. PACE (Polysaccharide Analysis using Carbohydrate gel Electrophoresis) uses a simple, rapid technique to analyze polysaccharide quantity and structure (Goubet et al. 2002). Whilst the method here describes xylan analysis, it can be applied (by use of the appropriate glycosyl hydrolase) to any cell wall polysaccharide.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, Sven C.; Losko, Adrian Simon; Pokharel, Reeju

    The goal of the Advanced Non-destructive Fuel Examination (ANDE) work package is the development and application of non-destructive neutron imaging and scattering techniques to ceramic and metallic nuclear fuels, ultimately also to irradiated fuels. The results of these characterizations provide complete pre- and post-irradiation on length scales ranging from mm to nm, guide destructive examination, and inform modelling efforts. Besides technique development and application to samples to be irradiated, the ANDE work package also examines possible technologies to provide these characterization techniques pool-side, e.g. at the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) using laser-driven intense pulsed neutronmore » and gamma sources. Neutron tomography and neutron diffraction characterizations were performed on nine pellets; four UN/ U-Si composite formulations (two enrichment levels), three pure U 3Si 5 reference formulations (two enrichment levels), and two reject pellets with visible flaws (to qualify the technique). The 235U enrichments ranged from 0.2 to 8.8 wt. %. The nitride/silicide composites are candidate compositions for use as Accident Tolerant Fuel (ATF). The monophase U 3Si 5 material was included as a reference. Pellets from the same fabrication batches will be inserted in the Advanced Test Reactor at Idaho during 2016. We have also proposed a data format to build a database for characterization results of individual pellets. Neutron data reported in this report were collected in the LANSCE run cycle that started in September 2015 and ended in March 2016. This report provides the results for the characterized samples and discussion in the context of ANDE and APIE. We quantified the gamma spectra of several samples in their received state as well as after neutron irradiation to ensure that the neutron irradiation does not add significant activation that would complicate shipment and handling. We demonstrated synchrotron-based 3D X-ray microscopy on the composite fuel materials, providing unparalleled level of detail on the 3D microstructure. Furthermore, we initiated development of shielding containers allowing the characterizations presented herein while allowing handling of irradiated samples.« less

  15. Investigation of laser Doppler anemometry in developing a velocity-based measurement technique

    NASA Astrophysics Data System (ADS)

    Jung, Ki Won

    2009-12-01

    Acoustic properties, such as the characteristic impedance and the complex propagation constant, of porous materials have been traditionally characterized based on pressure-based measurement techniques using microphones. Although the microphone techniques have evolved since their introduction, the most general form of the microphone technique employs two microphones in characterizing the acoustic field for one continuous medium. The shortcomings of determining the acoustic field based on only two microphones can be overcome by using numerous microphones. However, the use of a number of microphones requires a careful and intricate calibration procedure. This dissertation uses laser Doppler anemometry (LDA) to establish a new measurement technique which can resolve issues that microphone techniques have: First, it is based on a single sensor, thus the calibration is unnecessary when only overall ratio of the acoustic field is required for the characterization of a system. This includes the measurements of the characteristic impedance and the complex propagation constant of a system. Second, it can handle multiple positional measurements without calibrating the signal at each position. Third, it can measure three dimensional components of velocity even in a system with a complex geometry. Fourth, it has a flexible adaptability which is not restricted to a certain type of apparatus only if the apparatus is transparent. LDA is known to possess several disadvantages, such as the requirement of a transparent apparatus, high cost, and necessity of seeding particles. The technique based on LDA combined with a curvefitting algorithm is validated through measurements on three systems. First, the complex propagation constant of the air is measured in a rigidly terminated cylindrical pipe which has very low dissipation. Second, the radiation impedance of an open-ended pipe is measured. These two parameters can be characterized by the ratio of acoustic field measured at multiple locations. Third, the power dissipated in a variable RLC load is measured. The three experiments validate the LDA technique proposed. The utility of the LDA method is then extended to the measurement of the complex propagation constant of the air inside a 100 ppi reticulated vitreous carbon (RVC) sample. Compared to measurements in the available studies, the measurement with the 100 ppi RVC sample supports the LDA technique in that it can achieve a low uncertainty in the determined quantity. This dissertation concludes with using the LDA technique for modal decomposition of the plane wave mode and the (1,1) mode that are driven simultaneously. This modal decomposition suggests that the LDA technique surpasses microphone-based techniques, because they are unable to determine the acoustic field based on an acoustic model with unconfined propagation constants for each modal component.

  16. Enrichment and characterization of ferritin for nanomaterial applications

    NASA Astrophysics Data System (ADS)

    Ghirlando, Rodolfo; Mutskova, Radina; Schwartz, Chad

    2016-01-01

    Ferritin is a ubiquitous iron storage protein utilized as a nanomaterial for labeling biomolecules and nanoparticle construction. Commercially available preparations of horse spleen ferritin, widely used as a starting material, contain a distribution of ferritins with different iron loads. We describe a detailed approach to the enrichment of differentially loaded ferritin molecules by common biophysical techniques such as size exclusion chromatography and preparative ultracentrifugation, and characterize these preparations by dynamic light scattering, and analytical ultracentrifugation. We demonstrate a combination of methods to standardize an approach for determining the chemical load of nearly any particle, including nanoparticles and metal colloids. Purification and characterization of iron content in monodisperse ferritin species is particularly critical for several applications in nanomaterial science.

  17. Computational characterization of ordered nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Mohieddin Abukhdeir, Nasser

    2016-08-01

    A vital and challenging task for materials researchers is to determine relationships between material characteristics and desired properties. While the measurement and assessment of material properties can be complex, quantitatively characterizing their structure is frequently a more challenging task. This issue is magnified for materials researchers in the areas of nanoscience and nanotechnology, where material structure is further complicated by phenomena such as self-assembly, collective behavior, and measurement uncertainty. Recent progress has been made in this area for both self-assembled and nanostructured surfaces due to increasing accessibility of imaging techniques at the nanoscale. In this context, recent advances in nanomaterial surface structure characterization are reviewed including the development of new theory and image processing methods.

  18. Fractional Derivative Models for Ultrasonic Characterization of Polymer and Breast Tissue Viscoelasticity

    PubMed Central

    Coussot, Cecile; Kalyanam, Sureshkumar; Yapp, Rebecca; Insana, Michael F.

    2009-01-01

    The viscoelastic response of hydropolymers, which include glandular breast tissues, may be accurately characterized for some applications with as few as 3 rheological parameters by applying the Kelvin-Voigt fractional derivative (KVFD) modeling approach. We describe a technique for ultrasonic imaging of KVFD parameters in media undergoing unconfined, quasi-static, uniaxial compression. We analyze the KVFD parameter values in simulated and experimental echo data acquired from phantoms and show that the KVFD parameters may concisely characterize the viscoelastic properties of hydropolymers. We then interpret the KVFD parameter values for normal and cancerous breast tissues and hypothesize that this modeling approach may ultimately be applied to tumor differentiation. PMID:19406700

  19. Subsurface damage detection in non-ferrous systems using 3D synchronous magnetic inspection

    NASA Astrophysics Data System (ADS)

    Gray, David; Berry, David

    2018-04-01

    Prime Photonics is developing a non-destructive inspection (NDI) technology, 3-D synchronous magnetic imaging system (3-D SMIS), that uses synchronous detection of magnetic signatures resulting from ultrasonic excitation to measure both surface and subsurface flaws in conductive structures. 3-D SMIS is showing promise in a wide range of NDI/NDE uses including characterizing surface-breaking cracks in ferrous and non-ferrous materials, locating and characterizing subsurface cracks within nonferrous conductive materials (Ti 6-4 and carbon fiber composites), and characterization of subsurface residual stresses. The technology offers a non-contact, high resolution inspection technique that does not require austere environments, and can accommodate non-planar specimen geometries.

  20. The Chameleon Effect: Characterization Challenges Due to the Variability of Nanoparticles and Their Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, Donald R.

    Nanoparticles in a variety of forms are of increasing importance in fundamental research, technological and medical applications, and environmental or toxicology studies. Physical and chemical drivers that lead to multiple types of particle instabilities complicate both the ability to produce and consistently deliver well defined particles and their appropriate characterization, frequently leading to inconsistencies and conflicts in the published literature. This perspective suggests that provenance information, beyond that often recorded or reported, and application of a set of core characterization methods, including a surface sensitive technique, consistently applied at critical times can serve as tools in the effort minimize reproducibilitymore » issues.« less

  1. Materials Characterization of Additively Manufactured Components for Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary

    2015-01-01

    To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRC's Additive Manufacturing roles and experimental findings will be presented.

  2. Material Characterization of Additively Manufactured Components for Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary

    2015-01-01

    To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRCs Additive Manufacturing roles and experimental findings will be presented.

  3. NDE and DE of PWSCC Found in the J-Groove Weld of a Removed-From-Service Control Rod Drive Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cumblidge, Stephen E.; Doctor, Steven R.; Schuster, George J.

    2008-01-01

    Studies conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington focused on assessing the effectiveness of nondestructive examination (NDE) techniques for inspecting control rod drive mechanism (CRDM) nozzles and J-groove weldments. The primary objective of this work is to provide information to the United States Nuclear Regulatory Commission (US NRC) on the effectiveness of NDE methods as related to the in-service inspection of CRDM nozzles and J-groove weldments, and to enhance the knowledge base of primary water stress corrosion cracking (PWSCC) through destructive characterization of the CRDM assemblies. Two CRDM assemblies were removed from service, decontaminated, and thenmore » used in a series of laboratory NDE and DE measurements; this report addresses the following questions: 1) What did each NDE technique detect?, 2) What did each NDE technique miss?, 3) How accurately did each NDE technique characterize the detected flaws?, and finally 4) What were the basis for the NDE techniques performance? Two CRDM assemblies including the CRDM nozzle, the J-groove weld, buttering, and a portion of the ferritic head material were selected for this study. This paper focuses on a CRDM assembly that contained suspected PWSCC, based on in-service inspection data and through-wall leakage. The laboratory NDE measurements used to examine the CRDM assembly followed standard industry techniques for conducting in-service inspections of CRDM nozzles and the crown of the J-groove welds and buttering. These techniques included eddy current testing, time of flight diffraction ultrasound, and penetrant testing. In addition, other laboratory-based NDE methods were employed to conduct inspections of the CRDM assembly with particular emphasis on inspecting the J-groove weld and buttering. These techniques included volumetric ultrasonic inspection of the J-groove weld metal, visual testing via replicant material of the J-groove weld and high resolution photography of the J-groove weld crown and buttering. The results from these NDE studies were used to guide the development of the destructive characterization plan. The NDE studies found several crack-like indications. The NDE and DE studies determined that one of these was a through-weld radially-oriented PWSCC crack in the wetted surface of the J-groove weld, located at the transition point between the weld and the buttering. The crack was 6 mm long on the surface and quickly grew to 25 mm long at a depth of 8 mm, covering the length of the weld between the penetration tube and the carbon steel. The NDE studies found that only ET was able to detect the through-weld crack. The crack was oriented poorly for the ultrasonic testing, and was too tight for accurate PT or VT. The ET voltage response of the flaw was 30% that of a deep EDM notch. The DE performed on the crack consisted of slicing the crack into thin sections, polishing the sections, and then using optical and scanning electron microscopy (SEM) to characterize the crack. DE shows the crack was PWSCC and that it initiated on the wetted surface, grew and expanded through the weld metal, and exited into the annulus. The SEM examinations showed the crack followed the weld grain boundaries as it progressed through the weld. The crack was branched and discontinuous along its length.« less

  4. Integrated reservoir characterization for unconventional reservoirs using seismic, microseismic and well log data

    NASA Astrophysics Data System (ADS)

    Maity, Debotyam

    This study is aimed at an improved understanding of unconventional reservoirs which include tight reservoirs (such as shale oil and gas plays), geothermal developments, etc. We provide a framework for improved fracture zone identification and mapping of the subsurface for a geothermal system by integrating data from different sources. The proposed ideas and methods were tested primarily on data obtained from North Brawley geothermal field and the Geysers geothermal field apart from synthetic datasets which were used to test new algorithms before actual application on the real datasets. The study has resulted in novel or improved algorithms for use at specific stages of data acquisition and analysis including improved phase detection technique for passive seismic (and teleseismic) data as well as optimization of passive seismic surveys for best possible processing results. The proposed workflow makes use of novel integration methods as a means of making best use of the available geophysical data for fracture characterization. The methodology incorporates soft computing tools such as hybrid neural networks (neuro-evolutionary algorithms) as well as geostatistical simulation techniques to improve the property estimates as well as overall characterization efficacy. The basic elements of the proposed characterization workflow involves using seismic and microseismic data to characterize structural and geomechanical features within the subsurface. We use passive seismic data to model geomechanical properties which are combined with other properties evaluated from seismic and well logs to derive both qualitative and quantitative fracture zone identifiers. The study has resulted in a broad framework highlighting a new technique for utilizing geophysical data (seismic and microseismic) for unconventional reservoir characterization. It provides an opportunity to optimally develop the resources in question by incorporating data from different sources and using their temporal and spatial variability as a means to better understand the reservoir behavior. As part of this study, we have developed the following elements which are discussed in the subsequent chapters: 1. An integrated characterization framework for unconventional settings with adaptable workflows for all stages of data processing, interpretation and analysis. 2. A novel autopicking workflow for noisy passive seismic data used for improved accuracy in event picking as well as for improved velocity model building. 3. Improved passive seismic survey design optimization framework for better data collection and improved property estimation. 4. Extensive post-stack seismic attribute studies incorporating robust schemes applicable in complex reservoir settings. 5. Uncertainty quantification and analysis to better quantify property estimates over and above the qualitative interpretations made and to validate observations independently with quantified uncertainties to prevent erroneous interpretations. 6. Property mapping from microseismic data including stress and anisotropic weakness estimates for integrated reservoir characterization and analysis. 7. Integration of results (seismic, microseismic and well logs) from analysis of individual data sets for integrated interpretation using predefined integration framework and soft computing tools.

  5. Advances in the in-field detection of microorganisms in ice.

    PubMed

    Barnett, Megan J; Pearce, David A; Cullen, David C

    2012-01-01

    The historic view of ice-bound ecosystems has been one of a predominantly lifeless environment, where microorganisms certainly exist but are assumed to be either completely inactive or in a state of long-term dormancy. However, this standpoint has been progressively overturned in the past 20years as studies have started to reveal the importance of microbial life in the functioning of these environments. Our present knowledge of the distribution, taxonomy, and metabolic activity of such microbial life has been derived primarily from laboratory-based analyses of collected field samples. To date, only a restricted range of life detection and characterization techniques have been applied in the field. Specific examples include direct observation and DNA-based techniques (microscopy, specific stains, and community profiling based on PCR amplification), the detection of biomarkers (such as adenosine triphosphate), and measurements of metabolism [through the uptake and incorporation of radiolabeled isotopes or chemical alteration of fluorescent substrates (umbelliferones are also useful here)]. On-going improvements in technology mean that smaller and more robust life detection and characterization systems are continually being designed, manufactured, and adapted for in-field use. Adapting technology designed for other applications is the main source of new methodology, and the range of techniques is currently increasing rapidly. Here we review the current use of technology and techniques to detect and characterize microbial life within icy environments and specifically its deployment to in-field situations. We discuss the necessary considerations, limitations, and adaptations, review emerging technologies, and highlight the future potential. Successful application of these new techniques to in-field studies will certainly generate new insights into the way ice bound ecosystems function. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Single-shot polarimetry imaging of multicore fiber.

    PubMed

    Sivankutty, Siddharth; Andresen, Esben Ravn; Bouwmans, Géraud; Brown, Thomas G; Alonso, Miguel A; Rigneault, Hervé

    2016-05-01

    We report an experimental test of single-shot polarimetry applied to the problem of real-time monitoring of the output polarization states in each core within a multicore fiber bundle. The technique uses a stress-engineered optical element, together with an analyzer, and provides a point spread function whose shape unambiguously reveals the polarization state of a point source. We implement this technique to monitor, simultaneously and in real time, the output polarization states of up to 180 single-mode fiber cores in both conventional and polarization-maintaining fiber bundles. We demonstrate also that the technique can be used to fully characterize the polarization properties of each individual fiber core, including eigen-polarization states, phase delay, and diattenuation.

  7. High resolution spectroscopy in the microwave and far infrared

    NASA Technical Reports Server (NTRS)

    Pickett, Herbert M.

    1990-01-01

    High resolution rotational spectroscopy has long been central to remote sensing techniques in atmospheric sciences and astronomy. As such, laboratory measurements must supply the required data to make direct interpretation of data for instruments which sense atmospheres using rotational spectra. Spectral measurements in the microwave and far infrared regions are also very powerful tools when combined with infrared measurements for characterizing the rotational structure of vibrational spectra. In the past decade new techniques were developed which have pushed high resolution spectroscopy into the wavelength region between 25 micrometers and 2 mm. Techniques to be described include: (1) harmonic generation of microwave sources, (2) infrared laser difference frequency generation, (3) laser sideband generation, and (4) ultrahigh resolution interferometers.

  8. Wireless Power Transfer for Space Applications

    NASA Technical Reports Server (NTRS)

    Ramos, Gabriel Vazquez; Yuan, Jiann-Shiun

    2011-01-01

    This paper introduces an implementation for magnetic resonance wireless power transfer for space applications. The analysis includes an equivalent impedance study, loop material characterization, source/load resonance coupling technique, and system response behavior due to loads variability. System characterization is accomplished by executing circuit design from analytical equations and simulations using Matlab and SPICE. The theory was validated by a combination of different experiments that includes loop material consideration, resonance coupling circuits considerations, electric loads considerations and a small scale proof-of-concept prototype. Experiment results shows successful wireless power transfer for all the cases studied. The prototype provided about 4.5 W of power to the load at a separation of -5 cm from the source using a power amplifier rated for 7 W.

  9. Harvey Guthrey | NREL

    Science.gov Websites

    advanced electron-microscopy-based characterization techniques to the study of photovoltaics and energy -storage materials. Research Interests Combining structural and chemical characterization techniques to

  10. Recent Advances on In Situ SEM Mechanical and Electrical Characterization of Low-Dimensional Nanomaterials.

    PubMed

    Jiang, Chenchen; Lu, Haojian; Zhang, Hongti; Shen, Yajing; Lu, Yang

    2017-01-01

    In the past decades, in situ scanning electron microscopy (SEM) has become a powerful technique for the experimental study of low-dimensional (1D/2D) nanomaterials, since it can provide unprecedented details for individual nanostructures upon mechanical and electrical stimulus and thus uncover the fundamental deformation and failure mechanisms for their device applications. In this overview, we summarized recent developments on in situ SEM-based mechanical and electrical characterization techniques including tensile, compression, bending, and electrical property probing on individual nanostructures, as well as the state-of-the-art electromechanical coupling analysis. In addition, the advantages and disadvantages of in situ SEM tests were also discussed with some possible solutions to address the challenges. Furthermore, critical challenges were also discussed for the development and design of robust in situ SEM characterization platform with higher resolution and wider range of samples. These experimental efforts have offered in-depth understanding on the mechanical and electrical properties of low-dimensional nanomaterial components and given guidelines for their further structural and functional applications.

  11. Recent Advances on In Situ SEM Mechanical and Electrical Characterization of Low-Dimensional Nanomaterials

    PubMed Central

    Jiang, Chenchen; Lu, Haojian; Zhang, Hongti

    2017-01-01

    In the past decades, in situ scanning electron microscopy (SEM) has become a powerful technique for the experimental study of low-dimensional (1D/2D) nanomaterials, since it can provide unprecedented details for individual nanostructures upon mechanical and electrical stimulus and thus uncover the fundamental deformation and failure mechanisms for their device applications. In this overview, we summarized recent developments on in situ SEM-based mechanical and electrical characterization techniques including tensile, compression, bending, and electrical property probing on individual nanostructures, as well as the state-of-the-art electromechanical coupling analysis. In addition, the advantages and disadvantages of in situ SEM tests were also discussed with some possible solutions to address the challenges. Furthermore, critical challenges were also discussed for the development and design of robust in situ SEM characterization platform with higher resolution and wider range of samples. These experimental efforts have offered in-depth understanding on the mechanical and electrical properties of low-dimensional nanomaterial components and given guidelines for their further structural and functional applications. PMID:29209445

  12. Use of remote-sensing techniques to survey the physical habitat of large rivers

    USGS Publications Warehouse

    Edsall, Thomas A.; Behrendt, Thomas E.; Cholwek, Gary; Frey, Jeffery W.; Kennedy, Gregory W.; Smith, Stephen B.; Edsall, Thomas A.; Behrendt, Thomas E.; Cholwek, Gary; Frey, Jeffrey W.; Kennedy, Gregory W.; Smith, Stephen B.

    1997-01-01

    Remote-sensing techniques that can be used to quantitatively characterize the physical habitat in large rivers in the United States where traditional survey approaches typically used in small- and medium-sized streams and rivers would be ineffective or impossible to apply. The state-of-the-art remote-sensing technologies that we discuss here include side-scan sonar, RoxAnn, acoustic Doppler current profiler, remotely operated vehicles and camera systems, global positioning systems, and laser level survey systems. The use of these technologies will permit the collection of information needed to create computer visualizations and hard copy maps and generate quantitative databases that can be used in real-time mode in the field to characterize the physical habitat at a study location of interest and to guide the distribution of sampling effort needed to address other habitat-related study objectives. This report augments habitat sampling and characterization guidance provided by Meador et al. (1993) and is intended for use primarily by U.S. Geological Survey National Water Quality Assessment program managers and scientists who are documenting water quality in streams and rivers of the United States.

  13. A field-deployable GC-EI-HRTOF-MS for in situ characterization of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Lerner, B. M.; Herndon, S. C.; Yacovitch, T. I.; Roscioli, J. R.; Fortner, E.; Knighton, W. B.; Sueper, D.; Isaacman-VanWertz, G. A.; Jayne, J. T.; Worsnop, D. R.

    2017-12-01

    Previous authors have demonstrated the value of coupling conventional gas chromatograph (GC) separation techniques with the new generation of electron-impact high-resolution time-of-flight mass spectrometry (EI-HR-ToF-MS) detectors for the measurement of halocarbons and semi-volatile organic species. Here, we present new instrumentation, analytical techniques and field data from the deployment of a GC-EI-HR-ToF-MS system in the mini Aerodyne mobile laboratory to sites upwind and downwind of San Antonio, Texas in May 2017. The instrument employed a multi-component adsorbent trap pre-concertation system followed by single-column separation. We will show results from the field work, including inter-comparison with other VOC measurements and characterization of C5-C10 hydrocarbon mixing ratios to distinguish urban and oil/gas emission sources in characterized air. We will discuss practical aspects of deployment of the GC-EI-HRTOF-MS in a mobile laboratory and system performance in the field. Will we also present further development of Aerodyne's TERN software package for chromatographic data analysis to processing of HRTOF-MS datasets.

  14. Fast-scan Cyclic Voltammetry for the Characterization of Rapid Adenosine Release.

    PubMed

    Nguyen, Michael D; Venton, B Jill

    2015-01-01

    Adenosine is a signaling molecule and downstream product of ATP that acts as a neuromodulator. Adenosine regulates physiological processes, such as neurotransmission and blood flow, on a time scale of minutes to hours. Recent developments in electrochemical techniques, including fast-scan cyclic voltammetry (FSCV), have allowed direct detection of adenosine with sub-second temporal resolution. FSCV studies have revealed a novel mode of rapid signaling that lasts only a few seconds. This rapid release of adenosine can be evoked by electrical or mechanical stimulations or it can be observed spontaneously without stimulation. Adenosine signaling on this time scale is activity dependent; however, the mode of release is not fully understood. Rapid adenosine release modulates oxygen levels and evoked dopamine release, indicating that adenosine may have a rapid modulatory role. In this review, we outline how FSCV can be used to detect adenosine release, compare FSCV with other techniques used to measure adenosine, and present an overview of adenosine signaling that has been characterized using FSCV. These studies point to a rapid mode of adenosine modulation, whose mechanism and function will continue to be characterized in the future.

  15. Development and Advanced Analysis of Dynamic and Static Casing Strain Monitoring to Characterize the Orientation and Dimensions of Hydraulic Fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruno, Michael; Ramos, Juan; Lao, Kang

    Horizontal wells combined with multi-stage hydraulic fracturing have been applied to significantly increase production from low permeability formations, contributing to expanded total US production of oil and gas. Not all applications are successful, however. Field observations indicate that poorly designed or placed fracture stages in horizontal wells can result in significant well casing deformation and damage. In some instances, early fracture stages have deformed the casing enough so that it is not possible to drill out plugs in order to complete subsequent fracture stages. Improved fracture characterization techniques are required to identify potential problems early in the development of themore » field. Over the past decade, several new technologies have been presented as alternatives to characterize the fracture geometry for unconventional reservoirs. Monitoring dynamic casing strain and deformation during hydraulic fracturing represents one of these new techniques. The objective of this research is to evaluate dynamic and static strains imposed on a well casing by single and multiple stage fractures, and to use that information in combination with numerical inversion techniques to estimate fracture characteristics such as length, orientation and post treatment opening. GeoMechanics Technologies, working in cooperation with the Department of Energy, Small Business Innovation Research through DOE SBIR Grant No: DE-SC-0017746, is conducting a research project to complete an advanced analysis of dynamic and static casing strain monitoring to characterize the orientation and dimensions of hydraulic fractures. This report describes our literature review and technical approach. The following conclusions summarize our review and simulation results to date: A literature review was performed related to the fundamental theoretical and analytical developments of stress and strain imposed by hydraulic fracturing along casing completions and deformation monitoring techniques. Analytical solutions have been developed to understand the mechanisms responsible for casing deformation induced by hydraulic fracturing operations. After reviewing a range of casing deformation techniques, including fiber optic sensors, borehole ultrasonic tools and electromagnetic tools, we can state that challenges in deployment, data acquisition and interpretation must still be overcome to ensure successful application of strain measurement and inversion techniques to characterize hydraulic fractures in the field. Numerical models were developed to analyze induced strain along casing, cement and formation interfaces. The location of the monitoring sensor around the completion, mechanical properties of the cement and its condition in the annular space can impact the strain measurement. Field data from fiber optic sensors were evaluated to compare against numerical models. A reasonable match for the fracture height characterization was obtained. Discrepancies in the strain magnitude between the field data and the numerical model was observed and can be caused by temperature effects, the cement condition in the well and the perturbation at the surface during injection. To avoid damage in the fiber optic cable during the perforation (e.g. when setting up multi stage HF scenarios), oriented perforation technologies are suggested. This issue was evidenced in the analyzed field data, where it was not possible to obtain strain measurement below the top of the perforation. This presented a limitation to characterize the entire fracture geometry. The comparison results from numerical modeling and field data for fracture characterization shows that the proposed methodology should be validated with alternative field demonstration techniques using measurements in an offset observation well to monitor and measure the induced strain. We propose to expand on this research in Phase II with a further study of multi-fracture characterization and field demonstration for horizontal wells.« less

  16. patients

    PubMed

    Hernández-Mondragón, Oscar Víctor; Solórzano-Pineda, Omar Michel; Blancas-Valencia, Juan Manuel; González-Martínez, Marina Alejandra

    2017-01-01

    Esophageal achalasia is a primary motor disorder of the esophagus characterized by impair relaxation of the lower esophageal sphincter and absent of esophageal peristalsis. Per-oral endoscopic myotomy is an alternative treatment to surgical Heller myotomy in patients over 65 years old. The aim of this paper was to describe the results of peroral endoscopic myotomy (POEM) or the treatment of achalasia in geriatric patients. We included patients over 65 years old with POEM, from retrospective cohort review, in which POEM was performed with a standardized technique in our department. 12 patients were included, the procedure was successful in 98% of patients, minor adverse events occurred without mortality. POEM is a safe and effective technique for the treatment of achalasia, the results of the study are similar to those reported in The literature.

  17. Hydrogeologic Unit Flow Characterization Using Transition Probability Geostatistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, N L; Walker, J R; Carle, S F

    2003-11-21

    This paper describes a technique for applying the transition probability geostatistics method for stochastic simulation to a MODFLOW model. Transition probability geostatistics has several advantages over traditional indicator kriging methods including a simpler and more intuitive framework for interpreting geologic relationships and the ability to simulate juxtapositional tendencies such as fining upwards sequences. The indicator arrays generated by the transition probability simulation are converted to layer elevation and thickness arrays for use with the new Hydrogeologic Unit Flow (HUF) package in MODFLOW 2000. This makes it possible to preserve complex heterogeneity while using reasonably sized grids. An application of themore » technique involving probabilistic capture zone delineation for the Aberjona Aquifer in Woburn, Ma. is included.« less

  18. EFSUMB guidelines 2011: comment on emergent indications and visions.

    PubMed

    Dietrich, C F; Cui, X W; Barreiros, A P; Hocke, M; Ignee, A

    2012-07-01

    The focus of this article is the emergent and potential indications of contrast-enhanced ultrasound (CEUS). Emergent applications of CEUS techniques include extravascular and intracavitary contrast-enhanced ultrasound, quantitative assessment of microvascular circulation for tumor response assessment, and tumor characterization using dynamic contrast-enhanced ultrasound (DCE-US). Potential indications for microbubble agents include novel molecular imaging and drug and gene delivery techniques, which have been successfully tested in animal models. "Comments and Illustrations of the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) Non-Liver Guidelines 2011" which focus more on established applications are published in the same supplement to Ultraschall in der Medizin (European Journal of Ultrasound). © Georg Thieme Verlag KG Stuttgart · New York.

  19. Practical applications of nondestructive materials characterization

    NASA Astrophysics Data System (ADS)

    Green, Robert E., Jr.

    1992-10-01

    Nondestructive evaluation (NDE) techniques are reviewed for applications to the industrial production of materials including microstructural, physical, and chemical analyses. NDE techniques addressed include: (1) double-pulse holographic interferometry for sealed-package leak testing; (2) process controls for noncontact metals fabrication; (3) ultrasonic detections of oxygen contamination in titanium welds; and (4) scanning acoustic microscopy for the evaluation of solder bonds. The use of embedded sensors and emerging NDE concepts provides the means for controlling the manufacturing and quality of quartz crystal resonators, nickel single-crystal turbine blades, and integrated circuits. Advances in sensor technology and artificial intelligence algorithms and the use of embedded sensors combine to make NDE technology highly effective in controlling industrial materials manufacturing and the quality of the products.

  20. Quantitative imaging methods in osteoporosis.

    PubMed

    Oei, Ling; Koromani, Fjorda; Rivadeneira, Fernando; Zillikens, M Carola; Oei, Edwin H G

    2016-12-01

    Osteoporosis is characterized by a decreased bone mass and quality resulting in an increased fracture risk. Quantitative imaging methods are critical in the diagnosis and follow-up of treatment effects in osteoporosis. Prior radiographic vertebral fractures and bone mineral density (BMD) as a quantitative parameter derived from dual-energy X-ray absorptiometry (DXA) are among the strongest known predictors of future osteoporotic fractures. Therefore, current clinical decision making relies heavily on accurate assessment of these imaging features. Further, novel quantitative techniques are being developed to appraise additional characteristics of osteoporosis including three-dimensional bone architecture with quantitative computed tomography (QCT). Dedicated high-resolution (HR) CT equipment is available to enhance image quality. At the other end of the spectrum, by utilizing post-processing techniques such as the trabecular bone score (TBS) information on three-dimensional architecture can be derived from DXA images. Further developments in magnetic resonance imaging (MRI) seem promising to not only capture bone micro-architecture but also characterize processes at the molecular level. This review provides an overview of various quantitative imaging techniques based on different radiological modalities utilized in clinical osteoporosis care and research.

  1. Advanced microscopy of star-shaped gold nanoparticles and their adsorption-uptake by macrophages

    PubMed Central

    Plascencia-Villa, Germán; Bahena, Daniel; Rodríguez, Annette R.; Ponce, Arturo; José-Yacamán, Miguel

    2013-01-01

    Metallic nanoparticles have diverse applications in biomedicine, as diagnostics, image contrast agents, nanosensors and drug delivery systems. Anisotropic metallic nanoparticles possess potential applications in cell imaging and therapy+diagnostics (theranostics), but controlled synthesis and growth of these anisotropic or branched nanostructures has been challenging and usually require use of high concentrations of surfactants. Star-shaped gold nanoparticles were synthesized in high yield through a seed mediated route using HEPES as a precise shape-directing capping agent. Characterization was performed using advanced electron microscopy techniques including atomic resolution TEM, obtaining a detailed characterization of nanostructure and atomic arrangement. Spectroscopy techniques showed that particles have narrow size distribution, monodispersity and high colloidal stability, with absorbance into NIR region and high efficiency for SERS applications. Gold nanostars showed to be biocompatible and efficiently adsorbed and internalized by macrophages, as revealed by advanced FE-SEM and backscattered electron imaging techniques of complete unstained uncoated cells. Additionally, low voltage STEM and X-ray microanalysis revealed the ultra-structural location and confirmed stability of nanoparticles after endocytosis with high spatial resolution. PMID:23443314

  2. Characterization of Colloidal Quantum Dot Ligand Exchange by X-ray Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Atewologun, Ayomide; Ge, Wangyao; Stiff-Roberts, Adrienne D.

    2013-05-01

    Colloidal quantum dots (CQDs) are chemically synthesized semiconductor nanoparticles with size-dependent wavelength tunability. Chemical synthesis of CQDs involves the attachment of long organic surface ligands to prevent aggregation; however, these ligands also impede charge transport. Therefore, it is beneficial to exchange longer surface ligands for shorter ones for optoelectronic devices. Typical characterization techniques used to analyze surface ligand exchange include Fourier-transform infrared spectroscopy, x-ray diffraction, transmission electron microscopy, and nuclear magnetic resonance spectroscopy, yet these techniques do not provide a simultaneously direct, quantitative, and sensitive method for evaluating surface ligands on CQDs. In contrast, x-ray photoelectron spectroscopy (XPS) can provide nanoscale sensitivity for quantitative analysis of CQD surface ligand exchange. A unique aspect of this work is that a fingerprint is identified for shorter surface ligands by resolving the regional XPS spectrum corresponding to different types of carbon bonds. In addition, a deposition technique known as resonant infrared matrix-assisted pulsed laser evaporation is used to improve the CQD film uniformity such that stronger XPS signals are obtained, enabling more accurate analysis of the ligand exchange process.

  3. Probing ternary solvent effect in high V oc polymer solar cells using advanced AFM techniques

    DOE PAGES

    Li, Chao; Soleman, Mikhael; Lorenzo, Josie; ...

    2016-01-25

    This work describes a simple method to develop a high V oc low band gap PSCs. In addition, two new atomic force microscopy (AFM)-based nanoscale characterization techniques to study the surface morphology and physical properties of the structured active layer are introduced. With the help of ternary solvent processing of the active layer and C 60 buffer layer, a bulk heterojunction PSC with V oc more than 0.9 V and conversion efficiency 7.5% is developed. In order to understand the fundamental properties of the materials ruling the performance of the PSCs tested, AFM-based nanoscale characterization techniques including Pulsed-Force-Mode AFM (PFM-AFM)more » and Mode-Synthesizing AFM (MSAFM) are introduced. Interestingly, MSAFM exhibits high sensitivity for direct visualization of the donor–acceptor phases in the active layer of the PSCs. Lastly, conductive-AFM (cAFM) studies reveal local variations in conductivity in the donor and acceptor phases as well as a significant increase in photocurrent in the PTB7:ICBA sample obtained with the ternary solvent processing.« less

  4. Seismic Techniques for Subsurface Voids Detection

    NASA Astrophysics Data System (ADS)

    Gritto, Roland; Korneev, Valeri; Elobaid Elnaiem, Ali; Mohamed, Fathelrahman; Sadooni, Fadhil

    2016-04-01

    A major hazards in Qatar is the presence of karst, which is ubiquitous throughout the country including depressions, sinkholes, and caves. Causes for the development of karst include faulting and fracturing where fluids find pathways through limestone and dissolve the host rock to form caverns. Of particular concern in rapidly growing metropolitan areas that expand in heretofore unexplored regions are the collapse of such caverns. Because Qatar has seen a recent boom in construction, including the planning and development of complete new sub-sections of metropolitan areas, the development areas need to be investigated for the presence of karst to determine their suitability for the planned project. In this paper, we present the results of a study to demonstrate a variety of seismic techniques to detect the presence of a karst analog in form of a vertical water-collection shaft located on the campus of Qatar University, Doha, Qatar. Seismic waves are well suited for karst detection and characterization. Voids represent high-contrast seismic objects that exhibit strong responses due to incident seismic waves. However, the complex geometry of karst, including shape and size, makes their imaging nontrivial. While karst detection can be reduced to the simple problem of detecting an anomaly, karst characterization can be complicated by the 3D nature of the problem of unknown scale, where irregular surfaces can generate diffracted waves of different kind. In our presentation we employ a variety of seismic techniques to demonstrate the detection and characterization of a vertical water collection shaft analyzing the phase, amplitude and spectral information of seismic waves that have been scattered by the object. We used the reduction in seismic wave amplitudes and the delay in phase arrival times in the geometrical shadow of the vertical shaft to independently detect and locate the object in space. Additionally, we use narrow band-pass filtered data combining two orthogonal transmission surveys to detect and locate the object. Furthermore, we showed that ambient noise recordings may generate data with sufficient signal-to-noise ratio to successfully detect and locate subsurface voids. Being able to use ambient noise recordings would eliminate the need to employ active seismic sources that are time consuming and more expensive to operate.

  5. Energy conversion and storage program

    NASA Astrophysics Data System (ADS)

    Cairns, E. J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: (1) production of new synthetic fuels; (2) development of high-performance rechargeable batteries and fuel cells; (3) development of advanced thermochemical processes for energy conversion; (4) characterization of complex chemical processes; and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  6. Methods for investigating biosurfactants and bioemulsifiers: a review.

    PubMed

    Satpute, Surekha K; Banpurkar, Arun G; Dhakephalkar, Prashant K; Banat, Ibrahim M; Chopade, Balu A

    2010-06-01

    Microorganisms produce biosurfactant (BS)/bioemulsifier (BE) with wide structural and functional diversity which consequently results in the adoption of different techniques to investigate these diverse amphiphilic molecules. This review aims to compile information on different microbial screening methods, surface active products extraction procedures, and analytical terminologies used in this field. Different methods for screening microbial culture broth or cell biomass for surface active compounds production are also presented and their possible advantages and disadvantages highlighted. In addition, the most common methods for purification, detection, and structure determination for a wide range of BS and BE are introduced. Simple techniques such as precipitation using acetone, ammonium sulphate, solvent extraction, ultrafiltration, ion exchange, dialysis, ultrafiltration, lyophilization, isoelectric focusing (IEF), and thin layer chromatography (TLC) are described. Other more elaborate techniques including high pressure liquid chromatography (HPLC), infra red (IR), gas chromatography-mass spectroscopy (GC-MS), nuclear magnetic resonance (NMR), and fast atom bombardment mass spectroscopy (FAB-MS), protein digestion and amino acid sequencing are also elucidated. Various experimental strategies including static light scattering and hydrodynamic characterization for micelles have been discussed. A combination of various analytical methods are often essential in this area of research and a numbers of trials and errors to isolate, purify and characterize various surface active agents are required. This review introduces the various methodologies that are indispensable for studying biosurfactants and bioemulsifiers.

  7. Analysis of airborne LiDAR surveys to quantify the characteristic morphologies of northern forested wetlands

    Treesearch

    Murray C. Richardson; Carl P. J. Mitchell; Brian A. Branfireun; Randall K. Kolka

    2010-01-01

    A new technique for quantifying the geomorphic form of northern forested wetlands from airborne LiDAR surveys is introduced, demonstrating the unprecedented ability to characterize the geomorphic form of northern forested wetlands using high-resolution digital topography. Two quantitative indices are presented, including the lagg width index (LWI) which objectively...

  8. Structural properties of scandium inorganic salts

    DOE PAGES

    Sears, Jeremiah M.; Boyle, Timothy J.

    2016-12-16

    Here, the structural properties of reported inorganic scandium (Sc) salts were reviewed, including the halide (Cl, Br, and I), nitrate, sulfate, and phosphate salts. Additional analytical techniques used for characterization of these complexes (metrical data, FTIR and 45Sc NMR spectroscopy) were tabulated. A structural comparison of Sc to select lanthanide (La, Gd, Lu) salt complexes was briefly evaluated.

  9. Utilization of high performance liquid chromatography coupled to tandem mass spectrometry for characterization of 8-O-methylbostrycoidin production by species of the fungus Fusarium

    USDA-ARS?s Scientific Manuscript database

    The pigment, 8-O-methylbostrycoidin is a polyketide metabolite produced by multiple species of the fungus Fusarium that infects plant crops, including maize. A technique was developed for the analysis of 8-O-methylbostrycoidin by high performance liquid chromatography coupled to electrospray ionizat...

  10. Offshore Wind Resource Characterization | Wind | NREL

    Science.gov Websites

    identify critical data needed. Remote Sensing and Modeling Photo of the SeaZephIR Prototype at sea. 2009 techniques such as remote sensing and modeling to provide data on design conditions. Research includes comparing the data provided by remote sensing devices and models to data collected by traditional methods

  11. Surface characterization based on optical phase shifting interferometry

    DOEpatents

    Mello, Michael , Rosakis; Ares, J [Altadena, CA

    2011-08-02

    Apparatus, techniques and systems for implementing an optical interferometer to measure surfaces, including mapping of instantaneous curvature or in-plane and out-of-plane displacement field gradients of a sample surface based on obtaining and processing four optical interferograms from a common optical reflected beam from the sample surface that are relatively separated in phase by .pi./2.

  12. Characterization of Nitinol Laser-Weld Joints by Nondestructive Testing

    NASA Astrophysics Data System (ADS)

    Wohlschlögel, Markus; Gläßel, Gunter; Sanchez, Daniela; Schüßler, Andreas; Dillenz, Alexander; Saal, David; Mayr, Peter

    2015-12-01

    Joining technology is an integral part of today's Nitinol medical device manufacturing. Besides crimping and riveting, laser welding is often applied to join components made from Nitinol to Nitinol, as well as Nitinol components to dissimilar materials. Other Nitinol joining techniques include adhesive bonding, soldering, and brazing. Typically, the performance of joints is assessed by destructive mechanical testing, on a process validation base. In this study, a nondestructive testing method—photothermal radiometry—is applied to characterize small Nitinol laser-weld joints used to connect two wire ends via a sleeve. Two different wire diameters are investigated. Effective joint connection cross sections are visualized using metallography techniques. Results of the nondestructive testing are correlated to data from destructive torsion testing, where the maximum torque at fracture is evaluated for the same joints and criteria for the differentiation of good and poor laser-welding quality by nondestructive testing are established.

  13. Characterization of the visibility of wildfire smoke clouds

    NASA Astrophysics Data System (ADS)

    de Vries, Jan S.; den Breejen, Eric

    1993-09-01

    In order to investigate the smoke cloud visibility of small wildfires a series of controlled biomass burning experiments has been carried out to investigate the characteristics of smoke clouds using various remote sensing techniques. These techniques include simultaneous scattering and transmission measurements in four wavelength bands, near-, mid-, and far- infrared video imagery, high resolution Fourier spectrometry, and particle size distribution measurements. The characterization and, in particular, knowledge on the contrast of smoke from small, beginning wildfires against a vegetation background is required in order to predict the performance of autonomous surveillance systems. This paper describes the preliminary analysis of experiments which have been carried out in Ypenburg (the Netherlands) in 1992. The results of these experiments are used to estimate the wildfire detection efficiency of a demonstration sensor which is being developed in a project financed by the Commission of the European Communities and by Bosschap. The autonomous wildfire detection sensor is described.

  14. Retrievals of Aerosol and Cloud Particle Microphysics Using Polarization and Depolarization Techniques

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael; Hansen, James E. (Technical Monitor)

    2001-01-01

    The recent availability of theoretical techniques for computing single and multiple scattering of light by realistic polydispersions of spherical and nonspherical particles and the strong dependence of the Stokes scattering matrix on particle size, shape, and refractive index make polarization and depolarization measurements a powerful particle characterization tool. In this presentation I will describe recent applications of photopolarimetric and lidar depolarization measurements to remote sensing characterization of tropospheric aerosols, polar stratospheric clouds (PSCs), and contrails. The talk will include (1) a short theoretical overview of the effects of particle microphysics on particle single-scattering characteristics; (2) the use of multi-angle multi-spectral photopolarimetry to retrieve the optical thickness, size distribution, refractive index, and number concentration of tropospheric aerosols over the ocean surface; and (3) the application of the T-matrix method to constraining the PSC and contrail particle microphysics using multi-spectral measurements of lidar backscatter and depolarization.

  15. Tunable release of clavam from clavam stabilized gold nanoparticles--design, characterization and antimicrobial study.

    PubMed

    Manju, V; Dhandapani, P; Gurusamy Neelavannan, M; Maruthamuthu, S; Berchmans, S; Palaniappan, A

    2015-04-01

    A facile one-step approach is developed to synthesize highly stable (up to 6months) gold nanoparticles (GNPs) using Clavam, pharmaceutical form of amoxicillin which contains a mixture of amoxicillin and potassium salt of clavulanic acid, at room temperature (25-30°C). The clavam stabilized GNPs are characterized using various techniques including UV-Visible, FT-IR spectrophotometry and transmission electron microscopy (TEM). Tunable release of clavam from clavam stabilized GNPs is demonstrated using intracellular concentrations of glutathione (GSH). The process is monitored using an UV-Vis spectroscopy and the amount of clavam released in terms of amoxicillin concentration is quantitatively estimated using reverse phase high performance liquid chromatographic (RP-HPLC) technique. In vitro study reveals that the clavam released from GNPs' surface was found to show a significant enhancement in antibacterial activity against Escherichia coli and the cause of enhancement is addressed. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Effect of film thickness on localized surface plasmon enhanced chemical sensor

    NASA Astrophysics Data System (ADS)

    Kassu, Aschalew; Farley, Carlton; Sharma, Anup; Kim, Wonkyu; Guo, Junpeng

    2014-05-01

    A highly-sensitive, reliable, simple and inexpensive chemical detection and identification platform is demonstrated. The sensing technique is based on localized surface plasmon enhanced Raman scattering measurements from gold-coated highly-ordered symmetric nanoporous ceramic membranes fabricated from anodic aluminum oxide. To investigate the effects of the thickness of the sputter-coated gold films on the sensitivity of sensor, and optimize the performance of the substrates, the geometry of the nanopores and the film thicknesses are varied in the range of 30 nm to 120 nm. To characterize the sensing technique and the detection limits, surface enhanced Raman scatterings of low concentrations of a standard chemical adsorbed on the gold coated substrates are collected and analyzed. The morphology of the proposed substrates is characterized by atomic force microscopy and the optical properties including transmittance, reflectance and absorbance of each substrate are also investigated.

  17. Novel imaging technologies for characterization of microbial extracellular polysaccharides.

    PubMed

    Lilledahl, Magnus B; Stokke, Bjørn T

    2015-01-01

    Understanding of biology is underpinned by the ability to observe structures at various length scales. This is so in a historical context and is also valid today. Evolution of novel insight often emerges from technological advancement. Recent developments in imaging technologies that is relevant for characterization of extraceullar microbiological polysaccharides are summarized. Emphasis is on scanning probe and optical based techniques since these tools offers imaging capabilities under aqueous conditions more closely resembling the physiological state than other ultramicroscopy imaging techniques. Following the demonstration of the scanning probe microscopy principle, novel operation modes to increase data capture speed toward video rate, exploitation of several cantilever frequencies, and advancement of utilization of specimen mechanical properties as contrast, also including their mode of operation in liquid, have been developed on this platform. Combined with steps in advancing light microscopy with resolution beyond the far field diffraction limit, non-linear methods, and combinations of the various imaging modalities, the potential ultramicroscopy toolbox available for characterization of exopolysaccharides (EPS) are richer than ever. Examples of application of such ultramicroscopy strategies range from imaging of isolated microbial polysaccharides, structures being observed when they are involved in polyelectrolyte complexes, aspects of their enzymatic degradation, and cell surface localization of secreted polysaccharides. These, and other examples, illustrate that the advancement in imaging technologies relevant for EPS characterization supports characterization of structural aspects.

  18. Characterization of Source Signatures of Fine Roadway Particles by Pyrolysis-GC-MS

    NASA Astrophysics Data System (ADS)

    van Bergen, S. K.; Holmén, B. A.

    2001-12-01

    Fine particulate matter, defined as particles with an aerodynamic diameter less than 2.5 μ m (PM2.5), is of growing concern due to its detrimental effects on human health and the environment. Roadway traffic generates a significant fraction of PM2.5 in urban areas. Since exposure to fine particles derived from mobile sources commonly occurs, understanding the physicochemical processes that contribute to the generation, transport and atmospheric reactivity of roadway PM is important. Factors that influence the properties of roadway PM include: the mass, number and size distribution of the particles as well as their chemical composition. These factors are partially determined by the sources of the roadway particles. The focus of this effort is to identify unique organic chemical profiles of known roadway sources of PM using a new rapid characterization technique. A pyrolysis GC-MS analytical method is being developed to uniquely characterize the sources of roadway PM2.5 such as brake dust, tire wear, and direct emissions from diesel and gasoline engines. The source profiles will be used in conjunction with measurements of the composition of ambient roadway PM to determine the importance of the various roadway sources. The advantages of this technique over conventional solvent extractions include: smaller (mg) sample mass requirements, short extraction times and minimal sample handing. Preliminary two-step pyrolysis results will be presented for PM samples from individual sources and an ambient roadway. Specific analytical issues that will be discussed include: modifications of commercial pyrolysis hardware to improve reproducibility; desorption versus pyrolysis; developing appropriate pyrolysis programs for heterogenous sample materials; and method detection limits.

  19. Nanoscale elasticity mappings of micro-constituents of abalone shell by band excitation-contact resonance force microscopy

    NASA Astrophysics Data System (ADS)

    Li, Tao; Zeng, Kaiyang

    2014-01-01

    The macroscopic mechanical properties of the abalone shell have been studied extensively in the literature, but the in situ nanoscale elasticity of various micro-constituents in the shell have not been characterized and reported yet. In this study, the nanoscale elasticity mappings including different micro-constituents in abalone shell were observed by using the Contact Resonance Force Microscopy (CR-FM) technique. CR-FM is one of the advanced scanning probe microscopy techniques that is able to quantify the local elastic moduli of various materials in a non-destructive manner. Instead of an average value, an elasticity mapping that reveals the nanoscale variations of elastic moduli with location can be extracted and correlated with the topography of the structure. Therefore in this study, by adopting the CR-FM technique that is incorporated with the band excitation technique, the elasticity variations of the abalone shell caused by different micro-constituents and crystal orientations are reported, and the elasticity values of the aragonite and calcite nanograins are quantified.The macroscopic mechanical properties of the abalone shell have been studied extensively in the literature, but the in situ nanoscale elasticity of various micro-constituents in the shell have not been characterized and reported yet. In this study, the nanoscale elasticity mappings including different micro-constituents in abalone shell were observed by using the Contact Resonance Force Microscopy (CR-FM) technique. CR-FM is one of the advanced scanning probe microscopy techniques that is able to quantify the local elastic moduli of various materials in a non-destructive manner. Instead of an average value, an elasticity mapping that reveals the nanoscale variations of elastic moduli with location can be extracted and correlated with the topography of the structure. Therefore in this study, by adopting the CR-FM technique that is incorporated with the band excitation technique, the elasticity variations of the abalone shell caused by different micro-constituents and crystal orientations are reported, and the elasticity values of the aragonite and calcite nanograins are quantified. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05292c

  20. Application of separable parameter space techniques to multi-tracer PET compartment modeling.

    PubMed

    Zhang, Jeff L; Michael Morey, A; Kadrmas, Dan J

    2016-02-07

    Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg-Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models.

  1. Application of separable parameter space techniques to multi-tracer PET compartment modeling

    NASA Astrophysics Data System (ADS)

    Zhang, Jeff L.; Morey, A. Michael; Kadrmas, Dan J.

    2016-02-01

    Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg-Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models.

  2. Fragmentation study of iridoid glycosides including epimers by liquid chromatography-diode array detection/electrospray ionization mass spectrometry and its application in metabolic fingerprint analysis of Gardenia jasminoides Ellis.

    PubMed

    Zhou, Tingting; Liu, Hua; Wen, Jun; Fan, Guorong; Chai, Yifeng; Wu, Yutian

    2010-09-15

    A high-performance liquid chromatography-diode array detection/electrospray ionization mass spectrometry (HPLC-DAD/ESI-MS) method was applied to the characterization of ten iridoid glycosides in Gardenia jasminoides Ellis, a traditional Chinese medicine. During the process of structural elucidation, two groups of isomers including two epimers were structurally characterized and differentiated according to their distinctive fragmentation patterns which were closely related to their isomeric differentiations. Subsequently, the major compounds were purified by multi-dimensional chromatography and semi-preparative HPLC and the structure identification was confirmed with NMR techniques. The major fragmentation pathways of iridoid glycosides in Gardenia jasminoides Ellis obtained through the MS data were schemed systematically, which provided the best sensitivity and specificity for characterization of the iridoid glycosides especially the isomers so far. Based on the fragmentation patterns of iridoid glycosides concluded, seven major iridoid glycosides were characterized in rat plasma after intravenous administration of Gardenia jasminoides Ellis. Copyright 2010 John Wiley & Sons, Ltd.

  3. Simulation of Human-induced Vibrations Based on the Characterized In-field Pedestrian Behavior

    PubMed Central

    Van Nimmen, Katrien; Lombaert, Geert; De Roeck, Guido; Van den Broeck, Peter

    2016-01-01

    For slender and lightweight structures, vibration serviceability is a matter of growing concern, often constituting the critical design requirement. With designs governed by the dynamic performance under human-induced loads, a strong demand exists for the verification and refinement of currently available load models. The present contribution uses a 3D inertial motion tracking technique for the characterization of the in-field pedestrian behavior. The technique is first tested in laboratory experiments with simultaneous registration of the corresponding ground reaction forces. The experiments include walking persons as well as rhythmical human activities such as jumping and bobbing. It is shown that the registered motion allows for the identification of the time variant pacing rate of the activity. Together with the weight of the person and the application of generalized force models available in literature, the identified time-variant pacing rate allows to characterize the human-induced loads. In addition, time synchronization among the wireless motion trackers allows identifying the synchronization rate among the participants. Subsequently, the technique is used on a real footbridge where both the motion of the persons and the induced structural vibrations are registered. It is shown how the characterized in-field pedestrian behavior can be applied to simulate the induced structural response. It is demonstrated that the in situ identified pacing rate and synchronization rate constitute an essential input for the simulation and verification of the human-induced loads. The main potential applications of the proposed methodology are the estimation of human-structure interaction phenomena and the development of suitable models for the correlation among pedestrians in real traffic conditions. PMID:27167309

  4. Toward Understanding Amines and Their Degradation Products from Postcombustion CO2 Capture Processes with Aerosol Mass Spectrometry

    PubMed Central

    2015-01-01

    Amine-based postcombustion CO2 capture (PCCC) is a promising technique for reducing CO2 emissions from fossil fuel burning plants. A concern of the technique, however, is the emission of amines and their degradation byproducts. To assess the environmental risk of this technique, standardized stack sampling and analytical methods are needed. Here we report on the development of an integrated approach that centers on the application of a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) for characterizing amines and PCCC-relevant species. Molecular characterization is achieved via ion chromatography (IC) and electrospray ionization high-resolution mass spectrometry (ESI-MS). The method has been optimized, particularly, by decreasing the AMS vaporizer temperature, to gain quantitative information on the elemental composition and major nitrogen-containing species in laboratory-degraded amine solvents commonly tested for PCCC applications, including ethanolamine (MEA), methyldiethanolamine (MDEA), and piperazine (PIP). The AMS-derived nitrogen-to-carbon (N/C) ratios for the degraded solvent and product mixtures agree well with the results from a total organic carbon and total nitrogen (TOC/TN) analyzer. In addition, marker ions identified in the AMS spectra are used to estimate the mass contributions of individual species. Overall, our results indicate that this new approach is suitable for characterizing PCCC-related mixtures as well as organic nitrogen species in other sample types. As an online instrument, AMS can be used for both real-time characterization of emissions from operating PCCC plants and ambient particles in the vicinity of the facilities. PMID:24617831

  5. Application of image flow cytometry for the characterization of red blood cell morphology

    NASA Astrophysics Data System (ADS)

    Pinto, Ruben N.; Sebastian, Joseph A.; Parsons, Michael; Chang, Tim C.; Acker, Jason P.; Kolios, Michael C.

    2017-02-01

    Red blood cells (RBCs) stored in hypothermic environments for the purpose of transfusion have been documented to undergo structural and functional changes over time. One sign of the so-called RBC storage lesion is irreversible damage to the cell membrane. Consequently, RBCs undergo a morphological transformation from regular, deformable biconcave discocytes to rigid spheroechinocytes. The spherically shaped RBCs lack the deformability to efficiently enter microvasculature, thereby reducing the capacity of RBCs to oxygenate tissue. Blood banks currently rely on microscope techniques that include fixing, staining and cell counting in order to morphologically characterize RBC samples; these methods are labor intensive and highly subjective. This study presents a novel, high-throughput RBC morphology characterization technique using image flow cytometry (IFC). An image segmentation template was developed to process 100,000 images acquired from the IFC system and output the relative spheroechinocyte percentage. The technique was applied on samples extracted from two blood bags to monitor the morphological changes of the RBCs during in vitro hypothermic storage. The study found that, for a given sample of RBCs, the IFC method was twice as fast in data acquisition, and analyzed 250-350 times more RBCs than the conventional method. Over the lifespan of the blood bags, the mean spheroechinocyte population increased by 37%. Future work will focus on expanding the template to segregate RBC images into more subpopulations for the validation of the IFC method against conventional techniques; the expanded template will aid in establishing quantitative links between spheroechinocyte increase and other RBC storage lesion characteristics.

  6. Calibration-free quantitative analysis of elemental ratios in intermetallic nanoalloys and nanocomposites using Laser Induced Breakdown Spectroscopy (LIBS).

    PubMed

    Davari, Seyyed Ali; Hu, Sheng; Mukherjee, Dibyendu

    2017-03-01

    Intermetallic nanoalloys (NAs) and nanocomposites (NCs) have increasingly gained prominence as efficient catalytic materials in electrochemical energy conversion and storage systems. But their morphology and chemical compositions play critical role in tuning their catalytic activities, and precious metal contents. While advanced microscopy techniques facilitate morphological characterizations, traditional chemical characterizations are either qualitative or extremely involved. In this study, we apply Laser Induced Breakdown Spectroscopy (LIBS) for quantitative compositional analysis of NAs and NCs synthesized with varied elemental ratios by our in-house built pulsed laser ablation technique. Specifically, elemental ratios of binary PtNi, PdCo (NAs) and PtCo (NCs) of different compositions are determined from LIBS measurements employing an internal calibration scheme using the bulk matrix species as internal standards. Morphology and qualitative elemental compositions of the aforesaid NAs and NCs are confirmed from Transmission Electron Microscopy (TEM) images and Energy Dispersive X-ray Spectroscopy (EDX) measurements. LIBS experiments are carried out in ambient conditions with the NA and NC samples drop cast on silicon wafers after centrifugation to increase their concentrations. The technique does not call for cumbersome sample preparations including acid digestions and external calibration standards commonly required in Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) techniques. Yet the quantitative LIBS results are in good agreement with the results from ICP-OES measurements. Our results indicate the feasibility of using LIBS in future for rapid and in-situ quantitative chemical characterizations of wide classes of synthesized NAs and NCs. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Carbon Nanotube Activities at NASA-Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    2006-01-01

    Research activities on carbon nanotubes at NASA-Johnson Space Center include production, purification, characterization and their applications for human space flight. In-situ diagnostics during nanotube production by laser oven process include collection of spatial and temporal data of passive emission and laser induced fluorescence from C2, C3 and Nickel atoms in the plume. Details of the results from the "parametric study" of the pulsed laser ablation process indicate the effect of production parameters including temperature, buffer gas, flow rate, pressure, and laser fluence. Improvement of the purity by a variety of steps in the purification process is monitored by characterization techniques including SEM, TEM, Raman, UV-VIS-NIR and TGA. A recently established NASA-JSC protocol for SWCNT characterization is undergoing revision with feedback from nanotube community. Efforts at JSC over the past five years in composites have centered on structural polymednanotube systems. Recent activities broadened this focus to multifunctional materials, supercapacitors, fuel cells, regenerable CO2 absorbers, electromagnetic shielding, radiation dosimetry and thermal management systems of interest for human space flight. Preliminary tests indicate improvement of performance in most of these applications because of the large surface area as well as high electrical and thermal conductivity exhibited by SWCNTs.

  8. Data Analysis Techniques for Ligo Detector Characterization

    NASA Astrophysics Data System (ADS)

    Valdes Sanchez, Guillermo A.

    Gravitational-wave astronomy is a branch of astronomy which aims to use gravitational waves to collect observational data about astronomical objects and events such as black holes, neutron stars, supernovae, and processes including those of the early universe shortly after the Big Bang. Einstein first predicted gravitational waves in the early century XX, but it was not until Septem- ber 14, 2015, that the Laser Interferometer Gravitational-Wave Observatory (LIGO) directly ob- served the first gravitational waves in history. LIGO consists of two twin detectors, one in Livingston, Louisiana and another in Hanford, Washington. Instrumental and sporadic noises limit the sensitivity of the detectors. Scientists conduct Data Quality studies to distinguish a gravitational-wave signal from the noise, and new techniques are continuously developed to identify, mitigate, and veto unwanted noise. This work presents the application of data analysis techniques, such as Hilbert-Huang trans- form (HHT) and Kalman filtering (KF), in LIGO detector characterization. We investigated the application of HHT to characterize the gravitational-wave signal of the first detection, we also demonstrated the functionality of HHT identifying noise originated from light being scattered by perturbed surfaces, and we estimated thermo-optical aberration using KF. We put particular attention to the scattering origin application, for which a tool was developed to identify disturbed surfaces originating scattering noise. The results reduced considerably the time to search for the scattering surface and helped LIGO commissioners to mitigate the noise.

  9. Development of advanced image analysis techniques for the in situ characterization of multiphase dispersions occurring in bioreactors.

    PubMed

    Galindo, Enrique; Larralde-Corona, C Patricia; Brito, Teresa; Córdova-Aguilar, Ma Soledad; Taboada, Blanca; Vega-Alvarado, Leticia; Corkidi, Gabriel

    2005-03-30

    Fermentation bioprocesses typically involve two liquid phases (i.e. water and organic compounds) and one gas phase (air), together with suspended solids (i.e. biomass), which are the components to be dispersed. Characterization of multiphase dispersions is required as it determines mass transfer efficiency and bioreactor homogeneity. It is also needed for the appropriate design of contacting equipment, helping in establishing optimum operational conditions. This work describes the development of image analysis based techniques with advantages (in terms of data acquisition and processing), for the characterization of oil drops and bubble diameters in complex simulated fermentation broths. The system consists of fully digital acquisition of in situ images obtained from the inside of a mixing tank using a CCD camera synchronized with a stroboscopic light source, which are processed with a versatile commercial software. To improve the automation of particle recognition and counting, the Hough transform (HT) was used, so bubbles and oil drops were automatically detected and the processing time was reduced by 55% without losing accuracy with respect to a fully manual analysis. The system has been used for the detailed characterization of a number of operational conditions, including oil content, biomass morphology, presence of surfactants (such as proteins) and viscosity of the aqueous phase.

  10. Laser Ablation Surface-Enhanced Raman Spectroscopy (LA-SERS) for the Characterization of Organic Colorants in Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Londero, Pablo

    The characterization of artistic practice throughout history often requires measurements of material composition with microscopic resolution, either due to the fine detail of the material composition or to the amount of sample available. This problem is exacerbated for the detection of organic colorants, which are often embedded in a complex matrix (e.g. oil, natural fibers) and in low concentration due to their high tinting strength. Surface-Enhanced Raman Spectroscopy (SERS) is increasingly used in detection of organic colorants in cultural heritage due to its high sensitivity and inherent preferential sensitivity to small organic molecules. This talk will discuss recent results from a new SERS measurement technique, in which laser ablation is used as a micro-sampling method onto a SERS-active film to characterize art samples with microscopic precision and sensitivity comparable to many mass spectrometry measurements. Furthermore, the nature of the sampling method provides built-in benefits to other SERS-based techniques, such as more quantitative characterization of mixtures, improved sensitivity to some analytes, and reduced background interference. Examples will be shown for measurements of reference materials and art objects, including a restored 16th-century dish and a Renaissance fresco, The Incredulity of San Thomas, by Luca Signorelli. Supported by the National Science Foundation (NSF-CHE-1402750).

  11. Photoinduced force microscopy: A technique for hyperspectral nanochemical mapping

    NASA Astrophysics Data System (ADS)

    Murdick, Ryan A.; Morrison, William; Nowak, Derek; Albrecht, Thomas R.; Jahng, Junghoon; Park, Sung

    2017-08-01

    Advances in nanotechnology have intensified the need for tools that can characterize newly synthesized nanomaterials. A variety of techniques has recently been shown which combines atomic force microscopy (AFM) with optical illumination including tip-enhanced Raman spectroscopy (TERS), scattering-type scanning near-field optical microscopy (sSNOM), and photothermal induced resonance microscopy (PTIR). To varying degrees, these existing techniques enable optical spectroscopy with the nanoscale spatial resolution inherent to AFM, thereby providing nanochemical interrogation of a specimen. Here we discuss photoinduced force microscopy (PiFM), a recently developed technique for nanoscale optical spectroscopy that exploits image forces acting between an AFM tip and sample to detect wavelength-dependent polarization within the sample to generate absorption spectra. This approach enables ∼10 nm spatial resolution with spectra that show correlation with macroscopic optical absorption spectra. Unlike other techniques, PiFM achieves this high resolution with virtually no constraints on sample or substrate properties. The applicability of PiFM to a variety of archetypal systems is reported here, highlighting the potential of PiFM as a useful tool for a wide variety of industrial and academic investigations, including semiconducting nanoparticles, nanocellulose, block copolymers, and low dimensional systems, as well as chemical and morphological mixing at interfaces.

  12. Accelerated Bayesian model-selection and parameter-estimation in continuous gravitational-wave searches with pulsar-timing arrays

    NASA Astrophysics Data System (ADS)

    Taylor, Stephen; Ellis, Justin; Gair, Jonathan

    2014-11-01

    We describe several new techniques which accelerate Bayesian searches for continuous gravitational-wave emission from supermassive black-hole binaries using pulsar-timing arrays. These techniques mitigate the problematic increase of search dimensionality with the size of the pulsar array which arises from having to include an extra parameter per pulsar as the array is expanded. This extra parameter corresponds to searching over the phase of the gravitational wave as it propagates past each pulsar so that we can coherently include the pulsar term in our search strategies. Our techniques make the analysis tractable with powerful evidence-evaluation packages like MultiNest. We find good agreement of our techniques with the parameter-estimation and Bayes factor evaluation performed with full signal templates and conclude that these techniques make excellent first-cut tools for detection and characterization of continuous gravitational-wave signals with pulsar-timing arrays. Crucially, at low to moderate signal-to-noise ratios the factor by which the analysis is sped up can be ≳100 , permitting rigorous programs of systematic injection and recovery of signals to establish robust detection criteria within a Bayesian formalism.

  13. Characterization of Dispersive Ultrasonic Rayleigh Surface Waves in Asphalt Concrete

    NASA Astrophysics Data System (ADS)

    In, Chi-Won; Kim, Jin-Yeon; Jacobs, Laurence J.; Kurtis, Kimberly E.

    2008-02-01

    This research focuses on the application of ultrasonic Rayleigh surface waves to nondestructively characterize the mechanical properties and structural defects (non-uniformly distributed aggregate) in asphalt concrete. An efficient wedge technique is developed in this study to generate Rayleigh surface waves that is shown to be effective in characterizing Rayleigh waves in this highly viscoelastic (attenuating) and heterogeneous medium. Experiments are performed on an asphalt-concrete beam produced with uniformly distributed aggregate. Ultrasonic techniques using both contact and non-contact sensors are examined and their results are compared. Experimental results show that the wedge technique along with an air-coupled sensor appears to be effective in characterizing Rayleigh waves in asphalt concrete. Hence, measurement of theses material properties needs to be investigated in non-uniformly distributed aggregate material using these techniques.

  14. Imaging as characterization techniques for thin-film cadmium telluride photovoltaics

    NASA Astrophysics Data System (ADS)

    Zaunbrecher, Katherine

    The goal of increasing the efficiency of solar cell devices is a universal one. Increased photovoltaic (PV) performance means an increase in competition with other energy technologies. One way to improve PV technologies is to develop rapid, accurate characterization tools for quality control. Imaging techniques developed over the past decade are beginning to fill that role. Electroluminescence (EL), photoluminescence (PL), and lock-in thermography are three types of imaging implemented in this study to provide a multifaceted approach to studying imaging as applied to thin-film CdTe solar cells. Images provide spatial information about cell operation, which in turn can be used to identify defects that limit performance. This study began with developing EL, PL, and dark lock-in thermography (DLIT) for CdTe. Once imaging data were acquired, luminescence and thermography signatures of non-uniformities that disrupt the generation and collection of carriers were identified and cataloged. Additional data acquisition and analysis were used to determine luminescence response to varying operating conditions. This includes acquiring spectral data, varying excitation conditions, and correlating luminescence to device performance. EL measurements show variations in a cell's local voltage, which include inhomogeneities in the transparent-conductive oxide (TCO) front contact, CdS window layer, and CdTe absorber layer. EL signatures include large gradients, local reduction of luminescence, and local increases in luminescence on the interior of the device as well as bright spots located on the cell edges. The voltage bias and spectral response were analyzed to determine the response of these non-uniformities and surrounding areas. PL images of CdTe have not shown the same level of detail and features compared to their EL counterparts. Many of the signatures arise from reflections and severe inhomogeneities, but the technique is limited by the external illumination source used to excite carriers. Measurements on unfinished CdS and CdTe films reveal changes in signal after post-deposition processing treatments. DLIT images contained heat signatures arising from defect-related current crowding. Forward- and reverse-bias measurements revealed hot spots related to shunt and weak-diode defects. Modeling and previous studies done on Cu(In,Ga)Se 2 thin-film solar cells aided in identifying the physical causes of these thermographic and luminescence signatures. Imaging data were also coupled with other characterization techniques to provide a more comprehensive examination of nonuniform features and their origins and effects on device performance. These techniques included light-beam-induced-current (LBIC) measurements, which provide spatial quantum efficiency maps of the cell at varying resolutions, as well as time-resolved photoluminescence and spectral PL mapping. Local drops in quantum efficiency seen in LBIC typically corresponded with reductions in EL signal while minority-carrier lifetime values acquired by time-resolved PL measurements correlate with PL intensity.

  15. Performance Characterization of Obstacle Detection Algorithms for Aircraft Navigation

    NASA Technical Reports Server (NTRS)

    Kasturi, Rangachar; Camps, Octavia; Coraor, Lee; Gandhi, Tarak; Hartman, Kerry; Yang, Mau-Tsuen

    2000-01-01

    The research reported here is a part of NASA's Synthetic Vision System (SVS) project for the development of a High Speed Civil Transport Aircraft (HSCT). One of the components of the SVS is a module for detection of potential obstacles in the aircraft's flight path by analyzing the images captured by an on-board camera in real-time. Design of such a module includes the selection and characterization of robust, reliable, and fast techniques and their implementation for execution in real-time. This report describes the results of our research in realizing such a design.

  16. Surface Wave Metrology for Copper/Low-k Interconnects

    NASA Astrophysics Data System (ADS)

    Gostein, M.; Maznev, A. A.; Mazurenko, A.; Tower, J.

    2005-09-01

    We review recent advances in the application of laser-induced surface acoustic wave metrology to issues in copper/low-k interconnect development and manufacturing. We illustrate how the metrology technique can be used to measure copper thickness uniformity on a range of features from solid pads to arrays of lines, focusing on specific processing issues in copper electrochemical deposition (ECD) and chemical-mechanical polishing (CMP). In addition, we review recent developments in surface wave metrology for the characterization of low-k dielectric elastic modulus, including the ability to measure within-wafer uniformity of elastic modulus and to characterize porous, anisotropic films.

  17. Use of bacterial artificial chromosomes in generating targeted mutations in human and mouse cytomegaloviruses.

    PubMed

    Borst, Eva Maria; Benkartek, Corinna; Messerle, Martin

    2007-05-01

    Cloning of cytomegalovirus (CMV) genomes as bacterial artificial chromosomes (BAC) in E. coli and their manipulation using the techniques of bacterial genetics has greatly facilitated the construction of CMV mutants. This unit describes easily applicable procedures that allow rapid introduction of any kind of targeted mutation into BAC-cloned CMV genomes. Protocols for the reconstitution of virus from isolated BAC DNA, preparation of a virus stock, and isolation and characterization of viral DNA are also included. Special emphasis is laid on description of critical steps and thorough characterization of the altered BACs.

  18. Magnetotelluric survey to characterize the Sunnyside porphyry copper system in the Patagonia Mountains, Arizona

    USGS Publications Warehouse

    Rodriguez, Brian D.; Sampson, Jay A.

    2010-01-01

    The Sunnyside porphyry copper system is part of the concealed San Rafael Valley porphyry system located in the Patagonia Mountains of Arizona. The U.S. Geological Survey is conducting a series of multidisciplinary studies as part of the Assessment Techniques for Concealed Mineral Resources project. To help characterize the size and resistivity of the mineralized area beneath overburden, a regional east-west magnetotelluric sounding profile was acquired. This is a data release report of the magnetotelluric sounding data collected along the east-west profile; no interpretation of the data is included.

  19. Toward in situ x-ray diffraction imaging at the nanometer scale

    NASA Astrophysics Data System (ADS)

    Zatsepin, Nadia A.; Dilanian, Ruben A.; Nikulin, Andrei Y.; Gable, Brian M.; Muddle, Barry C.; Sakata, Osami

    2008-08-01

    We present the results of preliminary investigations determining the sensitivity and applicability of a novel x-ray diffraction based nanoscale imaging technique, including simulations and experiments. The ultimate aim of this nascent technique is non-destructive, bulk-material characterization on the nanometer scale, involving three dimensional image reconstructions of embedded nanoparticles and in situ sample characterization. The approach is insensitive to x-ray coherence, making it applicable to synchrotron and laboratory hard x-ray sources, opening the possibility of unprecedented nanometer resolution with the latter. The technique is being developed with a focus on analyzing a technologically important light metal alloy, Al-xCu (where x is 2.0-5.0 %wt). The mono- and polycrystalline samples contain crystallographically oriented, weakly diffracting Al2Cu nanoprecipitates in a sparse, spatially random dispersion within the Al matrix. By employing a triple-axis diffractometer in the non-dispersive setup we collected two-dimensional reciprocal space maps of synchrotron x-rays diffracted from the Al2Cu nanoparticles. The intensity profiles of the diffraction peaks confirmed the sensitivity of the technique to the presence and orientation of the nanoparticles. This is a fundamental step towards in situ observation of such extremely sparse, weakly diffracting nanoprecipitates embedded in light metal alloys at early stages of their growth.

  20. Recent advances in vacuum sciences and applications

    NASA Astrophysics Data System (ADS)

    Mozetič, M.; Ostrikov, K.; Ruzic, D. N.; Curreli, D.; Cvelbar, U.; Vesel, A.; Primc, G.; Leisch, M.; Jousten, K.; Malyshev, O. B.; Hendricks, J. H.; Kövér, L.; Tagliaferro, A.; Conde, O.; Silvestre, A. J.; Giapintzakis, J.; Buljan, M.; Radić, N.; Dražić, G.; Bernstorff, S.; Biederman, H.; Kylián, O.; Hanuš, J.; Miloševič, S.; Galtayries, A.; Dietrich, P.; Unger, W.; Lehocky, M.; Sedlarik, V.; Stana-Kleinschek, K.; Drmota-Petrič, A.; Pireaux, J. J.; Rogers, J. W.; Anderle, M.

    2014-04-01

    Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid-liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented.

  1. Proceedings of the Workshop on Aquatic Ecosystem Modeling and Assessment Techniques for Application within the U.S. Army Corps of Engineers.

    DTIC Science & Technology

    1998-04-01

    Dr. Kennedy. Others who contributed directly to planning for the workshop included Drs. Todd S. Bridges, Mark S. Dortch, John M. Nestler, and...Quality and Contaminants Modeling Branch, EPED; Dr. Price, Chief, EPED; and Dr. John Harrison, Director, EL. At the time of the publication of this...this project is characterized by broad multi- agency interest and involvement, including several USACE Districts (St Paul , Rock Island, St, Louis

  2. Statistical techniques for the characterization of partially observed epidemics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safta, Cosmin; Ray, Jaideep; Crary, David

    Techniques appear promising to construct and integrate automated detect-and-characterize technique for epidemics - Working off biosurveillance data, and provides information on the particular/ongoing outbreak. Potential use - in crisis management and planning, resource allocation - Parameter estimation capability ideal for providing the input parameters into an agent-based model, Index Cases, Time of Infection, infection rate. Non-communicable diseases are easier than communicable ones - Small anthrax can be characterized well with 7-10 days of data, post-detection; plague takes longer, Large attacks are very easy.

  3. Fluorescence lifetime in cardiovascular diagnostics

    PubMed Central

    Marcu, Laura

    2010-01-01

    We review fluorescence lifetime techniques including time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and fluorescence lifetime imaging microscopy (FLIM) instrumentation and associated methodologies that allow for characterization and diagnosis of atherosclerotic plaques. Emphasis is placed on the translational research potential of TR-LIFS and FLIM and on determining whether intrinsic fluorescence signals can be used to provide useful contrast for the diagnosis of high-risk atherosclerotic plaque. Our results demonstrate that these techniques allow for the discrimination of important biochemical features involved in atherosclerotic plaque instability and rupture and show their potential for future intravascular applications. PMID:20210432

  4. Nondestructive Evaluation for Aerospace Composites

    NASA Technical Reports Server (NTRS)

    Leckey, Cara; Cramer, Elliott; Perey, Daniel

    2015-01-01

    Nondestructive evaluation (NDE) techniques are important for enabling NASA's missions in space exploration and aeronautics. The expanded and continued use of composite materials for aerospace components and vehicles leads to a need for advanced NDE techniques capable of quantitatively characterizing damage in composites. Quantitative damage detection techniques help to ensure safety, reliability and durability of space and aeronautic vehicles. This presentation will give a broad outline of NASA's range of technical work and an overview of the NDE research performed in the Nondestructive Evaluation Sciences Branch at NASA Langley Research Center. The presentation will focus on ongoing research in the development of NDE techniques for composite materials and structures, including development of automated data processing tools to turn NDE data into quantitative location and sizing results. Composites focused NDE research in the areas of ultrasonics, thermography, X-ray computed tomography, and NDE modeling will be discussed.

  5. Genetics of autism spectrum disorders.

    PubMed

    Kumar, Ravinesh A; Christian, Susan L

    2009-05-01

    Autism spectrum disorders (ASDs) are a clinically complex group of childhood disorders that have firm evidence of an underlying genetic etiology. Many techniques have been used to characterize the genetic bases of ASDs. Linkage studies have identified several replicated susceptibility loci, including 2q24-2q31, 7q, and 17q11-17q21. Association studies and mutation analysis of candidate genes have implicated the synaptic genes NRXN1, NLGN3, NLGN4, SHANK3, and CNTNAP2 in ASDs. Traditional cytogenetic approaches highlight the high frequency of large chromosomal abnormalities (3%-7% of patients), including the most frequently observed maternal 15q11-13 duplications (1%-3% of patients). Newly developed techniques include high-resolution DNA microarray technologies, which have discovered formerly undetectable submicroscopic copy number variants, and genomewide association studies, which allow simultaneous detection of multiple genes associated with ASDs. Although great progress has been made in autism genetics, the molecular bases of most ASDs remains enigmatic.

  6. Nondestructive techniques for characterizing mechanical properties of structural materials: An overview

    NASA Technical Reports Server (NTRS)

    Vary, A.; Klima, S. J.

    1985-01-01

    An overview of nondestructive evaluation (NDE) is presented to indicate the availability and application potentials of techniques for quantitative characterization of the mechanical properties of structural materials. The purpose is to review NDE techniques that go beyond the usual emphasis on flaw detection and characterization. Discussed are current and emerging NDE techniques that can verify and monitor entrinsic properties (e.g., tensile, shear, and yield strengths; fracture toughness, hardness, ductility; elastic moduli) and underlying microstructural and morphological factors. Most of the techniques described are, at present, neither widely applied nor widely accepted in commerce and industry because they are still emerging from the laboratory. The limitations of the techniques may be overcome by advances in applications research and instrumentation technology and perhaps by accommodations for their use in the design of structural parts.

  7. International Seminar on Laser and Opto-Electronic Technology in Industry: State-of-the-Art Review, Xiamen, People's Republic of China, June 25-28, 1986, Proceedings

    NASA Astrophysics Data System (ADS)

    Ke, Jingtang; Pryputniewicz, Ryszard J.

    Various papers on the state of the art in laser and optoelectronic technology in industry are presented. Individual topics addressed include: wavelength compensation for holographic optical element, optoelectronic techniques for measurement and inspection, new optical measurement methods in Western Europe, applications of coherent optics at ISL, imaging techniques for gas turbine development, the Rolls-Royce experience with industrial holography, panoramic holocamera for tube and borehole inspection, optical characterization of electronic materials, optical strain measurement of rotating components, quantitative interpretation of holograms and specklegrams, laser speckle technique for hydraulic structural model test, study of holospeckle interferometry, common path shearing fringe scanning interferometer, and laser interferometry applied to nondestructive testing of tires.

  8. Surface analysis of space telescope material specimens

    NASA Technical Reports Server (NTRS)

    Fromhold, A. T.; Daneshvar, K.

    1985-01-01

    Qualitative and quantitative data on Space Telescope materials which were exposed to low Earth orbital atomic oxygen in a controlled experiment during the 41-G (STS-17) mission were obtained utilizing the experimental techniques of Rutherford backscattering (RBS), particle induced X-ray emission (PIXE), and ellipsometry (ELL). The techniques employed were chosen with a view towards appropriateness for the sample in question, after consultation with NASA scientific personnel who provided the material specimens. A group of eight samples and their controls selected by NASA scientists were measured before and after flight. Information reported herein include specimen surface characterization by ellipsometry techniques, a determination of the thickness of the evaporated metal specimens by RBS, and a determination of trace impurity species present on and within the surface by PIXE.

  9. Frequency-domain ultrasound waveform tomography breast attenuation imaging

    NASA Astrophysics Data System (ADS)

    Sandhu, Gursharan Yash Singh; Li, Cuiping; Roy, Olivier; West, Erik; Montgomery, Katelyn; Boone, Michael; Duric, Neb

    2016-04-01

    Ultrasound waveform tomography techniques have shown promising results for the visualization and characterization of breast disease. By using frequency-domain waveform tomography techniques and a gradient descent algorithm, we have previously reconstructed the sound speed distributions of breasts of varying densities with different types of breast disease including benign and malignant lesions. By allowing the sound speed to have an imaginary component, we can model the intrinsic attenuation of a medium. We can similarly recover the imaginary component of the velocity and thus the attenuation. In this paper, we will briefly review ultrasound waveform tomography techniques, discuss attenuation and its relations to the imaginary component of the sound speed, and provide both numerical and ex vivo examples of waveform tomography attenuation reconstructions.

  10. Ultrasound Imaging Techniques for Spatiotemporal Characterization of Composition, Microstructure, and Mechanical Properties in Tissue Engineering.

    PubMed

    Deng, Cheri X; Hong, Xiaowei; Stegemann, Jan P

    2016-08-01

    Ultrasound techniques are increasingly being used to quantitatively characterize both native and engineered tissues. This review provides an overview and selected examples of the main techniques used in these applications. Grayscale imaging has been used to characterize extracellular matrix deposition, and quantitative ultrasound imaging based on the integrated backscatter coefficient has been applied to estimating cell concentrations and matrix morphology in tissue engineering. Spectral analysis has been employed to characterize the concentration and spatial distribution of mineral particles in a construct, as well as to monitor mineral deposition by cells over time. Ultrasound techniques have also been used to measure the mechanical properties of native and engineered tissues. Conventional ultrasound elasticity imaging and acoustic radiation force imaging have been applied to detect regions of altered stiffness within tissues. Sonorheometry and monitoring of steady-state excitation and recovery have been used to characterize viscoelastic properties of tissue using a single transducer to both deform and image the sample. Dual-mode ultrasound elastography uses separate ultrasound transducers to produce a more potent deformation force to microscale characterization of viscoelasticity of hydrogel constructs. These ultrasound-based techniques have high potential to impact the field of tissue engineering as they are further developed and their range of applications expands.

  11. Writing with Basals: A Sentence Combining Approach to Comprehension.

    ERIC Educational Resources Information Center

    Reutzel, D. Ray; Merrill, Jimmie D.

    Sentence combining techniques can be used with basal readers to help students develop writing skills. The first technique is addition, characterized by using the connecting word "and" to join two or more base sentences together. The second technique is called "embedding," and is characterized by putting parts of two or more base sentences together…

  12. Fractured reservoir characterization through injection, falloff, and flowback tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, C.P.; Singh, P.K.; Halvorsen, H.

    1992-09-01

    This paper presents the development of a multiphase pressure-transient-analysis technique for naturally fractured reservoirs and the analysis of a series of field tests performed to evaluate the water injection potential and the reservoir characteristics of a naturally fractured reservoir. These included step-rate, water-injectivity, pressure-falloff, and flowback tests. Through these tests, a description of the reservoir was obtained.

  13. Expert systems in civil engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostem, C.N.; Maher, M.L.

    1986-01-01

    This book presents the papers given at a symposium on expert systems in civil engineering. Topics considered at the symposium included problem solving using expert system techniques, construction schedule analysis, decision making and risk analysis, seismic risk analysis systems, an expert system for inactive hazardous waste site characterization, an expert system for site selection, knowledge engineering, and knowledge-based expert systems in seismic analysis.

  14. Comparison of raised-microdisk whispering-gallery-mode characterization techniques.

    PubMed

    Redding, Brandon; Marchena, Elton; Creazzo, Tim; Shi, Shouyuan; Prather, Dennis W

    2010-04-01

    We compare the two prevailing raised-microdisk whispering-gallery-mode (WGM) characterization techniques, one based on coupling emission to a tapered fiber and the other based on collecting emission in the far field. We applied both techniques to study WGMs in Si nanocrystal raised microdisks and observed dramatically different behavior. We explain this difference in terms of the radiative bending loss on which the far-field collection technique relies and discuss the regimes of operation in which each technique is appropriate.

  15. Surface, Water and Air Biocharacterization - A Comprehensive Characterization of Microorganisms and Allergens in Spacecraft Environment

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Ott, C. Mark; Cruz, Patricia; Buttner, Mark P.

    2009-01-01

    A Comprehensive Characterization of Microorganisms and Allergens in Spacecraft (SWAB) will use advanced molecular techniques to comprehensively evaluate microbes on board the space station, including pathogens (organisms that may cause disease). It also will track changes in the microbial community as spacecraft visit the station and new station modules are added. This study will allow an assessment of the risk of microbes to the crew and the spacecraft. Research Summary: Previous microbial analysis of spacecraft only identify microorganisms that will grow in culture, omitting greater than 90% of all microorganisms including pathogens such as Legionella (the bacterium which causes Legionnaires' disease) and Cryptosporidium (a parasite common in contaminated water) The incidence of potent allergens, such as dust mites, has never been systematically studied in spacecraft environments and microbial toxins have not been previously monitored. This study will use modern molecular techniques to identify microorganisms and allergens. Direct sampling of the ISS allows identification of the microbial communities present, and determination of whether these change or mutate over time. SWAB complements the nominal ISS environmental monitoring by providing a comparison of analyses from current media-based and advanced molecular-based technologies.

  16. Got Point Clouds: Characterizing Canopy Structure With Active and Passive Sensors

    NASA Astrophysics Data System (ADS)

    Popescu, S. C.; Malambo, L.; Sheridan, R.; Putman, E.; Murray, S.; Rooney, W.; Rajan, N.

    2016-12-01

    Unmanned Aerial Systems (UAS) provide the means to acquire highly customized aerial data at local scale with a multitude of sensors. UAS allow us to obtain affordably repeated observations of canopy structure for agricultural and natural resources applications by using passive optical sensors, such as cameras and photogrammetric techniques, and active sensors, such as lidar (Light Detection and Ranging). The objectives of this presentation are to: (1) offer a brief overview of UAS used for agriculture and natural resources studies, (2) describe experiences in conducting agriculture phenotyping and forest vegetation measurements, and (3) give details on the methodology developed for image and lidar data processing for characterizing the three dimensional structure of plant canopies. The UAS types used for this purpose included rotary platforms, such as quadcopters, hexacopters, and octocopters, with a payload capacity of up to 19 lbs. The sensors that collected data over two crop seasons include multispectral cameras in the visible color spectrum and near infrared, and UAS-lidar. For ground reference data we used terrestrial lidar scanners and field measurements. Results comparing UAS and terrestrial measurements show high correlation and open new areas of scientific investigation of crop canopies previously not possible with affordable techniques.

  17. Advances in Magnetic Resonance Imaging of the Skull Base

    PubMed Central

    Kirsch, Claudia F.E.

    2014-01-01

    Introduction Over the past 20 years, magnetic resonance imaging (MRI) has advanced due to new techniques involving increased magnetic field strength and developments in coils and pulse sequences. These advances allow increased opportunity to delineate the complex skull base anatomy and may guide the diagnosis and treatment of the myriad of pathologies that can affect the skull base. Objectives The objective of this article is to provide a brief background of the development of MRI and illustrate advances in skull base imaging, including techniques that allow improved conspicuity, characterization, and correlative physiologic assessment of skull base pathologies. Data Synthesis Specific radiographic illustrations of increased skull base conspicuity including the lower cranial nerves, vessels, foramina, cerebrospinal fluid (CSF) leaks, and effacement of endolymph are provided. In addition, MRIs demonstrating characterization of skull base lesions, such as recurrent cholesteatoma versus granulation tissue or abscess versus tumor, are also provided as well as correlative clinical findings in CSF flow studies in a patient pre- and post-suboccipital decompression for a Chiari I malformation. Conclusions This article illustrates MRI radiographic advances over the past 20 years, which have improved clinicians' ability to diagnose, define, and hopefully improve the treatment and outcomes of patients with underlying skull base pathologies. PMID:25992137

  18. Nondestructive spectroscopic characterization of building materials

    NASA Astrophysics Data System (ADS)

    Kassu, Aschalew; Walker, Lauren; Sanders, Rachel; Farley, Carlton; Mills, Jonathan; Sharma, Anup

    2017-04-01

    The purpose of this research project is to demonstrate the application of Raman spectroscopy technique for characterization and identification of the distinct Raman signatures of construction materials. The results reported include the spectroscopic characterization of building materials using compact Raman system with 785 nm wavelength laser. The construction materials studied include polyblend sanded grout, fire barrier sealant, acrylic latex caulk plus and white silicone. It is found that, both fire barrier sealant and acrylic latex caulk plus has a prominent Raman band at 1082 cm-1, and three minor Raman signatures located at 275, 706 and 1436 cm-1. On the other hand, sand grout has three major Raman bands at 1265, 1368 and 1455 cm-1, and four minor peaks at 1573, 1683, 1762, and 1868 cm-1. White silicone, which is a widely used sealant material in construction industry, has two major Raman bands at 482 and 703 cm-1, and minor Raman characteristic bands at 783 and 1409 cm-1.

  19. Ultrasonic NDE Simulation for Composite Manufacturing Defects

    NASA Technical Reports Server (NTRS)

    Leckey, Cara A. C.; Juarez, Peter D.

    2016-01-01

    The increased use of composites in aerospace components is expected to continue into the future. The large scale use of composites in aerospace necessitates the development of composite-appropriate nondestructive evaluation (NDE) methods to quantitatively characterize defects in as-manufactured parts and damage incurred during or post manufacturing. Ultrasonic techniques are one of the most common approaches for defect/damage detection in composite materials. One key technical challenge area included in NASA's Advanced Composite's Project is to develop optimized rapid inspection methods for composite materials. Common manufacturing defects in carbon fiber reinforced polymer (CFRP) composites include fiber waviness (in-plane and out-of-plane), porosity, and disbonds; among others. This paper is an overview of ongoing work to develop ultrasonic wavefield based methods for characterizing manufacturing waviness defects. The paper describes the development and implementation of a custom ultrasound simulation tool that is used to model ultrasonic wave interaction with in-plane fiber waviness (also known as marcelling). Wavefield data processing methods are applied to the simulation data to explore possible routes for quantitative defect characterization.

  20. Synthesis, characterization, bioactivity and potential application of phenolic acid grafted chitosan: A review.

    PubMed

    Liu, Jun; Pu, Huimin; Liu, Shuang; Kan, Juan; Jin, Changhai

    2017-10-15

    In recent years, increasing attention has been paid to the grafting of phenolic acid onto chitosan in order to enhance the bioactivity and widen the application of chitosan. Here, we present a comprehensive overview on the recent advances of phenolic acid grafted chitosan (phenolic acid-g-chitosan) in many aspects, including the synthetic method, structural characterization, biological activity, physicochemical property and potential application. In general, four kinds of techniques including carbodiimide based coupling, enzyme catalyzed grafting, free radical mediated grafting and electrochemical methods are frequently used for the synthesis of phenolic acid-g-chitosan. The structural characterization of phenolic acid-g-chitosan can be determined by several instrumental methods. The physicochemical properties of chitosan are greatly altered after grafting. As compared with chitosan, phenolic acid-g-chitosan exhibits enhanced antioxidant, antimicrobial, antitumor, anti-allergic, anti-inflammatory, anti-diabetic and acetylcholinesterase inhibitory activities. Notably, phenolic acid-g-chitosan shows potential applications in many fields as coating agent, packing material, encapsulation agent and bioadsorbent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The British Geological Survey and the petroleum industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesher, J.A.

    1995-08-01

    The British Geological Survey is the UK`s national centre for earth science information with a parallel remit to operate internationally. The Survey`s work covers the full geoscience spectrum in energy, mineral and groundwater resources and associated implications for land use, geological hazards and environmental impact. Much of the work is conducted in collaboration with industry and academia, including joint funding opportunities. Activities relating directly to hydrocarbons include basin analysis, offshore geoscience mapping, hazard assessment, fracture characterization, biostratigraphy, sedimentology, seismology, geomagnetism and frontier data acquisition techniques, offshore. The BGS poster presentation illustrates the value of the collaborative approach through consortia supportmore » for regional offshore surveys, geotechnical hazard assessments and state-of-the-art R & D into multicomponent seismic imaging techniques, among others.« less

  2. Characterization and measurement of natural gas trace constituents. Volume 1. Arsenic. Final report, June 1989-October 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, S.S.; Attari, A.

    1995-01-01

    The discovery of arsenic compounds, as alkylarsines, in natural gas prompted this research program to develop reliable measurement techniques needed to assess the efficiency of removal processes for these environmentally sensitive substances. These techniques include sampling, speciation, quantitation and on-line instrumental methods for monitoring the total arsenic concentration. The current program has yielded many products, including calibration standards, arsenic-specific sorbents, sensitive analytical methods and instrumentation. Four laboratory analytical methods have been developed and successfully employed for arsenic determination in natural gas. These methods use GC-AED and GC-MS instruments to speciate alkylarsines, and peroxydisulfate extraction with FIAS, special carbon sorbent withmore » XRF and an IGT developed sorbent with GFAA for total arsenic measurement.« less

  3. Electroanalytical Evaluation of Nanoparticles by Nano-impact Electrochemistry

    NASA Astrophysics Data System (ADS)

    Karimi, Anahita

    Applications of engineered nanoparticles in electronics, catalysis, solid oxide fuel cells, medicine and sensing continue to increase. Traditionally, nanoparticle systems are characterized by spectroscopic and microscopic techniques. These methods are cumbersome and expensive, which limit their routine use for screening purposes. Electrochemistry is a powerful, yet underutilized tool, for the detection and classification of nanoparticles. The first part of this dissertation investigates a recently developed electrochemical method -- nanoparticle collision electrochemistry -- for detection and characterization of nanoparticles. Three independent projects have been described to evaluate the use of this technique for characterizing nanoparticle based systems including: conjugation with biomolecules, interaction with environmental contaminants and fundamental investigation of conformational changes of nanoparticle capping ligands. The thesis reports the first use of nano-impact electrochemistry to quantitatively investigate bioconjugation and biomolecular recognition at conductive nanoparticles. Furthermore, we also demonstrate the potential of this method as a single step, reagentless and label-free technique for the ultra-sensitive detection of biomolecular targets. A fundamental study of biorecognition is important for the development of therapeutics and molecular diagnosis probes in the biomedical, biosensing and biotechnology fields. The second project describes the use of this method as a screening tool of particle reactivity. We study the interaction and adsorption of a toxic environmental metalloid (Arsenic) with metal oxide nanoparticles to extract mechanistic, speciation and loading information. We discuss the potential of this approach to complement or replace costly characterization techniques and enable routine study of nanoparticles and their reactivity. In the third project, we use the nano-impact method to study the pH-dependent conformational changes of polymeric capping agents on the surface of silver nanoparticles. Nano-impact elecrochemistry has demonstrated promising results for studying functionality, stability and conformational changes of stabilizing agents. The second part of this thesis explores the use of carbon nanomaterials such as graphene and Pt-doped CeO2 for the rational design of enzyme-conjugated nanostructures for biosensing applications. The dissertation reports fabrication, characterization and properties of hybrid CeO2-based bioelectrocatalytic nanostructure material with PEDOT:PSS [poly(3,4ethylenedioxythiophene):poly-styrene-sulfonic acid] on porous carbon materials as novel materials for designing high performance laccase (Lac) biocathodes and biofuel cells.

  4. Surface contamination analysis technology team overview

    NASA Technical Reports Server (NTRS)

    Burns, H. Dewitt

    1995-01-01

    A team was established which consisted of representatives from NASA (Marshall Space Flight Center and Langley Research Center), Thiokol Corporation, the University of Alabama in Huntsville, AC Engineering, SAIC, Martin Marietta, and Aerojet. The team's purpose was to bring together the appropriate personnel to determine what surface inspection techniques were applicable to multiprogram bonding surface cleanliness inspection. In order to identify appropriate techniques and their sensitivity to various contaminant families, calibration standards were developed. Producing standards included development of consistent low level contamination application techniques. Oxidation was also considered for effect on inspection equipment response. Ellipsometry was used for oxidation characterization. Verification testing was then accomplished to show that selected inspection techniques could detect subject contaminants at levels found to be detrimental to critical bond systems of interest. Once feasibility of identified techniques was shown, selected techniques and instrumentation could then be incorporated into a multipurpose inspection head and integrated with a robot for critical surface inspection. Inspection techniques currently being evaluated include optically stimulated electron emission (OSEE); near infrared (NIR) spectroscopy utilizing fiber optics; Fourier transform infrared (FTIR) spectroscopy; and ultraviolet (UV) fluorescence. Current plans are to demonstrate an integrated system in MSFC's Productivity Enhancement Complex within five years from initiation of this effort in 1992 assuming appropriate funding levels are maintained. This paper gives an overview of work accomplished by the team and future plans.

  5. Trends in analytical techniques applied to particulate matter characterization: A critical review of fundaments and applications.

    PubMed

    Galvão, Elson Silva; Santos, Jane Meri; Lima, Ana Teresa; Reis, Neyval Costa; Orlando, Marcos Tadeu D'Azeredo; Stuetz, Richard Michael

    2018-05-01

    Epidemiological studies have shown the association of airborne particulate matter (PM) size and chemical composition with health problems affecting the cardiorespiratory and central nervous systems. PM also act as cloud condensation nuclei (CNN) or ice nuclei (IN), taking part in the clouds formation process, and therefore can impact the climate. There are several works using different analytical techniques in PM chemical and physical characterization to supply information to source apportionment models that help environmental agencies to assess damages accountability. Despite the numerous analytical techniques described in the literature available for PM characterization, laboratories are normally limited to the in-house available techniques, which raises the question if a given technique is suitable for the purpose of a specific experimental work. The aim of this work consists of summarizing the main available technologies for PM characterization, serving as a guide for readers to find the most appropriate technique(s) for their investigation. Elemental analysis techniques like atomic spectrometry based and X-ray based techniques, organic and carbonaceous techniques and surface analysis techniques are discussed, illustrating their main features as well as their advantages and drawbacks. We also discuss the trends in analytical techniques used over the last two decades. The choice among all techniques is a function of a number of parameters such as: the relevant particles physical properties, sampling and measuring time, access to available facilities and the costs associated to equipment acquisition, among other considerations. An analytical guide map is presented as a guideline for choosing the most appropriated technique for a given analytical information required. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Characterization of the neutron irradiation system for use in the Low-Dose-Rate Irradiation Facility at Sandia National Laboratories.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco, Manuel

    The objective of this work was to characterize the neutron irradiation system consisting of americium-241 beryllium (241AmBe) neutron sources placed in a polyethylene shielding for use at Sandia National Laboratories (SNL) Low Dose Rate Irradiation Facility (LDRIF). With a total activity of 0.3 TBq (9 Ci), the source consisted of three recycled 241AmBe sources of different activities that had been combined into a single source. The source in its polyethylene shielding will be used in neutron irradiation testing of components. The characterization of the source-shielding system was necessary to evaluate the radiation environment for future experiments. Characterization of the sourcemore » was also necessary because the documentation for the three component sources and their relative alignment within the Special Form Capsule (SFC) was inadequate. The system consisting of the source and shielding was modeled using Monte Carlo N-Particle transport code (MCNP). The model was validated by benchmarking it against measurements using multiple techniques. To characterize the radiation fields over the full spatial geometry of the irradiation system, it was necessary to use a number of instruments of varying sensitivities. First, the computed photon radiography assisted in determining orientation of the component sources. With the capsule properly oriented inside the shielding, the neutron spectra were measured using a variety of techniques. A N-probe Microspec and a neutron Bubble Dosimeter Spectrometer (BDS) set were used to characterize the neutron spectra/field in several locations. In the third technique, neutron foil activation was used to ascertain the neutron spectra. A high purity germanium (HPGe) detector was used to characterize the photon spectrum. The experimentally measured spectra and the MCNP results compared well. Once the MCNP model was validated to an adequate level of confidence, parametric analyses was performed on the model to optimize for potential experimental configurations and neutron spectra for component irradiation. The final product of this work is a MCNP model validated by measurements, an overall understanding of neutron irradiation system including photon/neutron transport and effective dose rates throughout the system, and possible experimental configurations for future irradiation of components.« less

  7. Measuring masses of large biomolecules and bioparticles using mass spectrometric techniques.

    PubMed

    Peng, Wen-Ping; Chou, Szu-Wei; Patil, Avinash A

    2014-07-21

    Large biomolecules and bioparticles play a vital role in biology, chemistry, biomedical science and physics. Mass is a critical parameter for the characterization of large biomolecules and bioparticles. To achieve mass analysis, choosing a suitable ion source is the first step and the instruments for detecting ions, mass analyzers and detectors should also be considered. Abundant mass spectrometric techniques have been proposed to determine the masses of large biomolecules and bioparticles and these techniques can be divided into two categories. The first category measures the mass (or size) of intact particles, including single particle quadrupole ion trap mass spectrometry, cell mass spectrometry, charge detection mass spectrometry and differential mobility mass analysis; the second category aims to measure the mass and tandem mass of biomolecular ions, including quadrupole ion trap mass spectrometry, time-of-flight mass spectrometry, quadrupole orthogonal time-of-flight mass spectrometry and orbitrap mass spectrometry. Moreover, algorithms for the mass and stoichiometry assignment of electrospray mass spectra are developed to obtain accurate structure information and subunit combinations.

  8. Materials and techniques for spacecraft static charge control

    NASA Technical Reports Server (NTRS)

    Amore, L. J.; Eagles, A. E.

    1977-01-01

    An overview of the design, development, fabrication, and testing of transparent conductive coatings and conductive lattices deposited or formed on high resistivity spacecraft dielectric materials to obtain control static charge buildup on spacecraft external surfaces is presented. Fabrication techniques for the deposition of indium/tin oxide coatings and copper grid networks on Kapton and FEP Teflon films and special frit coatings for OSR and solar cell cover glasses are discussed. The techniques include sputtering, photoetching, silkscreening, and mechanical processes. A facility designed and built to simulate the electron plasma at geosynchronous altitudes is described along with test procedures. The results of material characterizations as well as electron irradiation aging effects in this facility for spacecraft polymers treated to control static charge are presented. The data presents results for electron beam energies up to 30 kV and electron current densities of 30 nA/cm squared. Parameters measured include secondary emission, surface leakage, and through the sample currents as a function of primary beam energy and voltage.

  9. Review of Potential Characterization Techniques in Approaching Energy and Sustainability

    DOE PAGES

    LePoire, David

    2014-03-20

    Societal prosperity is linked to sustainable energy and a healthy environment. But, tough global challenges include increased demand for fossil fuels, while approaching peak oil production and uncertainty in the environmental impacts of energy generation. Recently, energy use was identified as a major component of economic productivity, along with capital and labor. Furthermore, other environmental resources and impacts may be nearing environmental thresholds as indicated by nine planetary environmental boundaries, many of which are linked to energy production and use. Foresight techniques could be applied to guide future actions which include emphasis on (1) energy efficiency to bridge the transitionmore » to a renewable energy economy, (2) continued research, development, and assessment of new technologies, (3) improved understanding of environment impacts including natural capital use and degradation, (4) exploration of GDP alternative measures that include both economic production and environmental impacts, and (5) international cooperation and awareness of longer-term opportunities and their associated potential scenarios. Examples from the U.S. and the international community illustrate challenges and potential.« less

  10. [Modern bacterial taxonomy: techniques review--application to bacteria that nodulate leguminous plants (BNL)].

    PubMed

    Zakhia, Frédéric; de Lajudie, Philippe

    2006-03-01

    Taxonomy is the science that studies the relationships between organisms. It comprises classification, nomenclature, and identification. Modern bacterial taxonomy is polyphasic. This means that it is based on several molecular techniques, each one retrieving the information at different cellular levels (proteins, fatty acids, DNA...). The obtained results are combined and analysed to reach a "consensus taxonomy" of a microorganism. Until 1970, a small number of classification techniques were available for microbiologists (mainly phenotypic characterization was performed: a legume species nodulation ability for a Rhizobium, for example). With the development of techniques based on polymerase chain reaction for characterization, the bacterial taxonomy has undergone great changes. In particular, the classification of the legume nodulating bacteria has been repeatedly modified over the last 20 years. We present here a review of the currently used molecular techniques in bacterial characterization, with examples of application of these techniques for the study of the legume nodulating bacteria.

  11. Nanometer-scale characterization of laser-driven plasmas, compression, shocks and phase transitions, by coherent small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Kluge, Thomas

    2015-11-01

    Combining ultra-intense short-pulse and high-energy long-pulse lasers, with brilliant coherent hard X-ray FELs, such as the Helmholtz International Beamline for Extreme Fields (HIBEF) under construction at the HED Instrument of European XFEL, or MEC at LCLS, holds the promise to revolutionize our understanding of many High Energy Density Physics phenomena. Examples include the relativistic electron generation, transport, and bulk plasma response, and ionization dynamics and heating in relativistic laser-matter interactions, or the dynamics of laser-driven shocks, quasi-isentropic compression, and the kinetics of phase transitions at high pressure. A particularly promising new technique is the use of coherent X-ray diffraction to characterize electron density correlations, and by resonant scattering to characterize the distribution of specific charge-state ions, either on the ultrafast time scale of the laser interaction, or associated with hydrodynamic motion. As well one can image slight density changes arising from phase transitions inside of shock-compressed high pressure matter. The feasibility of coherent diffraction techniques in laser-driven matter will be discussed. including recent results from demonstration experiments at MEC. Among other things, very sharp density changes from laser-driven compression are observed, having an effective step width of 10 nm or smaller. This compares to a resolution of several hundred nm achievedpreviously with phase contrast imaging. and on behalf of HIBEF User Consortium, for the Helmholtz International Beamline for Extreme Fields at the European XFEL.

  12. Policy enabled information sharing system

    DOEpatents

    Jorgensen, Craig R.; Nelson, Brian D.; Ratheal, Steve W.

    2014-09-02

    A technique for dynamically sharing information includes executing a sharing policy indicating when to share a data object responsive to the occurrence of an event. The data object is created by formatting a data file to be shared with a receiving entity. The data object includes a file data portion and a sharing metadata portion. The data object is encrypted and then automatically transmitted to the receiving entity upon occurrence of the event. The sharing metadata portion includes metadata characterizing the data file and referenced in connection with the sharing policy to determine when to automatically transmit the data object to the receiving entity.

  13. Optical diagnostic techniques in tribological analysis: Applications to wear film characterization, solid lubricant chemical transition, and electrical sliding contacts

    NASA Astrophysics Data System (ADS)

    Windom, Bret C.

    Friction and wear have undisputedly huge macroscopic effects on the cost and lifetime of many mechanical systems. The cost to replace parts and the cost to overcome the energy losses associated with friction, although small in nature, can be enormous over long operating times. The understanding of wear and friction begins with the understanding of the physics and chemistry between the reacting surfaces on a microscopic level. Light as a diagnostic tool is a good candidate to perform the very sensitive microscopic measurements needed to help understand the fundamental science occurring in friction/wear systems. Light's small length scales provide the capabilities to characterize very local surface phenomena, including thin transfer films and surface chemical transitions. Light-based diagnostic techniques provide nearly instantaneous results, enabling one to make in situ/real time measurements which could be used to track wear events and associated chemical kinetics. In the present study, two optical diagnostic techniques were investigated for the analysis of tribological systems. The first technique employed was Raman spectroscopy. Raman spectroscopy was investigated as a possible means for in situ measurement of thin transfer films in order to track the wear kinetics and structural transitions of bulk polymers. A micro-Raman system was designed, built, and characterized to track fresh wear films created from a pin-on-disk tribometer. The system proved capable of characterizing and tracking wear film thicknesses of ˜2 mum and greater. In addition, the system provided results indicating structural changes in the wear film as compared to the bulk when sliding speeds were increased. The spectral changes due to the altering of molecular vibrations can be attributed to the increase in temperature during high sliding speeds. Raman spectroscopy was also used to characterize the oxidation of molybdenum disulphide, a solid lubricant used in many applications, including high vacuum sliding. Resonance Raman effects were observed when an excitation wavelength of 632.8 nm was used. Raman spectroscopy was carried out on amorphous MoS2 while its temperature was increased to track the thermally induced oxidation of the MoS2 surface. In addition, other forms of MoS2 were investigated through Raman spectroscopy in which key distinctions between spectra were made. The second technique employed was atomic emission spectroscopy (AES) used to measure constituent species present in arcs created during electrical sliding contacts. Spectra indicated the presence of copper and zinc in the arcs created between copper fiber bundled brushes and a copper rotor. Atomic emission was used to measure the arc duration with a photo-multiplier tube (PMT) while the collected spectra were processed to assess arc temperature. The results suggest arcing in high-current electrical sliding contacts may be at least partially responsible for the high asymmetrical wear measured during tribology tests.

  14. Fabrication and Characterizations of Ethanol Sensor Based on CuO Nanoparticles.

    PubMed

    Al-Hadeethi, Yas; Umar, Ahmad; Kumar, Rajesh; Al-Heniti, Saleh H; Raffah, Bahaaudin M

    2018-04-01

    In this paper, we report the synthesis, characterization and ethanol sensing applications of CuO nanoparticles. The CuO nanoparticles were prepared by a facile, low-temperature hydrothermal method and characterized in detail in terms of their structural, morphological, compositional and crystalline properties, through different characterization techniques including X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) attached with energy dispersive spectroscopy (EDS), and Fourier transform infrared (FTIR) spectroscopy. The detailed studies revealed that the synthesized CuO nanoparticles were well-crystalline and possessed monoclinic crystal structure. The synthesized CuO nanoparticles were utilized for the fabrication of highly sensitive ethanol gas sensor. At an optimized temperature of 320 °C, high sensitivity (Ra/Rg) of 39.29 was observed for 200 ppm of ethanol gas. Additionally, very low response (τres = 14 s) and recovery (τrec = 30 s) times were observed for 100 ppm of ethanol.

  15. Assessment of Satellite Radiometry in the Visible Domain

    NASA Technical Reports Server (NTRS)

    Melin, Frederick; Franz, Bryan A.

    2014-01-01

    Marine reflectance and chlorophyll-a concentration are listed among the Essential Climate Variables by the Global Climate Observing System. To contribute to climate research, the satellite ocean color data records resulting from successive missions need to be consistent and well characterized in terms of uncertainties. This chapter reviews various approaches that can be used for the assessment of satellite ocean color data. Good practices for validating satellite products with in situ data and the current status of validation results are illustrated. Model-based approaches and inter-comparison techniques can also contribute to characterize some components of the uncertainty budget, while time series analysis can detect issues with the instrument radiometric characterization and calibration. Satellite data from different missions should also provide a consistent picture in scales of variability, including seasonal and interannual signals. Eventually, the various assessment approaches should be combined to create a fully characterized climate data record from satellite ocean color.

  16. National Water-Quality Assessment (NAWQA) area-characterization toolbox

    USGS Publications Warehouse

    Price, Curtis V.; Nakagaki, Naomi; Hitt, Kerie J.

    2010-01-01

    This is release 1.0 of the National Water-Quality Assessment (NAWQA) Area-Characterization Toolbox. These tools are designed to be accessed using ArcGIS Desktop software (versions 9.3 and 9.3.1). The toolbox is composed of a collection of custom tools that implement geographic information system (GIS) techniques used by the NAWQA Program to characterize aquifer areas, drainage basins, and sampled wells. These tools are built on top of standard functionality included in ArcGIS Desktop running at the ArcInfo license level. Most of the tools require a license for the ArcGIS Spatial Analyst extension. ArcGIS is a commercial GIS software system produced by ESRI, Inc. (http://www.esri.com). The NAWQA Area-Characterization Toolbox is not supported by ESRI, Inc. or its technical support staff. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

  17. EBIC spectroscopy - A new approach to microscale characterization of deep levels in semi-insulating GaAs

    NASA Technical Reports Server (NTRS)

    Li, C.-J.; Sun, Q.; Lagowski, J.; Gatos, H. C.

    1985-01-01

    The microscale characterization of electronic defects in (SI) GaAs has been a challenging issue in connection with materials problems encountered in GaAs IC technology. The main obstacle which limits the applicability of high resolution electron beam methods such as Electron Beam-Induced Current (EBIC) and cathodoluminescence (CL) is the low concentration of free carriers in semiinsulating (SI) GaAs. The present paper provides a new photo-EBIC characterization approach which combines the spectroscopic advantages of optical methods with the high spatial resolution and scanning capability of EBIC. A scanning electron microscope modified for electronic characterization studies is shown schematically. The instrument can operate in the standard SEM mode, in the EBIC modes (including photo-EBIC and thermally stimulated EBIC /TS-EBIC/), and in the cathodo-luminescence (CL) and scanning modes. Attention is given to the use of CL, Photo-EBIC, and TS-EBIC techniques.

  18. Characterization of some biological specimens using TEM and SEM

    NASA Astrophysics Data System (ADS)

    Ghosh, Nabarun; Smith, Don W.

    2009-05-01

    The advent of novel techniques using the Transmission and Scanning Electron Microscopes improved observation on various biological specimens to characterize them. We studied some biological specimens using Transmission and Scanning Electron Microscopes. We followed negative staining technique with Phosphotungstic acid using bacterial culture of Bacillus subtilis. Negative staining is very convenient technique to view the structural morphology of different samples including bacteria, phage viruses and filaments in a cell. We could observe the bacterial cell wall and flagellum very well when trapped the negative stained biofilm from bacterial culture on a TEM grid. We cut ultra thin sections from the fixed root tips of Pisum sativum (Garden pea). Root tips were pre fixed with osmium tetroxide and post fixed with uranium acetate and placed in the BEEM capsule for block making. The ultrathin sections on the grid under TEM showed the granular chromatin in the nucleus. The protein bodies and large vacuoles with the storage materials were conspicuous. We followed fixation, critical point drying and sputter coating with gold to view the tissues with SEM after placing on stubs. SEM view of the leaf surface of a dangerous weed Tragia hispida showed the surface trichomes. These trichomes when break on touching releases poisonous content causing skin irritation. The cultured tissue from in vitro culture of Albizia lebbeck, a tree revealed the regenerative structures including leaf buds and stomata on the tissue surface. SEM and TEM allow investigating the minute details characteristic morphological features that can be used for classroom teaching.

  19. Wideband characterization of printed circuit board materials up to 50 ghz

    NASA Astrophysics Data System (ADS)

    Rakov, Aleksei

    A traveling-wave technique developed a few years ago in the Missouri S&T EMC Laboratory has been employed until now for characterization of PCB materials over a broad frequency range up to 30 GHz. This technique includes measuring S-parameters of the specially designed PCB test vehicles. An extension of the frequency range of printed circuit board laminate dielectric and copper foil characterization is an important problem. In this work, a new PCB test vehicle design for operating up to 50 GHz has been proposed. As the frequency range of measurements increases, the analysis of errors and uncertainties in measuring dielectric properties becomes increasingly important. Formulas for quantification of two major groups of errors, repeatability (manufacturing variability) and reproducibility (systematic) errors, in extracting dielectric constant (DK) and dissipation factor (DK) have been derived, and computations for a number of cases are presented. Conductor (copper foil) surface roughness of PCB interconnects is an important factor, which affects accuracy of DK and DF measurements. This work describes a new algorithm for semi-automatic characterization of copper foil profiles on optical or scanning electron microscopy (SEM) pictures of signal traces. The collected statistics of numerous copper foil roughness profiles allows for introducing a new metric for roughness characterization of PCB interconnects. This is an important step to refining the measured DK and DF parameters from roughness contributions. The collected foil profile data and its analysis allow for developing "design curves", which could be used by SI engineers and electronics developers in their designs.

  20. Applications of Remote Sensing for Studying Lateral Carbon Fluxes and Inundation Dynamics in Tidal Wetlands

    NASA Astrophysics Data System (ADS)

    Lamb, B. T.; Tzortziou, M.; McDonald, K. C.

    2017-12-01

    Wetlands play a key role in Earth's carbon cycle. However, wetland carbon cycling exhibits a high level of spatiotemporal dynamism, and thus, is not as well understood as carbon cycling in other ecosystems. In order to accurately characterize wetland carbon cycling and fluxes, wetland vegetation phenology, seasonal inundation dynamics, and tidal regimes must be understood as these factors influence carbon generation and transport. Here, we use radar remote sensing to map wetland properties in the Chesapeake Bay, the largest estuary in the United States with more than 1,500 square miles of tidal wetlands, across a range of tidal amplitudes, salinity regimes, and soil organic matter content levels. We have been using Sentinel-1 and ALOS PALSAR-1 radar measurements to characterize vegetation and seasonal inundation dynamics with the future goal of characterizing salinity gradients and tidal regimes. Differences in radar backscatter from various surface targets has been shown to effectively discriminate between dry soil, wet soil, vegetated areas, and open water. Radar polarization differences and ratios are particularly effective at distinguishing between vegetated and non-vegetated areas. Utilizing these principles, we have been characterizing wetland types using supervised classification techniques including: Random Forest, Maximum Likelihood, and Minimum Distance. The National Wetlands Inventory has been used as training and validation data. Ideally, the techniques we outline in this research will be applicable to the characterization of wetlands in coastal areas outside of Chesapeake Bay.

  1. Nondestructive and Destructive Examination Studies on Removed-from-Service Control Rod Drive Mechanism Penetrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cumblidge, Stephen E.; Crawford, Susan L.; Doctor, Steven R.

    2007-06-07

    Studies conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, focused on assessing the effectiveness of nondestructive examination (NDE) techniques for inspecting control rod drive mechanism (CRDM) nozzles and J-groove weldments. The primary objectives of this work are to provide information to the U.S. Nuclear Regulatory Commission (NRC) on the effectiveness of NDE methods as related to the in-service inspection of CRDM nozzles and J-groove weldments and to enhance the knowledge base of primary water stress corrosion cracking (PWSCC) through destructive characterization of the CRDM assemblies. Two CRDM assemblies were removed from service, decontaminated, and then used inmore » a series of NDE and destructive examination (DE) measurements; this report addresses the following questions: 1) What did each NDE technique detect? 2) What did each NDE technique miss? 3) How accurately did each NDE technique characterize the detected flaws? 4) Why did the NDE techniques perform or not perform? Two CRDM assemblies including the CRDM nozzle, the J-groove weld, buttering, and a portion of the ferritic head material were selected for this study. This report focuses on a CRDM assembly that contained suspected PWSCC, based on in-service inspection data and through-wall leakage. The NDE measurements used to examine the CRDM assembly followed standard industry techniques for conducting in-service inspections of CRDM nozzles and the crown of the J-groove welds and buttering. These techniques included eddy current testing (ET), time-of-flight diffraction ultrasound, and penetrant testing. In addition, laboratory-based NDE methods were employed to conduct inspections of the CRDM assembly with particular emphasis on inspecting the J-groove weld and buttering. These techniques included volumetric ultrasonic inspection of the J-groove weld metal and visual testing via replicant material of the J-groove weld. The results from these NDE studies were used to guide the development of the destructive characterization plan. The NDE studies found several crack-like indications. The NDE and DE studies determined that one of these was a through-weld, radially oriented PWSCC crack in the wetted surface of the J-groove weld, located at the transition point between the weld and the buttering. The crack was 6 mm long on the surface and quickly grew to 25 mm long at a depth of 8 mm, covering the length of the weld between the penetration tube and the carbon steel. The NDE studies found that only ET was able to detect the through-weld crack. The crack was oriented poorly for the ultrasonic testing and was too tight for accurate dye penetrant testing or visual testing. The ET voltage response of the through-wall crack was 30% of the response from a deep electrical discharge machined notch. Destructive examination showed the crack is PWSCC and that it initiated on the wetted surface, grew and expanded through the weld metal, and exited into the annulus. The crack was branched and discontinuous along its length.« less

  2. Pipette aspiration applied to the characterization of nonhomogeneous, transversely isotropic materials used for vocal fold modeling.

    PubMed

    Weiß, S; Thomson, S L; Lerch, R; Döllinger, M; Sutor, A

    2013-01-01

    The etiology and treatment of voice disorders are still not completely understood. Since the vibratory characteristics of vocal folds are strongly influenced by both anatomy and mechanical material properties, measurement methods to analyze the material behavior of vocal fold tissue are required. Due to the limited life time of real tissue in the laboratory, synthetic models are often used to study vocal fold vibrations. In this paper we focus on two topics related to synthetic and real vocal fold materials. First, because certain tissues within the human vocal folds are transversely isotropic, a fabrication process for introducing this characteristic in commonly used vocal fold modeling materials is presented. Second, the pipette aspiration technique is applied to the characterization of these materials. By measuring the displacement profiles of stretched specimens that exhibit varying degrees of transverse isotropy, it is shown that local anisotropy can be quantified using a parameter describing the deviation from an axisymmetric profile. The potential for this technique to characterize homogeneous, anisotropic materials, including soft biological tissues such as those found in the human vocal folds, is supplemented by a computational study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Research Developments in Nondestructive Evaluation and Structural Health Monitoring for the Sustainment of Composite Aerospace Structures at NASA

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott

    2016-01-01

    The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced weight, increased strength, and manufacturability. Ongoing work at NASA involves the use of the large-scale composite structures for spacecraft (payload shrouds, cryotanks, crew modules, etc). NASA is also working to enable both the use and sustainment of composites in commercial aircraft structures. One key to the sustainment of these large composite structures is the rapid, in-situ characterization of a wide range of potential defects that may occur during the vehicle's life. Additionally, in many applications it is necessary to monitor changes in these materials over their lifetime. Quantitative characterization through Nondestructive Evaluation (NDE) of defects such as reduced bond strength, microcracking, and delamination damage due to impact, are of particular interest. This paper will present an overview of NASA's applications of NDE technologies being developed for the characterization and sustainment of advanced aerospace composites. The approaches presented include investigation of conventional, guided wave, and phase sensitive ultrasonic methods and infrared thermography techniques for NDE. Finally, the use of simulation tools for optimizing and validating these techniques will also be discussed.

  4. Significant solubility of carbon dioxide in Soluplus® facilitates impregnation of ibuprofen using supercritical fluid technology.

    PubMed

    Obaidat, Rana; Alnaief, Mohammed; Jaeger, Philip

    2017-04-13

    Treatment of Soluplus ® with supercritical carbon dioxide allows promising applications in preparing dispersions of amorphous solids. Several characterization techniques were employed to reveal this effect, including CO 2 gas sorption under high pressure and physicochemical characterizations techniques. A gravimetric method was used to determine the solubility of carbon dioxide in the polymer at elevated pressure. The following physicochemical characterizations were used: thermal analysis, X-ray diffraction, Fourier transform, infrared spectroscopy and scanning electron microscopy. Drug loading of the polymer with ibuprofen as a model drug was also investigated. The proposed treatment with supercritical carbon dioxide allows to prepare solid solutions of Soluplus ® in less than two hours at temperatures that do not exceed 45 °C, which is a great advantage to be used for thermolabile drugs. The advantages of using this technology for Soluplus ® formulations lies behind the high sorption capability of carbon dioxide inside the polymer. This will ensure rapid diffusion of the dissolved/dispersed drug inside the polymer under process conditions and rapid precipitation of the drug in the amorphous form during depressurization accompanied by foaming of the polymer.

  5. Fast-scan Cyclic Voltammetry for the Characterization of Rapid Adenosine Release

    PubMed Central

    Nguyen, Michael D.; Venton, B. Jill

    2014-01-01

    Adenosine is a signaling molecule and downstream product of ATP that acts as a neuromodulator. Adenosine regulates physiological processes, such as neurotransmission and blood flow, on a time scale of minutes to hours. Recent developments in electrochemical techniques, including fast-scan cyclic voltammetry (FSCV), have allowed direct detection of adenosine with sub-second temporal resolution. FSCV studies have revealed a novel mode of rapid signaling that lasts only a few seconds. This rapid release of adenosine can be evoked by electrical or mechanical stimulations or it can be observed spontaneously without stimulation. Adenosine signaling on this time scale is activity dependent; however, the mode of release is not fully understood. Rapid adenosine release modulates oxygen levels and evoked dopamine release, indicating that adenosine may have a rapid modulatory role. In this review, we outline how FSCV can be used to detect adenosine release, compare FSCV with other techniques used to measure adenosine, and present an overview of adenosine signaling that has been characterized using FSCV. These studies point to a rapid mode of adenosine modulation, whose mechanism and function will continue to be characterized in the future. PMID:26900429

  6. On the Performance Evaluation of 3D Reconstruction Techniques from a Sequence of Images

    NASA Astrophysics Data System (ADS)

    Eid, Ahmed; Farag, Aly

    2005-12-01

    The performance evaluation of 3D reconstruction techniques is not a simple problem to solve. This is not only due to the increased dimensionality of the problem but also due to the lack of standardized and widely accepted testing methodologies. This paper presents a unified framework for the performance evaluation of different 3D reconstruction techniques. This framework includes a general problem formalization, different measuring criteria, and a classification method as a first step in standardizing the evaluation process. Performance characterization of two standard 3D reconstruction techniques, stereo and space carving, is also presented. The evaluation is performed on the same data set using an image reprojection testing methodology to reduce the dimensionality of the evaluation domain. Also, different measuring strategies are presented and applied to the stereo and space carving techniques. These measuring strategies have shown consistent results in quantifying the performance of these techniques. Additional experiments are performed on the space carving technique to study the effect of the number of input images and the camera pose on its performance.

  7. Analytical Strategies Involved in the Detailed Componential Characterization of Biooil Produced from Lignocellulosic Biomass

    PubMed Central

    Li, Guo-Sheng; Wei, Xian-Yong

    2017-01-01

    Elucidation of chemical composition of biooil is essentially important to evaluate the process of lignocellulosic biomass (LCBM) conversion and its upgrading and suggest proper value-added utilization like producing fuel and feedstock for fine chemicals. Although the main components of LCBM are cellulose, hemicelluloses, and lignin, the chemicals derived from LCBM differ significantly due to the various feedstock and methods used for the decomposition. Biooil, produced from pyrolysis of LCBM, contains hundreds of organic chemicals with various classes. This review covers the methodologies used for the componential analysis of biooil, including pretreatments and instrumental analysis techniques. The use of chromatographic and spectrometric methods was highlighted, covering the conventional techniques such as gas chromatography, high performance liquid chromatography, Fourier transform infrared spectroscopy, nuclear magnetic resonance, and mass spectrometry. The combination of preseparation methods and instrumental technologies is a robust pathway for the detailed componential characterization of biooil. The organic species in biooils can be classified into alkanes, alkenes, alkynes, benzene-ring containing hydrocarbons, ethers, alcohols, phenols, aldehydes, ketones, esters, carboxylic acids, and other heteroatomic organic compounds. The recent development of high resolution mass spectrometry and multidimensional hyphenated chromatographic and spectrometric techniques has considerably elucidated the composition of biooils. PMID:29387086

  8. An investigation on characterizing dense coal-water slurry with ultrasound: theoretical and experimental method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, M.H.; Su, M.X.; Dong, L.L.

    2010-07-01

    Particle size distribution and concentration in particulate two-phase flow are important parameters in a wide variety of industrial areas. For the purpose of online characterization in dense coal-water slurries, ultrasonic methods have many advantages such as avoiding dilution, the capability for being used in real time, and noninvasive testing, while light-based techniques are not capable of providing information because optical methods often require the slurry to be diluted. In this article, the modified Urick equation including temperature modification, which can be used to determine the concentration by means of the measurement of ultrasonic velocity in a coal-water slurry, is evaluatedmore » on the basis of theoretical analysis and experimental study. A combination of the coupled-phase model and the Bouguer-Lambert-Beer law is employed in this work, and the attenuation spectrum is measured within the frequency region from 3 to 12 MHz. Particle size distributions of the coal-water slurry at different volume fractions are obtained with the optimum regularization technique. Therefore, the ultrasonic technique presented in this work brings the possibility of using ultrasound for online measurements of dense slurries.« less

  9. Single crystal, liquid crystal, and hybrid organic semiconductors

    NASA Astrophysics Data System (ADS)

    Twieg, Robert J.; Getmanenko, Y.; Lu, Z.; Semyonov, A. N.; Huang, S.; He, P.; Seed, A.; Kiryanov, A.; Ellman, B.; Nene, S.

    2003-07-01

    The synthesis and characterization of organic semiconductors is being pursued in three primary structure formats: single crystal, liquid crystal and organic-inorganic hybrid. The strategy here is to share common structures, synthesis methods and fabrication techniques across these formats and to utilize common characterization tools such as the time of flight technique. The single crystal efforts concentrate on aromatic and heteroaromatic compounds including simple benzene derivatives and derivatives of the acenes. The structure-property relationships due to incorporation of small substituents and heteroatoms are being examined. Crystals are grown by solution, melt or vapor transport techniques. The liquid crystal studies exploit their self-organizing properties and relative ease of sample preparation. Though calamitic systems tha deliver the largest mobilities are higher order smectics, even some unusual twist grain boundary phases are being studied. We are attempting to synthesize discotic acene derivatives with appropriate substitution patterns to render them mesogenic. The last format being examined is the hybrid organic-inorganic class. Here, layered materials of alternating organic and inorganic composition are designed and synthesized. Typical materials are conjugated aromatic compounds, usually functinalized with an amine or a pyridine and reacted with appropriate reactive metal derivatives to incorporate them into metal oxide or sulfide layers.

  10. Comparison of Two Surface Contamination Sampling Techniques Conducted for the Characterization of Two Pajarito Site Manhattan Project National Historic Park Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Tammy Ann

    Technical Area-18 (TA-18), also known as Pajarito Site, is located on Los Alamos National Laboratory property and has historic buildings that will be included in the Manhattan Project National Historic Park. Characterization studies of metal contamination were needed in two of the four buildings that are on the historic registry in this area, a “battleship” bunker building (TA-18-0002) and the Pond cabin (TA-18-0029). However, these two buildings have been exposed to the elements, are decades old, and have porous and rough surfaces (wood and concrete). Due to these conditions, it was questioned whether standard wipe sampling would be adequate tomore » detect surface dust metal contamination in these buildings. Thus, micro-vacuum and surface wet wipe sampling techniques were performed side-by-side at both buildings and results were compared statistically. A two-tail paired t-test revealed that the micro-vacuum and wet wipe techniques were statistically different for both buildings. Further mathematical analysis revealed that the wet wipe technique picked up more metals from the surface than the microvacuum technique. Wet wipes revealed concentrations of beryllium and lead above internal housekeeping limits; however, using an yttrium normalization method with linear regression analysis between beryllium and yttrium revealed a correlation indicating that the beryllium levels were likely due to background and not operational contamination. PPE and administrative controls were implemented for National Park Service (NPS) and Department of Energy (DOE) tours as a result of this study. Overall, this study indicates that the micro-vacuum technique may not be an efficient technique to sample for metal dust contamination.« less

  11. Application of separable parameter space techniques to multi-tracer PET compartment modeling

    PubMed Central

    Zhang, Jeff L; Morey, A Michael; Kadrmas, Dan J

    2016-01-01

    Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg–Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models. PMID:26788888

  12. Techniques for Measuring Low Earth Orbital Atomic Oxygen Erosion of Polymers

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Demko, Rikako

    2002-01-01

    Polymers such as polyimide Kapton and Teflon FEP (fluorinated ethylene propylene) are commonly used spacecraft materials due to their desirable properties such as flexibility, low density, and in the case of FEP, a low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low Earth orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen reaction with polymers causes erosion, which is a threat to spacecraft durability. It is therefore important to understand the atomic oxygen erosion yield (E, the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. The most common technique for determining E is through mass loss measurements. For limited duration exposure experiments, such as shuttle experiments, where the atomic oxygen fluence is often so low that mass loss measurements can not produce acceptable uncertainties, recession measurements based on atomic force microscopy analyses can be used. Equally necessary to knowing the mass loss or recession depth for determining the erosion yield of polymers is the knowledge of the atomic oxygen fluence that the polymers were exposed to in space. This paper discusses the procedures and relevant issues for mass loss and recession depth measurements for passive atomic oxygen erosion yield characterization of polymers, along with techniques for active atomic oxygen fluence and erosion characterization. One active atomic oxygen erosion technique discussed is a new technique based on optical measurements. Details including the use of both semi-transparent and opaque polymers for active erosion measurement are reviewed.

  13. Simultaneous measurement of the Young's modulus and the Poisson ratio of thin elastic layers.

    PubMed

    Gross, Wolfgang; Kress, Holger

    2017-02-07

    The behavior of cells and tissue is greatly influenced by the mechanical properties of their environment. For studies on the interactions between cells and soft matrices, especially those applying traction force microscopy the characterization of the mechanical properties of thin substrate layers is essential. Various techniques to measure the elastic modulus are available. Methods to accurately measure the Poisson ratio of such substrates are rare and often imply either a combination of multiple techniques or additional equipment which is not needed for the actual biological studies. Here we describe a novel technique to measure both parameters, the Youngs's modulus and the Poisson ratio in a single experiment. The technique requires only a standard inverted epifluorescence microscope. As a model system, we chose cross-linked polyacrylamide and poly-N-isopropylacrylamide hydrogels which are known to obey Hooke's law. We place millimeter-sized steel spheres on the substrates which indent the surface. The data are evaluated using a previously published model which takes finite thickness effects of the substrate layer into account. We demonstrate experimentally for the first time that the application of the model allows the simultaneous determination of both the Young's modulus and the Poisson ratio. Since the method is easy to adapt and comes without the need of special equipment, we envision the technique to become a standard tool for the characterization of substrates for a wide range of investigations of cell and tissue behavior in various mechanical environments as well as other samples, including biological materials.

  14. Screening concepts, characterization and structural analysis of microbial-derived bioactive lipopeptides: a review.

    PubMed

    Biniarz, Piotr; Łukaszewicz, Marcin; Janek, Tomasz

    2017-05-01

    Lipopeptide biosurfactants are surface active biomolecules that are produced by a variety of microorganisms. Microbial lipopeptides have gained the interest of microbiologists, chemists and biochemists for their high biodiversity as well as efficient action, low toxicity and good biodegradability in comparison to synthetic counterparts. In this report, we review methods for the production, isolation and screening, purification and structural characterization of microbial lipopeptides. Several techniques are currently available for each step, and we describe the most commonly utilized and recently developed techniques in this review. Investigations on lipopeptide biosurfactants in natural products require efficient isolation techniques for the characterization and evaluation of chemical and biological properties. A combination of chromatographic and spectroscopic techniques offer opportunities for a better characterization of lipopeptide structures, which in turn can lead to the application of lipopeptides in food, pharmaceutical, cosmetics, agricultural and bioremediation industries.

  15. Resistance to abrasion of extrinsic porcelain esthetic characterization techniques.

    PubMed

    Chi, Woo J; Browning, William; Looney, Stephen; Mackert, J Rodway; Windhorn, Richard J; Rueggeberg, Frederick

    2017-01-01

    A novel esthetic porcelain characterization technique involves mixing an appropriate amount of ceramic colorants with clear, low-fusing porcelain (LFP), applying the mixture on the external surfaces, and firing the combined components onto the surface of restorations in a porcelain oven. This method may provide better esthetic qualities and toothbrush abrasion resistance compared to the conventional techniques of applying color-corrective porcelain colorants alone, or applying a clear glaze layer over the colorants. However, there is no scientific literature to support this claim. This research evaluated toothbrush abrasion resistance of a novel porcelain esthetic characterization technique by subjecting specimens to various durations of simulated toothbrush abrasion. The results were compared to those obtained using the conventional characterization techniques of colorant application only or colorant followed by placement of a clear over-glaze. Four experimental groups, all of which were a leucite reinforced ceramic of E TC1 (Vita A1) shade, were prepared and fired in a porcelain oven according to the manufacturer's instructions. Group S (stain only) was characterized by application of surface colorants to provide a definitive shade of Vita A3.5. Group GS (glaze over stain) was characterized by application of a layer of glaze over the existing colorant layer as used for Group S. Group SL (stain+LFP) was characterized by application of a mixture of colorants and clear low-fusing add-on porcelain to provide a definitive shade of Vita A3.5. Group C (Control) was used as a control without any surface characterization. The 4 groups were subjected to mechanical toothbrushing using a 1:1 water-to-toothpaste solution for a simulated duration of 32 years of clinical use. The amount of wear was measured at time intervals simulating every 4 years of toothbrushing. These parameters were evaluated longitudinally for all groups as well as compared at similar time points among groups. In this study, the novel external characterization technique (stain+LFP: Group SL) did not significantly enhance the wear resistance against toothbrush abrasion. Instead, the average wear of the applied extrinsic porcelain was 2 to 3 times more than Group S (stain only) and Group GS (glaze over stain). Application of a glaze layer over the colorants (Group GS) showed a significant improvement on wear resistance. Despite its superior physical properties, the leucite reinforced ceramic core (Group C) showed 2 to 4 times more wear when compared with other test groups. A conventional external esthetic characterization technique of applying a glaze layer over the colorants (Group GS) significantly enhanced the surface wear resistance to toothbrush abrasion when compared with other techniques involving application of colorants only (Group S) or mixture of colorant and LFP (Group SL). The underlying core ceramic had significantly less wear resistance compared with all externally characterized specimens. The novel esthetic characterization technique showed more wear and less color stability, and is thus not advocated as the "best" method for surface characterization. Application of a glaze layer provides a more wear-resistant surface from toothbrush abrasion when adjusting or extrinsically characterizing leucite reinforced ceramic restorations. Without the glaze layer, the restoration is subjected to a 2 to 4 times faster rate and amount of wear leading to possible shade mismatch.

  16. Plants and microorganisms as drivers of mineral weathering

    NASA Astrophysics Data System (ADS)

    Dontsova, K.; Chorover, J.; Maier, R.; Hunt, E.; Zaharescu, D. G.

    2011-12-01

    Plants and microorganisms play important role in mineral weathering and soil formation modifying their environment to make it more hospitable for life. This presentation summarizes several collaborative studies that focused on understanding how interactions between plants and microorganisms, where plants provide the energy through photosynthesis, drive mineral weathering and result in soil formation. Plants influence weathering through multiple mechanisms that have been previously established, such as increase in CO2 concentration in the soil through root respiration and degradation of plant residues and exudates by heterotrophic microorganisms, release of organic acids that promote mineral dissolution, removal of weathering products from soil solution through uptake, and water redistribution. Weathering processes result in nutrient release that satisfies immediate needs of the plants and microorganisms, as well as precipitation of secondary phases, that provide surfaces for retention of nutrients and organic carbon accumulation. What makes understanding contribution of plants and microorganisms, such as bacteria and fungi, to mineral weathering challenging is the fact that they closely interact, enhancing and amplifying each other's contribution. In order to address multiple processes that contribute to and result from biological weathering a combination of chemical, biological, mineralogical, and computational techniques and methodologies is needed. This complex array of methodologies includes bulk techniques, such as determination of total dissolved organic and inorganic carbon and nitrogen, ion chromatography and high performance liquid chromatography to characterize amount and composition of exuded organic acids, inductively coupled plasma mass spectrometry to determine concentrations of lithogenic elements in solution, X-ray diffraction to characterize changes in mineral composition of the material, DNA extraction to characterize community structure, as well as microscopic techniques. These techniques in combination with numerical geochemical modeling are being employed to improve our understanding of biological weathering.

  17. Synthesis of 2-(bis(cyanomethyl)amino)-2-oxoethyl methacrylate monomer molecule and its characterization by experimental and theoretical methods

    NASA Astrophysics Data System (ADS)

    Sas, E. B.; Cankaya, N.; Kurt, M.

    2018-06-01

    In this work 2-(bis(cyanomethyl)amino)-2-oxoethyl methacrylate monomer has been synthesized as newly, characterized both experimentally and theoretically. Experimentally, it has been characterized by FT-IR, FT-Raman, 1H and 13C NMR spectroscopy techniques. The theoretical calculations have been performed with Density Functional Theory (DFT) including B3LYP method. The scaled theoretical wavenumbers have been assigned based on total energy distribution (TED). Electronic properties of monomer have been performed using time-dependent TD-DFT/B3LYP/B3LYP/6-311G++(d,p) method. The results of experimental have been compared with theoretical values. Both experimental and theoretical methods have shown that the monomer was suitable for the literature.

  18. Hydroxyapatite nanocrystals: simple preparation, characterization and formation mechanism.

    PubMed

    Mohandes, Fatemeh; Salavati-Niasari, Masoud; Fathi, Mohammadhossein; Fereshteh, Zeinab

    2014-12-01

    Crystalline hydroxyapatite (HAP) nanoparticles and nanorods have been successfully synthesized via a simple precipitation method. To control the shape and particle size of HAP nanocrystals, coordination ligands derived from 2-hydroxy-1-naphthaldehyde were first prepared, characterized by Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance ((1)H-NMR) spectroscopies, and finally applied in the synthesis process of HAP. On the other hand, the HAP nanocrystals were also characterized by several techniques including powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). According to the FE-SEM and TEM micrographs, it was found that the morphology and crystallinity of the HAP powders depended on the coordination mode of the ligands. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Needs assessment for nondestructive testing and materials characterization for improved reliability in structural ceramics for heat engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.R.; McClung, R.W.; Janney, M.A.

    1987-08-01

    A needs assessment was performed for nondestructive testing and materials characterization to achieve improved reliability in ceramic materials for heat engine applications. Raw materials, green state bodies, and sintered ceramics were considered. The overall approach taken to improve reliability of structural ceramics requires key inspections throughout the fabrication flowsheet, including raw materials, greed state, and dense parts. The applications of nondestructive inspection and characterization techniques to ceramic powders and other raw materials, green ceramics, and sintered ceramics are discussed. The current state of inspection technology is reviewed for all identified attributes and stages of a generalized flowsheet for advanced structuralmore » ceramics, and research and development requirements are identified and listed in priority order. 164 refs., 3 figs.« less

  20. Improved Characterization and Modeling of Tight Oil Formations for CO 2 Enhanced Oil Recovery Potential and Storage Capacity Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorensen, James; Smith, Steven; Kurz, Bethany

    Tight oil formations such as those in the Bakken petroleum system are known to hold hundreds of billions of barrels of oil in place; however, the primary recovery factor for these plays is typically less than 10%. Tight oil formations, including the Bakken Formation, therefore, may be attractive candidates for enhanced oil recovery (EOR) using CO 2. Multiphase fluid behavior and flow in fluid-rich shales can vary substantially depending on the size of pore throats, and properties such as fluid viscosity and density are much different in nanoscale pores than in macroscale pores. Thus it is critical to understand themore » nature and distribution of nano-, micro-, and macroscale pores and fracture networks. To address these issues, the Energy & Environmental Research Center (EERC) has been conducting a research program entitled “Improved Characterization and Modeling of Tight Oil Formations for CO 2 Enhanced Oil Recovery Potential and Storage Capacity Estimation.” The objectives of the project are 1) the use of advanced characterization methods to better understand and quantify the petrophysical and geomechanical factors that control CO 2 and oil mobility within tight oil formation samples, 2) the determination of CO 2 permeation and oil extraction rates in tight reservoir rocks and organic-rich shales of the Bakken, and 3) the integration of the laboratory-based CO 2 permeation and oil extraction data and the characterization data into geologic models and dynamic simulations to develop predictions of CO 2 storage resource and EOR in the Bakken tight oil formation. A combination of standard and advanced petrophysical characterization techniques were applied to characterize samples of Bakken Formation tight reservoir rock and shales from multiple wells. Techniques included advanced computer tomography (CT) imaging, scanning electron microscopy (SEM) techniques, whole-core and micro x-ray CT imaging, field emission (FE) SEM, and focused ion beam (FIB) SEM. Selected samples were also analyzed for geomechanical properties. X-ray CT imaging yielded information on the occurrence of fractures, bedding planes, fossils, and bioturbation in core, as well as data on bulk density and photoelectric factor logs, which were used to interpret porosity, organic content, and mineralogy. FESEM was used for characterization of nano- and microscale features, including nanoscale pore visualization and micropore and pore throat mineralogy. FIBSEM yielded micro- to nanoscale visualization of fracture networks, porosity and pore-size distribution, connected versus isolated porosity, and distribution of organics. Results from the characterization activities provide insight on nanoscale fracture properties, pore throat mineralogy and connectivity, rock matrix characteristics, mineralogy, and organic content. Laboratory experiments demonstrated that CO 2 can permeate the tight matrix of Bakken shale and nonshale reservoir samples and mobilize oil from those samples. Geologic models were created at scales ranging from the core plug to the reservoir, and dynamic simulations were conducted. The data from the characterization and laboratory-based activities were integrated into modeling research activities to determine the fundamental mechanisms controlling fluid transport in the Bakken, which support EOR scheme design and estimation of CO 2 storage potential in tight oil formations. Simulation results suggest a CO 2 storage resource estimate range of 169 million to 1.5 billion tonnes for the Bakken in North Dakota, possibly resulting in 1.8 billion to 16 billion barrels of incremental oil.« less

  1. Titanium dioxide nanostructure synthesized by sol-gel for organic solar cells using natural dyes extracted from black and red sticky rice

    NASA Astrophysics Data System (ADS)

    Ramelan, A. H.; Harjana, H.; Sakti, L. S.

    2012-06-01

    Nanocrystalline semiconductor metal oxides have achieved a great importance in our industrial world today. They may be defined as metal oxides with crystal size between 1 and 100 nm. TiO2 nanosize particles have attracted significant interest of materials scientists and physicists due to their special properties and have attained a great importance in several technological applications such as photocatalysis, sensors, solar cells and memory devices. TiO2 nanoparticles can be produced by a variety of techniques ranging from simple chemical to mechanical to vacuum methods, including many variants of physical and chemical vapour deposition techniques. In the present research work we report the synthesis of TiO2 nanoparticles by Sol-Gel technique. The characterization of particles was carried out by XRD and XRF techniques. The importance and applications of these nanoparticles for solar cells are also discussed in this work.

  2. Characterizing gene responses to drought stress in fourwing saltbush [Atriplex canescens (Pursh.) Nutt.)

    Treesearch

    Linda S. Adair; David L. Andrews; John Cairney; Edward A. Funkhouser; Ronald J. Newton; Earl F. Aldon

    1992-01-01

    New techniques in molecular biology can be used to characterize genes whose expression is induced by drought stress. These techniques can be used to understand responses of range plants to environmental stresses at the biochemical and molecular level. For example, they can be used to characterize genes that respond to drought stress conditions in the native shrub

  3. [Cytogenetics, cytogenomics and cancer].

    PubMed

    Bernheim, Alain

    2002-02-01

    Chromosomal study in malignancy has demonstrated the pivotal role of somatic chromosomal rearrangements in oncogenesis and tumoral progression. Structural or quantitative these abnormalities can now be studied in great details with the various Fish techniques, including CGH on chromosomes or in a near future on micro arrays. The multistep pattern of most solid tumors is characterized and their genomic abnormalities more and more used for the diagnosis and the prognosis.

  4. Transportable, Low-Dose Active Fast-Neutron Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihalczo, John T.; Wright, Michael C.; McConchie, Seth M.

    2017-08-01

    This document contains a description of the method of transportable, low-dose active fast-neutron imaging as developed by ORNL. The discussion begins with the technique and instrumentation and continues with the image reconstruction and analysis. The analysis discussion includes an example of how a gap smaller than the neutron production spot size and detector size can be detected and characterized depending upon the measurement time.

  5. Mars Oxidant and Radical Detector

    NASA Technical Reports Server (NTRS)

    Yen, A. S.; Kim, S. S.

    2003-01-01

    The Mars Oxidant and Radical Detector is an instrument designed to characterize the reactive nature of the martian surface environment. Using Electron Paramagnetic Resonance (EPR) techniques, this instrument can detect, identify, and quantify radical species in soil samples, including those inferred to be present by the Viking experiments. This instrument is currently funded by the Mars Instrument Development Program and is compatible with the Mars Science Laboratory mission.

  6. Comparative study of hydrogen storage on metal doped mesoporous materials

    NASA Astrophysics Data System (ADS)

    Carraro, P. M.; Sapag, K.; Oliva, M. I.; Eimer, G. A.

    2018-06-01

    The hydrogen adsorption capacity of mesoporous materials MCM-41 modified with Co, Fe, Ti, Mg and Ni at 77 K and 10 bar was investigated. Various techniques including XRD, N2 adsorption and DRUV-vis were employed for the materials characterization. The results showed that a low nickel loading on MCM-41 support promoted the presence of hydrogen-favorable sites, increasing the hydrogen storage capacity.

  7. Integration of Scale Invariant Generator Technique and S-A Technique for Characterizing 2-D Patterns for Information Retrieve

    NASA Astrophysics Data System (ADS)

    Cao, L.; Cheng, Q.

    2004-12-01

    The scale invariant generator technique (SIG) and spectrum-area analysis technique (S-A) were developed independently relevant to the concept of the generalized scale invariance (GSI). The former was developed for characterizing the parameters involved in the GSI for characterizing and simulating multifractal measures whereas the latter was for identifying scaling breaks for decomposition of superimposed multifractal measures caused by multiple geophysical processes. A natural integration of these two techniques may yield a new technique to serve two purposes, on the one hand, that can enrich the power of S-A by increasing the interpretability of decomposed patterns in some applications of S-A and, on the other hand, that can provide a mean to test the uniqueness of multifractality of measures which is essential for application of SIG technique in more complicated environment. The implementation of the proposed technique has been done as a Dynamic Link Library (DLL) in Visual C++. The program can be friendly used for method validation and application in different fields.

  8. Characterization of Particles Created By Laser-Driven Hydrothermal Processing

    DTIC Science & Technology

    2016-06-01

    created by laser-driven hydrothermal processing, an innovative technique used for the ablation of submerged materials. Two naturally occurring...processing, characterization, obsidian, tektite, natural glass 15. NUMBER OF PAGES 89 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT...technique used for the ablation of submerged materials. Two naturally occurring materials, obsidian and tektite, were used as targets for this technique

  9. On the Power of Abstract Interpretation

    NASA Technical Reports Server (NTRS)

    Reddy, Uday S.; Kamin, Samuel N.

    1991-01-01

    Increasingly sophisticated applications of static analysis place increased burden on the reliability of the analysis techniques. Often, the failure of the analysis technique to detect some information my mean that the time or space complexity of the generated code would be altered. Thus, it is important to precisely characterize the power of static analysis techniques. We follow the approach of Selur et. al. who studied the power of strictness analysis techniques. Their result can be summarized by saying 'strictness analysis is perfect up to variations in constants.' In other words, strictness analysis is as good as it could be, short of actually distinguishing between concrete values. We use this approach to characterize a broad class of analysis techniques based on abstract interpretation including, but not limited to, strictness analysis. For the first-order case, we consider abstract interpretations where the abstract domain for data values is totally ordered. This condition is satisfied by Mycroft's strictness analysis that of Sekar et. al. and Wadler's analysis of list-strictness. For such abstract interpretations, we show that the analysis is complete in the sense that, short of actually distinguishing between concrete values with the same abstraction, it gives the best possible information. We further generalize these results to typed lambda calculus with pairs and higher-order functions. Note that products and function spaces over totally ordered domains are not totally ordered. In fact, the notion of completeness used in the first-order case fails if product domains or function spaces are added. We formulate a weaker notion of completeness based on observability of values. Two values (including pairs and functions) are considered indistinguishable if their observable components are indistinguishable. We show that abstract interpretation of typed lambda calculus programs is complete up to this notion of indistinguishability. We use denotationally-oriented arguments instead of the detailed operational arguments used by Selur et. al.. Hence, our proofs are much simpler. They should be useful for further future improvements.

  10. Environmental Assessment and Monitoring with ICAMS (Image Characterization and Modeling System) Using Multiscale Remote-Sensing Data

    NASA Technical Reports Server (NTRS)

    Lam, N.; Qiu, H.-I.; Quattrochi, Dale A.; Zhao, Wei

    1997-01-01

    With the rapid increase in spatial data, especially in the NASA-EOS (Earth Observing System) era, it is necessary to develop efficient and innovative tools to handle and analyze these data so that environmental conditions can be assessed and monitored. A main difficulty facing geographers and environmental scientists in environmental assessment and measurement is that spatial analytical tools are not easily accessible. We have recently developed a remote sensing/GIS software module called Image Characterization and Modeling System (ICAMS) to provide specialized spatial analytical tools for the measurement and characterization of satellite and other forms of spatial data. ICAMS runs on both the Intergraph-MGE and Arc/info UNIX and Windows-NT platforms. The main techniques in ICAMS include fractal measurement methods, variogram analysis, spatial autocorrelation statistics, textural measures, aggregation techniques, normalized difference vegetation index (NDVI), and delineation of land/water and vegetated/non-vegetated boundaries. In this paper, we demonstrate the main applications of ICAMS on the Intergraph-MGE platform using Landsat Thematic Mapper images from the city of Lake Charles, Louisiana. While the utilities of ICAMS' spatial measurement methods (e.g., fractal indices) in assessing environmental conditions remain to be researched, making the software available to a wider scientific community can permit the techniques in ICAMS to be evaluated and used for a diversity of applications. The findings from these various studies should lead to improved algorithms and more reliable models for environmental assessment and monitoring.

  11. U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1986-1990

    USGS Publications Warehouse

    Trask, N.J.; Stevens, P.R.

    1991-01-01

    The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research efforts are categorized according to whether they are related most directly to: (1) high-level wastes, (2) transuranic wastes, (3) low-level and mixed low-level and hazardous wastes, or (4) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, to development of techniques and methods for characterizing disposal sites, and to studies of geologic and hydrologic processes related to the transport and/or retention of waste radionuclides.

  12. Radial variations of large-scale magnetohydrodynamic fluctuations in the solar wind

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Goldstein, M. L.

    1983-01-01

    Two time periods are studied for which comprehensive data coverage is available at both 1 AU using IMP-8 and ISEE-3 and beyond using Voyager 1. One of these periods is characterized by the predominance of corotating stream interactions. Relatively small scale transient flows characterize the second period. The evolution of these flows with heliocentric distance is studied using power spectral techniques. The evolution of the transient dominated period is consistent with the hypothesis of turbulent evolution including an inverse cascade of large scales. The evolution of the corotating period is consistent with the entrainment of slow streams by faster streams in a deterministic model.

  13. Characterization of a 6Li-loaded liquid organic scintillator for fast neutron spectrometry and thermal neutron detection.

    PubMed

    Bass, C D; Beise, E J; Breuer, H; Heimbach, C R; Langford, T J; Nico, J S

    2013-07-01

    The characterization of a liquid scintillator incorporating an aqueous solution of enriched lithium chloride to produce a scintillator with 0.40% (6)Li is presented, including the performance of the scintillator in terms of its optical properties and neutron response. The scintillator was incorporated into a fast neutron spectrometer, and the light output spectra from 2.5 MeV, 14.1 MeV, and (252)Cf neutrons were measured using capture-gated coincidence techniques. The spectrometer was operated without coincidence to perform thermal neutron measurements. Possible improvements in spectrometer performance are discussed. Published by Elsevier Ltd.

  14. Automated extraction of metadata from remotely sensed satellite imagery

    NASA Technical Reports Server (NTRS)

    Cromp, Robert F.

    1991-01-01

    The paper discusses research in the Intelligent Data Management project at the NASA/Goddard Space Flight Center, with emphasis on recent improvements in low-level feature detection algorithms for performing real-time characterization of images. Images, including MSS and TM data, are characterized using neural networks and the interpretation of the neural network output by an expert system for subsequent archiving in an object-oriented data base. The data show the applicability of this approach to different arrangements of low-level remote sensing channels. The technique works well when the neural network is trained on data similar to the data used for testing.

  15. The Mechanical Properties of Nanowires

    PubMed Central

    Wang, Shiliang; Shan, Zhiwei

    2017-01-01

    Applications of nanowires into future generation nanodevices require a complete understanding of the mechanical properties of the nanowires. A great research effort has been made in the past two decades to understand the deformation physics and mechanical behaviors of nanowires, and to interpret the discrepancies between experimental measurements and theoretical predictions. This review focused on the characterization and understanding of the mechanical properties of nanowires, including elasticity, plasticity, anelasticity and strength. As the results from the previous literature in this area appear inconsistent, a critical evaluation of the characterization techniques and methodologies were presented. In particular, the size effects of nanowires on the mechanical properties and their deformation mechanisms were discussed. PMID:28435775

  16. Development, characterization and qualification of first GEM foils produced in India

    NASA Astrophysics Data System (ADS)

    Shah, Aashaq; Ahmed, Asar; Gola, Mohit; Sharma, Ram Krishna; Malhotra, Shivali; Kumar, Ashok; Naimuddin, Md.; Menon, Pradeep; Srinivasan, K.

    2018-06-01

    The increasing demand for Gas Electron Multiplier (GEM) foils has been driven by their application in many current and proposed high-energy physics experiments. Micropack, a Bengaluru-based company, has established and commercialized GEM foils for the first time in India. Micropack used the double-mask etching technique to successfully produce 10 cm × 10 cm GEM foil. In this paper, we report on the development as well as the geometrical and electrical properties of these foils, including the size uniformity of the holes and leakage current measurements. Our characterization studies show that the foils are of good quality and satisfy all the necessary quality control criteria.

  17. Audio-magnetotelluric survey to characterize the Sunnyside porphyry copper system in the Patagonia Mountains, Arizona

    USGS Publications Warehouse

    Sampson, Jay A.; Rodriguez, Brian D.

    2010-01-01

    The Sunnyside porphyry copper system is part of the concealed San Rafael Valley porphyry system located in the Patagonia Mountains of Arizona. The U.S. Geological Survey is conducting a series of multidisciplinary studies as part of the Assessment Techniques for Concealed Mineral Resources project. To help characterize the size, resistivity, and skin depth of the polarizable mineral deposit concealed beneath thick overburden, a regional east-west audio-magnetotelluric sounding profile was acquired. The purpose of this report is to release the audio-magnetotelluric sounding data collected along that east-west profile. No interpretation of the data is included.

  18. Solid-state reaction synthesis for mixed-phase Eu3+-doped bismuth molybdate and its luminescence properties

    NASA Astrophysics Data System (ADS)

    Liang, Danyang; Ding, Yu; Wang, Nan; Cai, Xiaomeng; Li, Jia; Han, Linyu; Wang, Shiqi; Han, Yuanyuan; Jia, Guang; Wang, Liyong

    2017-09-01

    A method for mixed-phase bismuth molybdate doped with Eu3+ ions was developed by solid-state reaction assisting with polyvinyl alcohol (PVA). The results of powder X-ray diffraction showed a mixed-phase structure and the microscopical characterization technology revealed the formation process with the addition of PVA. As a structure inducer, the PVA molecules played a vital role in the formation of phase structure. The as-obtained Eu3+-doped bismuth molybdates were also characterized by using different spectroscopic techniques including FTIR and photoluminescence (PL). The results show that doping concentration, PVA addition and calcination temperature affect photoluminescence properties remarkably.

  19. Non-Kinetic Losses Caused by Electrochemical Carbon Corrosion in PEM Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Seh Kyu; Shao, Yuyan; Viswanathan, Vilayanur V.

    2012-05-01

    This paper presented non-kinetic losses in PEM fuel cells under an accelerated stress test of catalyst support. The cathode with carbon-supported Pt catalyst was prepared and characterized with potential hold at 1.2 V vs. SHE in PEM fuel cells. Irreversible losses caused by carbon corrosion were evaluated using a variety of electrochemical characterizations including cyclic voltammetry, linear sweep voltammetry, electrochemical impedance spectroscopy, and polarization technique. Ohmic losses at the cathode with potential hold were determined using its capacitive responses. Concentration losses in PEM fuel cells were analyzed in terms of Tafel behavior and thin film/flooded-agglomerate dynamics.

  20. Method of multi-dimensional moment analysis for the characterization of signal peaks

    DOEpatents

    Pfeifer, Kent B; Yelton, William G; Kerr, Dayle R; Bouchier, Francis A

    2012-10-23

    A method of multi-dimensional moment analysis for the characterization of signal peaks can be used to optimize the operation of an analytical system. With a two-dimensional Peclet analysis, the quality and signal fidelity of peaks in a two-dimensional experimental space can be analyzed and scored. This method is particularly useful in determining optimum operational parameters for an analytical system which requires the automated analysis of large numbers of analyte data peaks. For example, the method can be used to optimize analytical systems including an ion mobility spectrometer that uses a temperature stepped desorption technique for the detection of explosive mixtures.

  1. Modeling and quantification of repolarization feature dependency on heart rate.

    PubMed

    Minchole, A; Zacur, E; Pueyo, E; Laguna, P

    2014-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Biosignal Interpretation: Advanced Methods for Studying Cardiovascular and Respiratory Systems". This work aims at providing an efficient method to estimate the parameters of a non linear model including memory, previously proposed to characterize rate adaptation of repolarization indices. The physiological restrictions on the model parameters have been included in the cost function in such a way that unconstrained optimization techniques such as descent optimization methods can be used for parameter estimation. The proposed method has been evaluated on electrocardiogram (ECG) recordings of healthy subjects performing a tilt test, where rate adaptation of QT and Tpeak-to-Tend (Tpe) intervals has been characterized. The proposed strategy results in an efficient methodology to characterize rate adaptation of repolarization features, improving the convergence time with respect to previous strategies. Moreover, Tpe interval adapts faster to changes in heart rate than the QT interval. In this work an efficient estimation of the parameters of a model aimed at characterizing rate adaptation of repolarization features has been proposed. The Tpe interval has been shown to be rate related and with a shorter memory lag than the QT interval.

  2. Characterization of a Louisiana Bay Bottom

    NASA Astrophysics Data System (ADS)

    Freeman, A. M.; Roberts, H. H.

    2016-02-01

    This study correlates side-scan sonar and CHIRP water bottom-subbottom acoustic amplitudes with cone penetrometer data to expand the limited understanding of the geotechnical properties of sediments in coastal Louisiana's bays. Standardized analysis procedures were developed to characterize the bay bottom and shallow subsurface of the Sister Lake bay bottom. The CHIRP subbottom acoustic data provide relative amplitude information regarding reflection horizons of the bay bottom and shallow subsurface. An amplitude analysis technique was designed to identify different reflectance regions within the lake from the CHIRP subbottom profile data. This amplitude reflectivity analysis technique provides insight into the relative hardness of the bay bottom and shallow subsurface, useful in identifying areas of erosion versus deposition from storms, as well as areas suitable for cultch plants for state oyster seed grounds, or perhaps other restoration projects. Side-scan and CHIRP amplitude reflectivity results are compared to penetrometer data that quantifies geotechnical properties of surface and near-surface sediments. Initial results indicate distinct penetrometer signatures that characterize different substrate areas including soft bottom, storm-deposited silt-rich sediments, oyster cultch, and natural oyster reef areas. Although amplitude analysis of high resolution acoustic data does not directly quantify the geotechnical properties of bottom sediments, our analysis indicates a close relationship. The analysis procedures developed in this study can be applied in other dynamic coastal environments, "calibrating" the use of synoptic acoustic methods for large-scale water bottom characterization.

  3. Improved pulmonary nodule classification utilizing quantitative lung parenchyma features.

    PubMed

    Dilger, Samantha K N; Uthoff, Johanna; Judisch, Alexandra; Hammond, Emily; Mott, Sarah L; Smith, Brian J; Newell, John D; Hoffman, Eric A; Sieren, Jessica C

    2015-10-01

    Current computer-aided diagnosis (CAD) models for determining pulmonary nodule malignancy characterize nodule shape, density, and border in computed tomography (CT) data. Analyzing the lung parenchyma surrounding the nodule has been minimally explored. We hypothesize that improved nodule classification is achievable by including features quantified from the surrounding lung tissue. To explore this hypothesis, we have developed expanded quantitative CT feature extraction techniques, including volumetric Laws texture energy measures for the parenchyma and nodule, border descriptors using ray-casting and rubber-band straightening, histogram features characterizing densities, and global lung measurements. Using stepwise forward selection and leave-one-case-out cross-validation, a neural network was used for classification. When applied to 50 nodules (22 malignant and 28 benign) from high-resolution CT scans, 52 features (8 nodule, 39 parenchymal, and 5 global) were statistically significant. Nodule-only features yielded an area under the ROC curve of 0.918 (including nodule size) and 0.872 (excluding nodule size). Performance was improved through inclusion of parenchymal (0.938) and global features (0.932). These results show a trend toward increased performance when the parenchyma is included, coupled with the large number of significant parenchymal features that support our hypothesis: the pulmonary parenchyma is influenced differentially by malignant versus benign nodules, assisting CAD-based nodule characterizations.

  4. Nanotube Activities at NASA-Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    2004-01-01

    Nanotube activities at NASA-Johnson Space Center include production, purification, characterization as well as applications of single wall carbon nanotubes (SWCNTs). A parametric study of the pulsed laser ablation process is recently completed to monitor the effect of production parameters including temperature, buffer gas, flow rate, pressure, and laser fluence. Enhancement of production is achieved by rastering the graphite target and by increasing the target surface temperature with a cw laser. In-situ diagnostics during production included time resolved passive emission and laser induced fluorescence from the plume. The improvement of the purity by a variety of steps in the purification process is monitored by characterization techniques including SEM, TEM, Raman, UV-VIS-NIR and TGA. A recently established NASA-JSC protocol for SWCNT characterization is undergoing revision with feedback from nanotube community. Efforts at JSC over the past five years in composites have centered on structural polymer/nanotube systems. Recent activities broadened this focus to multifunctional materials, supercapacitors, fuel cells, regenerable CO2 absorbers, electromagnetic shielding, radiation dosimetry and thermal management systems of interest for human space flight. Preliminary tests indicate improvement of performance in most of these applications because of the large Surface area as well as high electrical and thermal conductivity exhibited by SWCNTs. Comparison with existing technologies and possible future improvements in the SWCNT materials sill be presented.

  5. Waveguide design, modeling, and optimization: from photonic nanodevices to integrated photonic circuits

    NASA Astrophysics Data System (ADS)

    Bordovsky, Michal; Catrysse, Peter; Dods, Steven; Freitas, Marcio; Klein, Jackson; Kotacka, Libor; Tzolov, Velko; Uzunov, Ivan M.; Zhang, Jiazong

    2004-05-01

    We present the state of the art for commercial design and simulation software in the 'front end' of photonic circuit design. One recent advance is to extend the flexibility of the software by using more than one numerical technique on the same optical circuit. There are a number of popular and proven techniques for analysis of photonic devices. Examples of these techniques include the Beam Propagation Method (BPM), the Coupled Mode Theory (CMT), and the Finite Difference Time Domain (FDTD) method. For larger photonic circuits, it may not be practical to analyze the whole circuit by any one of these methods alone, but often some smaller part of the circuit lends itself to at least one of these standard techniques. Later the whole problem can be analyzed on a unified platform. This kind of approach can enable analysis for cases that would otherwise be cumbersome, or even impossible. We demonstrate solutions for more complex structures ranging from the sub-component layout, through the entire device characterization, to the mask layout and its editing. We also present recent advances in the above well established techniques. This includes the analysis of nano-particles, metals, and non-linear materials by FDTD, photonic crystal design and analysis, and improved models for high concentration Er/Yb co-doped glass waveguide amplifiers.

  6. Atomic force microscopy of lead iodide crystal surfaces

    NASA Astrophysics Data System (ADS)

    George, M. A.; Azoulay, M.; Jayatirtha, H. N.; Biao, Y.; Burger, A.; Collins, W. E.; Silberman, E.

    1994-03-01

    Atomic force microscopy (AFM) was used to characterize the surface of lead iodide crystals. The high vapor pressure of lead iodide prohibits the use of traditional high resolution surface study techniques that require high vacuum conditions. AFM was used to image numerous insulating surface in various ambients, with very little sample preparation techniques needed. Freshly cleaved and modified surfaces, including, chemical and vacuum etched, and air aged surfaces, were examined. Both intrinsic and induced defects were imaged with high resolution. The results were compared to a similar AFM study of mercuric iodide surfaces and it was found that, at ambient conditions, lead iodide is significantly more stable than mercuric iodide.

  7. Measuring surface-area-to-volume ratios in soft porous materials using laser-polarized xenon interphase exchange nuclear magnetic resonance

    NASA Technical Reports Server (NTRS)

    Butler, J. P.; Mair, R. W.; Hoffmann, D.; Hrovat, M. I.; Rogers, R. A.; Topulos, G. P.; Walsworth, R. L.; Patz, S.

    2002-01-01

    We demonstrate a minimally invasive nuclear magnetic resonance (NMR) technique that enables determination of the surface-area-to-volume ratio (S/V) of soft porous materials from measurements of the diffusive exchange of laser-polarized 129Xe between gas in the pore space and 129Xe dissolved in the solid phase. We apply this NMR technique to porous polymer samples and find approximate agreement with destructive stereological measurements of S/V obtained with optical confocal microscopy. Potential applications of laser-polarized xenon interphase exchange NMR include measurements of in vivo lung function in humans and characterization of gas chromatography columns.

  8. Room temperature chemical synthesis of lead selenide thin films with preferred orientation

    NASA Astrophysics Data System (ADS)

    Kale, R. B.; Sartale, S. D.; Ganesan, V.; Lokhande, C. D.; Lin, Yi-Feng; Lu, Shih-Yuan

    2006-11-01

    Room temperature chemical synthesis of PbSe thin films was carried out from aqueous ammoniacal solution using Pb(CH3COO)2 as Pb2+ and Na2SeSO3 as Se2- ion sources. The films were characterized by a various techniques including, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fast Fourier transform (FFT) and UV-vis-NIR techniques. The study revealed that the PbSe thin film consists of preferentially oriented nanocubes with energy band gap of 0.5 eV.

  9. State of the Art Assessment of Simulation in Advanced Materials Development

    NASA Technical Reports Server (NTRS)

    Wise, Kristopher E.

    2008-01-01

    Advances in both the underlying theory and in the practical implementation of molecular modeling techniques have increased their value in the advanced materials development process. The objective is to accelerate the maturation of emerging materials by tightly integrating modeling with the other critical processes: synthesis, processing, and characterization. The aims of this report are to summarize the state of the art of existing modeling tools and to highlight a number of areas in which additional development is required. In an effort to maintain focus and limit length, this survey is restricted to classical simulation techniques including molecular dynamics and Monte Carlo simulations.

  10. Tl And Osl Response Of Turquoise For Dosimetric Application

    NASA Astrophysics Data System (ADS)

    Subedi, B.; Afouxenidis, D.; Polymeris, G. S.; Tsirlignanis, N.; Paraskevopoulos, K. M.; Kitis, G.

    Turquoise is one of the amongst first gem stones used in jewelry and possessing cultural value since 2000 BC (at least). This work attempts characterize this stone scientifically using both thermally (TL) and optically stimulated luminescence (OSL) techniques. The experimental investigation included 1) the study of the natural TL and OSL signals, 2) the reproducibility of TL sensitivity over repeated irradiation and TL readout cycles, 3) dependence of sensitivity on annealing temperatures and 4) the TL and OSL dose response curves. The potential use of the TL and OSL techniques in determination of provenance, accidental dosimetry and probably to authenticity and dating purposes are then discussed.

  11. Multidetector Computer Tomography: Evaluation of Blunt Chest Trauma in Adults

    PubMed Central

    Matos, António P.; Mascarenhas, Vasco; Herédia, Vasco

    2014-01-01

    Imaging plays an essential part of chest trauma care. By definition, the employed imaging technique in the emergency setting should reach the correct diagnosis as fast as possible. In severe chest blunt trauma, multidetector computer tomography (MDCT) has become part of the initial workup, mainly due to its high sensitivity and diagnostic accuracy of the technique for the detection and characterization of thoracic injuries and also due to its wide availability in tertiary care centers. The aim of this paper is to review and illustrate a spectrum of characteristic MDCT findings of blunt traumatic injuries of the chest including the lungs, mediastinum, pleural space, and chest wall. PMID:25295188

  12. Multidetector computer tomography: evaluation of blunt chest trauma in adults.

    PubMed

    Palas, João; Matos, António P; Mascarenhas, Vasco; Herédia, Vasco; Ramalho, Miguel

    2014-01-01

    Imaging plays an essential part of chest trauma care. By definition, the employed imaging technique in the emergency setting should reach the correct diagnosis as fast as possible. In severe chest blunt trauma, multidetector computer tomography (MDCT) has become part of the initial workup, mainly due to its high sensitivity and diagnostic accuracy of the technique for the detection and characterization of thoracic injuries and also due to its wide availability in tertiary care centers. The aim of this paper is to review and illustrate a spectrum of characteristic MDCT findings of blunt traumatic injuries of the chest including the lungs, mediastinum, pleural space, and chest wall.

  13. Efficient continuous-variable state tomography using Padua points

    NASA Astrophysics Data System (ADS)

    Landon-Cardinal, Olivier; Govia, Luke C. G.; Clerk, Aashish A.

    Further development of quantum technologies calls for efficient characterization methods for quantum systems. While recent work has focused on discrete systems of qubits, much remains to be done for continuous-variable systems such as a microwave mode in a cavity. We introduce a novel technique to reconstruct the full Husimi Q or Wigner function from measurements done at the Padua points in phase space, the optimal sampling points for interpolation in 2D. Our technique not only reduces the number of experimental measurements, but remarkably, also allows for the direct estimation of any density matrix element in the Fock basis, including off-diagonal elements. OLC acknowledges financial support from NSERC.

  14. Analysis and synthesis of distributed-lumped-active networks by digital computer

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The use of digital computational techniques in the analysis and synthesis of DLA (distributed lumped active) networks is considered. This class of networks consists of three distinct types of elements, namely, distributed elements (modeled by partial differential equations), lumped elements (modeled by algebraic relations and ordinary differential equations), and active elements (modeled by algebraic relations). Such a characterization is applicable to a broad class of circuits, especially including those usually referred to as linear integrated circuits, since the fabrication techniques for such circuits readily produce elements which may be modeled as distributed, as well as the more conventional lumped and active ones.

  15. Structural reliability assessment of the Oman India Pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Sharif, A.M.; Preston, R.

    1996-12-31

    Reliability techniques are increasingly finding application in design. The special design conditions for the deep water sections of the Oman India Pipeline dictate their use since the experience basis for application of standard deterministic techniques is inadequate. The paper discusses the reliability analysis as applied to the Oman India Pipeline, including selection of a collapse model, characterization of the variability in the parameters that affect pipe resistance to collapse, and implementation of first and second order reliability analyses to assess the probability of pipe failure. The reliability analysis results are used as the basis for establishing the pipe wall thicknessmore » requirements for the pipeline.« less

  16. Methods for characterizing magnetic footprints of perpendicular magnetic recording writer heads

    PubMed Central

    Li, Shaoping; Lin, Ed; George, Zach; Terrill, Dave; Mendez, H.; Santucci, J.; Yie, Derek

    2014-01-01

    In this work, the magnetic footprints, along with some of its dynamic features in recording process, of perpendicular magnetic recording writer heads have been characterized by using three different techniques. Those techniques are the spin-stand stationary footprint technique, the spin-stand dynamic footprint technique, and the coherent writing technique combined with magnetic force microscope imaging method. The characteristics of those techniques have been compared to one another. It was found experimentally that the spin-stand stationary method could not precisely catch some peculiar recording dynamics of the write heads in certain conditions. The advantages and disadvantages among all those techniques are also examined and discussed in detail. PMID:24753633

  17. Fragment size distribution statistics in dynamic fragmentation of laser shock-loaded tin

    NASA Astrophysics Data System (ADS)

    He, Weihua; Xin, Jianting; Zhao, Yongqiang; Chu, Genbai; Xi, Tao; Shui, Min; Lu, Feng; Gu, Yuqiu

    2017-06-01

    This work investigates the geometric statistics method to characterize the size distribution of tin fragments produced in the laser shock-loaded dynamic fragmentation process. In the shock experiments, the ejection of the tin sample with etched V-shape groove in the free surface are collected by the soft recovery technique. Subsequently, the produced fragments are automatically detected with the fine post-shot analysis techniques including the X-ray micro-tomography and the improved watershed method. To characterize the size distributions of the fragments, a theoretical random geometric statistics model based on Poisson mixtures is derived for dynamic heterogeneous fragmentation problem, which reveals linear combinational exponential distribution. The experimental data related to fragment size distributions of the laser shock-loaded tin sample are examined with the proposed theoretical model, and its fitting performance is compared with that of other state-of-the-art fragment size distribution models. The comparison results prove that our proposed model can provide far more reasonable fitting result for the laser shock-loaded tin.

  18. Imaging TiO2 nanoparticles on GaN nanowires with electrostatic force microscopy

    NASA Astrophysics Data System (ADS)

    Xie, Ting; Wen, Baomei; Liu, Guannan; Guo, Shiqi; Motayed, Abhishek; Murphy, Thomas; Gomez, R. D.

    Gallium nitride (GaN) nanowires that are functionalized with metal-oxides nanoparticles have been explored extensively for gas sensing applications in the past few years. These sensors have several advantages over conventional schemes, including miniature size, low-power consumption and fast response and recovery times. The morphology of the oxide functionalization layer is critical to achieve faster response and recovery times, with the optimal size distribution of nanoparticles being in the range of 10 to 30 nm. However, it is challenging to characterize these nanoparticles on GaN nanowires using common techniques such as scanning electron microscopy, transmission electron microscopy, and x-ray diffraction. Here, we demonstrate electrostatic force microscopy in combination with atomic force microscopy as a non-destructive technique for morphological characterization of the dispersed TiO2 nanoparticles on GaN nanowires. We also discuss the applicability of this method to other material systems with a proposed tip-surface capacitor model. This project was sponsored through N5 Sensors and the Maryland Industrial Partnerships (MIPS, #5418).

  19. Ground-based observation of near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Gaffey, Michael J.

    1992-01-01

    An increased ground-based observation program is an essential component of any serious attempt to assess the resource potential of near-Earth asteroids. A vigorous search and characterization program could lead to the discovery and description of about 400 to 500 near-Earth asteroids in the next 20 years. This program, in conjunction with meteorite studies, would provide the data base to ensure that the results of a small number of asteroid-rendezvous and sample-return missions could be extrapolated with confidence into a geological base map of the Aten, Apollo, and Amor asteroids. Ground-based spectral studies of nearly 30 members of the Aten/Apollo/Amor population provide good evidence that this class includes bodies composed of silicates, metal-silicates, and carbonaceous assemblages similar to those found in meteorites. The instruments that are being used or could be used to search for near-Earth asteroids are listed. Techniques useful in characterizing asteroids and the types of information obtainable using these techniques are listed.

  20. Ultrahigh- and high-speed photography, videography, and photonics '91; Proceedings of the Meeting, San Diego, CA, July 24-26, 1991

    NASA Astrophysics Data System (ADS)

    Jaanimagi, Paul A.

    1992-01-01

    This volume presents papers grouped under the topics on advances in streak and framing camera technology, applications of ultrahigh-speed photography, characterizing high-speed instrumentation, high-speed electronic imaging technology and applications, new technology for high-speed photography, high-speed imaging and photonics in detonics, and high-speed velocimetry. The papers presented include those on a subpicosecond X-ray streak camera, photocathodes for ultrasoft X-ray region, streak tube dynamic range, high-speed TV cameras for streak tube readout, femtosecond light-in-flight holography, and electrooptical systems characterization techniques. Attention is also given to high-speed electronic memory video recording techniques, high-speed IR imaging of repetitive events using a standard RS-170 imager, use of a CCD array as a medium-speed streak camera, the photography of shock waves in explosive crystals, a single-frame camera based on the type LD-S-10 intensifier tube, and jitter diagnosis for pico- and femtosecond sources.

  1. Integrated approach to characterize fouling on a flat sheet membrane gravity driven submerged membrane bioreactor.

    PubMed

    Fortunato, Luca; Jeong, Sanghyun; Wang, Yiran; Behzad, Ali R; Leiknes, TorOve

    2016-12-01

    Fouling in membrane bioreactors (MBR) is acknowledged to be complex and unclear. An integrated characterization methodology was employed in this study to understand the fouling on a gravity-driven submerged MBR (GD-SMBR). It involved the use of different analytical tools, including optical coherence tomography (OCT), liquid chromatography with organic carbon detection (LC-OCD), total organic carbon (TOC), flow cytometer (FCM), adenosine triphosphate analysis (ATP) and scanning electron microscopy (SEM). The three-dimensional (3D) biomass morphology was acquired in a real-time through non-destructive and in situ OCT scanning of 75% of the total membrane surface directly in the tank. Results showed that the biomass layer was homogeneously distributed on the membrane surface. The amount of biomass was selectively linked with final destructive autopsy techniques. The LC-OCD analysis indicated the abundance of low molecular weight (LMW) organics in the fouling composition. Three different SEM techniques were applied to investigate the detailed fouling morphology on the membrane. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Endoscopic ultrasound-guided techniques for diagnosing pancreatic mass lesions: Can we do better?

    PubMed Central

    Storm, Andrew C; Lee, Linda S

    2016-01-01

    The diagnostic approach to a possible pancreatic mass lesion relies first upon various non-invasive imaging modalities, including computed tomography, ultrasound, and magnetic resonance imaging techniques. Once a suspect lesion has been identified, tissue acquisition for characterization of the lesion is often paramount in developing an individualized therapeutic approach. Given the high prevalence and mortality associated with pancreatic cancer, an ideal approach to diagnosing pancreatic mass lesions would be safe, highly sensitive, and reproducible across various practice settings. Tools, in addition to radiologic imaging, currently employed in the initial evaluation of a patient with a pancreatic mass lesion include serum tumor markers, endoscopic retrograde cholangiopancreatography, and endoscopic ultrasound-guided fine needle aspiration (EUS-FNA). EUS-FNA has grown to become the gold standard in tissue diagnosis of pancreatic lesions. PMID:27818584

  3. Pre-clinical characterization of tissue engineering constructs for bone and cartilage regeneration

    PubMed Central

    Trachtenberg, Jordan E.; Vo, Tiffany N.; Mikos, Antonios G.

    2014-01-01

    Pre-clinical animal models play a crucial role in the translation of biomedical technologies from the bench top to the bedside. However, there is a need for improved techniques to evaluate implanted biomaterials within the host, including consideration of the care and ethics associated with animal studies, as well as the evaluation of host tissue repair in a clinically relevant manner. This review discusses non-invasive, quantitative, and real-time techniques for evaluating host-materials interactions, quality and rate of neotissue formation, and functional outcomes of implanted biomaterials for bone and cartilage tissue engineering. Specifically, a comparison will be presented for pre-clinical animal models, histological scoring systems, and non-invasive imaging modalities. Additionally, novel technologies to track delivered cells and growth factors will be discussed, including methods to directly correlate their release with tissue growth. PMID:25319726

  4. Pre-clinical characterization of tissue engineering constructs for bone and cartilage regeneration.

    PubMed

    Trachtenberg, Jordan E; Vo, Tiffany N; Mikos, Antonios G

    2015-03-01

    Pre-clinical animal models play a crucial role in the translation of biomedical technologies from the bench top to the bedside. However, there is a need for improved techniques to evaluate implanted biomaterials within the host, including consideration of the care and ethics associated with animal studies, as well as the evaluation of host tissue repair in a clinically relevant manner. This review discusses non-invasive, quantitative, and real-time techniques for evaluating host-materials interactions, quality and rate of neotissue formation, and functional outcomes of implanted biomaterials for bone and cartilage tissue engineering. Specifically, a comparison will be presented for pre-clinical animal models, histological scoring systems, and non-invasive imaging modalities. Additionally, novel technologies to track delivered cells and growth factors will be discussed, including methods to directly correlate their release with tissue growth.

  5. Noise analysis for CCD-based ultraviolet and visible spectrophotometry.

    PubMed

    Davenport, John J; Hodgkinson, Jane; Saffell, John R; Tatam, Ralph P

    2015-09-20

    We present the results of a detailed analysis of the noise behavior of two CCD spectrometers in common use, an AvaSpec-3648 CCD UV spectrometer and an Ocean Optics S2000 Vis spectrometer. Light sources used include a deuterium UV/Vis lamp and UV and visible LEDs. Common noise phenomena include source fluctuation noise, photoresponse nonuniformity, dark current noise, fixed pattern noise, and read noise. These were identified and characterized by varying light source, spectrometer settings, or temperature. A number of noise-limiting techniques are proposed, demonstrating a best-case spectroscopic noise equivalent absorbance of 3.5×10(-4)  AU for the AvaSpec-3648 and 5.6×10(-4)  AU for the Ocean Optics S2000 over a 30 s integration period. These techniques can be used on other CCD spectrometers to optimize performance.

  6. Development, implementation and evaluation of satellite-aided agricultural monitoring systems

    NASA Technical Reports Server (NTRS)

    Cicone, R. C.; Crist, E. P.; Metzler, M.; Nuesch, D.

    1982-01-01

    Research activities in support of AgRISTARS Inventory Technology Development Project in the use of aerospace remote sensing for agricultural inventory described include: (1) corn and soybean crop spectral temporal signature characterization; (2) efficient area estimation techniques development; and (3) advanced satellite and sensor system definition. Studies include a statistical evaluation of the impact of cultural and environmental factors on crop spectral profiles, the development and evaluation of an automatic crop area estimation procedure, and the joint use of SEASAT-SAR and LANDSAT MSS for crop inventory.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucia, M., E-mail: mlucia@pppl.gov; Kaita, R.; Majeski, R.

    The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques.

  8. Vegetation and Soils

    Treesearch

    Sammy L. King; Mark H. Eisenbies; David Gartner

    2000-01-01

    Characterization of bottomland hardwood vegetation in relatively undisturbed forests can provide critical information for developing effective wetland creation and restoration techniques and for assessing the impacts of management and development. Classification is a useful technique in characterizing vegetation because it summarizes complex data sets, assists in...

  9. Characterization of Ultra-fine Grained and Nanocrystalline Materials Using Transmission Kikuchi Diffraction

    PubMed Central

    Proust, Gwénaëlle; Trimby, Patrick; Piazolo, Sandra; Retraint, Delphine

    2017-01-01

    One of the challenges in microstructure analysis nowadays resides in the reliable and accurate characterization of ultra-fine grained (UFG) and nanocrystalline materials. The traditional techniques associated with scanning electron microscopy (SEM), such as electron backscatter diffraction (EBSD), do not possess the required spatial resolution due to the large interaction volume between the electrons from the beam and the atoms of the material. Transmission electron microscopy (TEM) has the required spatial resolution. However, due to a lack of automation in the analysis system, the rate of data acquisition is slow which limits the area of the specimen that can be characterized. This paper presents a new characterization technique, Transmission Kikuchi Diffraction (TKD), which enables the analysis of the microstructure of UFG and nanocrystalline materials using an SEM equipped with a standard EBSD system. The spatial resolution of this technique can reach 2 nm. This technique can be applied to a large range of materials that would be difficult to analyze using traditional EBSD. After presenting the experimental set up and describing the different steps necessary to realize a TKD analysis, examples of its use on metal alloys and minerals are shown to illustrate the resolution of the technique and its flexibility in term of material to be characterized. PMID:28447998

  10. Characterization of Ultra-fine Grained and Nanocrystalline Materials Using Transmission Kikuchi Diffraction.

    PubMed

    Proust, Gwénaëlle; Trimby, Patrick; Piazolo, Sandra; Retraint, Delphine

    2017-04-01

    One of the challenges in microstructure analysis nowadays resides in the reliable and accurate characterization of ultra-fine grained (UFG) and nanocrystalline materials. The traditional techniques associated with scanning electron microscopy (SEM), such as electron backscatter diffraction (EBSD), do not possess the required spatial resolution due to the large interaction volume between the electrons from the beam and the atoms of the material. Transmission electron microscopy (TEM) has the required spatial resolution. However, due to a lack of automation in the analysis system, the rate of data acquisition is slow which limits the area of the specimen that can be characterized. This paper presents a new characterization technique, Transmission Kikuchi Diffraction (TKD), which enables the analysis of the microstructure of UFG and nanocrystalline materials using an SEM equipped with a standard EBSD system. The spatial resolution of this technique can reach 2 nm. This technique can be applied to a large range of materials that would be difficult to analyze using traditional EBSD. After presenting the experimental set up and describing the different steps necessary to realize a TKD analysis, examples of its use on metal alloys and minerals are shown to illustrate the resolution of the technique and its flexibility in term of material to be characterized.

  11. Pre- and Postoperative Imaging of the Aortic Root

    PubMed Central

    Chan, Frandics P.; Mitchell, R. Scott; Miller, D. Craig; Fleischmann, Dominik

    2016-01-01

    Three-dimensional datasets acquired using computed tomography and magnetic resonance imaging are ideally suited for characterization of the aortic root. These modalities offer different advantages and limitations, which must be weighed according to the clinical context. This article provides an overview of current aortic root imaging, highlighting normal anatomy, pathologic conditions, imaging techniques, measurement thresholds, relevant surgical procedures, postoperative complications and potential imaging pitfalls. Patients with a range of clinical conditions are predisposed to aortic root disease, including Marfan syndrome, bicuspid aortic valve, vascular Ehlers-Danlos syndrome, and Loeys-Dietz syndrome. Various surgical techniques may be used to repair the aortic root, including placement of a composite valve graft, such as the Bentall and Cabrol procedures; placement of an aortic root graft with preservation of the native valve, such as the Yacoub and David techniques; and implantation of a biologic graft, such as a homograft, autograft, or xenograft. Potential imaging pitfalls in the postoperative period include mimickers of pathologic processes such as felt pledgets, graft folds, and nonabsorbable hemostatic agents. Postoperative complications that may be encountered include pseudoaneurysms, infection, and dehiscence. Radiologists should be familiar with normal aortic root anatomy, surgical procedures, and postoperative complications, to accurately interpret pre- and postoperative imaging performed for evaluation of the aortic root. Online supplemental material is available for this article. ©RSNA, 2015 PMID:26761529

  12. Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, D.K.; Gitt, M.; Williams, G.A.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations.more » This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.« less

  13. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, D.K.; Gitt, M.; Williams, G.A.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations.more » This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.« less

  14. Physicochemical Characterization of Iron Carbohydrate Colloid Drug Products.

    PubMed

    Zou, Peng; Tyner, Katherine; Raw, Andre; Lee, Sau

    2017-09-01

    Iron carbohydrate colloid drug products are intravenously administered to patients with chronic kidney disease for the treatment of iron deficiency anemia. Physicochemical characterization of iron colloids is critical to establish pharmaceutical equivalence between an innovator iron colloid product and generic version. The purpose of this review is to summarize literature-reported techniques for physicochemical characterization of iron carbohydrate colloid drug products. The mechanisms, reported testing results, and common technical pitfalls for individual characterization test are discussed. A better understanding of the physicochemical characterization techniques will facilitate generic iron carbohydrate colloid product development, accelerate products to market, and ensure iron carbohydrate colloid product quality.

  15. The role of acceptable knowledge in transuranic waste disposal operations - 11117

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chancellor, Christopher John; Nelson, Roger

    2010-11-08

    The Acceptable Knowledge (AK) process plays a key role in the delineation of waste streams destined for the Waste Isolation Pilot Plant (WIPP). General Electric's Vallecitos Nuclear Center (GEVNC) provides for an ideal case study of the application of AK in a multiple steward environment. In this review we will elucidate the pivotal role Acceptable Knowledge played in segregating Department of Energy (DOE) responsibilities from a commercial facility. The Acceptable Knowledge process is a necessary component of waste characterization that determines whether or not a waste stream may be considered for disposal at the WIPP site. This process may bemore » thought of as an effort to gain a thorough understanding of the waste origin, chemical content, and physical form gleaned by the collection of documentation that concerns generator/storage site history, mission, and operations; in addition to waste stream specific information which includes the waste generation process, the waste matrix, the quantity of waste concerned, and the radiological and chemical make up of the waste. The collection and dissemination of relevant documentation is the fundamental requirement for the AK process to work. Acceptable Knowledge is the predominant process of characterization and, therefore, a crucial part of WIPP's transuranic waste characterization program. This characterization process, when conducted to the standards set forth in WIPP's operating permit, requires confirmation/verification by physical techniques such as Non-Destructive Examination (NDE), Visual Examination (VE), and Non-Destructive Assay (NDA). These physical characterization techniques may vary in their appropriateness for a given waste stream; however, nothing will allow the substitution or exclusion of AK. Beyond the normal scope of operations, AK may be considered, when appropriate, a surrogate for the physical characterization techniques in a procedure that appeals to concepts such As Low As Reasonably Achievable (ALARA) and budgetary savings. This substitution is referred to as an Acceptable Knowledge Sufficiency Determination. With a Sufficiency Determination Request, AK may supplant the need for one or all of the physical analysis methods. This powerful procedure may be used on a scale as small as a single container to that of a vast waste stream. Only under the most stringent requirements will an AK Sufficiency Determination be approved by the regulators and, to date, only six such Sufficiency Determinations have been approved. Although Acceptable Knowledge is legislated into the operational procedures of the WIPP facility there is more to it than compliance. AK is not merely one of a long list of requirements in the characterization and verification of transuranic (TRU) waste destined for the WIPP. Acceptable Knowledge goes beyond the regulatory threshold by offering a way to reduce risk, cost, time, and uncertainty on its own laurels. Therefore, AK alone can be argued superior to any other waste characterization technique.« less

  16. Characterization technique for long optical fiber cavities based on beating spectrum of multi-longitudinal mode fiber laser and beating spectrum in the RF domain

    NASA Astrophysics Data System (ADS)

    Adib, George A.; Sabry, Yasser M.; Khalil, Diaa

    2016-03-01

    The characterization of long fiber cavities is essential for many systems to predict the system practical performance. The conventional techniques for optical cavity characterization are not suitable for long fiber cavities due to the cavities' small free spectral ranges and due to the length variations caused by the environmental effects. In this work, we present a novel technique to characterize long fiber cavities using multi-longitudinal mode fiber laser source and RF spectrum analyzer. The fiber laser source is formed in a ring configuration, where the fiber laser cavity length is chosen to be 15 km to ensure that the free spectral range is much smaller than the free spectral range of the characterized passive fiber cavities. The method has been applied experimentally to characterize ring cavities with lengths of 6.2 m and 2.4 km. The results are compared to theoretical predictions with very good agreement.

  17. Stennis Space Center Verification & Validation Capabilities

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; O'Neal, Duane; Knowlton, Kelly; Ross, Kenton; Blonski, Slawomir

    2007-01-01

    Scientists within NASA#s Applied Research & Technology Project Office (formerly the Applied Sciences Directorate) have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site enables the in-flight characterization of satellite and airborne high spatial resolution remote sensing systems and their products. The smaller scale of the newer high resolution remote sensing systems allows scientists to characterize geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists have used the SSC V&V site to characterize thermal infrared systems. Enhancements are being considered to characterize active lidar systems. SSC employs geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment, and thermal calibration ponds to characterize remote sensing data products. Similar techniques are used to characterize moderate spatial resolution sensing systems at selected nearby locations. The SSC Instrument Validation Lab is a key component of the V&V capability and is used to calibrate field instrumentation and to provide National Institute of Standards and Technology traceability. This poster presents a description of the SSC characterization capabilities and examples of calibration data.

  18. Calibration and performance measurements for the nasa deep space network aperture enhancement project (daep)

    NASA Astrophysics Data System (ADS)

    LaBelle, Remi C.; Rochblatt, David J.

    2018-06-01

    The NASA Deep Space Network (DSN) has recently constructed two new 34-m antennas at the Canberra Deep Space Communications Complex (CDSCC). These new antennas are part of the larger DAEP project to add six new 34-m antennas to the DSN, including two in Madrid, three in Canberra and one in Goldstone (California). The DAEP project included development and implementation of several new technologies for the X, and Ka (32 GHz) -band uplink and downlink electronics. The electronics upgrades were driven by several different considerations, including parts obsolescence, cost reduction, improved reliability and maintainability, and capability to meet future performance requirements. The new antennas are required to support TT&C links for all of the NASA deep-space spacecraft, as well as for several international partners. Some of these missions, such as Voyager 1 and 2, have very limited link budgets, which results in demanding requirements for system G/T performance. These antennas are also required to support radio science missions with several spacecraft, which dictate some demanding requirements for spectral purity, amplitude stability and phase stability for both the uplink and downlink electronics. After completion of these upgrades, a comprehensive campaign of tests and measurements took place to characterize the electronics and calibrate the antennas. Radiometric measurement techniques were applied to characterize, calibrate, and optimize the performance of the antenna parameters. These included optical and RF high-resolution holographic and total power radiometry techniques. The methodology and techniques utilized for the measurement and calibration of the antennas is described in this paper. Lessons learned (not all discussed in this paper) from the commissioning of the first antenna (DSS-35) were applied to the commissioning of the second antenna (DSS-36). These resulted in achieving antenna aperture efficiency of 66% (for DSS-36), at Ka-Band (32-Ghz), which is currently the highest operating frequency for these antennas. The other measurements and results described include antenna noise temperature, photogrammetry and holography alignment of antenna panels, beam-waveguide mirrors, and subreflector, antenna aperture efficiencies and G/T versus frequency, and antenna pointing models. The first antenna (DSS-35) entered into operations in October 2014 and the 2nd antenna (DSS-36) in October 2016. This paper describes the measurement techniques and results of the testing and calibration for both antennas, along with the driving requirements.

  19. LDEF polymeric materials: A summary of Langley characterization

    NASA Technical Reports Server (NTRS)

    Young, Philip R.; Slemp, Wayne S.; Whitley, Karen S.; Kalil, Carol R.; Siochi, Emilie J.; Shen, James Y.; Chang, A. C.

    1995-01-01

    The NASA Long Duration Exposure Facility (LDEF) enabled the exposure of a wide variety of materials to the low earth orbit (LEO) environment. This paper provides a summary of research conducted at the Langley Research Center into the response of selected LDEF polymers to this environment. Materials examined include graphite fiber reinforced epoxy, polysulfone, and additional polyimide matrix composites, films of FEP Teflon, Kapton, several experimental high performance polyimides, and films of more traditional polymers such as poly(vinyl toluene) and polystyrene. Exposure duration was either 10 months or 5.8 years. Flight and control specimens were characterized by a number of analytical techniques including ultraviolet-visible and infrared spectroscopy, thermal analysis, scanning electron and scanning tunneling microscopy, x-ray photoelectron spectroscopy, and, in some instances, selected solution property measurements. Characterized effects were found to be primarily surface phenomena. These effects included atomic oxygen-induced erosion of unprotected surfaces and ultraviolet-induced discoloration and changes in selected molecular level parameters. No gross changes in molecular structure or glass transition temperature were noted. The intent of this characterization is to increase our fundamental knowledge of space environmental effects as an aid in developing new and improved polymers for space application. A secondary objective is to develop benchmarks to enhance our methodology for the ground-based simulation of environmental effects so that polymer performance in space can be more reliably predicted.

  20. Ultrasonic geometrical characterization of periodically corrugated surfaces.

    PubMed

    Liu, Jingfei; Declercq, Nico F

    2013-04-01

    Accurate characterization of the characteristic dimensions of a periodically corrugated surface using ultrasonic imaging technique is investigated both theoretically and experimentally. The possibility of accurately characterizing the characteristic dimensions is discussed. The condition for accurate characterization and the quantitative relationship between the accuracy and its determining parameters are given. The strategies to avoid diffraction effects instigated by the periodical nature of a corrugated surface are also discussed. Major causes of erroneous measurements are theoretically discussed and experimentally illustrated. A comparison is made between the presented results and the optical measurements, revealing acceptable agreement. This work realistically exposes the capability of the proposed ultrasonic technique to accurately characterize the lateral and vertical characteristic dimensions of corrugated surfaces. Both the general principles developed theoretically as well as the proposed practical techniques may serve as useful guidelines to peers. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Authentication via wavefront-shaped optical responses

    NASA Astrophysics Data System (ADS)

    Eilers, Hergen; Anderson, Benjamin R.; Gunawidjaja, Ray

    2018-02-01

    Authentication/tamper-indication is required in a wide range of applications, including nuclear materials management and product counterfeit detection. State-of-the-art techniques include reflective particle tags, laser speckle authentication, and birefringent seals. Each of these passive techniques has its own advantages and disadvantages, including the need for complex image comparisons, limited flexibility, sensitivity to environmental conditions, limited functionality, etc. We have developed a new active approach to address some of these short-comings. The use of an active characterization technique adds more flexibility and additional layers of security over current techniques. Our approach uses randomly-distributed nanoparticles embedded in a polymer matrix (tag/seal) which is attached to the item to be secured. A spatial light modulator is used to adjust the wavefront of a laser which interacts with the tag/seal, and a detector is used to monitor this interaction. The interaction can occur in various ways, including transmittance, reflectance, fluorescence, random lasing, etc. For example, at the time of origination, the wavefront-shaped reflectance from a tag/seal can be adjusted to result in a specific pattern (symbol, words, etc.) Any tampering with the tag/seal would results in a disturbance of the random orientation of the nanoparticles and thus distort the reflectance pattern. A holographic waveplate could be inserted into the laser beam for verification. The absence/distortion of the original pattern would then indicate that tampering has occurred. We have tested the tag/seal's and authentication method's tamper-indicating ability using various attack methods, including mechanical, thermal, and chemical attacks, and have verified our material/method's robust tamper-indicating ability.

  2. Space processing of crystalline materials: A study of known methods of electrical characterization of semiconductors: Bibliography

    NASA Technical Reports Server (NTRS)

    Castle, J. G.

    1976-01-01

    A selective bibliography is given on electrical characterization techniques for semiconductors. Emphasis is placed on noncontacting techniques for the standard electrical parameters for monitoring crystal growth in space, preferably in real time with high resolution.

  3. PARTITIONING INTERWELL TRACER TEST FOR NAPL SOURCE CHARACTERIZATION: A GENERAL OVERVIEW

    EPA Science Inventory

    Innovative and nondestructive characterization techniques have been developed to locate and quantify nonaqueous phase liquids (NAPLs) in the vadose and saturated zones in the subsurface environment. One such technique is the partitioning interwell tracer test (PITT). The PITT i...

  4. Analytical technique characterizes all trace contaminants in water

    NASA Technical Reports Server (NTRS)

    Foster, J. N.; Lysyj, I.; Nelson, K. H.

    1967-01-01

    Properly programmed combination of advanced chemical and physical analytical techniques characterize critically all trace contaminants in both the potable and waste water from the Apollo Command Module. This methodology can also be applied to the investigation of the source of water pollution.

  5. Approaches for Achieving Broadband Achromatic Phase Shifts for Visible Nulling Coronagraphy

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Lyon, Richard G.

    2012-01-01

    Visible nulling coronagraphy is one of the few approaches to the direct detection and characterization of Jovian and Terrestrial exoplanets that works with segmented aperture telescopes. Jovian and Terrestrial planets require at least 10(exp -9) and 10(exp -10) image plane contrasts, respectively, within the spectral bandpass and thus require a nearly achromatic pi-phase difference between the arms of the interferometer. An achromatic pi-phase shift can be achieved by several techniques, including sequential angled thick glass plates of varying dispersive materials, distributed thin-film multilayer coatings, and techniques that leverage the polarization-dependent phase shift of total-internal reflections. Herein we describe two such techniques: sequential thick glass plates and Fresnel rhomb prisms. A viable technique must achieve the achromatic phase shift while simultaneously minimizing the intensity difference, chromatic beam spread and polarization variation between each arm. In this paper we describe the above techniques and report on efforts to design, model, fabricate, align the trades associated with each technique that will lead to an implementations of the most promising one in Goddard's Visible Nulling Coronagraph (VNC).

  6. Neuroimaging of Cerebrovascular Disease in the Aging Brain

    PubMed Central

    Gupta, Ajay; Nair, Sreejit; Schweitzer, Andrew D.; Kishore, Sirish; Johnson, Carl E.; Comunale, Joseph P.; Tsiouris, Apostolos J.; Sanelli, Pina C.

    2012-01-01

    Cerebrovascular disease remains a significant public health burden with its greatest impact on the elderly population. Advances in neuroimaging techniques allow detailed and sophisticated evaluation of many manifestations of cerebrovascular disease in the brain parenchyma as well as in the intracranial and extracranial vasculature. These tools continue to contribute to our understanding of the multifactorial processes that occur in the age-dependent development of cerebrovascular disease. Structural abnormalities related to vascular disease in the brain and vessels have been well characterized with CT and MRI based techniques. We review some of the pathophysiologic mechanisms in the aging brain and cerebral vasculature and the related structural abnormalities detectable on neuroimaging, including evaluation of age-related white matter changes, atherosclerosis of the cerebral vasculature, and cerebral infarction. In addition, newer neuroimaging techniques, such as diffusion tensor imaging, perfusion techniques, and assessment of cerebrovascular reserve, are also reviewed, as these techniques can detect physiologic alterations which complement the morphologic changes that cause cerebrovascular disease in the aging brain.Further investigation of these advanced imaging techniques has potential application to the understanding and diagnosis of cerebrovascular disease in the elderly. PMID:23185721

  7. Silica surface characterization as a function of formation and surface treatment using traditional methods and proteins as surface probes

    NASA Astrophysics Data System (ADS)

    Korwin-Edson, Michelle Lynn

    Previous works have shown that cells proliferate differently depending on the chemistry of the glass on which they are growing. Since proteins form the bonds between cells and glass, the hypothesis of this study is that proteins can distinguish between surface chemical variations of glass. This theory was examined through the use of various silica forms, a few select proteins, four surface treatment procedures, and a variety of characterization techniques. The silica forms include amorphous slides, cane, fiber, microspheres, fumed silica and quartz crystal terminals. The proteins selected were human serum albumin, mouse Immunoglobulin G, streptavidin, antimouse IgG, and biotin. The surface treatments utilized to bring about chemical variation on the silica surface were HF acid etching, ethanol cleaning, water plasma treatments, and 1000°C heat treatments. The characterization techniques encompassed both traditional material techniques and biological methods. The techniques studied were atomic force microscopy (AFM), chemical force microscopy (CFM), glancing incidence X-ray analysis (GIXA), fluorescence spectrometry, polyacrylamide gel electrophoresis (SDS-PAGE), and bicinchoninic acid (BCA) assay. It was the main goal of this project to determine the feasibility of these techniques in utilizing proteins as glass surface probes. Proteins were adsorbed to all of the various forms and the binding ability was studied by either stripping off the protein and quantifying them, or by deductive reasoning through the use of "depleted" protein solutions. Fluorimetry and BCA assay both utilized the depleted solutions, but the high error associated with this protocol was prohibitive. SDS-PAGE with streptavidin was very difficult due to staining problems, however the IgG proteins were able to be quantified with some success. GIXA showed that the protein layer thickness is monolayer in nature, which agrees well with the AFM fluid tapping data on protein height, but in addition showed features on the order of ten protein agglomerations. CFM is by far the most promising technique for utilizing proteins as surface probes. Functionalized tips of -COOH, streptavidin and -CH3 are able to discern between surface treatments, but not forms. A general conclusion is that adhesion forces are greatest for -COOH, then streptavidin, and least for -CH3.

  8. Low Velocity Impact Testing and Nondestructive Evaluation of Transparent Materials

    NASA Astrophysics Data System (ADS)

    Brennan, R. E.; Green, W. H.

    2011-06-01

    Advanced transparent materials are used in protective systems for enhancing the survivability of ground vehicles, air vehicles, and personnel in applications such as face shields, riot gear, and vehicle windows. Low velocity impact damage can limit visibility and compromise the structural integrity of a transparent system, increasing the likelihood of further damage or penetration from a high velocity impact strike. For this reason, it is critical to determine damage tolerance levels of transparent systems to indicate whether or not a component should be replaced. In this study, transparent laminate systems will be tested by comparing baseline conditions to experimentally controlled damage states. Destructive testing including air gun and sphere impact testing will be used to replicate low velocity impacts in the field. Characterization of the damaged state will include basic visual inspection as well as nondestructive techniques including cross-polarization, x-ray, and ultrasound. The combination of destructive testing and characterization of the resulting damage can help to establish a damage acceptance criterion for materials used in protective systems.

  9. The Solar Cycle.

    PubMed

    Hathaway, David H

    The solar cycle is reviewed. The 11-year cycle of solar activity is characterized by the rise and fall in the numbers and surface area of sunspots. A number of other solar activity indicators also vary in association with the sunspots including; the 10.7 cm radio flux, the total solar irradiance, the magnetic field, flares and coronal mass ejections, geomagnetic activity, galactic cosmic ray fluxes, and radioisotopes in tree rings and ice cores. Individual solar cycles are characterized by their maxima and minima, cycle periods and amplitudes, cycle shape, the equatorward drift of the active latitudes, hemispheric asymmetries, and active longitudes. Cycle-to-cycle variability includes the Maunder Minimum, the Gleissberg Cycle, and the Gnevyshev-Ohl (even-odd) Rule. Short-term variability includes the 154-day periodicity, quasi-biennial variations, and double-peaked maxima. We conclude with an examination of prediction techniques for the solar cycle and a closer look at cycles 23 and 24. Supplementary material is available for this article at 10.1007/lrsp-2015-4.

  10. Peyronie's Disease: Still a Surgical Disease.

    PubMed

    Martinez, Daniel; Ercole, Cesar E; Hakky, Tariq S; Kramer, Andrew; Carrion, Rafael

    2012-01-01

    Peyronie's Disease (PD) remains a challenging and clinically significant morbid condition. Since its first description by François Gigot de la Peyronie, much of the treatment for PD remains nonstandardized. PD is characterized by the formation of fibrous plaques at the level of the tunica albuginea. Clinical manifestations include morphologic changes, such as curvatures and hourglass deformities. Here, we review the common surgical techniques for the management of patients with PD.

  11. Spider Silk: From Protein-Rich Gland Fluids to Diverse Biopolymer Fibers

    DTIC Science & Technology

    2016-01-06

    characterize the protein-rich fluid in the various spider silk producing glands. We have been using a battery of magnetic resonance methods including...solution and solid-state nuclear magnetic resonance (NMR) and micro imaging (MRI) in combination with wide angle and small angle X-ray diffraction...range of magnetic resonance methods. We successfully developed magnetic resonance imaging (MRI) techniques with localized spectroscopy to probe the silk

  12. Processing LiDAR Data to Predict Natural Hazards

    NASA Technical Reports Server (NTRS)

    Fairweather, Ian; Crabtree, Robert; Hager, Stacey

    2008-01-01

    ELF-Base and ELF-Hazards (wherein 'ELF' signifies 'Extract LiDAR Features' and 'LiDAR' signifies 'light detection and ranging') are developmental software modules for processing remote-sensing LiDAR data to identify past natural hazards (principally, landslides) and predict future ones. ELF-Base processes raw LiDAR data, including LiDAR intensity data that are often ignored in other software, to create digital terrain models (DTMs) and digital feature models (DFMs) with sub-meter accuracy. ELF-Hazards fuses raw LiDAR data, data from multispectral and hyperspectral optical images, and DTMs and DFMs generated by ELF-Base to generate hazard risk maps. Advanced algorithms in these software modules include line-enhancement and edge-detection algorithms, surface-characterization algorithms, and algorithms that implement innovative data-fusion techniques. The line-extraction and edge-detection algorithms enable users to locate such features as faults and landslide headwall scarps. Also implemented in this software are improved methodologies for identification and mapping of past landslide events by use of (1) accurate, ELF-derived surface characterizations and (2) three LiDAR/optical-data-fusion techniques: post-classification data fusion, maximum-likelihood estimation modeling, and hierarchical within-class discrimination. This software is expected to enable faster, more accurate forecasting of natural hazards than has previously been possible.

  13. SPRUCE Advanced Molecular Techniques Provide a Rigorous Method for Characterizing Organic Matter Quality in Complex Systems: Supporting Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Rachel M; Tfaily, Malak M

    These data are provided in support of the Commentary, Advanced molecular techniques provide a rigorous method for characterizing organic matter quality in complex systems, Wilson and Tfaily (2018). Measurement results demonstrate that optical characterization of peatland dissolved organic matter (DOM) may not fully capture classically identified chemical characteristics and may, therefore, not be the best measure of organic matter quality.

  14. Three-dimensional characterization of the effective second-order nonlinearity in periodically poled crystals

    NASA Astrophysics Data System (ADS)

    Holmgren, Stefan J.; Pasiskevicius, Valdas; Wang, Shunhua; Laurell, Fredrik

    2003-09-01

    A novel technique for characterization of the second-order nonlinearity in nonlinear crystals is presented. It utilizes group-velocity walk-off between femtosecond pulses in type II SHG to achieve three-dimensional resolution of the nonlinearity. The longitudinal and transversal spatial resolution can be set independently. The technique is especially useful for characterizing quasi-phase-matched nonlinear crystals, and it is demonstrated in potassium titanyl phosphate.

  15. [The technique and technicism in surgery].

    PubMed

    Abaev, Iu K

    2010-01-01

    Characterization is given to the present-day stage of the development of surgery using complex medical technique and considerable growth of the number of laboratory-instrumental investigations is characterized. The estimation is given of the negative tendency to dehumanize medicine because of the technicism of doctors' thinking.

  16. State-of-the-art characterization techniques for advanced lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Wu, Tianpin; Amine, Khalil

    2017-03-01

    To meet future needs for industries from personal devices to automobiles, state-of-the-art rechargeable lithium-ion batteries will require both improved durability and lowered costs. To enhance battery performance and lifetime, understanding electrode degradation mechanisms is of critical importance. Various advanced in situ and operando characterization tools developed during the past few years have proven indispensable for optimizing battery materials, understanding cell degradation mechanisms, and ultimately improving the overall battery performance. Here we review recent progress in the development and application of advanced characterization techniques such as in situ transmission electron microscopy for high-performance lithium-ion batteries. Using three representative electrode systems—layered metal oxides, Li-rich layered oxides and Si-based or Sn-based alloys—we discuss how these tools help researchers understand the battery process and design better battery systems. We also summarize the application of the characterization techniques to lithium-sulfur and lithium-air batteries and highlight the importance of those techniques in the development of next-generation batteries.

  17. Advanced 3D Characterization and Reconstruction of Reactor Materials FY16 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fromm, Bradley; Hauch, Benjamin; Sridharan, Kumar

    2016-12-01

    A coordinated effort to link advanced materials characterization methods and computational modeling approaches is critical to future success for understanding and predicting the behavior of reactor materials that operate at extreme conditions. The difficulty and expense of working with nuclear materials have inhibited the use of modern characterization techniques on this class of materials. Likewise, mesoscale simulation efforts have been impeded due to insufficient experimental data necessary for initialization and validation of the computer models. The objective of this research is to develop methods to integrate advanced materials characterization techniques developed for reactor materials with state-of-the-art mesoscale modeling and simulationmore » tools. Research to develop broad-ion beam sample preparation, high-resolution electron backscatter diffraction, and digital microstructure reconstruction techniques; and methods for integration of these techniques into mesoscale modeling tools are detailed. Results for both irradiated and un-irradiated reactor materials are presented for FY14 - FY16 and final remarks are provided.« less

  18. Advanced FTIR technology for the chemical characterization of product wafers

    NASA Astrophysics Data System (ADS)

    Rosenthal, P. A.; Bosch-Charpenay, S.; Xu, J.; Yakovlev, V.; Solomon, P. R.

    2001-01-01

    Advances in chemically sensitive diagnostic techniques are needed for the characterization of compositionally variable materials such as chemically amplified resists, low-k dielectrics and BPSG films on product wafers. In this context, Fourier Transform Infrared (FTIR) reflectance spectroscopy is emerging as a preferred technique to characterize film chemistry and composition, due to its non-destructive nature and excellent sensitivity to molecular bonds and free carriers. While FTIR has been widely used in R&D environments, its application to mainstream production metrology and process monitoring on product wafers has historically been limited. These limitations have been eliminated in a series of recent FTIR technology advances, which include the use of 1) new sampling optics, which suppress artifact backside reflections and 2) comprehensive model-based analysis. With these recent improvements, it is now possible to characterize films on standard single-side polished product wafers with much simpler training wafer sets and machine-independent calibrations. In this new approach, the chemistry of the films is tracked via the measured infrared optical constants as opposed to conventional absorbance measurements. The extracted spectral optical constants can then be reduced to a limited set of parameters for process control. This paper describes the application of this new FTIR methodology to the characterization of 1) DUV photoresists after various processing steps, 2) low-k materials of different types and after various curing conditions, and 3) doped glass BPSG films of various concentration and, for the first time, widely different thicknesses. Such measurements can be used for improved process control on actual product wafers.

  19. Chemical analyses of fossil bone.

    PubMed

    Zheng, Wenxia; Schweitzer, Mary Higby

    2012-01-01

    The preservation of microstructures consistent with soft tissues, cells, and other biological components in demineralized fragments of dinosaur bone tens of millions of years old was unexpected, and counter to current hypotheses of tissue, cellular, and molecular degradation. Although the morphological similarity of these tissues to extant counterparts was unmistakable, after at least 80 million years exposed to geochemical influences, morphological similarity is insufficient to support an endogenous source. To test this hypothesis, and to characterize these materials at a molecular level, we applied multiple independent chemical, molecular, and microscopic analyses to identify the presence of original components produced by the extinct organisms. Microscopic techniques included field emission scanning electron microscopy, analytical transmission electron microscopy, transmitted light microscopy (LM), and fluorescence microscopy (FM). The chemical and molecular techniques include enzyme-linked immunosorbant assay, sodium dodecyl sulfate polyacrylamide gel electrophoresis, western blot (immunoblot), and attenuated total reflectance infrared spectroscopy. In situ analyses performed directly on tissues included immunohistochemistry and time-of-flight secondary ion mass spectrometry. The details of sample preparation and methodology are described in detail herein.

  20. Photoluminescence Imaging and LBIC Characterization of Defects in mc-Si Solar Cells

    NASA Astrophysics Data System (ADS)

    Sánchez, L. A.; Moretón, A.; Guada, M.; Rodríguez-Conde, S.; Martínez, O.; González, M. A.; Jiménez, J.

    2018-05-01

    Today's photovoltaic market is dominated by multicrystalline silicon (mc-Si) based solar cells with around 70% of worldwide production. In order to improve the quality of the Si material, a proper characterization of the electrical activity in mc-Si solar cells is essential. A full-wafer characterization technique such as photoluminescence imaging (PLi) provides a fast inspection of the wafer defects, though at the expense of the spatial resolution. On the other hand, a study of the defects at a microscopic scale can be achieved through the light-beam induced current technique. The combination of these macroscopic and microscopic resolution techniques allows a detailed study of the electrical activity of defects in mc-Si solar cells. In this work, upgraded metallurgical-grade Si solar cells are studied using these two techniques.

  1. A new technique for the characterization of chaff elements

    NASA Astrophysics Data System (ADS)

    Scholfield, David; Myat, Maung; Dauby, Jason; Fesler, Jonathon; Bright, Jonathan

    2011-07-01

    A new technique for the experimental characterization of electromagnetic chaff based on Inverse Synthetic Aperture Radar is presented. This technique allows for the characterization of as few as one filament of chaff in a controlled anechoic environment allowing for stability and repeatability of experimental results. This approach allows for a deeper understanding of the fundamental phenomena of electromagnetic scattering from chaff through an incremental analysis approach. Chaff analysis can now begin with a single element and progress through the build-up of particles into pseudo-cloud structures. This controlled incremental approach is supported by an identical incremental modeling and validation process. Additionally, this technique has the potential to produce considerable savings in financial and schedule cost and provides a stable and repeatable experiment to aid model valuation.

  2. Fabrication and characterization of graphene/molecule/graphene vertical junctions with aryl alkane monolayers

    NASA Astrophysics Data System (ADS)

    Jeong, Inho; Song, Hyunwook

    2017-11-01

    In this study, we fabricated and characterized graphene/molecule/graphene (GMG) vertical junctions with aryl alkane monolayers. The constituent molecules were chemically self-assembled via electrophilic diazonium reactions into a monolayer on the graphene bottom electrode, while the other end physically contacted the graphene top electrode. A full understanding of the transport properties of molecular junctions is a key step in the realization of molecular-scale electronic devices and requires detailed microscopic characterization of the junction's active region. Using a multiprobe approach combining a variety of transport techniques, we elucidated the transport mechanisms and electronic structure of the GMG junctions, including temperature- and length-variable transport measurements, and transition voltage spectroscopy. These results provide criteria to establish a valid molecular junction and to determine the most probable transport characteristics of the GMG junctions.

  3. Electrochemical characterization of p(+)n and n(+)p diffused InP structures

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Faur, Maria; Faur, Mircea; Goradia, M.; Vargas-Aburto, Carlos

    1993-01-01

    The relatively well documented and widely used electrolytes for characterization and processing of Si and GaAs-related materials and structures by electrochemical methods are of little or no use with InP because the electrolytes presently used either dissolve the surface preferentially at the defect areas or form residual oxides and introduce a large density of surface states. Using an electrolyte which was newly developed for anodic dissolution of InP, and was named the 'FAP' electrolyte, accurate characterization of InP related structures including nature and density of surface states, defect density, and net majority carrier concentration, all as functions of depth was performed. A step-by-step optimization of n(+)p and p(+)n InP structures made by thermal diffusion was done using the electrochemical techniques, and resulted in high performance homojunction InP structures.

  4. Lateral Temperature-Gradient Method for High-Throughput Characterization of Material Processing by Millisecond Laser Annealing.

    PubMed

    Bell, Robert T; Jacobs, Alan G; Sorg, Victoria C; Jung, Byungki; Hill, Megan O; Treml, Benjamin E; Thompson, Michael O

    2016-09-12

    A high-throughput method for characterizing the temperature dependence of material properties following microsecond to millisecond thermal annealing, exploiting the temperature gradients created by a lateral gradient laser spike anneal (lgLSA), is presented. Laser scans generate spatial thermal gradients of up to 5 °C/μm with peak temperatures ranging from ambient to in excess of 1400 °C, limited only by laser power and materials thermal limits. Discrete spatial property measurements across the temperature gradient are then equivalent to independent measurements after varying temperature anneals. Accurate temperature calibrations, essential to quantitative analysis, are critical and methods for both peak temperature and spatial/temporal temperature profile characterization are presented. These include absolute temperature calibrations based on melting and thermal decomposition, and time-resolved profiles measured using platinum thermistors. A variety of spatially resolved measurement probes, ranging from point-like continuous profiling to large area sampling, are discussed. Examples from annealing of III-V semiconductors, CdSe quantum dots, low-κ dielectrics, and block copolymers are included to demonstrate the flexibility, high throughput, and precision of this technique.

  5. X-ray Spectroscopic Characterization of Plasma for a Charged-Particle Energy-Loss Experiment

    NASA Astrophysics Data System (ADS)

    Hoffman, Nm; Lee, Cl; Wilson, Dc; Barnes, Cris W.; Petrasso, Rd; Li, C.; Hicks, D.

    2000-10-01

    We are pursuing an approach to a charged-particle energy-loss experiment in which charged fusion products from an imploded ICF capsule travel through a well characterized, spatially separate plasma. For this purpose, a fully ionized, uniform, nearly steady-state carbon-hydrogen plasma will be created by laser irradiation of a plastic foil. The temperature and density structure of this plasma must be determined accurately in order to relate observed energy losses to predictions of theory. Various methods for diagnosing the plasma are possible, including Thomson scattering. Alternatively, if a small admixture of higher-Z material such as chlorine is included in the plastic, x-ray spectroscopic techniques will allow the plasma's temperature and density to be determined. Electron temperature is inferred from the ratios of line strengths of various chlorine ion stages, while electron density is determined from the spectra of lithium-like satellite lines near the He beta line of helium-like chlorine. We present results from detailed-configuration accounting (DCA) models of line emission from C+H+Cl plasmas, and estimate the accuracy with which such plasmas can be characterized.

  6. Selection And Evaluation Of An Alloy For Nozzle Application

    NASA Technical Reports Server (NTRS)

    Pandey, A. B.; Shah, S.; Shadoan, M.; Lyles, Garry (Technical Monitor)

    2003-01-01

    The present work includes results on material characterization conducted under COBRA Hydrogen Cooled Nozzle Program and was funded by NASA MSFC. The nozzle requires a material that has high strength at ambient and high (up to l200 F) temperatures in air and hydrogen. Presently, a precipitation hardened steel; A-286 is used in nozzles for Space Shuttle Engines. The A-286 alloy has limited hydrogen compatibility and weldability. The present work focused on selection and characterization of JBK-75 alloy that has significantly higher capability in hydrogen and weldability in addition to other attributes. The alloy was evaluated at different temperatures and environments. Tungsten Inert Gas (TIG) and Electron Beam welding techniques were used to evaluate the weldability of material. Brazing was also conducted on the alloy and evaluated. The characterization of base JBK-75 alloy, welded and brazed alloy included tensile properties, low cycle fatigue and crack growth resistance at different temperatures in air and hydrogen environments. The results indicated that JBK-75 has excellent tensile and fatigue properties in air and hydrogen. The welded and brazed alloy also showed very good properties.

  7. Ultrasonic analysis of Kevlar-epoxy filament wound structures

    NASA Astrophysics Data System (ADS)

    Brosey, W. D.

    1985-07-01

    Composite structures are often desirable for their strength and weight characteristics. Since composites are not as well characterized mechanically as metallic or ceramic structures, much work has been performed at the Oak Ridge Y-12 Plant to obtain that characterization and to develop methods of determining the mechanical properties of a composite nondestructively. Most of the work to date has been performed on nonenclosed structures. One notable exception has been the holographic evaluation of spherical Kevlar-epoxy composite pressure vessels. Several promising nondestructive evaluation techniques have been used to locate flaws and predict the integrity of the composite. Several of these include thermography, Moire interferometry, ultrasonic stress wave factor, ultrasonic C-scan image enhancement, radiography, and nuclear magnetic resonance. As a first step in this transfer and development of NDE techniques, known defects were placed within spherical Kevlar-epoxy, filament-wound test specimens to determine the extent to which they could be detected. These defects included Teflon shim-simulated delaminations, macrosphere-simulated voids, dry-band sets, variable tension, Kevlar 29 fiber instead of the higher strength Kevlar 40 fiber, and an alternate high-void-content winding pattern. Ultrasonic waveform analysis was performed in both the time and frequency domains to determine the detectability and locatability of structural flaws within the composite. Preparation has been made at Virginia Polytechnic Institute and State University and at the University of Delaware, to examine the specimens using various NDE techniques. This work is a compilation of interim project reports in partial fulfillment of the contracts between Virginia Polytechnic Institute and State University, the University of Delaware, and Y-12 Plant.

  8. Assessing the functional mechanical properties of bioengineered organs with emphasis on the lung.

    PubMed

    Suki, Béla

    2014-09-01

    Recently, an exciting new approach has emerged in regenerative medicine pushing the forefront of tissue engineering to create bioartificial organs. The basic idea is to create biological scaffolds made of extracellular matrix (ECM) that preserves the three-dimensional architecture of an entire organ. These scaffolds are then used as templates for functional tissue and organ reconstruction after re-seeding the structure with stem cells or appropriately differentiated cells. In order to make sure that these bioartificial organs will be able to function in the mechanical environment of the native tissue, it is imperative to fully characterize their mechanical properties and match them with those of the normal native organs. This mini-review briefly summarizes modern measurement techniques of mechanical function characterized mostly by the material or volumetric stiffness. Micro-scale and macro-scale techniques such as atomic force microscopy and the tissue strip stress-strain approach are discussed with emphasis on those that combine mechanical measurements with structural visualization. Proper micro-scale stiffness helps attachment and differentiation of cells in the bioartificial organ whereas macro-scale functionality is provided by the overall mechanical properties of the construct. Several approaches including failure mechanics are also described, which specifically probe the contributions of the main ECM components including collagen, elastin, and proteoglycans to organ level ECM function. Advantages, drawbacks, and possible pitfalls as well as interpretation of the data are given throughout. Finally, specific techniques to assess the functionality of the ECM of bioartificial lungs are separately discussed. © 2014 Wiley Periodicals, Inc.

  9. Chromatography in the detection and characterization of illegal pharmaceutical preparations.

    PubMed

    Deconinck, Eric; Sacré, Pierre-Yves; Courselle, Patricia; De Beer, Jacques O

    2013-09-01

    Counterfeit and illegal pharmaceutical products are an increasing worldwide problem and constitute a major challenge for analytical laboratories to detect and characterize them. Spectroscopic techniques such as infrared spectroscopy and Raman spectroscopy have always been the first methods of choice to detect counterfeits and illegal preparations, but due to the evolution in the seized products and the necessity of risk assessment, chromatographic methods are becoming more important in this domain. This review intends to give a general overview of the techniques described in literature to characterize counterfeit and illegal pharmaceutical preparations, focusing on the role of chromatographic techniques with different detection tools.

  10. Homodyne detection of ferromagnetic resonance by a non-uniform radio-frequency excitation current

    NASA Astrophysics Data System (ADS)

    Ikebuchi, Tetsuya; Moriyama, Takahiro; Shiota, Yoichi; Ono, Teruo

    2018-05-01

    Ferromagnetic resonance (FMR) is one of the most popular techniques to characterize dynamic properties of ferromagnetic materials. Among various FMR measurement techniques, the homodyne FMR detection has been frequently used to characterize thin-film ferromagnetic multilayers owing to its high sensitivity. However, a drawback of this technique was considered to be the requirement for a structural inversion asymmetry, which makes it unsuitable to characterize a single layer of ferromagnet. In this study, we demonstrate a homodyne FMR detection of the Kittel’s mode FMR dynamics of a single layer of FeNi by creating a non-uniform radio-frequency excitation current.

  11. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples.

    PubMed

    Laborda, Francisco; Bolea, Eduardo; Cepriá, Gemma; Gómez, María T; Jiménez, María S; Pérez-Arantegui, Josefina; Castillo, Juan R

    2016-01-21

    The increasing demand of analytical information related to inorganic engineered nanomaterials requires the adaptation of existing techniques and methods, or the development of new ones. The challenge for the analytical sciences has been to consider the nanoparticles as a new sort of analytes, involving both chemical (composition, mass and number concentration) and physical information (e.g. size, shape, aggregation). Moreover, information about the species derived from the nanoparticles themselves and their transformations must also be supplied. Whereas techniques commonly used for nanoparticle characterization, such as light scattering techniques, show serious limitations when applied to complex samples, other well-established techniques, like electron microscopy and atomic spectrometry, can provide useful information in most cases. Furthermore, separation techniques, including flow field flow fractionation, capillary electrophoresis and hydrodynamic chromatography, are moving to the nano domain, mostly hyphenated to inductively coupled plasma mass spectrometry as element specific detector. Emerging techniques based on the detection of single nanoparticles by using ICP-MS, but also coulometry, are in their way to gain a position. Chemical sensors selective to nanoparticles are in their early stages, but they are very promising considering their portability and simplicity. Although the field is in continuous evolution, at this moment it is moving from proofs-of-concept in simple matrices to methods dealing with matrices of higher complexity and relevant analyte concentrations. To achieve this goal, sample preparation methods are essential to manage such complex situations. Apart from size fractionation methods, matrix digestion, extraction and concentration methods capable of preserving the nature of the nanoparticles are being developed. This review presents and discusses the state-of-the-art analytical techniques and sample preparation methods suitable for dealing with complex samples. Single- and multi-method approaches applied to solve the nanometrological challenges posed by a variety of stakeholders are also presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Spatial Modeling of Geometallurgical Properties: Techniques and a Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deutsch, Jared L., E-mail: jdeutsch@ualberta.ca; Palmer, Kevin; Deutsch, Clayton V.

    High-resolution spatial numerical models of metallurgical properties constrained by geological controls and more extensively by measured grade and geomechanical properties constitute an important part of geometallurgy. Geostatistical and other numerical techniques are adapted and developed to construct these high-resolution models accounting for all available data. Important issues that must be addressed include unequal sampling of the metallurgical properties versus grade assays, measurements at different scale, and complex nonlinear averaging of many metallurgical parameters. This paper establishes techniques to address each of these issues with the required implementation details and also demonstrates geometallurgical mineral deposit characterization for a copper–molybdenum deposit inmore » South America. High-resolution models of grades and comminution indices are constructed, checked, and are rigorously validated. The workflow demonstrated in this case study is applicable to many other deposit types.« less

  13. Geophysical technique for mineral exploration and discrimination based on electromagnetic methods and associated systems

    DOEpatents

    Zhdanov,; Michael, S [Salt Lake City, UT

    2008-01-29

    Mineral exploration needs a reliable method to distinguish between uneconomic mineral deposits and economic mineralization. A method and system includes a geophysical technique for subsurface material characterization, mineral exploration and mineral discrimination. The technique introduced in this invention detects induced polarization effects in electromagnetic data and uses remote geophysical observations to determine the parameters of an effective conductivity relaxation model using a composite analytical multi-phase model of the rock formations. The conductivity relaxation model and analytical model can be used to determine parameters related by analytical expressions to the physical characteristics of the microstructure of the rocks and minerals. These parameters are ultimately used for the discrimination of different components in underground formations, and in this way provide an ability to distinguish between uneconomic mineral deposits and zones of economic mineralization using geophysical remote sensing technology.

  14. A nanocomplex of Cu(II) with theophylline drug; synthesis, characterization, and anticancer activity against K562 cell line

    NASA Astrophysics Data System (ADS)

    Sahlabadi, Maryam; Daryanavard, Marzieh; Hadadzadeh, Hassan; Amirghofran, Zahra

    2018-03-01

    A new mononuclear of copper (II), [Cu(theophylline)2(H2O)3]·2H2O, has been synthesized by reaction of theophylline (1,3-dimethyl-7H-purine-2,6-dione) with copper (II) nitrate in water. Further, its nanocomplex has been prepared through the three different methods including sonication, grinding, and a combination thereof, sonication-grinding. The prepared nanocomplex was characterized using different techniques including FT-IR, UV-Vis, X-ray diffraction (XRD) analysis, and field-emission scanning electron microscopy (FE-SEM). Moreover, the anticancer activity of the precursor complex, nanocomplex, free theophylline ligand, and the starting copper salt (Cu(NO3)2·3H2O) was investigated against the K562 cell line. The results show that the nanocomplex is an effective nano metal-based anticancer agent with IC50 = 11.7 μM.

  15. Molecular characterization of the human microbiome from a reproductive perspective.

    PubMed

    Mor, Amir; Driggers, Paul H; Segars, James H

    2015-12-01

    The process of reproduction inherently poses unique microbial challenges because it requires the transfer of gametes from one individual to the other, meanwhile preserving the integrity of the gametes and individuals from harmful microbes during the process. Advances in molecular biology techniques have expanded our understanding of the natural organisms living on and in our bodies, including those inhabiting the reproductive tract. Over the past two decades accumulating evidence has shown that the human microbiome is tightly related to health and disease states involving the different body systems, including the reproductive system. Here we introduce the science involved in the study of the human microbiome. We examine common methods currently used to characterize the human microbiome as an inseparable part of the reproductive system. Finally, we consider a few limitations, clinical implications, and the critical need for additional research in the field of human fertility. Copyright © 2015. Published by Elsevier Inc.

  16. Recent Advances in Synthesis and Characterization of SWCNTs Produced by Laser Oven Process

    NASA Technical Reports Server (NTRS)

    Aepalli, Sivaram

    2004-01-01

    Results from the parametric study of the two-laser oven process indicated possible improvements with flow conditions and laser characteristics. Higher flow rates, lower operating pressures coupled with changes in flow tube material are found to improve the nanotube yields. The collected nanotube material is analyzed using a combination of characterization techniques including SEM, TEM, TGA, Raman and UV-VIS-NIR to estimate the purity of the samples. In-situ diagnostics of the laser oven process is now extended to include the surface temperature of the target material. Spectral emission from the target surface is compared with black body type emission to estimate the temperature. The surface temperature seemed to correlate well with the ablation rate as well as the quality of the SWCNTs. Recent changes in improving the production rate by rastering the target and using cw laser will be presented.

  17. Recent Advances in Synthesis and Characterization of SWCNTs produced by laser oven process

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    2004-01-01

    Results from the parametric study of the two-laser oven process indicated possible improvements with flow conditions and laser characteristics (ref. 1). Higher flow rates, lower operating pressures coupled with changes in flow tube material are found to improve the nanotube yields. The collected nanotube material is analyzed using a combination of characterization techniques including SEM, TEM, TGA, Raman and UV-VIS-NIR to estimate the purity of the samples. Insitu diagnostics of the laser oven process is now extended to include the surface temperature of the target material. Spectral emission from the target surface is compared with black body type emission to estimate the temperature. The surface temperature seemed to correlate well with the ablation rate as well as the quality of the SWCNTs. Recent changes in improving the production rate by rastering the target and using cw laser will be presented.

  18. Spatially Characterizing Effective Timber Supply

    NASA Technical Reports Server (NTRS)

    Berry, J. K.; Sailor, J.

    1982-01-01

    The structure of a computer-oriented cartographic model for assessing roundwood supply for generation of base load electricity is discussed. The model provides an analytical procedure for coupling spatial information of harvesting economics and owner willingness to sell stumpages. Supply is characterized in terms of standing timber; of accessibility considering various harvesting and hauling factors; and of availability as affected by ownership and residential patterns. Factors governing accessibility to timber include effective harvesting distance to haulic roads as modified by barriers and slopes. Haul distance is expressed in units that take into account the relative ease of travel along various road types to a central processing facility. Areas of accessible timber are grouped into spatial units, termed 'timbersheds', of common access to particular haul road segments that belong to unique 'transport zones'. Timber availability considerations include size of ownership parcels, housing density and excluded areas. The analysis techniques are demonstrated for a cartographic data base in western Massachusetts.

  19. Synthesis, characterization, and antimicrobial properties of copper nanoparticles

    PubMed Central

    Usman, Muhammad Sani; Zowalaty, Mohamed Ezzat El; Shameli, Kamyar; Zainuddin, Norhazlin; Salama, Mohamed; Ibrahim, Nor Azowa

    2013-01-01

    Copper nanoparticle synthesis has been gaining attention due to its availability. However, factors such as agglomeration and rapid oxidation have made it a difficult research area. In the present work, pure copper nanoparticles were prepared in the presence of a chitosan stabilizer through chemical means. The purity of the nanoparticles was authenticated using different characterization techniques, including ultraviolet visible spectroscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. The antibacterial as well as antifungal activity of the nanoparticles were investigated using several microorganisms of interest, including methicillin-resistant Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Salmonella choleraesuis, and Candida albicans. The effect of a chitosan medium on growth of the microorganism was studied, and this was found to influence growth rate. The size of the copper nanoparticles obtained was in the range of 2–350 nm, depending on the concentration of the chitosan stabilizer. PMID:24293998

  20. Bayesian aggregation versus majority vote in the characterization of non-specific arm pain based on quantitative needle electromyography

    PubMed Central

    2010-01-01

    Background Methods for the calculation and application of quantitative electromyographic (EMG) statistics for the characterization of EMG data detected from forearm muscles of individuals with and without pain associated with repetitive strain injury are presented. Methods A classification procedure using a multi-stage application of Bayesian inference is presented that characterizes a set of motor unit potentials acquired using needle electromyography. The utility of this technique in characterizing EMG data obtained from both normal individuals and those presenting with symptoms of "non-specific arm pain" is explored and validated. The efficacy of the Bayesian technique is compared with simple voting methods. Results The aggregate Bayesian classifier presented is found to perform with accuracy equivalent to that of majority voting on the test data, with an overall accuracy greater than 0.85. Theoretical foundations of the technique are discussed, and are related to the observations found. Conclusions Aggregation of motor unit potential conditional probability distributions estimated using quantitative electromyographic analysis, may be successfully used to perform electrodiagnostic characterization of "non-specific arm pain." It is expected that these techniques will also be able to be applied to other types of electrodiagnostic data. PMID:20156353

Top