Science.gov

Sample records for characterize early life

  1. Early Life Exposures and Cancer

    Cancer.gov

    Early-life events and exposures have important consequences for cancer development later in life, however, epidemiological studies of early-life factors and cancer development later in life have had significant methodological challenges.

  2. Deep phylogeny--how a tree can help characterize early life on Earth.

    PubMed

    Gaucher, Eric A; Kratzer, James T; Randall, Ryan N

    2010-01-01

    The Darwinian concept of biological evolution assumes that life on Earth shares a common ancestor. The diversification of this common ancestor through speciation events and vertical transmission of genetic material implies that the classification of life can be illustrated in a tree-like manner, commonly referred to as the Tree of Life. This article describes features of the Tree of Life, such as how the tree has been both pruned and become bushier throughout the past century as our knowledge of biology has expanded. We present current views that the classification of life may be best illustrated as a ring or even a coral with tree-like characteristics. This article also discusses how the organization of the Tree of Life offers clues about ancient life on Earth. In particular, we focus on the environmental conditions and temperature history of Precambrian life and show how chemical, biological, and geological data can converge to better understand this history."You know, a tree is a tree. How many more do you need to look at?"--Ronald Reagan (Governor of California), quoted in the Sacramento Bee, opposing expansion of Redwood National Park, March 3, 1966. PMID:20182607

  3. The Early Years: "Life" Science

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2013-01-01

    Talking about death as part of a life cycle is often ignored or spoken about in hushed tones in early childhood. Books with "life cycle" in the title often do not include the death of the living organism in the information about the cycle. The concept of a complete life cycle does not appear in "A Framework for K-12 Science…

  4. Ontogeny of Early Life Immunity

    PubMed Central

    Dowling, David J.; Levy, Ofer

    2014-01-01

    The human immune system is comprised of cellular and molecular components designed to coordinately prevent infection while avoiding potentially harmful inflammation and auto-immunity. Immunity varies with age, reflecting unique age-dependent challenges including fetal gestation, the neonatal phase and infancy. Herein, we review novel mechanistic insights into early life immunity, with emphasis on emerging models of human immune ontogeny, which may inform age-specific translational development of novel anti-infectives, immunomodulators and vaccines. PMID:24880460

  5. Early Life Bereavement and Schizophrenia

    PubMed Central

    Liang, Hong; Olsen, Jørn; Yuan, Wei; Cnattingus, Sven; Vestergaard, Mogens; Obel, Carsten; Gissler, Mika; Li, Jiong

    2016-01-01

    Abstract We aimed to examine whether early life bereavement, as indicator of severe stress, was associated with an increased risk of schizophrenia later in life. Based on population registers, we established a cohort of all children born in Denmark (N = 1 686 416) and Sweden (N = 2 563 659) from 1973 to 1997. Children were categorized as exposed if they lost a first-degree relative during the first 18 years of life. Outcome is the first diagnosis of schizophrenia as either inpatient or outpatient. Log-linear Poisson regression models were used to estimate incidence rate ratios (IRRs). A total of 188,850 children (4.6%) experienced death of a first-degree relative from birth to 18 years of age. Compared with unexposed children, those exposed had overall a 39% higher risk of schizophrenia (= 1.39, 95% CI [confidence interval]: 1.32–1.47). The IRR was particularly high if the family member committed suicide (aIRR = 2.11, 95% CI: 1.90–2.34) or died due to an injury or accident (aIRR = 1.44, 95% CI: 1.27–1.63). The IRR of schizophrenia decreased with increasing child's age at bereavement (P < 0.0001). Children who experienced >1 death during the first 18 years of life (aIRR = 1.79, 95% CI: 1.46–2.19) had a higher risk than those with a single death (aIRR = 1.37, 95% CI: 1.30–1.45). The study suggested that exposure to death of a first-degree relative before 18 years was associated with an increased risk of schizophrenia in later life. The complex mechanisms behind these associations remain to be elucidated. PMID:26817875

  6. Early life seizures in female rats lead to anxiety-related behavior and abnormal social behavior characterized by reduced motivation to novelty and deficit in social discrimination.

    PubMed

    Castelhano, Adelisandra Silva Santos; Ramos, Fabiane Ochai; Scorza, Fulvio Alexandre; Cysneiros, Roberta Monterazzo

    2015-03-01

    Previously, we demonstrated that male Wistar rats submitted to neonatal status epilepticus showed abnormal social behavior characterized by deficit in social discrimination and enhanced emotionality. Taking into account that early insult can produce different biological manifestations in a gender-dependent manner, we aimed to investigate the social behavior and anxiety-like behavior in female Wistar rats following early life seizures. Neonate female Wistar rats at 9 days postnatal were subject to pilocarpine-induced status epilepticus and the control received saline. Behavioral tests started from 60 days postnatal and were carried out only during the diestrus phase of the reproductive cycle. In sociability test experimental animals exhibited reduced motivation for social encounter and deficit in social discrimination. In open field and the elevated plus maze, experimental animals showed enhanced emotionality with no changes in basal locomotor activity. The results showed that female rats submitted to neonatal status epipepticus showed impaired social behavior, characterized by reduced motivation to novelty and deficit in social discrimination in addition to enhanced emotionality.

  7. Predicting Later-Life Outcomes of Early-Life Exposures

    EPA Science Inventory

    Background: In utero exposure of the fetus to a stressor can lead to disease in later life. Epigenetic mechanisms are likely mediators of later-life expression of early-life events.Objectives: We examined the current state of understanding of later-life diseases resulting from ea...

  8. Seeing Touches Early in Life.

    PubMed

    Addabbo, Margaret; Longhi, Elena; Bolognini, Nadia; Senna, Irene; Tagliabue, Paolo; Macchi Cassia, Viola; Turati, Chiara

    2015-01-01

    The sense of touch provides fundamental information about the surrounding world, and feedback about our own actions. Although touch is very important during the earliest stages of life, to date no study has investigated infants' abilities to process visual stimuli implying touch. This study explores the developmental origins of the ability to visually recognize touching gestures involving others. Looking times and orienting responses were measured in a visual preference task, in which participants were simultaneously presented with two videos depicting a touching and a no-touching gesture involving human body parts (face, hand) and/or an object (spoon). In Experiment 1, 2-day-old newborns and 3-month-old infants viewed two videos: in one video a moving hand touched a static face, in the other the moving hand stopped before touching it. Results showed that only 3-month-olds, but not newborns, differentiated the touching from the no-touching gesture, displaying a preference for the former over the latter. To test whether newborns could manifest a preferential visual response when the touched body part is different from the face, in Experiment 2 newborns were presented with touching/no-touching gestures in which a hand or an inanimate object-i.e., a spoon- moved towards a static hand. Newborns were able to discriminate a hand-to-hand touching gesture, but they did not manifest any preference for the object-to-hand touch. The present findings speak in favour of an early ability to visually recognize touching gestures involving the interaction between human body parts. PMID:26366563

  9. The Early History of Life

    NASA Astrophysics Data System (ADS)

    Nisbet, E. G.; Fowler, C. M. R.

    2003-12-01

    The youth of the Earth is strange to us. Many of the most fundamental constraints on life may have been different, especially the oxidation state of the surface. Should we suddenly land on its Hadean or early Archean surface by some sci-fi accident, we would not recognize our home. Above, the sky may have been green or some other unworldly color, and above that the weak young Sun might have been unrecognizable to someone trying to identify it from its spectrum. Below, seismology would show a hot, comparatively low-viscosity interior, possibly with a magma ocean in the deeper part of the upper mantle (Drake and Righter, 2002; Nisbet and Walker, 1982), and a core that, though present, was perhaps rather smaller than today. The continents may have been small islands in an icy sea, mostly frozen with some leads of open water, ( Sleep et al., 2001). Into these icy oceans, huge protruding Hawaii-like volcanoes would have poured out vast far-spreading floods of komatiite lavas in immense eruptions that may have created sudden local hypercane storms to disrupt the nearby icebergs. And meteorites would rain down.Or perhaps it was not so strange, nor so violent. The child is father to the man; young Earth was mother to Old Earth. Earth had hydrogen, silicate rock below and on the surface abundant carbon, which her ancient self retains today. Moreover, Earth was oxygen-rich, as today. Today, a tiny part of the oxygen is free, as air; then the oxygen would have been in the mantle while the surface oxygen was used to handcuff the hydrogen as dihydrogen monoxide. Oxygen dihydride is dense, unlikely to fly off to space, and at the poles, rock-forming. Of all the geochemical features that make Earth unique, the initial degassing (Genesis 2 : b) and then the sustained presence of liquid water is the defining oddity of this planet. Early Earth probably also kept much of its carbon, nitrogen, and sulfur as oxide or hydride. And, after the most cataclysmic events had passed, ˜4.5 Ga

  10. Neurobiology of early life stress: clinical studies.

    PubMed

    Heim, Christine; Nemeroff, Charles B

    2002-04-01

    A burgeoning number of clinical studies have evaluated the immediate and long-term neurobiological effects of early developmental stress, eg, child abuse and neglect or parental loss, in the past years. This review summarizes and discusses the available findings from neuroendocrine (hypothalamic-pituitary-adrenal axis, other neuroendocrine axes), neurochemical (catecholamines, serotonin, other neurotransmitters), psychophysiological (autonomic function, startle reactivity, brain electrical activity) and neuroimaging studies (brain structure, function) conducted in children or adults with a history of early life stress, with or without psychiatric disorders. Early developmental stress in humans appears to be associated with neurobiological alterations that are similar to many findings in animal models of early life stress, and likely represent the biological basis of an enhanced risk for psychopathology. Clinical studies are now beginning to explore potentially differential neurobiological effects of different types of early life stress and the existence of critical developmental periods, which may be sensitive to the neurobiological effects of specific stressors. In addition, the role of a multitude of moderating and mediating factors in the determination of individual vulnerability or resilience to the neurobiological effects of early life stress should be addressed. Findings from such studies may ultimately help to prevent the deleterious neurobiological and psychopathological consequences in the unacceptably high number of children exposed to early life stress in modern society. PMID:11953939

  11. TOXICITY OF AHR AGONISTS TO FISH EARLY LIFE STAGES

    EPA Science Inventory

    Fish early life stages are exceptionally sensitive to the lethal toxicity of chemicals that act as arylhydrocarbon receptor (AhR) agonists. Toxicity characterizations based on 2,3,7,8-tetrachlorodibenzo-p-dioxin, generally the most potent AhR agonist, support the toxicity equiva...

  12. Shaping adult phenotypes through early life environments.

    PubMed

    Weaver, Ian C G

    2009-12-01

    A major question in the biology of stress and environmental adaptation concerns the neurobiological basis of how neuroendocrine systems governing physiological regulatory mechanisms essential for life (metabolism, immune response, organ function) become harmful. The current view is that a switch from protection to damage occurs when vulnerable phenotypes are exposed to adverse environmental conditions. In accordance with this theory, sequelae of early life social and environmental stressors, such as childhood abuse, neglect, poverty, and poor nutrition, have been associated with the emergence of mental and physical illness (i.e., anxiety, mood disorders, poor impulse control, psychosis, and drug abuse) and an increased risk of common metabolic and cardiovascular diseases later in life. Evidence from animal and human studies investigating the associations between early life experiences (including parent-infant bonding), hypothalamus-pituitary-adrenal axis activity, brain development, and health outcome provide important clues into the neurobiological mechanisms that mediate the contribution of stressful experiences to personality development and the manifestation of illness. This review summarizes our current molecular understanding of how early environment influences brain development in a manner that persists through life and highlights recent evidence from rodent studies suggesting that maternal care in the first week of postnatal life establishes diverse and stable phenotypes in the offspring through epigenetic modification of genes expressed in the brain that shape neuroendocrine and behavioral stress responsivity throughout life. PMID:19960543

  13. Shaping adult phenotypes through early life environments.

    PubMed

    Weaver, Ian C G

    2009-12-01

    A major question in the biology of stress and environmental adaptation concerns the neurobiological basis of how neuroendocrine systems governing physiological regulatory mechanisms essential for life (metabolism, immune response, organ function) become harmful. The current view is that a switch from protection to damage occurs when vulnerable phenotypes are exposed to adverse environmental conditions. In accordance with this theory, sequelae of early life social and environmental stressors, such as childhood abuse, neglect, poverty, and poor nutrition, have been associated with the emergence of mental and physical illness (i.e., anxiety, mood disorders, poor impulse control, psychosis, and drug abuse) and an increased risk of common metabolic and cardiovascular diseases later in life. Evidence from animal and human studies investigating the associations between early life experiences (including parent-infant bonding), hypothalamus-pituitary-adrenal axis activity, brain development, and health outcome provide important clues into the neurobiological mechanisms that mediate the contribution of stressful experiences to personality development and the manifestation of illness. This review summarizes our current molecular understanding of how early environment influences brain development in a manner that persists through life and highlights recent evidence from rodent studies suggesting that maternal care in the first week of postnatal life establishes diverse and stable phenotypes in the offspring through epigenetic modification of genes expressed in the brain that shape neuroendocrine and behavioral stress responsivity throughout life.

  14. Early life programming and metabolic syndrome.

    PubMed

    Wang, Xiu-Min

    2013-02-01

    Metabolic syndrome (MS) has reached epidemic proportions worldwide among children. Early life "programming" is now thought to be important in the etiology of obesity, type 2 diabetes, cardiovascular disease and MS. Nutritional imbalance and exposures to endocrine disruptor chemicals during development can increase risk for MS later in life. Epigenetic marks may be reprogrammed in response to both stochastic and environmental stimuli, such as changes in diet and the in utero environment, therefore, determination of targets for early life effects on epigenetic gene regulation provides insight into the molecular mechanisms involved in the epigenetic transgenerational inheritance of a variety of adult onset disease phenotypes. The perinatal period is a crucial time of growth, development and physiological changes in mother and child, which provides a window of opportunity for early intervention that may induce beneficial physiological alternations.

  15. Antibiotics in early life and obesity

    PubMed Central

    Cox, Laura M.; Blaser, Martin J.

    2015-01-01

    The intestinal microbiota can influence host metabolism. When given early in life, agents that disrupt microbiota composition and consequently its metabolic activity, can influence body mass of the host by either promoting weight gain or stunting growth, which is consistent with effects of the microbiota on development. In this Perspective, we posit that microbiota disruptions in early-life can have long-lasting effects on body weight in adulthood. Furthermore, we examine the dichotomy between antibiotic-induced repressed or promoted growth and review the experimental and epidemiological evidence that supports these phenotypes. Considering the characteristics of the gut microbiota in early life as a distinct dimension of human growth and development, as well as comprehending its susceptibility to perturbation, will allow for increased understanding of human physiology and could lead to development of interventions to stem current epidemic diseases, such as obesity and types 1 and 2 diabetes mellitus. PMID:25488483

  16. Osteoporosis in survivors of early life starvation.

    PubMed

    Weisz, George M; Albury, William R

    2013-01-01

    The objective of this study was to provide evidence for the association of early life nutritional deprivation and adult osteoporosis, in order to suggest that a history of such deprivation may be an indicator of increased risk of osteoporosis in later life. The 'fetal programming' of a range of metabolic and cardiovascular disorders in adults was first proposed in the 1990s and more recently extended to disorders of bone metabolism. Localised famines during World War II left populations in whom the long-term effects of maternal, fetal and infantile nutritional deprivation were studied. These studies supported the original concept of 'fetal programming' but did not consider bone metabolism. The present paper offers clinical data from another cohort of World War II famine survivors - those from the Holocaust. The data presented here, specifically addressing the issue of osteoporosis, report on 11 Holocaust survivors in Australia (five females, six males) who were exposed to starvation in early life. The cases show, in addition to other metabolic disorders associated with early life starvation, various levels of osteoporosis, often with premature onset. The cohort studied is too small to support firm conclusions, but the evidence suggests that the risk of adult osteoporosis in both males and females is increased by severe starvation early in life - not just in the period from gestation to infancy but also in childhood and young adulthood. It is recommended that epidemiological research on this issue be undertaken, to assist planning for the future health needs of immigrants to Australia coming from famine affected backgrounds. Pending such research, it would be prudent for primary care health workers to be alert to the prima facie association between early life starvation and adult osteoporosis, and to take this factor into account along with other indicators when assessing a patient's risk of osteoporosis in later life.

  17. Magnetism and the putative early Martian life

    NASA Astrophysics Data System (ADS)

    Rochette, P.

    2001-08-01

    A short critical review is provided on three questions linking magnetism and the putative early Mars life. Was there a large internal Martian magnetic field, during which period, and is it a requisite for life? What is the origin of the paleomagnetic signal of Martian meteorites, including ALH84001? What is the present credibility of the case for fossil bacterial magnetite grains in ALH84001?

  18. Micro- to nano-scale mapping and characterization of low-temperature metamorphism in Archean subseafloor metabasalts with implications for early life

    NASA Astrophysics Data System (ADS)

    Grosch, Eugene; McLoughlin, Nicola

    2015-04-01

    In modern oceanic environments, the low-temperature alteration of subseafloor basaltic glass provides potential chemical energy argued to sustain deep microbial ecosystems. By analogy, it has been argued that early Archean subseafloor pillow lava sequences may provide an environment in which to seek evidence for the earliest traces of microbial life on Earth, and possibly on Mars. Microtextures in metavolcanic pillow lavas from the ca. 3.55 - 3.10 billion-year-old Barberton greenstone belt of South Africa have been argued to represent the remains of microbes that tunneled into Archean subseafloor volcanic glass [1]. The filamentous titanite microtextures occurring in a quartz-chlorite-epidote matrix have been argued to represent Earth's oldest trace fossil. However, distinguishing abiotic hydrothermal processes from candidate geochemical and micro-textural biosignatures preserved in early Archean rocks has proven to be a major scientific challenge. Also, very few PT-constraints on ocean-floor metamorphism are available in this greenstone belt. This quest for the earliest traces of life relies upon the ongoing development of in-situ analytical techniques in terms of instrument sensitivity and spatial resolution. Here we employ a wide-range of novel petrological tools and metamorphic thermodynamic modelling techniques to test the biogenicity of microtextures, provide the first constraints on metamorphic conditions on the host metabasalts, and contribute to the search for robust traces of life in the early Archean. This includes in-situ mapping of the microtextures by laser Raman confocal spectroscopy, high-spatial-resolution elemental (C, N, P) mapping and in-situ isotopic measurements by NanoSIMS (nanoscale secondary ion microprobe) to evaluate the candidate biosignatures [2]. We have also developed and applied a new quantitative microscale mapping technique combined with thermodynamic modelling to map out metamorphic conditions surrounding the candidate

  19. EARLY CRANIOFACIAL DEVELOPMENT: LIFE AMONG THE SIGNALS

    EPA Science Inventory

    Early Craniofacial Development: Life Among the Signals. Sid Hunter and Keith Ward. Reproductive Toxicology Division, NHEERL, US EPA, RTP, NC, 27711

    Haloacetic acids (HAA) are chemicals formed during drinking water disinfection and present in finished tap water. Exposure o...

  20. Development of Life on Early Mars

    NASA Technical Reports Server (NTRS)

    Gibson, Everett K.; McKay, David S.; Thomas-Keprta, Kathie L.; Clemett, Simon J.; Wentworth, Susan J.

    2009-01-01

    Exploration of Mars has begun to unveil the history of the planet. Combinations of remote sensing, in situ compositional measurements and photographic observations have shown Mars had a dynamic and active geologic evolution. Mars geologic evolution encompassed conditions that were suitable for supporting life. A habitable planet must have water, carbon and energy sources along with a dynamic geologic past. Mars meets all of these requirements. The first 600 My of Martian history were ripe for life to develop because of the abundance of (i) Water- as shown by carved canyons and oceans or lakes with the early presence of near surface water shown by precipitated carbonates in ALH84001, well-dated at 3.9 Gy, (ii) Energy from the original accretional processes, a molten core which generated a strong magnetic field leaving a permanent record in the early crust, active volcanism continuing throughout Martian history, and continuing impact processes, (iii) Carbon, water and a likely thicker atmosphere from extensive volcanic outgassing (i.e. H20, CO2, CH4, CO, O2, N2, H2S, SO2, etc.) and (iv) crustal tectonics as revealed by faulting and possible plate movement reflected by the magnetic pattern in the crust [1]. The question arises: "Why would life not develop from these favorable conditions on Mars in its first 600 My?" During this period, environmental near-surface conditions on Mars were more favorable to life than at any later time. Standing bodies of water, precipitation and flowing surface water, and possibly abundant hydrothermal energy would favor the formation of early life. (Even if life developed elsewhere on Earth, Venus, or on other bodies-it was transported to Mars where surface conditions were suitable for life to evolve). The commonly stated requirement that life would need hundreds of millions of year to get started is only an assumption; we know of no evidence that requires such a long interval for the development of life, if the proper habitable

  1. Early evolution without a tree of life

    PubMed Central

    2011-01-01

    Life is a chemical reaction. Three major transitions in early evolution are considered without recourse to a tree of life. The origin of prokaryotes required a steady supply of energy and electrons, probably in the form of molecular hydrogen stemming from serpentinization. Microbial genome evolution is not a treelike process because of lateral gene transfer and the endosymbiotic origins of organelles. The lack of true intermediates in the prokaryote-to-eukaryote transition has a bioenergetic cause. This article was reviewed by Dan Graur, W. Ford Doolittle, Eugene V. Koonin and Christophe Malaterre. PMID:21714942

  2. DNA memories of early social life.

    PubMed

    Hoffmann, A; Spengler, D

    2014-04-01

    The foundations of brain architecture are established early in life through a continuous series of dynamic interactions in which environmental conditions and personal experiences have a significant impact on how genetic predispositions are expressed. New scientific research shows that early social experiences can actually influence how genes are expressed. Thus, the old-school concepts that genes are "chiseled in stone" or that they alone determine development have been disproven. The discovery of the epigenome provides an explanation, at the molecular level, for why and how early positive and negative social experiences give rise to a biological memory that can have lifelong impacts. Signatures associated with the epigenome can be temporary or permanent, affect multiple organ systems, and increase the risk not only for poor physical and mental health outcomes but also for impairments in future learning capacity and behavior. Here, we focus on recent evidence for a role of epigenetic DNA modifications as a potential mechanism that explains how early social life experiences become embedded in the circuitry of the developing brain and are associated with lifelong consequences.

  3. Early life recorded in archean pillow lavas.

    PubMed

    Furnes, Harald; Banerjee, Neil R; Muehlenbachs, Karlis; Staudigel, Hubert; de Wit, Maarten

    2004-04-23

    Pillow lava rims from the Mesoarchean Barberton Greenstone Belt in South Africa contain micrometer-scale mineralized tubes that provide evidence of submarine microbial activity during the early history of Earth. The tubes formed during microbial etching of glass along fractures, as seen in pillow lavas from recent oceanic crust. The margins of the tubes contain organic carbon, and many of the pillow rims exhibit isotopically light bulk-rock carbonate delta13C values, supporting their biogenic origin. Overlapping metamorphic and magmatic dates from the pillow lavas suggest that microbial life colonized these subaqueous volcanic rocks soon after their eruption almost 3.5 billion years ago. PMID:15105498

  4. Early life recorded in archean pillow lavas.

    PubMed

    Furnes, Harald; Banerjee, Neil R; Muehlenbachs, Karlis; Staudigel, Hubert; de Wit, Maarten

    2004-04-23

    Pillow lava rims from the Mesoarchean Barberton Greenstone Belt in South Africa contain micrometer-scale mineralized tubes that provide evidence of submarine microbial activity during the early history of Earth. The tubes formed during microbial etching of glass along fractures, as seen in pillow lavas from recent oceanic crust. The margins of the tubes contain organic carbon, and many of the pillow rims exhibit isotopically light bulk-rock carbonate delta13C values, supporting their biogenic origin. Overlapping metamorphic and magmatic dates from the pillow lavas suggest that microbial life colonized these subaqueous volcanic rocks soon after their eruption almost 3.5 billion years ago.

  5. Early Palliative Care Improves Patients' Quality of Life

    MedlinePlus

    ... fullstory_160885.html Early Palliative Care Improves Patients' Quality of Life Also increases chances of having end-of-life ... incurable cancer helps patients cope and improves their quality of life, a new study shows. It also leads to ...

  6. Biomarkers as tracers for life on early earth and Mars

    NASA Technical Reports Server (NTRS)

    Simoneit, B. R.; Summons, R. E.; Jahnke, L. L.

    1998-01-01

    Biomarkers in geological samples are products derived from biochemical (natural product) precursors by reductive and oxidative processes (e.g., cholestanes from cholesterol). Generally, lipids, pigments and biomembranes are preserved best over longer geological times and labile compounds such as amino acids, sugars, etc. are useful biomarkers for recent times. Thus, the detailed characterization of biomarker compositions permits the assessment of the major contributing species of extinct and/or extant life. In the case of the early Earth, work has progressed to elucidate molecular structure and carbon isotropic signals preserved in ancient sedimentary rocks. In addition, the combination of bacterial biochemistry with the organic geochemistry of contemporary and ancient hydrothermal ecosystems permits the modeling of the nature, behavior and preservation potential of primitive microbial communities. This approach uses combined molecular and isotopic analyses to characterize lipids produced by cultured bacteria (representative of ancient strains) and to test a variety of culture conditions which affect their biosynthesis. On considering Mars, the biomarkers from lipids and biopolymers would be expected to be preserved best if life flourished there during its early history (3.5-4 x 10(9) yr ago). Both oxidized and reduced products would be expected. This is based on the inferred occurrence of hydrothermal activity during that time with the concomitant preservation of biochemically-derived organic matter. Both known biomarkers (i.e., as elucidated for early terrestrial samples and for primitive terrestrial microbiota) and novel, potentially unknown compounds should be characterized.

  7. Biomarkers as tracers for life on early earth and Mars.

    PubMed

    Simoneit, B R; Summons, R E; Jahnke, L L

    1998-10-01

    Biomarkers in geological samples are products derived from biochemical (natural product) precursors by reductive and oxidative processes (e.g., cholestanes from cholesterol). Generally, lipids, pigments and biomembranes are preserved best over longer geological times and labile compounds such as amino acids, sugars, etc. are useful biomarkers for recent times. Thus, the detailed characterization of biomarker compositions permits the assessment of the major contributing species of extinct and/or extant life. In the case of the early Earth, work has progressed to elucidate molecular structure and carbon isotropic signals preserved in ancient sedimentary rocks. In addition, the combination of bacterial biochemistry with the organic geochemistry of contemporary and ancient hydrothermal ecosystems permits the modeling of the nature, behavior and preservation potential of primitive microbial communities. This approach uses combined molecular and isotopic analyses to characterize lipids produced by cultured bacteria (representative of ancient strains) and to test a variety of culture conditions which affect their biosynthesis. On considering Mars, the biomarkers from lipids and biopolymers would be expected to be preserved best if life flourished there during its early history (3.5-4 x 10(9) yr ago). Both oxidized and reduced products would be expected. This is based on the inferred occurrence of hydrothermal activity during that time with the concomitant preservation of biochemically-derived organic matter. Both known biomarkers (i.e., as elucidated for early terrestrial samples and for primitive terrestrial microbiota) and novel, potentially unknown compounds should be characterized.

  8. The early Earth atmosphere and early life catalysts.

    PubMed

    Ramírez Jiménez, Sandra Ignacia

    2014-01-01

    Homochirality is a property of living systems on Earth. The time, the place, and the way in which it appeared are uncertain. In a prebiotic scenario two situations are of interest: either an initial small bias for handedness of some biomolecules arouse and progressed with life, or an initial slight excess led to the actual complete dominance of the known chiral molecules. A definitive answer can probably never be given, neither from the fields of physics and chemistry nor biology. Some arguments can be advanced to understand if homochirality is necessary for the initiation of a prebiotic homochiral polymer chemistry, if this homochirality is suggesting a unique origin of life, or if a chiral template such as a mineral surface is always required to result in an enantiomeric excess. A general description of the early Earth scenario will be presented in this chapter, followed by a general description of some clays, and their role as substrates to allow the concentration and amplification of some of the building blocks of life.

  9. Early Adolescent Affect Predicts Later Life Outcomes

    PubMed Central

    Kansky, Jessica; Allen, Joseph P.; Diener, Ed

    2016-01-01

    Background Subjective well-being as a predictor for later behavior and health has highlighted its relationship to health, work performance, and social relationships. However, the majority of such studies neglect the developmental nature of well-being in contributing to important changes across the transition to adulthood. Methods To examine the potential role of subjective well-being as a long-term predictor of critical life outcomes, we examined indicators of positive and negative affect at age 14 as a predictor of relationship, adjustment, self worth, and career outcomes a decade later at ages 23 to 25, controlling for family income and gender. We utilized multi-informant methods including reports from the target participant, close friends, and romantic partners in a demographically diverse community sample of 184 participants. Results Early adolescent positive affect predicted less relationship problems (less self-reported and partner-reported conflict, greater friendship attachment as rated by close peers), healthy adjustment to adulthood (lower levels of depression, anxiety, and loneliness). It also predicted positive work functioning (higher levels of career satisfaction and job competence) and increased self-worth. Negative affect did not significantly predict any of these important life outcomes. In addition to predicting desirable mean levels of later outcomes, early positive affect predicted beneficial changes across time in many outcomes. Conclusions The findings extend early research on the beneficial outcomes of subjective well-being by having an earlier assessment of well-being, including informant reports in measuring a large variety of outcome variables, and by extending the findings to a lower socioeconomic group of a diverse and younger sample. The results highlight the importance of considering positive affect as an important component of subjective well-being distinct from negative affect. PMID:27075545

  10. Survival of offspring who experience early parental death: early life conditions and later-life mortality.

    PubMed

    Smith, Ken R; Hanson, Heidi A; Norton, Maria C; Hollingshaus, Michael S; Mineau, Geraldine P

    2014-10-01

    We examine the influences of a set of early life conditions (ELCs) on all-cause and cause-specific mortality among elderly individuals, with special attention to one of the most dramatic early events in a child's, adolescent's, or even young adult's life, the death of a parent. The foremost question is, once controlling for prevailing (and potentially confounding) conditions early in life (family history of longevity, paternal characteristics (SES, age at time of birth, sibship size, and religious affiliation)), is a parental death associated with enduring mortality risks after age 65? The years following parental death may initiate new circumstances through which the adverse effects of paternal death operate. Here we consider the offspring's marital status (whether married; whether and when widowed), adult socioeconomic status, fertility, and later life health status. Adult health status is based on the Charlson Co-Morbidity Index, a construct that summarizes nearly all serious illnesses afflicting older individuals that relies on Medicare data. The data are based on linkages between the Utah Population Database and Medicare claims that hold medical diagnoses data. We show that offspring whose parents died when they were children, but especially when they were adolescents/young adults, have modest but significant mortality risks after age 65. What are striking are the weak mediating influences of later-life comorbidities, marital status, fertility and adult socioeconomic status since controls for these do little to alter the overall association. No beneficial effects of the surviving parent's remarriage were detected. Overall, we show the persistence of the effects of early life loss on later-life mortality and indicate the difficulties in addressing challenges at young ages.

  11. Early-life origin of adult insomnia: does prenatal-early-life stress play a role?

    PubMed

    Palagini, Laura; Drake, Christopher L; Gehrman, Philip; Meerlo, Peter; Riemann, Dieter

    2015-04-01

    Insomnia is very common in the adult population and it includes a wide spectrum of sequelae, that is, neuroendocrine and cardiovascular alterations as well as psychiatric and neurodegenerative disorders. According to the conceptualization of insomnia in the context of the 3-P model, the importance of predisposing, precipitating, and perpetuating factors has been stressed. Predisposing factors are present before insomnia is manifested and they are hypothesized to interact with precipitating factors, such as environmental stressful events, contributing to the onset of insomnia. Understanding the early-life origins of insomnia may be particularly useful in order to prevent and treat this costly phenomenon. Based on recent evidence, prenatal-early-life stress exposure results in a series of responses that involve the stress system in the child and could persist into adulthood. This may encompass an activation of the hypothalamic-pituitary-adrenal axis accompanied by long-lasting modifications in stress reactivity. Furthermore, early-life stress exposure might play an important role in predisposing to a vulnerability to hyperarousal reactions to negative life events in the adult contributing to the development of chronic insomnia. Epigenetic mechanisms may also be involved in the development of maladaptive stress responses in the newborn, ultimately predisposing to develop a variety of (psycho-) pathological states in adult life.

  12. Cortical Reorganization following Injury Early in Life

    PubMed Central

    Artzi, Moran; Shiran, Shelly Irene; Weinstein, Maya; Myers, Vicki; Tarrasch, Ricardo; Schertz, Mitchell; Fattal-Valevski, Aviva; Miller, Elka; Gordon, Andrew M.; Green, Dido; Ben Bashat, Dafna

    2016-01-01

    The brain has a remarkable capacity for reorganization following injury, especially during the first years of life. Knowledge of structural reorganization and its consequences following perinatal injury is sparse. Here we studied changes in brain tissue volume, morphology, perfusion, and integrity in children with hemiplegia compared to typically developing children, using MRI. Children with hemiplegia demonstrated reduced total cerebral volume, with increased cerebrospinal fluid (CSF) and reduced total white matter volumes, with no differences in total gray matter volume, compared to typically developing children. An increase in cortical thickness at the hemisphere contralateral to the lesion (CLH) was detected in motor and language areas, which may reflect compensation for the gray matter loss in the lesion area or retention of ipsilateral pathways. In addition, reduced cortical thickness, perfusion, and surface area were detected in limbic areas. Increased CSF volume and precentral cortical thickness and reduced white matter volume were correlated with worse motor performance. Brain reorganization of the gray matter within the CLH, while not necessarily indicating better outcome, is suggested as a response to neuronal deficits following injury early in life. PMID:27298741

  13. Life history and the early origins of health differentials.

    PubMed

    Worthman, Carol M; Kuzara, Jennifer

    2005-01-01

    Current epidemiologic models concerning the fetal origins of later health risk are evaluated from the perspectives of evolutionary and developmental biology. Claims of adaptive value for and biological status of fetal programming are critically examined. Life history theory is applied to identify key trade-offs in adaptive strategies that constrain developmental design to use information from the environment to guide ontogeny and establish cost-benefit trade-offs that weigh early survival advantage against remote or unlikely future costs. Expectable environments of evolutionary adaptedness, particularly of gestation, are characterized and their impact on human adaptive design discussed. The roles of neuroendocrine mechanisms in scaffolding life course development, negotiating ongoing cost-benefit trade-offs, and mediating their long-term impacts on function and health are reviewed in detail. Overviews of gestational biology and the postnatal physiologic, cognitive-affective, and behavioral effects of gestational stress identify a shared central role for the hypothalamic-pituitary-adrenal (HPA) axis. Rather than merely mediating stress responses, the axis emerges an agent of resource allocation that draws a common thread among conditions of gestation, postnatal environments, and functional and health-related outcomes. The preponderance of evolutionary and developmental analysis identifies environments as agents on both sides of the health risk equation, by influencing vulnerabilities and capacities established in early and later life course development, and determining exposures and demands encountered over the life course. PMID:15611966

  14. Philosophical Approaches towards Sciences of Life in Early Cybernetics

    NASA Astrophysics Data System (ADS)

    Montagnini, Leone

    2008-07-01

    The article focuses on the different conceptual and philosophical approaches towards the sciences of life operating in the backstage of Early Cybernetics. After a short reconstruction of the main steps characterizing the origins of Cybernetics, from 1940 until 1948, the paper examines the complementary conceptual views between Norbert Wiener and John von Neumann, as a "fuzzy thinking" versus a "logical thinking", and the marked difference between the "methodological individualism" shared by both of them versus the "methodological collectivism" of most of the numerous scientists of life and society attending the Macy Conferences on Cybernetics. The main thesis sustained here is that these different approaches, quite invisible to the participants, were different, maybe even opposite, but they could provoke clashes, as well as cooperate in a synergic way.

  15. Early-life nutritional effects on the female reproductive system.

    PubMed

    Chan, K A; Tsoulis, M W; Sloboda, D M

    2015-02-01

    There is now considerable epidemiological and experimental evidence indicating that early-life environmental conditions, including nutrition, affect subsequent development in later life. These conditions induce highly integrated responses in endocrine-related homeostasis, resulting in persistent changes in the developmental trajectory producing an altered adult phenotype. Early-life events trigger processes that prepare the individual for particular circumstances that are anticipated in the postnatal environment. However, where the intrauterine and postnatal environments differ markedly, such modifications to the developmental trajectory may prove maladaptive in later life. Reproductive maturation and function are similarly influenced by early-life events. This should not be surprising, because the primordial follicle pool is established early in life and is thus vulnerable to early-life events. Results of clinical and experimental studies have indicated that early-life adversity is associated with a decline in ovarian follicular reserve, changes in ovulation rates, and altered age at onset of puberty. However, the underlying mechanisms regulating the relationship between the early-life developmental environment and postnatal reproductive development and function are unclear. This review examines the evidence linking early-life nutrition and effects on the female reproductive system, bringing together clinical observations in humans and experimental data from targeted animal models.

  16. Altered GABA Signaling in Early Life Epilepsies

    PubMed Central

    Briggs, Stephen W.; Galanopoulou, Aristea S.

    2011-01-01

    The incidence of seizures is particularly high in the early ages of life. The immaturity of inhibitory systems, such as GABA, during normal brain development and its further dysregulation under pathological conditions that predispose to seizures have been speculated to play a major role in facilitating seizures. Seizures can further impair or disrupt GABAA signaling by reshuffling the subunit composition of its receptors or causing aberrant reappearance of depolarizing or hyperpolarizing GABAA receptor currents. Such effects may not result in epileptogenesis as frequently as they do in adults. Given the central role of GABAA signaling in brain function and development, perturbation of its physiological role may interfere with neuronal morphology, differentiation, and connectivity, manifesting as cognitive or neurodevelopmental deficits. The current GABAergic antiepileptic drugs, while often effective for adults, are not always capable of stopping seizures and preventing their sequelae in neonates. Recent studies have explored the therapeutic potential of chloride cotransporter inhibitors, such as bumetanide, as adjunctive therapies of neonatal seizures. However, more needs to be known so as to develop therapies capable of stopping seizures while preserving the age- and sex-appropriate development of the brain. PMID:21826277

  17. Characterizing the Early Impact Bombardment

    NASA Technical Reports Server (NTRS)

    Bogard, Donald D.

    2005-01-01

    The early bombardment revealed in the larger impact craters and basins on the moon was a major planetary process that affected all bodies in the inner solar system, including the Earth and Mars. Understanding the nature and timing of this bombardment is a fundamental planetary problem. The surface density of lunar impact craters within a given size range on a given lunar surface is a measure of the age of that surface relative to other lunar surfaces. When crater densities are combined with absolute radiometric ages determined on lunar rocks returned to Earth, the flux of large lunar impactors through time can be estimated. These studies suggest that the flux of impactors producing craters greater than 1 km in diameter has been approximately constant over the past approx. 3 Gyr. However, prior to 3.0 - 3.5 Gyr the impactor flux was much larger and defines an early bombardment period. Unfortunately, no lunar surface feature older than approx. 4 Gyr is accurately dated, and the surface density of craters are saturated in most of the lunar highlands. This means that such data cannot define the impactor flux between lunar formation and approx. 4 Gyr ago.

  18. Early-Life Origins of Life-Cycle Well-Being: Research and Policy Implications

    ERIC Educational Resources Information Center

    Currie, Janet; Rossin-Slater, Maya

    2015-01-01

    Mounting evidence across different disciplines suggests that early-life conditions can have consequences on individual outcomes throughout the life cycle. Relative to other developed countries, the United States fares poorly on standard indicators of early-life health, and this disadvantage may have profound consequences not only for population…

  19. Alteration of somatosensory response in adulthood by early life stress.

    PubMed

    Takatsuru, Yusuke; Koibuchi, Noriyuki

    2015-01-01

    Early life stress is well-known as a critical risk factor for mental and cognitive disorders in adulthood. Such disorders are accompanied by altered neuro- (synapto-) genesis and gene expression. Because psychosomatic disorders induced by early life stress (e.g., physical and/or sexual abuse, and neglect) have become a socio-economic problem, it is very important to clarify the mechanisms underlying these changes. However, despite of intensive clinical and animal studies, such mechanisms have not yet been clarified. Although the disturbance of glucocorticoid and glutamate homeostasis by stress has been well-documented, it has not yet been clarified whether such disturbance by early life stress persists for life. Furthermore, since previous studies have focused on the detection of changes in specific brain regions, such as the hippocampus and prefrontal cortex, it has not been clarified whether early life stress induced changes in the sensory/motor system. Thus, in this review, we introduce recent studies on functional/structural changes in the somatosensory cortex induced by early life stress. We believe that this review provides new insights into the functional alteration of the somatosensory system induced by early life stress. Such information may have clinical relevance in terms of providing effective therapeutic interventions to early life stressed individuals. PMID:26041988

  20. Naturalistic Rodent Models of Chronic Early-Life Stress

    PubMed Central

    Molet, Jenny; Maras, Pamela M.; Avishai-Eliner, Sarit

    2016-01-01

    A close association between early-life experience and cognitive and emotional outcomes is found in humans. In experimental models, early-life experience can directly influence a number of brain functions long-term. Specifically, and often in concert with genetic background, experience regulates structural and functional maturation of brain circuits and alters individual neuronal function via large-scale changes in gene expression. Because adverse experience during sensitive developmental periods is often associated with neuropsychiatric disease, there is an impetus to create realistic models of distinct early-life experiences. These can then be used to study causality between early-life experiential factors and cognitive and emotional outcomes, and to probe the underlying mechanisms. Although chronic early-life stress has been linked to the emergence of emotional and cognitive disorders later in life, most commonly used rodent models of involve daily maternal separation and hence intermittent early-life stress. We describe here a naturalistic and robust chronic early-life stress model that potently influences cognitive and emotional outcomes. Mice and rats undergoing this stress develop structural and functional deficits in a number of limbic-cortical circuits. Whereas overt pathological memory impairments appear during adulthood, emotional and cognitive vulnerabilities emerge already during adolescence. This naturalistic paradigm, widely adopted around the world, significantly enriches the repertoire of experimental tools available for the study of normal brain maturation and of cognitive and stress-related disorders including depression, autism, post-traumatic stress disorder, and dementia. PMID:24910169

  1. Early Life Experiences and Exercise Associate with Canine Anxieties

    PubMed Central

    Tiira, Katriina; Lohi, Hannes

    2015-01-01

    Personality and anxiety disorders across species are affected by genetic and environmental factors. Shyness-boldness personality continuum exists across species, including the domestic dog, with a large within- and across-breed variation. Domestic dogs are also diagnosed for several anxiety-related behavioral conditions, such as generalized anxiety disorders, phobias, and separation anxiety. Genetic and environmental factors contributing to personality and anxiety are largely unknown. We collected questionnaire data from a Finnish family dog population (N = 3264) in order to study the associating environmental factors for canine fearfulness, noise sensitivity, and separation anxiety. Early life experiences and exercise were found to associate with anxiety prevalence. We found that fearful dogs had less socialization experiences (p = 0.002) and lower quality of maternal care (p < 0.0001) during puppyhood. Surprisingly, the largest environmental factor associating with noise sensitivity (p < 0.0001) and separation anxiety (p = 0.007) was the amount of daily exercise; dogs with noise sensitivity and separation anxiety had less daily exercise. Our findings suggest that dogs share many of the same environmental factors that contribute to anxiety in other species as well, such as humans and rodents. Our study highlights the importance of early life experiences, especially the quality of maternal care and daily exercise for the welfare and management of the dogs, and reveals important confounding factors to be considered in the genetic characterization of canine anxiety. PMID:26528555

  2. Early earth: Arsenic and primordial life

    NASA Astrophysics Data System (ADS)

    Kulp, Thomas R.

    2014-11-01

    Some modern microorganisms derive energy from the oxidation and reduction of arsenic. The association of arsenic with organic cellular remains in 2.7-billion-year-old stromatolites hints at arsenic-based metabolisms at the dawn of life.

  3. The early evolution of life: solution to Darwin's dilemma

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    1994-01-01

    Recent studies of Precambrian fossils indicate that life on Earth originated earlier than assumed, microscopic life was prevalent in the Precambrian Eon, the tempo and mode of evolution during the Precambrian period were different from other periods, and that only the Precambrian fossil record can be used as evidence of early life. Implications for future research include directing the search for the origin of life away from the geological record, modification of hypotheses about molecular change, use of Precambrian microfossils in dating younger geological units, and progress in defining the nature of major events in early evolution.

  4. Conway's Game of Life: Early Personal Recollections

    NASA Astrophysics Data System (ADS)

    Wainwright, Robert

    When the October 1970 issue of Scientific American arrived, I had no idea the extent to which Martin Gardner's article in that issue would affect my life. As long as I can remember, my custom would be to seek out the Mathematical Games column in search for Gardner's latest topic with the usual reader challenges. My first reaction to that particular article introducing a new pastime titled "The fantastic combinations of John Conway's new solitaire game 'life''' was only mildly interesting. A couple of days later, still curious about the outcome of random patterns, I located an old checkerboard and a small jarful of pennies to investigate this new game.

  5. The positive and negative consequences of stressors during early life

    PubMed Central

    Monaghan, Pat; Haussmann, Mark F.

    2015-01-01

    We discuss the long-term effects of stress exposure in pre- and early postnal life. We present an evolutionary framework within which such effects can be viewed, and describe how the outcomes might vary with species life histories. We focus on stressors that induce increases in glucocorticoid hormones and discuss the advantages of an experimental approach. We describe a number of studies demonstrating how exposure to these hormones in early life can influence stress responsiveness and have substantial long-term, negative consequences for adult longevity. We also describe how early life exposure to mild levels of stressors can have beneficial effects on resilience to stress in later life, and discuss how the balance of costs and benefits is likely dependent on the nature of the adult environment. PMID:26385447

  6. Pleiotropy and life history evolution in Drosophila melanogaster: uncoupling life span and early fecundity.

    PubMed

    Khazaeli, Aziz A; Curtsinger, James W

    2013-05-01

    Populations of Drosophila melanogaster that have been artificially selected for late age of reproduction evolve longer life spans and, in some cases, reduced early fecundity. The negative correlation is widely interpreted as evidence of antagonistic pleiotropy. Here, we show that the correlation breaks down in recombinant genomes. A major quantitative trait locus that increases adult life span by 20% has no detectable effect on early fecundity. Several recombinant genotypes are superflies, exhibiting both elevated early fecundity and long life. The genetic correlation of early fecundity and life span is not different from zero, while the midlife fecundity correlation is positive and statistically significant, suggesting age-specific adaptation. The results are not consistent with a dominant role for negative pleiotropy, but can be understood in terms of a mixture of pleiotropic and recombining nonpleiotropic elements. Life span and early fecundity can be genetically uncoupled.

  7. Early Motherhood and Subsequent Life Outcomes

    ERIC Educational Resources Information Center

    Boden, Joseph M.; Fergusson, David M.; Horwood, L. John

    2008-01-01

    Background: Early motherhood has been linked with a number of adverse outcomes, including mental health difficulties and barriers to completing educational qualifications and workforce participation. The present study examined the extent to which these linkages could be explained by the influence of social, family, and background factors that were…

  8. Early life perfluorooctanesulphonic acid (PFOS) exposure impairs zebrafish organogenesis

    PubMed Central

    Chen, Jiangfei; Tanguay, Robert L.; Tal, Tamara L.; Bai, Chenglian; Tilton, Susan C.; Jin, Daqing; Yang, Dongren; Huang, Changjiang; Dong, Qiaoxiang

    2014-01-01

    As a persistent organic contaminant, perfluorooctanesulphonic acid (PFOS) has been widely detected in the environment, wildlife, and humans. The present study revealed that zebrafish embryos exposed to 16 µM PFOS during a sensitive window of 48–96 hour post-fertilization (hpf) disrupted larval morphology at 120 hpf. Malformed zebrafish larvae were characterized by uninflated swim bladder, less developed gut, and curved spine. Histological and ultrastructural examination of PFOS-exposed larvae showed structural alterations in swim bladder and gut. Whole genome microarray was used to identify the early transcripts dysregulated following exposure to 16 µM PFOS at 96 hpf. In total, 1,278 transcripts were significantly misexpressed (p < 0.05) and 211 genes were changed at least two-fold upon PFOS exposure in comparison to the vehicle exposed control group. A PFOS-induced network of perturbed transcripts relating to swim bladder and gut development revealed that misexpression of genes were involved in organogenesis. Taken together, early life stage exposure to PFOS perturbs various molecular pathways potentially resulting in observed defects in swim bladder and gut development. PMID:24667235

  9. Early-life origins of life-cycle well-being: research and policy implications.

    PubMed

    Currie, Janet; Rossin-Slater, Maya

    2015-01-01

    Mounting evidence across different disciplines suggests that early-life conditions can have consequences on individual outcomes throughout the life cycle. Relative to other developed countries, the United States fares poorly on standard indicators of early-life health, and this disadvantage may have profound consequences not only for population well-being, but also for economic growth and competitiveness in a global economy. In this paper, we first discuss the research on the strength of the link between early-life health and adult outcomes, and then provide an evidence-based review of the effectiveness of existing U.S. policies targeting the early-life environment. We conclude that there is a robust and economically meaningful relationship between early-life conditions and well-being throughout the life cycle, as measured by adult health, educational attainment, labor market attachment, and other indicators of socioeconomic status. However, there is some variation in the degree to which current policies in the United States are effective in improving early-life conditions. Among existing programs, some of the most effective are the Special Supplemental Program for Women, Infants, and Children (WIC), home visiting with nurse practitioners, and high-quality, center-based early-childhood care and education. In contrast, the evidence on other policies such as prenatal care and family leave is more mixed and limited. PMID:25558491

  10. Early-life origins of life-cycle well-being: research and policy implications.

    PubMed

    Currie, Janet; Rossin-Slater, Maya

    2015-01-01

    Mounting evidence across different disciplines suggests that early-life conditions can have consequences on individual outcomes throughout the life cycle. Relative to other developed countries, the United States fares poorly on standard indicators of early-life health, and this disadvantage may have profound consequences not only for population well-being, but also for economic growth and competitiveness in a global economy. In this paper, we first discuss the research on the strength of the link between early-life health and adult outcomes, and then provide an evidence-based review of the effectiveness of existing U.S. policies targeting the early-life environment. We conclude that there is a robust and economically meaningful relationship between early-life conditions and well-being throughout the life cycle, as measured by adult health, educational attainment, labor market attachment, and other indicators of socioeconomic status. However, there is some variation in the degree to which current policies in the United States are effective in improving early-life conditions. Among existing programs, some of the most effective are the Special Supplemental Program for Women, Infants, and Children (WIC), home visiting with nurse practitioners, and high-quality, center-based early-childhood care and education. In contrast, the evidence on other policies such as prenatal care and family leave is more mixed and limited.

  11. Early Life Crises of Habitable Planets

    SciTech Connect

    Pierrehumbert, Raymond

    2006-02-08

    There are a number of crises that a potentially habitable planet must avoid or surmount if its potential is to be realized. These include the runaway greenhouse, loss of atmosphere by chemical or physical processes, and long-lasting global glaciation. In this lecture I will present research on the climate dynamics governing such processes, with particular emphasis on the lessons to be learned from the cases of Early Mars and the Neoproterozoic Snowball Earth.

  12. Early Life Crises of Habitable Planets

    ScienceCinema

    Pierrehumbert, Raymond [University of Chicago, Chicago, Illinois, United States

    2016-07-12

    There are a number of crises that a potentially habitable planet must avoid or surmount if its potential is to be realized. These include the runaway greenhouse, loss of atmosphere by chemical or physical processes, and long-lasting global glaciation. In this lecture I will present research on the climate dynamics governing such processes, with particular emphasis on the lessons to be learned from the cases of Early Mars and the Neoproterozoic Snowball Earth.

  13. The Peroxy Challenge to Early Life

    NASA Astrophysics Data System (ADS)

    Rothschild, L. J.; Freund, F. T.; Gosling, P.

    2002-12-01

    The development of aerobic metabolism was one of the most important breakthroughs in evolution. But the early Earth was anaerobic, with most researchers today attributing the build-up of free O2 to oxygenic photosynthesizers. This reasoning is problematic because photosynthesis invariably produces oxygen radicals as by-products or intermediates. Known collectively as reactive oxygen species, ROS, these radicals damage DNA, damage membranes, and inactivate essential enzymes. In addition, molecular data on the evolution of cytochrome oxidase suggest that early organisms must have "learned" to detoxify ROS prior to the evolution of aerobic metabolism and oxygenic photosynthesis. A possible way out of this dilemma comes from a study of igneous and high-grade metamorphic rocks, which indicates that a small but significant fraction of the oxygen anions in their minerals exists in the 1- state, forming peroxy links of the type O3Si-OO-SiO3 (J. Geodynamics 33, 543-570, 2002). Water hydrolyzes these peroxy links to hydrogen peroxide, H2O2. As a result, microorganisms that attach themselves to mineral grains will be exposed to a constant trickle of ROS from the production of H2O2. We propose the following scenario: Though the overall conditions on the early Earth were anaerobic, conditions at microsites were not. The hydrolysis of peroxy links in minerals to hydrogen peroxide at the rock-water interface was biochemically challenging for any microbes living in intimate contact with rock surfaces. The generation of ROS placed the microbes under evolutionary stress to develop biochemical defenses against the potentially lethal effects of ROS radicals. Only after these enzymatic defenses were in place, oxygenic photosynthesizers were able to develop and increase the O2 partial pressure in the Earth's atmosphere to a high level.

  14. Reduced cortical thickness in veterans exposed to early life trauma.

    PubMed

    Corbo, Vincent; Salat, David H; Amick, Melissa M; Leritz, Elizabeth C; Milberg, William P; McGlinchey, Regina E

    2014-08-30

    Studies have shown that early life trauma may influence neural development and increase the risk of developing psychological disorders in adulthood. We used magnetic resonance imaging to examine the impact of early life trauma on the relationship between current posttraumatic stress disorder (PTSD) symptoms and cortical thickness/subcortical volumes in a sample of deployed personnel from Operation Enduring Freedom/Operation Iraqi Freedom. A group of 108 service members enrolled in the Translational Research Center for Traumatic Brain Injury and Stress Disorders (TRACTS) were divided into those with interpersonal early life trauma (EL-Trauma+) and Control (without interpersonal early life trauma) groups based on the Traumatic Life Events Questionnaire. PTSD symptoms were assessed using the Clinician-Administered PTSD Scale. Cortical thickness and subcortical volumes were analyzed using the FreeSurfer image analysis package. Thickness of the paracentral and posterior cingulate regions was positively associated with PTSD severity in the EL-Trauma+ group and negatively in the Control group. In the EL-Trauma+ group, both the right amygdala and the left hippocampus were positively associated with PTSD severity. This study illustrates a possible influence of early life trauma on the vulnerability of specific brain regions to stress. Changes in neural morphometry may provide information about the emergence and maintenance of symptoms in individuals with PTSD.

  15. Nutrient Intakes in Early Life and Risk of Obesity.

    PubMed

    Rolland-Cachera, Marie Françoise; Akrout, Mouna; Péneau, Sandrine

    2016-06-06

    There is increasing evidence that environmental factors in early life predict later health. The early adiposity rebound recorded in most obese subjects suggests that factors promoting body fat development have operated in the first years of life. Birth weight, growth velocity and body mass index (BMI) trajectories seem to be highly sensitive to the environmental conditions present during pregnancy and in early life ("The first 1000 days"). Particularly, nutritional exposure can have a long-term effect on health in adulthood. The high protein-low fat diet often recorded in young children may have contributed to the rapid rise of childhood obesity prevalence during the last decades. Metabolic programming by early nutrition could explain the development of later obesity and adult diseases.

  16. Nutrient Intakes in Early Life and Risk of Obesity

    PubMed Central

    Rolland-Cachera, Marie Françoise; Akrout, Mouna; Péneau, Sandrine

    2016-01-01

    There is increasing evidence that environmental factors in early life predict later health. The early adiposity rebound recorded in most obese subjects suggests that factors promoting body fat development have operated in the first years of life. Birth weight, growth velocity and body mass index (BMI) trajectories seem to be highly sensitive to the environmental conditions present during pregnancy and in early life (“The first 1000 days”). Particularly, nutritional exposure can have a long-term effect on health in adulthood. The high protein-low fat diet often recorded in young children may have contributed to the rapid rise of childhood obesity prevalence during the last decades. Metabolic programming by early nutrition could explain the development of later obesity and adult diseases. PMID:27275827

  17. The OBELIX project: early life exposure to endocrine disruptors and obesity.

    PubMed

    Legler, Juliette; Hamers, Timo; van Eck van der Sluijs-van de Bor, Margot; Schoeters, Greet; van der Ven, Leo; Eggesbo, Merete; Koppe, Janna; Feinberg, Max; Trnovec, Tomas

    2011-12-01

    The hypothesis of whether early life exposure (both pre- and early postnatal) to endocrine-disrupting chemicals (EDCs) may be a risk factor for obesity and related metabolic diseases later in life will be tested in the European research project OBELIX (OBesogenic Endocrine disrupting chemicals: LInking prenatal eXposure to the development of obesity later in life). OBELIX is a 4-y project that started in May 2009 and which has the following 5 main objectives: 1) to assess early life exposure in humans to major classes of EDCs identified as potential inducers of obesity (ie, dioxin-like compounds, non-dioxin-like polychlorinated biphenyls, organochlorine pesticides, brominated flame retardants, phthalates, and perfluorinated compounds) by using mother-child cohorts from 4 European regions with different food-contaminant exposure patterns; 2) to relate early life exposure to EDCs with clinical markers, novel biomarkers, and health-effect data related to obesity; 3) to perform hazard characterization of early life exposure to EDCs for the development of obesity later in life by using a mouse model; 4) to determine mechanisms of action of obesogenic EDCs on developmental programming with in vivo and in vitro genomics and epigenetic analyses; and 5) to perform risk assessments of prenatal exposure to obesogenic EDCs in food by integrating maternal exposure through food-contaminant exposure and health-effect data in children and hazard data in animal studies.

  18. Nanosystem Characterization Tools in the Life Sciences

    NASA Astrophysics Data System (ADS)

    Kumar, Challa S. S. R.

    2006-01-01

    This first dedicated, all-encompassing text characterizes nanomaterials intended for biological or physiological environments and biomedical applications, in particular for medicine, healthcare, pharmaceuticals and human wellness. It finally fills the gap for a concise overview of a wide range of different characterization techniques and how to best employ them in the context of nanoscale life science research. It thus serves as a single source of information gathering up the knowledge otherwise spread over many journal articles, and provides an overall picture to members of all the disciplines involved. This handy volume covers all important probing techniques, including nuclear and electron spin resonance, light scattering, infrared and Raman spectroscopy, atomic force microscopy, magnetic resonance, tomography, x-ray techniques, and microbalance measurement of antibody binding. Biochemists, biologists, chemists, materials scientists, and materials engineers as well as all others working in the pharmaceutical and chemical industries or at related research institutions will here a book of great value and importance.

  19. Evaluation of hypothesized adverse outcome pathway linking thyroid peroxidase inhibition to fish early life stage toxicity

    EPA Science Inventory

    There is an interest in developing alternatives to the fish early-life stage (FELS) test (OECD test guideline 210), for predicting adverse outcomes (e.g., impacts on growth and survival) using less resource-intensive methods. Development and characterization of adverse outcome pa...

  20. Fish early life stage: Developing AOPs to support targeted reduction and replacement

    EPA Science Inventory

    There is an interest in developing alternatives to the fish early-life stage (FELS) test (OECD test guideline 210), for predicting adverse chronic toxicity outcomes (e.g., impacts on growth and survival). Development and characterization of adverse outcome pathways (AOPs) related...

  1. The Intestinal Microbiome in Early Life: Health and Disease

    PubMed Central

    Arrieta, Marie-Claire; Stiemsma, Leah T.; Amenyogbe, Nelly; Brown, Eric M.; Finlay, Brett

    2014-01-01

    Human microbial colonization begins at birth and continues to develop and modulate in species abundance for about 3 years, until the microbiota becomes adult-like. During the same time period, children experience significant developmental changes that influence their health status as well as their immune system. An ever-expanding number of articles associate several diseases with early-life imbalances of the gut microbiota, also referred to as gut microbial dysbiosis. Whether early-life dysbiosis precedes and plays a role in disease pathogenesis, or simply originates from the disease process itself is a question that is beginning to be answered in a few diseases, including IBD, obesity, and asthma. This review describes the gut microbiome structure and function during the formative first years of life, as well as the environmental factors that determine its composition. It also aims to discuss the recent advances in understanding the role of the early-life gut microbiota in the development of immune-mediated, metabolic, and neurological diseases. A greater understanding of how the early-life gut microbiota impacts our immune development could potentially lead to novel microbial-derived therapies that target disease prevention at an early age. PMID:25250028

  2. Whole cow's milk in early life.

    PubMed

    Thorsdottir, Inga; Thorisdottir, Asa V

    2011-01-01

    Cow's milk is a major food for young children. Whole cow's milk is known to be detrimental to infants, mainly due to its low iron content. The negative association with iron status led to recommending the introduction of formula feeding in infancy during the weaning period or when breastfeeding ceased. More recently, the literature suggests that consuming whole cow's milk in infancy has unfortunate effects on growth, especially weight acceleration and development of overweight in childhood. These issues are discussed in the following chapter. Other suggested reasons for the avoidance of whole cow's milk in infancy are touched upon, such as milk protein allergy and high renal solute load. The hypothesis about early cow's milk introduction in the pathology of certain diseases, mainly through the peptide β-casomorphin-7, is briefly reviewed, showing that there is no clear evidence for the suggested associations. The chapter gives a recent example of introducing formula at 6 months of age instead of whole cow's milk in infants' diet in Iceland. Several aspects of consuming whole cow's milk in infancy can be found in recent reviews. PMID:21335988

  3. Nutrition and brain development in early life.

    PubMed

    Prado, Elizabeth L; Dewey, Kathryn G

    2014-04-01

    Presented here is an overview of the pathway from early nutrient deficiency to long-term brain function, cognition, and productivity, focusing on research from low- and middle-income countries. Animal models have demonstrated the importance of adequate nutrition for the neurodevelopmental processes that occur rapidly during pregnancy and infancy, such as neuron proliferation and myelination. However, several factors influence whether nutrient deficiencies during this period cause permanent cognitive deficits in human populations, including the child's interaction with the environment, the timing and degree of nutrient deficiency, and the possibility of recovery. These factors should be taken into account in the design and interpretation of future research. Certain types of nutritional deficiency clearly impair brain development, including severe acute malnutrition, chronic undernutrition, iron deficiency, and iodine deficiency. While strategies such as salt iodization and micronutrient powders have been shown to improve these conditions, direct evidence of their impact on brain development is scarce. Other strategies also require further research, including supplementation with iron and other micronutrients, essential fatty acids, and fortified food supplements during pregnancy and infancy.

  4. Factors in Early-Life Programming of Reproductive Fitness.

    PubMed

    Sominsky, Luba; Fuller, Erin A; Hodgson, Deborah M

    2015-01-01

    Fertility rates have been declining worldwide, with a growing number of young women suffering from infertility. Infectious and inflammatory diseases are important causes of infertility, and recent evidence points to the critical role of the early-life microbial environment in developmental programming of adult reproductive fitness. Our laboratory and others have demonstrated that acute exposure to an immunological challenge early in life has a profound and prolonged impact on male and female reproductive development. This review presents evidence that perinatal exposure to immunological challenge by a bacterial endotoxin, lipopolysaccharide, acts at all levels of the hypothalamic-pituitary-gonadal axis, resulting in long-lasting changes in reproductive function, suggesting that disposition to infertility may begin early in life.

  5. Commentary: On the Importance of Early Life Cognitive Abilities in Shaping Later Life Outcomes.

    PubMed

    Hofer, Scott M; Clouston, Sean

    2014-01-01

    Early life cognitive ability is likely to be dynamically related to life course factors including educational attainment, occupational outcomes, health behaviors, activities, health, and subsequent cognitive health. Disentangling the selective and causal processes contributing to cognitive functioning across the lifespan is challenging and requires long-term investments in longitudinal data. We discuss results from several analyses using data from the Individual Development and Adaptation longitudinal research program (Bergman, 2000; Magnusson, 1988) that provide fresh insights into the relation of early life cognition, particularly high levels of cognitive capabilities, to educational achievement, emotional adjustment, and career success. These papers and the longitudinal data provide a remarkable window into the development and impacts of cognition, and high cognitive functioning, on a variety of important life outcomes that we hope will continue to inform us about additional outcomes in middle life, transition to retirement, and cognition and health in later years and to robustly examine how the early years matter across the whole lifespan.

  6. The diversity of early Life on Earth : implications for life on Mars

    NASA Astrophysics Data System (ADS)

    Westall, F.; Southam, G.

    Although the locations where the earliest traces of life can be studied are few and far between (Isua, 3.8 Ga; Pilbara and Barberton, 3.5-3.3 Ga), the life that existed in the Early Archaean life has left a wealth of testimony. Structural and chemical fossils found in Early Arcahean `habitats' demonstrate that the biosphere was already in an advanced evolutionary state, i.e., much of the strata preserved from this period appears to have been colonised by morphologically and biochemically diverse bacteria. The Early-Mid Archaean microorganisms were morphologically similar to modern organisms and behaved in the same way, building colonies, biofilms and mats and interacting directly with their immediate substrate and with each other (in consortia). Their metabolic processes included chemolithotrophy, possibly methanogenesis and possibly anoxygenic photosynthesis. Early life was diverse and included thermophilic, acid-tolerant, halo-tolerant to halophilic, and radiation resistant species. With one exception, the traces of early life are subtle, on the scale of tens to hundreds of µm although, where environmental conditions were stable and quiet enough for their development, microbial mats on sediment surfaces could contribute to the formation of stromatolites of about 10 cm in height. The diversity, relative level of evolution and widespread distribution of life by 3.5 Ga implies that it must have evolved much earlier, possibly even before or during the period of late heavy bombardment). However, no record of its appearance and early evolution remains on Earth. Given the conditions on early Mars were generally similar to those on early Earth, i.e., habitable, the Southern Highlands of Mars could potentially host this missing record. Life on early Mars would probably have been similarly subtle in its expression, although there is a possibility of "stumbling" across small macroscopic stromatolites. If life still exists on the planet today, it's in the subsurface and its

  7. The origin and early evolution of life on earth

    NASA Technical Reports Server (NTRS)

    Oro, J.; Miller, Stanley L.; Lazcano, Antonio

    1990-01-01

    Results of the studies that have provided insights into the cosmic and primitive earth environments are reviewed with emphasis on those environments in which life is thought to have originated. The evidence bearing on the antiquity of life on the earth and the prebiotic significance of organic compounds found in interstellar clouds and in primitive solar-system bodies such as comets, dark asteroids, and carbonaceous chondrites are assessed. The environmental models of the Hadean and early Archean earth are discussed, as well as the prebiotic formation of organic monomers and polymers essential to life. The processes that may have led to the appearance in the Archean of the first cells are considered, and possible effects of these processes on the early steps of biological evolution are analyzed. The significance of these results to the study of the distribution of life in the universe is evaluated.

  8. Early Earth and early life: an extreme environment and extremophiles - application to the search for life on Mars

    NASA Astrophysics Data System (ADS)

    Westall, Frances; Brack, André; Barbier, Bernard; Bertrand, Marylène; Chabin, A.

    2002-11-01

    The early Earth was an extreme environment compared to the present day Earth: oceans with probably higher salinity and lower Ph, evaporitic conditions in the littoral environment, temperatures 70-80°C, little or no O2 in the atmosphere, pervasive volcanism and hydrothermal activity, and peak bolide activity between 4.0-3.85 b.y. ago. The oldest fossil evidence from 3.45 b.y. old sediments shows that life was widespread and thriving in and around hydrothermal vents and in evaporitic, littoral environments, exposed to high UV radiation. Given these conditions, life must have been extremophile by definition. Although there are strong dissimilarities between the geological evolution of early Mars and early Earth, from a microbial point of view, the environmental conditions on both planets were very similar, although the wider range in temperatures on Mars may have made a wider diversity possible. Early Earth and early life therefore represent an excellent analogue for the study of potential early Martian life.

  9. Early-life course socioeconomic factors and chronic kidney disease.

    PubMed

    Brophy, Patrick D; Shoham, David A; Charlton, Jennifer R; Carmody, J Bryan; Reidy, Kimberly J; Harshman, Lyndsay; Segar, Jeffrey; Askenazi, David

    2015-01-01

    Kidney failure or ESRD affects approximately 650,000 Americans, whereas the number with earlier stages of CKD is much higher. Although CKD and ESRD are usually associated with adulthood, it is likely that the initial stages of CKD begin early in life. Many of these pathways are associated with low birth weight and disadvantaged socioeconomic status (SES) in childhood, translating childhood risk into later-life CKD and kidney failure. Social factors are thought to be fundamental causes of disease. Although the relationship between adult SES and CKD has been well established, the role of early childhood SES for CKD risk remains obscure. This review provides a rationale for examining the association between early-life SES and CKD. By collecting data on early-life SES and CKD, the interaction with other periods in the life course could also be studied, allowing for examination of whether SES trajectories (eg, poverty followed by affluence) or cumulative burden (eg, poverty at multiple time points) are more relevant to lifetime CKD risk.

  10. Can environmental conditions experienced in early life influence future generations?

    PubMed Central

    Burton, Tim; Metcalfe, Neil B.

    2014-01-01

    The consequences of early developmental conditions for performance in later life are now subjected to convergent interest from many different biological sub-disciplines. However, striking data, largely from the biomedical literature, show that environmental effects experienced even before conception can be transmissible to subsequent generations. Here, we review the growing evidence from natural systems for these cross-generational effects of early life conditions, showing that they can be generated by diverse environmental stressors, affect offspring in many ways and can be transmitted directly or indirectly by both parental lines for several generations. In doing so, we emphasize why early life might be so sensitive to the transmission of environmentally induced effects across generations. We also summarize recent theoretical advancements within the field of developmental plasticity, and discuss how parents might assemble different ‘internal’ and ‘external’ cues, even from the earliest stages of life, to instruct their investment decisions in offspring. In doing so, we provide a preliminary framework within the context of adaptive plasticity for understanding inter-generational phenomena that arise from early life conditions. PMID:24807254

  11. Characterizing autopoiesis in the game of life.

    PubMed

    Beer, Randall D

    2015-01-01

    Maturana and Varela's concept of autopoiesis defines the essential organization of living systems and serves as a foundation for their biology of cognition and the enactive approach to cognitive science. As an initial step toward a more formal analysis of autopoiesis, this article investigates its application to the compact, recurrent spatiotemporal patterns that arise in Conway's Game-of-Life cellular automaton. In particular, we demonstrate how such entities can be formulated as self-constructing networks of interdependent processes that maintain their own boundaries. We then characterize the specific organizations of several such entities, suggest a way to simplify the descriptions of these organizations, and briefly consider the transformation of such organizations over time. PMID:25148547

  12. Cumulative early life adversity predicts longevity in wild baboons

    PubMed Central

    Tung, Jenny; Archie, Elizabeth A.; Altmann, Jeanne; Alberts, Susan C.

    2016-01-01

    In humans and other animals, harsh circumstances in early life predict morbidity and mortality in adulthood. Multiple adverse conditions are thought to be especially toxic, but this hypothesis has rarely been tested in a prospective, longitudinal framework, especially in long-lived mammals. Here we use prospective data on 196 wild female baboons to show that cumulative early adversity predicts natural adult lifespan. Females who experience ≥3 sources of early adversity die a median of 10 years earlier than females who experience ≤1 adverse circumstances (median lifespan is 18.5 years). Females who experience the most adversity are also socially isolated in adulthood, suggesting that social processes partially explain the link between early adversity and adult survival. Our results provide powerful evidence for the developmental origins of health and disease and indicate that close ties between early adversity and survival arise even in the absence of health habit and health care-related explanations. PMID:27091302

  13. Cumulative early life adversity predicts longevity in wild baboons.

    PubMed

    Tung, Jenny; Archie, Elizabeth A; Altmann, Jeanne; Alberts, Susan C

    2016-01-01

    In humans and other animals, harsh circumstances in early life predict morbidity and mortality in adulthood. Multiple adverse conditions are thought to be especially toxic, but this hypothesis has rarely been tested in a prospective, longitudinal framework, especially in long-lived mammals. Here we use prospective data on 196 wild female baboons to show that cumulative early adversity predicts natural adult lifespan. Females who experience ≥3 sources of early adversity die a median of 10 years earlier than females who experience ≤1 adverse circumstances (median lifespan is 18.5 years). Females who experience the most adversity are also socially isolated in adulthood, suggesting that social processes partially explain the link between early adversity and adult survival. Our results provide powerful evidence for the developmental origins of health and disease and indicate that close ties between early adversity and survival arise even in the absence of health habit and health care-related explanations.

  14. Cumulative early life adversity predicts longevity in wild baboons.

    PubMed

    Tung, Jenny; Archie, Elizabeth A; Altmann, Jeanne; Alberts, Susan C

    2016-01-01

    In humans and other animals, harsh circumstances in early life predict morbidity and mortality in adulthood. Multiple adverse conditions are thought to be especially toxic, but this hypothesis has rarely been tested in a prospective, longitudinal framework, especially in long-lived mammals. Here we use prospective data on 196 wild female baboons to show that cumulative early adversity predicts natural adult lifespan. Females who experience ≥3 sources of early adversity die a median of 10 years earlier than females who experience ≤1 adverse circumstances (median lifespan is 18.5 years). Females who experience the most adversity are also socially isolated in adulthood, suggesting that social processes partially explain the link between early adversity and adult survival. Our results provide powerful evidence for the developmental origins of health and disease and indicate that close ties between early adversity and survival arise even in the absence of health habit and health care-related explanations. PMID:27091302

  15. Early Life Adversity as a Risk Factor for Fibromyalgia in Later Life

    PubMed Central

    Low, Lucie A.; Schweinhardt, Petra

    2012-01-01

    The impact of early life events is increasingly becoming apparent, as studies investigate how early childhood can shape long-term physiology and behaviour. Fibromyalgia (FM), which is characterised by increased pain sensitivity and a number of affective co-morbidities, has an unclear etiology. This paper discusses risk factors from early life that may increase the occurrence or severity of FM in later life: pain experience during neonatal life causes long-lasting changes in nociceptive circuitry and increases pain sensitivity in the older organism; premature birth and related stressor exposure cause lasting changes in stress responsivity; maternal deprivation affects anxiety-like behaviours that may be partially mediated by epigenetic modulation of the genome—all these adult phenotypes are strikingly similar to symptoms displayed by FM sufferers. In addition, childhood trauma and exposure to substances of abuse may cause lasting changes in developing neurotransmitter and endocrine circuits that are linked to anxiety and stress responses. PMID:22110940

  16. Do early life factors affect the development of knee osteoarthritis in later life: a narrative review.

    PubMed

    Antony, Benny; Jones, Graeme; Jin, Xingzhong; Ding, Changhai

    2016-01-01

    Osteoarthritis (OA) mainly affects older populations; however, it is possible that early life factors contribute to the development of OA in later life. The aim of this review is to describe the association between childhood or early adulthood risk factors and knee pain, structural imaging markers and development of knee OA in later life. A narrative overview of the literature synthesising the findings of literature retrieved from searches of computerised databases and manual searches was conducted. We found that only a few studies have explored the long-term effect of childhood or early adulthood risk factors on the markers of joint health that predispose people to OA or joint symptoms. High body mass index (BMI) and/or overweight status from childhood to adulthood were independently related to knee pain and OA in later life. The findings regarding the association between strenuous physical activity and knee structures in young adults are still conflicting. However, a favourable effect of moderate physical activity and fitness on knee structures is reported. Childhood physical activity and performance measures had independent beneficial effects on knee structures including knee cartilage in children and young adults. Anterior knee pain syndrome in adolescence could lead to the development of patellofemoral knee OA in the late 40s. Furthermore, weak evidence suggests that childhood malalignment, socioeconomic status and physical abuse are associated with OA in later life. The available evidence suggests that early life intervention may prevent OA in later life. PMID:27623622

  17. Attic still life southsoutheast looking northnorthwest. Shows an early toilet, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Attic still life south-southeast looking north-northwest. Shows an early toilet, what is possibly the original front door, and a lead lined reservoir. Also shows the attic framing. - Samuel P. Grindle House, 13 School Street, Castine, Hancock County, ME

  18. Aim for the Inner Life: Teaching Early Teens.

    ERIC Educational Resources Information Center

    Regelski, Thomas A.

    1979-01-01

    Music study should be construed primarily as an experience of its feeling content. Taught so, it can reach for the inner core of the early adolescent, to pierce that sometimes hard outer surface that protects the vulnerable inner life. Attempts to intellectualize music with young teens are doomed. (Author/SJL)

  19. MAMMARY GLAND DEVELOPMENT: EARLY LIFE EFFECTS FROM THE ENVIRONMENT

    EPA Science Inventory

    Mammary Gland Development: Early Life Effects from the Environment

    S.E. Fenton. Reproductive Toxicology Division, National Health and Environmental Effects Laboratory, ORD, U.S. EPA, Research Triangle Park, NC 27711.

    As signs of precocious puberty in girls reach ...

  20. Early-Life Determinants of Children's Creativity: The Rorschach Perspective.

    ERIC Educational Resources Information Center

    Peske, Patric O.

    Using Rorschach inkblots, the author sought investigation and disclosure of early-life determinants of young children's creativity as influenced by home and school environmental experiences. Significant and empirically defined characterological features of children and adults in their lives and children's Rorschach and other examination findings,…

  1. Family Quality of Life Following Early Identification of Deafness

    ERIC Educational Resources Information Center

    Jackson, Carla W.; Wegner, Jane R.; Turnbull, Ann P.

    2010-01-01

    Purpose: Family members' perceptions of their quality of life were examined following early identification of deafness in children. Method: A questionnaire was used to solicit ratings of satisfaction from the family members of 207 children who were deaf and younger than 6 years of age. Results: Results indicated that families were generally…

  2. Early Stages of the Evolution of Life: a Cybernetic Approach

    NASA Astrophysics Data System (ADS)

    Melkikh, Alexey V.; Seleznev, Vladimir D.

    2008-08-01

    Early stages of the evolution of life are considered in terms of control theory. A model is proposed for the transport of substances in a protocell possessing the property of robustness with regard to changes in the environmental concentration of a substance.

  3. Child Development, Early Childhood Education and Family Life: A Bibliography.

    ERIC Educational Resources Information Center

    Reardon, Beverly, Comp.

    This bibliographical listing of approximately 2500 books on child development, early childhood education and family life was compiled as a resource for parents and students. Books are listed alphabetically by author and are grouped according to the following categories: child development; observation of children; adolescence; language…

  4. Effects of early life stress on brain activity: implications from maternal separation model in rodents.

    PubMed

    Nishi, Mayumi; Horii-Hayashi, Noriko; Sasagawa, Takayo; Matsunaga, Wataru

    2013-01-15

    Adverse experiences in early life can affect the formation of neuronal circuits during postnatal development and exert long-lasting influences on neural function. Many studies have shown that daily repeated maternal separation (RMS), an animal model of early life stress, can modulate the hypothalamic-pituitary-adrenal axis (HPA-axis) and can affect subsequent brain function and emotional behavior during adulthood. However, the molecular basis of the long-lasting effects of early life stress on brain function has not been completely elucidated. In this mini-review, we introduce various cases of maternal separation in rodents and illustrate the alterations in HPA-axis activity by focusing on corticosterone (CORT), an end-product of the HPA-axis in rodents. We then present the characterization of the brain regions affected by various patterns of MS, including RMS and single time maternal separation (SMS) at various stages before weaning, by investigating c-Fos expression, a biological marker of neuronal activity. These CORT and c-Fos studies suggest that repeated early life stress may affect neuronal function in region- and temporal-specific manners, indicating a critical period for habituation to early life stress. Furthermore, we introduce changes in behavioral aspects and gene expression in adult mice exposed to RMS.

  5. Early Life Conditions, Adverse Life Events, and Chewing Ability at Middle and Later Adulthood

    PubMed Central

    Watt, Richard G.; Tsakos, Georgios

    2014-01-01

    Objectives. We sought to determine the extent to which early life conditions and adverse life events impact chewing ability in middle and later adulthood. Methods. Secondary analyses were conducted based on data from waves 2 and 3 of the Survey of Health, Ageing, and Retirement in Europe (SHARE), collected in the years 2006 to 2009 and encompassing information on current chewing ability and the life history of persons aged 50 years or older from 13 European countries. Logistic regression models were estimated with sequential inclusion of explanatory variables representing living conditions in childhood and adverse life events. Results. After controlling for current determinants of chewing ability at age 50 years or older, certain childhood and later life course socioeconomic, behavioral, and cognitive factors became evident as correlates of chewing ability at age 50 years or older. Specifically, childhood financial hardship was identified as an early life predictor of chewing ability at age 50 years or older (odds ratio = 1.58; 95% confidence interval = 1.22, 2.06). Conclusions. Findings suggest a potential enduring impact of early life conditions and adverse life events on oral health in middle and later adulthood and are relevant for public health decision-makers who design strategies for optimal oral health. PMID:24625140

  6. Early life stress and blood pressure levels in late adulthood.

    PubMed

    Alastalo, H; Räikkönen, K; Pesonen, A-K; Osmond, C; Barker, D J P; Heinonen, K; Kajantie, E; Eriksson, J G

    2013-02-01

    Severe stress experienced in early life may have long-term consequences on adult physiological functions. We studied the long-term effects of separation on blood pressure levels in non-obese subjects who were separated temporarily in childhood from their parents during World War II (WWII). The original clinical study cohort consists of people born during 1934-1944 in Helsinki, Finland. This substudy includes 1361 non-obese subjects (body mass index <30 kg m(-2)). Of these, 192 (14.1%) had been evacuated abroad during WWII. The remaining subjects served as controls. Blood pressure levels and use of blood pressure medication were studied. The separated subjects had significantly higher systolic blood pressure values than the non-separated (148.6+21.5 vs 142.2+19.6 mm Hg, P<0.0001) in adult life. Those subjects separated in early childhood had markedly higher systolic and diastolic blood pressure values in adult life compared with the non-separated (154.6 vs 142.5 mm Hg; 95% confidence interval (CI) 2.6-14.7; P<0.005 and 90.8 vs 87.7 mm Hg; 95% CI 1.0-7.3; P<0.02, respectively). Systolic blood pressure was also higher in the group separated for a duration of <1 year (151.7 vs 142.2 mm Hg; 95% CI 0.0-12.4; P<0.05) compared with the non-separated. Besides being separated, age at separation and duration of separation also influenced blood pressure levels in adult life. This could be due to early hormonal and metabolic programming, during plastic periods in early life, influencing blood pressure levels in adult life.

  7. Early Mars: A Warm Wet Niche for Life

    NASA Technical Reports Server (NTRS)

    Gibson, Everett K.; McKay, David S.; Thomas-Keprta, Kathie L.; Clemett, Simon J.

    2010-01-01

    Exploration of Mars has begun to unveil the history of the planet. Combinations of remote sensing, in situ compositional measurements and photographic observations have shown Mars had a dynamic and active geologic evolution. Mars geologic evolution had conditions that were suitable for supporting life. A habitable planet must have water, carbon and energy sources along with a dynamic geologic past. Mars meets all of these requirements. The first 600 Ma of Martian history were ripe for life to develop because of the abundance of: (i) Water-as shown by carved canyons and oceans or lakes with the early presence of near surface water shown by precipitated carbonates in ALH84001, well-dated at approx.3.9 Ga, (ii) Energy from the original accretional processes, a molten core which generated a strong magnetic field leaving a permanent record in the early crust, active volcanism continuing throughout Martian history, and continuing impact processes, (iii) Carbon, water and a likely thicker atmosphere from extensive volcanic outgassing (i.e. H2O, CO2, CH4, CO, O2, N2, H2S, SO2, etc.) and (iv) crustal tectonics as revealed by faulting and possible plate movement reflected by the magnetic patterns in the crust [1]. The question arises: "Why would life not develop from these favorable conditions on Mars in its first 600 Ma?" During this period, environmental near-surface conditions on Mars were more favorable to life than at any later time. Standing bodies of water, precipitation and flowing surface water, and possibly abundant hydrothermal energy would favor the formation of early life. (Even if life developed elsewhere on Earth, Venus, or on other bodies-it was transported to Mars where surface conditions were suitable for life to evolve)

  8. DNA methylation: the pivotal interaction between early-life nutrition and glucose metabolism in later life.

    PubMed

    Zheng, Jia; Xiao, Xinhua; Zhang, Qian; Yu, Miao

    2014-12-14

    Traditionally, it has been widely acknowledged that genes together with adult lifestyle factors determine the risk of developing some metabolic diseases such as insulin resistance, obesity and diabetes mellitus in later life. However, there is now substantial evidence that prenatal and early-postnatal nutrition play a critical role in determining susceptibility to these diseases in later life. Maternal nutrition has historically been a key determinant for offspring health, and gestation is the critical time window that can affect the growth and development of offspring. The Developmental Origins of Health and Disease (DOHaD) hypothesis proposes that exposures during early life play a critical role in determining the risk of developing metabolic diseases in adulthood. Currently, there are substantial epidemiological studies and experimental animal models that have demonstrated that nutritional disturbances during the critical periods of early-life development can significantly have an impact on the predisposition to developing some metabolic diseases in later life. The hypothesis that epigenetic mechanisms may link imbalanced early-life nutrition with altered disease risk has been widely accepted in recent years. Epigenetics can be defined as the study of heritable changes in gene expression that do not involve alterations in the DNA sequence. Epigenetic processes play a significant role in regulating tissue-specific gene expression, and hence alterations in these processes may induce long-term changes in gene function and metabolism that persist throughout the life course. The present review focuses on how nutrition in early life can alter the epigenome, produce different phenotypes and alter disease susceptibilities, especially for impaired glucose metabolism.

  9. Early life circumstances and their impact on menarche and menopause

    PubMed Central

    Mishra, Gita D; Cooper, Rachel; Tom, Sarah E; Kuh, Diana

    2012-01-01

    Ages at menarche and menopause have been shown to be associated with adverse health outcomes in later life. For example, earlier menarche and later menopause have been independently linked to higher risk of breast cancer. Earlier menarche may also be associated with an increased risk of endometrial cancer, menstrual problems and adult obesity. Given the associations of ages at menarche and menopause with future health outcomes, it is important to establish what factors across life, and generations, may influence these. This article examines the associations of early life factors, namely birthweight, bodyweight and growth during childhood, childhood socioeconomic circumstances and psychosocial factors with ages at menarche and menopause. It examines possible explanations of the associations found, including life history theory, and discusses areas for future research. PMID:19245355

  10. Early-Life Exposure to Clostridium leptum Causes Pulmonary Immunosuppression

    PubMed Central

    Huang, Fei; Qiao, Hong-mei; Yin, Jia-ning; Gao, Yang; Ju, Yang-hua; Li, Ya-nan

    2015-01-01

    Introduction Low Clostridium leptum levels are a risk factor for the development of asthma. C. leptum deficiency exacerbates asthma; however, the impact of early-life C. leptum exposure on cesarean-delivered mice remains unclear. This study is to determine the effects of early-life C. leptum exposure on asthma development in infant mice. Methods We exposed infant mice to C. leptum (fed-CL) and then induced asthma using the allergen ovalbumin (OVA). Results Fed-CL increased regulatory T (Treg) cells in cesarean-delivered mice compared with vaginally delivered mice. Compared with OVA-exposed mice, mice exposed to C. leptum + OVA did not develop the typical asthma phenotype, which includes airway hyper-responsiveness, cell infiltration, and T helper cell subset (Th1, Th2, Th9, Th17) inflammation. Early-life C. leptum exposure induced an immunosuppressive environment in the lung concurrent with increased Treg cells, resulting in the inhibition of Th1, Th2, Th9, and Th17 cell responses. Conclusion These findings demonstrate a mechanism whereby C. leptum exposure modulates adaptive immunity and leads to failure to develop asthma upon OVA sensitization later in life. PMID:26565810

  11. Diversity of the Human Skin Microbiome Early in Life

    PubMed Central

    Capone, Kimberly A; Dowd, Scot E; Stamatas, Georgios N; Nikolovski, Janeta

    2011-01-01

    Within days after birth, rapid surface colonization of infant skin coincides with significant functional changes. Gradual maturation of skin function, structure, and composition continues throughout the first years of life. Recent reports have revealed topographical and temporal variations in the adult skin microbiome. Here we address the question of how the human skin microbiome develops early in life. We show that the composition of cutaneous microbial communities evolves over the first year of life, showing increasing diversity with age. Although early colonization is dominated by Staphylococci, their significant decline contributes to increased population evenness by the end of the first year. Similar to what has been shown in adults, the composition of infant skin microflora appears to be site specific. In contrast to adults, we find that Firmicutes predominate on infant skin. Timely and proper establishment of healthy skin microbiome during this early period might have a pivotal role in denying access to potentially infectious microbes and could affect microbiome composition and stability extending into adulthood. Bacterial communities contribute to the establishment of cutaneous homeostasis and modulate inflammatory responses. Early microbial colonization is therefore expected to critically affect the development of the skin immune function. PMID:21697884

  12. The origin and early evolution of life on Earth.

    PubMed

    Oró, J; Miller, S L; Lazcano, A

    1990-01-01

    We do not have a detailed knowledge of the processes that led to the appearance of life on Earth. In this review we bring together some of the most important results that have provided insights into the cosmic and primitive Earth environments, particularly those environments in which life is thought to have originated. To do so, we first discuss the evidence bearing on the antiquity of life on our planet and the prebiotic significance of organic compounds found in interstellar clouds and in primitive solar system bodies such as comets, dark asteroids, and carbonaceous chondrites. This is followed by a discussion on the environmental models of the Hadean and early Archean Earth, as well as on the prebiotic formation of organic monomers and polymers essential to life. We then consider the processes that may have led to the appearance in the Archean of the first cells, and how these processes may have affected the early steps of biological evolution. Finally, the significance of these results to the study of the distribution of life in the Universe is discussed.

  13. Early-Life Conditions, Rapid Demographic Changes, and Older Adult Health in the Developing World.

    PubMed

    McEniry, Mary; McDermott, Jacob

    2015-01-01

    The demographic transition of the 1930s-1960s dramatically improved life expectancy in some developing countries. Cohorts born during this time are increasingly characterized by their survivorship of poor early-life conditions, such as poor nutrition and infectious diseases. As a result, they are potentially more susceptible to the effects of these conditions at older ages. This study examines this conjecture by comparing obesity, diabetes, and hypertension in older adults born in the beginning portion of the 1930s-1960s across different mortality regimes using a subset of harmonized cross-national data from seven low- and middle-income countries (RELATE, n = 16,836). Using birthplace and height as indicators of early-life conditions, the results show (1) higher prevalence of obesity and diabetes and higher likelihood of obesity, diabetes, and hypertension in middle-income countries, but (2) no convincing evidence to indicate stronger effects of early-life conditions on health in these countries. However, shorter adults living in urban areas were more likely to be obese, indicating the overall importance of early-life conditions and the potential negative impact of urban exposures during adulthood. Obesity results may foreshadow the health of future cohorts born in the later portion of the 1930s-1960s as they reach older ages (60+).

  14. Early life conditions, rapid demographic changes and older adult health in the developing world

    PubMed Central

    McEniry, Mary; McDermott, Jacob

    2015-01-01

    The demographic transition of the 1930s–1960s dramatically improved life expectancy in some developing countries. Cohorts born during this time are increasingly characterized by their survivorship of poor early life conditions, such as poor nutrition and infectious diseases. As a result, they are potentially more susceptible to the effects of these conditions at older ages. This study examines this conjecture by comparing obesity, diabetes, and hypertension in older adults born in the beginning portion of the 1930s–1960s across different mortality regimes using a subset of harmonized cross national data from seven low and middle income countries (RELATE, n=16,836). Using birthplace and height as indicators of early life conditions, results show (1) higher prevalence of obesity and diabetes and higher likelihood of obesity, diabetes and hypertension in middle income countries but, (2) no convincing evidence to indicate stronger effects of early life conditions on health in these countries. However, shorter adults living in urban areas were more likely to be obese indicating the overall importance of early life conditions and the potential negative impact of urban exposures during adulthood. Obesity results may foreshadow the health of future cohorts born in the later portion of the 1930s–1960s as they reach older ages (60+). PMID:26266970

  15. Mechanisms of early life programming: current knowledge and future directions.

    PubMed

    Tarry-Adkins, Jane L; Ozanne, Susan E

    2011-12-01

    It has been >20 y since epidemiologic studies showed a relation between patterns of early growth and subsequent risk of diseases, such as type 2 diabetes, cardiovascular disease, and the metabolic syndrome. Studies of identical twins, individuals who were in utero during periods of famine, and animal models have provided strong evidence that the early environment, including early nutrition, plays an important role in mediating these relations. The concept of early life programming is therefore widely accepted. However, the mechanisms by which a phenomenon that occurs in early life can have long-term effects on the function of a cell and therefore on the metabolism of an organism many years later are only starting to emerge. These mechanisms include 1) permanent structural changes in an organ resulting from suboptimal concentrations of an important factor during a critical period of development, eg, the permanent reduction in β cell mass in the endocrine pancreas; 2) persistent alterations in epigenetic modifications (eg, DNA methylation and histone modifications) that lead to changes in gene expression (eg, several transcription factors are susceptible to programmed changes in gene expression through such mechanisms); and 3) permanent effects on the regulation of cellular aging (eg, increases in oxidative stress that lead to macromolecular damage, including that to DNA and specifically to telomeres, can contribute to such effects). Further understanding of such processes will enable the development of preventive and intervention strategies to combat the burden of common diseases such as type 2 diabetes and cardiovascular disease. PMID:21543536

  16. Mechanisms of early life programming: current knowledge and future directions.

    PubMed

    Tarry-Adkins, Jane L; Ozanne, Susan E

    2011-12-01

    It has been >20 y since epidemiologic studies showed a relation between patterns of early growth and subsequent risk of diseases, such as type 2 diabetes, cardiovascular disease, and the metabolic syndrome. Studies of identical twins, individuals who were in utero during periods of famine, and animal models have provided strong evidence that the early environment, including early nutrition, plays an important role in mediating these relations. The concept of early life programming is therefore widely accepted. However, the mechanisms by which a phenomenon that occurs in early life can have long-term effects on the function of a cell and therefore on the metabolism of an organism many years later are only starting to emerge. These mechanisms include 1) permanent structural changes in an organ resulting from suboptimal concentrations of an important factor during a critical period of development, eg, the permanent reduction in β cell mass in the endocrine pancreas; 2) persistent alterations in epigenetic modifications (eg, DNA methylation and histone modifications) that lead to changes in gene expression (eg, several transcription factors are susceptible to programmed changes in gene expression through such mechanisms); and 3) permanent effects on the regulation of cellular aging (eg, increases in oxidative stress that lead to macromolecular damage, including that to DNA and specifically to telomeres, can contribute to such effects). Further understanding of such processes will enable the development of preventive and intervention strategies to combat the burden of common diseases such as type 2 diabetes and cardiovascular disease.

  17. Searching for Life on Early Mars: Lessons from the Pilbara

    NASA Technical Reports Server (NTRS)

    Clarke, J. D. A.; Stoker, C. R.

    2016-01-01

    Stromatolites in the Pilbara region of Western Australia constitute the earliest outcrop-scale evidence of life on Earth (Figure 1). The stromatolites in the 3.4 Ga Strelley Pool Formation (SPF) provide an important analog for searching for fossil evidence of early life on Mars, as Noachian aged sediments on Mars were formed under similar environmental conditions. Stromatolites represent possibly the best evidence that could be collected by a rover because they form recognizable macroscopic structures and are often associated with chemical and microscopic evidence.

  18. Reproductive and early life stages pathology - Histopathology workshop report

    USGS Publications Warehouse

    Bruno, D.W.; Nowak, B.; Elliott, D.G.

    2006-01-01

    Pathology occurring during reproduction and larval development represents an important part of the life cycle of fish, and the diseases that affect eggs and larvae often result in significant losses. However, mortality during this period is frequently ignored or poorly researched as the temptation is to replace the losses rather than investigate the causes. A histopathology workshop organised at the newly refurnished laboratory within the Danish Veterinary School was an opportunity to discuss the pathology of selected diseases associated with Reproductive and Early Life Stages Pathology. Several people also kindly provided reference slides.

  19. Conditions on Early Mars Might Have Fostered Rapid and Early Development of Life

    NASA Technical Reports Server (NTRS)

    Gibson, Everett K.; McKay, David S.; Thomas-Keprta, Kathie L.; Clemett, Simon J.; Wentworth, Susan J.

    2007-01-01

    The exploration of Mars during the past decades has begun to unveil the history of the planet. The combinations of remote sensing, in situ geochemical compositional measurements and photographic observations from both above and on the surface have shown Mars to have a dynamic and active geologic evolution. Mars geologic evolution clearly had conditions that were suitable for supporting life. For a planet to be able to be habitable, it must have water, carbon sources, energy sources and a dynamic geologic past. Mars meets all of these requirements. The first 600 My of Martian history were ripe for life to develop because of the abundance of (i) Water-carved canyons and oceans or lakes with the early presence of near surface water shown by precipitated carbonates in ALH84001 well-dated at approx.3.9 Gy., (ii) Energy from the original accretional processes, a molten core which generated a strong magnetic field leaving a permanent record in the early crust, early active volcanism continuing throughout Martian history, and, and continuing impact processes, (iii) Carbon and water from possibly extensive volcanic outgassing (i.e. H2O, CO2, CH4, CO, O2, N2, H2S, SO2, etc.) and (iv) some crustal tectonics as revealed by faulting and possible plate movement reflected by the magnetic pattern in the crust. The question arises: "Why would life not evolve from these favorable conditions on early Mars in its first 600 My?" During this period, it seems likely that environmental near-surface conditions on Mars were more favorable to life than at any later time. Standing bodies of water, precipitation and flowing surface water, and possibly abundant hydrothermal energy would all favor the formation of early life. Even if life developed elsewhere (on Earth, Venus, or on other solar systems) and was transported to Mars, the surface conditions were likely very hospitable for that introduced life to multiply and evolve.

  20. Intestinal microbiology in early life: specific prebiotics can have similar functionalities as human-milk oligosaccharides.

    PubMed

    Oozeer, Raish; van Limpt, Kees; Ludwig, Thomas; Ben Amor, Kaouther; Martin, Rocio; Wind, Richèle D; Boehm, Günther; Knol, Jan

    2013-08-01

    Human milk is generally accepted as the best nutrition for newborns and has been shown to support the optimal growth and development of infants. On the basis of scientific insights from human-milk research, a specific mixture of nondigestible oligosaccharides has been developed, with the aim to improve the intestinal microbiota in early life. The mixture has been extensively studied and has been shown to be safe and to have potential health benefits that are similar to those of human milk. The specific mixture of short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides has been found to affect the development of early microbiota and to increase the Bifidobacterium amounts as observed in human-milk-fed infants. The resulting gut ecophysiology is characterized by high concentrations of lactate, a slightly acidic pH, and specific short-chain fatty acid profiles, which are high in acetate and low in butyrate and propionate. Here, we have summarized the main findings of dietary interventions with these specific oligosaccharides on the gut microbiota in early life. The gut ecophysiology in early life may have consequences for the metabolic, immunologic, and even neurologic development of the child because reports increasingly substantiate the important function of gut microbes in human health. This review highlights major findings in the field of early gut colonization and the potential impact of early nutrition in healthy growth and development.

  1. Plate tectonics, surface mineralogy, and the early evolution of life

    NASA Astrophysics Data System (ADS)

    Parnell, J.

    2004-04-01

    In addition to the accepted roles of plate tectonics in regulating planetary habitability through the composition of the atmosphere and temperature, and creating continents to enhance land-based evolution and biodiversity, it has a hitherto unexplored role in influencing surface mineralogy with possible implications for early evolution. Plate tectonics creates continents through the accretion of buoyant granitic crust. Erosion of the granites yields specific minerals including quartz, radioactive (uranium-, thorium-bearing) phases and phosphates, which could play a role in early evolution. Radioactive grains could help to concentrate carbon and increase its complexity through irradiation-induced polymerization at the prebiotic stage, and possibly influence mutation rates once life was established. Weathering of phosphate minerals was an important source of phosphorus for the biochemistry that is essential to life. Quartz-rich sands provide a translucent refuge for early photosynthesizers below the harmful effects of ultra-violet irradiation at the surface. Uranium is also important to the development of nuclear power in an advanced civilization. The mineralogy that engenders these processes is distinct from that to be expected on a planet without plate tectonics, where volcanogenic sediments would predominate, and further emphasizes the importance of plate tectonics to the evolution of life.

  2. Epigenetic changes in early life and future risk of obesity.

    PubMed

    Lillycrop, K A; Burdge, G C

    2011-01-01

    The rapid increase in incidence of obesity over the past two decades cannot be explained solely by genetic and adult lifestyle factors. There is now considerable evidence that the fetal and early postnatal environments also strongly influence the risk of developing obesity in later life. Initially, human studies showed that low birth weight was associated with an increased risk of obesity but increasingly there is evidence that overnutrition in the early life can also increase susceptibility to future obesity. These findings have now been replicated in animal models, which have shown that both maternal under- and overnutrition can induce persistent changes in gene expression and metabolism. The mechanism by which the maternal nutritional environment induces such changes is beginning to be understood and involves the altered epigenetic regulation of specific genes. In this review, we discuss the recent evidence that shows that early-life environment can induce altered epigenetic regulation leading to the induction of an altered phenotype. The demonstration of a role for altered epigenetic regulation of genes in the developmental induction of obesity opens the possibility that interventions, either through nutrition or specific drugs, may modify long-term obesity risk and combat this rapid rise in obesity.

  3. Life Stress Impairs Self-Control in Early Adolescence

    PubMed Central

    Duckworth, Angela L.; Kim, Betty; Tsukayama, Eli

    2013-01-01

    The importance of self-control to a wide range of developmental outcomes prompted the current investigation of negative life events and self-control in early adolescence. In three prospective, longitudinal studies, negative life events reported by the mother (in Study 1) or child (in Studies 2 and 3) predicted rank-order decreases in self-control over time. In all studies, self-control was measured at two different time points using questionnaires completed by three separate raters, including a classroom teacher who knew the child well and two other raters (parents, caregivers, and/or the child himself/herself). Psychological distress measured in Studies 2 and 3 mediated the deleterious effects of negative life events on self-control. These findings extend prior experimental laboratory research documenting the acute effects of stress on self-control. PMID:23443890

  4. Inter-generational social mobility following early life stress.

    PubMed

    Pesonen, Anu-Katriina; Räikkönen, Katri; Kajantie, Eero; Heinonen, Kati; Osmond, Clive; Barker, David J P; Forsén, Tom; Eriksson, Johan G

    2011-06-01

    INTRODUCTION. Socio-economic position (SEP) is a powerful source of health inequality. Less is known of early life conditions that may determine the course of adult SEP. We tested if early life stress (ELS) due to a separation from the parents during World War II predicts adult SEP, trajectories of incomes across the entire working career, and inter-generational social mobility. MATERIALS AND METHODS. Participants (n = 10,702) were from the Helsinki Birth Cohort Study 1934-44. Compared to the non-separated, the separated individuals attained a lower SEP in adulthood. The separated whose fathers were manual workers were less likely to be upwardly mobile from paternal occupation category to higher categories of own occupation, education, and incomes. The separated whose fathers had junior and senior clerical occupations were more likely to be downwardly mobile. Comparison of trajectories of incomes across adulthood showed that the difference between the separated and the non-separated grew larger across time, such that among the separated the incomes decreased. CONCLUSIONS. This life-course study shows that severe ELS due to a separation from parents in childhood is associated with socio-economic disadvantage in adult life. Even high initial SEP in childhood may not protect from the negative effects of ELS. PMID:21366512

  5. Inter-generational social mobility following early life stress.

    PubMed

    Pesonen, Anu-Katriina; Räikkönen, Katri; Kajantie, Eero; Heinonen, Kati; Osmond, Clive; Barker, David J P; Forsén, Tom; Eriksson, Johan G

    2011-06-01

    INTRODUCTION. Socio-economic position (SEP) is a powerful source of health inequality. Less is known of early life conditions that may determine the course of adult SEP. We tested if early life stress (ELS) due to a separation from the parents during World War II predicts adult SEP, trajectories of incomes across the entire working career, and inter-generational social mobility. MATERIALS AND METHODS. Participants (n = 10,702) were from the Helsinki Birth Cohort Study 1934-44. Compared to the non-separated, the separated individuals attained a lower SEP in adulthood. The separated whose fathers were manual workers were less likely to be upwardly mobile from paternal occupation category to higher categories of own occupation, education, and incomes. The separated whose fathers had junior and senior clerical occupations were more likely to be downwardly mobile. Comparison of trajectories of incomes across adulthood showed that the difference between the separated and the non-separated grew larger across time, such that among the separated the incomes decreased. CONCLUSIONS. This life-course study shows that severe ELS due to a separation from parents in childhood is associated with socio-economic disadvantage in adult life. Even high initial SEP in childhood may not protect from the negative effects of ELS.

  6. Epigenetic mechanisms elicited by nutrition in early life.

    PubMed

    Canani, Roberto Berni; Costanzo, Margherita Di; Leone, Ludovica; Bedogni, Giorgio; Brambilla, Paolo; Cianfarani, Stefano; Nobili, Valerio; Pietrobelli, Angelo; Agostoni, Carlo

    2011-12-01

    A growing number of studies focusing on the developmental origin of health and disease hypothesis have identified links among early nutrition, epigenetic processes and diseases also in later life. Different epigenetic mechanisms are elicited by dietary factors in early critical developmental ages that are able to affect the susceptibility to several diseases in adulthood. The studies here reviewed suggest that maternal and neonatal diet may have long-lasting effects in the development of non-communicable chronic adulthood diseases, in particular the components of the so-called metabolic syndrome, such as insulin resistance, type 2 diabetes, obesity, dyslipidaemia, hypertension, and CVD. Both maternal under- and over-nutrition may regulate the expression of genes involved in lipid and carbohydrate metabolism. Early postnatal nutrition may also represent a vital determinant of adult health by making an impact on the development and function of gut microbiota. An inadequate gut microbiota composition and function in early life seems to account for the deviant programming of later immunity and overall health status. In this regard probiotics, which have the potential to restore the intestinal microbiota balance, may be effective in preventing the development of chronic immune-mediated diseases. More recently, the epigenetic mechanisms elicited by probiotics through the production of SCFA are hypothesised to be the key to understand how they mediate their numerous health-promoting effects from the gut to the peripheral tissues.

  7. Early Life on Earth: the Ancient Fossil Record

    NASA Astrophysics Data System (ADS)

    Westall, F.

    2004-07-01

    The evidence for early life and its initial evolution on Earth is lin= ked intimately with the geological evolution of the early Earth. The environment of the early Earth would be considered extreme by modern standards: hot (50-80=B0C), volcanically and hydrothermally active, a= noxic, high UV flux, and a high flux of extraterrestrial impacts. Habitats = for life were more limited until continent-building processes resulted in= the formation of stable cratons with wide, shallow, continental platforms= in the Mid-Late Archaean. Unfortunately there are no records of the first appearance of life and the earliest isotopic indications of the exist= ence of organisms fractionating carbon in ~3.8 Ga rocks from the Isua greenst= one belt in Greenland are tenuous. Well-preserved microfossils and micro= bial mats (in the form of tabular and domical stromatolites) occur in 3.5-= 3.3 Ga, Early Archaean, sedimentary formations from the Barberton (South Afri= ca) and Pilbara (Australia) greenstone belts. They document life forms that = show a relatively advanced level of evolution. Microfossil morphology inclu= des filamentous, coccoid, rod and vibroid shapes. Colonial microorganism= s formed biofilms and microbial mats at the surfaces of volcaniclastic = and chemical sediments, some of which created (small) macroscopic microbi= alites such as stromatolites. Anoxygenic photosynthesis may already have developed. Carbon, nitrogen and sulphur isotopes ratios are in the r= ange of those for organisms with anaerobic metabolisms, such as methanogenesi= s, sulphate reduction and photosynthesis. Life was apparently distribute= d widely in shallow-water to littoral environments, including exposed, evaporitic basins and regions of hydrothermal activity. Biomass in t= he early Archaean was restricted owing to the limited amount of energy t= hat could be produced by anaerobic metabolisms. Microfossils resembling o= xygenic photosynthesisers, such as cyanobacteria, probably first occurred in

  8. Lack of Emotional Support from Parents Early in Life and Alcohol Abuse Later in Life

    ERIC Educational Resources Information Center

    Shaw, Benjamin A.

    2006-01-01

    The purpose of this study is to examine the association between lacking emotional support from parents early in life and adult alcohol abuse. A series of logistic regression models were run with data collected from a nationally representative sample of over 2,500 adults ages 25-74. The findings reveal a linear relationship between level of…

  9. Early Childhood Education Teachers: Life History, Life Course, and the Problem of Family-Work Balance

    ERIC Educational Resources Information Center

    Bullough, Robert V., Jr.

    2016-01-01

    In contrast to the wider education literature, rather little is known about the lives of early childhood education (ECE) teachers and the impact of those lives on their practice. Drawing on surveys completed by Head Start assistant and lead teachers, teacher lifelines, and interviews, and through the lens of life-course theory, the author portrays…

  10. Early life exposures and risk of atopy among Danish children.

    PubMed

    Thomsen, Simon F; Ulrik, Charlotte S; Porsbjerg, Celeste; Backer, Vibeke

    2006-01-01

    A large proportion of atopy develops in childhood and early life exposures are suspected to play a considerable role in the inception. The aim of this study was to examine the association between early life exposures and development of atopic disease in children. We performed a case-cohort study of a random population-based sample of children (n = 480) 7-17 years of age, living in urban Copenhagen, Denmark. Information on breast-feeding, supplementation, wheezy bronchitis, use of antibiotics, and parental smoking during pregnancy and in early life was obtained retrospectively by questionnaire. Skin test reactivity to 10 common aeroallergens was measured using standard techniques. Atopic disease was defined as a history of hayfever and/or asthma concomitantly with a positive skin-prick test. Logistic regression showed that parental atopy (odds ratio [OR] = 1.98; 95% confidence interval [CI], 1.12, 3.49; p = 0.019) and wheezy bronchitis before the age of 2 years (OR = 3.13; 95% CI, 1.63, 6.01; p < 0.001) were predictors of atopic disease, the latter especially when predisposition to atopy was present (OR = 8.63; 95% CI, 3.64, 20.44; p < 0.001). Duration of breast-feeding was longer in subjects with atopic heredity (p = 0.017), whereas smoking exposure during pregnancy (p = 0.019) and in the 1st year of life (p = 0.018) was less prevalent. Wheezy bronchitis was equally frequent among subjects with and without atopic predisposition (p = 0.893). Wheezy bronchitis before the age of 2 years seems to be independent of familial predisposition to atopic disease and significantly increases the likelihood for development of atopy in genetically susceptible individuals. Parental knowledge of atopic heredity significantly influences smoking and breast-feeding habits.

  11. Early-life experience, epigenetics, and the developing brain.

    PubMed

    Kundakovic, Marija; Champagne, Frances A

    2015-01-01

    Development is a dynamic process that involves interplay between genes and the environment. In mammals, the quality of the postnatal environment is shaped by parent-offspring interactions that promote growth and survival and can lead to divergent developmental trajectories with implications for later-life neurobiological and behavioral characteristics. Emerging evidence suggests that epigenetic factors (ie, DNA methylation, posttranslational histone modifications, and small non-coding RNAs) may have a critical role in these parental care effects. Although this evidence is drawn primarily from rodent studies, there is increasing support for these effects in humans. Through these molecular mechanisms, variation in risk of psychopathology may emerge, particularly as a consequence of early-life neglect and abuse. Here we will highlight evidence of dynamic epigenetic changes in the developing brain in response to variation in the quality of postnatal parent-offspring interactions. The recruitment of epigenetic pathways for the biological embedding of early-life experience may also have transgenerational consequences and we will describe and contrast two routes through which this transmission can occur: experience dependent vs germline inheritance. Finally, we will speculate regarding the future directions of epigenetic research and how it can help us gain a better understanding of the developmental origins of psychiatric dysfunction. PMID:24917200

  12. The Human Early-Life Exposome (HELIX): Project Rationale and Design

    PubMed Central

    Slama, Rémy; Robinson, Oliver; Chatzi, Leda; Coen, Muireann; van den Hazel, Peter; Thomsen, Cathrine; Wright, John; Athersuch, Toby J.; Avellana, Narcis; Basagaña, Xavier; Brochot, Celine; Bucchini, Luca; Bustamante, Mariona; Carracedo, Angel; Casas, Maribel; Estivill, Xavier; Fairley, Lesley; van Gent, Diana; Gonzalez, Juan R.; Granum, Berit; Gražulevicˇiene˙, Regina; Gutzkow, Kristine B.; Julvez, Jordi; Keun, Hector C.; Kogevinas, Manolis; McEachan, Rosemary R.C.; Meltzer, Helle Margrete; Sabidó, Eduard; Schwarze, Per E.; Siroux, Valérie; Sunyer, Jordi; Want, Elizabeth J.; Zeman, Florence; Nieuwenhuijsen, Mark J.

    2014-01-01

    Background: Developmental periods in early life may be particularly vulnerable to impacts of environmental exposures. Human research on this topic has generally focused on single exposure–health effect relationships. The “exposome” concept encompasses the totality of exposures from conception onward, complementing the genome. Objectives: The Human Early-Life Exposome (HELIX) project is a new collaborative research project that aims to implement novel exposure assessment and biomarker methods to characterize early-life exposure to multiple environmental factors and associate these with omics biomarkers and child health outcomes, thus characterizing the “early-life exposome.” Here we describe the general design of the project. Methods: In six existing birth cohort studies in Europe, HELIX will estimate prenatal and postnatal exposure to a broad range of chemical and physical exposures. Exposure models will be developed for the full cohorts totaling 32,000 mother–child pairs, and biomarkers will be measured in a subset of 1,200 mother–child pairs. Nested repeat-sampling panel studies (n = 150) will collect data on biomarker variability, use smartphones to assess mobility and physical activity, and perform personal exposure monitoring. Omics techniques will determine molecular profiles (metabolome, proteome, transcriptome, epigenome) associated with exposures. Statistical methods for multiple exposures will provide exposure–response estimates for fetal and child growth, obesity, neurodevelopment, and respiratory outcomes. A health impact assessment exercise will evaluate risks and benefits of combined exposures. Conclusions: HELIX is one of the first attempts to describe the early-life exposome of European populations and unravel its relation to omics markers and health in childhood. As proof of concept, it will form an important first step toward the life-course exposome. Citation: Vrijheid M, Slama R, Robinson O, Chatzi L, Coen M, van den Hazel P

  13. The composition of the gut microbiota throughout life, with an emphasis on early life

    PubMed Central

    Rodríguez, Juan Miguel; Murphy, Kiera; Stanton, Catherine; Ross, R. Paul; Kober, Olivia I.; Juge, Nathalie; Avershina, Ekaterina; Rudi, Knut; Narbad, Arjan; Jenmalm, Maria C.; Marchesi, Julian R.; Collado, Maria Carmen

    2015-01-01

    The intestinal microbiota has become a relevant aspect of human health. Microbial colonization runs in parallel with immune system maturation and plays a role in intestinal physiology and regulation. Increasing evidence on early microbial contact suggest that human intestinal microbiota is seeded before birth. Maternal microbiota forms the first microbial inoculum, and from birth, the microbial diversity increases and converges toward an adult-like microbiota by the end of the first 3–5 years of life. Perinatal factors such as mode of delivery, diet, genetics, and intestinal mucin glycosylation all contribute to influence microbial colonization. Once established, the composition of the gut microbiota is relatively stable throughout adult life, but can be altered as a result of bacterial infections, antibiotic treatment, lifestyle, surgical, and a long-term change in diet. Shifts in this complex microbial system have been reported to increase the risk of disease. Therefore, an adequate establishment of microbiota and its maintenance throughout life would reduce the risk of disease in early and late life. This review discusses recent studies on the early colonization and factors influencing this process which impact on health. PMID:25651996

  14. The composition of the gut microbiota throughout life, with an emphasis on early life.

    PubMed

    Rodríguez, Juan Miguel; Murphy, Kiera; Stanton, Catherine; Ross, R Paul; Kober, Olivia I; Juge, Nathalie; Avershina, Ekaterina; Rudi, Knut; Narbad, Arjan; Jenmalm, Maria C; Marchesi, Julian R; Collado, Maria Carmen

    2015-01-01

    The intestinal microbiota has become a relevant aspect of human health. Microbial colonization runs in parallel with immune system maturation and plays a role in intestinal physiology and regulation. Increasing evidence on early microbial contact suggest that human intestinal microbiota is seeded before birth. Maternal microbiota forms the first microbial inoculum, and from birth, the microbial diversity increases and converges toward an adult-like microbiota by the end of the first 3-5 years of life. Perinatal factors such as mode of delivery, diet, genetics, and intestinal mucin glycosylation all contribute to influence microbial colonization. Once established, the composition of the gut microbiota is relatively stable throughout adult life, but can be altered as a result of bacterial infections, antibiotic treatment, lifestyle, surgical, and a long-term change in diet. Shifts in this complex microbial system have been reported to increase the risk of disease. Therefore, an adequate establishment of microbiota and its maintenance throughout life would reduce the risk of disease in early and late life. This review discusses recent studies on the early colonization and factors influencing this process which impact on health.

  15. LIFE: The Case for Early Commercialization of Fusion Energy

    SciTech Connect

    Anklam, T; Simon, A J; Powers, S; Meier, W R

    2010-11-30

    This paper presents the case for early commercialization of laser inertial fusion energy (LIFE). Results taken from systems modeling of the US electrical generating enterprise quantify the benefits of fusion energy in terms of carbon emission, nuclear waste and plutonium production avoidance. Sensitivity of benefits-gained to timing of market-entry is presented. These results show the importance of achieving market entry in the 2030 time frame. Economic modeling results show that fusion energy can be competitive with other low-carbon energy sources. The paper concludes with a description of the LIFE commercialization path. It proposes constructing a demonstration facility capable of continuous fusion operations within 10 to 15 years. This facility will qualify the processes and materials needed for a commercial fusion power plant.

  16. The future is now: early life events preset adult behaviour.

    PubMed

    Patchev, A V; Rodrigues, A J; Sousa, N; Spengler, D; Almeida, O F X

    2014-01-01

    To consider the evidence that human and animal behaviours are epigenetically programmed by lifetime experiences. Extensive PubMed searches were carried out to gain a broad view of the topic, in particular from the perspective of human psychopathologies such as mood and anxiety disorders. The selected literature cited is complemented by previously unpublished data from the authors' laboratories. Evidence that physiological and behavioural functions are particularly sensitive to the programming effects of environmental factors such as stress and nutrition during early life, and perhaps at later stages of life, is reviewed and extended. Definition of stimulus- and function-specific critical periods of programmability together with deeper understanding of the molecular basis of epigenetic regulation will deliver greater appreciation of the full potential of the brain's plasticity while providing evidence-based social, psychological and pharmacological interventions to promote lifetime well-being.

  17. Early Life Circumstances as Contributors to HIV Infection

    PubMed Central

    Siegel, Karolynn; Lekas, Helen-Maria; Ramjohn, Destiny; Schrimshaw, Eric W.; VanDevanter, Nancy

    2015-01-01

    Adolescents may come from family settings that heighten their vulnerability to early sexual initiation, promiscuity and sexual exploitation. To illuminate how this may occur, we present a set of five representative cases of HIV-infected females from a sample of 26 adolescent and young adult HIV-infected females (ages 16–24) enrolled in a study about the adaptive challenges people their age faced living with the disease. Study participants were recruited from five New York City adolescent HIV clinics that provided comprehensive specialty medical and supportive ancillary social services to adolescents and young adults with HIV. Study participants completed a battery of standardizes measures, using ACASI, and participated in a semi-structured in-depth interview. Using the qualitative interview data, we illustrate how early life and family circumstances including neglectful or dysfunctional parenting (e.g., low parental supervision), sexual abuse, and unstable housing placed these young women on a risk trajectory for HIV infection. PMID:25397349

  18. Possible sequelae of trauma and somatic disorder in early life.

    PubMed

    Weinberger, J L; Kantor, M

    All children experience trauma. The age, state of development and constitutional factors will determine whether some children will have a traumatic effect. Trauma occurring before the age of three, at a time when the ego has not developed its synthetic and integrative functions, may be reproduced in later life as an isolated symptom, by selected sensations involved in a sensory imprint or screen sensation of the trauma as a simple recording. After the age of three, under the influence of a more mature ego, excessive traumatic stimuli will be integrated and elaborated in symptom formations as phobias or other conditions and extended as part of the total personality. Recurrence in later life is triggered by events related not only to the original experience, but also to the content of its elaboration. The earlier in life the trauma occurs, the more likely that somatic imprints of primitive physiological symptoms would result as an archaic, biological defense or screen sensations. Recurrent sensory imprints or screens may appear as organic illness or functional somatic symptoms. Diagnostically, a detailed early life history is necessary to uncover the presence of a sensory screen memory of a trauma and so avoid diagnostic medical search for organic causation. Case material illustrating the two groups are presented. Indications for psychoanalysis and for supportive psychotherapy are discussed from our theoretical framework as well as from the literature. PMID:1052208

  19. In vivo research using early life stage models.

    PubMed

    Seabra, Rita; Bhogal, Nirmala

    2010-01-01

    Scientists, for a variety of reasons, need to carry out in vivo research. Since experiments that require the use of adult animals pose various logistical, economical and ethical issues, the use of embryonic and larval forms of some organisms are potentially attractive alternatives. Early life stages are appealing because, in general, large numbers of individuals can be maintained in relatively simple housing, minimising costs, and their use involves fewer legal formalities. With this succinct review, we aim to provide an overview of different biological issues that have been successfully explored with the help of eggs, embryos and larvae from the frog, zebrafish and chicken.

  20. Early-Life Origins of the Race Gap in Men's Mortality

    ERIC Educational Resources Information Center

    Warner, David F.; Hayward, Mark D.

    2006-01-01

    Using a life course framework, we examine the early life origins of the race gap in men's all-cause mortality. Using the National Longitudinal Survey of Older Men (1966-1990), we evaluate major social pathways by which early life conditions differentiate the mortality experiences of blacks and whites. Our findings indicate that early life…

  1. Evidence on early-life income and late-life health from America's Dust Bowl era.

    PubMed

    Cutler, David M; Miller, Grant; Norton, Douglas M

    2007-08-14

    In recent decades, elderly Americans have enjoyed enormous gains in longevity and reductions in disability. The causes of this progress remain unclear, however. This paper investigates the role of fetal programming, exploring how economic progress early in the 20th century might be related to declining disability today. Specifically, we match sudden unexpected economic changes experienced in utero in America's Dust Bowl during the Great Depression to unusually detailed individual-level information about old-age disability and chronic disease. We are unable to detect any meaningful relationship between early life factors and outcomes in later life. We conclude that, if such a relationship exists in the United States, it is most likely not a quantitatively important explanation for declining disability today.

  2. Evidence on early-life income and late-life health from America's Dust Bowl era.

    PubMed

    Cutler, David M; Miller, Grant; Norton, Douglas M

    2007-08-14

    In recent decades, elderly Americans have enjoyed enormous gains in longevity and reductions in disability. The causes of this progress remain unclear, however. This paper investigates the role of fetal programming, exploring how economic progress early in the 20th century might be related to declining disability today. Specifically, we match sudden unexpected economic changes experienced in utero in America's Dust Bowl during the Great Depression to unusually detailed individual-level information about old-age disability and chronic disease. We are unable to detect any meaningful relationship between early life factors and outcomes in later life. We conclude that, if such a relationship exists in the United States, it is most likely not a quantitatively important explanation for declining disability today. PMID:17686988

  3. Could the early environment of Mars have supported the development of life?

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Stoker, Carol R.

    1990-01-01

    The environment of Mars and its correlation to the origin of life on earth are examined. Evidence of liquid water and nitrogen on early Mars is discussed. The similarities between the early Mars and early earth environments are described.

  4. Early life mortality and height in Indian states

    PubMed Central

    Coffey, Diane

    2014-01-01

    Height is a marker for health, cognitive ability and economic productivity. Recent research on the determinants of height suggests that postneonatal mortality predicts height because it is a measure of the early life disease environment to which a cohort is exposed. This article advances the literature on the determinants of height by examining the role of early life mortality, including neonatal mortality, in India, a large developing country with a very short population. It uses state level variation in neonatal mortality, postneonatal mortality, and pre-adult mortality to predict the heights of adults born between 1970 and 1983, and neonatal and postneonatal mortality to predict the heights of children born between 1995 and 2005. In contrast to what is found in the literature on developed countries, I find that state level variation in neonatal mortality is a strong predictor of adult and child heights. This may be due to state level variation in, and overall poor levels of, pre-natal nutrition in India. PMID:25499239

  5. Early Life Manipulations Alter Learning and Memory in Rats

    PubMed Central

    Kosten, Therese A; Kim, Jeansok J; Lee, Hongjoo J.

    2012-01-01

    Much research shows early life manipulations have enduring behavioral, neural, and hormonal effects. However, findings of learning and memory performance vary widely across studies. We reviewed studies in which pre-weaning rat pups were exposed to stressors and tested on learning and memory tasks in adulthood. Tasks were classified as aversive conditioning, inhibitory learning, or spatial/relational memory. Variables of duration, type, and timing of neonatal manipulation and sex and strain of animals were examined to determine if any predict enhanced or impaired performance. Brief separations enhanced and prolonged separations impaired performance on spatial/relational tasks. Performance was impaired in aversive conditioning and enhanced in inhibitory learning tasks regardless of manipulation duration. Opposing effects on performance for spatial/relational memory also depended upon timing of manipulation. Enhanced performance was likely if the manipulation occurred during postnatal week 3 but performance was impaired if it was confined to the first two postnatal weeks. Thus, the relationship between early life experiences and adulthood learning and memory performance is multifaceted and decidedly task-dependent. PMID:22819985

  6. Effects of hydroelectric turbine passage on fish early life stages

    SciTech Connect

    Cada, G.F.

    1991-01-01

    Turbine-passage mortality has been studied extensively for juveniles and adults of migratory fish species, but few studies have directly quantified mortality of fish eggs and larvae. An analysis of literature relating to component stresses of turbine passage (i.e., pressure changes, blade contact, and shear) indicates that mortality of early life stages of fish would be relatively low at low-head, bulb turbine installations. The shear forces and pressure regimes normally experienced are insufficient to cause high mortality rates. The probability of contact with turbine blades is related to the size of the fish; less than 5% of entrained ichthyoplankton would be killed by the blades in a bulb turbine. Other sources of mortality (e.g., cavitation and entrainment of fish acclimated to deep water) are controlled by operation of the facility and thus are mitigable. Because turbine-passage mortality among fish early life stages can be very difficult to estimate directly, it may be more fruitful to base the need for mitigation at any given site on detailed knowledge of turbine characteristics and the susceptibility of the fish community to entrainment. 7 refs., 1 fig.

  7. Maternal and genetic factors determine early life telomere length

    PubMed Central

    Asghar, Muhammad; Bensch, Staffan; Tarka, Maja; Hansson, Bengt; Hasselquist, Dennis

    2015-01-01

    In a broad range of species—including humans—it has been demonstrated that telomere length declines throughout life and that it may be involved in cell and organismal senescence. This potential link to ageing and thus to fitness has triggered recent interest in understanding how variation in telomere length is inherited and maintained. However, previous studies suffer from two main drawbacks that limit the possibility of understanding the relative importance of genetic, parental and environmental influences on telomere length variation. These studies have been based on (i) telomere lengths measured at different time points in different individuals, despite the fact that telomere length changes over life, and (ii) parent–offspring regression techniques, which do not enable differentiation between genetic and parental components of inheritance. To overcome these drawbacks, in our study of a songbird, the great reed warbler, we have analysed telomere length measured early in life in both parents and offspring and applied statistical models (so-called ‘animal models') that are based on long-term pedigree data. Our results showed a significant heritability of telomere length on the maternal but not on the paternal side, and that the mother's age was positively correlated with their offspring's telomere length. Furthermore, the pedigree-based analyses revealed a significant heritability and an equally large maternal effect. Our study demonstrates strong maternal influence on telomere length and future studies now need to elucidate possible underlying factors, including which types of maternal effects are involved. PMID:25621325

  8. When Snow Melts Early: The Unusual Alpine Plant Life Histories During the Summer of 2012

    NASA Astrophysics Data System (ADS)

    Steltzer, H.; Korb, J.; Daly, K.; Sienicki, E.; Fullmer, G.; Cornell, E.; Bangert, S.; Remke, M.

    2012-12-01

    Many of the plant communities where earlier plant growth has been observed during the late 20th and early 21st Centuries are in seasonally snow covered landscapes. In these communities, snow cover, temperatures, day length, soil moisture, and other environmental cues determine the timing and duration of the window within which plants green and fade annually. In short-statured plant communities where snow accumulates, such as in the alpine tundra, rapid plant growth only begins after the snow melts, but may not occur immediately following snowmelt, especially when snow melts early. Multiple climate cues protect plants from emerging too early in environments where early growth could lead to tissue loss or death. Similarly, perennial plants senesce (shift to dormancy) to prevent greater tissue loss or death when seasonal environments become unfavorable for growth and tissue maintenance. Our objective was to determine how early snowmelt and climate warming influence alpine plant life histories, and due to the unusual, early loss of snow cover in 2012, we had the opportunity to characterize alpine plant life histories in an extreme climate year. We monitored when species first expanded their leaves and when whole leaf color change first occurred. These life history events mark the onset of the growing season and the onset of senescence for individual species and the plant community, which determine the window for plant growth. Subtle topographic features at our site and an experimental acceleration of snowmelt (via radiation absorbing shadecloth) led to variation in the timing of snowmelt (April 8 to May 10) across the 10 plots (8 m x 12 m) within our experiment. Within each plot, we monitored 1m x 1m control and experimentally warmed areas (via open top chambers). We found that earlier snowmelt lengthened the window for plant growth in the alpine tundra, because many species expanded their leaves within a few days to a week following snowmelt. However, warming

  9. Initial investigation of a hypothesized link between thyroid peroxidase inhibition and fish early-life stage toxicity

    EPA Science Inventory

    There is an interest in developing alternatives to the fish early-life stage (FELS) test (OECD test guideline 210), for predicting adverse outcomes (e.g., impacts on growth and survival) using less resource-intensive methods. Development and characterization of adverse outcome pa...

  10. Discovering and annotating fish early life-stage (FELS) adverse outcome pathways: Putting the research strategy into practice

    EPA Science Inventory

    In May 2012, a HESI-sponsored expert workshop yielded a proposed research strategy for systematically discovering, characterizing, and annotating fish early life-stage (FELS) adverse outcome pathways (AOPs) as well as prioritizing AOP development in light of current restrictions ...

  11. Early Life on Earth and the Search for Extraterrestrial Biosignatures

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; House, Christopher

    2014-01-01

    In the last 2 years, scientists within the ARES Directorate at JSC have applied the technology of Secondary Ion Mass Spectrometry (SIMS) to individual organic structures preserved in Archean (approximately 3 billion years old) sediments on Earth. These organic structures are among the oldest on Earth that may be microfossils - structurally preserved remnants of ancient microbes. The SIMS work was done to determine the microfossils' stable carbon isotopic composition (delta C-13 values). This is the first time that such ancient, potential microfossils have been successfully analyzed for their individual delta C-13 values. The results support the interpretation that these structures are remnants of early life on Earth and that they may represent planktonic organisms that were widely distributed in the Earth's earliest oceans. This study has been accepted for publication in the journal Geology.

  12. Diffusion tensor imaging for understanding brain development in early life.

    PubMed

    Qiu, Anqi; Mori, Susumu; Miller, Michael I

    2015-01-01

    The human brain rapidly develops during the final weeks of gestation and in the first two years following birth. Diffusion tensor imaging (DTI) is a unique in vivo imaging technique that allows three-dimensional visualization of the white matter anatomy in the brain. It has been considered to be a valuable tool for studying brain development in early life. In this review, we first introduce the DTI technique. We then review DTI findings on white matter development at the fetal stage and in infancy as well as DTI applications for understanding neurocognitive development and brain abnormalities in preterm infants. Finally, we discuss limitations of DTI and potential valuable imaging techniques for studying white matter myelination.

  13. Mineral remains of early life on Earth? On Mars?

    USGS Publications Warehouse

    Iberall, Robbins E.; Iberall, A.S.

    1991-01-01

    The oldest sedimentary rocks on Earth, the 3.8-Ga Isua Iron-Formation in southwestern Greenland, are metamorphosed past the point where organic-walled fossils would remain. Acid residues and thin sections of these rocks reveal ferric microstructures that have filamentous, hollow rod, and spherical shapes not characteristic of crystalline minerals. Instead, they resemble ferric-coated remains of bacteria. Because there are no earlier sedimentary rocks to study on Earth, it may be necessary to expand the search elsewhere in the solar system for clues to any biotic precursors or other types of early life. A study of morphologies of iron oxide minerals collected in the southern highlands during a Mars sample return mission may therefore help to fill in important gaps in the history of Earth's earliest biosphere. -from Authors

  14. Early Life Nutrition and Energy Balance Disorders in Offspring in Later Life

    PubMed Central

    Reynolds, Clare M.; Gray, Clint; Li, Minglan; Segovia, Stephanie A.; Vickers, Mark H.

    2015-01-01

    The global pandemic of obesity and type 2 diabetes is often causally linked to changes in diet and lifestyle; namely increased intake of calorically dense foods and concomitant reductions in physical activity. Epidemiological studies in humans and controlled animal intervention studies have now shown that nutritional programming in early periods of life is a phenomenon that affects metabolic and physiological functions throughout life. This link is conceptualised as the developmental programming hypothesis whereby environmental influences during critical periods of developmental plasticity can elicit lifelong effects on the health and well-being of the offspring. The mechanisms by which early environmental insults can have long-term effects on offspring remain poorly defined. However there is evidence from intervention studies which indicate altered wiring of the hypothalamic circuits that regulate energy balance and epigenetic effects including altered DNA methylation of key adipokines including leptin. Studies that elucidate the mechanisms behind these associations will have a positive impact on the health of future populations and adopting a life course perspective will allow identification of phenotype and markers of risk earlier, with the possibility of nutritional and other lifestyle interventions that have obvious implications for prevention of non-communicable diseases. PMID:26402696

  15. Early Life Nutrition and Energy Balance Disorders in Offspring in Later Life.

    PubMed

    Reynolds, Clare M; Gray, Clint; Li, Minglan; Segovia, Stephanie A; Vickers, Mark H

    2015-09-21

    The global pandemic of obesity and type 2 diabetes is often causally linked to changes in diet and lifestyle; namely increased intake of calorically dense foods and concomitant reductions in physical activity. Epidemiological studies in humans and controlled animal intervention studies have now shown that nutritional programming in early periods of life is a phenomenon that affects metabolic and physiological functions throughout life. This link is conceptualised as the developmental programming hypothesis whereby environmental influences during critical periods of developmental plasticity can elicit lifelong effects on the health and well-being of the offspring. The mechanisms by which early environmental insults can have long-term effects on offspring remain poorly defined. However there is evidence from intervention studies which indicate altered wiring of the hypothalamic circuits that regulate energy balance and epigenetic effects including altered DNA methylation of key adipokines including leptin. Studies that elucidate the mechanisms behind these associations will have a positive impact on the health of future populations and adopting a life course perspective will allow identification of phenotype and markers of risk earlier, with the possibility of nutritional and other lifestyle interventions that have obvious implications for prevention of non-communicable diseases.

  16. Early-Life Stress and Neurometabolites of the Hippocampus

    PubMed Central

    Coplan, Jeremy D.; Mathew, Sanjay J.; Abdallah, Chadi G.; Mao, Xiangling; Kral, John G.; Smith, Eric L. P.; Rosenblum, Leonard A.; Perera, Tarique D.; Dwork, Andrew J.; Hof, Patrick R.; Gorman, Jack M.; Shungu, Dikoma C.

    2010-01-01

    We tested the hypothesis that early life stress would persistently compromise neuronal viability of the hippocampus of the grown nonhuman primate. Neuronal viability was assessed through ascertainment of N-acetyl aspartate (NAA) – an amino acid considered reflective of neuronal density/functional integrity – using in vivo proton magnetic resonance spectroscopic imaging (MRSI). The subjects reported herein represent a re-analysis of a sample of nineteen adult male bonnet macaques that had been reared in infancy under induced stress by maternal variable foraging demand (VFD) (N = 10) or control rearing conditions (N = 9). The MRSI spectral readings were recorded using a GE 1.5 Tesla machine under anesthesia. Relative NAA values were derived using NAA as numerator and both choline (Cho) or creatine (Cr) as denominators. Left medial temporal lobe (MTL) NAA/Cho but not NAA/Cr was decreased in VFD subjects versus controls. An MTL NAA/Cho ratio deficit remained significant when controlling for multiple confounding variables. Regression analyses suggested that the NAA/Choline finding was due to independently low left NAA and high left choline. Right MTL showed no rearing effects for NAA, but right NAA was positively related to body mass, irrespective of denominator. The current data indicate that decreased left MTL NAA/Cho may reflect low neuronal viability of the hippocampus following early life stress in VFD-reared versus normally-reared subjects. Given the importance of the hippocampus in stress-mediated toxicity, validation of these data using absolute quantification is suggested and correlative neurohistological studies of hippocampus are warranted. PMID:20713023

  17. Early Life Adversity and Adult Biological Risk Profiles

    PubMed Central

    Friedman, Esther M.; Karlamangla, Arun S.; Gruenewald, Tara; Koretz, Brandon; Seeman, Teresa E.

    2015-01-01

    Objectives To determine whether there is a relationship between early life adversity (ELA) and biological parameters known to predict health risks and to examine the extent to which circumstances in midlife mediate this relationship. Methods We analyzed data on 1,180 respondents from the biomarker subsample of the second wave of the National Survey of Midlife Development in the United States (MIDUS) study. ELA assessments were based on childhood socioeconomic disadvantage (i.e. on welfare, perceived low income, less-educated parents) and other stressors (e.g., parental death, parental divorce, and parental physical abuse). The outcome variable was cumulative allostatic load (AL), a marker of biological risk. We also incorporate information on adult circumstances, including: education, social relationships, and health behaviors. Results Childhood socioeconomic adversity was associated with increased AL (B=0.094, SE=0.041) and physical abuse (B=0.263, SE=0.091), with non-significant associations for parental divorce and death. Adult education mediated the relationship between socioeconomic ELA and cumulative allostatic load to the point of non-significance, with this factor alone explaining nearly 40% of the relationship. The association between childhood physical abuse and AL remained even after adjusting for adult educational attainments, social relationships, and health behaviors. These associations were most pronounced for secondary stress systems, including inflammation, cardiovascular function, and lipid metabolism. Conclusions The physiological consequences of early life socioeconomic adversity are attenuated by achieving high levels of schooling later on. The adverse consequences of childhood physical abuse, on the other hand, persist in multivariable adjusted analysis. PMID:25650548

  18. Early life triclocarban exposure during lactation affects neonate rat survival.

    PubMed

    Kennedy, Rebekah C M; Menn, Fu-Min; Healy, Laura; Fecteau, Kellie A; Hu, Pan; Bae, Jiyoung; Gee, Nancy A; Lasley, Bill L; Zhao, Ling; Chen, Jiangang

    2015-01-01

    Triclocarban (3,4,4'-trichlorocarbanilide; TCC), an antimicrobial used in bar soaps, affects endocrine function in vitro and in vivo. This study investigates whether TCC exposure during early life affects the trajectory of fetal and/or neonatal development. Sprague Dawley rats were provided control, 0.2% weight/weight (w/w), or 0.5% w/w TCC-supplemented chow through a series of 3 experiments that limited exposure to critical growth periods: gestation, gestation and lactation, or lactation only (cross-fostering) to determine the susceptible windows of exposure for developmental consequences. Reduced offspring survival occurred when offspring were exposed to TCC at concentrations of 0.2% w/w and 0.5% w/w during lactation, in which only 13% of offspring raised by 0.2% w/w TCC dams survived beyond weaning and no offspring raised by 0.5% w/w TCC dams survived to this period. In utero exposure status had no effect on survival, as all pups nursed by control dams survived regardless of their in utero exposure status. Microscopic evaluation of dam mammary tissue revealed involution to be a secondary outcome of TCC exposure rather than a primary effect of compound administration. The average concentration of TCC in the milk was almost 4 times that of the corresponding maternal serum levels. The results demonstrate that gestational TCC exposure does not affect the ability of dams to carry offspring to term but TCC exposure during lactation has adverse consequences on the survival of offspring although the mechanism of reduced survival is currently unknown. This information highlights the importance of evaluating the safety of TCC application in personal care products and the impacts during early life exposure.

  19. Early Life Triclocarban Exposure During Lactation Affects Neonate Rat Survival

    PubMed Central

    Kennedy, Rebekah C. M.; Menn, Fu-Min; Healy, Laura; Fecteau, Kellie A.; Hu, Pan; Bae, Jiyoung; Gee, Nancy A.; Lasley, Bill L.; Zhao, Ling

    2015-01-01

    Triclocarban (3,4,4′-trichlorocarbanilide; TCC), an antimicrobial used in bar soaps, affects endocrine function in vitro and in vivo. This study investigates whether TCC exposure during early life affects the trajectory of fetal and/or neonatal development. Sprague Dawley rats were provided control, 0.2% weight/weight (w/w), or 0.5% w/w TCC-supplemented chow through a series of 3 experiments that limited exposure to critical growth periods: gestation, gestation and lactation, or lactation only (cross-fostering) to determine the susceptible windows of exposure for developmental consequences. Reduced offspring survival occurred when offspring were exposed to TCC at concentrations of 0.2% w/w and 0.5% w/w during lactation, in which only 13% of offspring raised by 0.2% w/w TCC dams survived beyond weaning and no offspring raised by 0.5% w/w TCC dams survived to this period. In utero exposure status had no effect on survival, as all pups nursed by control dams survived regardless of their in utero exposure status. Microscopic evaluation of dam mammary tissue revealed involution to be a secondary outcome of TCC exposure rather than a primary effect of compound administration. The average concentration of TCC in the milk was almost 4 times that of the corresponding maternal serum levels. The results demonstrate that gestational TCC exposure does not affect the ability of dams to carry offspring to term but TCC exposure during lactation has adverse consequences on the survival of offspring although the mechanism of reduced survival is currently unknown. This information highlights the importance of evaluating the safety of TCC application in personal care products and the impacts during early life exposure. PMID:24803507

  20. Predicting Negative Life Outcomes from Early Aggressive-Disruptive Behavior Trajectories: Gender Differences in Maladaptation across Life Domains

    ERIC Educational Resources Information Center

    Bradshaw, Catherine P.; Schaeffer, Cindy M.; Petras, Hanno; Ialongo, Nicholas

    2010-01-01

    Transactional theories of development suggest that displaying high levels of antisocial behavior early in life and persistently over time causes disruption in multiple life domains, which in turn places individuals at risk for negative life outcomes. We used longitudinal data from 1,137 primarily African American urban youth (49.1% female) to…

  1. Early life stress affects limited regional brain activity in depression.

    PubMed

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-05-03

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients.

  2. Early life stress affects limited regional brain activity in depression

    PubMed Central

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-01-01

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients. PMID:27138376

  3. Neuroanatomical changes in a mouse model of early life neglect.

    PubMed

    Duque, Alvaro; Coman, Daniel; Carlyle, Becky C; Bordner, Kelly A; George, Elizabeth D; Papademetris, Xenophon; Hyder, Fahmeed; Simen, Arthur A

    2012-04-01

    Using a novel mouse model of early life neglect and abuse (ENA) based on maternal separation with early weaning, George et al. (BMC Neurosci 11:123, 2010) demonstrated behavioral abnormalities in adult mice, and Bordner et al. (Front Psychiatry 2(18):1-18, 2011) described concomitant changes in mRNA and protein expression. Using the same model, here we report neuroanatomical changes that include smaller brain size and abnormal inter-hemispheric asymmetry, decreases in cortical thickness, abnormalities in subcortical structures, and white matter disorganization and atrophy most severely affecting the left hemisphere. Because of the similarities between the neuroanatomical changes observed in our mouse model and those described in human survivors of ENA, this novel animal model is potentially useful for studies of human ENA too costly or cumbersome to be carried out in primates. Moreover, our current knowledge of the mouse genome makes this model particularly suited for targeted anatomical, molecular, and pharmacological experimentation not yet possible in other species. PMID:21984312

  4. The Human Microbiome. Early Life Determinant of Health Outcomes

    PubMed Central

    2014-01-01

    The development of new technologies to isolate and identify microbial genomes has markedly increased our understanding of the role of microbiomes in health and disease. The idea, first proposed as part of the hygiene hypothesis, that environmental microbes influence the developmental trajectories of the immune system in early life, has now been considerably extended and refined. The abundant microbiota present in mucosal surfaces, especially the gut, is actively selected by the host through complex receptor systems that respond differentially depending on the molecular patterns presented to mucosal cells. Germ-free mice are more likely to develop allergic airway inflammation and show alterations in normal motor control and anxiety. These effects can be reversed by neonatal microbial recolonization but remain unchanged if recolonization occurs in adults. What emerges from these recent studies is the discovery of a complex, major early environmental determinant of lifetime human phenotypes. To change the natural course of asthma, obesity, and other chronic inflammatory conditions, active manipulation of the extensive bacterial, phage, and fungal metagenomes present in mucosal surfaces may be required, specifically during the developing years. Domesticating the human microbiome and adapting it to our health needs may be a challenge akin to, but far more complex than, the one faced by humanity when a few dozen species of plants and animals were domesticated during the transition between hunter-gatherer and sedentary societies after the end of the Pleistocene era. PMID:24437411

  5. Early life stress and novelty seeking behavior in adolescent monkeys.

    PubMed

    Parker, Karen J; Rainwater, Kimberly L; Buckmaster, Christine L; Schatzberg, Alan F; Lindley, Steven E; Lyons, David M

    2007-08-01

    Recent evidence suggests that early exposure to mild stress promotes the development of novelty seeking behavior. Here we test this hypothesis in squirrel monkeys and investigate whether novelty seeking behavior is associated with differences in cerebrospinal fluid (CSF) levels of the serotonin metabolite 5-hydroxyindoleacetic acid (5HIAA), the dopamine metabolite homovanillic acid (HVA), the norepinephrine metabolite 3-methoxy-4-hydroxyphenylethylene glycol (MHPG), and the neuropeptide corticotrophin-releasing factor (CRF). Monkeys were randomized early in life to either mild intermittent stress (IS) or no stress (NS) conditions, and subsequently presented with opportunities to interact with a familiar or novel object in a test box that was connected to each monkey's home cage. To further minimize the potentially stressful nature of the test situation, monkeys were acclimated to the test procedures prior to study initiation. Post-test plasma levels of cortisol in IS and NS monkeys did not differ significantly from baseline levels measured in undisturbed conditions. During testing, more IS than NS monkeys voluntarily left the home cage, and IS monkeys spent more time in the test box compared to NS monkeys. More IS than NS monkeys engaged in object exploration in the test box, and IS monkeys preferred to interact with the novel vs. familiar object. Novelty seeking was not associated with differences in 5HIAA, HVA, MHPG, or CRF, but correlated with differences in object exploration observed in a different test situation at an earlier age. These trait-like differences in novelty seeking appear to reflect mild early stress-induced adaptations that enhance curiosity and resilience. PMID:17604913

  6. Hydrogen, nitrogen, and life on the early Earth

    NASA Astrophysics Data System (ADS)

    Wordsworth, Robin; Pierrehumbert, Raymond

    2013-04-01

    In Earth's Hadean and Archean eras, the Sun was 20-40 % fainter than it is today, but there is no evidence for widespread long-term glaciation. An enhanced greenhouse effect via increased CO2 levels is perhaps the simplest solution to the problem, but observational and theoretical studies both suggest only moderately elevated atmospheric CO2 at this time. Other phenomena such as CO2 / H2O line broadening via increased atmospheric N2 and a lower planetary albedo have been proposed, but are probably insufficient to explain the necessary warming alone. Recently, we have suggested that increased hydrogen and nitrogen levels on the early Earth may have played a role in warming through H2-N2 collision-induced absorption (CIA). This process is well-known on Titan, where it dominates infra-red absorption across large regions of the spectrum. Broadening of the absorption bands at higher temperatures means that H2-N2 CIA can block the critical 800-1200 cm-1 water vapour 'window', allowing mean surface temperatures up to 280 K with only ~20-80 × PAL CO2 under a solar flux 75 % of that today. Here we present our modeling results and discuss their potential relevance to climate in the Archean and Hadean. We consider the evidence for and against high H2 levels on the early Earth and the main challenges in constraining outgassing and rates of hydrogen escape to space. We discuss the effects an H2-rich atmosphere might have had on the early development of life, including its possible demise at the hands of the methanogens. Finally, we speculate on the possible importance of the H2-N2 warming mechanism for Earth-like rocky planets around other stars.

  7. The effect of early-life education on later-life mortality.

    PubMed

    Black, Dan A; Hsu, Yu-Chieh; Taylor, Lowell J

    2015-12-01

    Many studies link cross-state variation in compulsory schooling laws to early-life educational attainment, thereby providing a plausible way to investigate the causal impact of education on various lifetime outcomes. We use this strategy to estimate the effect of education on older-age mortality of individuals born in the early twentieth century U.S. Our key innovation is to combine U.S. Census data and the complete Vital Statistics records to form precise mortality estimates by sex, birth cohort, and birth state. In turn we find that virtually all of the variation in these mortality rates is captured by cohort effects and state effects alone, making it impossible to reliably tease out any additional impact due to changing educational attainment induced by state-level changes in compulsory schooling.

  8. The die is cast - Arsenic exposure in early life and disease susceptibility

    EPA Science Inventory

    Abstract Early life exposure to arsenic in humans and mice produces similar patterns of disease in later life. Given the long interval between exposure and effect, epigenetic effects of early life exposure to arsenic may account for development and progression of disease in bo...

  9. Accounting Early for Life Long Learning: The AcE Project.

    ERIC Educational Resources Information Center

    University Coll. Worcester (England). Centre for Research in Early Childhood Education.

    Building upon the work of the Effective Early Learning (EEL) Project in raising the quality of early learning for young children in the United Kingdom, the 3-year Accounting Early for Life Long Learning Project (AcE Project) focuses on enhancing in 3- to 6-year-olds those attitudes and dispositions that are important to life-long learning. This…

  10. Children of Misfortune: Early Adversity and Cumulative Inequality in Perceived Life Trajectories1

    PubMed Central

    Schafer, Markus H.; Ferraro, Kenneth F.; Mustillo, Sarah A.

    2011-01-01

    Adversity early in life may alter pathways of aging, but what interpretive processes can soften the blow of early insults? Drawing from cumulative inequality theory, the authors analyze trajectories of life evaluations and then consider whether early adversity offsets favorable expectations for the future. Results reveal that early adversity contributes to more negative views of the past but rising expectations for the future. Early adversity also has enduring effects on life evaluations, offsetting the influence of buoyant expectations. The findings draw attention to the limits of human agency under the constraints of early adversity—a process described as biographical structuration. PMID:21648247

  11. Prevention and early intervention for depression in adolescence and early adult life.

    PubMed

    Harrington, R; Clark, A

    1998-01-01

    Over the past decade there has been increasing interest in the possibility that early intervention might prevent mental disorders later in life. Indeed, in the United Kingdom the Department of Health recommends that health promotion should be one of the main functions of child mental health services, a suggestion that has been endorsed by professional bodies. It is easy to see why both purchasers and providers of mental health services would be interested in prevention, but will preventive interventions work in practice? This paper discusses the possibility of preventing depressive disorder in late adolescence and early adult life by intervening in childhood and early adolescence. The paper begins with a description of the phenomenology of depression and its risk factors. It then goes on to describe a framework of prevention and within this framework explores whether there is an adequate knowledge base. The general perspective that is presented is one of cautious scepticism. It is argued that difficulties in defining depression and identifying risk factors that can easily be remedied make it unlikely that within the foreseeable future primary prevention programmes will prove to be more effective than treatment and rehabilitation of affected individuals. The possibility that preventive programmes could do harm will also be discussed. The paper concludes with some proposals about appropriate targets for prevention. It is suggested that apart from a few policy areas where there are some relatively harmless measures that could protect from later depression, a balanced preventive programme will give higher priority to treatment services than to those concerned with early intervention.

  12. Illinois Early Learning Project Tip Sheets: Parenting and Family Life.

    ERIC Educational Resources Information Center

    2003

    The Illinois Early Learning Project (IEL) is funded by the Illinois State Board of Education to provide information resources on early learning and training related to implementing the Illinois Early Learning Standards for parents and for early childhood personnel in all settings. The IEL tip sheets offer suggestions to parents and early childhood…

  13. What a general paediatrician needs to know about early life programming.

    PubMed

    Williams, Thomas C; Drake, Amanda J

    2015-11-01

    The process whereby early exposure to an adverse environment has an influence on later life outcomes has been called 'early life programming'. While epidemiological evidence for this has been available for decades, only in recent years have the mechanisms, in particular epigenetic modifications, for this process begun to be elucidated. We discuss the evidence for early life programming, the possible mechanisms, how effects may be transmitted across generations, and conclude by looking at some examples relevant to general paediatrics.

  14. Early life trauma predicts self-reported levels of depressive and anxiety symptoms in nonclinical community adults: relative contributions of early life stressor types and adult trauma exposure.

    PubMed

    Chu, Denise A; Williams, Leanne M; Harris, Anthony W F; Bryant, Richard A; Gatt, Justine M

    2013-01-01

    Exposure to early life trauma is a known risk factor for depression and anxiety disorders in adulthood. This study aimed to evaluate the relative contributions of early life versus adult trauma in predicting levels of depressive and anxiety symptoms in nonclinical community adults. 1209 nonclinical community adults (18-70 years; 45% male) were assessed for mental health status, early life stressors, lifetime trauma exposure, and self-reported levels of depressive and anxiety symptoms. A subset of the full sample subjected to group comparisons (n = 1088) indicated that early life stressor exposure primarily accounted for significantly higher depressive and anxiety symptom scores when compared against adults reporting to be free of childhood stressor or adult trauma exposure. Subsequent hierarchical multiple regression analyses of this subset using five distinct early life stressor types, namely 'Interpersonal violation', 'Family breakup', 'Disasters/war', 'Familial health trauma/death' and 'Personal health trauma' derived from principal component analysis of a wide range of self-reported early stressor events in the full sample, showed childhood 'Interpersonal violation' differentially predicted higher self-reported depressive and anxiety symptom scores in both males and females. Adult trauma exposure did not significantly predict these symptom scores. These findings underline the relative importance of exposure to 'interpersonal violation' relative to other types of early life stressors and adult trauma in the risk of depressive and anxiety symptoms in nonclinical community adults.

  15. Nutritional influences in early life upon obesity and body proportions.

    PubMed

    Jackson, A A; Langley-Evans, S C; McCarthy, H D

    1996-01-01

    Close relationships exist between patterns of intra-uterine growth and the risk of ischaemic heart disease, hypertension, diabetes, insulin-resistance syndrome, obesity and some cancers later in life. Earlier studies placed emphasis on low birth weight and reduced growth, but it is now clear that disproportions in early growth are of great importance. Disproportion may be identified as disproportions of fetal and placental growth (and the risk of high blood pressure), or in head circumference, length and weight. It is hypothesized that the availability of nutrients at different times during gestation, by interacting with the maternal and fetal hormonal profile, predisposes to different patterns of growth. The same interaction programmes critical metabolic functions and determines the metabolic capacity at all later ages. People who were exposed to severe undernutrition during the Dutch hunger winter showed increased adiposity if the exposure was during early pregnancy, but decreased adiposity if the exposure was during late pregnancy. In men born in the UK, those with evidence of retarded fetal growth had significantly greater waist/hip circumference ratios for any given body mass index (the ratio fell with increasing weight at one year of age). In Mexican-Americans and non-Hispanic Caucasian Americans, people in the lowest third of birth weight had more truncal fat than those in the highest third. Offspring of rats exposed to marginally reduced protein intakes during pregnancy manifest a similar pattern of growth and metabolic change to that seen in humans, with perturbations of appetite and body fat patterning. Studies in rats suggest that programming of the hypothalamus, especially the hypothalamic-pituitary-adrenal axis might be the mechanism through which these changes are brought about. PMID:9017278

  16. Live fast die young life history in females: evolutionary trade-off between early life mating and lifespan in female Drosophila melanogaster.

    PubMed

    Travers, Laura M; Garcia-Gonzalez, Francisco; Simmons, Leigh W

    2015-01-01

    The trade-off between survival and reproduction is fundamental to life history theory. Sexual selection is expected to favour a 'live fast die young' life history pattern in males due to increased risk of extrinsic mortality associated with obtaining mates. Sexual conflict may also drive a genetic trade-off between reproduction and lifespan in females. We found significant additive genetic variance in longevity independent of lifetime mating frequency, and in early life mating frequency. There was significant negative genetic covariance between these traits indicating that females from families characterized by high levels of multiple mating early in life die sooner than females that engage in less intense early life mating. Thus, despite heritable variation in both traits, their independent evolution is constrained by an evolutionary trade-off. Our findings indicate that, in addition to the well-known male-driven direct costs of mating on female lifespan (mediated by male harassment and harmful effects of seminal fluids), females with a genetic propensity to mate multiply live shorter lives. We discuss the potential role of sexual conflict in driving the evolutionary trade-off between reproduction and lifespan in Drosophila. More generally, our data show that, like males, females can exhibit a live fast die young life history strategy. PMID:26482533

  17. Live fast die young life history in females: evolutionary trade-off between early life mating and lifespan in female Drosophila melanogaster

    PubMed Central

    Travers, Laura M.; Garcia-Gonzalez, Francisco; Simmons, Leigh W.

    2015-01-01

    The trade-off between survival and reproduction is fundamental to life history theory. Sexual selection is expected to favour a ‘live fast die young’ life history pattern in males due to increased risk of extrinsic mortality associated with obtaining mates. Sexual conflict may also drive a genetic trade-off between reproduction and lifespan in females. We found significant additive genetic variance in longevity independent of lifetime mating frequency, and in early life mating frequency. There was significant negative genetic covariance between these traits indicating that females from families characterized by high levels of multiple mating early in life die sooner than females that engage in less intense early life mating. Thus, despite heritable variation in both traits, their independent evolution is constrained by an evolutionary trade-off. Our findings indicate that, in addition to the well-known male-driven direct costs of mating on female lifespan (mediated by male harassment and harmful effects of seminal fluids), females with a genetic propensity to mate multiply live shorter lives. We discuss the potential role of sexual conflict in driving the evolutionary trade-off between reproduction and lifespan in Drosophila. More generally, our data show that, like males, females can exhibit a live fast die young life history strategy. PMID:26482533

  18. Live fast die young life history in females: evolutionary trade-off between early life mating and lifespan in female Drosophila melanogaster.

    PubMed

    Travers, Laura M; Garcia-Gonzalez, Francisco; Simmons, Leigh W

    2015-10-20

    The trade-off between survival and reproduction is fundamental to life history theory. Sexual selection is expected to favour a 'live fast die young' life history pattern in males due to increased risk of extrinsic mortality associated with obtaining mates. Sexual conflict may also drive a genetic trade-off between reproduction and lifespan in females. We found significant additive genetic variance in longevity independent of lifetime mating frequency, and in early life mating frequency. There was significant negative genetic covariance between these traits indicating that females from families characterized by high levels of multiple mating early in life die sooner than females that engage in less intense early life mating. Thus, despite heritable variation in both traits, their independent evolution is constrained by an evolutionary trade-off. Our findings indicate that, in addition to the well-known male-driven direct costs of mating on female lifespan (mediated by male harassment and harmful effects of seminal fluids), females with a genetic propensity to mate multiply live shorter lives. We discuss the potential role of sexual conflict in driving the evolutionary trade-off between reproduction and lifespan in Drosophila. More generally, our data show that, like males, females can exhibit a live fast die young life history strategy.

  19. Early life events influence whole-of-life metabolic health via gut microflora and gut permeability.

    PubMed

    Kerr, Caroline A; Grice, Desma M; Tran, Cuong D; Bauer, Denis C; Li, Dongmei; Hendry, Phil; Hannan, Garry N

    2015-01-01

    The capacity of our gut microbial communities to maintain a stable and balanced state, termed 'resilience', in spite of perturbations is vital to our achieving and maintaining optimal health. A loss of microbial resilience is observed in a number of diseases including obesity, diabetes and metabolic syndrome. There are large gaps in our understanding of why an individual's co-evolved microflora consortium fail to develop resilience thereby establishing a trajectory towards poor metabolic health. This review examines the connections between the developing gut microbiota and intestinal barrier function in the neonate, infant and during the first years of life. We propose that the effects of early life events on the gut microflora and permeability, whilst it is in a dynamic and vulnerable state, are fundamental in shaping the microbial consortia's resilience and that it is the maintenance of resilience that is pivotal for metabolic health throughout life. We review the literature supporting this concept suggesting new potential research directions aimed at developing a greater understanding of the longitudinal effects of the gut microflora on metabolic health and potential interventions to recalibrate the 'at risk' infant gut microflora in the direction of enhanced metabolic health.

  20. Early Life Stress as an Influence on Limbic Epilepsy: An Hypothesis Whose Time has Come?

    PubMed Central

    Koe, Amelia S.; Jones, Nigel C.; Salzberg, Michael R.

    2009-01-01

    The pathogenesis of mesial temporal lobe epilepsy (MTLE), the most prevalent form of refractory focal epilepsy in adults, is thought to begin in early life, even though seizures may not commence until adolescence or adulthood. Amongst the range of early life factors implicated in MTLE causation (febrile seizures, traumatic brain injury, etc.), stress may be one important contributor. Early life stress is an a priori agent deserving study because of the large amount of neuroscientific data showing enduring effects on structure and function in hippocampus and amygdala, the key structures involved in MTLE. An emerging body of evidence directly tests hypotheses concerning early life stress and limbic epilepsy: early life stressors, such as maternal separation, have been shown to aggravate epileptogenesis in both status epilepticus and kindling models of limbic epilepsy. In addition to elucidating its influence on limbic epileptogenesis itself, the study of early life stress has the potential to shed light on the psychiatric disorder that accompanies MTLE. For many years, psychiatric comorbidity was viewed as an effect of epilepsy, mediated psychologically and/or neurobiologically. An alternative – or complementary – perspective is that of shared causation. Early life stress, implicated in the pathogenesis of several psychiatric disorders, may be one such causal factor. This paper aims to critically review the body of experimental evidence linking early life stress and epilepsy; to discuss the direct studies examining early life stress effects in current models of limbic seizures/epilepsy; and to suggest priorities for future research. PMID:19838325

  1. Impact of early vs. late childhood early life stress on brain morphometrics.

    PubMed

    Baker, Laurie M; Williams, Leanne M; Korgaonkar, Mayuresh S; Cohen, Ronald A; Heaps, Jodi M; Paul, Robert H

    2013-06-01

    Previous studies of early life trauma suggest that in addition to its emotional impact, exposure to early life stress (ELS) is associated with alterations in brain structure. However, little attention has been devoted to the relationship between emotional processing and brain integrity as a function of age of ELS onset. In the present study we examined whether ELS onset in older ages of youth rather than younger ages is associated with smaller limbic and basal ganglia volumes as measured by magnetic resonance imaging (MRI). We hypothesized that later age of manifestation during youth is associated with smaller volumetric morphology in limbic and basal ganglia volumes in adulthood. A total of 173 individuals were divided into three groups based on the age of self-reported ELS. The three groups included individuals only experiencing early childhood ELS (1 month-7 years, n = 38), those only experiencing later childhood ELS (8 years -17 years, n = 59), and those who have not experienced ELS (n = 76). Anterior cingulate cortex (ACC), hippocampus, amygdala, insula and caudate volumes were measured using a T1-weighted MRI. Analyses confirmed that later childhood ELS was associated with volumetric reductions in the ACC and insula volumes, while ELS experienced between the ages of 1 month and 7 years was not associated with lower brain volumes in these regions. The results may reflect the influence of more fully developed emotional processing of ELS on the developing brain and reinforce a body of research implicating both the ACC and insula in neuropsychiatric disorders and emotional regulation.

  2. Life and the solar uv environment on the early Earth

    NASA Astrophysics Data System (ADS)

    Bérces, A.; Kovács, G.; Rontó, G.; Lammer, H.; Kargl, G.; Kömle, N.; Bauer, S.

    2003-04-01

    The solar UV radiation environment on planetary surfaces and within their atmospheres is of importance in a wide range of scientific disciplines. Solar UV radiation is the driving force of chemical and organic evolution and serves also as a constraint in biological evolution. Studies of the solar UV environment of the early Earth 2.0 Gyr to 3.8 Gyr ago suggest that the terrestrial atmosphere was essentially anoxic, resulting in an ozone column abundance insufficient for protecting the planetary surface in the UV-B and the UV-C ranges. Since, short wavelength solar UV radiation in the UV-B ind UV-C range penetrated through the unprotected atmosphere to the surface on early Earth, associated biological consequences may be expected. For DNA-based terrestrial solar UV dosimetry, bacteriophage T7, isolated phage-DNA ind polycrystalline Uracil samples have been used. The effect of solar UV radiation can be measured by detecting the biological-structural consequences of the damage induced by UV photons. We show model calculations for the Biological Effective Dose (BED) rate of Uracil and bacteriophage T7, for various ozone concentrations representing early atmospheric conditions on Earth up to a UV protecting ozone layer comparable to present times. Further, we discuss experimental data which show the photo-reverse effect of Uracil molecules caused by short UV wavelengths. These photoreversion effect highly depend on the wavelength of the radiation. Shorter wavelength UV radiation of about 200 nm is strongly effective in monomerisation, while the longer wavelengths prefer the production of dimerisation. We could demonstrate experimentally, for the case of an Uracil thin-layer that the photo-reaction process of the nucleotides can be both, dimerization and the reverse process: monomerization. These results are important for the study of solar UV exposure on organisms in the terrestrial environment more than 2 Gyr ago where Earth had no UV protecting ozone layer as well as

  3. Characterization of Kepler early-type targets *

    NASA Astrophysics Data System (ADS)

    Catanzaro, G.; Frasca, A.; Molenda-Żakowicz, J.; Marilli, E.

    2010-07-01

    Context. Stellar pulsation offers a unique opportunity to constrain the intrinsic parameters of stars and unveil their inner structure. The Kepler satellite is collecting an enormous amount of data of unprecedent photometric precision, which will allow us to test theory and obtain a very precise tomography of stellar interiors. Aims: We attempt to determine the stars' fundamental parameters (Teff, log g, v sin i, and luminosity) needed for computing asteroseismic models and interpreting Kepler data. We report spectroscopic observations of 23 early-type Kepler asteroseismic targets, 13 other stars in the Kepler field, that had not been selected to be observed. Methods: We measured the radial velocity by performing a cross-correlation with template spectra to help us identify non-single stars. Spectral synthesis was performed to derive the stellar parameters of our target stars, and the state-of-the-art LTE atmospheric models were computed. For all the stars of our sample, we derived the radial velocity, Teff, log g, v sin i, and luminosities. For 12 stars, we performed a detailed abundance analysis of 20 species, for 16, we could derive only the [Fe/H] ratio. A spectral classification was also performed for 17 stars in the sample. Results: We identify two double-lined spectroscopic binaries, HIP 96299 and HIP 98551, the former of which is an already known eclipsing binary, and two single-lined spectroscopic binaries, HIP 97254 and HIP 97724. We also report two suspected spectroscopic binaries, HIP 92637 and HIP 96762, and the detection of a possible variability in the radial velocity of HIP 96277. Two of our program stars are chemically peculiar, namely HIP 93941, which we classify as B2 He-weak, and HIP 96210, which we classify as B6 Mn. Finally, we find that HIP 93522, HIP 93941, HIP 93943, HIP 96210 and HIP 96762, are very slow rotators (v sin i < 20 km s-1) which makes them very interesting and promising targets for asteroseismic modeling. Based on observations

  4. Early life dynamics of the human gut virome and bacterial microbiome in infants

    PubMed Central

    Lim, Efrem S.; Zhou, Yanjiao; Zhao, Guoyan; Bauer, Irma K.; Droit, Lindsay; Ndao, I. Malick; Warner, Barbara B.; Tarr, Phillip I.; Wang, David; Holtz, Lori R.

    2016-01-01

    The early years of life are important for immune development and influences health in adulthood. While it has been established that the gut bacterial microbiome is rapidly acquired after birth, less is known about the viral microbiome (or, virome), consisting of bacteriophages and eukaryotic RNA and DNA viruses, during the first years of life. Here, we characterized the gut virome and bacterial microbiome in a longitudinal cohort of healthy infant twins. The virome and bacterial microbiome are more similar between co-twins than between non-related infants. From birth to two years of age, the eukaryotic virome and the bacterial microbiome expanded, but this was accompanied by a contraction of and shift in the bacteriophage virome composition. The bacteriophage-bacteria relationship begins from birth with a high predator-low prey dynamic, consistent with the Lotka-Volterra predator-prey model. Thus, in contrast to the stable microbiome observed in adults, the infant microbiome is highly dynamic and associated with early life changes in the composition of bacteria, viruses and bacteriophage with age. PMID:26366711

  5. Early life dynamics of the human gut virome and bacterial microbiome in infants.

    PubMed

    Lim, Efrem S; Zhou, Yanjiao; Zhao, Guoyan; Bauer, Irma K; Droit, Lindsay; Ndao, I Malick; Warner, Barbara B; Tarr, Phillip I; Wang, David; Holtz, Lori R

    2015-10-01

    The early years of life are important for immune development and influence health in adulthood. Although it has been established that the gut bacterial microbiome is rapidly acquired after birth, less is known about the viral microbiome (or 'virome'), consisting of bacteriophages and eukaryotic RNA and DNA viruses, during the first years of life. Here, we characterized the gut virome and bacterial microbiome in a longitudinal cohort of healthy infant twins. The virome and bacterial microbiome were more similar between co-twins than between unrelated infants. From birth to 2 years of age, the eukaryotic virome and the bacterial microbiome expanded, but this was accompanied by a contraction of and shift in the bacteriophage virome composition. The bacteriophage-bacteria relationship begins from birth with a high predator-low prey dynamic, consistent with the Lotka-Volterra prey model. Thus, in contrast to the stable microbiome observed in adults, the infant microbiome is highly dynamic and associated with early life changes in the composition of bacteria, viruses and bacteriophages with age. PMID:26366711

  6. Early life dynamics of the human gut virome and bacterial microbiome in infants.

    PubMed

    Lim, Efrem S; Zhou, Yanjiao; Zhao, Guoyan; Bauer, Irma K; Droit, Lindsay; Ndao, I Malick; Warner, Barbara B; Tarr, Phillip I; Wang, David; Holtz, Lori R

    2015-10-01

    The early years of life are important for immune development and influence health in adulthood. Although it has been established that the gut bacterial microbiome is rapidly acquired after birth, less is known about the viral microbiome (or 'virome'), consisting of bacteriophages and eukaryotic RNA and DNA viruses, during the first years of life. Here, we characterized the gut virome and bacterial microbiome in a longitudinal cohort of healthy infant twins. The virome and bacterial microbiome were more similar between co-twins than between unrelated infants. From birth to 2 years of age, the eukaryotic virome and the bacterial microbiome expanded, but this was accompanied by a contraction of and shift in the bacteriophage virome composition. The bacteriophage-bacteria relationship begins from birth with a high predator-low prey dynamic, consistent with the Lotka-Volterra prey model. Thus, in contrast to the stable microbiome observed in adults, the infant microbiome is highly dynamic and associated with early life changes in the composition of bacteria, viruses and bacteriophages with age.

  7. Early-life stress is associated with gender-based vulnerability to epileptogenesis in rat pups.

    PubMed

    Desgent, Sébastien; Duss, Sandra; Sanon, Nathalie T; Lema, Pablo; Lévesque, Maxime; Hébert, David; Rébillard, Rose-Marie; Bibeau, Karine; Brochu, Michèle; Carmant, Lionel

    2012-01-01

    During development, the risk of developing mesial temporal lobe epilepsy (MTLE) increases when the developing brain is exposed to more than one insult in early life. Early life insults include abnormalities of cortical development, hypoxic-ischemic injury and prolonged febrile seizures. To study epileptogenesis, we have developed a two-hit model of MTLE characterized by two early-life insults: a freeze lesion-induced cortical malformation at post-natal day 1 (P1), and a prolonged hyperthermic seizure (HS) at P10. As early life stressors lead to sexual dimorphism in both acute response and long-term outcome, we hypothesized that our model could lead to gender-based differences in acute stress response and long-term risk of developing MTLE. Male and female pups underwent a freeze-lesion induced cortical microgyrus at P1 and were exposed to HS at P10. Animals were monitored by video-EEG from P90 to P120. Pre and post-procedure plasma corticosterone levels were used to measure stress response at P1 and P10. To confirm the role of sex steroids, androgenized female pups received daily testosterone injections to the mother pre-natally and post-natally for nine days while undergoing both insults. We demonstrated that after both insults females did not develop MTLE while all males did. This correlated with a rise in corticosterone levels at P1 following the lesion in males only. Interestingly, all androgenized females showed a similar rise in corticosterone at P1, and also developed MTLE. Moreover, we found that the cortical lesion significantly decreased the latency to generalized convulsion during hyperthermia at P10 in both genders. The cortical dysplasia volumes at adulthood were also similar between male and female individuals. Our data demonstrate sexual dimorphism in long-term vulnerability to develop epilepsy in the lesion + hyperthermia animal model of MTLE and suggest that the response to early-life stress at P1 contributes significantly to epileptogenesis in a

  8. Telomeres, early-life stress and mental illness.

    PubMed

    Ridout, Samuel J; Ridout, Kathryn K; Kao, Hung-Teh; Carpenter, Linda L; Philip, Noah S; Tyrka, Audrey R; Price, Lawrence H

    2015-01-01

    Telomeres are structures of tandem TTAGGG repeats that are found at the ends of chromosomes and preserve genomic DNA by serving as a disposable buffer to protect DNA termini during chromosome replication. In this process, the telomere itself shortens with each cell division and can consequently be thought of as a cellular 'clock', reflecting the age of a cell and the time until senescence. Telomere shortening and changes in the levels of telomerase, the enzyme that maintains telomeres, occur in the context of certain somatic diseases and in response to selected physical stressors. Emerging evidence indicates that telomeres shorten with exposure to psychosocial stress (including early-life stress) and perhaps in association with some psychiatric disorders. These discoveries suggest that telomere shortening might be a useful biomarker for the overall stress response of an organism to various pathogenic conditions. In this regard, telomeres and their response to both somatic and psychiatric illness could serve as a unifying stress-response biomarker that crosses the brain/body distinction that is often made in medicine. Prospective studies will help to clarify whether this biomarker has broad utility in psychiatry and medicine for the evaluation of responses to psychosocial stressors. The possibility that telomere shortening can be slowed or reversed by psychiatric and psychosocial interventions could represent an opportunity for developing novel preventative and therapeutic approaches.

  9. Telomeres, Early-Life Stress and Mental Illness

    PubMed Central

    Ridout, Samuel J.; Ridout, Kathryn K.; Kao, Hung-Teh; Carpenter, Linda L.; Philip, Noah S.; Tyrka, Audrey R.; Price, Lawrence H.

    2015-01-01

    Telomeres are structures of tandem TTAGGG repeats at the ends of chromosomes which preserve the encoding DNA by serving as a disposable brake to terminate DNA duplication during chromosome replication. In this process, the telomere itself shortens with each cell division, and can consequently be thought of as a cellular “clock” reflecting the age of a cell and the time until senescence. Telomere shortening, and changes in levels of telomerase, the enzyme that maintains telomeres, occur in the context of certain somatic diseases and in response to selected physical stressors. Emerging evidence indicates that telomeres shorten with exposure to psychosocial stress (including early-life stress [ELS]), and perhaps in association with some psychiatric disorders. These discoveries suggest that telomere shortening might be a useful biomarker for the overall stress response of an organism to various pathogenic conditions. In this regard, telomeres and their response to both somatic and psychiatric illness could serve as a unifying biomarker of stress response that crosses the brain/body distinction often made in medicine. Prospective studies will help to clarify whether this biomarker has broad utility in psychiatry and medicine in the evaluation of responses to psychosocial stressors. The possibility that telomere shortening can be slowed or reversed by psychiatric and psychosocial interventions could represent an opportunity for developing novel preventative and therapeutic approaches. PMID:25832516

  10. Toxicity of TFM lampricide to early life stages of walleye

    USGS Publications Warehouse

    Seelye, J.G.; Marking, L.L.; King, E.L.; Hanson, L.H.; Bills, T.D.

    1987-01-01

    The authors studied the effects of the lampricide 3-trifluoromethyl-4-nitrophenol (TFM) on gametes, newly fertilized eggs, eyed eggs, larvae, and swim-up fry of the walleye Stizostedion vitreum . When gametes from sexually mature walleyes were stripped into solutions of TFM, no effects were observed during the fertilization process at concentrations up to 3.0 mg/L - three times the concentration lethal to 99.9% of larval sea lampreys Petromyzon marinus held 12 h (LC99.9) under the same test conditions. Newly fertilized eggs likewise were unaffected during water hardening by concentrations of TFM that were lethal to sea lamprey ammocoetes. Eyed eggs, sac fry, and swim-up fry yielded LC25 values that were 2.5 to 5 times greater than the 12-h LC99.9 for sea lamprey ammocoetes. The data thus indicated that all of the early life stages of walleyes tested were considerably more resistant than sea lamprey ammocoetes to TFM, and that it is unlikely they would be adversely affected by standard stream treatments to kill sea lamprey ammocoetes.

  11. Nephron number and its determinants in early life: a primer.

    PubMed

    Charlton, Jennifer R; Springsteen, Caleb H; Carmody, J Bryan

    2014-12-01

    Although there is wide variation, humans possess on average 900,000 nephrons per kidney. So far as is known, nephrons cannot regenerate; therefore, an individual's nephron endowment has profound implications in determining his or her long-term risk of developing chronic kidney disease. Most of the variability in human nephron number is determined early in life. Nephrogenesis is a complex and carefully orchestrated process that occurs during a narrow time window until 36 weeks gestation in humans, and disruption of any part of this sequence may lead to reduced nephron number. In utero, genetic abnormalities, toxic insults, and nutritional deficiencies can each alter final nephron number. Infants born prematurely must continue nephrogenesis in an ex utero environment where there may be multiple threats to successful nephrogenesis. Once the nephron endowment is determined, postnatal factors (such as acute kidney injury or chronic illnesses) can only decrease nephron number. Current techniques for estimating nephron number require an invasive procedure or complete destruction of the tissue, making noninvasive means for counting nephron surgently needed. A better understanding of nephron number and its determinants, particularly during growth and maturation, could allow the development of therapies to support, prolong, or resume nephrogenesis.

  12. Life satisfaction and maladaptive behaviors in early adolescents.

    PubMed

    Lyons, Michael D; Otis, Kristin L; Huebner, E Scott; Hills, Kimberly J

    2014-12-01

    This study explored the directionality of the relations between global life satisfaction (LS) and internalizing and externalizing behaviors using a sample of regular education students who were initially enrolled in Grade 7 (n = 470). Self-report measures of internalizing and externalizing behaviors and LS were administered on 2 occasions, 6 months apart, to students from a Southeastern U.S. middle school. Short-term longitudinal analyses revealed that neither externalizing behaviors nor internalizing behaviors at Time 1 predicted LS at Time 2. However, LS at Time 1 predicted externalizing behaviors at Time 2. LS at Time 1 also predicted internalizing behaviors at Time 2, but the results were moderated by student gender. At higher levels of LS, boys reported lower levels of internalizing behaviors at Time 2. The overall results suggested that lower levels of LS are an antecedent of increased maladaptive behaviors among early adolescents. Alternatively, higher levels of LS may be a protective factor against subsequent externalizing behaviors among boys and girls and internalizing behaviors among boys. Furthermore, the results provide further support for the discriminant validity of positive and negative measures of mental health and suggest that LS measures may provide useful information for comprehensive adolescent health screening and monitoring systems.

  13. Early-life stress origins of gastrointestinal disease: animal models, intestinal pathophysiology, and translational implications.

    PubMed

    Pohl, Calvin S; Medland, Julia E; Moeser, Adam J

    2015-12-15

    Early-life stress and adversity are major risk factors in the onset and severity of gastrointestinal (GI) disease in humans later in life. The mechanisms by which early-life stress leads to increased GI disease susceptibility in adult life remain poorly understood. Animal models of early-life stress have provided a foundation from which to gain a more fundamental understanding of this important GI disease paradigm. This review focuses on animal models of early-life stress-induced GI disease, with a specific emphasis on translational aspects of each model to specific human GI disease states. Early postnatal development of major GI systems and the consequences of stress on their development are discussed in detail. Relevant translational differences between species and models are highlighted.

  14. Early-Life Stress, HPA Axis Adaptation, and Mechanisms Contributing to Later Health Outcomes

    PubMed Central

    Maniam, Jayanthi; Antoniadis, Christopher; Morris, Margaret J.

    2014-01-01

    Stress activates the hypothalamic–pituitary–adrenal (HPA) axis, which then modulates the degree of adaptation and response to a later stressor. It is known that early-life stress can impact on later health but less is known about how early-life stress impairs HPA axis activity, contributing to maladaptation of the stress–response system. Early-life stress exposure (either prenatally or in the early postnatal period) can impact developmental pathways resulting in lasting structural and regulatory changes that predispose to adulthood disease. Epidemiological, clinical, and experimental studies have demonstrated that early-life stress produces long term hyper-responsiveness to stress with exaggerated circulating glucocorticoids, and enhanced anxiety and depression-like behaviors. Recently, evidence has emerged on early-life stress-induced metabolic derangements, for example hyperinsulinemia and altered insulin sensitivity on exposure to a high energy diet later in life. This draws our attention to the contribution of later environment to disease vulnerability. Early-life stress can alter the expression of genes in peripheral tissues, such as the glucocorticoid receptor and 11-beta hydroxysteroid dehydrogenase (11β-HSD1). We propose that interactions between altered HPA axis activity and liver 11β-HSD1 modulates both tissue and circulating glucocorticoid availability, with adverse metabolic consequences. This review discusses the potential mechanisms underlying early-life stress-induced maladaptation of the HPA axis, and its subsequent effects on energy utilization and expenditure. The effects of positive later environments as a means of ameliorating early-life stress-induced health deficits, and proposed mechanisms underpinning the interaction between early-life stress and subsequent detrimental environmental exposures on metabolic risk will be outlined. Limitations in current methodology linking early-life stress and later health outcomes will also be

  15. Early life socioeconomic position and immune response to persistent infections among elderly Latinos.

    PubMed

    Meier, Helen C S; Haan, Mary N; Mendes de Leon, Carlos F; Simanek, Amanda M; Dowd, Jennifer B; Aiello, Allison E

    2016-10-01

    Persistent infections, such as cytomegalovirus (CMV), herpes simplex virus-1 (HSV-1), Helicobacter pylori (H. pylori), and Toxoplasma gondii (T. gondii), are common in the U.S. but their prevalence varies by socioeconomic status. It is unclear if early or later life socioeconomic position (SEP) is a more salient driver of disparities in immune control of these infections. Using data from the Sacramento Area Latino Study on Aging, we examined whether early or later life SEP was the strongest predictor of immune control later in life by contrasting two life course models, the critical period model and the chain of risk model. Early life SEP was measured as a latent variable, derived from parental education and occupation, and food availability. Indicators for SEP in later life included education level and occupation. Individuals were categorized by immune response to each pathogen (seronegative, low, medium and high) with increasing immune response representing poorer immune control. Cumulative immune response was estimated using a latent profile analysis with higher total immune response representing poorer immune control. Structural equation models were used to examine direct, indirect and total effects of early life SEP on each infection and cumulative immune response, controlling for age and gender. The direct effect of early life SEP on immune response was not statistically significant for the infections or cumulative immune response. Higher early life SEP was associated with lower immune response for T. gondii, H. pylori and cumulative immune response through pathways mediated by later life SEP. For CMV, higher early life SEP was both directly associated and partially mediated by later life SEP. No association was found between SEP and HSV-1. Findings from this study support a chain of risk model, whereby early life SEP acts through later life SEP to affect immune response to persistent infections in older age.

  16. Early life socioeconomic position and immune response to persistent infections among elderly Latinos.

    PubMed

    Meier, Helen C S; Haan, Mary N; Mendes de Leon, Carlos F; Simanek, Amanda M; Dowd, Jennifer B; Aiello, Allison E

    2016-10-01

    Persistent infections, such as cytomegalovirus (CMV), herpes simplex virus-1 (HSV-1), Helicobacter pylori (H. pylori), and Toxoplasma gondii (T. gondii), are common in the U.S. but their prevalence varies by socioeconomic status. It is unclear if early or later life socioeconomic position (SEP) is a more salient driver of disparities in immune control of these infections. Using data from the Sacramento Area Latino Study on Aging, we examined whether early or later life SEP was the strongest predictor of immune control later in life by contrasting two life course models, the critical period model and the chain of risk model. Early life SEP was measured as a latent variable, derived from parental education and occupation, and food availability. Indicators for SEP in later life included education level and occupation. Individuals were categorized by immune response to each pathogen (seronegative, low, medium and high) with increasing immune response representing poorer immune control. Cumulative immune response was estimated using a latent profile analysis with higher total immune response representing poorer immune control. Structural equation models were used to examine direct, indirect and total effects of early life SEP on each infection and cumulative immune response, controlling for age and gender. The direct effect of early life SEP on immune response was not statistically significant for the infections or cumulative immune response. Higher early life SEP was associated with lower immune response for T. gondii, H. pylori and cumulative immune response through pathways mediated by later life SEP. For CMV, higher early life SEP was both directly associated and partially mediated by later life SEP. No association was found between SEP and HSV-1. Findings from this study support a chain of risk model, whereby early life SEP acts through later life SEP to affect immune response to persistent infections in older age. PMID:27543684

  17. Impact of nutrition since early life on cardiovascular prevention

    PubMed Central

    2012-01-01

    The cardiovascular disease represents the leading cause of morbidity and mortality in Western countries and it is related to the atherosclerotic process. Cardiovascular disease risk factors, such as dyslipidemia, hypertension, insulin resistance, obesity, accelerate the atherosclerotic process which begins in childhood and progresses throughout the life span. The cardiovascular disease risk factor detection and management through prevention delays the atherosclerotic progression towards clinical cardiovascular disease. Dietary habits, from prenatal nutrition, breastfeeding, complementary feeding to childhood and adolescence nutrition play a basic role for this topic. The metabolic and neuroendocrine environment of the fetus is fundamental in the body’s “metabolic programming”. Further several studies have demonstrated the beneficial effects of breastfeeding on cardiovascular risk factors reduction. Moreover the introduction of complementary foods represents another important step, with particular regard to protein intake. An adequate distribution between macronutrients (lipids, proteins and carbohydrates) is required for correct growth development from infancy throughout adolescence and for prevention of several cardiovascular disease risk determinants in adulthood. The purpose of this review is to examine the impact of nutrition since early life on disease. La malattia cardiovascolare rappresenta la principale causa di morbilità e mortalità dei paesi occidentali ed è correlata a degenerazione vascolare aterosclerotica. I fattori di rischio cardiovascolari quali dislipidemia, ipertensione, insulino resistenza e obesità accelerano tale processo il cui esordio è noto sin dell’età pediatrica ed evolve nel corso della vita. L’individuazione e la cura dei fattori di rischio cardiovascolari mediante la prevenzione dei fattori causali ritardano la progressione dell’aterosclerosi e l’insorgenza dei sintomi cardiovascolari. La nutrizione svolge un ruolo

  18. Early life exposure to air pollution induces adult cardiac dysfunction.

    PubMed

    Gorr, Matthew W; Velten, Markus; Nelin, Timothy D; Youtz, Dane J; Sun, Qinghua; Wold, Loren E

    2014-11-01

    Exposure to ambient air pollution contributes to the progression of cardiovascular disease, particularly in susceptible populations. The objective of the present study was to determine whether early life exposure to air pollution causes persistent cardiovascular consequences measured at adulthood. Pregnant FVB mice were exposed to filtered (FA) or concentrated ambient particulate matter (PM2.5) during gestation and nursing. Mice were exposed to PM2.5 at an average concentration of 51.69 μg/m(3) from the Columbus, OH region for 6 h/day, 7 days/wk in utero until weaning at 3 wk of age. Birth weight was reduced in PM2.5 pups compared with FA (1.36 ± 0.12 g FA, n = 42 mice; 1.30 ± 0.15 g PM2.5, n = 67 P = 0.012). At adulthood, mice exposed to perinatal PM2.5 had reduced left ventricular fractional shortening compared with FA-exposed mice (43.6 ± 2.1% FA, 33.2 ± 1.6% PM2.5, P = 0.001) with greater left ventricular end systolic diameter. Pressure-volume loops showed reduced ejection fraction (79.1 ± 3.5% FA, 35.5 ± 9.5% PM2.5, P = 0.005), increased end-systolic volume (10.4 ± 2.5 μl FA, 39.5 ± 3.8 μl PM2.5, P = 0.001), and reduced dP/dt maximum (11,605 ± 200 μl/s FA, 9,569 ± 800 μl/s PM2.5, P = 0.05) and minimum (-9,203 ± 235 μl/s FA, -7,045 ± 189 μl/s PM2.5, P = 0.0005) in PM2.5-exposed mice. Isolated cardiomyocytes from the hearts of PM2.5-exposed mice had reduced peak shortening (%PS, 8.53 ± 2.82% FA, 6.82 ± 2.04% PM2.5, P = 0.003), slower calcium reuptake (τ, 0.22 ± 0.09 s FA, 0.26 ± 0.07 s PM2.5, P = 0.048), and reduced response to β-adrenergic stimulation compared with cardiomyocytes isolated from mice that were exposed to FA. Histological analyses revealed greater picro-sirius red-positive-stained areas in the PM2.5 vs. FA group, indicative of increased collagen deposition. We concluded that these data demonstrate the detrimental role of early life exposure to ambient particulate air pollution in programming of adult cardiovascular

  19. Learning about Life and Death in Early Childhood

    ERIC Educational Resources Information Center

    Slaughter, Virginia; Lyons, Michelle

    2003-01-01

    Inagaki and Hatano (2002) have argued that young children initially understand biological phenomena in terms of vitalism, a mode of construal in which "life" or "life-force" is the central causal-explanatory concept. This study investigated the development of vitalistic reasoning in young children's concepts of life, the human body and death.…

  20. Early Quality of Life in Patients with Localized Prostate Carcinoma

    PubMed Central

    Eton, David T.; Lepore, Stephen J.; Helgeson, Vicki S.

    2008-01-01

    BACKGROUND Men with localized prostate carcinoma are faced with important treatment decisions, and quality of life (QoL) information has become a crucial element of decision making. The first objective of this study was to compare the early, health-related QoL (HRQoL) of men with localized prostate carcinoma who were treated with radical prostatectomy, external beam radiotherapy, or brachytherapy. A second objective was to identify demographic and psychosocial variables that predict HRQoL. METHODS Two-hundred fifty-six men with localized prostate carcinoma were interviewed within 7 weeks of treatment initiation. The interview included measures of prostate-specific HRQoL (the University of California—Los Angeles Prostate Cancer Index), general HRQoL (the SF-36), and psychosocial variables. RESULTS After adjusting for covariates, treatment group differences were found for both prostate specific HRQoL and general HRQoL. Men who underwent prostatectomy reported more urinary and sexual problems and more general physical dysfunction compared with men who were treated with either form of radiation therapy. Men who were treated with brachytherapy reported the fewest problems in sexual function and the least general physical dysfunction. Few treatment group differences were found in mental functioning. Both demographic factors and psychosocial factors predicted HRQoL. Older men and African-American men reported more physical problems than younger men and Caucasian men, respectively. A supportive social environment, high self-efficacy, and high self-esteem were predictive of better HRQoL. CONCLUSIONS Shortly after undergoing treatment for localized prostate carcinoma, men who underwent radical prostatectomy, older men, and African-American men are at heightened risk for experiencing prostate-specific and general deficits in HRQoL. Having psychosocial resources from which to draw may enhance HRQoL. PMID:11745222

  1. Early Life Factors and Risk of Childhood Rhabdomyosarcoma

    PubMed Central

    Shrestha, Anshu; Ritz, Beate; Ognjanovic, Simona; Lombardi, Christina A.; Wilhelm, Michelle; Heck, Julia E.

    2013-01-01

    Although little is known about etiology of childhood rhabdomyosarcoma (RMS), early life factors are suspected in the etiology. We explored this hypothesis using linked data from the California Cancer Registry and the California birth rolls. Incident cases were 359 children <6-year-old (218 embryonal, 81 alveolar, 60 others) diagnosed in 1988–2008. Controls (205, 173), frequency matched on birth year (1986–2007), were randomly selected from the birth rolls. We examined association of birth characteristics such as birth weight, size for gestational age, and timing of prenatal care with all-type RMS, embryonal, and alveolar subtypes. Crude and adjusted odds ratios (ORs) and 95% confidence intervals (95% CIs) were estimated using logistic regression. In contrast to a previous study, we observed statistically non-significant association for embryonal subtype among high birth weight (4000–5250 g) children for term births [OR (95% CI): 1.28 (0.85, 1.92)] and all births adjusted for gestational age [OR (95% CI): 1.21 (0.81, 1.81)]. On the other hand, statistically significant 1.7-fold increased risk of alveolar subtype (95% CI: 1.02, 2.87) was observed among children with late or no prenatal care and a 1.3-fold increased risk of all RMS subtypes among children of fathers ≥35 years old at child birth (95% CI: 1.00, 1.75), independent of all covariates. Our finding of positive association on male sex for all RMS types is consistent with previous studies. While we did not find a convincingly positive association between high birth weight and RMS, our findings on prenatal care supports the hypothesis that prenatal environment modifies risk for childhood RMS. PMID:24350186

  2. Paraoxonase-1 and Early-Life Environmental Exposures.

    PubMed

    Marsillach, Judit; Costa, Lucio G; Furlong, Clement E

    2016-01-01

    Acute and chronic exposures to widely used organophosphorus (OP) insecticides are common. Children's detoxification mechanisms are not well developed until several years after birth. The increased cases of neurodevelopmental disorders in children, together with their increased susceptibility to OP neurotoxicity cannot be explained by genetic factors alone but could be related to gene-environment interactions. Paraoxonase-1 (PON1) is an enzyme that can detoxify OPs but its catalytic efficiency for hydrolysis to certain OPs is modulated by the Q192R polymorphism. Studies with animals have provided important information on the role of PON1 in protecting against gestational and postnatal toxicity to OPs. The PON1Q192 allele is less efficient in hydrolyzing certain OPs than the PON1R192 allele. Maternal PON1 status (PON1 activity levels, the most important measurement, and functional Q192R phenotype) modulates the detrimental effects of exposure to the OP chlorpyrifos oxon on fetal brain gene expression and biomarkers of exposure. Epidemiologic studies suggest that children from mothers with lower PON1 status who were in contact with OPs during pregnancy tend to show smaller head circumference at birth and adverse effects in cognitive function during childhood. Infants and children are vulnerable to OP toxicity. The detrimental consequences of OPs on neurodevelopment can lead to future generations with permanent cognitive problems and susceptibility to develop neurodegenerative diseases. Improved methods using mass spectrometry to monitor OP-adducted biomarker proteins are needed and will be extremely helpful in early life biomonitoring, while measurement of PON1 status as a biomarker of susceptibility will help identify mothers and children highly sensitive to OPs. The use of adductomics instead of enzymatic activity assays for biomonitoring OP exposures have proved to provide several advantages, including the use of dried blood spots, which would facilitate monitoring

  3. Disproportionate Exposure to Early-Life Adversity and Sexual Orientation Disparities in Psychiatric Morbidity

    ERIC Educational Resources Information Center

    McLaughlin, Katie A.; Hatzenbuehler, Mark L.; Xuan, Ziming; Conron, Kerith J.

    2012-01-01

    Objectives: Lesbian, gay, and bisexual (LGB) populations exhibit elevated rates of psychiatric disorders compared to heterosexuals, and these disparities emerge early in the life course. We examined the role of exposure to early-life victimization and adversity--including physical and sexual abuse, homelessness, and intimate partner violence--in…

  4. Life Satisfaction in Early Adolescence: Personal, Neighborhood, School, Family, and Peer Influences

    ERIC Educational Resources Information Center

    Oberle, Eva; Schonert-Reichl, Kimberly A.; Zumbo, Bruno D.

    2011-01-01

    Drawing from an ecological assets framework as well as research and theory on positive youth development, this study examined the relationship of early adolescents' satisfaction with life to trait optimism and assets representing the social contexts in which early adolescents spend most of their time. Self-reports of satisfaction with life,…

  5. Trans-Agency Early-Life Exposures and Cancer Working Group

    Cancer.gov

    The Trans-Agency Early-Life Exposures and Cancer Working Group promotes integration of early-life events and exposures into public health cancer research, control, prevention, and policy strategies to reduce the cancer burden in the United States and globally.

  6. Application of Diversity Indices to Quantify Early Life-History Diversity for Chinook Salmon

    SciTech Connect

    Johnson, Gary E.; Sather, Nichole K.; Skalski, John R.; Teel, David

    2014-03-01

    We developed an index of early life history diversity (ELHD) for Pacific salmon (Oncorhynchus spp.) Early life history diversity is the variation in morphological and behavioral traits expressed within and among populations by individual juvenile salmon during their downstream migration. A standard quantitative method does not exist for this prominent concept in salmon biology.

  7. Genetic Characterization of Early Blight Resistance in Interspecific Potato Hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early blight, caused by the fungal pathogen Alternaria solani Sorauer, is a serious foliar disease of potato and tomato worldwide. It is characterized by substantial yield loss resulting from severe defoliation, especially under hot, humid conditions. Fungicides are the main method of control, how...

  8. Characterization of Early Blight Resistance in Interspecific Potato Hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early blight, caused by the fungal pathogen Alternaria solani Sorauer, is a serious foliar disease of potato and tomato worldwide. It is characterized by severe defoliation resulting in significant losses in yield. Fungicides are the main method of control; however, they are undesirable due to their...

  9. Modeling old-age wealth with endogenous early-life outcomes: The case of Mexico.

    PubMed

    DeGraff, Deborah S; Wong, Rebeca

    2014-04-01

    This paper contributes to the literature on the life course and aging by examining the association between early-life outcomes and late-life well being, using data from the Mexican Health and Aging Study. Empirical research in this area has been challenged by the potential endogeneity of the early-life outcomes of interest, an issue which most studies ignore or downplay. Our contribution takes two forms: (1) we examine in detail the potential importance of two key life-cycle outcomes, age at marriage (a measure of family formation) and years of educational attainment (a measure of human capital investment) for old-age wealth, and (2) we illustrate the empirical value of past context variables that could help model the association between early-life outcomes and late-life well being. Our illustrative approach, matching macro-level historical policy and census variables to individual records to use as instruments in modeling the endogeneity of early-life behaviors, yields a statistically identified two-stage model of old-age wealth with minimum bias. We use simulations to show that the results for the model of wealth in old age are meaningfully different when comparing the approach that accounts for endogeneity with an approach that assumes exogeneity of early-life outcomes. Furthermore, our results suggest that in the Mexican case, models which ignore the potential endogeneity of early-life outcomes are likely to under-estimate the effects of such variables on old-age wealth.

  10. Modeling old-age wealth with endogenous early-life outcomes: The case of Mexico

    PubMed Central

    DeGraff, Deborah S.; Wong, Rebeca

    2014-01-01

    This paper contributes to the literature on the life course and aging by examining the association between early-life outcomes and late-life well being, using data from the Mexican Health and Aging Study. Empirical research in this area has been challenged by the potential endogeneity of the early-life outcomes of interest, an issue which most studies ignore or downplay. Our contribution takes two forms: (1) we examine in detail the potential importance of two key life-cycle outcomes, age at marriage (a measure of family formation) and years of educational attainment (a measure of human capital investment) for old-age wealth, and (2) we illustrate the empirical value of past context variables that could help model the association between early-life outcomes and late-life well being. Our illustrative approach, matching macro-level historical policy and census variables to individual records to use as instruments in modeling the endogeneity of early-life behaviors, yields a statistically identified two-stage model of old-age wealth with minimum bias. We use simulations to show that the results for the model of wealth in old age are meaningfully different when comparing the approach that accounts for endogeneity with an approach that assumes exogeneity of early-life outcomes. Furthermore, our results suggest that in the Mexican case, models which ignore the potential endogeneity of early-life outcomes are likely to under-estimate the effects of such variables on old-age wealth. PMID:25170434

  11. Tooth loss early in life accelerates age-related bone deterioration in mice.

    PubMed

    Kurahashi, Minori; Kondo, Hiroko; Iinuma, Mitsuo; Tamura, Yasuo; Chen, Huayue; Kubo, Kin-ya

    2015-01-01

    Both osteoporosis and tooth loss are health concerns that affect many older people. Osteoporosis is a common skeletal disease of the elderly, characterized by low bone mass and microstructural deterioration of bone tissue. Chronic mild stress is a risk factor for osteoporosis. Many studies showed that tooth loss induced neurological alterations through activation of a stress hormone, corticosterone, in mice. In this study, we tested the hypothesis that tooth loss early in life may accelerate age-related bone deterioration using a mouse model. Male senescence-accelerated mouse strain P8 (SAMP8) mice were randomly divided into control and toothless groups. Removal of the upper molar teeth was performed at one month of age. Bone response was evaluated at 2, 5 and 9 months of age. Tooth loss early in life caused a significant increase in circulating corticosterone level with age. Osteoblast bone formation was suppressed and osteoclast bone resorption was activated in the toothless mice. Trabecular bone volume fraction of the vertebra and femur was decreased in the toothless mice with age. The bone quality was reduced in the toothless mice at 5 and 9 months of age, compared with the age-matched control mice. These findings indicate that tooth loss early in life impairs the dynamic homeostasis of the bone formation and bone resorption, leading to reduced bone strength with age. Long-term tooth loss may have a cumulative detrimental effect on bone health. It is important to take appropriate measures to treat tooth loss in older people for preventing and/or treating senile osteoporosis.

  12. Low-grade disease activity in early life precedes childhood asthma and allergy.

    PubMed

    Chawes, Bo Lund Krogsgaard

    2016-08-01

    for promotion of or protection against asthma and allergies. Therefore, preventive initiatives to restore immune health, such as vitamin D supplementation, should be directed to the fetus and the earliest postnatal life. The eosinophil granulocyte has a major role in the allergic inflammatory cascade and eosinophilia is considered a hallmark of many allergic phenotypes. In paper III, we examined neonatal urinary biomarkers including eosinophil protein X (u-EPX), which is contained in the eosinophil granules. Elevated u-EPX in asymptomatic neonates was associated with development of allergic sensitization and nasal eosinophilia, but not with wheezing or asthma (III). These findings suggest the presence of an ongoing low-grade disease process in early life characterized by eosinophil activation prior to appearance of allergy-related conditions. In papers IV-V, we investigated perinatal and genetic predictors of neonatal fractional exhaled nitric oxide (FeNO) and the relationship between neonatal FeNO and wheezing later in child-hood. The a priori selected determinants encompassed asthma genetic risk variants, anthropometrics, demographics, socioeconomics, parental asthma and allergy, maternal smoking, paracetamol and antibiotic usage during pregnancy, and neonatal bacterial airway colonization. Among those, only the DENND1B risk allele and paternal history of asthma and allergy were associated with increased FeNO values (V) suggesting that raised FeNO in neonatal life is primarily an inherited trait. The neonatal FeNO levels were widely dispersed (1-67 ppb) and children with values in the upper quartile were at increased risk of recurrent wheezing in early childhood, but not persistent wheezing, reduced lung function or allergy-related endpoints (IV). This suggests that elevated neonatal FeNO represents an early asymptomatic low-grade disease process other than congenitally small airway calibre contributing to a transient wheezing phenotype. Reduced lung function in

  13. Life, Labor, and, Song in New England during the Early Republic.

    ERIC Educational Resources Information Center

    Scott, John W., Ed.; Scott, John A., Ed.

    1998-01-01

    Singing the tunes in this collection will help students understand many of the realities of life during the early years of the United States. From hearth and home to the perils of the sea, and from factory life to Presidential elections, this journal offers a selection of 19 songs to introduce the life and labor of New England people during the…

  14. Conditions for the emergence of life on the early Earth: summary and reflections

    PubMed Central

    Jortner, Joshua

    2006-01-01

    This review attempts to situate the emergence of life on the early Earth within the scientific issues of the operational and mechanistic description of life, the conditions and constraints of prebiotic chemistry, together with bottom-up molecular fabrication and biomolecular nanofabrication and top-down miniaturization approaches to the origin of terrestrial life. PMID:17008225

  15. Joint effects of pregnancy, sociocultural, and environmental factors on early life gut microbiome structure and diversity.

    PubMed

    Levin, Albert M; Sitarik, Alexandra R; Havstad, Suzanne L; Fujimura, Kei E; Wegienka, Ganesa; Cassidy-Bushrow, Andrea E; Kim, Haejin; Zoratti, Edward M; Lukacs, Nicholas W; Boushey, Homer A; Ownby, Dennis R; Lynch, Susan V; Johnson, Christine C

    2016-01-01

    The joint impact of pregnancy, environmental, and sociocultural exposures on early life gut microbiome is not yet well-characterized, especially in racially and socioeconomically diverse populations. Gut microbiota of 298 children from a Detroit-based birth cohort were profiled using 16S rRNA sequencing: 130 neonates (median age = 1.2 months) and 168 infants (median age = 6.6 months). Multiple factors were associated with neonatal gut microbiome composition in both single- and multi-factor models, with independent contributions of maternal race-ethnicity, breastfeeding, mode of delivery, marital status, exposure to environmental tobacco smoke, and indoor pets. These findings were consistent in the infants, and networks demonstrating the shared impact of factors on gut microbial composition also showed notable topological similarity between neonates and infants. Further, latent groups defined by these factors explained additional variation, highlighting the importance of combinatorial effects. Our findings also have implications for studies investigating the impact of the early life gut microbiota on disease. PMID:27558272

  16. Joint effects of pregnancy, sociocultural, and environmental factors on early life gut microbiome structure and diversity

    PubMed Central

    Levin, Albert M.; Sitarik, Alexandra R.; Havstad, Suzanne L.; Fujimura, Kei E.; Wegienka, Ganesa; Cassidy-Bushrow, Andrea E.; Kim, Haejin; Zoratti, Edward M.; Lukacs, Nicholas W.; Boushey, Homer A.; Ownby, Dennis R.; Lynch, Susan V.; Johnson, Christine C.

    2016-01-01

    The joint impact of pregnancy, environmental, and sociocultural exposures on early life gut microbiome is not yet well-characterized, especially in racially and socioeconomically diverse populations. Gut microbiota of 298 children from a Detroit-based birth cohort were profiled using 16S rRNA sequencing: 130 neonates (median age = 1.2 months) and 168 infants (median age = 6.6 months). Multiple factors were associated with neonatal gut microbiome composition in both single- and multi-factor models, with independent contributions of maternal race-ethnicity, breastfeeding, mode of delivery, marital status, exposure to environmental tobacco smoke, and indoor pets. These findings were consistent in the infants, and networks demonstrating the shared impact of factors on gut microbial composition also showed notable topological similarity between neonates and infants. Further, latent groups defined by these factors explained additional variation, highlighting the importance of combinatorial effects. Our findings also have implications for studies investigating the impact of the early life gut microbiota on disease. PMID:27558272

  17. Early life stage toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in zebrafish (Danio rerio)

    SciTech Connect

    Henry, T.R.; Hornung, M.W.; Abnet, C.C.; Peterson, R.E.

    1995-12-31

    TCDD and related compounds cause toxicity in fish early life stages, characterized by edema, regional ischemia, craniofacial malformations, growth retardation and mortality. Determining the mechanism of these effects requires understanding normal early life stage development, which has been studied extensively in the zebrafish. Establishing zebrafish as a model for TCDD developmental toxicity requires demonstration that TCDD adversely affects zebrafish early life stages. Toxicity of TCDD to zebrafish early life stages was characterized by exposing newly fertilized eggs for 1 hr to water containing acetone or graded concentrations of [{sup 3}H]-TCDD and observed for signs of toxicity at 12 hr intervals for 240 hr post fertilization (hpf). TCDD did not increase embryo mortality during the egg stage (0--48 hpf) nor did it affect the time to hatching (48--96 hpf). At the highest TCDD egg doses (4.5--6.5 ng/g) the earliest sign of toxicity was pericardial edema (72 hpf) followed by the onset of yolk sac edema (96 hpf) onset of mortality (132 hpf). At lower egg doses the same effects were seen but after a longer delay period. Other signs of toxicity included craniofacial malformations, cranial edema and loss of swimming activity prior to death. To determine the dose-response relationship for pericardial and yolk sac edema and larval mortality the cumulative incidence of each effect was determined at 240 hpf. The ED{sub 50}s (95% fiducial limits) for pericardial edema and yolk sac edema were 2.1 6 (1.82--2.48) and 2.43 (2.12--2.72) ng TCDD/g egg, respectively. The LD{sub 50} was 2.45 (1.94--2.89) ng TCDD/g egg. In conclusion, the signs of TCDD early life stage toxicity in zebrafish are essentially identical to those in other fish species, however, larger egg doses of TCDD are required to elicit the effects.

  18. Lunar Dust Characterization for Exploration Life Support Systems

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.

    2007-01-01

    Lunar dust effects can have a significant impact on the performance and maintenance of future exploration life support systems. Filtration systems will be challenged by the additional loading from lunar dust, and mitigation technology and strategies have to be adapted to protect sensitive equipment. An initial characterization of lunar dust and simulants was undertaken. The data emphasize the irregular morphology of the dust particles and the frequency dependence of lunar dust layer detachment from shaken surfaces.

  19. Early-Life State-of-Residence Characteristics and Later Life Hypertension, Diabetes, and Ischemic Heart Disease

    PubMed Central

    Eisen, Ellen A.; Modrek, Sepideh; Mokyr Horner, Elizabeth; Goldstein, Benjamin; Costello, Sadie; Cantley, Linda F.; Slade, Martin D.; Cullen, Mark R.

    2015-01-01

    Objectives. We examined how state characteristics in early life are associated with individual chronic disease later in life. Methods. We assessed early-life state of residence using the first 3 digits of social security numbers from blue- and white-collar workers from a US manufacturing company. Longitudinal data were available from 1997 to 2012, with 305 936 person-years of observation. Disease was assessed using medical claims. We modeled associations using pooled logistic regression with inverse probability of censoring weights. Results. We found small but statistically significant associations between early-state-of-residence characteristics and later life hypertension, diabetes, and ischemic heart disease. The most consistent associations were with income inequality, percentage non-White, and education. These associations were similar after statistically controlling for individual socioeconomic and demographic characteristics and current state characteristics. Conclusions. Characteristics of the state in which an individual lives early in life are associated with prevalence of chronic disease later in life, with a strength of association equivalent to genetic associations found for these same health outcomes. PMID:26066927

  20. Early Memories as a Guide to Client Movement through Life.

    ERIC Educational Resources Information Center

    Slavik, Steve

    1991-01-01

    Outlines the theory of the significance of early memories used as a projective tool by Adlerian psychologists. Describes a procedure for elicitation and interpretation of early memories and provides several examples of their use in an encouraging therapeutic context. Attempts to show effectiveness of this technique in assessing client issues and…

  1. Early feeding and early life housing conditions influence the response towards a noninfectious lung challenge in broilers.

    PubMed

    Simon, K; de Vries Reilingh, G; Bolhuis, J E; Kemp, B; Lammers, A

    2015-09-01

    Early life conditions such as feed and water availability immediately post hatch (PH) and housing conditions may influence immune development and therefore immune reactivity later in life. The current study addressed the consequences of a combination of these 2 early life conditions for immune reactivity, i.e., the specific antibody response towards a non-infectious lung challenge. Broiler chicks received feed and water either immediately p.h. or with a 72 h delay and were either reared in a floor or a cage system. At 4 weeks of age, chicks received either an intra-tracheally administered Escherichia coli lipopolysaccharide (LPS)/Human Serum Albumin (HUSA) challenge or a placebo, and antibody titers were measured up to day 14 after administration of the challenge. Chicks housed on the floor and which had a delayed access to feed p.h. showed the highest antibody titers against HuSA. These chicks also showed the strongest sickness response and poorest performance in response to the challenge, indicating that chicks with delayed access to feed might be more sensitive to an environment with higher antigenic pressure. In conclusion, results from the present study show that early life feeding strategy and housing conditions influence a chick's response to an immune challenge later in life. These 2 early life factors should therefore be taken into account when striving for a balance between disease resistance and performance in poultry.

  2. Life history plasticity of a tropical seabird in response to El Niño anomalies during early life.

    PubMed

    Ancona, Sergio; Drummond, Hugh

    2013-01-01

    Food shortage and other challenges associated with El Niño Southern Oscillation (ENSO) experienced early in life may have long-term impacts on life history traits, but these potential impacts remain virtually unexplored. By monitoring 2556 blue-footed boobies from 11 cohorts, we showed that birds facing warm water ENSO conditions (and probably low food availability) in the natal year were underweight at fledging, recruited earlier and bred less frequently, but showed no deficit in longevity or breeding success over the first 10 years. Life history impacts of ENSO were substantial when experienced in the prenatal year, the natal year, or the second year of life, and absent when experienced in the third year of life, implying that harsh conditions have greater effects when experienced earlier in life. Sexual differences in impacts depended on the age when warm water conditions were experienced: pre-natal and natal experience, respectively, induced early recruitment and influenced the relationship between age and laying date only in females, whereas second year experience reduced total breeding success only of males. Most surprising were positive transgenerational impacts in females: daughters of females that experienced ENSO conditions in their natal year showed improved breeding success. Developmental plasticity of boobies thus enables them to largely neutralize potential long-term impacts of harsh climatic conditions experienced early in life.

  3. Life History Plasticity of a Tropical Seabird in Response to El Niño Anomalies during Early Life

    PubMed Central

    Ancona, Sergio; Drummond, Hugh

    2013-01-01

    Food shortage and other challenges associated with El Niño Southern Oscillation (ENSO) experienced early in life may have long-term impacts on life history traits, but these potential impacts remain virtually unexplored. By monitoring 2556 blue-footed boobies from 11 cohorts, we showed that birds facing warm water ENSO conditions (and probably low food availability) in the natal year were underweight at fledging, recruited earlier and bred less frequently, but showed no deficit in longevity or breeding success over the first 10 years. Life history impacts of ENSO were substantial when experienced in the prenatal year, the natal year, or the second year of life, and absent when experienced in the third year of life, implying that harsh conditions have greater effects when experienced earlier in life. Sexual differences in impacts depended on the age when warm water conditions were experienced: pre-natal and natal experience, respectively, induced early recruitment and influenced the relationship between age and laying date only in females, whereas second year experience reduced total breeding success only of males. Most surprising were positive transgenerational impacts in females: daughters of females that experienced ENSO conditions in their natal year showed improved breeding success. Developmental plasticity of boobies thus enables them to largely neutralize potential long-term impacts of harsh climatic conditions experienced early in life. PMID:24023760

  4. Endocrine Disruptors and the Breast: Early Life Effects and Later Life Disease

    PubMed Central

    Macon, Madisa B.

    2013-01-01

    Breast cancer risk has both heritable and environment/lifestyle components. The heritable component is a small contribution (5–27 %), leaving the majority of risk to environment (e.g., applied chemicals, food residues, occupational hazards, pharmaceuticals, stress) and lifestyle (e.g., physical activity, cosmetics, water source, alcohol, smoking). However, these factors are not well-defined, primarily due to the enormous number of factors to be considered. In both humans and rodent models, environmental factors that act as endocrine disrupting compounds (EDCs) have been shown to disrupt normal mammary development and lead to adverse lifelong consequences, especially when exposures occur during early life. EDCs can act directly or indirectly on mammary tissue to increase sensitivity to chemical carcinogens or enhance development of hyperplasia, beaded ducts, or tumors. Protective effects have also been reported. The mechanisms for these changes are not well understood. Environmental agents may also act as carcinogens in adult rodent models, directly causing or promoting tumor development, typically in more than one organ. Many of the environmental agents that act as EDCs and are known to affect the breast are discussed. Understanding the mechanism(s) of action for these compounds will be critical to prevent their effects on the breast in the future. PMID:23417729

  5. FKBP5 genotype interacts with early life trauma to predict heavy drinking in college students.

    PubMed

    Lieberman, Richard; Armeli, Stephen; Scott, Denise M; Kranzler, Henry R; Tennen, Howard; Covault, Jonathan

    2016-09-01

    Alcohol use disorder (AUD) is debilitating and costly. Identification and better understanding of risk factors influencing the development of AUD remain a research priority. Although early life exposure to trauma increases the risk of adulthood psychiatric disorders, including AUD, many individuals exposed to early life trauma do not develop psychopathology. Underlying genetic factors may contribute to differential sensitivity to trauma experienced in childhood. The hypothalamic-pituitary-adrenal (HPA) axis is susceptible to long-lasting changes in function following childhood trauma. Functional genetic variation within FKBP5, a gene encoding a modulator of HPA axis function, is associated with the development of psychiatric symptoms in adulthood, particularly among individuals exposed to trauma early in life. In the current study, we examined interactions between self-reported early life trauma, past-year life stress, past-year trauma, and a single nucleotide polymorphism (rs1360780) in FKBP5 on heavy alcohol consumption in a sample of 1,845 college students from two university settings. Although we found no effect of early life trauma on heavy drinking in rs1360780*T-allele carriers, rs1360780*C homozygotes exposed to early life trauma had a lower probability of heavy drinking compared to rs1360780*C homozygotes not exposed to early life trauma (P < 0.01). The absence of an interaction between either current life stress or past-year trauma, and FKBP5 genotype on heavy drinking suggests that there exists a developmental period of susceptibility to stress that is moderated by FKBP5 genotype. These findings implicate interactive effects of early life trauma and FKBP5 genetic variation on heavy drinking. © 2016 Wiley Periodicals, Inc. PMID:27196697

  6. FKBP5 genotype interacts with early life trauma to predict heavy drinking in college students.

    PubMed

    Lieberman, Richard; Armeli, Stephen; Scott, Denise M; Kranzler, Henry R; Tennen, Howard; Covault, Jonathan

    2016-09-01

    Alcohol use disorder (AUD) is debilitating and costly. Identification and better understanding of risk factors influencing the development of AUD remain a research priority. Although early life exposure to trauma increases the risk of adulthood psychiatric disorders, including AUD, many individuals exposed to early life trauma do not develop psychopathology. Underlying genetic factors may contribute to differential sensitivity to trauma experienced in childhood. The hypothalamic-pituitary-adrenal (HPA) axis is susceptible to long-lasting changes in function following childhood trauma. Functional genetic variation within FKBP5, a gene encoding a modulator of HPA axis function, is associated with the development of psychiatric symptoms in adulthood, particularly among individuals exposed to trauma early in life. In the current study, we examined interactions between self-reported early life trauma, past-year life stress, past-year trauma, and a single nucleotide polymorphism (rs1360780) in FKBP5 on heavy alcohol consumption in a sample of 1,845 college students from two university settings. Although we found no effect of early life trauma on heavy drinking in rs1360780*T-allele carriers, rs1360780*C homozygotes exposed to early life trauma had a lower probability of heavy drinking compared to rs1360780*C homozygotes not exposed to early life trauma (P < 0.01). The absence of an interaction between either current life stress or past-year trauma, and FKBP5 genotype on heavy drinking suggests that there exists a developmental period of susceptibility to stress that is moderated by FKBP5 genotype. These findings implicate interactive effects of early life trauma and FKBP5 genetic variation on heavy drinking. © 2016 Wiley Periodicals, Inc.

  7. Parental responsiveness moderates the association between early-life stress and reduced telomere length.

    PubMed

    Asok, A; Bernard, K; Roth, T L; Rosen, J B; Dozier, M

    2013-08-01

    Early-life stress, such as maltreatment, institutionalization, and exposure to violence, is associated with accelerated telomere shortening. Telomere shortening may thus represent a biomarker of early adversity. Previous studies have suggested that responsive parenting may protect children from the negative biological and behavioral consequences of early adversity. This study examined the role of parental responsiveness in buffering children from telomere shortening following experiences of early-life stress. We found that high-risk children had significantly shorter telomeres than low-risk children, controlling for household income, birth weight, gender, and minority status. Further, parental responsiveness moderated the association between risk and telomere length, with more responsive parenting associated with longer telomeres only among high-risk children. These findings suggest that responsive parenting may have protective benefits on telomere shortening for young children exposed to early-life stress. Therefore, this study has important implications for early parenting interventions. PMID:23527512

  8. Searching for Life: Early Earth, Mars and Beyond

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; Chang, Sherwood (Technical Monitor)

    1996-01-01

    We might be entering a golden age for exploring life throughout time and space. Rapid gene sequencing will better define our most distant ancestors. The earliest geologic evidence of life is now 3.8 billion years old. Organic matter and submicron-sized morphologies have been preserved in the martian crust for billions of years. Several new missions to Mars are planned, with a high priority on the search for life, past or present. The recent discovery of large extrasolar planets has heightened interest in spacecraft to detect small, earth-like planets. A recent workshop discussed strategies for life detection on such planets. There is much to anticipate in the near future.

  9. Early life stress dampens stress responsiveness in adolescence: Evaluation of neuroendocrine reactivity and coping behavior.

    PubMed

    Hsiao, Young-Ming; Tsai, Tsung-Chih; Lin, Yu-Ting; Chen, Chien-Chung; Huang, Chiung-Chun; Hsu, Kuei-Sen

    2016-05-01

    Stressful experiences during early life (ELS) can affect brain development, thereby exerting a profound and long-lasting influence on mental development and psychological health. The stress inoculation hypothesis presupposes that individuals who have early experienced an attenuated form of stressors may gain immunity to its more virulent forms later in life. Increasing evidence demonstrates that ELS may promote the development of subsequent stress resistance, but the mechanisms underlying such adaptive changes are not fully understood. The present study evaluated the impact of fragmented dam-pup interactions by limiting the bedding and nesting material in the cage during postnatal days 2-9, a naturalistic animal model of chronic ELS, on the physiological and behavioral responses to different stressors in adolescent mice and characterized the possible underlying mechanisms. We found that ELS mice showed less social interaction deficits after chronic social defeat stress and acute restraint-tailshock stress-induced impaired long-term potentiation (LTP) and enhanced long-term depression (LTD) in hippocampal CA1 region compared with control mice. The effects of ELS on LTP and LTD were rescued by adrenalectomy. While ELS did not cause alterations in basal emotional behaviors, it significantly enhanced stress coping behaviors in both the tail suspension and the forced swimming tests. ELS mice exhibited a significant decrease in corticosterone response and trafficking of glucocorticoid receptors to the nucleus in response to acute restraint stress. Altogether, our data support the hypothesis that stress inoculation training, via early exposure to manageable stress, may enhance resistance to other unrelated extreme stressors in adolescence. PMID:26881834

  10. PROSTATE CANCER: IS IT TIME TO EXPAND THE RESEARCH FOCUS TO EARLY-LIFE EXPOSURES?

    PubMed Central

    Sutcliffe, Siobhan; Colditz, Graham A.

    2013-01-01

    Preface Although the contribution of lifestyle and environment (non-genetic factors) to prostate carcinogenesis is indicated by international variation in prostate cancer occurrence and migration studies, no conclusive modifiable risk factors have been identified to date. One possible reason for this may be the dearth of epidemiological research on exposures experienced early-in-life when the immature prostate may be more susceptible to carcinogenic exposures. Herein, we motivate the study of early-life exposures, describe the small body of early-life research and its associated challenges, and point towards solutions for future research. PMID:23363989

  11. Rate of growth in early life: a predictor of later health?

    PubMed

    Rolland-Cachera, Marie François

    2005-01-01

    The purpose of this review is to describe the studies which investigate the association between early growth pattern and future metabolic risks. Childhood obesity is increasing but other growth parameters are also changing. There is a trend of earlier maturation and increasing height. The increase in height from one generation to the next occurs mainly in the first years of life. Rapid growth in early life (rapid weight and length gain, early adiposity rebound) is associated with various health risks in later life (obesity, cancer, cardiovascular diseases, diabetes). Pattern of growth rather than absolute level of fatness seams to be of most importance.

  12. Early life characteristics and late life burden of cerebral small vessel disease in the Lothian Birth Cohort 1936

    PubMed Central

    Field, Thalia S.; Doubal, Fergus N.; Johnson, Wendy; Backhouse, Ellen; McHutchison, Caroline; Cox, Simon; Corley, Janie; Pattie, Alison; Gow, Alan J.; Shenkin, Susan; Cvoro, Vera; Morris, Zoe; Staals, Julie; Bastin, Mark; Deary, Ian J.; Wardlaw, Joanna M.

    2016-01-01

    It is unknown whether relations between early-life factors and overall health in later life apply to burden of cerebral small vessel disease (cSVD), a major cause of stroke and dementia. We explored relations between early-life factors and cSVD in the Lothian Birth Cohort, a healthy aging cohort. Participants were recruited at age 70 (N = 1091); most had completed a test of cognitive ability at age 11 as part of the Scottish Mental Survey of 1947. Of those, 700 participants had brain MRI that could be rated for cSVD conducted at age 73. Presence of lacunes, white matter hyperintensities, microbleeds, and perivascular spaces were summed in a score of 0-4 representing all MRI cSVD features. We tested associations with early-life factors using multivariate logistic regression. Greater SVD score was significantly associated with lower age-11 IQ (OR higher SVD score per SD age-11 IQ = .78, 95%CI 0.65-.95, p=.01). The associations between SVD score and own job class (OR higher job class, .64 95%CI .43-.95, p=.03), age-11 deprivation index (OR per point deprivation score, 1.08, 95%CI 1.00-1.17, p=.04), and education (OR some qualifying education, .60 95%CI .37-.98, p=.04) trended towards significance (p<.05 for all) but did not meet thresholds for multiple testing. No early-life factor was significantly associated with any one individual score component. Early-life factors may contribute to age-73 burden of cSVD. These relations, and the potential for early social interventions to improve brain health, deserve further study. PMID:27652981

  13. Molecular responses to 17β-estradiol in early life stage salmonids.

    PubMed

    Marlatt, Vicki L; Sun, Jinying; Curran, Cat A; Bailey, Howard C; Kennedy, Chris K; Elphick, James R; Martyniuk, Christopher J

    2014-07-01

    Environmental estrogens (EE) are ubiquitous in many aquatic environments and biological responses to EEs in early developmental stages of salmonids are poorly understood compared to juvenile and adult stages. Using 17β-estradiol (E2) as a model estrogen, waterborne exposures were conducted on early life stage rainbow trout (Oncorhynchus mykiss; egg, alevin, swim-up fry) and both molecular and physiological endpoints were measured to quantify the effects of E2. To investigate developmental stage-specific effects, laboratory exposures of 1 μg/L E2 were initiated pre-hatching as eyed embryos or post-hatching upon entering the alevin stage. High mortality (∼90%) was observed when E2 exposures were initiated at the eyed embryo stage compared to the alevin stage (∼35% mortality), demonstrating stage-specific sensitivity. Gene expression analyses revealed that vitellogenin was detectable in the liver of swim-up fry, and was highly inducible by 1 μg/L E2 (>200-fold higher levels compared to control animals). Experiments also confirmed the induction of vitellogenin protein levels in protein extracts isolated from head and tail regions of swim-up fry after E2 exposure. These findings suggest that induction of vitellogenin, a well-characterized biomarker for estrogenic exposure, can be informative measured at this early life stage. Several other genes of the reproductive endocrine axis (e.g. estrogen receptors and androgen receptors) exhibited decreased expression levels compared to control animals. In addition, chronic exposure to E2 during the eyed embryo and alevin stages resulted in suppressive effects on growth related genes (growth hormone receptors, insulin-like growth factor 1) as well as premature hatching, suggesting that the somatotropic axis is a key target for E2-mediated developmental and growth disruptions. Combining molecular biomarkers with morphological and physiological changes in early life stage salmonids holds considerable promise for further

  14. Early life history pelagic exposure profiles of selected commercially important fish species in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Doyle, Miriam J.; Mier, Kathryn L.

    2016-10-01

    A synthesis of nearly four decades of ichthyoplankton survey data from the Gulf of Alaska was undertaken to provide the most comprehensive information available on the early life history ecology of five focal species: Pacific Cod (Gadus macrocephalus), Walleye Pollock (Gadus chalcogrammus), Pacific Ocean Perch (Sebastes alutus), Sablefish (Anoplopoma fimbria), and Arrowtooth Flounder (Atheresthes stomias). This analysis of historical data, along with information from published studies, is presented here in the form of ecological reviews of the species during their planktonic phase. The reviews include descriptions of temporal and spatial patterns of exposure to the environment, and interpretation regarding associated sensitivities to environmental forcing. On a temporal scale, patterns in abundance of eggs and larvae are synthesized that characterize seasonal exposure to the pelagic environment, and interannual variation that is presumed to incorporate responses to long-term environmental forcing. Spatial patterns are synthesized to identify horizontal and vertical extent of egg and larval distributions, delineate areas of primary larval habitat, and illuminate egg and larval drift pathways. The observed patterns are discussed with respect to characterizing species early life history strategies, identifying long-term adaptations to the Gulf of Alaska environment, and associated resilience and vulnerability factors that may modulate early life responses to environmental forcing in this region. For each species, gaps in knowledge are identified and are concerned primarily with the period of transition between the larval and juvenile stage, and feeding habits and ecology across seasons, habitats and sub-intervals of early ontogeny. These early life history reviews advance our ecological understanding of the pelagic phase, and fine-tune our focus for the investigation of potential response mechanisms to environmental forcing at appropriate, species-specific temporal

  15. Early-life Origins of Lifecycle Well-being: Research and Policy Implications

    PubMed Central

    Currie, Janet; Rossin-Slater, Maya

    2016-01-01

    Mounting evidence across different disciplines suggests that early-life conditions can have consequences on individual outcomes throughout the lifecycle. Relative to other developed countries, the United States fares poorly on standard indicators of early-life health, and this disadvantage may have profound consequences not only for population well-being, but also for economic growth and competitiveness in a global economy. In this paper, we first discuss the research on the strength of the link between early-life health and adult outcomes, and then provide an evidence-based review of the effectiveness of existing U.S. policies targeting the early-life environment. We conclude that there is a robust and economically meaningful relationship between early-life conditions and well-being throughout the lifecycle, as measured by adult health, educational attainment, labor market attachment, and other indicators of socio-economic status. However, there is some variation in the degree to which current policies in the U.S. are effective in improving early-life conditions. Among existing programs, some of the most effective are the Special Supplemental Program for Women, Infants, and Children (WIC), home visiting with nurse practitioners, and high-quality, center-based early childhood care and education. In contrast, the evidence on other policies such as prenatal care and family leave is more mixed and limited. PMID:25558491

  16. Protein needs early in life and long-term health.

    PubMed

    Michaelsen, Kim F; Greer, Frank R

    2014-03-01

    The objective of this review was to summarize selected health aspects of protein intake during the first 2 y of life. During this period there is a marked increase in protein intake from an intake of ∼ 5% of energy from protein (PE%) in an exclusively breastfed infant to ∼ 15 PE% when complementary foods have been introduced. At this age, mean protein intake is ∼ 3 times as high as the physiologic requirement, but some children receive 4-5 times their physiologic requirement. Protein from cow milk constitutes a main part of protein intake in toddlers and seems to have a specific effect on insulin-like growth factor I concentrations and growth. Meat has a high protein content, but the small amounts of meat needed to ensure good iron status have less impact on total protein intake. The difference in protein intake between breastfed and formula-fed infants is likely to play a role in the difference between breastfed and formula-fed infants. There is emerging evidence that high protein intake during the first 2 y of life is a risk factor for later development of overweight and obesity. It therefore seems prudent to avoid a high protein intake during the first 2 y of life. This could be accomplished by decreasing the upper allowable limit of the protein content of infant formulas for the first year of life and limiting the intake of cow milk in the second year of life. PMID:24452233

  17. Quantifying Cost Risk Early in the Life Cycle

    SciTech Connect

    B. Mar

    2004-11-04

    A new method for analyzing life cycle cost risk on large programs is presented that responds to an increased emphasis on improving sustainability for long-term programs. This method provides better long-term risk assessment and risk management techniques. It combines standard Monte Carlo analysis of risk drivers and a new data-driven method developed by the BMDO. The approach permits quantification of risks throughout the entire life cycle without resorting to difficult to support subjective methods. The BMDO methodology is shown to be relatively straightforward to apply to a specific component or process within a project using standard technical risk assessment methods. The total impact on system is obtained using the program WBS, which allows for the capture of correlated risks shared by multiple WBS items. Once the correlations and individual component risks are captured, a Monte Carlo simulation can be run using a modeling tool such as ANALYTICA to produce the overall life cycle cost risk.

  18. Sleep Disordered Breathing in Early Childhood: Quality of Life for Children and Families

    PubMed Central

    Jackman, Angela R.; Biggs, Sarah N.; Walter, Lisa M.; Embuldeniya, Upeka S.; Davey, Margot J.; Nixon, Gillian M.; Anderson, Vicki; Trinder, John; Horne, Rosemary S. C.

    2013-01-01

    Objectives: To characterize health-related quality of life (QOL) in preschool children with sleep disordered breathing (SDB) and their families compared with nonsnoring control patients in the community. It was hypothesized that children with SDB and their families would have poorer QOL than control children, that a relationship would be found between SDB severity and QOL, and that even children with mild SDB and their families would have reduced QOL. Participants and Methods: A clinical sample of preschool children (3-5 y) with SDB diagnosed by gold standard polysomnography (primary snoring, PS = 56, mild obstructive sleep apnea, OSA = 35, moderate/severe OSA = 24) and control children recruited from the community (n = 38) were studied. Parents completed health-related QOL and parenting stress questionnaires. Results: Children and families in the PS and mild OSA groups had consistently poorer QOL than control children (both P < 0.05-0.001), based on parent ratings, and parents of children with PS had elevated stress ratings relative to control children (P < 0.05-0.001). The moderate/severe OSA group differed from the control group on select measures of parent and family QOL (worry, P < 0.001 and total family impact, P < 0.05). Conclusions: Our findings demonstrate that sleep disordered breathing is associated with reduced quality of life in preschool children and their families. These results support previous quality of life findings in older children and in samples with broader age ranges. Furthermore, clinically referred preschool children with mild forms of sleep disordered breathing may be at greatest risk. Citation: Jackman AR; Biggs SN; Walter LM; Embuldeniya US; Davey MJ; Nixon GM; Anderson V; Trinder J; Horne RSC. Sleep disordered breathing in early childhood: quality of life for children and families. SLEEP 2013;36(11):1639-1646. PMID:24179296

  19. Nonmarine stromatolites and the search for early life on Mars

    NASA Technical Reports Server (NTRS)

    Awramik, S. M.

    1991-01-01

    The available evidence permits one to conclude that streams flowed and lakes developed on Mars sometime in the remote past. The lessons learned from the Earth's earliest fossil record suggest that stromatolites might have formed on Mars, speculating that: (1) biopoesis occurred on Mars during its earliest history; (2) life evolved and diversified; (3) life inhabited aqueous environments; and (4) sunlight was an important environmental resource. The most likely place to find stromatolites and possibly microbial fossils on Mars would be in ancient lake and stream deposits. If thermal spring deposits can be identified, then they too are sites for biogeological investigations. Other aspects of this study are presented.

  20. Examination of age-related epigenetic changes following early-life exposure to dichloroacetic acid

    EPA Science Inventory

    Recent studies have shown that transient early-life exposure to dichloroacetic acid (DCA), a pyruvate analog and metabolic reprogramming agent, increases liver cancer incidence in older mice. This carcinogenic effect is not associated with direct mutagenicity, persistent cytotoxi...

  1. Weighing Evidence from Mendelian Randomization-Early-Life Obesity as a Causal Factor in Multiple Sclerosis?

    PubMed

    Ascherio, Alberto; Munger, Kassandra L

    2016-06-01

    In this Perspective, Alberto Ascherio and Kassandra Munger discuss the implications of Richards and colleagues' study exploring the role of early-life obesity in risk of multiple sclerosis. PMID:27351631

  2. Low-grade disease activity in early life precedes childhood asthma and allergy.

    PubMed

    Chawes, Bo Lund Krogsgaard

    2016-08-01

    for promotion of or protection against asthma and allergies. Therefore, preventive initiatives to restore immune health, such as vitamin D supplementation, should be directed to the fetus and the earliest postnatal life. The eosinophil granulocyte has a major role in the allergic inflammatory cascade and eosinophilia is considered a hallmark of many allergic phenotypes. In paper III, we examined neonatal urinary biomarkers including eosinophil protein X (u-EPX), which is contained in the eosinophil granules. Elevated u-EPX in asymptomatic neonates was associated with development of allergic sensitization and nasal eosinophilia, but not with wheezing or asthma (III). These findings suggest the presence of an ongoing low-grade disease process in early life characterized by eosinophil activation prior to appearance of allergy-related conditions. In papers IV-V, we investigated perinatal and genetic predictors of neonatal fractional exhaled nitric oxide (FeNO) and the relationship between neonatal FeNO and wheezing later in child-hood. The a priori selected determinants encompassed asthma genetic risk variants, anthropometrics, demographics, socioeconomics, parental asthma and allergy, maternal smoking, paracetamol and antibiotic usage during pregnancy, and neonatal bacterial airway colonization. Among those, only the DENND1B risk allele and paternal history of asthma and allergy were associated with increased FeNO values (V) suggesting that raised FeNO in neonatal life is primarily an inherited trait. The neonatal FeNO levels were widely dispersed (1-67 ppb) and children with values in the upper quartile were at increased risk of recurrent wheezing in early childhood, but not persistent wheezing, reduced lung function or allergy-related endpoints (IV). This suggests that elevated neonatal FeNO represents an early asymptomatic low-grade disease process other than congenitally small airway calibre contributing to a transient wheezing phenotype. Reduced lung function in

  3. Long-term effects of early life stress exposure: Role of epigenetic mechanisms.

    PubMed

    Silberman, Dafne M; Acosta, Gabriela B; Zorrilla Zubilete, María A

    2016-07-01

    Stress is an adaptive response to demands of the environment and thus essential for survival. Exposure to stress during the first years of life has been shown to have profound effects on the growth and development of an adult individual. There are evidences demonstrating that stressful experiences during gestation or in early life can lead to enhanced susceptibility to mental disorders. Early-life stress triggers hypothalamic-pituitary-adrenocortical (HPA) axis activation and the associated neurochemical reactions following glucocorticoid release are accompanied by a rapid physiological response. An excessive response may affect the developing brain resulting in neurobehavioral and neurochemical changes later in life. This article reviews the data from experimental studies aimed to investigate hormonal, functional, molecular and epigenetic mechanisms involved in the stress response during early-life programming. We think these studies might prove useful for the identification of novel pharmacological targets for more effective treatments of mental disorders.

  4. Long-term effects of early life stress exposure: Role of epigenetic mechanisms.

    PubMed

    Silberman, Dafne M; Acosta, Gabriela B; Zorrilla Zubilete, María A

    2016-07-01

    Stress is an adaptive response to demands of the environment and thus essential for survival. Exposure to stress during the first years of life has been shown to have profound effects on the growth and development of an adult individual. There are evidences demonstrating that stressful experiences during gestation or in early life can lead to enhanced susceptibility to mental disorders. Early-life stress triggers hypothalamic-pituitary-adrenocortical (HPA) axis activation and the associated neurochemical reactions following glucocorticoid release are accompanied by a rapid physiological response. An excessive response may affect the developing brain resulting in neurobehavioral and neurochemical changes later in life. This article reviews the data from experimental studies aimed to investigate hormonal, functional, molecular and epigenetic mechanisms involved in the stress response during early-life programming. We think these studies might prove useful for the identification of novel pharmacological targets for more effective treatments of mental disorders. PMID:26774789

  5. Life Satisfaction and Maladaptive Behaviors in Early Adolescents

    ERIC Educational Resources Information Center

    Lyons, Michael D.; Otis, Kristin L.; Huebner, E. Scott; Hills, Kimberly J.

    2014-01-01

    This study explored the directionality of the relations between global life satisfaction (LS) and internalizing and externalizing behaviors using a sample of regular education students who were initially enrolled in Grade 7 ("n" = 470). Self-report measures of internalizing and externalizing behaviors and LS were administered on 2…

  6. Early-life conditions and age at first pregnancy in British women.

    PubMed

    Nettle, Daniel; Coall, David A; Dickins, Thomas E

    2011-06-01

    There is growing evidence that the reproductive schedules of female mammals can be affected by conditions experienced during early development, with low parental investment leading to accelerated life-history strategies in the offspring. In humans, the relationships between early-life conditions and timing of puberty are well studied, but much less attention has been paid to reproductive behaviour. Here, we investigate associations between early-life conditions and age at first pregnancy (AFP) in a large, longitudinally studied cohort of British women (n = 4553). Low birthweight for gestational age, short duration of breastfeeding, separation from mother in childhood, frequent family residential moves and lack of paternal involvement are all independently associated with earlier first pregnancy. Apart from that of birthweight, the effects are robust to adjustment for family socioeconomic position (SEP) and the cohort member's mother's age at her birth. The association between childhood SEP and AFP is partially mediated by early-life conditions, and the association between early-life conditions and AFP is partially mediated by emotional and behavioural problems in childhood. The overall relationship between early-life adversities and AFP appears to be approximately additive.

  7. Early-late life trade-offs and the evolution of ageing in the wild

    PubMed Central

    Lemaître, Jean-François; Berger, Vérane; Bonenfant, Christophe; Douhard, Mathieu; Gamelon, Marlène; Plard, Floriane; Gaillard, Jean-Michel

    2015-01-01

    Empirical evidence for declines in fitness components (survival and reproductive performance) with age has recently accumulated in wild populations, highlighting that the process of senescence is nearly ubiquitous in the living world. Senescence patterns are highly variable among species and current evolutionary theories of ageing propose that such variation can be accounted for by differences in allocation to growth and reproduction during early life. Here, we compiled 26 studies of free-ranging vertebrate populations that explicitly tested for a trade-off between performance in early and late life. Our review brings overall support for the presence of early-late life trade-offs, suggesting that the limitation of available resources leads individuals to trade somatic maintenance later in life for high allocation to reproduction early in life. We discuss our results in the light of two closely related theories of ageing—the disposable soma and the antagonistic pleiotropy theories—and propose that the principle of energy allocation roots the ageing process in the evolution of life-history strategies. Finally, we outline research topics that should be investigated in future studies, including the importance of natal environmental conditions in the study of trade-offs between early- and late-life performance and the evolution of sex-differences in ageing patterns. PMID:25833848

  8. Early-late life trade-offs and the evolution of ageing in the wild.

    PubMed

    Lemaître, Jean-François; Berger, Vérane; Bonenfant, Christophe; Douhard, Mathieu; Gamelon, Marlène; Plard, Floriane; Gaillard, Jean-Michel

    2015-05-01

    Empirical evidence for declines in fitness components (survival and reproductive performance) with age has recently accumulated in wild populations, highlighting that the process of senescence is nearly ubiquitous in the living world. Senescence patterns are highly variable among species and current evolutionary theories of ageing propose that such variation can be accounted for by differences in allocation to growth and reproduction during early life. Here, we compiled 26 studies of free-ranging vertebrate populations that explicitly tested for a trade-off between performance in early and late life. Our review brings overall support for the presence of early-late life trade-offs, suggesting that the limitation of available resources leads individuals to trade somatic maintenance later in life for high allocation to reproduction early in life. We discuss our results in the light of two closely related theories of ageing-the disposable soma and the antagonistic pleiotropy theories-and propose that the principle of energy allocation roots the ageing process in the evolution of life-history strategies. Finally, we outline research topics that should be investigated in future studies, including the importance of natal environmental conditions in the study of trade-offs between early- and late-life performance and the evolution of sex-differences in ageing patterns.

  9. Predicting negative life outcomes from early aggressive-disruptive behavior trajectories: gender differences in maladaptation across life domains.

    PubMed

    Bradshaw, Catherine P; Schaeffer, Cindy M; Petras, Hanno; Ialongo, Nicholas

    2010-08-01

    Transactional theories of development suggest that displaying high levels of antisocial behavior early in life and persistently over time causes disruption in multiple life domains, which in turn places individuals at risk for negative life outcomes. We used longitudinal data from 1,137 primarily African American urban youth (49.1% female) to determine whether different trajectories of aggressive and disruptive behavior problems were associated with a range of negative life outcomes in young adulthood. General growth mixture modeling was used to classify the youths' patterns of aggressive-disruptive behavior across elementary school. These trajectories were then used to predict early sexual activity, early pregnancy, school dropout, unemployment, and drug abuse in young adulthood. The trajectories predicted the number but not type of negative life outcomes experienced. Girls with the chronic high aggression-disruption (CHAD) pattern experienced more negative outcomes than girls with consistently moderate levels, who were at greater risk than nonaggressive-nondisruptive girls. Boys with CHAD and boys with an increasing pattern had equal levels of risk for experiencing negative outcomes. The findings are consistent with transactional models of development and have implications for preventive interventions.

  10. Alternatives to the fish early life-stage test: Developing a conceptual model for early fish development

    EPA Science Inventory

    Chronic fish toxicity is a key parameter for hazard classification and environmental risk assessment of chemicals, and the OECD 210 fish early life-stage (FELS) test is the primary guideline test used for various international regulatory programs. There exists a need to develop ...

  11. A Mouse Model for Studying Nutritional Programming: Effects of Early Life Exposure to Soy Isoflavones on Bone and Reproductive Health

    PubMed Central

    Ward, Wendy E.; Kaludjerovic, Jovana; Dinsdale, Elsa C.

    2016-01-01

    Over the past decade, our research group has characterized and used a mouse model to demonstrate that “nutritional programming” of bone development occurs when mice receive soy isoflavones (ISO) during the first days of life. Nutritional programming of bone development can be defined as the ability for diet during early life to set a trajectory for better or compromised bone health at adulthood. We have shown that CD-1 mice exposed to soy ISO during early neonatal life have higher bone mineral density (BMD) and greater trabecular inter-connectivity in long bones and lumbar spine at young adulthood. These skeletal sites also withstand greater forces before fracture. Because the chemical structure of ISO resembles that of 17-β-estradiol and can bind to estrogen receptors in reproductive tissues, it was prudent to expand analyses to include measures of reproductive health. This review highlights aspects of our studies in CD-1 mice to understand the early life programming effects of soy ISO on bone and reproductive health. Preclinical mouse models can provide useful data to help develop and guide the design of studies in human cohorts, which may, depending on findings and considerations of safety, lead to dietary interventions that optimize bone health. PMID:27187422

  12. A Mouse Model for Studying Nutritional Programming: Effects of Early Life Exposure to Soy Isoflavones on Bone and Reproductive Health.

    PubMed

    Ward, Wendy E; Kaludjerovic, Jovana; Dinsdale, Elsa C

    2016-05-11

    Over the past decade, our research group has characterized and used a mouse model to demonstrate that "nutritional programming" of bone development occurs when mice receive soy isoflavones (ISO) during the first days of life. Nutritional programming of bone development can be defined as the ability for diet during early life to set a trajectory for better or compromised bone health at adulthood. We have shown that CD-1 mice exposed to soy ISO during early neonatal life have higher bone mineral density (BMD) and greater trabecular inter-connectivity in long bones and lumbar spine at young adulthood. These skeletal sites also withstand greater forces before fracture. Because the chemical structure of ISO resembles that of 17-β-estradiol and can bind to estrogen receptors in reproductive tissues, it was prudent to expand analyses to include measures of reproductive health. This review highlights aspects of our studies in CD-1 mice to understand the early life programming effects of soy ISO on bone and reproductive health. Preclinical mouse models can provide useful data to help develop and guide the design of studies in human cohorts, which may, depending on findings and considerations of safety, lead to dietary interventions that optimize bone health.

  13. Proteomic responses reveal the differential effects induced by cadmium in mussels Mytilus galloprovincialis at early life stages.

    PubMed

    Xu, Lanlan; Peng, Xiao; Yu, Deliang; Ji, Chenglong; Zhao, Jianmin; Wu, Huifeng

    2016-08-01

    Cadmium (Cd) has become an important metal contaminant and posed severe risk on the organisms in the coastal environments of the Bohai Sea. Marine mussel Mytilus galloprovincialis is widely distributed along the Bohai coast and consumed as seafood by local residents. Evidences indicate that the early stages of marine organisms are more sensitive to metal contaminants. In this study, we applied two-dimensional electrophoresis-based proteomics to characterize the biological effects of Cd (50 μg L(-1)) in the early life stages (D-shape larval and juvenile) of mussels. The different proteomic responses demonstrated the differential responsive mechanisms to Cd exposure in these two early life stages of mussels. In details, results indicated that Cd mainly induced immune and oxidative stresses in both D-shape larval and juvenile mussels via different pathways. In addition, the significant up-regulation of triosephosphate isomerase and metallothionein confirmed the enhanced energy demand and mobilized detoxification mechanism in D-shape larval mussels exposed to Cd. In juvenile mussels, Cd exposure also induced clear apoptosis. Overall, this work suggests that Cd is a potential immune toxicant to mussel M. galloprovincialis at early life stages.

  14. Key science questions from the second conference on early Mars: geologic, hydrologic, and climatic evolution and the implications for life.

    PubMed

    Beaty, David W; Clifford, Stephen M; Borg, Lars E; Catling, David C; Craddock, Robert A; Des Marais, David J; Farmer, Jack D; Frey, Herbert V; Haberle, Robert M; McKay, Christopher P; Newsom, Horton E; Parker, Timothy J; Segura, Teresa; Tanaka, Kenneth L

    2005-12-01

    In October 2004, more than 130 terrestrial and planetary scientists met in Jackson Hole, WY, to discuss early Mars. The first billion years of martian geologic history is of particular interest because it is a period during which the planet was most active, after which a less dynamic period ensued that extends to the present day. The early activity left a fascinating geological record, which we are only beginning to unravel through direct observation and modeling. In considering this time period, questions outnumber answers, and one of the purposes of the meeting was to gather some of the best experts in the field to consider the current state of knowledge, ascertain which questions remain to be addressed, and identify the most promising approaches to addressing those questions. The purpose of this report is to document that discussion. Throughout the planet's first billion years, planetary-scale processes-including differentiation, hydrodynamic escape, volcanism, large impacts, erosion, and sedimentation-rapidly modified the atmosphere and crust. How did these processes operate, and what were their rates and interdependencies? The early environment was also characterized by both abundant liquid water and plentiful sources of energy, two of the most important conditions considered necessary for the origin of life. Where and when did the most habitable environments occur? Did life actually occupy them, and if so, has life persisted on Mars to the present? Our understanding of early Mars is critical to understanding how the planet we see today came to be.

  15. Proteomic responses reveal the differential effects induced by cadmium in mussels Mytilus galloprovincialis at early life stages.

    PubMed

    Xu, Lanlan; Peng, Xiao; Yu, Deliang; Ji, Chenglong; Zhao, Jianmin; Wu, Huifeng

    2016-08-01

    Cadmium (Cd) has become an important metal contaminant and posed severe risk on the organisms in the coastal environments of the Bohai Sea. Marine mussel Mytilus galloprovincialis is widely distributed along the Bohai coast and consumed as seafood by local residents. Evidences indicate that the early stages of marine organisms are more sensitive to metal contaminants. In this study, we applied two-dimensional electrophoresis-based proteomics to characterize the biological effects of Cd (50 μg L(-1)) in the early life stages (D-shape larval and juvenile) of mussels. The different proteomic responses demonstrated the differential responsive mechanisms to Cd exposure in these two early life stages of mussels. In details, results indicated that Cd mainly induced immune and oxidative stresses in both D-shape larval and juvenile mussels via different pathways. In addition, the significant up-regulation of triosephosphate isomerase and metallothionein confirmed the enhanced energy demand and mobilized detoxification mechanism in D-shape larval mussels exposed to Cd. In juvenile mussels, Cd exposure also induced clear apoptosis. Overall, this work suggests that Cd is a potential immune toxicant to mussel M. galloprovincialis at early life stages. PMID:27302865

  16. Pricing life insurance contracts with early exercise features

    NASA Astrophysics Data System (ADS)

    Bacinello, Anna Rita; Biffis, Enrico; Millossovich, Pietro

    2009-11-01

    In this paper we describe an algorithm based on the Least Squares Monte Carlo method to price life insurance contracts embedding American options. We focus on equity-linked contracts with surrender options and terminal guarantees on benefits payable upon death, survival and surrender. The framework allows for randomness in mortality as well as stochastic volatility and jumps in financial risk factors. We provide numerical experiments demonstrating the performance of the algorithm in the context of multiple risk factors and exercise dates.

  17. Mental Health Problems in Early Childhood Can Impair Learning and Behavior for Life. Working Paper #6

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2008

    2008-01-01

    Significant mental health problems can and do occur in young children. In some cases, these problems can have serious consequences for early learning, social competence, and lifelong health. Furthermore, the foundations of many mental health problems that endure through adulthood are established early in life through the interaction of genetic…

  18. Environmental control on early life stages of flatfishes in the Lima Estuary (NW Portugal)

    NASA Astrophysics Data System (ADS)

    Ramos, Sandra; Ré, Pedro; Bordalo, Adriano A.

    2009-06-01

    Several flatfishes spawn in oceanic waters and pelagic larvae are transported inshore to settle in the nursery areas, usually estuaries, where they remain during their juvenile life. Nursery areas appear as extremely important habitats, not only for juveniles but also for the earlier planktonic larval fish. Yet, the majority of nursery studies tend to focus only on one development stage, missing an integrative approach of the entire early life that fishes spent within a nursery ground. Thus, the present study assessed the influence of environmental parameters on the dynamics of the larval and juvenile flatfishes, throughout their nursery life in the Lima Estuary. Between April 2002 and April 2004, fortnightly subsurface ichthyoplankton samples were collected and juveniles were collected from October 2003 until September 2005. Larval assemblages comprised nine flatfish species, while only six were observed among the juvenile assemblages. Solea senegalensis and Platichthys flesus were the most abundant species of both fractions of the Lima Estuary flatfishes. Larval flatfish assemblages varied seasonally, without relevant differences between lower and middle estuary. Platichthys flesus dominated the spring samples and summer and autumn periods were characterized by an increase of overall abundance and diversity of larval flatfishes, mainly S. senegalensis, associated with temperature increase and reduced river flow. On the contrary, during the winter abundance sharply decreased, as a consequence of higher river run-off that might compromised the immigration of incompetent marine larvae. Juvenile flatfishes were more abundant in the middle and upper areas of the estuary, but the species richness was higher near the river mouth. Sediment type, distance from the river mouth, salinity, temperature and dissolved oxygen were identified as the main environmental factors structuring the juvenile flatfish assemblages. Juveniles were spatially discrete, with the most abundant

  19. [Early life opportunities for promotion of children health].

    PubMed

    Tao, Fangbiao

    2016-02-01

    This editorial highlights some of the emerging threats and risks to children health, including birth defects, psychological behavioral problems, neurodevelopmental disorders and health risk behaviors, which will continue to have increased impact on healthy growth and development. Mounting evidence has confirmed the adverse effects of environmental exposure during preconception and pregnancy on children's health, which suggests that one of the best investments we can make to achieve lasting progress in global health is the prevention of children's health problems during the first thousand days of life and beyond. PMID:26926715

  20. Understanding the potency of stressful early life experiences on brain and body function.

    PubMed

    McEwen, Bruce S

    2008-10-01

    Early life experiences have powerful effects on the brain and body lasting throughout the entire life span and influencing brain function, behavior, and the risk for a number of systemic and mental disorders. Animal models of early life adversity are providing mechanistic insights, including glimpses into the fascinating world that is now called "epigenetics" as well as the role of naturally occurring alleles of a number of genes. These studies also provide insights into the adaptive value as well as the negative consequences, of early life stress, exposure to novelty, and poor-quality vs good-quality maternal care. Animal models begin to provide a mechanistic basis for understanding how brain development and physiological functioning is affected in children exposed to early life abuse and neglect, where there is a burgeoning literature on the consequences for physical health and emotional and cognitive development. An important goal is to identify interventions that are likely to be most effective in early life and some guidelines are provided. PMID:18803958

  1. Impact of early life adversity on EMG stress reactivity of the trapezius muscle.

    PubMed

    Luijcks, Rosan; Vossen, Catherine J; Roggeveen, Suzanne; van Os, Jim; Hermens, Hermie J; Lousberg, Richel

    2016-09-01

    Human and animal research indicates that exposure to early life adversity increases stress sensitivity later in life. While behavioral markers of adversity-induced stress sensitivity have been suggested, physiological markers remain to be elucidated. It is known that trapezius muscle activity increases during stressful situations. The present study examined to what degree early life adverse events experienced during early childhood (0-11 years) and adolescence (12-17 years) moderate experimentally induced electromyographic (EMG) stress activity of the trapezius muscles, in an experimental setting. In a general population sample (n = 115), an anticipatory stress effect was generated by presenting a single unpredictable and uncontrollable electrical painful stimulus at t = 3 minutes. Subjects were unaware of the precise moment of stimulus delivery and its intensity level. Linear and nonlinear time courses in EMG activity were modeled using multilevel analysis. The study protocol included 2 experimental sessions (t = 0 and t = 6 months) allowing for examination of reliability.Results show that EMG stress reactivity during the stress paradigm was consistently stronger in people with higher levels of early life adverse events; early childhood adversity had a stronger moderating effect than adolescent adversity. The impact of early life adversity on EMG stress reactivity may represent a reliable facet that can be used in both clinical and nonclinical studies. PMID:27684800

  2. Latitudinal variation in thermal tolerance thresholds of early life stages of corals

    NASA Astrophysics Data System (ADS)

    Woolsey, E. S.; Keith, S. A.; Byrne, M.; Schmidt-Roach, S.; Baird, A. H.

    2015-06-01

    Organisms living in habitats characterized by a marked seasonal temperature variation often have a greater thermal tolerance than those living in more stable habitats. To determine the extent to which this hypothesis applies to reef corals, we compared thermal tolerance of the early life stages of five scleractinian species from three locations spanning 17° of latitude along the east coast of Australia. Embryos were exposed to an 8 °C temperature range around the local ambient temperature at the time of spawning. Upper thermal thresholds, defined as the temperature treatment at which the proportion of abnormal embryos or median life span was significantly different to ambient controls, varied predictably among locations. At Lizard Island, the northern-most site with the least annual variation in temperature, the proportion of abnormal embryos increased and life span decreased 2 °C above ambient in the two species tested. At two southern sites, One Tree Island and Lord Howe Island, where annual temperature variation was greater, upper temperature thresholds were generally 4 °C or greater above ambient for both variables in the four species tested. The absolute upper thermal threshold temperature also varied among locations: 30 °C at Lizard Island; 28 °C at One Tree Island; 26 °C at Lord Howe Island. These results support previous work on adult corals demonstrating predictable differences in upper thermal thresholds with latitude. With projected ocean warming, these temperature thresholds will be exceeded in northern locations in the near future, adding to a growing body of evidence indicating that climate change is likely to be more detrimental to low latitude than high latitude corals.

  3. An examination of sex differences in the effects of early-life opiate and alcohol exposure.

    PubMed

    Terasaki, Laurne S; Gomez, Julie; Schwarz, Jaclyn M

    2016-02-19

    Early-life exposure to drugs and alcohol is one of the most preventable causes of developmental, behavioural and learning disorders in children. Thus a significant amount of basic, animal and human research has focused on understanding the behavioural consequences and the associated neural effects of exposure to drugs and alcohol during early brain development. Despite this, much of the previous research that has been done on this topic has used predominantly male subjects or rodents. While many of the findings from these male-specific studies may ultimately apply to females, the purpose of this review is to highlight the research that has also examined sex as a factor and found striking differences between the sexes in their response to early-life opiate and alcohol exposure. Finally, we will also provide a framework for scientists interested in examining sex as a factor in future experiments that specifically examine the consequences of early-life drug and alcohol exposure. PMID:26833841

  4. The possible long-term effects of early-life circadian rhythm disturbance on social behavior.

    PubMed

    Kohyama, Jun

    2014-07-01

    Sleep loss impairs brain function. As late sleep onset can reduce sleep, this sleep/circadian rhythm disturbance may cause brain impairment. Specific data on the long-term effects of sleep/circadian rhythm disturbance on subsequent brain function are lacking. Japan, a sleep-deprived society from infancy to adulthood, provides an ideal platform to investigate the association of these disturbances in early life with subsequent functioning. In this article, several current problematic behaviors among youth in Japan (dropping out from high school, school absenteeism, early resignation from employment, and suicide) are discussed in relation to early life sleep/circadian rhythm patterns. We hypothesize that daily habits of modern society during early stages of life produce unfavorable effects on brain function resulting in problematic behaviors in subsequent years.

  5. Broken or maladaptive? Altered trajectories in neuroinflammation and behavior after early life adversity

    PubMed Central

    Ganguly, Prabarna; Brenhouse, Heather C.

    2014-01-01

    Exposure to adversity and stress early in development yields vulnerability to mental illnesses throughout the lifespan. Growing evidence suggests that this vulnerability has mechanistic origins involving aberrant development of both neurocircuitry and neuro-immune activity. Here we review the current understanding of when and how stress exposure initiates neuroinflammatory events that interact with brain development. We first review how early life adversity has been associated with various psychopathologies, and how neuroinflammation plays a role in these pathologies. We then summarize data and resultant hypotheses describing how early life adversity may particularly alter neuro-immune development with psychiatric consequences. Finally, we review how sex differences contribute to individualistic vulnerabilities across the lifespan. We submit the importance of understanding how stress during early development might cause outright neural or glial damage, as well as experience-dependent plasticity that may insufficiently prepare an individual for sex-specific or life-stage specific challenges. PMID:25081071

  6. Mast cell-derived neurotrophin 4 mediates allergen-induced airway hyperinnervation in early life

    PubMed Central

    Patel, Kruti R.; Aven, Linh; Shao, Fengzhi; Krishnamoorthy, Nandini; Duvall, Melody G.; Levy, Bruce D.; Ai, Xingbin

    2016-01-01

    Asthma often progresses from early episodes of insults. How early life events connect to long-term airway dysfunction remains poorly understood. We demonstrated previously that increased neurotrophin 4 (NT4) levels following early life allergen exposure cause persistent changes in airway smooth muscle (ASM) innervation and airway hyper-reactivity (AHR) in mice. Herein, we identify pulmonary mast cells as a key source of aberrant NT4 expression following early insults. NT4 is selectively expressed by ASM and mast cells in mice, nonhuman primates and humans. We show in mice that mast cell-derived NT4 is dispensable for ASM innervation during development. However, upon insults, mast cells expand in number and degranulate to release NT4 and thus become the major source of NT4 under pathological condition. Adoptive transfer of wild type mast cells, but not NT4−/− mast cells restores ASM hyperinnervation and AHR in KitW-sh/W-sh mice following early life insults. Notably, an infant nonhuman primate model of asthma also exhibits ASM hyperinnervation associated with the expansion and degranulation of mast cells. Together, these findings identify an essential role of mast cells in mediating ASM hyperinnervation following early life insults by producing NT4. This role may be evolutionarily conserved in linking early insults to long-term airway dysfunction. PMID:26860818

  7. Αlpha 2a-Adrenoceptor Gene Expression and Early Life Stress-Mediated Propensity to Alcohol Drinking in Outbred Rats

    PubMed Central

    Comasco, Erika; Todkar, Aniruddha; Granholm, Linnea; Nilsson, Kent W.; Nylander, Ingrid

    2015-01-01

    Stressful events early in life, later high alcohol consumption and vulnerability to alcohol use disorder (AUD) are tightly linked. Norepinephrine is highly involved in the stress response and the α2A-adrenoceptor, which is an important regulator of norepinephrine signalling, is a putative target in pharmacotherapy of AUD. The aim of the present study was to investigate the effects of early-life stress and adult voluntary alcohol drinking on the α2A-adrenoceptor. The relative expression and promoter DNA methylation of the Adra2a gene were measured in the hypothalamus, a key brain region in stress regulation. A well-characterized animal model of early-life stress was used in combination with an episodic voluntary drinking in adulthood. Alcohol drinking rats with a history of early-life stress had lower Adra2a expression than drinking rats not exposed to stress. Alcohol intake and Adra2a gene expression were negatively correlated in high-drinking animals, which were predominantly rats subjected to early-life stress. The results provide support for a link between early-life stress, susceptibility for high alcohol consumption, and low Adra2a expression in the hypothalamus. These findings can increase our understanding of the neurobiological basis for vulnerability to initiate risk alcohol consumption and individual differences in the response to α2A-adrenoceptor agonists. PMID:26121187

  8. Using physiology and behaviour to understand the responses of fish early life stages to toxicants.

    PubMed

    Sloman, K A; McNeil, P L

    2012-12-01

    The use of early life stages of fishes (embryos and larvae) in toxicity testing has been in existence for a long time, generally utilizing endpoints such as morphological defects and mortality. Behavioural endpoints, however, may represent a more insightful evaluation of the ecological effects of toxicants. Indeed, recent years have seen a considerable increase in the use of behavioural measurements in early life stages reflecting a substantial rise in zebrafish Danio rerio early life-stage toxicity testing and the development of automated behavioural monitoring systems. Current behavioural endpoints identified for early life stages in response to toxicant exposure include spontaneous activity, predator avoidance, capture of live food, shoaling ability and interaction with other individuals. Less frequently used endpoints include measurement of anxiogenic behaviours and cognitive ability, both of which are suggested here as future indicators of toxicant disruption. For many simple behavioural endpoints, there is still a need to link behavioural effects with ecological relevance; currently, only a limited number of studies have addressed this issue. Understanding the physiological mechanisms that underlie toxicant effects on behaviour so early in life has received far less attention, perhaps because physiological measurements can be difficult to carry out on individuals of this size. The most commonly established physiological links with behavioural disruption in early life stages are similar to those seen in juveniles and adults including sensory deprivation (olfaction, lateral line and vision), altered neurogenesis and neurotransmitter concentrations. This review highlights the importance of understanding the integrated behavioural and physiological response of early life stages to toxicants and identifies knowledge gaps which present exciting areas for future research.

  9. Effect of Intensive Exercise in Early Adult Life on Telomere Length in Later Life in Men

    PubMed Central

    Laine, Merja K.; Eriksson, Johan G.; Kujala, Urho M.; Raj, Rahul; Kaprio, Jaakko; Bäckmand, Heli M.; Peltonen, Markku; Sarna, Seppo

    2015-01-01

    A career as an elite-class male athlete seems to improve metabolic heath in later life and is also associated with longer life expectancy. Telomere length is a biomarker of biological cellular ageing and could thus predict morbidity and mortality. The main aim of this study was to assess the association between vigorous elite-class physical activity during young adulthood on later life leukocyte telomere length (LTL). The study participants consist of former male Finnish elite athletes (n = 392) and their age-matched controls (n = 207). Relative telomere length was determined from peripheral blood leukocytes by quantitative real-time polymerase chain reaction. Volume of leisure-time physical activity (LTPA) was self-reported and expressed in metabolic equivalent hours. No significant difference in mean age-adjusted LTL in late life (p = 0.845) was observed when comparing former male elite athletes and their age-matched controls. Current volume of LTPA had no marked influence on mean age-adjusted LTL (p for trend 0.788). LTL was inversely associated with age (p = 0.004).Our study findings suggest that a former elite athlete career is not associated with LTL later in life. Key points A career as an elite-class athlete is associated with improved metabolic health in late life and is associated with longer life expectancy. A career as an elite-class athlete during young adulthood was not associated with leukocyte telomere length in later life. Current volume of leisure-time physical activity did not influence telomere length in later life. PMID:25983570

  10. Early life stress sensitizes rats to angiotensin II-induced hypertension and vascular inflammation in adult life.

    PubMed

    Loria, Analia S; Pollock, David M; Pollock, Jennifer S

    2010-02-01

    Maternal separation during early life is an established chronic behavioral model of early life stress in rats. It is known that perinatal adverse environments increase activity of the renin-angiotensin (Ang) system, specifically Ang II, in adulthood. The aim of this study was to investigate whether the effects of early life stress augment the sensitivity of the Ang II pathway. Using Wistar Kyoto rats, the maternal separation (MS) protocol was performed by separating approximately half of the male pups from their mother 3 h/d from days 2 to 14 of life. Pups remaining with the mother at all times were used as controls. Maternal separation did not influence the plasma basal parameters, such as blood glucose, insulin, Ang II, Ang 1-7 and plasma renin activity. Furthermore, body weight, blood pressure, and heart rate were similar in MS and control rats. The acute pressor response to Ang II was not different in anesthetized MS and control rats. However, the chronic infusion of Ang II (65 ng/min SC) elicited an exaggerated hypertensive response in MS compared with control rats (P<0.05). Surprisingly, HR was dramatically increased during the second week of Ang II infusion in MS compared with control rats (P<0.05). This enhanced Ang II sensitivity was accompanied by a greater vascular inflammatory response in MS versus control rats. Chronic Ang II infusion increased vascular wall structure in both groups similarly. These data indicate that early life stress sensitizes rats to an increased hemodynamic and inflammatory response during Ang II-induced hypertension.

  11. In utero and early life arsenic exposure in relation to long-term health and disease

    SciTech Connect

    Farzan, Shohreh F.; Karagas, Margaret R.; Chen, Yu

    2013-10-15

    Background: There is a growing body of evidence that prenatal and early childhood exposure to arsenic from drinking water can have serious long-term health implications. Objectives: Our goal was to understand the potential long-term health and disease risks associated with in utero and early life exposure to arsenic, as well as to examine parallels between findings from epidemiological studies with those from experimental animal models. Methods: We examined the current literature and identified relevant studies through PubMed by using combinations of the search terms “arsenic”, “in utero”, “transplacental”, “prenatal” and “fetal”. Discussion: Ecological studies have indicated associations between in utero and/or early life exposure to arsenic at high levels and increases in mortality from cancer, cardiovascular disease and respiratory disease. Additional data from epidemiologic studies suggest intermediate effects in early life that are related to risk of these and other outcomes in adulthood. Experimental animal studies largely support studies in humans, with strong evidence of transplacental carcinogenesis, atherosclerosis and respiratory disease, as well as insight into potential underlying mechanisms of arsenic's health effects. Conclusions: As millions worldwide are exposed to arsenic and evidence continues to support a role for in utero arsenic exposure in the development of a range of later life diseases, there is a need for more prospective studies examining arsenic's relation to early indicators of disease and at lower exposure levels. - Highlights: • We review in utero and early-life As exposure impacts on lifelong disease risks. • Evidence indicates that early-life As increases risks of lung disease, cancer and CVD. • Animal work largely parallels human studies and may lead to new research directions. • Prospective studies and individual exposure assessments with biomarkers are needed. • Assessing intermediary endpoints may

  12. High early life mortality in free-ranging dogs is largely influenced by humans

    PubMed Central

    Paul, Manabi; Sen Majumder, Sreejani; Sau, Shubhra; Nandi, Anjan K.; Bhadra, Anindita

    2016-01-01

    Free-ranging dogs are a ubiquitous part of human habitations in many developing countries, leading a life of scavengers dependent on human wastes for survival. The effective management of free-ranging dogs calls for understanding of their population dynamics. Life expectancy at birth and early life mortality are important factors that shape life-histories of mammals. We carried out a five year-long census based study in seven locations of West Bengal, India, to understand the pattern of population growth and factors affecting early life mortality in free-ranging dogs. We observed high rates of mortality, with only ~19% of the 364 pups from 95 observed litters surviving till the reproductive age; 63% of total mortality being human influenced. While living near people increases resource availability for dogs, it also has deep adverse impacts on their population growth, making the dog-human relationship on streets highly complex. PMID:26804633

  13. Brain injuries in early foetal life: consequences for brain development.

    PubMed

    Mancini, J; Lethel, V; Hugonenq, C; Chabrol, B

    2001-01-01

    Learning disability and cerebral palsy are often related to factors present before birth. We report three patients (two with schizencephaly, one with unilateral cerebellar agenesis) in whom the timing of an insult to the foetus was known. In the first case, the mother had a trauma at 16 weeks of pregnancy and schizencephaly was discovered in the male infant associated with a left hemiplegia. In the second child, amniocentesis performed at 16 weeks into pregnancy may have been responsible for the same cortical anomaly. In the third case, sequential foetal echographies clearly demonstrated that an apparent unilateral cerebellar agenesis was related to an haemorrhagic event secondary to cerebellar trauma that occurred at 19 weeks of pregnancy. It is suggested that these brain malformations are related to an ischemic mechanism or a traumatic event in foetal life. PMID:11201424

  14. Microbial mats and the early evolution of life.

    PubMed

    Des Marais, D J

    1990-05-01

    Microbial mats have descended from perhaps the oldest and most widespread biological communities known. Mats harbor microbes that are crucial for studies of bacterial phylogeny and physiology. They illustrate how several oxygen-sensitive biochemical processes have adapted to oxygen, and they show how life adapted to dry land long before the rise of plants. The search for the earliest grazing protists and metazoa in stromatolites is aided by observations of mats: in them, organic compounds characteristic of ancient photosynthetic protists can be identified. Recent mat studies suggest that the 13C/12C increase observed over geological time in stromatolitic organic matter was driven at least in part by a long-term decline in atmospheric carbon dioxide levels.

  15. Microbial mats and the early evolution of life

    NASA Technical Reports Server (NTRS)

    Des Marais, D. J.

    1990-01-01

    Microbial mats have descended from perhaps the oldest and most widespread biological communities known. Mats harbor microbes that are crucial for studies of bacterial phylogeny and physiology. They illustrate how several oxygen-sensitive biochemical processes have adapted to oxygen, and they show how life adapted to dry land long before the rise of plants. The search for the earliest grazing protists and metazoa in stromatolites is aided by observations of mats: in them, organic compounds characteristic of ancient photosynthetic protists can be identified. Recent mat studies suggest that the 13C/12C increase observed over geological time in stromatolitic organic matter was driven at least in part by a long-term decline in atmospheric carbon dioxide levels.

  16. Upper thermal tolerances of early life stages of freshwater mussels

    USGS Publications Warehouse

    Pandolfo, Tamara J.; Cope, W. Gregory; Arellano, Consuelo; Bringolf, Robert B.; Barnhart, M. Christopher; Hammer, E

    2010-01-01

    Freshwater mussels (order Unioniformes) fulfill an essential role in benthic aquatic communities, but also are among the most sensitive and rapidly declining faunal groups in North America. Rising water temperatures, caused by global climate change, industrial discharges, drought, or land development, could further challenge imperiled unionid communities. The aim of our study was to determine the upper thermal tolerances of the larval (glochidia) and juvenile life stages of freshwater mussels. Glochidia of 8 species of mussels were tested: Lampsilis siliquoidea, Potamilus alatus, Ligumia recta, Ellipsaria lineolata,Lasmigona complanata, Megalonaias nervosa, Alasmidonta varicosa, and Villosa delumbis. Seven of these species also were tested as juveniles. Survival trends were monitored while mussels held at 3 acclimation temperatures (17, 22, and 27°C) were exposed to a range of common and extreme water temperatures (20–42°C) in standard acute laboratory tests. The average median lethal temperature (LT50) among species in 24-h tests with glochidia was 31.6°C and ranged from 21.4 to 42.7°C. The mean LT50 in 96-h juvenile tests was 34.7°C and ranged from 32.5 to 38.8°C. Based on comparisons of LT50s, thermal tolerances differed among species for glochidia, but not for juveniles. Acclimation temperature did not affect thermal tolerance for either life stage. Our results indicate that freshwater mussels already might be living close to their upper thermal tolerances in some systems and, thus, might be at risk from rising environmental temperatures.

  17. Crystals, colloids, or molecules?: Early controversies about the origin of life and synthetic life.

    PubMed

    Deichmann, Ute

    2012-01-01

    Crystals, colloids, and (macro-)molecules have played major roles in theoretical concepts and experimental approaches concerning the generation of life from the mid-19th century on. The notion of the crystallization of life out of a nonliving fluid, a special case of the doctrine of spontaneous generation, was most prominently incorporated into Schleiden's and Schwann's version of cell theory. Refutation at the end of the 19th century of spontaneous generation of life and cells, in particular by Pasteur, Remak, and Virchow, not only gave rise to the flourishing fields of microbiology and cytology, but it also opened up research on synthetic life. These approaches focused on growth and form and colloidal chemistry on the one hand, and on the specificity of organisms' macromolecules and chemical reactions on the other. This article analyzes the contribution of these approaches to synthetic life research and argues that researchers' philosophical predilections and basic beliefs have played important roles in the choice of experimental and theoretical approaches towards synthetic life.

  18. Crystals, colloids, or molecules?: Early controversies about the origin of life and synthetic life.

    PubMed

    Deichmann, Ute

    2012-01-01

    Crystals, colloids, and (macro-)molecules have played major roles in theoretical concepts and experimental approaches concerning the generation of life from the mid-19th century on. The notion of the crystallization of life out of a nonliving fluid, a special case of the doctrine of spontaneous generation, was most prominently incorporated into Schleiden's and Schwann's version of cell theory. Refutation at the end of the 19th century of spontaneous generation of life and cells, in particular by Pasteur, Remak, and Virchow, not only gave rise to the flourishing fields of microbiology and cytology, but it also opened up research on synthetic life. These approaches focused on growth and form and colloidal chemistry on the one hand, and on the specificity of organisms' macromolecules and chemical reactions on the other. This article analyzes the contribution of these approaches to synthetic life research and argues that researchers' philosophical predilections and basic beliefs have played important roles in the choice of experimental and theoretical approaches towards synthetic life. PMID:23502562

  19. Early-Life Social Origins of Later-Life Body Weight: The Role of Socioeconomic Status and Health Behaviors over the Life Course

    PubMed Central

    Logan, Ellis Scott; Richman, Aliza

    2014-01-01

    Using the 1957-2004 data from the Wisconsin Longitudinal Study, we apply structural equation modeling to examine gender-specific effects of family socioeconomic status (SES) at age 18 on body weight at age 65. We further explore SES and health behaviors over the life course as mechanisms linking family background and later-life body weight. We find that early-life socioeconomic disadvantage is related to higher body weight at age 65 and a steeper weight increase between midlife and late life. These adverse effects are stronger among women than men. Significant mediators of the effect of parents' SES include adolescent body mass (especially among women) as well as exercise and SES in midlife. Yet, consistent with the critical period mechanism, the effect of early-life SES on late-life body weight persists net of all mediating variables. This study expands current understanding of life-course mechanisms that contribute to obesity and increase biological vulnerability to social disadvantage. PMID:24767590

  20. No early gender effects on energetic status and life history in a salmonid

    PubMed Central

    Régnier, Thomas; Labonne, Jacques; Chat, Joëlle; Yano, Ayaka; Guiguen, Yann; Bolliet, Valérie

    2015-01-01

    Throughout an organism's early development, variations in physiology and behaviours may have long lasting consequences on individual life histories. While a large part of variation in critical life-history transitions remains unexplained, a significant proportion may be caused by early gender effects as part of gender-specific life histories shaped by sexual selection. In this study, we investigated the presence of early gender effects on the timing of emergence from gravel and the energetic status of brown trout (Salmo trutta) early stages. To investigate this question, individual measures of emergence timing, metabolic rate and energetic content were coupled for the first time with the use of a recent genetic marker for sdY (sexually dimorphic on the Y-chromosome), a master sex-determining gene. Our results show that gender does not influence the energetic content of emerging juveniles or their emergence timing. These findings suggest that gender differences may appear later throughout salmonid life history and that selective pressures associated with the critical period of emergence from gravel may shape early life-history traits similarly in both males and females. PMID:27019729

  1. No early gender effects on energetic status and life history in a salmonid.

    PubMed

    Régnier, Thomas; Labonne, Jacques; Chat, Joëlle; Yano, Ayaka; Guiguen, Yann; Bolliet, Valérie

    2015-12-01

    Throughout an organism's early development, variations in physiology and behaviours may have long lasting consequences on individual life histories. While a large part of variation in critical life-history transitions remains unexplained, a significant proportion may be caused by early gender effects as part of gender-specific life histories shaped by sexual selection. In this study, we investigated the presence of early gender effects on the timing of emergence from gravel and the energetic status of brown trout (Salmo trutta) early stages. To investigate this question, individual measures of emergence timing, metabolic rate and energetic content were coupled for the first time with the use of a recent genetic marker for sdY (sexually dimorphic on the Y-chromosome), a master sex-determining gene. Our results show that gender does not influence the energetic content of emerging juveniles or their emergence timing. These findings suggest that gender differences may appear later throughout salmonid life history and that selective pressures associated with the critical period of emergence from gravel may shape early life-history traits similarly in both males and females.

  2. No early gender effects on energetic status and life history in a salmonid.

    PubMed

    Régnier, Thomas; Labonne, Jacques; Chat, Joëlle; Yano, Ayaka; Guiguen, Yann; Bolliet, Valérie

    2015-12-01

    Throughout an organism's early development, variations in physiology and behaviours may have long lasting consequences on individual life histories. While a large part of variation in critical life-history transitions remains unexplained, a significant proportion may be caused by early gender effects as part of gender-specific life histories shaped by sexual selection. In this study, we investigated the presence of early gender effects on the timing of emergence from gravel and the energetic status of brown trout (Salmo trutta) early stages. To investigate this question, individual measures of emergence timing, metabolic rate and energetic content were coupled for the first time with the use of a recent genetic marker for sdY (sexually dimorphic on the Y-chromosome), a master sex-determining gene. Our results show that gender does not influence the energetic content of emerging juveniles or their emergence timing. These findings suggest that gender differences may appear later throughout salmonid life history and that selective pressures associated with the critical period of emergence from gravel may shape early life-history traits similarly in both males and females. PMID:27019729

  3. Understanding the potency of stressful early life experiences on brain and body function

    PubMed Central

    McEwen, Bruce S.

    2008-01-01

    Early life experiences have powerful effects on the brain and body lasting throughout the entire lifespan and influencing brain function, behavior and the risk for a number of systemic and mental disorders. Animal models of early life adversity are providing mechanistic insights, including glimpses into the fascinating world that is now called “epigenetics” as well as the role of naturally occurring alleles of a number of genes. These studies also provide insights into the adaptive value, as well as the negative consequences, of early life stress, exposure to novelty, and poor vs good quality maternal care. Animal models begin to provide a mechanistic basis for understanding how brain development and physiological functioning is affected in children exposed to early life abuse and neglect, where there is a burgeoning literature on the consequences for physical health and emotional and cognitive development. An important goal is to identify interventions that are likely to be most effective in early life and some guidelines are provided. PMID:18803958

  4. Statistical characterization of life drivers for a probabilistic design analysis

    NASA Technical Reports Server (NTRS)

    Fox, Eric P.; Safie, Fayssal

    1992-01-01

    This paper discusses the issue of statistical characterization of life drivers for a probabilistic design analysis (PDA) approach to support the conventional deterministic structural design methods that are currently used. The probabilistic approach takes into consideration the modeling inadequacies and uncertainties in many design variables such as loads, environments, and material properties. The importance of the distributional assumption is motivated by illustrating an example where the results differ substantially due to the distribution selected. Different types of distributions are discussed and techniques for estimating the parameters are given. Given this information, procedures are outlined for selecting the appropriate distribution based on the particular type of variable (i.e., dimensional, performance) as well as the information that is available (i.e., test data, engineering analysis). Finally, techniques are given for generating random numbers from these selected distributions within the PDA process.

  5. Bayesian analysis of the astrobiological implications of life's early emergence on Earth

    NASA Astrophysics Data System (ADS)

    Spiegel, David S.; Turner, Edwin L.

    2012-01-01

    Life arose on Earth sometime in the first few hundred million years after the young planet had cooled to the point that it could support water-based organisms on its surface. The early emergence of life on Earth has been taken as evidence that the probability of abiogenesis is high, if starting from young Earth-like conditions. We revisit this argument quantitatively in a Bayesian statistical framework. By constructing a simple model of the probability of abiogenesis, we calculate a Bayesian estimate of its posterior probability, given the data that life emerged fairly early in Earth’s history and that, billions of years later, curious creatures noted this fact and considered its implications. We find that, given only this very limited empirical information, the choice of Bayesian prior for the abiogenesis probability parameter has a dominant influence on the computed posterior probability. Although terrestrial life's early emergence provides evidence that life might be abundant in the universe if early-Earth-like conditions are common, the evidence is inconclusive and indeed is consistent with an arbitrarily low intrinsic probability of abiogenesis for plausible uninformative priors. Finding a single case of life arising independently of our lineage (on Earth, elsewhere in the solar system, or on an extrasolar planet) would provide much stronger evidence that abiogenesis is not extremely rare in the universe.

  6. Bayesian analysis of the astrobiological implications of life's early emergence on Earth.

    PubMed

    Spiegel, David S; Turner, Edwin L

    2012-01-10

    Life arose on Earth sometime in the first few hundred million years after the young planet had cooled to the point that it could support water-based organisms on its surface. The early emergence of life on Earth has been taken as evidence that the probability of abiogenesis is high, if starting from young Earth-like conditions. We revisit this argument quantitatively in a bayesian statistical framework. By constructing a simple model of the probability of abiogenesis, we calculate a bayesian estimate of its posterior probability, given the data that life emerged fairly early in Earth's history and that, billions of years later, curious creatures noted this fact and considered its implications. We find that, given only this very limited empirical information, the choice of bayesian prior for the abiogenesis probability parameter has a dominant influence on the computed posterior probability. Although terrestrial life's early emergence provides evidence that life might be abundant in the universe if early-Earth-like conditions are common, the evidence is inconclusive and indeed is consistent with an arbitrarily low intrinsic probability of abiogenesis for plausible uninformative priors. Finding a single case of life arising independently of our lineage (on Earth, elsewhere in the solar system, or on an extrasolar planet) would provide much stronger evidence that abiogenesis is not extremely rare in the universe.

  7. Bayesian analysis of the astrobiological implications of life's early emergence on Earth.

    PubMed

    Spiegel, David S; Turner, Edwin L

    2012-01-10

    Life arose on Earth sometime in the first few hundred million years after the young planet had cooled to the point that it could support water-based organisms on its surface. The early emergence of life on Earth has been taken as evidence that the probability of abiogenesis is high, if starting from young Earth-like conditions. We revisit this argument quantitatively in a bayesian statistical framework. By constructing a simple model of the probability of abiogenesis, we calculate a bayesian estimate of its posterior probability, given the data that life emerged fairly early in Earth's history and that, billions of years later, curious creatures noted this fact and considered its implications. We find that, given only this very limited empirical information, the choice of bayesian prior for the abiogenesis probability parameter has a dominant influence on the computed posterior probability. Although terrestrial life's early emergence provides evidence that life might be abundant in the universe if early-Earth-like conditions are common, the evidence is inconclusive and indeed is consistent with an arbitrarily low intrinsic probability of abiogenesis for plausible uninformative priors. Finding a single case of life arising independently of our lineage (on Earth, elsewhere in the solar system, or on an extrasolar planet) would provide much stronger evidence that abiogenesis is not extremely rare in the universe. PMID:22198766

  8. A paradoxical association of an oxytocin receptor gene polymorphism: early-life adversity and vulnerability to depression.

    PubMed

    McQuaid, Robyn J; McInnis, Opal A; Stead, John D; Matheson, Kimberly; Anisman, Hymie

    2013-01-01

    Several prosocial behaviors may be influenced by the hormone oxytocin. In line with this perspective, the oxytocin receptor (OXTR) gene single nucleotide polymorphism (SNP), rs53576, has been associated with a broad range of social behaviors. In this regard, the G allele of the OXTR SNP has been accompanied by beneficial attributes such as increased empathy, optimism, and trust. In the current study among university students (N = 288), it was shown that early-life maltreatment was associated with depressive symptoms, and that the OXTR genotype moderated this relationship, such that under high levels of childhood maltreatment, only individuals with GG/GA genotype demonstrated increased depressive symptomatology compared to those with the AA genotype. In addition, the role of distrust in mediating the relation between childhood maltreatment and depression seemed to be more important among G allele carriers compared to individuals with the AA genotype. Thus, a breach in trust (i.e., in the case of early-life abuse or neglect) may have a more deleterious effect among G carriers, who have been characterized as more prosocial and attuned to social cues. The data suggested that G carriers of the OXTR might favor social sensitivity and thus might have been more vulnerable to the effects of early-life adversity. PMID:23898235

  9. Early-state damage detection, characterization, and evolution using high-resolution computed tomography

    NASA Astrophysics Data System (ADS)

    Grandin, Robert John

    Safely using materials in high performance applications requires adequately understanding the mechanisms which control the nucleation and evolution of damage. Most of a material's operational life is spent in a state with noncritical damage, and, for example in metals only a small portion of its life falls within the classical Paris Law regime of crack growth. Developing proper structural health and prognosis models requires understanding the behavior of damage in these early stages within the material's life, and this early-stage damage occurs on length scales at which the material may be considered "granular'' in the sense that the discrete regions which comprise the whole are large enough to require special consideration. Material performance depends upon the characteristics of the granules themselves as well as the interfaces between granules. As a result, properly studying early-stage damage in complex, granular materials requires a means to characterize changes in the granules and interfaces. The granular-scale can range from tenths of microns in ceramics, to single microns in fiber-reinforced composites, to tens of millimeters in concrete. The difficulty of direct-study is often overcome by exhaustive testing of macro-scale damage caused by gross material loads and abuse. Such testing, for example optical or electron microscopy, destructive and further, is costly when used to study the evolution of damage within a material and often limits the study to a few snapshots. New developments in high-resolution computed tomography (HRCT) provide the necessary spatial resolution to directly image the granule length-scale of many materials. Successful application of HRCT with fiber-reinforced composites, however, requires extending the HRCT performance beyond current limits. This dissertation will discuss improvements made in the field of CT reconstruction which enable resolutions to be pushed to the point of being able to image the fiber-scale damage structures and

  10. Geochemistry: biosignatures and abiotic constraints on early life.

    PubMed

    Lollar, Barbara Sherwood; McCollom, Thomas M

    2006-12-14

    Ueno et al. contend that methane found in fluid inclusions within hydrothermally precipitated quartz in the Dresser Formation of western Australia (which is roughly 3.5 Gyr old) provides evidence for microbial methanogenesis in the early Archaean era. The authors discount alternative origins for this methane, suggesting that the range of delta(13)C(CH(4)) values that they record (-56 to -36 per thousand) is attributable to mixing between a primary microbial end-member with a delta(13)C(CH(4)) value of less than -56 per thousand and a mature thermogenic gas enriched in (13)C (about -36 per thousand). However, abiotic methane produced experimentally and in other Precambrian greenstone settings has (13)C-depleted delta(13)C(CH(4)) values, as well as Delta(13)C(CO(2)-CH(4)) relationships that encompass the range measured for the inclusions by Ueno et al. - which suggests that an alternative, abiotic origin for the methane is equally plausible. The conclusions of Ueno et al. about the timing of the onset of microbial methanogenesis might not therefore be justified. PMID:17167427

  11. Thyroid gland development in Rachycentron canadum during early life stages.

    PubMed

    Otero, Adriana P S; Rodrigues, Ricardo V; Sampaio, Luís A; Romano, Luis A; Tesser, Marcelo B

    2014-09-01

    The aim of this study was to describe the ontogeny of thyroid follicles in cobia Rachycentron canadum. Larvae were sampled daily (n=15 - 20) from hatching until 15 dah (days after hatching). Following, larvae were sampled every two days by 28 dah; a new sample was taken at 53 dah. The samples were dehydrated, embedded in Paraplast, and sections of 3 µm were dewaxed, rehydrated and stained with HE and PAS. A single follicle was already present 1 dah and three follicles were found 8 dah. The number of follicles increased up to 19 on 53 dah. The diameter of follicles and follicular cell height were lower 1 dah (6.83 ± 1.00 and 4.6 ± 0.01 µm), but increased from 8 dah (24.03 ± 0.46 µm e 6.43 ± 0.46 µm). From 8 dah, the presence of reabsorption vesicles was observed in the colloid and from the 19 dah some follicles did not present colloid. The early thyroid follicle appearance in cobia larvae as well as the high quantity of follicles without colloid and/or with vesicles even after the metamorphosis, might be the explanation of the fast growth of the cobia.

  12. Geochemistry: biosignatures and abiotic constraints on early life.

    PubMed

    Lollar, Barbara Sherwood; McCollom, Thomas M

    2006-12-14

    Ueno et al. contend that methane found in fluid inclusions within hydrothermally precipitated quartz in the Dresser Formation of western Australia (which is roughly 3.5 Gyr old) provides evidence for microbial methanogenesis in the early Archaean era. The authors discount alternative origins for this methane, suggesting that the range of delta(13)C(CH(4)) values that they record (-56 to -36 per thousand) is attributable to mixing between a primary microbial end-member with a delta(13)C(CH(4)) value of less than -56 per thousand and a mature thermogenic gas enriched in (13)C (about -36 per thousand). However, abiotic methane produced experimentally and in other Precambrian greenstone settings has (13)C-depleted delta(13)C(CH(4)) values, as well as Delta(13)C(CO(2)-CH(4)) relationships that encompass the range measured for the inclusions by Ueno et al. - which suggests that an alternative, abiotic origin for the methane is equally plausible. The conclusions of Ueno et al. about the timing of the onset of microbial methanogenesis might not therefore be justified.

  13. Vitamin D and bone health in early life.

    PubMed

    Mølgaard, Christian; Michaelsen, Kim Fleischer

    2003-11-01

    Prolonged vitamin D deficiency resulting in rickets is seen mainly during rapid growth. A distinct age distribution has been observed in the Copenhagen area where all registered hospital cases of rickets were either infants and toddlers or adolescents from immigrant families. Growth retardation was only present in the infant and toddler group. A state of deficiency occurs months before rickets is obvious on physical examination. Growth failure, lethargy and irritability may be early signs of vitamin D deficiency. Mothers with low vitamin D status give birth to children with low vitamin D status and increased risk of rickets. Reports showing increasing rates of rickets due to insufficient sunlight exposure and inadequate vitamin D intake are cause for serious concern. Many countries (including the USA from 2003) recommend vitamin D supplementation during infancy to avoid rickets resulting from the low vitamin D content of human milk. Without fortification only certain foods such as fatty fish contain more than low amounts of vitamin D, and many children will depend entirely on sun exposure to obtain sufficient vitamin D. The skin has a high capacity to synthesize vitamin D, but if sun exposure is low vitamin D production is insufficient, especially in dark-skinned infants. The use of serum 25-hydroxyvitamin D to evaluate vitamin D status before development of rickets would be helpful; however, there is no agreement on cut-off levels for deficiency and insufficiency. Furthermore, it is not known how marginal vitamin D insufficiency affects children's bones in the long term. PMID:15018481

  14. Biology of early life stages in cephalopod molluscs.

    PubMed

    von Boletzky, S

    2003-01-01

    Recent literature on embryonic and post-embryonic development, biology and behavioural ecology of juvenile cephalopods is reviewed. Emphasis is placed on biological processes. Life-history patterns and phylogenetic systematics, which are important for a proper understanding of the evolutionary history of the cephalopods, are only briefly touched upon. Egg sizes in cephalopods range from less than 1 mm to about 30 mm in diameter, so the hatchlings emerging from the largest eggs are bigger than the adults of pygmy squid, the smallest known cephalopods. Developmental durations from spawning to hatching range from a few days (for very small eggs developing at high temperatures) to one or possibly several years (for very large eggs developing at low temperatures). Such important differences notwithstanding, the morphogenetic processes are very similar in all cephalopod embryos, the major variant being the size of the so-called outer yolk sac, which may be rudimentary in extremely small embryos. Several questions concerning the timing of hatching in relation to the developmental stage attained, especially in terms of yok absorption, need clarification. These questions concern the elimination of the transient closure of the mouth, the final differentiation of digestive gland cells, and the removal of the tranquilliser effect of the perivitelline fluid necessary for the onset of the hatching behaviour. Cephalopod hatchlings are active predators. They refine their behavioural repertoires by learning from individual experience in dealing with prey and would-be predators. There is no truly larval phase, and the ecologically defined term paralarva should be used with caution. Given the considerable resource potential of cephalopods, investigations into dispersal and recruitment are of particular interest to fishery biology, but they are also important for ecological biogeography. The related studies of feeding and growth involve field sampling and tentative age determination

  15. Early life expenditure in sexual competition is associated with increased reproductive senescence in male red deer.

    PubMed

    Lemaître, Jean-François; Gaillard, Jean-Michel; Pemberton, Josephine M; Clutton-Brock, Tim H; Nussey, Daniel H

    2014-10-01

    The evolutionary theories of senescence predict that investment in reproduction in early life should come at the cost of reduced somatic maintenance, and thus earlier or more rapid senescence. There is now growing support for such trade-offs in wild vertebrates, but these exclusively come from females. Here, we test this prediction in male red deer (Cervus elaphus) using detailed longitudinal data collected over a 40-year field study. We show that males which had larger harems and thereby allocated more resources to reproduction during early adulthood experienced higher rates of senescence in both harem size and rut duration. Males that carried antlers with more points during early life did not show more pronounced declines in reproductive traits in later life. Overall, we demonstrate that sexual competition shapes male reproductive senescence in wild red deer populations and provide rare empirical support for the disposable soma theory of ageing in males of polygynous vertebrate species.

  16. Early life exposure to malaria and cognition in adulthood: evidence from Mexico.

    PubMed

    Venkataramani, Atheendar S

    2012-09-01

    This study examines the impact of early life malaria exposure on cognition in sample of Mexican adults, using the nationwide introduction of malaria eradication efforts to identify causal impacts. The core findings are that birth year exposure to malaria eradication was associated with increases in Raven Progressive Matrices test scores and consumption expenditures, but not schooling. Additionally, cohorts born after eradication both entered and exited school earlier than their pre-eradication counterparts. These effects were only seen for men and explanations for this are assessed. Collectively, these findings suggest that improvements in infant health help explain secular increases in cognitive test scores, that better cognition may link early life health to adulthood earnings, and that human capital investments through childhood and young adulthood respond sensitively to market returns to early life endowment shocks. PMID:22906550

  17. How colonization by microbiota in early life shapes the immune system

    PubMed Central

    Gensollen, Thomas; Iyer, Shankar S.; Kasper, Dennis L.; Blumberg, Richard S.

    2016-01-01

    Microbial colonization of mucosal tissues during infancy plays an instrumental role in the development and education of the host mammalian immune system. These early-life events can have long-standing consequences: facilitating tolerance to environmental exposures or contributing to the development of disease in later life, including inflammatory bowel disease, allergy, and asthma. Recent studies have begun to define a critical period during early development in which disruption of optimal host-commensal interactions can lead to persistent and in some cases irreversible defects in the development and training of specific immune subsets. Here, we discuss the role of early-life education of the immune system during this “window of opportunity,” when microbial colonization has a potentially critical impact on human health and disease. PMID:27126036

  18. Early-life enteric infections: relation between chronic systemic inflammation and poor cognition in children.

    PubMed

    Oriá, Reinaldo B; Murray-Kolb, Laura E; Scharf, Rebecca J; Pendergast, Laura L; Lang, Dennis R; Kolling, Glynis L; Guerrant, Richard L

    2016-06-01

    The intestinal microbiota undergoes active remodeling in the first 6 to 18 months of life, during which time the characteristics of the adult microbiota are developed. This process is strongly influenced by the early diet and enteric pathogens. Enteric infections and malnutrition early in life may favor microbiota dysbiosis and small intestinal bacterial overgrowth, resulting in intestinal barrier dysfunction and translocation of intestinal bacterial products, ultimately leading to low-grade, chronic, subclinical systemic inflammation. The leaky gut-derived low-grade systemic inflammation may have profound consequences on the gut-liver-brain axis, compromising normal growth, metabolism, and cognitive development. This review examines recent data suggesting that early-life enteric infections that lead to intestinal barrier disruption may shift the intestinal microbiota toward chronic systemic inflammation and subsequent impaired cognitive development.

  19. How colonization by microbiota in early life shapes the immune system.

    PubMed

    Gensollen, Thomas; Iyer, Shankar S; Kasper, Dennis L; Blumberg, Richard S

    2016-04-29

    Microbial colonization of mucosal tissues during infancy plays an instrumental role in the development and education of the host mammalian immune system. These early-life events can have long-standing consequences: facilitating tolerance to environmental exposures or contributing to the development of disease in later life, including inflammatory bowel disease, allergy, and asthma. Recent studies have begun to define a critical period during early development in which disruption of optimal host-commensal interactions can lead to persistent and in some cases irreversible defects in the development and training of specific immune subsets. Here, we discuss the role of early-life education of the immune system during this "window of opportunity," when microbial colonization has a potentially critical impact on human health and disease.

  20. Early life expenditure in sexual competition is associated with increased reproductive senescence in male red deer

    PubMed Central

    Lemaître, Jean-François; Gaillard, Jean-Michel; Pemberton, Josephine M.; Clutton-Brock, Tim H.; Nussey, Daniel H.

    2014-01-01

    The evolutionary theories of senescence predict that investment in reproduction in early life should come at the cost of reduced somatic maintenance, and thus earlier or more rapid senescence. There is now growing support for such trade-offs in wild vertebrates, but these exclusively come from females. Here, we test this prediction in male red deer (Cervus elaphus) using detailed longitudinal data collected over a 40-year field study. We show that males which had larger harems and thereby allocated more resources to reproduction during early adulthood experienced higher rates of senescence in both harem size and rut duration. Males that carried antlers with more points during early life did not show more pronounced declines in reproductive traits in later life. Overall, we demonstrate that sexual competition shapes male reproductive senescence in wild red deer populations and provide rare empirical support for the disposable soma theory of ageing in males of polygynous vertebrate species. PMID:25122226

  1. Omega-3 fatty acids prevent early-life antibiotic exposure-induced gut microbiota dysbiosis and later-life obesity.

    PubMed

    Kaliannan, K; Wang, B; Li, X-Y; Bhan, A K; Kang, J X

    2016-06-01

    Early-life antibiotic exposure can disrupt the founding intestinal microbial community and lead to obesity later in life. Recent studies show that omega-3 fatty acids can reduce body weight gain and chronic inflammation through modulation of the gut microbiota. We hypothesize that increased tissue levels of omega-3 fatty acids may prevent antibiotic-induced alteration of gut microbiota and obesity later in life. Here, we utilize the fat-1 transgenic mouse model, which can endogenously produce omega-3 fatty acids and thereby eliminates confounding factors of diet, to show that elevated tissue levels of omega-3 fatty acids significantly reduce body weight gain and the severity of insulin resistance, fatty liver and dyslipidemia resulting from early-life exposure to azithromycin. These effects were associated with a reversal of antibiotic-induced dysbiosis of gut microbiota in fat-1 mice. These results demonstrate the beneficial effects of omega-3 fatty acids on antibiotic-induced gut dysbiosis and obesity, and suggest the potential utility of omega-3 supplementation as a safe and effective means for the prevention of obesity in children who are exposed to antibiotics.

  2. Early-Life Events, Including Mode of Delivery and Type of Feeding, Siblings and Gender, Shape the Developing Gut Microbiota.

    PubMed

    Martin, Rocio; Makino, Hiroshi; Cetinyurek Yavuz, Aysun; Ben-Amor, Kaouther; Roelofs, Mieke; Ishikawa, Eiji; Kubota, Hiroyuki; Swinkels, Sophie; Sakai, Takafumi; Oishi, Kenji; Kushiro, Akira; Knol, Jan

    2016-01-01

    Colonization of the infant gut is believed to be critically important for a healthy growth as it influences gut maturation, metabolic, immune and brain development in early life. Understanding factors that influence this process is important, since an altered colonization has been associated with a higher risk of diseases later in life. Fecal samples were collected from 108 healthy neonates in the first half year of life. The composition and functionality of the microbiota was characterized by measuring 33 different bacterial taxa by qPCR/RT qPCR, and 8 bacterial metabolites. Information regarding gender, place and mode of birth, presence of siblings or pets; feeding pattern and antibiotic use was collected by using questionnaires. Regression analysis techniques were used to study associations between microbiota parameters and confounding factors over time. Bacterial DNA was detected in most meconium samples, suggesting bacterial exposure occurs in utero. After birth, colonization by species of Bifidobacterium, Lactobacillus and Bacteroides was influenced by mode of delivery, type of feeding and presence of siblings, with differences found at species level and over time. Interestingly, infant-type bifidobacterial species such as B. breve or B. longum subsp infantis were confirmed as early colonizers apparently independent of the factors studied here, while B. animalis subsp. lactis presence was found to be dependent solely on the type of feeding, indicating that it might not be a common infant gut inhabitant. One interesting and rather unexpected confounding factor was gender. This study contributes to our understanding of the composition of the microbiota in early life and the succession process and the evolution of the microbial community as a function of time and events occurring during the first 6 months of life. Our results provide new insights that could be taken into consideration when selecting nutritional supplementation strategies to support the

  3. Early-Life Events, Including Mode of Delivery and Type of Feeding, Siblings and Gender, Shape the Developing Gut Microbiota

    PubMed Central

    Cetinyurek Yavuz, Aysun; Ben-Amor, Kaouther; Roelofs, Mieke; Ishikawa, Eiji; Kubota, Hiroyuki; Swinkels, Sophie; Sakai, Takafumi; Oishi, Kenji; Kushiro, Akira; Knol, Jan

    2016-01-01

    Colonization of the infant gut is believed to be critically important for a healthy growth as it influences gut maturation, metabolic, immune and brain development in early life. Understanding factors that influence this process is important, since an altered colonization has been associated with a higher risk of diseases later in life. Fecal samples were collected from 108 healthy neonates in the first half year of life. The composition and functionality of the microbiota was characterized by measuring 33 different bacterial taxa by qPCR/RT qPCR, and 8 bacterial metabolites. Information regarding gender, place and mode of birth, presence of siblings or pets; feeding pattern and antibiotic use was collected by using questionnaires. Regression analysis techniques were used to study associations between microbiota parameters and confounding factors over time. Bacterial DNA was detected in most meconium samples, suggesting bacterial exposure occurs in utero. After birth, colonization by species of Bifidobacterium, Lactobacillus and Bacteroides was influenced by mode of delivery, type of feeding and presence of siblings, with differences found at species level and over time. Interestingly, infant-type bifidobacterial species such as B. breve or B. longum subsp infantis were confirmed as early colonizers apparently independent of the factors studied here, while B. animalis subsp. lactis presence was found to be dependent solely on the type of feeding, indicating that it might not be a common infant gut inhabitant. One interesting and rather unexpected confounding factor was gender. This study contributes to our understanding of the composition of the microbiota in early life and the succession process and the evolution of the microbial community as a function of time and events occurring during the first 6 months of life. Our results provide new insights that could be taken into consideration when selecting nutritional supplementation strategies to support the

  4. Early-Life Characteristics, Psychiatric History, and Cognition Trajectories in Later Life

    ERIC Educational Resources Information Center

    Brown, Maria Teresa

    2010-01-01

    Purpose of the Study: Although considerable attention has been paid to the relationship between later-life depression and cognitive function, the relationship between a history of psychiatric problems and cognitive function is not very well documented. Few studies of relationships between childhood health, childhood disadvantage, and cognitive…

  5. Early-Life Environmental Variation Affects Intestinal Microbiota and Immune Development in New-Born Piglets

    PubMed Central

    Zhang, Ling-li; Vastenhouw, Stéphanie A.; Heilig, Hans G. H. J.; Smidt, Hauke; Rebel, Johanna M. J.; Smits, Mari A.

    2014-01-01

    Background Early-life environmental variation affects gut microbial colonization and immune competence development; however, the timing and additional specifics of these processes are unknown. The impact of early-life environmental variations, as experienced under real life circumstances, on gut microbial colonization and immune development has not been studied extensively so far. We designed a study to investigate environmental variation, experienced early after birth, to gut microbial colonization and intestinal immune development. Methodology/Principal Findings To investigate effects of early-life environmental changes, the piglets of 16 piglet litters were divided into 3 groups per litter and experimentally treated on day 4 after birth. During the course of the experiment, the piglets were kept with their mother sow. Group 1 was not treated, group 2 was treated with an antibiotic, and group 3 was treated with an antibiotic and simultaneously exposed to several routine, but stressful management procedures, including docking, clipping and weighing. Thereafter, treatment effects were measured at day 8 after birth in 16 piglets per treatment group by community-scale analysis of gut microbiota and genome-wide intestinal transcriptome profiling. We observed that the applied antibiotic treatment affected the composition and diversity of gut microbiota and reduced the expression of a large number of immune-related processes. The effect of management procedures on top of the use of an antibiotic was limited. Conclusions/Significance We provide direct evidence that different early-life conditions, specifically focusing on antibiotic treatment and exposure to stress, affect gut microbial colonization and intestinal immune development. This reinforces the notion that the early phase of life is critical for intestinal immune development, also under regular production circumstances. PMID:24941112

  6. Toward Understanding How Early-Life Stress Reprograms Cognitive and Emotional Brain Networks.

    PubMed

    Chen, Yuncai; Baram, Tallie Z

    2016-01-01

    Vulnerability to emotional disorders including depression derives from interactions between genes and environment, especially during sensitive developmental periods. Adverse early-life experiences provoke the release and modify the expression of several stress mediators and neurotransmitters within specific brain regions. The interaction of these mediators with developing neurons and neuronal networks may lead to long-lasting structural and functional alterations associated with cognitive and emotional consequences. Although a vast body of work has linked quantitative and qualitative aspects of stress to adolescent and adult outcomes, a number of questions are unclear. What distinguishes 'normal' from pathologic or toxic stress? How are the effects of stress transformed into structural and functional changes in individual neurons and neuronal networks? Which ones are affected? We review these questions in the context of established and emerging studies. We introduce a novel concept regarding the origin of toxic early-life stress, stating that it may derive from specific patterns of environmental signals, especially those derived from the mother or caretaker. Fragmented and unpredictable patterns of maternal care behaviors induce a profound chronic stress. The aberrant patterns and rhythms of early-life sensory input might also directly and adversely influence the maturation of cognitive and emotional brain circuits, in analogy to visual and auditory brain systems. Thus, unpredictable, stress-provoking early-life experiences may influence adolescent cognitive and emotional outcomes by disrupting the maturation of the underlying brain networks. Comprehensive approaches and multiple levels of analysis are required to probe the protean consequences of early-life adversity on the developing brain. These involve integrated human and animal-model studies, and approaches ranging from in vivo imaging to novel neuroanatomical, molecular, epigenomic, and computational

  7. Effects of early life social stress on endocrinology, maternal behavior, and lactation in rats.

    PubMed

    Carini, Lindsay M; Nephew, Benjamin C

    2013-09-01

    Exposure to early life stress is a predictor of mental health disorders, and two common forms of early life stress are social conflict and impaired maternal care, which are predominant features of postpartum mood disorders. Exposure of lactating female rats to a novel male intruder involves robust social conflict and induces deficits in maternal care towards the F1 offspring. This exposure is an early life social stressor for female F1 pups that induces inefficient lactation associated with central changes in oxytocin (OXT), prolactin (PRL), and arginine vasopressin (AVP) gene expression in adult F1 females. The mothers of the rats in the current study were either allowed to raise their pups without exposure to a social stressor (control), or presented with a novel male intruder for 1h each day on lactation days 2-16 (chronic social stress). The effects of this early life chronic social stress (CSS) exposure on subsequent peripheral endocrinology, maternal behavior, and physiology were assessed. Exposure of female pups to early life CSS resulted in persistent alterations in maternal endocrinology at the end of lactation (attenuated prolactin and elevated corticosterone), depressed maternal care and aggression, increased restlessness and anxiety-related behavior, impaired lactation, and decreased saccharin preference. The endocrine and behavioral data indicate that early life CSS has long-term effects which are similar to changes seen in clinical populations of depressed mothers and provide support for the use of the chronic social stress paradigm as an ethologically relevant rodent model for maternal disorders such as postpartum depression and anxiety.

  8. Reconceptualizing Early- and Late-Onset: A Life Course Analysis of Older Heroin Users

    PubMed Central

    Boeri, Miriam Williams; Sterk, Claire E.; Elifson, Kirk W.

    2013-01-01

    Purpose Our knowledge regarding older users of illicit drugs is limited despite their increasing numbers. In this paper we apply a life course perspective to gain a further understanding of older adult drug use, specifically contrasting early- and late-onset heroin users. Design and Methods Qualitative data were collected from 29 older heroin users. Life course analysis focused on the users’ experiences across the life span. Results The findings suggest that those aging-into heroin use (late-onset) are disadvantaged compared to those who are maturing-in (early-onset) except in areas of health. Implications We propose that conceptualizing the use of heroin and other illicit drugs among older adults based on their life course trajectory will provide insights for social and health services, including drug treatment. PMID:18981280

  9. A Review of the Relationship Between Socioeconomic Position and the Early-Life Predictors of Obesity.

    PubMed

    Cameron, Adrian J; Spence, Alison C; Laws, Rachel; Hesketh, Kylie D; Lioret, Sandrine; Campbell, Karen J

    2015-09-01

    A range of important early-life predictors of later obesity have been identified. Children of lower socioeconomic position (SEP) have a steeper weight gain trajectory from birth with a strong socioeconomic gradient in child and adult obesity prevalence. An assessment of the association between SEP and the early-life predictors of obesity has been lacking. The review involved a two-stage process: Part 1, using previously published systematic reviews, we developed a list of the potentially modifiable determinants of obesity observable in the pre-natal, peri-natal or post-natal (pre-school) periods; and part 2, conducting a literature review of evidence for socioeconomic patterning in the determinants identified in part 1. Strong evidence was found for an inverse relationship between SEP and (1) pre-natal risk factors (pre-pregnancy maternal body mass index (BMI), diabetes and pre-pregnancy diet), (2) antenatal/peri natal risk factors (smoking during pregnancy and low birth weight) and (3) early-life nutrition (including breastfeeding initiation and duration, early introduction of solids, maternal and infant diet quality, and some aspects of the home food environment), and television viewing in young children. Less strong evidence (because of a lack of studies for some factors) was found for paternal BMI, maternal weight gain during pregnancy, child sleep duration, high birth weight and lack of physical activity in young children. A strong socioeconomic gradient exists for the majority of the early-life predictors of obesity suggesting that the die is cast very early in life (even pre-conception). Lifestyle interventions targeting disadvantaged women at or before child-bearing age may therefore be particularly important in reducing inequality. Given the likely challenges of reaching this target population, it may be that during pregnancy and their child's early years are more feasible windows for engagement. PMID:26627493

  10. A Review of the Relationship Between Socioeconomic Position and the Early-Life Predictors of Obesity.

    PubMed

    Cameron, Adrian J; Spence, Alison C; Laws, Rachel; Hesketh, Kylie D; Lioret, Sandrine; Campbell, Karen J

    2015-09-01

    A range of important early-life predictors of later obesity have been identified. Children of lower socioeconomic position (SEP) have a steeper weight gain trajectory from birth with a strong socioeconomic gradient in child and adult obesity prevalence. An assessment of the association between SEP and the early-life predictors of obesity has been lacking. The review involved a two-stage process: Part 1, using previously published systematic reviews, we developed a list of the potentially modifiable determinants of obesity observable in the pre-natal, peri-natal or post-natal (pre-school) periods; and part 2, conducting a literature review of evidence for socioeconomic patterning in the determinants identified in part 1. Strong evidence was found for an inverse relationship between SEP and (1) pre-natal risk factors (pre-pregnancy maternal body mass index (BMI), diabetes and pre-pregnancy diet), (2) antenatal/peri natal risk factors (smoking during pregnancy and low birth weight) and (3) early-life nutrition (including breastfeeding initiation and duration, early introduction of solids, maternal and infant diet quality, and some aspects of the home food environment), and television viewing in young children. Less strong evidence (because of a lack of studies for some factors) was found for paternal BMI, maternal weight gain during pregnancy, child sleep duration, high birth weight and lack of physical activity in young children. A strong socioeconomic gradient exists for the majority of the early-life predictors of obesity suggesting that the die is cast very early in life (even pre-conception). Lifestyle interventions targeting disadvantaged women at or before child-bearing age may therefore be particularly important in reducing inequality. Given the likely challenges of reaching this target population, it may be that during pregnancy and their child's early years are more feasible windows for engagement.

  11. The relationship between early-life environment, the epigenome and the microbiota.

    PubMed

    Majnik, Amber V; Lane, Robert H

    2015-10-01

    Children exposed to early-life adversity carry a greater risk of poor health and disease into adulthood. This increased disease risk is shadowed by changes in the epigenome. Epigenetics can change gene expression to modify disease risk; unfortunately, how epigenetics are changed by the environment is unclear. It is known that the environment modifies the microbiota, and recent data indicate that the microbiota and the epigenome interact and respond to each other. Specifically, the microbiome may alter the epigenome through the production of metabolites. Investigating the relationship between the microbiome and the epigenome may provide novel understanding of the impact of early-life environment on long-term health.

  12. Characterizing the Evolutionary Path(s) to Early Homo

    PubMed Central

    Schroeder, Lauren; Roseman, Charles C.; Cheverud, James M.; Ackermann, Rebecca R.

    2014-01-01

    Numerous studies suggest that the transition from Australopithecus to Homo was characterized by evolutionary innovation, resulting in the emergence and coexistence of a diversity of forms. However, the evolutionary processes necessary to drive such a transition have not been examined. Here, we apply statistical tests developed from quantitative evolutionary theory to assess whether morphological differences among late australopith and early Homo species in Africa have been shaped by natural selection. Where selection is demonstrated, we identify aspects of morphology that were most likely under selective pressure, and determine the nature (type, rate) of that selection. Results demonstrate that selection must be invoked to explain an Au. africanus—Au. sediba—Homo transition, while transitions from late australopiths to various early Homo species that exclude Au. sediba can be achieved through drift alone. Rate tests indicate that selection is largely directional, acting to rapidly differentiate these taxa. Reconstructions of patterns of directional selection needed to drive the Au. africanus—Au. sediba—Homo transition suggest that selection would have affected all regions of the skull. These results may indicate that an evolutionary path to Homo without Au. sediba is the simpler path and/or provide evidence that this pathway involved more reliance on cultural adaptations to cope with environmental change. PMID:25470780

  13. Systematic characterization of small RNAome during zebrafish early developmental stages

    PubMed Central

    2014-01-01

    Background During early vertebrate development, various small non-coding RNAs (sRNAs) such as MicroRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs) are dynamically expressed for orchestrating the maternal-to-zygotic transition (MZT). Systematic analysis of expression profiles of zebrafish small RNAome will be greatly helpful for understanding the sRNA regulation during embryonic development. Results We first determined the expression profiles of sRNAs during eight distinct stages of early zebrafish development by sRNA-seq technology. Integrative analyses with a new computational platform of CSZ (characterization of small RNAome for zebrafish) demonstrated an sRNA class transition from piRNAs to miRNAs as development proceeds. We observed that both the abundance and diversity of miRNAs are gradually increased, while the abundance is enhanced more dramatically than the diversity during development. However, although both the abundance and diversity of piRNAs are gradually decreased, the diversity was firstly increased then rapidly decreased. To evaluate the computational accuracy, the expression levels of four known miRNAs were experimentally validated. We also predicted 25 potentially novel miRNAs, whereas two candidates were verified by Northern blots. Conclusions Taken together, our analyses revealed the piRNA to miRNA transition as a conserved mechanism in zebrafish, although two different types of sRNAs exhibit distinct expression dynamics in abundance and diversity, respectively. Our study not only generated a better understanding for sRNA regulations in early zebrafish development, but also provided a useful platform for analyzing sRNA-seq data. The CSZ was implemented in Perl and freely downloadable at: http://csz.biocuckoo.org. PMID:24507755

  14. Transgenerational Effects of Early Life Starvation on Growth, Reproduction, and Stress Resistance in Caenorhabditis elegans

    PubMed Central

    Jobson, Meghan A.; Jordan, James M.; Sandrof, Moses A.; Hibshman, Jonathan D.; Lennox, Ashley L.; Baugh, L. Ryan

    2015-01-01

    Starvation during early development can have lasting effects that influence organismal fitness and disease risk. We characterized the long-term phenotypic consequences of starvation during early larval development in Caenorhabditis elegans to determine potential fitness effects and develop it as a model for mechanistic studies. We varied the amount of time that larvae were developmentally arrested by starvation after hatching (“L1 arrest”). Worms recovering from extended starvation grew slowly, taking longer to become reproductive, and were smaller as adults. Fecundity was also reduced, with the smallest individuals most severely affected. Feeding behavior was impaired, possibly contributing to deficits in growth and reproduction. Previously starved larvae were more sensitive to subsequent starvation, suggesting decreased fitness even in poor conditions. We discovered that smaller larvae are more resistant to heat, but this correlation does not require passage through L1 arrest. The progeny of starved animals were also adversely affected: Embryo quality was diminished, incidence of males was increased, progeny were smaller, and their brood size was reduced. However, the progeny and grandprogeny of starved larvae were more resistant to starvation. In addition, the progeny, grandprogeny, and great-grandprogeny were more resistant to heat, suggesting epigenetic inheritance of acquired resistance to starvation and heat. Notably, such resistance was inherited exclusively from individuals most severely affected by starvation in the first generation, suggesting an evolutionary bet-hedging strategy. In summary, our results demonstrate that starvation affects a variety of life-history traits in the exposed animals and their descendants, some presumably reflecting fitness costs but others potentially adaptive. PMID:26187123

  15. Early life stress inhibits expression of ribosomal RNA in the developing hippocampus.

    PubMed

    Wei, Lan; Hao, Jin; Kaffman, Arie

    2014-01-01

    Children that are exposed to abuse or neglect show abnormal hippocampal function. However, the developmental mechanisms by which early life stress (ELS) impairs normal hippocampal development have not been elucidated. Here we propose that exposure to ELS blunts normal hippocampal growth by inhibiting the availability of ribosomal RNA (rRNA). In support of this hypothesis, we show that the normal mouse hippocampus undergoes a growth-spurt during the second week of life, followed by a gradual decrease in DNA and RNA content that persists into adulthood. This developmental pattern is associated with accelerated ribosomal RNA (rRNA) synthesis during the second week of life, followed by a gradual decline in rRNA levels that continue into adulthood. Levels of DNA methylation at the ribosomal DNA (rDNA) promoter are lower during the second week of life compared to earlier development or adulthood. Exposure to brief daily separation (BDS), a mouse model of early life stress, increased DNA methylation at the ribosomal DNA promoter, decreased rRNA levels, and blunted hippocampal growth during the second week of life. Exposure to acute (3 hrs) maternal separation decreased rRNA and increased DNA methylation at the rDNA proximal promoter, suggesting that exposure to stress early in life can rapidly regulate the availability of rRNA levels in the developing hippocampus. Given the critical role that rRNA plays in supporting normal growth and development, these findings suggest a novel molecular mechanism to explain how stress early in life impairs hippocampus development in the mouse. PMID:25517398

  16. Consequences of Early Life Programing by Genetic and Environmental Influences: A Synthesis Regarding Pubertal Timing.

    PubMed

    Roth, Christian L; DiVall, Sara

    2016-01-01

    Sexual maturation is closely tied to growth and body weight gain, suggesting that regulative metabolic pathways are shared between somatic and pubertal development. The pre- and postnatal environment affects both growth and pubertal development, indicating that common pathways are affected by the environment. Intrauterine and early infantile developmental phases are characterized by high plasticity and thereby susceptibility to factors that affect metabolic function as well as related reproductive function throughout life. In children born small for gestational age, poor nutritional conditions during gestation can modify metabolic systems to adapt to expectations of chronic undernutrition. These children are potentially poorly equipped to cope with energy-dense diets and are possibly programmed to store as much energy as possible, causing rapid weight gain with the risk for adult disease and premature onset of puberty. Environmental factors can cause modifications to the genome, so-called epigenetic changes, to affect gene expression and subsequently modify phenotypic expression of genomic information. Epigenetic modifications, which occur in children born small for gestational age, are thought to underlie part of the metabolic programming that subsequently effects both somatic and pubertal development. PMID:26680576

  17. Antimicrobial Proteins and Peptides in Early Life: Ontogeny and Translational Opportunities.

    PubMed

    Battersby, Anna J; Khara, Jasmeet; Wright, Victoria J; Levy, Ofer; Kampmann, Beate

    2016-01-01

    While developing adaptive immune responses, young infants are especially vulnerable to serious infections, including sepsis, meningitis, and pneumonia. Antimicrobial proteins and peptides (APPs) are key effectors that function as broad-spectrum anti-infectives. This review seeks to summarize the clinically relevant functional qualities of APPs and the increasing clinical trial evidence for their use to combat serious infections in infancy. Levels of APPs are relatively low in early life, especially in infants born preterm or with low birth weight (LBW). There are several rationales for the potential clinical utility of APPs in the prevention and treatment of infections in infants: (a) APPs may be most helpful in those with reduced levels; (b) during sepsis microbial products signal via pattern recognition receptors causing potentially harmful inflammation that APPs may counteract; and (c) in the era of antibiotic resistance, development of new anti-infective strategies is essential. Evidence supports the potential clinical utility of exogenous APPs to reduce infection-related morbidity in infancy. Further studies should characterize the ontogeny of antimicrobial activity in mucosal and systemic compartments, and examine the efficacy of exogenous-APP formulations to inform translational development of APPs for infant groups. PMID:27588020

  18. Antimicrobial Proteins and Peptides in Early Life: Ontogeny and Translational Opportunities

    PubMed Central

    Battersby, Anna J.; Khara, Jasmeet; Wright, Victoria J.; Levy, Ofer; Kampmann, Beate

    2016-01-01

    While developing adaptive immune responses, young infants are especially vulnerable to serious infections, including sepsis, meningitis, and pneumonia. Antimicrobial proteins and peptides (APPs) are key effectors that function as broad-spectrum anti-infectives. This review seeks to summarize the clinically relevant functional qualities of APPs and the increasing clinical trial evidence for their use to combat serious infections in infancy. Levels of APPs are relatively low in early life, especially in infants born preterm or with low birth weight (LBW). There are several rationales for the potential clinical utility of APPs in the prevention and treatment of infections in infants: (a) APPs may be most helpful in those with reduced levels; (b) during sepsis microbial products signal via pattern recognition receptors causing potentially harmful inflammation that APPs may counteract; and (c) in the era of antibiotic resistance, development of new anti-infective strategies is essential. Evidence supports the potential clinical utility of exogenous APPs to reduce infection-related morbidity in infancy. Further studies should characterize the ontogeny of antimicrobial activity in mucosal and systemic compartments, and examine the efficacy of exogenous-APP formulations to inform translational development of APPs for infant groups. PMID:27588020

  19. The interplay of early-life stress, nutrition, and immune activation programs adult hippocampal structure and function

    PubMed Central

    Hoeijmakers, Lianne; Lucassen, Paul J.; Korosi, Aniko

    2015-01-01

    Early-life adversity increases the vulnerability to develop psychopathologies and cognitive decline later in life. This association is supported by clinical and preclinical studies. Remarkably, experiences of stress during this sensitive period, in the form of abuse or neglect but also early malnutrition or an early immune challenge elicit very similar long-term effects on brain structure and function. During early-life, both exogenous factors like nutrition and maternal care, as well as endogenous modulators, including stress hormones and mediator of immunological activity affect brain development. The interplay of these key elements and their underlying molecular mechanisms are not fully understood. We discuss here the hypothesis that exposure to early-life adversity (specifically stress, under/malnutrition and infection) leads to life-long alterations in hippocampal-related cognitive functions, at least partly via changes in hippocampal neurogenesis. We further discuss how these different key elements of the early-life environment interact and affect one another and suggest that it is a synergistic action of these elements that shapes cognition throughout life. Finally, we consider different intervention studies aiming to prevent these early-life adversity induced consequences. The emerging evidence for the intriguing interplay of stress, nutrition, and immune activity in the early-life programming calls for a more in depth understanding of the interaction of these elements and the underlying mechanisms. This knowledge will help to develop intervention strategies that will converge on a more complete set of changes induced by early-life adversity. PMID:25620909

  20. The interplay of early-life stress, nutrition, and immune activation programs adult hippocampal structure and function.

    PubMed

    Hoeijmakers, Lianne; Lucassen, Paul J; Korosi, Aniko

    2014-01-01

    Early-life adversity increases the vulnerability to develop psychopathologies and cognitive decline later in life. This association is supported by clinical and preclinical studies. Remarkably, experiences of stress during this sensitive period, in the form of abuse or neglect but also early malnutrition or an early immune challenge elicit very similar long-term effects on brain structure and function. During early-life, both exogenous factors like nutrition and maternal care, as well as endogenous modulators, including stress hormones and mediator of immunological activity affect brain development. The interplay of these key elements and their underlying molecular mechanisms are not fully understood. We discuss here the hypothesis that exposure to early-life adversity (specifically stress, under/malnutrition and infection) leads to life-long alterations in hippocampal-related cognitive functions, at least partly via changes in hippocampal neurogenesis. We further discuss how these different key elements of the early-life environment interact and affect one another and suggest that it is a synergistic action of these elements that shapes cognition throughout life. Finally, we consider different intervention studies aiming to prevent these early-life adversity induced consequences. The emerging evidence for the intriguing interplay of stress, nutrition, and immune activity in the early-life programming calls for a more in depth understanding of the interaction of these elements and the underlying mechanisms. This knowledge will help to develop intervention strategies that will converge on a more complete set of changes induced by early-life adversity.

  1. Individual quality, early-life conditions, and reproductive success in contrasted populations of large herbivores.

    PubMed

    Hamel, Sandra; Gaillard, Jean-Michel; Festa-Bianchet, Marco; Côté, Steeve D

    2009-07-01

    Variations among individuals in phenotypic quality and fitness often confound analyses of life-history strategies assessed at the population level. We used detailed long-term data from three populations of large herbivores with generation times ranging from four to nine years to quantify heterogeneity in individual quality among females, and to assess its influence on mean annual reproductive success over the lifetime (MRS). We also determined how environmental conditions in early life shaped individual quality and tested A. Lomnicki's hypothesis that variance in individual quality should increase when environmental conditions deteriorate. Using multivariate analyses (PCA), we identified one (in sheep and deer) or two (in goats) covariations among life-history traits (longevity, success in the last breeding opportunity, adult mass, and social rank) as indexes of individual quality that positively influenced MRS of females. Individual quality was reduced by unfavorable weather, low resource availability, and high population density in the year of birth. Early-life conditions accounted for 35-55% of variation in individual quality. In roe deer, we found greater variance in individual quality for cohorts born under unfavorable conditions as opposed to favorable ones, but the opposite was found in bighorn sheep and mountain goats. Our results demonstrate that heterogeneity in female quality can originate from environmental conditions in early life and can markedly influence the fitness of females in species located at different positions along the slow-fast continuum of life-history strategies. PMID:19694145

  2. Individual quality, early-life conditions, and reproductive success in contrasted populations of large herbivores.

    PubMed

    Hamel, Sandra; Gaillard, Jean-Michel; Festa-Bianchet, Marco; Côté, Steeve D

    2009-07-01

    Variations among individuals in phenotypic quality and fitness often confound analyses of life-history strategies assessed at the population level. We used detailed long-term data from three populations of large herbivores with generation times ranging from four to nine years to quantify heterogeneity in individual quality among females, and to assess its influence on mean annual reproductive success over the lifetime (MRS). We also determined how environmental conditions in early life shaped individual quality and tested A. Lomnicki's hypothesis that variance in individual quality should increase when environmental conditions deteriorate. Using multivariate analyses (PCA), we identified one (in sheep and deer) or two (in goats) covariations among life-history traits (longevity, success in the last breeding opportunity, adult mass, and social rank) as indexes of individual quality that positively influenced MRS of females. Individual quality was reduced by unfavorable weather, low resource availability, and high population density in the year of birth. Early-life conditions accounted for 35-55% of variation in individual quality. In roe deer, we found greater variance in individual quality for cohorts born under unfavorable conditions as opposed to favorable ones, but the opposite was found in bighorn sheep and mountain goats. Our results demonstrate that heterogeneity in female quality can originate from environmental conditions in early life and can markedly influence the fitness of females in species located at different positions along the slow-fast continuum of life-history strategies.

  3. Neuropathic pain is constitutively suppressed in early life by anti-inflammatory neuroimmune regulation.

    PubMed

    McKelvey, Rebecca; Berta, Temugin; Old, Elizabeth; Ji, Ru-Rong; Fitzgerald, Maria

    2015-01-14

    Peripheral nerve injury can trigger neuropathic pain in adults but not in infants; indeed, for unknown reasons, neuropathic pain is rare before adolescence. We show here that the absence of neuropathic pain response in infant male rats and mice following nerve injury is due to an active, constitutive immune suppression of dorsal horn pain activity. In contrast to adult nerve injury, which triggers a proinflammatory immune response in the spinal dorsal horn, infant nerve injury triggers an anti-inflammatory immune response, characterized by significant increases in IL-4 and IL-10. This immediate anti-inflammatory response can also be evoked by direct C-fiber nerve stimulation in infant, but not adult, mice. Blockade of the anti-inflammatory activity with intrathecal anti-IL10 unmasks neuropathic pain behavior in infant nerve injured mice, showing that pain hypersensitivity in young mice is actively suppressed by a dominant anti-inflammatory neuroimmune response. As infant nerve injured mice reach adolescence (postnatal day 25-30), the dorsal horn immune profile switches from an anti-inflammatory to a proinflammatory response characterized by significant increases in TNF and BDNF, and this is accompanied by a late onset neuropathic pain behavior and increased dorsal horn cell sensitivity to cutaneous mechanical and cold stimuli. These findings show that neuropathic pain following early life nerve injury is not absent but suppressed by neuroimmune activity and that "latent" pain can still emerge at adolescence, when the neuroimmune profile changes. The data may explain why neuropathic pain is rare in young children and also why it can emerge, for no observable reason, in adolescent patients.

  4. Neuropathic Pain Is Constitutively Suppressed in Early Life by Anti-Inflammatory Neuroimmune Regulation

    PubMed Central

    McKelvey, Rebecca; Berta, Temugin; Old, Elizabeth; Ji, Ru-Rong

    2015-01-01

    Peripheral nerve injury can trigger neuropathic pain in adults but not in infants; indeed, for unknown reasons, neuropathic pain is rare before adolescence. We show here that the absence of neuropathic pain response in infant male rats and mice following nerve injury is due to an active, constitutive immune suppression of dorsal horn pain activity. In contrast to adult nerve injury, which triggers a proinflammatory immune response in the spinal dorsal horn, infant nerve injury triggers an anti-inflammatory immune response, characterized by significant increases in IL-4 and IL-10. This immediate anti-inflammatory response can also be evoked by direct C-fiber nerve stimulation in infant, but not adult, mice. Blockade of the anti-inflammatory activity with intrathecal anti-IL10 unmasks neuropathic pain behavior in infant nerve injured mice, showing that pain hypersensitivity in young mice is actively suppressed by a dominant anti-inflammatory neuroimmune response. As infant nerve injured mice reach adolescence (postnatal day 25–30), the dorsal horn immune profile switches from an anti-inflammatory to a proinflammatory response characterized by significant increases in TNF and BDNF, and this is accompanied by a late onset neuropathic pain behavior and increased dorsal horn cell sensitivity to cutaneous mechanical and cold stimuli. These findings show that neuropathic pain following early life nerve injury is not absent but suppressed by neuroimmune activity and that “latent” pain can still emerge at adolescence, when the neuroimmune profile changes. The data may explain why neuropathic pain is rare in young children and also why it can emerge, for no observable reason, in adolescent patients. PMID:25589741

  5. Inborn Stress Reactivity Shapes Adult Behavioral Consequences of Early-Life Maternal Separation Stress

    PubMed Central

    Rana, Samir; Pugh, Phyllis C.; Jackson, Nateka; Clinton, Sarah M.; Kerman, Ilan A.

    2015-01-01

    Early-life experience strongly impacts neurodevelopment and stress susceptibility in adulthood. Maternal separation (MS), an established model of early-life adversity, has been shown to negatively impact behavioral and endocrine responses to stress in adulthood. However, the impact of MS in rats with heightened inborn stress susceptibility has not been fully explored. To address this issue we conducted MS in Wistar-Kyoto (WKY) rats, an animal model of comorbid depression and anxiety, and Wistar rats, which share a similar genetic background with WKYs. WKY and Wistar pups experienced either 180-min daily MS or 15-min separation (neonatal handling) during the first two postnatal weeks, and were tested for depressive- and anxiety- like behaviors in adulthood. Exposure to early-life MS in WKY rats decreased anxiety- and depressive- like behaviors, leading to increased exploration on the open field test (OFT), enhanced social interaction, and diminished immobility on the forced swim test. MS had an opposite effect in Wistar offspring, leading to enhanced anxiety-like behaviors, such as reduced OFT exploration and decreased social interaction. These findings are consistent with the match/mismatch theory of disease and the predictive adaptive response, which suggest that early life stress exposure can confer adaptive value in later life within certain individuals. Our data supports this theory, showing that early-life MS has positive and perhaps adaptive effects within stress-vulnerable WKY offspring. Future studies will be required to elucidate the neurobiological underpinnings of contrasting behavioral effects of MS on WKY vs. Wistar offspring. PMID:25451726

  6. Application of molecular endpoints in early life stage salmonid environmental biomonitoring.

    PubMed

    Marlatt, Vicki L; Sherrard, Ryan; Kennedy, Chris J; Elphick, James R; Martyniuk, Christopher J

    2016-04-01

    Molecular endpoints can enhance existing whole animal bioassays by more fully characterizing the biological impacts of aquatic pollutants. Laboratory and field studies were used to examine the utility of adopting molecular endpoints for a well-developed in situ early life stage (eyed embryo to onset of swim-up fry) salmonid bioassay to improve diagnostic assessments of water quality in the field. Coastal cutthroat trout (Oncorhynchus clarki clarki) were exposed in the laboratory to the model metal (zinc, 40μg/L) and the polycyclic aromatic hydrocarbon (pyrene, 100μg/L) in water to examine the resulting early life stage salmonid responses. In situ field exposures and bioassays were conducted in parallel to evaluate the water quality of three urban streams in British Columbia (two sites with anthropogenic inputs and one reference site). The endpoints measured in swim-up fry included survival, deformities, growth (weight and length), vitellogenin (vtg) and metallothionein (Mt) protein levels, and hepatic gene expression (e.g., metallothioneins [mta and mtb], endocrine biomarkers [vtg and estrogen receptors, esr] and xenobiotic-metabolizing enzymes [cytochrome P450 1A3, cyp1a3 and glutathione transferases, gstk]). No effects were observed in the zinc treatment, however exposure of swim-up fry to pyrene resulted in decreased survival, deformities and increased estrogen receptor alpha (er1) mRNA levels. In the field exposures, xenobiotic-metabolizing enzymes (cyp1a3, gstk) and zinc transporter (zntBigM103) mRNA were significantly increased in swim-up fry deployed at the sites with more anthropogenic inputs compared to the reference site. Cluster analysis revealed that gene expression profiles in individuals from the streams receiving anthropogenic inputs were more similar to each other than to the reference site. Collectively, the results obtained in this study suggest that molecular endpoints may be useful, and potentially more sensitive, indicators of site

  7. Alchemy as studies of life and matter: reconsidering the place of vitalism in early modern chemistry.

    PubMed

    Chang, Ku-ming

    2011-06-01

    Early modern alchemy studied both matter and life, much like today's life sciences. What material life is and how it comes about intrigued alchemists. Many found the answer by assuming a vital principle that served as the source and cause of life. Recent literature has presented important cases in which vitalist formulations incorporated corpuscular or mechanical elements that were characteristic of the New Science and other cases in which vitalist thinking influenced important figures of the Scientific Revolution. Not merely speculative, vitalist ideas also motivated chymical practice. The unity of life science and material science that is found in many formulations of Renaissance alchemy disintegrated in Georg Ernst Stahl's version of post-Cartesian vitalism. PMID:21874692

  8. Alchemy as studies of life and matter: reconsidering the place of vitalism in early modern chemistry.

    PubMed

    Chang, Ku-ming

    2011-06-01

    Early modern alchemy studied both matter and life, much like today's life sciences. What material life is and how it comes about intrigued alchemists. Many found the answer by assuming a vital principle that served as the source and cause of life. Recent literature has presented important cases in which vitalist formulations incorporated corpuscular or mechanical elements that were characteristic of the New Science and other cases in which vitalist thinking influenced important figures of the Scientific Revolution. Not merely speculative, vitalist ideas also motivated chymical practice. The unity of life science and material science that is found in many formulations of Renaissance alchemy disintegrated in Georg Ernst Stahl's version of post-Cartesian vitalism.

  9. Early life insult from cigarette smoke may be predictive of chronic diseases later in life.

    PubMed

    Doherty, S P; Grabowski, J; Hoffman, C; Ng, S P; Zelikoff, J T

    2009-07-01

    Evidence is rapidly accumulating that links cigarette smoke (CS) exposure in utero with the development of a variety of disease pathologies in the older offspring including, type 2 diabetes, obesity, certain childhood cancers and respiratory disorders. The role that the fetal environment plays in these late-onset outcomes and the underlying cellular/molecular mechanisms by which these CS-induced effects may occur are currently unknown. Although we are becoming more aware of the fact that prenatal insult can underlie childhood/adult diseases, critical knowledge gaps still exist including gene-environment interactions, and how a CS-induced imbalance in immune dynamics (i.e. TH1/TH2) might affect asthma development and/or exacerbation later in life. In this mini-review we introduce the concept of sexual dimorphism in CS-induced late-onset disease outcomes, as well as explore the mechanisms by which CS exposure in utero can lead to cardiovascular, cancer and respiratory abnormalities in the exposed offspring. By addressing such questions using animal models, appropriate intervention strategies can be developed that will help to protect children's health and their long-term quality of life.

  10. Comparative responses to endocrine disrupting compounds in early life stages of Atlantic salmon, Salmo salar.

    PubMed

    Duffy, T A; Iwanowicz, L R; McCormick, S D

    2014-07-01

    Atlantic salmon (Salmo salar) are endangered anadromous fish that may be exposed to feminizing endocrine disrupting compounds (EDCs) during early development, potentially altering physiological capacities, survival and fitness. To assess differential life stage sensitivity to common EDCs, we carried out short-term (4 day) exposures using three doses each of 17 α-ethinylestradiol (EE2), 17 β-estradiol (E2), and nonylphenol (NP) on four early life stages; embryos, yolk-sac larvae, feeding fry and 1 year old smolts. Differential response was compared using vitellogenin (Vtg, a precursor egg protein) gene transcription. Smolts were also examined for impacts on plasma Vtg, cortisol, thyroid hormones (T4/T3) and hepatosomatic index (HSI). Compound-related mortality was not observed in any life stage, but Vtg mRNA was elevated in a dose-dependent manner in yolk-sac larvae, fry and smolts but not in embryos. The estrogens EE2 and E2 were consistently stronger inducers of Vtg than NP. Embryos responded significantly to the highest concentration of EE2 only, while older life stages responded to the highest doses of all three compounds, as well as intermediate doses of EE2 and E2. Maximal transcription was greater for fry among the three earliest life stages, suggesting fry may be the most responsive life stage in early development. Smolt plasma Vtg was also significantly increased, and this response was observed at lower doses of each compound than was detected by gene transcription suggesting plasma Vtg is a more sensitive indicator at this life stage. HSI was increased at the highest doses of EE2 and E2, and plasma T3 was decreased at the highest dose of EE2. Our results indicate that all life stages are potentially sensitive to endocrine disruption by estrogenic compounds and that physiological responses were altered over a short window of exposure, indicating the potential for these compounds to impact fish in the wild. PMID:24713117

  11. Comparative responses to endocrine disrupting compounds in early life stages of Atlantic salmon, Salmo salar

    USGS Publications Warehouse

    Duffy, Tara A.; Iwanowicz, Luke R.; McCormick, Stephen D.

    2014-01-01

    Atlantic salmon (Salmo salar) are endangered anadromous fish that may be exposed to feminizing endocrine disrupting compounds (EDCs) during early development, potentially altering physiological capacities, survival and fitness. To assess differential life stage sensitivity to common EDCs, we carried out short-term (four day) exposures using three doses each of 17α-ethinylestradiol (EE2), 17β-estradiol (E2), and nonylphenol (NP) on four early life stages; embryos, yolk-sac larvae, feeding fry and one year old smolts. Differential response was compared using vitellogenin (Vtg, a precursor egg protein) gene transcription. Smolts were also examined for impacts on plasma Vtg, cortisol, thyroid hormones (T4/T3) and hepatosomatic index (HSI). Compound-related mortality was not observed in any life stage, but Vtg mRNA was elevated in a dose-dependent manner in yolk-sac larvae, fry and smolts but not in embyos. The estrogens EE2 and E2 were consistently stronger inducers of Vtg than NP. Embryos responded significantly to the highest concentration of EE2 only, while older life stages responded to the highest doses of all three compounds, as well as intermediate doses of EE2 and E2. Maximal transcription was greater for fry among the three earliest life stages, suggesting fry may be the most responsive life stage in early development. Smolt plasma Vtg was also significantly increased, and this response was observed at lower doses of each compound than was detected by gene transcription suggesting this is a more sensitive indicator at this life stage. HSI was increased at the highest doses of EE2 and E2 and plasma T3 decreased at the highest dose of EE2. Our results indicate that all life stages after hatching are potentially sensitive to endocrine disruption by estrogenic compounds and that physiological responses were altered over a short window of exposure, indicating the potential for these compounds to impact fish in the wild.

  12. Barium distributions in teeth reveal early-life dietary transitions in primates.

    PubMed

    Austin, Christine; Smith, Tanya M; Bradman, Asa; Hinde, Katie; Joannes-Boyau, Renaud; Bishop, David; Hare, Dominic J; Doble, Philip; Eskenazi, Brenda; Arora, Manish

    2013-06-13

    Early-life dietary transitions reflect fundamental aspects of primate evolution and are important determinants of health in contemporary human populations. Weaning is critical to developmental and reproductive rates; early weaning can have detrimental health effects but enables shorter inter-birth intervals, which influences population growth. Uncovering early-life dietary history in fossils is hampered by the absence of prospectively validated biomarkers that are not modified during fossilization. Here we show that large dietary shifts in early life manifest as compositional variations in dental tissues. Teeth from human children and captive macaques, with prospectively recorded diet histories, demonstrate that barium (Ba) distributions accurately reflect dietary transitions from the introduction of mother's milk through the weaning process. We also document dietary transitions in a Middle Palaeolithic juvenile Neanderthal, which shows a pattern of exclusive breastfeeding for seven months, followed by seven months of supplementation. After this point, Ba levels in enamel returned to baseline prenatal levels, indicating an abrupt cessation of breastfeeding at 1.2 years of age. Integration of Ba spatial distributions and histological mapping of tooth formation enables novel studies of the evolution of human life history, dietary ontogeny in wild primates, and human health investigations through accurate reconstructions of breastfeeding history.

  13. Maternal Early Life Experiences and Parenting: The Mediating Role of Cortisol and Executive Function

    ERIC Educational Resources Information Center

    Gonzalez, Andrea; Jenkins, Jennifer M.; Steiner, Meir; Fleming, Alison S.

    2012-01-01

    Objective: Research suggests that early life adversity may affect subsequent parenting. Animal studies investigating mechanisms of transmission have focused on biological factors; whereas research in humans has emphasized cognitive and psychosocial factors. We hypothesized that neuropsychological and physiological factors would act as mediators…

  14. Temperature Influences Selective Mortality during the Early Life Stages of a Coral Reef Fish

    PubMed Central

    Rankin, Tauna L.; Sponaugle, Su

    2011-01-01

    For organisms with complex life cycles, processes occurring at the interface between life stages can disproportionately impact survival and population dynamics. Temperature is an important factor influencing growth in poikilotherms, and growth-related processes are frequently correlated with survival. We examined the influence of water temperature on growth-related early life history traits (ELHTs) and differential mortality during the transition from larval to early juvenile stage in sixteen monthly cohorts of bicolor damselfish Stegastes partitus, sampled on reefs of the upper Florida Keys, USA over 6 years. Otolith analysis of settlers and juveniles coupled with environmental data revealed that mean near-reef water temperature explained a significant proportion of variation in pelagic larval duration (PLD), early larval growth, size-at-settlement, and growth during early juvenile life. Among all cohorts, surviving juveniles were consistently larger at settlement, but grew more slowly during the first 6 d post-settlement. For the other ELHTs, selective mortality varied seasonally: during winter and spring months, survivors exhibited faster larval growth and shorter PLDs, whereas during warmer summer months, selection on PLD reversed and selection on larval growth became non-linear. Our results demonstrate that temperature not only shapes growth-related traits, but can also influence the direction and intensity of selective mortality. PMID:21559305

  15. An experimental demonstration that early-life competitive disadvantage accelerates telomere loss.

    PubMed

    Nettle, Daniel; Monaghan, Pat; Gillespie, Robert; Brilot, Ben; Bedford, Thomas; Bateson, Melissa

    2015-01-01

    Adverse experiences in early life can exert powerful delayed effects on adult survival and health. Telomere attrition is a potentially important mechanism in such effects. One source of early-life adversity is the stress caused by competitive disadvantage. Although previous avian experiments suggest that competitive disadvantage may accelerate telomere attrition, they do not clearly isolate the effects of competitive disadvantage from other sources of variation. Here, we present data from an experiment in European starlings (Sturnus vulgaris) that used cross-fostering to expose siblings to divergent early experience. Birds were assigned either to competitive advantage (being larger than their brood competitors) or competitive disadvantage (being smaller than their brood competitors) between days 3 and 12 post-hatching. Disadvantage did not affect weight gain, but it increased telomere attrition, leading to shorter telomere length in disadvantaged birds by day 12. There were no effects of disadvantage on oxidative damage as measured by plasma lipid peroxidation. We thus found strong evidence that early-life competitive disadvantage can accelerate telomere loss. This could lead to faster age-related deterioration and poorer health in later life.

  16. Parent Attachment and Early Adolescents' Life Satisfaction: The Mediating Effect of Hope

    ERIC Educational Resources Information Center

    Jiang, Xu; Huebner, E. Scott; Hills, Kimberly J.

    2013-01-01

    Research using an attachment theory framework has provided evidence that parent attachment is one of the crucial determinants of psychological adjustment in adolescents, including global life satisfaction (LS). This study investigated the interrelationships among parent attachment, hope, and LS during early adolescence, including the mediation…

  17. DNA Methylation: A Mechanism for Embedding Early Life Experiences in the Genome

    ERIC Educational Resources Information Center

    Szyf, Moshe; Bick, Johanna

    2013-01-01

    Although epidemiological data provide evidence that early life experience plays a critical role in human development, the mechanism of how this works remains in question. Recent data from human and animal literature suggest that epigenetic changes, such as DNA methylation, are involved not only in cellular differentiation but also in the…

  18. Early Years: Young Children Deserve the Best Possible Start in Life

    ERIC Educational Resources Information Center

    Robertson, Leena

    2015-01-01

    That all young children should have the best possible start in life is a statement that tends to be met with universal agreement. This article, however, argues there are very many different kinds of ideologies that shape the kinds of "best starts" early years teachers should strive for at a time when childhood poverty is rising and when…

  19. Mexican American Birthweight and Child Overweight: Unraveling a Possible Early Life Course Health Transition

    ERIC Educational Resources Information Center

    Hamilton, Erin R.; Teitler, Julien O.; Reichman, Nancy E.

    2011-01-01

    Mexican American children have a weight distribution that categorizes them as relatively healthy at birth but relatively unhealthy by age 3. This early life course transition in health based on weight raises the question of whether Mexican American children "outgrow" the epidemiologic paradox of favorable birth outcomes despite social disadvantage…

  20. Reconceptualizing Early and Late Onset: A Life Course Analysis of Older Heroin Users

    ERIC Educational Resources Information Center

    Boeri, Miriam Williams; Sterk, Claire E.; Elifson, Kirk W.

    2008-01-01

    Purpose: Researchers' knowledge regarding older users of illicit drugs is limited despite the increasing numbers of users. In this article, we apply a life course perspective to gain a further understanding of older adult drug use, specifically contrasting early- and late-onset heroin users. Design and Methods: We collected qualitative data from…

  1. Sex and strain modify antioxidant response to early life ozone exposure in rats.

    EPA Science Inventory

    In the US, chronic obstructive pulmonary disease (COPD) is the 3rd leading cause of death. In women, its impact continues to increase. Oxidant insults like cigarette smoke and air pollution, especially during critical periods of early life, appear to further increase risk of COPD...

  2. Impaired Cognition in Rats with Cortical Dysplasia: Additional Impact of Early-Life Seizures

    ERIC Educational Resources Information Center

    Lucas, Marcella M.; Lenck-Santini, Pierre-Pascal; Holmes, Gregory L.; Scott, Rod C.

    2011-01-01

    One of the most common and serious co-morbidities in patients with epilepsy is cognitive impairment. While early-life seizures are considered a major cause for cognitive impairment, it is not known whether it is the seizures, the underlying neurological substrate or a combination that has the largest impact on eventual learning and memory. Teasing…

  3. Associations between Early Life Stress, Child Maltreatment, and Pubertal Development among Girls in Foster Care

    ERIC Educational Resources Information Center

    Mendle, Jane; Leve, Leslie D.; Van Ryzin, Mark; Natsuaki, Misaki N.; Ge, Xiaojia

    2011-01-01

    The present study investigated pubertal development in girls with maltreatment histories (N=100), assessed at 4 time points over 2 years, beginning in the spring of their final year of elementary school. This sample is unique in that participants were subject to an unusual level of environmental risk early in life and resided in foster care at the…

  4. The Suckling Rat as a Model for Immunonutrition Studies in Early Life

    PubMed Central

    Pérez-Cano, Francisco J.; Franch, Àngels; Castellote, Cristina; Castell, Margarida

    2012-01-01

    Diet plays a crucial role in maintaining optimal immune function. Research demonstrates the immunomodulatory properties and mechanisms of particular nutrients; however, these aspects are studied less in early life, when diet may exert an important role in the immune development of the neonate. Besides the limited data from epidemiological and human interventional trials in early life, animal models hold the key to increase the current knowledge about this interaction in this particular period. This paper reports the potential of the suckling rat as a model for immunonutrition studies in early life. In particular, it describes the main changes in the systemic and mucosal immune system development during rat suckling and allows some of these elements to be established as target biomarkers for studying the influence of particular nutrients. Different approaches to evaluate these immune effects, including the manipulation of the maternal diet during gestation and/or lactation or feeding the nutrient directly to the pups, are also described in detail. In summary, this paper provides investigators with useful tools for better designing experimental approaches focused on nutrition in early life for programming and immune development by using the suckling rat as a model. PMID:22899949

  5. An experimental demonstration that early-life competitive disadvantage accelerates telomere loss

    PubMed Central

    Nettle, Daniel; Monaghan, Pat; Gillespie, Robert; Brilot, Ben; Bedford, Thomas; Bateson, Melissa

    2015-01-01

    Adverse experiences in early life can exert powerful delayed effects on adult survival and health. Telomere attrition is a potentially important mechanism in such effects. One source of early-life adversity is the stress caused by competitive disadvantage. Although previous avian experiments suggest that competitive disadvantage may accelerate telomere attrition, they do not clearly isolate the effects of competitive disadvantage from other sources of variation. Here, we present data from an experiment in European starlings (Sturnus vulgaris) that used cross-fostering to expose siblings to divergent early experience. Birds were assigned either to competitive advantage (being larger than their brood competitors) or competitive disadvantage (being smaller than their brood competitors) between days 3 and 12 post-hatching. Disadvantage did not affect weight gain, but it increased telomere attrition, leading to shorter telomere length in disadvantaged birds by day 12. There were no effects of disadvantage on oxidative damage as measured by plasma lipid peroxidation. We thus found strong evidence that early-life competitive disadvantage can accelerate telomere loss. This could lead to faster age-related deterioration and poorer health in later life. PMID:25411450

  6. Family Quality of Life for Families in Early Intervention in Spain

    ERIC Educational Resources Information Center

    Mas, Joana M.; Baqués, Natasha; Balcells-Balcells, Anna; Dalmau, Mariona; Giné, Climent; Gràcia, Marta; Vilaseca, Rosa

    2016-01-01

    Early intervention (EI) has been shown to be an essential resource for meeting the needs and priorities of children with intellectual and developmental disability and their families. The objective of this study was to examine (a) the perceived quality of life of families attending EI centers in Spain and (b) its relationship with characteristics…

  7. Dimensions of Social Capital and Life Adjustment in the Transition to Early Adulthood

    ERIC Educational Resources Information Center

    Pettit, Gregory S.; Erath, Stephen A.; Lansford, Jennifer E.; Dodge, Kenneth A.; Bates, John E.

    2011-01-01

    The predictive relations between social capital depth (high-quality relationships across contexts) and breadth (friendship network extensivity) and early-adult life adjustment outcomes were examined using data from a prospective longitudinal study. Interviews at age 22 yielded (a) psychometrically sound indexes of relationship quality with…

  8. Behavioural early-life exposures and body composition at age 15 years

    PubMed Central

    Leary, S D; Lawlor, D A; Davey Smith, G; Brion, M J; Ness, A R

    2015-01-01

    Background/Objectives: Previous studies have demonstrated associations between some early-life exposures and later obesity, but most have used body mass index in childhood or adulthood as the outcome. The objective of this study was to investigate whether early-life exposures were associated with directly measured fat and lean mass in adolescence. Subjects/Methods: This study used data on 4750 mother–offspring pairs, collected as a part of the Avon Longitudinal Study of Parents and Children, Bristol, UK between 1991 and 1992; associations between behavioural exposures occurring from conception up to 5 years of age (maternal and paternal smoking during pregnancy, breastfeeding, age at introduction to solids, dietary patterns and physical inactivity during early childhood) and offspring body composition measured by dual-energy X-ray absorptiometry at ~15 years were assessed. Results: After full adjustment for potential confounders, maternal smoking during pregnancy, having a junk food diet and spending more time watching television in early childhood were all associated with higher fat mass at age 15, whereas maternal smoking, having a healthy diet and playing computer games more frequently in early childhood were all associated with a higher lean mass at age 15. Associations with paternal smoking were generally weaker for both fat and lean mass, but as there was no strong statistical evidence for maternal vs paternal differences, confounding by social factors rather than a direct effect of maternal smoking cannot be ruled out. Early feeding was not associated with fat or lean mass at age 15. Conclusions: This study does not provide compelling evidence for associations between most early-life factors and body composition in adolescence. However, possible associations with dietary patterns and physical inactivity in early childhood require further investigation in other cohorts that have direct measurements of adolescent body composition. PMID:25664839

  9. The first thousand days - intestinal microbiology of early life: establishing a symbiosis.

    PubMed

    Wopereis, Harm; Oozeer, Raish; Knipping, Karen; Belzer, Clara; Knol, Jan

    2014-08-01

    The development of the intestinal microbiota in the first years of life is a dynamic process significantly influenced by early-life nutrition. Pioneer bacteria colonizing the infant intestinal tract and the gradual diversification to a stable climax ecosystem plays a crucial role in establishing host-microbe interactions essential for optimal symbiosis. This colonization process and establishment of symbiosis may profoundly influence health throughout life. Recent developments in microbiologic cultivation-independent methods allow a detailed view of the key players and factors involved in this process and may further elucidate their roles in a healthy gut and immune maturation. Aberrant patterns may lead to identifying key microbial signatures involved in developing immunologic diseases into adulthood, such as asthma and atopic diseases. The central role of early-life nutrition in the developmental human microbiota, immunity, and metabolism offers promising strategies for prevention and treatment of such diseases. This review provides an overview of the development of the intestinal microbiota, its bidirectional relationship with the immune system, and its role in impacting health and disease, with emphasis on allergy, in early life.

  10. Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life

    PubMed Central

    Pons, Marie-Laure; Quitté, Ghylaine; Fujii, Toshiyuki; Rosing, Minik T.; Reynard, Bruno; Moynier, Frederic; Douchet, Chantal; Albarède, Francis

    2011-01-01

    The Isua Supracrustal Belt, Greenland, of Early Archean age (3.81–3.70 Ga) represents the oldest crustal segment on Earth. Its complex lithology comprises an ophiolite-like unit and volcanic rocks reminiscent of boninites, which tie Isua supracrustals to an island arc environment. We here present zinc (Zn) isotope compositions measured on serpentinites and other rocks from the Isua supracrustal sequence and on serpentinites from modern ophiolites, midocean ridges, and the Mariana forearc. In stark contrast to modern midocean ridge and ophiolite serpentinites, Zn in Isua and Mariana serpentinites is markedly depleted in heavy isotopes with respect to the igneous average. Based on recent results of Zn isotope fractionation between coexisting species in solution, the Isua serpentinites were permeated by carbonate-rich, high-pH hydrothermal solutions at medium temperature (100–300 °C). Zinc isotopes therefore stand out as a pH meter for fossil hydrothermal solutions. The geochemical features of the Isua fluids resemble the interstitial fluids sampled in the mud volcano serpentinites of the Mariana forearc. The reduced character and the high pH inferred for these fluids make Archean serpentine mud volcanoes a particularly favorable setting for the early stabilization of amino acids. PMID:22006301

  11. Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life.

    PubMed

    Pons, Marie-Laure; Quitté, Ghylaine; Fujii, Toshiyuki; Rosing, Minik T; Reynard, Bruno; Moynier, Frederic; Douchet, Chantal; Albarède, Francis

    2011-10-25

    The Isua Supracrustal Belt, Greenland, of Early Archean age (3.81-3.70 Ga) represents the oldest crustal segment on Earth. Its complex lithology comprises an ophiolite-like unit and volcanic rocks reminiscent of boninites, which tie Isua supracrustals to an island arc environment. We here present zinc (Zn) isotope compositions measured on serpentinites and other rocks from the Isua supracrustal sequence and on serpentinites from modern ophiolites, midocean ridges, and the Mariana forearc. In stark contrast to modern midocean ridge and ophiolite serpentinites, Zn in Isua and Mariana serpentinites is markedly depleted in heavy isotopes with respect to the igneous average. Based on recent results of Zn isotope fractionation between coexisting species in solution, the Isua serpentinites were permeated by carbonate-rich, high-pH hydrothermal solutions at medium temperature (100-300 °C). Zinc isotopes therefore stand out as a pH meter for fossil hydrothermal solutions. The geochemical features of the Isua fluids resemble the interstitial fluids sampled in the mud volcano serpentinites of the Mariana forearc. The reduced character and the high pH inferred for these fluids make Archean serpentine mud volcanoes a particularly favorable setting for the early stabilization of amino acids. PMID:22006301

  12. Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life.

    PubMed

    Pons, Marie-Laure; Quitté, Ghylaine; Fujii, Toshiyuki; Rosing, Minik T; Reynard, Bruno; Moynier, Frederic; Douchet, Chantal; Albarède, Francis

    2011-10-25

    The Isua Supracrustal Belt, Greenland, of Early Archean age (3.81-3.70 Ga) represents the oldest crustal segment on Earth. Its complex lithology comprises an ophiolite-like unit and volcanic rocks reminiscent of boninites, which tie Isua supracrustals to an island arc environment. We here present zinc (Zn) isotope compositions measured on serpentinites and other rocks from the Isua supracrustal sequence and on serpentinites from modern ophiolites, midocean ridges, and the Mariana forearc. In stark contrast to modern midocean ridge and ophiolite serpentinites, Zn in Isua and Mariana serpentinites is markedly depleted in heavy isotopes with respect to the igneous average. Based on recent results of Zn isotope fractionation between coexisting species in solution, the Isua serpentinites were permeated by carbonate-rich, high-pH hydrothermal solutions at medium temperature (100-300 °C). Zinc isotopes therefore stand out as a pH meter for fossil hydrothermal solutions. The geochemical features of the Isua fluids resemble the interstitial fluids sampled in the mud volcano serpentinites of the Mariana forearc. The reduced character and the high pH inferred for these fluids make Archean serpentine mud volcanoes a particularly favorable setting for the early stabilization of amino acids.

  13. Early-life stress interactions with the epigenome: potential mechanisms driving vulnerability toward psychiatric illness.

    PubMed

    Lewis, Candace R; Olive, M Foster

    2014-09-01

    Throughout the 20th century a body of literature concerning the long-lasting effects of the early environment was produced. Adverse experiences in early life, or early-life stress (ELS), is associated with a higher risk of developing various psychiatric illnesses. The mechanisms driving the complex interplay between ELS and adult phenotype has baffled many investigators for decades. Over the last decade, the new field of neuroepigenetics has emerged as one possible mechanism by which ELS can have far-reaching effects on adult phenotype, behavior, and risk for psychiatric illness. Here we review two commonly investigated epigenetic mechanisms, histone modifications and DNA methylation, and the emerging field of neuroepigenetics as they relate to ELS. We discuss the current animal literature demonstrating ELS-induced epigenetic modulation of gene expression that results in altered adult phenotypes. We also briefly discuss other areas in which neuroepigenetics has emerged as a potential mechanism underlying environmental and genetic interactions.

  14. The interaction between early-life body size and physical activity on risk of breast cancer

    PubMed Central

    Oh, Hannah; Boeke, Caroline E.; Tamimi, Rulla M.; Smith-Warner, Stephanie A.; Wang, Molin; Willett, Walter C.; Eliassen, A. Heather

    2014-01-01

    While early-life body leanness is associated with increased breast cancer risk, early-life physical activity may protect against breast cancer. We examined whether the excess risk among lean girls is modified by their levels of prior, concurrent, or future physical activity. We conducted an analysis among 74,723 women in the Nurses’ Health Study II (follow-up 1997–2011). Participants recalled their body size at ages 5, 10, and 20 years in 1989 using a 9-level pictogram (level 1: most lean). In 1997, they reported adolescent levels of physical activity (ages 12–13 and 14–17 years). Cox proportional hazards models estimated the overall association of body size with breast cancer risk and assessed interactions of adolescent physical activity with body size at three different age periods (5–10, 10–20, and 20 years), adjusting for early-life and adult risk factors for breast cancer. Regardless of levels of adolescent physical activity, early-life body leanness (level 1–2 vs. 4.5+) was significantly associated with higher breast cancer risk. The association was slightly attenuated among those who were active (60+ MET-hr/wk) during adolescence compared to those who were inactive (<30 MET-hr/wk) (body size at ages 5–10 years: hazard ratio=1.37, 95% confidence interval=1.04–1.81 vs. 1.66, 1.29–2.12), but the interaction was not significant (p=0.72). The results were similar for body size at three different age periods. Being lean during early life is a risk factor for breast cancer among both inactive and active girls. Adolescent physical activity did not significantly modify the association, although some interaction cannot be excluded. PMID:25335465

  15. DNA methylation of BDNF as a biomarker of early-life adversity

    PubMed Central

    Kundakovic, Marija; Gudsnuk, Kathryn; Herbstman, Julie B.; Tang, Deliang; Perera, Frederica P.; Champagne, Frances A.

    2015-01-01

    Early-life adversity increases the risk for psychopathology in later life. The underlying mechanism(s) is unknown, but epigenetic variation represents a plausible candidate. Early-life exposures can disrupt epigenetic programming in the brain, with lasting consequences for gene expression and behavior. This evidence is primarily derived from animal studies, with limited study in humans due to inaccessibility of the target brain tissue. In humans, although there is evidence for DNA methylation changes in the peripheral blood of psychiatric patients, a fundamental question remains as to whether epigenetic markers in the blood can predict epigenetic changes occurring in the brain. We used in utero bisphenol A (BPA) exposure as a model environmental exposure shown to disrupt neurodevelopment and exert long-term effects on behavior in animals and humans. We show that prenatal BPA induces lasting DNA methylation changes in the transcriptionally relevant region of the Bdnf gene in the hippocampus and blood of BALB/c mice and that these changes are consistent with BDNF changes in the cord blood of humans exposed to high maternal BPA levels in utero. Our data suggest that BDNF DNA methylation in the blood may be used as a predictor of brain BDNF DNA methylation and gene expression as well as behavioral vulnerability induced by early-life environmental exposure. Because BDNF expression and DNA methylation are altered in several psychiatric disorders that are associated with early-life adversity, including depression, schizophrenia, bipolar disorder, and autism, BDNF DNA methylation in the blood may represent a novel biomarker for the early detection of psychopathology. PMID:25385582

  16. Development of the cortisol circadian rhythm in the light of stress early in life.

    PubMed

    Simons, Sterre S H; Beijers, Roseriet; Cillessen, Antonius H N; de Weerth, Carolina

    2015-12-01

    The secretion of the stress hormone cortisol follows a diurnal circadian rhythm. There are indications that this rhythm is affected by stress early in life. This paper addresses the development of the cortisol circadian rhythm between 1 and 6 years of age, and the role of maternal stress and anxiety early in the child's life on this (developing) rhythm. Participants were 193 healthy mother-child dyads from a community sample. Self-reported maternal stress and anxiety and physiological stress (saliva cortisol), were assessed prenatally (gestational week 37). Postnatally, self-reported maternal stress and anxiety were measured at 3, 6, 12, 30, and 72 months. Saliva cortisol samples from the children were collected on two days (four times each day) at 12, 30, and 72 months of age. The total amount of cortisol during the day and the cortisol decline over the day were determined to indicate children's cortisol circadian rhythm. Multilevel analyses showed that the total amount of cortisol decreased between 1 and 6 years. Furthermore, more maternal pregnancy-specific stress was related to higher total amounts of cortisol in the child. Higher levels of early postnatal maternal anxiety were associated with flatter cortisol declines in children. Higher levels of early postnatal maternal daily hassles were associated with steeper child cortisol declines over the day. These results indicated developmental change in children's cortisol secretion from 1 to 6 years and associations between maternal stress and anxiety early in children's lives and children's cortisol circadian rhythm in early childhood.

  17. Implicit measures of early-life family conditions: Relationships to psychosocial characteristics and cardiovascular disease risk in adulthood

    PubMed Central

    Chan, Meanne; Chen, Edith; Hibbert, Anita S.; Wong, Jennifer H. K.; Miller, Gregory E.

    2011-01-01

    Objectives An implicit measure of early-life family conditions was created to help address potential biases in responses to self-reported questionnaires of early-life family environments. We investigated whether a computerized affect attribution paradigm designed to capture implicit, affective responses (anger, fear, warmth) regarding early-life family environments was a) stable over time, b) associated with self-reports of childhood family environments, c) able to predict adult psychosocial profiles (perceived social support, heightened vigilance), and d) able to predict adult cardiovascular risk (blood pressure) either alone or in conjunction with a measure of early-life socioeconomic status. Method Two studies were conducted to examine reliability and validity of the affect attribution paradigm (Study 1, N = 94) and associated adult psychosocial outcomes and cardiovascular risk (Study 2, N = 122). Results Responses on the affect attribution paradigm showed significant correlations over a 6-month period, and were moderately associated with self-reports of childhood family environments. Greater attributed negative affect about early-life family conditions predicted lower levels of current perceived social support and heightened vigilance in adulthood. Attributed negative affect also interacted with early-life socioeconomic status to marginally predict resting systolic blood pressure, such that those individuals high in early-life SES but who had implicit negative affect attributed to early-life family conditions had SBP levels that were as high as individuals low in early-life SES. Conclusions Implicit measures of early-life family conditions are a useful approach for assessing the psychosocial nature of early-life environments and linking them to adult psychosocial and physiological health profiles. PMID:21644806

  18. Early life versus lifelong oral manganese exposure differently impairs skilled forelimb performance in adult rats.

    PubMed

    Beaudin, Stephane A; Nisam, Sean; Smith, Donald R

    2013-01-01

    Recent studies of children suggest that exposure to elevated manganese (Mn) levels disrupts aspects of motor, cognitive and behavioral functions that are dependent on dopamine brain systems. Although basal ganglia motor functions are well-known targets of adult occupational Mn exposure, the extent of motor function deficits in adults as a result of early life Mn exposure is unknown. Here we used a rodent model early life versus lifelong oral Mn exposure and the Montoya staircase test to determine whether developmental Mn exposure produces long-lasting deficits in sensorimotor performance in adulthood. Long-Evans male neonate rats (n=11/treatment) were exposed daily to oral Mn at levels of 0, 25, or 50mg Mn/kg/d from postnatal day (PND) 1-21 (early life only), or from PND 1-throughout life. Staircase testing began at age PND 120 and lasted 1month to objectively quantify measures of skilled forelimb use in reaching and pellet grasping/retrieval performance. Behavioral reactivity also was rated on each trial. Results revealed that (1) behavioral reactivity scores were significantly greater in the Mn-exposed groups, compared to controls, during the staircase acclimation/training stage, but not the latter testing stages, (2) early life Mn exposure alone caused long-lasting impairments in fine motor control of reaching skills at the higher, but not lower Mn dose, (3) lifelong Mn exposure from drinking water led to widespread impairment in reaching and grasping/retrieval performance in adult rats, with the lower Mn dose group showing the greatest impairment, and (4) lifelong Mn exposure produced similar (higher Mn group) or more severe (lower Mn group) impairments compared to their early life-only Mn exposed counterparts. Collectively, these results substantiate the emerging clinical evidence in children showing associations between environmental Mn exposure and deficits in fine sensorimotor function. They also show that the objective quantification of skilled motor

  19. Early life benefits and later life costs of a two amino acid deletion in Drosophila simulans.

    PubMed

    Ballard, J William O; Melvin, Richard G

    2011-05-01

    Linking naturally occurring genotypic variation to the organismal phenotype is critical to our understanding of, and ability to, model biological processes such as adaptation to novel environments, disease, and aging. Rarely, however, does a simple mutation cause a single simple observable trait. Rather it is more common for a mutation to elicit an entangled web of responses. Here, we employ biochemistry as the thread to link a naturally occurring two amino acid deletion in a nuclear encoded mitochondrial protein with physiological benefits and costs in the fly Drosophila simulans. This nuclear encoded gene produces a protein that is imported into the mitochondrion and forms a subunit of complex IV (cytochrome c oxidase, or cox) of the electron transport chain. We observe that flies homozygous for the deletion have an advantage when young but pay a cost later in life. These data show that the organism responds to the deletion in a complex manner that gives insight into the mechanisms that influence mitochondrial bioenergetics and aspects of organismal physiology.

  20. Short- and long-term effects of probiotics administered early in life.

    PubMed

    Szajewska, Hania

    2011-01-01

    The concept of manipulating the gut microbiota through the administration of probiotics during early life in order to reduce the risk of and prevent or treat diseases, including those that manifest in later life, is appealing. However, a cautious approach is needed, and the long-term consequences of such administration should be carefully evaluated. Concerns related to the early administration of probiotics include timing, i.e. the administration often begins in early infancy, sometimes at birth, when gut microbiota is not fully established, and duration, i.e. the daily administration of such products is prolonged (several weeks or months). In the case of non-breastfed infants, delivery may be in the form of a specific matrix (infant formula) that could be the only source of feeding of an infant over a prolonged period. Finally, the fact that beneficial as well as some detrimental effects are seen years after administration of probiotics during the first months of life raises concern that other long-term effects such as immunosuppression in later life may also occur. Currently, while some promising data exist, there are still more questions than answers. However, rapid progress in this area of research is expected and no doubt will bring about a number of exciting findings. PMID:22044892

  1. Interaction between sex and early-life stress: influence on epileptogenesis and epilepsy comorbidities.

    PubMed

    Jones, Nigel C; O'Brien, Terence J; Carmant, Lionel

    2014-12-01

    Epilepsy is a common brain disorder which is characterised by recurring seizures. In addition to suffering from the constant stress of living with this neurological condition, patients also frequently experience comorbid psychiatric and cognitive disorders which significantly impact their quality of life. There is growing appreciation that stress, in particular occurring in early life, can negatively impact brain development, creating an enduring vulnerability to develop epilepsy. This aligns with the solid connections between early life environments and the development of psychiatric conditions, promoting the possibility that adverse early life events could represent a common risk factor for the later development of both epilepsy and comorbid psychiatric disorders. The influence of sex has been little studied, but recent research points to potential important interactions, particularly with regard to effects mediated by HPA axis programming. Understanding these interactions, and the underlying molecular mechanisms, will provide important new insights into the causation of both epilepsy and of psychiatric disorders, and potentially open up novel avenues for treatment.

  2. Early-life sexual segregation: ontogeny of isotopic niche differentiation in the Antarctic fur seal

    PubMed Central

    Kernaléguen, L.; Arnould, J. P. Y.; Guinet, C.; Cazelles, B.; Richard, P.; Cherel, Y.

    2016-01-01

    Investigating the ontogeny of niche differentiation enables to determine at which life-stages sexual segregation arises, providing insights into the main factors driving resource partitioning. We investigated the ontogeny of foraging ecology in Antarctic fur seals (Arctocephalus gazella), a highly dimorphic species with contrasting breeding strategies between sexes. Sequential δ13C and δ15N values of whiskers provided a longitudinal proxy of the foraging niche throughout the whole life of seals, from weaning, when size dimorphism is minimal to the age of 5. Females exhibited an early-life ontogenetic shift, from a total segregation during their first year at-sea, to a similar isotopic niche as breeding females as early as age 2. In contrast, males showed a progressive change in isotopic niche throughout their development such that 5-year-old males did not share the same niche as territorial bulls. Interestingly, males and females segregated straight after weaning with males appearing to feed in more southerly habitats than females. This spatial segregation was of similar amplitude as observed in breeding adults and was maintained throughout development. Such early-life niche differentiation is an unusual pattern and indicates size dimorphism and breeding constraints do not directly drive sexual segregation contrary to what has been assumed in otariid seals. PMID:27620663

  3. Early-life sexual segregation: ontogeny of isotopic niche differentiation in the Antarctic fur seal.

    PubMed

    Kernaléguen, L; Arnould, J P Y; Guinet, C; Cazelles, B; Richard, P; Cherel, Y

    2016-01-01

    Investigating the ontogeny of niche differentiation enables to determine at which life-stages sexual segregation arises, providing insights into the main factors driving resource partitioning. We investigated the ontogeny of foraging ecology in Antarctic fur seals (Arctocephalus gazella), a highly dimorphic species with contrasting breeding strategies between sexes. Sequential δ(13)C and δ(15)N values of whiskers provided a longitudinal proxy of the foraging niche throughout the whole life of seals, from weaning, when size dimorphism is minimal to the age of 5. Females exhibited an early-life ontogenetic shift, from a total segregation during their first year at-sea, to a similar isotopic niche as breeding females as early as age 2. In contrast, males showed a progressive change in isotopic niche throughout their development such that 5-year-old males did not share the same niche as territorial bulls. Interestingly, males and females segregated straight after weaning with males appearing to feed in more southerly habitats than females. This spatial segregation was of similar amplitude as observed in breeding adults and was maintained throughout development. Such early-life niche differentiation is an unusual pattern and indicates size dimorphism and breeding constraints do not directly drive sexual segregation contrary to what has been assumed in otariid seals. PMID:27620663

  4. Early-life sexual segregation: ontogeny of isotopic niche differentiation in the Antarctic fur seal.

    PubMed

    Kernaléguen, L; Arnould, J P Y; Guinet, C; Cazelles, B; Richard, P; Cherel, Y

    2016-09-13

    Investigating the ontogeny of niche differentiation enables to determine at which life-stages sexual segregation arises, providing insights into the main factors driving resource partitioning. We investigated the ontogeny of foraging ecology in Antarctic fur seals (Arctocephalus gazella), a highly dimorphic species with contrasting breeding strategies between sexes. Sequential δ(13)C and δ(15)N values of whiskers provided a longitudinal proxy of the foraging niche throughout the whole life of seals, from weaning, when size dimorphism is minimal to the age of 5. Females exhibited an early-life ontogenetic shift, from a total segregation during their first year at-sea, to a similar isotopic niche as breeding females as early as age 2. In contrast, males showed a progressive change in isotopic niche throughout their development such that 5-year-old males did not share the same niche as territorial bulls. Interestingly, males and females segregated straight after weaning with males appearing to feed in more southerly habitats than females. This spatial segregation was of similar amplitude as observed in breeding adults and was maintained throughout development. Such early-life niche differentiation is an unusual pattern and indicates size dimorphism and breeding constraints do not directly drive sexual segregation contrary to what has been assumed in otariid seals.

  5. [Quality of life analysis of postmenopausal, early breast cancer patients treated with anastrozole (RADAR-II)].

    PubMed

    Horváth, Zsolt

    2012-12-01

    Due to the recognition and diagnosis of breast cancer in increasingly early stages, quality of life becomes an important part of treatment beyond the efficacy indicators. In the scientific literature quality of life data related to adjuvant treament of early breast cancer is poorly represented. Our aim was collecting data to capture the changes in quality of life of postmenopausal, early breast cancer patients. This multicenter, prospective, observational, non-interventional study enrolled 1502 postmenopausal, early stage breast cancer patients. The answers to the QoL questionnaire were rated on a scale from 0 to 100. Overall the patients judged their working ability fairly negative at the start however, this parameter improved by the end of the survey. According to earlier studies the physical parameters deteriorated more significantly among patients belonging to the elderly (≥65 years) age group compared to younger patients. This correlation was confirmed by our study as well. Our results however are somewhat conflicting with the observations by Fehlauer et al (14) that younger patients show greater absolute and relative functional deterioration in their physical status compared to middle-aged or elderly patients. Fatigue appeared in the same rate among different age groups, while deterioration in vitality and daily functionality levels could persist for several years. Based on our findings the elderly patient's care needs special attention from treating personnel. PMID:23236594

  6. Early Life Experience and Gut Microbiome: the Brain-Gut-Microbiota Signaling System

    PubMed Central

    Cong, Xiaomei; Henderson, Wendy A.; Graf, Joerg; McGrath, Jacqueline M.

    2015-01-01

    Background Over the past decades, advances in neonatal care have led to substantial increases in survival among preterm infants. With these gains, recent concerns have focused on increases in neurodevelopment morbidity related to the interplay between stressful early life experiences and the immature neuro-immune systems. This interplay between these complex mechanisms is often described as the brain-gut signaling system. The role of the gut microbiome and the brain-gut signaling system have been found to be remarkably related to both short and long term stress and health. Recent evidence supports that microbial species, ligands, and/or products within the developing intestine play a key role in early programming of the central nervous system and regulation of the intestinal innate immunity. Purpose The purpose of this state-of-the-science review is to explore the supporting evidence demonstrating the importance of the brain-gut-microbiota axis in regulation of early life experience. We also discuss the role of gut microbiome in modulating stress and pain responses in high-risk infants. A conceptual framework has been developed to illustrate the regulation mechanisms involved in early life experience. Conclusions The science in this area is just beginning to be uncovered; having a fundamental understanding of these relationships will be important as new discoveries continue to change our thinking; leading potentially to changes in practice and targeted interventions. PMID:26240939

  7. Conserved epigenetic sensitivity to early life experience in the rat and human hippocampus.

    PubMed

    Suderman, Matthew; McGowan, Patrick O; Sasaki, Aya; Huang, Tony C T; Hallett, Michael T; Meaney, Michael J; Turecki, Gustavo; Szyf, Moshe

    2012-10-16

    Early life experience is associated with long-term effects on behavior and epigenetic programming of the NR3C1 (GLUCOCORTICOID RECEPTOR) gene in the hippocampus of both rats and humans. However, it is unlikely that such effects completely capture the evolutionarily conserved epigenetic mechanisms of early adaptation to environment. Here we present DNA methylation profiles spanning 6.5 million base pairs centered at the NR3C1 gene in the hippocampus of humans who experienced abuse as children and nonabused controls. We compare these profiles to corresponding DNA methylation profiles in rats that received differential levels of maternal care. The profiles of both species reveal hundreds of DNA methylation differences associated with early life experience distributed across the entire region in nonrandom patterns. For instance, methylation differences tend to cluster by genomic location, forming clusters covering as many as 1 million bases. Even more surprisingly, these differences seem to specifically target regulatory regions such as gene promoters, particularly those of the protocadherin α, β, and γ gene families. Beyond these high-level similarities, more detailed analyses reveal methylation differences likely stemming from the significant biological and environmental differences between species. These results provide support for an analogous cross-species epigenetic regulatory response at the level of the genomic region to early life experience. PMID:23045659

  8. Identification, Characterization, and Exploration of Environments for Life on Mars

    NASA Technical Reports Server (NTRS)

    Acevedo, Sara E.

    2002-01-01

    A bibliography (18 references) listing the publications during the current grant period of The Center for the Study of Life in the Universe, part of the SETI (Search for Extraterrestrial Intelligence) Institute is presented. The publications, from the Period of Performance September 1, 2000 to February 28, 2002, primarily cover Mars and its potential for life, as well as extreme environments and primitive life forms on Earth. One of the publications covers Europa and the Galileo spacecraft.

  9. Manipulating rumen microbiome and fermentation through interventions during early life: a review.

    PubMed

    Yáñez-Ruiz, David R; Abecia, Leticia; Newbold, Charles J

    2015-01-01

    The nutritional manipulations of the rumen microbiome to enhance productivity and health are rather limited by the resilience of the ecosystem once established in the mature rumen. Based on recent studies, it has been suggested that the microbial colonization that occurs soon after birth opens a possibility of manipulation with potential to produce lasting effects into adult life. This paper presents the state-of-the-art in relation to early life nutritional interventions by addressing three areas: the development of the rumen as an organ in regards to the nutrition of the new-born, the main factors that determine the microbial population that first colonizes and establishes in the rumen, and the key immunity players that contribute to shaping the commensal microbiota in the early stage of life to understand host-microbiome specificity. The development of the rumen epithelium and muscularization are differently affected by the nature of the diet and special care should be taken with regards to transition from liquid (milk) to solid feed. The rumen is quickly colonized by all type of microorganisms straight after birth and the colonization pattern may be influenced by several factors such as presence/absence of adult animals, the first solid diet provided, and the inclusion of compounds that prevent/facilitate the establishment of some microorganisms or the direct inoculation of specific strains. The results presented show how early life events may be related to the microbial community structure and/or the rumen activity in the animals post-weaning. This would create differences in adaptive capacity due to different early life experiences and leads to the idea of microbial programming. However, many elements need to be further studied such as: the most sensitive window of time for interventions, the best means to test long term effectiveness, the role of key microbial groups and host-immune regulations.

  10. Manipulating rumen microbiome and fermentation through interventions during early life: a review.

    PubMed

    Yáñez-Ruiz, David R; Abecia, Leticia; Newbold, Charles J

    2015-01-01

    The nutritional manipulations of the rumen microbiome to enhance productivity and health are rather limited by the resilience of the ecosystem once established in the mature rumen. Based on recent studies, it has been suggested that the microbial colonization that occurs soon after birth opens a possibility of manipulation with potential to produce lasting effects into adult life. This paper presents the state-of-the-art in relation to early life nutritional interventions by addressing three areas: the development of the rumen as an organ in regards to the nutrition of the new-born, the main factors that determine the microbial population that first colonizes and establishes in the rumen, and the key immunity players that contribute to shaping the commensal microbiota in the early stage of life to understand host-microbiome specificity. The development of the rumen epithelium and muscularization are differently affected by the nature of the diet and special care should be taken with regards to transition from liquid (milk) to solid feed. The rumen is quickly colonized by all type of microorganisms straight after birth and the colonization pattern may be influenced by several factors such as presence/absence of adult animals, the first solid diet provided, and the inclusion of compounds that prevent/facilitate the establishment of some microorganisms or the direct inoculation of specific strains. The results presented show how early life events may be related to the microbial community structure and/or the rumen activity in the animals post-weaning. This would create differences in adaptive capacity due to different early life experiences and leads to the idea of microbial programming. However, many elements need to be further studied such as: the most sensitive window of time for interventions, the best means to test long term effectiveness, the role of key microbial groups and host-immune regulations. PMID:26528276

  11. Reduced resistance to oxidative stress during reproduction as a cost of early-life stress.

    PubMed

    Zimmer, Cédric; Spencer, Karen A

    2015-05-01

    Stress exposure during early-life development can have long-term consequences for a variety of biological functions including oxidative stress. The link between early-life stress and oxidative balance is beginning to be explored and previous studies have focused on this link in adult non-breeding or immature individuals. However, as oxidative stress is considered as the main physiological mechanism underlying the trade-off between self-maintenance and investment in reproduction, it is necessary to look at the consequences of early-life stress on oxidative status during reproduction. Here, we investigated the effects of exposure to pre- and/or post-natal stress on oxidative balance during reproduction under benign or stressful environmental conditions in an avian model species, the Japanese quail. We determined total antioxidant status (TAS), total oxidant status (TOS) and resistance to a free-radical attack in individual exposed to pre-natal stress, post-natal stress or both and in control individuals exposed to none of the stressors. TAS levels decreased over time in all females that reproduced under stressful conditions. TOS decreased between the beginning and the end of reproductive period in pre-natal control females. In all females, resistance to a free-radical attack decreased over the reproductive event but this decrease was more pronounced in females from a pre-natal stress development. Our results suggest that pre-natal stress may be associated with a higher cost of reproduction in terms of oxidative stress. These results also confirm that early-life stress can be associated with both benefits and costs depending of the life-history stage or environmental context.

  12. Reduced resistance to oxidative stress during reproduction as a cost of early-life stress.

    PubMed

    Zimmer, Cédric; Spencer, Karen A

    2015-05-01

    Stress exposure during early-life development can have long-term consequences for a variety of biological functions including oxidative stress. The link between early-life stress and oxidative balance is beginning to be explored and previous studies have focused on this link in adult non-breeding or immature individuals. However, as oxidative stress is considered as the main physiological mechanism underlying the trade-off between self-maintenance and investment in reproduction, it is necessary to look at the consequences of early-life stress on oxidative status during reproduction. Here, we investigated the effects of exposure to pre- and/or post-natal stress on oxidative balance during reproduction under benign or stressful environmental conditions in an avian model species, the Japanese quail. We determined total antioxidant status (TAS), total oxidant status (TOS) and resistance to a free-radical attack in individual exposed to pre-natal stress, post-natal stress or both and in control individuals exposed to none of the stressors. TAS levels decreased over time in all females that reproduced under stressful conditions. TOS decreased between the beginning and the end of reproductive period in pre-natal control females. In all females, resistance to a free-radical attack decreased over the reproductive event but this decrease was more pronounced in females from a pre-natal stress development. Our results suggest that pre-natal stress may be associated with a higher cost of reproduction in terms of oxidative stress. These results also confirm that early-life stress can be associated with both benefits and costs depending of the life-history stage or environmental context. PMID:25542633

  13. Manipulating rumen microbiome and fermentation through interventions during early life: a review

    PubMed Central

    Yáñez-Ruiz, David R.; Abecia, Leticia; Newbold, Charles J.

    2015-01-01

    The nutritional manipulations of the rumen microbiome to enhance productivity and health are rather limited by the resilience of the ecosystem once established in the mature rumen. Based on recent studies, it has been suggested that the microbial colonization that occurs soon after birth opens a possibility of manipulation with potential to produce lasting effects into adult life. This paper presents the state-of-the-art in relation to early life nutritional interventions by addressing three areas: the development of the rumen as an organ in regards to the nutrition of the new-born, the main factors that determine the microbial population that first colonizes and establishes in the rumen, and the key immunity players that contribute to shaping the commensal microbiota in the early stage of life to understand host-microbiome specificity. The development of the rumen epithelium and muscularization are differently affected by the nature of the diet and special care should be taken with regards to transition from liquid (milk) to solid feed. The rumen is quickly colonized by all type of microorganisms straight after birth and the colonization pattern may be influenced by several factors such as presence/absence of adult animals, the first solid diet provided, and the inclusion of compounds that prevent/facilitate the establishment of some microorganisms or the direct inoculation of specific strains. The results presented show how early life events may be related to the microbial community structure and/or the rumen activity in the animals post-weaning. This would create differences in adaptive capacity due to different early life experiences and leads to the idea of microbial programming. However, many elements need to be further studied such as: the most sensitive window of time for interventions, the best means to test long term effectiveness, the role of key microbial groups and host-immune regulations. PMID:26528276

  14. Early life environmental and pharmacological stressors result in persistent dysregulations of the serotonergic system

    PubMed Central

    Wong, Peiyan; Sze, Ying; Gray, Laura Jane; Chang, Cecilia Chin Roei; Cai, Shiwei; Zhang, Xiaodong

    2015-01-01

    Dysregulations in the brain serotonergic system and exposure to environmental stressors have been implicated in the development of major depressive disorder. Here, we investigate the interactions between the stress and serotonergic systems by characterizing the behavioral and biochemical effects of chronic stress applied during early-life or adulthood in wild type (WT) mice and mice with deficient tryptophan hydroxylase 2 (TPH2) function. We showed that chronic mild stress applied in adulthood did not affect the behaviors and serotonin levels of WT and TPH2 knock-in (KI) mice. Whereas, maternal separation (MS) stress increased anxiety- and depressive-like behaviors of WT mice, with no detectable behavioral changes in TPH2 KI mice. Biochemically, we found that MS WT mice had reduced brain serotonin levels, which was attributed to increased expression of monoamine oxidase A (MAO A). The increased MAO A expression was detected in MS WT mice at 4 weeks old and adulthood. No change in TPH2 expression was detected. To determine whether a pharmacological stressor, dexamethasone (Dex), will result in similar biochemical results obtained from MS, we used an in vitro system, SH-SY5Y cells, and found that Dex treatment resulted in increased MAO A expression levels. We then treated WT mice with Dex for 5 days, either during postnatal days 7–11 or adulthood. Both groups of Dex treated WT mice had reduced basal corticosterone and glucocorticoid receptors expression levels. However, only Dex treatment during PND7–11 resulted in reduced serotonin levels and increased MAO A expression. Just as with MS WT mice, TPH2 expression in PND7–11 Dex-treated WT mice was unaffected. Taken together, our findings suggest that both environmental and pharmacological stressors affect the expression of MAO A, and not TPH2, when applied during the critical postnatal period. This leads to long-lasting perturbations in the serotonergic system, and results in anxiety- and depressive

  15. Do People Who Became Blind Early in Life Develop a Better Sense of Smell? A Psychophysical Study

    ERIC Educational Resources Information Center

    Cuevas, Isabel; Plaza, Paula; Rombaux, Phillippe; Collignon, Olivier; De Volder, Anne G.; Renier, Laurent

    2010-01-01

    Using a set of psychophysical tests, we compared the olfactory abilities of 8 persons who became blind early in life and 16 sighted persons in a control group who were matched for age, sex, and handedness. The results indicated that those who became blind early in life developed compensatory perceptual mechanisms in the olfactory domain that…

  16. Early Life Trauma and Attachment: Immediate and Enduring Effects on Neurobehavioral and Stress Axis Development

    PubMed Central

    Rincón-Cortés, Millie; Sullivan, Regina M.

    2014-01-01

    Over half a century of converging clinical and animal research indicates that early life experiences induce enduring neuroplasticity of the HPA-axis and the developing brain. This experience-induced neuroplasticity is due to alterations in the frequency and intensity of stimulation of pups’ sensory systems (i.e., olfactory, somatosensory, gustatory) embedded in mother–infant interactions. This stimulation provides “hidden regulators” of pups’ behavioral, physiological, and neural responses that have both immediate and enduring consequences, including those involving the stress response. While variation in stimulation can produce individual differences and adaptive behaviors, pathological early life experiences can induce maladaptive behaviors, initiate a pathway to pathology, and increase risk for later-life psychopathologies, such as mood and affective disorders, suggesting that infant-attachment relationships program later-life neurobehavioral function. Recent evidence suggests that the effects of maternal presence or absence during this sensory stimulation provide a major modulatory role in neural and endocrine system responses, which have minimal impact on pups’ immediate neurobehavior but a robust impact on neurobehavioral development. This concept is reviewed here using two complementary rodent models of infant trauma within attachment: infant paired-odor-shock conditioning (mimicking maternal odor attachment learning) and rearing with an abusive mother that converge in producing a similar behavioral phenotype in later-life including depressive-like behavior as well as disrupted HPA-axis and amygdala function. The importance of maternal social presence on pups’ immediate and enduring brain and behavior suggests unique processing of sensory stimuli in early life that could provide insight into the development of novel strategies for prevention and therapeutic interventions for trauma experienced with the abusive caregiver. PMID:24711804

  17. Nutrition in early life and the programming of adult disease: a review.

    PubMed

    Langley-Evans, S C

    2015-01-01

    Foetal development and infancy are life stages that are characterised by rapid growth, development and maturation of organs and systems. Variation in the quality or quantity of nutrients consumed by mothers during pregnancy, or infants during the first year of life, can exert permanent and powerful effects upon developing tissues. These effects are termed 'programming' and represent an important risk factor for noncommunicable diseases of adulthood, including the metabolic syndrome and coronary heart disease. This narrative review provides an overview of the evidence-base showing that indicators of nutritional deficit in pregnancy are associated with a greater risk of type-2 diabetes and cardiovascular mortality. There is also a limited evidence-base that suggests some relationship between breastfeeding and the timing and type of foods used in weaning, and disease in later life. Many of the associations reported between indicators of early growth and adult disease appear to interact with specific genotypes. This supports the idea that programming is one of several cumulative influences upon health and disease acting across the lifespan. Experimental studies have provided important clues to the mechanisms that link nutritional challenges in early life to disease in adulthood. It is suggested that nutritional programming is a product of the altered expression of genes that regulate the cell cycle, resulting in effective remodelling of tissue structure and functionality. The observation that traits programmed by nutritional exposures in foetal life can be transmitted to further generations adds weight the argument that heritable epigenetic modifications play a critical role in nutritional programming.

  18. Early life history and spatiotemporal changes in distribution of the rediscovered Suwannee moccasinshell Medionidus walkeri (Bivalvia: Unionidae)

    USGS Publications Warehouse

    Johnson, Nathan A.; Mcleod, John; Holcomb, Jordan; Rowe, Matthew T.; Williams, James D.

    2016-01-01

    Accurate distribution data are critical to the development of conservation and management strategies for imperiled species, particularly for narrow endemics with life history traits that make them vulnerable to extinction. Medionidus walkeri is a rare freshwater mussel endemic to the Suwannee River Basin in southeastern North America. This species was rediscovered in 2012 after a 16-year hiatus between collections and is currently proposed for listing under the Endangered Species Act. Our study fills knowledge gaps regarding changes in distribution and early life history requirements of M. walkeri. Spatiotemporal changes in M. walkeri distribution were displayed using a conservation status assessment map incorporating metadata from 98 historical (1916–1999) and 401 recent (2000–2015) site surveys from museums and field notes representing records for 312 specimens. Recent surveys detected M. walkeri only in the middle Suwannee subbasin (n = 86, 22 locations) and lower Santa Fe subbasin (n = 2, 2 locations), and it appears the species may be extirpated from 67% of historically occupied 10-digit HUCs. In our laboratory experiments, M. walkeri successfully metamorphosed onPercina nigrofasciata (56.2% ± 8.9) and Etheostoma edwini (16.1% ± 7.9) but not on Trinectes maculatus, Lepomis marginatus, Notropis texanus, Noturus leptacanthus, Etheostoma fusiforme, orGambusia holbrooki. We characterize M. walkeri as a lure-displaying host fish specialist and a long-term brooder (bradytictic), gravid from fall to early summer of the following year. The early life history and distribution data presented here provide the baseline framework for listing decisions and future efforts to conserve and recover the species.

  19. From Angela's ashes to the Celtic tiger: early life conditions and adult health in Ireland.

    PubMed

    Delaney, Liam; McGovern, Mark; Smith, James P

    2011-01-01

    We use data from the Irish census and exploit regional and temporal variation in infant mortality rates over the 20th century to examine effects of early life conditions on later life health. The urban mortality penalty collapsed in Ireland in the years right after World War II. Our main identification is public health interventions centered on improved sanitation and food safety, which we believed played a leading role in eliminating the Irish urban infant mortality penalty. Our estimates suggest that a unit decrease in mortality rates at time of birth reduces the probability of being disabled as an adult by about 12-18%.

  20. Neurotrophic factors in women with crack cocaine dependence during early abstinence: the role of early life stress

    PubMed Central

    Viola, Thiago Wendt; Tractenberg, Saulo Gantes; Levandowski, Mateus Luz; Pezzi, Júlio Carlos; Bauer, Moisés Evandro; Teixeira, Antonio Lúcio; Grassi-Oliveira, Rodrigo

    2014-01-01

    Background Neurotrophic factors have been investigated in the pathophysiology of alcohol and drug dependence and have been related to early life stress driving developmental programming of neuroendocrine systems. Methods We conducted a follow-up study that aimed to assess the plasma levels of glial cell line–derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT3) and neurotrophin-4/5 (NT4/5) in crack users during 3 weeks of early abstinence in comparison with healthy controls. We performed a comprehensive clinical assessment in female inpatients with crack cocaine dependence (separated into 2 groups: participants with (CSA+) and without (CSA−) a history of childhood sexual abuse) and a group of nonuser control participants. Results Our sample included 104 women with crack cocaine dependence and 22 controls; of the women who used crack cocaine, 22 had a history of childhood sexual abuse and 82 did not. The GDNF plasma levels in the CSA+ group increased dramatically during 3 weeks of detoxification. In contrast, those in the CSA− group showed lower and stable levels of GDNF under the same conditions. Compared with the control group, BDNF plasma levels remained elevated and NGF levels were reduced during early abstinence. We found no differences in NT3 and NT4/5 between the patients and controls. However, within-group analyses showed that the CSA+ group exhibited higher levels of NT4/5 than the CSA− group at the end of detoxification. Limitations Some of the participants were using neuroleptics, mood stabilizers or antidepressants; our sample included only women; memory bias could not be controlled; and we did not investigate the possible confounding effects of other forms of stress during childhood. Conclusion This study supports the association between early life stress and peripheral neurotrophic factor levels in crack cocaine users. During early abstinence, plasmastic GDNF and NT4/5 were

  1. Effects of Mineralocorticoid Receptor Overexpression on Anxiety and Memory after Early Life Stress in Female Mice.

    PubMed

    Kanatsou, Sofia; Ter Horst, Judith P; Harris, Anjanette P; Seckl, Jonathan R; Krugers, Harmen J; Joëls, Marian

    2015-01-01

    Early-life stress (ELS) is a risk factor for the development of psychopathology, particularly in women. Human studies have shown that certain haplotypes of NR3C2, encoding the mineralocorticoid receptor (MR), that result in gain of function, may protect against the consequences of stress exposure, including childhood trauma. Here, we tested the hypothesis that forebrain-specific overexpression of MR in female mice would ameliorate the effects of ELS on anxiety and memory in adulthood. We found that ELS increased anxiety, did not alter spatial discrimination and reduced contextual fear memory in adult female mice. Transgenic overexpression of MR did not alter anxiety but affected spatial memory performance and enhanced contextual fear memory formation. The effects of ELS on anxiety and contextual fear were not affected by transgenic overexpression of MR. Thus, MR overexpression in the forebrain does not represent a major resilience factor to early life adversity in female mice.

  2. Toxic effects of bisphenol A on early life stages of Japanese medaka (Oryzias latipes).

    PubMed

    Sun, Liwei; Lin, Xia; Jin, Rong; Peng, Tao; Peng, Zuhua; Fu, Zhengwei

    2014-08-01

    The toxic effects of bisphenol A (BPA) in aquatic organisms have attracted global attention. However, few studies have investigated its effects at the gene transcription level. In this study, we measured the transcriptional response of a set of genes associated with the hypothalamic-pituitary-gonadal axis following BPA exposure during the early life stage of Japanese medaka. Transcription of vitellogenin genes was induced in both sexes, indicating estrogenic disruption. However, changes in transcription of the steroid hormone receptor gene and steroidogenesis-regulating genes suggest that BPA also acts as an androgen receptor antagonist. BPA exposure also decreased the hatchability of medaka embryos and increased the growth of female larvae. These pronounced gender-specific effects observed in this study demonstrate that it is important to identify the sex of fish in the early life stage.

  3. Effects of Mineralocorticoid Receptor Overexpression on Anxiety and Memory after Early Life Stress in Female Mice

    PubMed Central

    Kanatsou, Sofia; Ter Horst, Judith P.; Harris, Anjanette P.; Seckl, Jonathan R.; Krugers, Harmen J.; Joëls, Marian

    2016-01-01

    Early-life stress (ELS) is a risk factor for the development of psychopathology, particularly in women. Human studies have shown that certain haplotypes of NR3C2, encoding the mineralocorticoid receptor (MR), that result in gain of function, may protect against the consequences of stress exposure, including childhood trauma. Here, we tested the hypothesis that forebrain-specific overexpression of MR in female mice would ameliorate the effects of ELS on anxiety and memory in adulthood. We found that ELS increased anxiety, did not alter spatial discrimination and reduced contextual fear memory in adult female mice. Transgenic overexpression of MR did not alter anxiety but affected spatial memory performance and enhanced contextual fear memory formation. The effects of ELS on anxiety and contextual fear were not affected by transgenic overexpression of MR. Thus, MR overexpression in the forebrain does not represent a major resilience factor to early life adversity in female mice. PMID:26858618

  4. Perinatal stress and early life programming of lung structure and function

    PubMed Central

    Wright, Rosalind J.

    2010-01-01

    Exposure to environmental toxins during critical periods of prenatal and/or postnatal development may alter the normal course of lung morphogenesis and maturation, potentially resulting in changes that affect both structure and function of the respiratory system. Moreover, these early effects may persist into adult life magnifying the potential public health impact. Aberrant or excessive pro-inflammatory immune responses, occurring both locally and systemically, that result in inflammatory damage to the airway are a central determinant of lung structure-function changes throughout life. Disruption of neuroendocrine function in early development, specifically the hypothalamic-pituitary-adrenal (HPA) axis, may alter functional status of the immune system. Autonomic nervous system (ANS) function (sympathovagal imbalance) is another integral component of airway function and immunity in childhood. This overview discusses the evidence linking psychological factors to alterations in these interrelated physiological processes that may, in turn, influence childhood lung function and identifies gaps in our understanding. PMID:20080145

  5. Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment

    PubMed Central

    Nobel, Yael R.; Cox, Laura M.; Kirigin, Francis F.; Bokulich, Nicholas A.; Yamanishi, Shingo; Teitler, Isabel; Chung, Jennifer; Sohn, Jiho; Barber, Cecily M.; Goldfarb, David S.; Raju, Kartik; Abubucker, Sahar; Zhou, Yanjiao; Ruiz, Victoria E.; Li, Huilin; Mitreva, Makedonka; Alekseyenko, Alexander V.; Weinstock, George M.; Sodergren, Erica; Blaser, Martin J.

    2015-01-01

    Mammalian species have co-evolved with intestinal microbial communities that can shape development and adapt to environmental changes, including antibiotic perturbation or nutrient flux. In humans, especially children, microbiota disruption is common, yet the dynamic microbiome recovery from early-life antibiotics is still uncharacterized. Here we use a mouse model mimicking paediatric antibiotic use and find that therapeutic-dose pulsed antibiotic treatment (PAT) with a beta-lactam or macrolide alters both host and microbiota development. Early-life PAT accelerates total mass and bone growth, and causes progressive changes in gut microbiome diversity, population structure and metagenomic content, with microbiome effects dependent on the number of courses and class of antibiotic. Whereas control microbiota rapidly adapts to a change in diet, PAT slows the ecological progression, with delays lasting several months with previous macrolide exposure. This study identifies key markers of disturbance and recovery, which may help provide therapeutic targets for microbiota restoration following antibiotic treatment. PMID:26123276

  6. Developmental rate and behavior of early life stages of bighead carp and silver carp

    USGS Publications Warehouse

    Chapman, Duane C.; George, Amy E.

    2011-01-01

    The early life stages of Asian carp are well described by Yi and others (1988), but since these descriptions are represented by line drawings based only on live individuals and lacked temperature controls, further information on developmental time and stages is of use to expand understanding of early life stages of these species. Bighead carp and silver carp were cultured under two different temperature treatments to the one-chamber gas bladder stage, and a photographic guide is provided for bighead carp and silver carp embryonic and larval development, including notes about egg morphology and larval swimming behavior. Preliminary information on developmental time and hourly thermal units for each stage is also provided. Both carp species developed faster under warmer conditions. Developmental stages and behaviors are generally consistent with earlier works with the exception that strong vertical swimming immediately after hatching was documented in this report.

  7. Next steps in obesity prevention: altering early life systems to support healthy parents, infants, and toddlers.

    PubMed

    Nader, Philip R; Huang, Terry T-K; Gahagan, Sheila; Kumanyika, Shiriki; Hammond, Ross A; Christoffel, Katherine Kaufer

    2012-06-01

    There is an urgent need for effective, sustainable child obesity prevention strategies. Progress toward this goal requires strengthening current approaches to add a component that addresses pregnancy onward. Altering early-life systems that promote intergenerational transmission of obesity holds promise for interrupting the continuing cycle of the obesity epidemic. A 2011 Institute of Medicine (IOM) report emphasizes the need for interventions early in life to prevent obesity. A 2010 IOM report called for addressing gaps in existing obesity research evidence by using a systems perspective, simultaneously addressing interacting obesity promoting factors in multiple sectors and at multiple societal levels. A review of evidence from basic science, prevention, and systems research supports an approach that (1) begins at the earliest stages of development, and (2) uses a systems framework to simultaneously implement health behavior and environmental changes in communities. PMID:22799545

  8. Fitness consequences of early life conditions and maternal size effects in a freshwater top predator.

    PubMed

    Vindenes, Yngvild; Langangen, Øystein; Winfield, Ian J; Vøllestad, Leif Asbjørn

    2016-05-01

    Conditions experienced in early life stages can be an important determinant of individual life histories. In fish, environmental conditions are known to affect early survival and growth, but recent studies have also emphasized maternal effects mediated by size or age. However, the relative sensitivity of the mean fitness (population growth rate λ) to different early life impacts remains largely unexplored. Using a female-based integral projection model (IPM) parameterized from unique long-term demographic data for pike (Esox lucius), we evaluated the relative fitness consequences of different early life impacts, including (i) maternal effects of length on egg weight, potentially affecting offspring (first year) survival, and (ii) effects of temperature on offspring growth and survival. Of the seven vital rates defining the model, offspring survival could not be directly estimated and four scenarios were defined for this rate. Elasticity analyses of the IPM were performed to calculate (i) the total contribution from different lengths to the elasticity of λ to the projection kernel, and (ii) the elasticity of λ to underlying variables of female current length, female offspring length at age 1, and temperature. These elasticities were decomposed into contributions from different vital rates across length. Egg weight increased with female length, as expected, but the effect leveled off for the largest females. However, λ was largely insensitive to this effect, even when egg weight was assumed to have a strong effect on offspring survival. In contrast, λ was sensitive to early temperature conditions through growth and survival. Among mature females, the total elasticity of λ to the projection kernel generally increased with length. The results were robust to a wide range of assumptions. These results suggest that environmental conditions experienced in early life represent a more important driver of mean population growth and fitness of pike than maternal effects

  9. Early-life disease exposure and associations with adult survival, cause of death, and reproductive success in preindustrial humans.

    PubMed

    Hayward, Adam D; Rigby, Francesca L; Lummaa, Virpi

    2016-08-01

    A leading hypothesis proposes that increased human life span since 1850 has resulted from decreased exposure to childhood infections, which has reduced chronic inflammation and later-life mortality rates, particularly from cardiovascular disease, stroke, and cancer. Early-life cohort mortality rate often predicts later-life survival in humans, but such associations could arise from factors other than disease exposure. Additionally, the impact of early-life disease exposure on reproduction remains unknown, and thus previous work ignores a major component of fitness through which selection acts upon life-history strategy. We collected data from seven 18th- and 19th-century Finnish populations experiencing naturally varying mortality and fertility levels. We quantified early-life disease exposure as the detrended child mortality rate from infectious diseases during an individual's first 5 y, controlling for important social factors. We found no support for an association between early-life disease exposure and all-cause mortality risk after age 15 or 50. We also found no link between early-life disease exposure and probability of death specifically from cardiovascular disease, stroke, or cancer. Independent of survival, there was no evidence to support associations between early-life disease exposure and any of several aspects of reproductive performance, including lifetime reproductive success and age at first birth, in either males or females. Our results do not support the prevailing assertion that exposure to infectious diseases in early life has long-lasting associations with later-life all-cause mortality risk or mortality putatively linked to chronic inflammation. Variation in adulthood conditions could therefore be the most likely source of recent increases in adult life span. PMID:27457937

  10. Early-life disease exposure and associations with adult survival, cause of death, and reproductive success in preindustrial humans.

    PubMed

    Hayward, Adam D; Rigby, Francesca L; Lummaa, Virpi

    2016-08-01

    A leading hypothesis proposes that increased human life span since 1850 has resulted from decreased exposure to childhood infections, which has reduced chronic inflammation and later-life mortality rates, particularly from cardiovascular disease, stroke, and cancer. Early-life cohort mortality rate often predicts later-life survival in humans, but such associations could arise from factors other than disease exposure. Additionally, the impact of early-life disease exposure on reproduction remains unknown, and thus previous work ignores a major component of fitness through which selection acts upon life-history strategy. We collected data from seven 18th- and 19th-century Finnish populations experiencing naturally varying mortality and fertility levels. We quantified early-life disease exposure as the detrended child mortality rate from infectious diseases during an individual's first 5 y, controlling for important social factors. We found no support for an association between early-life disease exposure and all-cause mortality risk after age 15 or 50. We also found no link between early-life disease exposure and probability of death specifically from cardiovascular disease, stroke, or cancer. Independent of survival, there was no evidence to support associations between early-life disease exposure and any of several aspects of reproductive performance, including lifetime reproductive success and age at first birth, in either males or females. Our results do not support the prevailing assertion that exposure to infectious diseases in early life has long-lasting associations with later-life all-cause mortality risk or mortality putatively linked to chronic inflammation. Variation in adulthood conditions could therefore be the most likely source of recent increases in adult life span.

  11. Early-life serotonin dysregulation affects the migration and positioning of cortical interneuron subtypes

    PubMed Central

    Frazer, S; Otomo, K; Dayer, A

    2015-01-01

    Early-life deficiency of the serotonin transporter (SERT) gives rise to a wide range of psychiatric-relevant phenotypes; however, the molecular and cellular targets of serotonin dyregulation during neural circuit formation remain to be identified. Interestingly, migrating cortical interneurons (INs) derived from the caudal ganglionic eminence (CGE) have been shown to be more responsive to serotonin-mediated signalling compared with INs derived from the medial ganglionic eminence (MGE). Here we investigated the impact of early-life SERT deficiency on the migration and positioning of CGE-derived cortical INs in SERT-ko mice and in mice exposed to the SERT inhibitor fluoxetine during the late embryonic period. Using confocal time-lapse imaging and microarray-based expression analysis we found that genetic and pharmacological SERT deficiency significantly increased the migratory speed of CGE-derived INs and affected transcriptional programmes regulating neuronal migration. Postnatal studies revealed that SERT deficiency altered the cortical laminar distribution of subtypes of CGE-derived INs but not MGE-derived INs. More specifically, we found that the distribution of vasointestinal peptide (VIP)-expressing INs in layer 2/3 was abnormal in both genetic and pharmacological SERT-deficiency models. Collectively, these data indicate that early-life SERT deficiency has an impact on the migration and molecular programmes of CGE-derived INs, thus leading to specific alterations in the positioning of VIP-expressing INs. These data add to the growing evidence that early-life serotonin dysregulation affects cortical microcircuit formation and contributes to the emergence of psychiatric-relevant phenotypes. PMID:26393490

  12. Early-life serotonin dysregulation affects the migration and positioning of cortical interneuron subtypes.

    PubMed

    Frazer, S; Otomo, K; Dayer, A

    2015-09-22

    Early-life deficiency of the serotonin transporter (SERT) gives rise to a wide range of psychiatric-relevant phenotypes; however, the molecular and cellular targets of serotonin dyregulation during neural circuit formation remain to be identified. Interestingly, migrating cortical interneurons (INs) derived from the caudal ganglionic eminence (CGE) have been shown to be more responsive to serotonin-mediated signalling compared with INs derived from the medial ganglionic eminence (MGE). Here we investigated the impact of early-life SERT deficiency on the migration and positioning of CGE-derived cortical INs in SERT-ko mice and in mice exposed to the SERT inhibitor fluoxetine during the late embryonic period. Using confocal time-lapse imaging and microarray-based expression analysis we found that genetic and pharmacological SERT deficiency significantly increased the migratory speed of CGE-derived INs and affected transcriptional programmes regulating neuronal migration. Postnatal studies revealed that SERT deficiency altered the cortical laminar distribution of subtypes of CGE-derived INs but not MGE-derived INs. More specifically, we found that the distribution of vasointestinal peptide (VIP)-expressing INs in layer 2/3 was abnormal in both genetic and pharmacological SERT-deficiency models. Collectively, these data indicate that early-life SERT deficiency has an impact on the migration and molecular programmes of CGE-derived INs, thus leading to specific alterations in the positioning of VIP-expressing INs. These data add to the growing evidence that early-life serotonin dysregulation affects cortical microcircuit formation and contributes to the emergence of psychiatric-relevant phenotypes.

  13. Long-term effects of early life deprivation on brain glia in Fischer rats.

    PubMed

    Leventopoulos, Michail; Rüedi-Bettschen, Daniela; Knuesel, Irene; Feldon, Joram; Pryce, Christopher R; Opacka-Juffry, Jolanta

    2007-04-20

    Both clinical and experimental studies have indicated that depression and depression-like animal conditions are associated with disruption of the intrinsic plasticity of the brain, resulting in neuronal atrophy. However, little is known about the brain glia in these conditions. Early life stress in the form of infant abuse or neglect constitutes a risk factor in the aetiology of major depressive disorder in later life. It is possible to model this relation between early life stress and depression in the rat through maternal deprivation; in adulthood, this postnatal manipulation is known to lead to depression-like behaviour. In the stress-hyperresponsive Fischer strain, P1-14 pups were isolated for 4 h/day (early deprivation, ED, n=6) or were nonhandled (NH, n=6); they were left undisturbed until adulthood. Postmortem quantitative analysis of regional astroglial distribution and morphology based on glial fibrillary acidic protein (GFAP) immunohistochemistry indicated a significant effect of ED on the density of GFAP-reactive astrocytes in brain areas implicated in stress-related behaviour. A moderate (10-22%) but consistent reduction in GFAP-reactive astrocyte density was seen in dorsal dentate gyrus, prefrontal cortex, ventral hippocampal CA1, cingulate cortex, dorsal hippocampal CA1 and basolateral amygdala. The ED-related reduction in GFAP-immunoreactive astrocyte density was more marked than the reduction in total cell density, which suggests that GFAP immunoreactivity, rather than the number of astrocytes, was reduced. This study provides evidence that early life stress leads to long-term changes in the density of astroglia in the brain regions involved in stress responses in the rat. PMID:17306230

  14. Hyper-excitability and epilepsy generated by chronic early-life stress

    PubMed Central

    Dubé, Céline M.; Molet, Jenny; Singh-Taylor, Akanksha; Ivy, Autumn; Maras, Pamela M.; Baram, Tallie Z.

    2015-01-01

    Epilepsy is more prevalent in populations with high measures of stress, but the neurobiological mechanisms are unclear. Stress is a common precipitant of seizures in individuals with epilepsy, and may provoke seizures by several mechanisms including changes in neurotransmitter and hormone levels within the brain. Importantly, stress during sensitive periods early in life contributes to ‘brain programming’, influencing neuronal function and brain networks. However, it is unclear if early-life stress influences limbic excitability and promotes epilepsy. Here we used an established, naturalistic model of chronic early-life stress (CES), and employed chronic cortical and limbic video-EEGs combined with molecular and cellular techniques to probe the contributions of stress to age-specific epilepsies and network hyperexcitability and identify the underlying mechanisms. In control male rats, EEGs obtained throughout development were normal and no seizures were observed. EEGs demonstrated epileptic spikes and spike series in the majority of rats experiencing CES, and 57% of CES rats developed seizures: Behavioral events resembling the human age-specific epilepsy infantile spasms occurred in 11/23 (48%), accompanied by EEG spikes and/or electrodecrements, and two additional rats (9%) developed limbic seizures that involved the amygdala. Probing for stress-dependent, endogenous convulsant molecules within amygdala, we examined the expression of the pro-convulsant neuropeptide corticotropin-releasing hormone (CRH), and found a significant increase of amygdalar--but not cortical--CRH expression in adolescent CES rats. In conclusion, CES of limited duration has long-lasting effects on brain excitability and may promote age-specific seizures and epilepsy. Whereas the mechanisms involved require further study, these findings provide important insights into environmental contributions to early-life seizures. PMID:25884016

  15. Early-life exposure to a herbicide has enduring effects on pathogen-induced mortality.

    PubMed

    Rohr, Jason R; Raffel, Thomas R; Halstead, Neal T; McMahon, Taegan A; Johnson, Steve A; Boughton, Raoul K; Martin, Lynn B

    2013-12-01

    Exposure to stressors at formative stages in the development of wildlife and humans can have enduring effects on health. Understanding which, when and how stressors cause enduring health effects is crucial because these stressors might then be avoided or mitigated during formative stages to prevent lasting increases in disease susceptibility. Nevertheless, the impact of early-life exposure to stressors on the ability of hosts to resist and tolerate infections has yet to be thoroughly investigated. Here, we show that early-life, 6-day exposure to the herbicide atrazine (mean ± s.e.: 65.9±3.48 µg l(-1)) increased frog mortality 46 days after atrazine exposure (post-metamorphosis), but only when frogs were challenged with a chytrid fungus implicated in global amphibian declines. Previous atrazine exposure did not affect resistance of infection (fungal load). Rather, early-life exposure to atrazine altered growth and development, which resulted in exposure to chytrid at more susceptible developmental stages and sizes, and reduced tolerance of infection, elevating mortality risk at an equivalent fungal burden to frogs unexposed to atrazine. Moreover, there was no evidence of recovery from atrazine exposure. Hence, reducing early-life exposure of amphibians to atrazine could reduce lasting increases in the risk of mortality from a disease associated with worldwide amphibian declines. More generally, these findings highlight that a better understanding of how stressors cause enduring effects on disease susceptibility could facilitate disease prevention in wildlife and humans, an approach that is often more cost-effective and efficient than reactive medicine.

  16. Early-life exposure to a herbicide has enduring effects on pathogen-induced mortality

    PubMed Central

    Rohr, Jason R.; Raffel, Thomas R.; Halstead, Neal T.; McMahon, Taegan A.; Johnson, Steve A.; Boughton, Raoul K.; Martin, Lynn B.

    2013-01-01

    Exposure to stressors at formative stages in the development of wildlife and humans can have enduring effects on health. Understanding which, when and how stressors cause enduring health effects is crucial because these stressors might then be avoided or mitigated during formative stages to prevent lasting increases in disease susceptibility. Nevertheless, the impact of early-life exposure to stressors on the ability of hosts to resist and tolerate infections has yet to be thoroughly investigated. Here, we show that early-life, 6-day exposure to the herbicide atrazine (mean ± s.e.: 65.9±3.48 µg l−1) increased frog mortality 46 days after atrazine exposure (post-metamorphosis), but only when frogs were challenged with a chytrid fungus implicated in global amphibian declines. Previous atrazine exposure did not affect resistance of infection (fungal load). Rather, early-life exposure to atrazine altered growth and development, which resulted in exposure to chytrid at more susceptible developmental stages and sizes, and reduced tolerance of infection, elevating mortality risk at an equivalent fungal burden to frogs unexposed to atrazine. Moreover, there was no evidence of recovery from atrazine exposure. Hence, reducing early-life exposure of amphibians to atrazine could reduce lasting increases in the risk of mortality from a disease associated with worldwide amphibian declines. More generally, these findings highlight that a better understanding of how stressors cause enduring effects on disease susceptibility could facilitate disease prevention in wildlife and humans, an approach that is often more cost-effective and efficient than reactive medicine. PMID:24266041

  17. Childhood to Early-Midlife Systolic Blood Pressure Trajectories: Early-Life Predictors, Effect Modifiers, and Adult Cardiovascular Outcomes.

    PubMed

    Theodore, Reremoana F; Broadbent, Jonathan; Nagin, Daniel; Ambler, Antony; Hogan, Sean; Ramrakha, Sandhya; Cutfield, Wayne; Williams, Michael J A; Harrington, HonaLee; Moffitt, Terrie E; Caspi, Avshalom; Milne, Barry; Poulton, Richie

    2015-12-01

    Previous studies examining blood pressure change over time have modeled an average population trajectory. Recent research among older adults suggests there may be subgroups with different blood pressure trajectories. Identifying subgroups at risk of developing adult hypertension early in life can inform effective risk reduction efforts. We sought to identify different systolic blood pressure trajectories from childhood, their correlated risk factors, and early-midlife cardiovascular outcomes. Blood pressure data at ages 7, 11, 18, 26, 32, and 38 years from a longitudinal, representative birth cohort study (n=975) were used to identify 4 distinct trajectory groups via group-based trajectory modeling: normal (21.8%), high-normal (43.3%), prehypertensive (31.6%), and hypertensive (4.2%). The categories refer to blood pressure beginning at the age of 7 years and most recently measured at the age of 38 years. Family history of high blood pressure (odds ratio [OR], 43.23; 95% confidence interval [CI], 5.27-354.65), male sex (OR, 109.48; 95% CI, 26.82-446.96), being first born (OR, 2.5; 95% CI, 1.00-8.69) and low birth weight (OR, 2.79; 95% CI, 2.49-3.09) were associated with hypertensive group membership (compared with the normal group). Higher body mass index and cigarette smoking resulted in increasing blood pressure across trajectories, particularly for the higher blood pressure groups. Prehypertensive and hypertensive trajectory groups had worse cardiovascular outcomes by early midlife. Harmful blood pressure trajectories are identifiable in childhood, associated with both antecedent and modifiable risk factors over time, and predict adult cardiovascular disease risk. Early detection and subsequent targeted prevention and intervention may reduce the lifecourse burden associated with higher blood pressure. PMID:26558818

  18. Childhood to Early-Midlife Systolic Blood Pressure Trajectories: Early-Life Predictors, Effect Modifiers, and Adult Cardiovascular Outcomes.

    PubMed

    Theodore, Reremoana F; Broadbent, Jonathan; Nagin, Daniel; Ambler, Antony; Hogan, Sean; Ramrakha, Sandhya; Cutfield, Wayne; Williams, Michael J A; Harrington, HonaLee; Moffitt, Terrie E; Caspi, Avshalom; Milne, Barry; Poulton, Richie

    2015-12-01

    Previous studies examining blood pressure change over time have modeled an average population trajectory. Recent research among older adults suggests there may be subgroups with different blood pressure trajectories. Identifying subgroups at risk of developing adult hypertension early in life can inform effective risk reduction efforts. We sought to identify different systolic blood pressure trajectories from childhood, their correlated risk factors, and early-midlife cardiovascular outcomes. Blood pressure data at ages 7, 11, 18, 26, 32, and 38 years from a longitudinal, representative birth cohort study (n=975) were used to identify 4 distinct trajectory groups via group-based trajectory modeling: normal (21.8%), high-normal (43.3%), prehypertensive (31.6%), and hypertensive (4.2%). The categories refer to blood pressure beginning at the age of 7 years and most recently measured at the age of 38 years. Family history of high blood pressure (odds ratio [OR], 43.23; 95% confidence interval [CI], 5.27-354.65), male sex (OR, 109.48; 95% CI, 26.82-446.96), being first born (OR, 2.5; 95% CI, 1.00-8.69) and low birth weight (OR, 2.79; 95% CI, 2.49-3.09) were associated with hypertensive group membership (compared with the normal group). Higher body mass index and cigarette smoking resulted in increasing blood pressure across trajectories, particularly for the higher blood pressure groups. Prehypertensive and hypertensive trajectory groups had worse cardiovascular outcomes by early midlife. Harmful blood pressure trajectories are identifiable in childhood, associated with both antecedent and modifiable risk factors over time, and predict adult cardiovascular disease risk. Early detection and subsequent targeted prevention and intervention may reduce the lifecourse burden associated with higher blood pressure.

  19. Psychiatric symptoms in adolescents: FKBP5 genotype--early life adversity interaction effects.

    PubMed

    Comasco, Erika; Gustafsson, Per A; Sydsjö, Gunilla; Agnafors, Sara; Aho, Nikolas; Svedin, Carl Göran

    2015-12-01

    Psychiatric disorders are multi-factorial and their symptoms overlap. Constitutional and environmental factors influence each other, and this contributes to risk and resilience in mental ill-health. We investigated functional genetic variation of stress responsiveness, assessed as FKBP5 genotype, in relation to early life adversity and mental health in two samples of adolescents. One population-based sample of 909 12-year-old adolescents was assessed using the Life Incidence of Traumatic Events scale and the Strengths and Difficulties Questionnaire. One sample of 398 17-year-old adolescents, enriched for poly-victimized individuals (USSS), was assessed using the Juvenile Victimization Questionnaire and the Trauma Symptom Checklist for Children (TSCC). The FKBP5 rs1360780 and rs3800373 polymorphisms were genotyped using a fluorescence-based competitive allele-specific PCR. Most prominently among poly-victimized older male adolescents, the least common alleles of the polymorphisms, in interaction with adverse life events, were associated with psychiatric symptoms, after controlling for ethno-socio-economic factors. The interaction effect between rs3800373 and adverse life events on the TSCC sub-scales-anxiety, depression, anger, and dissociation-and with the rs1360780 on dissociation in the USSS cohort remained significant after Bonferroni correction. This pattern of association is in line with the findings of clinical and neuroimaging studies, and implies interactive effects of FKBP5 polymorphisms and early life environment on several psychiatric symptoms. These correlates add up to provide constructs that are relevant to several psychiatric symptoms, and to identify early predictors of mental ill-health.

  20. Neuropsychological Outcomes of Preterm Birth in Children With No Major Neurodevelopmental Impairments in Early Life

    PubMed Central

    Joo, Ji Woon; Choi, Ja Young; Rha, Dong-wook; Kwak, Eun Hee

    2015-01-01

    Objectives To investigate cognition, social adaptive functioning, behavior, and emotional development in the preschool period and to determine the effects of the age of onset of walking on those developmental areas in children who were born preterm without major neurodevelopmental impairments (NDI) early in life. Methods Fifty-eight children who were born preterm without major NDI early in life participated in this study. The Korean versions of the Wechsler Preschool and Primary Scale of Intelligence or the Bayley Scales of Infant Development, the social maturity scale, the Korean version of the Child Behavior Checklist (CBCL), Conners' abbreviated parent/teacher rating scale, the Childhood Autism Rating Scale, and a speech developmental test were administered. The participants were divided into two groups: early walkers (group A) and late walkers (group B). Results The full-scale intelligence quotient (IQ) and performance IQ were significantly lower in group B than in group A, while the verbal IQ did not differ significantly between the groups. The children in group B had greater risks of cognitive deficits than did the children in group A, especially in performance skills. The social quotient (SQ) was significantly lower in group B than in group A (p<0.05). The rates of mild or significant deficits based on SQ and the CBCL did not differ significantly between the groups. Four children in group A and one child in group B had attention/hyperactivity problems. One child in group A had autistic behavior. Only one child in group B showed a significant speech developmental delay. Conclusions Problems in cognition, social adaptive functioning, and emotional and behavioral development can occur in children without major NDI early in life. Late walkers had significantly lower scores in cognition and social adaptive functioning than did early walkers. PMID:26605165

  1. Impacts of early life exposure to estrogen on subsequent breeding behavior and reproductive success in zebrafish.

    PubMed

    Coe, Tobias S; Söffker, Marta K; Filby, Amy L; Hodgson, David; Tyler, Charles R

    2010-08-15

    Impacts of exposure to environmental estrogens on reproductive development are well documented, but recently wider concern has been raised due to evidence that such exposures can disrupt normal patterns of reproductive behavior, dominance, and parentage, with potential population level implications. It is fundamental therefore to understand any such effects for effective risk assessment. This study investigated the impact of a transient exposure to ethinylestradiol (EE(2)) during early life (from 20-60 days post fertilization), including at a dosing level within the environmental range, on the subsequent reproductive behavior and success in both male and female zebrafish (Danio rerio) in competitive breeding scenarios. There were no obvious effects of the early life EE(2) exposures on the subsequent gonadal phenotypes in either mature males or females. In fact, reproductive success in males exposed to 2.76 ng EE(2)/L was increased in competitive spawning scenarios. In contrast, exposure of females to EE(2) (9.86 ng/L) during early life reduced their subsequent reproductive success in competitive spawning scenarios. Mate choice experiments suggested this was a consequence of the females' diminished courting behavior toward males, rather than any male preference for unexposed females. Reproductive capability of females is generally considered a key determinant in population demographics and dynamics, and therefore the effect of exposure to EE(2) on female reproductive success may have significant implications for exposed fish populations.

  2. Animal models of programming: early life influences on appetite and feeding behaviour.

    PubMed

    Langley-Evans, Simon C; Bellinger, Leanne; McMullen, Sarah

    2005-07-01

    Epidemiological observations of associations between early life nutrition and long-term disease risk have prompted detailed experimental investigation of the biological basis of programming. Studies using rodent or large animal models have clearly established the biological plausibility of nutritional programming and are now yielding important information on underlying mechanisms. Nutritional interventions in pregnancy, including global food restriction, protein restriction, micronutrient restriction and excess fat feeding, determine a consistent cluster of disorders in the resulting offspring. The common association of such diverse nutritional disturbances with hypertension, glucose intolerance and adiposity suggests that a small number of simple common mechanisms are active in response to fetal nutrient imbalance. Studies of rodent models indicate that fetal undernutrition determines adult adiposity. It is unclear whether the increase in central adiposity is related to increased food intake or reduced energy expenditure, although evidence exists to suggest that both may act together. Rats subject to intrauterine protein restriction exhibit increased preference for high fat foods. Feeding of energy dense foods to rats that were undernourished in utero promotes a greater degree of obesity than is noted in animals subject to adequate nutrition in fetal life. There is evidence to suggest that programming of appetite may stem from remodelling of hypothalamic structures that control feeding and programming of the expression of genes involved in responses to orexogenic hormones. The early life programming of appetite and obesity is a complex phenomenon and our understanding of how maternal nutrition determines later energy balance is at a very early stage.

  3. Neurotrophic and neuroimmune responses to early-life Pseudomonas aeruginosa infection in rat lungs.

    PubMed

    Cardenas, Silvia; Scuri, Mario; Samsell, Lennie; Ducatman, Barbara; Bejarano, Pablo; Auais, Alexander; Doud, Melissa; Mathee, Kalai; Piedimonte, Giovanni

    2010-09-01

    Early-life respiratory infection with Pseudomonas aeruginosa is common in children with cystic fibrosis or immune deficits. Although many of its clinical manifestations involve neural reflexes, little information is available on the peripheral nervous system of infected airways. This study sought to determine whether early-life infection triggers a neurogenic-mediated immunoinflammatory response, the mechanisms of this response, and its relationship with other immunoinflammatory pathways. Weanling and adult rats were inoculated with suspensions containing P. aeruginosa (PAO1) coated on alginate microspheres suspended in Tris-CaCl(2) buffer. Five days after infection, rats were injected with capsaicin to stimulate nociceptive nerves in the airway mucosa, and microvascular permeability was measured using Evans blue as a tracer. PAO1 increased neurogenic inflammation in the extra- and intrapulmonary compartments of weanlings but not in adults. The mechanism involves selective overexpression of NGF, which is critical for the local increase in microvascular permeability and for the infiltration of polymorphonuclear leukocytes into infected lung parenchyma. These effects are mediated in part by induction of downstream inflammatory cytokines and chemokines, especially IL-1beta, IL-18, and leptin. Our data suggest that neurogenic-mediated immunoinflammatory mechanisms play important roles in airway inflammation and hyperreactivity associated with P. aeruginosa when infection occurs early in life. PMID:20543002

  4. Birth weight, early life course BMI, and body size change: Chains of risk to adult inflammation?

    PubMed

    Goosby, Bridget J; Cheadle, Jacob E; McDade, Thomas

    2016-01-01

    This paper examines how body size changes over the early life course to predict high sensitivity C-reactive protein in a U.S. based sample. Using three waves of the National Longitudinal Study of Adolescent Health (Add Health), we test the chronic disease epidemiological models of fetal origins, sensitive periods, and chains of risk from birth into adulthood. Few studies link birth weight and changes in obesity status over adolescence and early adulthood to adult obesity and inflammation. Consistent with fetal origins and sensitive periods hypotheses, body size and obesity status at each developmental period, along with increasing body size between periods, are highly correlated with adult CRP. However, the predictive power of earlier life course periods is mediated by body size and body size change at later periods in a pattern consistent with the chains of risk model. Adult increases in obesity had effect sizes of nearly 0.3 sd, and effect sizes from overweight to the largest obesity categories were between 0.3 and 1 sd. There was also evidence that risk can be offset by weight loss, which suggests that interventions can reduce inflammation and cardiovascular risk, that females are more sensitive to body size changes, and that body size trajectories over the early life course account for African American- and Hispanic-white disparities in adult inflammation.

  5. Early life developmental effects of marine persistent organic pollutants on the sea urchin Psammechinus miliaris.

    PubMed

    Anselmo, Henrique M R; Koerting, Lina; Devito, Sarah; van den Berg, Johannes H J; Dubbeldam, Marco; Kwadijk, Christiaan; Murk, Albertinka J

    2011-11-01

    A new 16-day echinoid early life stage (ELS) bioassay was developed to allow for prolonged observation of possible adverse effects during embryogenesis and larval development of the sea urchin Psammechinus miliaris. Subsequently, the newly developed bioassay was applied to study the effects of key marine persistent organic pollutants (POPs). Mortality, morphological abnormalities and larval development stages were quantified at specific time points during the 16-day experimental period. In contrast to amphibians and fish, P. miliaris early life development was not sensitive to dioxin-like toxicity in the prolonged early life stage test. Triclosan (TCS) levels higher than 500 nM were acutely toxic during embryo development. Morphological abnormalities were induced at concentrations higher than 50 nM hexabromocyclododecane (HBCD) and 1000 nM tetrabromobisphenol A (TBBPA). Larval development was delayed above 25 nM HBCD and 500 nM TBBPA. Heptadecafluorooctane sulfonic acid (PFOS) exposure slightly accelerated larval development at 9 days post-fertilization (dpf). However, the accelerated development was no longer observed at the end of the test period (16 dpf). The newly developed 16-day echinoid ELS bioassay proved to be sensitive to toxic effects of POPs that can be monitored for individual echinoid larvae. The most sensitive and dose related endpoint was the number of developmental penalty points. By manipulation of the housing conditions, the reproductive season could be extended from 3 to 9 months per year and the ELS experiments could be performed in artificial sea water as well.

  6. Early-life experience affects honey bee aggression and resilience to immune challenge

    PubMed Central

    Rittschof, Clare C.; Coombs, Chelsey B.; Frazier, Maryann; Grozinger, Christina M.; Robinson, Gene E.

    2015-01-01

    Early-life social experiences cause lasting changes in behavior and health for a variety of animals including humans, but it is not well understood how social information ‘‘gets under the skin’’ resulting in these effects. Adult honey bees (Apis mellifera) exhibit socially coordinated collective nest defense, providing a model for social modulation of aggressive behavior. Here we report for the first time that a honey bee’s early-life social environment has lasting effects on individual aggression: bees that experienced high-aggression environments during pre-adult stages showed increased aggression when they reached adulthood relative to siblings that experienced low-aggression environments, even though all bees were kept in a common environment during adulthood. Unlike other animals including humans however, high-aggression honey bees were more, rather than less, resilient to immune challenge, assessed as neonicotinoid pesticide susceptibility. Moreover, aggression was negatively correlated with ectoparasitic mite presence. In honey bees, early-life social experience has broad effects, but increased aggression is decoupled from negative health outcomes. Because honey bees and humans share aspects of their physiological response to aggressive social encounters, our findings represent a step towards identifying ways to improve individual resiliency. Pre-adult social experience may be crucial to the health of the ecologically threatened honey bee. PMID:26493190

  7. Early-life experience affects honey bee aggression and resilience to immune challenge.

    PubMed

    Rittschof, Clare C; Coombs, Chelsey B; Frazier, Maryann; Grozinger, Christina M; Robinson, Gene E

    2015-01-01

    Early-life social experiences cause lasting changes in behavior and health for a variety of animals including humans, but it is not well understood how social information ''gets under the skin'' resulting in these effects. Adult honey bees (Apis mellifera) exhibit socially coordinated collective nest defense, providing a model for social modulation of aggressive behavior. Here we report for the first time that a honey bee's early-life social environment has lasting effects on individual aggression: bees that experienced high-aggression environments during pre-adult stages showed increased aggression when they reached adulthood relative to siblings that experienced low-aggression environments, even though all bees were kept in a common environment during adulthood. Unlike other animals including humans however, high-aggression honey bees were more, rather than less, resilient to immune challenge, assessed as neonicotinoid pesticide susceptibility. Moreover, aggression was negatively correlated with ectoparasitic mite presence. In honey bees, early-life social experience has broad effects, but increased aggression is decoupled from negative health outcomes. Because honey bees and humans share aspects of their physiological response to aggressive social encounters, our findings represent a step towards identifying ways to improve individual resiliency. Pre-adult social experience may be crucial to the health of the ecologically threatened honey bee.

  8. Effects of early life exposure to methylmercury in Daphnia pulex on standard and reduced food ration

    PubMed Central

    Doke, Dzigbodi A.; Hudson, Sherri L.; Dawson, John A.; Gohlke, Julia M.

    2015-01-01

    As a well-known eco-toxicological model organism, Daphnia pulex may also offer advantages in human health research for assessing long-term effects of early life exposures to coupled stressors. Here, we examine consequences of early life exposure to methylmercury (MeHg) under standard and reduced food ration. We exposed Daphnia for 24 h in early life to varying concentrations of methylmercury(II) chloride (0, 200, 400, 800 and 1600 ng/L) and thereafter kept Daphnia on either a standard or a reduced food ration. The data suggests an additive effect of MeHg concentration and food ration on decreasing lifespan, although MeHg concentration does not affect survival linearly. Food ration and MeHg concentration were predictive of reduced reproduction, and there is some evidence of an interaction (p = 0.048). Multi-stressor work in alternative model systems may be useful for prioritizing research, taking into account potential antagonistic, additive or synergistic effects that nutritional status may have on chemical toxicity. PMID:25263226

  9. Early-life experience affects honey bee aggression and resilience to immune challenge.

    PubMed

    Rittschof, Clare C; Coombs, Chelsey B; Frazier, Maryann; Grozinger, Christina M; Robinson, Gene E

    2015-01-01

    Early-life social experiences cause lasting changes in behavior and health for a variety of animals including humans, but it is not well understood how social information ''gets under the skin'' resulting in these effects. Adult honey bees (Apis mellifera) exhibit socially coordinated collective nest defense, providing a model for social modulation of aggressive behavior. Here we report for the first time that a honey bee's early-life social environment has lasting effects on individual aggression: bees that experienced high-aggression environments during pre-adult stages showed increased aggression when they reached adulthood relative to siblings that experienced low-aggression environments, even though all bees were kept in a common environment during adulthood. Unlike other animals including humans however, high-aggression honey bees were more, rather than less, resilient to immune challenge, assessed as neonicotinoid pesticide susceptibility. Moreover, aggression was negatively correlated with ectoparasitic mite presence. In honey bees, early-life social experience has broad effects, but increased aggression is decoupled from negative health outcomes. Because honey bees and humans share aspects of their physiological response to aggressive social encounters, our findings represent a step towards identifying ways to improve individual resiliency. Pre-adult social experience may be crucial to the health of the ecologically threatened honey bee. PMID:26493190

  10. [The role of early-life metabolic programming in the pathogenesis of lifestyle diseases].

    PubMed

    Roszkowska, Renata; Taranta-Janusz, Katarzyna; Wasilewska, Anna

    2014-01-01

    In recent years, a blooming period of genomics brings a window of opportunity to assess predispositions to some diseases in individuals, even before the first symptoms appear. However, a risk of becoming ill is more complex, as the gene expression is modified by epigenetic and environmental factors. Fetal development and first months of life are periods of dynamic growth and significant sensitivity to external factors. According to the theory of early-life metabolic programming, adaptive changes in these stages have lasting health effects. Among many environmental factors, the youngest children's diet plays an important role. Breastfeeding of newborns and infants is an essential part of lifestyle diseases prevention. Constantly increasing number of reports link natural nutrition of the youngest children with less risk of obesity, hypertension, dyslipidemia and insulin resistance in future life. However, further long-term studies taking into account number of bias factors, explaining protective mechanisms of human milk, are needed.

  11. [The role of early-life metabolic programming in the pathogenesis of lifestyle diseases].

    PubMed

    Roszkowska, Renata; Taranta-Janusz, Katarzyna; Wasilewska, Anna

    2014-01-01

    In recent years, a blooming period of genomics brings a window of opportunity to assess predispositions to some diseases in individuals, even before the first symptoms appear. However, a risk of becoming ill is more complex, as the gene expression is modified by epigenetic and environmental factors. Fetal development and first months of life are periods of dynamic growth and significant sensitivity to external factors. According to the theory of early-life metabolic programming, adaptive changes in these stages have lasting health effects. Among many environmental factors, the youngest children's diet plays an important role. Breastfeeding of newborns and infants is an essential part of lifestyle diseases prevention. Constantly increasing number of reports link natural nutrition of the youngest children with less risk of obesity, hypertension, dyslipidemia and insulin resistance in future life. However, further long-term studies taking into account number of bias factors, explaining protective mechanisms of human milk, are needed. PMID:25874787

  12. Habitability and the Possibility of Extraterrestrial Life in the Early Telescope Era

    NASA Astrophysics Data System (ADS)

    Reynolds, Sarah

    2014-01-01

    Early telescopic observations of the Moon and planets prompted great interest in the already-existing debate about the possibility of life on the Moon and other worlds. New observations of the lunar surface, revealing an apparently Earth-like terrain and possibly the presence of bodies of water, were often considered in relation to their implications for the existence of lunar inhabitants. This depended upon establishing what constituted the fundamental requirements for life and the boundaries of habitability. The growing support for the heliocentric Copernican astronomy was also changing perceptions of the relationships between the Earth, the Moon, and the planets. Works such as Johannes Kepler’s Somnium and John Wilkins’ The Discovery of a World in the Moone presented views of extraterrestrial life that were shifting from the supernatural to the natural, in correspondence with the celestial bodies’ new positions in the cosmos. This paper considers how these and other works from the early telescope era reveal changes in the nature of astronomical speculation about extraterrestrial life and the conditions construed as “habitability,” and what significance that history has for us today in the new era of extrasolar planet discovery.

  13. What traces of life can we expect on Mars? Lessons from the early Earth

    NASA Astrophysics Data System (ADS)

    Westall, F.

    2008-09-01

    Abstract Environmental conditions on early Mars, from a microbial point of view, were largely similar to those on the early Earth. The oldest, well-preserved rocks on the early Earth (~3.5 Ga) host a wide range of morphological and geochemical traces of life, including chemolithotrophic, heterotrophic and photosynthetic anaerobic microorganisms. These microorganisms evolved in a tectonically evolving geological context, including carbonate platform formation. This scenario did not exist on Mars. Moreover, Mars was outside the habitable zone and standing bodies of water were probably ice-covered. Evolutionary advancement of martian life (if it appeared) would have been curtailed very early and it is unlikely that photosynthesis could have evolved. It is therefore unlikely that martian life will leave visible traces that can be detected with in situ instrumentation (no biolaminites or stromatolites). Geochemical detection of organic components will be possible but it is unlikely that the results will be conclusive. The return of suitable rocks from Mars is advocated. Early life on Earth and Mars The oldest, well preserved rocks on Earth, including both sedimentary and volcanic lithologies, contain abundant morphological and geochemical traces of life [1]. Evidence of borings into basalt lavas [2] and microbial colonies within volcanic sediments [3,4] testify to microbial utilisation of chemolithotrophy. Microscopic tunnels, tens of microns in length, containing traces of biologically important elements, such as C and N, in the vitreous rinds of pillow lavas are identified in petrographic thin section (Fig. 1) [2]. Similar 5-10 μm-sized tunnels have been channelled into the surfaces of detrital volcanic grains [4]. They contain the remains of microbial polymeric substances (EPS) but can only be identified in petrographic thin section and using the high magnification of a scanning electron microscope (SEM). Furthermore, volcanic sediments deposited in water contain

  14. Early-Life Bisphenol A Exposure and Child Body Mass Index: A Prospective Cohort Study

    PubMed Central

    Lanphear, Bruce P.; Calafat, Antonia M.; Deria, Sirad; Khoury, Jane; Howe, Chanelle J.; Venners, Scott A.

    2014-01-01

    Background: Early-life exposure to bisphenol A (BPA) may increase childhood obesity risk, but few prospective epidemiological studies have investigated this relationship. Objective: We sought to determine whether early-life exposure to BPA was associated with increased body mass index (BMI) at 2–5 years of age in 297 mother–child pairs from Cincinnati, Ohio (HOME Study). Methods: Urinary BPA concentrations were measured in samples collected from pregnant women during the second and third trimesters and their children at 1 and 2 years of age. BMI z-scores were calculated from weight/height measures conducted annually from 2 through 5 years of age. We used linear mixed models to estimate BMI differences or trajectories with increasing creatinine-normalized BPA concentrations. Results: After confounder adjustment, each 10-fold increase in prenatal (β = –0.1; 95% CI: –0.5, 0.3) or early-childhood (β = –0.2; 95% CI: –0.6, 0.1) BPA concentrations was associated with a modest and nonsignificant reduction in child BMI. These inverse associations were suggestively stronger in girls than in boys [prenatal effect measure modification (EMM) p-value = 0.30, early-childhood EMM p-value = 0.05], but sex-specific associations were imprecise. Children in the highest early-childhood BPA tercile had lower BMI at 2 years (difference = –0.3; 95% CI: –0.6, 0.0) and larger increases in their BMI slope from 2 through 5 years (BMI increase per year = 0.12; 95% CI: 0.07, 0.18) than children in the lowest tercile (BMI increase per year = 0.07; 95% CI: 0.01, 0.13). All associations were attenuated without creatinine normalization. Conclusions: Prenatal and early-childhood BPA exposures were not associated with increased BMI at 2–5 years of age, but higher early-childhood BPA exposures were associated with accelerated growth during this period. Citation: Braun JM, Lanphear BP, Calafat AM, Deria S, Khoury J, Howe CJ, Venners SA. 2014. Early-life bisphenol A exposure and

  15. Does early-life income inequality predict self-reported health in later life? Evidence from the United States.

    PubMed

    Lillard, Dean R; Burkhauser, Richard V; Hahn, Markus H; Wilkins, Roger

    2015-03-01

    We investigate the association between adult health and the income inequality they experienced as children up to 80 years earlier. Our inequality data track shares of national income held by top percentiles from 1913 to 2009. We average those data over the same early-life years and merge them to individual data from the Panel Study of Income Dynamics data for 1984-2009. Controlling for demographic and economic factors, we find both men and women are statistically more likely to report poorer health if income was more unequally distributed during the first years of their lives. The association is robust to alternative specifications of income inequality and time trends and remains significant even when we control for differences in overall childhood health. Our results constitute prima facie evidence that adults' health may be adversely affected by the income inequality they experienced as children.

  16. Does early-life diet affect longevity? A meta-analysis across experimental studies.

    PubMed

    English, Sinead; Uller, Tobias

    2016-09-01

    Life-history theory predicts that nutrition influences lifespan owing to trade-offs between allocating resources to reproduction, growth and repair. Despite occasional reports that early diet has strong effects on lifespan, it is unclear whether this prediction is generally supported by empirical studies. We conducted a meta-analysis across experimental studies manipulating pre- or post-natal diet and measuring longevity. We found no overall effect of early diet on lifespan. We used meta-regression, considering moderator variables based on experimental and life-history traits, to test predictions regarding the strength and direction of effects that could lead to positive or negative effects. Pre-natal diet manipulations reduced lifespan, but there were no effects of later diet, manipulation type, development mode, or sex. The results are consistent with the prediction that early diet restriction disrupts growth and results in increased somatic damage, which incurs lifespan costs. Our findings raise a cautionary note, however, for placing too strong an emphasis on early diet effects on lifespan and highlight limitations of measuring these effects under laboratory conditions. PMID:27601722

  17. Does early-life diet affect longevity? A meta-analysis across experimental studies.

    PubMed

    English, Sinead; Uller, Tobias

    2016-09-01

    Life-history theory predicts that nutrition influences lifespan owing to trade-offs between allocating resources to reproduction, growth and repair. Despite occasional reports that early diet has strong effects on lifespan, it is unclear whether this prediction is generally supported by empirical studies. We conducted a meta-analysis across experimental studies manipulating pre- or post-natal diet and measuring longevity. We found no overall effect of early diet on lifespan. We used meta-regression, considering moderator variables based on experimental and life-history traits, to test predictions regarding the strength and direction of effects that could lead to positive or negative effects. Pre-natal diet manipulations reduced lifespan, but there were no effects of later diet, manipulation type, development mode, or sex. The results are consistent with the prediction that early diet restriction disrupts growth and results in increased somatic damage, which incurs lifespan costs. Our findings raise a cautionary note, however, for placing too strong an emphasis on early diet effects on lifespan and highlight limitations of measuring these effects under laboratory conditions.

  18. The long-term impact of early adversity on late-life psychiatric disorders.

    PubMed

    Gershon, Anda; Sudheimer, Keith; Tirouvanziam, Rabindra; Williams, Leanne M; O'Hara, Ruth

    2013-04-01

    Early adversity is a strong and enduring predictor of psychiatric disorders including mood disorders, anxiety disorders, substance abuse or dependence, and posttraumatic stress disorder. However, the mechanisms of this effect are not well understood. The purpose of this review is to summarize and integrate the current research knowledge pertaining to the long-term effects of early adversity on psychiatric disorders, particularly in late life. We explore definitional considerations including key dimensions of the experience such as type, severity, and timing of adversity relative to development. We then review the potential biological and environmental mediators and moderators of the relationships between early adversity and psychiatric disorders. We conclude with clinical implications, methodological challenges and suggestions for future research. PMID:23443532

  19. What traces of life can we expect on Mars? Lessons from the early Earth

    NASA Astrophysics Data System (ADS)

    Westall, F.

    2008-09-01

    Abstract Environmental conditions on early Mars, from a microbial point of view, were largely similar to those on the early Earth. The oldest, well-preserved rocks on the early Earth (~3.5 Ga) host a wide range of morphological and geochemical traces of life, including chemolithotrophic, heterotrophic and photosynthetic anaerobic microorganisms. These microorganisms evolved in a tectonically evolving geological context, including carbonate platform formation. This scenario did not exist on Mars. Moreover, Mars was outside the habitable zone and standing bodies of water were probably ice-covered. Evolutionary advancement of martian life (if it appeared) would have been curtailed very early and it is unlikely that photosynthesis could have evolved. It is therefore unlikely that martian life will leave visible traces that can be detected with in situ instrumentation (no biolaminites or stromatolites). Geochemical detection of organic components will be possible but it is unlikely that the results will be conclusive. The return of suitable rocks from Mars is advocated. Early life on Earth and Mars The oldest, well preserved rocks on Earth, including both sedimentary and volcanic lithologies, contain abundant morphological and geochemical traces of life [1]. Evidence of borings into basalt lavas [2] and microbial colonies within volcanic sediments [3,4] testify to microbial utilisation of chemolithotrophy. Microscopic tunnels, tens of microns in length, containing traces of biologically important elements, such as C and N, in the vitreous rinds of pillow lavas are identified in petrographic thin section (Fig. 1) [2]. Similar 5-10 μm-sized tunnels have been channelled into the surfaces of detrital volcanic grains [4]. They contain the remains of microbial polymeric substances (EPS) but can only be identified in petrographic thin section and using the high magnification of a scanning electron microscope (SEM). Furthermore, volcanic sediments deposited in water contain

  20. Early Stress Causes Sex-Specific, Life-Long Changes in Behaviour, Levels of Gonadal Hormones, and Gene Expression in Chickens

    PubMed Central

    Elfwing, Magnus; Nätt, Daniel; Goerlich-Jansson, Vivian C.; Persson, Mia; Hjelm, Jonas; Jensen, Per

    2015-01-01

    Early stress can have long-lasting phenotypic effects. Previous research shows that male and female chickens differ in many behavioural aspects, and respond differently to chronic stress. The present experiment aimed to broadly characterize long-term sex differences in responses to brief events of stress experienced during the first weeks of life. Chicks from a commercial egg-laying hybrid were exposed to stress by inducing periods of social isolation during their first three weeks of life, followed by a broad behavioural, physiological and genomic characterization throughout life. Early stressed males, but not females, where more anxious in an open field-test, stayed shorter in tonic immobility and tended to have delayed sexual maturity, as shown by a tendency for lower levels of testosterone compared to controls. While early stressed females did not differ from non-stressed in fear and sexual maturation, they were more socially dominant than controls. The differential gene expression profile in hypothalamus was significantly correlated from 28 to 213 days of age in males, but not in females. In conclusion, early stress had a more pronounced long-term effect on male than on female chickens, as evidenced by behavioral, endocrine and genomic responses. This may either be attributed to inherent sex differences due to evolutionary causes, or possibly to different stress related selection pressures on the two sexes during commercial chicken breeding. PMID:25978318

  1. Early stress causes sex-specific, life-long changes in behaviour, levels of gonadal hormones, and gene expression in chickens.

    PubMed

    Elfwing, Magnus; Nätt, Daniel; Goerlich-Jansson, Vivian C; Persson, Mia; Hjelm, Jonas; Jensen, Per

    2015-01-01

    Early stress can have long-lasting phenotypic effects. Previous research shows that male and female chickens differ in many behavioural aspects, and respond differently to chronic stress. The present experiment aimed to broadly characterize long-term sex differences in responses to brief events of stress experienced during the first weeks of life. Chicks from a commercial egg-laying hybrid were exposed to stress by inducing periods of social isolation during their first three weeks of life, followed by a broad behavioural, physiological and genomic characterization throughout life. Early stressed males, but not females, where more anxious in an open field-test, stayed shorter in tonic immobility and tended to have delayed sexual maturity, as shown by a tendency for lower levels of testosterone compared to controls. While early stressed females did not differ from non-stressed in fear and sexual maturation, they were more socially dominant than controls. The differential gene expression profile in hypothalamus was significantly correlated from 28 to 213 days of age in males, but not in females. In conclusion, early stress had a more pronounced long-term effect on male than on female chickens, as evidenced by behavioral, endocrine and genomic responses. This may either be attributed to inherent sex differences due to evolutionary causes, or possibly to different stress related selection pressures on the two sexes during commercial chicken breeding.

  2. Life-threatening hypersplenism due to idiopathic portal hypertension in early childhood: case report and review of the literature

    PubMed Central

    2010-01-01

    Background Idiopathic portal hypertension (IPH) is a disorder of unknown etiology and is characterized clinically by portal hypertension, splenomegaly, and hypersplenism accompanied by pancytopenia. This study evaluates the pathogenic concept of the disease by a systematic review of the literature and illustrates novel pathologic and laboratory findings. Case Presentation We report the first case of uncontrolled splenic hyperperfusion and enlargement with subsequent hypersplenism leading to life-threatening complications of IPH in infancy and emergent splenectomy. Conclusions Our results suggest that splenic NO and VCAM-1, rather than ET-1, have a significant impact on the development of IPH, even at a very early stage of disease. The success of surgical interventions targeting the splenic hyperperfusion suggests that the primary defect in the regulation of splenic blood flow seems to be crucial for the development of IPH. Thus, beside other treatment options splenectomy needs to be considered as a prime therapeutic option for IPH. PMID:20961440

  3. Modeling variation in early life mortality in the western lowland gorilla: Genetic, maternal and other effects.

    PubMed

    Ahsan, Monica H; Blomquist, Gregory E

    2015-06-01

    Uncovering sources of variation in gorilla infant mortality informs conservation and life history research efforts. The international studbook for the western lowland gorilla provides information on a sample of captive gorillas large enough for which to analyze genetic, maternal, and various other effects on early life mortality in this critically endangered species. We assess the importance of variables such as sex, maternal parity, paternal age, and hand rearing with regard to infant survival. We also quantify the proportions of variation in mortality influenced by heritable variation and maternal effects from these pedigree and survival data using variance component estimation. Markov chain Monte Carlo simulations of generalized linear mixed models produce variance component distributions in an animal model framework that employs all pedigree information. Two models, one with a maternal identity component and one with both additive genetic and maternal identity components, estimate variance components for different age classes during the first 2 years of life. This is informative of the extent to which mortality risk factors change over time during gorilla infancy. Our results indicate that gorilla mortality is moderately heritable with the strongest genetic influence just after birth. Maternal effects are most important during the first 6 months of life. Interestingly, hand-reared infants have lower mortality for the first 6 months of life. Aside from hand rearing, we found other predictors commonly used in studies of primate infant mortality to have little influence in these gorilla data.

  4. Modeling variation in early life mortality in the western lowland gorilla: Genetic, maternal and other effects.

    PubMed

    Ahsan, Monica H; Blomquist, Gregory E

    2015-06-01

    Uncovering sources of variation in gorilla infant mortality informs conservation and life history research efforts. The international studbook for the western lowland gorilla provides information on a sample of captive gorillas large enough for which to analyze genetic, maternal, and various other effects on early life mortality in this critically endangered species. We assess the importance of variables such as sex, maternal parity, paternal age, and hand rearing with regard to infant survival. We also quantify the proportions of variation in mortality influenced by heritable variation and maternal effects from these pedigree and survival data using variance component estimation. Markov chain Monte Carlo simulations of generalized linear mixed models produce variance component distributions in an animal model framework that employs all pedigree information. Two models, one with a maternal identity component and one with both additive genetic and maternal identity components, estimate variance components for different age classes during the first 2 years of life. This is informative of the extent to which mortality risk factors change over time during gorilla infancy. Our results indicate that gorilla mortality is moderately heritable with the strongest genetic influence just after birth. Maternal effects are most important during the first 6 months of life. Interestingly, hand-reared infants have lower mortality for the first 6 months of life. Aside from hand rearing, we found other predictors commonly used in studies of primate infant mortality to have little influence in these gorilla data. PMID:25809396

  5. Heterogeneous Disease Trajectories Explain Variable Radiographic, Function and Quality of Life Outcomes in the Canadian Early Arthritis Cohort (CATCH)

    PubMed Central

    Barnabe, Cheryl; Sun, Ye; Boire, Gilles; Hitchon, Carol A.; Haraoui, Boulos; Thorne, J. Carter; Tin, Diane; van der Heijde, Désirée; Curtis, Jeffrey R.; Jamal, Shahin; Pope, Janet E.; Keystone, Edward C.; Bartlett, Susan; Bykerk, Vivian P.

    2015-01-01

    Our objective was to identify distinct trajectories of disease activity state (DAS) and assess variation in radiographic progression, function and quality of life over the first two years of early rheumatoid arthritis (ERA). The CATCH (Canadian early ArThritis CoHort) is a prospective study recruiting ERA patients from academic and community rheumatology clinics in Canada. Sequential DAS28 scores were used to identify five mutually exclusive groups in the cohort (n = 1,586) using growth-based trajectory modeling. Distinguishing baseline sociodemographic and disease variables, treatment required, and differences in radiographic progression and quality of life measures over two years were assessed. The trajectory groups are characterized as: Group 1 (20%) initial high DAS improving rapidly to remission (REM); Group 2 (21%) initial moderate DAS improving rapidly to REM; Group 3 (30%) initial moderate DAS improving gradually to low DAS; Group 4 (19%) initial high DAS improving continuously to low DAS; and Group 5 (10%) initial high DAS improving gradually only to moderate DAS. Groups differed significantly in age, sex, race, education, employment, income and presence of comorbidities. Group 5 had persistent steroid requirements and the highest biologic therapy use. Group 2 had lower odds (OR 0.22, 95%CI 0.09 to 0.58) and Group 4 higher odds (OR 1.94, 95%CI 0.90 to 4.20) of radiographic progression compared to Group 1. Group 1 had the best improvement in physical function (Health Assessment Questionnaire 1.08 (SD 0.68) units), Physical Component Score (16.4 (SD 10.2) units), Mental Component Score (9.7 (SD 12.5) units) and fatigue (4.1 (SD 3.3) units). In conclusion, distinct disease activity state trajectories explain variable outcomes in ERA. Early prediction of disease course to tailor therapy and addressing social determinants of health could optimize outcomes. PMID:26301589

  6. Endurance training in early life results in long-term programming of heart mass in rats.

    PubMed

    Wadley, Glenn D; Laker, Rhianna C; McConell, Glenn K; Wlodek, Mary E

    2016-02-01

    Being born small for gestational age increases the risk of developing adult cardiovascular and metabolic diseases. This study aimed to examine if early-life exercise could increase heart mass in the adult hearts from growth restricted rats. Bilateral uterine vessel ligation to induce uteroplacental insufficiency and fetal growth restriction in the offspring (Restricted) or sham surgery (Control) was performed on day 18 of gestation in WKY rats. A separate group of sham litters had litter size reduced to five pups at birth (Reduced litter), which restricted postnatal growth. Male offspring remained sedentary or underwent treadmill running from 5 to 9 weeks (early exercise) or 20 to 24 weeks of age (later exercise). Remarkably, in Control, Restricted, and Reduced litter groups, early exercise increased (P < 0.05) absolute and relative (to body mass) heart mass in adulthood. This was despite the animals being sedentary for ~4 months after exercise. Later exercise also increased adult absolute and relative heart mass (P < 0.05). Blood pressure was not significantly altered between groups or by early or later exercise. Phosphorylation of Akt Ser(473) in adulthood was increased in the early exercise groups but not the later exercise groups. Microarray gene analysis and validation by real-time PCR did not reveal any long-term effects of early exercise on the expression of any individual genes. In summary, early exercise programs the heart for increased mass into adulthood, perhaps by an upregulation of protein synthesis based on greater phosphorylation of Akt Ser(473).

  7. Characterization of early host responses in adults with dengue disease

    PubMed Central

    2011-01-01

    Background While dengue-elicited early and transient host responses preceding defervescence could shape the disease outcome and reveal mechanisms of the disease pathogenesis, assessment of these responses are difficult as patients rarely seek healthcare during the first days of benign fever and thus data are lacking. Methods In this study, focusing on early recruitment, we performed whole-blood transcriptional profiling on denguevirus PCR positive patients sampled within 72 h of self-reported fever presentation (average 43 h, SD 18.6 h) and compared the signatures with autologous samples drawn at defervescence and convalescence and to control patients with fever of other etiology. Results In the early dengue fever phase, a strong activation of the innate immune response related genes were seen that was absent at defervescence (4-7 days after fever debut), while at this second sampling genes related to biosynthesis and metabolism dominated. Transcripts relating to the adaptive immune response were over-expressed in the second sampling point with sustained activation at the third sampling. On an individual gene level, significant enrichment of transcripts early in dengue disease were chemokines CCL2 (MCP-1), CCL8 (MCP-2), CXCL10 (IP-10) and CCL3 (MIP-1α), antimicrobial peptide β-defensin 1 (DEFB1), desmosome/intermediate junction component plakoglobin (JUP) and a microRNA which may negatively regulate pro-inflammatory cytokines in dengue infected peripheral blood cells, mIR-147 (NMES1). Conclusions These data show that the early response in patients mimics those previously described in vitro, where early assessment of transcriptional responses has been easily obtained. Several of the early transcripts identified may be affected by or mediate the pathogenesis and deserve further assessment at this timepoint in correlation to severe disease. PMID:21810247

  8. Early-Life Stress Perturbs Key Cellular Programs in the Developing Mouse Hippocampus.

    PubMed

    Wei, Lan; Hao, Jin; Lacher, Richard K; Abbott, Thomas; Chung, Lisa; Colangelo, Christopher M; Kaffman, Arie

    2015-01-01

    Conflicting reports are available with regard to the effects of childhood abuse and neglect on hippocampal function in children. While earlier imaging studies and some animal work have suggested that the effects of early-life stress (ELS) manifest only in adulthood, more recent studies have documented impaired hippocampal function in maltreated children and adolescents. Additional work using animal modes is needed to clarify the effects of ELS on hippocampal development. In this regard, genomic, proteomic, and molecular tools uniquely available in the mouse make it a particularly attractive model system to study this issue. However, very little work has been done so far to characterize the effects of ELS on hippocampal development in the mouse. To address this issue, we examined the effects of brief daily separation (BDS), a mouse model of ELS that impairs hippocampal-dependent memory in adulthood, on hippocampal development in 28-day-old juvenile mice. This age was chosen because it corresponds to the developmental period in which human imaging studies have revealed abnormal hippocampal development in maltreated children. Exposure to BDS caused a significant decrease in the total protein content of synaptosomes harvested from the hippocampus of 28-day-old male and female mice, suggesting that BDS impairs normal synaptic development in the juvenile hippocampus. Using a novel liquid chromatography multiple reaction monitoring mass spectrometry (LC-MRM) assay, we found decreased expression of many synaptic proteins, as well as proteins involved in axonal growth, myelination, and mitochondrial activity. Golgi staining in 28-day-old BDS mice showed an increase in the number of immature and abnormally shaped spines and a decrease in the number of mature spines in CA1 neurons, consistent with defects in synaptic maturation and synaptic pruning at this age. In 14-day-old pups, BDS deceased the expression of proteins involved in axonal growth and myelination, but did not

  9. Early life stress elicits visceral hyperalgesia and functional reorganization of pain circuits in adult rats

    PubMed Central

    Holschneider, D.P.; Guo, Y.; Mayer, E.A.; Wang, Z.

    2015-01-01

    Early life stress (ELS) is a risk factor for developing functional gastrointestinal disorders, and has been proposed to be related to a central amplification of sensory input and resultant visceral hyperalgesia. We sought to characterize ELS-related changes in functional brain responses during acute noxious visceral stimulation. Neonatal rats (males/females) were exposed to limited bedding (ELS) or standard bedding (controls) on postnatal days 2–9. Age 10–11 weeks, animals were implanted with venous cannulas and transmitters for abdominal electromyography (EMG). Cerebral blood flow (rCBF) was mapped during colorectal distension (CRD) using [14C]-iodoantipyrine autoradiography, and analyzed in three-dimensionally reconstructed brains by statistical parametric mapping and functional connectivity. EMG responses to CRD were increased after ELS, with no evidence of a sex difference. ELS rats compared to controls showed a greater significant positive correlation of EMG with amygdalar rCBF. Factorial analysis revealed a significant main effect of ‘ELS’ on functional activation of nodes within the pain pathway (somatosensory, insular, cingulate and prefrontal cortices, locus coeruleus/lateral parabrachial n. [LC/LPB], periaqueductal gray, sensory thalamus), as well as in the amygdala, hippocampus and hypothalamus. In addition, ELS resulted in an increase in the number of significant functional connections (i.e. degree centrality) between regions within the pain circuit, including the amygdala, LC/LPB, insula, anterior ventral cingulate, posterior cingulate (retrosplenium), and stria terminalis, with decreases noted in the sensory thalamus and the hippocampus. Sex differences in rCBF were less broadly expressed, with significant differences noted at the level of the cortex, amygdala, dorsal hippocampus, raphe, sensory thalamus, and caudate-putamen. ELS showed a sexually dimorphic effect (‘Sex x ELS’ interaction) at the LC/LPB complex, globus pallidus

  10. Human transgenerational responses to early-life experience: potential impact on development, health and biomedical research.

    PubMed

    Pembrey, Marcus; Saffery, Richard; Bygren, Lars Olov

    2014-09-01

    Mammalian experiments provide clear evidence of male line transgenerational effects on health and development from paternal or ancestral early-life exposures such as diet or stress. The few human observational studies to date suggest (male line) transgenerational effects exist that cannot easily be attributed to cultural and/or genetic inheritance. Here we summarise relevant studies, drawing attention to exposure sensitive periods in early life and sex differences in transmission and offspring outcomes. Thus, variation, or changes, in the parental/ancestral environment may influence phenotypic variation for better or worse in the next generation(s), and so contribute to common, non-communicable disease risk including sex differences. We argue that life-course epidemiology should be reframed to include exposures from previous generations, keeping an open mind as to the mechanisms that transmit this information to offspring. Finally, we discuss animal experiments, including the role of epigenetic inheritance and non-coding RNAs, in terms of what lessons can be learnt for designing and interpreting human studies. This review was developed initially as a position paper by the multidisciplinary Network in Epigenetic Epidemiology to encourage transgenerational research in human cohorts.

  11. Frequent nocturnal awakening in early life is associated with nonatopic asthma in children.

    PubMed

    Kozyrskyj, A L; Kendall, G E; Zubrick, S R; Newnham, J P; Sly, P D

    2009-12-01

    Sleep deprivation has become a common phenomenon of the Western world and is associated with a variety of medical problems in children. This retrospective longitudinal analysis of a community-based birth cohort was undertaken to determine whether frequent nocturnal awakening during early life was associated with the development of childhood asthma. 2,398 children born to mothers recruited from the antenatal clinics of a single hospital in Perth, Australia during 1989-1991 were followed up at years 1, 2, 3, 6, 8, 10 and 14. Parent-completed questionnaires were analysed. The odds ratio for asthma at age 6 and 14 yrs in children with frequent nocturnal awakening during the first 3 yrs after birth was determined from multiple logistic regression. Following adjustment for asthma risk factors, co-sleeping and family stress, persistent nocturnal awakening was associated with nonatopic asthma at age 6 and 14 yrs (at age 14 yrs: OR 2.18, 95% CI 1.15-4.13) but not with atopic asthma. We found an increased risk of nonatopic asthma in children following frequent nocturnal awakening during the first 3 yrs of life. These hypothesis-generating data suggest the need for further systematic study of the effects of disordered sleep in early life on the development of asthma.

  12. In utero arsenic exposure in mice and early life susceptibility to cancer.

    PubMed

    Garry, Michael R; Santamaria, Annette B; Williams, Amy L; DeSesso, John M

    2015-10-01

    In its review of the U.S. Environmental Protection Agency's toxicological review of inorganic arsenic (iAs), the National Academy of Sciences identified carcinogenic endpoints among the highest priority health effects of concern and stated the need to consider evidence that early life exposures may increase the risk of adverse health effects. Recent studies in mice suggest that in utero exposure to arsenic increases susceptibility to cancer later in life. These data are striking in light of the general lack of evidence for carcinogenicity in rodents exposed to iAs. To evaluate the transplacental carcinogenic potential of iAs, a detailed analysis of the toxicology literature evaluating the role of in utero arsenic exposure in carcinogenesis was conducted. Bladder, lung, and skin tumors, which are the tumor types most consistently reported in humans exposed to high arsenic levels, were not consistently increased in mouse studies. There was also a lack of concordance across studies for other tumor types not typically reported in humans. Therefore, we considered methodological and other critical issues that may have contributed to variable results and we suggest additional studies to address these issues. It was concluded that the available data do not provide evidence of a causal link between in utero arsenic exposure and cancer or indicate early life-stage susceptibility to arsenic-induced cancer, particularly at environmentally relevant doses.

  13. Processes on the Young Earth and the Habitats of Early Life

    NASA Astrophysics Data System (ADS)

    Arndt, Nicholas T.; Nisbet, Euan G.

    2012-05-01

    Conditions at the surface of the young (Hadean and early Archean) Earth were suitable for the emergence and evolution of life. After an initial hot period, surface temperatures in the late Hadean may have been clement beneath an atmosphere containing greenhouse gases over an ocean-dominated planetary surface. The first crust was mafic and it internally melted repeatedly to produce the felsic rocks that crystallized the Jack Hills zircons. This crust was destabilized during late heavy bombardment. Plate tectonics probably started soon after and had produced voluminous continental crust by the mid Archean, but ocean volumes were sufficient to submerge much of this crust. In the Hadean and early Archean, hydrothermal systems around abundant komatiitic volcanism may have provided suitable sites to host the earliest living communities and for the evolution of key enzymes. Evidence from the Isua Belt, Greenland, suggests life was present by 3.8 Gya, and by the mid-Archean, the geological record both in the Pilbara in Western Australia and the Barberton Greenstone Belt in South Africa shows that microbial life was abundant, probably using anoxygenic photosynthesis. By the late Archean, oxygenic photosynthesis had evolved, transforming the atmosphere and permitting the evolution of eukaryotes.

  14. The Potential Link between Gut Microbiota and IgE-Mediated Food Allergy in Early Life

    PubMed Central

    Molloy, John; Allen, Katrina; Collier, Fiona; Tang, Mimi L. K.; Ward, Alister C.; Vuillermin, Peter

    2013-01-01

    There has been a dramatic rise in the prevalence of IgE-mediated food allergy over recent decades, particularly among infants and young children. The cause of this increase is unknown but one putative factor is a change in the composition, richness and balance of the microbiota that colonize the human gut during early infancy. The coevolution of the human gastrointestinal tract and commensal microbiota has resulted in a symbiotic relationship in which gut microbiota play a vital role in early life immune development and function, as well as maintenance of gut wall epithelial integrity. Since IgE mediated food allergy is associated with immune dysregulation and impaired gut epithelial integrity there is substantial interest in the potential link between gut microbiota and food allergy. Although the exact link between gut microbiota and food allergy is yet to be established in humans, recent experimental evidence suggests that specific patterns of gut microbiota colonization may influence the risk and manifestations of food allergy. An understanding of the relationship between gut microbiota and food allergy has the potential to inform both the prevention and treatment of food allergy. In this paper we review the theory and evidence linking gut microbiota and IgE-mediated food allergy in early life. We then consider the implications and challenges for future research, including the techniques of measuring and analyzing gut microbiota, and the types of studies required to advance knowledge in the field. PMID:24351744

  15. Understanding behavioral effects of early life stress using the reactive scope and allostatic load models

    PubMed Central

    HOWELL, BRITTANY R.; SANCHEZ, MAR M.

    2015-01-01

    The mechanisms through which early life stress leads to psychopathology are thought to involve allostatic load, the “wear and tear” an organism is subjected to as a consequence of sustained elevated levels of glucocorticoids caused by repeated/prolonged stress activations. The allostatic load model described this phenomenon, but has been criticized as inadequate to explain alterations associated with early adverse experience in some systems, including behavior, which cannot be entirely explained from an energy balance perspective. The reactive scope model has been more recently proposed and focuses less on energy balance and more on dynamic ranges of physiological and behavioral mediators. In this review we examine the mechanisms underlying the behavioral consequences of early life stress in the context of both these models. We focus on adverse experiences that involve mother–infant relationship disruption, and dissect those mechanisms involving maternal care as a regulator of development of neural circuits that control emotional and social behaviors in the offspring. We also discuss the evolutionary purpose of the plasticity in behavioral development, which has a clear adaptive value in a changing environment. PMID:22018078

  16. Learning impairments identified early in life are predictive of future impairments associated with aging

    PubMed Central

    Hullinger, Rikki; Burger, Corinna

    2016-01-01

    The Morris water maze (MWM) behavioral paradigm is commonly used to measure spatial learning and memory in rodents. It is widely accepted that performance in the MWM declines with age. However, young rats ubiquitously perform very well on established versions of the water maze, suggesting that more challenging tasks may be required to reveal subtle differences in young animals. Therefore, we have used a one-day water maze and novel object recognition to test whether more sensitive paradigms of memory in young animals could identify subtle cognitive impairments early in life that might become accentuated later with senescence. We have found that these two tasks reliably separate young rats into inferior and superior learners, are highly correlated, and that performance on these tasks early in life is predictive of performance at 12 months of age. Furthermore, we have found that repeated training in this task selectively improves the performance of inferior learners, suggesting that behavioral training from an early age may provide a buffer against age-related cognitive decline. PMID:26283528

  17. Neuropsychological profiles and subsequent diagnoses of children with early life insults: do caregiver reports suggest deficits?

    PubMed

    Loughan, Ashlee R; Perna, Robert

    2014-01-01

    Many types of early life events can cause cerebral dysfunction; however, not all children have medical records or neurologic imaging documenting brain injuries. Rather, many neuropsychologists base their findings on caregiver reports describing possible early brain insults. Neuropsychological studies suggest that brief perinatal cyanosis and/or childhood neglect may negatively affect cognitive functioning. Should the mere suggestion of these events from caregiver reports be enough to suggest deficits? This study examines four groups of children: those with (1) reported nuchal cord compression with brief cyanosis, (2) reported childhood neglect, (3) reported history of both, and (4) reported history of none. It was hypothesized that based on the literature of these populations, children who present at an evaluation with the report of these insults would also present cognitive deficits. Results revealed no significant difference in intellect, memory, or academic abilities. A significant difference was shown between groups during the Wisconsin Card-Sorting Test Failure to Maintain Set, as groups with a history of neglect had lower scores. A history of childhood neglect also suggested an increased risk for subsequent emotional/behavioral diagnoses. These findings suggest that although the profiles range between low-average and average, reports of early life insults can flag potential deficits in a child's neuropsychological profile. PMID:24236945

  18. Effect of salicylic acid on early life stages of common carp (Cyprinus carpio).

    PubMed

    Zivna, Dana; Sehonova, Pavla; Plhalova, Lucie; Marsalek, Petr; Blahova, Jana; Prokes, Miroslav; Divisova, Lenka; Stancova, Vlasta; Dobsikova, Radka; Tichy, Frantisek; Siroka, Zuzana; Svobodova, Zdenka

    2015-07-01

    Environmental concentrations of pharmaceutical residues are often low; nevertheless, they are designed to have biological effects at low doses. The aim of this study was to assess the effects of salicylic acid on the growth and development of common carp (Cyprinus carpio) early life stages with respect to antioxidant defence enzymes. An embryo-larval toxicity test lasting 34 days was performed according to OECD guidelines 210 (Fish, Early-life Stage Toxicity Test). The tested concentrations were 0.004, 0.04, 0.4, 4 and 20mg/l of salicylic acid. Hatching, early ontogeny, and both morphometric and condition characteristics were significantly influenced by subchronic exposure to salicylic acid. Also, changes in antioxidant enzyme activity and an increase in lipid peroxidation were observed. The LOEC value was found to be 0.004 mg/l salicylic acid. The results of our study confirm the suggestion that subchronic exposure to salicylic acid at environmental concentrations can have significant effects on aquatic vertebrates.

  19. Variation in early-life telomere dynamics in a long-lived bird: links to environmental conditions and survival

    PubMed Central

    Watson, Hannah; Bolton, Mark; Monaghan, Pat

    2015-01-01

    ABSTRACT Conditions experienced during early life can have profound consequences for both short- and long-term fitness. Variation in the natal environment has been shown to influence survival and reproductive performance of entire cohorts in wild vertebrate populations. Telomere dynamics potentially provide a link between the early environment and long-term fitness outcomes, yet we know little about how the environment can influence telomere dynamics in early life. We found that environmental conditions during growth have an important influence on early-life telomere length (TL) and attrition in nestlings of a long-lived bird, the European storm petrel Hydrobates pelagicus. Nestlings reared under unfavourable environmental conditions experienced significantly greater telomere loss during postnatal development compared with nestlings reared under more favourable natal conditions, which displayed a negligible change in TL. There was, however, no significant difference in pre-fledging TL between cohorts. The results suggest that early-life telomere dynamics could contribute to the marked differences in life-history traits that can arise among cohorts reared under different environmental conditions. Early-life TL was also found to be a significant predictor of survival during the nestling phase, providing further evidence for a link between variation in TL and individual fitness. To what extent the relationship between early-life TL and mortality during the nestling phase is a consequence of genetic, parental and environmental factors is currently unknown, but it is an interesting area for future research. Accelerated telomere attrition under unfavourable conditions, as observed in this study, might play a role in mediating the effects of the early-life environment on later-life performance. PMID:25617465

  20. Variation in early-life telomere dynamics in a long-lived bird: links to environmental conditions and survival.

    PubMed

    Watson, Hannah; Bolton, Mark; Monaghan, Pat

    2015-03-01

    Conditions experienced during early life can have profound consequences for both short- and long-term fitness. Variation in the natal environment has been shown to influence survival and reproductive performance of entire cohorts in wild vertebrate populations. Telomere dynamics potentially provide a link between the early environment and long-term fitness outcomes, yet we know little about how the environment can influence telomere dynamics in early life. We found that environmental conditions during growth have an important influence on early-life telomere length (TL) and attrition in nestlings of a long-lived bird, the European storm petrel Hydrobates pelagicus. Nestlings reared under unfavourable environmental conditions experienced significantly greater telomere loss during postnatal development compared with nestlings reared under more favourable natal conditions, which displayed a negligible change in TL. There was, however, no significant difference in pre-fledging TL between cohorts. The results suggest that early-life telomere dynamics could contribute to the marked differences in life-history traits that can arise among cohorts reared under different environmental conditions. Early-life TL was also found to be a significant predictor of survival during the nestling phase, providing further evidence for a link between variation in TL and individual fitness. To what extent the relationship between early-life TL and mortality during the nestling phase is a consequence of genetic, parental and environmental factors is currently unknown, but it is an interesting area for future research. Accelerated telomere attrition under unfavourable conditions, as observed in this study, might play a role in mediating the effects of the early-life environment on later-life performance.

  1. Variation in early-life telomere dynamics in a long-lived bird: links to environmental conditions and survival.

    PubMed

    Watson, Hannah; Bolton, Mark; Monaghan, Pat

    2015-03-01

    Conditions experienced during early life can have profound consequences for both short- and long-term fitness. Variation in the natal environment has been shown to influence survival and reproductive performance of entire cohorts in wild vertebrate populations. Telomere dynamics potentially provide a link between the early environment and long-term fitness outcomes, yet we know little about how the environment can influence telomere dynamics in early life. We found that environmental conditions during growth have an important influence on early-life telomere length (TL) and attrition in nestlings of a long-lived bird, the European storm petrel Hydrobates pelagicus. Nestlings reared under unfavourable environmental conditions experienced significantly greater telomere loss during postnatal development compared with nestlings reared under more favourable natal conditions, which displayed a negligible change in TL. There was, however, no significant difference in pre-fledging TL between cohorts. The results suggest that early-life telomere dynamics could contribute to the marked differences in life-history traits that can arise among cohorts reared under different environmental conditions. Early-life TL was also found to be a significant predictor of survival during the nestling phase, providing further evidence for a link between variation in TL and individual fitness. To what extent the relationship between early-life TL and mortality during the nestling phase is a consequence of genetic, parental and environmental factors is currently unknown, but it is an interesting area for future research. Accelerated telomere attrition under unfavourable conditions, as observed in this study, might play a role in mediating the effects of the early-life environment on later-life performance. PMID:25617465

  2. Enhanced early-life nutrition promotes hormone production and reproductive development in Holstein bulls.

    PubMed

    Dance, Alysha; Thundathil, Jacob; Wilde, Randy; Blondin, Patrick; Kastelic, John

    2015-02-01

    Holstein bull calves often reach artificial insemination centers in suboptimal body condition. Early-life nutrition is reported to increase reproductive performance in beef bulls. The objective was to determine whether early-life nutrition in Holstein bulls had effects similar to those reported in beef bulls. Twenty-six Holstein bull calves were randomly allocated into 3 groups at approximately 1 wk of age to receive a low-, medium-, or high-nutrition diet, based on levels of energy and protein, from 2 to 31 wk of age. Calves were on their respective diets until 31 wk of age, after which they were all fed a medium-nutrition diet. To evaluate secretion profiles and concentrations of blood hormones, a subset of bulls was subjected to intensive blood sampling every 4 wk from 11 to 31 wk of age. Testes of all bulls were measured once a month; once scrotal circumference reached 26cm, semen collection was attempted (by electroejaculation) every 2 wk to confirm puberty. Bulls were maintained until approximately 72 wk of age and then slaughtered at a local abattoir. Testes were recovered and weighed. Bulls fed the high-nutrition diet were younger at puberty (high=324.3 d, low=369.3 d) and had larger testes for the entire experimental period than bulls fed the low-nutrition diet. Bulls fed the high-nutrition diet also had an earlier and more substantial early rise in LH than those fed the low-nutrition diet and had increased concentrations of insulin-like growth factor-I (IGF-I) earlier than the bulls fed the low-nutrition diet. Furthermore, we detected a temporal association between increased IGF-I concentrations and an early LH rise in bulls fed the high-nutrition diet. Therefore, we inferred that IGF-I had a role in regulating the early gonadotropin rise (in particular, LH) and thus reproductive development of Holstein bulls. Overall, these results support our hypothesis that Holstein bull calves fed a high-nutrition diet reach puberty earlier and have larger testes than

  3. Mechanisms Underlying Latent Disease Risk Associated with Early-Life Arsenic Exposure: Current Research Trends and Scientific Gaps

    PubMed Central

    Bailey, Kathryn A.; Smith, Allan H.; Tokar, Erik J.; Graziano, Joseph H.; Kim, Kyoung-Woong; Navasumrit, Panida; Ruchirawat, Mathuros; Thiantanawat, Apinya; Suk, William A.; Fry, Rebecca C.

    2015-01-01

    Background Millions of individuals worldwide, particularly those living in rural and developing areas, are exposed to harmful levels of inorganic arsenic (iAs) in their drinking water. Inorganic As exposure during key developmental periods is associated with a variety of adverse health effects, including those that are evident in adulthood. There is considerable interest in identifying the molecular mechanisms that relate early-life iAs exposure to the development of these latent diseases, particularly in relationship to cancer. Objectives This work summarizes research on the molecular mechanisms that underlie the increased risk of cancer development in adulthood that is associated with early-life iAs exposure. Discussion Epigenetic reprogramming that imparts functional changes in gene expression, the development of cancer stem cells, and immunomodulation are plausible underlying mechanisms by which early-life iAs exposure elicits latent carcinogenic effects. Conclusions Evidence is mounting that relates early-life iAs exposure and cancer development later in life. Future research should include animal studies that address mechanistic hypotheses and studies of human populations that integrate early-life exposure, molecular alterations, and latent disease outcomes. Citation Bailey KA, Smith AH, Tokar EJ, Graziano JH, Kim KW, Navasumrit P, Ruchirawat M, Thiantanawat A, Suk WA, Fry RC. 2016. Mechanisms underlying latent disease risk associated with early-life arsenic exposure: current research trends and scientific gaps. Environ Health Perspect 124:170–175; http://dx.doi.org/10.1289/ehp.1409360 PMID:26115410

  4. The impact of early life gut colonization on metabolic and obesogenic outcomes: what have animal models shown us?

    PubMed

    Wallace, J G; Gohir, W; Sloboda, D M

    2016-02-01

    The rise in the occurrence of obesity to epidemic proportions has made it a global concern. Great difficulty has been experienced in efforts to control this growing problem with lifestyle interventions. Thus, attention has been directed to understanding the events of one of the most critical periods of development, perinatal life. Early life adversity driven by maternal obesity has been associated with an increased risk of metabolic disease and obesity in the offspring later in life. Although a mechanistic link explaining the relationship between maternal and offspring obesity is still under investigation, the gut microbiota has come forth as a new factor that may play a role modulating metabolic function of both the mother and the offspring. Emerging evidence suggests that the gut microbiota plays a much larger role in mediating the risk of developing non-communicable disease, including obesity and metabolic dysfunction in adulthood. With the observation that the early life colonization of the neonatal and postnatal gut is mediated by the perinatal environment, the number of studies investigating early life gut microbial establishment continues to grow. This paper will review early life gut colonization in experimental animal models, concentrating on the role of the early life environment in offspring gut colonization and the ability of the gut microbiota to dictate risk of disease later in life.

  5. A mechanistic look at the effects of adversity early in life on cardiovascular disease risk during adulthood

    PubMed Central

    Loria, A. S.; Ho, D. H.; Pollock, J. S.

    2014-01-01

    Early origins of adult disease may be defined as adversity or challenges during early life that alter physiological responses and prime the organism to chronic disease in adult life. Adverse childhood experiences or early life stress (ELS) may be considered a silent independent risk factor capable of predicting future cardiovascular disease risk. Maternal separation (Mat-Sep) provides a suitable model to elucidate the underlying molecular mechanisms by which ELS increases the risk to develop cardiovascular disease in adulthood. The aim of this review is to describe the links between behavioural stress early in life and chronic cardiovascular disease risk in adulthood. We will discuss the following: (i) adult cardiovascular outcomes in humans subjected to ELS, (ii) Mat-Sep as an animal model of ELS as well as the limitations and advantages of this model in rodents and (iii) possible ELS-induced mechanisms that predispose individuals to greater cardiovascular risk. Overall, exposure to a behavioural stressor early in life sensitizes the response to a second stressor later in life, thus unmasking an exaggerated cardiovascular dysfunction that may influence quality of life and life expectancy in adulthood. PMID:24330084

  6. Regenerative Life Support Systems Test Bed performance - Lettuce crop characterization

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Edeen, Marybeth A.; Eckhardt, Bradley D.

    1992-01-01

    System performance in terms of human life support requirements was evaluated for two crops of lettuce (Lactuca sative cv. Waldmann's Green) grown in the Regenerative Life Support Systems Test Bed. Each crop, grown in separate pots under identical environmental and cultural conditions, was irrigated with half-strength Hoagland's nutrient solution, with the frequency of irrigation being increased as the crop aged over the 30-day crop tests. Averaging over both crop tests, the test bed met the requirements of 2.1 person-days of oxygen production, 2.4 person-days of CO2 removal, and 129 person-days of potential potable water production. Gains in the mass of water and O2 produced and CO2 removed could be achieved by optimizing environmental conditions to increase plant growth rate and by optimizing cultural management methods.

  7. Zinc in Early Life: A Key Element in the Fetus and Preterm Neonate

    PubMed Central

    Terrin, Gianluca; Berni Canani, Roberto; Di Chiara, Maria; Pietravalle, Andrea; Aleandri, Vincenzo; Conte, Francesca; De Curtis, Mario

    2015-01-01

    Zinc is a key element for growth and development. In this narrative review, we focus on the role of dietary zinc in early life (including embryo, fetus and preterm neonate), analyzing consequences of zinc deficiency and adequacy of current recommendations on dietary zinc. We performed a systematic search of articles on the role of zinc in early life. We selected and analyzed 81 studies. Results of this analysis showed that preservation of zinc balance is of critical importance for the avoidance of possible consequences of low zinc levels on pre- and post-natal life. Insufficient quantities of zinc during embryogenesis may influence the final phenotype of all organs. Maternal zinc restriction during pregnancy influences fetal growth, while adequate zinc supplementation during pregnancy may result in a reduction of the risk of preterm birth. Preterm neonates are at particular risk to develop zinc deficiency due to a combination of different factors: (i) low body stores due to reduced time for placental transfer of zinc; (ii) increased endogenous losses; and (iii) marginal intake. Early diagnosis of zinc deficiency, through the measurement of serum zinc concentrations, may be essential to avoid severe prenatal and postnatal consequences in these patients. Typical clinical manifestations of zinc deficiency are growth impairment and dermatitis. Increasing data suggest that moderate zinc deficiency may have significant subclinical effects, increasing the risk of several complications typical of preterm neonates (i.e., necrotizing enterocolitis, chronic lung disease, and retinopathy), and that current recommended intakes should be revised to meet zinc requirements of extremely preterm neonates. Future studies evaluating the adequacy of current recommendations are advocated. PMID:26690476

  8. Sucrose-induced analgesia during early life modulates adulthood learning and memory formation.

    PubMed

    Nuseir, Khawla Q; Alzoubi, Karem H; Alabwaini, Jehad; Khabour, Omar F; Kassab, Manal I

    2015-06-01

    This study is aimed at examining the long-term effects of chronic pain during early life (postnatal day 0 to 8weeks), and intervention using sucrose, on cognitive functions during adulthood in rats. Pain was induced in rat pups via needle pricks of the paws. Sucrose solution or paracetamol was administered for analgesia before the paw prick. Control groups include tactile stimulation to account for handling and touching the paws, and sucrose alone was used. All treatments were started on day one of birth and continued for 8weeks. At the end of the treatments, behavioral studies were conducted to test the spatial learning and memory using radial arm water maze (RAWM), as well as pain threshold via foot-withdrawal response to a hot plate apparatus. Additionally, the hippocampus was dissected, and blood was collected. Levels of neurotrophins (BDNF, IGF-1 and NT-3) and endorphins were assessed using ELISA. The results show that chronic noxious stimulation resulted in comparable foot-withdrawal latency between noxious and tactile groups. On the other hand, pretreatment with sucrose or paracetamol increased pain threshold significantly both in naive rats and noxiously stimulated rats (P<0.05). Chronic pain during early life impaired short-term memory, and sucrose treatment prevented such impairment (P<0.05). Sucrose significantly increased serum levels of endorphin and enkephalin. Chronic pain decreased levels of BDNF in the hippocampus and this decrease was prevented by sucrose and paracetamol treatments. Hippocampal levels of NT-3 and IGF-1 were not affected by any treatment. In conclusion, chronic pain induction during early life induced short memory impairment, and pretreatment with sucrose prevented this impairment via mechanisms that seem to involve BDNF. As evident in the results, sucrose, whether alone or in the presence of pre-noxious stimulation, increases pain threshold in such circumstances; most likely via a mechanism that involves an increase in endogenous

  9. Zinc in Early Life: A Key Element in the Fetus and Preterm Neonate.

    PubMed

    Terrin, Gianluca; Berni Canani, Roberto; Di Chiara, Maria; Pietravalle, Andrea; Aleandri, Vincenzo; Conte, Francesca; De Curtis, Mario

    2015-12-11

    Zinc is a key element for growth and development. In this narrative review, we focus on the role of dietary zinc in early life (including embryo, fetus and preterm neonate), analyzing consequences of zinc deficiency and adequacy of current recommendations on dietary zinc. We performed a systematic search of articles on the role of zinc in early life. We selected and analyzed 81 studies. Results of this analysis showed that preservation of zinc balance is of critical importance for the avoidance of possible consequences of low zinc levels on pre- and post-natal life. Insufficient quantities of zinc during embryogenesis may influence the final phenotype of all organs. Maternal zinc restriction during pregnancy influences fetal growth, while adequate zinc supplementation during pregnancy may result in a reduction of the risk of preterm birth. Preterm neonates are at particular risk to develop zinc deficiency due to a combination of different factors: (i) low body stores due to reduced time for placental transfer of zinc; (ii) increased endogenous losses; and (iii) marginal intake. Early diagnosis of zinc deficiency, through the measurement of serum zinc concentrations, may be essential to avoid severe prenatal and postnatal consequences in these patients. Typical clinical manifestations of zinc deficiency are growth impairment and dermatitis. Increasing data suggest that moderate zinc deficiency may have significant subclinical effects, increasing the risk of several complications typical of preterm neonates (i.e., necrotizing enterocolitis, chronic lung disease, and retinopathy), and that current recommended intakes should be revised to meet zinc requirements of extremely preterm neonates. Future studies evaluating the adequacy of current recommendations are advocated.

  10. Sucrose-induced analgesia during early life modulates adulthood learning and memory formation.

    PubMed

    Nuseir, Khawla Q; Alzoubi, Karem H; Alabwaini, Jehad; Khabour, Omar F; Kassab, Manal I

    2015-06-01

    This study is aimed at examining the long-term effects of chronic pain during early life (postnatal day 0 to 8weeks), and intervention using sucrose, on cognitive functions during adulthood in rats. Pain was induced in rat pups via needle pricks of the paws. Sucrose solution or paracetamol was administered for analgesia before the paw prick. Control groups include tactile stimulation to account for handling and touching the paws, and sucrose alone was used. All treatments were started on day one of birth and continued for 8weeks. At the end of the treatments, behavioral studies were conducted to test the spatial learning and memory using radial arm water maze (RAWM), as well as pain threshold via foot-withdrawal response to a hot plate apparatus. Additionally, the hippocampus was dissected, and blood was collected. Levels of neurotrophins (BDNF, IGF-1 and NT-3) and endorphins were assessed using ELISA. The results show that chronic noxious stimulation resulted in comparable foot-withdrawal latency between noxious and tactile groups. On the other hand, pretreatment with sucrose or paracetamol increased pain threshold significantly both in naive rats and noxiously stimulated rats (P<0.05). Chronic pain during early life impaired short-term memory, and sucrose treatment prevented such impairment (P<0.05). Sucrose significantly increased serum levels of endorphin and enkephalin. Chronic pain decreased levels of BDNF in the hippocampus and this decrease was prevented by sucrose and paracetamol treatments. Hippocampal levels of NT-3 and IGF-1 were not affected by any treatment. In conclusion, chronic pain induction during early life induced short memory impairment, and pretreatment with sucrose prevented this impairment via mechanisms that seem to involve BDNF. As evident in the results, sucrose, whether alone or in the presence of pre-noxious stimulation, increases pain threshold in such circumstances; most likely via a mechanism that involves an increase in endogenous

  11. Serotonin deficiency alters susceptibility to the long-term consequences of adverse early life experience.

    PubMed

    Sachs, Benjamin D; Rodriguiz, Ramona M; Tran, Ha L; Iyer, Akshita; Wetsel, William C; Caron, Marc G

    2015-03-01

    Brain 5-HT deficiency has long been implicated in psychiatric disease, but the effects of 5-HT deficiency on stress susceptibility remain largely unknown. Early life stress (ELS) has been suggested to contribute to adult psychopathology, but efforts to study the long-term consequences of ELS have been limited by a lack of appropriate preclinical models. Here, we evaluated the effects of 5-HT deficiency on several long-term cellular, molecular, and behavioral responses of mice to a new model of ELS that combines early-life maternal separation (MS) of pups and postpartum learned helplessness (LH) training in dams. Our data demonstrate that this paradigm (LH/MS) induces depressive-like behavior and impairs pup retrieval in dams. In addition, we show that brain 5-HT deficiency exacerbates anxiety-like behavior induced by LH/MS and blunts the effects of LH/MS on acoustic startle responses in adult offspring. Although the mechanisms underlying these effects remain unclear, following LH/MS, 5-HT-deficient animals had significantly less mRNA expression of the mineralocorticoid receptor in the amygdala than wild-type animals. In addition, 5-HT-deficient mice exhibited reduced mRNA levels of the 5-HT2a receptor and p11 in the hippocampus regardless of stress. LH/MS decreased the number of doublecortin+ immature neurons in the hippocampus in both wild-type (WT) and 5-HT-deficient animals. Our data emphasize the importance of complex interactions between genetic factors and early life experience in mediating long-term changes in emotional behavior. These findings may have important implications for our understanding of the combinatorial roles of 5-HT deficiency, ELS, and postpartum depression in the development of neuropsychiatric disorders.

  12. High novelty-seeking rats are resilient to negative physiological effects of the early life stress.

    PubMed

    Clinton, Sarah M; Watson, Stanley J; Akil, Huda

    2014-01-01

    Exposure to early life stress dramatically impacts adult behavior, physiology, and neuroendocrine function. Using rats bred for novelty-seeking differences and known to display divergent anxiety, depression, and stress vulnerability, we examined the interaction between early life adversity and genetic predisposition for high- versus low-emotional reactivity. Thus, bred Low Novelty Responder (bLR) rats, which naturally exhibit high anxiety- and depression-like behavior, and bred High Novelty Responder (bHR) rats, which show low anxiety/depression together with elevated aggression, impulsivity, and addictive behavior, were subjected to daily 3 h maternal separation (MS) stress postnatal days 1-14. We hypothesized that MS stress would differentially impact adult bHR/bLR behavior, physiology (stress-induced defecation), and neuroendocrine reactivity. While MS stress did not impact bHR and bLR anxiety-like behavior in the open field test and elevated plus maze, it exacerbated bLRs' already high physiological response to stress - stress-induced defecation. In both tests, MS bLR adult offspring showed exaggerated stress-induced defecation compared to bLR controls while bHR offspring were unaffected. MS also selectively impacted bLRs' (but not bHRs') neuroendocrine stress reactivity, producing an exaggerated corticosterone acute stress response in MS bLR versus control bLR rats. These findings highlight how genetic predisposition shapes individuals' response to early life stress. Future work will explore neural mechanisms underlying the distinct behavioral and neuroendocrine consequences of MS in bHR/bLR animals.

  13. Serotonin deficiency alters susceptibility to the long-term consequences of adverse early life experience

    PubMed Central

    Sachs, Benjamin D.; Rodriguiz, Ramona M.; Tran, Ha L.; Iyer, Akshita; Wetsel, William C.

    2015-01-01

    Brain 5-HT deficiency has long been implicated in psychiatric disease, but the effects of 5-HT deficiency on stress susceptibility remain largely unknown. Early life stress (ELS) has been suggested to contribute to adult psychopathology, but efforts to study the long-term consequences of ELS have been limited by a lack of appropriate preclinical models. Here, we evaluated the effects of 5-HT deficiency on several long-term cellular, molecular, and behavioral responses of mice to a new model of ELS that combines early-life maternal separation (MS) of pups and postpartum learned helplessness (LH) training in dams. Our data demonstrate that this paradigm (LH/MS) induces depressive-like behavior and impairs pup retrieval in dams. In addition, we show that brain 5-HT deficiency exacerbates anxiety-like behavior induced by LH/MS and blunts the effects of LH/MS on acoustic startle responses in adult offspring. Although the mechanisms underlying these effects remain unclear, following LH/MS, 5-HT-deficient animals had significantly less mRNA expression of the mineralocorticoid receptor in the amygdala than wild-type animals. In addition, 5-HT-deficient mice exhibited reduced mRNA levels of the 5-HT2a receptor and p11 in the hippocampus regardless of stress. LH/MS decreased the number of doublecortin+ immature neurons in the hippocampus in both wild-type (WT) and 5-HT-deficient animals. Our data emphasize the importance of complex interactions between genetic factors and early life experience in mediating long-term changes in emotional behavior. These findings may have important implications for our understanding of the combinatorial roles of 5-HT deficiency, ELS, and postpartum depression on the development of neuropsychiatric disorders. PMID:25602134

  14. Early Life Lung Antioxidant Levels and Response to Ozone: Influence of Sex and Maturation in Wistar Rats

    EPA Science Inventory

    Abstract. Epidemiologic studies of air pollution effects on respiratory health report significant modification by sex. Studies of children suggest stronger effects among boys in early life and girls in later childhood. In adults, particularly the elderly, studies report stronger...

  15. The known knowns, the known unknowns, and beyond: early life history perspective for the Laurentian Great Lakes

    EPA Science Inventory

    Early life history research has been crucial for understanding and managing fisheries in the Laurentian Great Lakes and beyond. Much is known about spawning sites, temperatures at spawning, incubation periods, spawning substrates, and other factors surrounding reproduction for ma...

  16. Early life stress in fathers improves behavioural flexibility in their offspring.

    PubMed

    Gapp, Katharina; Soldado-Magraner, Saray; Alvarez-Sánchez, María; Bohacek, Johannes; Vernaz, Gregoire; Shu, Huan; Franklin, Tamara B; Wolfer, David; Mansuy, Isabelle M

    2014-01-01

    Traumatic experiences in childhood can alter behavioural responses and increase the risk for psychopathologies across life, not only in the exposed individuals but also in their progeny. In some conditions, such experiences can however be beneficial and facilitate the appraisal of adverse environments later in life. Here we expose newborn mice to unpredictable maternal separation combined with unpredictable maternal stress (MSUS) for 2 weeks and assess the impact on behaviour in the offspring when adult. We show that MSUS in male mice favours goal-directed behaviours and behavioural flexibility in the adult offspring. This effect is accompanied by epigenetic changes involving histone post-translational modifications at the mineralocorticoid receptor (MR) gene and decreased MR expression in the hippocampus. Mimicking these changes pharmacologically in vivo reproduces the behavioural phenotype. These findings highlight the beneficial impact that early adverse experiences can have in adulthood, and the implication of epigenetic modes of gene regulation. PMID:25405779

  17. Community living long before man: fossil and living microbial mats and early life

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Lopez Baluja, L.; Awramik, S. M.; Sagan, D.

    1986-01-01

    Microbial mats are layered communities of bacteria that form cohesive structures, some of which are preserved in sedimentary rocks as stromatolites. Certain rocks, approximately three and a half thousand million years old and representing the oldest known fossils, are interpreted to derive from microbial mats and to contain fossils of microorganisms. Modern microbial mats (such as the one described here from Matanzas, Cuba) and their fossil counterparts are of great interest in the interpretation of early life on Earth. Since examination of microbial mats and stromatolites increases our understanding of long-term stability and change, within the global environment, such structures should be protected wherever possible as natural science preserves. Furthermore, since they have existed virtually from the time of life's origin, microbial mats have developed exemplary mechanisms of local community persistence and may even play roles in the larger global environment that we do not understand.

  18. The rate of senescence in maternal performance increases with early-life fecundity in red deer.

    PubMed

    Nussey, Daniel H; Kruuk, Loeske E B; Donald, Alison; Fowlie, Martin; Clutton-Brock, Tim H

    2006-12-01

    Tradeoffs between reproduction and somatic maintenance are a frequently cited explanation for reproductive senescence in long-lived vertebrates. Between-individual variation in quality makes such tradeoffs difficult to detect and evidence for their presence from wild populations remains scarce. Here, we examine the factors affecting rates of senescence in maternal breeding performance in a natural population of red deer (Cervus elaphus), using a mixed model framework to control for between-individual variance. Senescence began at 9 years of age in two maternal performance traits. In both traits, females that produced more offspring in early life had faster rates of senescence. This tradeoff is evident alongside significant effects of individual quality on late life breeding performance. These results present rare evidence in support of the disposable soma and antagonistic pleiotropy theories of senescence from a wild vertebrate population and highlight the utility of mixed models for testing theories of ageing. PMID:17118008

  19. Community living long before man: fossil and living microbial mats and early life.

    PubMed

    Margulis, L; Lopez Baluja, L; Awramik, S M; Sagan, D

    1986-01-01

    Microbial mats are layered communities of bacteria that form cohesive structures, some of which are preserved in sedimentary rocks as stromatolites. Certain rocks, approximately three and a half thousand million years old and representing the oldest known fossils, are interpreted to derive from microbial mats and to contain fossils of microorganisms. Modern microbial mats (such as the one described here from Matanzas, Cuba) and their fossil counterparts are of great interest in the interpretation of early life on Earth. Since examination of microbial mats and stromatolites increases our understanding of long-term stability and change, within the global environment, such structures should be protected wherever possible as natural science preserves. Furthermore, since they have existed virtually from the time of life's origin, microbial mats have developed exemplary mechanisms of local community persistence and may even play roles in the larger global environment that we do not understand.

  20. Long-term impact of early life events on physiology and behaviour.

    PubMed

    Boersma, G J; Bale, T L; Casanello, P; Lara, H E; Lucion, A B; Suchecki, D; Tamashiro, K L

    2014-09-01

    This review discusses the effects of stress and nutrition throughout development and summarises studies investigating how exposure to stress or alterations in nutrition during the pre-conception, prenatal and early postnatal periods can affect the long-term health of an individual. In general, the data presented here suggest that that anything signalling potential adverse conditions later in life, such as high levels of stress or low levels of food availability, will lead to alterations in the offspring, possibly of an epigenetic nature, preparing the offspring for these conditions later in life. However, when similar environmental conditions are not met in adulthood, these alterations may have maladaptive consequences, resulting in obesity and heightened stress sensitivity. The data also suggest that the mechanism underlying these adult phenotypes might be dependent on the type and the timing of exposure.

  1. Characterizing Key Features of the Early Childhood Professional Development Literature

    ERIC Educational Resources Information Center

    Snyder, Patricia; Hemmeter, Mary Louise; Meeker, Kathleen Artman; Kinder, Kiersten; Pasia, Cathleen; McLaughlin, Tara

    2012-01-01

    Professional development (PD) has been defined as facilitated teaching and learning experiences designed to enhance practitioners' knowledge, skills, and dispositions as well as their capacity to provide high-quality early learning experiences for young children. The purpose of this study was to use a framework from the National Professional…

  2. Histological and Molecular Characterization of Grape Early Ripening Bud Mutant.

    PubMed

    Guo, Da-Long; Yu, Yi-He; Xi, Fei-Fei; Shi, Yan-Yan; Zhang, Guo-Hai

    2016-01-01

    An early ripening bud mutant was analyzed based on the histological, SSR, and methylation-sensitive amplified polymorphism (MSAP) analysis and a layer-specific approach was used to investigate the differentiation between the bud mutant and its parent. The results showed that the thickness of leaf spongy tissue of mutant (MT) is larger than that of wild type (WT) and the differences are significant. The mean size of cell layer L2 was increased in the mutant and the difference is significant. The genetic background of bud mutant revealed by SSR analysis is highly uniform to its parent; just the variations from VVS2 SSR marker were detected in MT. The total methylation ratio of MT is lower than that of the corresponding WT. The outside methylation ratio in MT is much less than that in WT; the average inner methylation ratio in MT is larger than that in WT. The early ripening bud mutant has certain proportion demethylation in cell layer L2. All the results suggested that cell layer L2 of the early ripening bud mutant has changed from the WT. This study provided the basis for a better understanding of the characteristic features of the early ripening bud mutant in grape. PMID:27610363

  3. Histological and Molecular Characterization of Grape Early Ripening Bud Mutant

    PubMed Central

    Yu, Yi-He; Xi, Fei-Fei; Shi, Yan-Yan; Zhang, Guo-Hai

    2016-01-01

    An early ripening bud mutant was analyzed based on the histological, SSR, and methylation-sensitive amplified polymorphism (MSAP) analysis and a layer-specific approach was used to investigate the differentiation between the bud mutant and its parent. The results showed that the thickness of leaf spongy tissue of mutant (MT) is larger than that of wild type (WT) and the differences are significant. The mean size of cell layer L2 was increased in the mutant and the difference is significant. The genetic background of bud mutant revealed by SSR analysis is highly uniform to its parent; just the variations from VVS2 SSR marker were detected in MT. The total methylation ratio of MT is lower than that of the corresponding WT. The outside methylation ratio in MT is much less than that in WT; the average inner methylation ratio in MT is larger than that in WT. The early ripening bud mutant has certain proportion demethylation in cell layer L2. All the results suggested that cell layer L2 of the early ripening bud mutant has changed from the WT. This study provided the basis for a better understanding of the characteristic features of the early ripening bud mutant in grape.

  4. Histological and Molecular Characterization of Grape Early Ripening Bud Mutant

    PubMed Central

    Yu, Yi-He; Xi, Fei-Fei; Shi, Yan-Yan; Zhang, Guo-Hai

    2016-01-01

    An early ripening bud mutant was analyzed based on the histological, SSR, and methylation-sensitive amplified polymorphism (MSAP) analysis and a layer-specific approach was used to investigate the differentiation between the bud mutant and its parent. The results showed that the thickness of leaf spongy tissue of mutant (MT) is larger than that of wild type (WT) and the differences are significant. The mean size of cell layer L2 was increased in the mutant and the difference is significant. The genetic background of bud mutant revealed by SSR analysis is highly uniform to its parent; just the variations from VVS2 SSR marker were detected in MT. The total methylation ratio of MT is lower than that of the corresponding WT. The outside methylation ratio in MT is much less than that in WT; the average inner methylation ratio in MT is larger than that in WT. The early ripening bud mutant has certain proportion demethylation in cell layer L2. All the results suggested that cell layer L2 of the early ripening bud mutant has changed from the WT. This study provided the basis for a better understanding of the characteristic features of the early ripening bud mutant in grape. PMID:27610363

  5. The effect of tramadol hydrochloride on early life stages of fish.

    PubMed

    Sehonova, Pavla; Plhalova, Lucie; Blahova, Jana; Berankova, Petra; Doubkova, Veronika; Prokes, Miroslav; Tichy, Frantisek; Vecerek, Vladimir; Svobodova, Zdenka

    2016-06-01

    The aim of this study was to perform the fish embryo acute toxicity test (FET) on zebrafish (Danio rerio) and the early-life stage toxicity test on common carp (Cyprinus carpio) with tramadol hydrochloride. The FET was performed using the method inspired by the OECD guideline 236. Newly fertilized zebrafish eggs were exposed to tramadol hydrochloride at concentrations of 10; 50; 100 and 200μg/l for a period of 144h. An embryo-larval toxicity test on C. carpio was performed according to OECD guideline 210 also with tramadol hydrochloride at concentrations 10; 50; 100 and 200μg/l for a period of 32 days. Hatching was significantly influenced in both acute and subchronic toxicity assays. Subchronic exposure also influenced early ontogeny, both morphometric and condition characteristics and caused changes in antioxidant enzyme activity. The LOEC value was found to be 10μg/l tramadol hydrochloride.

  6. The effect of tramadol hydrochloride on early life stages of fish.

    PubMed

    Sehonova, Pavla; Plhalova, Lucie; Blahova, Jana; Berankova, Petra; Doubkova, Veronika; Prokes, Miroslav; Tichy, Frantisek; Vecerek, Vladimir; Svobodova, Zdenka

    2016-06-01

    The aim of this study was to perform the fish embryo acute toxicity test (FET) on zebrafish (Danio rerio) and the early-life stage toxicity test on common carp (Cyprinus carpio) with tramadol hydrochloride. The FET was performed using the method inspired by the OECD guideline 236. Newly fertilized zebrafish eggs were exposed to tramadol hydrochloride at concentrations of 10; 50; 100 and 200μg/l for a period of 144h. An embryo-larval toxicity test on C. carpio was performed according to OECD guideline 210 also with tramadol hydrochloride at concentrations 10; 50; 100 and 200μg/l for a period of 32 days. Hatching was significantly influenced in both acute and subchronic toxicity assays. Subchronic exposure also influenced early ontogeny, both morphometric and condition characteristics and caused changes in antioxidant enzyme activity. The LOEC value was found to be 10μg/l tramadol hydrochloride. PMID:27208654

  7. Serpentinization and its implications for life on the early Earth and Mars.

    PubMed

    Schulte, Mitch; Blake, David; Hoehler, Tori; McCollom, Thomas

    2006-04-01

    Ophiolites, sections of ocean crust tectonically displaced onto land, offer significant potential to support chemolithoautotrophic life through the provision of energy and reducing power during aqueous alteration of their highly reduced mineralogies. There is substantial chemical disequilibrium between the primary olivine and pyroxene mineralogy of these ophiolites and the fluids circulating through them. This disequilibrium represents a potential source of chemical energy that could sustain life. Moreover, E (h)-pH conditions resulting from rock- water interactions in ultrabasic rocks are conducive to important abiotic processes antecedent to the origin of life. Serpentinization--the reaction of olivine- and pyroxene-rich rocks with water--produces magnetite, hydroxide, and serpentine minerals, and liberates molecular hydrogen, a source of energy and electrons that can be readily utilized by a broad array of chemosynthetic organisms. These systems are viewed as important analogs for potential early ecosystems on both Earth and Mars, where highly reducing mineralogy was likely widespread in an undifferentiated crust. Secondary phases precipitated during serpentinization have the capability to preserve organic or mineral biosignatures. We describe the petrology and mineral chemistry of an ophiolite-hosted cold spring in northern California and propose criteria to aid in the identification of serpentinizing terranes on Mars that have the potential to harbor chemosynthetic life.

  8. Effects of Offshore Wind Farms on the Early Life Stages of Dicentrarchus labrax.

    PubMed

    Debusschere, Elisabeth; De Coensel, Bert; Vandendriessche, Sofie; Botteldooren, Dick; Hostens, Kris; Vincx, Magda; Degraer, Steven

    2016-01-01

    Anthropogenically generated underwater noise in the marine environment is ubiquitous, comprising both intense impulse and continuous noise. The installation of offshore wind farms across the North Sea has triggered a range of ecological questions regarding the impact of anthropogenically produced underwater noise on marine wildlife. Our interest is on the impact on the "passive drifters," i.e., the early life stages of fish that form the basis of fish populations and are an important prey for pelagic predators. This study deals with the impact of pile driving and operational noise generated at offshore wind farms on Dicentrarchus labrax (sea bass) larvae. PMID:26610960

  9. Early-life Exposure to Organophosphate Pesticides and Pediatric Respiratory Symptoms in the CHAMACOS Cohort

    PubMed Central

    Harley, Kim G.; Balmes, John R.; Bradman, Asa; Lipsett, Michael; Eskenazi, Brenda

    2014-01-01

    Background: Although pesticide use is widespread, the possible effect of early-life exposure to organophosphate (OP) on pediatric respiratory health is not well described. Objectives: We investigated the relationship between early-life exposure to OPs and respiratory outcomes. Methods: Participants included 359 mothers and children from the CHAMACOS birth cohort. Dialkyl phosphate (DAP) metabolites of OP pesticides, specifically diethyl (DE) and dimethyl (DM) phosphate metabolites, were measured in urine from mothers twice during pregnancy (mean = 13 and 26 weeks gestation) and from children five times during childhood (0.5–5 years). Childhood DAP concentrations were estimated by the area under curve (AUC). Mothers reported their child’s respiratory symptoms at 5 and 7 years of age. We used generalized estimating equations (GEE) to examine associations of prenatal and childhood DAP concentrations with repeated measures of respiratory symptoms and exercise-induced coughing at 5 and 7 years of age, adjusting for child’s sex and age, maternal smoking during pregnancy, secondhand tobacco smoke, season of birth, PM2.5, breastfeeding, mold and cockroaches in home, and distance from highway. Results: Higher prenatal DAP concentrations, particularly DE, were nonsignificantly associated with respiratory symptoms in the previous 12 months at 5 or 7 years of age [adjusted odds ratio (aOR) per 10-fold increase = 1.44; 95% CI: 0.98, 2.12]. This association was strongest with total DAP and DE from the second half of pregnancy (aOR per 10-fold increase = 1.77; 95% CI: 1.06, 2.95; and 1.61; 95% CI: 1.08, 2.39, respectively). Childhood DAP, DE, and DM concentrations were associated with respiratory symptoms and exercise-induced coughing in the previous 12 months at 5 or 7 years of age (total DAPs: aOR per 10-fold increase = 2.53; 95% CI: 1.32, 4.86; and aOR = 5.40; 95% CI: 2.10, 13.91, respectively). Conclusions: Early-life exposure to OP pesticides was associated with

  10. Effects of Offshore Wind Farms on the Early Life Stages of Dicentrarchus labrax.

    PubMed

    Debusschere, Elisabeth; De Coensel, Bert; Vandendriessche, Sofie; Botteldooren, Dick; Hostens, Kris; Vincx, Magda; Degraer, Steven

    2016-01-01

    Anthropogenically generated underwater noise in the marine environment is ubiquitous, comprising both intense impulse and continuous noise. The installation of offshore wind farms across the North Sea has triggered a range of ecological questions regarding the impact of anthropogenically produced underwater noise on marine wildlife. Our interest is on the impact on the "passive drifters," i.e., the early life stages of fish that form the basis of fish populations and are an important prey for pelagic predators. This study deals with the impact of pile driving and operational noise generated at offshore wind farms on Dicentrarchus labrax (sea bass) larvae.

  11. Early-Life Intranasal Colonization with Nontypeable Haemophilus influenzae Exacerbates Juvenile Airway Disease in Mice.

    PubMed

    McCann, Jessica R; Mason, Stanley N; Auten, Richard L; St Geme, Joseph W; Seed, Patrick C

    2016-07-01

    Accumulating evidence suggests a connection between asthma development and colonization with nontypeable Haemophilus influenzae (NTHi). Specifically, nasopharyngeal colonization of human infants with NTHi within 4 weeks of birth is associated with an increased risk of asthma development later in childhood. Monocytes derived from these infants have aberrant inflammatory responses to common upper respiratory bacterial antigens compared to those of cells derived from infants who were not colonized and do not go on to develop asthma symptoms in childhood. In this study, we hypothesized that early-life colonization with NTHi promotes immune system reprogramming and the development of atypical inflammatory responses. To address this hypothesis in a highly controlled model, we tested whether colonization of mice with NTHi on day of life 3 induced or exacerbated juvenile airway disease using an ovalbumin (OVA) allergy model of asthma. We found that animals that were colonized on day of life 3 and subjected to induction of allergy had exacerbated airway disease as juveniles, in which exacerbated airway disease was defined as increased cellular infiltration into the lung, increased amounts of inflammatory cytokines interleukin-5 (IL-5) and IL-13 in lung lavage fluid, decreased regulatory T cell-associated FOXP3 gene expression, and increased mucus production. We also found that colonization with NTHi amplified airway resistance in response to increasing doses of a bronchoconstrictor following OVA immunization and challenge. Together, the murine model provides evidence for early-life immune programming that precedes the development of juvenile airway disease and corroborates observations that have been made in human children.

  12. Impact of salinity on early life history traits of three estuarine fish species in Senegal

    NASA Astrophysics Data System (ADS)

    Labonne, Maylis; Morize, Eric; Scolan, Pierre; Lae, Raymond; Dabas, Eric; Bohn, Marcel

    2009-05-01

    The adaptive mechanisms on the early life stages of fishes to hypersaline stress are still poorly understood and probably determine the resistance of a population to disruption, compared with other less plastic species. The Casamance River in Senegal is an ideal location to test the adaptation to salinity as a dam was built in 1998 to exclude saline water intrusion. This lowered the salinity from 70 to 5 upstream and 60 downstream. The salinity influence on the growth in the early life of three West African fish species ( Ethmalosa fimbriata, Sarotherodon melanotheron, and Tilapia guineensis) was studied using the width of microstructures in the otoliths and the individual migratory behaviour analysed from strontium (Sr) to calcium (Ca) ratios in the otoliths. The Sr:Ca ratio was quantified along individual transects measured from the posterior edge of the otolith to the core. The fishes were sampled on both sides of the dam that separated water with low salinity upstream from metahaline and hyperhaline water downstream. The results showed that salinity has different influence on the growth of each species. Ethmalosa fimbriata has the highest growth during the first 180 days in the freshwaters, indicating growth inhibition in the hyperhaline areas. For the two other species no growth difference were found. The Sr/Ca ratio varied widely, in Tilapia and Sarotherodon from below the dam. Individual life histories were more heterogeneous than upstream and showed a crossing of the dam for some individuals which could reach half of the fishes analysed. On the contrary in E. fimbriata, despite the large range of salinity, identical Sr/Ca profiles were found both upstream and downstream. This indicated that Sr/Ca ratio was not appropriate to evaluate life history patterns linked to salinity for this specie.

  13. Mgat5 modulates the effect of early life stress on adult behavior and physical health in mice.

    PubMed

    Feldcamp, Laura; Doucet, Jean-Sebastien; Pawling, Judy; Fadel, Marc P; Fletcher, Paul J; Maunder, Robert; Dennis, James W; Wong, Albert H C

    2016-10-01

    Psychosocial adversity in early life increases the likelihood of mental and physical illness, but the underlying mechanisms are poorly understood. Mgat5 is an N-acetylglucosaminyltransferase in the Golgi pathway that remodels the N-glycans of glycoproteins at the cell surface. Mice lacking Mgat5 display conditional phenotypes in behaviour, immunity, metabolism, aging and cancer susceptibility. Here we investigated potential gene-environment interactions between Mgat5 and early life adversity on behaviour and physiological measures of physical health. Mgat5(-/-) mutant and Mgat5(+/+) wild-type C57Bl/6 littermates were subject to maternal separation or foster rearing as an early life stressor, in comparison to control mice reared normally. We found an interaction between Mgat5 genotype and maternal rearing condition in which Mgat5(-/-) mice subjected to early life stress had lower glucose levels and higher bone density. Mgat5(-/-) genotype was also associated with less immobility in the forced swim test and greater sucrose consumption, consistent with a less depression-like phenotype. Cortical neuron dendrite spine density and branching was altered by Mgat5 deletion as well. In general, Mgat5 genotype affects both behaviour and physical outcomes in response to early life stress, suggesting some shared pathways for both in this model. These results provide a starting point for studying the mechanisms by which protein N-glycosylation mediates the effects of early life adversity. PMID:27329152

  14. Early life respiratory infections and asthma development: role in disease pathogenesis and potential targets for disease prevention

    PubMed Central

    Beigelman, Avraham; Bacharier, Leonard B.

    2016-01-01

    Purpose of review To present recent findings and perspectives on the relationship between early life respiratory infections and asthma inception and to discuss emerging concepts on strategies that target these infectious agents for asthma prevention. Recent findings Cumulative evidence supports the role of early life viral infections, especially respiratory syncytial virus and human rhinovirus, as major antecedents of childhood asthma. These viruses may have different mechanistic roles in the pathogenesis of asthma. The airway microbiome and virus-bacteria interactions in early life have emerged as additional determinants of childhood asthma. Innovative strategies for the prevention of these early life infections, or for attenuation of acute infection severity, are being investigated and may identify effective strategies for the primary and secondary prevention of childhood asthma. Summary Early life infections are major determinants of asthma development. The pathway from early life infections to asthma is the result of complex interactions between the specific type of the virus, genetic and environmental factors. Novel intervention strategies that target these infectious agents have been investigated in proof-of-concepts trials, and further study is necessary to determine their capacity for asthma prevention. PMID:26854761

  15. Characterization of a High Current, Long Life Hollow Cathode

    NASA Technical Reports Server (NTRS)

    VanNoord, Jonathan L.; Kamhawi, Hani; McEwen, Heather K.

    2006-01-01

    The advent of higher power spacecraft makes it desirable to use higher power electric propulsion thrusters such as ion thrusters or Hall thrusters. Higher power thrusters require cathodes that are capable of producing higher currents. One application of these higher power spacecraft is deep-space missions that require tens of thousands of hours of operation. This paper presents the approach used to design a high current, long life hollow cathode assembly for that application, along with test results from the corresponding hollow cathode. The design approach used for the candidate hollow cathode was to reduce the temperature gradient in the insert, yielding a lower peak temperature and allowing current to be produced more uniformly along the insert. The lower temperatures result in a hollow cathode with increased life. The hollow cathode designed was successfully operated at currents from 10 to 60 A with flow rates of 5 to 19 sccm with a maximum orifice temperature measured of 1100 C. Data including discharge voltage, keeper voltage, discharge current, flow rates, and orifice plate temperatures are presented.

  16. The impact of emotional stress early in life on adult voluntary ethanol intake-results of maternal separation in rats.

    PubMed

    Roman, Erika; Nylander, Ingrid

    2005-09-01

    The combination of genetic and environmental factors determines the individual vulnerability for excessive ethanol intake, possibly leading to dependence. The environmental influences early in life represent examples of determinant factors for adult behaviour and can be protective as well as risk factors. Maternal separation is one model to examine the long-term consequences of early environmental experiences on neurochemistry and behaviour, including drug-taking behaviour in experimental animals. In the present review, findings from studies using repeated short and prolonged periods of maternal separation, with emphasis on effects on voluntary ethanol intake in rats with or without a genetic predisposition for high voluntary ethanol intake, are summarized. Despite some contradictory results, the general picture emerging shows that short periods of maternal separation during the postnatal period result in a lower adult voluntary ethanol intake in male rats. Prolonged periods of maternal separation were found to induce a high voluntary ethanol intake in male rats, including rats with a genetic predisposition for high ethanol intake. Results from the literature also show that changes were not just related to time of separation but were also related to the degree of handling. Interestingly, in terms of voluntary ethanol intake, female rats were generally not affected by postnatal maternal separation. The reasons for these sex differences need further investigation. In terms of neurobiological consequences of maternal separation, conclusive data are sparse and one of the future challenges will, therefore, be to identify and characterize underlying neurobiological mechanisms, especially in the individual animal.

  17. On Becoming Batman: An Ethnographic Examination of Hero Imagery in Early-Career Residential Life Emergency Management

    ERIC Educational Resources Information Center

    Molina, Danielle K.

    2016-01-01

    Emergency response is an essential function of all residential life staff, but particularly for resident assistants serving on the front line. This organizational ethnography examined the role that professional identity played for early-career residential life practitioners engaged in emergency management. The data elucidated heroism as a…

  18. Globalising Early Childhood Teacher Education: A Study of Student Life Histories and Course Experience in Teacher Education

    ERIC Educational Resources Information Center

    Farell, Ann

    2005-01-01

    Globalisation in early childhood teacher education is examined in light of a study of the life histories and course experience of students in early childhood teacher education in Queensland, Australia. Contemporary teacher education is embedded in global economies, new technologies and marketisation, which, in turn, may contribute to students…

  19. Intestinal Microbial Diversity during Early-Life Colonization Shapes Long-Term IgE Levels

    PubMed Central

    Cahenzli, Julia; Köller, Yasmin; Wyss, Madeleine; Geuking, Markus B.; McCoy, Kathy D.

    2013-01-01

    Summary Microbial exposure following birth profoundly impacts mammalian immune system development. Microbiota alterations are associated with increased incidence of allergic and autoimmune disorders with elevated serum IgE as a hallmark. The previously reported abnormally high serum IgE levels in germ-free mice suggests that immunoregulatory signals from microbiota are required to control basal IgE levels. We report that germ-free mice and those with low-diversity microbiota develop elevated serum IgE levels in early life. B cells in neonatal germ-free mice undergo isotype switching to IgE at mucosal sites in a CD4 T-cell- and IL-4-dependent manner. A critical level of microbial diversity following birth is required in order to inhibit IgE induction. Elevated IgE levels in germ-free mice lead to increased mast-cell-surface-bound IgE and exaggerated oral-induced systemic anaphylaxis. Thus, appropriate intestinal microbial stimuli during early life are critical for inducing an immunoregulatory network that protects from induction of IgE at mucosal sites. PMID:24237701

  20. Early-Life Stress Triggers Juvenile Zebra Finches to Switch Social Learning Strategies

    PubMed Central

    Farine, Damien R.; Spencer, Karen A.; Boogert, Neeltje J.

    2015-01-01

    Summary Stress during early life can cause disease and cognitive impairment in humans and non-humans alike [1]. However, stress and other environmental factors can also program developmental pathways [2, 3]. We investigate whether differential exposure to developmental stress can drive divergent social learning strategies [4, 5] between siblings. In many species, juveniles acquire essential foraging skills by copying others: they can copy peers (horizontal social learning), learn from their parents (vertical social learning), or learn from other adults (oblique social learning) [6]. However, whether juveniles’ learning strategies are condition dependent largely remains a mystery. We found that juvenile zebra finches living in flocks socially learned novel foraging skills exclusively from adults. By experimentally manipulating developmental stress, we further show that social learning targets are phenotypically plastic. While control juveniles learned foraging skills from their parents, their siblings, exposed as nestlings to experimentally elevated stress hormone levels, learned exclusively from unrelated adults. Thus, early-life conditions triggered individuals to switch strategies from vertical to oblique social learning. This switch could arise from stress-induced differences in developmental rate, cognitive and physical state, or the use of stress as an environmental cue. Acquisition of alternative social learning strategies may impact juveniles’ fit to their environment and ultimately change their developmental trajectories. PMID:26212879

  1. Frontal Cortex Transcriptome Analysis of Mice Exposed to Electronic Cigarettes During Early Life Stages.

    PubMed

    Lauterstein, Dana E; Tijerina, Pamella B; Corbett, Kevin; Akgol Oksuz, Betul; Shen, Steven S; Gordon, Terry; Klein, Catherine B; Zelikoff, Judith T

    2016-04-01

    Electronic cigarettes (e-cigarettes), battery-powered devices containing nicotine, glycerin, propylene glycol, flavorings, and other substances, are increasing in popularity. They pose a potential threat to the developing brain, as nicotine is a known neurotoxicant. We hypothesized that exposure to e-cigarettes during early life stages induce changes in central nervous system (CNS) transcriptome associated with adverse neurobiological outcomes and long-term disease states. To test the hypothesis, pregnant C57BL/6 mice were exposed daily (via whole body inhalation) throughout gestation (3 h/day; 5 days/week) to aerosols produced from e-cigarettes either with nicotine (13-16 mg/mL) or without nicotine; following birth, pups and dams were exposed together to e-cigarette aerosols throughout lactation beginning at postnatal day (PND) 4-6 and using the same exposure conditions employed during gestational exposure. Following exposure, frontal cortex recovered from ~one-month-old male and female offspring were excised and analyzed for gene expression by RNA Sequencing (RNA-Seq). Comparisons between the treatment groups revealed that e-cigarette constituents other than nicotine might be partly responsible for the observed biological effects. Transcriptome alterations in both offspring sexes and treatment groups were all significantly associated with downstream adverse neurobiological outcomes. Results from this study demonstrate that e-cigarette exposure during early life alters CNS development potentially leading to chronic neuropathology. PMID:27077873

  2. Frontal Cortex Transcriptome Analysis of Mice Exposed to Electronic Cigarettes During Early Life Stages

    PubMed Central

    Lauterstein, Dana E.; Tijerina, Pamella B.; Corbett, Kevin; Akgol Oksuz, Betul; Shen, Steven S.; Gordon, Terry; Klein, Catherine B.; Zelikoff, Judith T.

    2016-01-01

    Electronic cigarettes (e-cigarettes), battery-powered devices containing nicotine, glycerin, propylene glycol, flavorings, and other substances, are increasing in popularity. They pose a potential threat to the developing brain, as nicotine is a known neurotoxicant. We hypothesized that exposure to e-cigarettes during early life stages induce changes in central nervous system (CNS) transcriptome associated with adverse neurobiological outcomes and long-term disease states. To test the hypothesis, pregnant C57BL/6 mice were exposed daily (via whole body inhalation) throughout gestation (3 h/day; 5 days/week) to aerosols produced from e-cigarettes either with nicotine (13–16 mg/mL) or without nicotine; following birth, pups and dams were exposed together to e-cigarette aerosols throughout lactation beginning at postnatal day (PND) 4–6 and using the same exposure conditions employed during gestational exposure. Following exposure, frontal cortex recovered from ~one-month-old male and female offspring were excised and analyzed for gene expression by RNA Sequencing (RNA-Seq). Comparisons between the treatment groups revealed that e-cigarette constituents other than nicotine might be partly responsible for the observed biological effects. Transcriptome alterations in both offspring sexes and treatment groups were all significantly associated with downstream adverse neurobiological outcomes. Results from this study demonstrate that e-cigarette exposure during early life alters CNS development potentially leading to chronic neuropathology. PMID:27077873

  3. Early maternal deprivation enhances voluntary alcohol intake induced by exposure to stressful events later in life.

    PubMed

    Peñasco, Sara; Mela, Virginia; López-Moreno, Jose Antonio; Viveros, María-Paz; Marco, Eva M

    2015-01-01

    In the present study, we aimed to assess the impact of early life stress, in the form of early maternal deprivation (MD, 24 h on postnatal day, pnd, 9), on voluntary alcohol intake in adolescent male and female Wistar rats. During adolescence, from pnd 28 to pnd 50, voluntary ethanol intake (20%, v/v) was investigated using the two-bottle free choice paradigm. To better understand the relationship between stress and alcohol consumption, voluntary alcohol intake was also evaluated following additional stressful events later in life, that is, a week of alcohol cessation and a week of alcohol cessation combined with exposure to restraint stress. Female animals consumed more alcohol than males only after a second episode of alcohol cessation combined with restraint stress. MD did not affect baseline voluntary alcohol intake but increased voluntary alcohol intake after stress exposure, indicating that MD may render animals more vulnerable to the effects of stress on alcohol intake. During adolescence, when animals had free access to alcohol, MD animals showed lower body weight gain but a higher growth rate than control animals. Moreover, the higher growth rate was accompanied by a decrease in food intake, suggesting an altered metabolic regulation in MD animals that may interact with alcohol intake.

  4. Genetic variability in IGF-1 and IGFBP-3 and body size in early life

    PubMed Central

    2012-01-01

    Background Early life body size and circulating levels of IGF-1 and IGFBP-3 have been linked to increased risks of breast and other cancers, but it is unclear whether these exposures act through a common mechanism. Previous studies have examined the role of IGF-1 and IGFBP-3 genetic variation in relation to adult height and body size, but few studies have examined associations with birthweight and childhood size. Methods We examined whether htSNPs in IGF-1 and the IGFBP-1/IGFBP-3 gene region are associated with the self-reported outcomes of birthweight, body fatness at ages 5 and 10, and body mass index (BMI) at age 18 among healthy women from the Nurses’ Health Study (NHS) and NHSII. We used ordinal logistic regression to model odds ratios (ORs) and 95% confidence intervals (CI) of a one category increase for birthweight and somatotypes at ages 5 and 10. We used linear regression to model associations with BMI at age 18. Results Among 4567 healthy women in NHS and NHSII, we observed no association between common IGF-1 or IGFBP-1/IGFBP-3 SNPs and birthweight, body fatness at ages 5 and 10, or BMI at age 18. Conclusions Common IGF-1 and IGFBP-1/IGFBP-3 SNPs are not associated with body size in early life. PMID:22894543

  5. Early-Life Stress Triggers Juvenile Zebra Finches to Switch Social Learning Strategies.

    PubMed

    Farine, Damien R; Spencer, Karen A; Boogert, Neeltje J

    2015-08-17

    Stress during early life can cause disease and cognitive impairment in humans and non-humans alike. However, stress and other environmental factors can also program developmental pathways. We investigate whether differential exposure to developmental stress can drive divergent social learning strategies between siblings. In many species, juveniles acquire essential foraging skills by copying others: they can copy peers (horizontal social learning), learn from their parents (vertical social learning), or learn from other adults (oblique social learning). However, whether juveniles' learning strategies are condition dependent largely remains a mystery. We found that juvenile zebra finches living in flocks socially learned novel foraging skills exclusively from adults. By experimentally manipulating developmental stress, we further show that social learning targets are phenotypically plastic. While control juveniles learned foraging skills from their parents, their siblings, exposed as nestlings to experimentally elevated stress hormone levels, learned exclusively from unrelated adults. Thus, early-life conditions triggered individuals to switch strategies from vertical to oblique social learning. This switch could arise from stress-induced differences in developmental rate, cognitive and physical state, or the use of stress as an environmental cue. Acquisition of alternative social learning strategies may impact juveniles' fit to their environment and ultimately change their developmental trajectories.

  6. Local adaptation in brown trout early life-history traits: implications for climate change adaptability.

    PubMed

    Jensen, Lasse Fast; Hansen, Michael M; Pertoldi, Cino; Holdensgaard, Gert; Mensberg, Karen-Lise Dons; Loeschcke, Volker

    2008-12-22

    Knowledge of local adaptation and adaptive potential of natural populations is becoming increasingly relevant due to anthropogenic changes in the environment, such as climate change. The concern is that populations will be negatively affected by increasing temperatures without the capacity to adapt. Temperature-related adaptability in traits related to phenology and early life history are expected to be particularly important in salmonid fishes. We focused on the latter and investigated whether four populations of brown trout (Salmo trutta) are locally adapted in early life-history traits. These populations spawn in rivers that experience different temperature conditions during the time of incubation of eggs and embryos. They were reared in a common-garden experiment at three different temperatures. Quantitative genetic differentiation (QST) exceeded neutral molecular differentiation (FST) for two traits, indicating local adaptation. A temperature effect was observed for three traits. However, this effect varied among populations due to locally adapted reaction norms, corresponding to the temperature regimes experienced by the populations in their native environments. Additive genetic variance and heritable variation in phenotypic plasticity suggest that although increasing temperatures are likely to affect some populations negatively, they may have the potential to adapt to changing temperature regimes.

  7. Glutamine randomized studies in early life: the unsolved riddle of experimental and clinical studies.

    PubMed

    Briassouli, Efrossini; Briassoulis, George

    2012-01-01

    Glutamine may have benefits during immaturity or critical illness in early life but its effects on outcome end hardpoints are controversial. Our aim was to review randomized studies on glutamine supplementation in pups, infants, and children examining whether glutamine affects outcome. Experimental work has proposed various mechanisms of glutamine action but none of the randomized studies in early life showed any effect on mortality and only a few showed some effect on inflammatory response, organ function, and a trend for infection control. Although apparently safe in animal models (pups), premature infants, and critically ill children, glutamine supplementation does not reduce mortality or late onset sepsis, and its routine use cannot be recommended in these sensitive populations. Large prospectively stratified trials are needed to better define the crucial interrelations of "glutamine-heat shock proteins-stress response" in critical illness and to identify the specific subgroups of premature neonates and critically ill infants or children who may have a greater need for glutamine and who may eventually benefit from its supplementation. The methodological problems noted in the reviewed randomized experimental and clinical trials should be seriously considered in any future well-designed large blinded randomized controlled trial involving glutamine supplementation in critical illness.

  8. Microbial ecology and host-microbiota interactions during early life stages.

    PubMed

    Collado, Maria Carmen; Cernada, Maria; Baüerl, Christine; Vento, Máximo; Pérez-Martínez, Gaspar

    2012-01-01

    The role of human microbiota has been redefined during recent years and its physiological role is now much more important than earlier understood. Intestinal microbial colonization is essential for the maturation of immune system and for the developmental regulation of the intestinal physiology. Alterations in this process of colonization have been shown to predispose and increase the risk to disease later in life. The first contact of neonates with microbes is provided by the maternal microbiota. Moreover, mode of delivery, type of infant feeding and other perinatal factors can influence the establishment of the infant microbiota. Taken into consideration all the available information it could be concluded that the exposure to the adequate microbes early in gestation and neonatal period seems to have a relevant role in health. Maternal microbial environment affects maternal and fetal immune physiology and, of relevance, this interaction with microbes at the fetal-maternal interface could be modulated by specific microbes administered to the pregnant mother. Indeed, probiotic interventions aiming to reduce the risk of immune-mediated diseases may appear effective during early life.

  9. Microbial ecology and host-microbiota interactions during early life stages

    PubMed Central

    Collado, Maria Carmen; Cernada, Maria; Baüerl, Christine; Vento, Máximo; Pérez-Martínez, Gaspar

    2012-01-01

    The role of human microbiota has been redefined during recent years and its physiological role is now much more important than earlier understood. Intestinal microbial colonization is essential for the maturation of immune system and for the developmental regulation of the intestinal physiology. Alterations in this process of colonization have been shown to predispose and increase the risk to disease later in life. The first contact of neonates with microbes is provided by the maternal microbiota. Moreover, mode of delivery, type of infant feeding and other perinatal factors can influence the establishment of the infant microbiota. Taken into consideration all the available information it could be concluded that the exposure to the adequate microbes early in gestation and neonatal period seems to have a relevant role in health. Maternal microbial environment affects maternal and fetal immune physiology and, of relevance, this interaction with microbes at the fetal-maternal interface could be modulated by specific microbes administered to the pregnant mother. Indeed, probiotic interventions aiming to reduce the risk of immune-mediated diseases may appear effective during early life. PMID:22743759

  10. Frontal Cortex Transcriptome Analysis of Mice Exposed to Electronic Cigarettes During Early Life Stages.

    PubMed

    Lauterstein, Dana E; Tijerina, Pamella B; Corbett, Kevin; Akgol Oksuz, Betul; Shen, Steven S; Gordon, Terry; Klein, Catherine B; Zelikoff, Judith T

    2016-04-12

    Electronic cigarettes (e-cigarettes), battery-powered devices containing nicotine, glycerin, propylene glycol, flavorings, and other substances, are increasing in popularity. They pose a potential threat to the developing brain, as nicotine is a known neurotoxicant. We hypothesized that exposure to e-cigarettes during early life stages induce changes in central nervous system (CNS) transcriptome associated with adverse neurobiological outcomes and long-term disease states. To test the hypothesis, pregnant C57BL/6 mice were exposed daily (via whole body inhalation) throughout gestation (3 h/day; 5 days/week) to aerosols produced from e-cigarettes either with nicotine (13-16 mg/mL) or without nicotine; following birth, pups and dams were exposed together to e-cigarette aerosols throughout lactation beginning at postnatal day (PND) 4-6 and using the same exposure conditions employed during gestational exposure. Following exposure, frontal cortex recovered from ~one-month-old male and female offspring were excised and analyzed for gene expression by RNA Sequencing (RNA-Seq). Comparisons between the treatment groups revealed that e-cigarette constituents other than nicotine might be partly responsible for the observed biological effects. Transcriptome alterations in both offspring sexes and treatment groups were all significantly associated with downstream adverse neurobiological outcomes. Results from this study demonstrate that e-cigarette exposure during early life alters CNS development potentially leading to chronic neuropathology.

  11. Glutamine Randomized Studies in Early Life: The Unsolved Riddle of Experimental and Clinical Studies

    PubMed Central

    Briassouli, Efrossini; Briassoulis, George

    2012-01-01

    Glutamine may have benefits during immaturity or critical illness in early life but its effects on outcome end hardpoints are controversial. Our aim was to review randomized studies on glutamine supplementation in pups, infants, and children examining whether glutamine affects outcome. Experimental work has proposed various mechanisms of glutamine action but none of the randomized studies in early life showed any effect on mortality and only a few showed some effect on inflammatory response, organ function, and a trend for infection control. Although apparently safe in animal models (pups), premature infants, and critically ill children, glutamine supplementation does not reduce mortality or late onset sepsis, and its routine use cannot be recommended in these sensitive populations. Large prospectively stratified trials are needed to better define the crucial interrelations of “glutamine-heat shock proteins-stress response” in critical illness and to identify the specific subgroups of premature neonates and critically ill infants or children who may have a greater need for glutamine and who may eventually benefit from its supplementation. The methodological problems noted in the reviewed randomized experimental and clinical trials should be seriously considered in any future well-designed large blinded randomized controlled trial involving glutamine supplementation in critical illness. PMID:23019424

  12. Early Maternal Deprivation Enhances Voluntary Alcohol Intake Induced by Exposure to Stressful Events Later in Life

    PubMed Central

    Peñasco, Sara; Mela, Virginia; López-Moreno, Jose Antonio; Viveros, María-Paz; Marco, Eva M.

    2015-01-01

    In the present study, we aimed to assess the impact of early life stress, in the form of early maternal deprivation (MD, 24 h on postnatal day, pnd, 9), on voluntary alcohol intake in adolescent male and female Wistar rats. During adolescence, from pnd 28 to pnd 50, voluntary ethanol intake (20%, v/v) was investigated using the two-bottle free choice paradigm. To better understand the relationship between stress and alcohol consumption, voluntary alcohol intake was also evaluated following additional stressful events later in life, that is, a week of alcohol cessation and a week of alcohol cessation combined with exposure to restraint stress. Female animals consumed more alcohol than males only after a second episode of alcohol cessation combined with restraint stress. MD did not affect baseline voluntary alcohol intake but increased voluntary alcohol intake after stress exposure, indicating that MD may render animals more vulnerable to the effects of stress on alcohol intake. During adolescence, when animals had free access to alcohol, MD animals showed lower body weight gain but a higher growth rate than control animals. Moreover, the higher growth rate was accompanied by a decrease in food intake, suggesting an altered metabolic regulation in MD animals that may interact with alcohol intake. PMID:25821601

  13. Trans-generational effects of early life stress: the role of maternal behavior.

    PubMed

    Schmauss, Claudia; Lee-McDermott, Zoe; Medina, Liorimar Ramos

    2014-05-02

    Using a rodent paradigm of early life stress, infant maternal separation (IMS), we examined whether IMS-triggered behavioral and epigenetic phenotypes of the stress-susceptible mouse strain Balb/c are propagated across generations. These phenotypes include impaired emotional behavior and deficits in executive cognitive functions in adulthood, and they are associated with increased acetylation of histone H4K12 protein (acH4K12) in the forebrain neocortex. These behavioral and epigenetic phenotypes are transmitted to the first progeny of IMS Balb/c mothers, but not fathers, and cross-fostering experiments revealed that this transmission is triggered by maternal behavior and modulated by the genetic background of the pups. In the continued absence of the original stressor, this transmission fades in later progenies. An adolescent treatment that lowers the levels of acH4K12 in IMS Balb/c mice augments their emotional abnormality but abolishes their cognitive deficits. Conversely, a treatment that further elevates the levels of acH4K12 improved the emotional phenotype but had no effects on the cognitive deficits. Moreover, treatments that prevent the emergence of either emotional or cognitive deficits in the mother also prevent the establishment of such deficits in her offspring, indicating that trans-generational effects of early life stress can be prevented.

  14. Silicon Isotopic Composition of Isua BIF and Other Early Archean Supracrustal Rocks: a Tracer for Early Life?

    NASA Astrophysics Data System (ADS)

    André, L.; Cardinal, D.; Alleman, L. Y.; Moorbath, S.

    2004-12-01

    High temperature vapor condensations and stardust forming stellar outflows strongly differentiate Si-isotopes (-650\\permil<\\delta29Si<+200\\permil). In contrast, on Earth, the major cause of slight Si isotope fractionation (-1.8\\permil <\\delta29Si <+1.5\\permil) is related to preferential biological uptake of 28Si by diatoms, radiolarian, sponges and plants in building their opaline frustules, spicules and phytoliths. As a consequence, modern waters, clays, soils and sediments are also fractionated: -0.9\\permil<\\delta29Si<+1.7\\permil, while Phanerozoic magmatic and metamorphic processes leave terrestrial crystalline rocks almost unfractionated: -0.4\\permil <\\delta29Si <+0.2\\permil. Spectacular claims for discovery of oldest evidence for terrestrial life in early Archean (ca 3.7-3.8 Ga) metamorphosed rocks from southern West Greenland have been challenged in a series of studies, and there is need for some independent tracer to gain new insights into the quest for primitive life. In order to unravel potentialities of silicon isotopes, we determined the Si-isotope composition of four groups of rocks from the Isua Greenstone Belt: magnetite-quartz "Banded Iron Formations" (BIF); mica-feldspar-quartz-(garnet) schists of potential pelitic origin; a series of tonalitic gneisses, metabasalt pillows, volcanogenic sediments and hydrothermal quartz veins and vesicles. Specimens were powdered using diamond-coated microdrills. Si was purified by TEA molybdate co-precipitation and measured on a Nu Plasma MC-ICP-MS using Mg external doping in dry plasma mode following Cardinal et al's (2003) methodology. Measured 29Si/28Si are expressed with the \\delta29Si notation relative to the NBS28 quartz standard. Overall reproducibility assessed on 5 BIF duplicates is better than 0.08\\permil. Merck Quartz aliquots processed in the same way as the Isua specimens are unfractionated, showing that our chemical procedure does not produce any isotopic artefacts. Metasediments yield

  15. Microbiological characterization of a regenerative life support system

    NASA Technical Reports Server (NTRS)

    Koenig, D. W.; Bruce, R. J.; Mishra, S. K.; Barta, D. J.; Pierson, D. L.

    1994-01-01

    A Variable Pressure Plant Growth Chamber (VPGC), at the Johnson Space Center's (JSC) ground based Regenerative Life Support Systems (RLSS) test bed, was used to produce crops of soil-grown lettuce. The crops and chamber were analyzed for microbiological diversity during lettuce growth and after harvest. Bacterial counts for the rhizosphere, spent nutrient medium, heat exchanger condensate, and atmosphere were approximately 10(exp 11) Colony Forming Units (CFU)/g, 10(exp 5) CFU/ml, 10(exp 5)CFU/ml, and 600 CFU/m sq, repectively. Pseudomonas was the predominant bacterial genus. Numbers of fungi were about 10(exp 5) CFU/g in the rhizosphere, 4-200 CFU/ml in the spent nutient medium, 110 CFU/ml in the heat exchanger condensate, and 3 CFU/cu m in the atmosphere. Fusarium and Trichoderma were the predominant fungal genera.

  16. Microbiological characterization of a regenerative life support system

    NASA Astrophysics Data System (ADS)

    Koenig, D. W.; Bruce, R. J.; Mishra, S. K.; Barta, D. J.; Pierson, D. L.

    1994-11-01

    A Variable Pressure Plant Growth Chamber (VPGC), at the Johnson Space Center's (JSC) ground-based Regenerative Life Support Systems (RLSS) test bed, was used to produce crops of soil-grown lettuce. The crops and chamber were analyzed for microbiological diversity during lettuce growth and after harvest. Bacterial counts for the rhizosphere, spent nutrient medium, heat exchanger condensate, and atmosphere were approximately 1011 Colony Forming Units (CFU) g-1, 105 CFU ml-1, 105 CFU ml-1, and 600 CFU m-3, respectively. Pseudomonas was the predominant bacterial genus. Numbers of fungi were about 105 CFU g-1 in the rhizosphere, 4-200 CFU ml-1 in thespent nutrient medium, 110 CFU ml-1 in the heat exchanger condensate, and 3 CFU m-3 in the atmosphere. Fusarium and Trichoderma were the predominant fungal genera.

  17. Gut Microbiome Developmental Patterns in Early Life of Preterm Infants: Impacts of Feeding and Gender.

    PubMed

    Cong, Xiaomei; Xu, Wanli; Janton, Susan; Henderson, Wendy A; Matson, Adam; McGrath, Jacqueline M; Maas, Kendra; Graf, Joerg

    2016-01-01

    Gut microbiota plays a key role in multiple aspects of human health and disease, particularly in early life. Distortions of the gut microbiota have been found to correlate with fatal diseases in preterm infants, however, developmental patterns of gut microbiome and factors affecting the colonization progress in preterm infants remain unclear. The purpose of this prospective longitudinal study was to explore day-to-day gut microbiome patterns in preterm infants during their first 30 days of life in the neonatal intensive care unit (NICU) and investigate potential factors related to the development of the infant gut microbiome. A total of 378 stool samples were collected daily from 29 stable/healthy preterm infants. DNA extracted from stool was used to sequence the V4 region of the 16S rRNA gene region for community analysis. Operational taxonomic units (OTUs) and α-diversity of the community were determined using QIIME software. Proteobacteria was the most abundant phylum, accounting for 54.3% of the total reads. Result showed shift patterns of increasing Clostridium and Bacteroides, and decreasing Staphylococcus and Haemophilus over time during early life. Alpha-diversity significantly increased daily in preterm infants after birth and linear mixed-effects models showed that postnatal days, feeding types and gender were associated with the α-diversity, p< 0.05-0.01. Male infants were found to begin with a low α-diversity, whereas females tended to have a higher diversity shortly after birth. Female infants were more likely to have higher abundance of Clostridiates, and lower abundance of Enterobacteriales than males during early life. Infants fed mother's own breastmilk (MBM) had a higher diversity of gut microbiome and significantly higher abundance in Clostridiales and Lactobacillales than infants fed non-MBM. Permanova also showed that bacterial compositions were different between males and females and between MBM and non-MBM feeding types. In conclusion

  18. Records of our Early Biosphere Illuminate our Origins and Guide our Search for Life Beyond Earth

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.

    2003-01-01

    A scientific "mission of exploration to early Earth" will help us chart the distribution of life elsewhere. We must discriminate between attributes of biospheres that are universal versus those attributes that represent principally the outcomes of long-term survival specifically on Earth. In addition to the basic physics and chemistry of matter, the geologic evolution of rocky habitable planets and their climates might be similar elsewhere in the Universe. Certain key agents that drive long-term environmental change (e.g., stellar evolution, impacts, geothermal heat flow, tectonics, etc.) can help us to reconstruct ancient climates and to compare their evolution among populations of Earth- like planets. Early Earth was tectonically more active than today and therefore it exhaled reduced chemical species into the more oxidized surface environment at greater rates. This tectonic activity thus sustained oxidation-reduction reactions that provided the basis for the development of biochemical pathways that harvest chemical energy ("bioenergetics"). Most examples of bioenergetics today that extract energy by reacting oxidized and reduced chemicals in the environment were likely more pervasive among our microbial ancestors than are the presently known examples of photosynthesis. The geologic rock record indicates that, as early as 3.5 billion years ago (3.5 Ga), microbial biofilms were widespread within the coastal environments of small continents and tectonically unstable volcanic islands. Non oxygen-producing (non-oxygenic) photosynthesis preceded oxygenic photosynthesis, but all types of photosynthesis contributed substantially to the long-term increase in global primary biological productivity. Evidence of photosynthesis is tentative by 3.5 Ga and compelling by 2.7 Ga. Evidence of oxygenic photosynthesis is strong by 2.7 Ga and compelling by 2.3 Ga. These successive innovations transformed life from local communities that survived principally by catalyzing chemical

  19. Gut Microbiome Developmental Patterns in Early Life of Preterm Infants: Impacts of Feeding and Gender

    PubMed Central

    Xu, Wanli; Janton, Susan; Henderson, Wendy A.; Matson, Adam; McGrath, Jacqueline M.; Maas, Kendra; Graf, Joerg

    2016-01-01

    Gut microbiota plays a key role in multiple aspects of human health and disease, particularly in early life. Distortions of the gut microbiota have been found to correlate with fatal diseases in preterm infants, however, developmental patterns of gut microbiome and factors affecting the colonization progress in preterm infants remain unclear. The purpose of this prospective longitudinal study was to explore day-to-day gut microbiome patterns in preterm infants during their first 30 days of life in the neonatal intensive care unit (NICU) and investigate potential factors related to the development of the infant gut microbiome. A total of 378 stool samples were collected daily from 29 stable/healthy preterm infants. DNA extracted from stool was used to sequence the V4 region of the 16S rRNA gene region for community analysis. Operational taxonomic units (OTUs) and α-diversity of the community were determined using QIIME software. Proteobacteria was the most abundant phylum, accounting for 54.3% of the total reads. Result showed shift patterns of increasing Clostridium and Bacteroides, and decreasing Staphylococcus and Haemophilus over time during early life. Alpha-diversity significantly increased daily in preterm infants after birth and linear mixed-effects models showed that postnatal days, feeding types and gender were associated with the α-diversity, p< 0.05–0.01. Male infants were found to begin with a low α-diversity, whereas females tended to have a higher diversity shortly after birth. Female infants were more likely to have higher abundance of Clostridiates, and lower abundance of Enterobacteriales than males during early life. Infants fed mother’s own breastmilk (MBM) had a higher diversity of gut microbiome and significantly higher abundance in Clostridiales and Lactobacillales than infants fed non-MBM. Permanova also showed that bacterial compositions were different between males and females and between MBM and non-MBM feeding types. In conclusion

  20. Growth in early life predicts bone strength in late adulthood: the Hertfordshire Cohort Study.

    PubMed

    Oliver, Helen; Jameson, Karen A; Sayer, Avan Aihie; Cooper, Cyrus; Dennison, Elaine M

    2007-09-01

    Infant growth is a determinant of adult bone mass, and poor childhood growth is a risk factor for adult hip fracture. Peripheral quantitative computed tomography (pQCT) allows non-invasive assessment of bone strength. We utilised this technology to examine relationships between growth in early life and bone strength. We studied 313 men and 318 women born in Hertfordshire between 1931 and 1939 who were still resident there in adult life, for whom detailed early life records were available. Lifestyle factors were evaluated by questionnaire, anthropometric measurements made, and peripheral QCT examination of the radius and tibia performed (Stratec 4500). Birthweight and conditional weight at 1 year were strongly related to radial and tibial length in both sexes (p<0.001) and to measures of bone strength [fracture load X, fracture load Y, polar strength strain index (SSI)] at both the radius and tibia. These relationships were robust to adjustment for age, body mass index (BMI), social class, cigarette and alcohol consumption, physical activity, dietary calcium intake, HRT use, and menopausal status in women. Among men, BMI was strongly positively associated with radial (r=0.46, p=0.001) and tibial (r=0.24, p=0.006) trabecular bone mineral density (BMD). Current smoking was associated with lower cortical (radius: p=0.0002; tibia: p=0.08) and trabecular BMD (radius: p=0.08; tibia: p=0.04) in males. Similar trends of BMD with these anthropometric and lifestyle variables were seen in women but they were non-significant. Current HRT use was associated with greater female cortical (radius: p=0.0002; tibia: p=0.001) and trabecular (radius: p=0.008; tibia: p=0.04) BMD. Current HRT use was also associated with greater radial strength (polar SSI: p=0.006; fracture load X: p=0.005; fracture load Y: p=0.02) in women. Women who had sustained any fracture since the age of 45 years had lower radial total (p=0.0001), cortical (p<0.005) and trabecular (p=0.0002) BMD, poorer forearm

  1. Records of our Early Biosphere Illuminate our Origins and Guide our Search for Life beyond Earth

    NASA Astrophysics Data System (ADS)

    Des Marais, D. J.

    2003-12-01

    A scientific "mission of exploration to early Earth" will help us chart the distribution of life elsewhere. We must discriminate between attributes of biospheres that are universal versus those attributes that represent principally the outcomes of long-term survival specifically on Earth. In addition to the basic physics and chemistry of matter, the geologic evolution of rocky habitable planets and their climates might be similar elsewhere in the Universe. Certain key agents that drive long-term environmental change (e.g., stellar evolution, impacts, geothermal heat flow, tectonics, etc.) can help us to reconstruct ancient climates and to compare their evolution among populations of Earth-like planets. Early Earth was tectonically more active than today and therefore it exhaled reduced chemical species into the more oxidized surface environment at greater rates. This tectonic activity thus sustained oxidation-reduction reactions that provided the basis for the development of biochemical pathways that harvest chemical energy ("bioenergetics"). Most examples of bioenergetics today that extract energy by reacting oxidized and reduced chemicals in the environment were likely more pervasive among our microbial ancestors than are the presently known examples of photosynthesis. The geologic rock record indicates that, as early as 3.5 billion years ago (3.5 Ga), microbial biofilms were widespread within the coastal environments of small continents and tectonically unstable volcanic islands. Non oxygen-producing (non-oxygenic) photosynthesis preceded oxygenic photosynthesis, but all types of photosynthesis contributed substantially to the long-term increase in global primary biological productivity. Evidence of photosynthesis is tentative by 3.5 Ga and compelling by 2.7 Ga. Evidence of oxygenic photosynthesis is strong by 2.7 Ga and compelling by 2.3 Ga. These successive innovations transformed life from local communities that survived principally by catalyzing chemical

  2. General and specific effects of early-life psychosocial adversities on adolescent grey matter volume☆

    PubMed Central

    Walsh, Nicholas D.; Dalgleish, Tim; Lombardo, Michael V.; Dunn, Valerie J.; Van Harmelen, Anne-Laura; Ban, Maria; Goodyer, Ian M.

    2014-01-01

    Exposure to childhood adversities (CA) is associated with subsequent alterations in regional brain grey matter volume (GMV). Prior studies have focused mainly on severe neglect and maltreatment. The aim of this study was to determine in currently healthy adolescents if exposure to more common forms of CA results in reduced GMV. Effects on brain structure were investigated using voxel-based morphometry in a cross-sectional study of youth recruited from a population-based longitudinal cohort. 58 participants (mean age = 18.4) with (n = 27) or without (n = 31) CA exposure measured retrospectively from maternal interview were included in the study. Measures of recent negative life events (RNLE) recorded at 14 and 17 years, current depressive symptoms, gender, participant/parental psychiatric history, current family functioning perception and 5-HTTLPR genotype were covariates in analyses. A multivariate analysis of adversities demonstrated a general association with a widespread distributed neural network consisting of cortical midline, lateral frontal, temporal, limbic, and cerebellar regions. Univariate analyses showed more specific associations between adversity measures and regional GMV: CA specifically demonstrated reduced vermis GMV and past psychiatric history with reduced medial temporal lobe volume. In contrast RNLE aged 14 was associated with increased lateral cerebellar and anterior cingulate GMV. We conclude that exposure to moderate levels of childhood adversities occurring during childhood and early adolescence exerts effects on the developing adolescent brain. Reducing exposure to adverse social environments during early life may optimize typical brain development and reduce subsequent mental health risks in adult life. PMID:25061568

  3. Early-life glucocorticoids programme behaviour and metabolism in adulthood in zebrafish

    PubMed Central

    Wilson, K S; Tucker, C S; Al-Dujaili, E A S; Holmes, M C; Hadoke, P W F; Kenyon, C J

    2016-01-01

    Glucocorticoids (GCs) in utero influence embryonic development with consequent programmed effects on adult physiology and pathophysiology and altered susceptibility to cardiovascular disease. However, in viviparous species, studies of these processes are compromised by secondary maternal influences. The zebrafish, being fertilised externally, avoids this problem and has been used here to investigate the effects of transient alterations in GC activity during early development. Embryonic fish were treated either with dexamethasone (a synthetic GC), an antisense GC receptor (GR) morpholino (GR Mo), or hypoxia for the first 120h post fertilisation (hpf); responses were measured during embryonic treatment or later, post treatment, in adults. All treatments reduced cortisol levels in embryonic fish to similar levels. However, morpholino- and hypoxia-treated embryos showed delayed physical development (slower hatching and straightening of head–trunk angle, shorter body length), less locomotor activity, reduced tactile responses and anxiogenic activity. In contrast, dexamethasone-treated embryos showed advanced development and thigmotaxis but no change in locomotor activity or tactile responses. Gene expression changes were consistent with increased (dexamethasone) and decreased (hypoxia, GR Mo) GC activity. In adults, stressed cortisol values were increased with dexamethasone and decreased by GR Mo and hypoxia pre-treatments. Other responses were similarly differentially affected. In three separate tests of behaviour, dexamethasone-programmed fish appeared ‘bolder’ than matched controls, whereas Mo and hypoxia pre-treated fish were unaffected or more reserved. Similarly, the dexamethasone group but not the Mo or hypoxia groups were heavier, longer and had a greater girth than controls. Hyperglycaemia and expression of GC responsive gene (pepck) were also increased in the dexamethasone group. We conclude that GC activity controls many aspects of early-life growth and

  4. Early life adversity increases foraging and information gathering in European starlings, Sturnus vulgaris

    PubMed Central

    Andrews, Clare; Viviani, Jérémie; Egan, Emily; Bedford, Thomas; Brilot, Ben; Nettle, Daniel; Bateson, Melissa

    2015-01-01

    Animals can insure themselves against the risk of starvation associated with unpredictable food availability by storing energy reserves or gathering information about alternative food sources. The former