Science.gov

Sample records for characterized clone resource

  1. Final progress report, Construction of a genome-wide highly characterized clone resource for genome sequencing

    SciTech Connect

    Nierman, William C.

    2000-02-14

    At TIGR, the human Bacterial Artificial Chromosome (BAC) end sequencing and trimming were with an overall sequencing success rate of 65%. CalTech human BAC libraries A, B, C and D as well as Roswell Park Cancer Institute's library RPCI-11 were used. To date, we have generated >300,000 end sequences from >186,000 human BAC clones with an average read length {approx}460 bp for a total of 141 Mb covering {approx}4.7% of the genome. Over sixty percent of the clones have BAC end sequences (BESs) from both ends representing over five-fold coverage of the genome by the paired-end clones. The average phred Q20 length is {approx}400 bp. This high accuracy makes our BESs match the human finished sequences with an average identity of 99% and a match length of 450 bp, and a frequency of one match per 12.8 kb contig sequence. Our sample tracking has ensured a clone tracking accuracy of >90%, which gives researchers a high confidence in (1) retrieving the right clone from the BA C libraries based on the sequence matches; and (2) building a minimum tiling path of sequence-ready clones across the genome and genome assembly scaffolds.

  2. Clone DB: an integrated NCBI resource for clone-associated data

    PubMed Central

    Schneider, Valerie A.; Chen, Hsiu-Chuan; Clausen, Cliff; Meric, Peter A.; Zhou, Zhigang; Bouk, Nathan; Husain, Nora; Maglott, Donna R.; Church, Deanna M.

    2013-01-01

    The National Center for Biotechnology Information (NCBI) Clone DB (http://www.ncbi.nlm.nih.gov/clone/) is an integrated resource providing information about and facilitating access to clones, which serve as valuable research reagents in many fields, including genome sequencing and variation analysis. Clone DB represents an expansion and replacement of the former NCBI Clone Registry and has records for genomic and cell-based libraries and clones representing more than 100 different eukaryotic taxa. Records provide details of library construction, associated sequences, map positions and information about resource distribution. Clone DB is indexed in the NCBI Entrez system and can be queried by fields that include organism, clone name, gene name and sequence identifier. Whenever possible, genomic clones are mapped to reference assemblies and their map positions provided in clone records. Clones mapping to specific genomic regions can also be searched for using the NCBI Clone Finder tool, which accepts queries based on sequence coordinates or features such as gene or transcript names. Clone DB makes reports of library, clone and placement data on its FTP site available for download. With Clone DB, users now have available to them a centralized resource that provides them with the tools they will need to make use of these important research reagents. PMID:23193260

  3. Clone DB: an integrated NCBI resource for clone-associated data.

    PubMed

    Schneider, Valerie A; Chen, Hsiu-Chuan; Clausen, Cliff; Meric, Peter A; Zhou, Zhigang; Bouk, Nathan; Husain, Nora; Maglott, Donna R; Church, Deanna M

    2013-01-01

    The National Center for Biotechnology Information (NCBI) Clone DB (http://www.ncbi.nlm.nih.gov/clone/) is an integrated resource providing information about and facilitating access to clones, which serve as valuable research reagents in many fields, including genome sequencing and variation analysis. Clone DB represents an expansion and replacement of the former NCBI Clone Registry and has records for genomic and cell-based libraries and clones representing more than 100 different eukaryotic taxa. Records provide details of library construction, associated sequences, map positions and information about resource distribution. Clone DB is indexed in the NCBI Entrez system and can be queried by fields that include organism, clone name, gene name and sequence identifier. Whenever possible, genomic clones are mapped to reference assemblies and their map positions provided in clone records. Clones mapping to specific genomic regions can also be searched for using the NCBI Clone Finder tool, which accepts queries based on sequence coordinates or features such as gene or transcript names. Clone DB makes reports of library, clone and placement data on its FTP site available for download. With Clone DB, users now have available to them a centralized resource that provides them with the tools they will need to make use of these important research reagents.

  4. Cloning and characterization of new bioluminescent proteins

    NASA Astrophysics Data System (ADS)

    Szent-Gyorgyi, Christopher; Ballou, Byron T.; Dagnal, Erich; Bryan, Bruce

    1999-07-01

    Over the past two years Prolume has undertaken a comprehensive program to clone luciferases and associated 'green fluorescent proteins' (GFPs) from marine animals that use coelenterazine as the luciferin. To data we have cloned several bioluminescent proteins, including two novel copepod luciferases and two anthozoan GFPs. These four proteins have sequences that differ greatly form previously cloned analogous proteins; the sequence diversity apparently is due to independent evolutionary origins and unusual evolutionary constraints. Thus coelenterazine-based bioluminescent systems may also manifest a variety of useful properties. We discuss form this taxonomic perspective the initial biochemical and spectral characterization of our cloned proteins. Emphasis is placed on the anthozoan luciferase-GFP systems, whose efficient resonance energy transfer has elicited much current interest.

  5. Development and Characterization of Recombinant Virus Generated from a New World Zika Virus Infectious Clone.

    PubMed

    Weger-Lucarelli, James; Duggal, Nisha K; Bullard-Feibelman, Kristen; Veselinovic, Milena; Romo, Hannah; Nguyen, Chilinh; Rückert, Claudia; Brault, Aaron C; Bowen, Richard A; Stenglein, Mark; Geiss, Brian J; Ebel, Gregory D

    2017-01-01

    Zika virus (ZIKV; family Flaviviridae, genus Flavivirus) is a rapidly expanding global pathogen that has been associated with severe clinical manifestations, including devastating neurological disease in infants. There are currently no molecular clones of a New World ZIKV available that lack significant attenuation, hindering progress toward understanding determinants of transmission and pathogenesis. Here we report the development and characterization of a novel ZIKV reverse genetics system based on a 2015 isolate from Puerto Rico (PRVABC59). We generated a two-plasmid infectious clone system from which infectious virus was rescued that replicates in human and mosquito cells with growth kinetics representative of wild-type ZIKV. Infectious clone-derived virus initiated infection and transmission rates in Aedes aegypti mosquitoes comparable to those of the primary isolate and displayed similar pathogenesis in AG129 mice. This infectious clone system provides a valuable resource to the research community to explore ZIKV molecular biology, vaccine development, antiviral development, diagnostics, vector competence, and disease pathogenesis.

  6. Technological Literacy and Human Cloning. Resources in Technology.

    ERIC Educational Resources Information Center

    Baird, Steven L.

    2002-01-01

    Discusses how technology educators can deal with advances in human genetics, specifically, cloning. Includes a definition and history of cloning, discusses its benefits, and looks at social concerns and arguments for and against human cloning. Includes classroom activities and websites. (Contains 10 references.) (JOW)

  7. Technological Literacy and Human Cloning. Resources in Technology.

    ERIC Educational Resources Information Center

    Baird, Steven L.

    2002-01-01

    Discusses how technology educators can deal with advances in human genetics, specifically, cloning. Includes a definition and history of cloning, discusses its benefits, and looks at social concerns and arguments for and against human cloning. Includes classroom activities and websites. (Contains 10 references.) (JOW)

  8. Cloning

    MedlinePlus

    Cloning describes the processes used to create an exact genetic replica of another cell, tissue or organism. ... named Dolly. There are three different types of cloning: Gene cloning, which creates copies of genes or ...

  9. Molecular cloning and functional characterization of avian interleukin-19

    USDA-ARS?s Scientific Manuscript database

    The present study describes the cloning and functional characterization of avian interleukin (IL)-19, a cytokine that, in mammals, alters the balance of Th1 and Th2 cells in favor of the Th2 phenotype. The full-length avian IL-19 gene, located on chromosome 26, was amplified from LPS-stimulated chi...

  10. Entamoeba invadens: cloning and molecular characterization of chitinases.

    PubMed

    Dey, Tuli; Basu, Raunak; Ghosh, Sudip K

    2009-11-01

    Entamoeba histolytica, the causative agent of amebiasis infects through its cyst form and this transmission may be blocked using encystation specific protein as drug target. In this study, we have characterized the enzyme chitinase which express specifically during encystation. The reptilian parasite Entamoeba invadens, used as a model for encystation study contain three chitinases. We report the molecular cloning, over-expression and biochemical characterization of all three E. invadens chitinase. Cloned chitinases were over-expressed in bacterial system and purified by affinity chromatography. Their enzymatic profiles and substrate cleaving patterns were characterized. All of them showed binding affinity towards insoluble chitin though two of them lack the chitin binding domain. All the chitinases cleaved and released dimmers from the insoluble substrate and act as an exochitinase. Homology modeling was also done to understand the substrate binding and cleavage pattern.

  11. Resource expenditure not resource allocation: response to McDougall on cloning and dignity.

    PubMed

    Williams, M J

    2009-05-01

    This paper offers some comments on bioethical debates about resource allocation in healthcare. It is stimulated by Rosalind McDougall's argument that it is an affront to the human dignity of people with below "liberties-level" health to fund human reproductive cloning. McDougall is right to underline the relevance of resource prioritisation to the ethics of research and provision of new biomedical technologies. This paper argues that bioethicists should be careful when offering comments about such issues. In particular, it emphasises the need to represent accurately the reality of the situation-especially when we are passing judgement on technologies that are in their infancy and whose practical application is yet to be confirmed. The paper also emphasises the importance of the actual context to bioethical debate, and note that it would be better to talk about resource expenditure rather than resource allocation when it comes to discussing the rights and wrongs of how money is spent. It also reiterates the claims made by other writers that social and political philosophy need to have a transparent and considered role in debates about resources.

  12. Cloning and characterization of the lectin cDNA clones from onion, shallot and leek.

    PubMed

    Van Damme, E J; Smeets, K; Engelborghs, I; Aelbers, H; Balzarini, J; Pusztai, A; van Leuven, F; Goldstein, I J; Peumans, W J

    1993-10-01

    Characterization of the lectins from onion (Allium cepa), shallot (A. ascalonicum) and leek (A. porrum) has shown that these lectins differ from previously isolated Alliaceae lectins not only in their molecular structure but also in their ability to inhibit retrovirus infection of target cells. cDNA libraries constructed from poly(A)-rich RNA isolated from young shoots of onion, shallot and leek were screened for lectin cDNA clones using colony hybridization. Sequence analysis of the lectin cDNA clones from these three species revealed a high degree of sequence similarity both at the nucleotide and at the amino acid level. Apparently the onion, shallot and leek lectins are translated from mRNAs of ca. 800 nucleotides. The primary translation products are preproproteins (ca. 19 kDa) which are converted into the mature lectin polypeptides (12.5-13 kDa) after post-translational modifications. Southern blot analysis of genomic DNA has shown that the lectins are most probably encoded by a family of closely related genes which is in good agreement with the sequence heterogeneity found between different lectin cDNA clones of one species.

  13. Cloning, characterization, and genomic structure of the mouse Ikbkap gene.

    PubMed

    Cuajungco, M P; Leyne, M; Mull, J; Gill, S P; Gusella, J F; Slaugenhaupt, S A

    2001-09-01

    Our laboratory recently reported that mutations in the human I-kappaB kinase-associated protein (IKBKAP) gene are responsible for familial dysautonomia (FD). Interestingly, amino acid substitutions in the IKAP correlate with increased risk for childhood bronchial asthma. Here, we report the cloning and genomic characterization of the mouse Ikbkap gene, the homolog of human IKBKAP. Like its human counterpart, Ikbkap encodes a protein of 1332 amino acids with a molecular weight of approximately 150 kDa. The Ikbkap gene product, Ikap, contains 37 exons that span approximately 51 kb. The protein shows 80% amino acid identity with human IKAP. It shows very high conservation across species and is homologous to the yeast Elp1/Iki3p protein, which is a member of the Elongator complex. The Ikbkap gene maps to chromosome 4 in a region that is syntenic to human chromosome 9q31.3. Because no animal model of FD currently exists, cloning of the mouse Ikbkap gene is an important first step toward creating a mouse model for FD. In addition, cloning of Ikbkap is crucial to the characterization of the putative mammalian Elongator complex.

  14. Characterization of chimeric plasmid cloning vehicles in Bacillus subtilis.

    PubMed

    Gryczan, T; Shivakumar, A G; Dubnau, D

    1980-01-01

    Restriction endonuclease cleavage maps of seven chimeric plasmids that may be used for molecular cloning in Bacillus subtilis are presented. These plasmids all carry multiple antibiotic resistance markers and were constructed by in vitro molecular cloning techniques. Several of the antibiotic resistance markers were shown to undergo insertional inactivation at specific restriction endonuclease sites. Kanamycin inactivation occurred at the BglII site of pUB110 derivatives, erythromycin inactivation occurred at the HpaI and BclI sites of pE194 derivatives, and streptomycin inactivation occurred at the HindIII site of pSA0501 derivatives. A stable mini-derivative of pBD12 was isolated and characterized. By using these plasmids, we identified proteins involved in plasmid-coded kanamycin and erythromycin resistance. The properties and uses of these chimeric plasmids in the further development of recombinant deoxyribonucleic acid technology in B. subtilis are discussed.

  15. Cloning and Characterization of the Scalloped Region of Drosophila Melanogaster

    PubMed Central

    Campbell, S. D.; Duttaroy, A.; Katzen, A. L.; Chovnick, A.

    1991-01-01

    Viable mutants of the scalloped gene (sd) of Drosophila melanogaster exhibit defects that can include gapping of the wing margin and ectopic bristle formation on the wing. Lethal sd alleles characterized in the present study now implicate this gene in a genetic function essential for normal development. In order to further characterize the developmental role of this gene, we have undertaken to clone and characterize the region where sd maps. A P[ry(+)] transposon insertion at 13F associated with sd([ry+2216]) served as the starting point for a 42-kb chromosomal walk. Molecular lesions associated with viable and lethal sd alleles were characterized by genomic hybridization analysis as a means of defining the extent of the gene. DNA rearrangements associated with 11 viable sd alleles map to a 2-kb interval which appears to be a ``hot spot'' for P element activity. Four of five recessive lethal sd mutations were mapped by denaturing gradient gel electrophoresis to a region 12-14 kb away from the region of viable lesions. In a sd(+) genotype, at least two structurally related and developmentally regulated transcripts hybridize to the genomic region where several sd lethal alleles have been localized. A viable mutation, sd(58), used for comparison in the transcript analysis, makes at least two slightly smaller transcripts that also hybridize to this region. Preliminary analysis of cDNA clones has identified three structurally related transcripts that hybridize to this genomic region. The 5' end of these transcripts extends into the 2-kb genomic region wherein DNA rearrangements were seen in the P element rearrangements. We favor the view that the transcripts represented by these cDNA clones are products of the sd gene. If this is true, the sd gene would include genomic sequences extending over at least 14 kb of the described chromosomal walk, and would appear to be subject to alternative splicing. PMID:1706292

  16. Cloning

    MedlinePlus

    ... 2001, researchers produced the first clone of an endangered species: a type of Asian ox known as a ... few days after its birth. In 2003, another endangered type of ox, called the ... many species that would otherwise disappear, others argue that cloning ...

  17. Immortalization and Characterization of Mouse Temporomandibular Joint Disc Cell Clones with Capacity for Multi-lineage Differentiation

    PubMed Central

    Park, Young; Hosomichi, Jun; Ge, Chunxi; Xu, Jinping; Franceschi, Renny; Kapila, Sunil

    2015-01-01

    Objective Despite the importance of TMJ disc in normal function and disease, studying the responses of its cells has been complicated by the lack of adequate characterization of the cell subtypes. The purpose of our investigation was to immortalize, clone, characterize and determine the multi-lineage potential of mouse TMJ disc cells. Design Cells from 12-week-old female mice were cultured and immortalized by stable transfection with human telomerase reverse transcriptase. The immortalized cell clones were phenotyped for fibroblast- or chondrocyte-like characteristics and ability to undergo adipocytic, osteoblastic and chondrocytic differentiation. Results Of 36 isolated clones, four demonstrated successful immortalization and maintenance of stable protein expression for up to 50 passages. Two clones each were initially characterized as fibroblast-like and chondrocyte-like on the basis of cell morphology and growth rate. Further the chondrocyte-like clones had higher mRNA expression levels of cartilage oligomeric matrix protein (>3.5-fold), collagen × (>11-fold), collagen II expression (2-fold) and collagen II:I ratio than the fibroblast-like clones. In contrast, the fibroblast-like clones had higher mRNA expression level of vimentin (>1.5-fold), and fibroblastic specific protein 1 (>2.5-fold) than he chondrocyte-like clones. Both cell types retained multi-lineage potential as demonstrated by their capacity to undergo robust adipogenic, osteogenic and chondrogenic differentiation. Conclusions These studies are the first to immortalize TMJ disc cells and characterize chondrocyte-like and fibroblast-like clones with retained multi-differentiation potential that would be a valuable resource in studies to dissect the behavior of specific cell types in health and disease and for tissue engineering. PMID:25887369

  18. Development and Characterization of Recombinant Virus Generated from a New World Zika Virus Infectious Clone

    PubMed Central

    Weger-Lucarelli, James; Duggal, Nisha K.; Bullard-Feibelman, Kristen; Veselinovic, Milena; Romo, Hannah; Nguyen, Chilinh; Rückert, Claudia; Brault, Aaron C.; Bowen, Richard A.; Stenglein, Mark

    2016-01-01

    ABSTRACT Zika virus (ZIKV; family Flaviviridae, genus Flavivirus) is a rapidly expanding global pathogen that has been associated with severe clinical manifestations, including devastating neurological disease in infants. There are currently no molecular clones of a New World ZIKV available that lack significant attenuation, hindering progress toward understanding determinants of transmission and pathogenesis. Here we report the development and characterization of a novel ZIKV reverse genetics system based on a 2015 isolate from Puerto Rico (PRVABC59). We generated a two-plasmid infectious clone system from which infectious virus was rescued that replicates in human and mosquito cells with growth kinetics representative of wild-type ZIKV. Infectious clone-derived virus initiated infection and transmission rates in Aedes aegypti mosquitoes comparable to those of the primary isolate and displayed similar pathogenesis in AG129 mice. This infectious clone system provides a valuable resource to the research community to explore ZIKV molecular biology, vaccine development, antiviral development, diagnostics, vector competence, and disease pathogenesis. IMPORTANCE ZIKV is a rapidly spreading mosquito-borne pathogen that has been linked to Guillain-Barré syndrome in adults and congenital microcephaly in developing fetuses and infants. ZIKV can also be sexually transmitted. The viral molecular determinants of any of these phenotypes are not well understood. There is no reverse genetics system available for the current epidemic virus that will allow researchers to study ZIKV immunity, develop novel vaccines, or develop antiviral drugs. Here we provide a novel infectious clone system generated from a recent ZIKV isolated from a patient infected in Puerto Rico. This infectious clone produces virus with in vitro and in vivo characteristics similar to those of the primary isolate, providing a critical tool to study ZIKV infection and disease. PMID:27795432

  19. Molecular cloning and characterization of mouse Gipc3.

    PubMed

    Saitoh, Tetsuroh; Mine, Tetsuya; Katoh, Masaru

    2002-03-01

    GIPC1/GIPC interacts with GTPase-activating protein RGS-GAIP, transmembrane protein M-SemF, receptor tyrosine kinase TrkA, integrin alpha 6A subunit, and TGF beta type III receptor. Kermit, a Xenopus orthologue of human GIPC1, interacts with Frizzled-3 (FZD3) class of WNT receptor. We have recently cloned and characterized human GIPC2 and GIPC3. Here, we identified mouse Gipc3 gene fragments by using bioinformatics, and isolated mouse Gipc3 cDNAs by using cDNA-PCR. Mouse Gipc3 gene encoded a 297-amino-acid protein, showing 86.2% total-amino-acid identity with human GIPC3. In addition to the central PDZ domain, GIPC homologous domain 1 (GH1 domain) and GH2 domain were found to be conserved among mouse Gipc3, Gipc1, Gipc2, and Xenopus Kermit. Mouse Gipc3 gene was found to consist of 6 exons, and exon-intron structure was well conserved between mouse Gipc3 gene and human GIPC3 gene. Mouse Gipc3 mRNA was relatively highly expressed in adult lung, and was also expressed in brain and testis, but was almost undetectable in 7-, 11-, 15, and 17-day whole embryos. This is the first report on molecular cloning and initial characterization of mouse Gipc3.

  20. Molecular cloning and characterization of mouse aquaporin 6.

    PubMed

    Nagase, Hiroaki; Agren, Johan; Saito, Akiko; Liu, Kun; Agre, Peter; Hazama, Akihiro; Yasui, Masato

    2007-01-05

    In the rat kidney, aquaporin (AQP) 6 is localized in the intracellular vesicle membranes of type-A intercalated cells of the collecting duct; mouse AQP6 (mAQP6) has not been characterized. Although mAQP6 was originally cloned from cDNA in a mouse cerebellum library (GenBank NM 175087), we have independently cloned a cDNA encoding mAQP6 from an adult kidney cDNA library (C57BL/6J strain). We identified two different spliced variants of mAQP6: mAQP6a and mAQP6b. The mAQP6a isoform is almost identical to that of rat AQP6, whereas mAQP6b is identical to that reported in the mouse cerebellum library mentioned above. We found that the mRNA expression of these two spliced variants is regulated in a tissue-specific and age-dependent manner. Functional analyses of water and ion permeation revealed that mAQP6a functions like rat AQP6 and that mAQP6b does not function as either a water channel or an ion channel under our experimental conditions.

  1. Molecular cloning and characterization of mouse aquaporin 6

    PubMed Central

    Nagase, Hiroaki; Agren, Johan; Saito, Akiko; Liu, Kun; Agre, Peter; Hazama, Akihiro; Yasui, Masato

    2007-01-01

    In the rat kidney, aquaporin (AQP) 6 is localized in the intracellular vesicle membranes of type-A intercalated cells of the collecting duct; mouse AQP6 (mAQP6) has not been characterized. Although mAQP6 was originally cloned from cDNA in a mouse cerebellum library (GenBank NM 175087), we have independently cloned a cDNA encoding mAQP6 from an adult kidney cDNA library (C57BL/6J strain). We identified two different spliced variants of mAQP6: mAQP6a and mAQP6b. The mAQP6a isoform is almost identical to rat AQP6, whereas mAQP6b is identical to that reported in the mouse cerebellum library mentioned above. We found that the mRNA expression of these two spliced variants is regulated in a tissue-specific and age-dependent manner. Functional analyses of water and ion permeation revealed that mAQP6a functions like rat AQP6 and that mAQP6b does not function as either a water channel or an ion channel under our experimental conditions. PMID:17112474

  2. Cloning and characterization of exodus, a novel beta-chemokine.

    PubMed

    Hromas, R; Gray, P W; Chantry, D; Godiska, R; Krathwohl, M; Fife, K; Bell, G I; Takeda, J; Aronica, S; Gordon, M; Cooper, S; Broxmeyer, H E; Klemsz, M J

    1997-05-01

    Chemokines are a family of related proteins that regulate leukocyte infiltration into inflamed tissue. Some chemokines such as MIP-1 alpha also inhibit hematopoietic progenitor cell proliferation. Recently, three chemokines, MIP-1 alpha, MIP-1 beta, and RANTES, have been found to significantly decrease human immunodeficiency virus production from infected T cells. We report here the cloning and characterization of a novel human chemokine termed Exodus for its chemotactic properties. This novel chemokine is distantly related to other chemokines (28% homology with MIP-1 alpha) and shares several biological activities. Exodus is expressed preferentially in lymphocytes and monocytes, and its expression is markedly upregulated by mediators of inflammation such as tumor necrosis factor or lipopolysaccharide. Purified synthetic Exodus was found to inhibit proliferation of myeloid progenitors in colony formation assays. Exodus also stimulated chemotaxis of peripheral blood mononuclear cells. The sequence homology, expression, and biological activity indicate that Exodus represents a novel divergent beta-chemokine.

  3. Cloning, characterization, and localization of mouse and human SPO11.

    PubMed

    Romanienko, P J; Camerini-Otero, R D

    1999-10-15

    Spo11 is a meiosis-specific protein in yeast that has been found covalently bound to DNA double-strand breaks (DSBs) during the early stages of meiosis. These DSBs initiate homologous recombination, which is required for proper segregation of chromosomes and the generation of genetic diversity during meiosis. Here we report the cloning, characterization, tissue expression, and chromosomal localization of both mouse and human homologues of Spo11. The putative mouse and human proteins are 82% identical and share approximately 25% identity with other family members. Northern blot analysis revealed testis-specific expression for both genes, but RT-PCR results showed ubiquitous expression of at least a portion of Spo11 in mouse. Human SPO11 was also detected in several somatic tissues. Mouse Spo11 was localized to chromosome 2H4, and human SPO11 was localized to chromosome 20q13.2-q13.3, a region amplified in some breast and ovarian tumors.

  4. Cloning, functional expression and characterization of a human olfactory receptor.

    PubMed

    Hatt, H; Gisselmann, G; Wetzel, C H

    1999-05-01

    The human olfactory system can recognize and discriminate a large number of different odorant molecules. The detection of chemically distinct odorants begins with the binding of an odorant ligand to a specific receptor protein on the olfactory neuron cell surface. To address the problem of olfactory perception at a molecular level, we have cloned, functionally expressed and characterized the first human olfactory receptor (OR 17-40). Application of a mixture of hundred different odorants elicited a transient increase in intracellular calcium at HEK 293-cells which were transfected with a plasmid containing the receptor encoding DNA and a membrane import sequence. By subdividing the odorant mixture in smaller groups we could identify a single component which represented the only effective substance: helional. Testing some structurally closely related molecules we found only one other compound which also could activate the receptor: heliotropyl acetone. All other compounds tested were completely ineffective. These findings represent the beginning of molecular understanding of odorant recognition in humans.

  5. Cloning, characterization and targeting of the mouse HEXA gene

    SciTech Connect

    Wakamatsu, N.; Trasler, J.M.; Gravel, R.A.

    1994-09-01

    The HEXA gene, encoding the {alpha} subunit of {beta}-hexosaminidase A, is essential for the metabolism of ganglioside G{sub M2}, and defects in this gene cause Tay-Sachs disease in humans. To elucidate the role of the gene in the nervous system of the mouse and to establish a mouse model of Tay-Sachs disease, we have cloned and characterized the HEXA gene and targeted a disruption of the gene in mouse ES cells. The mouse HEXA gene spans {approximately}26 kb and consists of 14 exons, similar to the human gene. A heterogeneous transcription initiation site was identified 21-42 bp 5{prime} of the initiator ATG, with two of the sites fitting the consensus CTCA (A = start) as seen for some weak initiator systems. Promoter analysis showed that the first 150 bp 5{prime} of the ATG contained 85% of promoter activity observed in constructs containing up to 1050 bp of 5{prime} sequence. The active region contained a sequence matching that of the adenovirus major late promoter upstream element factor. A survey of mouse tissues showed that the highest mRNA levels were in (max to min): testis (5.5 x brain cortex), adrenal, epididymis, heart, brain, lung, kidney, and liver (0.3 x brain cortex). A 12 kb BstI/SalI fragment containing nine exons was disrupted with the insertion of the bacterial neo{sup r} gene in exon 11 and was targeted into 129/Sv ES cells by homologous recombination. Nine of 153 G418 resistant clones were correctly targeted as confirmed by Southern blotting. The heterozygous ES cells were microinjected into mouse blastocysts and implanted into pseudo-pregnant mice. Nine male chimeric mice, showing that 40-95% chimerism for the 129/Sv agouti coat color marker, are being bred in an effort to generate germline transmission of the disrupted HEXA gene.

  6. Cloning and Characterization of Oxidosqualene Cyclases from Kalanchoe daigremontiana

    PubMed Central

    Wang, Zhonghua; Yeats, Trevor; Han, Hong; Jetter, Reinhard

    2010-01-01

    The first committed step in triterpenoid biosynthesis is the cyclization of oxidosqualene to polycyclic alcohols or ketones C30H50O. It is catalyzed by single oxidosqualene cyclase (OSC) enzymes that can carry out varying numbers of carbocation rearrangements and, thus, generate triterpenoids with diverse carbon skeletons. OSCs from diverse plant species have been cloned and characterized, the large majority of them catalyzing relatively few rearrangement steps. It was recently predicted that special OSCs must exist that can form friedelin, the pentacyclic triterpenoid whose formation involves the maximum possible number of rearrangement steps. The goal of the present study, therefore, was to clone a friedelin synthase from Kalanchoe daigremontiana, a plant species known to accumulate this triterpenoid in its leaf surface waxes. Five OSC cDNAs were isolated, encoding proteins with 761–779 amino acids and sharing between 57.4 and 94.3% nucleotide sequence identity. Heterologous expression in yeast and GC-MS analyses showed that one of the OSCs generated the steroid cycloartenol together with minor side products, whereas the other four enzymes produced mixtures of pentacyclic triterpenoids dominated by lupeol (93%), taraxerol (60%), glutinol (66%), and friedelin (71%), respectively. The cycloartenol synthase was found expressed in all leaf tissues, whereas the lupeol, taraxerol, glutinol, and friedelin synthases were expressed only in the epidermis layers lining the upper and lower surfaces of the leaf blade. It is concluded that the function of these enzymes is to form respective triterpenoid aglycones destined to coat the leaf exterior, probably as defense compounds against pathogens or herbivores. PMID:20610397

  7. Cloning and characterization of Plasmodium vivax thioredoxin peroxidase-1.

    PubMed

    Hakimi, Hassan; Asada, Masahito; Angeles, Jose Ma M; Inoue, Noboru; Kawazu, Shin-Ichiro

    2012-08-01

    Reactive oxygen species produced from hemoglobin digestion and the host immune system could have adverse effects on malaria parasites. To protect themselves, malaria parasites are highly dependent on the antioxidant enzymes, including superoxide dismutases and thioredoxin-dependent peroxidases. To date, several thioredoxin peroxidases (TPx) have been characterized in Plasmodium falciparum, but the TPx in Plasmodium vivax has not yet been characterized. The complete sequence of gene coding for thioredoxin peroxidase-1 of P. vivax (PvTPx-1) was amplified by PCR and cloned. Using the recombinant PvTPx-1 (rPvTPx-1), polyclonal antibody was produced in mice for immunolocalization of the enzyme in the parasite. The antioxidant activity of rPvTPx-1 was evaluated by mixed-function oxidation assay. PvTPx-1 has two conserved cysteine residues in the amino acid sequence at the positions 50 and 170 which formed a dimer under a non-reducing condition. Using a thiol mixed-function oxidation assay, the antioxidant activity of rPvTPx-1 was revealed. Indirect immunofluorescence microscopy with the specific antibody indicated that PvTPx-1 was expressed in the cytoplasm of the erythrocytic stage of the parasite in a dots-like pattern. The results suggest that P. vivax uses TPx-1 to reduce and detoxify hydrogen peroxides in order to maintain their redox homeostasis and proliferation in the host body.

  8. [Cloning and functional characterization of phytoene desaturase in Andrographis paniculata].

    PubMed

    Shen, Qin-qin; Li, Li-xia; Zhan, Peng-lin; Wang, Qiang

    2015-10-01

    A full-length cDNA of phytoene desaturase (PDS) gene from Andrographis paniculata was obtained through RACE-PCR. The cDNA sequence consists of 2 224 bp with an intact ORF of 1 752 bp (GeneBank: KP982892), encoding a ploypeptide of 584 amino acids. Homology analysis showed that the deduced protein has extensive sequence similarities to PDS from other plants, and contains a conserved NAD ( H) -binding domain of plant dehydrase cofactor binding-domain in N-terminal. Phylogenetic analysis demonstrated that ApPDS was more related to PDS of Sesamum indicum and Pogostemon cablin. The semi-quantitative RT-PCR analysis revealed that ApPDS expressed in whole aboveground tissues with the highest expression in leaves. Virus induced gene silencing (VIGS) was performed to characterize the functional of ApPDS in planta. Significant photobleaching was not observed in infiltrated leaves, while the PDS gene has been down-regulated significantly at the yellowish area. To the best of our knowledge, this represents the first report of PDS gene cloning and functional characterization from A. paniculata, which lays the foundation for further investigation of new genes, especially that correlative to andrographolide biosynthetic pathway.

  9. Molecular cloning and characterization of hagfish estrogen receptors.

    PubMed

    Nishimiya, Osamu; Katsu, Yoshinao; Inagawa, Hiroyuki; Hiramatsu, Naoshi; Todo, Takashi; Hara, Akihiko

    2017-01-01

    One or more distinct forms of the nuclear estrogen receptor (ER) have been isolated from many vertebrates to date. To better understand the molecular evolution of ERs, we cloned and characterized er cDNAs from the inshore hagfish, Eptatretus burgeri, a modern representative of the most primitive vertebrates, the agnathans. Two er cDNAs, er1 and er2, were isolated from the liver of a reproductive female hagfish. A phylogenetic analysis placed hagfish ER1 into a position prior to the divergence of vertebrate ERs. Conversely, hagfish ER2 was placed at the base of the vertebrate ERβ clade. The tissue distribution patterns of both ER subtype mRNAs appeared to be different, suggesting that each subtype has different physiological roles associated with estrogen actions. An estrogen responsive-luciferase reporter assay using mammalian HEK293 cells was used to functionally characterize these hagfish ERs. Both ER proteins displayed estrogen-dependent activation of transcription. These results clearly demonstrate that the hagfish has two functional ER subtypes.

  10. A resource-based version of the argument that cloning is an affront to human dignity.

    PubMed

    McDougall, R

    2008-04-01

    The claim that human reproductive cloning constitutes an affront to human dignity became a familiar one in 1997 as policymakers and bioethicists responded to the announcement of the birth of Dolly the sheep. Various versions of the argument that reproductive cloning is an affront to human dignity have been made, most focusing on the dignity of the child produced by cloning. However, these arguments tend to be unpersuasive and strongly criticised in the bioethical literature. In this paper I put forward a different argument that reproductive cloning is an affront to human dignity, one that looks beyond the dignity of the child produced. I suggest that allocating funds to such a pursuit can affront human dignity by diverting resources away from those existing people who lack sufficient health to enable them to exercise basic rights and liberties. This version of the argument posits cloning as an affront to human dignity in particular circumstances, rather than claiming the technology as intrinsically inconsistent with human dignity.

  11. Genomic mapping by end-characterized random clones: A mathematical analysis

    SciTech Connect

    Port, E.; Sun, F.; Martin, D.

    1995-03-01

    Physical maps can be constructed by {open_quotes}fingerprinting{close_quotes} a large number of random clones and inferring overlap between clones when the fingerprints are sufficiently similar. E. Lander and M. Waterman gave a mathematical analysis of such mapping strategies. The analysis is useful for comparing various fingerprinting methods. Recently it has been proposed that ends of clones rather than the entire clone be fingerprinted or characterized. Such fingerprints, which include sequenced clone ends, require a mathematical analysis deeper than that of Lander-Waterman. This paper studies clone islands, which can include uncharacterized regions, and also the islands that are formed entirely from the ends of clones. 23 refs., 11 figs., 4 tabs.

  12. Cloning and characterization of a ribitol dehydrogenase from Zymomonas mobilis.

    PubMed

    Moon, Hee-Jung; Tiwari, Manish; Jeya, Marimuthu; Lee, Jung-Kul

    2010-06-01

    Ribitol dehydrogenase (RDH) catalyzes the conversion of ribitol to D-ribulose. A novel RDH gene was cloned from Zymomonas mobilis subsp. mobilis ZM4 and overexpressed in Escherichia coli BL21(DE3). DNA sequence analysis revealed an open reading frame of 795 bp, capable of encoding a polypeptide of 266 amino acid residues with a calculated molecular mass of 28,426 Da. The gene was overexpressed in E. coli BL21(DE3) and the protein was purified as an active soluble form using glutathione S-transferase affinity chromatography. The molecular mass of the purified enzyme was estimated to be approximately 28 kDa by sodium dodecyl sulfate-polyacrylamide gel and approximately 58 KDa with gel filtration chromatography, suggesting that the enzyme is a homodimer. The enzyme had an optimal pH and temperature of 9.5 and 65 degrees C, respectively. Unlike previously characterized RDHs, Z. mobilis RDH (ZmRDH) showed an unusual dual coenzyme specificity, with a k(cat) of 4.83 s(-1) for NADH (k(cat)/K(m) = 27.3 s(-1) mM(-1)) and k(cat) of 2.79 s(-1) for NADPH (k(cat)/K(m) = 10.8 s(-1) mM(-1)). Homology modeling and docking studies of NAD+ and NADP+ into the active site of ZmRDH shed light on the dual coenzyme specificity of ZmRDH.

  13. Cloning and tissue expression characterization of the chicken APOB gene.

    PubMed

    Zhang, Sen; Shi, Hui; Li, Hui

    2007-01-01

    Apolipoprotein B (APOB) serves an essential role in the assembly and secretion of triglyceride-rich lipoproteins and lipids transport. This study was designed to clone the full-length cDNA of the chicken APOB gene, to characterize the expression profile, and investigate the differential expression between layer and broiler of the chicken APOB gene. The full-length cDNA sequence (14,150-bp) that contained a 13,896-bp ORF encoding 4,631 amino acids was obtained by RT-PCR, RACE, and bioinformatics analysis. qReal-Time PCR analysis showed that the chicken APOB gene was highly expressed in kidney, liver, and intestine. The results of differential expression showed that the APOB gene was more highly expressed in intestine and kidney in Bai'er layer than in broiler, but there was no significant difference in liver between the two breeds. The results of this study provided basic molecular information for studying the role of APOB in the energy transportation in avian species.

  14. Cloning and characterization of a murine SIL gene

    SciTech Connect

    Collazo-Garcia, N.; Scherer, P.; Aplan, P.D.

    1995-12-10

    The human SIL gene is disrupted by a site-specific interstitial deletion in 25% of children with T-cell acute lymphoblastic leukemia. Since transcriptionally active genes are prone to recombination events, the recurrent nature of this lesion suggests that the SIL gene product is transcriptionally active in the cell type that undergoes this interstitial deletion and that the SIL gene product may play a role in normal lymphoid development. To facilitate studies of SIL gene function, we have cloned and characterized a murine SIL gene. The predicted murine SIL protein is 75% identical to the human gene, with good homology throughout the open reading frame. An in vitro translated SIL cDNA generated a protein slightly larger than the predicted 139-kDa protein. Although a prior report detected SIL mRNA expression exclusively in hematopoietic tissues, a sensitive RT-PCR assay demonstrated SIL expression to be ubiquitous, detectable in all tissues examined. Since the RT-PCR assay suggested that SIL mRNA expression was higher in rapidly proliferating tissues, we assayed SIL mRNA expression using a murine erythroleukemia model of terminal differentiation and found it to be dramatically decreased in conjunction with terminal differentiation. These studies demonstrate that the human SIL gene product is quite well conserved in rodents and suggest that the SIL gene product may play a role in cell proliferation. 26 refs., 6 figs.

  15. Characterization and cloning of chitin deacetylases from Rhizopus circinans.

    PubMed

    Gauthier, Carole; Clerisse, Fabienne; Dommes, Jacques; Jaspar-Versali, Marie-France

    2008-05-01

    Chitin deacetylase catalyzes hydrolysis of the acetamido groups of N-acetylglucosamine of chitin in fungal cell walls. Here a chitin deacetylase secreted by Rhizopus circinans was purified to homogeneity and partially characterized. The enzyme exhibits an apparent molecular weight of approximately 75kDa. At 37 degrees C it shows optimal activity at pH 5.5-6. Its pH stability and thermal stability are good. Mn(2+) and Mg(2+) slightly enhance the activity of the enzyme and Cu(2+) strongly inhibits it. An R. circinans cDNA library was constructed and screened with a homologous probe synthesized by RT-PCR or with synthetic primers derived from the N-terminal amino-acid sequence of the native purified chitin deacetylase. Three chitin deacetylase cDNAs (RC, D2, and I3/2) were isolated from the cDNA library and sequenced. These cDNAs exhibit features characteristic of chitin deacetylase sequences: the presence of a polysaccharide deacetylase domain, a metal-binding triad, the conserved catalytic residues, and high homology with various chitin deacetylase genes. The cDNAs were cloned in a Pichia pastoris expression system and produced as polyhistidine-tagged proteins. Only one recombinant enzyme (called RC) was active under the tested conditions. It was purified to homogeneity in a single step and further characterized. The protein showed an apparent molecular mass of approximately 75kDa and, like the native enzyme, showed optimal activity at pH 5.5-6 at 37 degrees C. It was strongly inhibited by Cu(2+). The isolation of several chitin deacetylase cDNAs from the same microorganism is discussed.

  16. Characterization of lunar ilmenite resources

    SciTech Connect

    Heiken, G.; Vaniman, D.T.

    1989-01-01

    Ilmenite will be an important lunar resource, to be used mainly for oxygen production but also as a source of iron. Ilmenite abundances in high-Ti basaltic lavas are higher (10--20%) than in high-Ti mare soils (mostly <10%). This factor alone may make crushed high-Ti basaltic lavas most attractive as a target for ilmenite extraction. Concentration of ilmenite from either a crushed basalt or regolith requires sizing to avoid polycrystalline fragments. In coarse-grained high-Ti basaltic lavas, about 60--80% of the ilmenite will consist of relatively ''clean'' single crystals if the rocks are crushed to a size of 0.2 mm. Fine-grained high-Ti basalts, with thin skeletal or hopper-shaped ilmenites, would produce essentially no free or ''clean'' ilmenite grains unless crushed to sizes of less than 0.15 mm, and only /approximately/7% free ilmenite if crushed to sizes smaller than 0.05 mm. Data from the 2.8 m-thick regolith sampled by coring at the Apollo 17 site show that in even the most basalt-clast-rich and least mature stratigraphic intervals, free ilmenite grains make up less than 2% of the 0.02- to 0.2-mm size fraction and a mere 0.3% of the 0.2- to 2-mm size fraction. 23 refs., 9 figs., 1 tab.

  17. Cloning and functional characterization of salamander rod and cone arrestins.

    PubMed

    Smith, W C; Gurevich, E V; Dugger, D R; Vishnivetskiy, S A; Shelamer, C L; McDowell, J H; Gurevich, V V

    2000-08-01

    To clone, localize, and determine functional binding characteristics of rod and cone arrestins from the retina of the tiger salamander (Ambystoma tigrinum). Two arrestins from salamander retina were cloned on the basis of their homology to known arrestins from other species. The expression pattern of these arrestins (SalArr1 and SalArr2) in the retina was determined by immunocytochemistry and in situ hybridization. SalArr1 and SalArr2 were expressed and functionally characterized. Both immunocytochemistry and in situ hybridization show that SalArr1 and SalArr2 localized specifically to rod and cone photoreceptors, respectively. SalArr1 demonstrated a characteristic high selectivity for light-activated phosphorylated rhodopsin (P-Rh*) and significant species selectivity, binding preferentially to amphibian rhodopsin over bovine rhodopsin. Mutant constitutively active forms of SalArr1 demonstrated a 2- to 4-fold increase in P-Rh* binding (compared with wild-type protein) and an even more dramatic (up to 25-fold) increase in binding to unphosphorylated Rh* and dark P-Rh. Constitutively active SalArr1 mutants also showed a reduced specificity for amphibian rhodopsin. The ability of Escherichia coli-expressed SalArr1, SalArr2, and an SalArr1-3A (L369A,V370A,F371A) mutant to bind to frog Rh* and P-Rh* and to compete with tritiated SalArr1 for amphibian P-Rh* was compared. SalArr1 and its mutant form bound to amphibian P-Rh* with high affinity (Ki = 179 and 74 nM, respectively), whereas the affinity of SalArr2 for P-Rh* was substantially lower (Ki = 9.1 microM). SalArr1 and SalArr2 are salamander rod and cone arrestins, respectively. Crucial regulatory elements in SalArr1 are conserved and play functional roles similar to those of their counterparts in bovine rod arrestin. Rod and cone arrestins are relatively specific for their respective receptors.

  18. Characterization of rat T-cell clones with bacterial specificity.

    PubMed Central

    Eastcott, J W; Yamashita, K; Taubman, M A; Smith, D J

    1990-01-01

    We have isolated 10 rat T-cell clones from the spleen or lymph nodes of seven different donors. These rats were immunized with 2-5 x 10(8) killed Actinobacillus actinomycetemcomitans (Aa) bacteria, injected either subcutaneously (s.c.) in complete Freund's adjuvant or intraperitoneally (i.p.) in saline. Clones studied to date have demonstrated a T-helper (Th) phenotype W3/13+, W3/25+, OX8- and OX22-. Clones were not stimulated in vitro by purified Aa-lipopolysaccharide (LPS) or heterologous Gram-negative bacteria, but proliferated when stimulated by bacteria representative of each of the three serological groups of Actinobacillus, indicating specificity for an Actinobacillus-common antigen other than LPS. One clone (A4) proliferated vigorously when stimulated with concanavalin A (Con A) in vitro, produced interleukin-2 (IL-2) and was provisionally classified as a Th1 type. This appears to be one of the few Th1-type rat clones reported. All other clones tested did not produce IL-2, exhibited B-cell help to some extent, did not induce delayed-type hypersensitivity (DTH) when injected into the footpads of naive rats along with the specific antigen, and were classified as Th2 type. Adoptive transfer of 10(6) cells of one Th2-type Aa-specific clone into syngeneic recipients resulted in a specific splenocyte in vitro response to Aa 12-14 weeks after cell transfer, indicating survival of cloned cells in recipient animals. The use of such clones in studies of experimental periodontal disease is discussed. PMID:1698711

  19. Construction and characterization of human chromosome 2-specific cosmid, fosmid, and PAC clone libraries

    SciTech Connect

    Gingrich, J.C.; Boehrer, D.M.; Garnes, J.A.

    1996-02-15

    This article discusses the construction and characterization of three human chromosome 2-specific clone libraries. A chromosome 2-specific PAC library was also constructed from a hybrid cell line. The chromosome 2 coverage of each of the three libraries was further determined by PCR screening clone pools with 82 chromosome 2-specific STSs. 47 refs., 3 figs., 1 tab.

  20. Molecular cloning, purification and characterization of Brugia malayi phosphoglycerate kinase.

    PubMed

    Kumar, Ranjeet; Doharey, Pawan Kumar; Saxena, Jitendra Kumar; Rathaur, Sushma

    2017-04-01

    Phosphoglycerate kinase (PGK) is a glycolytic enzyme present in many parasites. It has been reported as a candidate molecule for drug and vaccine developments. In the present study, a full-length cDNA encoding the Brugia malayi 3-phosphoglycerate kinase (BmPGK) with an open reading frame of 1.3 kb was isolated and PCR amplified and cloned. The exact size of the BmPGK's ORF is 1377 bps. The BmPGK gene was subcloned into pET-28a (+) expression vector, the expressed enzyme was purified by affinity column and characterized. The SDS-PAGE analysis revealed native molecular weight of recombinant Brugia malayi 3-phosphoglycerate kinase (rBmPGK) to be ∼45 kDa. The enzyme was found sensitive to temperature and pH, it showed maximum activity at 25 °C and pH 8.5. The Km values for PGA and ATP were 1.77 and 0.967 mM, respectively. The PGK inhibitor, clorsulon and antifilarial drugs albendazole and ivermectin inhibited the enzyme. The specific inhibitor of PGK, clorsulon, competitively inhibited enzyme with Ki value 1.88 μM. Albendazole also inhibited PGK competitively with Ki value 35.39 μM. Further these inhibitory studies were confirmed by docking and molecular simulation of drugs with enzyme. Clorsulon interacted with substrate binding site with glutamine 37 as well as in hinge regions with aspartic acid 385 and valine 387 at ADP binding site. On the other hand albendazole interacted with asparagine 335 residues. These effects were in good association with binding interactions. Thus current study might help in designing and synthesis of effective inhibitors for this novel drug target and understanding their mode of interaction with the potent anthelmintic drugs.

  1. Molecular cloning and characterization of novel ficolins from Xenopus laevis.

    PubMed

    Kakinuma, Yuji; Endo, Yuichi; Takahashi, Minoru; Nakata, Munehiro; Matsushita, Misao; Takenoshita, Seiichi; Fujita, Teizo

    2003-04-01

    Ficolins are proteins characterized by the presence of collagen- and fibrinogen-like domains. Two of three human ficolins, L-ficolin and H-ficolin, are serum lectins and are thought to play crucial roles in host defense through opsonization and complement activation. To elucidate the evolution of ficolins and the primordial complement lectin pathway, we cloned four ficolin cDNAs from Xenopus laevis, termed Xenopus ficolin (XeFCN) 1, 2, 3 and 4. The deduced amino acid sequences of the four ficolins revealed the conserved collagen- and fibrinogen-like domains. The full sequences of the four ficolins showed a 42-56% identity to human ficolins, and 60-83% between one another. Northern blots showed that XeFCN1 was expressed mainly in liver, spleen and heart, and XeFCN2 and XeFCN4 mainly in peripheral blood leukocytes, lung and spleen. We isolated ficolin proteins from Xenopus serum by affinity chromatography on N-acetylglucosamine-agarose, followed by ion-exchange chromatography. The final eluate showed polymeric bands composed of two components of 37 and 40 kDa. The N-terminal amino acid sequences and treatment with endoglycosidase F showed that the two bands are the same XeFCN1 protein with different masses of N-linked sugar. The polymeric form of the two types of XeFCN1 specifically recognized GlcNAc and GalNAc residues. These results suggest that like human L-ficolin, XeFCN1 functions in the circulation through its lectin activity.

  2. Cloning, characterization, and engineering of fungal L-arabinitol dehydrogenases.

    PubMed

    Kim, Byoungjin; Sullivan, Ryan P; Zhao, Huimin

    2010-07-01

    L-Arabinitol 4-dehydrogenase (LAD) catalyzes the conversion of L-arabinitol to L-xylulose with concomitant NAD(+) reduction in fungal L-arabinose catabolism. It is an important enzyme in the development of recombinant organisms that convert L: -arabinose to fuels and chemicals. Here, we report the cloning, characterization, and engineering of four fungal LADs from Penicillium chrysogenum, Pichia guilliermondii, Aspergillus niger, and Trichoderma longibrachiatum, respectively. The LAD from P. guilliermondii was inactive, while the other three LADs were NAD(+)-dependent and showed high catalytic activities, with P. chrysogenum LAD being the most active. T. longibrachiatum LAD was the most thermally stable and showed the maximum activity in the temperature range of 55-65 degrees C with the other LADs showed the maximum activity in the temperature range of 40-50 degrees C. These LADs were active from pH 7 to 11 with an optimal pH of 9.4. Site-directed mutagenesis was used to alter the cofactor specificity of these LADs. In a T. longibrachiatum LAD mutant, the cofactor preference toward NADP(+) was increased by 2.5 x 10(4)-fold, whereas the cofactor preference toward NADP(+) of the P. chrysogenum and A. niger LAD mutants was also drastically improved, albeit at the expense of significantly reduced catalytic efficiencies. The wild-type LADs and their mutants with altered cofactor specificity could be used to investigate the functionality of the fungal L-arabinose pathways in the development of recombinant organisms for efficient microbial L-arabinose utilization.

  3. Entamoeba Clone-recognition Experiments: Morphometrics, Aggregative Behavior, and Cell-signaling Characterization

    PubMed Central

    Espinosa, Avelina; Paz-y-Miño-C, Guillermo; Hackey, Meagan; Rutherford, Scott

    2016-01-01

    Studies on clone- and kin-discrimination in protists have proliferated during the past decade. We report clone-recognition experiments in seven Entamoeba lineages (E. invadens IP-1, E. invadens VK-1:NS, E. terrapinae, E. moshkovskii Laredo, E. moshkovskii Snake, E. histolytica HM-1:IMSS and E. dispar). First, we characterized morphometrically each clone (length, width, and cell-surface area) and documented how they differed statistically from one another (as per single-variable or canonical-discriminant analyses). Second, we demonstrated that amebas themselves could discriminate self (clone) from different (themselves versus other clones). In mix-cell-line cultures between closely-related (E. invadens IP-1 versus E. invadens VK-1:NS) or distant-phylogenetic clones (E. terrapinae versus E. moshkovskii Laredo), amebas consistently aggregated with same-clone members. Third, we identified six putative cell-signals secreted by the amebas (RasGap/Ankyrin, coronin-WD40, actin, protein kinases, heat shock 70, and ubiquitin) and which known functions in Entamoeba spp. included: cell proliferation, cell adhesion, cell movement, and stress-induced encystation. To our knowledge, this is the first multi-clone characterization of Entamoeba spp. morphometrics, aggregative behavior, and cell-signaling secretion in the context of clone-recognition. Protists allow us to study cell-cell recognition from ecological and evolutionary perspectives. Modern protistan lineages can be central to studies about the origins and evolution of multicellularity. PMID:26990199

  4. Construction and characterization of two Citrus BAC libraries and identification of clones containing the phytoene synthase gene.

    PubMed

    Baig, M N R; Yu, An; Guo, Wenwu; Deng, Xiuxin

    2009-05-01

    Two deep-coverage Bacterial Artificial Chromosome (BAC) libraries of Citrus sinensis (L.) Osbeck 'Cara Cara' navel orange and Citrus reticulata (L.) Blanco 'Egan No. 1' Ponkan mandarin, which belong to the two most important species of the Citrus genus, have been constructed and characterized to facilitate gene cloning and to analyze variety-specific genome composition. The C. sinensis BAC library consists of 36 000 clones with negligible false-positive clones and an estimated average insert size of 126 kb covering ~4.5 x 109 bp and thus providing an 11.8-fold coverage of haploid genome equivalents, whereas the C. reticulata library consists of 21 000 clones also with negligible false-positive clones and an estimated average of 120 kb covering ~2.5 x 109 bp representing a 6.6-fold coverage of haploid genome equivalents. Both libraries were evaluated for contamination with high-copy vector, empty pIndigoBAC536 vector, and organellar DNA sequences. Screening has been performed by Southern hybridization of BAC filters, which results in <0.5% chloroplast DNA contamination and no mitochondrial DNA contamination in both libraries. Eight and five positive clones harboring the gene encoding Phytoene synthase (Psy (EC 2.5.1.32)) were identified from the C. sinensis and C. reticulata libraries, respectively, using the filter hybridization procedure. These results suggest that the two BAC libraries are useful tools for the isolation of functional genes and advanced genomics research in the two important species C. sinensis and C. reticulata. Resources, high-density filters, individual clones, and whole libraries are available for public distribution and are accessible at the National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University.

  5. Cloning and Characterization of the RecA Gene of Aquaspirillum magnetotacticum

    DTIC Science & Technology

    1988-01-01

    complementation studies with the RecA proteins of Proteus vulgaris , Shigella flexneri, Erwinia carotovara, and E. coli B/r (West et al. 1983; Keener et al...Cloning and characterization of recA genes from Proteus vulgaris , Erwinia carotovora, Shigella flexneri, and Escherichia coli B/r. J Bacteriol 160...Cloning and Characterization of the re A Gene of (Aquaspirililun iagnetotacticum N N I Amy E. Berson, Debra V. Hudson, and Nahid S. Waleh++ Molecular

  6. Cloning and Characterization of a Cell Senescence Gene for Breast Cancer

    DTIC Science & Technology

    2005-07-01

    induces cellular senescence in the human cervical carcinoma cell line SiHa. Genes Chromosomes Cancer 14: 120-127. 21. Oshimura H., Tahara H., Suzuki M...DAMD17-02-1-0574 TITLE: Cloning and Characterization of a Cell Senescence Gene for Breast Cancer PRINCIPAL INVESTIGATOR: Raghbir S...3. DATES COVERED (From - To) 1 Jul 04 – 30 Jun 05 5a. CONTRACT NUMBER Cloning and Characterization of a Cell Senescence Gene for Breast Cancer

  7. Cloning and characterization of three Eimeria tenella lipid phosphate phosphatases.

    PubMed

    Guo, Aijiang; Cai, Jianping; Luo, Xuenong; Zhang, Shaohua; Hou, Junling; Li, Hui; Cai, Xuepeng

    2015-01-01

    Although lipid phosphate phosphatases (LPPs) play an important role in cellular signaling in addition to lipid biosynthesis, little is thus far known about parasite LPPs. In this study, we characterized three Eimeria tenella cDNA clones encoding LPP named EtLPP1, EtLPP2 and EtLPP3. Key structural features previously described in LPPs, including the three conserved domains proposed as catalytic sites, a single conserved N-glycosylation site, and putative transmembrane domains were discovered in the three resulting EtLPP amino acid sequences. Expression of His6-tagged EtLPP1, -2, and -3 in HEK293 cells produced immunoreactive proteins with variable molecular sizes, suggesting the presence of multiple forms of each of the three EtLPPs. The two faster-migrating protein bands below each of the three EtLPP proteins were found to be very similar to the porcine 35-kDa LPP enzyme in their molecular size and the extent of their N-glycosylation, suggesting that the three EtLPPs are partially N-glycosylated. Kinetic analyses of the activity of the three enzymes against PA, LPA, C1P and S1P showed that Km values for each of the substrates were (in μM) 284, 46, 28, and 22 for EtLPP1; 369, 179, 237, and 52 for EtLPP2; and 355, 83, and 260 for EtLPP3. However, EtLPP3 showed negligible activity on S1P. These results confirmed that the three EtLPPs have broad substrate specificity. The results also indicated that despite structural similarities, the three EtLPPs may play distinct functions through their different models of substrate preference. Furthermore, particularly high expression levels of the three EtLPP genes were detected in the sporozoite stage of the E. tenella life cycle (p<0.001), suggesting that their encoded proteins might play an important biological function in the sporozoite stage.

  8. Characterization of glyphosate resistance in cloned Amaranthus palmeri plants

    USDA-ARS?s Scientific Manuscript database

    Glyphosate resistant Palmer amaranth from Georgia (GA) possesses multiple copies of the target site, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) of this herbicide. Cloned plants of glyphosate-resistant Palmer amaranth biotypes from Mississippi (MS) were compared with GA populations using le...

  9. Characterization of mal recombination plasmids cloned in Streptococcus pneumoniae

    SciTech Connect

    Stassi, D.L.; Lopez, P.; Espinosa, M.; Lacks, S.A.

    1981-01-01

    The malM locus of Streptococcus pneumoniae was cloned into one of the two PstI sites of the multicopy S. pneumoniae plasmid pMV158. To eliminate chromosomal transformants in the simultaneous selection for tetracycline resistance (coded by pMV158) and maltose utilization, the host cells contained a chromosomal deletion of the mal gene cluster. Two clones were isolated; one with a 3.3 kb insert (pLS70) which behaved like wild type with respect to maltose utilization, and another with a 2.9 kb insert (pLS69) which behaved as though it contained a down promoter mutation. Preliminary mapping of these clones by restriction analysis placed the 0.4kb deletion on a HindIII fragment in the interior of the chromosomal insert. The recombinant plasmids were able to transform over 50% of a recipient population to Mal/sup +/. Enzyme measurements of the clones indicated an overproduction of amylomaltase, constituting up to 10% of the total cellular protein, and supported the theory that the deletion in the pLS69 is in the promoter region. Protein analysis by polyacrylamide gel electrophoresis confirmed that the amylomaltase polypeptide was produced in large amounts in induced cells containing the pLS70. Another polypeptide, possibly a fragment of the phosphorylase or X protein of the mal gene cluster, was also produced to a similar extent.

  10. Molecular cloning and characterization of duck interleukin-17

    USDA-ARS?s Scientific Manuscript database

    Interleukin-17 (IL-17) belonging to the Th17 family is a proinflammatory cytokine produced by activated T cells. A 1034-bp cDNA encoding duck IL-17 (duIL-17) was cloned from ConA-activated splenic lymphocytes of ducks. The encoded protein, predicted to consisted of 169 amino acids, displayed a molec...

  11. Molecular cloning and characterization of multidomain xylanase from manure library

    USDA-ARS?s Scientific Manuscript database

    The gene (manf-x10) encoding xylanase from an environmental genomic DNA library was cloned and expressed in Escherichia coli. The encoded enzyme was predicted to be 467 amino acids with a molecular mass of 50.3 kD. The recombinant ManF-X10 was purified by HisTrap affinity column and showed activit...

  12. Fundamental resource-allocating model in colleges and universities based on Immune Clone Algorithms

    NASA Astrophysics Data System (ADS)

    Ye, Mengdie

    2017-05-01

    In this thesis we will seek the combination of antibodies and antigens converted from the optimal course arrangement and make an analogy with Immune Clone Algorithms. According to the character of the Algorithms, we apply clone, clone gene and clone selection to arrange courses. Clone operator can combine evolutionary search and random search, global search and local search. By cloning and clone mutating candidate solutions, we can find the global optimal solution quickly.

  13. Isolation and characterization of human defensin cDNA clones

    SciTech Connect

    Daher, K.A.; Lehrer, R.I.; Ganz, T.; Kronenberg, M. )

    1988-10-01

    Four clones that encode defensins, a group of microbicidal and cytotoxic peptides made by neutrophils, were isolated from an HL-60 human promyelocytic leukemia cDNA library. Analysis of these clones indicated that the defensins are made as precursor proteins, which must be cleaved to yield the mature peptides. Defensin mRNA was detected in normal bone marrow cells, but not in normal peripheral blood leukocytes. Defensin transcripts were also found in the peripheral leukocytes of some leukemia patients and in some lung and intestine tissues. Defensin mRNA content was augmented by treatment of HL-60 cells with dimethyl sulfoxide. These results define important aspects of the mechanism of synthesis and the tissue-specific expression of a major group of neutrophil granule proteins.

  14. Cloning and characterization of a highly repetitive fish nucleotide sequence.

    PubMed

    Datta, U; Dutta, P; Mandal, R K

    1988-01-01

    We have cloned and sequenced a highly repetitive HindIII fragment of DNA from the common carp Cyprinus carpio. It represents a tandemly repeated sequence with a monomeric unit of 245 bp and comprises 8% of the fish genome. Higher units of this monomer appear as a ladder in Southern blots. The monomeric unit has been sequenced; it is A + T-rich with some direct and some inverse-repeat nucleotide clusters.

  15. Lysosomal {beta}-mannosidase: cDNA cloning and characterization

    SciTech Connect

    Chen, H.; Leipprandt, J.R.; Traviss, C.E.

    1994-09-01

    Lysosomal {beta}-mannosidase is an exoglycosidase that cleaves the single {beta}-linked mannose residue from the non-reducing end of all N-linked glycoprotein oligosaccharides. Deficiency of this enzyme results in {beta}-mannosidosis, a severe neurodegenerative disease in goats and cattle. The human cases described have a milder, highly variable presentation. Study of the molecular pathology of this disease in ruminants and humans and development of the animal model for gene therapy studies required cloning of the gene for {beta}-mannosidase has been cloned. {beta}-Mannosidase cDNA were obtained from a bovine thyroid cDNA library by screening with mixed oligonucleotides derived from peptide sequences resulting from microsequencing of bovine {beta}-mannosidase peptides. A total of six independent positive clones were identified from 5 x 10{sup 5} plaques, covering about 80% of the C-terminal region. The missing 5{prime} region was obtained using 5{prime} RACE. The full-length construct contains 3852-bp nucleotides, encoding 879 amino acids. The initiation codon is followed by 17 amino acids containing the characteristics of a typical signal peptide sequence. The deduced amino acid sequence is colinear with all peptide sequences determined by protein microsequencing. Northern blot analysis demonstrated a 4.2 kb single transcript in various tissues from both normal and affected goats and calves. The mRNA level was decreased in affected {beta}-mannosidosis animals. The gene encoding {beta}-mannosidase was localized on human chromosome 4 by Southern analysis of rodent/human somatic cell hybrids. The mutation in bovine {beta}-mannosidosis has been identified. This is the first report of cloning of the {beta}-mannosidase gene.

  16. CLONING AND FUNCTIONAL CHARACTERIZATION OF CHICKEN INTERLEUKIN-17D

    USDA-ARS?s Scientific Manuscript database

    The proinflammatory cytokine IL-17D was cloned from a testis cDNA library prepared from the Korean native chicken. The full-length chicken IL-17D (chIL-17D) cDNA consisted of a 348 nucleotide sequence encoding an open reading frame of 116 amino acids with a predicted molecular mass of 17.0 kDa. Co...

  17. BAC library resources for map-based cloning and physical map construction in barley (Hordeum vulgare L.)

    PubMed Central

    2011-01-01

    Background Although second generation sequencing (2GS) technologies allow re-sequencing of previously gold-standard-sequenced genomes, whole genome shotgun sequencing and de novo assembly of large and complex eukaryotic genomes is still difficult. Availability of a genome-wide physical map is therefore still a prerequisite for whole genome sequencing for genomes like barley. To start such an endeavor, large insert genomic libraries, i.e. Bacterial Artificial Chromosome (BAC) libraries, which are unbiased and representing deep haploid genome coverage, need to be ready in place. Result Five new BAC libraries were constructed for barley (Hordeum vulgare L.) cultivar Morex. These libraries were constructed in different cloning sites (HindIII, EcoRI, MboI and BstXI) of the respective vectors. In order to enhance unbiased genome representation and to minimize the number of gaps between BAC contigs, which are often due to uneven distribution of restriction sites, a mechanically sheared library was also generated. The new BAC libraries were fully characterized in depth by scrutinizing the major quality parameters such as average insert size, degree of contamination (plate wide, neighboring, and chloroplast), empty wells and off-scale clones (clones with <30 or >250 fragments). Additionally a set of gene-based probes were hybridized to high density BAC filters and showed that genome coverage of each library is between 2.4 and 6.6 X. Conclusion BAC libraries representing >20 haploid genomes are available as a new resource to the barley research community. Systematic utilization of these libraries in high-throughput BAC fingerprinting should allow developing a genome-wide physical map for the barley genome, which will be instrumental for map-based gene isolation and genome sequencing. PMID:21595870

  18. Establishment of clones of Trypanosoma cruzi and their characterization in vitro and in vivo*

    PubMed Central

    Pan, S. Chia-tung

    1982-01-01

    An efficient technique for isolating clones of Trypanosoma cruzi from cultures and from animals has been developed. It is based on the inoculation of one organism, obtained by serial dilutions of cultured epimastigotes or isolated blood stream trypomastigotes, into enriched NNN medium (NNN-F:93). The cloning efficiency (percentage of positive cultures over the number inoculated) was 70% for cultured epimastigotes and 30-40% for blood-stream trypomastigotes. In vitro cultural characteristics of 14 secondary clones of an avirulent strain indicated that 12 clones grew in the F-94 medium primarily as epimastigotes at 27 °C and exclusively as amastigotes at 37 °C; 2 clones grew in F-94 medium primarily as amastigotes regardless of incubation temperature (27 °C or 37 °C). In vivo characterization of 7 clones from 2 virulent strains indicated that the virulence of individual clones was low immediately after isolation in NNN-F:93 medium, but the virulence of some clones returned to the level of the parent strain after more than 8 serial passages in CD-1 mice. PMID:7044587

  19. Entamoeba Clone-Recognition Experiments: Morphometrics, Aggregative Behavior, and Cell-Signaling Characterization.

    PubMed

    Espinosa, Avelina; Paz-Y-Miño-C, Guillermo; Hackey, Meagan; Rutherford, Scott

    2016-05-01

    Studies on clone- and kin-discrimination in protists have proliferated during the past decade. We report clone-recognition experiments in seven Entamoeba lineages (E. invadens IP-1, E. invadens VK-1:NS, E. terrapinae, E. moshkovskii Laredo, E. moshkovskii Snake, E. histolytica HM-1:IMSS and E. dispar). First, we characterized morphometrically each clone (length, width, and cell-surface area) and documented how they differed statistically from one another (as per single-variable or canonical-discriminant analyses). Second, we demonstrated that amebas themselves could discriminate self (clone) from different (themselves vs. other clones). In mix-cell-line cultures between closely-related (E. invadens IP-1 vs. E. invadens VK-1:NS) or distant-phylogenetic clones (E. terrapinae vs. E. moshkovskii Laredo), amebas consistently aggregated with same-clone members. Third, we identified six putative cell-signals secreted by the amebas (RasGap/Ankyrin, coronin-WD40, actin, protein kinases, heat shock 70, and ubiquitin) and which known functions in Entamoeba spp. included: cell proliferation, cell adhesion, cell movement, and stress-induced encystation. To our knowledge, this is the first multi-clone characterization of Entamoeba spp. morphometrics, aggregative behavior, and cell-signaling secretion in the context of clone-recognition. Protists allow us to study cell-cell recognition from ecological and evolutionary perspectives. Modern protistan lineages can be central to studies about the origins and evolution of multicellularity. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  20. Cloning and functional characterization of β-phellandrene synthase from Lavandula angustifolia.

    PubMed

    Demissie, Zerihun A; Sarker, Lukman S; Mahmoud, Soheil S

    2011-04-01

    En route to building genomics resources for Lavandula, we have obtained over 14,000 ESTs for leaves and flowers of L. angustifolia, a major essential oil crop, and identified a number of previously uncharacterized terpene synthase (TPS) genes. Here we report the cloning, expression in E. coli, and functional characterization of β-phellandrene synthase, LaβPHLS. The ORF--excluding the transit peptide--for this gene encoded a 62.3 kDa protein that contained all conserved motifs present in plant TPSs. Expression in bacteria resulted in the production of a soluble protein that was purified by Ni-NTA agarose affinity chromatography. While the recombinant LaβPHLS did not utilize FPP as a substrate, it converted GPP (the preferred substrate) and NPP into β-phellandrene as the major product, with K (m) and k (cat) of 6.55 μM and 1.75 × 10(-2) s(-1), respectively, for GPP. The LaβPHLS transcripts were highly abundant in young leaves where β-phellandrene is produced, but were barely detectable in flowers and older leaves, where β-phellandrene is not synthesized in significant quantities. This data indicate that β-phellandrene biosynthesis is transcriptionally and developmentally regulated. We also cloned and expressed in E. coli a second TPS-like protein, LaTPS-I, that lacks an internal stretch of 73 amino acids, including the signature DDxxD divalent metal binding motif, compared to other plant TPSs. The recombinant LaTPS-I did not produce detectable products in vitro when assayed with GPP, NPP or FPP as substrates. The lack of activity is most likely due to the absence of catalytically important amino acid residues within the missing region.

  1. CXPD: Cloning and characterization of the Chinese hamster XPD gene

    SciTech Connect

    Kirchner, J.M.; Salazar, E.P.; Lamerdin, J.E.; Carrano, A.V.; Weber, C.A.

    1994-12-31

    The Chinese hamster Xeroderma Pigmentosum group D (CXPD) nucleotide excision repair gene was cloned from the V79 cell line, and its nucleotide sequence was determined. The -15 kb gene is comprised of 23 exons with a 2283 base open reading frame. The predicted 760 amino acid protein is 98%, 51%, and 54% identical to the human ERCC2/XPD, the S. cerevisiae RAD3, and the S. pombe rad15 proteins, respectively. The promoter region of the CXPD gene contains a pyrimidine-rich stretch similar to sequences found in the promoter regions of two other nucleotide excision repair genes, a GC box, a putative {alpha}-Pal transcription factor binding site, and two CAAT boxes. We are creating mutants in CHO cell lines corresponding to those found in the rad3ts, rem-1 and rem-2 mutant alleles of S. cerevisiae, which do not cause UV-sensitivity. After modification of cloned CXPD fragments by site-directed mutagenesis, the DNAs will be targeted into UV-sensitive CHO group 2 cell lines. We have identified the mutation in the single CXPD alleles of UV5 and UVL-13. SInce the mutations in these lines are sufficiently near the sites of the rad3ts and both rem mutations, we will introduce the altered DNAs into these group 2 cell lines and select for UV-resistance. These new CHO mutants may provide insights into possible roles of CXPD in DNA replication fidelity, and mismatch repair and may confirm the predicted essential function.

  2. Cloning and characterization of a Drosophila tyramine receptor.

    PubMed Central

    Saudou, F; Amlaiky, N; Plassat, J L; Borrelli, E; Hen, R

    1990-01-01

    Receptors for biogenic amines such as dopamine, serotonin and epinephrine belong to the family of receptors that interact with G proteins and share a putative seven transmembrane domain structure. Using a strategy based on nucleotide sequence homology between the corresponding genes, we have isolated Drosophila cDNA clones encoding a new member of the G protein-coupled receptor family. This protein exhibits highest homology to the human alpha 2 adrenergic receptors, the human 5HT1A receptor and a recently cloned Drosophila serotonin receptor. The corresponding mRNA is found predominantly in adult Drosophila heads. Membranes from mammalian cells expressing this receptor displayed high affinity binding sites for [3H]yohimbine, an alpha 2 adrenergic receptor antagonist (Kd = 4.45 x 10(-9) M). Tyramine was the most efficient of the putative Drosophila neurotransmitters at displacing [3H]yohimbine binding (EC50 = 1.25 x 10(-6) M). Furthermore tyramine induced an inhibition of adenylate cyclase activity in NIH 3T3 cells expressing this receptor. The Drosophila tyramine receptor that we have isolated might therefore be an invertebrate equivalent of the mammalian alpha 2 adrenergic receptors. Images Fig.2 Fig.5 PMID:2170118

  3. Cloning and characterization of chromosomal markers from a Cot-1 library of peanut (Arachis hypogaea L.).

    PubMed

    Zhang, L; Xu, C; Yu, W

    2012-01-01

    The cultivated peanut, Arachis hypogaea (AABB, 2n = 40), is an allotetraploid which was probably originated from a hybridization event between 2 ancestors, A. duranensis (A genome) and A. ipaensis (B genome) followed by chromosome doubling. The wild species in the Arachis section are useful genetic resources for genes that confer biotic and abiotic stress resistance for peanut breeding. However, the resource is not well exploited because little information on the genetic, cytogenetic, and phylogenetic relationships between cultivated peanut and its wild relatives is known. Characterization of its chromosome components will benefit the understanding of these issues. But the paucity of information on the DNA sequence and the presence of morphologically similar chromosomes impede the construction of a detailed karyotype for peanut chromosome identification. In our study, a peanut Cot-1 library was constructed to isolate highly and moderately repetitive sequences from the cultivated peanut, and the chromosomal distributions of these repeats were investigated. Both genome and chromosome specific markers were identified that allowed the distinguishing of A and B genomes in tetraploid peanut and a possible karyotyping of peanut chromosomes by FISH. In particular, a 115-bp tandem repetitive sequence was identified to be a possible centromere repetitive DNA, mainly localized in the centromeres of B chromosomes, and a partial retrotransposable element was also identified in the centromeres of B chromosomes. The cloning and characterization of various chromosomal markers is a major step for FISH-based karyotyping of peanut. The FISH markers are expected to provide a reference tool for sequence assembly, phylogenetic studies of peanut and its wild species, and breeding. Copyright © 2012 S. Karger AG, Basel.

  4. Cloning and characterization of two flavohemoglobins from Aspergillus oryzae

    SciTech Connect

    Zhou Shengmin; Fushinobu, Shinya; Nakanishi, Yoshito; Kim, Sang-Wan; Wakagi, Takayoshi; Shoun, Hirofumi

    2009-03-27

    Two flavohemoglobin (FHb) genes, fhb1 and fhb2, were cloned from Aspergillus oryzae. The amino acid sequences of the deduced FHb1 and FHb2 showed high identity to other FHbs except for the predicted mitochondrial targeting signal in the N-terminus of FHb2. The recombinant proteins displayed absorption spectra similar to those of other FHbs. FHb1 and FHb2 were estimated to be a monomer and a dimer in solution, respectively. Both of the isozymes exhibit high NO dioxygenase (NOD) activity. FHb1 utilizes either NADH or NADPH as an electron donor, whereas FHb2 can only use NADH. These results suggest that FHb1 and FHb2 are fungal counterparts of bacterial FHbs and act as NO detoxification enzymes in the cytosol and mitochondria, respectively. This study is the first to show that a microorganism contains two isozymes of FHb and that intracellular localization of the isozymes could differ.

  5. Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification.

    PubMed

    Pääbo, S

    1989-03-01

    Several chemical and enzymatic properties were examined in the DNA extracted from dry remains of soft tissues that vary in age from 4 to 13,000 years and represent four species, including two extinct animals (the marsupial wolf and giant ground sloth). The DNA obtained was invariably of a low average molecular size and damaged by oxidative processes, which primarily manifest themselves as modifications of pyrimidines and sugar residues as well as baseless sites and intermolecular cross-links. This renders molecular cloning difficult. However, the polymerase chain reaction can be used to amplify and study short mitochondrial DNA sequences that are of anthropological and evolutionary significance. This opens up the prospect of performing diachronical studies of molecular evolutionary genetics.

  6. Cloning, expression, and enzymatic characterization of Pseudomonas aeruginosa topoisomerase IV.

    PubMed

    Akasaka, T; Onodera, Y; Tanaka, M; Sato, K

    1999-03-01

    The topoisomerase IV subunit A gene, parC homolog, has been cloned and sequenced from Pseudomonas aeruginosa PAO1, with cDNA encoding the N-terminal region of Escherichia coli parC used as a probe. The homolog and its upstream gene were presumed to be parC and parE through sequence homology with the parC and parE genes of other organisms. The deduced amino acid sequence of ParC and ParE showed 33 and 32% identity with that of the P. aeruginosa DNA gyrase subunits, GyrA and GyrB, respectively, and 69 and 75% identity with that of E. coli ParC and ParE, respectively. The putative ParC and ParE proteins were overexpressed and separately purified by use of a fusion system with a maltose-binding protein, and their enzymatic properties were examined. The reconstituted enzyme had ATP-dependent decatenation activity, which is the main catalytic activity of bacterial topoisomerase IV, and relaxing activities but had no supercoiling activity. So, the cloned genes were identified as P. aeruginosa topoisomerase IV genes. The inhibitory effects of quinolones on the activities of topoisomerase IV and DNA gyrase were compared. The 50% inhibitory concentrations of quinolones for the decatenation activity of topoisomerase IV were from five to eight times higher than those for the supercoiling activities of P. aeruginosa DNA gyrase. These results confirmed that topoisomerase IV is less sensitive to fluoroquinolones than is DNA gyrase and may be a secondary target of new quinolones in wild-type P. aeruginosa.

  7. Cloning and Functional Characterization of SAD Genes in Potato

    PubMed Central

    Li, Fei; Bian, Chun Song; Xu, Jian Fei; Pang, Wan fu; Liu, Jie; Duan, Shao Guang; Lei, Zun-Guo; Jiwan, Palta; Jin, Li-Ping

    2015-01-01

    Stearoyl-acyl carrier protein desaturase (SAD), locating in the plastid stroma, is an important fatty acid biosynthetic enzyme in higher plants. SAD catalyzes desaturation of stearoyl-ACP to oleyl-ACP and plays a key role in determining the homeostasis between saturated fatty acids and unsaturated fatty acids, which is an important player in cold acclimation in plants. Here, four new full-length cDNA of SADs (ScoSAD, SaSAD, ScaSAD and StSAD) were cloned from four Solanum species, Solanum commersonii, S. acaule, S. cardiophyllum and S. tuberosum, respectively. The ORF of the four SADs were 1182 bp in length, encoding 393 amino acids. A sequence alignment indicated 13 amino acids varied among the SADs of three wild species. Further analysis showed that the freezing tolerance and cold acclimation capacity of S. commersonii are similar to S. acaule and their SAD amino acid sequences were identical but differed from that of S. cardiophyllum, which is sensitive to freezing. Furthermore, the sequence alignments between StSAD and ScoSAD indicated that only 7 different amino acids at residues were found in SAD of S. tuberosum (Zhongshu8) against the protein sequence of ScoSAD. A phylogenetic analysis showed the three wild potato species had the closest genetic relationship with the SAD of S. lycopersicum and Nicotiana tomentosiformis but not S. tuberosum. The SAD gene from S. commersonii (ScoSAD) was cloned into multiple sites of the pBI121 plant binary vector and transformed into the cultivated potato variety Zhongshu 8. A freeze tolerance analysis showed overexpression of the ScoSAD gene in transgenic plants significantly enhanced freeze tolerance in cv. Zhongshu 8 and increased their linoleic acid content, suggesting that linoleic acid likely plays a key role in improving freeze tolerance in potato plants. This study provided some new insights into how SAD regulates in the freezing tolerance and cold acclimation in potato. PMID:25825911

  8. Cloning and characterization of canine prostate-specific membrane antigen.

    PubMed

    Schmidt, Sonja; Fracasso, Giulio; Colombatti, Marco; Naim, Hassan Y

    2013-05-01

    Prostate-specific membrane antigen (PSMA) is a promising biomarker in the diagnosis of prostate cancer and a potential target for antibody-based therapeutic strategies. We isolated the canine PSMA cDNA and investigated the cellular and biochemical characteristics of the recombinant protein as a potential target for animal preclinical studies of antibody based-therapies. Canine PSMA cDNA was isolated by PCR, cloned into expression vectors and transfected into COS-1 and MDCK cells. The biosynthesis and glycosylation of the recombinant protein were investigated in pulse-chase experiments, the cellular localization by confocal laser microscopy, the mode of association of PSMA with the membrane with solubilization in different detergents and its quaternary structure in sucrose-density gradients. Canine PSMA shows 91% amino acid homology to human PSMA, whereby the major difference is a longer cytoplasmic tail of canine PSMA compared to its human counterpart. Canine PSMA is trafficked efficiently along the secretory pathway, undergoes homodimerization when it acquires complex glycosylated mature form. It associates with detergent-resistant membranes, which act as platforms along its intracellular trafficking. Confocal analysis revealed canine PSMA at the cell surface, Golgi, and the endoplasmic reticulum. A similar distribution is revealed for human PSMA, yet with reduced cell surface levels. The cloning, expression, biosynthesis, processing and localization of canine PSMA in mammalian cells is described. We demonstrate that canine PSMA reveals similar characteristics to human PSMA rendering this protein useful as a translational model for investigations of prostate cancer as well as a suitable antigen for targeted therapy studies in dogs. Copyright © 2013 Wiley Periodicals, Inc.

  9. Purification, cloning, and characterization of the CEL I nuclease.

    PubMed

    Yang, B; Wen, X; Kodali, N S; Oleykowski, C A; Miller, C G; Kulinski, J; Besack, D; Yeung, J A; Kowalski, D; Yeung, A T

    2000-04-04

    CEL I, isolated from celery, is the first eukaryotic nuclease known that cleaves DNA with high specificity at sites of base-substitution mismatch and DNA distortion. The enzyme requires Mg(2+) and Zn(2+) for activity, with a pH optimum at neutral pH. We have purified CEL I 33 000-fold to apparent homogeneity. A key improvement is the use of alpha-methyl-mannoside in the purification buffers to overcome the aggregation of glycoproteins with endogenous lectins. The SDS gel electrophoresis band for the homogeneous CEL I, with and without the removal of its carbohydrate moieties, was extracted, renatured, and shown to have mismatch cutting specificity. After determination of the amino acid sequence of 28% of the CEL I polypeptide, we cloned the CEL I cDNA. Potential orthologs are nucleases putatively encoded by the genes BFN1 of Arabidopsis, ZEN1 of Zinnia, and DSA6 of daylily. Homologies of CEL I with S1 and P1 nucleases are much lower. We propose that CEL I exemplifies a new family of neutral pH optimum, magnesium-stimulated, mismatch duplex-recognizing nucleases, within the S1 superfamily.

  10. Molecular cloning, characterization, and expression of wheat cystatins.

    PubMed

    Kuroda, M; Kiyosaki, T; Matsumoto, I; Misaka, T; Arai, S; Abe, K

    2001-01-01

    We cloned four kinds of cDNAs of wheat cystatins (WCs), WC1, WC2, WC3, and WC4, from the seed. They had 47-68% amino acid sequence similarities to other plant cystatins. WC1, WC2, and WC4 had 63-67% similalities to one another while 93% of amino acids were identical between WC1 and WC3. This suggested that WCI, WC2, and WC4 should be regarded as the isoforms of wheat cystatins. The mRNAs for WC1, WC2, and WC4 were all expressed in seed at an early stage of maturation and, after that, their quantities decreased gradually. However, each of the mRNAs was again expressed one day after the start of germination and the expression continued for the following five days. WC1 seemed to be expressed at a higher level than WC2 and WC4. Immunostaining for looking at site-specific expression of each WC demonstrated that both WC1 and WC4 existed in the aleuron layer and embryo, but in the endosperm the only existing species was WC1. Differences in mRNA level and tissue localization found for the WCs may suggest their differential physiological roles.

  11. Cloning and characterization of hydrogen uptake genes from Rhizobium leguminosarum.

    PubMed Central

    Leyva, A; Palacios, J M; Mozo, T; Ruiz-Argüeso, T

    1987-01-01

    A gene library of genomic DNA from the hydrogen uptake (Hup)-positive strain 128C53 of Rhizobium leguminosarum was constructed by using the broad-host-range mobilizable cosmid vector pLAFR1. The resulting recombinant cosmids contained insert DNA averaging 21 kilobase pairs (kb) in length. Two clones from the above gene library were identified by colony hybridization with DNA sequences from plasmid pHU1 containing hup genes of Bradyhizobium japonicum. The corresponding recombinant cosmids, pAL618 and pAL704, were isolated, and a region of about 28 kb containing the sequences homologous to B. japonicum hup-specific DNA was physically mapped. Further hybridization analysis with three fragments from pHU1 (5.9-kb HindIII, 2.9-kb EcoRI, and 5.0-kb EcoRI) showed that the overall arrangement of the R. leguminosarum hup-specific region closely parallels that of B. japonicum. The presence of functional hup genes within the isolated cosmid DNA was demonstrated by site-directed Tn5 mutagenesis of the 128C53 genome and analysis of the Hup phenotype of the Tn5 insertion strains in symbiosis with peas. Transposon Tn5 insertions at six different sites spanning 11 kb of pAL618 completely suppressed the hydrogenase activity of the pea bacteroids. Images PMID:2822654

  12. Cloning and characterization of two K+ transporters of Debaryomyces hansenii.

    PubMed

    Prista, Catarina; González-Hernández, Juan Carlos; Ramos, José; Loureiro-Dias, Maria C

    2007-09-01

    Two genes from the halotolerant yeast Debaryomyces hansenii were cloned, DhTRK1 and DhHAK1. These genes encode K(+) transporters with sequence similarities to the TRK and HAK transporters from Debaryomyces occidentalis and Candida albicans. The DhHAK1p transporter was only expressed in K(+)-starved cells, as shown by Northern blot analysis. Both DhTRK1p and DhHAK1p were expressed in a trk1Delta trk2Delta mutant of Saccharomyces cerevisiae, unable to grow at low K(+). This expression resulted in partial recovery of growth and ability to retain K(+) at low concentrations. In liquid media, 0.5 M NaCl affected growth of these S. cerevisiae transformants as it does in D. hansenii, resulting in a much less deleterious effect than in wild-type S. cerevisiae. Kinetics of Rb(+) uptake in the transformants suggest that DhTRK1p and DhHAK1p code for moderate-affinity K(+) transporters exhibiting a sigmoid response against Rb(+) concentration and presenting a deviation from classic Michaelis-Menten kinetics at low substrate concentrations. Rb(+) uptake by the DhTRK1p transporter was stimulated by millimolar concentrations of Na(+) at pH 4.5. The good performance of DhTRK1p in the presence of NaCl may be a key feature in the halotolerance of D. hansenii.

  13. [Cloning and characterization of CMO gene from Atriplex hortensis].

    PubMed

    Shen, Y G; Du, B X; Zhang, J S; Chen, S Y

    2001-01-01

    Glycine betaine is a widespread osmopretectant existed in many organisms. In higher plant, glycine betaine is synthesized via a two-sep oxidation reaction: choline-->betaine aldehyde-->glycine betaine. The first step, also the speed-limiting step, is catalyzed by choline monooxygenase(CMO). Choosing halophyte Atriplex hortensis as material, we constructed a salt stress-induced cDNA library, and isolated a 1.77 kb length cDNA clone with spinach CMO cDNA as probe. The sequencing result showed a complete Open Reading Frame encoding a 438-amino-acid polypeptide which was 81% and 72% identified to CMO sequences of spinach and sugar beet in amino acid homology respectively. Compared with the CMO from spinach and sugar beet, the AhCMO had one conserved Rieske-Type [2Fe-2S] cluster-binding region and one conserved mononuclear Fe-binding motif. The expression pattern of AhCMO under salt stress was also stuied, the transcriptional level of AhCMO raised about three folds after the plant was treated with brine for 4 days. The AhCMO was then transfered into tobacco(Nictiana tabacum var. Xanthi) with 35S promotor and seven transgenic plants were certified by northern blot, these plants displayed some salt- and drought-stress tolerance when grew well on MS medium contained 1.2% NaCl or 10% PEG while the control was stagnated under the same cndition.

  14. Molecular cloning and characterization of the Candida albicans enolase gene.

    PubMed Central

    Mason, A B; Buckley, H R; Gorman, J A

    1993-01-01

    A DNA clone containing the putative Candida albicans enolase gene (ENO1) was isolated from a genomic DNA library. The sequenced insert contained a continuous open reading frame of 1,320 bp. The predicted 440-amino-acid protein is 78 and 76% identical, respectively, to Saccharomyces cerevisiae enolase proteins 1 and 2. Only one enolase gene could be detected in C. albicans genomic DNA by Southern analysis with a homologous probe. Northern (RNA) analysis detected a single, abundant C. albicans ENO1 transcript of approximately 1,600 nucleotides. When cells were grown on glucose, levels of ENO1 mRNA were markedly increased by comparison with ENO1 mRNA levels in cells grown on ethanol, a gluconeogenic carbon source. In contrast to this glucose-mediated transcriptional induction, the carbon source had no dramatic effect on the levels of enolase protein or enzyme activity in the C. albicans strains tested. These results suggest that posttranscriptional mechanisms are responsible for modulating expression of the C. albicans enolase gene. Images PMID:8478328

  15. Cloning and partial characterization of Entamoeba histolytica PTPases

    SciTech Connect

    Herrera-Rodriguez, Sara Elisa; Baylon-Pacheco, Lidia; Talamas-Rohana, Patricia; Rosales-Encina, Jose Luis . E-mail: rosales@cinvestav.mx

    2006-04-21

    Reversible protein tyrosine phosphorylation is an essential signal transduction mechanism that regulates cell growth, differentiation, mobility, metabolism, and survival. Two genes coding for protein tyrosine phophatases, designed EhPTPA and EhPTPB, were cloned from Entamoeba histolytica. EhPTPA and EhPTPB proteins showed amino acid sequence identity of 37%, both EhPTPases showed similarity with Dictyostelium discoideum and vertebrate trasmembranal PTPases. mRNA levels of EhPTPA gene are up-regulated in trophozoites recovered after 96 h of liver abscess development in the hamster model. EhPTPA protein expressed as a glutathione S-transferase fusion protein (GST::EhPTPA) showed enzymatic activity with p-nitrophenylphosphate as a substrate and was inhibited by PTPase inhibitors vanadate and molybdate. GST::EhPTPA protein selectively dephosphorylates a 130 kDa phosphotyrosine-containing protein in trophozoite cell lysates. EhPTPA gene codifies for a 43 kDa native protein. Up-regulation of EhPTPA expression suggests that EhPTPA may play an important role in the adaptive response of trophozoites during amoebic liver abscess development.

  16. Cloning and characterization of Taenia saginata paramyosin cDNA.

    PubMed

    Ferrer, Elizabeth; Moyano, Eva; Benitez, Laura; González, Luis Miguel; Bryce, Denise; Foster-Cuevas, Mildred; Dávila, Iris; Cortéz, Maria Milagros; Harrison, Leslie J S; Parkhouse, R Michael E; Gárate, Teresa

    2003-09-01

    A lambdaZAP-express cDNA library of Taenia saginata metacestodes was constructed. Antibody screening yielded a clone with an insert of 3,408 bp, an open reading frame of 2,589 bp, a deduced sequence of 863 amino acid and a molecular mass of 98.89 kDa. Alignments of the predicted amino acid sequence showed identity with paramyosins from several species: 98.8% with Taenia solium, 96.3% with Echinococcus.granulosus and about 70% with Schistosoma spp. The insert was expressed and purified. A collagen binding assay was performed which showed that T. saginata GST-paramyosin retained this property in a dose-dependent manner. Problems were encountered due to high backgrounds in serological assays in the homologous T. saginata system. However, the recombinant paramyosin was recognized by antibodies present in 31.6% of sera from T. solium seropositive cysticercosis patients and 100% of the sera from acute cysticercosis patients. The immunodominant epitope was the carboxyl-terminal fragment of the molecule.

  17. Cloning and characterization of root-specific barley lectin

    SciTech Connect

    Lerner, D.R.; Raikhel, N.V. )

    1989-09-01

    Cereal lectins are a class of biochemically and antigenically related proteins localized in a tissue-specific manner in embryos and adult plants. To study the specificity of lectin expression, a barley (Hordeum vulgare L.) embryo cDNa library was constructed and a clone (BLc3) for barley lectin was isolated. BLc3 is 972 nucleotides long and includes an open reading frame of 212 amino acids. The deduced amino acid sequence contains a putative signal peptide of 26 amino acid residues followed by a 186 amino acid polypeptide. This polypeptide has 95% sequence identity to the antigenically indistinguishable wheat germ agglutinin isolectin-B (WGA-B) suggesting that BLc3 encodes barley lectin. Further evidence that BLc3 encodes barley lectin was obtained by immunoprecipitation of the in vitro translation products of BLc3 RNA transcripts and barley embryo poly(A{sup +}) RNA. In situ hybridizations with BLc3 showed that barley lectin gene expression is confined to the outermost cell layers of both embryonic and adult root tips. On Northern blots, BLc3 hybridizes to a 1.0 kilobyte mRNA in poly(A{sup +}) RNA from both embryos and root tips. We suggest, on the basis of immunoblot experiments, that barley lectin is synthesized as a glycosylated precursor and processed by removal of a portion of the carboxyl terminus including the single N-linked glycosylation site.

  18. Cloning and characterization of DELLA genes in Artemisia annua.

    PubMed

    Shen, Q; Cui, J; Fu, X Q; Yan, T X; Tang, K X

    2015-08-21

    Gibberellins (GA) are some of the most important phytohormones involved in plant development. DELLA proteins are negative regulators of GA signaling in many plants. In this study, the full-length cDNA sequences of three DELLA genes were cloned from Artemisia annua. Phylogenetic analysis revealed that AaDELLA1 and AaDELLA2 were located in the same cluster, but AaDELLA3 was not. Subcellular localization analysis suggested that AaDELLAs can be targeted to the nucleus and/or cytoplasm. Real-time PCR indicated that all three AaDELLA genes exhibited the highest expression in seeds. Expression of all AaDELLA genes was enhanced by exogenous MeJA treatment but inhibited by GA3 treatment. Yeast two-hybrid assay showed that AaDELLAs could interact with basic helix-loop-helix transcription factor AaMYC2, suggesting that GA and JA signaling may be involved in cross-talk via DELLA and MYC2 interaction in A. annua.

  19. Cloning and Characterization of Root-Specific Barley Lectin 1

    PubMed Central

    Lerner, David R.; Raikhel, Natasha V.

    1989-01-01

    Cereal lectins are a class of biochemically and antigenically related proteins localized in a tissue-specific manner in embryos and adult plants. To study the specificity of lectin expression, a barley (Hordeum vulgare L.) embryo cDNA library was constructed and a clone (BLc3) for barley lectin was isolated. BLc3 is 972 nucleotides long and includes an open reading frame of 212 amino acids. The deduced amino acid sequence contains a putative signal peptide of 26 amino acid residues followed by a 186 amino acid polypeptide. This polypeptide has 95% sequence identity to the antigenically indistinguishable wheat germ agglutinin isolectin-B (WGA-B) suggesting that BLc3 encodes barley lectin. Further evidence that BLc3 encodes barley lectin was obtained by immunoprecipitation of the in vitro translation products of BLc3 RNA transcripts and barley embryo poly(A+) RNA. In situ hybridizations with BLc3 showed that barley lectin gene expression is confined to the outermost cell layers of both embryonic and adult root tips. On Northern blots, BLc3 hybridizes to a 1.0 kilobyte mRNA in poly(A+) RNA from both embryos and root tips. We suggest, on the basis of immunoblot experiments, that barley lectin is synthesized as a glycosylated precursor and processed by removal of a portion of the carboxyl terminus including the single N-linked glycosylation site. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:16666982

  20. Establishment and initial characterization of SOX2-overexpressing NT2/D1 cell clones.

    PubMed

    Drakulic, D; Krstic, A; Stevanovic, M

    2012-05-15

    SOX2, a universal marker of pluripotent stem cells, is a transcription factor that helps control embryonic development in vertebrates; its expression persists in neural stem/progenitor cells into adulthood. Considering the critical role of the SOX2 transcription factor in the regulation of genes required for self-renewal and pluripotency of stem cells, we developed and characterized SOX2-overexpressing NT2/D1 cell clones. Using Southern blot and semi-quantitative RT-PCR, we confirmed integration and expression of exogenous SOX2 in three NT2/D1 cell clones. Overexpression of the SOX2 gene was detected in two of these clones. SOX2 overexpression in NT2/D1 cell clones resulted in altered expression of key pluripotency genes OCT4 and NANOG. Furthermore, SOX2-overexpressing NT2/D1 cell clones entered into retinoic acid-dependent neural differentiation, even when there was elevated SOX2 expression. After 21 days of induction by retinoic acid, expression of neural markers (neuroD1 and synaptophysin) was higher in induced cell clones than in induced parental cells. The cell clone with SOX2 overexpression had an approximately 1.3-fold higher growth rate compared to parental cells. SOX2 overexpression did not increase the population of cells undergoing apoptosis. Taken together, we developed two SOX2-overexpressing cell clones, with constitutive SOX2 expression after three weeks of retinoic acid treatment. SOX2 overexpression resulted in altered expression of pluripotency-related genes, increased proliferation, and altered expression of neural markers after three weeks of retinoic acid treatment.

  1. Cloning and Characterization of a Bovine Adeno-Associated Virus

    PubMed Central

    Schmidt, Michael; Katano, Hisako; Bossis, Ioannis; Chiorini, John A.

    2004-01-01

    To better understand the relationship between primate adeno-associated viruses (AAVs) and those of other mammals, we have cloned and sequenced the genome of an AAV found as a contaminant in two isolates of bovine adenovirus that was reported to be serologically distinct from primate AAVs. The bovine AAV (BAAV) genome has 4,693 bp, and its organization is similar to that of other AAV isolates. The left-hand open reading frame (ORF) and both inverted terminal repeats (ITRs) have the highest homology with the rep ORF and ITRs of AAV serotype 5 (AAV-5) (89 and 96%, respectively). However, the right-hand ORF was only 55% identical to the AAV-5 capsid ORF; it had the highest homology with the capsid ORF of AAV-4 (76%). By comparing the BAAV cap sequence with a model of an AAV-4 capsid, we mapped the regions of BAAV VP1 that are divergent from AAV-4. These regions are located on the outside of the capsid and are partially located in exposed loops. BAAV was not neutralized by antisera raised against recombinant AAV-2, AAV-4, or AAV-5, and it demonstrated a unique cell tropism profile in four human cancer cell lines, suggesting that BAAV might have transduction activity distinct from that of other isolates. A murine model of salivary gland gene transfer was used to evaluate the in vivo performance of recombinant BAAV. Recombinant BAAV-mediated gene transfer was 11 times more efficient than that with AAV-2. Overall, these data suggest that vectors based on BAAV could be useful for gene transfer applications. PMID:15163744

  2. Molecular cloning, expression and characterization of pyridoxamine–pyruvate aminotransferase

    PubMed Central

    Yoshikane, Yu; Yokochi, Nana; Ohnishi, Kouhei; Hayashi, Hideyuki; Yagi, Toshiharu

    2006-01-01

    Pyridoxamine–pyruvate aminotransferase is a PLP (pyridoxal 5′-phosphate) (a coenzyme form of vitamin B6)-independent aminotransferase which catalyses a reversible transamination reaction between pyridoxamine and pyruvate to form pyridoxal and L-alanine. The gene encoding the enzyme has been identified, cloned and overexpressed for the first time. The mlr6806 gene on the chromosome of a symbiotic nitrogen-fixing bacterium, Mesorhizobium loti, encoded the enzyme, which consists of 393 amino acid residues. The primary sequence was identical with those of archaeal aspartate aminotransferase and rat serine–pyruvate aminotransferase, which are PLP-dependent aminotransferases. The results of fold-type analysis and the consensus amino acid residues found around the active-site lysine residue identified in the present study showed that the enzyme could be classified into class V aminotransferases of fold type I or the AT IV subfamily of the α family of the PLP-dependent enzymes. Analyses of the absorption and CD spectra of the wild-type and point-mutated enzymes showed that Lys197 was essential for the enzyme activity, and was the active-site lysine residue that corresponded to that found in the PLP-dependent aminotransferases, as had been suggested previously [Hodsdon, Kolb, Snell and Cole (1978) Biochem. J. 169, 429–432]. The Kd value for pyridoxal determined by means of CD was 100-fold lower than the Km value for it, suggesting that Schiff base formation between pyridoxal and the active-site lysine residue is partially rate determining in the catalysis of pyridoxal. The active-site structure and evolutionary aspects of the enzyme are discussed. PMID:16545075

  3. Cloning and Characterization of the Scarlet Gene of Drosophila Melanogaster

    PubMed Central

    Tearle, R. G.; Belote, J. M.; McKeown, M.; Baker, B. S.; Howells, A. J.

    1989-01-01

    DNA from the scarlet (st) region of Drosophila melanogaster has been cloned by chromosome walking, using the breakpoints of a new X-ray-induced third chromosome inversion (In(3LR)st-a27) which breaks in the scarlet (73A3.4) and rosy (87D13-14) regions. Two spontaneous mutants of st(st(1) and st(sp)) contain insertions of non-st DNA located within 3.0 kb of the site of the inversion breakpoint used to isolate the gene, and a second scarlet inversion breaks within 6.5 kb of this site. However no changes detectable by Southern blotting were found in 5 X-ray-induced st mutants with cytologically normal third chromosomes. A 2.3-kb transcript arising from the st gene region (as defined by mutant analysis and DNA transformation) has been detected. This transcript is present throughout development at low levels, with a peak level during the early to mid-pupal stage. The size and amount of this transcript is altered in st(1), and its amount is drastically reduced in st(sp). Flies carrying the white(1) mutation show normal levels of expression of the st transcript, suggesting that the w(+) gene does not regulate transcription of the st(+) gene. Nucleotide homology between sequences from the st transcription unit and a fragment carrying coding information from the white gene has been detected. This suggests that the st and w proteins are related; they appear to belong to a family of membrane-spanning, ATP-binding proteins involved in the transport of pigment precursors into cells. PMID:2503416

  4. Cloning, expression and characterization of sugarcane (Saccharum officinarum L.) transketolase.

    PubMed

    Kalhori, Nahid; Nulit, R; Go, Rusea

    2013-10-01

    Pentose phosphate pathway (PPP) composed of two functionally-connected phases, the oxidative and non-oxidative phase. Both phases catalysed by a series of enzymes. Transketolase is one of key enzymes of non-oxidative phase in which transfer two carbon units from fructose-6-phosphate to erythrose-4-phosphate and convert glyceraldehyde-3-phosphate to xylulose-5-phosphate. In plant, erythrose-4-phosphate enters the shikimate pathway which is produces many secondary metabolites such as aromatic amino acids, flavonoids, lignin. Although transketolase in plant system is important, study of this enzyme is still limited. Until to date, TKT genes had been isolated only from seven plants species, thus, the aim of present study to isolate, study the similarity and phylogeny of transketolase from sugarcane. Unlike bacteria, fungal and animal, PPP is complete in the cytosol and all enzymes are found cytosolic. However, in plant, the oxidative phase found localised in the cytosol but the sub localisation for non-oxidative phase might be restricted to plastid. Thus, this study was conducted to determine subcellular localization of sugarcane transketolase. The isolation of sugarcane TKT was done by reverse transcription polymerase chain reaction, followed by cloning into pJET1.2 vector and sequencing. This study has isolated 2,327 bp length of sugarcane TKT. The molecular phylogenetic tree analysis found that transketolase from sugarcane and Zea mays in one group. Classification analysis found that both plants showed closer relationship due to both plants in the same taxon i.e. family Poaceae. Target P 1.1 and Chloro P predicted that the compartmentation of sugarcane transketolase is localised in the chloroplast which is 85 amino acids are plant plastid target sequence. This led to conclusion that the PPP is incomplete in the cytosol of sugarcane. This study also found that the similarity sequence of sugarcane TKT closely related with the taxonomy plants.

  5. Molecular cloning and characterization of leucine aminopeptidase from Fasciola gigantica.

    PubMed

    Changklungmoa, Narin; Chaithirayanon, Kulathida; Kueakhai, Pornanan; Meemon, Krai; Riengrojpitak, Suda; Sobhon, Prasert

    2012-07-01

    M17 leucine aminopeptidase (LAP) is one of a family of metalloexopeptidases, of which short peptide fragments are cleaved from the N-terminals. In this study, the full length of cDNA encoding Fasciola gigantica LAP (FgLAP) was cloned from adult parasites. The amino acid sequences of FgLAP showed a high degree of identity (98%) with that from Fasciola hepatica and a low degree of identities (11% and 9%) with those from cattle and human. Phylogenetic analysis revealed that the FgLAP was closely related and grouped with F. hepatica LAP (FhLAP). Northern analysis showed that FgLAP transcriptional products have 1800 base pairs. Analysis by RNA in situ hybridization indicated that LAP gene was expressed in the cecal epithelial cells of adult parasites. A polyclonal antibody to a recombinant FgLAP (rFgLAP) detected the native LAP protein in various developmental stages of the parasite. In a functional test, this rFgLAP displayed aminolytic activity using a fluorogenic Leu-MCA substrate, and was significantly inhibited by bestatin. Its maximum activity was at pH 8.0 and enhanced by Mn(2+) ions. Localization of LAP proteins by immunohistochemistry and immunofluorescence techniques indicated that the enzyme was distributed in the apical cytoplasm of cecal epithelial cells. Because of its important metabolic role and fairly exposed position, FgLAP is a potential drug target and a possible vaccine candidate against fasciolosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. CLONING, EXPRESSION, AND CHARACTERIZATION OF RAT S-ADENOSYL-L-METHIONINE: ARSENIC (III) METHYLTRANSFERASE (CYT19)

    EPA Science Inventory

    CLONING, EXPRESSION, AND CHARACTERIZATION OF RAT S-ADENOSYL-L-METHIONINE: ARSENIC(III) METHYLTRANSFERASE (cyt19)

    Stephen B. Waters1 , Felicia Walton1 , Miroslav Styblo1 , Karen Herbin-Davis2, and David J. Thomas2 1 School of Medicine, University of North Carolina at Chape...

  7. Cloning, sequencing and characterization of lipase from a polyhydroxyalkanoate- (PHA-) synthesizing Pseudomonas resinovorans

    USDA-ARS?s Scientific Manuscript database

    Lipase gene (lip) of a biodegradable polyhydroxyalkanoate- (PHA-) synthesizing bacterium P. resinovorans NRRL B-2649 was cloned, sequenced and characterized by using consensus primers and PCR-based genome walking method. The ORF of the putative Lip (314 amino acids) and its active site (Ser111, Asp...

  8. Molecular Characterization of Kastamonu Garlic: An Economically Important Garlic Clone in Turkey

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to assess genetic relationship of Kastamonu garlic, which is very popular in Turkey due to its high quality features, along with some previously characterized garlic clones collected from different regions of the world using AFLP and locus specific DNA markers. UPGMA cluste...

  9. Cloning and characterization of a critical regulator for pre-harvest sprouting in Wheat

    USDA-ARS?s Scientific Manuscript database

    Sprouting of grains in mature spikes before harvest is a major problem in wheat (Triticum aestivum) production worldwide. We cloned and characterized a gene underlying a wheat quantitative trait locus (QTL) on the short arm of chromosome 3A for pre-harvest sprouting (PHS) resistance in white wheat u...

  10. CLONING, EXPRESSION, AND CHARACTERIZATION OF RAT S-ADENOSYL-L-METHIONINE: ARSENIC (III) METHYLTRANSFERASE (CYT19)

    EPA Science Inventory

    CLONING, EXPRESSION, AND CHARACTERIZATION OF RAT S-ADENOSYL-L-METHIONINE: ARSENIC(III) METHYLTRANSFERASE (cyt19)

    Stephen B. Waters1 , Felicia Walton1 , Miroslav Styblo1 , Karen Herbin-Davis2, and David J. Thomas2 1 School of Medicine, University of North Carolina at Chape...

  11. The cloning and characterization of a poplar stomatal density gene

    Treesearch

    Shaneka S. Lawson; Paula M. Pijut; Charles H. Michler

    2014-01-01

    EPIDERMAL PATTERNING FACTOR1 (EPF1) is a well characterized negative regulator of cell division in Arabidopsis thaliana (AtEPF1) where the primary region of localization is the leaf. However, little data have been reported on the role of EPF1 in other plant species. In this study, the EPF1 gene from ...

  12. Development and characterization of Histoplasma capsulatum-reactive murine T-cell lines and clones

    NASA Technical Reports Server (NTRS)

    Deepe, George S., Jr.; Smith, James G.; Denman, David; Bullock, Ward E.; Sonnenfeld, Gerald

    1986-01-01

    Several Histoplasma capsulatum-reactive murine cloned T-cell lines (TCLs) were isolated from spleens of C57BL/6 mice immunized with viable H. capsulatum yeast cells, using the methodology of Kimoto and Fathman (1980). These T-cells were characterized phenotypically as Thy-1.2(+) Lyt-1(+) L3T4(+) Lyt-2(-), that is, as the helper/inducer phenotype. The cloned T cells proliferate in response to histoplasmin and, in some cases, to heterologous fungal anigens. Upon injection of mice with the antigen, the T-cells mediate local delayed-type hypersensitivity responses and, after stimulation, release regulatory lymphokines.

  13. Development and characterization of Histoplasma capsulatum-reactive murine T-cell lines and clones

    NASA Technical Reports Server (NTRS)

    Deepe, George S., Jr.; Smith, James G.; Denman, David; Bullock, Ward E.; Sonnenfeld, Gerald

    1986-01-01

    Several Histoplasma capsulatum-reactive murine cloned T-cell lines (TCLs) were isolated from spleens of C57BL/6 mice immunized with viable H. capsulatum yeast cells, using the methodology of Kimoto and Fathman (1980). These T-cells were characterized phenotypically as Thy-1.2(+) Lyt-1(+) L3T4(+) Lyt-2(-), that is, as the helper/inducer phenotype. The cloned T cells proliferate in response to histoplasmin and, in some cases, to heterologous fungal anigens. Upon injection of mice with the antigen, the T-cells mediate local delayed-type hypersensitivity responses and, after stimulation, release regulatory lymphokines.

  14. Overexpression, Purification, and Characterization of the Cloned Metallo-β-Lactamase L1 from Stenotrophomonas maltophilia

    PubMed Central

    Crowder, Michael W.; Walsh, Timothy R.; Banovic, Linda; Pettit, Margaret; Spencer, James

    1998-01-01

    The metallo-β-lactamase L1 from Stenotrophomonas maltophilia was cloned, overexpressed, and characterized by spectrometric and biochemical techniques. Results of metal analyses were consistent with the cloned enzyme having 2 mol of tightly bound Zn(II) per monomer. Gel filtration chromatography demonstrated that the cloned enzyme exists as a tightly held tetramer with a molecular mass of ca. 115 kDa, and matrix-assisted laser desorption ionization and time-of-flight mass spectrometry indicated a monomeric molecular mass of 28.8 kDa. Steady-state kinetic studies with a number of diverse penicillin and cephalosporin antibiotics demonstrated that L1 effectively hydrolyzes all tested compounds, with kcat/Km values ranging between 0.002 and 5.5 μM−1 s−1. These characteristics of the recombinant enzyme are contrasted to those previously reported for metallo-β-lactamases isolated directly from S. maltophilia. PMID:9559809

  15. Characterization of a highly pathogenic molecular clone of feline immunodeficiency virus clade C.

    PubMed

    de Rozières, Sohela; Mathiason, Candace K; Rolston, Matthew R; Chatterji, Udayan; Hoover, Edward A; Elder, John H

    2004-09-01

    We have derived and characterized a highly pathogenic molecular isolate of feline immunodeficiency virus subtype C (FIV-C) CABCpady00C. Clone FIV-C36 was obtained by lambda cloning from cats that developed severe immunodeficiency disease when infected with CABCpady00C (Abbotsford, British Columbia, Canada). Clone FIV-C36 Env is 96% identical to the noninfectious FIV-C isolate sequence deposited in GenBank (FIV-Cgb; GenBank accession number AF474246) (A. Harmache et al.) but is much more divergent in Env when compared to the subgroup A clones Petaluma (34TF10) and FIV-PPR (76 and 78% divergence, respectively). Clone FIV-C36 was able to infect freshly isolated feline peripheral blood mononuclear cells and primary T-cell lines but failed to productively infect CrFK cells, as is typical of FIV field isolates. Two-week-old specific-pathogen-free cats infected with FIV-C36 tissue culture supernatant became PCR positive and developed severe acute immunodeficiency disease similar to that caused by the uncloned CABCpady00C parent. At 4 to 5 weeks postinfection (PI), 3 of 4 animals developed CD4(+)-T-cell depletion, fever, weight loss, diarrhea, and opportunistic infections, including ulcerative stomatitis and tonsillitis associated with abundant bacterial growth, pneumonia, and pyelonephritis, requiring euthanasia. Histopathology confirmed severe thymic and systemic lymphoid depletion. Interestingly, the dam also became infected with a high viral load at 5 weeks PI of the kittens and developed a similar disease syndrome, requiring euthanasia at 11 weeks PI of the kittens. This constitutes the first report of a replication-competent, infectious, and pathogenic molecular clone of FIV-C. Clone FIV-C36 will facilitate dissection of the pathogenic determinants of FIV.

  16. Characterizing sexual health resources on college campuses.

    PubMed

    Eisenberg, Marla E; Lechner, Kate E; Frerich, Ellen A; Lust, Katherine A; Garcia, Carolyn M

    2012-10-01

    This observational study describes the development of the college resources and sexual health inventory, the profile of sexual health promotion resources at participating colleges, and comparisons of resources across several college characteristics. 28 diverse college campuses in one Midwestern state participated. 10 domains were assessed, including characteristics of campus health services (e.g. convenience), condom programs, sexual health information, communication about resources, sexual violence resources and gay/lesbian/bisexual student resources. Scores for each measure reflected the presence or extent of each resource. Summary scores were created for the overall level of sexual health resources and for each domain. T tests and ANOVAs were used to compare resources at 2-year versus 4-year colleges, public versus private sectors, metro versus non-metro locations, and across enrollment size. Inventory scores ranged from 6 to 53. 4-year colleges offered significantly more resources than 2-year; resource levels were statistically similar across location and enrollment size. Subsequent analyses comparing campuses with and without a health center indicated that several resources which were not inherently tied to a clinic nonetheless differed significantly with having a health center. Colleges without this resource could position sexual health resources in other offices or departments or provide referrals to sexual health resources in the broader community.

  17. Cloning, expression, and preliminary structural characterization of RTN-1C

    SciTech Connect

    Fazi, Barbara; Melino, Sonia; Sano, Federica Di; Cicero, Daniel O.; Piacentini, Mauro . E-mail: mauro.piacentini@uniroma2.it; Paci, Maurizio

    2006-04-14

    Reticulons (RTNs) are endoplasmic reticulum-associated proteins widely distributed in plants, yeast, and animals. They are characterized by unique N-terminal parts and a common 200 amino acid C-terminal domain containing two long hydrophobic sequences. Despite their implication in many cellular processes, their molecular structure and function are still largely unknown. In this study, the reticulon family member RTN-1C has been expressed and purified in Escherichia coli and its molecular structure has been analysed by fluorescence and CD spectroscopy in different detergents in order to obtain a good solubility and a relative stability. The isotopically enriched protein has been also produced to perform structural studies by NMR spectroscopy. The preliminary results obtained showed that RTN-1C protein possesses helical transmembrane segments when a membrane-like environment is produced by detergents. Moreover, fluorescence experiments indicated the exposure of tryptophan side chains as predicted by structure prediction programs. We also produced the isotopically labelled protein and the procedure adopted allowed us to plan future NMR studies to investigate the biochemical behaviour of reticulon-1C and of its peptides spanning out from the membrane.

  18. Cloning and characterization of the murine pkd2 promoter.

    PubMed

    Park, J H; Li, L; Cai, Y; Hayashi, T; Dong, F; Maeda, Y; Rubin, C; Somlo, S; Wu, G

    2000-06-15

    Pkd2, the mouse homologue of PKD2, the gene responsible for the second form of autosomal dominant polycystic kidney disease, is highly expressed in fetal and adult mouse tissues. The expression of Pkd2 is developmentally regulated. To begin to dissect out the regulatory mechanism of Pkd2 expression, we characterized the basic features of the gene structure and identified potential cis-regulatory elements of Pkd2 transcription. Pkd2 spans 42 kb with a transcription start site 165 bp upstream of the translation start codon. Exon 1 of Pkd2 is 755 bp long, and the full-length transcript is 5215 bp. The Pkd2 promoter region is GC-rich and lacks a consensus TATA or CCAAT box. Consensus binding sites for the transcription factors Sp-1, NF-1, and Ap-2 lie in the 5' upstream region of Pkd2. The Sp-1 binding site is conserved in 5' upstream sequences of both the mouse and the human genes. The CAT activity of a series of upstream segments from +178 to -2749 was assessed in MDCK, LLCPK1, COS-7, and HEK293 cells. Deletion analysis identified a 409-bp fragment from position -221 to +178 responsible for basal promoter activity. A 922-bp fragment from -744 to +178 showed the highest level of CAT activity in the cell lines tested. These data define a functional promoter candidate region for Pkd2.

  19. Cloning and Characterization of a Novel Drosophila Stress Induced DNase

    PubMed Central

    Seong, Chang-Soo; Varela-Ramirez, Armando; Tang, Xiaolei; Anchondo, Brenda; Magallanes, Diego; Aguilera, Renato J.

    2014-01-01

    Drosophila melanogaster flies mount an impressive immune response to a variety of pathogens with an efficient system comprised of both humoral and cellular responses. The fat body is the main producer of the anti-microbial peptides (AMPs) with anti-pathogen activity. During bacterial infection, an array of secreted peptidases, proteases and other enzymes are involved in the dissolution of debris generated by pathogen clearance. Although pathogen destruction should result in the release a large amount of nucleic acids, the mechanisms for its removal are still not known. In this report, we present the characterization of a nuclease gene that is induced not only by bacterial infection but also by oxidative stress. Expression of the identified protein has revealed that it encodes a potent nuclease that has been named Stress Induced DNase (SID). SID belongs to a family of evolutionarily conserved cation-dependent nucleases that degrade both single and double-stranded nucleic acids. Down-regulation of sid expression via RNA interference leads to significant reduction of fly viability after bacterial infection and oxidative stress. Our results indicate that SID protects flies from the toxic effects of excess DNA/RNA released by pathogen destruction and from oxidative damage. PMID:25083901

  20. Cloning and characterization of catalases from rice, Oryza sativa L.

    PubMed

    Wutipraditkul, Nuchanat; Boonkomrat, Suntareeya; Buaboocha, Teerapong

    2011-01-01

    Catalase is the major H(2)O(2)-scavenging enzyme in all aerobic organisms. From the cDNA sequences of three rice (Oryza sativa L.) genes that encode for predicted catalases (OsCatA, OsCatB, and OsCatC), complete ORFs were subcloned into pET21a and expressed as (His)(6)-tagged proteins in Escherichia coli. The recombinant (His)(6)-polypeptides were enriched to apparent homogeneity and characterized. With H(2)O(2) as substrate, the highest catalase k(cat) value (20±1.71×10(-3) min(-1)) was found in recombinant OsCatB. The optimum temperatures for catalase activity were 30 °C for OsCatA and OsCatC and 25 °C for OsCatB, while the pH optima were 8.0, 7.5, and 7.0 for OsCatA, OsCatB, and OsCatC respectively. All the catalases were inhibited by sodium azide, β-mercaptoethanol, and potassium cyanide, but only weakly by 3-amino-1,2,4-triazole. The various catalases exhibited different catalase activities in the presence of different salts at different concentrations, OsCatC showing higher salt inhibitory effects than the two other OsCats.

  1. Cloning and characterization of a new type of mouse chemokine.

    PubMed

    Rossi, D L; Hardiman, G; Copeland, N G; Gilbert, D J; Jenkins, N; Zlotnik, A; Bazan, J F

    1998-01-15

    We report here the identification and characterization of the mouse homologue of a human CX3C chemokine described by F. Bazan et al. (1997, Nature 385, 640-644). Termed fractalkine, this molecule constitutes a fourth or delta chemokine structural type that displays a novel CX3C sequence fingerprint. Distinct from the alpha, beta, or gamma chemokine families, the polypeptide chain of CX3C predicts a 373-amino-acid type I transmembrane glycoprotein with the chemokine domain resting on top of an extended mucin-like stalk. Comparison of the mouse and human protein chains shows a high degree of conservation in all the globular segments with the exception of the stalk portion. The striking identity of an amino acid stretch encompassing a putative juxtamembrane cleavage site suggests the evolutionary conservation of both membrane-bound and processed CX3C forms. Northern analysis reveals the presence of mouse CX3C mRNA in heart, brain, lung, kidney, skeletal muscle, and testis tissues. The mouse CX3C gene was further localized to the central region of chromosome 8 by interspecific backcross mapping; a related locus was detected on chromosome 11. The novel location of this gene from other chemokine gene clusters adds to the notion that CX3C is a fundamentally new class of chemokine.

  2. [Cloning - controversies].

    PubMed

    Twardowski, T; Michalska, A

    2001-01-01

    Cloning of the human being is not only highly controversial; in the opinion of the authors it is impossible - we are not able to reproduce human behaviour and character traits. Reproduction through cloning is limited to personal genome resources. The more important is protection of genomic characteristics as private property and taking advantage of cloning for production of the human organs directly or through xenotransplants. In this paper we present the legislation related to cloning in Poland, in the European Union and other countries. We also indicate who and why is interested in cloning.

  3. Cloning and characterization of a novel fructan 6-exohydrolase strongly inhibited by sucrose in Lolium perenne.

    PubMed

    Lothier, Jérémy; Van Laere, André; Prud'homme, Marie-Pascale; Van den Ende, Wim; Morvan-Bertrand, Annette

    2014-09-01

    The first 6-fructan exohydrolase (6-FEH) cDNA from Lolium perenne was cloned and characterized. Following defoliation, Lp6 - FEHa transcript level unexpectedly decreased together with an increase in total FEH activity. Lolium perenne is a major forage grass species that accumulates fructans, mainly composed of β(2,6)-linked fructose units. Fructans are mobilized through strongly increased activities of fructan exohydrolases (FEHs), sustaining regrowth following defoliation. To understand the complex regulation of fructan breakdown in defoliated grassland species, the objective was to clone and characterize new FEH genes in L. perenne. To find FEH genes related to refoliation, a defoliated tiller base cDNA library was screened. Characterization of the recombinant protein was performed in Pichia pastoris. In this report, the cloning and enzymatic characterization of the first 6-FEH from L. perenne is described. Following defoliation, during fructan breakdown, Lp6-FEHa transcript level unexpectedly decreased in elongating leaf bases (ELB) and in mature leaf sheaths (tiller base) in parallel to increased total FEH activities. In comparison, transcript levels of genes coding for fructosyltransferases (FTs) involved in fructan biosynthesis also decreased after defoliation but much faster than FEH transcript levels. Since Lp6-FEHa was strongly inhibited by sucrose, mechanisms modulating FEH activities are discussed. It is proposed that differences in the regulation of FEH activity among forage grasses influence their tolerance to defoliation.

  4. Construction and characterization of an infectious molecular clone of Koala retrovirus.

    PubMed

    Shojima, Takayuki; Hoshino, Shigeki; Abe, Masumi; Yasuda, Jiro; Shogen, Hiroko; Kobayashi, Takeshi; Miyazawa, Takayuki

    2013-05-01

    Koala retrovirus (KoRV) is a gammaretrovirus that is currently endogenizing into koalas. Studies on KoRV infection have been hampered by the lack of a replication-competent molecular clone. In this study, we constructed an infectious molecular clone, termed plasmid pKoRV522, of a KoRV isolate (strain Aki) from a koala reared in a Japanese zoo. The virus KoRV522, derived from pKoRV522, grew efficiently in human embryonic kidney (HEK293T) cells, attaining 10(6) focus-forming units/ml. Several mutations in the Gag (L domain) and Env regions reported to be involved in reduction in viral infection/production in vitro are found in pKoRV522, yet KoRV522 replicated well, suggesting that any effects of these mutations are limited. Indeed, a reporter virus pseudotyped with pKoRV522 Env was found to infect human, feline, and mink cell lines efficiently. Analyses of KoRV L-domain mutants showed that an additional PPXY sequence, PPPY, in Gag plays a critical role in KoRV budding. Altogether, our results demonstrate the construction and characterization of the first infectious molecular clone of KoRV. The infectious clone reported here will be useful for elucidating the mechanism of endogenization of the virus in koalas and screening for antiretroviral drugs for KoRV-infected koalas.

  5. Vertical and horizontal root distribution of mature aspen clones: mechanisms for resource acquisition

    NASA Astrophysics Data System (ADS)

    Landhäusser, S. M.; Snedden, J.; Silins, U.; Devito, K. J.

    2012-04-01

    Spatial root distribution, root morphology, and intra- and inter-clonal connections of mature boreal trembling aspen clones (Populus tremuloides Michx.) were explored to shed light on the functional relationships between vertical and horizontal distribution of roots and the variation in soil water availability along hill slopes. Root systems of mature aspen were hydraulically excavated in large plots (6 m wide and 12 m long) and to a depth of 30 cm. Most aspen roots were located in the upper 20 cm of the soil and fine and coarse root occupancy was highest in the lower slope positions and lowest towards the upper hill slope position likely because of soil moisture availability. Observation of the root system distribution along the hill slope correlated well with the observation of greater leaf area carried by trees growing at the lower portion of the hill slope. Interestingly, trees growing at the bottom of the slope required also less sapwood area to support the same amount of leaf area of trees growing at the top of a slope. These observations appear to be closely related to soil moisture availability and with that greater productivity at the bottom of the slope. However, trees growing on the upper slope tended to have long lateral roots extending downslope, which suggests long distance water transport through these lateral feeder roots. Genetic analysis indicated that both intra- and inter-clonal root connections occur in aspen, which can play a role in the sharing of resources along moisture gradients. Root systems of boreal aspen growing on upper slope positions exhibited a combination of three attributes (1) asymmetric lateral root systems, that are skewed downslope, (2) deeper taproots, and (3) intra and inter-clonal root connections, which can all be considered adaptive strategies to avoid drought stress in upper slope positions.

  6. Bacterial artificial chromosome (BAC) library resource for positional cloning of pest and disease resistance genes in cassava (Manihot esculenta Crantz).

    PubMed

    Tomkins, J; Fregene, M; Main, D; Kim, H; Wing, R; Tohme, J

    2004-11-01

    Pest and disease problems are important constraints of cassava production and host plant resistance is the most efficient method of combating them. Breeding for host plant resistance is considerably slowed down by the crop's biological constraints of a long growth cycle, high levels of heterozygosity and a large genetic load. More efficient methods such as gene cloning and transgenesis are required to deploy resistance genes. To facilitate the cloning of resistance genes, bacterial artificial chromosome (BAC) library resources have been developed for cassava. Two libraries were constructed from the cassava clones, TMS 30001, resistant to the cassava mosaic disease (CMD) and the cassava bacterial blight (CBB), and MECU72, resistant to cassava white fly. The TMS30001 library has 55, 296 clones with an insert size range of 40-150 kb with an average of 80 kb, while the MECU72 library consists of 92 160 clones and an insert size range of 25-250 kb average of 93 kb. Based on a genome size of 772 Mb, the TMS30001 and MECU72 libraries have a 5 and 11.3 haploid genome equivalents and a 95 and 99 chance of finding any sequence, respectively. To demonstrate the potential of the libraries, the TMS30001 library was screened by southern hybridization using a cassava analog (CBB1) of the Xa21 gene from rice that maps to a region containing a QTL for resistance to CBB as probe. Five BAC clones that hybridized to CBB1 were isolated and a Hind III fingerprint revealed 2-3 copies of the gene in individual BAC clones. A larger scale analysis of resistance gene analogs (RGAs) in cassava has also been conducted in order to understand the number and organization of RGAs. To scan for gene and repeat DNA content in the libraries, end-sequencing was performed on 2,301 clones from the MECU72 library. A total of 1705 unique sequences were obtained with an average size of 715 bp. Database homology searches using BLAST revealed that 458 sequences had significant homology with known proteins and

  7. Characterization of anti-islet cytotoxic human T-cell clones from patients with type 1 diabetes mellitus.

    PubMed

    Sobel, Douglas O; Creswell, Karen

    2006-06-01

    To identify important anti-islet T-cells and their target antigen(s), we have isolated and characterized seventeen human T-cell clones which are reactive to an extract of rat insulinoma (RIN) cells from three children with new onset type 1 diabetes mellitus (T1D). Of these 17 clones, 15 were found tissue specific. Six of eight tested tissue specific clones did not recognize known islet antigens such as GAD, 52 kDa islet protein, insulin, ICA512, and heat shock protein 60 (hsp60), suggesting that these clones recognize an autoantigen not previously identified. All tested clones were phenotypically CD4 and functionally Th0 or Th0/Th1 cells. One RIN extract reactive clone (2E9) recognized hsp60 and was CD4 and TCR alpha/beta positive. This clone also proliferated in response to human and rat islets suggesting that the antigen is conserved between species. This clone and 75% of all the tested RIN reactive clones exhibited anti-islet cytotoxicity by lysing target cells coated with RIN extract. HLA DR determinants may play a role in this cytotoxic activity since preincubation with HLA DR antibody decreased the anti-islet cytoxicity of the two tested clones. In conclusion, we have isolated RIN reactive CD4+T-cell clones from diabetic subjects, six of which appears tissue specific and non-reactive to putative important islet antigens, and in turn may be recognizing yet undiscovered islet antigens. The high frequency anti-islet cytotoxic properties of the islet reactive clones provides evidence for a role of CD4+ cytotoxic T-lymphocytes in the diabetic process. Further, the isolation of hsp60 reactive clone with anti-islet cytotoxic properties suggests that cell mediated immunity against hsp60 may be important in the pathogenesis of diabetes.

  8. Cloning and characterization of the aroA gene from Mycobacterium tuberculosis.

    PubMed Central

    Garbe, T; Jones, C; Charles, I; Dougan, G; Young, D

    1990-01-01

    The aroA gene from Mycobacterium tuberculosis has been cloned by complementation of an aroA mutant of Escherichia coli after lysogenization with a recombinant DNA library in the lambda gt11 vector. Detailed characterization of the M. tuberculosis aroA gene by nucleotide sequencing and by immunochemical analysis of the expressed product indicates that it encodes a 5-enolpyruvylshikimate-3-phosphate synthase that is structurally related to analogous enzymes from other bacterial, fungal, and plant sources. The potential use of the cloned gene in construction of genetically defined mutant strains of M. tuberculosis by gene replacement is proposed as a novel approach to the rational attenuation of mycobacterial pathogens and the possible development of new antimycobacterial vaccines. Images PMID:2123856

  9. Creation of a minimal tiling path of genomic clones for Drosophila: provision of a common resource.

    PubMed

    Hollich, Volker; Johnson, Eric; Furlong, Eileen E; Beckmann, Boris; Carlson, Joseph; Celniker, Susan E; Hoheisel, Jörg D

    2004-08-01

    On the basis of shotgun subclone libraries used in the sequencing of the Drosophila melanogaster genome, a minimal tiling path of subclones across much of the genome was determined. About 320,000 shotgun clones for chromosomes X(12-20), 2R, 2L, 3R, and 4 were available from the Berkeley Drosophila Genome Project. The clone inserts have an average length of 3.4 kb and are amenable to standard PCR amplification. The resulting tiling path covers 86.2% of chromosome X(12-20), 86.2% of chromosomal arm 2R, 79.0% of 2L, 89.6% of 3R, and 80.5% of chromosome 4. In total, the 25,135 clones represent 76.7 Mb--equivalent to about 67% of the genome--and would be suitable for producing a microarray on a single slide.

  10. Characterization of a TK6-Bcl-xL gly-159-ala Human Lymphoblast Clone

    SciTech Connect

    Chyall, L.: Gauny, S.; Kronenberg, A.

    2006-01-01

    TK6 cells are a well-characterized human B-lymphoblast cell line derived from WIL-2 cells. A derivative of the TK6 cell line that was stably transfected to express a mutated form of the anti-apoptotic protein Bcl-xL (TK6-Bcl-xL gly-159- ala clone #38) is compared with the parent cell line. Four parameters were evaluated for each cell line: growth under normal conditions, plating efficiency, and frequency of spontaneous mutation to 6‑thioguanine resistance (hypoxanthine phosphoribosyl transferase locus) or trifluorothymidine resistance (thymidine kinase locus). We conclude that the mutated Bcl-xL protein did not affect growth under normal conditions, plating efficiency or spontaneous mutation frequencies at the thymidine kinase (TK) locus. Results at the hypoxanthine phosphoribosyl transferase (HPRT) locus were inconclusive. A mutant fraction for TK6‑Bcl-xL gly-159-ala clone #38 cells exposed to 150cGy of 160kVp x-rays was also calculated. Exposure to x-irradiation increased the mutant fraction of TK6‑Bcl-xL gly-159-ala clone #38 cells.

  11. Cloning and characterization of a novel apolipoprotein gene, apolipoprotein AV, in tree shrews.

    PubMed

    Li, Guoping; Luo, Huairong; Sun, Guotao; Wu, Guisheng; Wu, Gang; Wang, Yan; Man, Yong; Wang, Shu; Li, Jian; Chen, Baosheng

    2013-09-01

    Apolipoprotein AV (apoAV) modulates plasma triglyceride levels, which is an independent risk factor for cardiovascular disease. ApoAV is also involved in atherosclerosis lesion formation. In order to systematically evaluate the apolipoprotein-related gene profile in tree shrew, a model for its insusceptibility to atherosclerosis, we performed apoAV cloning and characterization. The full-length cDNA of apoAV was identified using SMART-RACE. ApoAV cDNA sequence revealed two transcripts, 1,948 and 1,397 base pairs, due to alternative polyadenylation. These two transcripts share the same open reading frame (ORF), which encodes a 369-amino acid protein with high identity to human apoAV (75 %), including a 23-amino acid N-terminal signal peptide. ApoAV is expressed exclusively in the liver. Mature apoAV was expressed in E. coli BL21(DE3) and purified by Ni-chelated resin. Lipoprotein lipase activity was significantly stimulated by this recombinant protein. The full-length ORF of apoAV was cloned into pDsRed-monomer-N1 vector with a red fluorescent protein tag and was primarily localized in cytoplasm of hepG2 cells. The successful cloning, expression and localization of apoAV in tree shrew has laid down the foundation for further investigation on its structure and functions.

  12. Cloning and characterization of functional subtype A HIV-1 envelope variants transmitted through breastfeeding.

    PubMed

    Rainwater, Stephanie M J; Wu, Xueling; Nduati, Ruth; Nedellec, Rebecca; Mosier, Donald; John-Stewart, Grace; Mbori-Ngacha, Dorothy; Overbaugh, Julie

    2007-03-01

    Previous studies of HIV-1 variants transmitted from mother-to-infant have focused primarily on computational analyses of partial envelope gene sequences, rather than analyses of functional envelope variants. There are very few examples of well-characterized functional envelope clones from mother-infant pairs, especially from envelope variants representing the most prevalent subtypes worldwide. To address this, we amplified the envelope variants present in 4 mother-infant transmission pairs, all of whom were infected with subtype A and three of whom presumably transmitted HIV-1 during the breastfeeding period. Functional envelope clones were constructed, either encoding full-length envelope sequences from the mother and baby or by making chimeric envelope clones in a common backbone sequence. The infant envelope sequences were genetically homogeneous compared to the maternal viruses, and pseudoviruses bearing these envelopes all used CCR5 as a coreceptor. The infant viruses were generally resistant to neutralization by maternal antibodies present near the time of transmission. There were no notable differences in sensitivity of the mother and infant envelope variants to neutralization by heterologous plasma or monoclonal antibodies 2G12 and b12, or to inhibition by sCD4, PSC-RANTES or TAK779. This collection of viral envelopes, which can be used for making pseudotyped viruses, may be useful for examining the efficacy of interventions to block mother-infant transmission, including sera from vaccine candidates, purified antibodies under consideration for passive immunization and viral entry inhibitors.

  13. Cloning and characterization of monofunctional catalase from photosynthetic bacterium Rhodospirillum rubrum S1.

    PubMed

    Lee, Dong-Heon; Oh, Duck-Chul; Oh, You-Sung; Malinverni, Juliana C; Kukor, Jerome J; Kahng, Hyung-Yeel

    2007-09-01

    In this study, an approx. 2.5-kb gene fragment including the catalase gene from Rhodospirillum rubrum S1 was cloned and characterized. The determination of the complete nucleotide sequence revealed that the cloned DNA fragment was organized into three open reading frames, designated as ORF1, catalase, and ORF3 in that order. The catalase gene consisted of 1,455 nucleotides and 484 amino acids, including the initiation and stop codons, and was located 326 bp upstream in the opposite direction of ORF1. The catalase was overproduced in Escherichia coli UM255, a catalase-deficient mutant, and then purified for the biochemical characterization of the enzyme. The purified catalase had an estimated molecular mass of 189 kDa, consisting of four identical subunits of 61 kDa. The enzyme exhibited activity over a broad pH range from pH 5.0 to pH 11.0 and temperature range from 20 degrees C to 60 degrees C. The catalase activity was inhibited by 3-amino-1,2,4-triazole, cyanide, azide, and hydroxylamine. The enzyme's K(m) value and V(max) of the catalase for H2O2 were 21.8 mM and 39,960 U/mg, respectively. Spectrophotometric analysis revealed that the ratio of A406 to A280 for the catalase was 0.97, indicating the presence of a ferric component. The absorption spectrum of catalase-4 exhibited a Soret band at 406 nm, which is typical of a heme-containing catalase. Treatment of the enzyme with dithionite did not alter the spectral shape and revealed no peroxidase activity. The combined results of the gene sequence and biochemical characterization proved that the catalase cloned from strain S1in this study was a typical monofunctional catalase, which differed from the other types of catalases found in strain S1.

  14. Cloning and characterization of the beer foaming gene CFG1 from Saccharomyces pastorianus.

    PubMed

    Blasco, Lucía; Veiga-Crespo, Patricia; Sánchez-Pérez, Angeles; Villa, Tomás G

    2012-10-31

    Foam production is an essential characteristic of beer, generated mainly from the proteins present in the malt and, to a minor extent, from the mannoproteins in brewer's yeast cell walls. Here, we describe the isolation and characterization of the novel fermentation gene CFG1 (Carlsbergensis foaming gene) from Saccharomyces pastorianus. CFG1 encodes the cell wall protein Cfg1p, a 105 kDa protein highly homologous to Saccharomyces cerevisiae cell wall mannoproteins, particularly those involved in foam formation, such as Awa1p and Fpg1p. Further characterization of Cfg1p revealed that this novel protein is responsible for beer foam stabilization. This report represents the first time that a brewing yeast foaming gene has been cloned and its action fully characterized.

  15. Cloning and characterization of farnesyl pyrophosphate synthase from the highly branched isoprenoid producing diatom Rhizosolenia setigera

    PubMed Central

    Ferriols, Victor Marco Emmanuel N.; Yaginuma, Ryoko; Adachi, Masao; Takada, Kentaro; Matsunaga, Shigeki; Okada, Shigeru

    2015-01-01

    The diatom Rhizosolenia setigera Brightwell produces highly branched isoprenoid (HBI) hydrocarbons that are ubiquitously present in marine environments. The hydrocarbon composition of R. setigera varies between C25 and C30 HBIs depending on the life cycle stage with regard to auxosporulation. To better understand how these hydrocarbons are biosynthesized, we characterized the farnesyl pyrophosphate (FPP) synthase (FPPS) enzyme of R. setigera. An isolated 1465-bp cDNA clone contained an open reading frame spanning 1299-bp encoding a protein with 432 amino acid residues. Expression of the RsFPPS cDNA coding region in Escherichia coli produced a protein that exhibited FPPS activity in vitro. A reduction in HBI content from diatoms treated with an FPPS inhibitor, risedronate, suggested that RsFPPS supplies precursors for HBI biosynthesis. Product analysis by gas chromatography-mass spectrometry also revealed that RsFPPS produced small amounts of the cis-isomers of geranyl pyrophosphate and FPP, candidate precursors for the cis-isomers of HBIs previously characterized. Furthermore, RsFPPS gene expression at various life stages of R. setigera in relation to auxosporulation were also analyzed. Herein, we present data on the possible role of RsFPPS in HBI biosynthesis, and it is to our knowledge the first instance that an FPPS was cloned and characterized from a diatom. PMID:25996801

  16. Cloning and characterization of farnesyl pyrophosphate synthase from the highly branched isoprenoid producing diatom Rhizosolenia setigera.

    PubMed

    Ferriols, Victor Marco Emmanuel N; Yaginuma, Ryoko; Adachi, Masao; Takada, Kentaro; Matsunaga, Shigeki; Okada, Shigeru

    2015-05-21

    The diatom Rhizosolenia setigera Brightwell produces highly branched isoprenoid (HBI) hydrocarbons that are ubiquitously present in marine environments. The hydrocarbon composition of R. setigera varies between C25 and C30 HBIs depending on the life cycle stage with regard to auxosporulation. To better understand how these hydrocarbons are biosynthesized, we characterized the farnesyl pyrophosphate (FPP) synthase (FPPS) enzyme of R. setigera. An isolated 1465-bp cDNA clone contained an open reading frame spanning 1299-bp encoding a protein with 432 amino acid residues. Expression of the RsFPPS cDNA coding region in Escherichia coli produced a protein that exhibited FPPS activity in vitro. A reduction in HBI content from diatoms treated with an FPPS inhibitor, risedronate, suggested that RsFPPS supplies precursors for HBI biosynthesis. Product analysis by gas chromatography-mass spectrometry also revealed that RsFPPS produced small amounts of the cis-isomers of geranyl pyrophosphate and FPP, candidate precursors for the cis-isomers of HBIs previously characterized. Furthermore, RsFPPS gene expression at various life stages of R. setigera in relation to auxosporulation were also analyzed. Herein, we present data on the possible role of RsFPPS in HBI biosynthesis, and it is to our knowledge the first instance that an FPPS was cloned and characterized from a diatom.

  17. Cloning, pharmacological characterization, and chromosome assignment of the human dopamine transporter.

    PubMed

    Giros, B; el Mestikawy, S; Godinot, N; Zheng, K; Han, H; Yang-Feng, T; Caron, M G

    1992-09-01

    We have screened a human substantia nigra cDNA library with probes derived from the rat dopamine transporter. A 3.5-kilobase cDNA clone was isolated and its corresponding gene was located on the distal end of chromosome 5 (5p15.3). This human clone codes for a 620-amino acid protein with a calculated molecular weight of 68,517. Hydropathicity analysis suggests the presence of 12 putative transmembrane domains, a characteristic feature of sodium-dependent neurotransmitter carriers. The rat and the human dopamine transporters are 92% homologous. When permanently expressed in mouse fibroblast Ltk- cells, the human clone is able to induce a saturable, time- and sodium-dependent, dopamine uptake. This transport is blocked by psychostimulant drugs (cocaine, l- and d-amphetamine, and phenyclidine), neurotoxins (6-hydroxydopamine and N-methyl-4-phenylpyridine (MPP))+), neurotransmitters (epinephrine, norepinephrine, gamma-aminobutyric acid, and serotonin), antidepressants (amitriptyline, bupropion, desipramine, mazindol, nomifensine, and nortriptyline), and various uptake inhibitors (mazindol, GBR 12783, GBR 12909, and amfonelic acid). The rank orders of the Ki values of these substances at the human and the rat dopamine transporters are highly correlated (r = 0.998). The cloning of DNA human dopamine transporter gene has allowed establishment of a cell line stably expressing the human dopamine transporter and, for the first time, an extensive characterization of its pharmacology. Furthermore, these newly developed tools will help in the study of the regulation of dopamine transport in humans and in the clarification of the potential role of the dopamine transporter in a variety of disease states.

  18. Cloning and characterization of a novel mannose-binding protein of Acanthamoeba.

    PubMed

    Garate, Marco; Cao, Zhiyi; Bateman, Erik; Panjwani, Noorjahan

    2004-07-09

    Acanthamoebae produce a painful, blinding infection of the cornea. The mannose-binding protein (MBP) of Acanthamoeba is thought to play a key role in the pathogenesis of the infection by mediating the adhesion of parasites to the host cells. We describe here the isolation and molecular cloning of Acanthamoeba MBP. The MBP was isolated by chromatography on the mannose affinity gel. Gel filtration experiments revealed that the Acanthamoeba lectin is a approximately 400-kDa protein that is constituted of multiple 130-kDa subunits. Cloning and sequencing experiments indicated that the Acanthamoeba MBP gene is composed of 6 exons and 5 introns that span 3.6 kb of the amoeba genome and that MBP cDNA codes for a precursor protein of 833 amino acids. That the cloned cDNA encodes authentic MBP was demonstrated by showing that: (i). recombinant MBP possesses mannose binding activity, and (ii). polyclonal antibodies prepared against Acanthamoeba MBP bound to the recombinant protein. Sequence analysis revealed that the MBP contains a large N-terminal extracellular domain, a transmembrane domain, and a short C-terminal cytoplasmic domain. Despite extensive BLAST searches using the MBP sequence, no significant matches were retrieved. The most striking feature of the Acanthamoeba MBP sequence is the presence of a cysteine-rich region containing 14 CXCXC motifs within the extracellular domain. In summary, we have isolated, cloned, and characterized a novel MBP from Acanthamoeba. Because the presence of antibodies to MBP in tears provides protection against infection, the availability of the MBP cDNA sequence and rMBP should help develop: (i). a tear-based test to identify individuals who are at risk of developing the keratitis and (ii). strategies to immunize high-risk individuals.

  19. Map-based cloning and characterization of BPH29, a B3 domain-containing recessive gene conferring brown planthopper resistance in rice.

    PubMed

    Wang, Ying; Cao, Liming; Zhang, Yuexiong; Cao, Changxiang; Liu, Fang; Huang, Fengkuan; Qiu, Yongfu; Li, Rongbai; Lou, Xiaojin

    2015-09-01

    Rice (Oryza sativa L.) production, essential for global food security, is threatened by the brown planthopper (BPH). The breeding of host-resistant crops is an economical and environmentally friendly strategy for pest control, but few resistance gene resources have thus far been cloned. An indica rice introgression line RBPH54, derived from wild rice Oryza rufipogon, has been identified with sustainable resistance to BPH, which is governed by recessive alleles at two loci. In this study, a map-based cloning approach was used to fine-map one resistance gene locus to a 24kb region on the short arm of chromosome 6. Through genetic analysis and transgenic experiments, BPH29, a resistance gene containing a B3 DNA-binding domain, was cloned. The tissue specificity of BPH29 is restricted to vascular tissue, the location of BPH attack. In response to BPH infestation, RBPH54 activates the salicylic acid signalling pathway and suppresses the jasmonic acid/ethylene-dependent pathway, similar to plant defence responses to biotrophic pathogens. The cloning and characterization of BPH29 provides insights into molecular mechanisms of plant-insect interactions and should facilitate the breeding of rice host-resistant varieties. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Molecular cloning and pharmacological characterization of rat melatonin MT1 and MT2 receptors.

    PubMed

    Audinot, Valérie; Bonnaud, Anne; Grandcolas, Line; Rodriguez, Marianne; Nagel, Nadine; Galizzi, Jean-Pierre; Balik, Ales; Messager, Sophie; Hazlerigg, David G; Barrett, Perry; Delagrange, Philippe; Boutin, Jean A

    2008-05-15

    In order to interpret the effects of melatonin ligands in rats, we need to determine their activity at the receptor subtype level in the corresponding species. Thus, the rat melatonin rMT(1) receptor was cloned using DNA fragments for exon 1 and 2 amplified from rat genomic DNA followed by screening of a rat genomic library for the full length exon sequences. The rat rMT(2) receptor subtype was cloned in a similar manner with the exception of exon 1 which was identified by screening a rat genomic library with exon 1 of the human hMT(2) receptor. The coding region of these receptors translates proteins of 353 and 364 amino acids, respectively, for rMT(1) and rMT(2). A 55% homology was observed between both rat isoforms. The entire contiguous rat MT(1) and MT(2) receptor coding sequences were cloned, stably expressed in CHO cells and characterized in binding assay using 2-[(125)I]-Iodomelatonin. The dissociation constants (K(d)) for rMT(1) and rMT(2) were 42 and 130 pM, respectively. Chemically diverse compounds previously characterized at human MT(1) and MT(2) receptors were evaluated at rMT(1) and rMT(2) receptors, for their binding affinity and functionality in [(35)S]-GTPgammaS binding assay. Some, but not all, compounds shared a similar binding affinity and functionality at both rat and human corresponding subtypes. A different pharmacological profile of the MT(1) subtype has also been observed previously between human and ovine species. These in vitro results obtained with the rat melatonin receptors are thus of importance to understand the physiological roles of each subtype in animal models.

  1. An improved general approach for cloning and characterizing telomeres: the protozoan parasite Trypanosoma cruzi as model organism.

    PubMed

    Chiurillo, Miguel Angel; Santos, Marcia R M; Franco Da Silveira, Jose; Ramírez, Jose Luis

    2002-07-10

    We here describe a general strategy for cloning and characterizing telomeric and sub-telomeric regions of the human protozoan parasite Trypanosoma cruzi. The use of a bacterial artificial chromosome vector and a telomeric adaptor produced stable telomeric recombinant clones with inserts ranging from 5 to 25 kb. Analysis of these recombinants provided unique landmarks for chromosomal mapping and sequencing and enabled us to derive a more accurate picture of T. cruzi telomeric organization.

  2. Characterization of T cell clones from chagasic patients: predominance of CD8 surface phenotype in clones from patients with pathology.

    PubMed

    Cuna, W R; Cuna, C R

    1995-01-01

    Human Chagas' disease, caused by the protozoan Trypanosoma cruzi, is associated with pathological processes whose mechanisms are not known. To address this question, T cell lines were developed from chronic chagasic patients peripheral blood mononuclear cells (PBMC) and cloned. These T cell clones (TCC) were analyzed phenotypically with monoclonal antibodies by the use of a fluorescence microscope. The surface phenotype of the TCC from the asymptomatic patient were predominantly CD4 positive (86%). On the contrary, the surface phenotype CD8 was predominant in the TCC from the patients suffering from cardiomegaly with right bundle branch block (83%), bradycardia with megacolon (75%) and bradycardia (75%). Future studies will be developed in order to identify the antigens eliciting these T cell subpopulations.

  3. Cloning, characterization, and heterologous expression of a novel glucosyltransferase gene from sophorolipid-producing Candida bombicola.

    PubMed

    Solaiman, Daniel K Y; Liu, Yanhong; Moreau, Robert A; Zerkowski, Jonathan A

    2014-04-25

    Candida bombicola is well-studied for the production of a biosurfactant, the sophorolipids. In this paper, the cloning of a glucosyltransferase gene using polymerase-chain-reaction (PCR) technique is described. Degenerative primer-pairs were first designed based on the highly conserved amino-acid sequences of several selected yeast glucosyltransferases. Using these primers, an amplified sequence (amplicon) of 700 base-pair from C. bombicola was obtained and subsequently sequenced. Based on the sequence of this amplicon, additional target-specific PCR primers were designed for use in subsequent rounds of 3'- and 5'-extension using DNA walking technique to eventually obtain a C. bombicola genomic sequence containing an open-reading-frame putatively identified as a glucosyltransferase (gtf-1). The gene was subcloned in Saccharomyces cerevisiae for expression and functional characterization. Quantitative RT-PCR confirmed the expression of gtf-1 in the recombinant S. cerevisiae. In vitro assay with the sonicated cells of the recombinant yeast confirms the presence of glucosylation activity on sterol and hydroxy fatty acid substrates. This study reports for the first time the cloning and characterization of a broad-specificity lipid glucosylation gene from C. bombicola, and the functional activity of its gene product. Published by Elsevier B.V.

  4. Molecular cloning and characterization of a novel glucocerebrosidase of Paenibacillus sp. TS12.

    PubMed

    Sumida, Tomomi; Sueyoshi, Noriyuki; Ito, Makoto

    2002-08-01

    We report here the molecular cloning and characterization of a glucocerebrosidase [EC 3.2.1.45] from Paenibacillus sp. TS12. The open reading frame of the glucocerebrosidase gene consisted of 2,493 bp nucleotides and encoded 831 amino acid residues. The enzyme exhibited no sequence similarity with a classical glucocerebrosidase belonging to glycoside hydrolase (GH) family 30, but rather showed significant similarity with GH family 3 beta-glucosidases from Clostridium thermocellum, Ruminococcus albus, and Aspergillus aculeateus. The recombinant enzyme, expressed in Escherichia coli BL21(DE3)pLysS, had a molecular weight of 90.7 kDa and hydrolyzed NBD-labeled glucosylceramide, but not galactosylceramide, GM1a or sphingomyelin. The enzyme was most active at pH 6.5, and its apparent Km and Vmax values for NBD-labeled glucosylceramide and p-nitrophenyl-beta-glucopyranoside were 223 microM and 1.60 micromol/min/mg of protein, and 593 microM and 112 micromol/min/mg of protein, respectively. Site-directed mutagenesis indicated that Asp-223 is an essential amino acid for the catalytic reaction and possibly functions a catalytic nucleophile, as in GH family 3 beta-glucosidases. This is the first report of the molecular cloning and characterization of a glucocerebrosidase from a procaryote.

  5. Cloning and Characterization of a Critical Regulator for Preharvest Sprouting in Wheat

    PubMed Central

    Liu, Shubing; Sehgal, Sunish K.; Li, Jiarui; Lin, Meng; Trick, Harold N.; Yu, Jianming; Gill, Bikram S.; Bai, Guihua

    2013-01-01

    Sprouting of grains in mature spikes before harvest is a major problem in wheat (Triticum aestivum) production worldwide. We cloned and characterized a gene underlying a wheat quantitative trait locus (QTL) on the short arm of chromosome 3A for preharvest sprouting (PHS) resistance in white wheat using comparative mapping and map-based cloning. This gene, designated TaPHS1, is a wheat homolog of a MOTHER OF FLOWERING TIME (TaMFT)-like gene. RNA interference-mediated knockdown of the gene confirmed that TaPHS1 positively regulates PHS resistance. We discovered two causal mutations in TaPHS1 that jointly altered PHS resistance in wheat. One GT-to-AT mutation generates a mis-splicing site, and the other A-to-T mutation creates a premature stop codon that results in a truncated nonfunctional transcript. Association analysis of a set of wheat cultivars validated the role of the two mutations on PHS resistance. The molecular characterization of TaPHS1 is significant for expediting breeding for PHS resistance to protect grain yield and quality in wheat production. PMID:23821595

  6. Cloning and Characterization of the Autoinducer Synthase Gene from Lipid-Degrading Bacterium Cedecea neteri

    PubMed Central

    Tan, Kian-Hin; How, Kah-Yan; Tan, Jia-Yi; Yin, Wai-Fong; Chan, Kok-Gan

    2017-01-01

    The process of intercellular communication among bacteria, termed quorum sensing (QS), is mediated by small diffusible molecules known as the autoinducers. QS allows the population to react to the change of cell density in unison, in processes such as biofilm formation, plasmid conjugation, virulence, motility and root nodulation. In Gram-negative proteobacteria, N-acyl homoserine lactone (AHL) is the common “language” to coordinate gene expression. This signaling molecule is usually synthesized by LuxI-type proteins. We have previously discovered that a rare bacterium, Cedecea neteri, exhibits AHL-type QS activity. With information generated from genome sequencing, we have identified the luxIR gene pair responsible for AHL-type QS and named it cneIR. In this study, we have cloned and expressed the 636 bp luxI homolog in an Escherichia coli host for further characterization. Our findings show that E. coli harboring cneI produced the same AHL profile as the wild type C. neteri, with the synthesis of AHL known as N-butyryl-homoserine lactone. This 25 kDa LuxI homolog shares high similarity with other AHL synthases from closely related species. This work is the first documentation of molecular cloning and characterization of luxI homolog from C. neteri. PMID:28197135

  7. Isolation of cancer stem cells from three human glioblastoma cell lines: characterization of two selected clones.

    PubMed

    Iacopino, Fortunata; Angelucci, Cristiana; Piacentini, Roberto; Biamonte, Filippo; Mangiola, Annunziato; Maira, Giulio; Grassi, Claudio; Sica, Gigliola

    2014-01-01

    Cancer stem cells (CSC) were isolated via a non-adherent neurosphere assay from three glioma cell lines: LI, U87, and U373. Using a clonal assay, two clones (D2 and F11) were selected from spheres derived from LI cells and were characterized for the: expression of stem cell markers (CD133, Nestin, Musashi-1 and Sox2); proliferation; differentiation capability (determined by the expression of GalC, βIII-Tubulin and GFAP); Ca(2+) signaling and tumorigenicity in nude mice. Both D2 and F11 clones expressed higher levels of all stem cell markers with respect to the parental cell line. Clones grew more slowly than LI cells with a two-fold increase in duplication time. Markers of differentiation (βIII-Tubulin and GFAP) were expressed at high levels in both LI cells and in neurospheres. The expression of Nestin, Sox2, and βIII-Tubulin was down-regulated in D2 and F11 when cultured in serum-containing medium, whereas Musashi-1 was increased. In this condition, duplication time of D2 and F11 increased without reaching that of LI cells. D2, F11 and parental cells did not express voltage-dependent Ca(2+)-channels but they exhibited increased intracellular Ca(2+) levels in response to ATP. These Ca(2+) signals were larger in LI cells and in spheres cultured in serum-containing medium, while they were smaller in serum-free medium. The ATP treatment did not affect cell proliferation. Both D2 and F11 induced the appearance of tumors when ortotopically injected in athymic nude mice at a density 50-fold lower than that of LI cells. All these data indicate that both clones have characteristics of CSC and share the same stemness properties. The findings regarding the expression of differentiation markers and Ca(2+)-channels show that both clones are unable to reach the terminal differentiation. Both D2 and F11 might represent a good model to improve the knowledge on CSC in glioblastoma and to identify new therapeutic approaches.

  8. Molecular cloning, bioinformatics analysis and functional characterization of HWTX-XI toxin superfamily from the spider Ornithoctonus huwena.

    PubMed

    Jiang, Liping; Deng, Meichun; Duan, Zhigui; Tang, Xing; Liang, Songping

    2014-04-01

    Spider venom contains a very valuable repertoire of natural resources to discover novel components for molecular diversity analyses and therapeutic applications. In this study, HWTX-XI toxins from the spider venom glands of Ornithoctonus huwena which are Kunitz-type toxins (KTTs) and were directly cloned, analyzed and functionally characterized. To date, the HWTX-XI superfamily consists of 38 members deduced from 121 high-quality expressed sequence tags, which is the largest spider KTT superfamily with significant molecular diversity mainly resulted from cDNA tandem repeats as well as focal hypermutation. Among them, HW11c40 and HW11c50 may be intermediate variants between native Kunitz toxins and sub-Kunitz toxins based on evolutionary analyses. In order to elucidate their biological activities, recombinant HW11c4, HW11c24, HW11c27 and HW11c39 were successfully expressed, further purified and functionally characterized. Both HW11c4 and HW11c27 display inhibitory activities against trypsin, chymotrypsin and kallikrein. Moreover, HW11c4 is also an inhibitor relatively specific for Kv1.1 channels. HW11c24 and HW11c39 are found to be inactive on chymotrysin, trypsin, kallikrein, thrombin and ion channels. These findings provide molecular evidence for toxin diversification of the HWTX-XI superfamily and useful molecular templates of serine protease inhibitors and ion channel blockers for the development of potentially clinical applications.

  9. From expression cloning to gene modeling: the development of Xenopus gene sequence resources.

    PubMed

    Gilchrist, Michael J

    2012-03-01

    The Xenopus community has made concerted efforts over the last 10-12 years systematically to improve the available sequence information for this amphibian model organism ideally suited to the study of early development in vertebrates. Here I review progress in the collection of both sequence data and physical clone reagents for protein coding genes. I conclude that we have cDNA sequences for around 50% and full-length clones for about 35% of the genes in Xenopus tropicalis, and similar numbers but a smaller proportion for Xenopus laevis. In addition, I demonstrate that the gaps in the current genome assembly create problems for the computational elucidation of gene sequences, and suggest some ways to ameliorate the effects of this.

  10. Evolution and Molecular Characterization of Methicillin-Resistant Staphylococcus aureus Epidemic and Sporadic Clones in Cordoba, Argentina

    PubMed Central

    Sola, Claudia; Cortes, Paulo; Saka, Hector A.; Vindel, Ana; Bocco, José Luis

    2006-01-01

    Since 1999, a new, epidemic, methicillin-resistant Staphylococcus aureus (MRSA) strain, named the “Cordobes clone,” has emerged in Argentina and coexists with the pandemic Brazilian clone. The purpose of this study was to determine the stability over time of the new clone and to investigate its evolutionary relationship with epidemic international MRSA lineages and with other MRSA and methicillin-susceptible S. aureus (MSSA) major clones distributed in this region. One hundred three MRSA isolates recovered in 2001 from Cordoba, Argentina, hospitals and 31 MSSA strains collected from 1999 to 2002 were analyzed by their antibiotic resistance patterns, phage typing, and pulsed-field gel electrophoresis. Additionally, representative members of most MRSA defined genotypes (A, B, C, E, K, and I) were characterized by multilocus sequence typing (MLST) and spaA and SCCmec typing. The most prevalent MSSA pulsotypes were also analyzed by MLST. Our results support the displacement of the Brazilian clone (sequence type [ST] 239, spaA type WGKAOMQ, SCCmec type IIIA) by the Cordobes clone (ST5, spaA type TIMEMDMGMGMK, SCCmec type I) in the hospital environment. MRSA and MSSA isolates shared only ST5. The data support the origin of the Cordobes clone as a member of a lineage that includes the pediatric and New York/Japan international clones and that is genetically related to the British EMRSA-3 strain. Interestingly, the pediatric clone, isolated from most community-acquired infections in Cordoba, was characterized by ST100, a single-locus variant of ST5 and a new variant of SCCmec type related to SCCmec type IVc. PMID:16390969

  11. Cloning to reproduce desired genotypes.

    PubMed

    Westhusin, M E; Long, C R; Shin, T; Hill, J R; Looney, C R; Pryor, J H; Piedrahita, J A

    2001-01-01

    Cloned sheep, cattle, goats, pigs and mice have now been produced using somatic cells for nuclear transplantation. Animal cloning is still very inefficient with on average less than 10% of the cloned embryos transferred resulting in a live offspring. However successful cloning of a variety of different species and by a number of different laboratory groups has generated tremendous interest in reproducing desired genotypes. Some of these specific genotypes represent animal cell lines that have been genetically modified. In other cases there is a significant demand for cloning animals characterized by their inherent genetic value, for example prize livestock, household pets and rare or endangered species. A number of different variables may influence the ability to reproduce a specific genotype by cloning. These include species, source of recipient ova, cell type of nuclei donor, treatment of donor cells prior to nuclear transfer, and the techniques employed for nuclear transfer. At present, there is no solid evidence that suggests cloning will be limited to only a few specific animals, and in fact, most data collected to date suggests cloning will be applicable to a wide variety of different animals. The ability to reproduce any desired genotype by cloning will ultimately depend on the amount of time and resources invested in research.

  12. Cloning and characterization of the first GH10 and GH11 xylanases from Rhizopus oryzae.

    PubMed

    Xiao, Zhizhuang; Grosse, Stephan; Bergeron, Hélène; Lau, Peter C K

    2014-10-01

    The only available genome sequence for Rhizopus oryzae strain 99-880 was annotated to not encode any β-1,4-endoxylanase encoding genes of the glycoside hydrolase (GH) family 10 or 11. Here, we report the identification and cloning of two such members in R. oryzae strain NRRL 29086. Strain 29086 was one of several selected fungi grown on wheat or triticale bran and screened for xylanase activity among other hydrolytic actions. Its high activity (138 U/ml) in the culture supernatant led to the identification of two activity-stained proteins, designated Xyn-1 and Xyn-2 of respective molecular masses 32,000 and 22,000. These proteins were purified to electrophoretic homogeneity and characterized. The specific activities of Xyn-1 and Xyn-2 towards birchwood xylan were 605 and 7,710 U/mg, respectively. Kinetic data showed that the lower molecular weight Xyn-2 had a higher affinity (K m=3.2 ± 0.2 g/l) towards birchwood xylan than Xyn-1 by about 4-fold. The melting temperature (T m) of the two proteins, estimated to be in the range of 49.5-53.7 °C indicated that they are rather thermostable proteins. N-terminal and internal peptide sequences were obtained by chemical digestion of the purified xylanases to facilitate cloning, expression in Escherichia coli, and sequencing of the respective gene. The cloned Rhizopus xylanases were used to demonstrate release of xylose from flax shives-derived hemicellulose as model feedstock. Overall, this study expands the catalytic toolbox of GH10 and 11 family proteins that have applications in various industrial and bioproducts settings.

  13. Cloning and characterization of novel cyclotides genes from South American plants.

    PubMed

    Cunha, Nicolau Brito da; Barbosa, Aulus Estevão Anjos de Deus; de Almeida, Renato Goulart; Porto, William Farias; Maximiano, Mariana Rocha; Álvares, Luana Cristina Silva; Munhoz, Cassia Beatriz Rodrigues; Eugênio, Chesterton Ulysses Orlando; Viana, Antônio Américo Barbosa; Franco, Octavio Luiz; Dias, Simoni Campos

    2016-11-01

    Cyclotides are multifunctional plant cyclic peptides containing 28-37 amino acid residues and a pattern of three disulfide bridges, forming a motif known as the cyclic cystine knot. Due to their high biotechnological potential, the sequencing and characterization of cyclotide genes are crucial not only for cloning and establishing heterologous expression strategies, but also to understand local plant evolution in the context of host-pathogen relationships. Here, two species from the Brazilian Cerrado, Palicourea rigida (Rubiaceae) and Pombalia lanata (A.St.-Hil.) Paula-Souza (Violaceae), were used for cloning and characterizing novel cyclotide genes. Using 3' and 5' RACE PCR and sequencing, two full cDNAs, named parigidin-br2 (P. rigida) and hyla-br1 (P. lanata), were isolated and shown to have similar genetic structures to other cyclotides. Both contained the conserved ER-signal domain, N-terminal prodomain, mature cyclotide domain and a C-terminal region. Genomic sequencing of parigidin-br2 revealed two different gene copies: one intronless allele and one presenting a rare 131-bp intron. In contrast, genomic sequencing of hyla-br1 revealed an intronless gene-a common characteristic of members of the Violaceae family. Parigidin-br2 5' and 3' UTRs showed the presence of 12 putative candidate sites for binding of regulatory proteins, suggesting that the flanking and intronic regions of the parigidin-br2 gene must play important roles in transcriptional rates and in the regulation of temporal and spatial gene expression. The high degree of genetic similarity and structural organization among the cyclotide genes isolated in the present study from the Brazilian Cerrado and other well-characterized plant cyclotides may contribute to a better understanding of cyclotide evolution.

  14. Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel

    SciTech Connect

    Leng, Q.; Mercier, R.W.; Yao, W.; Berkowitz, G.A.

    1999-11-01

    Cyclic nucleotide-gated (cng) non-selective cation channels have been cloned from a number of animal systems. These channels are characterized by direct gating upon cAMO or cGMO binding to the intracellular portion of the channel protein, which leads to an increase in channel conductance. Animal cng channels are involved in signal transduction systems; they translate stimulus-induced changes in cytosolic cyclic nucleotide into altered cell membrane potential and/or cation flux as part of a signal cascade pathway. Putative plant homologs of animal cng channels have been identified. However, functional characterization (i.e., demonstration of cyclic-nucleotide-dependent ion currents) of a plant cng channel has not yet been accomplished. The authors report the cloning and first functional characterization of a plant member of this family of ion channels. The Arabidopsis cDNA AtCNGC2 encodes a polypeptide with deduced homology to the {alpha}-subunit of animal channels, and facilitates cyclic nucleotide-dependent cation currents upon expression in a number of heterologous systems. AtCNGC2 expression in a yeast mutant lacking a low-affinity K{sup +} uptake system complements growth inhibition only when lipophilic nucleotides are present in the culture medium. Voltage clamp analysis indicates that Xenopus lawvis oocytes injected with AtCNGC2 cRNA demonstrate cyclic-nucleotide-dependent, inward-rectifying K{sup +} currents. Human embryonic kidney cells (HEK293) transfected with AtCNGC2 cDNA demonstrate increased permeability to Ca{sup 2+} only in the presence of lipophilic cyclic nucleotides. The evidence presented here supports the functional classification of AtCNGC2 as a cyclic-nucleotide-gated cation channel, and presents the first direct evidence identifying a plant member of this ion channel family.

  15. Human sphingosine kinase: purification, molecular cloning and characterization of the native and recombinant enzymes.

    PubMed Central

    Pitson, S M; D'andrea, R J; Vandeleur, L; Moretti, P A; Xia, P; Gamble, J R; Vadas, M A; Wattenberg, B W

    2000-01-01

    Sphingosine 1-phosphate (S1P) is a novel lipid messenger that has important roles in a wide variety of mammalian cellular processes including growth, differentiation and death. Basal levels of S1P in mammalian cells are generally low, but can increase rapidly and transiently when cells are exposed to mitogenic agents and other stimuli. This increase is largely due to increased activity of sphingosine kinase (SK), the enzyme that catalyses its formation. In the current study we have purified, cloned and characterized the first human SK to obtain a better understanding of its biochemical activity and possible activation mechanisms. The enzyme was purified to homogeneity from human placenta using ammonium sulphate precipitation, anion-exchange chromatography, calmodulin-affinity chromatography and gel-filtration chromatography. This resulted in a purification of over 10(6)-fold from the original placenta extract. The enzyme was cloned and expressed in active form in both HEK-293T cells and Escherichia coli, and the recombinant E. coli-derived SK purified to homogeneity. To establish whether post-translational modifications lead to activation of human SK activity we characterized both the purified placental enzyme and the purified recombinant SK produced in E. coli, where such modifications would not occur. The premise for this study was that post-translational modifications are likely to cause conformational changes in the structure of SK, which may result in detectable changes in the physico-chemical or catalytic properties of the enzyme. Thus the enzymes were characterized with respect to substrate specificity and kinetics, inhibition kinetics and various other physico-chemical properties. In all cases, both the native and recombinant SKs displayed remarkably similar properties, indicating that post-translational modifications are not required for basal activity of human SK. PMID:10947957

  16. Molecular cloning and functional characterization of a rainbow trout liver Oatp

    SciTech Connect

    Steiner, Konstanze; Hagenbuch, Bruno; Dietrich, Daniel R.

    2014-11-01

    Cyanobacterial blooms have an impact on the aquatic ecosystem due to the production of toxins (e.g. microcystins, MCs), which constrain fish health or even cause fish death. However the toxicokinetics of the most abundant toxin, microcystin-LR (MC-LR), are not yet fully understood. To investigate the uptake mechanism, the novel Oatp1d1 in rainbow trout (rtOatp1d1) was cloned, identified and characterized. The cDNA isolated from a clone library consisted of 2772 bp containing a 2115 bp open reading frame coding for a 705 aa protein with an approximate molecular mass of 80 kDa. This fish specific transporter belongs to the OATP1 family and has most likely evolved from a common ancestor of OATP1C1. Real time PCR analysis showed that rtOatp1d1 is predominantly expressed in the liver, followed by the brain while expression in other organs was not detectable. Transient transfection in HEK293 cells was used for further characterization. Like its human homologues OATP1A1, OATP1B1 and OATP1B3, rtOatp1d1 displayed multi-specific transport including endogenous and xenobiotic substrates. Kinetic analyses revealed a K{sub m} value of 13.9 μM and 13.4 μM for estrone-3-sulfate and methotrexate, respectively and a rather low affinity for taurocholate with a K{sub m} value of 103 μM. Furthermore, it was confirmed that rtOatp1d1 is a MC-LR transporter and therefore most likely plays a key role in the susceptibility of rainbow trout to MC intoxications. - Highlights: • A new Oatp1d1 in rainbow trout (rtOatp1d1) was cloned, identified and characterized. • rtOatp1d1 is predominantly expressed in the liver. • rtOatp1d1 displays multi-specific transport of endogenous and xenobiotic substrates. • rtOatp1d1 is a homologue of the OATP1A1, OATP1B1 and OATP1B3. • rtOatp1d1 is a microcystin (MC) transporter.

  17. Characterization of the epidemic European fusidic acid-resistant impetigo clone of Staphylococcus aureus.

    PubMed

    O'Neill, A J; Larsen, A R; Skov, R; Henriksen, A S; Chopra, I

    2007-05-01

    Resistance to the antibiotic fusidic acid in European strains of Staphylococcus aureus causing impetigo has increased in recent years. This increase appears to have resulted from clonal expansion of a strain we have designated the epidemic European fusidic acid-resistant impetigo clone (EEFIC), which carries the fusidic acid resistance determinant fusB on its chromosome. To understand better the properties of the EEFIC responsible for its success, we have performed detailed phenotypic and genotypic characterization of this clone. Molecular typing revealed the EEFIC to be ST123, spa type t171, and agr type IV and therefore unrelated to earlier prevalent fusB(+) strains found in the United Kingdom. EEFIC strains exhibited resistance to fusidic acid, penicillin, and, in some cases, erythromycin, which are all used in the treatment of impetigo. PCR analysis of the EEFIC and complete DNA sequencing of the 39.3 Kb plasmid it harbors identified genes encoding several toxins previously implicated in impetigo (exfoliative toxins A and B and EDIN-C). The location of fusB was mapped on the chromosome and found to be associated with a novel 16.6-kb genomic island integrated downstream of groEL. Although this element is related to classical staphylococcal pathogenicity islands, it does not encode any known virulence factors and consequently has been designated SaRI(fusB) (for "S. aureus resistance island carrying fusB").

  18. Cloning and characterization of 5'-end alternatively spliced human cholecystokinin-B receptor mRNAs.

    PubMed

    Monstein, H J; Nilsson, I; Ellnebo-Svedlund, K; Svensson, S P

    1998-01-01

    We report here the cloning and characterization of a 5'-end alternatively spliced human cholecystokinin-B (CCK-B) receptor mRNA. The 5'-end of this CCK-B receptor transcript (termed CCK-BRtx) consisted of exon Ia, present in the ordinary full-length CCK-B receptor mRNA (CCK-BRwt), and exon Ib, present in a previously described 5'-end alternatively spliced CCK-B receptor mRNA (CCK-BRt). A short open reading frame preceded the AUG translation initiation codon of the CCK-BRtx. Transfection of COS-7 cells with the CCK-BRtx or CCK-BRt cDNAs did not lead to the appearance of peptidergic and non-peptidergic binding sites. Cell free in vitro translation yielded proteins of approximately 44 kDa (CCK-B receptor) and 40 kDa (CCK-BRt receptor) whereas no 40 kDa product was detected from the cloned CCK-BRtx cDNA. Instead, a protein product of approximately 9 kDa was visualized, the size corresponding to the predicted protein encoded by the short open reading frame. The alternatively spliced CCK-B receptor transcripts were concomitantly expressed with the ordinary full-length CCK-B receptor mRNA in the brain, pancreas, and stomach. The possibility that such transcripts are translated in vivo into truncated CCK-B receptors is discussed.

  19. Characterization of cloned cells from an immortalized fetal pulmonary type II cell line

    SciTech Connect

    Henderson, R.F.; Waide, J.J.; Lechner, J.F.

    1995-12-01

    A cultured cell line that maintained expression of pulmonary type II cell markers of differentiation would be advantageous to generate a large number of homogenous cells in which to study the biochemical functions of type II cells. Type II epithelial cells are the source of pulmonary surfactant and a cell of origin for pulmonary adenomas. Last year our laboratory reported the induction of expression of two phenotypic markers of pulmonary type II cells (alkaline phosphatase activity and surfactant lipid synthesis) in cultured fetal rat lung epithelial (FRLE) cells, a spontaneously immortalized cell line of fetal rat lung type II cell origin. Subsequently, the induction of the ability to synthesize surfactant lipid became difficult to repeat. We hypothesized that the cell line was heterogenuous and some cells were more like type II cells than others. The purpose of this study was to test this hypothesis and to obtain a cultured cell line with type II cell phenotypic markers by cloning several FRLE cells and characterizing them for phenotypic markers of type II cells (alkaline phosphatase activity and presence of surfactant lipids). Thirty cloned cell lines were analyzed for induced alkaline phosphatase activity (on x-axis) and for percent of phospholipids that were disaturated (i.e., surfactant).

  20. Molecular cloning, characterization, and expression of a chitinase from the entomopathogenic fungus Paecilomyces javanicus.

    PubMed

    Chen, Chien-Cheng; Kumar, H G Ashok; Kumar, Senthil; Tzean, Shean-Shong; Yeh, Kai-Wun

    2007-07-01

    Paecilomyces javanicus is an entomopathogenic fungus of coleopteran and lepidopteran insects. Here we report on cloning, characterization, and expression patterns of a chitinase from P. javanicus. A strong chitinase activity was detected in P. javanicus cultures added to chitin. The full-length cDNA, designated PjChi-1, was cloned from mycelia by using both degenerate primer/reverse transcription polymerase chain reaction (RT-PCR) amplification and 5'-/3'-RACE extension. The 1.18-kb cDNA gene contains a 1035-bp open reading frame and encodes a 345-amino acid polypeptide with a deduced molecular mass of 37 kDa. A conserved motif for chitinase activity -F82DGIDIDWE90- was present in deduced amino acid sequence. Both RT-PCR and Northern analysis revealed that the expression of the PjChi gene was constitutive at low level, but enhanced to high level when chitin was the substrate. Fungal inhibitory assay showed that PjChi-1 inhibited the growth of phytopathogenic fungi such as Sclerotium rolfsii, Colletotrichum gloeosporioides, Aspergillus nidulans, and Rhizoctonia solani.

  1. Molecular cloning and functional characterization of the human endogenous retrovirus K113.

    PubMed

    Beimforde, Nadine; Hanke, Kirsten; Ammar, Ismahen; Kurth, Reinhard; Bannert, Norbert

    2008-02-05

    The human endogenous retrovirus-K113 (HERV-K113) is the most complete HERV known to date. It contains open reading frames for all viral proteins. Depending on ethnicity, up to 30% of the human population carries the provirus on chromosome 19. To facilitate molecular and functional studies, we have cloned the HERV-K113 sequence into a small plasmid vector and characterized its functional properties. Here we show that based on a substantial LTR-promoter activity, full length messenger RNA and spliced env-, rec- and 1.5 kb (hel)-transcripts are produced. The envelope protein of HERV-K113 is synthesized as an 85 kDa precursor that is found partially processed. The accessory Rec protein is highly expressed and accumulates in the nucleus. Expression analysis revealed synthesis of the Gag precursor and the protease. However, the cloned HERV-K113 provirus is not replication competent. It carries inactivating mutations in the reverse transcriptase gene. These mutations can be reversed to reconstitute the active enzyme, but the reversion is not sufficient to reconstitute replication capacity of the virus.

  2. Quantitative and qualitative characterization of expanded CD4+ T cell clones in rheumatoid arthritis patients.

    PubMed

    Ishigaki, Kazuyoshi; Shoda, Hirofumi; Kochi, Yuta; Yasui, Tetsuro; Kadono, Yuho; Tanaka, Sakae; Fujio, Keishi; Yamamoto, Kazuhiko

    2015-08-06

    Rheumatoid arthritis (RA) is an autoimmune destructive arthritis associated with CD4(+) T cell-mediated immunity. Although expanded CD4(+) T cell clones (ECs) has already been confirmed, the detailed characteristics of ECs have not been elucidated in RA. Using combination of a single-cell analysis and next-generation sequencing (NGS) in TCR repertoire analysis, we here revealed the detailed nature of ECs by examining peripheral blood (PB) from 5 RA patients and synovium from 1 RA patient. When we intensively investigated the single-cell transcriptome of the most expanded clones in memory CD4(+) T cells (memory-mECs) in RA-PB, senescence-related transcripts were up-regulated, indicating circulating ECs were constantly stimulated. Tracking of the transcriptome shift within the same memory-mECs between PB and the synovium revealed the augmentations in senescence-related gene expression and the up-regulation of synovium-homing chemokine receptors in the synovium. Our in-depth characterization of ECs in RA successfully demonstrated the presence of the specific immunological selection pressure, which determines the phenotype of ECs. Moreover, transcriptome tracking added novel aspects to the underlying sequential immune processes. Our approach may provide new insights into the pathophysiology of RA.

  3. Molecular cloning and functional characterization of borneol dehydrogenase from the glandular trichomes of Lavandula x intermedia.

    PubMed

    Sarker, Lukman S; Galata, Mariana; Demissie, Zerihun A; Mahmoud, Soheil S

    2012-12-15

    Several varieties of Lavandula x intermedia (lavandins) are cultivated for their essential oils (EOs) for use in cosmetic, hygiene and personal care products. These EOs are mainly constituted of monoterpenes including camphor, which contributes an off odor reducing the olfactory appeal of the oil. We have recently constructed a cDNA library from the glandular trichomes (the sites of EO synthesis) of L. x intermedia plants. Here, we describe the cloning of a borneol dehydrogenase cDNA (LiBDH) from this library. The 780 bp open reading frame of the cDNA encoded a 259 amino acid short chain alcohol dehydrogenase with a predicted molecular mass of ca. 27.5 kDa. The recombinant LiBDH was expressed in Escherichia coli, purified by Ni-NTA agarose affinity chromatography, and functionally characterized in vitro. The bacterially produced enzyme specifically converted borneol to camphor as the only product with K(m) and k(cat) values of 53 μM and 4.0 × 10(-4) s(-1), respectively. The LiBDH transcripts were specifically expressed in glandular trichomes of mature flowers indicating that like other Lavandula monoterpene synthases the expression of this gene is regulated in a tissue-specific manner. The cloning of LiBDH has far reaching implications in improving the quality of Lavandula EOs through metabolic engineering.

  4. Molecular cloning, characterization, and engineering of xylitol dehydrogenase from Debaryomyces hansenii.

    PubMed

    Biswas, Dipanwita; Datt, Manish; Aggarwal, Monika; Mondal, Alok K

    2013-02-01

    Because of its natural ability to utilize both xylose and arabinose, the halotolerant and osmotolerant yeast Debaryomyces hansenii is considered as a potential microbial platform for exploiting lignocellulosic biomass. To gain better understanding of the xylose metabolism in D. hansenii, we have cloned and characterized a xylitol dehydrogenase gene (DhXDH). The cloned gene appeared to be essential for xylose metabolism in D. hansenii as the deletion of this gene abolished the growth of the cells on xylose. The expression of DhXDH was strongly upregulated in the presence of xylose. Recombinant DhXdhp was expressed and purified from Escherichia coli. DhXdhp was highly active against xylitol and sorbitol as substrate. Our results showed that DhXdhp was thermo-sensitive, and except this, its biochemical properties were quite comparable with XDH from other yeast species. Furthermore, to make this enzyme suitable for metabolic engineering of D. hansenii, we have improved its thermotolerance and modified cofactor requirement through modelling and mutagenesis approach.

  5. Cloning and characterization of serpin-like genes from the striped rice stem borer, Chilo suppressalis.

    PubMed

    Ge, Zhao-Yu; Wan, Pin-Jun; Cheng, Xiong-Feng; Zhang, Yang; Li, Guo-Qing; Han, Zhao-Jun

    2013-06-01

    Serpins, also called serine proteinase inhibitors, are widely distributed in eukaryotes. In insects, serpins play important roles in regulating immune responses, gut physiology, and other processes. Here, we report the cloning and characterization of 12 serpin-like cDNAs from the striped rice stem borer (Chilo suppressalis), a major rice pest. The putative proteins share significant sequence similarity with known insect serpins, especially those from lepidopterons. Analysis of functional domains revealed that nine of the cloned serpins are putative trypsin- or chymotrypsin-like inhibitors; two are mixed-type serpins that may act as inhibitors for trypsins, elastases, or thrombin; and the remaining one is truncate. The potential functions of these serpins in interacting with host plants were also investigated by analyzing tissue-specific expression and the impact of different host plant genotypes on gene expression. Our results provide a foundation for future studies on the role of serpins in gut physiology in the striped rice stem borer, and also useful information for comparative analyses of serpins from different insect species.

  6. Cloning and functional characterization of the pig (Sus scrofa) organic anion transporting polypeptide 1a2.

    PubMed

    Yu, Yejin; Liu, Xiaoxiao; Zhang, Zheren; Xiao, Yunpeng; Hong, Mei

    2013-08-01

    1. Organic anion transporting polypeptides (OATPs) are a family of transporter proteins that have been extensively recognized as key determinants of absorption, distribution, metabolism and excretion of various drugs. Human OATP1A2 has been demonstrated to transport wide spectrum of endogenous and exogenous compounds. Study on OATP1A2 orthologues of other species, however, is still limited. 2. Here, we described the cloning and functional characterization of a member of the OATP/Oatp family member obtained from pig (Sus scrofa) liver. Sequence analysis suggested that it has a high homology with human OATP1A2 and bovine Oatp1a2. Prototypic substrates estrone-3-sulfate (E-3-S) and taurocholic acid were transported by the protein. The transport of these two substrates is pH-dependent, with lower pH showing higher uptake function. Kinetic study showed the transport of these two substrates have a Km of 42.5 ± 12.1 and 33.1 ± 8.7 µM, respectively. Pig Slco1a2 has the highest expression level in the liver, and to a less extend in the brain and small intestine. 3. In conclusion, an OATP member was cloned from pig liver. Sequence analysis and phylogenic study revealed it as an orthologue of human OATP1A2. Its kinetic characteristic for prototypic substrates and organ distribution are similar with that of OATP1A2.

  7. [Cloning and characterization of lactate dehydrogenase C4 from pika ochotona curzoniae].

    PubMed

    Zhang, Q -L; Yang, M; Zhao, Y -Y; Zhang, S -Z; He, Q -H; Meng, X -Y; Tan, W -R

    2014-01-01

    Lactate dehydrogenase C4 (LDH-C4) is considered to be a good target protein for the development of contraceptive drugs. To develop contraceptive rodenticide against pika (Ochotona curzoniae) LDH-C4, the pika LDH-C gene was cloned and expressed in Escherichia coli. The recombinant protein was purified and characterized. The cDNA of pika LDH-C gene was cloned by RACE method. The cDNA was 1498 bp in length containing an ORF of 996 bp which encoded a polypeptide of 332 amino acids. The ORF of pika LDH-C was introduced in E. coli and expressed with no fusion tags added. The recombinant LDH-C4 protein was purified by heating, affinity chromatography and ion-exchange chromatography. The recombinant pika LDH-C4 was a tetramer with a molecular weight of approximately 140 kDa, and it had temperature-dependent catalytic activity, as it was thermally stable up to 60 degrees C. The optimal pH values in the forward and backward reactions were around 7.48 and 10.28, respectively. The apparent Michaelis constants for pyruvate and lactate were 51.2 +/- 3.8 and 8568.8 +/- 409 microM respectively. The inhibition constant for oxalic acid was 11.8 +/- 3.5 mM. This study laid a solid foundation for contraceptive rodenticide development against pika LDH-C4.

  8. Cloning, expression, and characterization of Der f 7, an allergen of Dermatophagoides farinae from China.

    PubMed

    Cui, Yu-bao; Cai, Hong-xing; Zhou, Ying; Gao, Cui-xiang; Shi, Wei-hong; Yu, Ming; Li, Li

    2010-09-01

    A full-length cDNA encoding house dust mite allergen Der f 7 from Dermatophagoides farina (Acari: Pyroglyphidae) from China was cloned, sequenced, and successfully expressed. A reference sequence (GenBank accession AY283292) was used to design polymerase chain reaction primers. Analysis revealed eight mismatched nucleotides in five Der f 7 cDNA clones, and the projected amino acid sequence contained six incompatible residues. These results suggest that the sequence of Der f 7 may be polymorphic. Further bioinformatic analysis revealed that the mature Der f 7 allergen had a molecular mass of approximately 21.88 kDa and a theoretical isoelectric point of 4.90. Der f 7 protein secondary structure was composed of a helix (56.63%), extended strand (5.10%), and random coil (38.27%). Group 7 allergens are present in Pyroglyphidae, Acaridae, and Glycyphagidae families, and homology analysis revealed a 86% similarity between Der f 7 and Der p 7. Furthermore, a phylogenetic tree constructed of group 7 allergens from different mite species revealed that Der f 7 and Der p 7 clustered with 100% bootstrap support. Bioinformatics-driven characterization of Der f 7 allergen as conducted in this study may contribute to diagnostic and therapeutic applications for dust mite allergies.

  9. Cloning and characterization of three hypothetical secretion chaperone proteins from Xanthomonas axonopodis pv. citri.

    PubMed

    Tasic, Ljubica; Borin, Paula F L; Khater, Leti Cia; Ramos, Carlos H I

    2007-06-01

    Xanthomonas axonopodis pv. citri (Xac) causes citrus canker in plantations around the world and is of particular significance in Brazil where its incidence has risen exponentially over the past decade. Approximately one third of the predicted Xac open reading frames show no homology, or homology with very low score with that of known sequences. It is believed that Xac utilizes secretion systems to transfer virulence proteins into susceptible eukaryotic cells. This process is assisted by secretion chaperones that maintain virulence proteins partly or completely unfolded during translocation. We have cloned three of these hypothetical secretion chaperones: XAC0419 and XAC1346 from type III secretion system (TTSS) and XACb0033 from type IV secretion system (TFSS). All proteins were cloned in a pET23a vector (Novagen), expressed at 37 degrees C using a BL21(DE3)pLysS Escherichia coli strain and purified by ion exchange and gel-filtration chromatographic methods. Pure proteins were characterized using spectroscopic measurements: circular dichroism, and both static and lifetime emission fluorescence in the case of XACb0033. The analyzed proteins are stable at elevated temperatures (up to 65 degrees C) and exhibit alpha-helix content from approximately 30% (XACb003) to approximately 87% (XAC1346). XACb0033 exhibits lifetimes in the fluorescence experiments that indicate different neighborhoods for its tryptophan residues. These chaperones have the characteristics of TTSS and TFSS: all are small, with a high alpha-helix content, and without ATP-binding or ATP-hydrolyzing activity.

  10. Cloning and characterization of cDNA for syndecan core protein in sea urchin embryos.

    PubMed

    Tomita, K; Yamasu, K; Suyemitsu, T

    2000-10-01

    The cDNA for the core protein of the heparan sulfate proteoglycan, syndecan, of embryos of the sea urchin Anthocidaris crassispina was cloned and characterized. Reverse transcription-polymerase chain reaction (RT-PCR) was used with total ribonucleic acid (RNA) from late gastrula stage embryos and degenerate primers for conserved regions of the core protein, to obtain a 0.1 kb PCR product. A late gastrula stage cDNA library was then screened using the PCR product as a probe. The clones obtained contained an open reading frame of 219 amino acid residues. The predicted product was 41.6% identical to mouse syndecan-1 in the region spanning the cytoplasmic and transmembrane domains. Northern analysis showed that the transcripts were present in unfertilized eggs and maximum expression was detected at the early gastrula stage. Syndecan mRNA was localized around the nuclei at the early cleavage stage, but was then found in the ectodermal cells of the gastrula embryos. Western blotting analysis using the antibody against the recombinant syndecan showed that the proteoglycan was present at a constant level from the unfertilized egg stage through to the pluteus larval stage. Immunostaining revealed that the protein was expressed on apical and basal surfaces of the epithelial wall in blastulae and gastrulae.

  11. Characterization of the Epidemic European Fusidic Acid-Resistant Impetigo Clone of Staphylococcus aureus▿

    PubMed Central

    O'Neill, A. J.; Larsen, A. R.; Skov, R.; Henriksen, A. S.; Chopra, I.

    2007-01-01

    Resistance to the antibiotic fusidic acid in European strains of Staphylococcus aureus causing impetigo has increased in recent years. This increase appears to have resulted from clonal expansion of a strain we have designated the epidemic European fusidic acid-resistant impetigo clone (EEFIC), which carries the fusidic acid resistance determinant fusB on its chromosome. To understand better the properties of the EEFIC responsible for its success, we have performed detailed phenotypic and genotypic characterization of this clone. Molecular typing revealed the EEFIC to be ST123, spa type t171, and agr type IV and therefore unrelated to earlier prevalent fusB+ strains found in the United Kingdom. EEFIC strains exhibited resistance to fusidic acid, penicillin, and, in some cases, erythromycin, which are all used in the treatment of impetigo. PCR analysis of the EEFIC and complete DNA sequencing of the 39.3 Kb plasmid it harbors identified genes encoding several toxins previously implicated in impetigo (exfoliative toxins A and B and EDIN-C). The location of fusB was mapped on the chromosome and found to be associated with a novel 16.6-kb genomic island integrated downstream of groEL. Although this element is related to classical staphylococcal pathogenicity islands, it does not encode any known virulence factors and consequently has been designated SaRIfusB (for “S. aureus resistance island carrying fusB”). PMID:17344365

  12. Cloning and characterization of murine Aqp5: evidence for a conserved aquaporin gene cluster.

    PubMed

    Krane, C M; Towne, J E; Menon, A G

    1999-05-01

    Aquaporin 5 (Aqp5), a member of the aquaporin family of membrane water channels, is thought to modulate the osmolality of fluids in the eye, lung, and salivary gland. Here, we report the cloning and genomic characterization of murine Aqp5 and its expression in relevant mouse tissues. This gene, comprised of four exons encoding 265 amino acids (121, 55, 28, and 61 amino acids respectively), is transcribed into an approximate 1.8-kb mRNA detected in lung, parotid, submandibular, sublingual, and lacrimal tissues. Aqp5 encodes a protein that is 98% identical to rat Aqp5. An Aqp5 antibody detects an approximately 27-kDa protein band in mouse lung, and an additional 29 kDa band in salivary gland. Cloning and physical mapping genomic fragments contiguous with Aqp5 revealed two other members of the aquaporin family: Aqp2 and Aqp6, arrayed head to tail in the order Aqp2-Aqp5-Aqp6, and provides evidence of a gene cluster conserved in order and orientation in both mice and humans.

  13. Molecular cloning and characterization of plastin, a human leukocyte protein expressed in transformed human fibroblasts.

    PubMed Central

    Lin, C S; Aebersold, R H; Kent, S B; Varma, M; Leavitt, J

    1988-01-01

    The phosphoprotein plastin was originally identified as an abundant transformation-induced polypeptide of chemically transformed neoplastic human fibroblasts. This abundant protein is normally expressed only in leukocytes, suggesting that it may play a role in hemopoietic cell differentiation. Protein microsequencing of plastin purified from leukemic T lymphocytes by high-resolution two-dimensional gel electrophoresis produced eight internal oligopeptide sequences. An oligodeoxynucleotide probe corresponding to one of the oligopeptides was used to clone cDNAs from transformed human fibroblasts that encoded the seven other oligopeptides predicted for human plastin. Sequencing and characterization of two cloned cDNAs revealed the existence of two distinct, but closely related, isoforms of plastin--l-plastin, which is expressed in leukocytes and transformed fibroblasts, and t-plastin, which is expressed in normal cells of solid tissues and transformed fibroblasts. The leukocyte isoform l-plastin is expressed in a diverse variety of human tumor cell lines, suggesting that it may be involved in the neoplastic process of some solid human tumors. Images PMID:3211125

  14. Molecular cloning, characterization and expression of a gene encoding phosphoketolase from Termitomyces clypeatus.

    PubMed

    Sarkar, Prabuddha; Roy, Amit

    2014-05-16

    A phosphoketolase (pk) gene from the fungus Termitomyces clypeatus (TC) was cloned and partially characterized. Oligonucleotide primers specific for the phosphoketolase gene (pk) were designed from the regions of homologies found in the primary structure of the enzyme from other fungal sources related to TC, using multiple sequence alignment technique. The cDNA of partial lengths were amplified, cloned and sequenced in three parts by 3' and 5' RACE and RT-PCR using these oligonucleotide primers. The full length ds cDNA was constructed next by joining these three partial cDNA sequences having appropriate overlapping regions using Overlap Extension PCR technique. The constructed full length cDNA exhibited an open reading frame of 2487 bases and 5' and 3' UTRs. The deduced amino acid sequence, which is of 828 amino acids, when analyzed with NCBI BLAST, showed high similarities with the phosphoketolase enzyme (Pk) superfamily with expected domains. The part of the TC genomic DNA comprising of the pk gene was also amplified, cloned and sequenced and was found to contain two introns of 68 and 74 bases that interrupt the pk reading frame. The coding region of pk cDNA was subcloned in pKM260 expression vector in correct frame and the protein was expressed in Escherichia coli BL21 (DE3) transformed with this recombinant expression plasmid. The recombinant protein purified by His-tag affinity chromatography indicated the presence of a protein of the expected size. In vivo expression studies of the gene in presence of different carbon sources indicated synthesis of Pk specific mRNA, as expected. Phylogenetic studies revealed a common ancestry of the fungal and bacterial Pk. The TC is known to secrete several industrially important enzymes involved in carbohydrate metabolism. However, the presence of Pk, a key enzyme in pentose metabolism, has not been demonstrated conclusively in this organism. Cloning, sequencing and expression study of this gene establishes the functioning

  15. Molecular cloning and characterization of amylase from soil metagenomic library derived from Northwestern Himalayas.

    PubMed

    Sharma, Sarika; Khan, Farrah Gul; Qazi, Ghulam Nabi

    2010-05-01

    The increasing demand for novel biocatalysts stimulates exploration of resources from soil. Metagenomics, a culture independent approach, represent a sheer unlimited resource for discovery of novel biocatalysts from uncultured microorganisms. In this study, a soil-derived metagenomic library containing 90,700 recombinants was constructed and screened for lipase, cellulase, protease and amylase activity. A gene (pAMY) of 909 bp encoding for amylase was found after the screening of 35,000 Escherichia coli clones. Amino acid sequence comparison and phylogenetic analysis indicated that pAMY was closely related to uncultured bacteria. The molecular mass of pAMY was estimated about 38 kDa by sodium dodecyl sulphate polyacrylamide gel electrophoresis. Amylase activity was determined using soluble starch, amylose, glycogen and maltose as substrates. The maximal activity (2.46 U/mg) was observed at 40 degrees C under nearly neutral pH conditions with amylose; whereas it retains 90% of its activity at low temperature with all the substrates used in this study. The ability of pAMY to work at low temperature is unique for amylases reported so far from microbes of cultured and uncultured division.

  16. Molecular cloning and characterization of a threonine/serine protein kinase lvakt from Litopenaeus vannamei

    NASA Astrophysics Data System (ADS)

    Ruan, Lingwei; Liu, Rongdiao; Xu, Xun; Shi, Hong

    2014-07-01

    The phosphatidylinositol 3-kinase (PI3K)-AKT pathway is involved in various cellular functions, including anti-apoptosis, protein synthesis, glucose metabolism and cell cycling. However, the role of the PI3K-AKT pathway in crustaceans remains unclear. In the present study, we cloned and characterized the AKT gene lvakt from Litopenaeus vannamei. The 511-residue LVAKT was highly conserved; contained a PH domain, a catalytic domain and a hydrophobic domain; and was highly expressed in the heart and gills of L. vannamei. We found, using Real-Time Quantitative PCR (Q-PCR) analysis, that lvakt was up-regulated during early white spot syndrome virus (WSSV) infection. Moreover, the PI3K-specific inhibitor, LY294002, reduced viral gene transcription, implying that the PI3K-AKT pathway might be hijacked by WSSV. Our results therefore suggest that LVAKT may play an important role in the shrimp immune response against WSSV.

  17. Molecular cloning and biochemical characterization of three Concord grape (Vitis labrusca) flavonol 7-O-glucosyltransferases.

    PubMed

    Hall, Dawn; Kim, Kyung Hee; De Luca, Vincenzo

    2011-12-01

    Grapes berries produce and accumulate many reactive secondary metabolites, and encounter a wide range of pathogen- and human-derived xenobiotic compounds. The enzymatic glucosylation of these metabolites changes their reactivity, stability and subcellular location. Two ESTs with more than 90% nucleotide sequence identity to three full-length glucosyltransferases are expressed in several grape tissues. The full-length clones have more than 60% amino acid sequence similarity to previously characterized flavonoid 7-O-glucosyltransferases, catechin O-glucosyltransferases and anthocyanin 5-O-glucosyltransferases. In vitro, these enzymes glucosylate flavonols and the xenobiotic 2,4,5-trichlorophenol (TCP). Kinetic analysis indicates that TCP is the preferred substrate for these enzymes, while expression analysis reveals variable transcription of these genes in grape leaves, flowers and berry tissues. The in vivo role of these Vitis labrusca glucosyltransferases is discussed.

  18. Molecular cloning and characterization of a multidrug efflux pump, SmfY, from Serratia marcescens.

    PubMed

    Shahcheraghi, Fereshteh; Minato, Yusuke; Chen, Jing; Mizushima, Tohru; Ogawa, Wakano; Kuroda, Teruo; Tsuchiya, Tomofusa

    2007-04-01

    We cloned a gene smfY for multidrug efflux pump from chromosomal DNA of Serratia marcescens using drug-hypersensitive Escherichia coli KAM32 as the host, and characterized the pump. E. coli KAM32/pESM42 carrying the smfY showed significantly increased MICs of various drugs including DAPI, norfloxacin, benzalkonium chloride, acriflavine and ethidium bromide, compared with the control. We also detected energy-dependent ethidium and acriflavine efflux due to the SmfY. Sequence analysis revealed that the SmfY was a multidrug efflux pump of the MF (Major Facilitator) superfamily transporters. This is the first report of a multidrug efflux pump belonging to the MF superfamily in S. marcescens.

  19. Cloning, characterization, and expression in Saccharomyces cerevisiae of endoglucanase I from Trichoderma reesei

    SciTech Connect

    Van Arsdell, J.N.; Kwok, S.; Schweickart, V.L.; Ladner, M.B.; Gelfand, D.H.; Innis, M.A.

    1987-01-01

    The authors the cloning, partial characterization, and expression in yeast of the endoglucanase I (EGI) gene from Trichoderma reesei. DNA sequencing revealed significant homology at the amino acid level between EGI and exocellobiohydrolase I (CBHI), but there are differences in codon utilization at homologous amino acids and in the intron/exon structure. These possibly reflect a mechanism for preventing recombination between closely related genes of the cellulase family. The coding sequence for the mature protein with its signal peptide was inserted into an expression plasmid containing yeast transcription control sequences. Yeast colonies transformed with this plasmid secrete enzymatically active hyperglycosylated EGI to the culture medium. This novel glycosylation appears to render the enzyme more resistant to thermal inactivation.

  20. Recombinant S-adenosylhomocysteine hydrolase from Thermotoga maritima: cloning, overexpression, characterization, and thermal purification studies.

    PubMed

    Lozada-Ramírez, J D; Sánchez-Ferrer, A; García-Carmona, F

    2013-06-01

    S-Adenosylhomocysteine hydrolase (SAHase) encoded by sahase gene is a determinant when catalyzing the reversible conversion of adenosine and homocysteine to S-adenosylhomocysteine in most living organisms. The sahase gene was isolated from the genome of the highly thermostable anaerobic bacteria Thermotoga maritima, and then it was cloned, characterized, overexpressed using Escherichia coli, and partially purified by thermal precipitation. The thermal purification of the recombinant SAHase resulted in changes in the circular dichroism spectra. As a result of this analysis, it was possible to determine the structural changes in the composition of the α-helix and β-sheet content of the recombinant enzyme after purification. Moreover, a predicted secondary structure and 3D structural model was rendered by comparative molecular modeling to further understand the molecular function of this protein including its attractive biotechnological use.

  1. Cloning and characterization of ftsZ and pyrF from the archaeon Thermoplasma acidophilum.

    PubMed

    Yaoi, T; Laksanalamai, P; Jiemjit, A; Kagawa, H K; Alton, T; Trent, J D

    2000-09-07

    To characterize cytoskeletal components of archaea, the ftsZ gene from Thermoplasma acidophilum was cloned and sequenced. In T. acidophilum ftsZ, which is involved in cell division, was found to be in an operon with the pyrF gene, which encodes orotidine-5'-monophosphate decarboxylase (ODC), an essential enzyme in pyrimidine biosynthesis. Both ftsZ and pyrF from T. acidophilum were expressed in Escherichia coli and formed functional proteins. FtsZ expression in wild-type E. coli resulted in the filamentous phenotype characteristic of ftsZ mutants. T. acidophilum pyrF expression in an E. coli mutant lacking pyrF complemented the mutation and rescued the strain. Sequence alignments of ODCs from archaea, bacteria, and eukarya reveal five conserved regions, two of which have homology to 3-hexulose-6-phosphate synthase (HPS), suggesting a common substrate recognition and binding motif. Copyright 2000 Academic Press.

  2. Cloning and characterization of a PI-like MADS-box gene in Phalaenopsis orchid.

    PubMed

    Guo, Bin; Hexige, Saiyin; Zhang, Tian; Pittman, Jon K; Chen, Donghong; Ming, Feng

    2007-11-30

    The highly evolved flowers of orchids have colorful sepals and fused columns that offer an opportunity to discover new genes involved in floral development in monocotyledon species. In this investigation, we cloned and characterized the homologous PISTALLATA-like (PI-like) gene PhPI15 (Phalaenopsis PI STILLATA # 15), from the Phalaenopsis hybrid cultivar. The protein sequence encoded by PhPI15 contains a typical PI-motif. Its sequence also formed a subclade with other monocot PI-type genes in phylogenetic analysis. Southern analysis showed that PhPI15 was present in the Phalaenopsis orchid genome as a single copy. Furthermore, it was expressed in all the whorls of the Phalaenopsis flower, while no expression was detected in vegetative organs. The flowers of transgenic tobacco plants ectopically expressing PhPI15 showed male-sterile phenotypes. Thus, as a Class-B MADS-box gene, PhPI15 specifies floral organ identity in orchids.

  3. Cloning and characterization of a novel human gene encoding a zinc finger protein with 25 fingers.

    PubMed

    Li, X A; Kokame, K; Okubo, K; Shimokado, K; Tsukamoto, Y; Miyata, T; Kato, H; Yutani, C

    1999-12-23

    This study reports cloning and characterization of a human cDNA encoding a novel human zinc finger protein, ZFD25. ZFD25 cDNA is 6118 bp long and has an open reading frame of 2352 bp that encodes a 783 amino acid protein with 25 C2H2-type zinc fingers. The ZFD25 cDNA also contains a region with high sequence similarity to the Krüppel-associated box A and B domain in the 5'-untranslated region, suggesting that ZFD25 belongs to the Krüppel-associated box zinc finger protein family. The ZFD25 gene was localized to chromosome 7q11.2. Northern blot analysis showed that ZFD25 was expressed in a wide range of human organs. In cultured endothelial cells, the mRNA level was decreased upon serum starvation.

  4. Cloning and characterization of two genes encoding dihydroxyacetone kinase from Schizosaccharomyces pombe IFO 0354.

    PubMed

    Kimura, T; Takahashi, M; Yoshihara, K; Furuichi, T; Suzuki, K; Imai, K; Karita, S; Sakka, K; Ohmiya, K

    1998-11-08

    We report the cloning and characterization of two genes encoding dihydroxyacetone kinase (EC 2.7.1.29), SpDAK1 and SpDAK2, from Schizosaccharomyces pombe IFO 0354. The open reading frames of both genes encode 591 amino acids and have Mrs of 62158 and 62170, respectively. Both predicted amino acid sequences exhibited a high identity to each other (99.8%) and relatively high identities (30% to 76%) to other putative dihydroxyacetone kinase gene products. A Western blot analysis showed that these enzymes are induced by glycerol and repressed by glucose. A genomic Southern blot analysis indicated the presence of SpDAK1 and the absence of SpDAK2 in a standard laboratory strain, S. pombe 972h-.

  5. Cloning and characterization of ftsZ and pyrF from the archaeon Thermoplasma acidophilum

    NASA Technical Reports Server (NTRS)

    Yaoi, T.; Laksanalamai, P.; Jiemjit, A.; Kagawa, H. K.; Alton, T.; Trent, J. D.

    2000-01-01

    To characterize cytoskeletal components of archaea, the ftsZ gene from Thermoplasma acidophilum was cloned and sequenced. In T. acidophilum ftsZ, which is involved in cell division, was found to be in an operon with the pyrF gene, which encodes orotidine-5'-monophosphate decarboxylase (ODC), an essential enzyme in pyrimidine biosynthesis. Both ftsZ and pyrF from T. acidophilum were expressed in Escherichia coli and formed functional proteins. FtsZ expression in wild-type E. coli resulted in the filamentous phenotype characteristic of ftsZ mutants. T. acidophilum pyrF expression in an E. coli mutant lacking pyrF complemented the mutation and rescued the strain. Sequence alignments of ODCs from archaea, bacteria, and eukarya reveal five conserved regions, two of which have homology to 3-hexulose-6-phosphate synthase (HPS), suggesting a common substrate recognition and binding motif. Copyright 2000 Academic Press.

  6. Molecular cloning and functional characterization of a rainbow trout liver Oatp

    PubMed Central

    Steiner, Konstanze; Hagenbuch, Bruno; Dietrich, Daniel R.

    2014-01-01

    Cyanobacterial blooms have an impact on the aquatic ecosystem due to the production of toxins (e.g. microcystins, MCs), which constrains fish health or even cause fish death. However the toxicokinetics of the most abundant toxin, microcystin-LR (MC-LR), are not yet fully understood. To investigate the uptake mechanism, the novel Oatp1d1 in rainbow trout (rtOatp1d1) was cloned, identified and characterized. The cDNA isolated from a clone library consisted of 2772 bp containing a 2115 bp open reading frame coding for a 705 aa protein with an approximate molecular mass of 80 kDa. This fish specific transporter belongs to the OATP1 family and has most likely evolved from a common ancestor of OATP1C1. Real time PCR analysis showed that rtOatp1d1 is predominantly expressed in the liver, followed by the brain while expression in other organs was not detectable. Transient transfection in HEK293 cells was used for further characterization. Like its human homologs OATP1A1, OATP1B1 and OATP1B3, rtOatp1d1 displayed multi-specific transport including endogenous and xenobiotic substrates. Kinetic analyses revealed a Km value of 13.9 μM and 13.4 μM for estrone-3-sulfate and methotrexate, respectively and a rather low affinity for taurocholate with a Km value of 103 μM. Furthermore, it was confirmed that rtOatp1d1 is a MC-LR transporter and therefore most likely plays a key role in the susceptibility of rainbow trout to MC intoxications. PMID:25218291

  7. Cloning and Functional Characterization of Cycloartenol Synthase from the Red Seaweed Laurencia dendroidea

    PubMed Central

    Arendt, Philipp; de Oliveira, Louisi Souza; Thompson, Cristiane; Soares, Angélica Ribeiro; Pereira, Renato Crespo; Goossens, Alain; Thompson, Fabiano L.

    2016-01-01

    The red seaweed Laurencia dendroidea belongs to the Rhodophyta, a phylum of eukaryotic algae that is widely distributed across the oceans and that constitute an important source of bioactive specialized metabolites. Laurencia species have been studied since 1950 and were found to contain a plethora of specialized metabolites, mainly halogenated sesquiterpenes, diterpenes and triterpenes that possess a broad spectrum of pharmacological and ecological activities. The first committed step in the biosynthesis of triterpenes is the cyclization of 2,3-oxidosqualene, an enzymatic reaction carried out by oxidosqualene cyclases (OSCs), giving rise to a broad range of different compounds, such as the sterol precursors cycloartenol and lanosterol, or triterpene precursors such as cucurbitadienol and β-amyrin. Here, we cloned and characterized the first OSC from a red seaweed. The OSC gene was identified through mining of a L. dendroidea transcriptome dataset and subsequently cloned and heterologously expressed in yeast for functional characterization, which indicated that the corresponding enzyme cyclizes 2,3-oxidosqualene to the sterol precursor cycloartenol. Accordingly, the gene was named L. dendroidea cycloartenol synthase (LdCAS). A phylogenetic analysis using OSCs genes from plants, fungi and algae revealed that LdCAS grouped together with OSCs from other red algae, suggesting that cycloartenol could be the common product of the OSC in red seaweeds. Furthermore, profiling of L. dendroidea revealed cholesterol as the major sterol accumulating in this species, implicating red seaweeds contain a ‘hybrid’ sterol synthesis pathway in which the phytosterol precursor cycloartenol is converted into the major animal sterol cholesterol. PMID:27832119

  8. Molecular cloning and characterization of genistein 4'-O-glucoside specific glycosyltransferase from Bacopa monniera.

    PubMed

    Ruby; Santosh Kumar, R J; Vishwakarma, Rishi K; Singh, Somesh; Khan, Bashir M

    2014-07-01

    Health related benefits of isoflavones such as genistein are well known. Glycosylation of genistein yields different glycosides like genistein 7-O-glycoside (genistin) and genistein 4'-O-glycoside (sophoricoside). This is the first report on isolation, cloning and functional characterization of a glycosyltransferase specific for genistein 4'-O-glucoside from Bacopa monniera, an important Indian medicinal herb. The glycosyltransferase from B. monniera (UGT74W1) showed 49% identity at amino acid level with the glycosyltransferases from Lycium barbarum. The UGT74W1 sequence contained all the conserved motifs present in plant glycosyltransferases. UGT74W1 was cloned in pET-30b (+) expression vector and transformed into E. coli. The molecular mass of over expressed protein was found to be around 52 kDa. Functional characterization of the enzyme was performed using different substrates. Product analysis was done using LC-MS and HPLC, which confirmed its specificity for genistein 4'-O-glucoside. Immuno-localization studies of the UGT74W1 showed its localization in the vascular bundle. Spatio-temporal expression studies under normal and stressed conditions were also performed. The control B. monniera plant showed maximum expression of UGT74W1 in leaves followed by roots and stem. Salicylic acid treatment causes almost tenfold increase in UGT74W1 expression in roots, while leaves and stem showed decrease in expression. Since salicylic acid is generated at the time of injury or wound caused by pathogens, this increase in UGT74W1 expression under salicylic acid stress might point towards its role in defense mechanism.

  9. Molecular cloning, heterologous expression, and characterization of Ornithine decarboxylase from Oenococcus oeni.

    PubMed

    Bonnin-Jusserand, Maryse; Grandvalet, Cosette; David, Vanessa; Alexandre, Hervé

    2011-08-01

    Ornithine decarboxylase (ODC) is responsible for the production of putrescine, the major biogenic amine found in wine. Oenococcus oeni is the most important lactic acid bacterium in the winemaking process and is involved in malolactic fermentation. We report here the characterization of ODC from an O. oeni strain isolated from wine. Screening of 263 strains isolated from wine and cider from all over the world revealed that the presence of the odc gene appears to be strain specific in O. oeni. After cloning, heterologous expression in Escherichia coli, and characterization, the enzyme was found to have a molecular mass of 85 kDa and a pI of 6.2 and revealed maximal activity at pH 5.5 and an optimum temperature of 35°C. Kinetic studies showed that O. oeni ODC is specific for L-ornithine with a K(m) value of 1 mM and a V(max) of 0.57 U·mg(-1). The hypothesis that cadaverine, which results from lysine decarboxylation, may be linked to putrescine production is not valid since O. oeni ODC cannot decarboxylate L-lysine. As no lysine decarboxylase was detected in any of the O. oeni genomes sequenced, cadaverine synthesis may result from another metabolic pathway. This work is the first characterization of an ODC from a lactic acid bacterium isolated from a fermented product.

  10. Development of novel SCAR markers for genetic characterization of Lonicera japonica from high GC-RAMP-PCR and DNA cloning.

    PubMed

    Cheng, J L; Li, J; Qiu, Y M; Wei, C L; Yang, L Q; Fu, J J

    2016-04-28

    Sequence-characterized amplified region (SCAR) markers were further developed from high-GC primer RAMP-PCR-amplified fragments from Lonicera japonica DNA by molecular cloning. The four DNA fragments from three high-GC primers (FY-27, FY-28, and FY-29) were successfully cloned into a pGM-T vector. The positive clones were sequenced; their names, sizes, and GenBank numbers were JYHGC1-1, 345 bp, KJ620024; YJHGC2-1, 388 bp, KJ620025; JYHGC7-2, 1036 bp, KJ620026; and JYHGC6-2, 715 bp, KJ620027, respectively. Four novel SCAR markers were developed by designing specific primers, optimizing conditions, and PCR validation. The developed SCAR markers were used for the genetic authentication of L. japonica from its substitutes. This technique provides another means of developing DNA markers for the characterization and authentication of various organisms including medicinal plants and their substitutes.

  11. RESOLVE Projects: Lunar Water Resource Demonstration and Regolith Volatile Characterization

    NASA Technical Reports Server (NTRS)

    2008-01-01

    To sustain affordable human and robotic space exploration, the ability to live off the land at the exploration site will be essential. NASA calls this ability in situ resource utilization (ISRU) and is focusing on finding ways to sustain missions first on the Moon and then on Mars. The ISRU project aims to develop capabilities to technology readiness level 6 for the Robotic Lunar Exploration Program and early human missions returning to the Moon. NASA is concentrating on three primary areas of ISRU: (1) excavating, handling, and moving lunar regolith, (2) extracting oxygen from lunar regolith, and (3) finding, characterizing, extracting, separating, and storing volatile lunar resources, especially in the permanently shadowed polar craters. To meet the challenges related to technology development for these three primary focus areas, the Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) project was initiated in February 2005, through funding by the Exploration Systems Mission Directorate. RESOLVE's objectives are to develop requirements and conceptual designs and to perform breadboard concept verification testing of each experiment module. The final goal is to deliver a flight prototype unit that has been tested in a relevant lunar polar environment. Here we report progress toward the third primary area creating ways to find, characterize, extract, separate, and store volatile lunar resources. The tasks include studying thermal, chemical, and electrical ways to collect such volatile resources as hydrogen, water, nitrogen, methane, and ammonia. We approached this effort through two subtasks: lunar water resource demonstration (LWRD) and regolith volatile characterization (RVC).

  12. Hydrokinetic Resource Characterization on the Tanana River Near Nenana, Alaska

    NASA Astrophysics Data System (ADS)

    Toniolo, H.; Duvoy, P.; Schmid, J.; Johnson, J.

    2012-12-01

    The field of hydrokinetics, in general, is developing rapidly due to high fossil fuel costs and the desire to use renewable energy sources to reduce greenhouse gases. Alaska, in particular, has tidal and in-stream hydrokinetic resources. This presentation focuses on resource characterization in rivers; specifically, the Tanana River near Nenana, Alaska. We present a comprehensive approach to characterize the existing resource and the conditions for installing hydrokinetic devices. The methodology includes: a) extensive field measurements, b) numerical modeling, and c) turbulence analysis. Field work efforts involve bathymetric surveys, velocity measurements, and sediment sampling. Modeling encompasses an existing 2D-dimensional hydrodynamic model, and the calculation of power density along the river reach. Turbulence analysis provides insights on channel stability and energy partition. As results of this combined research approach, preliminary sediment-rating curves were developed, distribution of available power density was calculated and possible sites for turbine deployment were defined.

  13. Molecular intermediates of fitness gain of an RNA virus: characterization of a mutant spectrum by biological and molecular cloning.

    PubMed

    Arias, A; Lázaro, E; Escarmís, C; Domingo, E

    2001-05-01

    The mutant spectrum of a virus quasispecies in the process of fitness gain of a debilitated foot-and-mouth disease virus (FMDV) clone has been analysed. The mutant spectrum was characterized by nucleotide sequencing of three virus genomic regions (internal ribosome entry site; region between the two AUG initiation codons; VP1-coding region) from 70 biological clones (virus from individual plaques formed on BHK-21 cell monolayers) and 70 molecular clones (RT--PCR products cloned in E. coli). The biological and molecular clones provided statistically indistinguishable definitions of the mutant spectrum with regard to the distribution of mutations among the three genomic regions analysed and with regard to the types of mutations, mutational hot-spots and mutation frequencies. Therefore, the molecular cloning procedure employed provides a simple protocol for the characterization of mutant spectra of viruses that do not grow in cell culture. The number of mutations found repeated among the clones analysed was higher than expected from the mean mutation frequencies. Some components of the mutant spectrum reflected genomes that were dominant in the prior evolutionary history of the virus (previous passages), confirming the presence of memory genomes in virus quasispecies. Other components of the mutant spectrum were genomes that became dominant at a later stage of evolution, suggesting a predictive value of mutant spectrum analysis with regard to the outcome of virus evolution. The results underline the observation that greater insight into evolutionary processes of viruses may be gained from detailed clonal analyses of the mutant swarms at the sequence level.

  14. Cloning and partial characterization of the proteasome S4 ATPase from Plasmodium falciparum.

    PubMed

    Certad, G; Abrahem, A; Georges, E

    1999-11-01

    Certad, G., Abrahem, A., and Georges, E. 1999. Cloning and Partial characterization of the proteasome S4 ATPase from Plasmodium falciparum. Experimental Parasitology 93, 123-131. The ATP-ubiquitin-proteasome pathway mediates the nonlysosomal degradation of cytosolic proteins in eukaryotic cells. The activities of this pathway have been shown to regulate cell growth and differentiation through modulation of regulatory proteins. The proteasome is a large complex consisting of two multisubunit structures, the 20S and 19S(PA700) or P28 complexes, that combine to form the 26S particles. In this study, we describe the cloning of a cDNA encoding the proteasome subunit 4 ATPase homologue from Plasmodium falciparum (PFS4). Analysis of the PFS4 cDNA sequence shows an open reading frame encoding a deduced protein of 455 amino acids. Moreover, comparison of PFS4 cDNA sequence to that of genomic fragments encoding PFS4 showed identical sequences with no detectable introns. Database searches revealed a high sequence identity to those of rice, yeast, mouse, Drosophila, and human S4 ATPases. However, PFS4 contains two unique inserts of nine and seven amino acid residues in the N-terminal domain. Interestingly, only the rice S4 contains the latter (seven amino acids) insert with four identical amino acids. In vitro expression of the full-length cDNA encoding the PFS4, using a transcription-translation-coupled reticulocyte lysate, shows a 50-kDa [(35)S]methionine-labeled protein which was immunoprecipitated with PFS4 anti-peptide antiserum. Southern blot analysis of genomic DNA digests shows a single gene copy of PFS4 in P. falciparum. Of interest was the effect of the proteasome-specific natural product, lactacystin, on the growth of the parasite, with IC(50) values of 0.6-0.92 microM. The latter IC(50) values of lactacystin for different clones of P. falciparum are comparable to those obtained for mammalian cell lines (0.65 microM), suggesting the presence of a conserved

  15. Cloning and molecular characterization of telomerase reverse transcriptase (TERT) and telomere length analysis of Peromyscus leucopus

    PubMed Central

    Zhao, Xin; Ueda, Yasutaka; Kajigaya, Sachiko; Alaks, Glen; Desierto, Marie J; Townsley, Danielle M.; Dumitriu, Bogdan; Chen, Jichun; Lacy, Robert C.; Young, Neal S.

    2015-01-01

    Telomerase reverse transcriptase (TERT) is the catalytic subunit of telomerase complex that regulates telomerase activity to maintain telomere length for all animals with linear chromosomes. As the Mus musculus (MM) laboratory mouse has very long telomeres compared to humans, a potential alternative animal model for telomere research is the Peromyscus leucopus (PL) mouse that has telomere lengths close to the human range and has the wild counterparts for comparison. We report the full TERT coding sequence (pTERT) from PL mice to use in the telomere research. Comparative analysis with eight other mammalian TERTs revealed a pTERT protein considerably homologous to other TERTs and preserved all TERT specific-sequence signatures, yet with some distinctive features. pTERT displayed the highest nucleotide and amino acid sequence homology with hamster TERT. Unlike human but similar to MM mice, pTERT expression was detected in various adult somatic tissues of PL mice, with the highest expression in testes. Four different captive stocks of PL mice and wild-captured PL mice each displayed group-specific average telomere lengths, with the longest and shortest telomeres in inbred and outbred stock mice, respectively. pTERT showed considerable numbers of synonymous and nonsynonymous mutations. A pTERT proximal promoter region cloned was homologous among PL and MM mice and rat, but with species-specific features. From PL mice, we further cloned and characterized ribosomal protein, large, P0 (pRPLP0) to use as an internal control for various assays. Peromyscus mice have been extensively used for various studies, including human diseases, for which pTERT and pRPLP0 would be useful tools. PMID:25962353

  16. Cloning and molecular characterization of telomerase reverse transcriptase (TERT) and telomere length analysis of Peromyscus leucopus.

    PubMed

    Zhao, Xin; Ueda, Yasutaka; Kajigaya, Sachiko; Alaks, Glen; Desierto, Marie J; Townsley, Danielle M; Dumitriu, Bogdan; Chen, Jichun; Lacy, Robert C; Young, Neal S

    2015-08-15

    Telomerase reverse transcriptase (TERT) is the catalytic subunit of telomerase complex that regulates telomerase activity to maintain telomere length for all animals with linear chromosomes. As the Mus musculus (MM) laboratory mouse has very long telomeres compared to humans, a potential alternative animal model for telomere research is the Peromyscus leucopus (PL) mouse that has telomere lengths close to the human range and has the wild counterparts for comparison. We report the full TERT coding sequence (pTERT) from PL mice to use in the telomere research. Comparative analysis with eight other mammalian TERTs revealed a pTERT protein considerably homologous to other TERTs and preserved all TERT specific-sequence signatures, yet with some distinctive features. pTERT displayed the highest nucleotide and amino acid sequence homology with hamster TERT. Unlike human but similar to MM mice, pTERT expression was detected in various adult somatic tissues of PL mice, with the highest expression in testes. Four different captive stocks of PL mice and wild-captured PL mice each displayed group-specific average telomere lengths, with the longest and shortest telomeres in inbred and outbred stock mice, respectively. pTERT showed considerable numbers of synonymous and nonsynonymous mutations. A pTERT proximal promoter region cloned was homologous among PL and MM mice and rat, but with species-specific features. From PL mice, we further cloned and characterized ribosomal protein, large, P0 (pRPLP0) to use as an internal control for various assays. Peromyscus mice have been extensively used for various studies, including human diseases, for which pTERT and pRPLP0 would be useful tools.

  17. Cloning, expression and characterization of a pectate lyase from Paenibacillus sp. 0602 in recombinant Escherichia coli

    PubMed Central

    2014-01-01

    Background Biotechnological applications of microbial pectate lyases (Pels) in plant fiber processing are considered as environmentally friendly. As such, they become promising substitutes for conventional chemical degumming process. Since applications of Pels in various fields are widening, it is necessary to explore new pectolytic microorganisms and enzymes for efficient and effective usage. Here, we describe the cloning, expression, characterization and application of the recombinant Pel protein from a pectolytic bacterium of the genus Paenibacillus in Escherichia coli. Results A Pel gene (pelN) was cloned using degenerate PCR and inverse PCR from the chromosomal DNA of Paenibacillus sp. 0602. The open reading frame of pelN encodes a 30 amino acid signal peptide and a 445 amino acid mature protein belonging to the polysaccharide lyase family 1. The maximum Pel activity produced by E. coli in shake flasks reached 2,467.4 U mL−1, and the purified recombinant enzyme exhibits a specific activity of 2,060 U mg−1 on polygalacturonic acid (PGA). The maximum activity was observed in a buffer with 5 mM Ca2+ at pH 9.8 and 65°C. PelN displays a half-life of around 9 h and 42 h at 50°C and 45°C, respectively. The biochemical treatment achieved the maximal reduction of percentage weight (30.5%) of the ramie bast fiber. Conclusions This work represents the first study that describes the extracellular expression of a Pel gene from Paenibacillus species in E. coli. The high yield of the extracellular overexpression, relevant thermostability and efficient degumming using combined treatments indicate its strong potential for large-scale industrial production. PMID:24612647

  18. Cloning and characterization of the ionotropic GABA receptor subunit ρ1 from pig (Sus scrofa).

    PubMed

    Reyes-Ruiz, Jorge Mauricio; Limon, Agenor; Miledi, Ricardo

    2014-01-13

    Since human and pig eyes have remarkably anatomical and physiological similitudes swine models have been broadly used for functional studies and therapeutic research. Recently, a GABAρ-mediated relaxation of retinal vascularity suggested that GABAρ signaling may be used to improve retinal blood flow in vascular-driven impaired vision, and a further molecular characterization of GABAρ receptors would be beneficial. However, none of the GABAρ type subunits from pigs has been yet cloned; Among the 19 subunits that compose the family of GABAA receptors, ρ1-3 subunits are capable of forming homomeric channels. These homomeric receptors are particularly interesting because their pharmacological and kinetic properties are notably different from receptors composed by other GABAA subunits. Here we report the cloning of the GABAρ1subunit from the pig and the functional expression of homomeric channels in Xenopus oocytes. The most notable difference found in the pig GABAρ1 receptor was the absence of a stretch of 17 amino acids near the amino terminus (R41-V58) conserved in the rat and the human. This sequence has a higher nucleotidic match with the transcript variant 2 of the human GABAρ1 subunit. Xenopus oocytes injected with cRNA from the receptor generated currents when exposed to GABA that shared all the characteristics of other GABAρ1 subunits in mammals, including its modulation by dopamine. This study will help to increase the knowledge of the genetics of the pig, further the understanding of this important neurotransmitter receptor family and will shed some light in the evolution of these genes among mammals.

  19. The molecular cloning and characterization of Drosophila melanogaster myosin-IA and myosin-IB.

    PubMed

    Morgan, N S; Skovronsky, D M; Artavanis-Tsakonas, S; Mooseker, M S

    1994-06-10

    In this paper we describe the isolation and characterization of myosin-IA and myosin-IB, two distinct class I myosins from Drosophila melanogaster. A polymerase chain reaction based strategy using degenerate primers directed against two highly-conserved regions in the head domain of most myosins resulted in the isolation of these two novel myosins-I in addition to a number of previously identified myosins from three Drosophila cDNA libraries. A approximately 3.9 kilobase cDNA clone encoding the putative full-length myosin-IA gene product was isolated from an early embryonic library. Its deduced amino acid sequence predicts a protein of 1011 residues (117,094 Da) with a typical although highly basic myosin head, a neck composed of two IQ motifs, and a unique tail. A approximately 3.4 kilobase cDNA clone encoding the putative full-length myosin-IB gene product was isolated from an adult head library. Its deduced amino acid sequence predicts a protein of 1026 residues (117,741 Da) with a canonical head, three IQ motifs constituting the neck, and a distinct tail. Although both are myosins-I from fly, myosin-IA at cytological locus 31D-F and myosin-IB at cytological locus 61F appear to be more similar to their vertebrate homologs than they are to each other. Primary sequence analyses of both the head and tail domains of the known class I myosins illustrate a division of the metazoan myosin-I family into four distinct subclasses with myosin-IA and myosin-IB as members of two of these groups. Just as the sequence comparisons demonstrate a disparity between myosin-IA and myosin-IB, Northern blot analysis of these two unconventional myosins indicates distinct patterns of temporal expression.

  20. Cloning and characterization of drought-stimulated phosphatidic acid phosphatase genes from Vigna unguiculata.

    PubMed

    França, Marcel Giovanni Costa; Matos, Ana Rita; D'arcy-Lameta, Agnès; Passaquet, Chantal; Lichtlé, Christiane; Zuily-Fodil, Yasmine; Pham-Thi, Anh Thu

    2008-12-01

    Under environmental stresses, several lipolytic enzymes are known to be activated and to contribute to membrane lipid turnover and generation of second messengers. In animal cells, phosphatidic acid phosphatase (PAP, EC 3.1.3.4), which dephosphorylates phosphatidic acid generating diacylglycerol, is long known as an enzyme involved in lipid synthesis and cell signalling. However, knowledge on PAP in plants remains very limited. The aim of this work was to isolate and characterize PAP genes in the tropical legume Vigna unguiculata (cowpea), and to study their expression under different stress conditions. Two cDNAs designated as VuPAPalpha and VuPAPbeta were cloned from the leaves of cowpea. Both proteins share sequence homology to animal type 2 PAP, namely, the six transmembrane regions and the consensus sequences corresponding to the catalytic domain of the phosphatase family, like the recently described Arabidopsis LPP (Lipid Phosphate Phosphatase) proteins. The recombinant protein VuPAPalpha expressed in Escherichia coli cells was able to convert phosphatidic acid into diacylglycerol. Unlike VuPAPbeta, VuPAPalpha has an N-terminal transit peptide and was addressed to chloroplast in vitro. Both genes are expressed in several cowpea organs and their transcripts accumulate in leaves in response to water deficit, including progressive dehydration of whole plants and rapid desiccation of detached leaves. No changes in expression of both genes were observed after wounding or by treatment with jasmonic acid. Furthermore, the in silico analysis of VuPAPalpha promoter allowed the identification of several putative drought-related regulatory elements. The possible physiological role of the two cloned PAPs is discussed.

  1. A Novel Hyaluronidase from Brown Spider (Loxosceles intermedia) Venom (Dietrich's Hyaluronidase): From Cloning to Functional Characterization

    PubMed Central

    Ferrer, Valéria Pereira; de Mari, Thiago Lopes; Gremski, Luiza Helena; Trevisan Silva, Dilza; da Silveira, Rafael Bertoni; Gremski, Waldemiro; Chaim, Olga Meiri; Senff-Ribeiro, Andrea; Nader, Helena Bonciani; Veiga, Silvio Sanches

    2013-01-01

    Loxoscelism is the designation given to clinical symptoms evoked by Loxosceles spider's bites. Clinical manifestations include skin necrosis with gravitational spreading and systemic disturbs. The venom contains several enzymatic toxins. Herein, we describe the cloning, expression, refolding and biological evaluation of a novel brown spider protein characterized as a hyaluronidase. Employing a venom gland cDNA library, we cloned a hyaluronidase (1200 bp cDNA) that encodes for a signal peptide and a mature protein. Amino acid alignment revealed a structural relationship with members of hyaluronidase family, such as scorpion and snake species. Recombinant hyaluronidase was expressed as N-terminal His-tag fusion protein (∼45 kDa) in inclusion bodies and activity was achieved using refolding. Immunoblot analysis showed that antibodies that recognize the recombinant protein cross-reacted with hyaluronidase from whole venom as well as an anti-venom serum reacted with recombinant protein. Recombinant hyaluronidase was able to degrade purified hyaluronic acid (HA) and chondroitin sulfate (CS), while dermatan sulfate (DS) and heparan sulfate (HS) were not affected. Zymograph experiments resulted in ∼45 kDa lytic zones in hyaluronic acid (HA) and chondroitin sulfate (CS) substrates. Through in vivo experiments of dermonecrosis using rabbit skin, the recombinant hyaluronidase was shown to increase the dermonecrotic effect produced by recombinant dermonecrotic toxin from L. intermedia venom (LiRecDT1). These data support the hypothesis that hyaluronidase is a “spreading factor”. Recombinant hyaluronidase provides a useful tool for biotechnological ends. We propose the name Dietrich's Hyaluronidase for this enzyme, in honor of Professor Carl Peter von Dietrich, who dedicated his life to studying proteoglycans and glycosaminoglycans. PMID:23658852

  2. Cloning and characterization of profilin (Pru du 4), a cross-reactive almond (Prunus dulcis) allergen.

    PubMed

    Tawde, Pallavi; Venkatesh, Yeldur P; Wang, Fang; Teuber, Suzanne S; Sathe, Shridhar K; Roux, Kenneth H

    2006-10-01

    The identity of allergenic almond proteins is incomplete. Our objective was to characterize patient IgE reactivity to a recombinant and corresponding native almond allergen. An almond cDNA library was screened with sera from patients with allergy for IgE binding proteins. Two reactive clones were sequenced, and 1 was expressed. The expressed recombinant allergen and its native counterpart (purified from unprocessed almond flour) were assayed by 1-dimensional and 2-dimensional gel electrophoresis, dot blot, and ELISA, and screened for cross-reactivity with grass profilin. The 2 selected clones encoded profilin (designated Pru du 4) sequences that differed by 2 silent mutations. By dot-blot analyses, 6 of 18 patient sera (33%) reacted with the recombinant Pru du 4 protein, and 8 of 18 (44%) reacted with the native form. ELISA results were similar. Almond and ryegrass profilins were mutually inhibitable. Two-dimensional immunoblotting revealed the presence of more than 1 native almond profilin isoform. The strength of reactivity of some patients' serum IgE differed markedly between assays and between native and recombinant profilins. Almond nut profilin is an IgE-binding food protein that is cross-reactive with grass pollen profilin and is susceptible to denaturation, resulting in variable reactivity between assay types and between patients. Serum IgE of nearly half of the tested patients with almond allergy reacts with almond nut profilin. Because most patients also had pollinosis, the well-known cross-reactivity between pollen and food profilins could account for this pattern of reactivity.

  3. Cloning and characterization of the gene cluster for palatinose metabolism from the phytopathogenic bacterium Erwinia rhapontici.

    PubMed

    Börnke, F; Hajirezaei, M; Sonnewald, U

    2001-04-01

    Erwinia rhapontici is able to convert sucrose into isomaltulose (palatinose, 6-O-alpha-D-glucopyranosyl-D-fructose) and trehalulose (1-O-alpha-D-glucopyranosyl-D-fructose) by the activity of a sucrose isomerase. These sucrose isomers cannot be metabolized by plant cells and most other organisms and therefore are possibly advantageous for the pathogen. This view is supported by the observation that in vitro yeast invertase activity can be inhibited by palatinose, thus preventing sucrose consumption. Due to the lack of genetic information, the role of sucrose isomers in pathogenicity has not been evaluated. Here we describe for the first time the cloning and characterization of the palatinose (pal) genes from Erwinia rhapontici. To this end, a 15-kb chromosomal DNA fragment containing nine complete open reading frames (ORFs) was cloned. The pal gene products of Erwinia rhapontici were shown to be homologous to proteins involved in uptake and metabolism of various sugars from other microorganisms. The palE, palF, palG, palH, palK, palQ, and palZ genes were oriented divergently with respect to the palR and palI genes, and sequence analysis suggested that the first set of genes constitutes an operon. Northern blot analysis of RNA extracted from bacteria grown under various conditions implies that the expression of the palI gene and the palEFGHKQZ genes is oppositely regulated at the transcriptional level. Genes involved in palatinose uptake and metabolism are down regulated by sucrose and activated by palatinose. Palatinose activation is inhibited by sucrose. Functional expression of palI and palQ in Escherichia coli revealed sucrose isomerase and palatinase activity, respectively.

  4. Molecular Cloning and Characterization of an Acetylcholinesterase cDNA in the Brown Planthopper, Nilaparvata lugens

    PubMed Central

    Yang, Zhifan; Chen, Jun; Chen, Yongqin; Jiang, Sijing

    2010-01-01

    A full cDNA encoding an acetylcholinesterase (AChE, EC 3.1.1.7) was cloned and characterized from the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). The complete cDNA (2467 bp) contains a 1938-bp open reading frame encoding 646 amino acid residues. The amino acid sequence of the AChE deduced from the cDNA consists of 30 residues for a putative signal peptide and 616 residues for the mature protein with a predicted molecular weight of 69,418. The three residues (Ser242, Glu371, and His485) that putatively form the catalytic triad and the six Cys that form intra-subunit disulfide bonds are completely conserved, and 10 out of the 14 aromatic residues lining the active site gorge of the AChE are also conserved. Northern blot analysis of poly(A)+ RNA showed an approximately 2.6-kb transcript, and Southern blot analysis revealed there likely was just a single copy of this gene in N. lugens. The deduced protein sequence is most similar to AChE of Nephotettix cincticeps with 83% amino acid identity. Phylogenetic analysis constructed with 45 AChEs from 30 species showed that the deduced N. lugens AChE formed a cluster with the other 8 insect AChE2s. Additionally, the hypervariable region and amino acids specific to insect AChE2 also existed in the AChE of N. lugens. The results revealed that the AChE cDNA cloned in this work belongs to insect AChE2 subgroup, which is orthologous to Drosophila AChE. Comparison of the AChEs between the susceptible and resistant strains revealed a point mutation, Gly185Ser, is likely responsible for the insensitivity of the AChE to methamidopho in the resistant strain. PMID:20874389

  5. Cloning and characterization of the retinoid X receptor from a primitive crustacean Daphnia magna.

    PubMed

    Wang, Ying H; Wang, Guirong; LeBlanc, Gerald A

    2007-01-15

    Terpenoid hormones function as morphogens throughout the animal kingdom and many of these activities are mediated through members of the retinoid X group of nuclear receptors (RXR; NR2B). In the present study, RXR was cloned from the water flea Daphnia magna, a primitive crustacean of the class Branchiopoda, and characterized with respect to phylogeny, developmental expression, and hormonal regulation. The full length daphnid RXR cDNA was cloned by initial PCR amplification of a cDNA fragment from the highly conserved DNA-binding domain followed by extension of the fragment using RACE PCR. The full length cDNA was 1888 base pairs in length and coded for a 400 amino acid protein that exhibited the five-domain structure of a nuclear receptor superfamily member. The RXR protein shared significant identity with other NR2B group members. Phylogenetic analyses of the ligand-binding domain of the receptor revealed that daphnid RXR clustered with RXR from decapod crustaceans on a branch of the phylogenetic tree that was distinct from RXRs known to bind retinoic acids and juvenile hormones. Daphnid RXR mRNA levels were greatest in embryos that were early in development and progressively declined through the initial five stages of embryo development. Adult females expressed higher levels of RXR mRNA than did males and exposure of females to the terpenoid mimic pyriproxyfen reduced RXR mRNA to levels approaching levels in males. RXR mRNA levels in males were refractory to pyriproxyfen. These results show that branchiopod crustaceans dynamically express RXR which should be evaluated as a candidate receptor for the terpenoid hormone methyl farnesoate which functions as a sex determinant in these organisms.

  6. Cloning and functional characterization of the rabbit C-C chemokine receptor 2

    PubMed Central

    Lu, Deshun; Yuan, Xiu-juan; Evans, Robert J; Pappas, Amy T; Wang, He; Su, Eric W; Hamdouchi, Chafiq; Venkataraman, Chandrasekar

    2005-01-01

    Background CC-family chemokine receptor 2 (CCR2) is implicated in the trafficking of blood-borne monocytes to sites of inflammation and is implicated in the pathogenesis of several inflammatory diseases such as rheumatoid arthritis, multiple sclerosis and atherosclerosis. The major challenge in the development of small molecule chemokine receptor antagonists is the lack of cross-species activity to the receptor in the preclinical species. Rabbit models have been widely used to study the role of various inflammatory molecules in the development of inflammatory processes. Therefore, in this study, we report the cloning and characterization of rabbit CCR2. Data regarding the activity of the CCR2 antagonist will provide valuable tools to perform toxicology and efficacy studies in the rabbit model. Results Sequence alignment indicated that rabbit CCR2 shares 80 % identity to human CCR2b. Tissue distribution indicated that rabbit CCR2 is abundantly expressed in spleen and lung. Recombinant rabbit CCR2 expressed as stable transfectants in U-937 cells binds radiolabeled 125I-mouse JE (murine MCP-1) with a calculated Kd of 0.1 nM. In competition binding assays, binding of radiolabeled mouse JE to rabbit CCR2 is differentially competed by human MCP-1, -2, -3 and -4, but not by RANTES, MIP-1α or MIP-1β. U-937/rabbit CCR2 stable transfectants undergo chemotaxis in response to both human MCP-1 and mouse JE with potencies comparable to those reported for human CCR2b. Finally, TAK-779, a dual CCR2/CCR5 antagonist effectively inhibits the binding of 125I-mouse JE (IC50 = 2.3 nM) to rabbit CCR2 and effectively blocks CCR2-mediated chemotaxis. Conclusion In this study, we report the cloning of rabbit CCR2 and demonstrate that this receptor is a functional chemotactic receptor for MCP-1. PMID:16001983

  7. Cloning and characterization of CBL-CIPK signalling components from a legume (Pisum sativum).

    PubMed

    Mahajan, Shilpi; Sopory, Sudhir K; Tuteja, Narendra

    2006-03-01

    The studies on calcium sensor calcineurin B-like protein (CBL) and CBL interacting protein kinases (CIPK) are limited to Arabidopsis and rice and their functional role is only beginning to emerge. Here, we present cloning and characterization of a protein kinase (PsCIPK) from a legume, pea, with novel properties. The PsCIPK gene is intronless and encodes a protein that showed partial homology to the members of CIPK family. The recombinant PsCIPK protein was autophosphorylated at Thr residue(s). Immunoprecipitation and yeast two-hybrid analysis showed direct interaction of PsCIPK with PsCBL, whose cDNA and genomic DNA were also cloned in this study. PsCBL showed homology to AtCBL3 and contained calcium-binding activity. We demonstrate for the first time that PsCBL is phosphorylated at its Thr residue(s) by PsCIPK. Immunofluorescence/confocal microscopy showed that PsCBL is exclusively localized in the cytosol, whereas PsCIPK is localized in the cytosol and the outer membrane. The exposure of plants to NaCl, cold and wounding co-ordinately upregulated the expression of PsCBL and PsCIPK genes. The transcript levels of both genes were also coordinately stimulated in response to calcium and salicylic acid. However, drought and abscisic acid had no effect on the expression of these genes. These studies show the ubiquitous presence of CBL/CIPK in higher plants and enhance our understanding of their role in abiotic and biotic stress signalling.

  8. Molecular cloning and characterization of beta-expansin gene related to root hair formation in barley.

    PubMed

    Kwasniewski, Miroslaw; Szarejko, Iwona

    2006-07-01

    Root hairs are specialized epidermal cells that play a role in the uptake of water and nutrients from the rhizosphere and serve as a site of interaction with soil microorganisms. The process of root hair formation is well characterized in Arabidopsis (Arabidopsis thaliana); however, there is a very little information about the genetic and molecular basis of root hair development in monocots. Here, we report on isolation and cloning of the beta-expansin (EXPB) gene HvEXPB1, tightly related to root hair initiation in barley (Hordeum vulgare). Using root transcriptome differentiation in the wild-type/root-hairless mutant system, a cDNA fragment present in roots of wild-type plants only was identified. After cloning of full-length cDNA and genomic sequences flanking the identified fragment, the subsequent bioinformatics analyses revealed homology of the protein coded by the identified gene to the EXPB family. Reverse transcription-PCR showed that expression of HvEXPB1 cosegregated with the root hair phenotype in F2 progeny of the cross between the hairless mutant rhl1.a and the wild-type Karat parent variety. Expression of the HvEXPB1 gene was root specific; it was expressed in roots of wild-type forms, but not in coleoptiles, leaves, tillers, and spikes. The identified gene was active in roots of two other analyzed root hair mutants: rhp1.a developing root hair primordia only and rhs1.a with very short root hairs. Contrary to this, a complete lack of HvEXPB1 expression was observed in roots of the spontaneous root-hairless mutant bald root barley. All these observations suggest a role of the HvEXPB1 gene in the process of root hair formation in barley.

  9. Cloning and characterization of chalcone synthase from the moss, Physcomitrella patens.

    PubMed

    Jiang, Chenguang; Schommer, Clark K; Kim, Sun Young; Suh, Dae-Yeon

    2006-12-01

    Since the early evolution of land plants from primitive green algae, flavonoids have played an important role as UV protective pigments in plants. Flavonoids occur in liverworts and mosses, and the first committed step in the flavonoid biosynthesis is catalyzed by chalcone synthase (CHS). Although higher plant CHSs have been extensively studied, little information is available on the enzymes from bryophytes. Here we report the cloning and characterization of CHS from the moss, Physcomitrella patens. Taking advantage of the available P. patens EST sequences, a CHS (PpCHS) was cloned from the gametophores of P. patens, and heterologously expressed in Escherichia coli. PpCHS exhibited similar kinetic properties and substrate preference profile to those of higher plant CHS. p-Coumaroyl-CoA was the most preferred substrate, suggesting that PpCHS is a naringenin chalcone producing CHS. Consistent with the evolutionary position of the moss, phylogenetic analysis placed PpCHS at the base of the plant CHS clade, next to the microorganism CHS-like gene products. Therefore, PpCHS likely represents a modern day version of one of the oldest CHSs that appeared on earth. Further, sequence analysis of the P. patens EST and genome databases revealed the presence of a CHS multigene family in the moss as well as the 3'-end heterogeneity of a CHS gene. Of the 19 putative CHS genes, 10 genes are expressed and have corresponding ESTs in the databases. A possibility of the functional divergence of the multiple CHS genes in the moss is discussed.

  10. A novel hyaluronidase from brown spider (Loxosceles intermedia) venom (Dietrich's Hyaluronidase): from cloning to functional characterization.

    PubMed

    Ferrer, Valéria Pereira; de Mari, Thiago Lopes; Gremski, Luiza Helena; Trevisan Silva, Dilza; da Silveira, Rafael Bertoni; Gremski, Waldemiro; Chaim, Olga Meiri; Senff-Ribeiro, Andrea; Nader, Helena Bonciani; Veiga, Silvio Sanches

    2013-01-01

    Loxoscelism is the designation given to clinical symptoms evoked by Loxosceles spider's bites. Clinical manifestations include skin necrosis with gravitational spreading and systemic disturbs. The venom contains several enzymatic toxins. Herein, we describe the cloning, expression, refolding and biological evaluation of a novel brown spider protein characterized as a hyaluronidase. Employing a venom gland cDNA library, we cloned a hyaluronidase (1200 bp cDNA) that encodes for a signal peptide and a mature protein. Amino acid alignment revealed a structural relationship with members of hyaluronidase family, such as scorpion and snake species. Recombinant hyaluronidase was expressed as N-terminal His-tag fusion protein (∼45 kDa) in inclusion bodies and activity was achieved using refolding. Immunoblot analysis showed that antibodies that recognize the recombinant protein cross-reacted with hyaluronidase from whole venom as well as an anti-venom serum reacted with recombinant protein. Recombinant hyaluronidase was able to degrade purified hyaluronic acid (HA) and chondroitin sulfate (CS), while dermatan sulfate (DS) and heparan sulfate (HS) were not affected. Zymograph experiments resulted in ∼45 kDa lytic zones in hyaluronic acid (HA) and chondroitin sulfate (CS) substrates. Through in vivo experiments of dermonecrosis using rabbit skin, the recombinant hyaluronidase was shown to increase the dermonecrotic effect produced by recombinant dermonecrotic toxin from L. intermedia venom (LiRecDT1). These data support the hypothesis that hyaluronidase is a "spreading factor". Recombinant hyaluronidase provides a useful tool for biotechnological ends. We propose the name Dietrich's Hyaluronidase for this enzyme, in honor of Professor Carl Peter von Dietrich, who dedicated his life to studying proteoglycans and glycosaminoglycans.

  11. Molecular cloning and characterization of two genes encoding 2-Cys peroxiredoxins from Fasciola gigantica.

    PubMed

    Chaithirayanon, Kulathida; Sobhon, Prasert

    2010-06-01

    In Fasciola species, peroxiredoxin (Prx) serves as the major antioxidant enzyme to remove hydrogen peroxide that is generated from various metabolic reactions, because the parasites lack catalase, and only express glutathione peroxidases at minimal levels. We have cloned and characterized two genes, FgPrx-1 and FgPrx-2, belonging to the 2-Cys Prx family, by immunoscreening of an expressed adult stage Fasciola gigantica cDNA library using a rabbit anti-serum against its tegumental antigens. Predicted FgPrx-1 and FgPrx-2 consisted of 218 amino acids each with predicted molecular weights at 24.63 kDa and 24.57 kDa, respectively. The two predicted F. gigantica Prx proteins exhibited 98% identity to each other, and 52% identity to Prx from oxen which is the natural host. A phylogenetic analysis revealed that FgPrx-1 and FgPrx-2 appear to be closely related to those of Fasciola hepatica. The nucleotide sequences of FgPrx-2 are 654 bp, which is similar to that cloned from newly excysted juveniles of F. hepatica. The FgPrx genes were found to be constitutively expressed in all developmental stages, and with a similar pattern. In the adult parasite, FgPrx transcripts were located in the gut epithelial cells, tegument cells, and cells of reproductive organs, including prostate gland, vitelline glands, testis and ovary. In 4-week-old juveniles, a similar distribution pattern was observed. Metacercaria and newly excysted juveniles exhibited strongest signals for mRNA transcripts in the gut epithelium, and moderately in the tegumental cells. Because of their key role in protecting the parasite and specificities, these proteins may have immunodiagnostic as well as vaccine potentials. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  12. Molecular cloning, over expression and characterization of thermoalkalophilic esterases isolated from Geobacillus sp.

    PubMed

    Tekedar, Hasan Cihad; Sanlı-Mohamed, Gülşah

    2011-03-01

    Due to potential use for variety of biotechnological applications, genes encoding thermoalkalophilic esterase from three different Geobacillus strains isolated from thermal environmental samples in Balçova (Agamemnon) geothermal site were cloned and respective proteins were expressed in Escherichia coli (E.coli) and characterized in detail. Three esterases (Est1, Est2, Est3) were cloned directly by PCR amplification using consensus degenerate primers from genomic DNA of the strains Est1, Est2 and Est3 which were from mud, reinjection water and uncontrolled thermal leak, respectively. The genes contained an open reading frame (ORF) consisting of 741 bp for Est1 and Est2, which encoded 246 amino acids and ORF of Est3 was 729 bp encoded 242 amino acids. The esterase genes were expressed in E. coli and purified using His-Select HF nickel affinity gel. The molecular mass of the recombinant enzyme for each esterase was approximately 27.5 kDa. The three esterases showed high specific activity toward short chain p-NP esters. Recombinant Est1, Est2, Est3 have exhibited similar activity and the highest esterase activity of 1,100 U/mg with p-nitrophenyl acetate (pNPC(2)) as substrate was observed with Est1. All three esterase were most active around 65°C and pH 9.5-10.0. The effect of organic solvents, several metal ions, inhibitors and detergents on enzyme activity for purified Est1, Est2, Est3 were determined separately and compared.

  13. Cloning and characterization of the GNA11 promoter and its regulation by early growth response 1.

    PubMed

    Klenke, Stefanie; Siffert, Winfried; Frey, Ulrich Hermann

    2013-11-01

    GNAQ and GNA11, encoding the G-proteins Gα(q) and Gα₁₁, are members of the Gα(q)/Gα₁₁ subfamily, which transmits signals from the cell surface to intracellular signalling cascades. The GNAQ promoter was already characterized, and regulation by the transcription factor early growth response 1 (Egr-1) was demonstrated. Interestingly, in silico analysis revealed putative Egr-1 binding sites in sequences potentially representing the GNA11 promoter. However, the GNA11 promoter has not been characterized so far. Therefore, the purpose of the study was the characterization of the GNA11 promoter and investigation of its potential regulation by Egr-1. The putative GNA11 promoter was cloned, and deletion constructs were generated. Luciferase assays were performed, and essential regulatory regions identified between nt-805/-177. In electrophoretic mobility shift assays (EMSAs), one specific Egr-1 binding site at nt-475/-445 was identified. An Egr-1 expression plasmid was generated, which evoked increased Egr-1 content in nuclear extracts and a > 2-fold increase in GNA11 promoter activity in construct nt-805/+54 (p = 0.035). Finally, real-time PCR analysis was performed, and an increased Gα₁₁ mRNA (p = 0.035) expression induced by Egr-1 was found. Here, we characterize for the first time the GNA11 promoter and its specific interaction with Egr-1. Both the GNAQ and the GNA11 promoter appear to be regulated by the same transcription factor, Egr-1, which may be a molecular mechanism leading to Gα(q)-/Gα₁₁-associated phenotypes. © 2013 Nordic Pharmacological Society. Published by John Wiley & Sons Ltd.

  14. Virulent Clones of Klebsiella pneumoniae: Identification and Evolutionary Scenario Based on Genomic and Phenotypic Characterization

    PubMed Central

    Brisse, Sylvain; Fevre, Cindy; Passet, Virginie; Issenhuth-Jeanjean, Sylvie; Tournebize, Régis; Diancourt, Laure; Grimont, Patrick

    2009-01-01

    Klebsiella pneumoniae is found in the environment and as a harmless commensal, but is also a frequent nosocomial pathogen (causing urinary, respiratory and blood infections) and the agent of specific human infections including Friedländer's pneumonia, rhinoscleroma and the emerging disease pyogenic liver abscess (PLA). The identification and precise definition of virulent clones, i.e. groups of strains with a single ancestor that are associated with particular infections, is critical to understand the evolution of pathogenicity from commensalism and for a better control of infections. We analyzed 235 K. pneumoniae isolates of diverse environmental and clinical origins by multilocus sequence typing, virulence gene content, biochemical and capsular profiling and virulence to mice. Phylogenetic analysis of housekeeping genes clearly defined clones that differ sharply by their clinical source and biological features. First, two clones comprising isolates of capsular type K1, clone CC23K1 and clone CC82K1, were strongly associated with PLA and respiratory infection, respectively. Second, only one of the two major disclosed K2 clones was highly virulent to mice. Third, strains associated with the human infections ozena and rhinoscleroma each corresponded to one monomorphic clone. Therefore, K. pneumoniae subsp. ozaenae and K. pneumoniae subsp. rhinoscleromatis should be regarded as virulent clones derived from K. pneumoniae. The lack of strict association of virulent capsular types with clones was explained by horizontal transfer of the cps operon, responsible for the synthesis of the capsular polysaccharide. Finally, the reduction of metabolic versatility observed in clones Rhinoscleromatis, Ozaenae and CC82K1 indicates an evolutionary process of specialization to a pathogenic lifestyle. In contrast, clone CC23K1 remains metabolically versatile, suggesting recent acquisition of invasive potential. In conclusion, our results reveal the existence of important virulent

  15. A novel cold-adapted lipase from Sorangium cellulosum strain So0157-2: gene cloning, expression, and enzymatic characterization.

    PubMed

    Cheng, Yuan-Yuan; Qian, Yun-Kai; Li, Zhi-Feng; Wu, Zhi-Hong; Liu, Hong; Li, Yue-Zhong

    2011-01-01

    Genome sequencing of cellulolytic myxobacterium Sorangium cellulosum reveals many open-reading frames (ORFs) encoding various degradation enzymes with low sequence similarity to those reported, but none of them has been characterized. In this paper, a predicted lipase gene (lipA) was cloned from S. cellulosum strain So0157-2 and characterized. lipA is 981-bp in size, encoding a polypeptide of 326 amino acids that contains the pentapeptide (GHSMG) and catalytic triad residues (Ser114, Asp250 and His284). Searching in the GenBank database shows that the LipA protein has only the 30% maximal identity to a human monoglyceride lipase. The novel lipA gene was expressed in Escherichia coli BL21 and the recombinant protein (r-LipA) was purified using Ni-NTA affinity chromatography. The enzyme hydrolyzed the p-nitrophenyl (pNP) esters of short or medium chain fatty acids (≤C(10)), and the maximal activity was on pNP acetate. The r- LipA is a cold-adapted lipase, with high enzymatic activity in a wide range of temperature and pH values. At 4 °C and 30 °C, the K(m) values of r-LipA on pNP acetate are 0.037 ± 0.001 and 0.174 ± 0.006 mM, respectively. Higher pH and temperature conditions promoted hydrolytic activity toward the pNP esters with longer chain fatty acids. Remarkably, this lipase retained much of its activity in the presence of commercial detergents and organic solvents. The results suggest that the r-LipA protein has some new characteristics potentially promising for industrial applications and S. cellulosum is an intriguing resource for lipase screening.

  16. Cloning and characterization of the murine Vmd2 RFP-TM gene family.

    PubMed

    Krämer, F; Stöhr, H; Weber, B H F

    2004-01-01

    Mutations in the human vitelliform macular dystrophy type 2 (VMD2) gene are known to cause autosomal dominant Best macular dystrophy (BMD), a degenerative disorder of the central retina. VMD2, together with VMD2L1, VMD2L2 and VMD2L3, belong to a closely related gene family characterized by several transmembrane (TM) spanning helical domains and an invariant arginine, phenylalanine and proline (RFP) tripeptide motif, thus termed VMD2 RFP-TM. The four genes are thought to encode a novel family of anion channels. We now report the cloning and characterization of the murine orthologs by combining biocomputational analyses and molecular genetic approaches. While the murine Vmd2, Vmd2l1 and Vmd2l3 genes are functional, murine Vmd2l2p was found to be a non-transcribed pseudogene. Expression profiling of the murine Vmd2 RFP-TM family members revealed tissue-restricted expression with predominant transcription of Vmd2 in testis, of Vmd2l1 in colon and of Vmd2l3 in heart. Differential splicing was observed for Vmd2l3 in a number of tissues (e.g. in brain, retina/RPE, kidney) although the functional importance of the splice variants remains to be determined. Copyright 2003 S. Karger AG, Basel

  17. Molecular Cloning, Overexpression and Characterization of a Novel Water Channel Protein from Rhodobacter sphaeroides

    PubMed Central

    Erbakan, Mustafa; Shen, Yue-xiao; Grzelakowski, Mariusz; Butler, Peter J.; Kumar, Manish; Curtis, Wayne R.

    2014-01-01

    Aquaporins are highly selective water channel proteins integrated into plasma membranes of single cell organisms; plant roots and stromae; eye lenses, renal and red blood cells in vertebrates. To date, only a few microbial aquaporins have been characterized and their physiological importance is not well understood. Here we report on the cloning, expression and characterization of a novel aquaporin, RsAqpZ, from a purple photosynthetic bacterium, Rhodobacter sphaeroides ATCC 17023. The protein was expressed homologously at a high yield (∼20 mg/L culture) under anaerobic photoheterotrophic growth conditions. Stopped-flow light scattering experiments demonstrated its high water permeability (0.17±0.05 cm/s) and low energy of activation for water transport (2.93±0.60 kcal/mol) in reconstituted proteoliposomes at a protein to lipid ratio (w/w) of 0.04. We developed a fluorescence correlation spectroscopy based technique and utilized a fluorescent protein fusion of RsAqpZ, to estimate the single channel water permeability of RsAqpZ as 1.24 (±0.41) x 10−12 cm3/s or 4.17 (±1.38)×1010 H2O molecules/s, which is among the highest single channel permeability reported for aquaporins. Towards application to water purification technologies, we also demonstrated functional incorporation of RsAqpZ in amphiphilic block copolymer membranes. PMID:24497982

  18. Cloning and characterization of the Type I Baeyer-Villiger monooxygenase from Leptospira biflexa.

    PubMed

    Ceccoli, Romina D; Bianchi, Dario A; Fink, Michael J; Mihovilovic, Marko D; Rial, Daniela V

    2017-12-01

    Baeyer-Villiger monooxygenases are recognized by their ability and high selectivity as oxidative biocatalysts for the generation of esters or lactones using ketones as starting materials. These enzymes represent valuable tools for biooxidative syntheses since they can catalyze reactions that otherwise involve strong oxidative reagents. In this work, we present a novel enzyme, the Type I Baeyer-Villiger monooxygenase from Leptospira biflexa. This protein is phylogenetically distant from other well-characterized BVMOs. In order to study this new enzyme, we cloned its gene, expressed it in Escherichia coli and characterized the substrate scope of the Baeyer-Villiger monooxygenase from L. biflexa as a whole-cell biocatalyst. For this purpose, we performed the screening of a collection of ketones with variable structures and sizes, namely acyclic ketones, aromatic ketones, cyclic ketones, and fused ketones. As a result, we observed that this biocatalyst readily oxidized linear- and branched- medium-chain ketones, alkyl levulinates and linear ketones with aromatic substituents with excellent regioselectivity. In addition, this enzyme catalyzed the oxidation of 2-substituted cycloketone derivatives but showed an unusual selection against substituents in positions 3 or 4 of the ring.

  19. Molecular cloning and functional characterization of a Δ6-fatty acid desaturase gene from Rhizopus oryzae.

    PubMed

    Zhu, Yu; Zhang, Bi-Bo

    2013-09-01

    The objective was to screen for and isolate a novel enzyme with the specific activity of a Δ6-fatty acid desaturase from Rhizopus oryzae. In this study, R. oryzae was identified as a novel fungal species that produces large amounts of γ-linolenic acid. A full-length cDNA, designated here as RoD6D, with high homology to fungal Δ6-fatty acid desaturase genes was isolated from R. oryzae by using the rapid amplification of cDNA ends method. It had an open reading frame of 1176 bp encoding a deduced polypeptide of 391 amino acids. Bioinformatics analysis characterized the putative RoD6D protein as a typical membrane-bound desaturase, including three conserved histidine-rich motifs, a hydropathy profile, and a cytochrome b5 -like domain in the N terminus. When the coding sequence was expressed in the Saccharomyces cerevisiae strain INVScl, the encoded product of RoD6D exhibited Δ6-fatty acid desaturase activity that led to the accumulation of γ-linolenic acid. The corresponding genomic sequence of RoD6D was 1565 bp in length, with five introns. This is the first report on the characterization and gene cloning of a Δ6-fatty acid desaturase of R. oryzae from Douchi.

  20. Monofunctional catalase P of Paracoccidioides brasiliensis: identification, characterization, molecular cloning and expression analysis.

    PubMed

    Moreira, Sabrina F I; Bailão, Alexandre M; Barbosa, Mônica S; Jesuino, Rosalia S A; Felipe, M Sueli Soares; Pereira, Maristela; de Almeida Soares, Célia Maria

    2004-01-30

    Within the context of studies on genes from Paracoccidioides brasiliensis (Pb) potentially associated with fungus-host interaction, we isolated a 61 kDa protein, pI 6.2, that was reactive with sera of patients with paracoccidioidomycosis. This protein was identified as a peroxisomal catalase. A complete cDNA encoding this catalase was isolated from a Pb cDNA library and was designated PbcatP. The cDNA contained a 1509 bp ORF containing 502 amino acids, whose molecular mass was 57 kDa, with a pI of 6.5. The translated protein PbCATP revealed canonical motifs of monofunctional typical small subunit catalases and the peroxisome-PTS-1-targeting signal. The deduced and the native PbCATP demonstrated amino acid sequence homology to known monofunctional catalases and was most closely related to catalases from other fungi. The protein and mRNA were diminished in the mycelial saprobic phase compared to the yeast phase of infection. Protein synthesis and mRNA levels increased during the transition from mycelium to yeast. In addition, the catalase protein was induced when cells were exposed to hydrogen peroxide. The identification and characterization of the PbCATP and cloning and characterization of the cDNA are essential steps for investigating the role of catalase as a defence of P. brasiliensis against oxygen-dependent killing mechanisms. These results suggest that this protein exerts an influence in the virulence of P. brasiliensis.

  1. Molecular cloning and characterization of CD4 in an aquatic mammal, the white whale Delphinapterus leucas.

    PubMed

    Romano, T A; Ridgway, S H; Felten, D L; Quaranta, V

    1999-05-01

    Given the importance of the cell surface recognition protein, CD4, in immune function, the cloning and characterization of CD4 at the molecular level from an odontocete cetacean, the white whale (Delphinapterus leucas), was carried out. Whale CD4 cDNA contains 2662 base pairs and translates into a protein containing 455 amino acids. Whale CD4 shares 64% and 51% identity with the human and mouse CD4 protein, respectively, and is organized in a similar manner. Unlike human and mouse, however, the cytoplasmic domain, which is highly conserved, contains amino acid substitutions unique to whale. Moreover, only one of the seven potential N-linked glycosylation sites present in whale is shared with human and mouse. Evolutionarily, the whale CD4 sequence is most similar to pig and structurally similar to dog and cat, in that all lack the cysteine pair in the V2 domain. These differences suggest that CD4 may have a different secondary structure in these species, which may affect binding of class II and subsequent T-cell activation, as well as binding of viral pathogens. Interestingly, as a group, species with these CD4 characteristics all have high constitutive expression of class II molecules on T lymphocytes, suggesting potential uniqueness in the interaction of CD4, class II molecules, and the immune response. Molecular characterization of CD4 in an aquatic mammal provides information on the CD4 molecule itself and may provide insight into adaptive evolutionary changes of the immune system.

  2. Cloning and Characterization of Two Bistructural S-Layer-RTX Proteins from Campylobacter rectus

    PubMed Central

    Braun, Martin; Kuhnert, Peter; Nicolet, Jacques; Burnens, André P.; Frey, Joachim

    1999-01-01

    Campylobacter rectus is an important periodontal pathogen in humans. A surface-layer (S-layer) protein and a cytotoxic activity have been characterized and are thought to be its major virulence factors. The cytotoxic activity was suggested to be due to a pore-forming protein toxin belonging to the RTX (repeats in the structural toxins) family. In the present work, two closely related genes, csxA and csxB (for C. rectus S-layer and RTX protein) were cloned from C. rectus and characterized. The Csx proteins appear to be bifunctional and possess two structurally different domains. The N-terminal part shows similarity with S-layer protein, especially SapA and SapB of C. fetus and Crs of C. rectus. The C-terminal part comprising most of CsxA and CsxB is a domain with 48 and 59 glycine-rich canonical nonapeptide repeats, respectively, arranged in three blocks. Purified recombinant Csx peptides bind Ca2+. These are characteristic traits of RTX toxin proteins. The S-layer and RTX domains of Csx are separated by a proline-rich stretch of 48 amino acids. All C. rectus isolates studied contained copies of either the csxA or csxB gene or both; csx genes were absent from all other Campylobacter and Helicobacter species examined. Serum of a patient with acute gingivitis showed a strong reaction to recombinant Csx protein on immunoblots. PMID:10198015

  3. Cloning and characterization of two bistructural S-layer-RTX proteins from Campylobacter rectus.

    PubMed

    Braun, M; Kuhnert, P; Nicolet, J; Burnens, A P; Frey, J

    1999-04-01

    Campylobacter rectus is an important periodontal pathogen in humans. A surface-layer (S-layer) protein and a cytotoxic activity have been characterized and are thought to be its major virulence factors. The cytotoxic activity was suggested to be due to a pore-forming protein toxin belonging to the RTX (repeats in the structural toxins) family. In the present work, two closely related genes, csxA and csxB (for C. rectus S-layer and RTX protein) were cloned from C. rectus and characterized. The Csx proteins appear to be bifunctional and possess two structurally different domains. The N-terminal part shows similarity with S-layer protein, especially SapA and SapB of C. fetus and Crs of C. rectus. The C-terminal part comprising most of CsxA and CsxB is a domain with 48 and 59 glycine-rich canonical nonapeptide repeats, respectively, arranged in three blocks. Purified recombinant Csx peptides bind Ca2+. These are characteristic traits of RTX toxin proteins. The S-layer and RTX domains of Csx are separated by a proline-rich stretch of 48 amino acids. All C. rectus isolates studied contained copies of either the csxA or csxB gene or both; csx genes were absent from all other Campylobacter and Helicobacter species examined. Serum of a patient with acute gingivitis showed a strong reaction to recombinant Csx protein on immunoblots.

  4. Highly active metallocarboxypeptidase from newly isolated Geobacillus strain SBS-4S: cloning and characterization.

    PubMed

    Tayyab, Muhammad; Rashid, Naeem; Angkawidjaja, Clement; Kanaya, Shigenori; Akhtar, Muhammad

    2011-03-01

    The carboxypeptidase gene from Geobacillus SBS-4S was cloned and sequenced. The sequence analysis displayed the gene consists of an open reading frame of 1503 nucleotides encoding a protein of 500 amino acids (CBP(SBS)). The amino acid sequence comparison revealed that CBP(SBS) exhibited a highest homology of 41.6% (identity) with carboxypeptidase Taq from Thermus aquaticus among the characterized proteases. CBP(SBS) contained an active site motif (265)HEXXH(269) which is conserved in family-M32 of carboxypeptidases. The gene was expressed with His-Tag utilizing Escherichia coli expression system and purified to apparent homogeneity. The purified CBP(SBS) showed highest activity at pH 7.5 and 70°C. The enzyme activity was metal ion dependent. Among metal ions highest activity was found in the presence of Co(2+). Thermostability studies of CBP(SBS) by circular dichroism spectroscopy demonstrated the melting temperature of the protein around 77°C. The enzyme exhibited K(m) and V(max) values of 14 mM and 10526 μmol min(-1) mg(-1) when carbobenzoxy-alanine-arginine was used as substrate. k(cat) and k(cat)/K(m) valves were 10175 s(-1) and 726 mM(-1) s(-1). To our knowledge this is the highest ever reported enzyme activity of a metallocarboxypeptidase and the first characterization of a metallocarboxypeptidase from genus Geobacillus.

  5. Cloning and characterization of a sialidase from the filamentous fungus, Aspergillus fumigatus.

    PubMed

    Warwas, Mark L; Yeung, Juliana H F; Indurugalla, Deepani; Mooers, Arne O; Bennet, Andrew J; Moore, Margo M

    2010-07-01

    A gene encoding a putative sialidase was identified in the genome of the opportunistic fungal pathogen, Aspergillus fumigatus. Computational analysis showed that this protein has Asp box and FRIP domains, it was predicted to have an extracellular localization, and a mass of 42 kDa, all of which are characteristics of sialidases. Structural modeling predicted a canonical 6-bladed beta-propeller structure with the model's highly conserved catalytic residues aligning well with those of an experimentally determined sialidase structure. The gene encoding the putative Af sialidase was cloned and expressed in Escherichia coli. Enzymatic characterization found that the enzyme was able to cleave the synthetic sialic acid substrate, 4-methylumbelliferyl alpha-D-N-acetylneuraminic acid (MUN), and had a pH optimum of 3.5. Further kinetic characterization using 4-methylumbelliferyl alpha-D-N-acetylneuraminylgalactopyranoside revealed that Af sialidase preferred alpha2-3-linked sialic acids over the alpha2-6 isomers. No trans-sialidase activity was detected. qPCR studies showed that exposure to MEM plus human serum induced expression. Purified Af sialidase released sialic acid from diverse substrates such as mucin, fetuin, epithelial cell glycans and colominic acid, though A. fumigatus was unable to use either sialic acid or colominic acid as a sole source of carbon. Phylogenetic analysis revealed that the fungal sialidases were more closely related to those of bacteria than to sialidases from other eukaryotes.

  6. Molecular cloning and biochemical characterization of a Drosophila phosphatidylinositol-specific phosphoinositide 3-kinase.

    PubMed

    Linassier, C; MacDougall, L K; Domin, J; Waterfield, M D

    1997-02-01

    Molecular, biochemical and genetic characterization of phosphoinositide 3-kinases (PI3Ks) have identified distinct classes of enzymes involved in processes mediated by activation of cell-surface receptors and in constitutive intracellular protein trafficking events. The latter process appears to involve a PtdIns-specific PI3K first described in yeast as a mutant, vps34, defective in the sorting of newly synthesized proteins from the Golgi to the vacuole. We have identified a representative member of each class of PI3Ks in Drosophila using a PCR-based approach. In the present paper we describe the molecular cloning of a PI3K from Drosophila, P13K_59F, that shows sequence similarity to Vps34. PI3K_59F encodes a protein of 108 kDa co-linear with Vps34 homologues, and with three regions of sequence similarity to other PI3Ks. Biochemical characterization of the enzyme, by expression of the complete coding sequence as a glutathione S-transferase fusion protein in Sf9 cells, demonstrates that PI3K_59F is a PtdIns-specific PI3K that can utilize either Mg2+ or Mn2+. This activity is sensitive to inhibition both by non-ionic detergent (Nonidet P40) and by wortmannin (IC50 10 nM). PI3K_59F, therefore, conserves both the structural and biochemical properties of the Vps34 class of enzymes.

  7. Molecular cloning and characterization of the anti-obesity gene adipose in pig.

    PubMed

    Wu, Yanling; Long, Qinqiang; Feng, Bin; Zhu, Xiaoyue; Zheng, Zifeng; Gao, Sumin; Gao, Mingju; Gan, Li; Zhou, Lei; Yang, Zaiqing

    2012-11-01

    Obesity has become an epidemic health problem characterized by aberrant energy metabolism. As the major player in energy homeostasis, adipose tissue has a decisive role in the development of obesity. Many genes involved in adipogenesis are also correlated with obesity. Adipose (Adp) has been established as an anti-obesity gene to repress adipogenesis and fat accumulation in mice, which inhibits the transcriptional activity of PPARγ by forming a chromatin remodeling complex with histones and HDAC3. Here, we reported the cloning and characterization of the pig Adp gene. Pig Adp cDNA had an ORF of 2034 nucleotides and was highly conserved among various species. Genomic sequence analysis indicated that pig Adp gene contains 16 exons and 15 introns, spanning more than 60kb on chromosome 6q21-24. The expression of pig Adp was high in testis, lung, kidney and adipose tissues, and relatively low in skeletal muscle. Bioinformatic analysis of 5'-flanking region of Adp has identified several potential binding sites for pivotal transcriptional factors related to both adipocyte differentiation and inflammation, highlighting the significance of Adp in energy metabolism. We have confirmed that KLF6, a positive regulator of adipogenesis, can enhance the promoter activity of Adp and up-regulate its mRNA expression. Taken together, our results would be helpful for further study of Adp regulation in the process of fat accumulation. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Gene cloning, expression, and characterization of the Bacillus amyloliquefaciens PS35 lipase

    PubMed Central

    Kanmani, Palanisamy; Kumaresan, Kuppamuthu; Aravind, Jeyaseelan

    2015-01-01

    Abstract Lipases are enzymes of immense industrial relevance, and, therefore, are being intensely investigated. In an attempt to characterize lipases at molecular level from novel sources, a lipase gene from Bacillus amyloliquefaciens PS35 was cloned, heterologously expressed in Escherichia coli DH5α cells and sequenced. It showed up to 98% homology with other lipase sequences in the NCBI database. The recombinant enzyme was then purified from E. coli culture, resulting in a 19.41-fold purification with 9.7% yield. It displayed a preference for long-chain para-nitrophenyl esters, a characteristic that is typical of true lipases. Its optimum pH and temperature were determined to be 8.0 and 40 °C, respectively. The half-lives were 2.0, 1.0 and 0.5 h at 50 °C, 60 °C and 70 °C, respectively. The metal ions K+ and Fe3+ enhanced the enzyme activity. The enzyme displayed substantial residual activity in the presence of various tested chemical modifiers, and interestingly, the organic solvents, such as n-hexane and toluene, also favored the enzyme activity. Thus, this study involves characterization of B. amyloliquefaciens lipase at molecular level. The key outcomes are novelty of the bacterial source and purification of the enzyme with desirable properties for industrial applications. PMID:26691486

  9. Cloning, expression and characterization of Bombyx mori α1,6-fucosyltransferase.

    PubMed

    Ihara, Hideyuki; Okada, Takahiro; Ikeda, Yoshitaka

    2014-07-25

    Although core α1,6-fucosylation is commonly observed in N-glycans of both vertebrates and invertebrates, the responsible enzyme, α1,6-fucosyltransferase, has been much less characterized in invertebrates compared to vertebrates. To investigate the functions of α1,6-fucosyltransferase in insects, we cloned the cDNA for the α1,6-fucosyltransferase from Bombyx mori (Bmα1,6FucT) and characterized the recombinant enzyme prepared using insect cell lines. The coding region of Bmα1,6FucT consists of 1737bp that code for 578 amino acids of the deduced amino acid sequence, showing significant similarity to other α1,6-fucosyltransferases. Enzyme activity assays demonstrated that Bmα1,6FucT is enzymatically active in spite of being less active compared to the human enzyme. The findings also indicate that Bmα1,6FucT, unlike human enzyme, is N-glycosylated and forms a disulfide-bonded homodimer. These findings contribute to a better understanding of roles of α1,6-fucosylation in invertebrates and also to the development of the more efficient engineering of N-glycosylation of recombinant glycoproteins in insect cells.

  10. Murine T-cell clones against Entamoeba histolytica: in vivo and in vitro characterization.

    PubMed Central

    Denis, M; Chadee, K

    1989-01-01

    Eleven T-cell clones were raised from the spleens of BALB/c mice hyperimmunized against a crude soluble extract of Entamoeba histolytica trophozoites. Seven clones were of the Lyt-1+, and four of the Lyt-23+ phenotype. All clones proliferated in the presence of E. histolytica antigens but not to a purified protein derivative; five clones proliferated to a crude extract of the E. histolytica-like Laredo amoebae. Ten clones secreted T-cell growth factors in response to E. histolytica antigens. Two clones (Lyt-23+) mediated direct lymphocytotoxicity (73% and 86%) against amoebic trophozoites that was inhibited with rabbit anti-mouse TNF-alpha. Supernatants of five of the clones (all Lyt-1+) activated mouse peritoneal macrophages (Mphi) to kill E. histolytica trophozoites in vitro, seemingly independent of secreted reactive oxygen intermediates (O2- and H2O2) in the case of three clones supernatants. All of the clones that were activating Mphi to kill amoeba in vitro also mediated a local DTH reaction in mouse footpad. Our results demonstrate direct lymphocyte cytotoxicity via a cytolytic molecule antigenically related to TNF-alpha and lymphokines activating Mphi for amoebic killing by oxidative and non-oxidative mechanisms, the latter process mediated by a macrophage-activating factor (MAF) distinct from interferon-gamma (IFN-gamma). PMID:15493266

  11. Cloning, expression and characterization of D-aminoacylase from Achromobacter xylosoxidans subsp. denitrificans ATCC 15173.

    PubMed

    Wang, Wei; Xi, Huange; Bi, Qirui; Hu, Ying; Zhang, Yang; Ni, Mengxiang

    2013-07-19

    D-Aminoacylase catalyzes the conversion of N-acyl-D-amino acids to d-amino acids and fatty acids. The aim of this study was to identify the D-aminoacylase gene from Achromobacter xylosoxidans subsp. denitrificans ATCC 15173 and investigate the biochemical characterization of the enzyme. A previously uncharacterized D-aminoacylase gene (ADdan) from this organism was cloned and sequenced. The open reading frame (ORF) of ADdan was 1467 bp in size encoding a 488-amino acid polypeptide. ADdan, with a high amino acid similarity to N-acyl-D-aspartate amidohydrolase from Alcaligenes A6, showed relatively low sequence similarities to other characterized D-aminoacylases. The recombinant ADdan protein was expressed in Escherichia coli BL21 (DE3) using pET-28a with a T7 promoter. The enzyme was purified in a single chromatographic step using nickel affinity gel column. The molecular mass of the expressed protein, calculated by SDS-PAGE, was about 52 kDa. The purified ADdan showed optimal activity at pH 8.0 and 50°C, and was stable at pH 6.0-8.0 and up to 45°C. Its activity was inhibited by Cu(2+), Fe(2+), Ca(2+), Mn(2+), Ni(2+), Zn(2+) and Hg(2+), whereas Mg(2+) had no significant influence on this recombinant D-aminoacylase. This is the first report on the characterization of D-aminoacylase with activity towards both N-acyl derivatives of neutral D-amino acids and N-acyl-D-aspartate. The characteristics of ADdan could prove to be of interest in industrial production of D-amino acids.

  12. SABATH methyltransferases from white spruce (Picea glauca): gene cloning, functional characterization and structural analysis.

    PubMed

    Zhao, Nan; Boyle, Brian; Duval, Isabelle; Ferrer, Jean-Luc; Lin, Hong; Seguin, Armand; MacKay, John; Chen, Feng

    2009-07-01

    Known members of the plant SABATH family of methyltransferases have important biological functions by methylating hormones, signalling molecules and other metabolites. While all previously characterized SABATH genes were isolated from angiosperms, in this article, we report on the isolation and functional characterization of SABATH genes from white spruce (Picea glauca [Moench] Voss), a gymnosperm. Through EST database search, three genes that encode proteins significantly homologous to known SABATH proteins were identified from white spruce. They were named PgSABATH1, PgSABATH2 and PgSABATH3, respectively. Full length cDNAs of these three genes were cloned and expressed in Escherichia coli. The E. coli-expressed recombinant proteins were tested for methyltransferase activity with a large number of compounds. While no activity was detected for PgSABATH2 and PgSABATH3, PgSABATH1 displayed the highest level of catalytic activity with indole-3-acetic acid (IAA). PgSABATH1 was, therefore, renamed PgIAMT1. Under steady-state conditions, PgIAMT1 exhibited apparent Km values of 18.2 microM for IAA. Homology-based structural modelling of PgIAMT1 revealed that the active site of PgIAMT1 is highly similar to other characterized IAMTs from angiosperms. PgIAMT1 showed expression in multiple tissues, with the highest level of expression detected in embryonic tissues. During somatic embryo maturation, a significant reduction in PgIAMT1 transcript levels was observed when developing cotyledons become apparent which is indicative of mature embryos. The biological roles of white spruce SABATH genes, especially those of PgIAMT1, and the evolution of the SABATH family are discussed.

  13. Should the World Stop Cloning Around? 12th Grade Lesson. Schools of California Online Resources for Education (SCORE): Connecting California's Classrooms to the World.

    ERIC Educational Resources Information Center

    MacDonald, David R.; Karayan, Michael

    This lesson for grade 12 is designed to raise student awareness of the potential of human cloning and of the effects it could have on the present, naturally born population. Students work in teams to research the issue and are provided with background information, detailed instructions, on-line resources, and reflection questions. The teacher's…

  14. Construction and characterization of infectious cDNA clones of a chicken strain of hepatitis E virus (HEV), avian HEV.

    PubMed

    Huang, F F; Pierson, F W; Toth, T E; Meng, X J

    2005-09-01

    Hepatitis E virus (HEV), the causative agent of hepatitis E, is an important human pathogen. Increasing evidence indicates that hepatitis E is a zoonosis. Avian HEV was recently discovered in chickens with hepatitis-splenomegaly syndrome in the USA. Like swine HEV from pigs, avian HEV is also genetically and antigenically related to human HEV. The objective of this study was to construct and characterize an infectious cDNA clone of avian HEV for future studies of HEV replication and pathogenesis. Three full-length cDNA clones of avian HEV, pT7-aHEV-5, pT7G-aHEV-10 and pT7G-aHEV-6, were constructed and their infectivity was tested by in vitro transfection of leghorn male hepatoma (LMH) chicken liver cells and by direct intrahepatic inoculation of specific-pathogen-free (SPF) chickens with capped RNA transcripts from the three clones. The results showed that the capped RNA transcripts from each of the three clones were replication competent when transfected into LMH cells as demonstrated by detection of viral antigens with avian HEV-specific antibodies. SPF chickens intrahepatically inoculated with the capped RNA transcripts from each of the three clones developed active avian HEV infections as evidenced by seroconversion to avian HEV antibodies, viraemia and faecal virus shedding. The infectivity was further confirmed by successful infection of naïve chickens with the viruses recovered from chickens inoculated with the RNA transcripts. The results indicated that all three cDNA clones of avian HEV are infectious both in vitro and in vivo. The availability of these infectious clones for a chicken strain of HEV now affords an opportunity to study the mechanisms of HEV cross-species infection and tissue tropism by constructing chimeric viruses among human, swine and avian HEVs.

  15. Characterization of cDNA clones encoding rabbit and human serum paraoxonase: The mature protein retains its signal sequence

    SciTech Connect

    Hassett, C.; Richter, R.J.; Humbert, R.; Omiecinski, C.J.; Furlong, C.E. ); Chapline, C.; Crabb, J.W. )

    1991-10-22

    Serum paraoxonase hydrolyzes the toxic metabolites of a variety of organophosphorus insecticides. High serum paraoxonase levels appear to protect against the neurotoxic effects of organophosphorus substrates of this enzyme. The amino acid sequence accounting for 42% of rabbit paraoxonase was determined. From these data, two oligonucleotide probes were synthesized and used to screen a rabbit liver cDNA library. Human paraoxonase clones were isolated from a liver cDNA library by using the rabbit cDNA as a hybridization probe. Inserts from three of the longest clones were sequenced, and one full-length clone contained an open reading frame encoding 355 amino acids, four less than the rabbit paraoxonase protein. Amino-terminal sequences derived from purified rabbit and human paraoxonase proteins suggested that the signal sequence is retained, with the exception of the initiator methionine residue. Characterization of the rabbit and human paraoxonase cDNA clones confirms that the signal sequences are not processed, except for the N-terminal methionine residue. The rabbit and human cDNA clones demonstrate striking nucleotide and deduced amino acid similarities (greater than 85%), suggesting an important metabolic role and constraints on the evolution of this protein.

  16. Genome of Reticuloendotheliosis Virus: Characterization by Use of Cloned Proviral DNA

    PubMed Central

    Rice, Nancy R.; Hiebsch, Ronald R.; Gonda, Matthew A.; Bose, Henry R.; Gilden, Raymond V.

    1982-01-01

    Reticuloendotheliosis virus is an avian type C retrovirus that is capable of transforming fibroblasts and hematopoietic cells both in vivo and in vitro. This virus is highly related to the three other members of the reticuloendotheliosis virus group, including spleen necrosis virus, but it is apparently unrelated to the avian leukosis-sarcoma virus family. Previous studies have shown that it consists of a replication-competent helper virus (designated REV-A) and a defective component (designated REV) that is responsible for transformation. In this study we used restriction endonuclease mapping and heteroduplex analysis to characterize the proviral DNAs of REV-A and REV. Both producer and nonproducer transformed chicken spleen cells were used as sources of REV proviral DNA; this genome was mapped in detail, and fragments of it were cloned in λgtWES·λB. The infected canine thymus line Cf2Th(REV-A) was used as a source of REV-A proviral DNA. The restriction maps and heteroduplexes of the REV and REV-A genomes showed that (proceeding from 5′ to 3′) (i) REV contains a large fraction of the REV-A gag gene (assuming a gene order of gag-pol-env and gene sizes similar to those of other type C viruses), for the two genomes are very similar over a distance of 2.1 kilobases beginning at their 5′ termini; (ii) most or all of REV-A pol is deleted in REV; (iii) REV contains a 1.1 kilobase segment derived from the 3′ end of REV-A pol or the 5′ end of env or both; (iv) this env region in REV is followed by a 1.9-kilobase segment which is unrelated to REV-A; and (v) the helper-unrelated segment of REV extends essentially all of the way to the beginning of the 3′ long terminal repeat. Therefore, like avian myeloblastosis virus but unlike the other avian acute leukemia viruses and most mammalian and avian sarcoma viruses, REV appears to be an env gene recombinant. We also found that the REV-specific segment is derived from avian DNA, for a cloned REV fragment was able

  17. Characterization and pharmacological properties of in vitro propagated clones of Echinacea tennesseensis (Beadle) small

    USDA-ARS?s Scientific Manuscript database

    Tissue culture techniques have been used to establish and maintain a repository of medicinal Echinacea. In vitro clones obtained from hypocotyls of germinated seeds, varied macroscopically, microscopically and exhibited variation in immune enhancing activity. Two in vitro produced clones of Echinace...

  18. Molecular identification, cloning and characterization of transmitted/founder HIV-1 subtype A, D and A/D infectious molecular clones

    PubMed Central

    Baalwa, Joshua; Wang, Shuyi; Parrish, Nicholas; Decker, Julie M.; Keele, Brandon F.; Learn, Gerald H.; Yue, Ling; Ruzagira, Eugene; Ssemwanga, Deogratius; Kamali, Anatoli; Amornkul, Pauli N.; Price, Matt A.; Kappes, John C.; Karita, Etienne; Kaleebu, Pontiano; Sanders, Eduard; Gilmour, Jill; Allen, Susan; Hunter, Eric; Montefiori, David C.; Haynes, Barton F.; Cormier, Emmanuel; Hahn, Beatrice H.; Shaw, George M.

    2012-01-01

    We report the molecular identification, cloning and initial biological characterization of 12 full-length HIV-1 subtype A, D and A/D recombinant transmitted/founder (T/F) genomes. T/F genomes contained intact canonical open reading frames and all T/F viruses were replication competent in primary human T-cells, although subtype D virus replication was more efficient (p<0.05). All 12 viruses utilized CCR5 but not CXCR4 as a co-receptor for entry and exhibited a neutralization profile typical of tier 2 primary virus strains, with significant differences observed between subtype A and D viruses with respect to sensitivity to monoclonal antibodies VRC01, PG9 and PG16 and polyclonal subtype C anti-HIV IgG (p<0.05 for each). The present report doubles the number of T/F HIV-1 clones available for pathogenesis and vaccine research and extends their representation to include subtypes A, B, C and D. PMID:23123038

  19. Cloning, Purification and Characterization of the Collagenase ColA Expressed by Bacillus cereus ATCC 14579.

    PubMed

    Abfalter, Carmen M; Schönauer, Esther; Ponnuraj, Karthe; Huemer, Markus; Gadermaier, Gabriele; Regl, Christof; Briza, Peter; Ferreira, Fatima; Huber, Christian G; Brandstetter, Hans; Posselt, Gernot; Wessler, Silja

    2016-01-01

    Bacterial collagenases differ considerably in their structure and functions. The collagenases ColH and ColG from Clostridium histolyticum and ColA expressed by Clostridium perfringens are well-characterized collagenases that cleave triple-helical collagen, which were therefore termed as ´true´ collagenases. ColA from Bacillus cereus (B. cereus) has been added to the collection of true collagenases. However, the molecular characteristics of B. cereus ColA are less understood. In this study, we identified ColA as a secreted true collagenase from B. cereus ATCC 14579, which is transcriptionally controlled by the regulon phospholipase C regulator (PlcR). B. cereus ATCC 14579 ColA was cloned to express recombinant wildtype ColA (ColAwt) and mutated to a proteolytically inactive (ColAE501A) version. Recombinant ColAwt was tested for gelatinolytic and collagenolytic activities and ColAE501A was used for the production of a polyclonal anti-ColA antibody. Comparison of ColAwt activity with homologous proteases in additional strains of B. cereus sensu lato (B. cereus s.l.) and related clostridial collagenases revealed that B. cereus ATCC 14579 ColA is a highly active peptidolytic and collagenolytic protease. These findings could lead to a deeper insight into the function and mechanism of bacterial collagenases which are used in medical and biotechnological applications.

  20. Molecular cloning, functional characterization, and subcellular localization of soybean nodule dihydrolipoamide reductase.

    PubMed

    Moran, Jose F; Sun, Zhaohui; Sarath, Gautam; Arredondo-Peter, Raúl; James, Euan K; Becana, Manuel; Klucas, Robert V

    2002-01-01

    Nodule ferric leghemoglobin reductase (FLbR) and leaf dihydrolipoamide reductase (DLDH) belong to the same family of pyridine nucleotide-disulfide oxidoreductases. We report here the cloning, expression, and characterization of a second protein with FLbR activity, FLbR-2, from soybean (Glycine max) nodules. The cDNA is 1,779 bp in length and codes for a precursor protein comprising a 30-residue mitochondrial transit peptide and a 470-residue mature protein of 50 kD. The derived protein has considerable homology with soybean nodule FLbR-1 (93% identity) and pea (Pisum sativum) leaf mitochondria DLDH (89% identity). The cDNA encoding the mature protein was overexpressed in Escherichia coli. The recombinant enzyme showed Km and kcat values for ferric leghemoglobin that were very similar to those of DLDH. The transcripts of FLbR-2 were more abundant in stems and roots than in nodules and leaves. Immunoblots of nodule fractions revealed that an antibody raised against pea leaf DLDH cross-reacted with recombinant FLbR-2, native FLbR-2 of soybean nodule mitochondria, DLDH from bacteroids, and an unknown protein of approximately 70 kD localized in the nodule cytosol. Immunogold labeling was also observed in the mitochondria, cytosol, and bacteroids of soybean nodules. The similar biochemical, kinetic, and immunological properties, as well as the high amino acid sequence identity and mitochondrial localization, draw us to conclude that FLbR-2 is soybean DLDH.

  1. Cloning, characterization and subcellular localization of Nuclear LIM interactor interacting factor gene from Leishmania donovani.

    PubMed

    Ravinder, R; Goyal, N

    2017-05-05

    LIM domains are zinc-binding motifs that mediate protein-protein interactions and are found in a wide variety of cytoplasmic and nuclear proteins. The nuclear LIM domain family members have a number of different functions including transcription factors, gene regulation, cell fate determination, organization of the cytoskeleton and tumour formation exerting their function through various LIM domain interacting protein partners/cofactors. Nuclear LIM domain interacting proteins/factors have not been reported in any protozoan parasites including Leishmania. Here, we report for the first time cloning, characterization and subcellular localization of nuclear LIM interactor-interacting factor (NLI) like protein from Leishmania donovani, the causative agent of Indian Kala-azar. Primary sequence analysis of LdNLI revealed presence of characteristic features of nuclear LIM interactor-interacting factor. However, leishmanial NLI represents a distinct kinetoplastid group, clustered in a separate branch of the phylogenic tree. The sub-cellular distribution of LdNLI revealed the discreet localization in nucleus and kinetoplast only, suggesting that the gene may have a role in parasite gene expression.

  2. Three isozymes of peptidylarginine deiminase in the chicken: molecular cloning, characterization, and tissue distribution.

    PubMed

    Shimizu, Akira; Handa, Kenji; Honda, Tomonori; Abe, Naoki; Kojima, Toshio; Takahara, Hidenari

    2014-01-01

    Peptidylarginine deiminase (PAD; EC 3.5.3.15) is a post-translational modification enzyme that catalyzes the conversion of protein-bound arginine to citrulline (deimination) in a calcium ion dependent manner. Although PADI genes are widely conserved among vertebrates, their function in the chicken is poorly understood. Here, we cloned and sequenced three chicken PADI cDNAs and analyzed the expression of their proteins in various tissues. Immunoblotting analysis showed that chicken PAD1 and PAD3 were present in cells of several central neuron system tissues including the retina; the chicken PAD2 protein was not detected in any tissue. We expressed recombinant chicken PADs in insect cells and characterized their enzymatic properties. The chicken PAD1 and PAD3 recombinant proteins required calcium ions as an essential cofactor for their catalytic activity. The two recombinant proteins showed similar substrate specificities toward synthetic arginine derivatives. By contrast to them, chicken PAD2 did not show any activity. We found that one of the conserved active centers in mammalian PADs had been altered in chicken PAD2; we prepared a reverse mutant but we did not detect an activity. We conclude that chicken PAD1 and PAD3 might play specific roles in the nervous system, but that chicken PAD2 might not be functional under normal physiological conditions.

  3. Cloning, Purification and Characterization of the Collagenase ColA Expressed by Bacillus cereus ATCC 14579

    PubMed Central

    Abfalter, Carmen M.; Schönauer, Esther; Ponnuraj, Karthe; Huemer, Markus; Gadermaier, Gabriele; Regl, Christof; Briza, Peter; Ferreira, Fatima; Huber, Christian G.; Brandstetter, Hans; Posselt, Gernot; Wessler, Silja

    2016-01-01

    Bacterial collagenases differ considerably in their structure and functions. The collagenases ColH and ColG from Clostridium histolyticum and ColA expressed by Clostridium perfringens are well-characterized collagenases that cleave triple-helical collagen, which were therefore termed as ´true´ collagenases. ColA from Bacillus cereus (B. cereus) has been added to the collection of true collagenases. However, the molecular characteristics of B. cereus ColA are less understood. In this study, we identified ColA as a secreted true collagenase from B. cereus ATCC 14579, which is transcriptionally controlled by the regulon phospholipase C regulator (PlcR). B. cereus ATCC 14579 ColA was cloned to express recombinant wildtype ColA (ColAwt) and mutated to a proteolytically inactive (ColAE501A) version. Recombinant ColAwt was tested for gelatinolytic and collagenolytic activities and ColAE501A was used for the production of a polyclonal anti-ColA antibody. Comparison of ColAwt activity with homologous proteases in additional strains of B. cereus sensu lato (B. cereus s.l.) and related clostridial collagenases revealed that B. cereus ATCC 14579 ColA is a highly active peptidolytic and collagenolytic protease. These findings could lead to a deeper insight into the function and mechanism of bacterial collagenases which are used in medical and biotechnological applications. PMID:27588686

  4. Transgenic mouse model of hemifacial microsomia: Cloning and characterization of insertional mutation region on chromosome 10

    SciTech Connect

    Naora, Hiroyuki; Otani, Hiroki; Tanaka, Osamu

    1994-10-01

    The 643 transgenic mouse line carries an autosomal dominant insertional mutation that results in hemifacial microsomia (HFM), including microtia and/or abnormal biting. In this paper, we characterize the transgene integration site in transgenic mice and preintegration site of wildtype mice. The locus, designated Hfm (hemifacial microsomia-associated locus), was mapped to chromosome 10, B1-3, by chromosome in situ hybridization. We cloned the transgene insertion site from the transgenic DNA library. By using the 5{prime} and 3{prime} flanking sequences, the preintegration region was isolated. The analysis of these regions showed that a deletion of at least 23 kb DNA occurred in association with the transgene integration. Evolutionarily conserved regions were detected within and beside the deleted region. The result of mating between hemizygotes suggests that the phenotype of the homozygote is lethality in the prenatal period. These results suggests that the Hfm locus is necessary for prenatal development and that this strain is a useful animal model for investigating the genetic predisposition to HFM in humans.

  5. Cloning and characterization of giant panda (Ailuropoda melanoleuca) IL-18 binding protein.

    PubMed

    Yan, Yue; Deng, Jiabo; Niu, Lili; Wang, Qiang; Yu, Jianqiu; Shao, Huanhuan; Cao, Qinghua; Zhang, Yizheng; Tan, Xuemei

    2016-06-01

    The giant panda (Ailuropoda melanoleuca) is an endangered species. Interleukin-18 (IL-18) plays an important role in the innate and adaptive immune responses by inducing IFN-γ. IL-18 has been implicated in the pathogenesis of various diseases. IL-18 binding protein (IL-18BP) is an intrinsic inhibitor of IL-18 that possesses higher affinity to IL-18. In this study, we cloned and characterized IL-18BP in giant panda (AmIL-18BP) from the spleen. The amino acid sequence of giant panda IL-18BP ORF shared about 65% identities with other species. To evaluate the effects of AmIL-18BP on the immune responses, we expressed the recombinant AmIL-18BP in Escherichia coli BL21 (DE3).The fusing protein PET-AmIL-18BP was purified by nickel affinity column chromatography. The biological function of purified PET-AmIL-18BP was determined on mice splenocyte by qRT-PCR. The results showed that AmIL-18BP was functional and could significantly reduce IFN-γ production in murine splenocytes. These results will facilitate the study of protecting giant panda on etiology and immunology.

  6. Cloning and characterization of alphaP integrin in embryos of the sea urchin Strongylocentrotus purpuratus.

    PubMed

    Susan, J M; Just, M L; Lennarz, W J

    2000-06-16

    Differentially expressed integrins have been shown to be involved in the intricate cell movements that occur during early development. Because the migration and movement of cells have been well characterized in sea urchin embryos, we searched for alpha-integrin subunits in this organism. An alpha integrin subunit, alphaP, was cloned from Strongylocentrotus purpuratus mesenchyme blastula stage mRNA by RT-PCR and RACE and found to exhibit 74-77% sequence similarity to mammalian alpha(5), alpha(8), alpha(IIb), and alpha(v) integrin. The 8-kb transcript was most abundant at the prism stage, although low levels could be detected at all stages by Northern blot analysis and RT-PCR. A polyclonal antibody to this novel integrin was generated against a 100-amino-acid alphaP fragment fused to glutathione S-transferase and shown to recognize a 180-kDa alpha-integrin in the egg and in all stages of embryogenesis studied.

  7. A Metagenomic Advance for the Cloning and Characterization of a Cellulase from Red Rice Crop Residues.

    PubMed

    Meneses, Carlos; Silva, Bruna; Medeiros, Betsy; Serrato, Rodrigo; Johnston-Monje, David

    2016-06-25

    Many naturally-occurring cellulolytic microorganisms are not readily cultivable, demanding a culture-independent approach in order to study their cellulolytic genes. Metagenomics involves the isolation of DNA from environmental sources and can be used to identify enzymes with biotechnological potential from uncultured microbes. In this study, a gene encoding an endoglucanase was cloned from red rice crop residues using a metagenomic strategy. The amino acid identity between this gene and its closest published counterparts is lower than 70%. The endoglucanase was named EglaRR01 and was biochemically characterized. This recombinant protein showed activity on carboxymethylcellulose, indicating that EglaRR01 is an endoactive lytic enzyme. The enzymatic activity was optimal at a pH of 6.8 and at a temperature of 30 °C. Ethanol production from this recombinant enzyme was also analyzed on EglaRR01 crop residues, and resulted in conversion of cellulose from red rice into simple sugars which were further fermented by Saccharomyces cerevisiae to produce ethanol after seven days. Ethanol yield in this study was approximately 8 g/L. The gene found herein shows strong potential for use in ethanol production from cellulosic biomass (second generation ethanol).

  8. Cloning and Functional Characterization of the Maize (Zea mays L.) Carotenoid Epsilon Hydroxylase Gene.

    PubMed

    Chang, Shu; Berman, Judit; Sheng, Yanmin; Wang, Yingdian; Capell, Teresa; Shi, Lianxuan; Ni, Xiuzhen; Sandmann, Gerhard; Christou, Paul; Zhu, Changfu

    2015-01-01

    The assignment of functions to genes in the carotenoid biosynthesis pathway is necessary to understand how the pathway is regulated and to obtain the basic information required for metabolic engineering. Few carotenoid ε-hydroxylases have been functionally characterized in plants although this would provide insight into the hydroxylation steps in the pathway. We therefore isolated mRNA from the endosperm of maize (Zea mays L., inbred line B73) and cloned a full-length cDNA encoding CYP97C19, a putative heme-containing carotenoid ε hydroxylase and member of the cytochrome P450 family. The corresponding CYP97C19 genomic locus on chromosome 1 was found to comprise a single-copy gene with nine introns. We expressed CYP97C19 cDNA under the control of the constitutive CaMV 35S promoter in the Arabidopsis thaliana lut1 knockout mutant, which lacks a functional CYP97C1 (LUT1) gene. The analysis of carotenoid levels and composition showed that lutein accumulated to high levels in the rosette leaves of the transgenic lines but not in the untransformed lut1 mutants. These results allowed the unambiguous functional annotation of maize CYP97C19 as an enzyme with strong zeinoxanthin ε-ring hydroxylation activity.

  9. Cloning of the mouse dysferlin gene and genomic characterization of the SJL-Dysf mutation.

    PubMed

    Vafiadaki, E; Reis, A; Keers, S; Harrison, R; Anderson, L V; Raffelsberger, T; Ivanova, S; Hoger, H; Bittner, R E; Bushby, K; Bashir, R

    2001-03-05

    The SJL mouse strain has been widely used as an animal model for experimental autoimmune encephalitis (EAE), inflammatory muscle disease and lymphomas and has also been used as a background strain for the generation of animal models for a variety of diseases including motor neurone disease, multiple sclerosis and atherosclerosis. Recently the SJL mouse was shown to have myopathy due to dysferlin deficiency, so that it can now be considered a natural animal model for limb-girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy (MM). We have cloned the mouse dysferlin cDNA and analysis of the sequence shows that the mouse dysferlin gene is characterized by six C2 domain sequences and a C-terminal anchoring domain, with the human and the mouse dysferlin genes sharing > 90% sequence homology overall. Genomic analysis of the SJL mutation confirms that the 171 bp RNA deletion has arisen by exon skipping resulting from a splice site mutation. The identification of this mutation has implications for the various groups using this widely available mouse stock.

  10. Cloning and characterization of an active fragment of luciferase from a luminescent marine alga, Pyrocystis lunula.

    PubMed

    Morishita, Hisashi; Ohashi, Sayumi; Oku, Takashi; Nakajima, Yoshihiro; Kojima, Satoshi; Ryufuku, Masayuki; Nakamura, Hideshi; Ohmiya, Yoshihiro

    2002-03-01

    Two marine dinoflagellates, Lingulodinium polyedrum and Pyrocystis lunula, emit light in a reaction involving the enzymatic oxidation of its tetrapyrrole luciferin by molecular oxygen. The characteristic properties of P. lunula luciferase have not been clarified, whereas L. polyedrum luciferase, which has three active domains, has been characterized. A cloned partial cDNA of the P. lunula luciferase encodes an active fragment corresponding to part of domain 2 and all of domain 3 of L. polyedrum luciferase. The homology of the amino acid sequence between the two luciferases in domain 3 is about 84.3%. A recombinant His-tagged luciferase fragment containing domain 3 (Mr = 46 kDa) catalyzed the light-emitting oxidation of luciferin (lambdamax = 474 nm). This protein was purified by a single affinity-chromatography procedure. The pH-activity profile and the bioluminescence spectrum of the recombinant enzyme having a third domain are almost identical to those of an extract from P. lunula cultured in vitro. The recombinant enzyme is active at pH 8.0, although the recombinant enzyme derived from the second domain of L. polyedrum luciferase is inactive at pH 8.0. Substitution of Glu-201 by histidine in the third domain of P. lunula luciferase showed a decrease of activity above pH 7.0, suggesting that histidine residues could be responsible for pH-sensitivity in dinoflagellate luciferase.

  11. Cloning, expression, and characterization of a D-psicose 3-epimerase from Clostridium cellulolyticum H10.

    PubMed

    Mu, Wanmeng; Chu, Feifei; Xing, Qingchao; Yu, Shuhuai; Zhou, Leon; Jiang, Bo

    2011-07-27

    The noncharacterized protein ACL75304 encoded by the gene Ccel_0941 from Clostridium cellulolyticum H10 (ATCC 35319), previously proposed as the xylose isomerase domain protein TIM barrel, was cloned and expressed in Escherichia coli . The expressed enzyme was purified by nickel-affinity chromatography with electrophoretic homogeneity and then characterized as d-psicose 3-epimerase. The enzyme was strictly metal-dependent and showed a maximal activity in the presence of Co(2+). The optimum pH and temperature for enzyme activity were 55 °C and pH 8.0. The half-lives for the enzyme at 60 °C were 6.8 h and 10 min when incubated with and without Co(2+), respectively, suggesting that this enzyme was extremely thermostable in the presence of Co(2+) but readily inactivated without metal ion. The Michaelis-Menten constant (K(m)), turnover number (k(cat)), and catalytic efficiency (k(cat)/K(m)) values of the enzyme for substrate d-psicose were estimated to be 17.4 mM, 3243.4 min(-1), and 186.4 mM min(-1), respectively. The enzyme carried out the epimerization of d-fructose to d-psicose with a conversion yield of 32% under optimal conditions, suggesting that the enzyme is a potential d-psicose producer.

  12. Cloning and characterization of the first actinomycete β-propeller phytase from Streptomyces sp. US42.

    PubMed

    Boukhris, Ines; Farhat-Khemakhem, Ameny; Bouchaala, Kameleddine; Virolle, Marie-Joëlle; Chouayekh, Hichem

    2016-10-01

    A gene encoding an extracellular phytase was cloned for the first time from an Actinomycete, Streptomyces sp. US42 and sequenced. The sequence of this gene revealed an encoded polypeptide (PHY US42) exhibiting one and six residues difference with the putative phytases of Streptomyces lividans TK24 and Streptomyces coelicolor A3(2), respectively. The molecular modeling of PHY US42 indicated that this phytase belongs to the group of β-propeller phytases that are usually calcium-dependent. PHY US42 was purified and characterized. Its activity was calcium-dependent and maximal at pH 7 and 65 °C. The enzyme was perfectly stable at pH ranging from 5 to 10 and its thermostability was greatly enhanced in the presence of calcium. Indeed, PHY US42 maintained 80% of activity after 10 min of incubation at 75 °C in the presence of 5 mM CaCl2 . PHY US42 was also found to exhibit high stability after incubation at 37 °C for 1 h in the presence of bovine bile and digestive proteases like of pepsin, trypsin, and chymotrypsin. Considering its biochemical properties, PHY US42 could be used as feed additive in combination with an acid phytase for monogastric animals.

  13. Cloning and characterization of the histone-fold proteins YBL1 and YCL1.

    PubMed

    Bolognese, F; Imbriano, C; Caretti, G; Mantovani, R

    2000-10-01

    Histones are among the most conserved proteins in evolution, sharing a histone fold motif. A number of additional histonic proteins exist and are involved in the process of transcriptional regulation. We describe here the identification, cloning and characterization of two small members of the H2A-H2B sub-family (YBL1 and YCL1) related to the NF-YB and NF-YC subunits of the CCAAT-binding activator NF-Y and to the TATA-binding protein (TBP) binding repressor NC2. Unlike the latters, YBL1 and YCL1 have no intrinsic CCAAT or TATA-binding capacity. In nucleosome reconstitution assays, they can form complexes with histones in solution and on DNA and they are part of relatively large complexes, as determined by glycerol gradient experiments. Our data support the idea that YBL1 and YCL1 are divergent with respect to NF-YB and NF-YC for specific functions, but have coevolved the capacity to interact with nucleosomal structures.

  14. Cloning and characterization of a Streptomyces antibioticus ATCC11891 cyclophilin related to Gram negative bacteria cyclophilins.

    PubMed

    Manteca, Angel; Kamphausen, Thilo; Fanghanel, Jorg; Fischer, Gunter; Sanchez, Jesus

    2004-08-13

    Cyclophilins are folding helper enzymes and represent a family of the enzyme class of peptidyl-prolyl cis-trans isomerases. Here, we report the molecular cloning and biochemical characterization of SanCyp18, an 18-kDa cyclophilin from Streptomyces antibioticus ATCC11891 located in the cytoplasm and constitutively expressed during development. Amino acid sequence analysis revealed a much higher homology to cyclophilins from Gram negative bacteria than to known cyclophilins from Streptomyces or other Gram positive bacteria. SanCyp18 is inhibited weakly by CsA, with a K(i) value of 21 microM, similar to cyclophilins from Gram negative bacteria. However, this value is more than 20-fold higher than the K(i) values reported for cyclophilins from other Gram positive bacteria, which makes SanCyp18 unique within this group. The presence of SanCyp18 in Streptomyces is likely due to horizontal gene transmission from Gram-negative bacteria to Streptomyces.

  15. Cloning and characterization of three ketoreductases from soil metagenome for preparing optically active alcohols.

    PubMed

    Zhao, Zhiqiang; Wang, Hualei; Zhang, Yiping; Chen, Lifeng; Wu, Kai; Wei, Dongzhi

    2016-10-01

    To discover novel ketoreductases (KRED) from soil metagenome preparation of chiral alcohols. Three putative KRED were cloned, heterologously expressed in Eschericha coli and characterized based on the sequence analysis of soil metagenome. All the three enzymes (KRED424, KRED432, and KRED433) had maximum activity at 55 °C and pH 7. KRED424 had a broader substrate spectrum compared with the other two. Three prochiral carbonyl compounds were used to evaluate the abilities of enantioselective reductions of the KRED. For N-Boc-3-pyrrolidone, all enzymes produced an (S)-type alcohol in enantiomeric excess (>99 % ee). For ethyl 2-oxo-4-phenylbutyrate, KRED424 showed a higher conversion (91.5 %) and enantioselectivity (S-type, >99 % ee) than KRED432 and KRED433. For ethyl 4-chloroacetoacetate (COBE), both of KRED424 and KRED433 completely converted 20 mM substrate and KRED433 could obtain an (R)-alcohol with 94 % ee. The three ketoreductases have potential in the preparation of pharmaceuticals and fine chemicals.

  16. Molecular characterization of Staphylococcus aureus from outpatients in the Caribbean reveals the presence of pandemic clones

    PubMed Central

    Dumortier, C.; Hafer, C.; Taylor, B. S.; Sánchez E, J.; Rodriguez-Taveras, C.; Leon, P.; Rojas, R.; Olive, C.; Lowy, F. D.

    2011-01-01

    Staphylococcus aureus infections continue to pose a global public health problem. Frequently, this epidemic is driven by the successful spread of single S. aureus clones within a geographic region, but international travel has been recognized as a potential risk factor for S. aureus infections. To study the molecular epidemiology of S. aureus infections in the Caribbean, a major international tourist destination, we collected methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) isolates from community-onset infections in the Dominican Republic (n=112) and Martinique (n=143). Isolates were characterized by a combination of pulsed-field gel electrophoresis (PFGE), spa typing, and multilocus sequence typing (MLST) typing. In Martinique, MRSA infections (n=56) were mainly caused by t304-ST8 strains (n=44), whereas MSSA isolates were derived from genetically diverse backgrounds. Among MRSA strains (n=22) from the Dominican Republic, ST5, ST30, and ST72 predominated, while ST30 t665-PVL+ (30/90) accounted for a substantial number of MSSA infections. Despite epidemiological differences in sample collections from both countries, a considerable number of MSSA infections (~10%) were caused by ST5 and ST398 isolates at each site. Further phylogenetic analysis suggests the presence of lineages shared by the two countries, followed by recent genetic diversification unique to each site. Our findings also imply the frequent import and exchange of international S. aureus strains in the Caribbean. PMID:21789605

  17. Identification, Cloning, and Characterization of l-Phenylserine Dehydrogenase from Pseudomonas syringae NK-15

    PubMed Central

    Ueshima, Sakuko; Muramatsu, Hisashi; Nakajima, Takanori; Yamamoto, Hiroaki; Kato, Shin-ichiro; Misono, Haruo; Nagata, Shinji

    2010-01-01

    The gene encoding d-phenylserine dehydrogenase from Pseudomonas syringae NK-15 was identified, and a 9,246-bp nucleotide sequence containing the gene was sequenced. Six ORFs were confirmed in the sequenced region, four of which were predicted to form an operon. A homology search of each ORF predicted that orf3 encoded l-phenylserine dehydrogenase. Hence, orf3 was cloned and overexpressed in Escherichia coli cells and recombinant ORF3 was purified to homogeneity and characterized. The purified ORF3 enzyme showed l-phenylserine dehydrogenase activity. The enzymological properties and primary structure of l-phenylserine dehydrogenase (ORF3) were quite different from those of d-phenylserine dehydrogenase previously reported. l-Phenylserine dehydrogenase catalyzed the NAD+-dependent oxidation of the β-hydroxyl group of l-β-phenylserine. l-Phenylserine and l-threo-(2-thienyl)serine were good substrates for l-phenylserine dehydrogenase. The genes encoding l-phenylserine dehydrogenase and d-phenylserine dehydrogenase, which is induced by phenylserine, are located in a single operon. The reaction products of both enzymatic reactions were 2-aminoacetophenone and CO2. PMID:21048868

  18. Cloning, characterization, and regulation of the human type II IMP dehydrogenase gene

    SciTech Connect

    Glesne, D.A.; Huberman, E. |

    1997-01-01

    Human type II inosine 5{prime}-monophosphate dehydrogenase (IMPDH, EC 1.1.1.205) is the rate-limiting enzyme in de novo guanine nucleotide biosynthesis. Regulated IMPDH activity is associated with cellular proliferation, transformation, and differentiation. The authors cloned and sequenced the entire gene for type II IMPDH and here provide details regarding the organization of the gene and the characterization of its promoter. The gene spans approximately 5 kb and is disrupted by 12 introns. The transcriptional start sites were determined by S1 nuclease mapping to be somewhat heterogeneous but predominated at 102 and 85 nucleotides from the translational initiation codon. Through the use of heterologous gene constructs and transient transfection assays, a minimal promoter from {minus}206 to {minus}85 was defined. This promoter is TATA-less and contains several transcription factor motifs including four potential Sp 1 binding sites. The minimal promoter is GC-rich (69%) and resembles a CpG island. Through the use of gel mobility shift assays, nuclear proteins were shown to specifically interact with this minimal promoter. Stable transfectants were used to demonstrate that the down-regulation of IMPDH gene expression in response to reduced cellular proliferation occurs by a transcriptional mechanism.

  19. Molecular cloning and characterization of neutral ceramidase homologue from the red flour beetle, Tribolium castaneum.

    PubMed

    Zhou, Ying; Lin, Xian-Wen; Yang, Qiong; Zhang, Yan-Ru; Yuan, Jing-Qun; Lin, Xin-Da; Xu, Ruijuan; Cheng, Jiaan; Mao, Cungui; Zhu, Zeng-Rong

    2011-07-01

    Ceramidase plays an important role in regulating the metabolism of sphingolipids, such as ceramide, sphingosine (SPH), and sphingosine-1-phosphate (S1P), by controlling the hydrolysis of ceramide. Here we report the cloning and biochemical characterization of a neutral ceramidase from the red flour beetle Tribolium castaneum which is an important storage pest. The Tribolium castaneum neutral ceramidase (Tncer) is a protein of 696 amino acids. It shares a high degree of similarity in protein sequence to neutral ceramidases from various species. Tncer mRNA levels are higher in the adult stage than in pre-adult stages, and they are higher in the reproductive organs than in head, thorax, and midgut. The mature ovary has higher mRNA levels than the immature ovary. Tncer is localized to the plasma membrane. It uses various ceramides (D-erythro-C(6), C(12), C(16), C(18:1), and C(24:1)-ceramide) as substrates and has an abroad pH optimum for its in vitro activity. Tncer has an optimal temperature of 37 °C for its in vitro activity. Its activity is inhibited by Fe(2+). These results suggest that Tncer has distinct biochemical properties from neutral ceramidases from other species.

  20. cDNA cloning and characterization of a novel squid rhodopsin kinase encoding multiple modular domains.

    PubMed

    Mayeenuddin, L H; Mitchell, J

    2001-01-01

    Rhodopsin phosphorylation is one of the key mechanisms of inactivation in vertebrate and invertebrate visual signal transduction. Here we report the cDNA cloning and protein characterization of a 70-kDa squid rhodopsin kinase, SQRK. The cDNA encoding the 70-kDa protein demonstrates high sequence identity with octopus rhodopsin kinase (92%) and mammalian beta-adrenergic receptor kinases (63-65%), but only 33% similarity with bovine rhodopsin kinase, suggesting that invertebrate rhodopsin kinases may be structurally similar to beta-adrenergic receptor kinases. This cDNA encodes three distinct modular domains: RGS, S/TKc, and PH domains. The native SQRK is an eye-specific protein that is only expressed in photoreceptor cells and the optic ganglion as determined by immunoblotting. Purified SQRK is able to phosphorylate both squid and bovine rhodopsin. Squid rhodopsin phosphorylation by purified SQRK was sensitive to both Mg2+ and GTPgammaS but was insensitive to Ca2+/CaM regulation. The ability of SQRK to phosphorylate rhodopsin was totally lost in the presence of SQRK-specific antibodies. Our results suggest that SQRK plays an important role in squid visual signal termination.

  1. Cloning, Expression, and Characterization of a Peculiar Choline-Binding β-Galactosidase from Streptococcus mitis▿

    PubMed Central

    Campuzano, Susana; Serra, Beatriz; Llull, Daniel; García, José L.; García, Pedro

    2009-01-01

    A Streptococcus mitis genomic DNA fragment carrying the SMT1224 gene encoding a putative β-galactosidase was identified, cloned, and expressed in Escherichia coli. This gene encodes a protein 2,411 amino acids long with a predicted molecular mass of 268 kDa. The deduced protein contains an N-terminal signal peptide and a C-terminal choline-binding domain consisting of five consensus repeats, which facilitates the anchoring of the secreted enzyme to the cell wall. The choline-binding capacity of the protein facilitates its purification using DEAE-cellulose affinity chromatography, although its complete purification was achieved by constructing a His-tagged fusion protein. The recombinant protein was characterized as a monomeric β-galactosidase showing a specific activity of around 2,500 U/mg of protein, with optimum temperature and pH ranges of 30 to 40°C and 6.0 to 6.5, respectively. Enzyme activity is not inhibited by glucose, even at 200 mM, and remains highly stable in solution or immobilized at room temperature in the absence of protein stabilizers. In S. mitis, the enzyme was located attached to the cell surface, but a significant activity was also detected in the culture medium. This novel enzyme represents the first β-galactosidase having a modular structure with a choline-binding domain, a peculiar property that can also be useful for some biotechnological applications. PMID:19633119

  2. Cloning and molecular characterization of tick kynurenine aminotransferase (HlKAT) from Haemaphysalis longicornis (Acari: Ixodidae).

    PubMed

    Battsetseg, Badgar; Boldbaatar, Damdinsuren; Battur, Banzragch; Xuan, Xuenan; Fujisaki, Kozo

    2009-09-01

    A complementary DNA coding a novel kynurenine aminotransferase (KAT) molecule from Haemaphysalis longicornis tick embryo was cloned and characterized. The transcription of the HlKAT occurs at all stages during tick development as well as in the midgut, salivary glands, ovary, and synganglion of adult ticks, and protein expression levels increased during the blood-feeding course. The HlKAT gene without signal peptide was successfully expressed as a glutathione S-transferase fusion protein in soluble form, which is capable of catalyzing the transamination of kynurenine and 3-hydroxykynurenine to kynurenic acid and xanthurenic acid, respectively. The purified recombinant HlKAT showed dose-dependent inhibition effect on the growth of equine babesial parasite, Babesia caballi, in in vitro culture. All results suggested that a specific HlKAT is present in tick and HlKAT may play an important physiological role in H. longicornis. This is the first report of a member enzyme of tryptophan pathway in Chelicerata.

  3. Cloning and Characterization of Two Xyloglucanases from Paenibacillus sp. Strain KM21

    PubMed Central

    Yaoi, Katsuro; Nakai, Tomonori; Kameda, Yoshiro; Hiyoshi, Ayako; Mitsuishi, Yasushi

    2005-01-01

    Two xyloglucan-specific endo-β-1,4-glucanases (xyloglucanases [XEGs]), XEG5 and XEG74, with molecular masses of 40 kDa and 105 kDa, respectively, were isolated from the gram-positive bacterium Paenibacillus sp. strain KM21, which degrades tamarind seed xyloglucan. The genes encoding these XEGs were cloned and sequenced. Based on their amino acid sequences, the catalytic domains of XEG5 and XEG74 were classified in the glycoside hydrolase families 5 and 74, respectively. XEG5 is the first xyloglucanase belonging to glycoside hydrolase family 5. XEG5 lacks a carbohydrate-binding module, while XEG74 has an X2 module and a family 3 type carbohydrate-binding module at its C terminus. The two XEGs were expressed in Escherichia coli, and recombinant forms of the enzymes were purified and characterized. Both XEGs had endoglucanase active only toward xyloglucan and not toward Avicel, carboxymethylcellulose, barley β-1,3/1,4-glucan, or xylan. XEG5 is a typical endo-type enzyme that randomly cleaves the xyloglucan main chain, while XEG74 has dual endo- and exo-mode activities or processive endo-mode activity. XEG5 digested the xyloglucan oligosaccharide XXXGXXXG to produce XXXG, whereas XEG74 digestion of XXXGXXXG resulted in XXX, XXXG, and GXXXG, suggesting that this enzyme cleaves the glycosidic bond of unbranched Glc residues. Analyses using various oligosaccharide structures revealed that unique structures of xyloglucan oligosaccharides can be prepared with XEG74. PMID:16332739

  4. Cloning and characterization of two xyloglucanases from Paenibacillus sp. strain KM21.

    PubMed

    Yaoi, Katsuro; Nakai, Tomonori; Kameda, Yoshiro; Hiyoshi, Ayako; Mitsuishi, Yasushi

    2005-12-01

    Two xyloglucan-specific endo-beta-1,4-glucanases (xyloglucanases [XEGs]), XEG5 and XEG74, with molecular masses of 40 kDa and 105 kDa, respectively, were isolated from the gram-positive bacterium Paenibacillus sp. strain KM21, which degrades tamarind seed xyloglucan. The genes encoding these XEGs were cloned and sequenced. Based on their amino acid sequences, the catalytic domains of XEG5 and XEG74 were classified in the glycoside hydrolase families 5 and 74, respectively. XEG5 is the first xyloglucanase belonging to glycoside hydrolase family 5. XEG5 lacks a carbohydrate-binding module, while XEG74 has an X2 module and a family 3 type carbohydrate-binding module at its C terminus. The two XEGs were expressed in Escherichia coli, and recombinant forms of the enzymes were purified and characterized. Both XEGs had endoglucanase active only toward xyloglucan and not toward Avicel, carboxymethylcellulose, barley beta-1,3/1,4-glucan, or xylan. XEG5 is a typical endo-type enzyme that randomly cleaves the xyloglucan main chain, while XEG74 has dual endo- and exo-mode activities or processive endo-mode activity. XEG5 digested the xyloglucan oligosaccharide XXXGXXXG to produce XXXG, whereas XEG74 digestion of XXXGXXXG resulted in XXX, XXXG, and GXXXG, suggesting that this enzyme cleaves the glycosidic bond of unbranched Glc residues. Analyses using various oligosaccharide structures revealed that unique structures of xyloglucan oligosaccharides can be prepared with XEG74.

  5. Isomaltulose synthase from Klebsiella sp. strain LX3: gene cloning and characterization and engineering of thermostability.

    PubMed

    Zhang, Daohai; Li, Xianzhen; Zhang, Lian-Hui

    2002-06-01

    The gene (palI) encoding isomaltulose synthase (PalI) from a soil bacterial isolate, Klebsiella sp. strain LX3, was cloned and characterized. PalI converts sucrose into isomaltulose, trehalulose, and trace amounts of glucose and fructose. Sequence domain analysis showed that PalI contains an alpha-amylase domain and (beta/alpha)(8)-barrel structures, suggesting that it belongs to the alpha-amylase family. Sequence alignment indicated that the five amino acid residues of catalytic importance in alpha-amylases and glucosyltransferases (Asp(241), Glu(295), Asp(369), His(145), and His(368)) are conserved in PalI. Purified recombinant PalI displayed high catalytic efficiency, with a Km of 54.6 +/- 1.7 mM for sucrose, and maximum activity (approximately 328.0 +/- 2.5 U/mg) at pH 6.0 and 35 degrees C. PalI activity was strongly inhibited by Fe3+ and Hg2+ and was enhanced by Mn2+ and Mg2+. The half-life of PalI was 1.8 min at 50 degrees C. Replacement of selected amino acid residues by proline significantly increased the thermostability of PalI. Simultaneous replacement of Glu(498) and Arg(310) with proline resulted in an 11-fold increase in the half-life of PalI at 50 degrees C.

  6. Cloning, expression, and characterization of fugu CD4, the first ectothermic animal CD4.

    PubMed

    Suetake, Hiroaki; Araki, Kyosuke; Suzuki, Yuzuru

    2004-08-01

    We have cloned and sequenced the first ectothermic animal CD4 gene from fugu, Takifugu rubripes, using a public database of the third draft sequence of the fugu genome. The fugu CD4 gene encodes a predicted protein of 463 amino acids containing four extracellular immunoglobulin (Ig)-like domains, a transmembrane region, and a cytoplasmic tail. Fugu CD4 shares low identity of about 15-20% with avian and mammalian CD4 proteins. Unlike avian and mammalian CD4, fugu CD4 lacks the Cys pair of the first Ig-like domain, but has a unique possible disulfide bond in the third domain. These differences suggest that fugu CD4 may have a different structure that could affect binding of major histocompatibility complex class II molecules and subsequent T-cell activation. In the putative fugu cytoplasmic region, the protein tyrosine kinase p56lck binding motif is conserved. The predicted fugu CD4 gene is composed of 12 exons, differing from other CD4 genes, but showing conserved synteny and many conserved sequence motifs in the promoter region. RT-PCR analysis demonstrated that the fugu CD4 gene is expressed predominantly in lymphoid tissues. We also show that fugu CD4 can be expressed on the surface of cells via transfection. Molecular characterization of CD4 in fish provides insights into the evolution of both the CD4 molecule and the immune system.

  7. Molecular cloning and characterization of the canine prostaglandin E receptor EP2 subtype.

    PubMed

    Hibbs, T A; Lu, B; Smock, S L; Vestergaard, P; Pan, L C; Owen, T A

    1999-05-01

    Prostaglandin E2 (PGE2) binds to four G-protein coupled cell surface receptors (EP1-EP4) and has been implicated as a local mediator of bone anabolism via a cyclic AMP mediated pathway following activation of the EP2 and/or EP4 receptor subtype. A canine kidney cDNA library was screened using a human EP2 probe, and a clone with an open reading frame of 1083 bp, potentially encoding a protein of 361 amino acids, was characterized. This open reading frame has 89% identity to the human EP2 cDNA at the nucleotide level and 87% identity at the predicted protein level. Scatchard analysis of a CHO cell line stably transfected with canine EP2 yielded a dissociation constant of 22 nM for PGE2. Competition binding studies, using 3H-PGE2 as ligand, demonstrated specific displacement by PGE2, Prostaglandin E1, Prostaglandin A3, and butaprost (an EP2 selective ligand), but not by ligands with selectivity for the related DP, FP, IP, or TP receptors. Specific ligand binding also resulted in increased levels of cAMP in EP2 transfected cells with no evidence of short-term, ligand-induced desensitization. Northern blot analysis revealed two transcripts of 3300 and 2400 bp in canine lung, and reverse-transcription polymerase chain reaction showed expression in all tissues examined. Southern blot analysis suggests the presence of a single-copy gene for EP2 in the dog.

  8. Molecular cloning, characterization and expression analysis of Tim-3 and Galectin-9 in the woodchuck model.

    PubMed

    Liu, Yanan; Wang, Junzhong; Wang, Lu; Wang, Baoju; Yang, Shangqing; Wang, Qin; Luo, Jinzhuo; Feng, Xuemei; Yang, Xuecheng; Lu, Yinping; Roggendorf, Michael; Lu, Mengji; Yang, Dongliang; Liu, Jia

    2017-03-01

    In recent years, a critical role for T cell immunoglobulin mucin domain 3 (Tim-3) and its ligand Galectin-9 (Gal-9) has emerged in infectious disease, autoimmunity and cancer. Manipulating this immune checkpoint may have immunotherapeutic potential and could represent an alternative approach for improving immune responses to viral infections and cancer. The woodchuck (Marmot monax) infected by woodchuck hepatitis virus (WHV) represents an informative animal model to study HBV infection and HCC. In the current study, the cDNA sequences of woodchuck Tim-3 and Gal-9 were cloned, sequenced and characterized. The extracellular domain of Tim-3 cDNA sequence consisted of 576bp coding sequence (CDS) that encoded 192 amino acids. The 1076bp full-length Gal-9 cDNA sequence consisted of 1059bp coding sequence (CDS) that encoded 352 amino acids with a molecular weight of 39.7kDa. The phylogenetic tree analysis revealed that the woodchuck Tim-3 and Gal-9 had the closest genetic relationship with Ictidomys tridecemlineatus. The result of quantification PCR analysis showed that ubiquitous expression of Gal-9 but not Tim-3 in different tissues of naive woodchucks. Elevated liver Gal-9 expression was observed in woodchucks with chronic WHV infection. Moreover, a polyclonal antibody against the extracellular domain of woodchuck Tim-3 were generated and identified by flow cytometry. Our results serve as a foundation for further insight into the role of Tim-3/Galectin-9 signaling pathway in viral hepatitis and HCC in the woodchuck model.

  9. Characterization of an emergent clone of enteroinvasive Escherichia coli circulating in Europe.

    PubMed

    Michelacci, V; Prosseda, G; Maugliani, A; Tozzoli, R; Sanchez, S; Herrera-León, S; Dallman, T; Jenkins, C; Caprioli, A; Morabito, S

    2016-03-01

    Enteroinvasive Escherichia coli (EIEC) cause intestinal illness indistinguishable from that caused by Shigella, mainly in developing countries. Recently an upsurge of cases of EIEC infections has been observed in Europe, with two large outbreaks occurring in Italy and in the United Kingdom. We have characterized phenotypically and genotypically the strains responsible for these epidemics together with an additional isolate from a sporadic case isolated in Spain. The three isolates belonged to the same rare serotype O96:H19 and were of sequence type ST-99, never reported before in EIEC or Shigella. The EIEC strains investigated possessed all the virulence genes harboured on the large plasmid conferring the invasive phenotype to EIEC and Shigella while showing only some of the known chromosomal virulence genes and none of the described pathoadaptative mutations. At the same time, they displayed motility abilities and biochemical requirements resembling more closely those of the non-pathogenic E. coli rather than the EIEC and Shigella strains used as reference. Our observations suggested that the O96:H19 strains belong to an emerging EIEC clone, which could be the result of a recent event of acquisition of the invasion plasmid by commensal E. coli.

  10. Glucoamylase starch-binding domain of Aspergillus niger B1: molecular cloning and functional characterization.

    PubMed Central

    Paldi, Tzur; Levy, Ilan; Shoseyov, Oded

    2003-01-01

    Carbohydrate-binding modules (CBMs) are protein domains located within a carbohydrate-active enzyme, with a discrete fold that can be separated from the catalytic domain. Starch-binding domains (SBDs) are CBMs that are usually found at the C-terminus in many amylolytic enzymes. The SBD from Aspergillus niger B1 (CMI CC 324262) was cloned and expressed in Escherichia coli as an independent domain and the recombinant protein was purified on starch. The A. niger B1 SBD was found to be similar to SBD from A. kawachii, A. niger var. awamori and A. shirusami (95-96% identity) and was classified as a member of the CBM family 20. Characterization of SBD binding to starch indicated that it is essentially irreversible and that its affinity to cationic or anionic starch, as well as to potato or corn starch, does not differ significantly. These observations indicate that the fundamental binding area on these starches is essentially the same. Natural and chemically modified starches are among the most useful biopolymers employed in the industry. Our study demonstrates that SBD binds effectively to both anionic and cationic starch. PMID:12646045

  11. Molecular cloning and biochemical characterization of a lipoxygenase in almond (Prunus dulcis) seed.

    PubMed

    Mita, G; Gallo, A; Greco, V; Zasiura, C; Casey, R; Zacheo, G; Santino, A

    2001-03-01

    We have characterized an almond (Prunus dulcis) lipoxygenase (LOX) that is expressed early in seed development. The presence of an active lipoxygenase was confirmed by western blot analysis and by measuring the enzymatic activity in microsomal and soluble protein samples purified from almond seeds at this stage of development. The almond lipoxygenase, which had a pH optimum around 6, was identified as a 9-LOX on the basis of the isomers of linoleic acid hydroperoxides produced in the enzymatic reaction. A genomic clone containing a complete lipoxygenase gene was isolated from an almond DNA library. The 6776-bp sequence reported includes an open reading frame of 4667 bp encoding a putative polypeptide of 862 amino acids with a calculated molecular mass of 98.0 kDa and a predicted pI of 5.61. Almond seed lipoxygenase shows 71% identity with an Arabidopsis LOX1 gene and is closely related to tomato fruit and potato tuber lipoxygenases. The sequence of the active site was consistent with the isolated gene encoding a 9-LOX.

  12. Cloning and characterization of a new ribitol dehydrogenase from Providencia alcalifaciens RIMD 1656011.

    PubMed

    Hassanin, Hinawi Am; Wang, Xiao; Mu, Wanmeng; Zhang, Tao; Jiang, Bo

    2016-06-01

    A new ribitol dehydrogenase gene was cloned from Providencia alcalifaciens RIMD 1656011 and expressed in Escherichia coli BL21. This study aimed to purify and characterize the ribitol dehydrogenase from P. alcalifaciens RIMD 1656011 and investigate its substrate specificity for potential use as an industrial enzyme. The protein was purified by nickel affinity chromatography. The molecular mass of the purified enzyme was determined as ∼25 000 and 26 650 Da through sodium dodecyl sulfate polyacrylamide gel electrophoresis and liquid chromatography/mass spectrometry respectively. The result for native molecular mass (104 kDa) suggested that the enzyme functions as a tetramer. Optimum activity of the enzyme was determined at pH 10.0 and a temperature of 35 °C. Regarding its thermal stability, the enzyme retained 72, 72, 48 and 0% of its initial activity after 4 h at 25, 30, 40 and 50 °C respectively. The Km , kcat and kcat /Km values of the enzyme for the substrate ribitol were determined as 13.9 mmol L(-1) , 10.0 s(-1) and 0.71 L mmol(-1) s(-1) respectively. The Km of NAD(+) was 0.042 mmol L(-1) . The substrate specificity indicated that the ribitol dehydrogenase from P. alcalifaciens RIMD 1656011 can be used for direct production of allitol from d-fructose without any by-product formation. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  13. Gene cloning and characterization of novel antinociceptive peptide from the brain of the frog, Odorrana grahami.

    PubMed

    Chen, Wenlin; Yang, Xuening; Chen, Lingling; Yang, Xiaolong; Feng, Feifei; He, Weiyu; Liu, Jingze; Yu, Haining

    2011-07-01

    Amphibian opiate peptides including dermorphins and deltorpins have been recently found only in the skin of South American frogs belonging to the subfamily Phyllomedusinae (Phyllomedusa, Agalychnis and Pachymedusa species). No opiate peptides have ever been identified from other amphibians or organs except skin. Here we report the purification and characterization of a novel antinociceptive peptide named odorranaopin from the homogenates of the frog brains, Odorrana grahami, which is also the first antinociceptive peptide found in Ranidae amphibian. Odorranaopin comprises 17 amino acid residues with the sequence of DYTIRTRLHQESSRKVL (Mr 2102 Da). The cDNA encoding odorranaopin was cloned from the frog brain cDNA library, and it was confirmed to be a specific gene. The odorranaopin precursor deduced is composed of 61 amino acid residues including the predicted signal peptide, acidic spacer peptide and mature odorranaopin positioned at the C-terminus. Odorranaopin could inhibit nociceptive responses induced by formalin and acetic acid. It also inhibited the contractile responses of ileum smooth muscle induced by bradykinin, implying that the antinociceptive activity of odorranaopin possibly results from its blockade on bradykinin or bradykinin receptor functions. Odorranaopin is the first antinociceptive peptide found in Ranidae amphibian. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  14. Gene cloning and characterization of alpha-glucuronidase of Bacillus stearothermophilus no. 236.

    PubMed

    Choi, I D; Kim, H Y; Choi, Y J

    2000-12-01

    The alpha-glucuronidase gene of Bacillus stearothermophilus No. 236 was cloned, sequenced, and expressed in Escherichia coli. The gene, designated aguA, encoded a 691-residue polypeptide with calculated molecular weight of 78,156 and pI of 5.34. The alpha-glucuronidase produced by a recombinant E. coli strain containing the aguA gene was purified to apparent homogeneity and characterized. The molecular weight of the alpha-glucuronidase was 77,000 by SDS-PAGE and 161,000 by gel filtration; the functional form of the alpha-glucuronidase therefore was dimeric. The optimal pH and temperature for the enzyme activity were pH 6.5 and 40 degrees C, respectively. The enzyme's half-life at 50 degrees C was 50 min. The values for the kinetic parameters of Km and Vmax were 0.78 mM and 15.3 U/mg for aldotriouronic acid [2-O-alpha-(4-O-methyl-alpha-D-glucopyranosyluronic)-D-xylobiose]. The alpha-glucuronidase acted mainly on small substituted xylo-oligomers and did not release methylglucuronic acid from intact xylan. Nevertheless, synergism in the release of xylose from xylan was found when alpha-glucuronidase was added to a mixture of endoxylanase and beta-xylosidase.

  15. Characterization and cloning of an 11S globulin with hemagglutination activity from Murraya paniculata.

    PubMed

    Singh, Anamika; Selvakumar, Purushotham; Saraswat, Akhilesh; Tomar, Prabhat P S; Mishra, Manisha; Singh, Pradhyumna K; Sharma, Ashwani K

    2015-01-01

    A ~56 kDa protein having hemagglutination activity was purified and characterized from the Murraya paniculata seeds. The gel electrophoresis studies demonstrated that protein is primarily of two different subunits, molecular weight ~ 35 and 21 kDa held together by disulfide-linkages and predominantly by secondary forces. The cloning and sequence analysis revealed that the protein exhibited a substantial sequence identity to seed storage 11S globulin family proteins. The sequence analysis of Murraya paniculata globulin (MPG) demonstrated higher and lower molecular weight polypeptides to be acidic (α) and basic (β) respectively. The sequence analysis further showed that it possesses a characteristic bi-cupin motif and a putative metal binding pocket. CD analysis revealed that the MPG was a β/α protein with a slightly higher content of the former. Conformational changes in protein have been studied by fluorescence spectrometry by using various chemical treatments. The results demonstrated that MPG belongs to 11S globulin family and exhibit's hemagglutination activity, which implicates it to be possessing lectin-like property.

  16. Cloning, functional expression, and characterization of a chalcone 3-hydroxylase from Cosmos sulphureus.

    PubMed

    Schlangen, Karin; Miosic, Silvija; Thill, Jana; Halbwirth, Heidi

    2010-07-01

    A chalcone 3-hydroxylase (CH3H) cDNA clone was isolated and characterized from Cosmos sulphureus petals accumulating butein (2',3,4,4'-tetrahydroxychalcone) derivatives as yellow flower pigments. The recombinant protein catalyses the introduction of an additional hydroxyl group in the B-ring of chalcones, a reaction with high similarity to the hydroxylation of flavonoids catalysed by the well-studied flavonoid 3'-hydroxylase (F3'H). CH3H shows high specificity for chalcones, but a low F3'H activity was also detected. By contrast, the common F3'H from C. sulphureus does not accept chalcones as substrates and is therefore unlikely to be involved in the creation of the B-ring hydroxylation pattern of the yellow flower pigments. CH3H was primarily expressed in young buds, the main tissue for chalcone pigment formation. Expression levels in open flowers and 3-d-old seedlings were lower and almost no CH3H expression was observed in leaves. F3'H, in contrast, showed the highest expression also in buds, but comparable expression rates in all other tissues tested. Recombinant hybrid proteins constructed from CH3H and F3'H fragments demonstrated that amino acid residues at a substrate recognition site and an insertion of four amino acid residues in a putative loop region have an impact on chalcone acceptance. This is the first identification of a CH3H cDNA from any plant species.

  17. Two novel annexins from Drosophila melanogaster. Cloning, characterization, and differential expression in development.

    PubMed

    Johnston, P A; Perin, M S; Reynolds, G A; Wasserman, S A; Südhof, T C

    1990-07-05

    The annexins are a family of homologous Ca2(+)- and phospholipid-binding proteins that until now have only been found in vertebrates. cDNA clones encoding two novel annexins from Drosophila melanogaster were isolated and characterized. RNA blots indicate that the messages for the two Drosophila proteins are differentially expressed in development, with one message being expressed throughout development, while the other is only found in early embryos and adult flies. In situ hybridizations localize the two Drosophila genes to 93B and 19A-4,7. A similarly high degree of homology relates Drosophila annexins to different vertebrate annexins, indicating that the Drosophila annexins are not the invertebrate homologues of particular mammalian annexins but that they constitute novel members of the annexin gene family. In continuation with a recently established terminology, the Drosophila annexins will be named annexins IX and X. The biochemical properties of Drosophila annexin X were investigated using recombinant protein. Similar to vertebrate annexins, annexin X bound to liver membranes and liposomes containing phosphatidylserine in a calcium-dependent manner but not to liposomes containing phosphatidylcholine. In addition, annexin X partitioned into the detergent phase of Triton X-114 as a function of calcium. The conservation of the annexin family of Ca2(+)-binding proteins in invertebrates suggests that they have a basic function in cells which is not peculiar to vertebrate biology, and the availability of the Drosophila sequences will open avenues for mutational studies of these functions.

  18. Molecular cloning and characterization of the gene encoding rat submandibular gland apomucin, Mucsmg.

    PubMed

    Albone, E F; Hagen, F K; Szpirer, C; Tabak, L A

    1996-10-01

    Mucin glycoproteins are a major constituent of salivary secretions and play a primary role in the protection of the oral cavity. Rat submandibular glands (RSMG) synthesize and secrete a low molecular weight (114 kDa) mucin glycoprotein. We have isolated, partially sequenced, and characterized the gene which encodes the RSMG apomucin. The gene is encoded by three exons of 106 nt, 69 nt, and 991 nt, separated by introns of 921 nt and 12.5 kb. CAAT and TATA elements are present, at -68 and -26, respectively, in the 5' flanking sequence of the RSMG apomucin gene. The tandem repeat domain present in exon III consists of ten tandem repeats of 39 nt encoding the consensus sequence PTTDSTTPAPTTK. Sequence comparison and organization of the nucleic acid sequence encoding the tandem repeats of two alleles for this gene suggests that the apomucin gene has undergone recombinational events during its evolution. No significant sequence similarity was found with other mucin genes, or with other known salivary gland-specific genes. The gene was localized to rat chromosome 14 using somatic cell hybrids that segregate rat chromosomes. Since this, to our knowledge, represents the first RSMG mucin gene cloned, we have designated this gene Mucsmg.

  19. Cloning, sequencing and characterization of the biosynthetic gene cluster of sanglifehrin A, a potent cyclophilin inhibitor.

    PubMed

    Qu, Xudong; Jiang, Nan; Xu, Fei; Shao, Lei; Tang, Gongli; Wilkinson, Barrie; Liu, Wen

    2011-03-01

    Sanglifehrin A (SFA), a potent cyclophilin inhibitor produced by Streptomyces flaveolus DSM 9954, bears a unique [5.5] spirolactam moiety conjugated with a 22-membered, highly functionalized macrolide through a linear carbon chain. SFA displays a diverse range of biological activities and offers significant therapeutic potential. However, the structural complexity of SFA poses a tremendous challenge for new analogue development via chemical synthesis. Based on a rational prediction of its biosynthetic origin, herein we report the cloning, sequencing and characterization of the gene cluster responsible for SFA biosynthesis. Analysis of the 92 776 bp contiguous DNA region reveals a mixed polyketide synthase (PKS)/non-ribosomal peptide synthetase (NRPS) pathway which includes a variety of unique features for unusual PKS and NRPS building block formation. Our findings suggest that SFA biosynthesis requires a crotonyl-CoA reductase/carboxylase (CCR) for generation of the putative unusual PKS starter unit (2R)-2-ethylmalonamyl-CoA, an iterative type I PKS for the putative atypical extender unit (2S)-2-(2-oxo-butyl)malonyl-CoA and a phenylalanine hydroxylase for the NRPS extender unit (2S)-m-tyrosine. A spontaneous ketalization of significant note, may trigger spirolactam formation in a stereo-selective manner. This study provides a framework for the application of combinatorial biosynthesis methods in order to expand the structural diversity of SFA.

  20. Molecular cloning and characterization of a subtilisin-like protease from Arabidopsis thaliana.

    PubMed

    Li, D H; Xi, H; Yu, X B; Cai, Y P

    2015-12-09

    The Arabidopsis thaliana genome encodes 56 subtilisin-like serine proteases (subtilases). In order to evaluate the protease activity of a previously uncharacterized subtilase, designated as AtSBT1.9, we cloned its full-length cDNA from A. thaliana seedlings. An AtSBT1.9 mature peptide coding sequence was inserted into the bacterial expression vector, pMAL-c2x, and the recombinant vector was transformed into Escherichia coli BL21 (DE3). The recombinant AtSBT1.9 tagged by maltose binding protein (MBP) was induced as a 117.5-kDa protein in the soluble form in E. coli BL21 (DE3). MBP-AtSBT1.9 was expressed at a level of 11% (w/w) of the bacterial total protein. Protein purification using Amylose Resin revealed a recombinant AtSBT1.9 protease activity of 9.23 U/mg protein at pH 7 and 25°C. Maximal activity occurred over a broad pH (7-8) and temperature (25°-42°C) optimal range. Validation of AtSBT1.9 protease activity would help in characterizing its in vivo function in A. thaliana.

  1. Cloning and characterization of glyceraldehyde-3-phosphate dehydrogenase encoding gene in Gracilaria/Gracilariopsis lemaneiformis

    NASA Astrophysics Data System (ADS)

    Xueying, Ren; Zhenghong, Sui; Xuecheng, Zhang

    2006-04-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays important roles in various cellular processes. A cytosolic GAPDH encoding gene ( gpd) of Gracilaria/Gracilariopsis lemaneiformis was cloned and characterized. Deduced amino acid sequence of the enzyme of G. lemaneiformis had high homology with those of seven red algae. The 5'-untranslated regions of the GAPDHs encoding genes of these red algae varied greatly. GAPDHs of these red algae shared the highly conserved glyceraldehyde 3-phosphate dehydrogenase active site ASCTTNCL. However, such active site of Cyanidium caldarium was different from those of the other six algae at the last two residues (CL to LF), thus the spatial structure of its GAPDH active center may be different from those of the other six. Phylogenetic analysis indicated that GAPDH of G. lemaneiformis might have undergone an evolution similar to those of Porphyra yezoensis, Chondrus crispus, and Gracilaria verrucosa. C. caldarium had a closer evolutionary relationship with Cyanidioschyzon merolae than with Cyanidium sp. Virtual Northern blot analysis revealed that gpd of G. lemaneiformis expressed constitutively, which suggested that it might be house-keeping and could be adapted as an inner control in gene expression analysis of G. lemaneiformis.

  2. Cloning and characterization of the nicotianamine synthase gene in Eruca vesicaria subsp sativa.

    PubMed

    Huang, B L; Cheng, C; Zhang, G Y; Su, J J; Zhi, Y; Xu, S S; Cai, D T; Zhang, X K; Huang, B Q

    2015-12-22

    Nicotianamine (NA) is a ubiquitous metabolite in plants that bind heavy metals, is crucial for metal homeostasis, and is also an important metal chelator that facilitates long-distance metal transport and sequestration. NA synthesis is catalyzed by the enzyme nicotianamine synthase (NAS). Eruca vesicaria subsp sativa is highly tolerant to Ni, Pb, and Zn. In this study, a gene encoding EvNAS was cloned and characterized in E. vesicaria subsp sativa. The full-length EvNAS cDNA sequence contained a 111-bp 5'-untranslated region (UTR), a 155-bp 3'-UTR, and a 966-bp open reading frame encoding 322-amino acid residues. The EvNAS genomic sequence contained no introns, which is similar to previously reported NAS genes. The deduced translation of EvNAS contained a well-conserved NAS domain (1-279 amino acids) and an LIKI-CGEAEG box identical to some Brassica NAS and to the LIRL-box in most plant NAS, which is essential for DNA binding. Phylogenetic analysis indicated that EvNAS was most closely related to Brassica rapa NAS3 within the Cruciferae, followed by Thlaspi NAS1, Camelina NAS3, and Arabidopsis NAS3. A reverse transcription-polymerase chain reaction indicated that EvNAS expression was greatest in the leaves, followed by the flower buds and hypocotyls. EvNAS was moderately expressed in the roots.

  3. Cloning expression and characterization of methionine adenosyltransferase in Leishmania infantum promastigotes.

    PubMed

    Reguera, Rosa M; Balaña-Fouce, Rafael; Pérez-Pertejo, Yolanda; Fernández, Francisco J; García-Estrada, Carlos; Cubría, Juan C; Ordóñez, César; Ordóñez, David

    2002-02-01

    Methionine adenosyltransferase (MAT) catalyzes the synthesis of s-adenosylmethionine (AdoMet), a metabolite that plays an important role in a variety of cellular functions, such as methylation, sulfuration, and polyamine synthesis. In this study, genomic DNA from the protozoan parasite Leishmania infantum was cloned and characterized. L. infantum MAT, unlike mammalian MAT, is codified by two identical genes in a tandem arrangement and is only weakly regulated by AdoMet. L. infantum MAT mRNA is expressed as a single transcript, with the enzyme forming a homodimer with tripolyphosphatase in addition to MAT activity. Expression of L. infantum MAT in Escherichia coli proves that the MAT and tripolyphosphatase activities are functional in vivo. MAT shows sigmoidal behavior and is weakly inhibited by AdoMet, whereas tripolyphosphatase activity has sigmoidal behavior and is strongly activated by AdoMet. Plasmids containing the regions flanking MAT2 were fused immediately upstream and downstream of the luciferase-coding region and transfected into L. infantum. Subsequent examination of luciferase activity showed that homologous expression in L. infantum promastigotes was dramatically dependent on the presence of polypyrimidine tracts and a spliced leader junction site upstream of the luciferase gene, whereas downstream sequences appeared to have no bearing on expression.

  4. Cloning and characterization of two EcR isoforms from Japanese pine sawyer, Monochamus alternates.

    PubMed

    Weng, Hongbiao; Shen, Weifeng; Liu, Yan; He, Lihua; Niu, Baolong; Meng, Zhiqi; Mu, Jianjun

    2013-09-01

    The ecdysone receptor (EcR) is the hormonal receptor of ecdysteroids, which regulates insect growth and development. In this study, we cloned and characterized two isoforms of EcR in Monochamus alternates named MaEcR A and MaEcR B. The cDNAs of MaEcR A and MaEcR B have open repeating frames of 1,695 and 1,392 bp, respectively. The deduced proteins have the same C-terminal sequence and varied in N-terminal, and are consistent with reports on other insect species, particularly with the receptor of another coleopteran, Tribolium castaneum. The isoform-specific developmental expression profile of EcR in the epidermis and the midgut were analyzed with quantitative real-time reverse-transcriptase polymerase chain reaction in the pupal stage. RNA interference (RNAi) with common or isoform-specific regions induced developmental stagnation. When treated in the later larval stage, RNAi with either the common sequence or an EcR A specific sequence caused more severe effects and most larvae died prior to adulthood. The EcR B specific sequence caused less severe effects and about half of the treated larvae became adults, but some showed developmental defects. RNAi with both isoforms at early pupal stage attenuated the expression of 20E-regulated genes E74, E75, and HR3. The study demonstrates the role of EcR in the transduction of ecdysteroid response in Monochamus alternatus.

  5. Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis.

    PubMed

    Kerovuo, J; Lauraeus, M; Nurminen, P; Kalkkinen, N; Apajalahti, J

    1998-06-01

    The Bacillus subtilis strain VTT E-68013 was chosen for purification and characterization of its excreted phytase. Purified enzyme had maximal phytase activity at pH 7 and 55 degrees C. Isolated enzyme required calcium for its activity and/or stability and was readily inhibited by EDTA. The enzyme proved to be highly specific since, of the substrates tested, only phytate, ADP, and ATP were hydrolyzed (100, 75, and 50% of the relative activity, respectively). The phytase gene (phyC) was cloned from the B. subtilis VTT E-68013 genomic library. The deduced amino acid sequence (383 residues) showed no homology to the sequences of other phytases nor to those of any known phosphatases. PhyC did not have the conserved RHGXRXP sequence found in the active site of known phytases, and therefore PhyC appears not to be a member of the phytase subfamily of histidine acid phosphatases but a novel enzyme having phytase activity. Due to its pH profile and optimum, it could be an interesting candidate for feed applications.

  6. Cloning and characterization of human erythroid membrane-associated protein, human ERMAP.

    PubMed

    Xu, H; Foltz, L; Sha, Y; Madlansacay, M R; Cain, C; Lindemann, G; Vargas, J; Nagy, D; Harriman, B; Mahoney, W; Schueler, P A

    2001-08-01

    We describe here the cloning and characterization of the human gene ERMAP, identified by subtractive hybridization using early and late gestation human fetal liver. By in situ hybridization, we found human ERMAP to be expressed not only in erythoid cells in fetal liver and adult bone marrow, but also in reticulocytes and circulating erythroblasts in 8-12-week fetal cord blood. The human ERMAP protein is predicted to contain a transmembrane segment and one extracellular immunoglobulin fold (IgV). The cytoplasmic region contains a highly conserved B30.2 motif, multiple consensus sequences for kinases, and post-Golgi sorting signals. The protein was localized to the cell surface as shown by an antibody specific for a peptide predicted from the IgV fold. The amino acid sequence of human ERMAP is highly homologous with that of mouse ERMAP, but differs in the number of extracellular immunoglobulin folds. Human ERMAP represents a new unique member of the rapidly growing B30.2 domain proteins.

  7. [Molecular cloning and characterization of a N-acetylneuraminate lyase gene from Staphylococcus hominis].

    PubMed

    Zhou, Chuanhua; Chen, Xi; Feng, Jinhui; Xiao, Dongguang; Wuz, Qiaqing; Zhu, Dunming

    2013-04-01

    A N-acetylneuraminate lyase gene (shnal) from Staphylococcus hominis was cloned into pET-28a and expressed in Escherichia coli BL21 (DE3) host cells. The recombinant enzyme was purified and characterized. It is a homotetrameric enzyme with the optimum pH at 8.0 for the cleavage direction and the optimum pH and temperature were 7.5 and 45 degrees C for the synthetic direction. The activity of ShNAL is stable when incubated at 45 degrees C for 2 h but decreased rapidly over 50 degrees C. ShNAL showed high stability in a wide range pH from 5.0 to 10.0 with the residual activity being > 70% when the enzyme was incubated in different buffers at 4 degrees C for 24 h. Its K(m) towards N-acetylneuraminic acid, pyruvate and ManNAc were (4.0 +/- 0.2) mmol/L, (35.1 +/- 3.2) mmol/L and (131.7 +/- 12.1) mmol/L, respectively. The k(cat)/K(m) value of Neu5Ac, ManNAc, and Pyr for ShNAL were 1.9 L/(mmol x s), 0.08 L/(mmol x s) and 0.08 L/(mmol x s), respectively.

  8. Cloning and characterization of genes involved in nostoxanthin biosynthesis of Sphingomonas elodea ATCC 31461.

    PubMed

    Zhu, Liang; Wu, Xuechang; Li, Ou; Qian, Chaodong; Gao, Haichun

    2012-01-01

    Most Sphingomonas species synthesize the yellow carotenoid nostoxanthin. However, the carotenoid biosynthetic pathway of these species remains unclear. In this study, we cloned and characterized a carotenoid biosynthesis gene cluster containing four carotenogenic genes (crtG, crtY, crtI and crtB) and a β-carotene hydroxylase gene (crtZ) located outside the cluster, from the gellan-gum producing bacterium Sphingomonas elodea ATCC 31461. Each of these genes was inactivated, and the biochemical function of each gene was confirmed based on chromatographic and spectroscopic analysis of the intermediates accumulated in the knockout mutants. Moreover, the crtG gene encoding the 2,2'-β-hydroxylase and the crtZ gene encoding the β-carotene hydroxylase, both responsible for hydroxylation of β-carotene, were confirmed by complementation studies using Escherichia coli producing different carotenoids. Expression of crtG in zeaxanthin and β-carotene accumulating E. coli cells resulted in the formation of nostoxanthin and 2,2'-dihydroxy-β-carotene, respectively. Based on these results, a biochemical pathway for synthesis of nostoxanthin in S. elodea ATCC 31461 is proposed.

  9. Characterization of the molecularly cloned murine alpha-globin transcription factor CP2.

    PubMed

    Lim, L C; Fang, L; Swendeman, S L; Sheffery, M

    1993-08-25

    We recently cloned human and murine cDNAs that encode CP2, a transcription factor that interacts with the murine alpha-globin promoter. In this report, we exploited our ability to express CP2 in bacteria and eukaryotic cells to further investigate factor activities in vitro and in vivo. CP2 expressed in bacteria was significantly enriched and used in a series of DNase I footprinting and electrophoretic gel shift assays. The results suggest that CP2 binds a hyphenated recognition sequence motif that spans one DNA helix turn. In addition, the enriched bacterial protein activated transcription of alpha-globin promoter templates approximately 3- to 4-fold in vitro. We then tested the effect of elevating CP2 levels 2.5- to 5.5-fold in vivo using both transient and stable transformation assays. When a reporter construct comprised of the intact murine alpha-globin promoter driving the bacterial chloramphenicol acetyltransferase (CAT) gene was introduced into these overexpressing cells, we observed a 3- to 6-fold increase in CAT activity when compared to cells expressing normal levels of CP2. These results define the CP2 factor binding site in more detail and help characterize the activities of the factor in vivo.

  10. Cloning and Functional Characterization of the Maize (Zea mays L.) Carotenoid Epsilon Hydroxylase Gene

    PubMed Central

    Sheng, Yanmin; Wang, Yingdian; Capell, Teresa; Shi, Lianxuan; Ni, Xiuzhen; Sandmann, Gerhard; Christou, Paul; Zhu, Changfu

    2015-01-01

    The assignment of functions to genes in the carotenoid biosynthesis pathway is necessary to understand how the pathway is regulated and to obtain the basic information required for metabolic engineering. Few carotenoid ε-hydroxylases have been functionally characterized in plants although this would provide insight into the hydroxylation steps in the pathway. We therefore isolated mRNA from the endosperm of maize (Zea mays L., inbred line B73) and cloned a full-length cDNA encoding CYP97C19, a putative heme-containing carotenoid ε hydroxylase and member of the cytochrome P450 family. The corresponding CYP97C19 genomic locus on chromosome 1 was found to comprise a single-copy gene with nine introns. We expressed CYP97C19 cDNA under the control of the constitutive CaMV 35S promoter in the Arabidopsis thaliana lut1 knockout mutant, which lacks a functional CYP97C1 (LUT1) gene. The analysis of carotenoid levels and composition showed that lutein accumulated to high levels in the rosette leaves of the transgenic lines but not in the untransformed lut1 mutants. These results allowed the unambiguous functional annotation of maize CYP97C19 as an enzyme with strong zeinoxanthin ε-ring hydroxylation activity. PMID:26030746

  11. Cloning and characterization of a novel CoA-ligase gene from Penicillium chrysogenum.

    PubMed

    Yu, Zhou-Liang; Liu, Jing; Wang, Fu-Qiang; Dai, Meng; Zhao, Bao-Hua; He, Jian-Gong; Zhang, Hua

    2011-05-01

    A novel phenylacetic acid (PAA)-induced CoA-ligase-encoding gene, designated as phlC, has been cloned from penicillin-producing fungus Penicillium chrysogenum. The open reading frame of phlC cDNA was 1671 bp and encoded a 556 amino acid residues protein with the consensus AMP binding site and a peroxisomal targeting signal 1 on its C terminus. The deduced amino acid sequence showed 37% and 38% identity with characterized P. chrysogenum Phl and PhlB protein, respectively. Functional recombinant PhlC protein was overexpressed in Escherichia coli. The purified recombinant enzyme was capable to convert PAA into its corresponding CoA ester with a specific activity of 129.5 ± 3.026 pmol/min per mg protein. Similar to Phl and PhlB, PhlC displayed broad substrate spectrum and showed higher activities to medium- and long-chain fatty acids. The catalytic properties of PhlC have been determined and compared to those of Phl and PhlB.

  12. Cloning and characterization of a lectin from the octocoral Sinularia lochmodes.

    PubMed

    Jimbo, Mitsuru; Koike, Kazuhiko; Sakai, Ryuichi; Muramoto, Koji; Kamiya, Hisao

    2005-04-29

    In the present study, the entire amino acid sequence and cDNA structure encoding the d-galactose-binding lectin, SLL-2, isolated from the octocoral Sinularia lochmodes, were determined. SLL-2 regulates the morphology of symbiotic dinoflagellates Symbiodinium spp. through unknown mechanisms. Here, three cDNAs that encode SLL-2 were cloned and characterized. All the SLL-2 cDNAs encoded 142 amino acids with high similarity to each other. The mature subunit of SLL-2 was found to be composed of 94 amino acids and to contain one putative glycosylation site common to all three SLL-2. N-Glycopeptidase F treatment of SLL-2 resulted in a protein band shift from 16.5 to 9.5kDa in SDS-PAGE, confirming that SLL-2s are glycoproteins. Two-dimensional polyacrylamide gel electrophoresis analysis of the deglycosylated SLL-2 indicated a presence of three polypeptides as encoded in SLL-2 cDNAs. The deduced sequences of SLL-2 cDNAs had a similarity to the C-terminal region of discoidin I, the slime mold Dictyostelium discoideum lectin.

  13. Two chitin metabolic enzyme genes from Hyriopsis cumingii: cloning, characterization, and potential functions.

    PubMed

    Wang, G-L; Xu, B; Bai, Z-Y; Li, J-L

    2012-12-19

    Chitin, the second most important natural polymer in the world, and its N-deacetylated derivative chitosan are found in a wide variety of organisms. These versatile biopolymers are associated with a broad range of biological functions. This article is the first to report the potential functions of 2 chitin metabolic enzyme genes from Hyriopsis cumingii. A chitinase-3 gene (Chi-3) and a chitin deacetylase gene (Cda) were cloned from H. cumingii and characterized. Semi-quantitative reverse transcription polymerase chain reaction analysis revealed that the Cda gene was expressed in blood, mantle, liver, stomach, kidney, intestine, gill, and foot, whereas Chi-3 was also expressed in those tissues but not in blood. The tissue-specific expression of H. cumingii Chi-3 indicated that other Chi genes may be involved in the H. cumingii immune system. Real-time quantitative polymerase chain reaction analysis showed that the expression of Chi-3 was significantly (P < 0.05) upregulated 12 h after shell damage, suggesting that Chi-3 might hydrolyze superfluous chitin after shell recovery and play a role in shell formation. Conversely, Cda expression did not change significantly (P > 0.05) to maintain a certain degree of acetylation in chitin/chitosan. This study enriches the basic research on chitin metabolic genes and lays foundations for further research of shell regeneration in mussels.

  14. Cloning, expression and characterization of a novel esterase from a South China Sea sediment metagenome

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Li, Fuchao; Chen, Huaxin; Zhao, Jin; Yan, Jinfei; Jiang, Peng; Li, Ronggui; Zhu, Baoli

    2015-07-01

    Lipolytic enzymes, including esterases and lipases, represent a group of hydrolases that catalyze the cleavage and formation of ester bonds. A novel esterase gene, scsEst01, was cloned from a South China Sea sediment metagenome. The scsEst01 gene consisted of 921 bp encoding 307 amino acid residues. The predicted amino acid sequence shared less than 90% identity with other lipolytic enzymes in the NCBI nonredundant protein database. ScsEst01 was successfully co-expressed in Escherichia coli BL21 (DE3) with chaperones (dnaK-dnaJ-grpE) to prevent the formation of inclusion bodies. The recombinant protein was purified on an immobilized metal ion affinity column containing chelating Sepharose charged with Ni2+. The enzyme was characterized using p -nitrophenol butyrate as a substrate. ScsEst01 had the highest lipolytic activity at 35°C and pH 8.0, indicative of a meso-thermophilic alkaline esterase. ScsEst01 was thermostable at 20°C. The lipolytic activity of scsEst01 was strongly increased by Fe2+, Mn2+ and 1% Tween 80 or Tween 20.

  15. Cloning, expression and characterization of a mucin-binding GAPDH from Lactobacillus acidophilus.

    PubMed

    Patel, Dhaval K; Shah, Kunal R; Pappachan, Anju; Gupta, Sarita; Singh, Desh Deepak

    2016-10-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a ubiquitous enzyme involved in glycolysis. It is also referred to as a moonlighting protein as it has many diverse functions like regulation of apoptosis, iron homeostasis, cell-matrix interactions, adherence to human colon etc. apart from its principal role in glycolysis. Lactobacilli are lactic acid bacteria which colonize the human gut and confer various health benefits to humans. In the present study, we have cloned, expressed and purified the GAPDH from Lactobacillus acidophilus to get a recombinant product (r-LaGAPDH) and characterized it. Size exclusion chromatography shows that r-LaGAPDH exists as a tetramer in solution and have a mucin binding and hemagglutination activity indicating carbohydrate like binding adhesion mechanism. Fluorescence spectroscopy studies showed an interaction of r-LaGAPDH with mannose, galactose, N-acetylgalactosamine and N-acetylglucosamine with a Kd of 3.6±0.7×10(-3)M, 4.34±0.09×10(-3)M, 4±0.87×10(-3)M and 3.7±0.28×10(-3)M respectively. We hope that this preliminary data will generate more interest in further elucidation of the roles of GAPDH in the adhesion processes of the bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Cloning and characterization of a glucosyltransferase from Crocus sativus stigmas involved in flavonoid glucosylation

    PubMed Central

    Moraga, Ángela Rubio; Mozos, Almudena Trapero; Ahrazem, Oussama; Gómez-Gómez, Lourdes

    2009-01-01

    Background Flavonol glucosides constitute the second group of secondary metabolites that accumulate in Crocus sativus stigmas. To date there are no reports of functionally characterized flavonoid glucosyltransferases in C. sativus, despite the importance of these compounds as antioxidant agents. Moreover, their bitter taste makes them excellent candidates for consideration as potential organoleptic agents of saffron spice, the dry stigmas of C. sativus. Results Using degenerate primers designed to match the plant secondary product glucosyltransferase (PSPG) box we cloned a full length cDNA encoding CsGT45 from C. sativus stigmas. This protein showed homology with flavonoid glucosyltransferases. In vitro reactions showed that CsGT45 catalyses the transfer of glucose from UDP_glucose to kaempferol and quercetin. Kaempferol is the unique flavonol present in C. sativus stigmas and the levels of its glucosides changed during stigma development, and these changes, are correlated with the expression levels of CsGT45 during these developmental stages. Conclusion Findings presented here suggest that CsGT45 is an active enzyme that plays a role in the formation of flavonoid glucosides in C. sativus. PMID:19695093

  17. Isolation and Characterization of Intestinal Escherichia coli Clones from Wild Boars in Germany▿ †

    PubMed Central

    Schierack, Peter; Römer, Antje; Jores, Jörg; Kaspar, Heike; Guenther, Sebastian; Filter, Matthias; Eichberg, Jürgen; Wieler, Lothar H.

    2009-01-01

    Our understanding of the composition of Escherichia coli populations in wild boars is very limited. In order to obtain insight into the E. coli microflora of wild boars, we studied E. coli isolates from the jejunums, ileums, and colons of 21 wild boars hunted in five geographic locations in Germany. Ten isolates per section were subjected to clonal determination using pulsed-field gel electrophoresis. One representative isolate per clone was further investigated for virulence traits, phylogenetic affiliation, and antimicrobial susceptibility. Macrorestriction analysis of 620 isolates revealed a range of clone diversity among the sections and animals, with up to 9 and 16 different clones per section and animal, respectively. Most of the clones for a given animal were shared between two adjacent intestinal sections. The overall highest clonal diversity was observed within the colon. While the astA gene was present in a large number of clones, other virulence genes and hemolytic ability were detected only sporadically. Clones of all four ECOR groups dominated the intestinal sections. Phylogenetic analysis and the occurrence of virulence genes correlated with the isolation frequencies for clones. All E. coli clones from wild boars were susceptible to all antimicrobial agents tested. In conclusion, though several parameters (including an animal-specific and highly diverse E. coli clone composition, the simultaneous occurrence of single clones in two adjacent intestinal sections of a given animal, and a higher E. coli diversity in the large intestine than in the small intestine) of E. coli populations of wild boars were similar to those of previously described E. coli populations of conventionally reared domestic pigs, our data also indicate possible differences, as seen for the E. coli diversity in the large intestine, the occurrence of certain virulence genes and phylogenetic groups, and antimicrobial susceptibilities. PMID:19060173

  18. Cloning and characterization of an electrogenic Na/HCO3- cotransporter from the squid giant fiber lobe.

    PubMed

    Piermarini, Peter M; Choi, Inyeong; Boron, Walter F

    2007-06-01

    The squid giant axon is a classic model system for understanding both excitable membranes and ion transport. To date, a Na(+)-driven Cl-HCO(3)(-) exchanger, sqNDCBE--related to the SLC4 superfamily and cloned from giant fiber lobe cDNA--is the only HCO(3)(-)-transporting protein cloned and characterized from a squid. The goal of our study was to clone and characterize another SLC4-like cDNA. We used degenerate PCR to obtain a partial cDNA clone (squid fiber clone 3, SF3), which we extended in both the 5' and 3' directions to obtain the full-length open-reading frame. The predicted amino-acid sequence of SF3 is similar to sqNDCBE, and a phylogenetic analysis of the membrane domains indicates that SF3 clusters with electroneutral Na(+)-coupled SLC4 transporters. However, when we measure pH(i) and membrane potential--or use two-electrode voltage clamping to measure currents--on Xenopus oocytes expressing SF3, the oocytes exhibit the characteristics of an electrogenic Na/HCO(3)(-) cotransporter, NBCe. That is, exposure to extracellular CO(2)/HCO(3)(-) not only causes a fall in pH(i), followed by a robust recovery, but also causes a rapid hyperpolarization. The current-voltage relationship is also characteristic of an electrogenic NBC. The pH(i) recovery and current require HCO(3)(-) and Na(+), and are blocked by DIDS. Furthermore, neither K(+) nor Li(+) can fully replace Na(+) in supporting the pH(i) recovery. Extracellular Cl(-) is not necessary for the transporter to operate. Therefore, SF3 is an NBCe, representing the first NBCe characterized from an invertebrate.

  19. Cloning and characterization of the calreticulin gene from Ricinus communis L.

    PubMed

    Coughlan, S J; Hastings, C; Winfrey, R

    1997-08-01

    A full-length cDNA encoding a calreticulin-like protein was isolated by immune-screening a germinating castor bean endosperm cDNA library with antisera raised to the total lumenal fraction of purified plant endoplasmic reticulum. The calcium-binding properties of the recombinant protein were characterized and shown to be essentially identical to those reported for the mammalian calreticulin. Calcium overlays and immune blot analysis confirmed the endoplasmic lumenal identity of this reticuloplasmin. Probing protein blots of endoplasmic reticulum subfractions with radio-iodinated calreticulin showed specific associations with various polypeptides including one identified as the abundant reticuloplasmin protein disulfide isomerase. Characterization of the corresponding genomic clones revealed that calreticulin is encoded by a single gene of 3 kb in castor. The full genomic sequence reveals the presence of 12 introns, 12 translated exons, and one exon containing the last three amino acids of the translated sequence and the 3'-untranslated region of the gene. Northern blot analysis of RNA isolated from various organ tissues showed a basal constitutive level of expression throughout the plant, but more abundant mRNA being detected in tissues active in secretion. This was confirmed by analysis of transgenic tobacco plants containing 1.8 kb of 5'-untranslated genomic sequence fused to the beta-glucuronidase reporter gene (GUS) showed a more localized pattern of expression. Activity being localized to the vasculature (phloem, root hairs and root tip) in vegetative tissue, and being strongly expressed in the floral organs including the developing and germinating seed.

  20. Cloning, Expression and Biochemical Characterization of Endomannanases from Thermobifida Species Isolated from Different Niches

    PubMed Central

    Tóth, Ákos; Barna, Terézia; Szabó, Erna; Elek, Rita; Hubert, Ágnes; Nagy, István; Nagy, István; Kriszt, Balázs; Táncsics, András; Kukolya, József

    2016-01-01

    Thermobifidas are thermotolerant, compost inhabiting actinomycetes which have complex polysaccharide hydrolyzing enzyme systems. The best characterized enzymes of these hydrolases are cellulases from T. fusca, while other important enzymes especially hemicellulases are not deeply explored. To fill this gap we cloned and investigated endomannanases from those reference strains of the Thermobifida genus, which have published data on other hydrolases (T. fusca TM51, T. alba CECT3323, T. cellulosilytica TB100T and T. halotolerans YIM90462T). Our phylogenetic analyses of 16S rDNA and endomannanase sequences revealed that T. alba CECT3323 is miss-classified; it belongs to the T. fusca species. The cloned and investigated endomannanases belong to the family of glycosyl hydrolases 5 (GH5), their size is around 50 kDa and they are modular enzymes. Their catalytic domains are extended by a C-terminal carbohydrate binding module (CBM) of type 2 with a 23–25 residues long interdomain linker region consisting of Pro, Thr and Glu/Asp rich repetitive tetrapeptide motifs. Their polypeptide chains exhibit high homology, interdomain sequence, which don’t show homology to each other, but all of them are built up from 3–6 times repeated tetrapeptide motifs) (PTDP-Tc, TEEP-Tf, DPGT-Th). All of the heterologously expressed Man5A enzymes exhibited activity only on mannan. The pH optima of Man5A enzymes from T. halotolerans, T. cellulosilytica and T. fusca are slightly different (7.0, 7.5 and 8.0, respectively) while their temperature optima span within the range of 70–75°C. The three endomannanases exhibited very similar kinetic performances on LBG-mannan substrate: 0.9–1.7mM of KM and 80–120 1/sec of turnover number. We detected great variability in heat stability at 70°C, which was influenced by the presence of Ca2+. The investigated endomannanases might be important subjects for studying the structure/function relation behind the heat stability and for industrial

  1. Cloning and functional characterization of the guinea pig apoptosis inhibitor protein Survivin.

    PubMed

    Habtemichael, Negusse; Wünsch, Desiree; Bier, Carolin; Tillmann, Sarah; Unruhe, Britta; Frauenknecht, Katrin; Heinrich, Ulf-Rüdiger; Mann, Wolf J; Stauber, Roland H; Knauer, Shirley K

    2010-12-01

    The guinea pig is widely used as a model to study (patho)physiological processes, such as neurodegenerative disorders. Survivin's dual function as an apoptosis inhibitor and a mitotic regulator is crucial not only for ordered development but its modulation seems crucial also under disease conditions. However, data on the expression and function of the guinea pig Survivin protein (Survivin(Gp)) are currently lacking. Here, we here report the cloning and functional characterization of Survivin(Gp). The respective cDNA was cloned from spleen mRNA, containing a 426 bp open reading frame encoding for a protein of 142aa. Survivin(Gp) displays a high homology to the human and murine orthologue, especially in domains critical for function, such as binding sites for chromosomal passenger complex (CPC) proteins and the nuclear export signal (NES). Notably, phylogenetic analyses revealed that Survivin(Gp) is more related to humans than to rodents. Ectopic expression studies of a Survivin(Gp)-GFP fusion confirmed its dynamic intracellular localization, analogous to the human and murine counterparts. In interphase cells, Survivin(Gp)-GFP was predominantly cytoplasmic and accumulated in the nucleus following export inhibition with leptomycin B (LMB). A typical CPC protein localization during mitosis was observed for Survivin(Gp)-GFP. Microinjection experiments together with genetic knockout demonstrated that the NES is essential for the anti-apoptotic and regulatory role of Survivin(Gp) during cell division. In vivo protein interaction assays further demonstrated its dimerization with human Survivin and its interaction with human CPC proteins. Importantly, RNAi-depletion studies show that Survivin(Gp) can fully substitute for human Survivin as an apoptosis inhibitor and a mitotic effector. Immunohistochemistry, immunofluorescence, and western blotting were employed to detect Survivin expression in guinea pig tissues. Besides its expression in proliferating tissues, such as

  2. Production, characterization, cloning and sequence analysis of a monofunctional catalase from Serratia marcescens SYBC08.

    PubMed

    Zeng, Hua-Wei; Cai, Yu-Jie; Liao, Xiang-Ru; Zhang, Feng; Zhang, Da-Bing

    2011-04-01

    A monofunctional catalase from Serratia marcescens SYBC08 produced by liquid state fermentation in 7 liter fermenter was isolated and purified by ammonium sulfate precipitation (ASP), ion exchange chromatography (IEC), and gel filtration (GF) and characterized. Its sequence was analyzed by LC-MS/MS technique and gene cloning. The highest catalase production (20,289 U · ml(-1)) was achieved after incubation for 40 h. The purified catalase had an estimated molecular mass of 230 kDa, consisting of four identical subunits of 58 kDa. High specific activity of the catalase (199,584 U · mg(-1) protein) was 3.44 times higher than that of Halomonas sp. Sk1 catalase (57,900 U · mg(-1) protein). The enzyme without peroxidase activity was found to be an atypical electronic spectrum of monofunctional catalase. The apparent K(m) and V(max) were 78 mM and 188, 212 per µM H(2) O(2) µM heme(-1) s(-1), respectivly. The enzyme displayed a broad pH activity range (pH 5.0-11.0), with optimal pH range of 7.0-9.0: It was most active at 20 °C and had 78% activity at 0 °C. Its thermo stability was slightly higher compared to that of commercial catalase from bovine liver. LC-MS/MS analysis confirmed that the deduced amino acid sequence of cloning gene was the catalase sequence from Serratia marcescens SYBC08. The sequence was compared with that of 23 related catalases. Although most of active site residues, NADPH-binding residues, proximal residues of the heme, distal residues of the heme and residues interacting with a water molecule in the enzyme were well conserved in 23 related catalases, weakly conserved residues were found. Its sequence was closely related with that of catalases from pathogenic bacterium in the family Enterobacteriaceae. This result imply that the enzyme with high specific activity plays a significant role in preventing those microorganisms of the family Enterobacteriaceae against hydrogen peroxide resulted in cellular damage. Calalase yield by Serratia

  3. Cloning and characterization of a cdc25 phosphatase from mouse lymphocytes.

    PubMed

    Nargi, J L; Woodford-Thomas, T A

    1994-01-01

    Members of the cdc25 phosphatase family are proposed to function as important regulators of the eukaryotic cell cycle, particularly in the induction of mitotic events. A new cdc25 tyrosine phosphatase, cdc25M1, has been cloned from a mouse pre-B cell cDNA library and characterized. The cdc25M1 protein consists of 465 amino acids with a predicted relative molecular mass (M(r)) of 51,750. Over the highly conserved carboxyl terminal region, the amino acid sequence similarity to the human cdc25 C or Hs1 isoform is 89%, while the overall similarity is 67%. The phosphatase active site is located within residues 367-374. Tissue expression of the cdc25M1 was highest in mouse spleen and thymus by northern blot analysis. The cdc25M1 mRNA was detected in a number of cloned mouse lymphocyte cell lines including both CD8+ and CD4+ cells. cdc25M1 mRNA was shown to be cell cycle-regulated in T cells following interleukin-2 (IL-2)-stimulation. Accumulation of cdc25M1 mRNA occurred at 48 h after IL-2 stimulation, when lymphocytes were progressing from S phase to G2/M phase of the cell cycle. This pattern of expression is in contrast to that observed for other protein tyrosine phosphatases expressed in T lymphocytes including CD45, LRP, SHP, and PEP. The elevation in cdc25M1 mRNA level occurred concomittant to the appearance of the hyperphosphorylated form of p34cdc2 protein kinase. A purified, bacterial-expressed recombinant cdc25M1 phosphatase domain catalyzed the dephosphorylation of p-nitrophenol phosphate, as well as [32P-Tyr] and [32P-Ser/Thr]-containing substrates. Preincubation of p34cdc2 kinase with cdc25M1 activated its histone H1 kinase activity in vitro. These results suggest that cdc25M1 may be involved in regulating the proliferation of mouse T lymphocytes following cytokine stimulation, through its action on p34cdc2 kinase.

  4. Cloning and functional characterization of the 5' regulatory region of ovine Hormone Sensitive Lipase (HSL) gene.

    PubMed

    Lampidonis, Antonis D; Stravopodis, Dimitrios J; Voutsinas, Gerassimos E; Messini-Nikolaki, Niki; Stefos, George C; Margaritis, Lukas H; Argyrokastritis, Alexandros; Bizelis, Iosif; Rogdakis, Emmanuel

    2008-12-31

    Hormone Sensitive Lipase (HSL) catalyzes the rate-limiting step in the mobilization of fatty acids from adipose tissue, thus determining the supply of energy substrates in the body. HSL enzymatic activity is increased by adrenergic agonists, such as catecholamines and glucagons, which induce cyclic AMP (cAMP) intracellular production, subsequently followed by the activation of Protein Kinase A (PKA) and its downstream signaling cascade reactions. HSL constitutes the critical enzyme in the modulation of lipid stores and the only component being subjected to hormonal control in terms of the recently identified Adipose Triglyceride Lipase (ATGL). In order to acquire detailed knowledge with regard to the mechanisms regulating ovine HSL (ovHSL) gene transcription activity, we initially isolated and cloned the 5' proximal and distal promoter regions through a genome walking approach, with the utilization of the already characterized ovHSL cDNAs. As evinced by BLAST analysis and a multiple alignment procedure, the isolated genomic fragment of 2.744 kb appeared to contain the already specified 5'-untranslated region (5'-UTR), which was interrupted by a relatively large intron of 1.448 kb. Regarding the upstream remaining part of 1.224 kb, it was demonstrated to represent a TATA-less promoter area, harboring several cis-regulatory elements that could be putatively recognized by relatively more general transcription factors, mainly including Stimulating protein 1 (Sp1), CCAAT-box Binding Factors (CBFs), Activator Protein 2 (AP2) and Glucocorticoid Receptor (GR), as well as other cis-acting regions denominated as Insulin Response Element (IRE), Glucose Response Element (GRE), Fat Specific Element (FSE) and cAMP Response Element (CRE), which could likely function in a nourishment (i.e. glucose)-/hormone-dependent fashion. When different genomic fragments were directionally (5' to 3') cloned into a suitable reporter vector upstream of a promoter-less luciferase gene and

  5. Assessment and characterization of Ca2+-ATPase expression in selected isolates and clones of Plasmodium falciparum.

    PubMed

    Bolaji, O M; Happi, T C; Bababunmi, E A

    2012-06-07

    Ca2+-ATPase expression in 15 selected isolates from malaria patients at the University College Hospital (UCH) Ibadan and two cloned strains (W2-chloroquine resistant, D6-chloroquine sensitive) of P.falciparum was assessed using spectrophotometric assay method. The kinetics of activity of Ca2+- ATPase in three isolates (NCP 14, NCP5, NCP1) and two clones (W2, D6) also assessed. 12% SDS-PAGE analysis of total proteins in one isolate (NCP14) and two clones (W2, D6) was also investigated. All the selected isolates and the two cloned strains exhibited measurable Ca2+-ATPase activity. The Ca2+-ATPase activity in cloned strain D6 (6.50 + 0.74mmolPi/min/mg protein) was higher than in cloned strain W2 (3.93 + 0.61mmolPi/min/mg protein. The Ca2+-ATPase activity in isolates from malaria patients varied widely (1.95 + 0.74 - 21.56 +1.43mmolPi/min/mg protein). The kinetic constants obtained for the two cloned strains showed that clone W2 had a higher Vmax (Vmax = 363mmolPi/min/mg protein) than clone D6 (Vmax = 74mmolPi/min/mg protein). All the isolates and the two cloned strains showed similar affinity for ATP (Km ~ 10mM). Scan of SDS-PAGE gel of total proteins in the isolate and cloned strains showed the presence of oligopeptide bands of molecular weights range of 148-176 kDa; 116-123 kDa respectively. These suggest the presence of predicted polypeptide of Ca2+-ATPase nature of molecular weight estimate of 139 kDa. The study agrees with previous findings that Ca2+-ATPase is functionally expressed in P.falciparum, The study also indicates that Ca2+-ATPase functional expression may vary with isolate or clone but the ATP binding mechanism to the enzyme is similar in all isolates and clones of P. falciparum. The study further suggests a possible association between acquisition of chloroquine resistance and Ca2+-ATPase functional expression in P. falciparum.

  6. A prothrombin activator from Bothrops erythromelas (jararaca-da-seca) snake venom: characterization and molecular cloning.

    PubMed

    Silva, Márcia B; Schattner, Mirta; Ramos, Celso R R; Junqueira-de-Azevedo, Inácio L M; Guarnieri, Míriam C; Lazzari, María A; Sampaio, Claudio A M; Pozner, Roberto G; Ventura, Janaina S; Ho, Paulo L; Chudzinski-Tavassi, Ana M

    2003-01-01

    A novel prothrombin activator enzyme, which we have named 'berythractivase', was isolated from Bothrops erythromelas (jararaca-da-seca) snake venom. Berythractivase was purified by a single cation-exchange-chromatography step on a Resource S (Amersham Biosciences) column. The overall purification (31-fold) indicates that berythractivase comprises about 5% of the crude venom. It is a single-chain protein with a molecular mass of 78 kDa. SDS/PAGE of prothrombin after activation by berythractivase showed fragment patterns similar to those generated by group A prothrombin activators, which convert prothrombin into meizothrombin, independent of the prothrombinase complex. Chelating agents, such as EDTA and o -phenanthroline, rapidly inhibited the enzymic activity of berythractivase, like a typical metalloproteinase. Human fibrinogen A alpha-chain was slowly digested only after longer incubation with berythractivase, and no effect on the beta- or gamma-chains was observed. Berythractivase was also capable of triggering endothelial proinflammatory and procoagulant cell responses. von Willebrand factor was released, and the surface expression of both intracellular adhesion molecule-1 and E-selectin was up-regulated by berythractivase in cultured human umbilical-vein endothelial cells. The complete berythractivase cDNA was cloned from a B. erythromelas venom-gland cDNA library. The cDNA sequence possesses 2330 bp and encodes a preproprotein with significant sequence similarity to many other mature metalloproteinases reported from snake venoms. Berythractivase contains metalloproteinase, desintegrin-like and cysteine-rich domains. However, berythractivase did not elicit any haemorrhagic response. These results show that, although the primary structure of berythractivase is related to that of snake-venom haemorrhagic metalloproteinases and functionally similar to group A prothrombin activators, it is a prothrombin activator devoid of haemorrhagic activity. This is a feature

  7. Characterization of sphere-forming HCT116 clones by whole RNA sequencing

    PubMed Central

    Chung, Eunkyung; Oh, Inkyung

    2016-01-01

    Purpose To determine CD133+ cells defined as cancer stem cells (CSCs) in colon cancer, we examined whether CD133+ clones in HCT116 demonstrate known features of CSCs like sphere-forming ability, chemodrug-resistance, and metastatic potential. Methods Magnetic cell isolation and cell separation demonstrated that <1% of HCT116 cells expressed CD133, with the remaining cells being CD133- clones. In colon cancer cells, radioresistance is also considered a CSC characteristic. We performed clonogenic assay using 0.4 Gy γ-irradiation. Results Interestingly, there were no differences between HCT116 parental and HCT116 CD133+ clones when the cells comprised 0.5% of the total cells, and CD133- clone demonstrated radiosensitive changes compared with parental and CD133+ clones. Comparing gene expression profiles between sphere-forming and nonforming culture conditions of HCT116 subclones by whole RNA sequencing failed to obtain specific genes expressed in CD133+ clones. Conclusion Despite no differences of gene expression profiles in monolayer attached culture conditions of each clone, sphere-forming conditions of whole HCT116 subclones, parental, CD133+, and CD133- increased 1,761 coding genes and downregulated 1,384 genes related to CSCs self-renewal and survival. Thus, spheroid cultures of HCT116 cells could be useful to expand colorectal CSCs rather than clonal expansion depending on CD133 expressions. PMID:27073788

  8. Molecular cloning and characterization of glutamine synthetase, a tegumental protein from Schistosoma japonicum.

    PubMed

    Qiu, Chunhui; Hong, Yang; Cao, Yan; Wang, Fei; Fu, Zhiqiang; Shi, Yaojun; Wei, Meimei; Liu, Shengfa; Lin, Jiaojiao

    2012-12-01

    Glutamine synthetase catalyzes the synthesis of glutamine, providing nitrogen for the production of purines, pyrimidines, amino acids, and other compounds required in many pivotal cellular events. Herein, a full-length cDNA encoding Schistosoma japonicum glutamine synthetase (SjGS) was isolated from 21-day schistosomes. The entire open reading frame of SjGS contains a 1,095-bp coding region corresponding to 364 amino acids with a calculated molecular weight of 40.7 kDa. NCBIP blast shows that the putative amino acid of SjGS contains a classic β-grasp domain and a catalytic domain of glutamine synthetase. The relative mRNA expression of SjGS was evaluated in 7-, 13-, 21-, 28-, 35-, and 42-day worms of S. japonicum in the final host and higher expression at day 21, and 42 worms were observed. This protein was also detected in worm extracts using Western blot. Immunofluorescence studies indicated that the SjGS protein was mainly distributed on tegument and parenchyma in 28-day adult worms. The recombinant glutamine synthetase with a molecular weight of 45 kDa was expressed in Escherichia coli and purified in its active form. The enzyme activity of the recombinant protein was 3.30 ± 0.67 U.μg-1. The enzyme activity was highly stable over a wide range of pH (6-9) and temperature (25-40 °C) under physiological conditions. The transcription of SjGS was upregulated in praziquantel-treated worms at 2-, 4-, and 24-h posttreatment compared with the untreated control. As a first step towards the clarification of the role of glutamine synthetase in schistosome species, we have cloned and characterized cDNAs encoding SjGS in S. japonicum, and the data presented suggest that SjGS is an important molecule in the development of the schistosome.

  9. Cloning, characterization, and expression analysis of LGP2 cDNA from goose, Anser cygnoides.

    PubMed

    Wei, L; Song, Y; Cui, J; Qu, N; Wang, N; Ouyang, G; Liao, M; Jiao, P

    2016-10-01

    Laboratory of genetics and physiology 2 ( LGP2: ) is a homologue of the retinoic acid inducible gene-I and melanoma differentiation associated gene 5 that lacks the caspase activation and recruitment domain required for signaling. It plays a pivotal role in host immune response. In this study, we cloned and characterized the full-length open reading frame ( ORF: ) sequence of LGP2 in the Qingyuan goose (Anser cygnoides) and evaluated the mRNA expression of this gene post infection with an H5N1 highly pathogenic avian influenza virus ( HPAIV: ). The full-length goose LGP2 ORF (2,028 bp) encoded a polypeptide of 675 amino acids. The deduced amino acid sequence contained 5 main overlapping structural domains-2 DEAD/DEAH box helicase domains, one conserved restriction domain of bacterial type III restriction enzyme, one helicase superfamily C-terminal domain and one C-terminal regulatory domain. Quantitative real-time PCR analysis indicated that goose LGP2 was constitutively expressed in all 19 investigated tissues, but the expression level was different among them. It was high expressed in the trachea, jejunum, bursa, kidney and heart, but low in the glandular stomach, lung, liver, spleen, crop and muscular stomach. A significant increase in the transcription of LGP2 was detected in the brain, spleen and lungs of geese post infection with H5N1 HPAIV versus uninfected tissues. These findings indicated that goose LGP2 was an important receptor that is involved in the host antiviral innate immune defense to H5N1 HPAIV in geese. © 2016 Poultry Science Association Inc.

  10. Cloning and characterization of a heme oxygenase-2 gene from alfalfa (Medicago sativa L.).

    PubMed

    Fu, Guang-Qing; Jin, Qi-Jiang; Lin, Yu-Ting; Feng, Jian-Fei; Nie, Li; Shen, Wen-Biao; Zheng, Tian-Qing

    2011-11-01

    Heme oxygenase (HO, EC 1.14.99.3) catalyzes the oxidation of heme and performs vital roles in plant development and stress responses. Two HO isozymes exist in plants. Between these, HO-1 is an oxidative stress-response protein, and HO-2 usually exhibited constitutive expression. Although alfalfa HO-1 gene (MsHO1) has been investigated previously, HO2 is still poorly understood. In this study, we report the cloning and characterization of HO2 gene, MsHO2, from alfalfa (Medica sativa L.). The full-length cDNA of MsHO2 contains an ORF of 870 bp and encodes for 290 amino acid residues with a predicted molecular mass of 33.3 kDa. Similar to MsHO1, MsHO2 also appears to have an N-terminal transit peptide sequence for chloroplast import. Many conserved residues in plant HO were also conserved in MsHO2. However, unlike HO-1, the conserved histidine (His) required for heme-iron binding and HO activity was replaced by tyrosine (Tyr) in MsHO2. Further biochemical activity analysis of purified mature MsHO2 showed no HO activity, suggesting that MsHO2 may not be a true HO in nature. Semi-quantitative RT-PCR confirmed its maximum expression in the germinating seeds. Importantly, the expression levels of MsHO2 were up-regulated under sodium nitroprusside (SNP) and H(2)O(2) (especially) treatment, respectively.

  11. Molecular cloning and characterization of SoxB2 gene from Zhikong scallop Chlamys farreri

    NASA Astrophysics Data System (ADS)

    He, Yan; Bao, Zhenmin; Guo, Huihui; Zhang, Yueyue; Zhang, Lingling; Wang, Shi; Hu, Jingjie; Hu, Xiaoli

    2013-11-01

    The Sox proteins play critical roles during the development of animals, including sex determination and central nervous system development. In this study, the SoxB2 gene was cloned from a mollusk, the Zhikong scallop ( Chlamys farreri), and characterized with respect to phylogeny and tissue distribution. The full-length cDNA and genomic DNA sequences of C. farreri SoxB2 ( Cf SoxB2) were obtained by rapid amplification of cDNA ends and genome walking, respectively, using a partial cDNA fragment from the highly conserved DNA-binding domain, i.e., the High Mobility Group (HMG) box. The full-length cDNA sequence of Cf SoxB2 was 2 048 bp and encoded 268 amino acids protein. The genomic sequence was 5 551 bp in length with only one exon. Several conserved elements, such as the TATA-box, GC-box, CAAT-box, GATA-box, and Sox/sry-sex/testis-determining and related HMG box factors, were found in the promoter region. Furthermore, real-time quantitative reverse transcription PCR assays were carried out to assess the mRNA expression of Cf SoxB 2 in different tissues. SoxB2 was highly expressed in the mantle, moderately in the digestive gland and gill, and weakly expressed in the gonad, kidney and adductor muscle. In male and female gonads at different developmental stages of reproduction, the expression levels of Cf SoxB2 were similar. Considering the specific expression and roles of SoxB 2 in other animals, in particular vertebrates, and the fact that there are many pallial nerves in the mantle, cerebral ganglia in the digestive gland and gill nerves in gill, we propose a possible essential role in nervous tissue function for Sox B 2 in C. farreri.

  12. Molecular cloning and characterization of ech46 endochitinase from Trichoderma harzianum.

    PubMed

    Sharma, Vivek; Salwan, Richa; Sharma, P N; Kanwar, S S

    2016-11-01

    In the present study, endochitinase of T. harzianum isolate-ThHP3 induced against mycelium of F. oxysporum was cloned, sequenced and characterized. The complete nucleotide sequence contained an ORF of 1293bp corresponding to 430 amino acids with 46kDa molecular weight and theoretical pI 5.59. The precursor protein contained 22 amino acids long signal peptide at N terminus. The domain architecture of endochitinase showed low complexity regions, presence of 1W9P domain specific to cyclopentapeptide and lack of carbohydrate binding modules. The ligand binding site of ech46 endochitinase was constituted by 10 amino acids. The cDNA encoding ech46 endochitinase was ligated into pET28a vector and transformed to E. coli BL21. The predicted molecular weight of recombinant endochitinase without signal peptide was 49.4kDa with a theoretical pI 6.67. SDS-PAGE analysis of purified 6xHis tagged protein showed a single band of 49kDa. The refolded enzyme was active under acidic conditions with a temperature and pH optima of 50°C and 4. Km and Vmax for recombinant endochitinase using 4-pNP-(GlcNAc)3 were 315.2±0.36μM and 0.140±0.08μMmin(-1), respectively and the calculated kcat was 6.44min(-1). The RT-qPCR revealed induction of ech46 by phytopathogenic fungi.

  13. Cloning, expression, and characterization of Fe-SOD from Isöetes sinensis.

    PubMed

    Xu, Y; Dai, X L; Liu, B D; Wang, Q X

    2016-11-03

    Although the palynology and sporophyte stage of Isöetes sinensis have been well studied, the biology of its gametophyte and embryo is less well understood. To date, the functions of several genes of I. sinensis and the molecular mechanisms of enzymes encoded by them remain to be studied. In the present study, the Fe-SOD gene of I. sinensis was successfully cloned using RT-PCR and rapid amplification of cDNA ends (RACE), and termed IsFeSOD. IsFeSOD has certain reference value in the classification of system evolution. The study also accumulated data for further research on the SOD gene. Bioinformatic analysis was employed to compare IsFeSOD with gene sequences obtained from other plants present in the GenBank. Furthermore, the recombinant pET32-FeSOD plasmids were transformed into Escherichia coli BL21 for expression. IsFeSOD was observed to have 1469 nucleotides that were predicted to encode 247 amino acids. The bioinformatic analysis revealed that IsFeSOD contained conserved TGGGA sequences, similar to eight other species, in addition to five other conserved sequences. The recombinant protein was about 43 kDa. Recombinant FeSOD was expressed, purified, and confirmed by western blotting. Alignment of complete Fe-SOD mRNA sequences from 9 species revealed several conserved sequences. A phylogenetic tree was constructed using MEGA4.1 and ClustalX multiple-sequence alignment programs. This study could be helpful in further characterization of SOD genes and for classification of system evolution status.

  14. Cloning and characterization of nif structural and regulatory genes in the purple sulfur bacterium, Halorhodospira halophila.

    PubMed

    Tsuihiji, Hisayoshi; Yamazaki, Yoichi; Kamikubo, Hironari; Imamoto, Yasushi; Kataoka, Mikio

    2006-03-01

    Halorhodospira halophila is a halophilic photosynthetic bacterium classified as a purple sulfur bacterium. We found that H. halophila generates hydrogen gas during photoautotrophic growth as a byproduct of a nitrogenase reaction. In order to consider the applied possibilities of this photobiological hydrogen generation, we cloned and characterized the structural and regulatory genes encoding the nitrogenase, nifH, nifD and nifA, from H. halophila. This is the first description of the nif genes for a purple sulfur bacterium. The amino-acid sequences of NifH and NifD indicated that these proteins are an Fe protein and a part of a MoFe protein, respectively. The important residues are conserved completely. The sequence upstream from the nifH region and sequence similarities of nifH and nifD with those of the other organisms suggest that the regulatory system might be a NifL-NifA system; however, H. halophila lacks nifL. The amino-acid sequence of H. halophila NifA is closer to that of the NifA of the NifL-NifA system than to that of NifA without NifL. H. halophila NifA does not conserve either the residue that interacts with NifL or the important residues involved in NifL-independent regulation. These results suggest the existence of yet another regulatory system, and that the development of functional systems and their molecular counterparts are not necessarily correlated throughout evolution. All of these Nif proteins of H. halophila possess an excess of acidic residues, which acts as a salt-resistant mechanism.

  15. Cloning and characterization of four novel coral acid-rich proteins that precipitate carbonates in vitro.

    PubMed

    Mass, Tali; Drake, Jeana L; Haramaty, Liti; Kim, J Dongun; Zelzion, Ehud; Bhattacharya, Debashish; Falkowski, Paul G

    2013-06-17

    Biomineralization is a widely dispersed and highly regulated but poorly understood process by which organisms precipitate minerals from a wide variety of elements [1]. For many years, it has been hypothesized that the biological precipitation of carbonates is catalyzed by and organized on an extracellular organic matrix containing a suite of proteins, lipids, and polysaccharides [2, 3]. The structures of these molecules, their evolutionary history, and the biophysical mechanisms responsible for calcification remain enigmatic. Despite the recognition that mineralized tissues contain proteins that are unusually rich in aspartic and glutamic acids [4-6], the role of these proteins in biomineralization remains elusive [5, 6]. Here we report, for the first time, the identification, cloning, amino acid sequence, and characterization of four highly acidic proteins, derived from expression of genes obtained from the common stony coral, Stylophora pistillata. Each of these four proteins can spontaneously catalyze the precipitation of calcium carbonate in vitro. Our results demonstrate that coral acid-rich proteins (CARPs) not only bind Ca(2+) stoichiometrically but also precipitate aragonite in vitro in seawater at pH 8.2 and 7.6, via an electrostatic interaction with protons on bicarbonate anions. Phylogenetic analysis suggests that at least one of the CARPs arose from a gene fusion. Similar, highly acidic proteins appear to have evolved several times independently in metazoans through convergence. Based purely on thermodynamic grounds, the predicted change in surface ocean pH in the next decades would appear to have minimal effect on the capacity of these acid-rich proteins to precipitate carbonates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Cloning, expression and characterization of an insect geranylgeranyl diphosphate synthase from Choristoneura fumiferana.

    PubMed

    Barbar, Aline; Couture, Manon; Sen, Stephanie E; Béliveau, Catherine; Nisole, Audrey; Bipfubusa, Marie; Cusson, Michel

    2013-10-01

    Geranylgeranyl diphosphate synthase (GGPPS) catalyzes the condensation of the non-allylic diphosphate, isopentenyl diphosphate (IPP; C5), with allylic diphosphates to generate the C20 prenyl chain (GGPP) used for protein prenylation and diterpenoid biosynthesis. Here, we cloned the cDNA of a GGPPS from the spruce budworm, Choristoneura fumiferana, and characterized the corresponding recombinant protein (rCfGGPPS). As shown for other type-III GGPPSs, rCfGGPPS preferred farnesyl diphosphate (FPP; C15) over other allylic substrates for coupling with IPP. Unexpectedly, rCfGGPPS displayed inhibition by its FPP substrate at low IPP concentration, suggesting the existence of a mechanism that may regulate intracellular FPP pools. rCfGGPPS was also inhibited by its product, GGPP, in a competitive manner with respect to FPP, as reported for human and bovine brain GGPPSs. A homology model of CfGGPPS was prepared and compared to human and yeast GGPPSs. Consistent with its enzymological properties, CfGGPPS displayed a larger active site cavity that can accommodate the binding of FPP and GGPP in the region normally occupied by IPP and the allylic isoprenoid tail, and the binding of GGPP in an alternate orientation seen for GGPP binding to the human protein. To begin exploring the role of CfGGPPS in protein prenylation, its transcripts were quantified by qPCR in whole insects, along with those of other genes involved in this pathway. CfGGPPS was expressed throughout insect development and the abundance of its transcripts covaried with that of other prenylation-related genes. Our qPCR results suggest that geranylgeranylation is the predominant form of prenylation in whole C. fumiferana. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  17. Molecular Cloning and Functional Characterization of a Zebrafish Nuclear Progesterone Receptor1

    PubMed Central

    Chen, Shi X.; Bogerd, Jan; García-López, Ángel; de Jonge, Hugo; de Waal, Paul P.; Hong, Wan S.; Schulz, Rüdiger W.

    2009-01-01

    Progestagenic sex steroid hormones play critical roles in reproduction across vertebrates, including teleost fish. To further our understanding of how progesterone modulates testis functions in fish, we set out to clone a progesterone receptor (pgr) cDNA exhibiting nuclear hormone receptor features from zebrafish testis. The open reading frame of pgr consists of 1854 bp, coding for a 617-amino acid-long protein showing the highest similarity with other piscine Pgr proteins. Functional characterization of the receptor expressed in mammalian cells revealed that zebrafish Pgr exhibited progesterone-specific, dose-dependent induction of reporter gene expression, with 17alpha,20beta-dihydroxy-4-pregnen-3-one (DHP), a typical piscine progesterone, showing the highest potency. Expression of pgr mRNA: 1) appeared in embryos at 8 h after fertilization; 2) was significantly higher in developing ovary than in early transforming testis at 4 wk of age but vice versa in young adults at 12 wk of age, and thus resembling the expression pattern of the germ cell marker piwil1; and, 3) was restricted to Leydig and Sertoli cells in adult testis. Zebrafish testicular explants released DHP concentration dependently in response to high concentrations of recombinant zebrafish gonadotropins. In addition, DHP stimulated 11-ketotestosterone release from zebrafish testicular explants, but only in the presence of its immediate precursor, 11beta-hydroxytestosterone. This stimulatory activity was blocked by a Pgr antagonist (RU486), suggesting that 11beta-hydroxysteroid dehydrogenase activity was stimulated by DHP via Pgr. Our data suggest that DHP contributes to the regulation of Leydig cell steroidogenesis, and potentially—via Sertoli cells—also to germ cell differentiation in zebrafish testis. PMID:19741208

  18. Cloning, Expression, Characterization, and Mutagenesis of a Thermostable Exoinulinase From Kluyveromyces cicerisporus.

    PubMed

    Ma, Jun-Yan; Cao, Hai-Long; Tan, Hai-Dong; Hu, Xue-Jun; Liu, Wu-Jun; Du, Yu-Guang; Yin, Heng

    2016-01-01

    Inulinase is an enzyme that belongs to glycoside hydrolase family 32. It converts inulin into high-fructose syrups and fructoligosaccharides, both of which are widely used in pharmaceutical and food industries. In this study, the kcINU1 gene (GenBank accession number AF178979) encoding an exoinulinase was cloned from Kluyveromyces cicerisporus CBS4857 and expressed in Pichia pastoris X-33, yielding a maximum of 45.2 ± 0.6 U mL(-1) of inulinase activity of culture supernatant. The expressed inulinase was purified and characterized. The enzyme had an optimum temperature of 55 °C and an optimum pH of 4.5. It had a K m of 0.322 mM and a V max of 4317 μM min(-1) mg(-1) protein when inulin was used as a substrate. It retained nearly 90 % of the maximal activity after pre-incubation at 50 °C for 1 h or at pH ranging from 3.0 to 6.0 at 4 °C for 24 h, demonstrating that KcINU1 was stable at high temperature and low pH. Moreover, we constructed two KcINU1 mutants, Asp30Ala and Glu215Ala, by site-directed mutagenesis and confirmed via zymogram analysis that Asp-30 and Glu-215 of the enzyme were the catalytic active center. The present study has provided important information for understanding the catalytic mechanism of exoinulinase.

  19. Cloning and characterization of a flavanone 3-hydroxylase gene from Saussurea medusa.

    PubMed

    Jin, Zhiping; Grotewold, Erich; Qu, Wenquan; Fu, Ghunxiang; Zhao, Dexiu

    2005-04-01

    Flavanone 3-hydroxylase (F3H) is a key enzyme in the flavonoid biosynthetic pathway, providing a branching point for the biosynthesis of different flavonoids, including the formation of 3-deoxy and 3-hydroxy flavonoids found in the silks of maize. Here, we report the cloning and characterization of a F3H gene (Smf3h) from a cDNA library derived from a red line callus of Saussurea medusa, a traditional Chinese medicinal plant. The cDNA contains a 1032 bp open reading frame (ORF) encoding a protein of 343 amino acid residues, a 149 bp long 5'untranslated regions (UTR) and a 163 bp long 3'UTR containing three putative polyadenylation signals (AATAAA) and an ATTTA element. The secondary structure of the mRNA predicted by MFOLD is very complex, suggesting a role in a post-transcriptional mechanism of regulation of Smf3h. The genomic structure of Smf3h includes four exons and three introns within the coding region, with all the splice donor/acceptor site sequences in accordance with the "GU-AG" consensus rule. The deduced SmF3H protein is 343 amino acid residues in length and has 40% and 39% identity and 60% and 58% similarity to the F3H of Arabidopsis and rice, respectively. Strikingly, the identity of SmF3H is higher to the H6H (hyoscyamine 3beta-hydroxylase, 45%) from Atropa belladonna. However, the analysis of the active center and the predicted protein secondary structure are more related to F3H than H6H. Together, our studies provide the first identification of a S. medusa flavonoid gene and its similarities to metabolic enzymes from other plants.

  20. Chemokine receptor CXCR3 in turbot (Scophthalmus maximus): cloning, characterization and its responses to lipopolysaccharide.

    PubMed

    Chen, Yadong; Zhou, Shuhong; Jiang, Zhiqiang; Wang, Xiuli; Liu, Yang

    2016-04-01

    Chemokine (C-X-C motif) receptor 3, a member of the G protein-coupled receptors superfamily, regulates the responses of many immune responses. In this experiment, we cloned and characterized the cDNA of CXCR3 in Scophthalmus maximus (turbot). A 5'-UTR of 216-bp, a 259-bp 3'-UTR with a poly (A) tail and a 1089-bp CDS encoding 362 amino acids form the cDNA of CXCR3, which is 1564-bp long. Phylogenetic analyses indicated that turbot CXCR3 shared a high similarity with other CXCR3s and shared more similarity with CXCR5 than the other subfamilies of chemokines. The CXCR3 protein in turbot showed the highest similarity with the CXCR3b from rainbow trout (44.5%), which indicated that this CXCR3 gene/protein may be a CXCR3b isoform. Quantitative real-time PCR analysis showed that CXCR3 transcripts were constitutively expressed in all the tissues of the non-injected turbot used in this study, with the highest expression occurring in blood. Several immune-related tissues of fish, such as the spleen, head kidney, liver and blood, tissues, which were abundant of lymphocyte, were investigated in this study. CXCR3 gene was expressed at the highest level in blood than the other tested tissues. The injection experiment suggested that the CXCR3 expression level after LPS injection was significantly up-regulated in all immune-related tissues in turbot. These results improve our understanding of the functions of CXCR3 in the turbot immune response.

  1. Cloning and characterization of nitrate reductase gene in Ulva prolifera (Ulvophyceae, Chlorophyta).

    PubMed

    Guo, Yang; Wang, Hao Zhe; Wu, Chun Hui; Fu, Hui Hui; Jiang, Peng

    2017-06-26

    Ulva spp. dominates green tides around the world, which are occurring at an accelerated rate. The competitive nitrogen assimilation efficiency in Ulva is suggested to result in ecological success against other seaweeds. However, molecular characterization of genes involved in nitrogen assimilation has not been conducted. Here, we describe the identification of the nitrate reductase (NR) gene from a green seaweed Ulva prolifera, an alga which is responsible for the world's largest green tide in the Yellow Sea. Using rapid amplification of cDNA ends and genome walking, the NR gene from U. prolifera (UpNR) was cloned, which consisted of six introns and seven exons encoding 863 amino acids. According to sequence alignment, the NR in U. prolifera was shown to possess all five essential domains and 21 key invariant residues in plant NRs. The GC content of third codon position of UpNR (82.75%) was as high as those of green microalgae, and the intron number supported a potential loss issue from green microalga to land plant. Real-time quantitative PCR results showed that UpNR transcript level was induced by nitrate and repressed by ammonium, which could not be removed by addition of extra nitrate, indicating that U. prolifera preferred ammonium to nitrate. Urea would not repress NR transcription by itself, while it weakened the induction effect of nitrate, implying it possibly inhibited nitrate uptake rather than nitrate reduction. These results suggest the use of UpNR as a gene-sensor to probe the N assimilation process in green tides caused by Ulva. © 2017 Phycological Society of America.

  2. Cloning, sequencing and characterization of a gene encoding dihydroxyacetone kinase from Zygosaccharomyces rouxii NRRL2547.

    PubMed

    Wang, Zheng-Xiang; Kayingo, Gerald; Blomberg, Anders; Prior, Bernard A

    2002-12-01

    The dihydroxyacetone pathway, an alternative pathway for the dissimilation of glycerol via reduction by glycerol dehydrogenase and subsequent phosphorylation by dihydroxyacetone (DHA) kinase, is activated in the yeasts Saccharomyces cerevisiae and Zygosaccharomyces rouxii during osmotic stress. In experiments aimed at investigating the physiological function of the DHA pathway in Z. rouxii, a typical osmotolerant yeast, we cloned and characterized a DAK gene encoding dihydroxyacetone kinase from Z. rouxii NRRL 2547. Sequence analysis revealed a 1761 bp open reading frame, encoding a peptide composed of 587 deduced amino acids with the predicted molecular weight of 61 664 Da. As the amino acid sequence was most closely homologous (68% identity) to the S. cerevisiae Dak1p, we named the gene and protein ZrDAK1 and ZrDak1p, respectively. A putative ATP binding site was also found but no consensus element associated with osmoregulation was found in the upstream region of the ZrDAK1 gene. The ZrDAK1 gene complemented a S. cerevisiae W303-1A dak1delta dak2 delta strain by improving the growth of the mutant on 50 mmol/l dihydroxyacetone and by increasing the tolerance to dihydroxyacetone in a medium containing 5% sodium chloride, suggesting that it is a functional homologue of the S. cerevisiae DAK1. However, expression of the ZrDAK1 gene in the S. cerevisiae dak1delta dak2 delta strain had no significant effect on glycerol levels during osmotic stress. The ZrDAK1 sequence has been deposited in the public data bases under Accession No. AJ294719; regions upstream and downstream of ZrDAK1are deposited as Accession Nos AJ294739 and AJ294720, respectively.

  3. Molecular cloning, expression, and initial characterization of members of the CYP3A family in horses.

    PubMed

    Knych, Heather K DiMaio; McKemie, Daniel S; Stanley, Scott D

    2010-10-01

    The use of performance-enhancing drugs in the horse racing industry combined with the need for more rational approaches in the use of therapeutic agents in equids necessitates additional studies on the spectrum, content, and catalytic activities of hepatic cytochrome P450 monooxygenases in this species. In this study, three cytochrome P450 (P450) monooxygenases in the 3A family were cloned from, sequenced, and expressed in a baculovirus expression system. The proteins were designated CYP3A89, CYP3A96, and CYP3A97. Expression studies produced various results among the three proteins. CYP3A89 appears to undergo post-translational modification, producing a truncated protein, and although metabolically active, CYP3A97 did not have a detectable P450 spectrum. Expression of CYP3A96 produced a full-length, catalytically active protein. CYP3A96 catalyzed testosterone, and nifedipine metabolism was 20- and 10-fold slower, respectively, compared with the human counterpart, CYP3A4. Relative hepatic expression levels of each member of the CYP3A family, determined using quantitative reverse transcription-polymerase chain reaction, varied more than 1000-fold in individual horses. The results demonstrate substantial interspecies variability in metabolism of substrates by members of the CYP3A family in the horse and human and support the need to fully characterize 450-mediated metabolism in equids. These studies provide a framework for screening therapeutically useful drugs and provide a method for determination of metabolites of illegal performance-enhancing drugs without the time and expense of either in vivo studies or obtaining liver samples for in vitro analysis.

  4. Molecular cloning and functional characterization of an antifungal PR-5 protein from Ocimum basilicum.

    PubMed

    Rather, Irshad Ahmad; Awasthi, Praveen; Mahajan, Vidushi; Bedi, Yashbir S; Vishwakarma, Ram A; Gandhi, Sumit G

    2015-03-01

    Pathogenesis-related (PR) proteins are involved in biotic and abiotic stress responses of plants and are grouped into 17 families (PR-1 to PR-17). PR-5 family includes proteins related to thaumatin and osmotin, with several members possessing antimicrobial properties. In this study, a PR-5 gene showing a high degree of homology with osmotin-like protein was isolated from sweet basil (Ocimum basilicum L.). A complete open reading frame consisting of 675 nucleotides, coding for a precursor protein, was obtained by PCR amplification. Based on sequence comparisons with tobacco osmotin and other osmotin-like proteins (OLPs), this protein was named ObOLP. The predicted mature protein is 225 amino acids in length and contains 16 cysteine residues that may potentially form eight disulfide bonds, a signature common to most PR-5 proteins. Among the various abiotic stress treatments tested, including high salt, mechanical wounding and exogenous phytohormone/elicitor treatments; methyl jasmonate (MeJA) and mechanical wounding significantly induced the expression of ObOLP gene. The coding sequence of ObOLP was cloned and expressed in a bacterial host resulting in a 25kDa recombinant-HIS tagged protein, displaying antifungal activity. The ObOLP protein sequence appears to contain an N-terminal signal peptide with signatures of secretory pathway. Further, our experimental data shows that ObOLP expression is regulated transcriptionally and in silico analysis suggests that it may be post-transcriptionally and post-translationally regulated through microRNAs and post-translational protein modifications, respectively. This study appears to be the first report of isolation and characterization of osmotin-like protein gene from O. basilicum.

  5. Molecular Cloning and Characterization of Taurocyamine Kinase from Clonorchis sinensis: A Candidate Chemotherapeutic Target

    PubMed Central

    Tokuhiro, Shinji; Nagataki, Mitsuru; Jarilla, Blanca R.; Nomura, Haruka; Kim, Tae Im; Hong, Sung-Jong; Agatsuma, Takeshi

    2013-01-01

    Background Adult Clonorchis sinensis lives in the bile duct and causes endemic clonorchiasis in East Asian countries. Phosphagen kinases (PK) constitute a highly conserved family of enzymes, which play a role in ATP buffering in cells, and are potential targets for chemotherapeutic agents, since variants of PK are found only in invertebrate animals, including helminthic parasites. This work is conducted to characterize a PK from C. sinensis and to address further investigation for future drug development. Methology/Principal findings A cDNA clone encoding a putative polypeptide of 717 amino acids was retrieved from a C. sinensis transcriptome. This polypeptide was homologous to taurocyamine kinase (TK) of the invertebrate animals and consisted of two contiguous domains. C. sinensis TK (CsTK) gene was reported and found consist of 13 exons intercalated with 12 introns. This suggested an evolutionary pathway originating from an arginine kinase gene group, and distinguished annelid TK from the general CK phylogenetic group. CsTK was found not to have a homologous counterpart in sequences analysis of its mammalian hosts from public databases. Individual domains of CsTK, as well as the whole two-domain enzyme, showed enzymatic activity and specificity toward taurocyamine substrate. Of the CsTK residues, R58, I60 and Y84 of domain 1, and H60, I63 and Y87 of domain 2 were found to participate in binding taurocyamine. CsTK expression was distributed in locomotive and reproductive organs of adult C. sinensis. Developmentally, CsTK was stably expressed in both the adult and metacercariae stages. Recombinant CsTK protein was found to have low sensitivity and specificity toward C. sinensis and platyhelminth-infected human sera on ELISA. Conclusion CsTK is a promising anti-C. sinensis drug target since the enzyme is found only in the C. sinensis and has a substrate specificity for taurocyamine, which is different from its mammalian counterpart, creatine. PMID:24278491

  6. Molecular cloning and functional characterization of chick lens fiber connexin 45.6.

    PubMed Central

    Jiang, J X; White, T W; Goodenough, D A; Paul, D L

    1994-01-01

    The avian lens is an ideal system to study gap junctional intercellular communication in development and homeostasis. The lens is experimentally more accessible in the developing chick embryo than in other organisms, and chick lens cells differentiate well in primary cultures. However, only two members of the connexin gene family have been identified in the avian lens, whereas three are known in the mammalian system. We report here the molecular cloning and characterization of the third lens connexin, chick connexin45.6 (ChCx45.6), a protein with a predicted molecular mass of 45.6 kDa. ChCx45.6 was encoded by a single copy gene and was expressed specifically in the lens. There were two mRNA species of 6.4 kilobase (kb) and 9.4 kb in length. ChCx45.6 was a functional connexin protein, because expression in Xenopus oocyte pairs resulted in the development of high levels of conductance with a characteristic voltage sensitivity. Antisera were raised against ChCx45.6 and chick connexin56 (ChCx56), another avian lens-specific connexin, permitting the examination of the distribution of both proteins. Immunofluorescence localization showed that both ChCx45.6 and ChCx56 were abundant in lens fibers. Treatment of lens membranes with alkaline phosphatase resulted in electrophoretic mobility shifts, demonstrating that both ChCx45.6 and ChCx56 were phosphoproteins in vivo. Images PMID:8049527

  7. Cloning and characterization of a novel hemocyanin variant LvHMCV4 from shrimp Litopenaeus vannamei.

    PubMed

    Lu, Xin; Lu, Hui; Guo, Lingling; Zhang, Zehui; Zhao, Xianliang; Zhong, Mingqi; Li, Shengkang; Zhang, Yueling

    2015-10-01

    Recently, we found 3 variants of hemocyanin subunit with higher molecular weight in shrimp Litopenaeus vannamei (Named as LvHMCV1-3). In this study, a novel L. vannamei hemocyanin variant (Named as LvHMCV4) was further cloned and characterized. Bioinformatic analysis predicted that LvHMCV4 contains one open reading frame of 2137 bp and encodes a polypeptide of 678 amino acids. It shares 84-99% cDNA sequences identity to that of the classical form of L. vannamei hemocyanin (LvHMC, AJ250830.1) and LvHMCV1-3. LvHMCV4 possesses a conserved structure characteristic of the hemocyanin family and can be clustered into one branch along with other arthropod hemocyanins in a phylogenetic tree. Further, the full-length DNA of LvHMCV4 contains 2660 bp and two introns, which are located at the 80-538 bp and 2063-2227 bp regions, respectively. In addition, the mRNA transcript of LvHMCV4 was expressed highly in the hepatopancreas, lymphoid, brain and hemocytes, and weakly in the heart, intestine and gill, while no expression was found in the muscle, stomach and gut. Infection by Escherichia coli K12, Vibrio parahaemolyticus, Vibrio alginolyticus, Vibrio fluvialis, Streptococcus pyogenes or Staphylococcus aureus up-regulated significantly LvHMCV4 mRNA expression in the hepatopancreas. Furthermore, the recombinant protein of LvHMCV4 (rLvHMCV4) was prepared, which showed agglutination activities against six pathogenic bacteria at concentrations ranging from 15.6 to 125 μg/ml. When co-injected with V. parahaemolyticus in L.vannamei, rLvHMCV4 significantly increased the survival rate after 48 h injection. Together, these studies suggested that hemocyanin variant, LvHMCV4, might be involved in shrimp resistance to pathogenic infection.

  8. Cloning and characterization of an ovine intracellular seven transmembrane receptor for progesterone that mediates calcium mobilization.

    PubMed

    Ashley, R L; Clay, C M; Farmerie, T A; Niswender, G D; Nett, T M

    2006-09-01

    Classically, progesterone has been thought to act only through the well-known genomic pathway involving hormone binding to nuclear receptors (nPR) and subsequent modulation of gene expression. However, there is increasing evidence for rapid, nongenomic effects of progesterone in a variety of tissues in mammals, and it seems likely that a membrane PR (mPR) is causing these events. The objective of this study was to isolate and characterize an ovine mPR distinct from the nPR. A cDNA clone was isolated from ovine genomic DNA by PCR. The ovine mPR is a 350-amino acid protein that, based on computer hydrophobicity analysis, possesses seven transmembrane domains and is distinct from the nPR. Message for the ovine mPR was detected in hypothalamus, pituitary, uterus, ovary, and corpus luteum by RT-PCR. In CHO cells that overexpressed a mPR-green fluorescent protein fusion protein, the ovine mPR was localized to the endoplasmic reticulum and not the plasma membrane. Specific binding of 3H-progesterone to membrane fractions was demonstrated in CHO cells that expressed the ovine mPR but not in nontransfected cells. Furthermore, progesterone and 17 alpha-hydroxy-progesterone stimulated intracellular Ca2+ mobilization in CHO cells that expressed ovine mPR in Ca2+-free medium (P < 0.05) but not in CHO cells transfected with empty vector. This rise in intracellular Ca2+ is believed to be from the endoplasmic reticulum as intracellular Ca2+ mobilization is absent when mPR transfected cells are first treated with thapsigargin to deplete Ca2+ stores from the endoplasmic reticulum. Isolation, identification, tissue distribution, cellular localization, steroid binding, and a functional response for a unique intracellular mPR in the sheep are presented.

  9. Characterization of the mgl operon of Escherichia coli by transposon mutagenesis and molecular cloning.

    PubMed

    Harayama, S; Bollinger, J; Iino, T; Hazelbauer, G L

    1983-01-01

    We used transposon insertion mutagenesis, molecular cloning, and a novel procedure for in vitro construction of polar and nonpolar insertion mutations to characterize the genetic organization and gene products of the beta-methylgalactoside (Mgl) transport system, which utilizes the galactose-binding protein. The data indicate that the mgl operon contained three genes, which were transcribed in the order mglB, mglA, and mglC. The first gene coded for the 31,000 Mr galactose-binding protein, which was synthesized as a 3,000-dalton-larger precursor form. The mglA product was a 50,000 Mr protein which was tightly associated with the membrane, and the mglC product was a 38,000 Mr protein which was apparently loosely associated with the membrane and was probably located on the internal face of the cytoplasmic membrane. Identification of gene products was facilitated by in vitro insertion of a fragment of Tn5 containing the gene conferring kanamycin resistance into a restriction site in the operon. The fragment proved to have a polar effect on the expression of promoter-distal genes only when inserted in one of the two possible orientations. The three identified gene products were necessary and apparently sufficient for transport activity, but only the binding protein was required for chemotaxis towards galactose. The transport system appeared to contain the minimum number of components for a binding protein-related system: a periplasmic recognition component, a transmembrane protein, and a peripheral membrane protein that may be involved in energy linkage.

  10. Cloning and characterization of tuberous sclerosis determining genes on 9q and 16p

    SciTech Connect

    Slegtenhorst, M. van; Hermans, C.; Ouweland, A. van den

    1994-09-01

    Tuberous sclerosis (TSC) is an autosomal dominant multisystem disorder, characterized by the widespread development of hamartomata. TSC is genetically heterogeneous, with trait causing loci on 9q34 and 16p13.3. Last year the TSC2 gene on 16p13.3 has been identified by the European Chromosome 16 TSC Consortium. The TSC2 gene acts as a tumour suppressor gene and encodes a 198 kD protein (tuberin) with a small region of homology to the rap1-GTPase-activating-protein. Allowing for heterogeneity, we have performed a linkage analysis on 14 Dutch and British families. Combined analysis (ICA) of both chromosomal regions revealed an overall lod score (under heterogeneity) of 8.92. We assigned the TSC1 locus to a region in between the Abelson oncogene and the ABO bloodgroup locus. On chromosome 16 the peak lod score was obtained at marker 16AC2.5. This finding confirms the accuracy of the imaginary chromosome approach (ICA), since 16AC2.5 is known to be at less than 200 kb from TSC2. The proportion of ABO linked families (TSC1) was estimated to be 65%. In the ABO region we have mapped about 200 cosmids in 6 contigs ranging from 40 to more than 300 kb. With respect to TSC2 we focused on the construction of a full length cDNA clone and the generation of antibodies against fusion proteins and synthetic peptides. These are being utilized in studies on the cellular localization, the tissue distribution and the normal and impaired function of tuberin.

  11. Molecular cloning, characterization and expression analysis of melanotransferrin from the sea cucumber Apostichopus japonicus.

    PubMed

    Qiu, Xuemei; Li, Dong; Cui, Jun; Liu, Yang; Wang, Xiuli

    2014-06-01

    Melanotransferrin (MTf), a member of the transferrin families, plays an important role in immune response. But the research about MTf in sea cucumber is limited till now. In this study, the Melanotransferrin (Aj-MTf) gene was firstly cloned and characterized from the sea cucumber Apostichoupus japonicus by reverse transcriptase polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends. The full-length cDNA of Aj-MTf is 2,840 bp in length and contains a 2,184 bp open reading frame that encodes a polypeptide of 727 amino acids. An iron-responsive element-like structure is located at the 5'-UTR of Aj-MTf cDNA. Sequence analysis shows that the Aj-MTf contains two conserved domains, and the binding-iron (III) sites, including eight amino acid residues (D81,Y109,Y215,H283,D425,Y454,Y565 and H634) and three N-linked glycosylation sites (N121V122S123,N173A174S175 and N673S674T675). Quantitative real-time polymerase chain reaction (qRT-PCR) analyses suggested that the Aj-MTf expressions in the coelomic fluid, body cavity wall and respiratory trees were significantly changed from 4 to 24 h post lipopolysaccharide (LPS) injection. The mRNA levels of Aj-MTf in coelomic fluid was significantly up-regulated at 12 and 24 h in treatment group, and Aj-MTf shared a similar expression pattern with C-type lectin in coelomic fluid, while both genes appears to gradually increase after 4 h of LPS injection. These results indicate that the Aj-MTf plays a pivotal role in immune responses to the LPS challenge in sea cucumber, and provide new information that it is complementary to the sea cucumber immune genes and initiate new researches concerning the genetic basis of the holothurian immune response.

  12. Molecular cloning, characterization, and expression of Cuc m 2, a major allergen in Cucumis melo

    PubMed Central

    Sankian, Mojtaba; Mahmoudi, Mahmoud; Varasteh, Abdol-Reza

    2013-01-01

    Background: Several studies reported the clinical features of IgE-mediated hypersensitivity after ingestion of melon. Melon allergy is a common IgE-mediated fruit allergy in Iran. This prompted us to investigate immunochemical and molecular properties of the major allergen in melon fruit, to compare the IgE-binding capacity of the natural protein with the recombinant allergen, and to determine cross-reactivity of the major allergen with closely-related allergens from other plants displaying clinical cross-reactivity with melon. Methods: Identification and molecular characterization of the major melon allergen were performed using IgE immunoblotting, allergen-specific ELISA, affinity-based purifications, cross-inhibition assays, cloning, and expression of the allergen in Escherichia coli. Results: Melon profilin was identified and isolated as a major IgE-binding component and designated as Cuc m 2. Sequencing corresponding cDNA revealed an open reading frame of 363 bp coding for 131 amino acid residues and two fragments of 171 bp and 383 bps for the 5’and 3’ UTRs, respectively. Significant cross-reactivity was found between melon profilin and Cynodon dactylon, tomato, peach, and grape profilins in cross-inhibition assays. Although the highest degree of amino acid identity was revealed with watermelon profilin, there was no significant cross-reactivity between melon and watermelon profilins. Conclusion: Melon profilin is the major IgE-binding component in melon extract, and the recombinant and natural forms exhibited similar IgE-binding capacities. A part of the fruit-fruit and pollen-fruit cross-reactions could be explained by the presence of this conserved protein; however, sequence homology provides insufficient information to predict IgE cross-reactivity of profilins. PMID:26989709

  13. Comparison of molecular typing methods for characterization of Staphylococcus epidermidis: proposal for clone definition.

    PubMed

    Miragaia, M; Carriço, J A; Thomas, J C; Couto, I; Enright, M C; de Lencastre, H

    2008-01-01

    In the present study we give some direction on the selection of the most appropriate typing method(s) to be used for the characterization of Staphylococcus epidermidis, in view of the most recent findings on the evolution, population structure, and epidemiology of this species. In order to achieve this aim, quantitative assessment of the correlation of the results of three typing methods--pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and staphylococcal chromosomal cassette mec (SCCmec) typing, which target different regions of the chromosome that evolve at different rates--was performed. In order to evaluate the discriminatory ability and the strength and direction of the correlation of the different typing methods, Simpson's index of diversity (SID), the adjusted Rand coefficient (AR), and the Wallace coefficient (W) were calculated. PFGE was the most discriminatory method (SID = 99%), followed by MLST (SID = 90%) and SCCmec typing (SID = 75%). The values of AR and W (0.10 < AR < 0.30; 0.50 < W < 0.75) indicated that the partition of the same isolate collection by PFGE, MLST, and SCCmec typing provided results that had only a poor correlation with each other. However, the information provided by the combination of PFGE and SCCmec enabled the prediction of the results obtained by MLST at the level of the clonal complex with a high degree of precision (W > 0.90). We propose that clones of S. epidermidis be defined by the combination of the PFGE type followed by the SCCmec type, which provides reliable information on the short-term epidemiology and the ability to predict with consistency long-term clonal evolution.

  14. Molecular cloning and characterization of enhanced disease susceptibility 1 (EDS1) from Gossypium barbadense.

    PubMed

    Su, Xiaofeng; Qi, Xiliang; Cheng, Hongmei

    2014-06-01

    Arabidopsis enhanced disease susceptibility 1 (EDS1) plays an important role in plant defense against biotrophic and necrotrophic pathogens. The necrotrophic pathogen Verticillium dahliae infection of Gossypium barbadense could lead to Verticillium wilt which seriously reduces the cotton production. Here, we cloned and characterized a G. barbadense homolog of EDS1, designated as GbEDS1. The full-length cDNA of the GbEDS1 gene was obtained by the technique of rapid-amplification of cDNA ends. The open reading frame of the GbEDS1 gene was 1,647 bp long and encoded a protein of 548 amino acids residues. Comparison of the cDNA and genomic DNA sequence of GbEDS1 indicated that this gene contained a single intron and two exons. Like other EDS1s, GbEDS1 contained a conserved N-terminal lipase domain and an EDS1-specific KNEDT motif. Subcellular localization assay revealed that GbEDS1-green fluorescence protein fusion protein was localized in both cytosol and nucleus. Interestingly, the transcript levels of GbEDS1 were dramatically increased in response to pathogen V. dahliae infection. To investigate the role of GbEDS1 in plant resistance against V. dahliae, a conserved fragment derived from GbEDS1 was used to knockdown the endogenous EDS1 in Nicotiana benthamiana by heterologous virus-induced gene silencing. Our data showed that silencing of NbEDS1 resulted in increased susceptibility to V. dahliae infection in N. benthamiana, suggesting a possible involvement of the novelly isolated GbEDS1 in the regulation of plant defense against V. dahliae.

  15. Cloning and characterization of a surface antigen CiSA-32.6 from Cryptocaryon irritans.

    PubMed

    Huang, Xiaohong; Sun, Zhiyu; Guo, Guowei; Zheng, Changfeng; Xu, Yang; Yuan, Liping; Liu, Cheng

    2012-03-01

    Cryptocaryon irritans is a ciliated parasite causing cryptocaryosis in marine fish. To isolate functional genes, a cDNA library of C. irritans trophonts was constructed and a gene designated CiSA-32.6 (GenBank ID: JF812643) was cloned and characterized. The full-length cDNA (1158 bp) encoded a deduced polypeptide of 330 amino-acid (aa) with a signal peptide of 22 aa. To express the ciliate gene, a truncated open reading frame (CiSA-32.6t) was synthesized to remove fragments encoding the signal peptide and hydrophobic C-terminal and to modify non-universal genetic codes. CiSA-32.6t was subcloned into Escherichia coli DH5α strain using the pGEX-4T-1 vector and then expressed as a glutathione S transferase fusion protein (rCiSA-32.6t). Western blotting analysis showed that sera from mice immunized with rCiSA-32.6t reacted specifically with a native protein (32.6 kDa) in parasite lysates. Moreover, rCiSA-32.6t reacted specifically with sera from mice immunized with a C. irritans trophont lysate. Expression of the CiSA-32.6 gene in C. irritans was detected at all developmental stages by reverse transcriptase PCR and Western blotting analysis. This study provides the basis of further investigations into the pathogenic biology of C. irritans and the control of cryptocaryosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Molecular cloning and functional characterization of a zebrafish nuclear progesterone receptor.

    PubMed

    Chen, Shi X; Bogerd, Jan; García-López, Angel; de Jonge, Hugo; de Waal, Paul P; Hong, Wan S; Schulz, Rüdiger W

    2010-01-01

    Progestagenic sex steroid hormones play critical roles in reproduction across vertebrates, including teleost fish. To further our understanding of how progesterone modulates testis functions in fish, we set out to clone a progesterone receptor (pgr) cDNA exhibiting nuclear hormone receptor features from zebrafish testis. The open reading frame of pgr consists of 1854 bp, coding for a 617-amino acid-long protein showing the highest similarity with other piscine Pgr proteins. Functional characterization of the receptor expressed in mammalian cells revealed that zebrafish Pgr exhibited progesterone-specific, dose-dependent induction of reporter gene expression, with 17 alpha,20 beta-dihydroxy-4-pregnen-3-one (DHP), a typical piscine progesterone, showing the highest potency. Expression of pgr mRNA: 1) appeared in embryos at 8 h after fertilization; 2) was significantly higher in developing ovary than in early transforming testis at 4 wk of age but vice versa in young adults at 12 wk of age, and thus resembling the expression pattern of the germ cell marker piwil1; and, 3) was restricted to Leydig and Sertoli cells in adult testis. Zebrafish testicular explants released DHP concentration dependently in response to high concentrations of recombinant zebrafish gonadotropins. In addition, DHP stimulated 11-ketotestosterone release from zebrafish testicular explants, but only in the presence of its immediate precursor, 11 beta-hydroxytestosterone. This stimulatory activity was blocked by a Pgr antagonist (RU486), suggesting that 11 beta-hydroxysteroid dehydrogenase activity was stimulated by DHP via Pgr. Our data suggest that DHP contributes to the regulation of Leydig cell steroidogenesis, and potentially--via Sertoli cells--also to germ cell differentiation in zebrafish testis.

  17. [Cloning, prokaryotic expression and characterization of lysine decarboxylase gene from Huperzia serrata].

    PubMed

    Di, Ci; Li, Jing; Tang, Yuntao; Peng, Qingzhong

    2014-08-01

    Huperzine A is a promising drug to treat Alzheimer's disease (AD). To date, its biosynthetic pathway is still unknown. Lysine decarboxylase (LDC) has been proposed to catalyze the first-step of the biosynthesis of huperzine A. To identify and characterize LDCs from Huperzia serrata, we isolated two LDC fragments (LDC1 and LDC2) from leaves of H. serrata by RT-PCR and then cloned them into pMD 19-T vector. Sequence analysis showed that LDC1 and LDC2 genes shared 95.3% identity and encoded the protein of 212 and 202 amino acid residues respectively. Thus, we ligated LDC genes into pET-32a(+) to obtain recombinant expressing vectors pET-32a(+)/LDC1 and pET-32a(+)/LDC2 respectively. We further introduced two expression vectors into Escherichia coli BL21(DE3) and cultured positive colonies of E. coli in liquid LB medium. After inducing for 4 hours with 260 μg/mL IPTG at 30 degrees C, soluble recombinant Trx-LDC1 and Trx-LDC2 were obtained and isolated for purification using a Ni-NTA affinity chromatography. We incubated purified recombinant proteins with L-lysine in the enzyme reaction buffer at 37 degrees C and then derived the reaction products using dansyl chloride. It was found that both Trx-LDC1 and Trx-LDC2 had decarboxylase activity, could convert L-lysine into cadaverine by way of thin layer chromatography assay. Further, bioinformatics analysis indicated that deduced LDC1 and LDC2 had different physicochemical properties, but similar secondary and three-dimensional structures.

  18. Molecular cloning and characterization of a novel esophageal cancer related gene.

    PubMed

    Cui, Yongping; Bi, Meixia; Su, Tao; Liu, Hailing; Lu, Shih-Hsin

    2010-12-01

    We previously identified four novel cDNA fragments related to human esophageal cancer. One of the fragments was named esophageal cancer related gene 2 (ECRG2). We report here the molecular cloning, sequencing, and expression of the ECRG2 gene. The ECRG2 cDNA comprises a 258 bp nucleotide sequence which encodes for 85 amino acids with a predicted molecular weight of 9.2 kDa. Analysis of the protein sequence reveals the presence at the N terminus of a signal peptide followed by 56 amino acids with a significant degree of sequence similarity with the conserved Kazal domain which characterizes the serine protease inhibitor family. Pulse-chase experiments showed that ECRG2 protein was detected in both cell lysates and culture medium, indicating that the ECRG2 protein was extracellularly secreted after the post-translational cleavage. In vitro uPA/plasmin activity analysis showed the secreted ECRG2 protein inhibited the uPA/plasmin activity, indicating that ECRG2 may be a novel serine protease inhibitor. Northern blot analysis revealed the presence of the major band corresponding to a size of 569 kb throughout the fetal skin, thymus, esophagus, brain, lung, heart, stomach, liver, spleen, colon, kidney, testis, muscle, cholecyst tissues and adult esophageal mucosa, brain, thyroid tissue and mouth epithelia. However, ECRG2 gene was significantly down-regulated in primary esophageal cancer tissues. Taken together, these results indicate that ECRG2 is a novel member of the Kazal-type serine protease inhibitor family and may function as a tumor suppressor gene regulating the protease cascades during carcinogenesis and migration/invasion of esophageal cancer.

  19. [Cloning, expression and biochemical characterization of a novel diacetylchitobiose deacetylase from the hyperthermophilic archaeon Pyrococcus horikoshii].

    PubMed

    Liu, Bo; Ni, Jin-Feng; Shen, Yu-Long

    2006-04-01

    Chitin is the second most abundant organic compound in nature and the degradation of this biomass is an important process in the recycling of nutrients in the environments. Several biodegradation pathway of chitin have been classified in eukaryotes and bacteria, and a unique chitin degradation pathway was proposed according to recent studies on hyperthermophilic archaeon Thermococcus kodakaraensis. In the genome of Pyrococcus horikoshii, several ORFs show high homology to the chitin-degrading related genes from T. kodakararaensis, therefore P. horikoshii is likely to have the same chitin degrading pathway as that of T. kodakaraensis. In order to further characterize the novel chitin degrading pathway in thermophilic archaea, a diacetylchitobiose deacetylase from P. horikoshii (Dacph) was studied in the present study. Dacph belongs to the LmbE-like protein family and the amino sequence is not related to the other deacetylases studied before (except that in T. kodakararaensis). The gene (Dacph, PH0499) from the hyperthermophilic archaeon P. horikoshii was amplified by polymerase chain reaction, cloned into expression vector pET15b, and expressed in E. coli BL21-codonPlus (DE3)-RIL. A soluble fraction of Dacph (31.6kDa) was obtained as shown by SDS-PAGE. TLC analysis showed that Dacph is able to deacetylate one acetyl group of GlcNAc2 and GlcNAc. By the concerted reaction with the Exo-beta-D-Glucosaminid-ase (BglAph), it is also able to convert GlcNAc2 into GlcN. It is concluded that PH0499 is a diacetylchit-obiose deacetylase. By reaction together with Exo-beta-D-Glucosaminidase in P. horikoshii, Dacph probably plays a key role in the new chitin degradation pathway in hyperthermophilic archaea (the genera Thermococcus and Pyrococcus).

  20. Molecular cloning and characterization of four caspases members in Apostichopus japonicus.

    PubMed

    Shao, Yina; Li, Chenghua; Zhang, Weiwei; Duan, Xuemei; Li, Ye; Jin, Chunhua; Xiong, Jinbo; Qiu, Qiongfen

    2016-08-01

    The caspase family representing aspartate-specific cysteine proteases have been demonstrated to possess key roles in apoptosis and immune response. We previously demonstrated that LPS challenged Apostichopus japonicus coelomocyte could significantly induced apoptosis in vitro. However, apoptosis related molecules were scarcely investigated in this economic species. In the present work, we cloned and characterized four members caspase family from A. japonicus (designated as Ajcaspase-2, Ajcaspase-3, Ajcaspase-6, and Ajcaspase-8, respectively) by RACE. Multiple sequence alignment and structural analysis revealed that all Ajcaspases contained the conservative CASC domain at C terminal, in which some unique features for each Ajcaspase made them different from each other. These specific domains together with phylogenetic analysis supported that all these four identified proteins belonged to novel members of apoptotic signaling pathway in sea cucumber. Tissue distribution analysis revealed that four Ajcaspase genes were constitutively expressed in all examined tissues. The expression of Ajcaspase-2 was tightly correlated with that of Ajcaspase-8 in each detected tissues. Ajcaspase-3 and Ajcaspase-6 transcripts were both highly expressed in immune tissue of coelomocytes. Furthermore, the Vibrio splendidus challenged sea cucumber coelomocytes could significantly up-regulate the mRNA expressions of four genes. The expression levels of Ajcaspase-2 and Ajcaspase-8 were relative earlier than those of Ajcaspase-6 and Ajcaspase-3, respectively, which could be inferred that Ajcapase-2 might directly modulate Ajcaspase-6, and Ajcaspase-8 initiate the expression of Ajcaspase-3. The induce expressions differed among each Ajcaspase depending upon their roles such as initiator or effector caspase. All our results demonstrated that four Ajcaspases present diversified functions in apoptotic cascade signaling pathway of sea cucumber under immune response.

  1. Molecular cloning, tissue distribution, and pharmacological characterization of melanocortin-4 receptor in grass carp (Ctenopharyngodon idella).

    PubMed

    Li, L; Yang, Z; Zhang, Y-P; He, S; Liang, X-F; Tao, Y-X

    2017-04-01

    Melanocortin-4 receptor (MC4R) plays a pivotal role in the mediation of leptin action on food intake and energy expenditure in mammals. The MC4R has also been identified in several teleosts, and its importance in the regulation of fish energy homeostasis is emerging. We herein reported on the molecular cloning, tissue distribution, and pharmacological characterization of MC4R in grass carp (Ctenopharyngodon idella), an economically and ecologically important fish. We showed that grass carp MC4R (ciMC4R) consisted of a 981 bp open reading frame encoding a protein of 326 amino acids, highly homologous (>95%) to several teleost MC4Rs. Phylogenetic and synteny analysis further indicated ciMC4R was closely related to piscine MC4Rs. Using reverse transcription PCR, we found that mc4r messenger RNA was expressed in the brain as well as various peripheral tissues in grass carp. The pharmacological properties of ciMC4R were investigated using 4 agonists, including α-melanocyte stimulating hormone (α-MSH), β-MSH, [Nle(4), D-Phe(7)]-MSH (NDP-MSH), and adrenocorticotropic hormone (ACTH). We showed that all 4 ligands could bind to ciMC4R and initiate dose-dependent intracellular cyclic adenosine monophosphate (cAMP) accumulation. Grass carp MC4R had the highest affinity for NDP-MSH. Both NDP-MSH and ACTH (1-24) exhibited higher potencies compared to the other 2 endogenous agonists. The ciMC4R was constitutively active, with significantly increased basal cAMP level compared with that of human MC4R (P < 0.01). The availability of ciMC4R and its pharmacologic characteristics provide a basis for future investigation of its functional roles in regulating diverse physiological processes and novel insights into understanding the mechanism of food habit transition in grass carp.

  2. Molecular cloning and biological characterization of full-length HIV-1 subtype C from Botswana.

    PubMed

    Ndung'u, T; Renjifo, B; Novitsky, V A; McLane, M F; Gaolekwe, S; Essex, M

    2000-12-20

    Human immunodeficiency virus type 1 (HIV-1) subtype C is now responsible for more than half of all HIV-1 infections in the global epidemic and for the high levels of HIV-1 prevalence in southern Africa. To facilitate studies of the biological nature and the underlying molecular determinants of this virus, we constructed eight full-length proviral clones from two asymptomatic and three AIDS patients infected with HIV-1 subtype C from Botswana. Analysis of viral lysates showed that Gag, Pol, and Env structural proteins were present in the virions. In four clones, the analysis suggested inefficient envelope glycoprotein processing. Nucleotide sequence analysis of the eight clones did not reveal frameshifts, deletions, premature truncations, or translational stop codons in any structural, regulatory, or accessory genes. None of the subtype C clones were replication competent in donor peripheral blood mononuclear cells (PBMCs), macrophages, Jurkat(tat) cells, or U87. CD4.CCR5 cells. However, infection by two clones could be rescued by complementation with a functional subtype C envelope clone, resulting in a productive infection of PBMCs, macrophages, and U87. CD4.CCR5 cells.

  3. Molecular Cloning, Characterization, and Expression Analysis of Lignin Genes from Sugarcane Genotypes Varying in Lignin Content.

    PubMed

    Kasirajan, Lakshmi; Aruchamy, Kalaivaani; Thirugnanasambandam, Prathima P; Athiappan, Selvi

    2017-04-01

    Sugarcane (Saccharum spp.) is one of the highest biomass-producing plant and the best lignocellulosic feedstock for ethanol production. To achieve more efficient conversion of biomass to ethanol, a better understanding of the main factors affecting biomass recalcitrance is needed. Therefore, with this objective, here, we report a systematic study on lignin content, deposition, identification, and cloning of genes involved in lignin biosynthesis and their differential expression in five sugarcane clones, EC11003, EC11010, IK 76-91, IK 76-99, and Co 86032. Lignin content among the clones varied from 26.87 to 23.19 % with the highest in the clone EC11010 and the lowest in high sugar Co86032. Lignin deposition studied through phloroglucinol staining of the cell walls implied that the sclerenchyma cells of the energy canes (EC11010 and EC11003) have more lignin deposition followed by the Erianthus (IK 76-91 and IK 76-99) clones whereas Co86032 has the minimum amount of lignin deposition. We cloned partial coding regions of important genes of lignification COMT (650 bp), CCR (332 bp), and PAL (650 bp) from Erianthus, wild relative of sugarcane followed by the expression analysis through real-time PCR. Differential expression analysis showed high level of expression for the three genes in the energy cane EC11010.

  4. Functional and genetic characterization of hydrocarbon biodegrader and exopolymer-producing clones from a petroleum reservoir metagenomic library.

    PubMed

    Vasconcellos, Suzan P; Sierra-Garcia, Isabel N; Dellagnezze, Bruna M; Vicentini, Renato; Midgley, David; Silva, Cynthia C; Santos Neto, Eugenio V; Volk, Herbert; Hendry, Philip; Oliveira, Valéria M

    2017-05-01

    Microbial degradation of petroleum is a worldwide issue, which causes physico-chemical changes in its compounds, diminishing its commercial value. Biosurfactants are chemically diverse molecules that can be produced by several microorganisms and can enable microbial access to hydrocarbons. In order to investigate both microbial activities, function-driven screening assays for biosurfactant production and hydrocarbon biodegradation were carried out from a metagenomic fosmid library. It was constructed from the total DNA extracted from aerobic and anaerobic enrichments from a Brazilian biodegraded petroleum sample. A sum of 10 clones were selected in order to evaluate their ability to produce exopolymers (EPS) with emulsifying activity, as well as to characterize the gene sequences, harbored by the fosmid clones, through 454 pyrosequencing. Functional analyses confirmed the ability of some clones to produce surfactant compounds. Regarding hydrocarbon as microbial carbon sources, n-alkane (in mixture or not) and naphthalene were preferentially consumed as substrates. Analysis of sequence data set revealed the presence of genes related to xenobiotics biodegradation and carbohydrate metabolism. These data were corroborated by the results of hydrocarbon biodegradation and biosurfactant production detected in the evaluated clones.

  5. Construction and Resource Utilization Explorer (CRUX): Implementing Instrument Suite Data Fusion to Characterize Regolith Hydrogen Resources

    NASA Technical Reports Server (NTRS)

    Haldemann, Albert F. C.; Johnson, Jerome B.; Elphic, Richard C.; Boynton, William V.; Wetzel, John

    2006-01-01

    CRUX is a modular suite of geophysical and borehole instruments combined with display and decision support system (MapperDSS) tools to characterize regolith resources, surface conditions, and geotechnical properties. CRUX is a NASA-funded Technology Maturation Program effort to provide enabling technology for Lunar and Planetary Surface Operations (LPSO). The MapperDSS uses data fusion methods with CRUX instruments, and other available data and models, to provide regolith properties information needed for LPSO that cannot be determined otherwise. We demonstrate the data fusion method by showing how it might be applied to characterize the distribution and form of hydrogen using a selection of CRUX instruments: Borehole Neutron Probe and Thermal Evolved Gas Analyzer data as a function of depth help interpret Surface Neutron Probe data to generate 3D information. Secondary information from other instruments along with physical models improves the hydrogen distribution characterization, enabling information products for operational decision-making.

  6. Construction and Resource Utilization Explorer (CRUX): Implementing Instrument Suite Data Fusion to Characterize Regolith Hydrogen Resources

    NASA Technical Reports Server (NTRS)

    Haldemann, Albert F. C.; Johnson, Jerome B.; Elphic, Richard C.; Boynton, William V.; Wetzel, John

    2006-01-01

    CRUX is a modular suite of geophysical and borehole instruments combined with display and decision support system (MapperDSS) tools to characterize regolith resources, surface conditions, and geotechnical properties. CRUX is a NASA-funded Technology Maturation Program effort to provide enabling technology for Lunar and Planetary Surface Operations (LPSO). The MapperDSS uses data fusion methods with CRUX instruments, and other available data and models, to provide regolith properties information needed for LPSO that cannot be determined otherwise. We demonstrate the data fusion method by showing how it might be applied to characterize the distribution and form of hydrogen using a selection of CRUX instruments: Borehole Neutron Probe and Thermal Evolved Gas Analyzer data as a function of depth help interpret Surface Neutron Probe data to generate 3D information. Secondary information from other instruments along with physical models improves the hydrogen distribution characterization, enabling information products for operational decision-making.

  7. A human chromosome 7 yeast artificial chromosome (YAC) resource: Construction, characterization, and screening

    SciTech Connect

    Green, E.D.; Braden, V.V.; Fulton, R.S.

    1995-01-01

    The paradigm of sequence-tagged site (STS)-content mapping involves the systematic assignment of STSs to individual cloned DNA segments. To date, yeast artificial chromosomes (YACs) represent the most commonly employed cloning system for constructing STS maps of large genomic intervals, such as whole human chromosomes. For developing a complete YAC-based STS-content map of human chromosome 7, we wished to utilize a limited set of YAC clones that were highly enriched for chromosome 7 DNA. Toward that end, we have assembled a human chromosome 7 YAC resource that consists of three major components: (1) a newly constructed library derived from a human-hamster hybrid cell line containing chromosome 7 as its only human DNA; (2) a chromosome 7-enriched sublibrary derived from the CEPH mega-YAC collection by Alu-polymerase chain reaction (Alu-PCR)-based hybridization; and (3) a set of YACs isolated from several total genomic libraries by screening for >125 chromosome 7 STSs. In particular, the hybrid cell line-derived YACs, which comprise the majority of the clones in the resource, have a relatively low chimera frequency (10-20%) based on mapping isolated insert ends to panels of human-hamster hybrid cell lines and analyzing individual clones by fluorescence in situ hybridization. An efficient strategy for polymerase chain reaction (PCR)-based screening of this YAC resource, which totals 4190 clones, has been developed and utilized to identify corresponding YACs for >600 STSs. The results of this initial screening effort indicate that the human chromosome 7 YAC resource provides an average of 6.9 positive clones per STS, a level of redundancy that should support the assembly of large YAC contigs and the construction of a high-resolution STS-content map of the chromosome. 72 refs., 4 figs., 3 tabs.

  8. Cloning and characterization of the genes for p-nitrobenzoate degradation from Pseudomonas pickettii YH105.

    PubMed Central

    Yabannavar, A V; Zylstra, G J

    1995-01-01

    Pseudomonas pickettii YH105 was isolated for its ability to utilize p-nitrobenzoate as the sole source of carbon, nitrogen, and energy. Degradation of p-nitrobenzoate by this strain proceeds through a reductive route as evidenced by the accumulation of ammonia in the culture medium during growth on p-nitrobenzoate. Enzyme assays and high-performance liquid chromatography (HPLC) analysis of culture supernatants indicate that p-nitrobenzoate is degraded through p-hydroxylaminobenzoate and protocatechuate. In order to clone the genes responsible for the initial steps in the catabolic pathway, a cosmid library was constructed with P. pickettii YH105 genomic DNA. The library was screened for clones capable of transforming p-nitrobenzoate to protocatechuate, using a plate assay specific for diphenolic compounds. HPLC analysis of culture supernatants confirmed that the cosmid clones did indeed produce protocatechuate from p-nitrobenzoate. Five positive cosmid clones that possessed this activity were identified. Restriction digests of the cosmid clones indicated that all of the clones had two EcoRI fragments in common (3.9 and 1.0 kb). One of these cosmid clones, designated pGJZ1601, was chosen for further analysis. Subcloning and activity assay experiments localized the genes responsible for the conversion of p-nitrobenzoate to protocatechuate to a 1.4-kb SalI-SphI DNA fragment. Further subcloning experiments localized the gene coding for p-nitrobenzoate reductase, responsible for the first enzymatic step in the catabolic pathway, to a 0.8-kb SalI-ApaI DNA fragment. The gene for the second step in the catabolic pathway, coding for hydroxylaminolyase, was located adjacent to the gene for the p-nitrobenzoate reductase. PMID:8534095

  9. Characterization of a Genetic Resource Collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR PCR

    PubMed Central

    HODKINSON, TREVOR R.; CHASE, MARK W.; RENVOIZE, STEPHEN A.

    2002-01-01

    Amplified fragment length polymorphism (AFLP) and inter‐simple sequence repeat markers were employed to characterize a genetic resource collection of Miscanthus, a grass under trial in Europe as a biomass crop. The 26 polymorphic markers produced by two ISSR fingerprinting primers were able to discriminate taxa and identify putative clones. AFLP fingerprints were fully reproducible and produced a larger number of markers for the three primer pairs tested, of which 998 were polymorphic (representing 79·3 % of all bands). AFLP markers distinguished species, infra‐specific taxa (varieties and cultivars) and putatively clonal material. They were also used to assess the inter‐relationships of the taxa, to investigate the origin of important hybrid plants and to estimate the overall level of genetic variation in the collection. They were useful for assessing the species status of certain taxa such as M. transmorrisonensis, an endemic from Taiwan that was clearly distinct from M. sinensis; whereas other taxa of disputed species status, such as M. condensatus and M. yakushimanum were not genetically distinct from M. sinensis. The AFLP markers detected a high degree of infra‐specific variation and allowed subdivisions of the genetic resource collection to be made, particularly within M. sinensis. PMID:12099538

  10. Construction and characterization of HIV type 1 CRF07_BC infectious molecular clone from men who have sex with men.

    PubMed

    Jiang, Yan-Ling; Bai, Wen-Wei; Qu, Fan-Wei; Ma, Hua; Jiang, Run-Sheng; Shen, Bao-Sheng

    2016-03-01

    This study aimed to investigate the biological characterization of HIV type 1 (HIV-1) CRF07_BC infection among men who have sex with men (MSM). From November 2011 to November 2013, a total of 66 blood samples were collected from MSM with acute HIV-1 infection with CRF07_BC subgroup strains. Deletion in the gag p6 region was detected by sequence alignment and comparative analysis. Peripheral blood mononuclear cells (PBMCs) of HNXX1301-1307 samples were separated by density gradient centrifugation. Nested polymerase chain reaction (nPCR) was used to amplify the viral DNA. The near full-length HIV-1 DNA products were ligated to the long terminal repeat (LTR) vector plasmid (07BCLTR) to construct a full-length HIV clone. The molecular clone was transfected into HEK-293T cells, TZM-b1 cells and patients' PBMCs. The pregenome of an infectious molecular clone of HIV-1 (pNL4-3) was amplified, and a subclone with CRF07_BC was developed to construct the full-length chimeric molecular clone pNL4-3/07BCLTR. Detection of p24 antigen and luciferase activity was used to measure the in vitro infectivity of pNL4-3/07BCLTR. Among the 66 MSM patients infected with CRF07_BC strains, deletion mutations of the Gag P6 proteins were found in 7 of 18CRF07_BC strains; deletion mutations of 2-13 amino acids in different regions were discovered in 6 strains; and the remaining 42 strains did not show deletions. Seven strains with amino acids deficiency in the P6 protein accounted for 27% of all strains and 75% of all deletion genotype strains. A total of 186 full-length molecular clones of CRF07_BC were constructed. There were 5, 9, 10 and 11 clones of HNXX1302, HNXX1304, HNXX1305 and HNXX1306 that resulted in p24-positive supernatant when transfected into HEK-293T cells. Full-length clones of HNXX1302, HNXX1304, HNXX1305 and HNXX1306 showed slight infection in the transfected TZM-b1 cells, as judged by the fluorescence values of TZM-b1 cells 48h post-transfection. However, we were unable to

  11. Characterization of wind power resource and its intermittency

    NASA Astrophysics Data System (ADS)

    Gunturu, U. B.; Schlosser, C. A.

    2011-12-01

    Wind resource in the continental and offshore United States has been calculated and characterized using metrics that describe - apart from abundance - its availability, persistence and intermittency. The Modern Era Retrospective-Analysis for Research and Applications (MERRA) boundary layer flux data has been used to construct wind power density profiles at 50, 80, 100 and 120 m turbine hub heights. The wind power density estimates at 50 m are qualitatively similar to those in the US wind atlas developed by the National Renewable Energy Laboratory (NREL), but quantitatively a class less in some regions, but are within the limits of uncertainty. We also show that for long tailed distributions like those of the wind power density, the mean is an overestimation and median is a more robust metric for summary representation of wind power resource.Generally speaking, the largest and most available wind power density resources are found in off-shore regions of the Atlantic and Pacific coastline, and the largest on-shore resource potential lies in the central United States. However, the intermittency and widespread synchronicity of on-shore wind power density are substantial, and highlights areas where considerable back-up generation technologies will be required. Generation-duration curves are also presented for the independent systems operator (ISO) zones of the U.S. to highlight the regions with the largest capacity factor (MISO, ERCOT, and SWPP) as well as the periods and extent to which all ISOs contain no wind power and the potential benefits of aggregation on wind power intermittency in each region. The impact of raising the wind turbine hub height on metrics of abundance, persistence, variability and intermittency is analyzed. There is a general increase in availability and abundance of wind resource but there is also an increase in intermittency with respect to a 'usable wind power' crossing level in low resource regions. A similar perspective of wind resource for

  12. Isolation and characterization of three class II MHC genomic clones from the chicken.

    PubMed

    Xu, Y X; Pitcovski, J; Peterson, L; Auffray, C; Bourlet, Y; Gerndt, B M; Nordskog, A W; Lamont, S J; Warner, C M

    1989-03-15

    A genomic library was constructed from sperm DNA from an individual of the inbred chicken line G-B2, MHC haplotype B6. The library was screened with a chicken class II probe (beta 2 exon specific) and three MHC class II beta chain genomic clones were isolated. The restriction maps of the three clones showed that each of the three clones was unique. The position of the beta chain sequence was located in each of the three genomic clones by Southern blot hybridization. Subclones containing the beta chain gene were produced from each of the genomic clones and the orientation of the leader peptide, beta 1, beta 2, transmembrane, and cytoplasmic exons was determined by Southern blot hybridization and nucleotide sequencing. The complete nucleotide sequence of two of the three subclones was determined. Comparison of the nucleotide and predicted amino acid sequences of the two subclones with other class II beta chain sequences showed that the B6 chicken beta chain genes are evolutionarily related to the class II beta chain genes from chickens of other MHC haplotypes, and to class II beta chain genes from other species. Analysis of Southern blots of B6 chicken DNA, as well as the isolation of the three beta chain genes, suggests that chickens of the B6 haplotype possess at least three MHC class II beta chain genes.

  13. Cloning, characterization, and tissue expression pattern of mouse Nma/BAMBI during odontogenesis.

    PubMed

    Knight, C; Simmons, D; Gu, T T; Gluhak-Heinrich, J; Pavlin, D; Zeichner-David, M; MacDougall, M

    2001-10-01

    Degenerate oligonucleotides to consensus serine kinase functional domains previously identified a novel, partial rabbit tooth cDNA (Zeichner-David et al., 1992) that was used in this study to identify a full-length mouse clone. A 1390-base-pair cDNA clone was isolated encoding a putative 260-amino-acid open reading frame containing a hydrophobic 25-amino-acid potential transmembrane domain. This clone shares some homology with the TGF-beta type I receptor family, but lacks the intracellular kinase domain. DNA database analysis revealed that this clone has 86% identity to a newly isolated human gene termed non-metastatic gene A and 80% identity to a Xenopus cDNA clone termed BMP and activin membrane bound inhibitor. Here we report the mouse Nma/BAMBI cDNA sequence, the tissue expression pattern, and confirmed expression in dental cell lines. This study demonstrates that Nma/BAMBI is a highly conserved protein across species and is expressed at high levels during odontogenesis.

  14. Cloning and characterization of two overlapping genes in a subregion at 6q21 involved in replicative senescence and schizophrenia.

    PubMed

    Morelli, C; Magnanini, C; Mungall, A J; Negrini, M; Barbanti-Brodano, G

    2000-07-11

    Two new genes were cloned from region 6q21 and characterized. One gene, C6orf4-6, expresses three mRNA isoforms diverging at the 5' and 3' ends, and encodes two protein isoforms that differ by nine amino acids at their amino terminus. The second gene, C6UAS, is transcribed in the antisense orientation from the complementary strand of C6orf4-6. C6UAS overlaps the second exon of C6orf4, where the start codon of protein isoform 1 is located. C6UAS has no apparent ORF and most likely represents a structural RNA gene that is transcribed but not translated. This feature and the antisense polarity of transcription suggest that C6UAS could play a regulatory role on the expression of C6orf4, as indicated by a significant decrease of endogenous C6orf4 expression after transfection of C6UAS cDNA in human fibroblasts. Neither C6UAS nor C6orf4-6 genes show any homology with known human genes. The two genes were cloned from a subregion at 6q21 containing a replicative senescence gene, a tumor suppressor gene and a gene involved in hereditary schizophrenia. In addition, the common fragile site FRA6F was mapped in the same region. Cloning and characterization of C6orf4-6 and C6UAS may help to clarify the structure and the functional role of this important region.

  15. Resources

    MedlinePlus

    ... Gastrointestinal disorders - resources Hearing impairment - resources Hearing or speech impairment - resources Heart disease - resources Hemophilia - resources Herpes - resources Incest - resources Incontinence - ...

  16. Molecular cloning, co-expression, and characterization of glycerol dehydratase and 1,3-propanediol dehydrogenase from Citrobacter freundii.

    PubMed

    Qi, Xianghui; Deng, Wenying; Wang, Fei; Guo, Qi; Chen, Huayou; Wang, Liang; He, Xiang; Huang, Ribo

    2013-06-01

    1,3-Propanediol (1,3-PD), an important material for chemical industry, is biologically synthesized by glycerol dehydratase (GDHt) and 1,3-propanediol dehydrogenase (PDOR). In present study, the dhaBCE and dhaT genes encoding glycerol dehydratase and 1,3-propanediol dehydrogenase respectively were cloned from Citrobacter freundii and co-expressed in E. coli. Sequence analysis revealed that the cloned genes were 85 and 77 % identical to corresponding gene of C. freundii DSM 30040 (GenBank No. U09771), respectively. The over-expressed recombinant enzymes were purified by nickel-chelate chromatography combined with gel filtration, and recombinant GDHt and PDOR were characterized by activity assay, kinetic analysis, pH, and temperature optimization. This research may form a basis for the future work on biological synthesis of 1,3-PD.

  17. cDNA cloning and immunological characterization of the rye grass allergen Lol p I.

    PubMed

    Perez, M; Ishioka, G Y; Walker, L E; Chesnut, R W

    1990-09-25

    The complete amino acid sequence of two "isoallergenic" forms of Lol p I, the major rye grass (Lolium perenne) pollen allergen, was deduced from cDNA sequence analysis. cDNA clones isolated from a Lolium perenne pollen library contained an open reading frame coding for a 240-amino acid protein. Comparison of the nucleotide and deduced amino acid sequence of two of these clones revealed four changes at the amino acid level and numerous nucleotide differences. Both clones contained one possible asparagine-linked glycosylation site. Northern blot analysis shows one RNA species of 1.2 kilobases. Based on the complete amino acid sequence of Lol p I, overlapping peptides covering the entire molecule were synthesized. Utilizing these peptides we have identified a determinant within the Lol p I molecule that is recognized by human leukocyte antigen class II-restricted T cells obtained from persons allergic to rye grass pollen.

  18. [Cloning and characterization of genes differentially expressed in human dental pulp cells and gingival fibroblasts].

    PubMed

    Wang, Zhong-dong; Wu, Ji-nan; Zhou, Lin; Ling, Jun-qi; Guo, Xi-min; Xiao, Ming-zhen; Zhu, Feng; Pu, Qin; Chai, Yu-bo; Zhao, Zhong-liang

    2007-02-01

    To study the biological properties of human dental pulp cells (HDPC) by cloning and analysis of genes differentially expressed in HDPC in comparison with human gingival fibroblasts (HGF). HDPC and HGF were cultured and identified by immunocytochemistry. HPDC and HGF subtractive cDNA library was established by PCR-based modified subtractive hybridization, genes differentially expressed by HPDC were cloned, sequenced and compared to find homogeneous sequence in GenBank by BLAST. Cloning and sequencing analysis indicate 12 genes differentially expressed were obtained, in which two were unknown genes. Among the 10 known genes, 4 were related to signal transduction, 2 were related to trans-membrane transportation (both cell membrane and nuclear membrane), and 2 were related to RNA splicing mechanisms. The biological properties of HPDC are determined by the differential expression of some genes and the growth and differentiation of HPDC are associated to the dynamic protein synthesis and secretion activities of the cell.

  19. Molecular cloning and characterization of a cDNA encoding endonuclease from potato (Solanum tuberosum).

    PubMed

    Larsen, Knud

    2005-11-01

    A cDNA, StEN1, encoding a potato (Solanum tuberosum) endonuclease was cloned and sequenced. The nucleotide sequence of this clone contains an open reading frame of 906 nucleotides encoding a protein of 302 amino acids, and with a calculated molecular mass of 34.4kDa and a Pi of 5.6. The deduced StEN1 protein contains a putative signal sequence of 25 amino acid residues. The StEN1 encoded protein shows substantial homology to both plant and fungal endonucleases isolated and cloned from other sources. The highest identity (73%) was observed with AgCEL I from celery, Apium graveolens, ZEN1 from Zinnia elegans (69%) and DSA6 from daylily, Hemerocallis (68%). RT-PCR expression analysis demonstrated that the potato StEN1 gene is constitutively expressed in potato, although minor differences in expression level in different tissues were observed.

  20. Construction and characterization of a human T-cell lymphotropic virus type 3 infectious molecular clone.

    PubMed

    Chevalier, Sébastien Alain; Ko, Nga Ling; Calattini, Sara; Mallet, Adeline; Prévost, Marie-Christine; Kehn, Kylene; Brady, John N; Kashanchi, Fatah; Gessain, Antoine; Mahieux, Renaud

    2008-07-01

    We and others have uncovered the existence of human T-cell lymphotropic virus type 3 (HTLV-3). We have now generated an HTLV-3 proviral clone. We established that gag, env, pol, pro, and tax/rex as well as minus-strand mRNAs are present in cells transfected with the HTLV-3 clone. HTLV-3 p24(gag) protein is detected in the cell culture supernatant. Transfection of 293T-long terminal repeat (LTR)-green fluorescent protein (GFP) cells with the HTLV-3 clone promotes formation of syncytia, a hallmark of Env expression, together with the appearance of fluorescent cells, demonstrating that Tax is expressed. Viral particles are visible by electron microscopy. These particles are infectious, as demonstrated by infection experiments with purified virions.

  1. Molecular cloning and characterization of an extracellular protease gene from Aeromonas hydrophila.

    PubMed Central

    Rivero, O; Anguita, J; Paniagua, C; Naharro, G

    1990-01-01

    A structural gene which codes for an extracellular protease in Aeromonas hydrophilia SO2/2 and D13 was cloned in Escherichia coli C600-1 by using pBR322 as a vector. The gene codes for a temperature-stable protease with a molecular mass of approximately 38,000 daltons. The protein was secreted to the periplasm of E. coli C600-1 and purified by osmotic shock. Cloned protease (P3) was identical in molecular mass and properties to the one purified from A. hydrophila SO2/2 culture supernatant as an extracellular product. Images PMID:2193924

  2. Molecular cloning and characterization of l-methionine γ-lyase from Streptomyces avermitilis.

    PubMed

    Kudou, Daizou; Yasuda, Eri; Hirai, Yoshiyuki; Tamura, Takashi; Inagaki, Kenji

    2015-10-01

    A pyridoxal 5'-phosphate-dependent methionine γ-lyase (MGL) was cloned from Streptomyces avermitilis catalyzed the degradation of methionine to α-ketobutyrate, methanethiol, and ammonia. The sav7062 gene (1,242 bp) was corresponded to 413 amino acid residues with a molecular mass of 42,994 Da. The deduced amino acid sequence showed a high degree of similarity to those of other MGL enzymes. The sav7062 gene was overexpressed in Escherichia coli. The enzyme was purified to homogeneity and exhibited the MGL catalytic activities. We cloned the enzyme that has the MGL activity in Streptomyces for the first time.

  3. Cloning and Characterization of a Flavonoid 3'-Hydroxylase Gene from Tea Plant (Camellia sinensis).

    PubMed

    Zhou, Tian-Shan; Zhou, Rui; Yu, You-Ben; Xiao, Yao; Li, Dong-Hua; Xiao, Bin; Yu, Oliver; Yang, Ya-Jun

    2016-02-22

    Tea leaves contain abundant flavan-3-ols, which include dihydroxylated and trihydroxylated catechins. Flavonoid 3'-hydroxylase (F3'H: EC 1.14.13.21) is one of the enzymes in the establishment of the hydroxylation pattern. A gene encoding F3'H, designated as CsF3'H, was isolated from Camellia sinensis with a homology-based cloning technique and deposited in the GenBank (GenBank ID: KT180309). Bioinformatic analysis revealed that CsF3'H was highly homologous with the characterized F3'Hs from other plant species. Four conserved cytochrome P450-featured motifs and three F3'H-specific conserved motifs were discovered in the protein sequence of CsF3'H. Enzymatic analysis of the heterologously expressed CsF3'H in yeast demonstrated that tea F3'H catalyzed the 3'-hydroxylation of naringenin, dihydrokaempferol and kaempferol. Apparent Km values for these substrates were 17.08, 143.64 and 68.06 μM, and their apparent Vmax values were 0.98, 0.19 and 0.44 pM·min(-1), respectively. Transcription level of CsF3'H in the new shoots, during tea seed germination was measured, along with that of other key genes for flavonoid biosynthesis using real-time PCR technique. The changes in 3',4'-flavan-3-ols, 3',4',5'-flavan-3-ols and flavan-3-ols, were consistent with the expression level of CsF3'H and other related genes in the leaves. In the study of nitrogen supply for the tea plant growth, our results showed the expression level of CsF3'H and all other tested genes increased in response to nitrogen depletion after 12 days of treatment, in agreement with a corresponding increase in 3',4'-catechins, 3',4',5'-catechins and flavan 3-ols content in the leaves. All these results suggest the importance of CsF3'H in the biosynthesis of 3',4'-catechins, 3',4',5'-catechins and flavan 3-ols in tea leaves.

  4. Cloning, expression, and characterization of recombinant nitric oxide synthase-like protein from Bacillus anthracis

    SciTech Connect

    Midha, Shuchi; Mishra, Rajeev; Aziz, M.A.; Sharma, Meenakshi; Mishra, Ashish; Khandelwal, Puneet; Bhatnagar, Rakesh . E-mail: rakbhat01@yahoo.com

    2005-10-14

    Nitric oxide synthase (NOS) is amongst a family of evolutionarily conserved enzymes, involved in a multi-turnover process that results in NO as a product. The significant role of NO in various pathological and physiological processes has created an interest in this enzyme from several perspectives. This study describes for the first time, cloning and expression of a NOS-like protein, baNOS, from Bacillus anthracis, a pathogenic bacterium responsible for causing anthrax. baNOS was expressed in Escherichia coli as a soluble and catalytically active enzyme. Homology models generated for baNOS indicated that the key structural features that are involved in the substrate and active site interaction have been highly conserved. Further, the behavior of baNOS in terms of heme-substrate interactions and heme-transitions was studied in detail. The optical perturbation spectra of the heme domain demonstrated that the ligands perturb the heme site in a ligand specific manner. baNOS forms a five-coordinate, high-spin complex with L-arginine analogs and a six-coordinate low-spin complex with inhibitor imidazole. Studies indicated that the binding of L-arginine, N {sup {omega}}-hydroxy-L-arginine, and imidazole produces various spectroscopic species that closely correspond to the equivalent complexes of mammalian NOS. The values of spectral binding constants further corroborated these results. The overall conservation of the key structural features and the correlation of heme-substrate interactions in baNOS and mammalian NOS, thus, point towards an interesting phenomenon of convergent evolution. Importantly, the NO generated by NOS of mammalian macrophages plays a potent role in antimicrobicidal activity. Because of the existence of high structural and behavioral similarity between mammalian NOS and baNOS, we propose that NO produced by B. anthracis may also have a pivotal pathophysiological role in anthrax infection. Therefore, this first report of characterization of a NOS

  5. Human granulocyte colony stimulating factor (hG-CSF): cloning, overexpression, purification and characterization

    PubMed Central

    Vanz, Ana LS; Renard, Gaby; Palma, Mario S; Chies, Jocelei M; Dalmora, Sérgio L; Basso, Luiz A; Santos, Diógenes S

    2008-01-01

    Background Biopharmaceutical drugs are mainly recombinant proteins produced by biotechnological tools. The patents of many biopharmaceuticals have expired, and biosimilars are thus currently being developed. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine that acts on cells of the neutrophil lineage causing proliferation and differentiation of committed precursor cells and activation of mature neutrophils. Recombinant hG-CSF has been produced in genetically engineered Escherichia coli (Filgrastim) and successfully used to treat cancer patients suffering from chemotherapy-induced neutropenia. Filgrastim is a 175 amino acid protein, containing an extra N-terminal methionine, which is needed for expression in E. coli. Here we describe a simple and low-cost process that is amenable to scaling-up for the production and purification of homogeneous and active recombinant hG-CSF expressed in E. coli cells. Results Here we describe cloning of the human granulocyte colony-stimulating factor coding DNA sequence, protein expression in E. coli BL21(DE3) host cells in the absence of isopropyl-β-D-thiogalactopyranoside (IPTG) induction, efficient isolation and solubilization of inclusion bodies by a multi-step washing procedure, and a purification protocol using a single cationic exchange column. Characterization of homogeneous rhG-CSF by size exclusion and reverse phase chromatography showed similar yields to the standard. The immunoassay and N-terminal sequencing confirmed the identity of rhG-CSF. The biological activity assay, in vivo, showed an equivalent biological effect (109.4%) to the standard reference rhG-CSF. The homogeneous rhG-CSF protein yield was 3.2 mg of bioactive protein per liter of cell culture. Conclusion The recombinant protein expression in the absence of IPTG induction is advantageous since cost is reduced, and the protein purification protocol using a single chromatographic step should reduce cost even further for large

  6. Cloning and Characterization of a Flavonoid 3′-Hydroxylase Gene from Tea Plant (Camellia sinensis)

    PubMed Central

    Zhou, Tian-Shan; Zhou, Rui; Yu, You-Ben; Xiao, Yao; Li, Dong-Hua; Xiao, Bin; Yu, Oliver; Yang, Ya-Jun

    2016-01-01

    Tea leaves contain abundant flavan-3-ols, which include dihydroxylated and trihydroxylated catechins. Flavonoid 3′-hydroxylase (F3′H: EC 1.14.13.21) is one of the enzymes in the establishment of the hydroxylation pattern. A gene encoding F3′H, designated as CsF3′H, was isolated from Camellia sinensis with a homology-based cloning technique and deposited in the GenBank (GenBank ID: KT180309). Bioinformatic analysis revealed that CsF3′H was highly homologous with the characterized F3′Hs from other plant species. Four conserved cytochrome P450-featured motifs and three F3′H-specific conserved motifs were discovered in the protein sequence of CsF3′H. Enzymatic analysis of the heterologously expressed CsF3′H in yeast demonstrated that tea F3′H catalyzed the 3′-hydroxylation of naringenin, dihydrokaempferol and kaempferol. Apparent Km values for these substrates were 17.08, 143.64 and 68.06 μM, and their apparent Vmax values were 0.98, 0.19 and 0.44 pM·min−1, respectively. Transcription level of CsF3′H in the new shoots, during tea seed germination was measured, along with that of other key genes for flavonoid biosynthesis using real-time PCR technique. The changes in 3′,4′-flavan-3-ols, 3′,4′,5′-flavan-3-ols and flavan-3-ols, were consistent with the expression level of CsF3′H and other related genes in the leaves. In the study of nitrogen supply for the tea plant growth, our results showed the expression level of CsF3′H and all other tested genes increased in response to nitrogen depletion after 12 days of treatment, in agreement with a corresponding increase in 3′,4′-catechins, 3′,4′,5′-catechins and flavan 3-ols content in the leaves. All these results suggest the importance of CsF3′H in the biosynthesis of 3′,4′-catechins, 3′,4′,5′-catechins and flavan 3-ols in tea leaves. PMID:26907264

  7. SLC26 anion exchangers of guinea pig pancreatic duct: molecular cloning and functional characterization

    PubMed Central

    Stewart, Andrew K.; Shmukler, Boris E.; Vandorpe, David H.; Reimold, Fabian; Heneghan, John F.; Nakakuki, M.; Akhavein, Arash; Ko, Shigeru; Ishiguro, Hiroshi

    2011-01-01

    The secretin-stimulated human pancreatic duct secretes HCO3−-rich fluid essential for normal digestion. Optimal stimulation of pancreatic HCO3− secretion likely requires coupled activities of the cystic fibrosis transmembrane regulator (CFTR) anion channel and apical SLC26 Cl−/HCO3− exchangers. However, whereas stimulated human and guinea pig pancreatic ducts secrete ∼140 mM HCO3− or more, mouse and rat ducts secrete ∼40–70 mM HCO3−. Moreover, the axial distribution and physiological roles of SLC26 anion exchangers in pancreatic duct secretory processes remain controversial and may vary among mammalian species. Thus the property of high HCO3− secretion shared by human and guinea pig pancreatic ducts prompted us to clone from guinea pig pancreatic duct cDNAs encoding Slc26a3, Slc26a6, and Slc26a11 polypeptides. We then functionally characterized these anion transporters in Xenopus oocytes and human embryonic kidney (HEK) 293 cells. In Xenopus oocytes, gpSlc26a3 mediated only Cl−/Cl− exchange and electroneutral Cl−/HCO3− exchange. gpSlc26a6 in Xenopus oocytes mediated Cl−/Cl− exchange and bidirectional exchange of Cl− for oxalate and sulfate, but Cl−/HCO3− exchange was detected only in HEK 293 cells. gpSlc26a11 in Xenopus oocytes exhibited pH-dependent Cl−, oxalate, and sulfate transport but no detectable Cl−/HCO3− exchange. The three gpSlc26 anion transporters exhibited distinct pharmacological profiles of 36Cl− influx, including partial sensitivity to CFTR inhibitors Inh-172 and GlyH101, but only Slc26a11 was inhibited by PPQ-102. This first molecular and functional assessment of recombinant SLC26 anion transporters from guinea pig pancreatic duct enhances our understanding of pancreatic HCO3− secretion in species that share a high HCO3− secretory output. PMID:21593449

  8. Molecular cloning and functional characterization of the anthocyanidin reductase gene from Vitis bellula.

    PubMed

    Zhu, Yue; Peng, Qing-Zhong; Li, Ke-Gang; Xie, De-Yu

    2014-08-01

    Anthocyanidin reductase (ANR) is an NADPH-/NADH-dependent enzyme that transfers two hydrides to anthocyanidins to produce three types of isomeric flavan-3-ols. This reductase forms the ANR pathway toward the biosynthesis of proanthocyanidins (PAs, which are also called condensed tannins). Here, we report cloning and functional characterization of an ANR (called VbANR) homolog from the leaves of Vitis bellula, a newly developed grape crop in southern China. The open reading frame (ORF) of VbANR is 1,017 bp in length and encodes 339 amino acids. A phylogenetic analysis and an alignment using 17 sequences revealed that VbANR is approximately 99.9 % identical to the ANR homolog from Vitis vinifera. The VbANR ORF is fused to the Trx gene containing a His-tag in the pET32a(+) vector to obtain a pET32a(+)-VbANR construct for expressing the recombinant VbANR. In vitro enzyme assays show that VbANR converts cyanidin, delphinidin, and pelargonidin to their corresponding flavan-3-ols. Enzymatic products include 2S,3R-trans- and 2R,3R-cis-flavan-3-ols isomers, such as (-)-catechin and (-)-epicatechin. In addition, the third compound that is observed from the enzymatic products is most likely a 2S,3S-cis-flavan-3-ol. To analyze the kinetics and optimize pH and temperature values, a UV spectrometry method was developed to quantify the concentrations of total enzymatic products. The optimum pH and temperature values are 4.0 and 40 °C, respectively. The K m , K cat, V max, and K cat/K m values for pelargonidin and delphinidin were similar. In comparison, VbANR exhibits a slightly lower affinity to cyanidin. VbANR uses both NADPH and NADH but prefers to employ NADPH. GFP fusion and confocal microscopy analyses revealed the cytosolic localization of VbANR. The overexpression of VbANR in ban mutants reconstructed the biosynthetic pathway of PAs in the seed coat. These data demonstrate that VbANR forms the ANR pathway, leading to the formation of three types of isomeric flavan-3-ols

  9. Nile Tilapia Neu3 sialidases: molecular cloning, functional characterization and expression in Oreochromis niloticus.

    PubMed

    Chigwechokha, Petros Kingstone; Komatsu, Masaharu; Itakura, Takao; Shiozaki, Kazuhiro

    2014-11-15

    Mammalian Neu3 is a ganglioside specific sialidase. Gangliosides are involved in various physiological events such as cell growth, differentiation and diseases. Significance of Neu3 and gangliosides is still unclear in aquaculture fish species. To gain more insights of fish Neu3 sialidases, molecular cloning and characterization were carried out in tilapia (Oreochromis niloticus). A tilapia genome-wide search for orthologues of human NEU1, NEU2, NEU3 and NEU4 yielded eight putative tilapia sialidases, five of which were neu3-like and designated as neu3a, neu3b, neu3c, neu3d and neu3e. Among five neu3 genes, neu3a, neu3d and neu3e were amplified by PCR from adult fish brain cDNA with consensus sequences of 1227bp, 1194bp and 1155bp, respectively. Multiple alignments showed conserved three Asp-boxes (SXDXGXTW), YRIP and VGPG motifs. The molecular weights for Neu3a, Neu3d and Neu3e were confirmed using immunoblotting analysis as 45.9kDa, 44.4kDa and 43.6kDa, respectively. Lysate from neu3 genes transfected HEK293 cells showed sialidase activity in Neu3a towards ganglioside mix optimally at pH4.6. Using pure gangliosides as substrates, highest sialidase activity for Neu3a was observed towards GD3 followed by GD1a and GM3, but not GM1. On the other hand, sialidase activities were not observed in Neu3d and Neu3e towards various sialoglycoconjugates. Indirect immunofluorescence showed that tilapia Neu3a and Neu3d are localized at the plasma membrane, while most Neu3e showed a cytosolic localization. RT-PCR analyses for neu3a showed significant expression in the brain, liver, and spleen tissues, while neu3d and neu3e showed different expression patterns. Based on these results, tilapia Neu3 exploration is an important step towards full understanding of a more comprehensive picture of Neu3 sub-family of proteins in fish.

  10. Molecular cloning and functional characterization of the diapause hormone receptor in the corn earworm Helicoverpa zea

    USDA-ARS?s Scientific Manuscript database

    The diapause hormone (DH) in the heliothine moth has shown its activity in termination of pupal diapause, while the orthology in the silkworm is known to induce embryonic diapause. In the current study, we cloned the diapause hormone receptor from the corn earworm Helicoverpa zea (HzDHr) and tested ...

  11. Cloning, sequencing and characterization of lipase genes from a polyhydroxyalkanoate- (PHA-) synthesizing Pseudomonas resinovorans

    USDA-ARS?s Scientific Manuscript database

    Lipase (lip) and lipase-specific foldase (lif) genes of a biodegradable polyhydroxyalkanoate- (PHA-) synthesizing Pseudomonas resinovorans NRRL B-2649 were cloned using primers based on consensus sequences, followed by PCR-based genome walking. Sequence analyses showed a putative Lip gene-product (...

  12. CLONING AND CHARACTERIZATION OF CDNA ENCODING GIARDIA LAMBLIA d-GIARDIN

    USDA-ARS?s Scientific Manuscript database

    A cDNA coding for d-giardin was cloned from Giardia lamblia trophozoites in order to localize the protein and study its function in mediating surface attachment. Recombinant d-giardin antigen was produced in Escherichia coli as a poly-histidine fusion protein and was purified by affinity chromatogr...

  13. Cloning, Purification, and Partial Characterization of the Halobacterium sp. NRC-1 Minichromosome Maintenance (MCM) Helicase

    PubMed Central

    Sakakibara, Nozomi; Han, Mimi; Rollor, Claire R; Gilson, Rebecca C; Busch, Courtney; Heo, Gunyoung; Kelman, Zvi

    2008-01-01

    The MCM gene from the archaeon Halobacterium, with and without its intein, was cloned into an Escherichia coli expression vector, overexpressed and the protein was purified and antibodies were generated. The antibodies were used to demonstrate that in vivo only the processed enzyme, without the intein, could be detected. PMID:19088906

  14. Cloning and characterization of an alpha-glucuronidase from a mixed microbial population

    USDA-ARS?s Scientific Manuscript database

    Alpha-Glucuronidase enzymes play an essential role in the full enzymatic hydrolysis of hemicellulose. Up to this point, all genes encoding alpha-glucuronidase enzymes have been cloned from individual, pure culture strains. Using a high-throughput screening strategy, we have isolated the first alph...

  15. Isolation and Characterization of Two Safflower Oleoyl-Acyl Carrier Protein Thioesterase cDNA Clones

    PubMed Central

    Knutzon, Deborah S.; Bleibaum, Janice L.; Nelsen, Janet; Kridl, Jean C.; Thompson, Gregory A.

    1992-01-01

    Oleoyl-acyl carrier protein (18:1-ACP) thioesterase has been partially purified from developing safflower (Carthamus tinctorius) seeds. Protein species with molecular masses of 34 and 40 kD associated with thioesterase activity were identified and partially sequenced. Analysis of amino-terminal and internal cyanogen bromide peptide sequences revealed no differences in the primary structure of the two species. Amino acid sequence was used to design degenerate oligonucleotides for primers in a polymerase chain reaction (PCR) using safflower embryo cDNA as a template. A 380-base pair PCR product was used to isolate two classes of cDNA clones, designated 2-1 and 5-2, from the embryo cDNA library. Clone 2-1 encodes a 389-amino acid protein including a 60-amino acid transit peptide, and contains all of the protein sequence determined from the 34- and 40-kD proteins. Clone 5-2 encodes a 385-amino acid protein with 80% identity to that encoded by 2-1. Expression of the two safflower cDNA clones in Escherichia coli resulted in a 50- to 100-fold increase in the level of 18:1-ACP thioesterase activity. Both thioesterases are most active on 18:1-ACP; however, the enzyme encoded by 5-2 shows less discrimination against saturated 16- and 18-carbon acyl-ACP substrates. Images Figure 1 Figure 4 PMID:16653193

  16. Detection and molecular characterization of a gentamicin-susceptible, methicillin-resistant Staphylococcus aureus (MRSA) clone in Rio de Janeiro that resembles the New York/Japanese clone.

    PubMed

    Melo, M C N; Silva-Carvalho, M C; Ferreira, R L; Coelho, L R; Souza, R R; Gobbi, C N; Rozenbaum, R; Solari, C A; Ferreira-Carvalho, B T; Figueiredo, A M S

    2004-12-01

    Staphylococcus aureus is the leading cause of hospital-acquired infections in many countries, and multiple factors contribute to the ability of these bacteria to disseminate and spread in hospitals. In Brazil it has been demonstrated that a multiresistant methicillin-resistant S. aureus clone, the so-called Brazilian epidemic clone, is widespread geographically. This clone was first detected in 1992 in Brazil, and recently from many other countries within South America, Europe and Asia. The study describes the detection of a gentamicin-susceptible heterogeneous MRSA clone that resembles another MRSA clone widely spread in US and Japanese hospitals, and supports the premise that the detection of heterogeneous MRSA isolates by some recommended methods is a challenging task that may, occasionally, result in MRSA misidentification.

  17. Molecular characterization of two sweepoviruses from China and evaluation of the infectivity of cloned SPLCV-JS in Nicotiana benthamiana.

    PubMed

    Bi, Huiping; Zhang, Peng

    2012-03-01

    Sweepoviruses are important begomoviruses that infect Ipomoea plants worldwide and cause sweet potato yield losses and cultivar decline. Two sweepoviruses, sweet potato leaf curl virus-Jiangsu (SPLCV-JS) and sweet potato leaf curl China virus-Zhejiang (SPLCCNV-ZJ), were cloned from diseased sweet potato plants collected in the Jiangsu and Zhejiang provinces of China. Sequence characterization and phylogenetic analysis demonstrated that both are typical monopartite begomoviruses and have close relationships to several reported SPLCV and SPLCCNV isolates, respectively, from Asian countries. Analysis of the protein alignments and subcellular localizations of the six SPLCV-JS proteins was also conducted to verify their putative functions. In Nicotiana benthamiana, an infectivity assay of the infectious SPLCV-JS clone resulted in mild symptoms and weak viral DNA accumulation. Interestingly, SPLCV-JS, together with a heterologous betasatellite DNA (tomato yellow leaf curl China virus isolate Y10 [TYLCCNV-Y10] DNA-β), showed a synergistic effect on enhanced symptom severity and viral DNA accumulation. This is the first reported infectious SPLCV clone.

  18. Molecular cloning, characterization and expression of the heat shock protein 60 gene from the human pathogenic fungus Paracoccidioides brasiliensis.

    PubMed

    Izacc, S M; Gomez, F J; Jesuino, R S; Fonseca, C A; Felipe, M S; Deepe, G S; Soares, C M

    2001-10-01

    A gene encoding the heat shock protein (HSP) 60 from Paracoccidioides brasiliensis (Pb) was cloned and characterized. The hsp60 gene is composed of three exons divided by two introns. Structural analysis of the promoter detected canonical sequences characteristic of regulatory regions from eukaryotic genes. The deduced amino acid sequence of the Pb hsp60 gene and the respective cloned cDNA consists of 592 residues highly homologous to other fungal HSP60 proteins. The hsp60 gene is present as a single copy in the genome, as shown by Southern blot analysis. The HSP60 protein was isolated from Pb yeast cellular extracts. N-terminal amino acid sequencing of HSP60 confirmed that the cloned hsp60 gene correlated to the predicted protein in Pb. HSP60 expression appeared to be regulated during form transition in Pb, as different levels of expression were detected in in vitro labeling of cells and northern blot analysis. The complete coding region of Pb hsp60 was fused with plasmid pGEX-4T-3 and expressed in Escherichia coli as a glutathione S-transferase-tagged recombinant protein. The protein reacted with a mouse monoclonal antibody raised to a human recombinant HSP60. Western immunoblot experiments demonstrated that the recombinant protein and the native HSP60 were recognized by sera from humans with paracoccidioidomycosis (PCM).

  19. Molecular characterization and an infectious clone construction of sweet potato leaf curl virus (SPLCV) isolated from Korea.

    PubMed

    Choi, E; Lee, G; Park, J; Lee, T K; Choi, H S; Lee, S

    2012-01-01

    Sweet potato leaf curl disease (SPLCD) was primarily identified in sweet potato fields in Korea in 2003, and the complete genomic sequence of sweet potato leaf curl virus (SPLCV) has been cloned. The genome of the Korean SPLCV isolate (SPLCV-KR) comprises 2,828 nucleotides with six open reading frames in DNA-A, similar to a monopartite begomovirus. Additionally, neither the genome B genomic component nor the DNA beta sequence was detected. The results of phylogenetic analysis using the maximum parsimony method showed that SPLCV-KR is more closely related to SPLCV-US (US) than SPLCV-CN (China) and SPLCV-JP (Japan). A tandem repeat dimer of SPLCV-KR was cloned and found to be infectious in sweet potatoes (Ipomoea batatas) via biolistic inoculation. The SPLCV-infected sweet potatoes exhibited mild leaf curl symptoms of SPLCD, and the newly-replicated viral DNA was detected via Southern blot analysis. Results of biotic, molecular, and phylogenetic characterization suggest that SPLCV-KR is a new strain of SPLCV and is importantly placed in the evolutionary progression from curtoviruses to begomoviruses. sweet potato leaf curl virus; sweet potato leaf curl disease; phylogenetic analysis; infectious clone; biolistic infection.

  20. Cloning and characterization of the NADPH cytochrome P450 oxidoreductase gene from the filamentous fungus Aspergillus niger.

    PubMed

    van den Brink, H J; van Zeijl, C M; Brons, J F; van den Hondel, C A; van Gorcom, R F

    1995-08-01

    In this paper, we describe the cloning and molecular characterization of the Aspergillus niger cytochrome P450 reductase (CPR) gene, cprA. Attempts to clone the cprA gene by heterologous hybridization techniques were unsuccessful. Using the polymerase chain reaction (PCR) with degenerate primers based on conserved regions found in cpr genes from other organisms, we were able to isolate a fragment that contained part of the gene. With the aid of this fragment, a genomic fragment containing the entire coding region and 5' and 3' untranslated ends of the cprA gene was isolated and sequenced. The cprA gene was introduced in multiple copies in A. niger strain N402 using the amdS transformation system. One of the resulting transformants, AB2-2, showed a 14-fold increase in CPR activity, indicating that the cloned cprA gene is functional. We analyzed the induction of cprA gene expression by several generally used cytochrome P450 inducers but did not find any induction of cprA gene expression. However, A. niger cprA gene expression could be induced by benzoic acid, which is the substrate of the highly inducible A. niger cytochrome P450 gene, bphA (cyp53). On the basis of a comparison of the deduced protein sequence of the A. niger cprA gene with CPR proteins isolated from other organisms, the structure-function relationship of some conserved regions is discussed.

  1. Characterization of blaCTX-M IncFII plasmids and clones of Escherichia coli from pets in France.

    PubMed

    Dahmen, Safia; Haenni, Marisa; Châtre, Pierre; Madec, Jean-Yves

    2013-12-01

    To characterize bla(CTX-M) IncFII plasmids and clones of Escherichia coli from cats and dogs and to compare them with bla(CTX-M) IncFII plasmids reported in humans. From December 2006 to April 2010, 518 E. coli isolates from clinical infections in cats and dogs were screened for extended-spectrum β-lactamase (ESBL) production. Antimicrobial susceptibility was performed by disc diffusion and resistance genes were identified by PCR and sequencing. Plasmids were characterized using PCR-based replicon typing and sub-typing schemes, restriction fragment length polymorphism analysis, S1-PFGE and Southern hybridization. Isolates were characterized by PFGE, phylogenetic grouping, O25b typing and multilocus sequence typing. Nineteen E. coli isolates (3.7%) produced ESBLs, of which 14 (74%) carried bla(CTX-M) IncFII plasmids. The bla(CTX-M) gene was predominant and located on F31:A4:B1, F36:A4:B1 or F36:A1:B20 plasmids, abundantly reported in humans. The bla(CTX-M) F22:A1:B20 or F2:A2:B20 plasmids were also found. Different sequence types (STs) were identified, such as ST10, ST410, ST359, ST617 and ST224. Only one E. coli isolate belonged to the ST131 E. coli clone and carried a bla(CTX-M) F2:A2:B20 plasmid. This is the first known extensive study on ESBL-producing E. coli isolates from pets in France. The ST131 clone was rare. However, the predominance of human-like bla(CTX-M) IncFII plasmids suggests exchanges of these plasmids with the human reservoir.

  2. Development and Characterization of an In Vivo Pathogenic Molecular Clone of Equine Infectious Anemia Virus

    PubMed Central

    Cook, R. Frank; Leroux, Caroline; Cook, Sheila J.; Berger, Sandra L.; Lichtenstein, Drew L.; Ghabrial, Nadia N.; Montelaro, Ronald C.; Issel, Charles J.

    1998-01-01

    An infectious nonpathogenic molecular clone (19-2-6A) of equine infectious anemia virus (EIAV) was modified by substitution of a 3.3-kbp fragment amplified by PCR techniques from a pathogenic variant (EIAVPV) of the cell culture-adapted strain of EIAV (EIAVPR). This substitution consisted of coding sequences for 77 amino acids at the carboxyl terminus of the integrase, the S1 (encoding the second exon of tat), S2, and S3 (encoding the second exon of rev) open reading frames, the complete env gene (including the first exon of rev), and the 3′ long terminal repeat (LTR). Modified 19-2-6A molecular clones were designated EIAVPV3.3, and infection of a single pony (678) with viruses derived from a mixture of five of these molecular clones induced clinical signs of acute equine infectious anemia (EIA) at 23 days postinfection (dpi). As a consequence of this initial study, a single molecular clone, EIAVPV3.3#3 (redesignated EIAVUK), was selected for further study and inoculated into two ponies (613 and 614) and two horses (700 and 764). Pony 614 and the two horses developed febrile responses by 12 dpi, which was accompanied by a 48 to 64% reduction in platelet number, whereas pony 613 did not develop fever (40.6°C) until 76 dpi. EIAV could be isolated from the plasma of these animals by 5 to 7 dpi, and all became seropositive for antibodies to this virus by 21 dpi. Analysis of the complete nucleotide sequence demonstrated that the 3.3-kbp 3′ fragment of EIAVUK differed from the consensus sequence of EIAVPV by just a single amino acid residue in the second exon of the rev gene. Complete homology with the EIAVPV consensus sequence was observed in the hypervariable region of the LTR. However, EIAVUK was found to contain an unusual 68-bp nucleotide insertion/duplication in a normally conserved region of the LTR sequence. These results demonstrate that substitution of a 3.3-kbp fragment from the EIAVPV strain into the infectious nonpathogenic molecular clone 19-2-6A leads

  3. Preliminary functional characterization, cloning and primary sequence of Fastuosain, a cysteine peptidase isolated from fruits of Bromelia fastuosa.

    PubMed

    Cabral, Hamilton; Leopoldino, Andréia M; Tajara, Eloiza H; Greene, Lewis J; Faça, Vitor M; Mateus, Rogério P; Ceron, Carlos R; de Souza Judice, Wagner A; Julianod, Luiz; Bonilla-Rodriguez, Gustavo O

    2006-01-01

    The present work reports the characterization of Fastuosain, a novel cysteine protease of 25kDa, purified from the unripe fruits of Bromelia fastuosa, a wild South American Bromeliaceae. Proteolytic activity, measured using casein and synthetic substrates, was dependent on the presence of thiol reagents, having maximum activity at pH 7.0. The present work reports cDNA cloning of Fastuosain; cDNA was amplified by PCR using specific primers. The product was 1096pb long. Mature fastuosain has 217 residues, and with the proregion has a total length of 324 residues. Its primary sequence showed high homology with ananain(74%), stem bromelain (66%) and papain (44%).

  4. Isolation and characterization of a cDNA clone encoding one IgE-binding fragment of Penicillium brevicompactum.

    PubMed

    Sevinc, M Serdal; Kumar, Veena; Abebe, Makonnen; Casley, William L; Vijay, Hari M

    2005-09-01

    The abundance of allergenic Penicillium species has been associated with an increased incidence of childhood asthma and pulmonary bleeding. Penicillium brevicompactum has been identified as the most prevalent indoor species of this genus. However, detailed studies on the allergens of the ubiquitous Penicillium species are still lacking. For the characterization of allergens of prevalent Penicillium species, molecular cloning of the allergen genes of P. brevicompactum was performed in the present study. A phage cDNA library of P. brevicompactum was constructed in Uni-ZAP XR vector using mRNA isolated from the organism. The cDNA library of P. brevicompactum was screened using pooled atopic sera. Screening of P. brevicompactum cDNA library resulted in one positive clone encoding an estimated molecular weight of 11 kDa polypeptide, rich in acidic residues (>20%), with a pI of 3.87. This clone was designated as Pen b 26 and found to be reactive only against the atopic sera obtained from individuals sensitive to P. brevicompactum. The amino acid sequence analysis of Pen b 26 revealed that it had strong homology to the 60S acidic ribosomal protein P1 family from different eukaryotic sources, predominantly fungal aero-allergens. Other features of Pen b 26 including having high alpha-helical content (>50%), alanine-rich residues (>20%), and a well-conserved C-terminal epitope region fits well into the common properties of 60S acidic ribosomal proteins. The results obtained suggest that the allergenic clone, Pen b 26 is a 60S acidic ribosomal protein P1 of P. brevicompactum and shows strong similarity to other P1 family proteins. Copyright (c) 2005 S. Karger AG, Basel.

  5. Cloning and characterization of the gene encoding inorganic pyrophosphatase of Escherichia coli K-12.

    PubMed

    Lahti, R; Pitkäranta, T; Valve, E; Ilta, I; Kukko-Kalske, E; Heinonen, J

    1988-12-01

    Escherichia coli K-12 gene ppa encoding inorganic pyrophosphatase (PPase) was cloned and sequenced. The 5' end of the ppa mRNA was identified by primer extension mapping. A typical E. coli sigma 70 promoter was identified immediately upstream of the mRNA 5' end. The structural gene of ppa contains 528 base pairs, from which a 175-amino-acid translation product, Mr 19,572, was deduced. The deduced amino acid composition perfectly fitted with that of PPase as previously determined (P. Burton, D. C. Hall, and J. Josse, J. Biol. Chem. 245:4346-4351, 1970). Furthermore, the partial amino acid sequence (residues 1 to 108) of E. coli PPase determined by S. A. Cohen (Ph.D. thesis, University of Chicago, 1978) was the same as that deduced from the nucleotide sequence. This is the first report of the cloning of a PPase gene.

  6. Cloning and characterization of ribulose bisphosphate carboxylase gene of a carboxydobacterium, hydrogenophagea pseudoflava DSM 1084.

    PubMed

    Lee, S N; Kim, Y M

    1998-10-31

    The ribulose bisphosphate carboxylase/oxygenase rbcL and rbcS genes of a carbon monoxide-oxidizing bacterium, Hydrogenophaga pseudoflava DSM 1084, were cloned and sequenced. The cloned rbcL and rbcS genes had open reading frames of 1422 and 351 nucleotides encoding RbcL and RbcS with calculated molecular masses of 52,689 and 13,541, respectively. The known active site residues in other RbcL proteins were conserved in the H. pseudoflava proteins. The H. pseudoflava RbcS protein lacked the 12-residue internal sequence found in the plant enzymes. The 2 genes were separated by a 134 bp intergenic region and cotranscribed as a 2.0 kb rbcLS mRNA. Novel two perfect 9 bp direct repeats overlapping with two dyad symmetries were found in the rbcLS promoter region.

  7. Molecular cloning, functional expression and characterization of (E)-beta farnesene synthase from Citrus junos.

    PubMed

    Maruyama, T; Ito, M; Honda, G

    2001-10-01

    We cloned the gene of the acyclic sesquiterpene synthase, (E)-beta-farnesene synthase (CJFS) from Yuzu (Citrus junos, Rutaceae). The function of CJFS was elucidated by the preparation of recombinant protein and subsequent enzyme assay. CJFS consisted of 1867 nucleotides including 1680 bp of coding sequence encoding a protein of 560 amino acids with a molecular weight of 62 kDa. The deduced amino acid sequence possessed characteristic amino acid residues, such as the DDxxD motif, which are highly conserved among terpene synthases. This is the first report of the cloning of a terpene synthase from a Rutaceous plant. A possible reaction mechanism for terpene biosynthesis is also discussed on the basis of sequence comparison of CJFS with known sesquiterpene synthase genes.

  8. Molecular cloning and characterization of two novel cellulase genes from the mollusc Ampullaria crossean.

    PubMed

    Guo, Rui; Ding, Ming; Zhang, Si-Liang; Xu, Gen-Jun; Zhao, Fu-Kun

    2008-02-01

    Cellulase genes have been reported not only from fungi, bacteria and plant, but also from some invertebrate animals. Here, two cellulase (endo-beta-1,4-glucanase, EC 3.2.1.4) genes, eg27I and eg27II, were cloned from the freshwater snail Ampullaria crossean cDNA using degenerate primers. The nucleotide sequences of the two genes shared 94.5% identity. The open reading frames of both genes consisted of 588 bp, encoding 195 amino acids. Both EG27I and EG27II belong to the glycoside hydrolase family 45, and each lacks a carbohydrate-binding module. The presence of introns demonstrated a eukaryotic origin of the EG27 gene, and, in addition, successful cloning of EG27 cDNA supported endogenous production of EG27 cellulase by Ampullaria crossean. Investigation of the EG27 cDNA from A. crossean will provide further information on GHF45 cellulases.

  9. Cloning and characterization of the Dictyostelium discoideum rasG genomic sequences.

    PubMed

    Robbins, S M; Williams, J G; Spiegelman, G B; Weeks, G

    1992-02-28

    A Dictyostelium discoideum genomic DNA clone containing the ras-related gene, rasG was isolated using the rasG cDNA as a probe. The genomic clone encompasses the entire coding region of the gene and 1.5 kb of 5' flanking region. The rasG gene contains a single intron as determined by sequence comparison with the cDNA, whereas the highly related rasD gene contains three introns. Primer extension analysis showed that transcription of the rasG gene initiates at multiple sites. Sequence analysis of the 5' flanking region of the gene revealed a stretch of thymine residues upstream from the transcription start sites but there is no evidence for a TATA box sequence.

  10. Cloning and characterization of a bone morphogenetic protein homologue of Schistosoma japonicum.

    PubMed

    Liu, Rong; Zhao, Qin-ping; Ye, Qing; Xiong, Tao; Tang, Chun-lian; Dong, Hui-fen; Jiang, Ming-sen

    2013-09-01

    Bone morphogenetic proteins (BMPs) are known to play an important role in the regulation of cell proliferation, survival, differentiation and apoptosis in many vertebrates and invertebrates through the TGF-β signaling pathway. Although the TGF-β signaling pathway exists in schistosomes, BMP homologue, a ligand of TGF-β in Schistosoma japonicum, has not yet been identified. In this study, a BMP homologue of S. japonicum was cloned and characterized. The full length SjBMP cDNA is 3,020 bp and encodes 928 amino acids, which include a TGF-β superfamily conserved domain at the C-terminus. BLAST analysis showed that, SjBMP has 68%, 51% and 43% homology with BMP from Schistosoma mansoni, Schmidtea mediterranea and Dugesia japonica at the amino acid level, respectively. According to data from real-time PCR, SjBMP was expressed in lung-stage schistosomula, 21-day liver-stage schistosomula, 50-day adult worms (the male and female), and eggs. The PCR data also indicated that, there was a ≈ 27- and ≈ 37-fold increase of SjBMP transcripts in the lung-stage schistosomula and eggs, respectively, and that there was relatively more SjBMP transcript in the adult male worm than in the adult female, in which the hepatic schistosomula was set as the calibrator for calculation. In situ hybridization based on FITC-labeled specific antisense oligonucleotide probes showed that SjBMP mRNA localized to the ovary of female worms and the integument and epithelium of female and male worms. After treatment with double-stranded RNA (dsRNA) at a concentration of 8 × 10(-2) μg/ml, which was added to the culture medium every other day for a week, the level of SjBMP mRNA in the cultured adult mixed-sex S. japonicum decreased at a range of ≈ 25-98% within 7 days compared with the level of SjBMP mRNA in the blank control group. On the 2nd day, the number of eggs produced per pair of worms decreased 28.7%, and the percent of normal eggs also decreased (12.7% vs. 4.3%) in the SjBMP ds

  11. Cloning, Characterization, and Expression of Animal Toxin Genes for Vaccine Development

    DTIC Science & Technology

    1990-04-27

    viper, Echis carnatus) (5 3,5 6) VI. MISCELLANEOUS TOXINS A. 1ONOPHORES 1. Alpha-latrotoxin (black widow spider, Latrodectus mactans ) (57) 2. Diamphotoxin...143,144), the cloth-of-gold cone snail (Conus textile) (146), the honey bee (Apis mellifera)(147,148), and the black widow spi- der ( Latrodectus ... mactans (150). With mRNA isolated from the telsons of Androctonus australis Hector a cDNA library was constructed by using the Okayama/Berg cloning

  12. Characterization of Streptococcus pneumoniae clones from paediatric patients with cystic fibrosis.

    PubMed

    Pimentel de Araujo, Fernanda; D'Ambrosio, Fabio; Camilli, Romina; Fiscarelli, Ersilia; Di Bonaventura, Giovanni; Baldassarri, Lucilla; Visca, Paolo; Pantosti, Annalisa; Gherardi, Giovanni

    2014-12-01

    The role of Streptococcus pneumoniae in cystic fibrosis (CF) is poorly understood. The pneumococcal population has changed over time after the introduction of the heptavalent conjugate vaccine (PCV7) and, more recently, the 13-valent conjugate vaccine (PCV13). Although serotypes and clones causing invasive pneumococcal disease or colonizing healthy children have been extensively analysed, little is known so far on the serotypes and clones of pneumococci in CF patients. The aim of this work was to investigate serotypes, antibiotic susceptibilities, genotypes and biofilm production of CF pneumococcal isolates. Overall, 44 S. pneumoniae strains collected from 32 paediatric CF patients from January 2010 to May 2012 in a large Italian CF Centre were tested for antimicrobial susceptibility testing by Etest, serotyped by the Quellung reaction and genotyped by a combination of different molecular typing methods, including pbp gene restriction profiling, pspA restriction profiling and sequencing, PFGE and multilocus sequence typing. Biofilm production by pneumococcal strains was also assessed. Penicillin non-susceptibility was 16 %. High resistance rates (>56 %) were observed for erythromycin, clindamycin and tetracycline. The most frequent serotype recovered was serotype 3 (31.8 %). The coverage of PCV7 and PCV13 was 6.8 and 47.7 %, respectively. More than 80 % of CF strains belonged to Pneumococcal Molecular Epidemiology Network (PMEN) reference clones, the most common being Netherlands(3)-ST180 (28.2 %), and Greece(21)-30/ST193 (15.4 %). All strains produced biofilm in vitro, although with large variability in biofilm formation efficiency. No correlation was found between biofilm levels and serotype, clone or antibiotic resistance. The high isolation rate of antibiotic-resistant serotype 3 pneumococci from CF patients suggests that PCV13 could increase protection from pneumococcal colonization and infection.

  13. Cloning and Characterizing Genes Involved in Monoterpene Induced Mammary Tumor Regression.

    DTIC Science & Technology

    1996-10-01

    transmembrane protein, is expressed in the mammary gland (data not shown) and has been shown to be a marker for differentiation of spermatogonia (53...well as 58 monoterpene-repressed genes comprising 1 known gene and 57 unidentified genes. Several of the identified differentially expressed genes...apoptosis and differentiation act in concert to effect carcinoma regression. Apoptosis is suggested by the cloning of a marker of programmed cell death

  14. Characterization and cloning of lgp110, a lysosomal membrane glycoprotein from mouse and rat cells.

    PubMed

    Granger, B L; Green, S A; Gabel, C A; Howe, C L; Mellman, I; Helenius, A

    1990-07-15

    lgp110 is a heavily glycosylated intrinsic protein of lysosomal membranes. Initially defined by monoclonal antibodies against mouse liver lysosomes, it consists of a 45-kilodalton core polypeptide with O-linked and 17 asparagine-linked oligosaccharide side chains in mouse cells. Sialic acid residues make the mature protein extremely acidic, with an isoelectric point of between 2 and 4 in both normal tissues and most cultured cell lines. Partial sequencing of mouse lgp110 allowed oligonucleotide probes to be constructed for the screening of several mouse cDNA libraries. A partial cDNA clone for mouse lgp110 was found and used for additional library screening, generating a cDNA clone covering all of the coding sequence of mature rat lgp110 as well as genomic clones covering most of the mouse gene. These new clones bring to seven the number of lysosomal membrane proteins whose amino acid sequences can be deduced, and two distinct but highly similar groups (designated lgp-A and lgp-B) can now be defined. Sequence comparisons suggest that differences within each group reflect species variations of the same protein and that lgp-A and lgp-B probably diverged from a common ancestor prior to the evolup4f1ary divergence of birds and mammals. Individual cells and individual lysosomes possess both lgp-A and lgp-B, suggesting that these two proteins have different functions. Mouse lgp110 is encoded by at least seven exons; intron positions suggest that the two homologous ectodomains of each lgp arose through gene duplication.

  15. Biological and biochemical characterization of bovine interleukin 2. Studies with cloned bovine T cells.

    PubMed

    Brown, W C; Grab, D J

    1985-11-01

    Bovine peripheral blood lymphocytes stimulated with the T cell mitogen concanavalin A (Con A) secrete a lymphokine with biological properties similar to T cell growth factor (TCGF) or interleukin 2 (IL 2) from other species. The material supports proliferation of Con A-derived T cell blasts, limiting dilution cloning of T cell blasts, and continuous growth of T cell clones for over 6 mo in vitro. A quantitative microassay with the use of TCGF-dependent, Con A-unresponsive cloned T cells was used to determine the biological activity during purification of IL 2. A single peak of activity with an apparent m.w. of 25,000 to 28,000 was recovered after gel filtration. This material eluted from DEAE-Sephacryl between 135 and 165 mM NaCl. After isoelectric focusing, high pressure liquid chromatography, and gel electrophoresis under reducing conditions, peak IL 2 activity was associated with proteins having m.w. of 20,000 and 23,000.

  16. Cloning, expression and characterization of Bauhinia variegata trypsin inhibitor BvTI.

    PubMed

    de Souza, Adriana F; Torquato, Ricardo J S; Tanaka, Aparecida S; Sampaio, Claudio A M

    2005-11-01

    A Bauhinia variegata trypsin inhibitor (BvTI) cDNA fragment was cloned into the pCANTAB5E phagemid. The clone pAS 1.1.3 presented a cDNA fragment of 733 bp, including the coding region for a mature BvTI protein comprising 175 amino acid residues. The deduced amino acid sequence for BvTI confirmed it as a member of the Kunitz-type plant serine proteinase inhibitor family. The BvTI cDNA fragment encoding the mature form was cloned into the expression vector, pET-14b, and ex-pressed in E. coli BL21 (DE3) pLysS in an active form. In addition, a BvTI mutant form, r(mut)BvTI, with a Pro residue as the fifth amino acid in place of Leu, was produced. The recombinant proteins, rBvTI and r(mut)BvTI, were purified on a trypsin-Sepharose column, yielding 29 and 1.44 mg/l of active protein, respectively, and showed protein bands of approximately 21.5 kDa by SDS-PAGE. Trypsin inhibition activity was comparable for rBvTI (Ki=4 nM) and r(mut)BvTI (Ki=6 nM). Our data suggest that the Leu to Pro substitution at the fifth amino-terminal residue was not crucial for proteinase inhibition.

  17. Isolation and characterization of a cDNA clone encoding wheat germ agglutinin

    SciTech Connect

    Raikhel, N.V.; Wilkins, T.A.

    1987-10-01

    Two sets of synthetic oligonucleotides coding for amino acids in the amino- and carboxyl-terminal portions of wheat germ agglutinin were synthesized and used as hybridization probes to screen cDNA libraries derived from developing embryos of tetraploid wheat. The nucleotide sequence for a cDNA clone recovered from the cDNA library was determined by dideoxynucleotide chain-termination sequencing in vector M13. The amino acid sequence deduced from the DNA sequence indicated that this cDNA clone (pNVR1) encodes isolectin 3 of wheat germ agglutinin. Comparison of the deduced amino acid sequence of clone pNVR1 with published sequences indicates isolectin 3 differs from isolectins 1 and 2 by 10 and 8 amino acid changes, respectively. In addition, the protein encoded by pNVR1 extends 15 amino acids beyond the carboxyl terminus of the published amino acid sequence for isolectins 1 and 2 and includes a potential site for N-linked glycosylation. Utilizing the insert of pNVR1 as a hybridization probe, the authors have demonstrated that the expression of genes for wheat germ agglutinin is modulated by exogenous abscisic acid. Striking homology is observed between wheat germ agglutinin and chitinase, both of which are proteins that bind chitin.

  18. Molecular cloning, expression, purification, and functional characterization of dammarenediol synthase from Panax ginseng.

    PubMed

    Hu, Wei; Liu, Ning; Tian, Yuhua; Zhang, Lianxue

    2013-01-01

    The objective of this study is to clone and charecterize the expression of dammarenediol synthase gene and then to determine the relationship between the expression of dammarenediol synthase gene that is involved in the ginsenoside biosynthetic pathway and the ginsenoside content. A cDNA phage library was constructed from a five-year-old ginseng root. The cDNA library was screened for the dammarenediol synthase gene by using its specific primers. It was further cloned and expressed in pET-30a vector. The recombinant plasmid pET-30a-DS was expressed in Rosetta E. coli. The recombinant DS protein was purified by affinity chromatography. The production of dammarenediol was detected by liquid chromatography-mass spectrometry (LC-MS). Results showed that dammarenediol synthase gene was cloned from the cDNA library and was expressed in Rosetta E. coli and the SDS-PAGE analysis showed the presence of purified DS protein. LS-MS showed the activity of DS protein, as the protein content increases the dammarenediol increases. Our results indicate that the recombinant dammarenediol synthase protein could increase the production of dammarenediol and the expression of DS played a vital role in the biosynthesis of ginsenosides in P. ginseng.

  19. Establishment and characterization of a chimeric infectious cDNA clone of classical swine fever virus.

    PubMed

    Zhao, T S; Xia, Y H

    2016-06-01

    Classical swine fever virus (CSFV) causes a highly contagious disease among swine that has an important economic impact worldwide. There are two important CSFV strains in China, Shimen and hog cholera lapinized virus (HCLV). Shimen strain is highly virulent while HCLV, also referred to as C-strain, is a live attenuated vaccine strain considered to be one of the most effective and safest live vaccines. In this study, a chimeric infectious cDNA clone of CSFV named pT7SM-c was engineered by replacing the E(rns) genomic region of an infectious clone of CSFV Shimen strain, pT7SM, with the same region obtained from HCLV. RNA transcripts of pT7SM-c containing an engineered EcoRI site that served as a genetic marker were directly infectious in PK15 cells. The rescued virus vT7SM-c showed similar growth kinetics and cytopathic effect with the parental virus vT7SM in the cells. The chimeric infectious cDNA clone can be used as a practical tool for further studying of the virulence, protein function and pathogenesis of CSFV through genetic manipulation.

  20. Derivation and characterization of a quinapyramine-resistant clone of Trypanosoma congolense.

    PubMed Central

    Ndoutamia, G; Moloo, S K; Murphy, N B; Peregrine, A S

    1993-01-01

    Over a period of 208 days a quinapyramine-resistant population was derived in vivo from a quinapyramine-susceptible clone of Trypanosoma congolense: IL 1180. While the dose of quinapyramine sulfate required to cure 50% of mice infected with the parental clone was 0.23 mg/kg of body weight, the 50% curative dose for the resistant derivative, IL 1180/Stabilate 12, was greater than 9.6 mg/kg. This approximately 40-fold increase in resistance to quinapyramine was shown to be associated with an 8-fold increase in resistance to isometamidium, a 28-fold increase in resistance to homidium, and a 5.5-fold increase in resistance to diminazene. Cross-resistance to homidium and diminazene was also demonstrated in goats. Two clones derived from the drug-resistant derivative underwent cyclical development in Glossina morsitans centralis, producing mature infection rates of 39.6 and 23.9%. Thus, induction of resistance to quinapyramine in T. congolense IL 1180 was associated with cross-resistance to isometamidium, homidium, and diminazene and did not compromise the population's ability to undergo full cyclical development in tsetse flies. PMID:8517707

  1. Cloning and characterization of a novel macrolide efflux gene, mreA, from Streptococcus agalactiae.

    PubMed Central

    Clancy, J; Dib-Hajj, F; Petitpas, J W; Yuan, W

    1997-01-01

    A strain of Streptococcus agalactiae displayed resistance to 14-, 15-, and 16-membered macrolides. In PCR assays, total genomic DNA from this strain contained neither erm nor mef genes. EcoRI-digested genomic DNA from this strain was cloned into lambda Zap II to construct a library of S. agalactiae genomic DNA. A clone, pAES63, expressing resistance to erythromycin, azithromycin, and spiramycin in Escherichia coli was recovered. Deletion derivatives of pAES63 which defined a functional region on this clone that encoded resistance to 14- and 15-membered, but not 16-membered, macrolides were produced. Studies that determined the levels of incorporation of radiolabelled erythromycin into E. coli were consistent with the presence of a macrolide efflux determinant. This putative efflux determinant was distinct from the recently described Mef pump in Streptococcus pyogenes and Streptococcus pneumoniae and from the multicomponent MsrA pump in Staphylococcus aureus and coagulase-negative staphylococci. Its gene has been designated mreA (for macrolide resistance efflux). PMID:9420045

  2. [Cloning and functional characterization of pathogenesis-related PR10-1 gene in Panax notoginseng].

    PubMed

    Tang, Mei-Qiong; Min, Dan-Dan; Li, Gang; Jiang, Ni; Ye, Yun-Feng

    2015-02-01

    With homology cloning approaches coupling with RACE (rapid-amplification of cDNA ends) techniques, the full-length coding sequence of pathogenesis-related protein PR10-1 with differential expression was cloned from the total RNA of the root of Panax notoginseng, and its function was explored furtherly. As a result, the longest 465 bp ORF (named as PnPR10-1 with the Accession No. KJ741402 in GenBank) was detected from the cloned sequence with full-length of cDNA of 863 bp. The corresponding peptide encoded consisted of 155 amino acids, contained some domains such as Bet-v-I, and showed high similarity with that from Panax ginseng by analysis of phylogenetic trees created from the alignments. Real-time quantitative PCR showed that the expression of PnPR10-1 gene was constitutive in different tissues of 1-3 year old plant, suggesting that it might be involved in growth, development, and secondary metabolism; yet it was up-regulated significantly with the infection of Fusarium oxysporum in root, suggesting that it might be involved in defense against many diseases including root rot in P. notoginseng.

  3. Establishment and characterization of a spontaneously immortalized trophoblast cell line (HPT-8) and its hepatitis B virus-expressing clone.

    PubMed

    Zhang, Lei; Zhang, Weilu; Shao, Chen; Zhang, Jingxia; Men, Ke; Shao, Zhongjun; Yan, Yongping; Xu, Dezhong

    2011-08-01

    Most trophoblast cell lines currently available to study vertical transmission of hepatitis B virus (HBV) are immortalized by viral transformation. Our goal was to establish and characterize a spontaneously immortalized human first-trimester trophoblast cell line and its HBV-expressing clone. Chorionic villi of Asian human first-trimester placentae were digested with trypsin and collagenase I to obtain the primary trophoblast cell culture. A spontaneously immortalized trophoblast cell line (HPT-8) was analyzed by scanning and transmission electron microscopy, cell cycle analysis, immunohistochemistry and immunofluorescence. HPT-8 cells were stably transfected with the adr subtype of HBV (HPT-8-HBV) and characterized by PCR and enzyme-linked immunosorbent assay. We obtained a clonal derivative of a spontaneously immortalized primary cell clone (HPT-8). HPT-8 cells were epithelioid and polygonal, and formed multinucleate, giant cells. They exhibited microvilli, distinct desmosomes between adjacent cells, abundant endoplasm, lipid inclusions and glycogen granules, which are all characteristic of cytotrophoblasts. HPT-8 cells expressed cytokeratin 7, cytokeratin 18, vimentin, cluster of differentiation antigen 9, epidermal growth factor receptor, stromal cell-derived factor 1 and placental alkaline phosphatase. They secreted prolactin, estradiol, progesterone and hCG, and were positive for HLA-G, a marker of extravillous trophoblasts. HPT-8-HBV cells were positive for HBV relaxed-circular, covalently closed circular DNA and pre-S sequence. HPT-8-HBV cells also produced and secreted HBV surface antigen and HBV e antigen. We established a trophoblast cell line, HPT-8 and its HBV-expressing clone which could be valuable in exploring the mechanism of HBV viral integration in human trophoblasts during intrauterine infection.

  4. Cloning and characterization of canine PAX6 and evaluation as a candidate gene in a canine model of aniridia.

    PubMed

    Hunter, Linda S; Sidjanin, Duska J; Hijar, Manuel Villagrasa; Johnson, Jennifer L; Kirkness, Ewen; Acland, Gregory M; Aguirre, Gustavo D

    2007-03-26

    Mutations in PAX6 cause human aniridia. The small eye (sey) mouse represents an animal model for aniridia. However, no large animal model currently exists. We cloned and characterized canine PAX6, and evaluated PAX6 for causal associations with inherited aniridia in dogs. Canine PAX6 was cloned from a canine retinal cDNA library using primers designed from human and mouse PAX6 consensus sequences. An RH3000 radiation hybrid panel was used to localize PAX6 within the canine genome. Genomic DNA was extracted from whole blood of dogs with inherited aniridia, and association testing was performed using markers on CFA18. Fourteen PAX6 exons were sequenced and scanned for mutations, and a Southern blot was used to test for large deletions. Like the human gene, canine PAX6 has 13 exons and 12 introns, plus an alternatively spliced exon (5a). PAX6 nucleotide and amino acid sequences were highly conserved between dog, human, and mouse. The canine PAX6 cDNA sequence determined in this study spans 2 large gaps present in the current canine genomic sequence. Radiation hybrid mapping placed canine PAX6 on CFA18 in a region with synteny to HSA11p13. Exon-scanning revealed single nucleotide polymorphisms, but no pathological mutations, and Southern blot analysis revealed no differences between normal and affected animals. Canine PAX6 was cloned and characterized, and results provide sequence information for gaps in the current canine genome sequence. Canine PAX6 nucleotide and amino acid sequences, as well as gene organization and map location, were highly homologous with that of the human gene. PAX6 was evaluated in dogs with an inherited form of aniridia, and sequence analysis indicated no pathological mutations in the coding regions or splice sites of aniridia-affected dogs, and Southern blot analysis showed no large deletions.

  5. Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae.

    PubMed

    Sun, Jie; Shao, Zengyi; Zhao, Hua; Nair, Nikhil; Wen, Fei; Xu, Jian-He; Zhao, Huimin

    2012-08-01

    Saccharomyces cerevisiae is an important platform organism for synthesis of chemicals and fuels. However, the promoters used in most pathway engineering studies in S. cerevisiae have not been characterized and compared in parallel under multiple conditions that are routinely operated in laboratory and the number of known promoters is rather limited for the construction of large biochemical pathways. Here a total of 14 constitutive promoters from S. cerevisiae were cloned and characterized using a green fluorescent protein (GFP) as a reporter in a 2 µ vector pRS426, under varying glucose and oxygen concentrations. The strengths of these promoters varied no more than sixfold in the mean fluorescence intensity of GFP, with promoter TEF1p being the strongest and promoter PGI1p the weakest. As an example of application for these promoters in metabolic engineering, the genes involved in xylan degradation and zeaxanthin biosynthesis were subsequently cloned under the control of promoters with medium to high strength and assembled into a single pathway. The corresponding construct was transformed to a S. cerevisiae strain integrated with a D-xylose utilizing pathway. The resulting strain produced zeaxanthin with a titer of 0.74 ± 0.02 mg/L directly from birchwood xylan. Copyright © 2012 Wiley Periodicals, Inc.

  6. Isolation, cloning, and characterization of a partial novel aro A gene in common reed (Phragmites australis).

    PubMed

    Taravat, Elham; Zebarjadi, Alireza; Kahrizi, Danial; Yari, Kheirollah

    2015-05-01

    Among the essential amino acids, phenylalanine, tryptophan, and tyrosine are aromatic amino acids which are synthesized by the shikimate pathway in plants and bacteria. Herbicide glyphosate can inhibit the biosynthesis of these amino acids. So, identification of the gene tolerant to glyphosate is very important. It has been shown that the common reed or Phragmites australis Cav. (Poaceae) is relatively tolerant to glyphosate. The aim of the current research is identification, cloning, sequencing, and registering of partial aro A gene of the common reed P. australis. The partial aro A gene of common reed (P. australis) was cloned in Escherichia coli and the amino acid sequence was identified/determined for the first time. This is the first report for isolation, cloning, and sequencing of a part of aro A gene from the common reed. A 670 bp fragment including two introns (86 bp and 289 bp) was obtained. The open reading frame (ORF) region in part of gene was encoded for 98 amino acids. Alignment showed high similarity among this region with Zea mays (L.) (Poaceae) (94.6%), Eleusine indica L. Gaertn (Poaceae) (94.2%), and Zoysia japonica Steud. (Poaceae) (94.2%). The alignment of amino acid sequence of the investigated part of the gene showed a homology with aro A from several other plants. This conserved region forms the enzyme active site. The alignment results of nucleotide and amino acid residues with related sequences showed that there are some differences among them. The relative glyphosate tolerance in the common reed may be related to these differences.

  7. Molecular cloning and characterization of mutant and wild-type human. beta. -actin genes

    SciTech Connect

    Leavitt, J.; Gunning, P.; Porreca, P.; Ng, S.Y.; Lin, C.H.; Kedes, L.

    1984-10-01

    There are more than 20 ..beta..-actin-specific sequences in the human genome, many of which are pseudogenes. To facilitate the isolation of potentially functional ..beta..-actin genes, they used the new method of B. Seed for selecting genomic clones by homologous recombination. A derivative of the ..pi..VX miniplasmid, ..pi..AN7..beta..1, was constructed by insertion of the 600-base-pair 3' untranslated region of the ..beta..-actin mRNA expressed in human fibroblasts. Five clones containing ..beta..-actin sequences were selected from an amplified human fetal gene library by homologous recombination between library phage and the miniplasmid. One of these clones contained a complete ..beta..-actin gene with a coding sequence identical to that determined for the mRNA of human fibroblasts. A DNA fragment consisting of mostly intervening sequences from this gene was then use to identify 13 independent recombinant copies of the analogous gene from two specially constructed gene libraries, each containing one of the two types of mutant ..beta..-actin genes found in a line of neoplastic human fibroblasts. The amino acid and nucleotide sequences encoded by the unmutated gene predict that a guanine-to-adenine transition is responsible for the glycine-to-aspartic acid mutation at codon 244 and would also result in the loss of a HaeIII site. Detection of this HaeIII polymorphism among the fibroblast-derived closed verified the identity of the ..beta..-actin gene expressed in human fibroblasts.

  8. The ABCG2 efflux transporter from rabbit placenta: Cloning and functional characterization.

    PubMed

    Halwachs, Sandra; Kneuer, Carsten; Gohlsch, Katrin; Müller, Marian; Ritz, Vera; Honscha, Walther

    2016-02-01

    In human placenta, the ATP-binding cassette efflux transporter ABCG2 is highly expressed in syncytiotrophoblast cells and mediates cellular excretion of various drugs and toxins. Hence, physiological ABCG2 activity substantially contributes to the fetoprotective placenta barrier function during gestation. Developmental toxicity studies are often performed in rabbit. However, despite its toxicological relevance, there is no data so far on functional ABCG2 expression in this species. Therefore, we cloned ABCG2 from placenta tissues of chinchilla rabbit. Sequencing showed 84-86% amino acid sequence identity to the orthologues from man, rat and mouse. We transduced the rabbit ABCG2 clone (rbABCG2) in MDCKII cells and stable rbABCG2 gene and protein expression was shown by RT-PCR and Western blot analysis. The rbABCG2 efflux activity was demonstrated with the Hoechst H33342 assay using the specific ABCG2 inhibitor Ko143. We further tested the effect of established human ABCG2 (hABCG2) drug substrates including the antibiotic danofloxacin or the histamine H2-receptor antagonist cimetidine on H33342 accumulation in MDCKII-rbABCG2 or -hABCG2 cells. Human therapeutic plasma concentrations of all tested drugs caused a comparable competitive inhibition of H33342 excretion in both ABCG2 clones. Altogether, we first showed functional expression of the ABCG2 efflux transporter in rabbit placenta. Moreover, our data suggest a similar drug substrate spectrum of the rabbit and the human ABCG2 efflux transporter. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Molecular Cloning, Characterization, and Expression of the M Antigen of Histoplasma capsulatum

    PubMed Central

    Zancopé-Oliveira, Rosely M.; Reiss, Errol; Lott, Timothy J.; Mayer, Leonard W.; Deepe, George S.

    1999-01-01

    The major diagnostic antigens of Histoplasma capsulatum are the H and M antigens, pluripotent glycoproteins that elicit both humoral and T-cell-mediated immune responses. These antigens may play a role in the pathogenesis of histoplasmosis. M antigen is considered immunodominant because antibodies against it are the first precipitins to arise in acute histoplasmosis and are commonly present during all phases of infection. The biological activity of monomolecular M antigen and its ability to elicit a protective immune response to H. capsulatum are largely unknown. A molecular approach was used to identify the biological nature of M antigen, including its purification from histoplasmin, partial digestion with proteinases, and reverse-phase high-performance liquid chromatography to separate the released peptides. The amino acid sequences of the purified peptides were obtained by Edman degradation, and using degenerate oligonucleotide primers for PCR, a 321-bp fragment of the gene encoding the M antigen was amplified from genomic H. capsulatum DNA. This fragment was used to screen an H. capsulatum genomic DNA library, leading to the isolation, cloning, and sequencing of the full-length gene. The M gene consists of 2,187-bp DNA encoding a protein of 80,719 Da, which has significant homology to catalases from Aspergillus fumigatus, Aspergillus niger, and Eimericella nidulans. A cDNA was generated by reverse transcription-PCR and cloned into the expression vector pQE40. The identity of the cloned, expressed protein was confirmed by Western blotting. The recombinant fusion protein was immunoreactive with monoclonal antibodies raised against M antigen, with polyclonal mouse anti-M antiserum, and with a serum sample from a patient with histoplasmosis. The gene encoding the major immunodominant M antigen of H. capsulatum is a presumptive catalase, and the recombinant protein retains serodiagnostic activity. PMID:10085041

  10. Molecular cloning, expression and characterization of a functional GSTmu class from the cattle tick Boophilus annulatus.

    PubMed

    Shahein, Yasser Ezzat; El Sayed El-Hakim, Amr; Abouelella, Amira Mohamed Kamal; Hamed, Ragaa Reda; Allam, Shaimaa Abdul-Moez; Farid, Nevin Mahmoud

    2008-03-25

    A full-length cDNA of a glutathione S-transferase (GST) was cloned from a cDNA library of the local Egyptian cattle tick Boophilus annulatus. The 672 bp cloned fragment was sequenced and showed an open reading frame encoding a protein of 223 amino acids. Comparison of the deduced amino acid sequence with GSTs from other species revealed that the sequence is closely related to the mammalian mu-class GST. The cloned gene was expressed in E. coli under T7 promotor of pET-30b vector, and purified under native conditions. The purified enzyme appeared as a single band on 12% SDS-PAGE and has a molecular weight of 30.8 kDa including the histidine tag of the vector. The purified enzyme was assayed upon the chromogenic substrate 1-chloro-2,4-dinitrobenzene (CDNB) and the recombinant enzyme showed high level of activity even in the presence of the beta-galactosidase region on its 5' end and showed maximum activity at pH 7.5. The Km values for CDNB and GSH were 0.57 and 0.79 mM, respectively. The over expressed rBaGST showed high activity toward CDNB (121 units/mg protein) and less toward DCNB (29.3 units/mg protein). rBaGST exhibited peroxidatic activity on cumene hydroperoxide sharing this property with GSTs belonging to the GST alpha class. I50 values for cibacron blue and bromosulfophthalein were 0.22 and 8.45 microM, respectively, sharing this property with the mammalian GSTmu class. Immunoblotting revealed the presence of the GST molecule in B. annulatus protein extracts; whole tick, larvae, gut, salivary gland and ovary. Homologues to the GSTmu were also detected in other tick species as Hyalomma dromedarii and Rhipicephalus sp. while in Ornithodoros moubata, GSTmu homologue could not be detected.

  11. Isolation and characterization of cDNA clones encoding pig gastric mucin.

    PubMed Central

    Turner, B S; Bhaskar, K R; Hadzopoulou-Cladaras, M; Specian, R D; LaMont, J T

    1995-01-01

    Polyclonal antibodies raised to deglycosylated pig gastric mucin were used to screen a cDNA library constructed with pig stomach mucosal mRNA. Immunocytochemistry indicated that the antibody recognizes intracellular and secreted mucin in surface mucous cells of pig gastric epithelium. A total of 70 clones producing proteins immunoreactive to this antibody were identified, two of which (PGM-2A,9B) were fully sequenced from both ends. Clone PGM-9B hybridized to a polydisperse mRNA (3-9 kb) from pig stomach, but not liver, intestine or spleen, nor to mRNA from human, mouse, rabbit or rat stomach. Sequence analysis indicated that PGM-9B encodes 33 tandem repeats of a 16-amino-acid consensus sequence rich in serine (46%) and threonine (17%). Using the restriction enzyme MwoI, which has a single target site in the repeat, it was demonstrated that PGM-9B consists entirely of this tandem repeat. Southern-blot analysis indicated that the repeat region is contained in a 20 kb HindIII-EcoRI fragment, and BamHI digestion suggested that most of the repeats are contained in a 10 kb fragment. In situ hybridization with an antisense probe to PGM-9B showed an intense signal in the entire gastric gland. Clone PGM-2A also contains the same repeat sequence as 9B, but, in addition, has a 64-amino-acid-long non-repeat region at its 5' end. Interestingly the non-repeat region of PGM-2A has five cysteine residues, the arrangement of which is identical with that reported for human intestinal mucin gene MUC2. Images Figure 1 Figure 2 Figure 5 Figure 6 Figure 7 Figure 8 PMID:7755593

  12. Characterization of proviruses cloned from mink cell focus-forming virus-infected cellular DNA.

    PubMed Central

    Khan, A S; Repaske, R; Garon, C F; Chan, H W; Rowe, W P; Martin, M A

    1982-01-01

    Two proviruses were cloned from EcoRI-digested DNA extracted from mink cells chronically infected with AKR mink cell focus-forming (MCF) 247 murine leukemia virus (MuLV), using a lambda phage host vector system. One cloned MuLV DNA fragment (designated MCF 1) contained sequences extending 6.8 kilobases from an EcoRI restriction site in the 5' long terminal repeat (LTR) to an EcoRI site located in the envelope (env) region and was indistinguishable by restriction endonuclease mapping for 5.1 kilobases (except for the EcoRI site in the LTR) from the 5' end of AKR ecotropic proviral DNA. The DNA segment extending from 5.1 to 6.8 kilobases contained several restriction sites that were not present in the AKR ecotropic provirus. A 0.5-kilobase DNA segment located at the 3' end of MCF 1 DNA contained sequences which hybridized to a xenotropic env-specific DNA probe but not to labeled ecotropic env-specific DNA. This dual character of MCF 1 proviral DNA was also confirmed by analyzing heteroduplex molecules by electron microscopy. The second cloned proviral DNA (designated MCF 2) was a 6.9-kilobase EcoRI DNA fragment which contained LTR sequences at each end and a 2.0-kilobase deletion encompassing most of the env region. The MCF 2 proviral DNA proved to be a useful reagent for detecting LTRs electron microscopically due to the presence of nonoverlapping, terminally located LTR sequences which effected its circularization with DNAs containing homologous LTR sequences. Nucleotide sequence analysis demonstrated the presence of a 104-base-pair direct repeat in the LTR of MCF 2 DNA. In contrast, only a single copy of the reiterated component of the direct repeat was present in MCF 1 DNA. Images PMID:6281459

  13. Functional Identification and Characterization of Genes Cloned from Halophyte Seashore Paspalum Conferring Salinity and Cadmium Tolerance

    PubMed Central

    Chen, Yu; Chen, Chuanming; Tan, Zhiqun; Liu, Jun; Zhuang, Lili; Yang, Zhimin; Huang, Bingru

    2016-01-01

    Salinity-affected and heavy metal-contaminated soils limit the growth of glycophytic plants. Identifying genes responsible for superior tolerance to salinity and heavy metals in halophytes has great potential for use in developing salinity- and Cd-tolerant glycophytes. The objective of this study was to identify salinity- and Cd-tolerance related genes in seashore paspalum (Paspalum vaginatum), a halophytic perennial grass species, using yeast cDNA expression library screening method. Based on the Gateway-compatible vector system, a high-quality entry library was constructed, which contained 9.9 × 106 clones with an average inserted fragment length of 1.48 kb representing a 100% full-length rate. The yeast expression libraries were screened in a salinity-sensitive and a Cd-sensitive yeast mutant. The screening yielded 32 salinity-tolerant clones harboring 18 salinity-tolerance genes and 20 Cd-tolerant clones, including five Cd-tolerance genes. qPCR analysis confirmed that most of the 18 salinity-tolerance and five Cd-tolerance genes were up-regulated at the transcript level in response to salinity or Cd stress in seashore paspalum. Functional analysis indicated that salinity-tolerance genes from seashore paspalum could be involved mainly in photosynthetic metabolism, antioxidant systems, protein modification, iron transport, vesicle traffic, and phospholipid biosynthesis. Cd-tolerance genes could be associated with regulating pathways that are involved in phytochelatin synthesis, HSFA4-related stress protection, CYP450 complex, and sugar metabolism. The 18 salinity-tolerance genes and five Cd-tolerance genes could be potentially used as candidate genes for genetic modification of glycophytic grass species to improve salinity and Cd tolerance and for further analysis of molecular mechanisms regulating salinity and Cd tolerance. PMID:26904068

  14. Cloning and characterization of the human trefoil factor 3 gene promoter.

    PubMed

    Sun, Yong; Wang, Liangxi; Zhou, Yifang; Mao, Xuefei; Deng, Xiangdong

    2014-01-01

    Human trefoil factor 3 (hTFF3) is a small-molecule peptide with potential medicinal value. Its main pharmacological function is to alleviate gastrointestinal mucosal injuries caused by various factors and promote the repair of damaged mucosa. However, how its transcription is regulated is not yet known. The aim of this study was to clone the hTFF3 gene promoter region, identify the core promoter and any transcription factors that bind to the promoter, and begin to clarify the regulation of its expression. The 5' flanking sequence of the hTFF3 gene was cloned from human whole blood genomic DNA by PCR. Truncated promoter fragments with different were cloned and inserted into the pGL3-Basic vector to determine the position of the core hTFF3 promoter. Transcription element maintaining basic transcriptional activity was assessed by mutation techniques. Protein-DNA interactions were analyzed by chromatin immunoprecipitation (ChIP). RNA interference and gene over-expression were performed to assay the effect of transcription factor on the hTFF3 expression. The results showed that approximately 1,826 bp of the fragment upstream of hTFF3 was successfully amplified, and its core promoter region was determined to be from -300 bp to -280 bp through analysis of truncated mutants. Mutation analysis confirmed that the sequence required to maintain basic transcriptional activity was accurately positioned from -300 bp to -296 bp. Bioinformatic analysis indicated that this area contained a Sp1 binding site. Sp1 binding to the hTFF3 promoter was confirmed by ChIP experiments. Sp1 over-expression and interference experiments showed that Sp1 enhanced the transcriptional activity of the hTFF3 promoter and increased hTFF3 expression. This study demonstrated that Sp1 plays an important role in maintaining the transcription of hTFF3.

  15. Cloning and characterization of the methyl coenzyme M reductase genes from Methanobacterium thermoautotrophicum.

    PubMed Central

    Bokranz, M; Bäumner, G; Allmansberger, R; Ankel-Fuchs, D; Klein, A

    1988-01-01

    The genes coding for methyl coenzyme M reductase were cloned from a genomic library of Methanobacterium thermoautotrophicum Marburg into Escherichia coli by using plasmid expression vectors. When introduced into E. coli, the reductase genes were expressed, yielding polypeptides identical in size to the three known subunits of the isolated enzyme, alpha, beta, and gamma. The polypeptides also reacted with the antibodies raised against the respective enzyme subunits. In M. thermoautotrophicum, the subunits are encoded by a gene cluster whose transcript boundaries were mapped. Sequence analysis revealed two more open reading frames of unknown function located between two of the methyl coenzyme M reductase genes. Images PMID:2448287

  16. Isolation, characterization and molecular cloning of a leaf-specific lectin from ramsons (Allium ursinum L.).

    PubMed

    Smeets, K; Van Damme, E J; Van Leuven, F; Peumans, W J

    1997-11-01

    Lectins were isolated from roots and leaves of ramsons and compared to the previously described bulb lectins. Biochemical analyses indicated that the root lectins AUAIr and AUAIIr are identical to the bulb lectins AUAI and AUAII, whereas the leaf lectin AUAL has no counterpart in the bulbs. cDNA cloning confirmed that the leaf lectin differs from the bulb lectins. Northern blot analysis further indicated that the leaf lectin is tissue-specifically expressed. Sequence comparisons revealed that the ramsons leaf lectin differs considerably from the leaf lectins of garlic, leek, onion and shallot.

  17. Reference Inflow Characterization for River Resource Reference Model (RM2)

    SciTech Connect

    Neary, Vincent S

    2011-12-01

    Sandia National Laboratory (SNL) is leading an effort to develop reference models for marine and hydrokinetic technologies and wave and current energy resources. This effort will allow the refinement of technology design tools, accurate estimates of a baseline levelized cost of energy (LCoE), and the identification of the main cost drivers that need to be addressed to achieve a competitive LCoE. As part of this effort, Oak Ridge National Laboratory was charged with examining and reporting reference river inflow characteristics for reference model 2 (RM2). Published turbulent flow data from large rivers, a water supply canal and laboratory flumes, are reviewed to determine the range of velocities, turbulence intensities and turbulent stresses acting on hydrokinetic technologies, and also to evaluate the validity of classical models that describe the depth variation of the time-mean velocity and turbulent normal Reynolds stresses. The classical models are found to generally perform well in describing river inflow characteristics. A potential challenge in river inflow characterization, however, is the high variability of depth and flow over the design life of a hydrokinetic device. This variation can have significant effects on the inflow mean velocity and turbulence intensity experienced by stationary and bottom mounted hydrokinetic energy conversion devices, which requires further investigation, but are expected to have minimal effects on surface mounted devices like the vertical axis turbine device designed for RM2. A simple methodology for obtaining an approximate inflow characterization for surface deployed devices is developed using the relation umax=(7/6)V where V is the bulk velocity and umax is assumed to be the near-surface velocity. The application of this expression is recommended for deriving the local inflow velocity acting on the energy extraction planes of the RM2 vertical axis rotors, where V=Q/A can be calculated given a USGS gage flow time

  18. Positional cloning in maize (Zea mays subsp. mays, Poaceae)1

    PubMed Central

    Gallavotti, Andrea; Whipple, Clinton J.

    2015-01-01

    • Premise of the study: Positional (or map-based) cloning is a common approach to identify the molecular lesions causing mutant phenotypes. Despite its large and complex genome, positional cloning has been recently shown to be feasible in maize, opening up a diverse collection of mutants to molecular characterization. • Methods and Results: Here we outline a general protocol for positional cloning in maize. While the general strategy is similar to that used in other plant species, we focus on the unique resources and approaches that should be considered when applied to maize mutants. • Conclusions: Positional cloning approaches are appropriate for maize mutants and quantitative traits, opening up to molecular characterization the large array of genetic diversity in this agronomically important species. The cloning approach described should be broadly applicable to other species as more plant genomes become available. PMID:25606355

  19. Cloning and characterization of human liver cDNA encoding a protein S precursor.

    PubMed Central

    Hoskins, J; Norman, D K; Beckmann, R J; Long, G L

    1987-01-01

    Human liver cDNA encoding a protein S precursor was isolated from two cDNA libraries by two different techniques. Based upon the frequency of positive clones, the abundance of mRNA for protein S is approximately 0.01%. Blot hybridization of electrophoretically fractionated poly(A)+ RNA revealed a major mRNA approximately 4 kilobases long and two minor forms of approximately 3.1 and approximately equal to 2.6 kilobases. One of the cDNA clones contains a segment encoding a 676 amino acid protein S precursor, as well as 108 and 1132 nucleotides of 5' and 3' noncoding sequence, respectively, plus a poly(A) region at the 3' end. The cDNAs are adenosine plus thymidine-rich (60%) except for the 5' noncoding region, where 78% of the nucleotides are guanosine or cytosine. The protein precursor consists of a 41 amino acid "leader" peptide followed by 635 amino acids corresponding to mature protein S. Comparison of the mature protein region with homologous vitamin K-dependent plasma proteins shows that it is composed of the following domains: an amino-terminal gamma-carboxyglutamic acid-rich region of 37 amino acids; a 36 amino acid linker region rich in hydroxy amino acids; four epidermal growth factor-like segments, each approximately 45 amino acids long; and a 387 amino acid carboxyl-terminal domain of unrecognized structure and unknown function. Images PMID:3467362

  20. Gene cloning, sequence analysis, purification, and characterization of a thermostable aminoacylase from Bacillus stearothermophilus.

    PubMed Central

    Sakanyan, V; Desmarez, L; Legrain, C; Charlier, D; Mett, I; Kochikyan, A; Savchenko, A; Boyen, A; Falmagne, P; Pierard, A

    1993-01-01

    A genomic DNA fragment encoding aminoacylase activity of the eubacterium Bacillus stearothermophilus was cloned into Escherichia coli. Transformants expressing aminoacylase activity were selected by their ability to complement E. coli mutants defective in acetylornithine deacetylase activity, the enzyme that converts N-acetylornithine to ornithine in the arginine biosynthetic pathway. The 2.3-kb cloned fragment has been entirely sequenced. Analysis of the sequence revealed two open reading frames, one of which encoded the aminoacylase. B. stearothermophilus aminoacylase, produced in E. coli, was purified to near homogeneity in three steps, one of which took advantage of the intrinsic thermostability of the enzyme. The enzyme exists as homotetramer of 43-kDa subunits as shown by cross-linking experiments. The deacetylating capacity of purified aminoacylase varies considerably depending on the nature of the amino acid residue in the substrate. The enzyme hydrolyzes N-acyl derivatives of aromatic amino acids most efficiently. Comparison of the predicted amino acid sequence of B. stearothermophilus aminoacylase with those of eubacterial acetylornithine deacylase, succinyldiaminopimelate desuccinylase, carboxypeptidase G2, and eukaryotic aminoacylase I suggests a common origin for these enzymes. Images PMID:8285691

  1. Cloning, chromosomal mapping and characterization of the human metal-regulatory transcription factor MTF-1.

    PubMed Central

    Brugnera, E; Georgiev, O; Radtke, F; Heuchel, R; Baker, E; Sutherland, G R; Schaffner, W

    1994-01-01

    Metallothioneins (MTs) are small cysteine-rich proteins that bind heavy metal ions such as zinc, cadmium and copper with high affinity, and have been functionally implicated in heavy metal detoxification and radical scavenging. Transcription of metallothioneins genes is induced by exposure of cells to heavy metals. This induction is mediated by metal-responsive promoter elements (MREs). We have previously cloned the cDNA of an MRE-binding transcription factor (MTF-1) from the mouse. Here we present the human cDNA equivalent of this metal-regulatory factor. Human MTF-1 is a protein of 753 amino acids with 93% amino acid sequence identity to mouse MTF-1 and has an extension of 78 amino acids at the C-terminus without counterpart in the mouse. The factors of both species have the same overall structure including six zinc fingers in the DNA binding domain. We have physically mapped the human MTF-1 gene to human chromosome 1 where it localizes to the short arm in the region 1p32-34, most likely 1p33. Both human and mouse MTF-1 when produced in transfected mammalian cells strongly bind to a consensus MRE of metallothionein promoters. However, human MTF-1 is more effective than the mouse MTF-1 clone in mediating zinc-induced transcription. Images PMID:8065932

  2. Cloning and Characterization of the Polyether Salinomycin Biosynthesis Gene Cluster of Streptomyces albus XM211

    PubMed Central

    Jiang, Chunyan; Wang, Hougen; Kang, Qianjin; Liu, Jing

    2012-01-01

    Salinomycin is widely used in animal husbandry as a food additive due to its antibacterial and anticoccidial activities. However, its biosynthesis had only been studied by feeding experiments with isotope-labeled precursors. A strategy with degenerate primers based on the polyether-specific epoxidase sequences was successfully developed to clone the salinomycin gene cluster. Using this strategy, a putative epoxidase gene, slnC, was cloned from the salinomycin producer Streptomyces albus XM211. The targeted replacement of slnC and subsequent trans-complementation proved its involvement in salinomycin biosynthesis. A 127-kb DNA region containing slnC was sequenced, including genes for polyketide assembly and release, oxidative cyclization, modification, export, and regulation. In order to gain insight into the salinomycin biosynthesis mechanism, 13 gene replacements and deletions were conducted. Including slnC, 7 genes were identified as essential for salinomycin biosynthesis and putatively responsible for polyketide chain release, oxidative cyclization, modification, and regulation. Moreover, 6 genes were found to be relevant to salinomycin biosynthesis and possibly involved in precursor supply, removal of aberrant extender units, and regulation. Sequence analysis and a series of gene replacements suggest a proposed pathway for the biosynthesis of salinomycin. The information presented here expands the understanding of polyether biosynthesis mechanisms and paves the way for targeted engineering of salinomycin activity and productivity. PMID:22156425

  3. Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification.

    PubMed

    Li, Legong; He, Zengyong; Pandey, Girdhar K; Tsuchiya, Tomofusa; Luan, Sheng

    2002-02-15

    We have identified a detoxifying efflux carrier from Arabidopsis using a functional cloning strategy. A bacterial mutant, KAM3, is deficient in multidrug resistance and does not survive on medium containing norfloxacin. After transformation of KAM3 cells with an Arabidopsis cDNA library, transformants were selected for restored growth on the toxic medium. One cDNA clone that complemented KAM3 encodes a novel protein with twelve putative transmembrane domains and contains limited sequence homology to a multidrug and toxin efflux carrier from bacteria. We named this Arabidopsis protein AtDTX1 (for Arabidopsis thaliana Detoxification 1). A large gene family of at least 56 members encoding related proteins was identified from the Arabidopsis genome. Further functional analysis of AtDTX1 protein in KAM3 mutant demonstrated that AtDTX1 serves as an efflux carrier for plant-derived alkaloids, antibiotics, and other toxic compounds. Interestingly, AtDTX1 was also capable of detoxifying Cd(2+), a heavy metal. Further experiments suggest that AtDTX1 is localized in the plasma membrane in plant cells thereby mediating the efflux of plant-derived or exogenous toxic compounds from the cytoplasm.

  4. Purification, biochemical characterization, and genetic cloning of the phytase produced by Burkholderia sp. strain a13.

    PubMed

    Graminho, Eduardo Rezende; Takaya, Naoki; Nakamura, Akira; Hoshino, Takayuki

    2015-01-01

    A phytase-producing bacterium, Burkholderia sp. a13 (JCM 30421), was isolated from Lake Kasumigaura by enrichment cultivation using minimum medium containing phytic acid as the sole phosphorus source. The phytase production by strain a13 was induced by the presence of phytic acid and repressed by the addition of glucose. The purified enzyme had a molecular weight of 44 kDa and a phytase activity of 174 μmol min(-1) mg(-1). The enzyme showed broad substrate specificity, but the highest activity was observed with phytic acid. The enzyme activity was strongly inhibited by Cu(2+), Zn(2+), Hg(2+), and iodoacetic acid, indicating the requirement of a thiol group for the activity. Genetic cloning reveals that the mature portion of this enzyme consists of 428 amino acids with a calculated molecular weight of 46 kDa. The amino acid sequence showed the highest similarity to the phytase produced by Hafnia alvei with 48% identity; it also contained histidine acid phosphatase (HAP) motifs (RHGXRXP and HD), indicating the classification of this enzyme in the HAP phytase family. We have successfully expressed the cloned gene in Escherichia coli from its putative initiation codon, showing that the gene actually encodes the phytase.

  5. Cloning, Expression, and Characterization of a Novel Thermophilic Monofunctional Catalase from Geobacillus sp. CHB1

    PubMed Central

    2016-01-01

    Catalases are widely used in many scientific areas. A catalase gene (Kat) from Geobacillus sp. CHB1 encoding a monofunctional catalase was cloned and recombinant expressed in Escherichia coli (E. coli), which was the first time to clone and express this type of catalase of genus Geobacillus strains as far as we know. This Kat gene was 1,467 bp in length and encoded a catalase with 488 amino acid residuals, which is only 81% similar to the previously studied Bacillus sp. catalase in terms of amino acid sequence. Recombinant catalase was highly soluble in E. coli and made up 30% of the total E. coli protein. Fermentation broth of the recombinant E. coli showed a high catalase activity level up to 35,831 U/mL which was only lower than recombinant Bacillus sp. WSHDZ-01 among the reported catalase production strains. The purified recombinant catalase had a specific activity of 40,526 U/mg and K m of 51.1 mM. The optimal reaction temperature of this recombinant enzyme was 60°C to 70°C, and it exhibited high activity over a wide range of reaction temperatures, ranging from 10°C to 90°C. The enzyme retained 94.7% of its residual activity after incubation at 60°C for 1 hour. High yield and excellent thermophilic properties are valuable features for this catalase in industrial applications. PMID:27579320

  6. Cloning, Expression, and Characterization of a Novel Thermophilic Monofunctional Catalase from Geobacillus sp. CHB1.

    PubMed

    Jia, Xianbo; Chen, Jichen; Lin, Chenqiang; Lin, Xinjian

    2016-01-01

    Catalases are widely used in many scientific areas. A catalase gene (Kat) from Geobacillus sp. CHB1 encoding a monofunctional catalase was cloned and recombinant expressed in Escherichia coli (E. coli), which was the first time to clone and express this type of catalase of genus Geobacillus strains as far as we know. This Kat gene was 1,467 bp in length and encoded a catalase with 488 amino acid residuals, which is only 81% similar to the previously studied Bacillus sp. catalase in terms of amino acid sequence. Recombinant catalase was highly soluble in E. coli and made up 30% of the total E. coli protein. Fermentation broth of the recombinant E. coli showed a high catalase activity level up to 35,831 U/mL which was only lower than recombinant Bacillus sp. WSHDZ-01 among the reported catalase production strains. The purified recombinant catalase had a specific activity of 40,526 U/mg and K m of 51.1 mM. The optimal reaction temperature of this recombinant enzyme was 60°C to 70°C, and it exhibited high activity over a wide range of reaction temperatures, ranging from 10°C to 90°C. The enzyme retained 94.7% of its residual activity after incubation at 60°C for 1 hour. High yield and excellent thermophilic properties are valuable features for this catalase in industrial applications.

  7. Cloning and characterization of peter pan, a novel Drosophila gene required for larval growth.

    PubMed

    Migeon, J C; Garfinkel, M S; Edgar, B A

    1999-06-01

    We identified a new Drosophila gene, peter pan (ppan), in a screen for larval growth-defective mutants. ppan mutant larvae do not grow and show minimal DNA replication but can survive until well after their heterozygotic siblings have pupariated. We cloned the ppan gene by P-element plasmid rescue. ppan belongs to a highly conserved gene family that includes Saccharomyces cerevisiae SSF1 and SSF2, as well as Schizosaccharomyces pombe, Arabidopsis, Caenorhabditis elegans, mouse, and human homologues. Deletion of both SSF1 and SSF2 in yeast is lethal, and depletion of the gene products causes cell division arrest. Mosaic analysis of ppan mutant clones in Drosophila imaginal disks and ovaries demonstrates that ppan is cell autonomous and required for normal mitotic growth but is not absolutely required for general biosynthesis or DNA replication. Overexpression of the wild-type gene causes cell death and disrupts the normal development of adult structures. The ppan gene family appears to have an essential and evolutionarily conserved role in cell growth.

  8. Cloning and functional characterization of nitrilase from Fusarium proliferatum AUF-2 for detoxification of nitriles.

    PubMed

    Yusuf, Farnaz; Rather, Irshad Ahmad; Jamwal, Urmila; Gandhi, Sumit G; Chaubey, Asha

    2015-07-01

    A fungal nitrilase gene from Fusarium proliferatum AUF-2 was cloned through reverse transcription-PCR. The open reading frame consisted of 903 bp and potentially encoded a protein of 301 amino acid residues with a theoretical molecular mass of 33.0 kDa. The encoding gene was expressed in Escherichia coli strain BL21 and the recombinant protein with His6-tag was purified to electrophoretic homogeneity. The purified enzyme exhibited optimal activity in the range of 35-40 °C and pH 8.0. EDTA, Mg(2+), Zn(2+), Ca(2+), Fe(2+), Fe(3+) and Mn(2+) stimulated hydrolytic activity, whereas Cu(2+), Co(2+) and Ni(2+) had inhibitory effect on nitrilase activity. Ag(+) ions showed a strong inhibitory effect on the recombinant nitrilase activity. This nitrilase was specific towards aliphatic, heterocyclic and aromatic nitriles. The kinetic parameters V(max) and K(m) for benzonitrile substrate were determined to be 14.6 μmol/min/mg protein and 1.55 mM, respectively. Homology modelling and molecular docking studies provided an insight into the substrate specificity and the proposed catalytic triad for recombinant nitrilase consisted of Glu-54, Lys-133 and Cys-175. This is the first report on the cloning and heterologous expression of nitrilase from Fusarium proliferatum.

  9. Cloning and characterization of the hemA region of the Bacillus subtilis chromosome.

    PubMed Central

    Petricek, M; Rutberg, L; Schröder, I; Hederstedt, L

    1990-01-01

    A 3.8-kilobase DNA fragment from Bacillus subtilis containing the hemA gene has been cloned and sequenced. Four open reading frames were identified. The first is hemA, encoding a protein of 50.8 kilodaltons. The primary defect of a B. subtilis 5-aminolevulinic acid-requiring mutant was identified as a cysteine-to-tyrosine substitution in the HemA protein. The predicted amino acid sequence of the B. subtilis HemA protein showed 34% identity with the Escherichia coli HemA protein, which is known to code for the NAD(P)H:glutamyl-tRNA reductase of the C5 pathway for 5-aminolevulinic acid synthesis. The B. subtilis HemA protein also complements the defect of an E. coli hemA mutant. The second open reading frame in the cloned fragment, called ORF2, codes for a protein of about 30 kilodaltons with unknown function. It is not the proposed hemB gene product porphobilinogen synthase. The third open reading frame is hemC, coding for porphobilinogen deaminase. The fourth open reading frame extends past the sequenced fragment and may be identical to hemD, coding for uroporphyrinogen III cosynthase. Analysis of deletion mutants of the hemA region suggests that (at least) hemA, ORF2, and hemC may be part of an operon. Images PMID:2110138

  10. Cloning and Characterization of Novel Testis-Specific Diacylglycerol Kinase η Splice Variants 3 and 4

    PubMed Central

    Murakami, Eri; Shionoya, Takao; Komenoi, Suguru; Suzuki, Yuji; Sakane, Fumio

    2016-01-01

    Diacylglycerol kinase (DGK) phosphorylates DG to generate phosphatidic acid. Recently, we found that a new alternative splicing product of the DGKη gene, DGKη3, which lacks exon 26 encoding 31 amino acid residues, was expressed only in the secondary spermatocytes and round spermatids of the testis. In this study, we cloned the full length DGKη3 gene and confirmed the endogenous expression of its protein product. During the cloning procedure, we found a new testis-specific alternative splicing product of the DGKη gene, DGKη4, which lacks half of the catalytic domain. We examined the DGK activity and subcellular localization of DGKη3 and η4. DGKη3 had almost the same activity as DGKη1, whereas the activity of DGKη4 was not detectable. In resting NEC8 cells (human testicular germ cell tumor cell line), DGKη1, η3 and η4 were broadly distributed in the cytoplasm. When osmotically shocked, DGKη1 and η4 were distributed in punctate vesicles in the cytoplasm. In contrast, DGKη3 was partly translocated to the plasma membrane and co-localized with the actin cytoskeleton. These results suggest that DGKη3 and η4 have properties different from those of DGKη1 and that they play roles in the testis in a different manner. PMID:27643686

  11. Cloning and characterization of two members of the vertebrate Dlx gene family.

    PubMed Central

    Simeone, A; Acampora, D; Pannese, M; D'Esposito, M; Stornaiuolo, A; Gulisano, M; Mallamaci, A; Kastury, K; Druck, T; Huebner, K

    1994-01-01

    A number of vertebrate genes of the Dlx gene family have been cloned in mouse, frog, and zebrafish. These genes contain a homeobox related to that of Distalless, a gene expressed in the developing head and limbs of Drosophila embryos. We cloned and studied the expression of two members of this family, which we named Dlx5 and Dlx6, in human and mouse. The two human genes, DLX5 and DLX6, are closely linked in an inverted convergent configuration in a region of chromosome 7, at 7q22. Similarly, the two human genes DLX1 and DLX2 are closely linked in a convergent configuration at 2q32, near the HOXD (previously HOX4) locus. In situ hybridization experiments in mouse embryos revealed expression of Dlx5 and Dlx6 mRNA in restricted regions of ventral diencephalon and basal telencephalon, with a distribution very similar to that reported for Dlx1 and Dlx2 mRNA. A surprising feature of Dlx5 and Dlx6 is that they are also expressed in all skeletal structures of midgestation embryos after the first cartilage formation. The expression pattern of these genes, together with their chromosome localization, may provide useful cues for the study of congenital disorders in which there is a combination of craniofacial and limb defects. Images PMID:7907794

  12. Molecular cloning, expression, and functional characterization of a cystatin from pineapple stem.

    PubMed

    Shyu, Douglas J H; Chyan, Chia-Lin; Tzen, Jason T C; Chou, Wing-Ming

    2004-08-01

    A cDNA fragment encoding the cysteine protease inhibitor, cystatin, was cloned from pineapple (Ananas comosus) stem. This clone was constructed in a fusion vector and was easily over-expressed in Escherichia coli; satisfactory over-expression of non-fusion cystatin was achieved after an additional start codon was inserted prior to its coding sequence. Both recombinant cystatins were predominately found in the soluble fraction of the cell extract, and were demonstrated to be functionally active in a reverse zymographic assay. The fusion and non-fusion cystatins were separately purified to homogeneity via a His-tag or papain-coupling affinity column. Effective inhibitory activity against papain was detected with both the fusion and non-fusion cystatins with comparable K(i) values of 1.18 x 10(-10) M and 9.53 x 10(-11) M, respectively. The recombinant cystatins were found to be thermally stable up to 60 degrees C. Inhibition of the endogenous protease activity in minced fish muscle revealed that the recombinant pineapple cystatins might be an adequate stabilizer to prevent protein degradation during industrial food processing.

  13. Cloning and characterization of the polyether salinomycin biosynthesis gene cluster of Streptomyces albus XM211.

    PubMed

    Jiang, Chunyan; Wang, Hougen; Kang, Qianjin; Liu, Jing; Bai, Linquan

    2012-02-01

    Salinomycin is widely used in animal husbandry as a food additive due to its antibacterial and anticoccidial activities. However, its biosynthesis had only been studied by feeding experiments with isotope-labeled precursors. A strategy with degenerate primers based on the polyether-specific epoxidase sequences was successfully developed to clone the salinomycin gene cluster. Using this strategy, a putative epoxidase gene, slnC, was cloned from the salinomycin producer Streptomyces albus XM211. The targeted replacement of slnC and subsequent trans-complementation proved its involvement in salinomycin biosynthesis. A 127-kb DNA region containing slnC was sequenced, including genes for polyketide assembly and release, oxidative cyclization, modification, export, and regulation. In order to gain insight into the salinomycin biosynthesis mechanism, 13 gene replacements and deletions were conducted. Including slnC, 7 genes were identified as essential for salinomycin biosynthesis and putatively responsible for polyketide chain release, oxidative cyclization, modification, and regulation. Moreover, 6 genes were found to be relevant to salinomycin biosynthesis and possibly involved in precursor supply, removal of aberrant extender units, and regulation. Sequence analysis and a series of gene replacements suggest a proposed pathway for the biosynthesis of salinomycin. The information presented here expands the understanding of polyether biosynthesis mechanisms and paves the way for targeted engineering of salinomycin activity and productivity.

  14. Cloning and characterization of two Serratia marcescens genes involved in core lipopolysaccharide biosynthesis.

    PubMed Central

    Guasch, J F; Piqué, N; Climent, N; Ferrer, S; Merino, S; Rubires, X; Tomas, J M; Regué, M

    1996-01-01

    Bacteriocin 28b from Serratia marcescens binds to Escherichia coli outer membrane proteins OmpA and OmpF and to lipopolysaccharide (LPS) core (J. Enfedaque, S. Ferrer, J. F. Guasch, J. Tomás, and M. Requé, Can. J. Microbiol. 42:19-26, 1996). A cosmid-based genomic library of S. marcescens was introduced into E. coli NM554, and clones were screened for bacteriocin 28b resistance phenotype. One clone conferring resistance to bacteriocin 28b and showing an altered LPS core mobility in polyacrylamide gel electrophoresis was found. Southern blot experiments using DNA fragments containing E. coli rfa genes as probes suggested that the recombinant cosmid contained S. marcescens genes involved in LPS core biosynthesis. Subcloning, isolation of subclones and Tn5tac1 insertion mutants, and sequencing allowed identification of two apparently cotranscribed genes. The deduced amino acid sequence from the upstream gene showed 80% amino acid identity to the KdtA protein from E. coli, suggesting that this gene codes for the 3-deoxy-manno-octulosonic acid transferase of S. marcescens. The downstream gene (kdtX) codes for a protein showing 20% amino acid identity to the Haemophilus influenzae kdtB gene product. The S. marcescens KdtX protein is unrelated to the KdtB protein of E. coli K-12. Expression of the kdtX gene from S. marcescens in E. coli confers resistance to bacteriocin 28b. PMID:8824620

  15. [Cloning, expression and characterization of a new hybrid AMP gene of Hex-Mag].

    PubMed

    Li, Gui-ping; Chen, Yi-ben

    2007-02-01

    To enhance the antibacterial ability of Magaininl-12, its N side was joined with an alkaline peptide named Hexapeptide( RRWQWR), which would make Magaininl-12 cling to the membrane of bacterial cells even tighter. According to the partiality codon of Pichia pastoris, a new hybrid antibacterial peptide Hex-Mag was designed based on the sequence of Hexapeptide and Magainin( 1-12). Synthesized through gene splicing by overlap extension, the hybrid gene was cloned into pPIC9 to construct the expression vector pPIC9-HM. After restriction enzyme analysis and purification, the pPIC9-HM was transformed into Pichia pastoris GS115. And the positive clones screened by the phenotype were induced by methanol. After optimized the requirements for the flask-shaking culture fermentation, the hybrid antibacterial peptide was expressed on high level. The new peptide, which has a weight of 2.3kDa, could remain its inhibition activity after treating for more than 3 hours in boiled water. Detected by agrose diffusion assay, Hex-Mag showed its broad-spectrum antibacterial abilities not only to Gram-negative bacteria but also to Gram-positive bacteria. The function of additive positive charges were testified by the antibacterial experiments, and the results showed the activity of Hex-Mag was stronger than that of Magainin1-12 obviously.

  16. Cloning and characterization of a tuberous root-specific promoter from cassava (Manihot esculenta Crantz).

    PubMed

    Koehorst-van Putten, Herma J J; Wolters, Anne-Marie A; Pereira-Bertram, Isolde M; van den Berg, Hans H J; van der Krol, Alexander R; Visser, Richard G F

    2012-12-01

    In order to obtain a tuberous root-specific promoter to be used in the transformation of cassava, a 1,728 bp sequence containing the cassava granule-bound starch synthase (GBSSI) promoter was isolated. The sequence proved to contain light- and sugar-responsive cis elements. Part of this sequence (1,167 bp) was cloned into binary vectors to drive expression of the firefly luciferase gene. Cassava cultivar Adira 4 was transformed with this construct or a control construct in which the luciferase gene was cloned behind the 35S promoter. Luciferase activity was measured in leaves, stems, roots and tuberous roots. As expected, the 35S promoter induced luciferase activity in all organs at similar levels, whereas the GBSSI promoter showed very low expression in leaves, stems and roots, but very high expression in tuberous roots. These results show that the cassava GBSSI promoter is an excellent candidate to achieve tuberous root-specific expression in cassava.

  17. CD11b of Ovis canadensis and Ovis aries: molecular cloning and characterization.

    PubMed

    Lawrence, Paulraj K; Srikumaran, Subramaniam

    2007-10-15

    Leukotoxin (Lkt) is the primary virulence factor secreted by Mannheimia haemolytica which causes pneumonia in ruminants. Previously, we have shown that CD18, the beta subunit of beta(2) integrins, mediates Lkt-induced cytolysis of ruminant leukocytes. CD18 associates with four distinct alpha subunits giving rise to four beta(2) integrins, CD11a/CD18 (LFA-1), CD11b/CD18 (Mac-1), CD11c/CD18 (CR4), and CD11d/CD18. It is not known whether all the beta(2) integrins serve as a receptor for Lkt. Since PMNs are the leukocyte subset that is most susceptible to Lkt, and Mac-1 expression on PMNs exceeds that of other beta(2) integrins, it is of interest to determine whether Mac-1 serves as a receptor for Lkt which necessitates the cloning of CD11b and CD18. In this study, we cloned and sequenced the cDNA encoding CD11b of Ovis canadensis (bighorn sheep) and Ovis aries (domestic sheep). CD11b cDNA is 3455 nucleotides long encoding a polypeptide of 1152 amino acids. CD11b polypeptides from these two species exhibit 99% identity with each other, and 92% with that of cattle, and 70-80% with that of the non-ruminants analyzed.

  18. Cloning and molecular characterization of a putative voltage-gated sodium channel gene in the crayfish.

    PubMed

    Coskun, Cagil; Purali, Nuhan

    2016-06-01

    Voltage-gated sodium channel genes and associated proteins have been cloned and studied in many mammalian and invertebrate species. However, there is no data available about the sodium channel gene(s) in the crayfish, although the animal has frequently been used as a model to investigate various aspects of neural cellular and circuit function. In the present work, by using RNA extracts from crayfish abdominal ganglia samples, the complete open reading frame of a putative sodium channel gene has firstly been cloned and molecular properties of the associated peptide have been analyzed. The open reading frame of the gene has a length of 5793 bp that encodes for the synthesis of a peptide, with 1930 amino acids, that is 82% similar to the α-peptide of a sodium channel in a neighboring species, Cancer borealis. The transmembrane topology analysis of the crayfish peptide indicated a pattern of four folding domains with several transmembrane segments, as observed in other known voltage-gated sodium channels. Upon analysis of the obtained sequence, functional regions of the putative sodium channel responsible for the selectivity filter, inactivation gate, voltage sensor, and phosphorylation have been predicted. The expression level of the putative sodium channel gene, as defined by a qPCR method, was measured and found to be the highest in nervous tissue.

  19. Molecular cloning and characterization of the porcine ribosomal protein L21.

    PubMed

    Sun, Wu-Sheng; Chun, Ju-Lan; Kim, Dong-Hwan; Ahn, Jin-Seop; Kim, Min-Kyu; Hwang, In-Sul; Kwon, Dae-Jin; Hwang, Seong-Soo; Lee, Jeong-Woong

    2017-01-04

    Ribosomal protein L21 (RPL21) is a structural component of the 60S subunit of the eukaryotic ribosome. This protein plays an important role in protein synthesis and the occurrence of hereditary diseases. Pig is a common laboratory model, however, to the best of our knowledge, its RPL21 gene has not been cloned to date. In this study, we cloned and identified the full-length sequence of the pig RPL21 gene for the first time. Then we studied its expression pattern and function by overexpression or knockdown approach. As a result, we obtained a 604-bp segment that contains a 483-bp open reading frame encoding 160 amino acids. We found the pig RPL21 gene is located in the "+" strand of chromosome 11, which spans 2167 bp from 4199792 to 4201958. Pig RPL21 protein has nine strands and two helices in its secondary structure. Pig RPL21 is predominantly expressed in the ovary and lung compared to the kidney, small intestine and skin but expressed at lower levels in the heart and liver. Furthermore, we found RPL21 expression level is closely connected with cell proliferation and cell cycle arrest. These results are intended to provide valid information for the further study of pig RPL21.

  20. Homologous cloning, characterization and expression of a new halophyte phytochelatin synthase gene in Suaeda salsa

    NASA Astrophysics Data System (ADS)

    Cong, Ming; Zhao, Jianmin; Lü, Jiasen; Ren, Zhiming; Wu, Huifeng

    2016-09-01

    The halophyte Suaeda salsa can grow in heavy metal-polluted areas along intertidal zones having high salinity. Since phytochelatins can eff ectively chelate heavy metals, it was hypothesized that S. salsa possessed a phytochelatin synthase (PCS) gene. In the present study, the cDNA of PCS was obtained from S. salsa (designated as SsPCS) using homologous cloning and the rapid amplification of cDNA ends (RACE). A sequence analysis revealed that SsPCS consisted of 1 916 bp nucleotides, encoding a polypeptide of 492 amino acids with one phytochelatin domain and one phytochelatin C domain. A similarity analysis suggested that SsPCS shared up to a 58.6% identity with other PCS proteins and clustered with PCS proteins from eudicots. There was a new kind of metal ion sensor motif in its C-terminal domain. The SsPCS transcript was more highly expressed in elongated and fibered roots and stems ( P<0.05) than in leaves. Lead and mercury exposure significantly enhanced the mRNA expression of SsPCS ( P<0.05). To the best of our knowledge, SsPCS is the second PCS gene cloned from a halophyte, and it might contain a diff erent metal sensing capability than the first PCS from Thellungiella halophila. This study provided a new view of halophyte PCS genes in heavy metal tolerance.

  1. Cloning and characterization of DNA complementary to the canine distemper virus mRNA encoding matrix, phosphoprotein, and nucleocapsid protein

    SciTech Connect

    Rozenblatt, S.; Eizenberg, O.; Englund, G.; Bellini, W.J.

    1985-02-01

    Double-stranded cDNA synthesized from total polyadenylate-containing mRNA, extracted from monkey kidney cells infected with canine distemper virus (CDV), has been cloned into the PstI site of Escherichia coli plasmid pBR322. Clones containing canine distemper virus DNA were identified by hybridization to a canine distemper virus-specific, /sup 32/P-labeled cDNA. Four specific clones containing different classes of sequences have been identified. The cloned plasmids contain inserts of 800 (clone 44-80), 960 (clone 74-16), 1700 (clone 364), and 950 (clone 40-9) base pairs. The sizes of the mRNA species complementary to these inserts are 1500, 1850, 1850 and 2500 nucleotides, respectively, as determined by the Northern technique. Three of the cloned DNA fragments were further identified as the reverse transcripts of the mRNA coding for the matrix, phosphoprotein, and nucleocapsid protein of CDV.

  2. A Bowman-Birk protease inhibitor purified, cloned, sequenced and characterized from the seeds of Maclura pomifera (Raf.) Schneid.

    PubMed

    Indarte, Martín; Lazza, Cristian M; Assis, Diego; Caffini, Néstor O; Juliano, María A; Avilés, Francesc X; Daura, Xavier; López, Laura M I; Trejo, Sebastián A

    2017-02-01

    A new BBI-type protease inhibitor with remarkable structural characteristics was purified, cloned, and sequenced from seeds of Maclura pomifera , a dicotyledonous plant belonging to the Moraceae family. In this work, we report a Bowman-Birk inhibitor (BBI) isolated, purified, cloned, and characterized from Maclura pomifera seeds (MpBBI), the first of this type from a species belonging to Moraceae family. MpBBI was purified to homogeneity by RP-HPLC, total RNA was extracted from seeds of M. pomifera, and the 3'RACE-PCR method was applied to obtain the cDNA, which was cloned and sequenced. Peptide mass fingerprinting (PMF) analysis showed correspondence between the in silico-translated protein and MpBBI, confirming that it corresponds to a new plant protease inhibitor. The obtained cDNA encoded a polypeptide of 65 residues and possesses 10 cysteine residues, with molecular mass of 7379.27, pI 6.10, and extinction molar coefficient of 9105 M(-1) cm(-1). MpBBI inhibits strongly trypsin with K i in the 10(-10) M range and was stable in a wide array of pH and extreme temperatures. MpBBI comparative modeling was applied to gain insight into its 3D structure and highlighted some distinguishing features: (1) two non-identical loops, (2) loop 1 (CEEESRC) is completely different from any known BBI, and (3) the amount of disulphide bonds is also different from any reported BBI from dicot plants.

  3. Purification, characterization and molecular cloning of glycosylphosphatidylinositol-anchored arginine-specific ADP-ribosyltransferases from chicken.

    PubMed

    Terashima, Masaharu; Osago, Harumi; Hara, Nobumasa; Tanigawa, Yoshinori; Shimoyama, Makoto; Tsuchiya, Mikako

    2005-08-01

    Mono-ADP-ribosylation is a post-translational modification that regulates the functions of target proteins or peptides by attaching an ADP-ribose moiety. Here we report the purification, molecular cloning, characterization and tissue-specific distribution of novel arginine-specific Arts (ADP-ribosyltransferases) from chicken. Arts were detected in various chicken tissues as GPI (glycosylphosphatidylinositol)-anchored forms, and purified from the lung membrane fraction. By molecular cloning based on the partial amino acid sequence using 5'- and 3'-RACE (rapid amplification of cDNA ends), two full-length cDNAs of chicken GPI-anchored Arts, cgArt1 (chicken GPI-anchored Art1) and cgArt2, were obtained. The cDNA of cgArt1 encoded a novel polypeptide of 298 amino acids which shows a high degree of identity with cgArt2 (82.9%), Art6.1 (50.2%) and rabbit Art1 (42.1%). In contrast, the nucleotide sequence of cgArt2 was identical with that of Art7 cloned previously from chicken erythroblasts. cgArt1 and cgArt2 proteins expressed in DT40 cells were shown to be GPI-anchored Arts with a molecular mass of 45 kDa, and these Arts showed different enzymatic properties from the soluble chicken Art, Art6.1. RNase protection assays and real-time quantitative PCR revealed distinct expression patterns of the two Arts; cgArt1 was expressed predominantly in the lung, spleen and bone marrow, followed by the heart, kidney and muscle, while cgArt2 was expressed only in the heart and skeletal muscle. Thus GPI-anchored Arts encoded by the genes cgArt1 and cgArt2 are expressed extensively in chicken tissues. It may be worthwhile determining the functional roles of ADP-ribosylation in each tissue.

  4. Integration of Cot Analysis, DNA Cloning, and High-Throughput Sequencing Facilitates Genome Characterization and Gene Discovery

    PubMed Central

    Peterson, Daniel G.; Schulze, Stefan R.; Sciara, Erica B.; Lee, Scott A.; Bowers, John E.; Nagel, Alexander; Jiang, Ning; Tibbitts, Deanne C.; Wessler, Susan R.; Paterson, Andrew H.

    2002-01-01

    Cot-based sequence discovery represents a powerful means by which both low-copy and repetitive sequences can be selectively and efficiently fractionated, cloned, and characterized. Based upon the results of a Cot analysis, hydroxyapatite chromatography was used to fractionate sorghum (Sorghum bicolor) genomic DNA into highly repetitive (HR), moderately repetitive (MR), and single/low-copy (SL) sequence components that were consequently cloned to produce HRCot, MRCot, and SLCot genomic libraries. Filter hybridization (blotting) and sequence analysis both show that the HRCot library is enriched in sequences traditionally found in high-copy number (e.g., retroelements, rDNA, centromeric repeats), the SLCot library is enriched in low-copy sequences (e.g., genes and “nonrepetitive ESTs”), and the MRCot library contains sequences of moderate redundancy. The Cot analysis suggests that the sorghum genome is approximately 700 Mb (in agreement with previous estimates) and that HR, MR, and SL components comprise 15%, 41%, and 24% of sorghum DNA, respectively. Unlike previously described techniques to sequence the low-copy components of genomes, sequencing of Cot components is independent of expression and methylation patterns that vary widely among DNA elements, developmental stages, and taxa. High-throughput sequencing of Cot clones may be a means of “capturing” the sequence complexity of eukaryotic genomes at unprecedented efficiency. [Online supplementary material is available at www.genome.org. The sequence data described in this paper have been submitted to the GenBank under accession nos. AZ921847-AZ923007. Reagents, samples, and unpublished information freely provided by H. Ma and J. Messing.] PMID:11997346

  5. Physical Characterization of human centromeric regions using transformation-associated recombination cloning technology

    SciTech Connect

    Vladimir Larionov, Ph D

    2007-06-05

    A special interest in the organization of human centromeric DNA was stimulated a few years ago when two independent groups succeeded in reconstituting a functional human centromere, using constructs carrying centromere-specific alphoid DNA arrays. This work demonstrated the importance of DNA components in mammalian centromeres and opened a way for studying the structural requirements for de novo kinetochore formation and for construction of human artificial chromosomes (HACs) with therapeutic potential. To elucidate the structural requirements for formation of HACs with a functional kinetochore, we developed a new method for cloning of large DNA fragments for human centromeric regions that can be used as a substrate for HAC formation. This method exploits in vivo recombination in yeast (TAR cloning). In addition, a new strategy for the construction of alphoid DNA arrays was developed in our lab. The strategy involves the construction of uniform or hybrid synthetic alphoid DNA arrays by the RCA-TAR technique. This technique comprises two steps: rolling circle amplification of an alphoid DNA dimer and subsequent assembling of the amplified fragments by in vivo homologous recombination in yeast (Figure 1). Using this system, we constructed a set of different synthetic alphoid DNA arrays with a predetermined sequence varying in size from 30 to 140 kb and demonstrated that some of the arrays are competent in HAC formation. Because any nucleotide can be changed in a dimer before its amplification, this new technique is optimal for identifying the structural requirements for de novo kinetochore formation in HACs. Moreover, the technique makes possible to introduce into alphoid DNA arrays recognition sites for DNA-binding proteins. We have made the following progress on the studying of human centromeric regions using transformation-associated recombination cloning technology: i) minimal size of alphoid DNA array required for de novo kinetochore formation was estimated; ii

  6. Construction, characterization and expression of full length cDNA clone of sheep YAP1 gene.

    PubMed

    Sun, Wei; Li, Da; Su, Rui; Musa, Hassan H; Chen, Ling; Zhou, Hong

    2014-02-01

    RT-PCR, 5'RACE, 3'RACE were used to clone sheep full length cDNA sequence of YAP1 (Yes-associated protein 1), eukaryotic expression plasmid and a mutant that cannot be phosphorylated at Ser42 was successfully constructed. The amino acid sequence analysis revealed that sheep YAP1 gene encoded water-soluble protein and its relative molecular weight and isoelectric point was 44,079.0 Da and 4.91, respectively. Sub-cellular localization of YAP1 was in the nucleus, it is hydrophilic non-transmembrane and non-secreted protein. YAP1 protein contained 33 phosphorylation sites, seven glycosylation sites and two WW domains. The secondary structure of YAP1 was mainly composed of random coil, while the tertiary structure of domain area showed a forniciform helix structure. YAP1 gene was expressed in different tissues, the highest expression was in kidney and the lowest was in hypothalamus. The CDS of sheep YAP1was amplified by RT-PCR from healthy sheep longissimus dorsi muscle, cloned into pMD19-T simple vector by T/A ligation. YAP1 coding region was further sub-cloned into pEGFP-C1 vector by T4 Ligase to construct a eukaryotic expression plasmid and then make the eukaryotic expression vector as the template to construct the phosphorylation site mutant. PCR, restriction enzyme and sequencing were used to confirm the recombinant plasmid. The sheep full-length YAP1 cDNA sequence is 1712 in length encoding 403 amino acids. It was confirmed that the sheep YAP1 CDS was correctly inserted into eukaryotic expression vector and serine had been mutated to alanine by PCR, restriction digestion and sequencing. The result showed that the recombinant plasmid pEGFP-C1-YAP1 and pEGFP-C1-YAP1 S42A was constructed correctly, this will help for further studies on the YAP1 protein expression and its biological activities.

  7. Cloning, expression, and characterization of catechol 1,2-dioxygenase from a phenol-degrading Candida tropicalis JH8 strain.

    PubMed

    Long, Yan; Yang, Sheng; Xie, Zhixiong; Cheng, Li

    2016-10-02

    The sequence cato encoding catechol 1,2-dioxygenase from Candida tropicalis JH8 was cloned, sequenced, and expressed in Escherichia coli. The sequence cato contained an ORF of 858 bp encoding a polypeptide of 285 amino acid residues. The recombinant catechol 1,2-dioxygenase exists as a homodimer structure with a subunit molecular mass of 32 KD. Recombinant catechol 1,2-dioxygenase was unstable below pH 5.0 and stable from pH 7.0 to 9.0; its optimum pH was at 7.5. The optimum temperature for the enzyme was 30°C, and it possessed a thermophilic activity within a broad temperature range. Under the optimal conditions with catechol as substrate, the Km and Vmax of recombinant catechol 1,2-dioxygenase were 9.2 µM and 0.987 µM/min, respectively. This is the first article presenting cloning and expressing in E. coli of catechol 1,2-dioxygenase from C. tropicalis and characterization of the recombinant catechol 1,2-dioxygenase.

  8. Genetic characterization and cloning of Mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster

    SciTech Connect

    Sekelsky, J.J.; Newfeld, S.J.; Raftery, L.A.; Chartoff, E.H.; Gelbart, W.M.

    1995-03-01

    The decapentaplegic (dpp) gene of Drosophila melanogaster encodes a growth factor that belongs to the transforming growth factor-{beta} (TGF-{beta}) superfamily and that plays a central role in multiple cell-cell signaling events throughout development. Through genetic screens we are seeking to identify other functions that act upstream, downstream or in concert with dpp to mediate its signaling role. We report the genetic characterization and cloning of Mothers against dpp (Mad), a gene identified in two such screens. Mad loss-of-function mutations interact with dpp alleles to enhance embryonic dorsal-ventral patterning defects, as well as adult appendage defects, suggesting a role for Mad in mediating some aspect of dpp function. In support of this, homozygous Mad mutant animals exhibit defects in midgut morphogenesis, imaginal disk development and embryonic dorsal-ventral patterning that are very reminiscent of dpp mutant phenotypes. We cloned the Mad region and identified the Mad transcription unit through germline transformation rescue. We sequenced a Mad cDNA and identified three Mad point mutations that alter the coding information. The predicted MAD polypeptide lacks known protein motifs, but has strong sequence similarity to three polypeptides predicted from genomic sequence from the nematode Caenorhabiditis elegans. Hence, MAD is a member of a novel, highly conserved protein family. 60 refs., 8 figs., 3 tabs.

  9. Molecular cloning and characterization of the light-harvesting chlorophyll a/b gene from the pigeon pea (Cajanus cajan).

    PubMed

    Qiao, Guang; Wen, Xiao-Peng; Zhang, Ting

    2015-12-01

    Light-harvesting chlorophyll a/b-binding proteins (LHCB) have been implicated in the stress response. In this study, a gene encoding LHCB in the pigeon pea was cloned and characterized. Based on the sequence of a previously obtained 327 bp Est, a full-length 793 bp cDNA was cloned using the rapid amplification of cDNA ends (RACE) method. It was designated CcLHCB1 and encoded a 262 amino acid protein. The calculated molecular weight of the CcLHCB1 protein was 27.89 kDa, and the theoretical isoelectric point was 5.29. Homology search and sequence multi-alignment demonstrated that the CcLHCB1 protein sequence shared a high identity with LHCB from other plants. Bioinformatics analysis revealed that CcLHCB1 was a hydrophobic protein with three transmembrane domains. By fluorescent quantitative real-time polymerase chain reaction (PCR), CcLHCB1 mRNA transcripts were detectable in different tissues (leaf, stem, and root), with the highest level found in the leaf. The expression of CcLHCB1 mRNA in the leaves was up-regulated by drought stimulation and AM inoculation. Our results provide the basis for a better understanding of the molecular organization of LCHB and might be useful for understanding the interaction between plants and microbes in the future.

  10. Genomic cloning, characterization and statistical analysis of an antitumor-analgesic peptide from Chinese scorpion Buthus martensii Karsch.

    PubMed

    Cui, Yong; Liu, Yanfeng; Chen, Qiqing; Zhang, Rong; Song, Yongbo; Jiang, Zhuopu; Wu, Chunfu; Zhang, Jinghai

    2010-09-01

    The genomic DNA sequence encoding an antitumor-analgesic peptide was amplified from the genome of Chinese scorpion Buthus martensii Karsch (BmKAGAP), then cloned and sequenced. An intron, with a high A + T content (61.6%), splits a glycine codon near the end of the precursor signal peptide and the consensus GT/AG splice junction was identified in the BmKAGAP gene. Using PCR amplification, we confirmed the identity of our cloned cDNA, and found that the BmKAGAP gene contained an intron of 506 bp in length, which was almost identical to that of the characterized scorpion sodium channel ligands in size, consensus junctions, putative branch point and A + T content. This is the first report of using a statistical method for Chinese scorpion B. martensii Karsch genomic sequence analysis, involving the extraction of some putative transcription regulatory factors. Moreover, it establishes a theoretical foundation for studying the relationship between scorpion evolution, gene expression and protein function.

  11. Cloning and characterization of the C. elegans histidyl-tRNA synthetase gene.

    PubMed Central

    Amaar, Y G; Baillie, D L

    1993-01-01

    In this paper, we report the cloning and sequencing of the C. elegans histidyl-tRNA synthetase gene. The complete genomic sequence, and most of the cDNA sequence, of this gene is now determined. The gene size including flanking and coding regions is 2230 nucleotides long. Three small introns (45-50 bp long) are found to interrupt the open reading frame. The open reading frame translates to 523 amino acids. This putative protein sequence shows extensive homology with the human and yeast histidyl-tRNA the histidyl-tRNA synthetase gene is a single copy gene. Hence, it is very likely that it encodes both the cytoplasmic and the mitochondrial histidyl-tRNA synthetases. It is likely to be trans-spliced since it contains a trans-splice site in its 5' untranslated region. PMID:8414990

  12. Cloning and Characterization of Inducible Nitric Oxide Synthase from Mouse Macrophages

    NASA Astrophysics Data System (ADS)

    Xie, Qiao-Wen; Cho, Hearn J.; Calaycay, Jimmy; Mumford, Richard A.; Swiderek, Kristine M.; Lee, Terry D.; Ding, Aihao; Troso, Tiffany; Nathan, Carl

    1992-04-01

    Nitric oxide (NO) conveys a variety of messages between cells, including signals for vasorelaxation, neurotransmission, and cytotoxicity. In some endothelial cells and neurons, a constitutive NO synthase is activated transiently by agonists that elevate intracellular calcium concentrations and promote the binding of calmodulin. In contrast, in macrophages, NO synthase activity appears slowly after exposure of the cells to cytokines and bacterial products, is sustained, and functions independently of calcium and calmodulin. A monospecific antibody was used to clone complementary DNA that encoded two isoforms of NO synthase from immunologically activated mouse macrophages. Liquid chromatography-mass spectrometry was used to confirm most of the amino acid sequence. Macrophage NO synthase differs extensively from cerebellar NO synthase. The macrophage enzyme is immunologically induced at the transcriptional level and closely resembles the enzyme in cytokine-treated tumor cells and inflammatory neutrophils.

  13. Cloning and characterization of 40S ribosomal protein S4 gene from Culex pipiens pallens.

    PubMed

    Hu, Xiaobang; Wang, Weijie; Zhang, Donghui; Jiao, Jianhua; Tan, Wenbin; Sun, Yan; Ma, Lei; Zhu, Changliang

    2007-02-01

    The 40S ribosomal protein S4 gene (RPS4) has been cloned from Culex pipiens pallens. An open reading frame (ORF) of 789 bp was found to encode a putative 262 amino acid protein. The deduced amino acid sequence shares 96% and 91% identity with RPS4 genes from Aedes and Anopheles respectively. Transcript expression of RPS4 was determined by real-time PCR in all life stages of deltamethrin-susceptible and -resistant strains. The results demonstrated that this gene is expressed at all developmental stages. Meanwhile, in pupae and adults, RPS4 is overexpressed in deltamethrin-resistant strain than in -susceptible strain. Our data for the first time suggests that increased expression of the RPS4 gene may play some role in the development of deltamethrin resistance in C. pipiens pallens.

  14. Cloning, expression and characterization of a thiolase gene from Clostridium pasteurianum.

    PubMed

    Meng, Yonghong; Li, Jilun

    2006-08-01

    A thl gene encoding the thiolase (EC 2.3.1.9) of Clostridium pasteurianum was cloned by thermal asymmetric interlaced (TAIL) PCR. It consists of 1179 bp with 36.8% GC content and encodes 392 amino acids with a deduced molecular mass of 40,954 Da and shows 77% identity and 88% similarity to that of Clostridium tetani E88 and should be classified as a biosynthetic thiolase with three conserved residues Cys89, Cys382 and His352. The gene was over-expressed in Escherichia coli and the thiolase was purified with Ni-NTA agarose column to homogeneity. The K(m) of this thiolase for acetoacetyl-CoA is 0.13 mM with 0.06 mM CoASH at pH 8.2, 25 degrees C and a V(max) value of 46 micromol min(-1) mg(-1).

  15. Molecular cloning and characterization of a novel mannose-binding lectin gene from Amorphophallus konjac.

    PubMed

    Fei, Jiong; Liao, Zhihua; Chai, Yourong; Pang, Yongzhen; Yao, Jianhong; Sun, Xiaofen; Tang, Kexuan

    2003-09-01

    A new lectin gene was cloned from Amorphophallus konjac. The full-length cDNA of Amorphophallus konjac agglutinin (aka) was 736 bp and contained a 474 bp open reading frame encoding a 158 amino acid protein. Homology analysis revealed that the lectin from this Araceae species belonged to the superfamily of monocot mannose-binding proteins. Molecular modeling of AKA indicated that the three-dimensional structure of AKA strongly resembles that of the snowdrop lectin. Southern blot analysis of the genomic DNA revealed that aka belonged to a low-copy gene family. Northern blot analysis demonstrated that aka expression was tissue-specific with the strongest expression being found in root.

  16. Biodegradable plastic-degrading enzyme from Pseudozyma antarctica: cloning, sequencing, and characterization.

    PubMed

    Shinozaki, Yukiko; Morita, Tomotake; Cao, Xiao-hong; Yoshida, Shigenobu; Koitabashi, Motoo; Watanabe, Takashi; Suzuki, Ken; Sameshima-Yamashita, Yuka; Nakajima-Kambe, Toshiaki; Fujii, Takeshi; Kitamoto, Hiroko K

    2013-04-01

    Pseudozyma antarctica JCM 10317 exhibits a strong degradation activity for biodegradable plastics (BPs) such as agricultural mulch films composed of poly(butylene succinate) (PBS) and poly(butylene succinate-co-adipate) (PBSA). An enzyme named PaE was isolated and the gene encoding PaE was cloned from the strain by functional complementation in Saccharomyces cerevisiae. The deduced amino acid sequence of PaE contains 198 amino acids with a predicted molecular weight of 20,362.41. High identity was observed between this sequence and that of cutinase-like enzymes (CLEs) (61-68%); therefore, the gene encoding PaE was named PaCLE1. The specific activity of PaE against emulsified PBSA was 54.8±6.3 U/mg. In addition to emulsified BPs, PaE degraded solid films of PBS, PBSA, poly(ε-caprolactone), and poly(lactic acid).

  17. Cloning and characterization of the goadsporin biosynthetic gene cluster from Streptomyces sp. TP-A0584.

    PubMed

    Onaka, Hiroyasu; Nakaho, Mizuho; Hayashi, Keiko; Igarashi, Yasuhiro; Furumai, Tamotsu

    2005-12-01

    The biosynthetic gene cluster of goadsporin, a polypeptide antibiotic containing thiazole and oxazole rings, was cloned from Streptomyces sp. TP-A0584. The cluster contains a structural gene, godA, and nine god (goadsporin) genes involved in post-translational modification, immunity and transcriptional regulation. Although the gene organization is similar to typical bacteriocin biosynthetic gene clusters, each goadsporin biosynthetic gene shows low homology to these genes. Goadsporin biosynthesis is initiated by the translation of godA, and the subsequent cyclization, dehydration and acetylation are probably catalysed by godD, godE, godF, godG and godH gene products. godI shows high similarity to the 54 kDa subunit of the signal recognition particle and plays an important role in goadsporin immunity. Furthermore, four goadsporin analogues were produced by site-directed mutagenesis of godA, suggesting that this biosynthesis machinery is used for the heterocyclization of peptides.

  18. Cloning, expression, purification and characterization of an iron-dependent regulator protein from Thermobifida fusca.

    PubMed

    Granger, Joseph B; Lu, Zeyu; Ferguson, Jordan B; Santa Maria, Peter J; Novak, Walter R P

    2013-12-01

    Iron-dependent regulators (IdeRs) control the transcription of a variety of genes associated with iron homeostasis in Gram-positive bacteria. In this study we report the cloning of a putative IdeR gene from the moderate thermophile Thermobifida fusca into the pET-21a(+) expression vector. The expressed protein, Tf-IdeR, was purified using immobilized metal affinity and size-exclusion chromatography, and yielded approximately 12-16 mg of protein per liter of culture. The purified Tf-IdeR protein binds the tox operator sequence in the presence of divalent metal ions. Two Tf-IdeR binding sites were identified in the T. fusca genome upstream of a putative enterobactin exporter and a putative ABC-type multidrug transporter.

  19. Cloning and characterization of a protein elicitor Sm1 gene from Trichoderma harzianum.

    PubMed

    Freitas, Rachel Silveira; Steindorff, Andrei Stecca; Ramada, Marcelo Henrique Soller; de Siqueira, Saulo José Linhares; Noronha, Eliane Ferreira; Ulhoa, Cirano José

    2014-04-01

    A small protein, cysteine-rich, designated SM1, produced by Trichoderma virens and Trichoderma atroviride, acts as elicitor for triggering plant defense reactions. We analyzed Sm1 gene expression of eight different strains of Trichoderma spp. grown on glucose, seeds or roots of beans. Regardless of the carbon source, T37 strain had significantly higher Sm1 expression and was chosen for further studies. When grown on different carbon sources, Sm1 expression was highest on galactose, bean seed, glucose and starch. Sm1 gene from T37 strain was cloned; it had a single exon, and encoded a protein of 138 amino acids, showing high sequence identity with some proteins belonging to the cerato-platanin family.

  20. Cloning and characterization of an abalone (Haliotis discus hannai) actin gene

    NASA Astrophysics Data System (ADS)

    Ma, Hongming; Xu, Wei; Mai, Kangsen; Liufu, Zhiguo; Chen, Hong

    2004-10-01

    An actin encoding gene was cloned by using RT-PCR, 3‧ RACE and 5‧ RACE from abalone Haliotis discus hannai. The full length of the gene is 1532 base pairs, which contains a long 3‧ untranslated region of 307 base pairs and 79 base pairs of 5‧ untranslated sequence. The open reading frame encodes 376 amino acid residues. Sequence comparison with those of human and other mollusks showed high conservation among species at amino acid level. The identities was 96%, 97% and 96% respectively compared with Aplysia californica, Biomphalaria glabrata and Homo sapience β-actin. It is also indicated that this actin is more similar to the human cytoplasmic actin (β-actin) than to human muscle actin.

  1. Cloning and characterization of tissue inhibitor of metalloproteinase-3 (TIMP-3) from shark, Scyliorhinus torazame.

    PubMed

    Kim, J T; Kim, M S; Bae, M K; Song, H S; Ahn, M Y; Kim, Y J; Lee, S J; Kim, K W

    2001-01-26

    We cloned the full-length cDNA encoding TIMP-3 from the cartilage of cloudy dogfish, Scyliorhinus torazame. The entire open reading frame was composed of 645 nucleotides and 214 residues including 12 conserved cysteines and asparagine-184, a putative site for N-linked sugars. It showed about 72% identity to those of other species based on the deduced amino acid sequence. The mRNA of shark TIMP-3 were expressed abundantly in brain and cartilage tissues. To investigate the roles of shark TIMP-3, an expression vector was constructed and transfected into HT1080 human fibrosarcoma cells. Overexpression of shark TIMP-3 reduced the activity of MMP-2 in gelatin zymography. Through human Alu PCR based CAM assay, we also confirmed that shark TIMP-3 transfected HT1080 cells had less intravasation effects.

  2. Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1)

    SciTech Connect

    Berx, G.; Staes, K.; Hengel, J. van

    1995-03-20

    E-cadherin is a Ca{sup 2+}-dependent epithelial cell-cell adhesion molecule. Downregulation of E-cadherin expression often correlates with strong invasive potential and poor prognosis of human carcinomas. By using recombinant {lambda} phage, cosmid, and P1 phage clones, we isolated the full-length human E-cadherin gene (CDH1). The gene spans a region of approximately 100 kb, and its location on chromosome 16q22.1 was confirmed by FISH analysis. Detailed restriction mapping and partial sequence analysis of the gene allowed us to identify 16 exons and a 65-kb-long intron 2. The intron-exon boundaries are highly conserved in comparison with other {open_quotes}classical cadherins.{close_quotes} In intron 1 we identified a high-density CpG island that may be implicated in transcription regulation during embryogenesis and malignancy. 52 refs., 2 figs., 2 tabs.

  3. Cloning and characterization of a Leishmania gene encoding a RNA spliced leader sequence.

    PubMed Central

    Miller, S I; Landfear, S M; Wirth, D F

    1986-01-01

    Recent studies on leishmania enriettii tubulin mRNAs revealed a 35 nucleotide addition to their 5' end. The gene that codes for this 35 nucleotide leader sequence has now been cloned and sequenced. In the Leishmania genome, the spliced leader gene exists as a tandem repeat of 438 bases. There are approximately 150 copies of this gene comprising 0.1% of the parasite genome. This gene codes for a 85 nucleotide transcript that contains the spliced leader at its 5' end. The 35 nucleotide sequence and the regions immediately 5' and 3' to it are highly conserved across trypanosomatids. We have detected a RNA molecule that is a putative by-product of the processing reaction in which the 35 nucleotide spliced leader has been transferred to mRNA. We suggest that this molecule is the remnant of the spliced leader transcript after removal of the 35 nucleotide spliced leader. Images PMID:2429261

  4. Characterization of feline TRIM genes: molecular cloning, expression in tissues, and response to type I interferon.

    PubMed

    Koba, Ryota; Kokaji, Chika; Fujisaki, Gentoku; Oguma, Keisuke; Sentsui, Hiroshi

    2013-05-15

    Members of the tripartite motif (TRIM) protein family in mammals are responsible for various cellular processes. Previous studies have revealed that several TRIM proteins were induced by interferons (IFN) and that these proteins were involved in innate immune response against retroviral infection. Although retroviral infection is prevalent in domestic cats, the expression profiles and roles of feline TRIM genes against these viral infections are not well understood. In the present study, we examined tissue expression and IFN inducibility of nine feline TRIM genes. In addition, the complete coding sequences of six cloned TRIM genes were determined, and their structures were analyzed. Nine TRIM genes were expressed in feline tissues and five were up-regulated by type I IFN. The predicted amino acid sequence of six feline TRIM proteins showed high sequence similarities to other mammalian TRIM proteins, and suggest that feline TRIM genes are potentially involved in antiviral reactivity in IFN-mediated immune response.

  5. Cloning, characterization, and regulation of nifF from Rhodobacter capsulatus.

    PubMed Central

    Gennaro, G; Hübner, P; Sandmeier, U; Yakunin, A F; Hallenbeck, P C

    1996-01-01

    The Rhodobacter capsulatus nifF gene and upstream sequence were cloned by using a probe based on the N-terminal sequence of NifF. nifF was found to not be contained in the previously described nif regions I, II, and III. Comparison of the deduced amino acid sequence showed that it is highly similar to NifF from Azotobacter vinelandii and NifF from Klebsiella pneumoniae. Analysis of translational fusions demonstrated that the regulation of transcription was the same as previously reported at the protein level. Insertional mutagen esis showed that NifF contributes significantly to nitrogenase activity under normal nitrogen-fixing conditions and that it is absolutely required for nitrogen fixation under iron limitation. PMID:8682802

  6. Thermostable alpha-galactosidase from Bacillus stearothermophilus NUB3621: cloning, sequencing and characterization.

    PubMed

    Fridjonsson, O; Watzlawick, H; Gehweiler, A; Mattes, R

    1999-07-01

    An alpha-galactosidase gene from the thermophilic bacterium Bacillus stearothermophilus NUB3621 was cloned, sequenced, expressed in Escherichia coli and the recombinant protein was purified. The Bacillus enzyme, designated AgaN, is similar to alpha-galactosidases of family 36 in the classification of glycosyl hydrolases. The enzyme was estimated to be a tetramer with a molecular mass of subunits 80.3 kDa. The purified AgaN is thermostable and has a temperature optimum of activity at 75 degrees C and a half-life of inactivation of 19 h at 70 degrees C. AgaN displays high affinity for oligomeric substrates such as melibiose and raffinose and is able to hydrolyze raffinose in the presence of 60% sucrose with high efficiency.

  7. Cloning and characterization of a c-myc intron binding protein (MIBP1).

    PubMed

    Makino, R; Akiyama, K; Yasuda, J; Mashiyama, S; Honda, S; Sekiya, T; Hayashi, K

    1994-12-25

    The cDNA for a c-myc intron 1 binding protein 1 (MIBP1) in the rat was isolated from lambda gt11 and lambda ZAPII cDNA libraries. Sequencing of the cDNA clones revealed a long ORF which encoded a putative protein of 2437 amino acid residues. This protein has two widely separated zinc finger regions, each of which carries C2H2 motifs. When expressed in E. coli as a fusion protein, part of the MIBP1 showed sequence-specific binding to the target sequence, i.e., a 9-bp sequence in the rat c-myc intron 1. MIBP1 is most likely the rat counterpart of human MHC binding protein-2 (MBP-2/HIV-EP2), based on the 86% similarity in nucleotide sequence and 93% similarity in amno acid sequence. Northern blotting revealed a high level of MIBP1 mRNA in the brain.

  8. Isolation and characterization of two homologous cDNA clones from Torpedo electromotor neurons.

    PubMed

    Ngsee, J K; Scheller, R H

    1989-10-01

    Two homologous cDNA clones were isolated from a Torpedo california electric lobe lambda gt11 expression library using a polyclonal antiserum directed against proteins associated with synaptic vesicles. Northern blotting reveals an 8- to 9-kb transcript in the electric lobe and the spinal cord, but not in the brain or other non-neuronal tissues. Antibodies generated against a fusion protein synthesized in Escherichia coli reacted with a 85- to 90-kD species in the neurons of the electric lobe. The immunoreactivity is associated with microsomal membranes and can be extracted readily with high salt. Immunohistochemical studies demonstrated a sparse punctate staining pattern in the cell body which colocalized with a subpopulation of post-Golgi vesicles.

  9. Cloning and molecular characterization of hrpX from Xanthomonas axonopodis pv. citri.

    PubMed

    Iwamoto, M; Oku, T

    2000-01-01

    The hrpX gene of plant pathogenic Xanthomonas species is essential for pathogenicity on host plants and to cause hypersensitive reaction on non-host plants. We cloned and analyzed a hrpX homologue, designated hrpXct, of X. axonopodis pv. citri, a pathogen of citrus canker. The open reading frame of hrpXct has 1431 bp in nucleotides which has a coding capacity of 476 amino acid residues with a molecular mass of 52.4 kDa. The predicted amino acid sequence of HrpXct has 90% identity to the AraC family type transcriptional activator protein HrpXc of X. campestris pv. campestris, 95% to HrpXo of X. oryzae pv. oryzae and 97% to X. vesicatoria. These findings clearly indicate and confirm that the structure of the hrpX genes in plant pathogenic Xanthomonas species is highly conserved.

  10. Cloning and characterization of the Aspergillus nidulans DNA topoisomerase I gene.

    PubMed

    Van Dross, R T; Rao, K V; Eisenberg, E; Sanders, M M

    1997-12-12

    The topoisomerase I (TOP1) gene was cloned and sequenced from Aspergillus nidulans using the polymerase chain reaction (PCR). Genomic DNA was used as a template to obtain a 2987-bp gene containing five small introns. PCR from a cDNA library yielded a 2613-bp sequence which codes for an 871 amino acid protein. Comparison of the deduced amino acid sequence with other DNA topoisomerase I (topo I) protein sequences shows a somewhat higher degree of identity with other fungal amino acid sequences than with the human enzyme. Topo I is a ubiquitous enzyme which can be converted to a cytotoxic molecule in the presence of drugs that function as topo I poisons. The Aspergillus TOP1 cDNA will be used in an effort to identify novel cytotoxic antifungals which target this enzyme.

  11. PCR cloning and characterization of multiple ADP-glucose pyrophosphorylase cDNAs from tomato

    NASA Technical Reports Server (NTRS)

    Chen, B. Y.; Janes, H. W.; Gianfagna, T.

    1998-01-01

    Four ADP-glucose pyrophosphorylase (AGP) cDNAs were cloned from tomato fruit and leaves by the PCR techniques. Three of them (agp S1, agp S2, and agp S3) encode the large subunit of AGP, the fourth one (agp B) encodes the small subunit. The deduced amino acid sequences of the cDNAs show very high identities (96-98%) to the corresponding potato AGP isoforms, although there are major differences in tissue expression profiles. All four tomato AGP transcripts were detected in fruit and leaves; the predominant ones in fruit are agp B and agp S1, whereas in leaves they are agp B and agp S3. Genomic southern analysis suggests that the four AGP transcripts are encoded by distinct genes.

  12. Cloning of genes and enzymatic characterizations of novel dioscorin isoforms from Dioscorea japonica.

    PubMed

    Xue, You-Lin; Miyakawa, Takuya; Sawano, Yoriko; Tanokura, Masaru

    2012-02-01

    Dioscorin, the major tuber storage protein of yam, has been shown to possess carbonic anhydrase, trypsin inhibitor, dehydroascorbate reductase, and monodehydroascorbate reductase activities. In the present study, dioscorin from Dioscorea japonica was confirmed as a glycoprotein using the enhanced concanavalin A-peroxidase staining method, and the protein was shown to have both N- and O-glycans. Following the gene cloning, four full-length isoforms of dioscorin were expressed in Escherichia coli and purified by affinity purification and anion-exchange chromatography for structural and biochemical experiments. It was clearly observed that the recombinant dioscorins had carbonic anhydrase, trypsin inhibitor, dehydroascorbate reductase, and monodehydroascorbate reductase activities. However, the dehydroascorbate reductase and monodehydroascorbate reductase activities were markedly decreased in recombinant dioscorins compared with native dioscorin. The decreased activities were closely related to the loss of the glycosylation from the protein.

  13. Purification, characterization, and cDNA cloning of profilin from Phaseolus vulgaris.

    PubMed Central

    Vidali, L; Pérez, H E; Valdés López, V; Noguez, R; Zamudio, F; Sánchez, F

    1995-01-01

    Profilin from common bean (Phaseolus vulgaris L.) was purified to homogeneity by poly-L-Pro affinity chromatography and gel filtration. The hypocotyl and symbiotic root nodule protein was detected as a single isoform with a 14.4-kD molecular mass and an isoelectric point of 5.3. Partial amino acid and DNA sequencing of a full-length cDNA clone confirmed its identity as profilin. An antibody generated against the purified protein binds to a protein with the same molecular mass in leaves and nodules. Immunolocalization of the protein showed a diffuse distribution in the cytoplasm of hypocotyls and nodules but enhanced staining at the vascular bundles. The strong identity of the sequence among the profilins of birch, maize, and bean suggests that it may play an important role in the signal transduction mechanism of plant cells and plant-bacterial symbioses. PMID:7784501

  14. Cloning, expression, and characterization of an antifungal chitinase from Leucaena leucocephala de Wit.

    PubMed

    Kaomek, Mana; Mizuno, Kouichi; Fujimura, Tatsuhito; Sriyotha, Poonsook; Cairns, James R Ketudat

    2003-04-01

    Chitinase cDNAs from Leucaena leucocephala seedlings were cloned by PCR amplification with degenerate primers based on conserved class I chitinase sequences and cDNA library screening. Two closely related chitinase cDNAs were sequenced and inferred to encode precursor proteins of 323 (KB1) and 326 (KB2) amino acids. Expression of the KB2 chitinase from a pET32a plasmid in Origami (DE3) Escherichia coli produced high chitinase activity in the cell lysate. The recombinant thioredoxin fusion protein was purified and cleaved to yield a 32-kDa chitinase. The recombinant chitinase hydrolyzed colloidal chitin with endochitinase-type activity. It also inhibited growth of 13 of the 14 fungal strains tested.

  15. Characterization and molecular cloning of a serine hydroxymethyltransferase 1 (OsSHM1) in rice.

    PubMed

    Wang, Dekai; Liu, Heqin; Li, Sujuan; Zhai, Guowei; Shao, Jianfeng; Tao, Yuezhi

    2015-09-01

    Serine hydroxymethyltransferase (SHMT) is important for one carbon metabolism and photorespiration in higher plants for its participation in plant growth and development, and resistance to biotic and abiotic stresses. A rice serine hydroxymethyltransferase gene, OsSHM1, an ortholog of Arabidopsis SHM1, was isolated using map-based cloning. The osshm1 mutant had chlorotic lesions and a considerably smaller, lethal phenotype under natural ambient CO2 concentrations, but could be restored to wild type with normal growth under elevated CO2 levels (0.5% CO2 ), showing a typical photorespiratory phenotype. The data from antioxidant enzymes activity measurement suggested that osshm1 was subjected to significant oxidative stress. Also, OsSHM1 was expressed in all organs tested (root, culm, leaf, and young panicle) but predominantly in leaves. OsSHM1 protein is localized to the mitochondria. Our study suggested that molecular function of the OsSHM1 gene is conserved in rice and Arabidopsis.

  16. PCR cloning and characterization of multiple ADP-glucose pyrophosphorylase cDNAs from tomato

    NASA Technical Reports Server (NTRS)

    Chen, B. Y.; Janes, H. W.; Gianfagna, T.

    1998-01-01

    Four ADP-glucose pyrophosphorylase (AGP) cDNAs were cloned from tomato fruit and leaves by the PCR techniques. Three of them (agp S1, agp S2, and agp S3) encode the large subunit of AGP, the fourth one (agp B) encodes the small subunit. The deduced amino acid sequences of the cDNAs show very high identities (96-98%) to the corresponding potato AGP isoforms, although there are major differences in tissue expression profiles. All four tomato AGP transcripts were detected in fruit and leaves; the predominant ones in fruit are agp B and agp S1, whereas in leaves they are agp B and agp S3. Genomic southern analysis suggests that the four AGP transcripts are encoded by distinct genes.

  17. Molecular cloning and characterization of a nuclear androgen receptor activated by 11-ketotestosterone

    PubMed Central

    Olsson, Per-Erik; Berg, A Håkan; von Hofsten, Jonas; Grahn, Birgitta; Hellqvist, Anna; Larsson, Anders; Karlsson, Johnny; Modig, Carina; Borg, Bertil; Thomas, Peter

    2005-01-01

    Although 11-ketotestosterone is a potent androgen and induces male secondary sex characteristics in many teleosts, androgen receptors with high binding affinity for 11-ketotestosterone or preferential activation by 11-ketotestosterone have not been identified. So, the mechanism by which 11-ketotestosterone exhibits such high potency remains unclear. Recently we cloned the cDNA of an 11-ketotestosterone regulated protein, spiggin, from three-spined stickleback renal tissue. As spiggin is the only identified gene product regulated by 11-ketotestosterone, the stickleback kidney is ideal for determination of the mechanism of 11-ketotestosterone gene regulation. A single androgen receptor gene with two splicing variants, belonging to the androgen receptor-β subfamily was cloned from stickleback kidney. A high affinity, saturable, single class of androgen specific binding sites, with the characteristics of an androgen receptor, was identified in renal cytosolic and nuclear fractions. Measurement of ligand binding moieties in the cytosolic and nuclear fractions as well as to the recombinant receptor revealed lower affinity for 11-ketotestosterone than for dihydrotestosterone. Treatment with different androgens did not up-regulate androgen receptor mRNA level or increase receptor abundance, suggesting that auto-regulation is not involved in differential ligand activation. However, comparison of the trans-activation potential of the stickleback androgen receptor with the human androgen receptor, in both human HepG2 cells and zebrafish ZFL cells, revealed preferential activation by 11-ketotestosterone of the stickleback receptor, but not of the human receptor. These findings demonstrate the presence of a receptor preferentially activated by 11-ketotestosterone in the three-spined stickleback, so far the only one known in any animal. PMID:16107211

  18. Cloning, expression, and characterization of cadmium and manganese uptake genes from Lactobacillus plantarum

    SciTech Connect

    Hao, Z.; Chen, S.; Wilson, D.B.

    1999-11-01

    An Mn{sup 2+} and Cd{sup 2+} uptake gene, mntA, was cloned from Lactobacillus plantarum ATCC 14917 into Escherichia coli. Its expression conferred on E. coli cells increased Cd{sup 2+} sensitivity as well as energy-dependent Cd{sup 2+} uptake activity. Both transcription and translation of mntA were induced by Mn{sup 2+} starvation in L. plantarum, as indicated by reverse transcriptase PCR and immunoblotting. Two Cd{sup 2+} uptake systems have been identified in L. plantarum: one is a high-affinity Mn{sup 2+} and Cd{sup 2+} uptake system that is expressed in Mn{sup 2+}-starved cells, and the other is a nonsaturable Cd{sup 2+} uptake system that is expressed in Cd{sup 2+}-sufficient cells. MntA was not detected in an Mn{sup 2+}-dependent mutant of L. plantarum which had lost high-affinity Mn{sup 2+} and Cd{sup 2+} uptake activity. The results suggest that mntA is the gene encoding the high-affinity Mn{sup 2+} and Cd{sup 2+} transporter. On the basis of its predicted amino acid sequence, MntA belongs to the family of P-type cation-translocating ATPases. The topology and potential Mn{sup 2+}- and Cd{sup 2+}-binding sites of MntA are discussed. A second clone containing a low-affinity Cd{sup 2+} transport system was also isolated.

  19. Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum.

    PubMed Central

    Hastings, J W; Sailer, M; Johnson, K; Roy, K L; Vederas, J C; Stiles, M E

    1991-01-01

    Leucocin A-UAL 187 is a bacteriocin produced by Leuconostoc gelidum UAL 187, a lactic acid bacterium isolated from vacuum-packaged meat. The bacteriocin was purified by ammonium sulfate or acid (pH 2.5) precipitation, hydrophobic interaction chromatography, gel filtration, and reversed-phase high-performance liquid chromatography with a yield of 58% of the original activity. Leucocin A is stable at low pH and heat resistant, and the activity of the pure form is enhanced by the addition of bovine serum albumin. It is inactivated by a range of proteolytic enzymes. The molecular weight was determined by mass spectrometry to be 3,930.3 +/- 0.4. Leucocin A-UAL 187 contains 37 amino acids with a calculated molecular weight of 3,932.3. A mixed oligonucleotide (24-mer) homologous to the sequence of the already known N terminus of the bacteriocin hybridized to a 2.9-kb HpaII fragment of a 7.6-MDa plasmid from the producer strain. The fragment was cloned into pUC118 and then subcloned into a lactococcal shuttle vector, pNZ19. DNA sequencing revealed an operon consisting of a putative upstream promoter, a downstream terminator, and two open reading frames flanked by a putative upstream promoter and a downstream terminator. The first open reading frame downstream of the promoter contains 61 amino acids and is identified as the leucocin structural gene, consisting of a 37-amino-acid bacteriocin and a 24-residue N-terminal extension. No phenotypic expression of the bacteriocin was evident in several lactic acid bacteria that were electrotransformed with pNZ19 containing the 2.9-kb cloned fragment of the leucocin A plasmid. Images FIG. 3 FIG. 5 PMID:1840587

  20. Molecular cloning and characterization of the human beta-like globin gene cluster.

    PubMed

    Fritsch, E F; Lawn, R M; Maniatis, T

    1980-04-01

    The genes encoding human embryonic (epsilon), fetal (G gamma, A gamma) and adult (delta, beta) beta-like globin polypeptides were isolated as a set of overlapping cloned DNA fragments from bacteriophage lambda libraries of high molecular weight (15-20 kb) chromosomal DNA. The 65 kb of DNA represented in these overlapping clones contains the genes for all five beta-like polypeptides, including the embryonic epsilon-globin gene, for which the chromosomal location was previously unknown. All five genes are transcribed from the same DNA strand and are arranged in the order 5'-epsilon-(13.3 kb)-G gamma-(3.5 kb)-A gamma-(13.9 kb)-delta-(5.4 kb)-beta-3'. Thus the genes are positioned on the chromosome in the order of their expression during development. In addition to the five known beta-like globin genes, we have detected two other beta-like globin sequences which do not correspond to known polypeptides. One of these sequences has been mapped to the A gamma-delta intergenic region while the other is located 6-9 kb 5' to the epsilon gene. Cross hybridization experiments between the intergenic sequences of the gene cluster have revealed a nonglobin repeat sequence (*) which is interspersed with the globin genes in the following manner: 5'-**epsilon-*G gamma-A gamma*-**delta-beta*-3'. Fine structure mapping of the region located 5' to the delta-globin gene revealed two repeats with a maximum size of 400 bp, which are separated by approximately 700 bp of DNA not repeated within the cluster. Preliminary experiments indicate that this repeat family is also repeated many times in the human genome.

  1. Gene cloning, expression and characterization of avian cathelicidin orthologs, Cc-CATHs, from Coturnix coturnix.

    PubMed

    Feng, Feifei; Chen, Chen; Zhu, Wenjuan; He, Weiyu; Guang, Huijuan; Li, Zheng; Wang, Duo; Liu, Jingze; Chen, Ming; Wang, Yipeng; Yu, Haining

    2011-05-01

    Cathelicidins comprise a family of antimicrobial peptides sharing a highly conserved cathelin domain, which play a central role in the early innate host defense against infection. In the present study, we report three novel avian cathelicidin orthologs cloned from a constructed spleen cDNA library of Coturnix coturnix, using a nested-PCR-based cloning strategy. Three coding sequences containing ORFs of 447, 465 and 456 bp encode three mature antimicrobial peptides (named Cc-CATH1, 2 and 3) of 26, 32 and 29 amino acid residues, respectively. Phylogenetic analysis indicated that precursors of Cc-CATHs are significantly conserved with known avian cathelicidins. Synthetic Cc-CATH2 and 3 displayed broad and potent antimicrobial activity against most of the 41 strains of bacteria and fungi tested, especially the clinically isolated drug-resistant strains, with minimum inhibitory concentration values in the range 0.3-2.5 μm for most strains with or without the presence of 100 mm NaCl. Cc-CATH2 and 3 showed considerable reduction of cytotoxic activity compared to other avian cathelicidins, with average IC(50) values of 20.18 and 17.16 μm, respectively. They also exerted a negligible hemolytic activity against human erythrocytes, lysing only 3.6% of erythrocytes at a dose up to 100 μg·mL(-1) . As expected, the recombinant Cc-CATH2 (rCc-CATH2) also showed potent bactericidal activity. All these features of Cc-CATHs encourage further studies aiming to estimate their therapeutic potential as drug leads, as well as coping with current widespread antibiotic resistance, especially the new prevalent and dangerous 'superbug' that is resistant to almost all antibiotics. © 2011 The Authors Journal compilation © 2011 FEBS.

  2. Molecular cloning and characterization of wheat calreticulin (CRT) gene involved in drought-stressed responses.

    PubMed

    Jia, Xiao-Yun; Xu, Chong-Yi; Jing, Rui-Lian; Li, Run-Zhi; Mao, Xin-Guo; Wang, Ji-Ping; Chang, Xiao-Ping

    2008-01-01

    Calreticulin (CRT) is a highly conserved and ubiquitously expressed Ca(2+)-binding protein in multicellular eukaryotes. CRT plays a crucial role in many cellular processes including Ca(2+) storage and release, protein synthesis, and molecular chaperone activity. To elucidate the function of CRTs in plant responses against drought, a main abiotic stress limiting cereal crop production worldwide, a full-length cDNA encoding calreticulin protein namely TaCRT was isolated from wheat (Triticum aestivum L.). The deduced amino acid sequence of TaCRT shares high homology with other plant CRTs. Phylogenetic analysis indicates that TaCRT cDNA clone encodes a wheat CRT3 isoform. Southern analysis suggests that the wheat genome contains three copies of TaCRT. Subcellular locations of TaCRT were the cytoplasm and nucleus, evidenced by transient expression of GFP fused with TaCRT in onion epidermal cells. Enhanced accumulation of TaCRT transcript was observed in wheat seedlings in response to PEG-induced drought stress. To investigate further whether TaCRT is involved in the drought-stress response, transgenic plants were constructed. Compared to the wild-type and GFP-expressing plants, TaCRT-overexpressing tobacco (Nicotiana benthamiana) plants grew better and exhibited less wilt under the drought stress. Moreover, TaCRT-overexpressing plants exhibited enhanced drought resistance to water deficit, as shown by their capacity to maintain higher WUE (water use efficiency), WRA (water retention ability), RWC (relative water content), and lower MDR (membrane damaging ratio) (P < or = 0.01) under water-stress conditions. In conclusion, a cDNA clone encoding wheat CRT was successfully isolated and the results suggest that TaCRT is involved in the plant response to drought stress, indicating a potential in the transgenic improvements of plant water-stress.

  3. Molecular cloning and pharmacological characterization of giant panda (Ailuropoda melanoleuca) melanocortin-4 receptor.

    PubMed

    Wang, Zhi-Qiang; Wang, Wei; Shi, Lin; Chai, Ji-Tian; Zhang, Xin-Jun; Tao, Ya-Xiong

    2016-04-01

    The melanocortin-4 receptor (MC4R) is critical in regulating mammalian food intake and energy expenditure. Giant panda (Ailuropoda melanoleuca), famous as the living fossil, is an endangered species endemic to China. We are interested in exploring the functions of the giant panda MC4R (amMC4R) in regulating energy homeostasis and report herein the molecular cloning and pharmacology of the amMC4R. Sequence analysis revealed that amMC4R was highly homologous (>88%) at nucleotide and amino acid sequences to several mammalian MC4Rs. Western blot revealed that the expression construct myc-amMC4R in pcDNA3.1 was successfully constructed and expressed in HEK293T cells. With human MC4R (hMC4R) as a control, pharmacological characteristics of amMC4R were analyzed with binding and signaling assays. Four agonists, including [Nle(4), D-Phe(7)]-α-melanocyte stimulating hormone (NDP-MSH), α- and β-MSH, and a small molecule agonist, THIQ, were used in binding and signaling assays. We showed that amMC4R bound NDP-MSH with the highest affinity followed by THIQ, α-MSH, and β-MSH, with the same ranking order as hMC4R. Treatment of HEK293T cells expressing amMC4R with different concentrations of agonists resulted in dose-dependent increase of intracellular cAMP levels, with similar EC50s for the four agonists. The results suggested that the cloned amMC4R encoded a functional MC4R. The availability of amMC4R and its binding and signaling properties will facilitate the investigation of amMC4R in regulating food intake and energy homeostasis.

  4. Characterization of nonprimate hepacivirus and construction of a functional molecular clone

    PubMed Central

    Scheel, Troels K. H.; Kapoor, Amit; Nishiuchi, Eiko; Brock, Kenny V.; Yu, Yingpu; Andrus, Linda; Gu, Meigang; Renshaw, Randall W.; Dubovi, Edward J.; McDonough, Sean P.; Van de Walle, Gerlinde R.; Lipkin, W. Ian; Divers, Thomas J.; Tennant, Bud C.; Rice, Charles M.

    2015-01-01

    Nonprimate hepacivirus (NPHV) is the closest known relative of hepatitis C virus (HCV) and its study could enrich our understanding of HCV evolution, immunity, and pathogenesis. High seropositivity is found in horses worldwide with ∼3% viremic. NPHV natural history and molecular virology remain largely unexplored, however. Here, we show that NPHV, like HCV, can cause persistent infection for over a decade, with high titers and negative strand RNA in the liver. NPHV is a near-universal contaminant of commercial horse sera for cell culture. The complete NPHV 3′-UTR was determined and consists of interspersed homopolymer tracts and an HCV-like 3′-terminal poly(U)-X-tail. NPHV translation is stimulated by miR-122 and the 3′-UTR and, similar to HCV, the NPHV NS3-4A protease can cleave mitochondrial antiviral-signaling protein to inactivate the retinoic acid-inducible gene I pathway. Using an NPHV consensus cDNA clone, replication was not observed in primary equine fetal liver cultures or after electroporation of selectable replicons. However, intrahepatic RNA inoculation of a horse initiated infection, yielding high RNA titers in the serum and liver. Delayed seroconversion, slightly elevated circulating liver enzymes and mild hepatitis was observed, followed by viral clearance. This establishes the molecular components of a functional NPHV genome. Thus, NPHV appears to resemble HCV not only in genome structure but also in its ability to establish chronic infection with delayed seroconversion and hepatitis. This NPHV infectious clone and resulting acute phase sera will facilitate more detailed studies on the natural history, pathogenesis, and immunity of this novel hepacivirus in its natural host. PMID:25646476

  5. Cloning, functional expression, and characterization of the human prostaglandin E2 receptor EP2 subtype.

    PubMed

    Bastien, L; Sawyer, N; Grygorczyk, R; Metters, K M; Adam, M

    1994-04-22

    A cDNA clone encoding the human prostaglandin (PG) E2 receptor EP2 subtype has been isolated from a human lung cDNA library. The 1.9-kilobase pair cDNA, hEP2, encodes for a 488-amino acid protein with a predicted molecular mass of 53,115 and has the seven putative transmembrane domains characteristic of G protein-coupled receptors. The specific binding of [3H]PGE2 to COS cell membranes transfected with the hEP2 cDNA was of high affinity with an equilibrium dissociation constant (Kd) of 1 nM and the rank order of potency for prostaglandins in competition for [3H]PGE2 specific binding was PGE1 = PGE2 > iloprost > PGF2 alpha > PGD2. In competition studies using more selective prostanoid-receptor agonist and antagonists, the [3H]PGE2 specific binding was competed by MB28767, an EP3 agonist, but not by the EP1-preferring antagonists AH6809 and SC19220, or by the EP2 agonist butaprost. Electrophysiological studies of Xenopus oocytes co-injected with hEP2 and cystic fibrosis transmembrane conductance regulator (cAMP-activated Cl- channel) cDNAs detected PGE2-specific inward Cl- currents, demonstrating that the hEP2 cDNA encoded a functional receptor which produced an increase in cAMP levels. Thus, we have cloned the human EP2 receptor subtype which is functionally coupled to increase in cAMP. Northern blot analysis showed that hEP2 is expressed as a 3.8-kilobase mRNA in a number of human tissues with the highest expression levels present in the small intestine.

  6. Cloning and characterization of the gene encoding 1-cyclohexenylcarbonyl coenzyme A reductase from Streptomyces collinus.

    PubMed Central

    Wang, P; Denoya, C D; Morgenstern, M R; Skinner, D D; Wallace, K K; Digate, R; Patton, S; Banavali, N; Schuler, G; Speedie, M K; Reynolds, K A

    1996-01-01

    We report the cloning of the gene encoding the 1-cyclohexenylcarbonyl coenzyme A reductase (ChcA) of Streptomyces collinus, an enzyme putatively involved in the final reduction step in the formation of the cyclohexyl moiety of ansatrienin from shikimic acid. The cloned gene, with a proposed designation of chcA, encodes an 843-bp open reading frame which predicts a primary translation product of 280 amino acids and a calculated molecular mass of 29.7 kDa. Highly significant sequence similiarity extending along almost the entire length of the protein was observed with members of the short-chain alcohol dehydrogenase superfamily. The S. collinus chcA gene was overexpressed in Escherichia coli by using a bacteriophage T7 transient expression system, and a protein with a specific ChcA activity was detected. The E. coli-produced ChcA protein was purified and shown to have similar steady-state kinetics and electrophoretic mobility on sodium dodecyl sulfate-polyacrylamide gels as the enoyl-coenzyme A reductase protein prepared from S. collinus. The enzyme demonstrated the ability to catalyze, in vitro, three of the reductive steps involved in the formation of cyclohexanecarboxylic acid. An S. collinus chcA mutant, constructed by deletion of a genomic region comprising the 5' end of chcA, lost the ChcA activity and the ability to synthesize either cyclohexanecarboxylic acid or ansatrienin. These results suggest that chcA encodes the ChcA that is involved in catalyzing multiple reductive steps in the pathway that provides the cyclohexanecarboxylic acid from shikimic acid. PMID:8955309

  7. Cloning and characterization of a gene involved in aerial mycelium formation in Streptomyces griseus.

    PubMed Central

    Kudo, N; Kimura, M; Beppu, T; Horinouchi, S

    1995-01-01

    A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) is essentially required for aerial mycelium formation and streptomycin production in Streptomyces griseus. A DNA fragment which induced aerial mycelium formation and sporulation in an A-factor-deficient mutant strain, S. griseus HH1, was cloned from this strain on a high-copy-number plasmid. Subcloning and nucleotide sequencing revealed that one open reading frame with 218 amino acids, named AmfC, served as a multicopy suppressor of the aerial mycelium-defective phenotype of the A-factor-deficient strain. The amfC gene did not restore A-factor or streptomycin production, indicating that amfC is involved in aerial mycelium formation independently of secondary metabolic function. Disruption of the chromosomal amfC gene in the wild-type S. griseus strain caused a severe reduction in the abundance of spores but no effect on the shape or size of the spores. The infrequent sporulation of the amfC disruptant was reversed by introduction of amfC on a plasmid. The amfC-defective phenotype was also restored by the orf1590 gene but not by the amfR-amfA-amfB gene cluster. Nucleotide sequences homologous to the amfC gene were distributed in all of 12 Streptomyces species tested, including Streptomyces coelicolor A3(2). The amfC homolog of S. coelicolor A3(2) was cloned and its nucleotide sequence was determined. The AmfC products of S. griseus and S. coelicolor A3(2) showed a 60% identity in their amino acid sequences. Introduction of the amfC gene of S. coelicolor A3(2) into strain HH1 induced aerial mycelium formation and sporulation, which suggests that both play the same functional role in morphogenesis in the strains. PMID:7592414

  8. Cloning, Functional Characterization, and Catalytic Mechanism of a Bergaptol O-Methyltransferase from Peucedanum praeruptorum Dunn.

    PubMed

    Zhao, Yucheng; Wang, Nana; Zeng, Zhixiong; Xu, Sheng; Huang, Chuanlong; Wang, Wei; Liu, Tingting; Luo, Jun; Kong, Lingyi

    2016-01-01

    Coumarins are main active components of Peucedanum praeruptorum Dunn. Among them, methoxylated coumarin compound, such as bergapten, xanthotoxin, and isopimpinellin, has high officinal value and plays an important role in medicinal field. However, major issues associated with the biosynthesis mechanism of coumarins remain unsolved and no corresponding enzyme has been cloned from P. praeruptorum. In this study, a local BLASTN program was conducted to find the candidate genes from P. praeruptorum transcriptome database using the nucleotide sequence of Ammi majus bergaptol O-methyltransferase (AmBMT, GenBank accession No: AY443006) as a template. As a result, a 1335 bp full-length of cDNA sequence which contains an open reading frame of 1080 bp encoding a BMT polypeptide of 359 amino acids was obtained. The recombinant protein was functionally expressed in Escherichia coli and displayed an observed activity to bergaptol. In vitro experiments show that the protein has narrow substrate specificity for bergaptol. Expression profile indicated that the cloned gene had a higher expression level in roots and can be induced by methyl jasmonate (MeJA). Subcellular localization analysis showed that the BMT protein was located in cytoplasm in planta. Homology modeling and docking based site-directed mutagenesis have been employed to investigate the amino acid residues in BMT required for substrate binding and catalysis. Conservative amino acid substitutions at residue H264 affected BMT catalysis, whereas substitutions at residues F171, M175, D226, and L312 affected substrate binding. The systemic study summarized here will enlarge our knowledge on OMTs and provide useful information in investigating the coumarins biosynthesis mechanism in P. praeruptorum.

  9. Cloning, Functional Characterization, and Catalytic Mechanism of a Bergaptol O-Methyltransferase from Peucedanum praeruptorum Dunn

    PubMed Central

    Zhao, Yucheng; Wang, Nana; Zeng, Zhixiong; Xu, Sheng; Huang, Chuanlong; Wang, Wei; Liu, Tingting; Luo, Jun; Kong, Lingyi

    2016-01-01

    Coumarins are main active components of Peucedanum praeruptorum Dunn. Among them, methoxylated coumarin compound, such as bergapten, xanthotoxin, and isopimpinellin, has high officinal value and plays an important role in medicinal field. However, major issues associated with the biosynthesis mechanism of coumarins remain unsolved and no corresponding enzyme has been cloned from P. praeruptorum. In this study, a local BLASTN program was conducted to find the candidate genes from P. praeruptorum transcriptome database using the nucleotide sequence of Ammi majus bergaptol O-methyltransferase (AmBMT, GenBank accession No: AY443006) as a template. As a result, a 1335 bp full-length of cDNA sequence which contains an open reading frame of 1080 bp encoding a BMT polypeptide of 359 amino acids was obtained. The recombinant protein was functionally expressed in Escherichia coli and displayed an observed activity to bergaptol. In vitro experiments show that the protein has narrow substrate specificity for bergaptol. Expression profile indicated that the cloned gene had a higher expression level in roots and can be induced by methyl jasmonate (MeJA). Subcellular localization analysis showed that the BMT protein was located in cytoplasm in planta. Homology modeling and docking based site-directed mutagenesis have been employed to investigate the amino acid residues in BMT required for substrate binding and catalysis. Conservative amino acid substitutions at residue H264 affected BMT catalysis, whereas substitutions at residues F171, M175, D226, and L312 affected substrate binding. The systemic study summarized here will enlarge our knowledge on OMTs and provide useful information in investigating the coumarins biosynthesis mechanism in P. praeruptorum. PMID:27252733

  10. ACAT-2, a second mammalian acyl-CoA:cholesterol acyltransferase. Its cloning, expression, and characterization.

    PubMed

    Cases, S; Novak, S; Zheng, Y W; Myers, H M; Lear, S R; Sande, E; Welch, C B; Lusis, A J; Spencer, T A; Krause, B R; Erickson, S K; Farese, R V

    1998-10-09

    The synthesis of cholesterol esters by acyl-CoA:cholesterol acyltransferase (ACAT, EC 2.3.1.26) is an important component of cellular cholesterol homeostasis. Cholesterol ester formation also is hypothesized to be important in several physiologic processes, including intestinal cholesterol absorption, hepatic lipoprotein production, and macrophage foam cell formation in atherosclerotic lesions. Mouse tissue expression studies and the disruption of the mouse ACAT gene (Acact) have indicated that more than one ACAT exists in mammals and specifically that another enzyme is important in mouse liver and intestine. We now describe a second mammalian ACAT enzyme, designated ACAT-2, that is 44% identical to the first cloned mouse ACAT (henceforth designated ACAT-1). Infection of H5 insect cells with an ACAT-2 recombinant baculovirus resulted in expression of a approximately 46-kDa protein in cell membranes that was associated with high levels of cholesterol esterification activity. Both ACAT-1 and ACAT-2 also catalyzed the esterification of the 3beta-hydroxyl group of a variety of oxysterols. Cholesterol esterification activities for ACAT-1 and ACAT-2 exhibited different IC50 values when assayed in the presence of several ACAT-specific inhibitors, demonstrating that ACAT inhibitors can selectively target specific forms of ACAT. ACAT-2 was expressed primarily in mouse liver and small intestine, supporting the hypothesis that ACAT-2 contributes to cholesterol esterification in these tissues. The mouse ACAT-2 gene (Acact2) maps to chromosome 15 in a region containing a quantitative trait locus influencing plasma cholesterol levels. The identification and cloning of ACAT-2 will facilitate molecular approaches to understanding the role of ACAT enzymes in mammalian biology.

  11. Cloning, expression and characterization of a phospholipase D from Loxosceles gaucho venom gland.

    PubMed

    Magalhães, Geraldo S; Caporrino, Maria C; Della-Casa, Maisa S; Kimura, Louise F; Prezotto-Neto, José P; Fukuda, Daniel A; Portes-Junior, José A; Neves-Ferreira, Ana G C; Santoro, Marcelo L; Barbaro, Katia C

    2013-09-01

    Loxosceles venom comprises a mixture of diverse toxins that induces intense local inflammatory reaction, dermonecrotic injury, platelet aggregation, hemolytic anemia and acute renal failure. Among several toxins in the venom, phospholipases D (PLDs), also called dermonecrotic toxins, are the most important and best studied, since they account for the main effects observed in loxoscelism. Despite their importance, biological analysis of PLDs is hampered by the minute amounts normally purified from the venom, and therefore many efforts have been made to clone those toxins. However, to date, no PLD from Loxosceles gaucho has been obtained in a heterologous system. Thus, in this work we show the cloning of a PLD from L. gaucho venom gland, named LgRec1, which was successfully expressed in a bacterial system. LgRec1 evoked local reaction (edema, erythema, ecchymosis, and paleness), dermonecrosis and hemolysis. It was also able to hydrolyze sphingomyelin and promote platelet aggregation. ELISA and Western blot analysis showed that LgRec1 was recognized by an anti-L. gaucho venom serum, a commercial arachnidic antivenom as well as a monoclonal antibody raised against the dermonecrotic fraction of L. gaucho venom. In addition, LgRec1 demonstrated to be highly immunogenic and antibodies raised against this recombinant toxin inhibited local reaction (~65%) and dermonecrosis (~100%) elicited by L. gaucho whole venom. Since PLDs are considered the major components accounting for the local and systemic envenomation effects caused by spiders from genus Loxosceles, the information provided here may help to understand the mechanisms behind clinical symptomatology. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Cloning and characterization of the peptidoglycan recognition protein genes in the mosquito, Armigeres subalbatus (Diptera: Culicidae).

    PubMed

    Wang, Songjie; Conant, Gavin C; Ou, Ruguang; Beerntsen, Brenda T

    2012-05-01

    Peptidoglycan recognition proteins (PGRPs) are a group of proteins that are responsible for the recognition and, in some cases, binding of peptidoglycan (PGN), a unique cell wall component of bacteria, and initiation of immune responses to various types of pathogens. In the current study, full-length cDNA sequences of multiple PGRPs, identified via a database search, were cloned in the mosquito Armigeres subalbatus (Coquillett). During cloning, a novel transcript variant (isoform) of AsPGRP-LC (As: Ar. subalbatus) was also identified that shares a large 5' end fragment with AsPGRP-LC. All four AsPGRP genes (six transcripts) contain a conserved PGRP domain, an ortholog of the amidase-2 domain. Based on predicted functional domain, the six Ar. subalbatus PGRPs resemble both short (AsPGRP-S1) and long (AsPGRP-LBa, AsPGRP-LBb, AsPGRP-LCa, AsPGRP-LCb, and AsPGRP-LE) forms of PGRPs as in other insects. Sequence alignments showed that PGRPs are conserved across Dipterans. Phylogenetic analysis indicated that PGRPs represent an ancient gene family that has primarily diverged through speciation events among these Dipterans, with only a limited number of lineage specific gene duplications. Developmental profiling of the six AsPGRP transcripts using real-time polymerase chain reaction revealed that AsPGRP-LCa and AsPGRP-LCb are constitutively expressed at high levels in all developmental stages, while AsPGRP-S1, AsPGRP-LBa, AsPGRP-LBb, and AsPGRP-LE transcripts have low expression in most of the life stages and are increased only at certain times. Tissue profiling of the six AsPGRP transcripts showed that they are expressed in various patterns, even between the different isoforms of the same PGRP gene, indicating that these AsPGRPs may play different functions.

  13. Cloning and characterization of katA, encoding the major monofunctional catalase from Xanthomonas campestris pv. phaseoli and characterization of the encoded catalase KatA.

    PubMed

    Chauvatcharin, Nopmanee; Vattanaviboon, Paiboon; Switala, Jack; Loewen, Peter C; Mongkolsuk, Skorn

    2003-02-01

    The first cloning and characterization of the gene katA, encoding the major catalase (KatA), from Xanthomonas is reported. A reverse genetic approach using a synthesized katA-specific DNA probe to screen a X. campestris pv. phaseoli genomic library was employed. A positively hybridizing clone designated pKat29 that contained a full-length katA was isolated. Analysis of the nucleotide sequence revealed an open reading frame of 1,521 bp encoding a 507-amino acid protein with a theoretical molecular mass of 56 kDa. The deduced amino acid sequence of KatA revealed 84% and 78% identity to CatF of Pseudomonas syringae and KatB of P. aeruginosa, respectively. Phylogenetic analysis places Xanthomonas katA in the clade I group of bacterial catalases. Unexpectedly, expression of katA in a heterologous Escherichia coli host resulted in a temperature-sensitive expression. The KatA enzyme was purified from an overproducing mutant of X. campestris and was characterized. It has apparent K(m) and V(max) values of 75 m M [H(2)O(2)] and 2.55 x 10(5) micromol H(2)O(2) micromol heme(-1) s(-1), respectively. The enzyme is highly sensitive to 3-amino-1,2,4-triazole and NaN(3), has a narrower optimal pH range than other catalases, and is more sensitive to heat inactivation.

  14. Molecular Cloning and Immunochemical Characterization of a New Japanese Cedar Pollen Allergen Homologous to Plant Subtilisin-Like Serine Protease

    PubMed Central

    2010-01-01

    Protease activities in allergen sources are thought to be involved in triggering allergic inflammation through the disruption of epithelial barrier or the induction of proinflammatory cytokines. Protease allergens may also work as type 2 helper T cell (TH2) adjuvants through the cleavage of cell surface receptors. Here, we report molecular cloning and immunochemical characterization of a new Japanese cedar (Cryptomeria japonica) pollen allergen (CPA9) homologous to serine protease, which is initially found as a high IgE-binding spot on our two-dimensional (2-D) IgE immunoblotting map. The cpa9 cDNA encoded a 757 amino acid polypeptide showing a significant sequence identity with plant subtilisin-like serine protease family members including melon major allergen Cuc m 1. We found that native CPA9 purified from C. japonica pollen showed a high IgE-binding frequency and IgE cross-reactivity with melon extract. PMID:23282945

  15. Cloning, characterization and chromosomal assignment of NBC4, a new member of the sodium bicarbonate cotransporter family.

    PubMed

    Pushkin, A; Abuladze, N; Newman, D; Lee, I; Xu, G; Kurtz, I

    2000-09-07

    We report the cloning, characterization and chromosomal assignment of a new member of the sodium bicarbonate cotransporter (NBC) family, NBC4, from human heart. NBC4 maps to chromosome 2p13 and is a new candidate gene for Alstrom syndrome. NBC4 encodes a 1074-residue polypeptide with 12 putative membrane-spanning domains. Unlike other members of the NBC family, NBC4 has a unique glycine-rich region (amino acids 438-485). In addition, NBC4 lacks the lysine-rich C-terminus of NBC1 with which it is most homologous. The first of two putative stilbene binding motifs (K(M/L)(X)K) is lacking in NBC4 (amino acids 655-658). The approximately 6 kb NBC4 transcript is moderately expressed in heart, with the highest expression in liver, testes and spleen.

  16. Cloning, expression, and characterization of a thermostable GH7 endoglucanase from Myceliophthora thermophila capable of high-consistency enzymatic liquefaction.

    PubMed

    Karnaouri, Anthi C; Topakas, Evangelos; Christakopoulos, Paul

    2014-01-01

    An endoglucanase gene from the thermophilic fungus Myceliophthora thermophila, belonging to the glycoside hydrolase family 7, was functionally expressed in methylotrophic yeast Pichia pastoris. The putative endoglucanase from the genomic DNA was successfully cloned in P. pastoris X-33 and the recombinant enzyme was purified to its homogeneity (65 kDa) and subsequently characterized. Substrate specificity analysis revealed that the enzyme exhibits high activity on substrates containing β-1,4-glycosidic bonds such as carboxymethyl cellulose, barley β-glucan, and cello-oligosaccharides, as well as activity on xylan-containing substrates, including arabinoxylan and oat spelt xylan. MtEG7a was proved to liquefy rapidly and efficiently pretreated wheat straw, indicating its key role to the initial step of hydrolysis of high-solids lignocellulose substrates. High thermostability of the endoglucanase reflects potential commercial significance of the enzyme.

  17. Molecular cloning and characterization of a halotolerant α-amylase from marine metagenomic library derived from Arabian Sea sediments.

    PubMed

    Nair, Harisree P; Vincent, Helvin; Puthusseri, Rinu Madhu; Bhat, Sarita G

    2017-05-01

    Functional screening of a metagenomic library of marine sediment revealed an amylolytic clone BTM109. This report states the purification and characterization of a moderately halotolerant α-amylase, with more than 51% activity in 2.5 M NaCl. The molecular mass of purified protein was determined to be 55.7 kDa by MALDI-TOF MS. The optimum pH for enzyme activity was pH 7 and temperature for maximal activity was 40 °C. At 5 mM concentration, Ca(2+) enhanced the enzyme activity indicating that the enzyme is a Ca(2+) dependent α-amylase which was confirmed by the starch hydrolysis pattern using TLC. These physico-chemical properties support the suitability of this enzyme for various industrial applications.

  18. Cloning and identification of novel hydrolase genes from a dairy cow rumen metagenomic library and characterization of a cellulase gene

    PubMed Central

    2012-01-01

    Background Interest in cellulose degrading enzymes has increased in recent years due to the expansion of the cellulosic biofuel industry. The rumen is a highly adapted environment for the degradation of cellulose and a promising source of enzymes for industrial use. To identify cellulase enzymes that may be of such use we have undertaken a functional metagenomic screen to identify cellulase enzymes from the bacterial community in the rumen of a grass-hay fed dairy cow. Results Twenty five clones specifying cellulose activity were identified. Subcloning and sequence analysis of a subset of these hydrolase-positive clones identified 10 endoglucanase genes. Preliminary characterization of the encoded cellulases was carried out using crude extracts of each of the subclones. Zymogram analysis using carboxymethylcellulose as a substrate showed a single positive band for each subclone, confirming that only one functional cellulase gene was present in each. One cellulase gene, designated Cel14b22, was expressed at a high level in Escherichia coli and purified for further characterization. The purified recombinant enzyme showed optimal activity at pH 6.0 and 50°C. It was stable over a broad pH range, from pH 4.0 to 10.0. The activity was significantly enhanced by Mn2+ and dramatically reduced by Fe3+ or Cu2+. The enzyme hydrolyzed a wide range of beta-1,3-, and beta-1,4-linked polysaccharides, with varying activities. Activities toward microcrystalline cellulose and filter paper were relatively high, while the highest activity was toward Oat Gum. Conclusion The present study shows that a functional metagenomic approach can be used to isolate previously uncharacterized cellulases from the rumen environment. PMID:23062472

  19. Molecular cloning, characterization and expression analysis of 3-hydroxy-3-methylglutaryl coenzyme A reductase gene from Centella asiatica L.

    PubMed

    Kalita, Ratna; Patar, Lochana; Shasany, Ajit Kumar; Modi, Mahendra K; Sen, Priyabrata

    2015-09-01

    3-Hydroxy-3-methylglutaryl-CoA reductases (HMGR) plays an important role in catalyzing the first committed step of isoprenoid biosynthesis in the mevelonic (MVA) pathway (catalyzes the conversion of HMG-CoA to MVA) in plants. The present manuscript reports the full length cDNA cloning of HMGR (CaHMGR, GenBank accession number: KJ939450.2) and its characterization from Centella asiatica. Sequence analysis indicated that the cDNA was of 1965 bp, which had an open reading frame of 1617 bp and encoded a protein containing 539 amino-acids with a mol wt of 57.9 kDa. A BLASTp search against non-redundant (nr) protein sequence showed that C. asiatica HMGR (CaHMGR) has 65-81% identity with HMGRs from different plant species and multi-alignment comparison analysis showed the presence of two motif each corresponding to HMG-CoA-binding and NADP(H)-binding. The Conserved Domain Database analysis predicted that CaHMGR belongs to Class I hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase. Three-dimensional modeling confirmed the novelty of CaHMGR with a spatial structure similar to Homo sapiens (PDB id: 1IDQ8_A). Tissue Expression analysis indicates that CaHMGR is ubiquitous albeit differentially expressed among different tissues analysed, Strong expression was recorded in the nodes and leave