Sample records for characterizing particulate emissions

  1. CHARACTERIZATION OF EMISSIONS FROM BURNING INCENSE

    EPA Science Inventory

    The primary objective of this study was to improve the characterization of particulate matter emissions from burning incense. Emissions of particulate matter were measured for 23 different types of incense using a cyclone/filter method. Emission rates for PM2.5 (particulate matte...

  2. CHARACTERIZATION OF PARTICULATE EMISSIONS FROM IN-USE DIESEL VEHICLES

    EPA Science Inventory

    Particulate emissions data are presented from a group of 19 in-use diesel automobiles. Five driving cycles and three fuel/lubricating oil combinations have been used to obtain particulate emissions data and also to collect particulate samples for chemical and bioassay characteriz...

  3. EXHAUST EMISSION PATTERNS FROM TWO LIGHT-DUTY DIESEL AUTOMOBILES

    EPA Science Inventory

    Particulate and gaseous emissions from two light-duty diesel automobiles were examined over six operating cycles. Particulate characterizations included mass emission rate, soluble organic content, and trace element content determinations. The particulate matter was sampled using...

  4. TEST METHODS TO CHARACTERIZE PARTICULATE MATTER EMISSIONS AND DEPOSITION RATES IN A RESEARCH HOUSE

    EPA Science Inventory

    The paper discusses test methods to characterize particulate matter (PM) emissions and deposition rates in a research house. In a room in the research house, specially configured for PM source testing, a high-efficiency particulate air (HEPA)-filtered air supply system, used for...

  5. Characterization of particulate emissions from Australian open-cut coal mines: Toward improved emission estimates.

    PubMed

    Richardson, Claire; Rutherford, Shannon; Agranovski, Igor

    2018-06-01

    Given the significance of mining as a source of particulates, accurate characterization of emissions is important for the development of appropriate emission estimation techniques for use in modeling predictions and to inform regulatory decisions. The currently available emission estimation methods for Australian open-cut coal mines relate primarily to total suspended particulates and PM 10 (particulate matter with an aerodynamic diameter <10 μm), and limited data are available relating to the PM 2.5 (<2.5 μm) size fraction. To provide an initial analysis of the appropriateness of the currently available emission estimation techniques, this paper presents results of sampling completed at three open-cut coal mines in Australia. The monitoring data demonstrate that the particulate size fraction varies for different mining activities, and that the region in which the mine is located influences the characteristics of the particulates emitted to the atmosphere. The proportion of fine particulates in the sample increased with distance from the source, with the coarse fraction being a more significant proportion of total suspended particulates close to the source of emissions. In terms of particulate composition, the results demonstrate that the particulate emissions are predominantly sourced from naturally occurring geological material, and coal comprises less than 13% of the overall emissions. The size fractionation exhibited by the sampling data sets is similar to that adopted in current Australian emission estimation methods but differs from the size fractionation presented in the U.S. Environmental Protection Agency methodology. Development of region-specific emission estimation techniques for PM 10 and PM 2.5 from open-cut coal mines is necessary to allow accurate prediction of particulate emissions to inform regulatory decisions and for use in modeling predictions. Development of region-specific emission estimation techniques for PM 10 and PM 2.5 from open-cut coal mines is necessary to allow accurate prediction of particulate emissions to inform regulatory decisions and for use in modeling predictions. Comprehensive air quality monitoring was undertaken, and corresponding recommendations were provided.

  6. Mobile Gas and Particulate Emission Studies of the New York City Transit Bus Fleet

    NASA Astrophysics Data System (ADS)

    Jayne, J. T.; Canagaratna, M.; Herndon, S.; Shorter, J.; Zahniser, M.; Shi, Q.; Kolb, C.; Worsnop, D.; Jimenez, J.; Drewnick, F.; Demerjian, K.; Lanni, T.

    2001-12-01

    Emissions from both diesel and gasoline powered motor vehicles are a significant source of particulate (PM2.5) and trace gas pollution, especially in urban environments. Emission characterizations of motor vehicles can be performed using a dynamometer but these studies make fleet characterization impractical. Few studies have been performed which characterize emissions from in-use vehicles using a mobile sampling platform. This work describes application of new technology instrumentation for rapid (1-5 second) and real-time characterization of both gas and particulate emissions from in-use vehicles and is part of the PM2.5 Technology Assessment and Characterization Study in New York (PMTACS-NY). An aerosol mass spectrometer (AMS) and a tunable infrared laser differential absorption spectrometer (TILDAS) system were deployed on the Aerodyne Research mobile laboratory designed to "chase" target vehicles in and around the New York City area and measure their emissions under actual driving conditions. The AMS provides particle size and composition information for volatile and semi-volatile matter while the TILDAS system was configured to measure NO, NO2, CO, CH4, SO2 and formaldehyde. In addition to a GPS, an ELPI and a condensation particle counter, the mobile laboratory was also equipped with a CO2 monitor to allow emission ratios to be computed for the targeted vehicles. Emission ratios for both particulate and trace gases are reported for a representative fraction of the NYC Metropolitan Transit Authority (MTA) bus fleet in an effort to characterize new emission control technologies currently implemented by the NYC MTA.

  7. Battery condenser system particulate emission factors for cotton gins: Particle size distribution characteristics

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, the Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or e...

  8. Mobile Particulate Emission Measurements of New York City Transit Buses and Other in use Vehicles

    NASA Astrophysics Data System (ADS)

    Jayne, J. T.; Canagaratna, M.; Herndon, S.; Shorter, J.; Zahniser, M.; Kolb, C.; Williams, L.; Worsnop, D.; Drewnick, F.; Demerjian, K. L.; Lanni, T.

    2002-12-01

    Emissions from both diesel and gasoline powered motor vehicles are a significant source of particulate (PM2.5) and trace gas pollution, especially in urban environments. Emission characterizations of motor vehicles can be performed using a dynamometer but these studies make fleet characterization impractical. Few studies have been performed which characterize emissions from in-use vehicles using a mobile sampling platform. This work describes application of new technology instrumentation for rapid (1-5 second) and real-time characterization of both gas and particulate emissions from in-use vehicles and is part of the PM2.5 Technology Assessment and Characterization Study in New York (PMTACS-NY). An aerosol mass spectrometer (AMS) and a tunable infrared laser differential absorption spectrometer (TILDAS) system were deployed on the Aerodyne Research mobile laboratory designed to "chase" target vehicles in and around the New York City area and measure their emissions under actual driving conditions. The AMS provides particle size and composition information for volatile and semi-volatile matter (0.03 - 1 um) while the TILDAS system was configured to measure NO, NO2, CO, CH4, SO2 and formaldehyde. In addition to a global positioning system, an ELPI and a condensation particle counter, the mobile laboratory was also equipped with a Licor CO2 monitor to allow emission indices to be computed for the targeted vehicles. Emission indices for both particulate and trace gases correlated with engine type are reported for a representative fraction of the NYC Metropolitan Transit Authority (MTA) bus fleet in an effort to characterize new emission control technologies currently implemented by the NYC MTA.

  9. Characteristics of particulate matter emissions from toy cars with electric motors.

    PubMed

    Wang, Xiaofei; Williams, Brent J; Biswas, Pratim

    2015-04-01

    Aerosol emissions from toy cars with electric motors were characterized. Particle emission rates from the toy cars, as high as 7.47×10(7) particles/s, were measured. This emission rate is lower than other indoor sources such as smoking and cooking. The particles emitted from toy cars are generated from spark discharges inside the electric motors that power the toy cars. Size distribution measurements indicated that most particles were below 100 nm in diameter. Copper was the dominant inorganic species in these particles. By deploying aerosol mass spectrometers, high concentrations of particulate organic matter were also detected and characterized in detail. Several organic compounds were identified using a thermal desorption aerosol gas chromatography. The mass size distribution of particulate organic matter was bimodal. The formation mechanism of particulate organic matter from toy cars was elucidated. A possible new source of indoor air pollution, particles from electric motors in toy cars, was identified. This study characterized aerosol emissions from toy cars in detail. Most of these particles have a diameter less than 100 nm. Copper and some organics are the major components of these particles. Conditions that minimize these emissions were determined.

  10. Comparison of gaseous and particulate emissions from a pilot-scale combustor using three varieties of coal

    EPA Science Inventory

    Gaseous and particulate emissions generated from the combustion of coal have been associated with adverse effects on human health and the environment, and have therefore been the subject of regulation by federal and state government agencies. Detailed emission characterizations ...

  11. Lidar Based Emissions Measurement at the Whole Facility Scale: Method and Error Analysis

    USDA-ARS?s Scientific Manuscript database

    Particulate emissions from agricultural sources vary from dust created by operations and animal movement to the fine secondary particulates generated from ammonia and other emitted gases. The development of reliable facility emission data using point sampling methods designed to characterize regiona...

  12. HEAVY DUTY DIESEL FINE PARTICULATE MATTER EMISSIONS: DEVELOPMENT AND APPLICATION OF ON-ROAD MEASUREMENT CAPABILITIES

    EPA Science Inventory

    The report discusses EPA's On-Road Diesel Emissions Characterization Facility, which has been collecting real-world gaseous emissions data for the past 6 years. It has recently undergone extensive modifications to enhance its particulate matter (PM) measurement capabilities, with...

  13. Mobile Particulate Emission Studies of New York City Vehicles

    NASA Astrophysics Data System (ADS)

    Canagaratna, M.; Jayne, J.; Shi, Q.; Kolb, C. E.; Worsnop, D.

    Emissions from both diesel and gasoline powered motor vehicles are a significant source of urban particulate (PM2.5) and trace gas pollution. Emission characteriza- tions of motor vehicles are typically performed using a dynamometer. Few studies have been performed which characterize emissions from in-use vehicles using a mo- bile sampling platform. This work, which was part of the PM2.5 Technology Assess- ment and Characterization Study in New York (PMTACS-NY), describes the applica- tion of new instrumentation for rapid (1-5 second) and real-time characterization of particulate emissions from in-use vehicles . An Aerosol Mass Spectrometer (AMS) was deployed on the Aerodyne Research (ARI) mobile laboratory designed to "chase" target vehicles in and around the New York City area and measure their emissions under actual driving conditions. The AMS provides quantitative particle size and composition information for volatile and semi- volatile matter (0.05-2.5 um). The AMS was operated in a fast acquisition mode de- signed to monitor particle emissions from the mobile sources. In this mode mass spec- tra (0-300 amu) and chemically speciated particle size distributions were recorded at 4 sec intervals. In addition to the AMS, the Mobile Laboratory was equipped with the ARI tunable diode laser (TILDAS) system which was configured to measure NO, NO2, CO, CH4, SO2 and formaldehyde, a global positioning system, a condensation particle counter, and a Licor CO2 instrument. The simultaneous measurement of particulate mass loading and plume CO2 enabled the calculation of emission indices for the targeted vehicles. Particulate matter emis- sion indices for a representative fraction of the NYC Metropolitan Transit Authority (MTA) bus fleet were determined in an effort to characterize new emission control technologies currently implemented by the NYC MTA. In addition to total particle emission indices, chemically speciated sulfate and organic mass loadings and size distributions were determined. Representative mass spectral signatures and size dis- tributions observed from the exhaust plume particles and correlations between the simultaneous gas and particulate measurements will be discussed. Differences in ob- served particle emission factors and compositions between buses using different fuels and technologies will also be presented.

  14. Particle size distribution characteristics of cotton gin battery condenser system total particulate emissions

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  15. Including impacts of particulate emissions on marine ecosystems in life cycle assessment: the case of offshore oil and gas production.

    PubMed

    Veltman, Karin; Huijbregts, Mark A J; Rye, Henrik; Hertwich, Edgar G

    2011-10-01

    Life cycle assessment is increasingly used to assess the environmental performance of fossil energy systems. Two of the dominant emissions of offshore oil and gas production to the marine environment are the discharge of produced water and drilling waste. Although environmental impacts of produced water are predominantly due to chemical stressors, a major concern regarding drilling waste discharge is the potential physical impact due to particles. At present, impact indicators for particulate emissions are not yet available in life cycle assessment. Here, we develop characterization factors for 2 distinct impacts of particulate emissions: an increased turbidity zone in the water column and physical burial of benthic communities. The characterization factor for turbidity is developed analogous to characterization factors for toxic impacts, and ranges from 1.4 PAF (potentially affected fraction) · m(3) /d/kg(p) (kilogram particulate) to 7.0 x 10³ [corrected] for drilling mud particles discharged from the rig. The characterization factor for burial describes the volume of sediment that is impacted by particle deposition on the seafloor and equals 2.0 × 10(-1) PAF · m(3) /d/kg(p) for cutting particles. This characterization factor is quantified on the basis of initial deposition layer characteristics, such as height and surface area, the initial benthic response, and the recovery rate. We assessed the relevance of including particulate emissions in an impact assessment of offshore oil and gas production. Accordingly, the total impact on the water column and on the sediment was quantified based on emission data of produced water and drilling waste for all oil and gas fields on the Norwegian continental shelf in 2008. Our results show that cutting particles contribute substantially to the total impact of offshore oil and gas production on marine sediments, with a relative contribution of 55% and 31% on the regional and global scale, respectively. In contrast, the contribution of particulate emissions to the total impact on the marine water column is of minor importance. We conclude that particles are an important stressor in marine ecosystems, particularly for marine sediment, and particulate emissions should therefore be included in a (life cycle) impact assessment of offshore oil and gas production. Copyright © 2011 SETAC.

  16. Time-resolved characterization of primary particle emissions and secondary particle formation from a modern gasoline passenger car

    NASA Astrophysics Data System (ADS)

    Karjalainen, Panu; Timonen, Hilkka; Saukko, Erkka; Kuuluvainen, Heino; Saarikoski, Sanna; Aakko-Saksa, Päivi; Murtonen, Timo; Bloss, Matthew; Dal Maso, Miikka; Simonen, Pauli; Ahlberg, Erik; Svenningsson, Birgitta; Brune, William Henry; Hillamo, Risto; Keskinen, Jorma; Rönkkö, Topi

    2016-07-01

    Changes in vehicle emission reduction technologies significantly affect traffic-related emissions in urban areas. In many densely populated areas the amount of traffic is increasing, keeping the emission level high or even increasing. To understand the health effects of traffic-related emissions, both primary (direct) particulate emission and secondary particle formation (from gaseous precursors in the exhaust emissions) need to be characterized. In this study, we used a comprehensive set of measurements to characterize both primary and secondary particulate emissions of a Euro 5 level gasoline passenger car. Our aerosol particle study covers the whole process chain in emission formation, from the tailpipe to the atmosphere, and also takes into account differences in driving patterns. We observed that, in mass terms, the amount of secondary particles was 13 times higher than the amount of primary particles. The formation, composition, number and mass of secondary particles was significantly affected by driving patterns and engine conditions. The highest gaseous and particulate emissions were observed at the beginning of the test cycle when the performance of the engine and the catalyst was below optimal. The key parameter for secondary particle formation was the amount of gaseous hydrocarbons in primary emissions; however, also the primary particle population had an influence.

  17. CHARACTERIZATION OF THE FUGITIVE PARTICULATE EMISSIONS FROM CONSTRUCTION MUD/DIRT CARRYOUT

    EPA Science Inventory

    The paper describes a research program which directly determined mud/dirt carryout emission factors for both particulate matter (PM) with aerodynamic diameters of 10 micrometers or less (PM10) and PM with aerodynamic diameters of 2.5 micrometers or less (PM2.5). The research was ...

  18. CHARACTERIZATION OF PARTICULATE EMISSIONS FROM CONTROLLED CONSTRUCTION ACTIVITIES: MUD/DIRT CARRYOUT

    EPA Science Inventory

    The report describes a field study of PM-2.5 and PM-10 (particulate matter with aerodynamic diameter less than 2.5 and 10 micrometers, respectively) emissions from a public paved road in Overland Park, Kansas, adjacent to a 200-acre construction site which will ultimately have 4 ...

  19. Characterization of Gas and Particle Emissions from Laboratory Burns of Peat

    EPA Science Inventory

    Peat cores collected from two locations in eastern North Carolina (NC, USA) were burned in a laboratory facility to characterize emissions during simulated field combustion. Particle and gas samples were analyzed to quantify emission factors for particulate matter (PM2.5), organi...

  20. Emissions calculated from particulate matter and gaseous ammonia measurements from a commercial dairy in California, USA

    USDA-ARS?s Scientific Manuscript database

    Emission rates and factors for particulate matter (PM) and gaseous ammonia (NH3) were estimated from measurements taken at a dairy in California, USA in June 2008. Concentration measurements were made using both point and remote sensors. Filter-based PM samplers and OPCs characterized aerodynamic an...

  1. Toxicity and mutagenicity of exhaust from compressed natural gas: Could this be a clean solution for megacities with mixed-traffic conditions?

    PubMed

    Agarwal, Avinash K; Ateeq, Bushra; Gupta, Tarun; Singh, Akhilendra P; Pandey, Swaroop K; Sharma, Nikhil; Agarwal, Rashmi A; Gupta, Neeraj K; Sharma, Hemant; Jain, Ayush; Shukla, Pravesh C

    2018-08-01

    Despite intensive research carried out on particulates, correlation between engine-out particulate emissions and adverse health effects is not well understood yet. Particulate emissions hold enormous significance for mega-cities like Delhi that have immense traffic diversity. Entire public transportation system involving taxis, three-wheelers, and buses has been switched from conventional liquid fuels to compressed natural gas (CNG) in the Mega-city of Delhi. In this study, the particulate characterization was carried out on variety of engines including three diesel engines complying with Euro-II, Euro-III and Euro-IV emission norms, one Euro-II gasoline engine and one Euro-IV CNG engine. Physical, chemical and biological characterizations of particulates were performed to assess the particulate toxicity. The mutagenic potential of particulate samples was investigated at different concentrations using two different Salmonella strains, TA98 and TA100 in presence and absence of liver S9 metabolic enzyme fraction. Particulates emitted from diesel and gasoline engines showed higher mutagenicity, while those from CNG engine showed negligible mutagenicity compared to other test fuels and engine configurations. Polycyclic aromatic hydrocarbons (PAHs) adsorbed onto CNG engine particulates were also relatively fewer compared to those from equivalent diesel and gasoline engines. Taken together, our findings indicate that CNG is comparatively safer fuel compared to diesel and gasoline and can offer a cleaner transport energy solution for mega-cities with mixed-traffic conditions, especially in developing countries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Untargeted Identification of Wood Type-Specific Markers in Particulate Matter from Wood Combustion.

    PubMed

    Weggler, Benedikt A; Ly-Verdu, Saray; Jennerwein, Maximilian; Sippula, Olli; Reda, Ahmed A; Orasche, Jürgen; Gröger, Thomas; Jokiniemi, Jorma; Zimmermann, Ralf

    2016-09-20

    Residential wood combustion emissions are one of the major global sources of particulate and gaseous organic pollutants. However, the detailed chemical compositions of these emissions are poorly characterized due to their highly complex molecular compositions, nonideal combustion conditions, and sample preparation steps. In this study, the particulate organic emissions from a masonry heater using three types of wood logs, namely, beech, birch, and spruce, were chemically characterized using thermal desorption in situ derivatization coupled to a GCxGC-ToF/MS system. Untargeted data analyses were performed using the comprehensive measurements. Univariate and multivariate chemometric tools, such as analysis of variance (ANOVA), principal component analysis (PCA), and ANOVA simultaneous component analysis (ASCA), were used to reduce the data to highly significant and wood type-specific features. This study reveals substances not previously considered in the literature as meaningful markers for differentiation among wood types.

  3. Characterization of Emissions and Residues from Simulations ...

    EPA Pesticide Factsheets

    The surface oil burns conducted by the U.S. Coast Guard from April to July 2010 during the Deepwater Horizon disaster in the Gulf of Mexico were simulated by small scale burns to characterize the pollutants, determine emission factors, and gather particulate matter for subsequent toxicity testing. A representative crude oil (Bayou Sweet) was burned in ocean-salinity seawater and emissions were collected from the plume by means of a crane-suspended emission sampling platform. A comprehensive array of emissions was characterized, accounting for over 92% by mass of the combustion products even without accounting for H2O. The particulate matter emissions were 70 g/kg (±8.3) of oil consumed, composed of 81% (±8) elemental carbon, and 80% were 1 µm in diameter or less. The particulate matter emissions were strongly light absorbing and had a single scattering albedo of 0.4 (±0.01) at 532 nm. Emissions of the 16 polycyclic aromatic hydrocarbons (PAHs) were approximately 1 g/kg of oil consumed. While the oil burn particles were highly PAH-enriched, less than 30% of the PAHs were particle-bound, the rest being in the gas phase. Formation of polychlorinated dibenzodioxin/dibenzofuran (PCDD/DF) was observed at 1.2 ng toxic equivalency (TEQ)/kg of oil consumed. Analysis of the particles showed the major elements to be Na, S, Cl and Si with no other elements, including metals, exceeding 5 mg/kg oil consumed. The unburned oil mass was 29% of the original crude oil mas

  4. ENDOCRINE DISRUPTING CHEMICAL EMISSIONS FROM COMBUSTION SOURCES: DIESEL PARTICULATE EMISSIONS AND DOMESTIC WASTE OPEN BURN EMISSIONS

    EPA Science Inventory

    Emissions of endocrine disrupting chemicals (EDCs) from combustion sources are poorly characterized due to the large number of compounds present in the emissions, the complexity of the analytical separations required, and the uncertainty regarding identification of chemicals with...

  5. Characterization of lubrication oil emissions from aircraft engines.

    PubMed

    Yu, Zhenhong; Liscinsky, David S; Winstead, Edward L; True, Bruce S; Timko, Michael T; Bhargava, Anuj; Herndon, Scott C; Miake-Lye, Richard C; Anderson, Bruce E

    2010-12-15

    In this first ever study, particulate matter (PM) emitted from the lubrication system overboard breather vent for two different models of aircraft engines has been systematically characterized. Lubrication oil was confirmed as the predominant component of the emitted particulate matter based upon the characteristic mass spectrum of the pure oil. Total particulate mass and size distributions of the emitted oil are also investigated by several high-sensitivity aerosol characterization instruments. The emission index (EI) of lubrication oil at engine idle is in the range of 2-12 mg kg(-1) and increases with engine power. The chemical composition of the oil droplets is essentially independent of engine thrust, suggesting that engine oil does not undergo thermally driven chemical transformations during the ∼4 h test window. Volumetric mean diameter is around 250-350 nm for all engine power conditions with a slight power dependence.

  6. Atmospheric oxidative chemistry of organic particulate emissions from fuel combustion.

    DOT National Transportation Integrated Search

    2011-03-25

    "Construction and characterization of the University of Vermont Environmental Chamber (UVMEC) : were completed in this last phase of the project. The primary function of the UVMEC is to enable : tropospheric particulate formation and aging studies to...

  7. Chemical and biological characterization of products of incomplete combustion from the simulated field burning of agricultural plastic.

    PubMed

    Linak, W P; Ryan, J V; Perry, E; Williams, R W; DeMarini, D M

    1989-06-01

    Chemical and biological analyses were performed to characterize products of incomplete combustion emitted during the simulated open field burning of agricultural plastic. A small utility shed equipped with an air delivery system was used to simulate pile burning and forced-air-curtain incineration of a nonhalogenated agricultural plastic that reportedly consisted of polyethylene and carbon black. Emissions were analyzed for combustion gases; volatile, semi-volatile, and particulate organics; and toxic and mutagenic properties. Emission samples, as well as samples of the used (possibly pesticide-contaminated) plastic, were analyzed for the presence of several pesticides to which the plastic may have been exposed. Although a variety of alkanes, alkenes, and aromatic and polycyclic aromatic hydrocarbon (PAH) compounds were identified in the volatile, semi-volatile, and particulate fractions of these emissions, a substantial fraction of higher molecular weight organic material was not identified. No pesticides were identified in either combustion emission samples or dichloromethane washes of the used plastic. When mutagenicity was evaluated by exposing Salmonella bacteria (Ames assay) to whole vapor and vapor/particulate emissions, no toxic or mutagenic effects were observed. However, organic extracts of the particulate samples were moderately mutagenic. This mutagenicity compares approximately to that measured from residential wood heating on a revertant per unit heat release basis. Compared to pile burning, forced air slightly decreased the time necessary to burn a charge of plastic. There was not a substantial difference, however, in the variety or concentrations of organic compounds identified in samples from these two burn conditions. This study highlights the benefits of a combined chemical/biological approach to the characterization of complex, multi-component combustion emissions. These results may not reflect those of other types of plastic that may be used for agricultural purposes, especially those containing halogens.

  8. In Situ Characterization of Point-of-Discharge Fine Particulate Emissions

    DTIC Science & Technology

    2008-07-01

    of Point- of -Discharge Fine Particulate Emissions 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6... NUMBER OF PAGES 163 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form... number of weapons systems. A number of Ft. Sill’s training ranges were projected to be in use during the last half of March, 2007 through

  9. Characterization of process air emissions in automotive production plants.

    PubMed

    D'Arcy, J B; Dasch, J M; Gundrum, A B; Rivera, J L; Johnson, J H; Carlson, D H; Sutherland, J W

    2016-01-01

    During manufacturing, particles produced from industrial processes become airborne. These airborne emissions represent a challenge from an industrial hygiene and environmental standpoint. A study was undertaken to characterize the particles associated with a variety of manufacturing processes found in the auto industry. Air particulates were collected in five automotive plants covering ten manufacturing processes in the areas of casting, machining, heat treatment and assembly. Collection procedures provided information on air concentration, size distribution, and chemical composition of the airborne particulate matter for each process and insight into the physical and chemical processes that created those particles.

  10. Identification and chemical characterization of industrial particulate matter sources in southwest Spain.

    PubMed

    Alastuey, Andrés; Querol, Xavier; Plana, Feliciano; Viana, Mar; Ruiz, Carmen R; Sánchez de la Campa, Ana; de la Rosa, Jesús; Mantilla, Enrique; García dos Santos, Saul

    2006-07-01

    A detailed physical and chemical characterization of coarse particulate matter (PM10) and fine particulate matter (PM2.5) in the city of Huelva (in Southwestern Spain) was carried out during 2001 and 2002. To identify the major emission sources with a significant influence on PM10 and PM2.5, a methodology was developed based on the combination of: (1) real-time measurements of levels of PM10, PM2.5, and very fine particulate matter (PM1); (2) chemical characterization and source apportionment analysis of PM10 and PM2.5; and (3) intensive measurements in field campaigns to characterize the emission plumes of several point sources. Annual means of 37, 19, and 16 microg/m3 were obtained for the study period for PM10, PM2.5, and PM1, respectively. High PM episodes, characterized by a very fine grain size distribution, are frequently detected in Huelva mainly in the winter as the result of the impact of the industrial emission plumes on the city. Chemical analysis showed that PM at Huelva is characterized by high PO4(3-) and As levels, as expected from the industrial activities. Source apportionment analyses identified a crustal source (36% of PM10 and 31% of PM2.5); a traffic-related source (33% of PM10 and 29% of PM2.5), and a marine aerosol contribution (only in PM10, 4%). In addition, two industrial emission sources were identified in PM10 and PM2.5: (1) a petrochemical source, 13% in PM10 and 8% in PM2.5; and (2) a mixed metallurgical-phosphate source, which accounts for 11-12% of PM10 and PM2.5. In PM2.5 a secondary source has been also identified, which contributed to 17% of the mass. A complete characterization of industrial emission plumes during their impact on the ground allowed for the identification of tracer species for specific point sources, such as petrochemical, metallurgic, and fertilizer and phosphate production industries.

  11. Characterization of Emissions and Residues from Simulations of the Deepwater Horizon Surface Oil Burns

    EPA Science Inventory

    The surface oil burns conducted by the U.S. Coast Guard from April to July 2010 during the Deepwater Horizon disaster in the Gulf of Mexico were simulated by small scale burns to characterize the pollutants, determine emission factors, and gather particulate matter for subsequent...

  12. Characterization of chemical and particulate emissions from aircraft engines

    NASA Astrophysics Data System (ADS)

    Agrawal, Harshit; Sawant, Aniket A.; Jansen, Karel; Wayne Miller, J.; Cocker, David R.

    2008-06-01

    This paper presents a series of measurements from four on-wing, commercial aircraft engines, including two newer CFM56-7 engines and two earlier CFM56-3 engines. Samples were collected from each engine using a probe positioned behind the exhaust nozzle of the aircraft, chocked on a concrete testing pad. The emission factors for particulate matter mass, elemental and organic carbon, carbonyls, polycyclic aromatic hydrocarbons, n-alkanes, dioxins, metals and ions are reported for four different engine power setting modes. The emissions indices of particulate matter, elemental and organic carbon are highly power dependent for these engines. Particulate matter emission indices (g kg-1 fuel) are found to increase from 1.1E-02 to 2.05E-01 with increase in power from idle to 85%. The elemental carbon to organic carbon varies from 0.5 to 3.8 with change in power from idle to 85%. The carbonyl emissions are dominated by formaldehyde. The emission index of formaldehyde ranges from 2.3E-01 to 4.8E-01 g kg-1 fuel. The distribution of metals depends on the difference in the various engines. The dioxin emissions from the aircraft engines are observed to be below detection limit.

  13. Characterization of exhaust emissions from diesel-powered passenger cars with particular reference to unregulated components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lies, K.H.; Postulka, A.; Gring, H.

    Besides regulated components VW's research program in the field of characterization of diesel emissions comprises a detailed analysis of the particulates and a comprehensive study of a number of unregulated gaseous compounds. The following chemical compounds and classes of compounds are measured: particulates, traces of metals, major elements, sulfates, sulfur dioxide, hydrogen sulfide, hydrogen cyanide, aldehydes, ammonia, phenols, individual hydrocarbons, and odor (DOAS). The test fleet of this investigation included a number of VW and Audi cars equipped with 4-, and 5-cylinder diesel engines (naturally aspirated and turbocharged). All measurements were performed on a chassis dynamometer in accordance with themore » specification of the known US-test-procedures: Federal Test Procedure, Sulfate Emission Test, Fuel Economy Test. For sampling , in principle, the dilution tunnel technique was used combined with an automatically working collection system. This micro-processor controlled system involves 13 individual sample lines, 8 for gaseous and 5 for particulate components.« less

  14. EFFECTS OF ENGINE SPEED AND ACCESSORY LOAD ON IDLING EMISSIONS FROM HEAVY-DUTY DIESEL TRUCK ENGINES

    EPA Science Inventory

    A nontrivial portion of heavy-duty vehicle emissions of nitrogen oxides (NOx) and particulate matter (PM) occurs during idling. Regulators and the environmental community are interested in curtailing truck idling emissions, but current emissions models do not characterize them ac...

  15. INVERTING CASCADE IMPACTOR DATA FOR SIZE-RESOLVED CHARACTERIZATION OF FINE PARTICULATE SOURCE EMISSIONS

    EPA Science Inventory

    Cascade impactors are particularly useful in determining the mass size distributions of particulate and individual chemical species. The impactor raw data must be inverted to reconstruct a continuous particle size distribution. An inversion method using a lognormal function for p...

  16. Filtration of Carbon Particulate Emissions from a Plasma Pyrolysis Assembly

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Green, Robert; Vijayakumar, R.; Berger, Gordon; Greenwood, Zach; Abney, Morgan; Peterson, Elspeth

    2016-01-01

    NASA is investigating plasma pyrolysis as a candidate technology that will enable the recovery of hydrogen from the methane produced by the ISS Sabatier Reactor. The Plasma Pyrolysis Assembly (PPA) is the current prototype of this technology which converts the methane product from the Carbon Dioxide Reduction Assembly (CRA) to acetylene and hydrogen with 90% or greater conversion efficiency. A small amount of solid carbon particulates are generated as a side product and must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on several options for filtering out the carbon particulate emissions from the PPA exit gas stream. The filtration technologies and concepts investigated range from fibrous media to monolithic ceramic and sintered metal media. This paper describes the different developed filter prototypes and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC. In addition, characterization data on the generated carbon particulates, that help to define filter requirements, are also presented.

  17. EMISSION MEASUREMENTS OF PARTICLE MASS AND SIZE EMISSION PROFILES FROM CONSTRUCTION ACTIVITIES

    EPA Science Inventory

    The report gives results from field tests that characterize the amount and size distribution of particulate matter (PM) emissions from operations at construction sites. Of particular interest is the movement of earth by scraper loading and unloading, grading, transit vehicular m...

  18. Characterization of emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

    EPA Science Inventory

    The fine particulate matter emissions from aircraft operations at large airports located in areas of the U. S. designated as non-attainment for the National Ambient Air Quality Standard for PM-2.5 are of major environmental concern. PM emissions data for commercial aircraft engin...

  19. Influence of maladjustment on emissions from two heavy-duty diesel bus engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullman, T.L.; Hare, C.T.; Baines, T.M.

    1984-01-01

    Diesel engines are adjusted to manufacturers' specifications when produced and placed in service, but varying degrees of maintenance and wear cause changes in engine performance and exhaust emissions. Maladjustments were made on two heavy-duty diesel engines typically used in buses in an effort to simulate some degree of wear and/or lack of maintenance. Emissions were characterized over steady-state and transient engine operation, in both baseline and maladjusted configurations. Selected maladjustments of the Cummins VTB-903 substantially increased HC, smoke and particulate emission levels. Maladjustments of the Detroit Diesel 6V-71 coach engine resulted in lower HC and NO/sup x/ emission levels, butmore » higher CO emissions, smoke, and particulate.« less

  20. Emission patterns of diesel-powered passenger cars. Part II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braddock, J.N.; Gabele, P.A.

    An experimental program was conducted to characterize the gaseous and particulate emissions from a 1975 Peugeot 504D light duty diesel-powered vehicle. The vehicle was tested over the 1975 Federal Test Procedure, Highway Fuel Economy Test, and Sulfate Emissions Test driving cycles using four different fuels covering a fair range of composition, density, and sulfur content. In addition to fuel economy and regulated gaseous emission measurements of hydrocarbons, carbon monoxide, and oxides of nitrogen, emission measurements were also obtained for non-regulated pollutants including sulfur dioxide, sulfates, aldehydes, benzo(a)pyrene, carbonyl sulfide, hydrogen cyanide, nonreactive hydrocarbons, and particulate matter. The results are discussedmore » in terms of emission trends due to either fuel type or driving cycle influence.« less

  1. FINE PARTICLE EMISSIONS FROM RESIDUAL FUEL OIL COMBUSTION: CHARACTERIZATION AND MECHANISMS OF FORMATION

    EPA Science Inventory

    The paper gives results of a comparison of the characteristics of particulate matter (PM) emitted from residual fuel oil combustion in two types of combustion equipment. A small commercial 732-kW fire-tube boiler yielded a weakly bi-modal particulate size distribution (PSD) with...

  2. Characterization of cotton gin particulate matter emissions – project plan

    USDA-ARS?s Scientific Manuscript database

    In 2006, EPA implemented a more stringent standard for particulate matter with an effective diameter less than 2.5 microns (PM2.5). The implementation timeline for this standard will vary by state/district regulatory agency. For example, the San Joaquin Valley Air Pollution Control District, has pro...

  3. Characterization of cotton gin particulate matter emissions - project plan

    USDA-ARS?s Scientific Manuscript database

    In 2006, EPA implemented a more stringent standard for particulate matter with an effective diameter less than 2.5 microns (PM2.5). The implementation time line for this standard will vary by state/district regulatory agency. For example, the San Joaquin Valley Air Pollution Control District has pro...

  4. Climate-relevant properties of diesel particulate emissions: results from a piggyback study in Bangkok, Thailand.

    PubMed

    Subramanian, R; Winijkul, Ekbordin; Bond, Tami C; Thiansathit, Worrarat; Oanh, Nguyen Thi Kim; Paw-armart, Ittipol; Duleep, K G

    2009-06-01

    A "piggyback" approach is used to characterize aerosol emissions to obtain input for large-scale models of atmospheric transport. Particulate and gaseous emissions from diesel trucks, light-duty vehicles, and buses were measured by the Bangkok Pollution Control Department as part of the Developing Integrated Emissions Strategies for Existing Land Transport (DIESEL) project. We added filter-based measurements of carbonaceous composition, particulate light absorption, and water uptake. For 88 "normal" diesel vehicles (PM emission rate < 4.7 g/kg), our best estimate of the average PM2.5 emission rate is 2.2 +/- 0.5 g/kg, whereas for 15 high emitters, it is 8.4 +/- 1.9 g/kg. The effect of Euro standards on PM emission rates was apparent for heavy-duty vehicles, but not for light-duty vehicles. Carbonaceous composition appears relatively consistent, with particulate (artifact-corrected) OC at 17 +/- 1% and EC at 40 +/- 8% of PM for 103 pickups, vans, heavy-duty trucks and buses. The median absorption cross-section for EC is 10.5 m2/g at 532 nm. The history of average emission rate and chemical composition during the project suggests that about 25 vehicles can provide a regional PM emission rate for normal vehicles. Other studies such as remote sensing measurements will be required to estimate the important contribution of high-emitting vehicles.

  5. PARTICULATE EMISSIONS FROM CONSTRUCTION ACTIVITIES

    EPA Science Inventory

    Although it has long been recognized that road and building construction activity constitutes an important source of PM emissions throughout the United States, until recently only limited research has been directed to its characterization. This paper presents the results of PM10...

  6. Environmentally persistent free radicals and particulate emissions from the thermal degradation of Croton megalocarpus biodiesel.

    PubMed

    Mosonik, Bornes C; Kibet, Joshua K; Ngari, Silas M; Nyamori, Vincent O

    2018-06-21

    Pyrolysis of biodiesel at high temperatures may result in the formation of transient and stable free radicals immobilized on particulate emissions. Consequently, free radicals adsorbed on particulates are believed to be precursors for health-related illnesses such as cancer, cardiac arrest, and oxidative stress. This study explores the nature of free radicals and particulate emissions generated when Croton megalocarpus biodiesel is pyrolyzed at 600 °C in an inert environment of flowing nitrogen at a residence time of 0.5 s at 1 atm. The surface morphology of thermal emissions were imaged using a field emission gun scanning electron microscope (FEG SEM) while the radical characteristics were investigated using an electron paramagnetic resonance spectrometer (EPR). A g-value of 2.0024 associated with a narrow ∆Hp-p of 3.65 G was determined. The decay rate constant for the radicals was low (1.86 × 10 -8  s -1 ) while the half-life was long ≈ 431 days. The observed EPR characterization of Croton megalocarpus thermal particulates revealed the existence of free radicals typical of those found in coal. The low g-value and low decay rate constant suggests that the free radicals in particulates are possibly carbon-centered. The mechanistic channel for the formation of croton char from model biodiesel component (9-dodecenoic acid, methyl ester) has been proposed in this study.

  7. Emissions from laboratory combustion of wildland fuels: Emission factors and source profiles

    Treesearch

    L.-W. Anthony Chen; Hans Moosmuller; W. Patrick Arnott; Judith C. Chow; John G. Watson; Ronald A. Susott; Ronald E. Babbitt; Cyle E. Wold; Emily N. Lincoln; Wei Min Hao

    2007-01-01

    Combustion of wildland fuels represents a major source of particulate matter (PM) and light-absorbing elemental carbon (EC) on a national and global scale, but the emission factors and source profiles have not been well characterized with respect to different fuels and combustion phases. These uncertainties limit the accuracy of current emission inventories, smoke...

  8. Physical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions Experiment (APEX) 1 to 3

    EPA Science Inventory

    The f1me particulate matter (PM) emissions from nine commercial aircraft engine models were determined by plume sampling during the three field campaigns of the Aircraft Particle Emissions Experiment (APEX). Ground-based measurements were made primarily at 30 m behind the engine ...

  9. Application of modern online instrumentation for chemical analysis of gas and particulate phases of exhaust at the European Commission heavy-duty vehicle emission laboratory.

    PubMed

    Adam, T W; Chirico, R; Clairotte, M; Elsasser, M; Manfredi, U; Martini, G; Sklorz, M; Streibel, T; Heringa, M F; Decarlo, P F; Baltensperger, U; De Santi, G; Krasenbrink, A; Zimmermann, R; Prevot, A S H; Astorga, C

    2011-01-01

    The European Commission recently established a novel test facility for heavy-duty vehicles to enhance more sustainable transport. The facility enables the study of energy efficiency of various fuels/scenarios as well as the chemical composition of evolved exhaust emissions. Sophisticated instrumentation for real-time analysis of the gas and particulate phases of exhaust has been implemented. Thereby, gas-phase characterization was carried out by a Fourier transform infrared spectrometer (FT-IR; carbonyls, nitrogen-containing species, small hydrocarbons) and a resonance-enhanced multiphoton ionization time-of-flight mass spectrometer (REMPI-TOFMS; monocyclic and polycyclic aromatic hydrocarbons). For analysis of the particulate phase, a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS; organic matter, chloride, nitrate), a condensation particle counter (CPC; particle number), and a multiangle absorption photometer (MAAP; black carbon) were applied. In this paper, the first application of the new facility in combination with the described instruments is presented, whereby a medium-size truck was investigated by applying different driving cycles. The goal was simultaneous chemical characterization of a great variety of gaseous compounds and particulate matter in exhaust on a real-time basis. The time-resolved data allowed new approaches to view the results; for example, emission factors were normalized to time-resolved consumption of fuel and were related to emission factors evolved during high speeds. Compounds could be identified that followed the fuel consumption, others showed very different behavior. In particular, engine cold start, engine ignition (unburned fuel), and high-speed events resulted in unique emission patterns.

  10. Uncontrolled combustion of shredded tires in a landfill - Part 1: Characterization of gaseous and particulate emissions

    NASA Astrophysics Data System (ADS)

    Downard, Jared; Singh, Ashish; Bullard, Robert; Jayarathne, Thilina; Rathnayake, Chathurika M.; Simmons, Donald L.; Wels, Brian R.; Spak, Scott N.; Peters, Thomas; Beardsley, Douglas; Stanier, Charles O.; Stone, Elizabeth A.

    2015-03-01

    In summer 2012, a landfill liner comprising an estimated 1.3 million shredded tires burned in Iowa City, Iowa. During the fire, continuous monitoring and laboratory measurements were used to characterize the gaseous and particulate emissions and to provide new insights into the qualitative nature of the smoke and the quantity of pollutants emitted. Significant enrichments in ambient concentrations of CO, CO2, SO2, particle number (PN), fine particulate (PM2.5) mass, elemental carbon (EC), and polycyclic aromatic hydrocarbons (PAH) were observed. For the first time, PM2.5 from tire combustion was shown to contain PAH with nitrogen heteroatoms (a.k.a. azaarenes) and picene, a compound previously suggested to be unique to coal-burning. Despite prior laboratory studies' findings, metals used in manufacturing tires (i.e. Zn, Pb, Fe) were not detected in coarse particulate matter (PM10) at a distance of 4.2 km downwind. Ambient measurements were used to derive the first in situ fuel-based emission factors (EF) for the uncontrolled open burning of tires, revealing substantial emissions of SO2 (7.1 g kg-1), particle number (3.5 × 1016 kg-1), PM2.5 (5.3 g kg-1), EC (2.37 g kg-1), and 19 individual PAH (totaling 56 mg kg-1). A large degree of variability was observed in day-to-day EF, reflecting a range of flaming and smoldering conditions of the large-scale fire, for which the modified combustion efficiency ranged from 0.85 to 0.98. Recommendations for future research on this under-characterized source are also provided.

  11. Uncontrolled combustion of shredded tires in a landfill – Part 1: Characterization of gaseous and particulate emissions

    PubMed Central

    Downard, Jared; Singh, Ashish; Bullard, Robert; Jayarathne, Thilina; Rathnayake, Chathurika; Simmons, Donald L.; Wels, Brian R.; Spak, Scott N.; Peters, Thomas; Beardsley, Douglas; Stanier, Charles; Stone, Elizabeth A.

    2014-01-01

    In summer 2012, a landfill liner comprising an estimated 1.3 million shredded tires burned in Iowa City, Iowa. During the fire, continuous monitoring and laboratory measurements were used to characterize the gaseous and particulate emissions and to provide new insights into the qualitative nature of the smoke and the quantity of pollutants emitted. Significant enrichments in ambient concentrations of CO, CO2, SO2, particle number (PN), fine particulate (PM2.5) mass, elemental carbon (EC), and polycyclic aromatic hydrocarbons (PAH) were observed. For the first time, PM2.5 from tire combustion was shown to contain PAH with nitrogen heteroatoms (a.k.a. azaarenes) and picene, a compound previously suggested to be unique to coal-burning. Despite prior laboratory studies’ findings, metals used in manufacturing tires (i.e. Zn, Pb, Fe) were not detected in coarse particulate matter (PM10) at a distance of 4.2 km downwind. Ambient measurements were used to derive the first in situ fuel-based emission factors (EF) for the uncontrolled open burning of tires, revealing substantial emissions of SO2 (7.1 g kg−1), particle number (3.5×1016 kg−1), PM2.5 (5.3 g kg−1), EC (2.37 g kg−1), and 19 individual PAH (totaling 56 mg kg−1). A large degree of variability was observed in day-to-day EF, reflecting a range of flaming and smoldering conditions of the large-scale fire, for which the modified combustion efficiency ranged from 0.85-0.98. Recommendations for future research on this under-characterized source are also provided. PMID:25663800

  12. Particulate Emissions Control using Advanced Filter Systems: Final Report for Argonne National Laboratory, Corning Inc. and Hyundai Motor Company CRADA Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seong, Hee Je; Choi, Seungmok

    2015-10-09

    This is a 3-way CRADA project working together with Corning, Inc. and Hyundai Motor Co. (HMC). The project is to understand particulate emissions from gasoline direct-injection engines (GDI) and their physico-chemical properties. In addition, this project focuses on providing fundamental information about filtration and regeneration mechanisms occurring in gasoline particulate filter (GPF) systems. For the work, Corning provides most advanced filter substrates for GPF applications and HMC provides three-way catalyst (TWC) coating services of these filter by way of a catalyst coating company. Then, Argonne National Laboratory characterizes fundamental behaviors of filtration and regeneration processes as well as evaluated TWCmore » functionality for the coated filters. To examine aging impacts on TWC and GPF performance, the research team evaluates gaseous and particulate emissions as well as back-pressure increase with ash loading by using an engine-oil injection system to accelerate ash loading in TWC-coated GPFs.« less

  13. Characterizing particulate matter emissions from vehicles: chassis-dynamometer tests using a High-Resolution Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Collier, S.; Zhang, Q.; Forestieri, S.; Kleeman, M.; Cappa, C. D.; Kuwayama, T.

    2012-12-01

    During September of 2011 a suite of real-time instruments was used to sample vehicle emissions at the California Air Resources Board Haagen-Schmidt facility in El Monte, CA. A representative fleet of 8 spark ignition gasoline vehicles, a diesel passenger vehicle, a gasoline direct-injection vehicle and an ultra-low emissions vehicle were tested on a chassis dynamometer. The emissions were sampled into the facility's standard CVS tunnel and diluted to atmospherically relevant levels (5-30 μg/m3) while controlling other factors such as relative humidity or background black carbon particulate loading concentrations. An Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-MS) was among the real-time instruments used and sampled vehicle emissions at 10 second time resolution in order to characterize the non-refractory organic and inorganic particulate matter (PM). PM composition and concentration were tracked throughout the cold start driving cycle which included periods of fast acceleration and high velocity cruise control, meant to recreate typical commuter driving behavior. Variations in inorganic and organic PM composition for a given vehicle throughout the driving cycle as well as for various vehicles with differing emissions loading were characterized. Differences in PM composition for a given vehicle whose emissions are being exposed to differing experimental conditions such as varying relative humidity will also be reported. In conjunction with measurements from a Multi Wavelength Photoacoustic Black Carbon Spectrometer (MWPA-BC) and real-time gas measurements from the CARB facility, we determine the real-time emission ratios of primary organic aerosols (POA) with respect to BC and common combustion gas phase pollutants and compared to different vehicle driving conditions. The results of these tests offer the vehicle emissions community a first time glimpse at the real-time behavior of vehicle PM emissions for a variety of conditions and vehicle types at atmospherically relevant conditions and without chemical interferences from other primary or secondary aerosol sources.

  14. Evaluation of Methods for Physical Characterization of the Fine Particle Emissions from Two Residential Wood Combustion Appliances

    EPA Science Inventory

    The fine particulate matter (PM) emissions from a U. S. certified non-catalytic wood stove and a zero clearance fireplace burning Quercus rubra L. (northern red oak) and Pseudotsuga menziesii (Douglas fir) cordwood each at two different moisture levels were determined. Emission t...

  15. DEVELOPMENT OF A NEW MOBILE LABORATORY FOR CHARACTERIZATION OF THE FINE PARTICULATE EMISSIONS FROM HEAVY-DUTY DIESEL TRUCKS.

    EPA Science Inventory

    This paper describes the development of a new mobile laboratory for the determination of the fine particle and gaseous emissions from a Class 8 diesel tractor-trailer research vehicle. The new laboratory (Diesel Emissions Aerosol Laboratory or DEAL) incorporates plume sampling ca...

  16. Battery condenser system total particulate emission factors and rates for cotton gins

    USDA-ARS?s Scientific Manuscript database

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  17. Battery condenser system total particulate emission factors and rates for cotton gins: Method 17

    USDA-ARS?s Scientific Manuscript database

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  18. Military Aircraft Emissions Research - Case of Hercules Cargo Plane (C-130H) Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Mengdawn; Corporan, E.; DeWitt, M.

    2007-01-01

    Tactical airlifter like C-130H has been in use for more than 50 years, and is expected to serve for many years to come. However, the emission characteristics data of the aircraft are scarce. To increase our understanding of turboprop engine emissions, emissions from a military C-130H cargo aircraft were characterized in field conditions in the fall of 2005. Particulate and gaseous pollutants were measured by conventional and advanced instrumentation platforms that were built with in-situ extractive or remote optical sensing technologies. The measurements performed at the C-130H engine exhaust exit showed increased levels of emissions as the engine power settingmore » increased. In contrast, there was no such a relationship found for the C-130H emitted particulate matter (as a function of engine power setting) measured at about 15-m downstream of the engine exhaust plane. The emitted gaseous species measured at both locations were, however, proportional to the engine power setting and comparable (at both locations) when corrected for ambient dilution indicating the lack of particulate emission-power setting relationship at the far field is unique. The result clearly indicates that the aircraft emission factor or index for particulate matter cannot be experimentally determined at a downstream location away from the exhaust exit and has to be determined right at the engine exhaust plane. Emission indices that are needed for air quality modeling will be presented.« less

  19. Commercial aircraft engine emissions characterization of in-use aircraft at Hartsfield-Jackson Atlanta International Airport

    DOT National Transportation Integrated Search

    2008-01-31

    The emissions from in-use commercial aircraft engines have been analyzed for selected gas-phase species and particulate characteristics using continuous extractive sampling 1-2 min downwind from operational taxi- and runways at Hartsfield-Jackson Atl...

  20. SPECIATE 4.4: The Bridge Between Emissions Characterization and Modeling

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Some of the many uses of these source profiles include: (1) creating speciated emissions inventories for...

  1. Review on characterization of nano-particle emissions and PM morphology from internal combustion engines: Part 2 [Review on morphology and nanostructure characterization of nano-particle emission from internal combustion engines

    DOE PAGES

    Choi, Seungmok; Myung, C. L.; Park, S.

    2014-03-05

    This study presents a review of the characterization of physical properties, morphology, and nanostructure of particulate emissions from internal combustion engines. Because of their convenience and readiness of measurement, various on-line commercial instruments have been used to measure the mass, number, and size distribution of nano-particles from different engines. However, these on-line commercial instruments have inherent limitations in detailed analysis of chemical and physical properties, morphology, and nanostructure of engine soot agglomerates, information that is necessary to understand the soot formation process in engine combustion, soot particle behavior in after-treatment systems, and health impacts of the nano-particles. For these reasons,more » several measurement techniques used in the carbon research field, i.e., highresolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and Raman spectroscopy, were used for analysis of engine particulate matter (PM). This review covers a brief introduction of several measurement techniques and previous results from engine nano-particle characterization studies using those techniques.« less

  2. Physicochemical characterization of particulate emissions from a compression ignition engine employing two injection technologies and three fuels.

    PubMed

    Surawski, N C; Miljevic, B; Ayoko, G A; Roberts, B A; Elbagir, S; Fairfull-Smith, K E; Bottle, S E; Ristovski, Z D

    2011-07-01

    Alternative fuels and injection technologies are a necessary component of particulate emission reduction strategies for compression ignition engines. Consequently, this study undertakes a physicochemical characterization of diesel particulate matter (DPM) for engines equipped with alternative injection technologies (direct injection and common rail) and alternative fuels (ultra low sulfur diesel, a 20% biodiesel blend, and a synthetic diesel). Particle physical properties were addressed by measuring particle number size distributions, and particle chemical properties were addressed by measuring polycyclic aromatic hydrocarbons (PAHs) and reactive oxygen species (ROS). Particle volatility was determined by passing the polydisperse size distribution through a thermodenuder set to 300 °C. The results from this study, conducted over a four point test cycle, showed that both fuel type and injection technology have an impact on particle emissions, but injection technology was the more important factor. Significant particle number emission (54%-84%) reductions were achieved at half load operation (1% increase-43% decrease at full load) with the common rail injection system; however, the particles had a significantly higher PAH fraction (by a factor of 2 to 4) and ROS concentrations (by a factor of 6 to 16) both expressed on a test-cycle averaged basis. The results of this study have significant implications for the health effects of DPM emissions from both direct injection and common rail engines utilizing various alternative fuels.

  3. Characterizing natural colloidal/particulate-protein interactions using fluorescence-based techniques and principal component analysis.

    PubMed

    Peiris, Ramila H; Ignagni, Nicholas; Budman, Hector; Moresoli, Christine; Legge, Raymond L

    2012-09-15

    Characterization of the interactions between natural colloidal/particulate- and protein-like matter is important for understanding their contribution to different physiochemical phenomena like membrane fouling, adsorption of bacteria onto surfaces and various applications of nanoparticles in nanomedicine and nanotoxicology. Precise interpretation of the extent of such interactions is however hindered due to the limitations of most characterization methods to allow rapid, sensitive and accurate measurements. Here we report on a fluorescence-based excitation-emission matrix (EEM) approach in combination with principal component analysis (PCA) to extract information related to the interaction between natural colloidal/particulate- and protein-like matter. Surface plasmon resonance (SPR) analysis and fiber-optic probe based surface fluorescence measurements were used to confirm that the proposed approach can be used to characterize colloidal/particulate-protein interactions at the physical level. This method has potential to be a fundamental measurement of these interactions with the advantage that it can be performed rapidly and with high sensitivity. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Time-resolved characterization of primary and secondary particle emissions of a modern gasoline passenger car

    NASA Astrophysics Data System (ADS)

    Karjalainen, P.; Timonen, H.; Saukko, E.; Kuuluvainen, H.; Saarikoski, S.; Aakko-Saksa, P.; Murtonen, T.; Dal Maso, M.; Ahlberg, E.; Svenningsson, B.; Brune, W. H.; Hillamo, R.; Keskinen, J.; Rönkkö, T.

    2015-11-01

    Changes in traffic systems and vehicle emission reduction technologies significantly affect traffic-related emissions in urban areas. In many densely populated areas the amount of traffic is increasing, keeping the emission level high or even increasing. To understand the health effects of traffic related emissions, both primary and secondary particles that are formed in the atmosphere from gaseous exhaust emissions need to be characterized. In this study we used a comprehensive set of measurements to characterize both primary and secondary particulate emissions of a modern gasoline passenger car. Our aerosol particle study covers the whole process chain in emission formation, from the engine to the atmosphere, and takes into account also differences in driving patterns. We observed that in mass terms, the amount of secondary particles was 13 times higher than the amount of primary particles. The formation, composition, number, and mass of secondary particles was significantly affected by driving patterns and engine conditions. The highest gaseous and particulate emissions were observed at the beginning of the test cycle when the performance of the engine and the catalyst was below optimal. The key parameter for secondary particle formation was the amount of gaseous hydrocarbons in primary emissions; however, also the primary particle population had an influence. Thus, in order to enhance human health and wellbeing in urban areas, our study strongly indicates that in future legislation, special attention should be directed into the reduction of gaseous hydrocarbons.

  5. CHARACTERIZATION OF EMISSIONS FROM HAND-HELD TWO-STROKE ENGINES

    EPA Science Inventory

    Despite their extremely high organic and particulate matter emission rates, two-stroke engines remain among the least studied of engine types. Such studies are rare because they are costly to perform. Results reported in this paper were obtained using a facility that shares e...

  6. Air toxic emissions from passenger cars operating on ethanol blend gasoline

    EPA Science Inventory

    Emissions of gaseous and particulate contaminants have been characterized during the operation of two flex-fuel and one non-flex-fueled light-duty vehicle. These vehicles were operated on a chassis dynamometer using a driving cycle representative of urban conditions while burning...

  7. Engine Test and Measurements

    NASA Technical Reports Server (NTRS)

    Wey, Chown Chou

    1999-01-01

    Although the importance of aerosols and their precursors are now well recognized, the characterization of current subsonic engines for these emissions is far from complete. Furthermore, since the relationship of engine operating parameters to aerosol emissions is not known, extrapolation to untested and unbuilt engines necessarily remains highly uncertain. 1997 NASA LaRC engine test, as well as the parallel 1997 NASA LaRC flight measurement, attempts to address both issues by expanding measurements of aerosols and aerosol precursors with fuels containing different levels of fuel sulfur content. The specific objective of the 1997 engine test is to obtain a database of sulfur oxides emissions as well as the non-volatile particulate emission properties as a function of fuel sulfur and engine operating conditions. Four diagnostic systems, extractive and non-intrusive (optical), will be assembled for the gaseous and particulate emissions characterization measurements study. NASA is responsible for the extractive gaseous emissions measurement system which contains an array of analyzers dedicated to examining the concentrations of specific gases (NO, NO(x), CO, CO2, O2, THC, SO2) and the smoke number. University of Missouri-Rolla uses the Mobile Aerosol Sampling System to measure aerosol/particulate total concentration, size distribution, volatility and hydration property. Air Force Research Laboratory uses the Chemical Ionization Mass Spectrometer to measure SO2, SO3/H2SO4, and HN03 Aerodyne Research, Inc. uses Infrared Tunable Diode Laser system to measure SO2, SO3, NO, H2O, and CO2.

  8. Measurement of emissions of fine particulate organic matter from Chinese cooking

    NASA Astrophysics Data System (ADS)

    He, Ling-Yan; Hu, Min; Huang, Xiao-Feng; Yu, Ben-De; Zhang, Yuan-Hang; Liu, De-Quan

    Cooking emissions may contribute significantly to atmospheric organic particles in urban environment in China, and thus need to be examined first for its chemical compositions and characteristics. The particulate organic emissions of the two cooking styles of Chinese cuisine, that is, Hunan Cooking and Cantonese Cooking, were characterized in Shenzhen. More than half of the PM 2.5 mass is due to organic compounds, and over 90 species of organic compounds were identified and quantified, accounting for 26.1% of bulk organic particle mass and 20.7% of PM 2.5. Fatty acids, diacids and steroids were the major organic compounds emitted from both styles of cooking. Of the quantified organic mass, over 90% was fatty acids. The mass of organic species, and the molecular distribution of n-alkanes and PAHs indicated the dissimilarities between the two different cooking styles, but generally the major parts of the organic particulate emissions of the two restaurants were similar, showing less difference than between Chinese and American cooking.

  9. Modeling particulate matter emissions during mineral loading process under weak wind simulation.

    PubMed

    Zhang, Xiaochun; Chen, Weiping; Ma, Chun; Zhan, Shuifen

    2013-04-01

    The quantification of particulate matter emissions from mineral handling is an important problem for the quantification of global emissions on industrial sites. Mineral particulate matter emissions could adversely impact environmental quality in mining regions, transport regions, and even on a global scale. Mineral loading is an important process contributing to mineral particulate matter emissions, especially under weak wind conditions. Mathematical models are effective ways to evaluate particulate matter emissions during the mineral loading process. The currently used empirical models based on the form of a power function do not predict particulate matter emissions accurately under weak wind conditions. At low particulate matter emissions, the models overestimated, and at high particulate matter emissions, the models underestimated emission factors. We conducted wind tunnel experiments to evaluate the particulate matter emission factors for the mineral loading process. A new approach based on the mathematical form of a logistical function was developed and tested. It provided a realistic depiction of the particulate matter emissions during the mineral loading process, accounting for fractions of fine mineral particles, dropping height, and wind velocity. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Chemical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

    EPA Science Inventory

    This paper addresses the need for detailed chemical information on the fine particulate matter (PM2.5) generated by commercial aviation engines. The exhaust plumes of nine engine models were sampled during the three test campaigns of the Aircraft Particle Emissions eXperiment (AP...

  11. CENTRAL CAROLINA VEHICLE PARTICULATE EMISSION STUDY (FINAL REPORT)

    EPA Science Inventory

    A study to characterize the exhaust emissions from a light-duty fleet of in-use vehicles representative of central North Carolina was conducted in 1999 during both a winter phase (February) and a summer phase (June - July). Summer temperatures averaged 78 F, while the winter te...

  12. The 2014 National Emission Inventory for Rangeland Fires and Crop Residue Burning

    EPA Science Inventory

    Biomass burning has been identified as an important contributor to the degradation of air quality because of its impact on ozone and particulate matter. One component of the biomass burning inventory, crop residue burning, has been poorly characterized in the National Emissions I...

  13. IDENTIFICATION AND CHARACTERIZATION OF MISSING AND UNACCOUNTED FOR AREA SOURCE CATEGORIES

    EPA Science Inventory

    The report identifies and characterizes missing or unaccounted for area source categories. Area source emissions of particulate matter (TSP), sulfur dioxide (SO2), oxides of nitrogen (NOx), reactive volatile organic compounds (VOCs), and carbon monoxide (CO) are estimated annuall...

  14. CHARACTERIZATION OF THE FINE PARTICLE AND GASEOUS EMISSIONS DURING SCHOOL BUS IDLING

    EPA Science Inventory

    The particulate matter (PM) and gaseous emissions from six diesel school buses were determined over a simulated idling period typical of schools in the northeastern U.S. Testing was conducted for both continuous idle and hot restart conditions using particle and gas analyzers. Th...

  15. CHARACTERIZATION OF EMISSIONS AND FUEL ECONOMY OF IN-USE DIESEL AUTOMOBILES

    EPA Science Inventory

    Exhaust emissions from twenty 1977-1980 in-use light-duty diesel vehicles were measured to determine the effects of driving cycle, mileage accumulation, and test conditions. Hydrocarbons, CO, CO2, NOx and particulates were measured for the FTP, HFET, CFDS, NYCC, 50 mph cruise (50...

  16. Filter-based control of particulate matter from a lean gasoline direct injection engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, II, James E; Lewis Sr, Samuel Arthur; DeBusk, Melanie Moses

    New regulations requiring increases in vehicle fuel economy are challenging automotive manufacturers to identify fuel-efficient engines for future vehicles. Lean gasoline direct injection (GDI) engines offer significant increases in fuel efficiency over the more common stoichiometric GDI engines already in the marketplace. However, particulate matter (PM) emissions from lean GDI engines, particularly during stratified combustion modes, are problematic for lean GDI technology to meet U.S. Environmental Protection Agency Tier 3 and other future emission regulations. As such, the control of lean GDI PM with wall-flow filters, referred to as gasoline particulate filter (GPF) technology, is of interest. Since lean GDImore » PM chemistry and morphology differ from diesel PM (where more filtration experience exists), the functionality of GPFs needs to be studied to determine the operating conditions suitable for efficient PM removal. In addition, lean GDI engine exhaust temperatures are generally higher than diesel engines which results in more continuous regeneration of the GPF and less presence of the soot cake layer common to diesel particulate filters. Since the soot layer improves filtration efficiency, this distinction is important to consider. Research on the emission control of PM from a lean GDI engine with a GPF was conducted on an engine dynamometer. PM, after dilution, was characterized with membrane filters, organic vs. elemental carbon characterization, and size distribution techniques at various steady state engine speed and load points. The engine was operated in three primary combustion modes: stoichiometric, lean homogeneous, and lean stratified. In addition, rich combustion was utilized to simulate PM from engine operation during active regeneration of lean NOx control technologies. High (>95%) PM filtration efficiencies were observed over a wide range of conditions; however, some PM was observed to slip through the GPF at high speed and load conditions. The PM characterization at various engine speeds and loads will help enable optimized GPF design and control to achieve more fuel efficient lean GDI vehicles with low PM emissions.« less

  17. Particulate Emissions from a Stationary Engine Fueled with Ultra-Low-Sulfur Diesel and Waste-Cooking-Oil-Derived Biodiesel.

    PubMed

    Betha, Raghu; Balasubramanian, Rajasekhar

    2011-10-01

    Stationary diesel engines, especially diesel generators, are increasingly being used in both developing countries and developed countries because of increased power demand. Emissions from such engines can have adverse effects on the environment and public health. In this study, particulate emissions from a domestic stationary diesel generator running on ultra-low-sulfur diesel (ULSD) and biodiesel derived from waste cooking oil were characterized for different load conditions. Results indicated a reduction in particulate matter (PM) mass and number emissions while switching diesel to biodiesel. With increase in engine load, it was observed that particle mass increased, although total particle counts decreased for all the fuels. The reduction in total number concentration at higher loads was, however, dependent on percentage of biodiesel in the diesel-biodiesel blend. For pure biodiesel (B100), the reduction in PM emissions for full load compared to idle mode was around 9%, whereas for ULSD the reduction was 26%. A large fraction of ultrafine particles (UFPs) was found in the emissions from biodiesel compared to ULSD. Nearly 90% of total particle concentration in biodiesel emissions comprised ultrafine particles. Particle peak diameter shifted from a smaller to a lower diameter with increase in biodiesel percentage in the fuel mixture. [Box: see text].

  18. Particulate emissions from a stationary engine fueled with ultra-low-sulfur diesel and waste-cooking-oil-derived biodiesel.

    PubMed

    Betha, Raghu; Balasubramanian, Rajasekhar

    2011-10-01

    Stationary diesel engines, especially diesel generators, are increasingly being used in both developing countries and developed countries because of increased power demand. Emissions from such engines can have adverse effects on the environment and public health. In this study, particulate emissions from a domestic stationary diesel generator running on ultra-low-sulfur diesel (ULSD) and biodiesel derived from waste cooking oil were characterized for different load conditions. Results indicated a reduction in particulate matter (PM) mass and number emissions while switching diesel to biodiesel. With increase in engine load, it was observed that particle mass increased, although total particle counts decreased for all the fuels. The reduction in total number concentration at higher loads was, however, dependent on percentage of biodiesel in the diesel-biodiesel blend. For pure biodiesel (B100), the reduction in PM emissions for full load compared to idle mode was around 9%, whereas for ULSD the reduction was 26%. A large fraction of ultrafine particles (UFPs) was found in the emissions from biodiesel compared to ULSD. Nearly 90% of total particle concentration in biodiesel emissions comprised ultrafine particles. Particle peak diameter shifted from a smaller to a lower diameter with increase in biodiesel percentage in the fuel mixture.

  19. Gas and Particulate Aircraft Emissions Measurements: Impacts on local air quality.

    NASA Astrophysics Data System (ADS)

    Jayne, J. T.; Onasch, T.; Northway, M.; Canagaratna, M.; Worsnop, D.; Timko, M.; Wood, E.; Miake-Lye, R.; Herndon, S.; Knighton, B.; Whitefield, P.; Hagen, D.; Lobo, P.; Anderson, B.

    2007-12-01

    Air travel and freight shipping by air are becoming increasingly important and are expected to continue to expand. The resulting increases in the local concentrations of pollutants, including particulate matter (PM), volatile organic compounds (VOCs), and nitrogen oxides (NOX), can have negative impacts on regional air quality, human health and can impact climate change. In order to construct valid emission inventories, accurate measurements of aircraft emissions are needed. These measurements must be done both at the engine exit plane (certification) and downwind following the rapid cooling, dilution and initial atmospheric processing of the exhaust plume. We present here results from multiple field experiments which include the Experiment to Characterize Volatile Aerosol and Trace Species Emissions (EXCAVATE) and the four Aircraft Particle Emissions eXperiments (APEX- 1/Atlanta/2/3) which characterized gas and particle emissions from both stationary or in-use aircraft. Emission indices (EIs) for NOx and VOCs and for particle number concentration, refractory PM (black carbon soot) and volatile PM (primarily sulfate and organic) particles are reported. Measurements were made at the engine exit plane and at several downstream locations (10 and 30 meters) for a number of different engine types and engine thrust settings. A significant fraction of organic particle mass is composed of low volatility oil-related compounds and is not combustion related, potentially emitted by vents or heated surfaces within aircraft engines. Advected plumes measurements from in-use aircraft show that the practice of reduced thrust take-offs has a significant effect on total NOx and soot emitted in the vicinity of the airport. The measurements reported here represent a first observation of this effect and new insights have been gained with respect to the chemical processing of gases and particulates important to the urban airshed.

  20. Particles from a Diesel ship engine: Mixing state on the nano scale and cloud condensation abilities

    NASA Astrophysics Data System (ADS)

    Lieke, K. I.; Rosenørn, T.; Fuglsang, K.; Frederiksen, T.; Butcher, A. C.; King, S. M.; Bilde, M.

    2012-04-01

    Transport by ship plays an important role in global logistics. Current international policy initiatives by the International Maritime Organization (IMO) are taken to reduce emissions from ship propulsion systems (NO and SO, primarily). However, particulate emissions (e.g. soot) from ships are yet not regulated by legislations. To date, there is still a lack of knowledge regarding the global and local effects of the particulate matter emitted from ships at sea. Particles may influence the climate through their direct effects (scattering and absorption of long and shortwave radiation) and indirectly through formation of clouds. Many studies have been carried out estimating the mass and particle number from ship emissions (e.g. Petzold et al. 2008), many of them in test rig studies (e.g. Kasper et al. 2007). It is shown that particulate emissions vary with engine load and chemical composition of fuels. Only a few studies have been carried out to characterize the chemical composition and cloud-nucleating ability of the particulate matter (e.g. Corbett et al. 1997). In most cases, the cloud-nucleating ability of emission particles is estimated from number size distribution. We applied measurements to characterize particulate emissions from a MAN B&W Low Speed engine on test bed. A unique data set was obtained through the use of a scanning mobility particle sizing system (SMPS), combined with a cloud condensation nucleus (CCN) counter and a thermodenuder - all behind a dilution system. In addition, impactor samples were taken on nickel grids with carbon foil for use in an electron microscope (EM) to characterize the mineral phase and mixing state of the particles. The engine was operated at a series of different load conditions and an exhaust gas recirculation (EGR) system was applied. Measurements were carried out before and after the EGR system respectively. Our observations show significant changes in number size distribution and CCN activity with varying conditions. Results of transmission electron microscopy revealed salt condensates of nanometer size attached to soot particles. High resolution structural analysis of single particles shows that three different phases (graphitic soot, crystalline salt and amorphous condensed organic matter) may be present in the same particle volume. A closure between CCN activation curves, EM samples, and SMPS size distribution will be presented and used to identify climate active parts in single particles. ACKNOWLEDGEMENTS We thank the Danish Agency for Science, Technology and Innovation for support through the NaKIM project (www.nakim.dk).

  1. CHARACTERIZATION OF PM-10 EMISSIONS FROM ANTISKID MATERIALS APPLIED TO ICE- AND SNOW-COVERED ROADWAYS

    EPA Science Inventory

    The report gives results of a field program to establish a predictive model for PM-10 (particulate matter with diameters or < 10 micrometers) emission. NOTE: Several areas of the U.S. in violation of the National Ambient Air Quality Standard for PM-10 have conducted studies that ...

  2. Development of the crop residue and rangeland burning in the 2014 National Emissions Inventory using information from multiple sources

    EPA Science Inventory

    Biomass burning has been identified as an important contributor to the degradation of air quality because of its impact on ozone and particulate matter. One component of the biomass burning inventory, crop residue burning, has been poorly characterized in the National Emissions I...

  3. Battery condenser system PM2.5 emission factors and rates for cotton gins

    USDA-ARS?s Scientific Manuscript database

    This manuscript is part of a series of manuscripts that detail a project to characterize cotton gin emissions from the standpoint of stack and ambient sampling. The impetus behind the project was the 2006 EPA implementation of a more stringent standard for particulate matter less than or equal to 2....

  4. Characterization of the fugitive particulate emissions from construction mud/dirt carryout.

    PubMed

    Kinsey, John S; Linna, Kara J; Squier, William C; Muleski, Gregory E; Cowherd, Chatten

    2004-11-01

    Although the fugitive dust associated with construction mud/dirt carryout can represent a substantial portion of the particulate matter (PM) emissions inventory in nonattainment areas, it has not been well characterized by direct sampling methods. In this paper, a research program is described that directly determined both PM10 and PM2.5 (particles < or =10 and 2.5 microm in classical aerodynamic diameter, respectively) emission factors for mud/dirt carryout from a major construction project located in metropolitan Kansas City, MO. The program also assessed the contribution of automotive emissions to the total PM2.5 burden and determined the baseline emissions from the test road. As part of the study, both time-integrated and continuous exposure-profiling methods were used to assess the PM emissions, including particle size and elemental composition. This research resulted in overall PM10 and PM2.5 emission factors of 6 and 0.2 g/vehicle, respectively. Although PM10 is within the range of prior U.S. Environmental Protection Agency (EPA) guidance, the PM2.5 emission factor is far lower than previous estimates published by EPA. In addition, based on both the particle size and chemical data obtained in the study, a major portion of the PM2.5 emissions appears to be attributable to automotive exhaust from light-duty, gasoline-powered vehicles and not to the fugitive dust associated with reentrained mud/dirt carryout.

  5. Human health risk characterization of petroleum coke calcining facility emissions.

    PubMed

    Singh, Davinderjit; Johnson, Giffe T; Harbison, Raymond D

    2015-12-01

    Calcining processes including handling and storage of raw petroleum coke may result in Particulate Matter (PM) and gaseous emissions. Concerns have been raised over the potential association between particulate and aerosol pollution and adverse respiratory health effects including decrements in lung function. This risk characterization evaluated the exposure concentrations of ambient air pollutants including PM10 and gaseous pollutants from a petroleum coke calciner facility. The ambient air pollutant levels were collected through monitors installed at multiple locations in the vicinity of the facility. The measured and modeled particulate levels in ambient air from the calciner facility were compared to standards protective of public health. The results indicated that exposure levels were, on occasions at sites farther from the facility, higher than the public health limit of 150 μg/m(3) 24-h average for PM10. However, the carbon fraction demonstrated that the contribution from the calciner facility was de minimis. Exposure levels of the modeled SO2, CO, NOx and PM10 concentrations were also below public health air quality standards. These results demonstrate that emissions from calcining processes involving petroleum coke, at facilities that are well controlled, are below regulatory standards and are not expected to produce a public health risk. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Characterization of fresh and aged organic aerosol emissions from meat charbroiling

    NASA Astrophysics Data System (ADS)

    Kaltsonoudis, Christos; Kostenidou, Evangelia; Louvaris, Evangelos; Psichoudaki, Magda; Tsiligiannis, Epameinondas; Florou, Kalliopi; Liangou, Aikaterini; Pandis, Spyros N.

    2017-06-01

    Cooking emissions can be a significant source of fine particulate matter in urban areas. In this study the aerosol- and gas-phase emissions from meat charbroiling were characterized. Greek souvlakia with pork were cooked using a commercial charbroiler and a fraction of the emissions were introduced into a smog chamber where after a characterization phase they were exposed to UV illumination and oxidants. The particulate and gas phases were characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a proton-transfer-reaction mass spectrometer (PTR-MS) correspondingly. More than 99 % of the aerosol emitted was composed of organic compounds, while black carbon (BC) contributed 0.3 % and the inorganic species less than 0.5 % of the total aerosol mass. The initial O : C ratio was approximately 0.09 and increased up to 0.30 after a few hours of chemical aging (exposures of 1010 molecules cm-3 s for OH and 100 ppb h for ozone). The initial and aged AMS spectra differed considerably (θ = 27°). Ambient measurements were also conducted during Fat Thursday in Patras, Greece, when traditionally meat is charbroiled everywhere in the city. Positive matrix factorization (PMF) revealed that cooking organic aerosol (COA) reached up to 85 % of the total OA from 10:00 to 12:00 LST that day. The ambient COA factor in two major Greek cities had a mass spectrum during spring and summer similar to the aged meat charbroiling emissions. In contrast, the ambient COA factor during winter resembled strongly the fresh laboratory meat charbroiling emissions.

  7. Comprehensive Characterization Of Ultrafine Particulate Emission From 2007 Diesel Engines: PM Size Distribution, Loading And Indidividual Particle Size And Composition.

    NASA Astrophysics Data System (ADS)

    Zelenyuk, A.; Cuadra-Rodriguez, L. A.; Imre, D.; Shimpi, S.; Warey, A.

    2006-12-01

    The strong absorption of solar radiation by black carbon (BC) impacts the atmospheric radiative balance in a complex and significant manner. One of the most important sources of BC is vehicular emissions, of which diesel represents a significant fraction. To address this issue the EPA has issues new stringent regulations that will be in effect in 2007, limiting the amount of particulate mass that can be emitted by diesel engines. The new engines are equipped with aftertreatments that reduce PM emissions to the point, where filter measurements are subject to significant artifacts and characterization by other techniques presents new challenges. We will present the results of the multidisciplinary study conducted at the Cummins Technical Center in which a suite of instruments was deployed to yield comprehensive, temporally resolved information on the diesel exhaust particle loadings and properties in real-time: Particle size distributions were measured by Engine Exhaust Particle Sizer (EEPS) and Scanning Mobility Particle Sizer (SMPS). Total particle diameter concentration was obtained using Electrical Aerosol Detector (EAD). Laser Induced Incandescence and photoacoustic techniques were used to monitor the PM soot content. Single Particle Laser Ablation Time-of- flight Mass Spectrometer (SPLAT) provided the aerodynamic diameter and chemical composition of individual diesel exhaust particles. Measurements were conducted on a number of heavy duty diesel engines operated under variety of operating conditions, including FTP transient cycles, ramped-modal cycles and steady states runs. We have also characterized PM emissions during diesel particulate filter regeneration cycles. We will present a comparison of PM characteristics observed during identical cycles, but with and without the use of aftertreatment. A total of approximately 100,000 individual particles were sized and their composition characterized by SPLAT. The aerodynamic size distributions of the characterized particles were between 50 and 300 nm, depending on engine operating conditions and particle composition. We will show that while the drastically reduced diesel PM emissions often render the PM filter measurements inadequate due to organic vapor artifacts SPLAT demonstrated its capability to provide real-time information on size and composition of individual diesel exhaust particles as function of engine operating conditions with better than 1 minute resolution.

  8. Characteristics of trace metals in traffic-derived particles in Hsuehshan Tunnel, Taiwan: size distribution, fingerprinting metal ratio, and emission factor

    NASA Astrophysics Data System (ADS)

    Lin, Y.-C.; Tsai, C.-J.; Wu, Y.-C.; Zhang, R.; Chi, K.-H.; Huang, Y.-T.; Lin, S.-H.; Hsu, S.-C.

    2014-05-01

    Traffic emissions are a significant source of airborne particulate matter (PM) in ambient environments. These emissions contain high abundance of toxic metals and thus pose adverse effects on human health. Size-fractionated aerosol samples were collected from May to September 2013 by using micro-orifice uniform deposited impactor (MOUDI). Sample collection was conducted simultaneously at the inlet and outlet sites of Hsuehshan Tunnel in northern Taiwan, which is the second longest freeway tunnel (12.9 km) in Asia. Such endeavor aims to characterize the chemical constituents, size distributions, and fingerprinting ratios, as well as the emission factors of particulate metals emitted by vehicle fleets. A total of 36 metals in size-resolved aerosols were determined through inductively coupled plasma mass spectrometry. Three major groups, namely, tailpipe emissions (Zn, Pb, and V), wear debris (Cu, Cd, Fe, Ga, Mn, Mo, Sb, and Sn), and resuspended dust (Ca, Mg, K, and Rb), of airborne PM metals were categorized on the basis of the results of enrichment factor, correlation matrix, and principal component analysis. Size distributions of wear-originated metals resembled the pattern of crustal elements, which were predominated by super-micron particulates (PM1-10). By contrast, tailpipe exhaust elements such as Zn, Pb, and V were distributed mainly in submicron particles. By employing Cu as a tracer of wear abrasion, several inter-metal ratios, including Fe/Cu (14), Ba/Cu (1.05), Sb/Cu (0.16), Sn/Cu (0.10), and Ga/Cu (0.03), served as fingerprints for wear debris. Emission factor of PM10 mass was estimated to be 7.7 mg vkm-1. The metal emissions were mostly predominated in super-micron particles (PM1-10). Finally, factors that possibly affect particulate metal emissions inside Hsuehshan Tunnel are discussed.

  9. Particulate emissions from diesel engines: correlation between engine technology and emissions.

    PubMed

    Fiebig, Michael; Wiartalla, Andreas; Holderbaum, Bastian; Kiesow, Sebastian

    2014-03-07

    In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted.Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions.Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the particulate emissions without a negative impact on the particulate-size distribution towards smaller particles. The residual particles can be trapped in a diesel particulate trap independent of their size or the engine operating mode. The usage of a wall-flow diesel particulate filter leads to an extreme reduction of the emitted particulate mass and number, approaching 100%. A reduced particulate mass emission is always connected to a reduced particle number emission.

  10. Particulate emissions from diesel engines: correlation between engine technology and emissions

    PubMed Central

    2014-01-01

    In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted. Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions. Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the particulate emissions without a negative impact on the particulate-size distribution towards smaller particles. The residual particles can be trapped in a diesel particulate trap independent of their size or the engine operating mode. The usage of a wall-flow diesel particulate filter leads to an extreme reduction of the emitted particulate mass and number, approaching 100%. A reduced particulate mass emission is always connected to a reduced particle number emission. PMID:24606725

  11. Characterization of Gas-Phase Organics Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry: Residential Coal Combustion.

    PubMed

    Klein, Felix; Pieber, Simone M; Ni, Haiyan; Stefenelli, Giulia; Bertrand, Amelie; Kilic, Dogushan; Pospisilova, Veronika; Temime-Roussel, Brice; Marchand, Nicolas; El Haddad, Imad; Slowik, Jay G; Baltensperger, Urs; Cao, Junji; Huang, Ru-Jin; Prévôt, André S H

    2018-03-06

    Residential coal combustion is a significant contributor to particulate urban air pollution in Chinese mega cities and some regions in Europe. While the particulate emission factors and the chemical characteristics of the organic and inorganic aerosol from coal combustion have been extensively studied, the chemical composition and nonmethane organic gas (NMOG) emission factors from residential coal combustion are mostly unknown. We conducted 23 individual burns in a traditional Chinese stove used for heating and cooking using five different coals with Chinese origins, characterizing the NMOG emissions using a proton transfer reaction time-of-flight mass spectrometer. The measured emission factors range from 1.5 to 14.1 g/kg coal for bituminous coals and are below 0.1 g/kg coal for anthracite coals. The emission factors from the bituminous coals are mostly influenced by the time until the coal is fully ignited. The emissions from the bituminous coals are dominated by aromatic and oxygenated aromatic compounds with a significant contribution of hydrocarbons. The results of this study can help to improve urban air pollution modeling in China and Eastern Europe and can be used to constrain a coal burning factor in ambient gas phase positive matrix factorization studies.

  12. Assessing fire emissions from tropical savanna and forests of central Brazil

    Treesearch

    Philip J. Riggan; James A. Brass; Robert N. Lockwood

    1993-01-01

    Wildfires in tropical forest and savanna are a strong source of trace gas and particulate emissions to the atmosphere, but estimates of the continental-scale impacts are limited by large uncertainties in the rates of fire occurrence and biomass combustion. Satellite-based remote sensing offers promise for characterizing fire physical properties and impacts on the...

  13. Characterization of metals emitted from motor vehicles.

    PubMed

    Schauer, James J; Lough, Glynis C; Shafer, Martin M; Christensen, William F; Arndt, Michael F; DeMinter, Jeffrey T; Park, June-Soo

    2006-03-01

    A systematic approach was used to quantify the metals present in particulate matter emissions associated with on-road motor vehicles. Consistent sampling and chemical analysis techniques were used to determine the chemical composition of particulate matter less than 10 microm in aerodynamic diameter (PM10*) and particulate matter less than 2.5 microm in aerodynamic diameter (PM2.5), including analysis of trace metals by inductively coupled plasma mass spectrometry (ICP-MS). Four sources of metals were analyzed in emissions associated with motor vehicles: tailpipe emissions from gasoline- and diesel-powered vehicles, brake wear, tire wear, and resuspended road dust. Profiles for these sources were used in a chemical mass balance (CMB) model to quantify their relative contributions to the metal emissions measured in roadway tunnel tests in Milwaukee, Wisconsin. Roadway tunnel measurements were supplemented by parallel measurements of atmospheric particulate matter and associated metals at three urban locations: Milwaukee and Waukesha, Wisconsin, and Denver, Colorado. Ambient aerosol samples were collected every sixth day for one year and analyzed by the same chemical analysis techniques used for the source samples. The two Wisconsin sites were studied to assess the spatial differences, within one urban airshed, of trace metals present in atmospheric particulate matter. The measurements were evaluated to help understand source and seasonal trends in atmospheric concentrations of trace metals. ICP-MS methods have not been widely used in analyses of ambient aerosols for metals despite demonstrated advantages over traditional techniques. In a preliminary study, ICP-MS techniques were used to assess the leachability of trace metals present in atmospheric particulate matter samples and motor vehicle source samples in a synthetic lung fluid.

  14. Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources

    NASA Astrophysics Data System (ADS)

    Querol, Xavier; Alastuey, Andrés; Rodriguez, Sergio; Plana, Felicià; Mantilla, Enrique; Ruiz, Carmen R.

    Investigations on the monitoring of ambient air levels of atmospheric particulates were developed around a large source of primary anthropogenic particulate emissions: the industrial ceramic area in the province of Castelló (Eastern Spain). Although these primary particulate emissions have a coarse grain-size distribution, the atmospheric transport dominated by the breeze circulation accounts for a grain-size segregation, which results in ambient air particles occurring mainly in the 2.5-10 μm range. The chemical composition of the ceramic particulate emissions is very similar to the crustal end-member but the use of high Al, Ti and Fe as tracer elements as well as a peculiar grain-size distribution in the insoluble major phases allow us to identify the ceramic input in the bulk particulate matter. PM2.5 instead of PM10 monitoring may avoid the interference of crustal particles without a major reduction in the secondary anthropogenic load, with the exception of nitrate. However, a methodology based in PM2.5 measurement alone is not adequate for monitoring the impact of primary particulate emissions (such as ceramic emissions) on air quality, since the major ambient air particles derived from these emissions are mainly in the range of 2.5-10 μm. Consequently, in areas characterised by major secondary particulate emissions, PM2.5 monitoring should detect anthropogenic particulate pollutants without crustal particulate interference, whereas PM10 measurements should be used in areas with major primary anthropogenic particulate emissions.

  15. Particulates generated from combustion of polymers (plastics).

    PubMed

    Shemwell, B E; Levendis, Y A

    2000-01-01

    This is an experimental study on the characterization of particulate (soot) emissions from burning polymers. Emissions of polystyrene (PS), polyethylene (PE), polypropylene (PP), polymethyl methacrylate (PMMA), and polyvinyl chloride (PVC) plastics were studied. Combustion took place in a laboratory-scale, electrically heated, drop-tube furnace at temperatures of 1300 and 1500 K, in air. The nominal bulk (global) equivalence ratio, phi, was varied in the range of 0.5-1.5, and the gas residence time in the nearly isothermal radiation zone of the furnace was approximately 1 sec. The particulate emissions were size-classified at the exit of the furnace, using a multi-stage inertial particle impactor. Results showed that both the yields and the size distributions of the emitted soot were remarkably different for the five plastics burned. Soot yields increased with an increasing bulk equivalence ratio. Combustion of PS yielded the highest amounts of soot (most highly agglomerated), several times more than the rest of the polymers. More soot was emitted from PS at 1500 than at 1300 K. Substantial amounts of soot agglomerates were larger than 9 microns. At 1500 and 1300 K, 35 and 29% of the soot mass, respectively, was PM2 (2 microns or smaller). Emissions from PE and PP were remarkably similar to each other. These polymers produced very low emissions at phi < or = 0.5, but emissions increased drastically with phi, and most of the soot was very fine (70-97% of the mass was PM2, depending on phi). Emissions from the combustion of PMMA were comparatively low and were the least influenced by the bulk phi, and 79-95% of the emissions were PM2. Combustion of PVC yielded the lowest amounts of soot; moreover, only 13-34% of the mass was PM2. On a comparative basis, at 1500 K, the following ranges of particulate yields were PM2: 19-75 mg/g of PS, 8-36 mg/g of PE, 1.5-47 mg/g of PP, 11-20 mg/g of PMMA, and 2-8 mg/g of PVC, depending on phi. These comparative results demonstrate that PS produces the highest amounts of fine particulates, followed by PP, PE, and PMMA, and then PVC. Burning these materials with excess oxygen drastically reduces the particulate emissions of PE and PP, substantially reduces those of PS, and mildly reduces those of PMMA and PVC.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    A test program to collect and analyze size-fractionated stack gas particulate samples for selected inorganic hazardous air pollutants (HAPs) was conducted . Specific goals of the program are (1) the collection of one-gram quantities of size-fractionated stack gas particulate matter for bulk (total) and surface chemical characterization, and (2) the determination of the relationship between particle size, bulk and surface (leachable) composition, and unit load. The information obtained from this program identifies the effects of unit load, particle size, and wet FGD system operation on the relative toxicological effects of exposure to particulate emissions. Field testing was conducted in twomore » phases. The Phase I field program was performed over the period of August 24 through September 20, 1992, at the Tennessee Valley Authority Widows Creek Unit 8 Power Station, located near Stevenson (Jackson County), Alabama, on the Tennessee River. Sampling activities for Phase II were conducted from September 11 through October 14, 1993. Widows Creek Unit 8 is a 575-megawatt plant that uses bituminous coal averaging 3.7% sulfur and 13% ash. Downstream of the boiler, a venture wet scrubbing system is used for control of both sulfur dioxide and particulate emissions. There is no electrostatic precipitator (ESP) in this system. This system is atypical and represents only about 5% of the US utility industry. However, this site was chosen for this study because of the lack of information available for this particulate emission control system.« less

  17. 40 CFR Table 2 to Subpart Ddddd of... - Operating Limits for Boilers and Process Heaters With Particulate Matter Emission Limits

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Process Heaters With Particulate Matter Emission Limits 2 Table 2 to Subpart DDDDD of Part 63 Protection... Heaters With Particulate Matter Emission Limits As stated in § 63.7500, you must comply with the applicable operating limits: If you demonstrate compliance with applicable particulate matter emission limits...

  18. 40 CFR Table 2 to Subpart Ddddd of... - Operating Limits for Boilers and Process Heaters With Particulate Matter Emission Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Process Heaters With Particulate Matter Emission Limits 2 Table 2 to Subpart DDDDD of Part 63 Protection... Heaters With Particulate Matter Emission Limits As stated in § 63.7500, you must comply with the applicable operating limits: If you demonstrate compliance with applicable particulate matter emission limits...

  19. Long term atmospheric aerosol characterization in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Gerab, Fábio; Yamasoe, Marcia A.

    This chapter presents a characterization of atmospheric aerosols collected in different places in the Amazon Basin. Both the biogenic aerosol emission from the forest and the particulate material which is emitted to the atmosphere due to the large scale man-made burns during the dry season were studied. The samples were collected during a three year period at three different locations in the Amazon (Cuiabá, Alta Floresta and Serra do Navio), using stacked filter units. Aerosol samples were also collected directly over fires of cerrado vegetation and tropical primary forest burns The samples were analyzed using several techniques for a number of elements. Gravimetric analyses were used to determine the total atmospheric aerosol concentration. Multivariate statistical analysis was used in order to identify and characterize the sources of the atmospheric aerosol present in the sampled regions. Cerrado burning emissions were enriched compared to forest ones, specially for Cl, K and Zn. High atmospheric aerosol concentrations were observed in large amazonian areas due to emissions from man-made burns in the period from June to September. The emissions from burns dominate the fine fraction of the atmospheric aerosol with characteristic high contents of black carbon, S and K. Aerosols emitted in biomass burning process are correlated to the increase in the aerosol optical thickness of the atmosphere during the Amazonian dry season. The Serra do Navio aerosol is characterized by biogenic emissions with strong marine influence. The presence of trace elements characteristic of soil particulate associated with this marine contribution indicates the existence of aerosol transport from Africa to South America. Similar composition characteristics were observed in the biogenic emission aerosols from Serra do Navio and Alta Floresta.

  20. Polycyclic aromatic hydrocarbons and their molecular diagnostic ratios in urban atmospheric respirable particulate matter

    NASA Astrophysics Data System (ADS)

    del Rosario Sienra, María; Rosazza, Nelson G.; Préndez, Margarita

    2005-06-01

    Atmospheric concentrations of polycyclic aromatic hydrocarbons (PAHs) in Santiago de Chile city were evaluated to study particulate PAHs profiles during cold and spring weather periods. Urban atmospheric particulate matter PM10 was collected using High Volume PM10 samplers. Fifteen samples of 24 h during austral winter and 20 samples of 24 h during spring, 2000 were collected at two sampling sites (North-East and Central areas of the city) whose characteristics were representative of the prevailing conditions. Seventeen PAHs were quantified and total PAHs concentration ranged from 1.39 to 59.98 ng m -3, with a seasonal variation (winter vs. spring ratio) from 0.5 to 12.6 ng m -3. Molecular diagnostic ratios were used to characterize and identify PAHs emission sources such as combustion and biogenic emissions. Results showed that the major sources of respirable organic aerosol PM10 in Santiago are mobile and stationary ones.

  1. Characterizing pollutant emissions from mosquito repellents incenses and implications in risk assessment of human health.

    PubMed

    Wang, Lina; Zheng, Xinran; Stevanovic, Svetlana; Xiang, Zhiyuan; Liu, Jing; Shi, Huiwen; Liu, Jing; Yu, Mingzhou; Zhu, Chun

    2018-01-01

    Mosquito-repellent incense is one of the most popular products used for dispelling mosquitos during summer in China. It releases large amounts of particulate and gaseous pollutants which constitute a potential hazard to human health. We conducted chamber experiment to characterize major pollutants from three types of mosquito-repellent incenses, further assessed the size-fractionated deposition in human respiratory system, and evaluated the indoor removing efficiency by fresh air. Results showed that the released pollutant concentrations were greater than permissible levels in regulations in GB3095-2012, as well as suggested by the World Health Organization (WHO). Formaldehyde accounted for 10-20% of the total amount of pollutants. Fine particles dominated in the total particulate concentrations. Geometric standard deviation (GSD) of particle number size distributions was in the range of 1.45-1.93. Count median diameter (CMD) ranged from 100 to 500 nm. Emission rates, burning rates and emission factors of both particulate and gaseous pollutants were compared and discussed. The deposition fractions in pulmonary airway from the disc solid types reached up to 52.7% of the total deposition, and the largest deposition appeared on juvenile group. Computational Fluid Dynamics (CFD) modellings indicated air-conditioner on and windows closed was the worst case. The highest concentration was 180-200 times over the standard limit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Comparative study for hardwood and softwood forest biomass: chemical characterization, combustion phases and gas and particulate matter emissions.

    PubMed

    Amaral, Simone Simões; de Carvalho, João Andrade; Costa, Maria Angélica Martins; Soares Neto, Turíbio Gomes; Dellani, Rafael; Leite, Luiz Henrique Scavacini

    2014-07-01

    Two different types of typical Brazilian forest biomass were burned in the laboratory in order to compare their combustion characteristics and pollutant emissions. Approximately 2 kg of Amazon biomass (hardwood) and 2 kg of Araucaria biomass (softwood) were burned. Gaseous emissions of CO2, CO, and NOx and particulate matter smaller than 2.5 μm (PM2.5) were evaluated in the flaming and smoldering combustion phases. Temperature, burn rate, modified combustion efficiency, emissions factor, and particle diameter and concentration were studied. A continuous analyzer was used to quantify gas concentrations. A DataRam4 and a Cascade Impactor were used to sample PM2.5. Araucaria biomass (softwood) had a lignin content of 34.9%, higher than the 23.3% of the Amazon biomass (hardwood). CO2 and CO emissions factors seem to be influenced by lignin content. Maximum concentrations of CO2, NOx and PM2.5 were observed in the flaming phase. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. SENSITIVITY ANALYSIS AND EVALUATION OF MICROFACPM: A MICROSCALE MOTOR VEHICLE EMISSION FACTOR MODEL FOR PARTICULATE MATTER EMISSIONS

    EPA Science Inventory

    A microscale emission factor model (MicroFacPM) for predicting real-time site-specific motor vehicle particulate matter emissions was presented in the companion paper entitled "Development of a Microscale Emission Factor Model for Particulate Matter (MicroFacPM) for Predicting Re...

  4. Toxicological assessment of particulate emissions from the exhaust of old and new model heavy- and light-duty vehicles.

    DOT National Transportation Integrated Search

    2011-06-01

    The primary objective of this project is to develop an improved understanding of the factors affecting the toxicology of particulate exhaust emissions. Diesel particulate matter is a known carcinogen, and particulate exhaust emissions from both light...

  5. Flame extinction limit and particulates formation in fuel blends

    NASA Astrophysics Data System (ADS)

    Subramanya, Mahesh

    Many fuels used in material processing and power generation applications are generally a blend of various hydrocarbons. Although the combustion and aerosol formation dynamics of individual fuels is well understood, the flame dynamics of fuel blends are yet to be characterized. This research uses a twin flame counterflow burner to measure flame velocity, flame extinction, particulate formation and particulate morphology of hydrogen fuel blend flames at different H2 concentration, oscillation frequencies and stretch conditions. Phase resolved spectroscopic measurements (emission spectra) of OH, H, O and CH radical/atom concentrations is used to characterize the heat release processes of the flame. In addition flame generated particulates are collected using thermophoretic sample technique and are qualitative analyzed using Raman Spectroscopy and SEM. Such measurements are essential for the development of advanced computational tools capable of predicting fuel blend flame characteristics at realistic combustor conditions. The data generated through the measurements of this research are representative, and yet accurate, with unique well defined boundary conditions which can be reproduced in numerical computations for kinetic code validations.

  6. Characterization and variability of pollutant concentrations for the Las Vegas implementation of the National Near-Road Mobile Source Air Toxics Study

    EPA Science Inventory

    EPA, in collaboration with FHWA, has been involved in a large-scale monitoring research study in an effort to characterize highway vehicle emissions in a near-road environment. The pollutants of interest include particulate matter with aerodynamic diameter less than 2.5 microns ...

  7. 40 CFR 49.126 - Rule for limiting fugitive particulate matter emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Rule for limiting fugitive particulate matter emissions. (a) What is the purpose of this section? This section limits the amount of fugitive particulate matter that may be emitted from certain air pollution... source of fugitive particulate matter emissions. (c) What is exempted from this section? This section...

  8. Assessing fire emissions from tropical savanna and forests of central Brazil

    NASA Technical Reports Server (NTRS)

    Riggan, Philip J.; Brass, James A.; Lockwood, Robert N.

    1993-01-01

    Wildfires in tropical forest and savanna are a strong source of trace gas and particulate emissions to the atmosphere, but estimates of the continental-scale impacts are limited by large uncertainties in the rates of fire occurrence and biomass combustion. Satellite-based remote sensing offers promise for characterizing fire physical properties and impacts on the environment, but currently available sensors saturate over high-radiance targets and provide only indications of regions and times at which fires are extensive and their areal rate of growing as recorded in ash layers. Here we describe an approach combining satellite- and aircraft-based remote sensing with in situ measurements of smoke to estimate emissions from central Brazil. These estimates will improve global accounting of radiation-absorbing gases and particulates that may be contributing to climate change and will provide strategic data for fire management.

  9. Emission Performance of Low Cetane Naphtha as Drop-In Fuel on a Multi-Cylinder Heavy-Duty Diesel Engine and Aftertreatment System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeePhD, John; TzanetakisPhD, Tom; Travers, Michael

    With higher volatility and longer ignition delay characteristics than typical diesel fuel, low cetane naphtha fuel has been shown to promote partially premixed combustion and produce lower soot for improved fuel economy. In this study, emission performance of low cetane, low octane naphtha (CN 35, RON 60) as a drop-in fuel was examined on a MY13 Cummins ISX15 6-cylinder heavy-duty on-highway truck engine and aftertreatment system. Using the production hardware and development calibrations, both the engine-out and tailpipe emissions of naphtha and ultra-low sulfur diesel (ULSD) fuels were examined during the EPA s heavy-duty emission testing cycles. Without any modificationmore » to the calibrations, the tailpipe emissions were comparable when using naphtha or ULSD on the heavy duty Federal Test Procedure (FTP) and ramped modal cycle (RMC) test cycles. Overall lower CO2 emissions and fuel consumption were also measured for naphtha due in part to its higher heating value and higher hydrogen to carbon ratio. Engine-out and tailpipe NOx emissions were lower for naphtha fuel at the same catalyst conversion levels and measured particulate matter (PM) emissions were also lower when using naphtha due to its higher volatility and lower aromatic content compared to ULSD. To help assess the potential impact on diesel particulate filter design and operation, engine-out PM samples were collected and characterized at the B50 operating point. A significant reduction in elemental carbon (EC) within the particulate emissions was found when using naphtha compared to ULSD.« less

  10. EMISSIONS PROFILE CHARACTERIZATION OF LAKE MICHIGAN POLLUTANT SOURCES - PART I

    EPA Science Inventory

    The southern Lake Michigan aea continues to experience poor air quality despite the implementation of many measures to control particulate matter, ozone and toxic pollutants. Fortunately, the ambient atmosphere holds clues tothese sources and their contributions to urban polluti...

  11. CHARACTERIZATION AND CONTROL OF FINE PARTICLES: OVERVIEW OF NRMRL RESEARCH ACTIVITIES

    EPA Science Inventory

    The paper discusses particulate matter (PM) research at EPA's National Risk Management Research Laboratory (NRMRL) designed to provide critical information regarding emission rates, characteristics, and control approaches for PM 2.5 micrometers in aerodynamic diameter and smaller...

  12. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., hydrocarbon, and particulate matter exhaust emission standards. 89.112 Section 89.112 Protection of....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using...

  13. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., hydrocarbon, and particulate matter exhaust emission standards. 89.112 Section 89.112 Protection of....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using...

  14. EMISSIONS PROFILE CHARACTERIZATION OF LAKE MICHIGAN POLLUTANT SOURCES - PART III

    EPA Science Inventory

    The southern Lake Michigan aea continues to experience poor air quality despite the implementation of many measures to control particulate matter, ozone and toxic pollutants. Fortunately, the ambient atmosphere holds clues to these sources and their contributions to urban polluti...

  15. EMISSIONS PROFILE CHARACTERIZATION OF LAKE MICHIGAN POLLUTANT SOURCES - PART II

    EPA Science Inventory

    The southern Lake Michigan area continues to experience poor air quality despite the implementation of many measures to control particulate matter, ozone and toxic pollutants. Fortunately, the ambient atmosphere holds clues to these sources and their contributions to urban pollut...

  16. PARTICULATE EMISSION MEASUREMENTS FROM CONTROLLED CONSTRUCTION ACTIVITIES

    EPA Science Inventory

    The report summarized the results of field testing of the effectiveness of control measures for sources of fugitive particulate emissions found at construction sites. The effectiveness of watering temporary, unpaved travel surfaces on emissions of particulate matter with aerodyna...

  17. 40 CFR 85.1403 - Particulate standard for pre-1994 model year urban buses effective at time of engine rebuild or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... section. (iii)(A) Pre-rebuild particulate emission levels and projected post-rebuild particulate emission... specified in the following table. The appropriate particulate level, pre-rebuild or post-rebuild, shall be... of engine Pre-rebuild particulate level (g/bhp-hr) Projected post-rebuild particulate level (g/bhp-hr...

  18. 40 CFR 85.1403 - Particulate standard for pre-1994 model year urban buses effective at time of engine rebuild or...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... section. (iii)(A) Pre-rebuild particulate emission levels and projected post-rebuild particulate emission... specified in the following table. The appropriate particulate level, pre-rebuild or post-rebuild, shall be... of engine Pre-rebuild particulate level (g/bhp-hr) Projected post-rebuild particulate level (g/bhp-hr...

  19. 40 CFR 85.1403 - Particulate standard for pre-1994 model year urban buses effective at time of engine rebuild or...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... section. (iii)(A) Pre-rebuild particulate emission levels and projected post-rebuild particulate emission... specified in the following table. The appropriate particulate level, pre-rebuild or post-rebuild, shall be... of engine Pre-rebuild particulate level (g/bhp-hr) Projected post-rebuild particulate level (g/bhp-hr...

  20. 40 CFR 85.1403 - Particulate standard for pre-1994 model year urban buses effective at time of engine rebuild or...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... section. (iii)(A) Pre-rebuild particulate emission levels and projected post-rebuild particulate emission... specified in the following table. The appropriate particulate level, pre-rebuild or post-rebuild, shall be... of engine Pre-rebuild particulate level (g/bhp-hr) Projected post-rebuild particulate level (g/bhp-hr...

  1. 40 CFR 85.1403 - Particulate standard for pre-1994 model year urban buses effective at time of engine rebuild or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... section. (iii)(A) Pre-rebuild particulate emission levels and projected post-rebuild particulate emission... specified in the following table. The appropriate particulate level, pre-rebuild or post-rebuild, shall be... of engine Pre-rebuild particulate level (g/bhp-hr) Projected post-rebuild particulate level (g/bhp-hr...

  2. Emissions of volatile organic compounds and particulate matter from small-scale peat fires

    NASA Astrophysics Data System (ADS)

    George, I. J.; Black, R.; Walker, J. T.; Hays, M. D.; Tabor, D.; Gullett, B.

    2013-12-01

    Air pollution emitted from peat fires can negatively impact regional air quality, visibility, climate, and human health. Peat fires can smolder over long periods of time and, therefore, can release significantly greater amounts of carbon into the atmosphere per unit area compared to burning of other types of biomass. However, few studies have characterized the gas and particulate emissions from peat burning. To assess the atmospheric impact of peat fires, particulate matter (PM) and volatile organic compounds (VOCs) were quantified from controlled small-scale peat fire experiments. Major carbon emissions (i.e. CO2, CO, methane and total hydrocarbons) were measured during the peat burn experiments. Speciated PM mass was also determined from the peat burns from filter and polyurethane foam samples. Whole air samples were taken in SUMMA canisters and analyzed by gas chromatography-mass spectrometry to measure 82 trace VOCs. Additional gaseous carbonyl species were measured by sampling with dinitrophenylhydrazine-coated cartridges and analyzed with high performance liquid chromatography. VOCs with highest observed concentrations measured from the peat burns were propylene, benzene, chloromethane and toluene. Gas-phase carbonyls with highest observed concentrations included acetaldehyde, formaldehyde and acetone. Emission factors of major pollutants will be compared with recommended values for peat and other biomass burning.

  3. Overview of surface measurements and spatial characterization of submicrometer particulate matter during the DISCOVER-AQ 2013 campaign in Houston, TX.

    PubMed

    Leong, Y J; Sanchez, N P; Wallace, H W; Karakurt Cevik, B; Hernandez, C S; Han, Y; Flynn, J H; Massoli, P; Floerchinger, C; Fortner, E C; Herndon, S; Bean, J K; Hildebrandt Ruiz, L; Jeon, W; Choi, Y; Lefer, B; Griffin, R J

    2017-08-01

    The sources of submicrometer particulate matter (PM 1 ) remain poorly characterized in the industrialized city of Houston, TX. A mobile sampling approach was used to characterize PM 1 composition and concentration across Houston based on high-time-resolution measurements of nonrefractory PM 1 and trace gases during the DISCOVER-AQ Texas 2013 campaign. Two pollution zones with marked differences in PM 1 levels, character, and dynamics were established based on cluster analysis of organic aerosol mass loadings sampled at 16 sites. The highest PM 1 mass concentrations (average 11.6 ± 5.7 µg/m 3 ) were observed to the northwest of Houston (zone 1), dominated by secondary organic aerosol (SOA) mass likely driven by nighttime biogenic organonitrate formation. Zone 2, an industrial/urban area south/east of Houston, exhibited lower concentrations of PM 1 (average 4.4 ± 3.3 µg/m 3 ), significant organic aerosol (OA) aging, and evidence of primary sulfate emissions. Diurnal patterns and backward-trajectory analyses enable the classification of airmass clusters characterized by distinct PM sources: biogenic SOA, photochemical aged SOA, and primary sulfate emissions from the Houston Ship Channel. Principal component analysis (PCA) indicates that secondary biogenic organonitrates primarily related with monoterpenes are predominant in zone 1 (accounting for 34% of the variability in the data set). The relevance of photochemical processes and industrial and traffic emission sources in zone 2 also is highlighted by PCA, which identifies three factors related with these processes/sources (~50% of the aerosol/trace gas concentration variability). PCA reveals a relatively minor contribution of isoprene to SOA formation in zone 1 and the absence of isoprene-derived aerosol in zone 2. The relevance of industrial amine emissions and the likely contribution of chloride-displaced sea salt aerosol to the observed variability in pollution levels in zone 2 also are captured by PCA. This article describes an urban-scale mobile study to characterize spatial variations in submicrometer particulate matter (PM 1 ) in greater Houston. The data set indicates substantial spatial variations in PM 1 sources/chemistry and elucidates the importance of photochemistry and nighttime oxidant chemistry in producing secondary PM 1 . These results emphasize the potential benefits of effective control strategies throughout the region, not only to reduce primary emissions of PM 1 from automobiles and industry but also to reduce the emissions of important secondary PM 1 precursors, including sulfur oxides, nitrogen oxides, ammonia, and volatile organic compounds. Such efforts also could aid in efforts to reduce mixing ratios of ozone.

  4. 78 FR 11758 - Approval and Promulgation of Implementation Plans; State of Missouri; Restriction of Emission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-20

    ... Promulgation of Implementation Plans; State of Missouri; Restriction of Emission of Particulate Matter From...) submitted March 17, 2011. This revision will amend the rule restricting emissions of particulate matter from... amendments to rule 10 CSR 10-6.400 Restriction of Emission of Particulate Matter from Industrial Processes...

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Huifang; Lam, William; Remias, Joseph

    Mobile source emissions standards are becoming more stringent and particulate emissions from gasoline direct injection (GDI) engines represent a particular challenge. Gasoline particulate filter (GPF) is deemed as one possible technical solution for particulate emissions reduction. In this work, a study was conducted on eight formulations of lubricants to determine their effect on GDI engine particulate emissions and GPF performance. Accelerated ash loading tests were conducted on a 2.4L GDI engine with engine oil injection in gasoline fuel by 2%. The matrix of eight formulations was designed with changing levels of sulfated ash (SASH) level, Zinc dialkyldithiophosphates (ZDDP) level andmore » detergent type. Comprehensive evaluations of particulates included mass, number, size distribution, composition, morphology and soot oxidation properties. GPF performance was assessed through filtration efficiency, back pressure and morphology. It was determined that oil formulation affects the particulate emission characteristics and subsequent GPF performance.« less

  6. Battery condenser system PM2.5 emission factors and rates for cotton gins: Method 201A combination PM10 and PM2.5 sizing cyclones

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of stack sampling. In 2006, EPA finalized and published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created an urgent need to collect additi...

  7. Source apportionment of particulate organic matter using infrared spectra at multiple IMPROVE sites

    NASA Astrophysics Data System (ADS)

    Kuzmiakova, A.; Dillner, A. M.; Takahama, S.

    2016-12-01

    As organic aerosol is a dominant contributor to air pollution and radiative forcing in many regions in the United States, characterizing its composition and apportioning the organic mass to its major sources provides insight into atmospheric processes and guidance for decreasing its abundance. National networks, such as Interagency Monitoring of Protected Visual Environment (IMPROVE), provide multi-site and multi-year particulate matter samples useful for evaluating sources over all four seasons. To this end, our study focuses on apportioning the particulate organic matter (OM) to specific anthropogenic and biological processes from year-long infrared aerosol measurements collected at six IMPROVE sites (five national park sites and one urban site) during 2011. Pooling these organic aerosol samples into one dataset, we apply factor and cluster analyses to extract four chemical factors (two dominated by processed emissions, one dominated by hydroxyl groups, and one by hydrocarbons) and ascribe each factor to a specific source depending on the site and season. We also present a method to characterize measurement uncertainty in infrared instrumental analysis and investigate sensitivity analysis in generated factors. In Phoenix (the urban site) we find the majority (80-95%) of the OM consisted of anthropogenic activities, such as traffic emissions, fossil fuel combustion (both all year long), and residential wood burning (fall to winter). Mineral dust emissions accounted for the rest of OM (5-20%). At the National Park sites the OM concentration was lower on average and consisted of marine and dust aerosols, summertime biomass burning and biogenic aerosols, processed fossil fuel combustion, and emissions from ships and oil refineries. Our study highlights the potential for further site-specific or multi-year aerosol characterization in the context of a long-term atmospheric sampling program to quantify sources of organic particles impacting air quality, aid in policy-making, and assess which (trans)formation mechanisms proposed in laboratory studies are consistent with observations.

  8. Characterization of traffic-related ambient fine particulate matter (PM2.5) in an Asian city: Environmental and health implications

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Hui; Khlystov, Andrey; Norford, Leslie K.; Tan, Zhen-Kang; Balasubramanian, Rajasekhar

    2017-07-01

    Vehicular traffic emission is an important source of particulate pollution in most urban areas. The detailed chemical speciation of traffic-related PM2.5 (fine particles) is relatively sparse in the literature, especially in Asian cities. To fill this knowledge gap, we carried out an intensive field study in Singapore from November 2015 to February 2016. PM2.5 samples were collected concurrently at a typical roadside microenvironment and at an urban background site. A detailed chemical speciation of PM2.5 samples was conducted to gain insights into the emission characteristics of traffic-related fine aerosols. Analyses of diagnostic ratios and molecular markers of selected chemical species were explored for source attribution of different classes of chemical constituents in traffic-related PM2.5. The human health risk due to inhalation of the particulate-bound PAHs (polycyclic aromatic hydrocarbons) and toxic trace elements was estimated for both adults and children. The overall results of the study indicate that gasoline-powered vehicles make a higher contribution to traffic-related fine aerosol components such as organic carbon (OC), particle-bound PAHs and particulate ammonium than that of diesel-powered vehicles. However, both types of vehicles contribute to traffic-related EC emissions significantly. The combustion of petroleum fuels and lubricating oil make significant contributions to the emission of n-alkanes and hopanes into the urban atmosphere, respectively. The study further reveals that some toxic trace elements are emitted from non-exhaust sources and that aromatic acids represent an important component of secondary organic aerosols. The emission of toxic trace elements from non-exhaust sources is of particular concern as they could pose a higher carcinogenic risk to both adults and children than other chemical species.

  9. Emission of particulate matter from a desktop three-dimensional (3D) printer

    PubMed Central

    Yi, Jinghai; LeBouf, Ryan F.; Duling, Matthew G.; Nurkiewicz, Timothy; Chen, Bean T.; Schwegler-Berry, Diane; Virji, M. Abbas; Stefaniak, Aleksandr B.

    2016-01-01

    ABSTRACT Desktop three-dimensional (3D) printers are becoming commonplace in business offices, public libraries, university labs and classrooms, and even private homes; however, these settings are generally not designed for exposure control. Prior experience with a variety of office equipment devices such as laser printers that emit ultrafine particles (UFP) suggests the need to characterize 3D printer emissions to enable reliable risk assessment. The aim of this study was to examine factors that influence particulate emissions from 3D printers and characterize their physical properties to inform risk assessment. Emissions were evaluated in a 0.5-m3 chamber and in a small room (32.7 m3) using real-time instrumentation to measure particle number, size distribution, mass, and surface area. Factors evaluated included filament composition and color, as well as the manufacturer-provided printer emissions control technologies while printing an object. Filament type significantly influenced emissions, with acrylonitrile butadiene styrene (ABS) emitting larger particles than polylactic acid (PLA), which may have been the result of agglomeration. Geometric mean particle sizes and total particle (TP) number and mass emissions differed significantly among colors of a given filament type. Use of a cover on the printer reduced TP emissions by a factor of 2. Lung deposition calculations indicated a threefold higher PLA particle deposition in alveoli compared to ABS. Desktop 3D printers emit high levels of UFP, which are released into indoor environments where adequate ventilation may not be present to control emissions. Emissions in nonindustrial settings need to be reduced through the use of a hierarchy of controls, beginning with device design, followed by engineering controls (ventilation) and administrative controls such as choice of filament composition and color. PMID:27196745

  10. CHARACTERIZATION OF EMISSIONS FROM THE SIMULATED OPEN BURNING OF SCRAP TIRES

    EPA Science Inventory

    The report gives results of a small-scale combustion study, designed to collect, identify, and quantify products emitted during the simulated open burning of scrap tires. Fixed combustion gas, volatile and semi-volatile organic, particulate, and airborne metals data were collecte...

  11. Characterization of particulate matter and gaseous emissions of a C-130H aircraft.

    PubMed

    Corporan, Edwin; Quick, Adam; DeWitt, Matthew J

    2008-04-01

    The gaseous and nonvolatile particulate matter (PM) emissions of two T56-A-15 turboprop engines of a C-130H aircraft stationed at the 123rd Airlift Wing in the Kentucky Air National Guard were characterized. The emissions campaign supports the Strategic Environmental Research and Development Program (SERDP) project WP-1401 to determine emissions factors from military aircraft. The purpose of the project is to develop a comprehensive emissions measurement program using both conventional and advanced techniques to determine emissions factors of pollutants, and to investigate the spatial and temporal evolutions of the exhaust plumes from fixed and rotating wing military aircraft. Standard practices for the measurement of gaseous emissions from aircraft have been well established; however, there is no certified methodology for the measurement of aircraft PM emissions. In this study, several conventional instruments were used to physically characterize and quantify the PM emissions from the two turboprop engines. Emissions samples were extracted from the engine exit plane and transported to the analytical instrumentation via heated lines. Multiple sampling probes were used to assess the spatial variation and obtain a representative average of the engine emissions. Particle concentrations, size distributions, and mass emissions were measured using commercially available aerosol instruments. Engine smoke numbers were determined using established Society of Automotive Engineers (SAE) practices, and gaseous species were quantified via a Fourier-transform infrared-based gas analyzer. The engines were tested at five power settings, from idle to take-off power, to cover a wide range of operating conditions. Average corrected particle numbers (PNs) of (6.4-14.3) x 10(7) particles per cm3 and PN emission indices (EI) from 3.5 x 10(15) to 10.0 x 10(15) particles per kg-fuel were observed. The highest PN EI were observed for the idle power conditions. The mean particle diameter varied between 50 nm at idle to 70 nm at maximum engine power. PM mass EI ranged from 1.6 to 3.5 g/kg-fuel for the conditions tested, which are in agreement with previous T56 engine measurements using other techniques. Additional PM data, smoke numbers, and gaseous emissions will be presented and discussed.

  12. Characterization of airborne and bulk particulate from iron and steel manufacturing facilities.

    PubMed

    Machemer, Steven D

    2004-01-15

    Characterization of airborne and bulk particulate material from iron and steel manufacturing facilities, commonly referred to as kish, indicated graphite flakes and graphite flakes associated with spherical iron oxide particles were unique particle characteristics useful in identifying particle emissions from iron and steel manufacturing. Characterization of airborne particulate material collected in receptor areas was consistent with multiple atmospheric release events of kish particles from the local iron and steel facilities into neighboring residential areas. Kish particles deposited in nearby residential areas included an abundance of graphite flakes, tens of micrometers to millimeters in size, and spherical iron oxide particles, submicrometer to tens of micrometers in size. Bulk kish from local iron and steel facilities contained an abundance of similar particles. Approximately 60% of blast furnace kish by volume consisted of spherical iron oxide particles in the respirable size range. Basic oxygen furnace kish contained percent levels of strongly alkaline components such as calcium hydroxide. In addition, concentrations of respirable Mn in airborne particulate in residential areas and at local iron and steel facilities were approximately 1.6 and 53 times the inhalation reference concentration of 0.05 microg/m3 for chronic inhalation exposure of Mn, respectively. Thus, airborne release of kish may pose potential respirable particulate, corrosive, or toxic hazards for human health and/or a corrosive hazard for property and the environment.

  13. Emission characterization and δ(13)C values of parent PAHs and nitro-PAHs in size-segregated particulate matters from coal-fired power plants.

    PubMed

    Wang, Ruwei; Yousaf, Balal; Sun, Ruoyu; Zhang, Hong; Zhang, Jiamei; Liu, Guijian

    2016-11-15

    The objective of this study was to characterize parent polycyclic aromatic hydrocarbons (pPAHs) and their nitrated derivatives (NPAHs) in coarse (PM2.5-10), intermediate (PM1-2.5) and fine (PM1) particulate matters emitted from coal-fired power plants (CFPPs) in Huainan, China. The diagnostic ratios and the stable carbon isotopic approaches to characterize individual PAHs were applied in order to develop robust tools for tracing the origins of PAHs in different size-segregated particular matters (PMs) emitted CFPP coal combustion. The concentrations of PAH compounds in flue gas emissions varied greatly, depending on boiler types, operation and air pollution control device (APCD) conditions. Both pPAHs and NPAHs were strongly enriched in PM1-2.5 and PM1. In contrary to low molecular weight (LMW) PAHs, high molecular weight (HMW) PAHs were more enriched in finer PMs. The PAH diagnostic ratios in size-segregated PMs are small at most cases, highlighting their potential application in tracing CFPP emitted PAHs attached to different sizes of PMs. Yet, substantial uncertainty still exists to directly apply PAH diagnostic ratios as emission tracers. Although the stable carbon isotopic composition of PAH molecular was useful in differentiating coal combustion emissions from other sources such as biomass combustion and vehicular exhausts, it was not feasible to differentiate isotopic fractionation processes such as low-temperature carbonization, high-temperature carbonization, gasification and combustion. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Dilution-based emissions sampling from stationary sources: Part 2--Gas-fired combustors compared with other fuel-fired systems.

    PubMed

    England, Glenn C; Watson, John G; Chow, Judith C; Zielinska, Barbara; Chang, M C Oliver; Loos, Karl R; Hidy, George M

    2007-01-01

    With the recent focus on fine particle matter (PM2.5), new, self-consistent data are needed to characterize emissions from combustion sources. Such data are necessary for health assessment and air quality modeling. To address this need, emissions data for gas-fired combustors are presented here, using dilution sampling as the reference. The dilution method allows for collection of emitted particles under conditions simulating cooling and dilution during entry from the stack into the air. The sampling and analysis of the collected particles in the presence of precursor gases, SO2 nitrogen oxide, volatile organic compound, and NH3 is discussed; the results include data from eight gas fired units, including a dual-fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of approximately 10(-4) lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with approximately 5 x 10(-3) lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of approximately 0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are quite low compared with the diesel engines and the coal- or wood-fueled combustors. The metals found in the gas-fired combustor particles are low in concentration, similar in concentration to ambient particles. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon (mainly organic carbon) is found on the particle collector and a backup filter. It is likely that measurement artifacts, mostly adsorption of volatile organic compounds on quartz filters, are positively biasing "true" particulate carbon emission results.

  15. Particulate filtration from emissions of a plasma pyrolysis assembly reactor using regenerable porous metal filters

    NASA Technical Reports Server (NTRS)

    Berger, Gordon M.; Agui, Juan H.; Vijayakumar, R.; Abney, Morgan B.; Greenwood, Zachary W.; West, Philip J.; Mitchell, Karen O.

    2017-01-01

    Microwave-based plasma pyrolysis technology is being studied as a means of supporting oxygen recovery in future spacecraft life support systems. The process involves the conversion of methane produced from a Sabatier reactor to acetylene and hydrogen, with a small amount of solid carbon particulates generated as a side product. The particles must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on porous metal media filters for removing the carbon particulate emissions from the PPA exit gas stream and to provide in situ media regeneration capability. Because of the high temperatures involved in oxidizing the deposited carbon during regeneration, there was particular focus in this development on the materials that could be used, the housing design, and heating methods. This paper describes the design and operation of the filter and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC.

  16. Particulate Filtration from Emissions of a Plasma Pyrolysis Assembly Reactor Using Regenerable Porous Metal Filters

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Abney, Morgan; Greenwood, Zachary; West, Philip; Mitchell, Karen; Vijayakumar, R.; Berger, Gordon M.

    2017-01-01

    Microwave-based plasma pyrolysis technology is being studied as a means of supporting oxygen recovery in future spacecraft life support systems. The process involves the conversion of methane produced from a Sabatier reactor to acetylene and hydrogen, with a small amount of solid carbon particulates generated as a side product. The particles must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on porous metal media filters for removing the carbon particulate emissions from the PPA exit gas stream and to provide in situ media regeneration capability. Because of the high temperatures involved in oxidizing the deposited carbon during regeneration, there was particular focus in this development on the materials that could be used, the housing design, and heating methods. This paper describes the design and operation of the filter and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC.

  17. 40 CFR 1042.125 - Maintenance instructions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission... converters, electronic control units, particulate traps, trap oxidizers, components related to particulate..., electronic control units, particulate traps, trap oxidizers, components related to particulate traps and trap...

  18. 40 CFR 1042.125 - Maintenance instructions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission... converters, electronic control units, particulate traps, trap oxidizers, components related to particulate..., electronic control units, particulate traps, trap oxidizers, components related to particulate traps and trap...

  19. 40 CFR 1042.125 - Maintenance instructions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission... converters, electronic control units, particulate traps, trap oxidizers, components related to particulate..., electronic control units, particulate traps, trap oxidizers, components related to particulate traps and trap...

  20. 40 CFR 1042.125 - Maintenance instructions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission... converters, electronic control units, particulate traps, trap oxidizers, components related to particulate..., electronic control units, particulate traps, trap oxidizers, components related to particulate traps and trap...

  1. 40 CFR 92.123 - Test procedure; general requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... measurements of brake specific emissions and smoke opacity at each throttle position and of measurements of... at idle and dynamic brake, all measurements of gaseous, particulate and smoke emissions may be... is removed for gaseous and particulate sampling, measurements of gaseous, and particulate emissions...

  2. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of particulate matter from wood and dung cooking fires, brick kilns, generators, trash and crop residue burning

    NASA Astrophysics Data System (ADS)

    Stone, Elizabeth; Jayarathne, Thilina; Stockwell, Chelsea; Christian, Ted; Bhave, Prakash; Siva Praveen, Puppala; Panday, Arnico; Adhikari, Sagar; Maharjan, Rashmi; Goetz, Doug; DeCarlo, Peter; Saikawa, Eri; Yokelson, Robert

    2016-04-01

    The Nepal Ambient Monitoring and Source Testing Experiment (NAMASTE) field campaign targeted the in situ characterization of widespread and under-sampled combustion sources. In Kathmandu and the Terai, southern Nepal's flat plains, samples of fine particulate matter (PM2.5) were collected from wood and dung cooking fires (n = 22), generators (n = 2), groundwater pumps (n = 2), clamp kilns (n = 3), zig-zag kilns (n = 3), trash burning (n = 4), one heating fire, and one crop residue fire. Co-located measurements of carbon dioxide, carbon monoxide, and volatile organic compounds allowed for the application of the carbon mass balance approach to estimate emission factors for PM2.5, elemental carbon, organic carbon, and water-soluble inorganic ions. Organic matter was chemically speciated using gas chromatography - mass spectrometry for polycyclic aromatic hydrocarbons, sterols, n-alkanes, hopanes, steranes, and levoglucosan, which accounted for 2-8% of the measured organic carbon. These data were used to develop molecular-marker based profiles for use in source apportionment modeling. This study provides quantitative emission factors for particulate matter and its constituents for many important combustion sources in Nepal and South Asia.

  3. A Comprehensive Program for Measurement of Military Aircraft Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Mengdawn

    2009-11-01

    Emissions of gases and particulate matter by military aircraft were characterized inplume by 'extractive' and 'optical remote-sensing (ORS)' technologies. Non-volatile particle size distribution, number and mass concentrations were measured with good precision and reproducibly. Time-integrated particulate filter samples were collected and analyzed for smoke number, elemental composition, carbon contents, and sulfate. Observed at EEP the geometric mean diameter (as measured by the mobility diameter) generally increased as the engine power setting increased, which is consistent with downstream observations. The modal diameters at the downstream locations are larger than that at EEP at the same engine power level. The results indicatemore » that engine particles were processed by condensation, for example, leading to particle growth in-plume. Elemental analysis indicated little metals were present in the exhaust, while most of the exhaust materials in the particulate phase were carbon and sulfate (in the JP-8 fuel). CO, CO{sub 2}, NO, NO{sub 2}, SO{sub 2}, HCHO, ethylene, acetylene, propylene, and alkanes were measured. The last five species were most noticeable under engine idle condition. The levels of hydrocarbons emitted at high engine power level were generally below the detection limits. ORS techniques yielded real-time gaseous measurement, but the same techniques could not be extended directly to ultrafine particles found in all engine exhausts. The results validated sampling methodology and measurement techniques used for non-volatile particulate aircraft emissions, which also highlighted the needs for further research on sampling and measurement for volatile particulate matter and semi-volatile species in the engine exhaust especially at the low engine power setting.« less

  4. Advanced Collaborative Emissions Study (ACES)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenbaum, Daniel; Costantini, Maria; Van Erp, Annemoon

    2013-12-31

    The objective of the Advanced Collaborative Emissions Study (ACES) was to determine before widespread commercial deployment whether or not the new, energy-efficient, heavy duty diesel engines (2007 and 2010 EPA Emissions Standards Compliant) may generate anticipated toxic emissions that could adversely affect the environment and human health. ACES was planned to take place in three phases. In Phase 1, extensive emissions characterization of four production-intent prototype engine and control systems designed to meet 2007 standards for nitrogen oxides (NOx) and particulate matter (PM) was conducted at an existing emissions characterization facility: Southwest Research Institute (SwRI). One of the tested enginesmore » was selected (at random, after careful comparison of results) for health testing in Phase 3. In Phase 2, extensive emission characterization of three production-intent prototype engine and control systems meeting the 2010 standards (including more advanced NOx controls to meet the more stringent 2010 NOx standards) was conducted at the same test facility. In Phase 3, one engine/aftertreatment system selected from Phase 1 was further characterized during health effects studies (at an existing inhalation toxicology laboratory: Lovelace Respiratory Research Institute, [LRRI]) to form the basis of the ACES safety assessment. The Department of Energy (DOE) award provided funding for emissions characterization in Phases 1 and 2 as well as exposure characterization in Phase 3. The main health analyses in Phase 3 were funded separately and are not reported here.« less

  5. Characterization of the Particulate Emissions from the BP Deepwater Horizon Surface Oil Burns

    EPA Science Inventory

    Opportunistic particle samples were gathered from the sail of a tethered aerostat during at-sea plume sampling of the purposely-burned surface oil during the BP Deepwater Horizon disaster in the Gulf of Mexico. Particles were analyzed for polycyclic aromatic hydrocarbons (PAHs),...

  6. The National Near-Road Mobile Source Air Toxics Study: Las Vegas

    EPA Science Inventory

    EPA, in collaboration with FHWA, has been involved in a large-scale monitoring research study in an effort to characterize highway vehicle emissions in a near-road environment. The pollutants of interest include particulate matter with aerodynamic diameter less than 2.5 microns ...

  7. Dimethoxymethane in Diesel Fuel: Chemical Characterization of Toxicologically Relevart Compounds From Diesel Emissions

    DTIC Science & Technology

    2001-04-01

    Dimethoxymethane DNPH Dinitrophenylhydrazine DOE Department of Energy DPF Diesel Particulate Filter EGR Exhaust Gas Recirculation FT-100 Neat Fischer-Tropsch...cartridge containing silica impregnated with 2,4- dinitrophenylhydrazine (DNPH), Figure 4. A metered volume of the background air was pulled through another

  8. Chemical characterization and sources of PM2.5 at 12-h resolution in Guiyang, China

    EPA Science Inventory

    The increasing emission of primary and gaseous precursors of secondarily formed atmospheric particulate matter due to continuing industrial development and urbanization are leading to an increased public awareness of environmental issues and human health risks in China. As part o...

  9. PARTICULATE EMISSIONS AND CONTROL IN FLUIDIZED-BED COMBUSTION: MODELING AND PARAMETRIC PERFORMANCE

    EPA Science Inventory

    The report discusses a model, developed to describe the physical characteristics of the particulates emitted from fluidized-bed combustion (FBC) systems and to evaluate data on FBC particulate control systems. The model, which describes the particulate emissions profile from FBC,...

  10. Evaluating the effectiveness of vegetative environmental buffers in mitigating particulate matter emissions from poultry houses

    USDA-ARS?s Scientific Manuscript database

    Particulate Matter (PM) emissions from animal operations have been identified as a major air pollutant source with health and environmental impacts. Nearly 600 million broilers are produced annually on the Delmarva Peninsula, making it a hot spot for particulate matter emissions from poultry houses....

  11. 77 FR 31262 - Approval and Promulgation of Implementation Plans; Kentucky; Louisville; Fine Particulate Matter...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... Promulgation of Implementation Plans; Kentucky; Louisville; Fine Particulate Matter 2002 Base Year Emissions... approve the fine particulate matter (PM 2.5 ) 2002 base year emissions inventory, portion of the State...), a reasonable further progress (RFP) plan, contingency measures, a 2002 base year emissions inventory...

  12. Chemical and toxicological characterization of residential oil burner emissions: I. Yields and chemical characterization of extractables from combustion of No. 2 fuel oil at different Bacharach Smoke Numbers and firing cycles.

    PubMed Central

    Leary, J A; Biemann, K; Lafleur, A L; Kruzel, E L; Prado, G P; Longwell, J P; Peters, W A

    1987-01-01

    Particulates and complex organic mixtures were sampled from the exhaust of a flame retention head residential oil burner combusting No. 2 fuel oil at three firing conditions: continuous at Bacharach Smoke No. 1, and cyclic (5 min on, 10 min off) at Smoke Nos. 1 and 5. The complex mixtures were recovered by successive Soxhlet extraction of filtered particulates and XAD-2 sorbent resin with methylene chloride (DCM) and then methanol (MeOH). Bacterial mutagenicity [see Paper II (8)] was found in the DCM extractables. Samples of DCM extracts from the two cyclic firing conditions and of the raw fuel were separated by gravity column chromatography on alumina. The resulting fractions were further characterized by a range of instrumental methods. Average yields of both unextracted particulates and of DCM extractables, normalized to a basis of per unit weight of fuel fired, were lower for continuous firing than for cyclic firing. For cyclic firing, decreasing the smoke number lowered the particulates emissions but only slightly reduced the average yield of DCM extractables. These and similar observations, here reported for two other oil burners, show that adjusting the burner to a lower smoke number has little effect on, or may actually increase, emissions of organic extractables of potential public health interest. Modifications of the burner firing cycle aimed at approaching continuous operation offer promise for reducing the amount of complex organic emissions. Unburned fuel accounted for roughly half of the DCM extractables from cyclic firing of the flame retention head burner at high and low smoke number. Large (i.e., greater than 3 ring) polycyclic aromatic hydrocarbons (PAH) were not observed in the DCM extractables from cyclic firing. However, nitroaromatics, typified by alkylated nitronaphthalenes, alkyl-nitrobiphenyls, and alkyl-nitrophenanthrenes were found in a minor subfraction containing a significant portion of the total mutagenic activity of the cyclic low smoke samples (8). Oxygen-containing PAH, typified by phenalene-1-one and its alkyl derivatives, are important mutagens from cyclic firing at high smoke conditions. Thus, oil burner effluents differ markedly from those of several other combustors, including the automotive diesel engine, where multiring PAH, typified by fluoranthene and alkylated phenanthrenes, account for a significant portion of the effluent mutagenicity. Implications for combustion and emissions source identification are discussed. PMID:3665865

  13. Anhydrosugar and sugar alcohol organic markers associated with carboxylic acids in particulate matter from incense burning

    NASA Astrophysics Data System (ADS)

    Tsai, Ying I.; Wu, Pei-Ling; Hsu, Yu-Ting; Yang, Chi-Ru

    2010-09-01

    Aerosol from the burning two types of sandalwood-based incense, Hsing Shan and Lao Shan, was analyzed to characterize the chemical profile of total particulate matter emitted. The total particulate matter (PM) mass emission factors were 46.3 ± 2.68 mg g -1 of Hsing Shan incense and 43.7 ± 1.08 mg g -1 of Lao Shan incense. Chemical analysis of emissions from the two types of incense revealed that of the 25 components in four groups characterized, anhydrosugars formed the major group, at 46.7-52.2% w/w of the identified particulate and 1078.3-1169.8 μg g -1 of incense, followed by inorganic salts at 30.4-31.8% w/w of identified particulate and 681.6-734.0 μg g -1 of incense, carboxylic acids at 12.0-17.1% w/w of the identified particulate and 268.6-392.8 μg g -1 of incense, and sugar alcohols at 4.44-5.38% w/w of the identified particulate and 102.3-120.6 μg g -1 of incense. More anhydrosugars and sugar alcohols were emitted from Lao Shan incense than from Hsing Shan incense whereas more carboxylic acids and organic salts were emitted from Hsing Shan than from Lao Shan. These differences were due to structural and functional differences in the young sandalwood used to make Hsing Shan and the aged sandalwood used to make Lao Shan. The anhydrosugar levoglucosan, used as a marker of biomass burning, was always the most abundant species in emitted PM for both incenses ( Lao Shan 21.7 mg g -1 of PM and Hsing Shan 18.7 mg g -1). K + and Cl - were the second most abundant components (K + and Cl - were summed), accounting for 10.6 mg g -1 of Hsing Shan PM and 9.85 mg g -1 of Lao Shan PM. The most abundant carboxylic acids in the emissions were formic, acetic, succinic, glutaric and phthalic acid. The latter is a fragrance ingredient and a potential health hazard and was twice as prevalent in Lao Shan emissions. Xylitol was the most prevalent of the sugar alcohols at 35.7-36.6% w/w of total identified sugar alcohols. These abundant species are potential markers for incense burning. K +, levoglucosan, mannosan and xylitol are already reported in discriminator ratios for wood burning and it is proposed here that these can and should also apply to incense burning. The calculated discriminator ratios for two types of incense burning reported here are 0.229-0.288 for K/Levo, 12.5-13.5 for Levo/Manno, and 21.5-23.7 for the novel discriminator ratio Levo/Xylitol.

  14. Health effects of carbon-containing particulate matter: focus on sources and recent research program results.

    PubMed

    Rohr, Annette; McDonald, Jacob

    2016-02-01

    Air pollution is a complex mixture of gas-, vapor-, and particulate-phase materials comprised of inorganic and organic species. Many of these components have been associated with adverse health effects in epidemiological and toxicological studies, including a broad spectrum of carbonaceous atmospheric components. This paper reviews recent literature on the health impacts of organic aerosols, with a focus on specific sources of organic material; it is not intended to be a comprehensive review of all the available literature. Specific emission sources reviewed include engine emissions, wood/biomass combustion emissions, biogenic emissions and secondary organic aerosol (SOA), resuspended road dust, tire and brake wear, and cooking emissions. In addition, recent findings from large toxicological and epidemiological research programs are reviewed in the context of organic PM, including SPHERES, NPACT, NERC, ACES, and TERESA. A review of the extant literature suggests that there are clear health impacts from emissions containing carbon-containing PM, but difficulty remains in apportioning responses to certain groupings of carbonaceous materials, such as organic and elemental carbon, condensed and gas phases, and primary and secondary material. More focused epidemiological and toxicological studies, including increased characterization of organic materials, would increase understanding of this issue.

  15. Evolution and current understanding of physicochemical characterization of particulate matter from reactivity controlled compression ignition combustion on a multicylinder light-duty engine

    DOE PAGES

    Storey, John Morse; Curran, Scott J.; Lewis, Samuel A.; ...

    2016-08-04

    Low-temperature compression ignition combustion can result in nearly smokeless combustion, as indicated by a smoke meter or other forms of soot measurement that rely on absorbance due to elemental carbon content. Highly premixed low-temperature combustion modes do not form particulate matter in the traditional pathways seen with conventional diesel combustion. Previous research into reactivity controlled compression ignition particulate matter has shown, despite a near zero smoke number, significant mass can be collected on filter media used for particulate matter certification measurement. In addition, particulate matter size distributions reveal that a fraction of the particles survive heated double-dilution conditions. This papermore » summarizes research completed at Oak Ridge National Laboratory to date on characterizing the nature, chemistry and aftertreatment considerations of reactivity controlled compression ignition particulate matter and presents new research highlighting the importance of injection strategy and fuel composition on reactivity controlled compression ignition particulate matter formation. Particle size measurements and the transmission electron microscopy results do show the presence of soot particles; however, the elemental carbon fraction was, in many cases, within the uncertainty of the thermal–optical measurement. Particulate matter emitted during reactivity controlled compression ignition operation was also collected with a novel sampling technique and analyzed by thermal desorption or pyrolysis gas chromatography mass spectroscopy. Particulate matter speciation results indicated that the high boiling range of diesel hydrocarbons was likely responsible for the particulate matter mass captured on the filter media. Finally, to investigate potential fuel chemistry effects, either ethanol or biodiesel were incorporated to assess whether oxygenated fuels may enhance particle emission reduction.« less

  16. Evolution and current understanding of physicochemical characterization of particulate matter from reactivity controlled compression ignition combustion on a multicylinder light-duty engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storey, John Morse; Curran, Scott J.; Lewis, Samuel A.

    Low-temperature compression ignition combustion can result in nearly smokeless combustion, as indicated by a smoke meter or other forms of soot measurement that rely on absorbance due to elemental carbon content. Highly premixed low-temperature combustion modes do not form particulate matter in the traditional pathways seen with conventional diesel combustion. Previous research into reactivity controlled compression ignition particulate matter has shown, despite a near zero smoke number, significant mass can be collected on filter media used for particulate matter certification measurement. In addition, particulate matter size distributions reveal that a fraction of the particles survive heated double-dilution conditions. This papermore » summarizes research completed at Oak Ridge National Laboratory to date on characterizing the nature, chemistry and aftertreatment considerations of reactivity controlled compression ignition particulate matter and presents new research highlighting the importance of injection strategy and fuel composition on reactivity controlled compression ignition particulate matter formation. Particle size measurements and the transmission electron microscopy results do show the presence of soot particles; however, the elemental carbon fraction was, in many cases, within the uncertainty of the thermal–optical measurement. Particulate matter emitted during reactivity controlled compression ignition operation was also collected with a novel sampling technique and analyzed by thermal desorption or pyrolysis gas chromatography mass spectroscopy. Particulate matter speciation results indicated that the high boiling range of diesel hydrocarbons was likely responsible for the particulate matter mass captured on the filter media. Finally, to investigate potential fuel chemistry effects, either ethanol or biodiesel were incorporated to assess whether oxygenated fuels may enhance particle emission reduction.« less

  17. 40 CFR 52.1476 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... National Ambient Air Quality Standards for particulate matter. (1) NAQR Article 7.2.7, Particulate Matter; Table 4.2, Emissions Inventory Summary for Particulates and Table 5.2, Summary of Control Strategy... 24, 1979. (2) Nevada Air Quality Regulations, Article 4, Rule 4.34, (Visible Emission from Stationary...

  18. FINE PARTICLE EMISSIONS FROM RESIDUAL FUEL OIL COMBUSTION: CHARACTERIZATION AND MECHANISMS OF FORMATION

    EPA Science Inventory

    The paper gives results of a comparison of the characteristics of particulate matter (PM) emitted from residual fuel oil combustion in two types of combustion equipment. A small commercial 732-kW-rated fire-tube boiler yielded a weakly bimodal PM size distribution (PSD) with over...

  19. Characterization of Air Manganese Exposure Estimates for Residents in Two Ohio Towns

    EPA Science Inventory

    This study was conducted to derive receptor-specific outdoor exposure concentrations of total suspended particulate (TSP) and respirable (dae ≤1O µm) air manganese (air-Mn) for East Liverpool and Marietta (Ohio) in the absence of facility emissions data, but where long-term air m...

  20. COMPARATIVE U.S./USSR TESTS OF A HOT-SIDE ELECTROSTATIC PRECIPITATOR

    EPA Science Inventory

    The report describes a U.S./USSR cooperative test program to quantify and characterize particulate emissions from a U.S. coal-burning power plant boiler, equipped with a hot-side electrostatic precipitator, at Duke Power Co.'s Allen Steam Station in March 1976. U.S. and Soviet eq...

  1. DEVELOPMENT AND CHARACTERIZATION OF AN ANNULAR DENUDER METHODOLOGY FOR THE MEASUREMENT OF DIVALENT INORGANIC REACTIVE GASEOUS MERCURY IN AMBIENT AIR

    EPA Science Inventory

    Atmospheric mercury is predominantly present in the gaseous elemental form (Hg0). However, anthropogenic emissions (e.g. incineration, fossil fuel combustion) emit and natural processes create particulate-phase mercury (Hg(p)) and divalent reactive gas-phase mercury (RGM). RG...

  2. Characterization of the Particulate Emissions from the BP Deepwell Horizon Spill Surface Oil Burns

    EPA Science Inventory

    A particle sample gathered from the plume of the purposely-burned surface oil during the BP Deepwater Horizon disaster in the Gulf of Mexico was analyzed for polycyclic aromatic hydrocarbons (PAHs), organic acids, organic carbon (OC), elemental carbon (EC), metals, and chloro-org...

  3. Impacts of biodiesel on pollutant emissions of a JP-8-fueled turbine engine.

    PubMed

    Corporan, Edwin; Reich, Richard; Monroig, Orvin; DeWitt, Matthew J; Larson, Venus; Aulich, Ted; Mann, Michael; Seames, Wayne

    2005-07-01

    The impacts of biodiesel on gaseous and particulate matter (PM) emissions of a JP-8-fueled T63 engine were investigated. Jet fuel was blended with the soybean oil-derived methyl ester biofuel at various concentrations and combusted in the turbine engine. The engine was operated at three power settings, namely ground idle, cruise, and takeoff power, to study the impact of the biodiesel at significantly different pressure and temperature conditions. Particulate emissions were characterized by measuring the particle number density (PND; particulate concentration), the particle size distribution, and the total particulate mass. PM samples were collected for offline analysis to obtain information about the effect of the biodiesel on the polycyclic aromatic hydrocarbon (PAH) content. In addition, temperature-programmed oxidation was performed on the collected soot samples to obtain information about the carbonaceous content (elemental or organic). Major and minor gaseous emissions were quantified using a total hydrocarbon analyzer, an oxygen analyzer, and a Fourier Transform IR analyzer. Test results showed the potential of biodiesel to reduce soot emissions in the jet-fueled turbine engine without negatively impacting the engine performance. These reductions, however, were observed only at the higher power settings with relatively high concentrations of biodiesel. Specifically, reductions of approximately 15% in the PND were observed at cruise and takeoff conditions with 20% biodiesel in the jet fuel. At the idle condition, slight increases in PND were observed; however, evidence shows this increase to be the result of condensed uncombusted biodiesel. Most of the gaseous emissions were unaffected under all of the conditions. The biodiesel was observed to have minimal effect on the formation of polycyclic aromatic hydrocarbons during this study. In addition to the combustion results, discussion of the physical and chemical characteristics of the blended fuels obtained using standard American Society for Testing and Materials (ASTM) fuel specifications methods are presented.

  4. In vitro toxicological characterization of particulate emissions from residential biomass heating systems based on old and new technologies

    NASA Astrophysics Data System (ADS)

    Jalava, Pasi I.; Happo, Mikko S.; Kelz, Joachim; Brunner, Thomas; Hakulinen, Pasi; Mäki-Paakkanen, Jorma; Hukkanen, Annika; Jokiniemi, Jorma; Obernberger, Ingwald; Hirvonen, Maija-Riitta

    2012-04-01

    Residential wood combustion causes major effects on the air quality on a global scale. The ambient particulate levels are known to be responsible for severe adverse health effects that include e.g. cardio-respiratory illnesses and cancer related effects, even mortality. It is known that biomass combustion derived emissions are affected by combustion technology, fuel being used and user-related practices. There are also indications that the health related toxicological effects are influenced by these parameters. This study we evaluated toxicological effects of particulate emissions (PM1) from seven different residential wood combusting furnaces. Two appliances i.e. log wood boiler and stove represented old batch combustion technology, whereas stove and tiled stove were designated as new batch combustion as three modern automated boilers were a log wood boiler, a woodchip boiler and a pellet boiler. The PM1 samples from the furnaces were collected in an experimental setup with a Dekati® gravimetric impactor on PTFE filters with the samples being weighed and extracted from the substrates and prior to toxicological analyses. The toxicological analyses were conducted after a 24-hour exposure of the mouse RAW 264.7 macrophage cell line to four doses of emission particle samples and analysis of levels of the proinflammatory cytokine TNFα, chemokine MIP-2, cytotoxicity with three different methods (MTT, PI, cell cycle analysis) and genotoxicity with the comet assay. In the correlation analysis all the toxicological results were compared with the chemical composition of the samples. All the samples induced dose-dependent increases in the studied parameters. Combustion technology greatly affected the emissions and the concomitant toxicological responses. The modern automated boilers were usually the least potent inducers of most of the parameters while emissions from the old technology log wood boiler were the most potent. In correlation analysis, the PAH and other organic composition and inorganic ash composition affected the toxicological responses differently. In conclusion, combustion technology largely affects the particulate emissions and their toxic potential this being reflected in substantially larger responses in devices with incomplete combustion. These differences become emphasized when the large emission factors from old technology appliances are taken into account.

  5. Understanding Particulate Matter Dynamics in the San Joaquin Valley during DISCOVER-AQ, 2013

    NASA Astrophysics Data System (ADS)

    Prabhakar, G.; Zhang, X.; Kim, H.; Parworth, C.; Pusede, S. E.; Wooldridge, P. J.; Cohen, R. C.; Zhang, Q.; Cappa, C. D.

    2015-12-01

    Air quality in the California San Joaquin Valley (SJV) during winter continues to be the worst in the state, failing EPA's 24-hour standard for particulate matter. Despite our improved understanding of the sources of particulate matter (PM) in the valley, air-quality models are unable to predict PM concentrations accurately. We aim to characterize periods of high particulate matter concentrations in the San Joaquin Valley based on ground and airborne measurements of aerosols and gaseous pollutants, during the DISCOVER-AQ campaign, 2013. A highly instrumented aircraft flew across the SJV making three transects in a repeatable pattern, with vertical spirals over select locations. The aircraft measurements were complemented by ground measurements at these locations, with extensive chemically-speciated measurements at a ground "supersite" at Fresno. Hence, the campaign provided a comprehensive three-dimensional view of the particulate and gaseous pollutants around the valley. The vertical profiles over the different sites indicate significant variability in the concentrations and vertical distribution of PM around the valley, which are most likely driven by differences in the combined effects of emissions, chemistry and boundary layer dynamics at each site. The observations suggest that nighttime PM is dominated by surface emissions of PM from residential fuel combustion, while early morning PM is strongly influenced by mixing of low-level, above-surface, nitrate-rich layers formed from dark chemistry overnight to the surface.

  6. 40 CFR 63.9621 - What test methods and other procedures must I use to demonstrate initial compliance with the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... must I use to demonstrate initial compliance with the emission limits for particulate matter? 63.9621... the emission limits for particulate matter? (a) You must conduct each performance test that applies to... source, you must determine compliance with the applicable emission limit for particulate matter in Table...

  7. 40 CFR 63.7822 - What test methods and other procedures must I use to demonstrate initial compliance with the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... must I use to demonstrate initial compliance with the emission limits for particulate matter? 63.7822... demonstrate initial compliance with the emission limits for particulate matter? (a) You must conduct each... applicable emission limit for particulate matter in Table 1 to this subpart, follow the test methods and...

  8. 40 CFR 63.7822 - What test methods and other procedures must I use to demonstrate initial compliance with the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... must I use to demonstrate initial compliance with the emission limits for particulate matter? 63.7822... demonstrate initial compliance with the emission limits for particulate matter? (a) You must conduct each... applicable emission limit for particulate matter in Table 1 to this subpart, follow the test methods and...

  9. 40 CFR 63.9621 - What test methods and other procedures must I use to demonstrate initial compliance with the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... must I use to demonstrate initial compliance with the emission limits for particulate matter? 63.9621... the emission limits for particulate matter? (a) You must conduct each performance test that applies to... source, you must determine compliance with the applicable emission limit for particulate matter in Table...

  10. Particulate matter in new technology diesel exhaust (NTDE) is quantitatively and qualitatively very different from that found in traditional diesel exhaust (TDE).

    PubMed

    Hesterberg, Thomas W; Long, Christopher M; Sax, Sonja N; Lapin, Charles A; McClellan, Roger O; Bunn, William B; Valberg, Peter A

    2011-09-01

    Diesel exhaust (DE) characteristic of pre-1988 engines is classified as a "probable" human carcinogen (Group 2A) by the International Agency for Research on Cancer (IARC), and the U.S. Environmental Protection Agency has classified DE as "likely to be carcinogenic to humans." These classifications were based on the large body of health effect studies conducted on DE over the past 30 or so years. However, increasingly stringent U.S. emissions standards (1988-2010) for particulate matter (PM) and nitrogen oxides (NOx) in diesel exhaust have helped stimulate major technological advances in diesel engine technology and diesel fuel/lubricant composition, resulting in the emergence of what has been termed New Technology Diesel Exhaust, or NTDE. NTDE is defined as DE from post-2006 and older retrofit diesel engines that incorporate a variety of technological advancements, including electronic controls, ultra-low-sulfur diesel fuel, oxidation catalysts, and wall-flow diesel particulate filters (DPFs). As discussed in a prior review (T. W. Hesterberg et al.; Environ. Sci. Technol. 2008, 42, 6437-6445), numerous emissions characterization studies have demonstrated marked differences in regulated and unregulated emissions between NTDE and "traditional diesel exhaust" (TDE) from pre-1988 diesel engines. Now there exist even more data demonstrating significant chemical and physical distinctions between the diesel exhaust particulate (DEP) in NTDE versus DEP from pre-2007 diesel technology, and its greater resemblance to particulate emissions from compressed natural gas (CNG) or gasoline engines. Furthermore, preliminary toxicological data suggest that the changes to the physical and chemical composition of NTDE lead to differences in biological responses between NTDE versus TDE exposure. Ongoing studies are expected to address some of the remaining data gaps in the understanding of possible NTDE health effects, but there is now sufficient evidence to conclude that health effects studies of pre-2007 DE likely have little relevance in assessing the potential health risks of NTDE exposures.

  11. 77 FR 45956 - Approval and Promulgation of Implementation Plans; Kentucky; Louisville; Fine Particulate Matter...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ... Promulgation of Implementation Plans; Kentucky; Louisville; Fine Particulate Matter 2002 Base Year Emissions... action to approve the 1997 annual fine particulate matter (PM 2.5 ) 2002 base year emissions inventory... 45957

  12. Radio Frequency Sensing of Particulate Matter Accumulation on a Gasoline Particulate Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, James; Prikhodko, Vitaly Y.; Sappok, Alex

    Filter Sensing Technology’s radio frequency (RF) sensor for particulate filter on-board diagnostics (OBD) was studied on a lean gasoline engine at the National Transportation Research Center (NTRC) at Oak Ridge National Laboratory (ORNL). The response of the RF sensor to particulate matter (PM) or “soot” accumulation on the gasoline particulate filter (GPF) installed in the engine exhaust was evaluated. In addition, end plugs of the GPF were purposely removed, and subsequent changes to the RF sensor measured soot loading on the GPF were characterized. Results from the study showed that the RF sensor can accurately measure soot accumulation on amore » GPF; furthermore, the predicted decreased soot accumulation due to plug removal was detected by the RF sensor. Overall, the studies were short and preliminary in nature; however, clearly, the RF sensor demonstrated the capability of measuring GPF soot loading at a level suitable for use in lean gasoline engine emission control OBD and control.« less

  13. Gas- and particle-phase primary emissions from in-use, on-road gasoline and diesel vehicles

    NASA Astrophysics Data System (ADS)

    May, Andrew A.; Nguyen, Ngoc T.; Presto, Albert A.; Gordon, Timothy D.; Lipsky, Eric M.; Karve, Mrunmayi; Gutierrez, Alváro; Robertson, William H.; Zhang, Mang; Brandow, Christopher; Chang, Oliver; Chen, Shiyan; Cicero-Fernandez, Pablo; Dinkins, Lyman; Fuentes, Mark; Huang, Shiou-Mei; Ling, Richard; Long, Jeff; Maddox, Christine; Massetti, John; McCauley, Eileen; Miguel, Antonio; Na, Kwangsam; Ong, Richard; Pang, Yanbo; Rieger, Paul; Sax, Todd; Truong, Tin; Vo, Thu; Chattopadhyay, Sulekha; Maldonado, Hector; Maricq, M. Matti; Robinson, Allen L.

    2014-05-01

    Tailpipe emissions from sixty-four unique light-duty gasoline vehicles (LDGVs) spanning model years 1987-2012, two medium-duty diesel vehicles and three heavy-duty diesel vehicles with varying levels of aftertreatment were characterized at the California Air Resources Board Haagen-Smit and Heavy-Duty Engine Testing Laboratories. Each vehicle was tested on a chassis dynamometer using a constant volume sampler, commercial fuels and standard duty cycles. Measurements included regulated pollutants such as carbon monoxide (CO), total hydrocarbons (THC), nitrogen oxides (NOx), and particulate matter (PM). Off-line analyses were performed to speciate gas- and particle-phase emissions. The data were used to investigate trends in emissions with vehicle age and to quantify the effects of different aftertreatment technologies on diesel vehicle emissions (e.g., with and without a diesel particulate filter). On average, newer LDGVs that met the most recent emissions standards had substantially lower emissions of regulated gaseous pollutants (CO, THC and NOx) than older vehicles. For example, THC emissions from the median LDGV that met the LEV2 standard was roughly a factor of 10 lower than the median pre-LEV vehicle; there were also substantial reductions in NOx (factor of ∼100) and CO (factor of ∼10) emissions from pre-LEV to LEV2 vehicles. However, reductions in LDGV PM mass emissions were much more modest. For example, PM emission from the median LEV2 vehicle was only a factor of three lower than the median pre-LEV vehicle, mainly due to the reductions in organic carbon emissions. In addition, LEV1 and LEV2 LDGVs had similar PM emissions. Catalyzed diesel particulate filters reduced CO, THC and PM emissions from HDDVs by one to two orders of magnitude. Comprehensive organic speciation was performed to quantify priority air toxic emissions and to estimate the secondary organic aerosol (SOA) formation potential. The data suggest that the SOA production from cold-start LDGVs exhaust will likely exceed primary PM emissions from LDGVs and could potentially exceed SOA formation from on-road diesel vehicles.

  14. Chemical characterization and oxidative potential of particles emitted from open burning of cereal straws and rice husk under flaming and smoldering conditions

    NASA Astrophysics Data System (ADS)

    Fushimi, Akihiro; Saitoh, Katsumi; Hayashi, Kentaro; Ono, Keisuke; Fujitani, Yuji; Villalobos, Ana M.; Shelton, Brandon R.; Takami, Akinori; Tanabe, Kiyoshi; Schauer, James J.

    2017-08-01

    Open burning of crop residue is a major source of atmospheric fine particle emissions. We burned crop residues (rice straws, barley straws, wheat straws, and rice husks produced in Japan) in an outdoor chamber and measured particle mass, composition (elemental carbon: EC, organic carbon: OC, ions, elements, and organic species), and oxidative potential in the exhausts. The fine particulate emission factors from the literature were within the range of our values for rice straws but were 1.4-1.9 and 0.34-0.44 times higher than our measured values for barley straw and wheat straw, respectively. For rice husks and wheat straws, which typically lead to combustion conditions that are relatively mild, the EC content of the particles was less than 5%. Levoglucosan seems more suitable as a biomass burning marker than K+, since levoglucosan/OC ratios were more stable than K+/particulate mass ratios among crop species. Stigmasterol and β-sitosterol could also be used as markers of biomass burning with levoglucosan or instead of levoglucosan. Correlation analysis between chemical composition and combustion condition suggests that hot or flaming combustions enhance EC, K+, Cl- and polycyclic aromatic hydrocarbons emissions, while low-temperature or smoldering combustions enhance levoglucosan and water-soluble organic carbon emissions. Oxidative potential, measured with macrophage-based reactive oxygen species (ROS) assay and dithiothreitol (DTT) assay, of open burning fine particles per particulate mass as well as fine particulate emission factors were the highest for wheat straws and second highest for rice husks and rice straws. Oxidative potential per particulate mass was in the lower range of vehicle exhaust and atmosphere. These results suggest that the contribution of open burning is relatively small to the oxidative potential of atmospheric particles. In addition, oxidative potential (both ROS and DTT activities) correlated well with water-insoluble organic species, suggesting that OC components, especially water-insoluble OC components emitted under non-flaming combustion, have a major impact on oxidative potential.

  15. Physico-Chemical Characterization of Fine and Ultrafine Particles Emitted during Diesel Particulate Filter Active Regeneration of Euro5 Diesel Vehicles.

    PubMed

    R'Mili, Badr; Boréave, Antoinette; Meme, Aurelie; Vernoux, Philippe; Leblanc, Mickael; Noël, Ludovic; Raux, Stephane; D'Anna, Barbara

    2018-03-06

    Diesel particulate filters (DPFs) are commonly employed in modern passenger cars to comply with current particulate matter (PM) emission standards. DPFs requires periodic regeneration to remove the accumulated matter. During the process, high-concentration particles, in both nucleation and accumulation modes, are emitted. Here, we report new information on particle morphology and chemical composition of fine (FPs) and ultrafine particles (UFPs) measured downstream of the DPF during active regeneration of two Euro 5 passenger cars. The first vehicle was equipped with a close-coupled diesel oxidation catalyst (DOC) and noncatalyzed DPF combined with fuel borne catalyst and the second one with DOC and a catalyzed-diesel particle filter (CDPF). Differences in PM emission profiles of the two vehicles were related to different after treatment design, regeneration strategies, and vehicle characteristics and mileage. Particles in the nucleation mode consisted of ammonium bisulfate, sulfate and sulfuric acid, suggesting that the catalyst desulfation is the key process in the formation of UFPs. Larger particles and agglomerates, ranging from 90 to 600 nm, consisted of carbonaceous material (soot and soot aggregates) coated by condensable material including organics, ammonium bisulfate and sulfuric acid. Particle emission in the accumulation mode was due to the reduced filtration efficiency (soot cake oxidation) throughout the regeneration process.

  16. 40 CFR 63.9913 - What test methods and other procedures must I use to demonstrate initial compliance with the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... must I use to demonstrate initial compliance with the emission limits for particulate matter and PM10... compliance with the emission limits for particulate matter and PM10? (a) You must conduct each performance... determine compliance with the applicable emission limits for particulate matter in Table 1 to this subpart...

  17. 40 CFR 63.9913 - What test methods and other procedures must I use to demonstrate initial compliance with the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... must I use to demonstrate initial compliance with the emission limits for particulate matter and PM10... compliance with the emission limits for particulate matter and PM10? (a) You must conduct each performance... determine compliance with the applicable emission limits for particulate matter in Table 1 to this subpart...

  18. Atmospheric PM and volatile organic compounds released from Mediterranean shrubland wildfires

    NASA Astrophysics Data System (ADS)

    Garcia-Hurtado, Elisa; Pey, Jorge; Borrás, Esther; Sánchez, Pilar; Vera, Teresa; Carratalá, Adoración; Alastuey, Andrés; Querol, Xavier; Vallejo, V. Ramon

    2014-06-01

    Wildfires produce a significant release of gases and particles affecting climate and air quality. In the Mediterranean region, shrublands significantly contribute to burned areas and may show specific emission profiles. Our objective was to depict and quantify the primary-derived aerosols and precursors of secondary particulate species released during shrubland experimental fires, in which fire-line intensity values were equivalent to those of moderate shrubland wildfires, by using a number of different methodologies for the characterization of organic and inorganic compounds in both gas-phase and particulate-phase. Emissions of PM mass, particle number concentrations and organic and inorganic PMx components during flaming and smouldering phases were characterized in a field shrubland fire experiment. Our results revealed a clear prevalence of K+ and SO42- as inorganic ions released during the flaming-smouldering processes, accounting for 68-80% of the inorganic soluble fraction. During the residual-smouldering phases, in addition to K+ and SO42-, Ca2+ was found in significant amounts probably due the predominance of re-suspension processes (ashes and soil dust) over other emission sources during this stage. Concerning organic markers, the chromatograms were dominated by phenols, n-alkanals and n-alkanones, as well as by alcohol biomarkers in all the PMx fractions investigated. Levoglucosan was the most abundant degradation compound with maximum emission factors between 182 and 261 mg kg-1 in PM2.5 and PM10 respectively. However, levoglucosan was also observed in significant amounts in the gas-phase. The most representative organic volatile constituents in the smoke samples were alcohols, carbonyls, acids, monocyclic and bicyclic arenes, isoprenoids and alkanes compounds. The emission factors obtained in this study may contribute to the validation and improvement of national and international emission inventories of this intricate and diffuse emission source.

  19. Assessing the impacts of ethanol and isobutanol on gaseous and particulate emissions from flexible fuel vehicles.

    PubMed

    Karavalakis, Georgios; Short, Daniel; Russell, Robert L; Jung, Heejung; Johnson, Kent C; Asa-Awuku, Akua; Durbin, Thomas D

    2014-12-02

    This study investigated the effects of higher ethanol blends and an isobutanol blend on the criteria emissions, fuel economy, gaseous toxic pollutants, and particulate emissions from two flexible-fuel vehicles equipped with spark ignition engines, with one wall-guided direct injection and one port fuel injection configuration. Both vehicles were tested over triplicate Federal Test Procedure (FTP) and Unified Cycles (UC) using a chassis dynamometer. Emissions of nonmethane hydrocarbons (NMHC) and carbon monoxide (CO) showed some statistically significant reductions with higher alcohol fuels, while total hydrocarbons (THC) and nitrogen oxides (NOx) did not show strong fuel effects. Acetaldehyde emissions exhibited sharp increases with higher ethanol blends for both vehicles, whereas butyraldehyde emissions showed higher emissions for the butanol blend relative to the ethanol blends at a statistically significant level. Particulate matter (PM) mass, number, and soot mass emissions showed strong reductions with increasing alcohol content in gasoline. Particulate emissions were found to be clearly influenced by certain fuel parameters including oxygen content, hydrogen content, and aromatics content.

  20. Particulate Emissions Hazards Associated with Fueling Heat Engines

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Bushnell, Dennis M.

    2010-01-01

    All hydrocarbon- (HC-) fueled heat engine exhaust (tailpipe) emissions (<10 to 140 nm) contribute as health hazards, including emissions from transportation vehicles (e.g., aircraft) and other HC-fueled power systems. CO2 emissions are tracked, and when mapped, show outlines of major transportation routes and cities. Particulate pollution affects living tissue and is found to be detrimental to cardiovascular and respiratory systems where ultrafine particulates directly translocate to promote vascular system diseases potentially detectable as organic vapors. This paper discusses aviation emissions, fueling, and certification issues, including heat engine emissions hazards, detection at low levels and tracking of emissions, and alternate energy sources for general aviation.

  1. Methods for Characterizing the Distribution of Exhaust Emissions from Light-Duty, Gasoline-Powered Motor Vehicles in the U.S. Fleet

    EPA Science Inventory

    Mobile sources significantly contribute to ambient concentrations of airborne particulate matter. Source apportionment studies for PMlO and PM2.5 indicate that mobile sources can be responsible for over half of the ambient PM measured in an urban area. Recent source apportionment...

  2. CHARACTERIZATION OF FINE PARTICULATE MATTER PRODUCED BY COMBUSTION OF RESIDUAL FUEL OIL

    EPA Science Inventory

    Combustion experiments were carried out on four different residual fuel oils in a 732-kW boiler. PM emission samples were separated aerodynamically by a cyclone into fractions that were nominally less than (PM2.5) and greater (PM2.5+) that 2.5 micrometers in diameter. However, ex...

  3. Characterization and Modeling of Dust Emissions from an Instrumented Mine Tailings Site

    NASA Astrophysics Data System (ADS)

    Betterton, E. A.; Stovern, M.; Saez, A.; Csavina, J. L.; Felix Villar, O. I.; Field, J. P.; Rine, K. P.; Russell, M. R.; Saliba, P.

    2012-12-01

    Mining operations are potential sources of airborne particulate metal and metalloid contaminants through both direct smelter emissions and wind erosion of mine tailings. The warmer, drier conditions predicted for the Southwestern US by climate models may make contaminated atmospheric dust and aerosols increasingly important, due to potential deleterious effects on human health and ecology. Dust emissions and dispersion of contaminants from the Iron King Mine tailings in Dewey-Humboldt, Arizona, a Superfund site, are currently being investigated through in situ field measurements and computational fluid dynamics modeling. These tailings are heavily contaminated with lead and arsenic. We report on the chemical characterization of atmospheric dust and aerosol sampled near the mine tailings. Instrumented eddy flux towers were also setup on the mine tailings to give both spatial and temporal dust observations. The eddy flux towers have multiple DUSTTRAK monitors as well as weather stations. These in situ observations allow us to assess spatial distribution of suspended particulate. Using the DUSTTRAK flux tower observations at 10-second resolution in conjunction with a computational fluid dynamics model, we have been able to model dust transport from the mine tailings to downwind areas. In order to improve the accuracy of the dust transport simulations both regional topographical features and local weather patterns have been incorporated into the model simulations.

  4. Impact of fugitive sources and meteorological parameters on vertical distribution of particulate matter over the industrial agglomeration.

    PubMed

    Štrbová, Kristína; Raclavská, Helena; Bílek, Jiří

    2017-12-01

    The aim of the study was to characterize vertical distribution of particulate matter, in an area well known by highest air pollution levels in Europe. A balloon filled with helium with measuring instrumentation was used for vertical observation of air pollution over the fugitive sources in Moravian-Silesian metropolitan area during spring and summer. Synchronously, selected meteorological parameters were recorded together with particulate matter for exploration its relationship with particulate matter. Concentrations of particulate matter in the vertical profile were significantly higher in the spring than in the summer. Significant effect of fugitive sources was observed up to the altitude ∼255 m (∼45 m above ground) in both seasons. The presence of inversion layer was observed at the altitude ∼350 m (120-135 m above ground) at locations with major source traffic load. Both particulate matter concentrations and number of particles for the selected particle sizes decreased with increasing height. Strong correlation of particulate matter with meteorological parameters was not observed. The study represents the first attempt to assess the vertical profile over the fugitive emission sources - old environmental burdens in industrial region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Optical backscatter probe for sensing particulate in a combustion gas stream

    DOEpatents

    Parks, James E; Partridge, William P

    2013-05-28

    A system for sensing particulate in a combustion gas stream is disclosed. The system transmits light into a combustion gas stream, and thereafter detects a portion of the transmitted light as scattered light in an amount corresponding to the amount of particulates in the emissions. Purge gas may be supplied adjacent the light supply and the detector to reduce particles in the emissions from coating or otherwise compromising the transmission of light into the emissions and recovery of scattered light from the emissions.

  6. Gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) emissions from commercial restaurants in Hong Kong.

    PubMed

    Chen, Yi; Ho, Kin Fai; Ho, Steven Sai Hang; Ho, Wing Kei; Lee, Shun Cheng; Yu, Jian Zhen; Sit, Elber Hoi Leung

    2007-12-01

    Commercial cooking emissions are important air pollution sources in a heavily urbanized city. Exhaust samples were collected in six representative commercial kitchens including Chinese restaurants, Western restaurants, and Western fast-food restaurants in Hong Kong during peak lunch hours. Both gaseous and particulate emissions were evaluated. Eight gaseous and twenty-two particulate polycyclic aromatic hydrocarbons (PAHs) were quantified in this study. In the gaseous phase, naphthalene (67-89%) was the most abundant PAH in all of the exhaust samples. The contribution of acenaphthylene in the gaseous phase was significantly higher in emissions from the Chinese restaurants, whereas fluorene was higher in emissions from the Western cooking style restaurants (i.e., Western restaurants and Western fast-food restaurants). Pyrene is the most abundant particulate PAH in the Chinese restaurants (14-49%) while its contribution was much lower in the Western cooking style restaurants (10-22%). Controlled cooking conditions were monitored in a staff canteen to compare the emissions from several different local cooking styles, including deep frying, steaming, and mixed cooking styles (combination of steaming and frying). Deep frying produced the highest amount of total gaseous PAHs, 6 times higher than the steaming. However, steaming produced the highest particulate emissions. The estimated annual gaseous PAH emissions for the Chinese restaurants, Western restaurants, and Western fast-food restaurants were 255, 173, and 20.2 t y(-1) whereas 252, 1.9, and 0.4 t y(-1) were estimated for particulate phase PAH emissions. The study provides useful information and estimates for PAH emissions from commercial cooking exhaust in Hong Kong.

  7. Magnetic properties and heavy metal contents of automobile emission particulates*

    PubMed Central

    Lu, Sheng-gao; Bai, Shi-qiang; Cai, Jing-bo; Xu, Chang

    2005-01-01

    Measurements of the magnetic properties and total contents of Cu, Cd, Pb and Fe in 30 automobile emission particulate samples indicated the presence of magnetic particles in them. The values of frequency dependent susceptibility (χ fd) showed the absence of superparamagnetic (SP) grains in the samples. The IRM20 mT (isothermal remanent magnetization at 20 mT) being linearly proportional to SIRM (saturation isothermal remanent magnetization) (R 2=0.901), suggested that ferrimagnetic minerals were responsible for the magnetic properties of automobile emission particulates. The average contents of Cu, Cd, Pb and Fe in automobile emission particulates were 95.83, 22.14, 30.58 and 34727.31 mg/kg, respectively. Significant positive correlations exist between the magnetic parameters and the contents of Pb, Cu and Fe. The magnetic parameters of automobile emission particulates reflecting concentration of magnetic particles increased linearly with increase of Pb and Cu content, showed that the magnetic measurement could be used as a preliminary index for detection of Pb and Cu pollution. PMID:16052705

  8. [Characteristic of Particulate Emissions from Concrete Batching in Beijing].

    PubMed

    Xue, Yi-feng; Zhou, Zhen; Zhong, Lian-hong; Yan, Jing; Qu, Song; Huang, Yu-hu; Tian, He- zhong; Pan, Tao

    2016-01-15

    With the economic development and population growth in Beijing, there is a strong need for construction and housing, which leads to the increase of the construction areas. Meanwhile, as a local provided material, the production of concrete has been raised. In the process of concrete production by concrete batching, there are numerous particulates emitted, which have large effect on the atmospheric environment, however, systematic study about the tempo-spatial characteristics of pollutant emission from concrete batching is still rare. In this study, we estimated the emission of particulates from concrete batching from 1991 to 2012 using emission factor method, analyzed the tempo-spatial characteristics of pollutant emission, established the uncertainty range by adopting Monte-Carlo method, and predicted the future emission in 2020 based on the relative environmental and economical policies. The results showed that: (1) the emissions of particulates from concrete batching showed a trend of "first increase and then decrease", reaching the maximum in 2005, and then decreased due to stricter emission standard and enhanced environmental management. (2) according to spatial distribution, the emission of particulates from concrete batch mainly concentrated in the urban area with more human activities, and the area between the fifth ring and the sixth ring contributed the most. (3) through scenarios analysis, for further reducing the emission from concrete batching in 2020, more stricter standard for green production as well as powerful supervision is needed.

  9. Characterization of particulate matter from diesel passenger cars tested on chassis dynamometers.

    PubMed

    Jung, Sungwoon; Lim, Jaehyun; Kwon, Sangil; Jeon, Sangwoo; Kim, Jeongsoo; Lee, Jongtae; Kim, Sunmoon

    2017-04-01

    Emission characterization of particle number as well as particle mass from three diesel passenger cars equipped with diesel particulate filter (DPF), diesel oxidation catalyst (DOC) and exhaust gas recirculation (EGR) under the vehicle driving cycles and regulatory cycle. Total particle number emissions (PNEs) decreased gradually during speed-up of vehicle from 17.3 to 97.3km/hr. As the average vehicle speed increases, the size-segregated peak of particle number concentration shifts to smaller size ranges of particles. The correlation analysis with various particulate components such as particle number concentration (PNC), ultrafine particle number concentration (UFPNC) and particulate matter (PM) mass was conducted to compare gaseous compounds (CO, CO 2 , HC and NO x ). The UFPNC and PM were not only emitted highly in Seoul during severe traffic jam conditions, but also have good correlation with hydrocarbons and NO x influencing high potential on secondary aerosol generation. The effect of the dilution temperature on total PNC under the New European Driving Cycle (NEDC), was slightly higher than the dilution ratio. In addition, the nuclei mode (D P : ≤13nm) was confirmed to be more sensitive to the dilution temperature rather than other particle size ranges. Comparison with particle composition between vehicle speed cycles and regulatory cycle showed that sulfate was slightly increased at regulatory cycle, while other components were relatively similar. During cold start test, semivolatile nucleation particles were increased due to effect of cold environment. Research on particle formation dependent on dilution conditions of diesel passenger cars under the NEDC is important to verify impact on vehicular traffic and secondary aerosol formation in Seoul. Copyright © 2016. Published by Elsevier B.V.

  10. 40 CFR 60.2720 - May I conduct performance testing less often?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... least 3 years, and all performance tests for the pollutant (particulate matter, hydrogen chloride, or...) If your CISWI unit continues to meet the emission limitation for particulate matter, hydrogen... shows a deviation from an emission limitation for particulate matter, hydrogen chloride, or opacity, you...

  11. 40 CFR 1066.605 - Mass-based and molar-based exhaust emission calculations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the test interval, corrected to standard temperature and pressure. m PMfil = mass of particulate... = stabilized, ht = hot transient), corrected to standard reference conditions. m PMfil = mass of particulate... stabilized), corrected to standard reference conditions. m PMfil = mass of particulate matter emissions on...

  12. Contribution of Lubricating Oil to Particulate Matter Emissions from Light-Duty Gasoline Vehicles in Kansas City

    EPA Science Inventory

    The contribution of lubricating oil to particulate matter (PM) emissions representative of the in-use 2004 light-duty gasoline vehicles fleet is estimated from the Kansas City Light-Duty Vehicle Emissions Study (KCVES). PM emissions are apportioned to lubricating oil and gasoline...

  13. Contribution of Lubricating Oil to Particulate Matter Emissions from Light-duty Gasoline Vehicles in Kansas City

    EPA Science Inventory

    The contribution of lubricating oil to particulate matter (PM) emissions representative of the in-use 2004 light-duty gasoline vehicles fleet is estimated from the Kansas City Light-Duty Vehicle Emissions Study (KCVES). PM emissions are apportioned to lubricating oil and gasoline...

  14. Characterization of emissions sources in the California-Mexico Border Region during Cal-Mex 2010

    NASA Astrophysics Data System (ADS)

    Zavala, M. A.; Lei, W.; Li, G.; Bei, N.; Barrera, H.; Tejeda, D.; Molina, L. T.; Cal-Mex 2010 Emissions Team

    2010-12-01

    The California-Mexico border region provides an opportunity to evaluate the characteristics of the emission processes in rapidly expanding urban areas where intensive international trade and commerce activities occur. Intense anthropogenic activities, biomass burning, as well as biological and geological sources significantly contribute to high concentration levels of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitrogen oxides (NOx), volatile organic compounds (VOCs), air toxics, and ozone observed in the California-US Baja California-Mexico border region. The continued efforts by Mexico and US for improving and updating the emissions inventories in the sister cities of San Diego-Tijuana and Calexico-Mexicali has helped to understand the emission processes in the border region. In addition, the recent Cal-Mex 2010 field campaign included a series of measurements aimed at characterizing the emissions from major sources in the California-Mexico border region. In this work we will present our analyzes of the data obtained during Cal-Mex 2010 for the characterization of the emission sources and their use for the evaluation of the recent emissions inventories for the Mexican cities of Tijuana and Mexicali. The developed emissions inventories will be implemented in concurrent air quality modeling efforts for understanding the physical and chemical transformations of air pollutants in the California-Mexico border region and their impacts.

  15. Using Extractive FTIR to Measure N2O from Medium Heavy Duty Vehicles Powered with Diesel and Biodiesel Fuels

    EPA Science Inventory

    A Fourier Transform Infrared (FTIR) spectrometer was used to measure N2O and other pollutant gases during an evaluation of two medium heavy-duty diesel trucks equipped with a Diesel Particulate Filter (DPF). The emissions of these trucks were characterized under a variety of oper...

  16. The effect of insulated combustion chamber surfaces on direct-injected diesel engine performance, emissions, and combustion

    NASA Technical Reports Server (NTRS)

    Dickey, Daniel W.; Vinyard, Shannon; Keribar, Rifat

    1988-01-01

    The combustion chamber of a single-cylinder, direct-injected diesel engine was insulated with ceramic coatings to determine the effect of low heat rejection (LHR) operation on engine performance, emissions, and combustion. In comparison to the baseline cooled engine, the LHR engine had lower thermal efficiency, with higher smoke, particulate, and full load carbon monoxide emissions. The unburned hydrocarbon emissions were reduced across the load range. The nitrous oxide emissions increased at some part-load conditions and were reduced slightly at full loads. The poor LHR engine performance was attributed to degraded combustion characterized by less premixed burning, lower heat release rates, and longer combustion duration compared to the baseline cooled engine.

  17. ANALYSIS OF LEAD IN CANDLE PARTICULATE EMISSIONS BY XRF USING UNIQUANT 4

    EPA Science Inventory

    As part of an extensive program to study the small combustion sources of indoor fine particulate matter (PM), candles with lead-core wicks were burned in a 46-L glass flow- through chamber. The particulate emissions with aerodynamic diameters <10 micrometers (PM10) were captured ...

  18. Fuel economy and exhaust emissions characteristics of diesel vehicles: Test results of a prototype Fiat 131 NA 2.4 liter automobile

    NASA Technical Reports Server (NTRS)

    Quayle, S. S.; Davis, M. M.; Walter, R. A.

    1981-01-01

    The vehicle was tested on a chassis dynamometer over selected drive cycles and steady-state conditions. Two fuels were used, a U.S. no. 2 diesel and a European diesel fuel. The vehicle was tested with retarded timing and with and without an oxidation catalyst. Particulate emission rates were calculated from dilution tunnel measurements and large volume particulate samples were collected for biological and chemical analysis. It was determined that while the catalyst was generally effective in reducing hydrocarbon and carbon monoxide levels, it was also a factor in increasing particulate emissions. Increased particulate emission rates were particularly evident when the vehicle was operated on the European fuel which has a high sulfur content.

  19. Comparative carcinogenic potencies of particulates from diesel engine exhausts, coke oven emissions, roofing tar aerosols and cigarette smoke.

    PubMed Central

    Albert, R E

    1983-01-01

    Mammalian cell mutagenesis, transformation and skin tumorigenesis assays show similar results in comparing the potencies of diesel, coke oven, roofing tar and cigarette smoke particulates. These assay results are reasonably consistent with the comparative carcinogenic potencies of coke oven and roofing tar emissions as determined by epidemiological studies. The bacterial mutagenesis assay tends to show disproportionately high potencies, particularly with diesel particulates. Results to date encourage the approach to the assessment for carcinogenic risks from diesel emissions based on the use of epidemiological data on cancer induced by coke oven emissions, roofing tar particulates and cigarette smoke with the comparative potencies of these materials determined by in vivo and in vitro bioassays. PMID:6186481

  20. Real-world emissions of in-use off-road vehicles in Mexico.

    PubMed

    Zavala, Miguel; Huertas, Jose Ignacio; Prato, Daniel; Jazcilevich, Aron; Aguilar, Andrés; Balam, Marco; Misra, Chandan; Molina, Luisa T

    2017-09-01

    Off-road vehicles used in construction and agricultural activities can contribute substantially to emissions of gaseous pollutants and can be a major source of submicrometer carbonaceous particles in many parts of the world. However, there have been relatively few efforts in quantifying the emission factors (EFs) and for estimating the potential emission reduction benefits using emission control technologies for these vehicles. This study characterized the black carbon (BC) component of particulate matter and NOx, CO, and CO 2 EFs of selected diesel-powered off-road mobile sources in Mexico under real-world operating conditions using on-board portable emissions measurements systems (PEMS). The vehicles sampled included two backhoes, one tractor, a crane, an excavator, two front loaders, two bulldozers, an air compressor, and a power generator used in the construction and agricultural activities. For a selected number of these vehicles the emissions were further characterized with wall-flow diesel particle filters (DPFs) and partial-flow DPFs (p-DPFs) installed. Fuel-based EFs presented less variability than time-based emission rates, particularly for the BC. Average baseline EFs in working conditions for BC, NOx, and CO ranged from 0.04 to 5.7, from 12.6 to 81.8, and from 7.9 to 285.7 g/kg-fuel, respectively, and a high dependency by operation mode and by vehicle type was observed. Measurement-base frequency distributions of EFs by operation mode are proposed as an alternative method for characterizing the variability of off-road vehicles emissions under real-world conditions. Mass-based reductions for black carbon EFs were substantially large (above 99%) when DPFs were installed and the vehicles were idling, and the reductions were moderate (in the 20-60% range) for p-DPFs in working operating conditions. The observed high variability in measured EFs also indicates the need for detailed vehicle operation data for accurately estimating emissions from off-road vehicles in emissions inventories. Measurements of off-road vehicles used in construction and agricultural activities in Mexico using on-board portable emissions measurements systems (PEMS) showed that these vehicles can be major sources of black carbon and NO X . Emission factors varied significantly under real-world operating conditions, suggesting the need for detailed vehicle operation data for accurately estimating emissions inventories. Tests conducted in a selected number of sampled vehicles indicated that diesel particle filters (DPFs) are an effective technology for control of diesel particulate emissions and can provide potentially large emissions reduction in Mexico if widely implemented.

  1. Probing emissions of military cargo aircraft: description of a joint field measurement Strategic Environmental Research and Development Program.

    PubMed

    Cheng, Meng-Dawn; Corporan, Edwin; DeWitt, Matthew J; Spicer, Chester W; Holdren, Michael W; Cowen, Kenneth A; Laskin, Alex; Harris, David B; Shores, Richard C; Kagann, Robert; Hashmonay, Ram

    2008-06-01

    To develop effective air quality control strategies for military air bases, there is a need to accurately quantify these emissions. In support of the Strategic Environmental Research and Development Program project, the particulate matter (PM) and gaseous emissions from two T56 engines on a parked C-130 aircraft were characterized at the Kentucky Air National Guard base in Louisville, KY. Conventional and research-grade instrumentation and methodology were used in the field campaign during the first week of October 2005. Particulate emissions were sampled at the engine exit plane and at 15 m downstream. In addition, remote sensing of the gaseous species was performed via spectroscopic techniques at 5 and 15 m downstream of the engine exit. It was found that PM mass and number concentrations measured at 15-m downstream locations, after dilution-correction generally agreed well with those measured at the engine exhaust plane; however, higher variations were observed in the far-field after natural dilution of the downstream measurements was accounted for. Using carbon dioxide-normalized data we demonstrated that gas species measurements by extractive and remote sensing techniques agreed reasonably well.

  2. Speciation and Toxic Emissions from On road Vehicles, and Particulate Matter Emissions from Light-Duty Gasoline Vehicles in MOVES201X

    EPA Science Inventory

    Updated methane, non-methane organic gas, and volatile organic compound calculations based on speciation data. Updated speciation and toxic emission rates for new model year 2010 and later heavy-duty diesel engines. Updated particulate matter emission rates for 2004 and later mod...

  3. Reactive oxidative species formation and unregulated particulate emissions from blended diesel and biodiesel light-duty engine emissions

    USDA-ARS?s Scientific Manuscript database

    It is well established that particulate matter (PM) continues to be a major air pollutant challenge for human health globally and vehicle exhaust PM emissions have been linked to many adverse health effects. However, the relative toxicity of biodiesel emissions compared to petroleum diesel remains u...

  4. [Particle emission characteristics of diesel bus fueled with bio-diesel].

    PubMed

    Lou, Di-Ming; Chen, Feng; Hu, Zhi-Yuan; Tan, Pi-Qiang; Hu, Wei

    2013-10-01

    With the use of the Engine Exhaust Particle Sizer (EEPS), a study on the characteristics of particle emissions was carried out on a China-IV diesel bus fueled with blends of 5% , 10% , 20% , 50% bio-diesel transformed from restaurant waste oil and China-IV diesel (marked separately by BD5, BD10, BD20, BD50), pure bio-diesel (BD100) and pure diesel (BD0). The results indicated that particulate number (PN) and mass (PM) emissions of bio-diesel blends increased with the increase in bus speed and acceleration; with increasing bio-diesel content, particulate emissions displayed a relevant declining trend. In different speed ranges, the size distribution of particulate number emissions (PNSD) was bimodal; in different acceleration ranges, PNSD showed a gradual transition from bimodal shape to unimodal when bus operation was switched from decelerating to accelerating status. Bio-diesel blends with higher mixture ratios showed significant reduction in PN emissions for accumulated modes, and the particulate number emission peaks moved towards smaller sizes; but little change was obtained in PN emissions for nuclei modes; reduction also occurred in particle geometric diameter (Dg).

  5. Size distributions of ambient air particles and enrichment factor analyses of metallic elements at Taichung Harbor near the Taiwan Strait

    NASA Astrophysics Data System (ADS)

    Fang, Guor-Cheng; Wu, Yuh-Shen; Chang, Shih-Yu; Huang, Shih-Han; Rau, Jui-Yeh

    2006-10-01

    This work attempts to characterize metallic elements associated with atmospheric particulate matter on a dry deposition plate, a TE-PUF high-volume air sampler and a universal air sampler. Dry deposition fluxes of particulates and concentrations of total suspended particulate, fine (PM 2.5) and coarse (PM 2.5-10) particulate matters were collected at Taichung harbor sampling sites from August 2004 to January 2005. Chemical analyses of metallic elements were made using a flame atomic absorption spectrophotometer coupled with hollow cathode lamps. Concentrations of metal elements in the forms of coarse particles and fine particles as well as the coarse/fine particulate ratios were presented. Statistical methods such as correlation analysis, principal component analysis and enrichment factor analysis were performed to compare the chemical components and identify possible emission sources at the sampling sites. Metallic elements of Cu, Zn, Pb, Cr, Ni and Mg had higher EF crust ratios in winter and spring than in summer and autumn. Diurnal and nocturnal variations of metallic element concentrations in fine and coarse particles were also discussed.

  6. FINE PARTICULATE MATTER EMISSIONS FROM CANDLES

    EPA Science Inventory

    The paper gives reulst of testing five types of candles, purchased from local stores, for fine particulate matter (PM) emissions under close-to-realistic conditions in a research house. The test method allows for determination of both the emission and deposition rates. Most tes...

  7. Evaluation of emissions from simulated commercial meat wrapping operations using PVC wrap.

    PubMed

    Smith, T J; Cafarella, J J; Chelton, C; Crowley, S

    1983-03-01

    Meatwrapper's asthma is an elusive health problem with a suspected relationship to exposure to emissions from polyvinyl chloride (PVC) film cut with a hot wire. A study was conducted to determine how the type of wrap cutter (wire or rod) and its temperature affected the emissions from a simulated occupational wrapping process. The cutting temperatures covered the same range as was measured in Boston retail food stores. A commercial wrapping machine and samples of commercial PVC meat and produce wraps were used. Seventy five percent of the particulate from the hot wire was respirable, and the quantity of emissions was a strong function of the film tension and cutting technique. Particulate emissions did not increase steadily with increasing wire temperature, but plateaued or declined at high temperatures. Particulate emissions from the rod cutter were very low at low temperatures, but exceeded those of the wire at temperatures above 200 degrees C. The particulate was 100% dioctyl adipate (DOA, the plasticizer in the wrap) with wire temperatures below 200 degrees C, and was approximately 80% DOA for temperatures above this. Gaseous HCl was not detected in emissions from a hot wire operated below 150 degrees C, but HCl emissions increased rapidly to a plateau for temperatures above 200 degrees C. Approximately 20% of the HCl produced at temperatures above 200 degrees C was associated with the particulate, which appeared to act as a carrier and transport the HCl through water filled impingers. Field tests are needed to determine if particulate produced in the workplace may also behave as a carrier for HCl.

  8. Airborne emissions in the harbour and port of Cork.

    PubMed

    Sodeau, John R; Hellebust, Stig; Allanic, Arnaud; O'Connor, Ian; Healy, David A; Healy, Robert; Wenger, John

    2009-07-01

    It is now accepted that the transport sector is responsible for a large and growing share of global emissions affecting both health and climate. The quantification of these effects requires, as an essential first step, a comprehensive analysis and characterization of the contributing subsectors, i.e. road transport, shipping, aviation and rail. The shipping contribution in dock/harbour areas is of particular interest because many vessels use old engines powered with old technology giving rise to high levels of particulate emissions mainly because the fuel employed contains high levels of sulphur, up to 4.5%. Large amounts of polyaromatic hydrocarbons and varying contents of transition metals are also detected. Few studies on the physicochemical composition of direct emissions from ship fuels have been performed; none have been compared to actual contents in local harbour or port atmospheres. The transformation of these ship-related materials to toxicologically active species may be much more efficient than corresponding road emission or domestic sources because of the expected highly acidic nature of the particulates. Surface, toxic material may therefore become readily bioavailable under such conditions but such studies have not been performed hitherto. This mini-review outlines in detail the issues raised above in the context of measurements made in Cork, Ireland.

  9. 40 CFR 86.1343-88 - Calculations; particulate exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cold-start test, grams. (3) PH = Mass particulate measured during the hot-start test, grams. (4) BHP-hr..., grams per test phase. (PH = Pmass for the hot-start test and PC = Pmass for the cold-start test. (2... Exhaust Test Procedures § 86.1343-88 Calculations; particulate exhaust emissions. (a) The final reported...

  10. 40 CFR 86.1343-88 - Calculations; particulate exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cold-start test, grams. (3) PH = Mass particulate measured during the hot-start test, grams. (4) BHP-hr..., grams per test phase. (PH = Pmass for the hot-start test and PC = Pmass for the cold-start test. (2... Exhaust Test Procedures § 86.1343-88 Calculations; particulate exhaust emissions. (a) The final reported...

  11. 78 FR 27062 - Approval and Promulgation of Air Quality Implementation Plans; West Virginia; Prevention of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ... requirement for inclusion of condensable emissions of particulate matter (condensables) within the definition of ``regulated new source review (NSR) pollutant'' for fine particulate matter (PM 2.5 ) and particulate matter emissions less than or equal to ten micrometers in diameter (PM 10 ). In addition, because...

  12. 77 FR 1894 - Approval and Promulgation of Implementation Plans; Georgia; Rome; Fine Particulate Matter 2002...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R04-OAR-2011-0849-201153(b); FRL-9617-3] Approval and Promulgation of Implementation Plans; Georgia; Rome; Fine Particulate Matter 2002 Emissions... approve the fine particulate matter (PM 2.5 ) 2002 base year emissions inventory portion of the State...

  13. 77 FR 63234 - Approval and Promulgation of Implementation Plans; North Carolina 110(a)(1) and (2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... and 2006 Fine Particulate Matter National Ambient Air Quality Standards AGENCY: Environmental... SIP addresses emissions of particulate matter generally, and does not distinguish between PM 10 and PM 2.5. The Commenter also references the particulate matter maximum emission rates for two coal-fired...

  14. 77 FR 50446 - Approval and Promulgation of Implementation Plans; Tennessee; Knoxville; Fine Particulate Matter...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R04-OAR-2010-0153(b); FRL-9717-4] Approval and Promulgation of Implementation Plans; Tennessee; Knoxville; Fine Particulate Matter 2002 Base Year Emissions... approve the 1997 annual fine particulate matter (PM 2.5 ) 2002 base year emissions inventory portion of...

  15. Analysis of particulate emissions from tropical biomass burning using a global aerosol model and long-term surface observations

    NASA Astrophysics Data System (ADS)

    Reddington, Carly L.; Spracklen, Dominick V.; Artaxo, Paulo; Ridley, David A.; Rizzo, Luciana V.; Arana, Andrea

    2016-09-01

    We use the GLOMAP global aerosol model evaluated against observations of surface particulate matter (PM2.5) and aerosol optical depth (AOD) to better understand the impacts of biomass burning on tropical aerosol over the period 2003 to 2011. Previous studies report a large underestimation of AOD over regions impacted by tropical biomass burning, scaling particulate emissions from fire by up to a factor of 6 to enable the models to simulate observed AOD. To explore the uncertainty in emissions we use three satellite-derived fire emission datasets (GFED3, GFAS1 and FINN1). In these datasets the tropics account for 66-84 % of global particulate emissions from fire. With all emission datasets GLOMAP underestimates dry season PM2.5 concentrations in regions of high fire activity in South America and underestimates AOD over South America, Africa and Southeast Asia. When we assume an upper estimate of aerosol hygroscopicity, underestimation of AOD over tropical regions impacted by biomass burning is reduced relative to previous studies. Where coincident observations of surface PM2.5 and AOD are available we find a greater model underestimation of AOD than PM2.5, even when we assume an upper estimate of aerosol hygroscopicity. Increasing particulate emissions to improve simulation of AOD can therefore lead to overestimation of surface PM2.5 concentrations. We find that scaling FINN1 emissions by a factor of 1.5 prevents underestimation of AOD and surface PM2.5 in most tropical locations except Africa. GFAS1 requires emission scaling factor of 3.4 in most locations with the exception of equatorial Asia where a scaling factor of 1.5 is adequate. Scaling GFED3 emissions by a factor of 1.5 is sufficient in active deforestation regions of South America and equatorial Asia, but a larger scaling factor is required elsewhere. The model with GFED3 emissions poorly simulates observed seasonal variability in surface PM2.5 and AOD in regions where small fires dominate, providing independent evidence that GFED3 underestimates particulate emissions from small fires. Seasonal variability in both PM2.5 and AOD is better simulated by the model using FINN1 emissions. Detailed observations of aerosol properties over biomass burning regions are required to better constrain particulate emissions from fires.

  16. Characterization of diesel particles: effects of fuel reformulation, exhaust aftertreatment, and engine operation on particle carbon composition and volatility.

    PubMed

    Alander, Timo J A; Leskinen, Ari P; Raunemaa, Taisto M; Rantanen, Leena

    2004-05-01

    Diesel exhaust particles are the major constituent of urban carbonaceous aerosol being linked to a large range of adverse environmental and health effects. In this work, the effects of fuel reformulation, oxidation catalyst, engine type, and engine operation parameters on diesel particle emission characteristics were investigated. Particle emissions from an indirect injection (IDI) and a direct injection (DI) engine car operating under steady-state conditions with a reformulated low-sulfur, low-aromatic fuel and a standard-grade fuel were analyzed. Organic (OC) and elemental (EC) carbon fractions of the particles were quantified by a thermal-optical transmission analysis method and particle size distributions measured with a scanning mobility particle sizer (SMPS). The particle volatility characteristics were studied with a configuration that consisted of a thermal desorption unit and an SMPS. In addition, the volatility of size-selected particles was determined with a tandem differential mobility analyzer technique. The reformulated fuel was found to produce 10-40% less particulate carbon mass compared to the standard fuel. On the basis of the carbon analysis, the organic carbon contributed 27-61% to the carbon mass of the IDI engine particle emissions, depending on the fuel and engine operation parameters. The fuel reformulation reduced the particulate organic carbon emissions by 10-55%. In the particles of the DI engine, the organic carbon contributed 14-26% to the total carbon emissions, the advanced engine technology, and the oxidation catalyst, thus reducing the OC/EC ratio of particles considerably. A relatively good consistency between the particulate organic fraction quantified with the thermal optical method and the volatile fraction measured with the thermal desorption unit and SMPS was found.

  17. Characterization of particulate matter deposited on urban tree foliage: A landscape analysis approach

    NASA Astrophysics Data System (ADS)

    Lin, Lin; Yan, Jingli; Ma, Keming; Zhou, Weiqi; Chen, Guojian; Tang, Rongli; Zhang, Yuxin

    2017-12-01

    Plants can mitigate ambient particulate matter by cleaning the air, which is crucial to urban environments. A novel approach was presented to quantitatively characterize particulate matter deposited on urban tree foliage. This approach could accurately quantify the number, size, shape, and spatial distribution of particles with different diameters on leaves. Spatial distribution is represented by proximity, which measures the closeness of particles. We sampled three common broadleaf species and obtained images through field emission scanning electron microscopy. We conducted the object-based method to extract particles from images. We then used Fragstats to analyze the landscape characteristics of these particles in term of selected metrics. Results reveal that Salix matsudana is more efficient than Ailanthus altissima and Fraxinus chinensis in terms of the number and area of particles per unit area and the proportion of fine particulate matter. The shape complexity of the particles increases with their size. Among the three species, S. matsudana and A. altissima particles respectively yield the highest and lowest proximity. PM1 in A. altissima and PM10 in F. chinensis and S. matsudana show the highest proximity, which may influence subsequent particle retention. S. matsudana should be generally considered to collect additional small particles. Different species and particle sizes exhibit various proximities, which should be further examined to elucidate the underlying mechanism.

  18. Seasonal variation and chemical characterization of PM2.5 in northwestern Philippines

    NASA Astrophysics Data System (ADS)

    Bagtasa, Gerry; Cayetano, Mylene G.; Yuan, Chung-Shin

    2018-04-01

    The seasonal and chemical characteristics of fine particulate matter (PM2.5) were investigated in Burgos, Ilocos Norte, located at the northwestern edge of the Philippines. Each 24 h sample of fine aerosol was collected for four seasons. Fine particulate in the region shows strong seasonal variation in both concentration and composition. Highest mass concentration was seen during the boreal spring season with a mean mass concentration of 21.6 ± 6.6 µg m-3, and lowest was in fall with a mean concentration of 8.4 ± 2.3 µg m-3. Three-day wind back trajectory analysis of air mass reveals the influence of the northwestern Pacific monsoon regimes on PM2.5 concentration. During southwest monsoon, sea salt was the dominant component of fine aerosols carried by moist air from the South China Sea. During northeast monsoon, on the other hand, both wind and receptor model analysis showed that higher particulate concentration was due to the long-range transport (LRT) of anthropogenic emissions from northern East Asia. Overall, sea salt and soil comprise 33 % of total PM2.5 concentration, while local biomass burning makes up 33 %. LRT of industrial emission, solid waste burning and secondary sulfate from East Asia have a mean contribution of 34 % to the total fine particulate for the whole sampling period.

  19. Particle and gas emissions from a simulated coal-burning household fire pit.

    PubMed

    Tian, Linwei; Lucas, Donald; Fischer, Susan L; Lee, S C; Hammond, S Katharine; Koshland, Catherine P

    2008-04-01

    An open fire was assembled with firebricks to simulate the household fire pit used in rural China, and 15 different coals from this area were burned to measure the gaseous and particulate emissions. Particle size distribution was studied with a microorifice uniform-deposit impactor (MOUDI). Over 90% of the particulate mass was attributed to sub-micrometer particles. The carbon balance method was used to calculate the emission factors. Emission factors for four pollutants (particulate matter, CO2, total hydrocarbons, and NOx) were 2-4 times higherfor bituminous coals than for anthracites. In past inventories of carbonaceous emissions used for climate modeling, these two types of coal were not treated separately. The dramatic emission factor difference between the two types of coal warrants attention in the future development of emission inventories.

  20. Temperature and burning history affect emissions of greenhouse gases and aerosol particles from tropical peatland fire

    NASA Astrophysics Data System (ADS)

    Kuwata, Mikinori; Kai, Fuu Ming; Yang, Liudongqing; Itoh, Masayuki; Gunawan, Haris; Harvey, Charles F.

    2017-01-01

    Tropical peatland burning in Asia has been intensifying over the last decades, emitting huge amounts of gas species and aerosol particles. Both laboratory and field studies have been conducted to investigate emission from peat burning, yet a significant variability in data still exists. We conducted a series of experiments to characterize the gas and particulate matter emitted during burning of a peat sample from Sumatra in Indonesia. Heating temperature of peat was found to regulate the ratio of CH4 to CO2 in emissions (ΔCH4/ΔCO2) as well as the chemical composition of particulate matter. The ΔCH4/ΔCO2 ratio was larger for higher temperatures, meaning that CH4 emission is more pronounced at these conditions. Mass spectrometric analysis of organic components indicated that aerosol particles emitted at higher temperatures had more unsaturated bonds and ring structures than that emitted from cooler fires. The result was consistently confirmed by nuclear magnetic resonance analysis. In addition, CH4 emitted by burning charcoal, which is derived from previously burned peat, was lower by at least an order of magnitude than that from fresh peat. These results highlight the importance of both fire history and heating temperature for the composition of tropical peat-fire emissions. They suggest that remote sensing technologies that map fire histories and temperatures could provide improved estimates of emissions.

  1. PERFORMANCE AND DURABILITY OF THE PSA PEUGEOT CITROEN'S DPF SYSTEM ON A TAXI FLEET IN THE PARIS AREA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    COROLLER, P; PLASSAT, G

    The use of Diesel engines has strongly increased during the last years and now represents 40% of the sales in Europe and up to 50% of the number of cars in circulation for some countries. This success is linked not only to the economical aspect of the use of such vehicles, but also to the recent technological improvements of these engines. The new technical solutions (high pressure direct injection, turbocharger) have indeed allowed the increase of these engine performances while decreasing their fuel consumption, pollutant emissions and noise level. From an environment point of view, Diesel engines are nevertheless penalizedmore » by their particulates and NOx emissions. The study and the treatment of the particulate, highly criticized for their potential impact on health, are the subject of numerous works of characterizations and developments. PSA Peugeot Citroen has recently (2000) launched its particulate filter technology on several types of vehicles (500,000 vehicles with DPF have been sold today). In order to evaluate the durability of this technology over a long period of time, a study program has been set-up by ADEME (French Environmental Agency), IFP Powertrain, PSA Peugeot Citroen and Taxis G7 (a Parisian taxis Company). The objective is to study the evolution of five taxis and their after-treatment system performances over 80,000km mileage--which corresponds to the recommended mileage before the first DPF maintenance--in hard urban driving conditions, as well over 120,000km, after the DPF maintenance and remanufacturing. More specifically, the following evaluations are being performed at regular intervals (around 20,000km): regulated gaseous pollutant emissions on NEDC cycle, particulate emissions and unregulated pollutant emissions. The results obtained until now have not shown any degradation of the particulate filter efficiency (more than 90%). This paper presents the methodology set-up, and the explanation of the first results obtained. Indeed, a more specific study has shown that most of the aerosols, measured with SMPS are composed of liquid fractions, mainly sulfates due to the sulphur coming from the fuel but also from the lubricant. The impact of sulfates stored on the catalyst surface during low temperature running phases and removed during high temperature running phases has been also outlined.« less

  2. Identification and characterization of fine and coarse particulate matter sources in a middle-European urban environment

    NASA Astrophysics Data System (ADS)

    Kertész, Zs.; Szoboszlai, Z.; Angyal, A.; Dobos, E.; Borbély-Kiss, I.

    2010-06-01

    In this work a source apportionment study is presented which aimed to characterize the PM 2.5 and PM 2.5-10 sources in the urban area of Debrecen, East-Hungary by using streaker samples, IBA methods and positive matrix factorization (PMF) analysis. Samples of fine (PM 2.5) and coarse (PM 2.5-10) urban particulate matter were collected with 2 h time resolution in the frame of five sampling campaigns during 2007-2009 in different seasons in the downtown of Debrecen. Elemental concentrations from Al to Pb of over 1000 samples were obtained by particle induced X-ray emission (PIXE); concentrations of black carbon (BC) were determined with a smoke stain reflectometer. On this data base source apportionment was carried out by using the PMF method. Seven factors were identified for both size fractions, including soil dust, traffic, secondary aerosol - sulphates, domestic heating, oil combustion, agriculture and an unknown factor enriched with chlorine. Seasonal and daily variation of the different factors was studied as well as their dependence on meteorological parameters. Besides determining the time patterns characteristic to the city, several emission episodes were identified including a Saharan dust intrusion on 21st-24th May, 2008.

  3. Particulate emissions from large North American wildfires estimated using a new top-down method

    NASA Astrophysics Data System (ADS)

    Nikonovas, Tadas; North, Peter R. J.; Doerr, Stefan H.

    2017-05-01

    Particulate matter emissions from wildfires affect climate, weather and air quality. However, existing global and regional aerosol emission estimates differ by a factor of up to 4 between different methods. Using a novel approach, we estimate daily total particulate matter (TPM) emissions from large wildfires in North American boreal and temperate regions. Moderate Resolution Imaging Spectroradiometer (MODIS) fire location and aerosol optical thickness (AOT) data sets are coupled with HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) atmospheric dispersion simulations, attributing identified smoke plumes to sources. Unlike previous approaches, the method (i) combines information from both satellite and AERONET (AErosol RObotic NETwork) observations to take into account aerosol water uptake and plume specific mass extinction efficiency when converting smoke AOT to TPM, and (ii) does not depend on instantaneous emission rates observed during individual satellite overpasses, which do not sample night-time emissions. The method also allows multiple independent estimates for the same emission period from imagery taken on consecutive days. Repeated fire-emitted AOT estimates for the same emission period over 2 to 3 days of plume evolution show increases in plume optical thickness by approximately 10 % for boreal events and by 40 % for temperate emissions. Inferred median water volume fractions for aged boreal and temperate smoke observations are 0.15 and 0.47 respectively, indicating that the increased AOT is partly explained by aerosol water uptake. TPM emission estimates for boreal events, which predominantly burn during daytime, agree closely with bottom-up Global Fire Emission Database (GFEDv4) and Global Fire Assimilation System (GFASv1.0) inventories, but are lower by approximately 30 % compared to Quick Fire Emission Dataset (QFEDv2) PM2. 5, and are higher by approximately a factor of 2 compared to Fire Energetics and Emissions Research (FEERv1) TPM estimates. The discrepancies are larger for temperate fires, which are characterized by lower median fire radiative power values and more significant night-time combustion. The TPM estimates for this study for the biome are lower than QFED PM2. 5 by 35 %, and are larger by factors of 2.4, 3.2 and 4 compared with FEER, GFED and GFAS inventories respectively. A large underestimation of TPM emission by bottom-up GFED and GFAS indicates low biases in emission factors or consumed biomass estimates for temperate fires.

  4. 40 CFR 49.125 - Rule for limiting the emissions of particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pollution sources? (1) Particulate matter emissions from a combustion source stack (except for wood-fired..., British thermal unit (Btu), coal, combustion source, distillate fuel oil, emission, fuel, fuel oil, gaseous fuel, heat input, incinerator, marine vessel, mobile sources, motor vehicle, nonroad engine...

  5. 40 CFR 86.109-94 - Exhaust gas sampling system; Otto-cycle vehicles not requiring particulate emission measurements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-cycle vehicles not requiring particulate emission measurements. 86.109-94 Section 86.109-94 Protection... Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.109-94 Exhaust gas sampling system; Otto-cycle vehicles not requiring particulate...

  6. On-Board Particulate Filter Failure Prevention and Failure Diagnostics Using Radio Frequency Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sappok, Alex; Ragaller, Paul; Herman, Andrew

    The increasing use of diesel and gasoline particulate filters requires advanced on-board diagnostics (OBD) to prevent and detect filter failures and malfunctions. Early detection of upstream (engine-out) malfunctions is paramount to preventing irreversible damage to downstream aftertreatment system components. Such early detection can mitigate the failure of the particulate filter resulting in the escape of emissions exceeding permissible limits and extend the component life. However, despite best efforts at early detection and filter failure prevention, the OBD system must also be able to detect filter failures when they occur. In this study, radio frequency (RF) sensors were used to directlymore » monitor the particulate filter state of health for both gasoline particulate filter (GPF) and diesel particulate filter (DPF) applications. The testing included controlled engine dynamometer evaluations, which characterized soot slip from various filter failure modes, as well as on-road fleet vehicle tests. The results show a high sensitivity to detect conditions resulting in soot leakage from the particulate filter, as well as potential for direct detection of structural failures including internal cracks and melted regions within the filter media itself. Furthermore, the measurements demonstrate, for the first time, the capability to employ a direct and continuous monitor of particulate filter diagnostics to both prevent and detect potential failure conditions in the field.« less

  7. Methylcyclopentadienyl manganese tricarbonyl: health risk uncertainties and research directions.

    PubMed Central

    Davis, J M

    1998-01-01

    With the way cleared for increased use of the fuel additive methylcyclopentadienyl manganese tricarbonyl (MMT) in the United States, the issue of possible public health impacts associated with this additive has gained greater attention. In assessing potential health risks of particulate Mn emitted from the combustion of MMT in gasoline, the U.S. Environmental Protection Agency not only considered the qualitative types of toxic effects associated with inhaled Mn, but conducted extensive exposure-response analyses using various statistical approaches and also estimated population exposure distributions of particulate Mn based on data from an exposure study conducted in California when MMT was used in leaded gasoline. Because of limitations in available data and the need to make several assumptions and extrapolations, the resulting risk characterization had inherent uncertainties that made it impossible to estimate health risks in a definitive or quantitative manner. To support an improved health risk characterization, further investigation is needed in the areas of health effects, emission characterization, and exposure analysis. PMID:9539013

  8. Mobile laboratory measurements of atmospheric emissions from agriculture, oil, and natural gas activities in northeastern Colorado

    NASA Astrophysics Data System (ADS)

    Eilerman, S. J.; Peischl, J.; Neuman, J. A.; Ryerson, T. B.; Wild, R. J.; Perring, A. E.; Brown, S. S.; Aikin, K. C.; Holloway, M.; Roberts, O.

    2014-12-01

    Atmospheric emissions from agriculture are important to air quality and climate, yet their representation in inventories is incomplete. Increased fertilizer use has lead to increased emissions of nitrogen compounds, which can adversely affect ecosystems and contribute to the formation of fine particulates. Furthermore, extraction and processing of oil and natural gas continues to expand throughout northeastern Colorado; emissions from these operations require ongoing measurement and characterization. This presentation summarizes initial data and analysis from a summer 2014 campaign to study emissions of nitrogen compounds, methane, and other species in northeastern Colorado using a new mobile laboratory. A van was instrumented to measure NH3, N2O, NOx, NOy, CH4, CO, CO2, O3, and bioaerosols with high time resolution. By sampling in close proximity to a variety of emissions sources, the mobile laboratory facilitated accurate source identification and quantification of emissions ratios. Measurements were obtained near agricultural sites, natural gas and oil operations, and other point sources. Additionally, extensive measurements were obtained downwind from urban areas and along roadways. The relationship between ammonia and other trace gases is used to characterize sources and constrain emissions inventories.

  9. Transient particle emission measurement with optical techniques

    NASA Astrophysics Data System (ADS)

    Bermúdez, Vicente; Luján, José M.; Serrano, José R.; Pla, Benjamín

    2008-06-01

    Particulate matter is responsible for some respiratory and cardiovascular diseases. In addition, it is one of the most important pollutants of high-speed direct injection (HSDI) passenger car engines. Current legislation requires particulate dilution tunnels for particulate matter measuring. However for development work, dilution tunnels are expensive and sometimes not useful since they are not able to quantify real-time particulate emissions during transient operation. In this study, the use of a continuous measurement opacimeter and a fast response HFID is proven to be a good alternative to obtain instantaneous particle mass emissions during transient operation (due to particulate matter consisting mainly of soot and SOF). Some methods and correlations available from literature, but developed for steady conditions, are evaluated during transient operation by comparing with mini-tunnel measurements during the entire MVEG-A transient cycle. A new correlation was also derived from this evaluation. Results for soot and SOF (obtained from the new correlation proposed) are compared with soot and SOF captured with particulate filters, which have been separated by means of an SOF extraction method. Finally, as an example of ECU design strategies using these sort of correlations, the EGR valve opening is optimized during transient operation. The optimization is performed while simultaneously taking into account instantaneous fuel consumption, particulate emissions (calculated with the proposed correlation) and other regulated engine pollutants.

  10. Further theoretical studies of modified cyclone separator as a diesel soot particulate emission arrester.

    PubMed

    Mukhopadhyay, N; Bose, P K

    2009-10-01

    Soot particulate emission reduction from diesel engine is one of the most emerging problems associated with the exhaust pollution. Diesel particulate filters (DPF) hold out the prospects of substantially reducing regulated particulate emissions but the question of the reliable regeneration of filters still remains a difficult hurdle to overcome. Many of the solutions proposed to date suffer from design complexity, cost, regeneration problem and energy demands. This study presents a computer aided theoretical analysis for controlling diesel soot particulate emission by cyclone separator--a non contact type particulate removal system considering outer vortex flow, inner vortex flow and packed ceramic fiber filter at the end of vortex finder tube. Cyclone separator with low initial cost, simple construction produces low back pressure and reasonably high collection efficiencies with reduced regeneration problems. Cyclone separator is modified by placing a continuous ceramic packed fiber filter placed at the end of the vortex finder tube. In this work, the grade efficiency model of diesel soot particulate emission is proposed considering outer vortex, inner vortex and the continuous ceramic packed fiber filter. Pressure drop model is also proposed considering the effect of the ceramic fiber filter. Proposed model gives reasonably good collection efficiency with permissible pressure drop limit of diesel engine operation. Theoretical approach is predicted for calculating the cut size diameter considering the effect of Cunningham molecular slip correction factor. The result shows good agreements with existing cyclone and DPF flow characteristics.

  11. Particulate Matter Emissions for Fires in the Palmetto-Gallberry Fuel Type

    Treesearch

    Darold E. Ward

    1983-01-01

    Fire management specialists in the southeastern United States needing guides for predicting or assessing particulate matter emission factors, emission rates, and heat release rate can use the models presented in this paper for making these predictions as a function of flame length in the palmetto-gallberry fuel type.

  12. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using...

  13. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using...

  14. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using...

  15. DEVELOPMENT OF A MICROSCALE EMISSION FACTOR MODEL FOR PARTICULATE MATTER (MICROFACPM) FOR PREDICTING REAL TIME MOTOR VEHICLE EMISSIONS

    EPA Science Inventory

    Health risk evaluation needs precise measurement and modeling of human exposures in microenvironments to support review of current air quality standards. The particulate matter emissions from motor vehicles are a major component of human exposures in urban microenvironments. Cu...

  16. Particulate Matter Speciation Profiles for Light-duty Gasoline Vehicles in the United States

    EPA Science Inventory

    Representative particulate matter (PM2.5) profiles for particles less than or equal to 2.5 micrometers are estimated from the Kansas City Light-Duty Vehicle Emissions Study for use in the US EPA’s vehicle emission model, the Motor Vehicle Emission Simulator (MOVES). The profiles ...

  17. 40 CFR 49.128 - Rule for limiting particulate matter emissions from wood products industry sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emissions from wood products industry sources. 49.128 Section 49.128 Protection of Environment ENVIRONMENTAL... Rule for limiting particulate matter emissions from wood products industry sources. (a) What is the... certain wood products industry sources operating within the Indian reservation to control ground-level...

  18. Gaseous and particulate emissions from thermal power plants operating on different technologies.

    PubMed

    Athar, Makshoof; Ali, Mahboob; Khan, Misbahul Ain

    2010-07-01

    This paper presents the assessment of gaseous and particulate emissions from thermal power plants operating on different combustion technologies. Four thermal power plants operating on heavy furnace oil were selected for the study, among which three were based on diesel engine technology, while the fourth plant was based on oil-fired steam turbine technology. The stack emissions were monitored for critical air pollutants carbon monoxide, carbon dioxide, oxides of nitrogen, sulfur dioxide, particulate matter, lead, and mercury. The pollutant emissions were measured at optimum load conditions for a period of 6 months with an interval of 1 month. The results of stack emissions were compared with National Environmental Quality Standards of Pakistan and World Bank guidelines for thermal power plants, and few parameters were found higher than the permissible limits of emissions. It was observed that the emissions carbon monoxide, oxides of nitrogen, and particulate matters from diesel engine-based power plants were comparatively higher than the turbine-based power plants. The emissions of sulfur dioxide were high in all the plants, even the plants with different technologies, which was mainly due to high sulfur contents in fuel.

  19. 40 CFR 85.1805 - Notification to vehicle or engine owners.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... family particulate emission limits, as defined in part 86. These standards or family particulate emission... paragraph (a) of this section nor any other contemporaneous communication sent to vehicle or engine owners...

  20. Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): part 2--morphological and mineralogical features.

    PubMed

    Calabrese, S; D'Alessandro, W

    2015-01-01

    Volcanic emissions were studied at Mount Etna (Italy) by using moss-bags technique. Mosses were exposed around the volcano at different distances from the active vents to evaluate the impact of volcanic emissions in the atmosphere. Morphology and mineralogy of volcanic particulate intercepted by mosses were investigated using scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS). Particles emitted during passive degassing activity from the two active vents, Bocca Nuova and North East Crater (BNC and NEC), were identified as silicates, sulfates and halide compounds. In addition to volcanic particles, we found evidences also of geogenic, anthropogenic and marine spray input. The study has shown the robustness of this active biomonitoring technique to collect particles, very useful in active volcanic areas characterized by continuous degassing and often not easily accessible to apply conventional sampling techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Exhaust emissions from light- and heavy-duty vehicles: chemical composition, impact of exhaust after treatment, and fuel parameters.

    PubMed Central

    Westerholm, R; Egebäck, K E

    1994-01-01

    This paper presents results from the characterization of vehicle exhaust that were obtained primarily within the Swedish Urban Air Project, "Tätortsprojektet." Exhaust emissions from both gasoline- and diesel-fueled vehicles have been investigated with respect to regulated pollutants (carbon monoxide [CO], hydrocarbon [HC], nitrogen oxides [NOx], and particulate), unregulated pollutants, and in bioassay tests (Ames test, TCDD receptor affinity tests). Unregulated pollutants present in both the particle- and the semi-volatile phases were characterized. Special interest was focused on the impact of fuel composition on heavy-duty diesel vehicle emissions. It was confirmed that there exists a quantifiable relationship between diesel-fuel variables of the fuel blends, the chemical composition of the emissions, and their biological effects. According to the results from the multivariate analysis, the most important fuel parameters are: polycyclic aromatic hydrocarbons (PAH) content, 90% distillation point, final boiling point, specific heat, aromatic content, density, and sulfur content. PMID:7529699

  2. The Southeastern Aerosol Research and Characterization (SEARCH) study: spatial variations and chemical climatology, 1999-2010.

    PubMed

    Blanchard, C L; Hidy, G M; Tanenbaum, S; Edgerton, E S; Hartsell, B E

    2013-03-01

    The Southeastern Aerosol Research and Characterization (SEARCH) study, which has been in continuous operation from 1999 to 2012, was implemented to investigate regional and urban air pollution in the southeastern United States. With complementary data from other networks, the SEARCH measurements provide key knowledge about long-term urban/nonurban pollution contrasts and regional climatology affecting inland locations and sites along the Gulf of Mexico coastline. Analytical approaches ranging from comparisons of mean concentrations to the application of air mass trajectories and principal component analysis provide insight into local and area-wide pollution. Gases (carbon monoxide, sulfur dioxide, nitrogen oxides, ozone, and ammonia), fine particle mass concentration, and fine particle species concentrations (including sulfate, elementary carbon, and organic carbon) are affected by a combination of regional conditions and local emission sources. Urban concentrations in excess of regional baselines and intraurban variations of concentrations depend on source proximity, topography, and local meteorological processes. Regional-scale pollution events (95th percentile concentrations) involving more than 6 of the 8 SEARCH sites are rare (< 2% of days), while subregional events affecting 4-6 sites occur on approximately 10% of days. Regional and subregional events are characterized by widely coincident elevated concentrations of ozone, sulfate, and particulate organic carbon, driven by persistent synoptic-scale air mass stagnation and higher temperatures that favor formation of secondary species, mainly in the summer months. The meteorological conditions associated with regional stagnation do not favor long-range transport of polluted air masses during episodes. Regional and subregional pollution events frequently terminate with southward and eastward penetration of frontal systems, which may initially reduce air pollutant concentrations more inland than along the Gulf Coast. Regional distribution of emission sources and synoptic-scale meteorological influences favoring stagnation lead to high regionwide pollution levels. The regional influence is greatest with secondary species, including ozone (03) particulate sulfate (SO4), and particulate organic matter, some of which is produced by atmospheric oxidation of volatile organic compounds (VOCs) from vegetation and anthropogenic sources. Other species, many of which are from primary emissions, are more influenced by local sources, especially within the Atlanta, GA, and Birmingham, AL, metropolitan areas. Limited measurements of modern and fossil total carbon point to the importance of biological and biogenic emissions in the Southeast.

  3. Experimental investigation on regulated and unregulated emissions of a diesel/methanol compound combustion engine with and without diesel oxidation catalyst.

    PubMed

    Zhang, Z H; Cheung, C S; Chan, T L; Yao, C D

    2010-01-15

    The use of methanol in combination with diesel fuel is an effective measure to reduce particulate matter (PM) and nitrogen oxides (NOx) emissions from in-use diesel vehicles. In this study, a diesel/methanol compound combustion (DMCC) scheme was proposed and a 4-cylinder naturally-aspirated direct-injection diesel engine modified to operate on the proposed combustion scheme. The effect of DMCC and diesel oxidation catalyst (DOC) on the regulated emissions of total hydrocarbons (THC), carbon monoxide (CO), NOx and PM was investigated based on the Japanese 13 Mode test cycle. Certain unregulated emissions, including methane, ethyne, ethene, 1,3-butadiene, BTX (benzene, toluene, xylene), unburned methanol and formaldehyde were also evaluated based on the same test cycle. In addition, the soluble organic fraction (SOF) in the particulate and the particulate number concentration and size distribution were investigated at certain selected modes of operation. The results show that the DMCC scheme can effectively reduce NOx, particulate mass and number concentrations, ethyne, ethene and 1,3-butadiene emissions but significantly increase the emissions of THC, CO, NO(2), BTX, unburned methanol, formaldehyde, and the proportion of SOF in the particles. After the DOC, the emission of THC, CO, NO(2), as well as the unregulated gaseous emissions, can be significantly reduced when the exhaust gas temperature is sufficiently high while the particulate mass concentration is further reduced due to oxidation of the SOF. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Source characterization of urban particles from meat smoking activities in Chongqing, China using single particle aerosol mass spectrometry.

    PubMed

    Chen, Yang; Wenger, John C; Yang, Fumo; Cao, Junji; Huang, Rujin; Shi, Guangming; Zhang, Shumin; Tian, Mi; Wang, Huanbo

    2017-09-01

    A Single Particle Aerosol Mass Spectrometer (SPAMS) was deployed in the urban area of Chongqing to characterize the particles present during a severe particulate pollution event that occurred in winter 2014-2015. The measurements were made at a time when residents engaged in traditional outdoor meat smoking activities to preserve meat before the Chinese Spring Festival. The measurement period was predominantly characterized by stagnant weather conditions, highly elevated levels of PM 2.5 , and low visibility. Eleven major single particle types were identified, with over 92.5% of the particles attributed to biomass burning emissions. Most of the particle types showed appreciable signs of aging in the stagnant air conditions. To simulate the meat smoking activities, a series of controlled smoldering experiments was conducted using freshly cut pine and cypress branches, both with and without wood logs. SPAMS data obtained from these experiments revealed a number of biomass burning particle types, including an elemental and organic carbon (ECOC) type that proved to be the most suitable marker for meat smoking activities. The traditional activity of making preserved meat in southwestern China is shown here to be a major source of particulate pollution. Improved measures to reduce emissions from the smoking of meat should be introduced to improve air quality in regions where smoking meat activity prevails. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Establishing aeolian particulate 'fingerprints' in an airport environment using magnetic measurements and SEM/EDAX

    NASA Astrophysics Data System (ADS)

    Jones, Sue; Hoon, Stephen R.; Richardson, Nigel; Bennett, Michael

    2016-04-01

    The significant increase in global air travel which has occurred during the last fifty years has generated growing concern regarding the potential impacts associated with increasing emissions of particulate matter (PM) from aviation activity on health and the environment. PM within the airport environment, in particular, may be derived from a wide range of potential sources including aircraft; vehicles; ground support equipment and buildings. In order to investigate and remediate potential problem sources, it is important to be able to identify characteristic particulate 'fingerprints' which would allow source attribution, particularly respirable particulates. To date the identification of such 'fingerprints' has remained elusive but remains a key research priority for the aviation industry (Webb et al, 2008). In previous PM studies, environmental magnetism has been used as a successful technique for discriminating between different emission types and particulate sources in both urban and industrial environments (e.g. Hunt et al 1984; Lecoanet et al 2003, Jones et al 2015). Environmental magnetism is a non-destructive and relatively rapid technique involving the use of non-directional, rock magnetic measurements to characterise the mineral magnetic properties of natural and anthropogenic materials. In other studies scanning electron microscopy (SEM) has also been used as an effective characterisation technique for the investigation of grain size and morphology of PM derived from vehicle emissions (e.g. Bucko et al 2010) and fossil fuel combustion sources (Kim et al 2009). In this study, environmental magnetic measurements and SEM/EDAX have been used to characterise dusts from specific aircraft sources including engines, brakes and tyres. Furthermore, these methods have also been applied to runway (both hard and grass covered surfaces), taxiway and apron dusts collected during extensive environmental sampling at Manchester International Airport, UK in order to investigate source attribution. The results indicate that the dusts collected from the various aircraft sources (i.e. engines, brakes and tyres) are significantly different in terms of magnetic mineral type and grain size. Furthermore, particulates deposited at different locations on the runway surface show significant differentiation in magnetic grain size and mineralogy which when compared with the results from the different aircraft sources suggest that they may relate to emissions from different sources at various stages of the take/off landing cycle. Results of SEM/EDAX analysis show that aircraft engine, brake and tyre dust particulates vary significantly in terms of morphology and chemical composition. All sources include respirable (sub 10 micron) particulates. Engine dusts are carbon and silicon rich dominated by angular particulates. They have a distinctive chemical composition including Chromium, Cobalt and Nickel. Tyre dusts are predominantly carbon based dominated by spherical particulates and a unique presence of Zinc. Brake dusts, carbon and oxygen dominated and trace metals, include sub-angular particulates but an absence of the characteristic engine and tyre dusts metals. By combining SEM/EDAX measurements and magnetic measurements we are establishing potential fingerprints for particulates from ground based air transport activities to enable identification of potential health hazards. This will help inform management plans for reduction of associated risks to the environment and health. References Bucko, M., Magiera, T., Pesonen, L., Janus, B. (2010) 'Magnetic, geochemical and microstructural characteristics of road dust on roadsides with different traffic volumes - Case study from Finland' Water, Air and Soil Pollution 209, pp. 295-306. Hunt, A., Jones, J. and Oldfield, F. (1984) 'Magnetic measurements and heavy metals in atmospheric particulates of anthropogenic origin' The Science of the Total Environment 33, 129-139. Jones, S., Richardson, N., Bennett, M. and Hoon, S.R. (2015) The application of magnetic measurements for the characterization of atmospheric particulate pollution within the airport environment. Science of the Total Environment., 502 pp.385-390 Kim, W., Doh, S., Yu, Y. (2009) 'Anthropogenic contribution of magnetic particulates in urban roadside dust' Atmospheric Environment 43 (19) pp.3137-3144. Lecoanet, H., Leveque, F. and Ambrosi, J.P. (2003) 'Combination of magnetic parameters: an efficient way to discriminate soil-contamination sources (south France)' Environmental Pollution 122, 229-234. Webb, S., Whitefield, P.D., Miake-Lye, R.C., Timko, M.T. and Thrasher, T.G. (2008) 'ACRP Report 6: Research needs associated with particulate emissions at airports'. Transportation Research Board'.

  6. Systems and methods for controlling diesel engine emissions

    DOEpatents

    Webb, Cynthia Chaffin; Weber, Phillip Anthony; Khair, Magdi K.

    2004-06-01

    Systems and methods for controlling diesel engine emissions, including, for example, oxides of nitrogen emissions, particulate matter emissions, and the like. The emission control system according to this invention is provided in the exhaust passageway of a diesel engine and includes a catalyst-based particulate filter; and first and second lean NO.sub.x trap systems coupled to the catalyst-based particulate filter. The first and second lean NO.sub.x trap systems are arranged in a parallel flow configuration with each other. Each of the first and second lean NO.sub.x trap systems include a carbon monoxide generating catalyst device, a sulfur trap device, a lean NO.sub.x device, a supplemental fuel injector device, and a plurality of flow diverter devices.

  7. Particulates and fine dust removal: processes and equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sittig, M.

    1977-01-01

    Particulates and fine dust created by man's activities contribute significantly to all major aspects of air pollution. While the generation of natural fine dusts is also very large in some parts of the earth, industrially generated, particle-loaded air emissions may push the particulate level to a point where acceptable air quality standards are exceeded continuously. How to reduce such emissions at the source, and what processes and equipment to use, is the subject of this book, which is based on reports of federally-financed air pollution studies as well as U.S. patents. Following an introduction with an overview of industrial particulatemore » emissions, emission data and emission control processes are discussed for the following specific industries: airlines; asphalt; cement; coal; electric utilities; ferrous metals; fertilizer; food; forest products; paper; chemicals; nonferrous metals; nuclear; petroleum refining; stone and clay; and textiles. Conventional and innovative particle removal devices are described. The disposal of collected particles is discussed. The economic and energy consumption aspects of particulate control are presented. (LCL)« less

  8. Trace gas and particulate emissions from biomass burning in temperate ecosystems

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Levine, Joel S.; Winstead, Edward L.; Stocks, Brian J.

    1991-01-01

    Emissions measured from fires in graminoid wetlands, Mediterranean chaparrals, and boreal forests, suggest that such ecosystemic parameters as fuel size influence combustion emissions in ways that are broadly predictable. The degree of predictability is most noticeable when wetland fire-related results are compared with boreal forest emissions; the inorganic fraction of the particulate emissions is close in composition irrespective of the ecosystem. It is found that both aerosol and trace gas emissions are influenced by the phase of combustion.

  9. 40 CFR 49.128 - Rule for limiting particulate matter emissions from wood products industry sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emissions from wood products industry sources. 49.128 Section 49.128 Protection of Environment ENVIRONMENTAL... Region 10 § 49.128 Rule for limiting particulate matter emissions from wood products industry sources. (a... emitted from certain wood products industry sources operating within the Indian reservation to control...

  10. 40 CFR 49.128 - Rule for limiting particulate matter emissions from wood products industry sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emissions from wood products industry sources. 49.128 Section 49.128 Protection of Environment ENVIRONMENTAL... Region 10 § 49.128 Rule for limiting particulate matter emissions from wood products industry sources. (a... emitted from certain wood products industry sources operating within the Indian reservation to control...

  11. Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States

    EPA Science Inventory

    The aerosol emissions from prescribed fires in the Southeastern United States were measured and compared to emissions from laboratory burns with fuels collected from the site. Fine particulate matter (PM2.5), black carbon, and aerosol light scattering and absorption were characte...

  12. 78 FR 11809 - Approval and Promulgation of Implementation Plans; State of Missouri; Restriction of Emission of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-20

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R07-OAR-2012-0758; FRL 9781-6] Approval and Promulgation of Implementation Plans; State of Missouri; Restriction of Emission of Particulate Matter From... March 17, 2011. This revision proposes to amend the rule restricting emissions of particulate matter...

  13. 40 CFR 49.128 - Rule for limiting particulate matter emissions from wood products industry sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emissions from wood products industry sources. 49.128 Section 49.128 Protection of Environment ENVIRONMENTAL... Region 10 § 49.128 Rule for limiting particulate matter emissions from wood products industry sources. (a... emitted from certain wood products industry sources operating within the Indian reservation to control...

  14. Particulate matter emissions from combustion of wood in district heating applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghafghazi, S.; Sowlati, T.; Sokhansanj, Shahabaddine

    2011-01-01

    The utilization of wood biomass to generate district heat and power in communities that have access to this energy source is increasing. In this paper the effect of wood fuel properties, combustion condition, and flue gas cleaning system on variation in the amount and formation of particles in the flue gas of typical district heating wood boilers are discussed based on the literature survey. Direct measurements of particulate matter (PM) emissions from wood boilers with district heating applications are reviewed and presented. Finally, recommendations are given regarding the selection of wood fuel, combustion system condition, and flue gas cleaning systemmore » in district heating systems in order to meet stringent air quality standards. It is concluded that utilization of high quality wood fuel, such as wood pellets produced from natural, uncontaminated stem wood, would generate the least PM emissions compared to other wood fuel types. Particulate matter emissions from grate burners equipped with electrostatic precipitators when using wood pellets can be well below stringent regulatory emission limit such as particulate emission limit of Metro Vancouver, Canada.« less

  15. The particulate-related health benefits of reducing power plant emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, C.

    The report estimates the adverse human health effects due to exposure to particulate matter from power plants. Power plants are significant emitters of sulfur dioxide and nitrogen oxides. In many parts of the U.S., especially the Midwest, power plants are the largest contributors. These gases are harmful themselves, and they contribute to the formation of acid rain and particulate matter. Particulate matter reduces visibility, often producing a milky haze that blankets wide regions, and it is a serious public health problem. Over the past decade and more, numerous studies have linked particulate matter to a wide range of adverse healthmore » effects in people of all ages. Epidemiologists have consistently linked particulate matter with effects ranging from premature death, hospital admissions and asthma attacks to chronic bronchitis. This study documents the health impacts from power plant air pollution emissions. Using the best available emissions and air quality modeling programs, the stud y forecasts ambient air quality for a business-as-usual baseline scenario for 2007, assuming full implementation of the Acid Rain program and the U.S. Environmental Protection Agency's (EPA) Summer Smog rule (the 1999 NO{sub x} SIP Call). The study then estimates the attributable health impacts from all power plant emissions. Finally, the study estimates air quality for a specific policy alternative: reducing total power plant emissions of SO{sub 2} and NO{sub x} 75 percent form the levels emitted in 1997. The difference between this '75 percent reduction scenario' and the baseline provides an estimate of the health effects that would be avoided by this reduction in power plant emissions. In addition to the policy scenario, the work involved performing sensitivity analyses to examine alternative emission reductions and forecast ambient air quality using a second air quality model. EPA uses both air quality models extensively, and both suggest that power plants make a large contribution to ambient particulate matter levels in the Eastern U.S. To put the power plant results in context, air pollution from all on-road and off-road diesel engine emissions was also examined. The results suggest that both power plants and diesel engines make a large contribution to ambient particulate matter levels and the associated health effects. Chapter 2 describes the development of the emissions inventory. Chapter 3 describes the methods used to estimate changes in particulate matter concentrations. Chapter 4 describes general issues arising in estimating and valuing changes in adverse health effects associated with changes in particulate matter. Chapter 5 describes in some detail the methods used for estimating and valuing adverse health effects, and in Chapter 6, the results of the various analyses are presented. The study includes 6 appendices. Appendix A provides results of this analysis for all metropolitan areas in the U.S. and a list of the counties in each metropolitan area. Appendices B, C and D present a detailed examination of how the pollution emission estimates were derived and then translated into forecasts of ambient particulate matter levels.« less

  16. Importance of filter’s microstructure in dynamic filtration modeling of gasoline particulate filters (GPFs): Inhomogeneous porosity and pore size distribution

    DOE PAGES

    Gong, Jian; Stewart, Mark L.; Zelenyuk, Alla; ...

    2018-01-03

    The state-of-the-art multiscale modeling of gasoline particulate filter (GPF) including channel scale, wall scale, and pore scale is described. The microstructures of two GPFs were experimentally characterized. The pore size distributions of the GPFs were determined by mercury porosimetry. The porosity was measured by X-ray computed tomography (CT) and found to be inhomogeneous across the substrate wall. The significance of pore size distribution with respect to filtration performance was analyzed. The predictions of filtration efficiency were improved by including the pore size distribution in the filtration model. A dynamic heterogeneous multiscale filtration (HMF) model was utilized to simulate particulate filtrationmore » on a single channel particulate filter with realistic particulate emissions from a spark-ignition direct-injection (SIDI) gasoline engine. The dynamic evolution of filter’s microstructure and macroscopic filtration characteristics including mass- and number-based filtration efficiencies and pressure drop were predicted and discussed. In conclusion, the microstructure of the GPF substrate including inhomogeneous porosity and pore size distribution is found to significantly influence local particulate deposition inside the substrate and macroscopic filtration performance and is recommended to be resolved in the filtration model to simulate and evaluate the filtration performance of GPFs.« less

  17. Importance of filter’s microstructure in dynamic filtration modeling of gasoline particulate filters (GPFs): Inhomogeneous porosity and pore size distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Jian; Stewart, Mark L.; Zelenyuk, Alla

    The state-of-the-art multiscale modeling of gasoline particulate filter (GPF) including channel scale, wall scale, and pore scale is described. The microstructures of two GPFs were experimentally characterized. The pore size distributions of the GPFs were determined by mercury porosimetry. The porosity was measured by X-ray computed tomography (CT) and found to be inhomogeneous across the substrate wall. The significance of pore size distribution with respect to filtration performance was analyzed. The predictions of filtration efficiency were improved by including the pore size distribution in the filtration model. A dynamic heterogeneous multiscale filtration (HMF) model was utilized to simulate particulate filtrationmore » on a single channel particulate filter with realistic particulate emissions from a spark-ignition direct-injection (SIDI) gasoline engine. The dynamic evolution of filter’s microstructure and macroscopic filtration characteristics including mass- and number-based filtration efficiencies and pressure drop were predicted and discussed. In conclusion, the microstructure of the GPF substrate including inhomogeneous porosity and pore size distribution is found to significantly influence local particulate deposition inside the substrate and macroscopic filtration performance and is recommended to be resolved in the filtration model to simulate and evaluate the filtration performance of GPFs.« less

  18. Impact of fuel quality regulation and speed reductions on shipping emissions: implications for climate and air quality.

    PubMed

    Lack, Daniel A; Cappa, Christopher D; Langridge, Justin; Bahreini, Roya; Buffaloe, Gina; Brock, Charles; Cerully, Kate; Coffman, Derek; Hayden, Katherine; Holloway, John; Lerner, Brian; Massoli, Paola; Li, Shao-Meng; McLaren, Robert; Middlebrook, Ann M; Moore, Richard; Nenes, Athanasios; Nuaaman, Ibraheem; Onasch, Timothy B; Peischl, Jeff; Perring, Anne; Quinn, Patricia K; Ryerson, Tom; Schwartz, Joshua P; Spackman, Ryan; Wofsy, Steven C; Worsnop, Doug; Xiang, Bin; Williams, Eric

    2011-10-15

    Atmospheric emissions of gas and particulate matter from a large ocean-going container vessel were sampled as it slowed and switched from high-sulfur to low-sulfur fuel as it transited into regulated coastal waters of California. Reduction in emission factors (EFs) of sulfur dioxide (SO₂), particulate matter, particulate sulfate and cloud condensation nuclei were substantial (≥ 90%). EFs for particulate organic matter decreased by 70%. Black carbon (BC) EFs were reduced by 41%. When the measured emission reductions, brought about by compliance with the California fuel quality regulation and participation in the vessel speed reduction (VSR) program, are placed in a broader context, warming from reductions in the indirect effect of SO₄ would dominate any radiative changes due to the emissions changes. Within regulated waters absolute emission reductions exceed 88% for almost all measured gas and particle phase species. The analysis presented provides direct estimations of the emissions reductions that can be realized by California fuel quality regulation and VSR program, in addition to providing new information relevant to potential health and climate impact of reduced fuel sulfur content, fuel quality and vessel speed reductions.

  19. Monitoring by Control Technique - Wet Scrubber For Particulate Matter

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about Wet Scrubber For Particulate Matter controls used to reduce pollutant emissions.

  20. Health effects after firing small arms comparing leaded and unleaded ammunition.

    PubMed

    Voie, Øyvind; Borander, Anne-Katrine; Sikkeland, Liv Ingunn Bjoner; Grahnstedt, Svein; Johnsen, Arnt; Danielsen, Tor Erik; Longva, Kjetil; Kongerud, Johny

    2014-12-01

    A number of Norwegian soldiers have reported health problems after live-fire training using the HK416 rifle. The objective of this study was to characterize gaseous and particulate emissions from three different types of ammunition, and record the health effects after exposure to emissions from live-firing. Fifty-five healthy, non-smoking men (mean age 40 years) were recruited and divided randomly into three groups, one for each type of ammunition. All subjects fired the HK416 rifle in a semi-airtight tent for 60 min using leaded ammunition, unleaded ammunition and modified unleaded ammunition. Gaseous and particulate emissions were monitored within the tent. The symptoms experienced by the subjects were recorded immediately after and the day after firing using a standardized questionnaire. The concentrations of particulate matter and copper exceeded their respective occupational exposure limits (eight hours per day, five days a week) by a factor of 3 and 27, respectively. Of the 55 subjects, 54 reported general and respiratory symptoms. The total number of symptoms reported was significantly higher among shooters using unleaded ammunition as compared with the use of leaded and modified unleaded ammunition. Copper was the substance that had the highest concentration relative to its toxicity. Although the general symptoms were found to be consistent with the development of metal fume fever, the respiratory symptoms indicated an irritant effect of the airways different from that seen in metal fume fever. More symptoms were reported when unleaded ammunition was used compared with leaded and modified unleaded ammunition.

  1. Aircraft measurements to characterize polluted winter boundary layers: Overview of twin otter flights during the Utah Winter Fine Particulate Matter Study

    NASA Astrophysics Data System (ADS)

    Brown, S. S.; Baasandorj, M.; Franchin, A.; Middlebrook, A. M.; Goldberger, L.; Thornton, J. A.; Dube, W. P.; McDuffie, E. E.; Womack, C.; Fibiger, D. L.; Moravek, A.; Clark, J. C.; Murphy, J. G.; Mitchell, R.

    2017-12-01

    Winter air pollution is a significant public health concern. In many regions of the U.S., Europe and Asia, wintertime particulate matter concentrations exceed national and / or international air quality standards. Winter air pollution also represents a scientific challenge because these events occur during stagnation events in shallow, vertically stratified boundary layers whose composition is difficult to probe from surface level measurements. Chemical processes responsible for the conversion of primary emissions to secondary pollutants such as ammonium nitrate aerosol vary with height above ground level. Sources of oxidants are poorly understood and may result from both local chemical production and mixing between shallow inversion layers and background air. During the Utah Winter Fine Particulate Study (UWFPS) in January - February 2017, the NOAA twin otter executed 23 research flights with a payload designed to characterize the formation of ammonium nitrate aerosol in three mountain valleys of northern Utah (Salt Lake, Cache, and Utah). These valleys are subject to periodic episodes of winter aerosol pollution well in excess of U.S. national ambient air quality standards. This presentation will describe the measurement strategy of the twin otter flights to address the specific features of aerosol pollution within winter boundary layer of this region. This strategy is relevant to understanding the broader issue of winter air pollution in other regions and potentially to the design of future studies. The presentation will summarize findings from UWFPS related to boundary layer structure, emissions and chemical processes responsible for ammonium nitrate aerosol in this region.

  2. Characterization of Residential Scale Biofuel Boilers and Fuels

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Sriraam R.

    The objectives of this study were to: 1) characterize commercially available wood pellets and wood chips for basic properties such as calorific, ash, moisture contents; 2) analyze elements and ions and other possible contamination during the pellet manufacturing processes; 3) characterize the chemical and thermo-chemical property of grass pellets for their combustion potential; 4) characterize the emissions from 6 different residential scale boiler/furnace appliances burning grass and wood pellets; 5) characterize the emitted particulate matter for toxic and marker species with respect to combustion appliance and combustion conditions; and 6) determine the effects of the biomass fuel properties of 5 different grass pellets on particulate and gaseous emissions from a single type of boiler. The results from characterization of wood pellets and chips indicated that the wood pellet samples generally meet the quality standards. However, there are some samples that would fail the ash content requirements. Only the German standards have extensive trace element limits. Most of the samples would meet these standards, but some samples failed to meet these standards based on their lead, arsenic, cadmium, and copper concentrations. It is likely that inclusion of extraneous materials such as painted or pressure treated lumber led to the observed high concentrations. Given increasing use of pellets and chips as a renewable fuel, standards for the elemental composition of commercial wood pellets and chips are needed in United States to avoid the inclusion of extraneous materials. Such standards would reduce the environmental impact of toxic species that would be released when the wood is burned. Grass pellets were characterized for chemical and thermochemical properties. Switch grass pellets were studied for it thermal degradation process under inert and oxidizing atmosphere using TGA. The thermal degradation of grass pellet measured the activation energy and pre-exponential factors for switch grass decomposition. Two major losses occurred due to volatilization of cellulose, hemicelluloses, and lignin and burning or slow oxidation of residual char. The parameters were high for oxidative environment indicating high temperature sensitivity of the charcoal formation reaction. There was a substantial effect of heating rate on the mass loss and mass loss rate. The TG curve shifted to higher temperature ranges on increasing the heating rate. In both pyrolyzing and oxidizing conditions, average combustion and devolatlization rates increased. Emissions measurements and efficiency estimation were conducted on six commercially available residential scale appliances that utilize different technologies including direct combustion, gasification, lambda control, or fixed air flow rates that were designed to burn low ash wood (less than 1%). The grass has high ash and chlorine content producing more PM and chlorinated hydrocarbons including dioxins and furans. The results also indicated that the air supply and geometry of the furnace, and the type of furnace are also major influencing factors that affect the pollutant formation. To determine the effect of fuel properties on emissions formation, gaseous and particulate characterization was conducted of six fuels that include five different grass pellets types with ash content ranging from 3% to 13% and a premium wood pellet with ash content 0.6% on a boiler. Emissions from grass pellets were found to be higher than wood pellets and the PM; SO2 and NOx emissions were strongly related to the fuel properties such as ash content, sulfur and nitrogen content, respectively. CO emissions that indicate the completeness of reactions were higher for grass pellets and were strongly correlated to PAHs emissions. The PCDD/F emission was clearly a function of chlorine content of the fuel. A strong correlation existed between levoglucosan and PM2.5 concentrations indicated that levoglucosan is also a molecular marker for grass pellet combustion. All of the emissions were found to be higher for grass pellets when compared to the wood pellets and are higher at high loads than at low loads. These results show that the grass pellets cannot be used as a fuel in current generation wood pellet systems. It will be necessary to design systems that effectively deal with the higher ash and chlorine content if grass pellets are to be a significant fuel for home heating. (Abstract shortened by UMI.)

  3. Investigation of gaseous and particulate emissions from various marine vessel types measured on the banks of the Elbe in Northern Germany

    NASA Astrophysics Data System (ADS)

    Diesch, J.-M.; Drewnick, F.; Klimach, T.; Borrmann, S.

    2013-04-01

    Measurements of the ambient aerosol, various trace gases and meteorological quantities using a mobile laboratory (MoLa) were performed on the banks of the Lower Elbe in an emission control area (ECA) which is passed by numerous private and commercial marine vessels reaching and leaving the port of Hamburg, Germany. From 25-29 April 2011 a total of 178 vessels were probed at a distance of about 0.8-1.2 km with high temporal resolution. 139 ship emission plumes were of sufficient quality to be analyzed further and to determine emission factors (EFs). Concentrations of aerosol number and mass as well as polycyclic aromatic hydrocarbons (PAH) and black carbon were measured in PM1 and size distribution instruments covered the diameter range from 6 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase species analyzers monitored various trace gases (O3, SO2, NO, NO2, CO2) in the air and a weather station provided wind, precipitation, solar radiation data and other quantities. Together with ship information for each vessel obtained from Automatic Identification System (AIS) broadcasts a detailed characterization of the individual ship types and of features affecting gas and particulate emissions is provided. Particle number EFs (average 2.6e+16 # kg-1) and PM1 mass EFs (average 2.4 g kg-1) tend to increase with the fuel sulfur content. Observed PM1 composition of the vessel emissions was dominated by organic matter (72%), sulfate (22%) and black carbon (6%) while PAHs only account for 0.2% of the submicron aerosol mass. Measurements of gaseous components showed an increase of SO2 (average EF: 7.7 g kg-1) and NOx (average EF: 53 g kg-1) while O3 decreased when a ship plume reached the sampling site. The particle number size distributions of the vessels are generally characterized by a bimodal size distribution, with the nucleation mode in the 10-20 nm diameter range and a combustion aerosol mode centered at about 35 nm while particles > 1 μm were not found. "High particle number emitters" are characterized by a dominant nucleation mode. By contrast, increased particle concentrations around 150 nm primarily occurred for "high black carbon emitters". Classifying the vessels according to their gross tonnage shows a decrease of the number, black carbon and PAH EFs while EFs of SO2, NO, NO2, NOx, AMS species (particulate organics, sulfate) and PM1 mass concentration increase with increasing gross tonnages.

  4. Investigation of gaseous and particulate emissions from various marine vessel types measured on the banks of the Elbe in Northern Germany

    NASA Astrophysics Data System (ADS)

    Diesch, J.-M.; Drewnick, F.; Klimach, T.; Borrmann, S.

    2012-08-01

    Measurements of the ambient aerosol, various trace gases and meteorological parameters using a mobile laboratory (MoLa) were performed on the banks of the Lower Elbe in an emission control area (ECA) which is passed by numerous private and commercial marine vessels reaching and leaving the port of Hamburg, Germany. From 25-30 April 2011 a total of 178 vessels were probed at a distance of about 0.8-2 km with high temporal resolution. 139 ship emission plumes were of sufficient quality to be analyzed further and to determine emission factors (EFs). Concentrations of aerosol number and mass as well as polycyclic aromatic hydrocarbons (PAH) and black carbon were measured in PM1 and size distribution instruments covered the size diameter range from 6 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase species analyzers monitored various trace gases (O3, SO2, NO, NO2, CO2) in the air and a weather station provided wind, precipitation, solar radiation and other parameters. Together with ship information for each vessel obtained from Automatic Identification System (AIS) broadcasts a detailed characterization of the individual ship types and of features affecting gas and particulate emissions is provided. Particle number EFs (average 2.6×1016 # kg -1) and PM1 mass EFs (average 2.4 g kg -1) positively correlate with the fuel sulfur content and depend on the engine type and performance. Observed PM1 composition of the vessel emissions was dominated by organic matter (72%), sulfate (22%) and black carbon (6%) while PAHs only account for 0.2% of the submicron aerosol mass. Measurements of gaseous components showed an increase of SO2 (average EF: 7.7 g kg-1) and NOx (average EF: 53 g kg-1) while O3 decreased when a ship plume reached the sampling site. The particle number size distributions of the vessels are generally characterized by a bimodal size distribution, with the nucleation mode in the 10-20 nm diameter range and a combustion aerosol mode centered at about 35 nm while particles >1 μm were not found. "High particle number emitters" are characterized by a dominant nucleation mode. By contrast, a third weaker mode at 150 nm primarily occurred for "high black carbon emitters". Classifying the vessels according to their gross tonnage shows a decrease of the number, black carbon and PAH EFs while EFs of SO2, NO, NO2, NOx, AMS species (particulate organics, sulfate) and PM1 mass concentration increase with increasing gross tonnages.

  5. 30 CFR 57.5067 - Engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Agents, and Diesel Particulate Matter Diesel Particulate Matter-Underground Only § 57.5067 Engines. (a... (2) Meet or exceed the applicable particulate matter emission requirements of the Environmental...

  6. Biomass Burning Emissions from Fire Remote Sensing

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles

    2010-01-01

    Knowledge of the emission source strengths of different (particulate and gaseous) atmospheric constituents is one of the principal ingredients upon which the modeling and forecasting of their distribution and impacts depend. Biomass burning emissions are complex and difficult to quantify. However, satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP), which has a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. In this presentation, we will show how the satellite measurement of FRP is facilitating the quantitative characterization of biomass burning and smoke emission rates, and the implications of this unique capability for improving our understanding of smoke impacts on air quality, weather, and climate. We will also discuss some of the challenges and uncertainties associated with satellite measurement of FRP and how they are being addressed.

  7. Emissions of particulate-bound elements from stationary diesel engine: Characterization and risk assessment

    NASA Astrophysics Data System (ADS)

    Betha, Raghu; Balasubramanian, Rajasekhar

    2011-09-01

    There has been an increasing concern about the emissions of airborne particulate matter (PM) from diesel engines because of their close association with adverse health and environmental impacts. Among the alternative fuels being considered, biodiesel made by the transesterification of waste cooking oil has received wide attention in recent years because of its low cost and the added advantage of reducing waste oil disposal. This study was conducted to make a comparative evaluation of the particulate-bound elements emitted from ultra low sulphur diesel (ULSD) and waste cooking oil-derived biodiesel (B100) and a blend of both the fuels (B50). It was observed that the PM mass concentrations were reduced by about 36% when B100 was used. Crustal elements such as Mg, K and Al were found to be in higher concentrations compared to other elements emitted from both B100 and ULSD. Zn, Cr, Cu, Fe, Ni, Mg, Ba, K were found to be higher in the biodiesel exhaust while Co, Pb, Mn, Cd, Sr, and As were found to be higher in the ULSD exhaust. To evaluate the potential health risk due to inhalation of PM emitted from diesel engines running on ULSD and B100, health risk estimates based on exposure and dose-response assessments of particulate-bound elements were calculated assuming exposure for 24 h. The findings indicate that the exposure to PM of the B100 exhaust is relatively more hazardous and may pose adverse health effects compared to ULSD.

  8. On-road emission factors of PM pollutants for light-duty vehicles (LDVs) based on urban street driving conditions

    NASA Astrophysics Data System (ADS)

    Kam, Winnie; Liacos, James W.; Schauer, James J.; Delfino, Ralph J.; Sioutas, Constantinos

    2012-12-01

    An on-road sampling campaign was conducted on two major surface streets (Wilshire and Sunset Boulevards) in Los Angeles, CA, to characterize PM components including metals, trace elements, and organic species for three PM size fractions (PM10-2.5, PM2.5-0.25, and PM0.25). Fuel-based emission factors (mass of pollutant per kg of fuel) were calculated to assess the emissions profile of a light-duty vehicle (LDV) traffic fleet characterized by stop-and-go driving conditions that are reflective of urban street driving. Emission factors for metals and trace elements were highest in PM10-2.5 while emission factors for PAHs and hopanes and steranes were highest in PM0.25. PM2.5 emission factors were also compared to previous freeway, roadway tunnel, and dynamometer studies based on an LDV fleet to determine how various environments and driving conditions may influence concentrations of PM components. The on-road sampling methodology deployed in the current study captured substantially higher levels of metals and trace elements associated with vehicular abrasion (Fe, Ca, Cu, and Ba) and crustal origins (Mg and Al) than previous LDV studies. The semi-volatile nature of PAHs resulted in higher levels of PAHs in the particulate phase for LDV tunnel studies (Phuleria et al., 2006) and lower levels of PAHs in the particulate phase for freeway studies (Ning et al., 2008). With the exception of a few high molecular weight PAHs, the current study's emission factors were in between the LDV tunnel and LDV freeway studies. In contrast, hopane and sterane emission factors were generally comparable between the current study, the LDV tunnel, and LDV freeway, as expected given the greater atmospheric stability of these organic compounds. Overall, the emission factors from the dynamometer studies for metals, trace elements, and organic species are lower than the current study. Lastly, n-alkanes (C19-C40) were quantified and alkane carbon preference indices (CPIs) were determined to be in the range of 1-2, indicating substantial anthropogenic source contribution for surface streets in Los Angeles.

  9. Effects of Particle Filters and Accelerated Engine Replacement on Heavy-Duty Diesel Vehicle Emissions of Black Carbon, Nitrogen Oxides, and Ultrafine Particles

    NASA Astrophysics Data System (ADS)

    Kirchstetter, T.; Preble, C.; Dallmann, T. R.; DeMartini, S. J.; Tang, N. W.; Kreisberg, N. M.; Hering, S. V.; Harley, R. A.

    2013-12-01

    Diesel particle filters have become widely used in the United States since the introduction in 2007 of a more stringent exhaust particulate matter emission standard for new heavy-duty diesel vehicle engines. California has instituted additional regulations requiring retrofit or replacement of older in-use engines to accelerate emission reductions and air quality improvements. This presentation summarizes pollutant emission changes measured over several field campaigns at the Port of Oakland in the San Francisco Bay Area associated with diesel particulate filter use and accelerated modernization of the heavy-duty truck fleet. Pollutants in the exhaust plumes of hundreds of heavy-duty trucks en route to the Port were measured in 2009, 2010, 2011, and 2013. Ultrafine particle number, black carbon (BC), nitrogen oxides (NOx), and nitrogen dioxide (NO2) concentrations were measured at a frequency ≤ 1 Hz and normalized to measured carbon dioxide concentrations to quantify fuel-based emission factors (grams of pollutant emitted per kilogram of diesel consumed). The size distribution of particles in truck exhaust plumes was also measured at 1 Hz. In the two most recent campaigns, emissions were linked on a truck-by-truck basis to installed emission control equipment via the matching of transcribed license plates to a Port truck database. Accelerated replacement of older engines with newer engines and retrofit of trucks with diesel particle filters reduced fleet-average emissions of BC and NOx. Preliminary results from the two most recent field campaigns indicate that trucks without diesel particle filters emit 4 times more BC than filter-equipped trucks. Diesel particle filters increase emissions of NO2, however, and filter-equipped trucks have NO2/NOx ratios that are 4 to 7 times greater than trucks without filters. Preliminary findings related to particle size distribution indicate that (a) most trucks emitted particles characterized by a single mode of approximately 100 nm in diameter and (b) new trucks originally equipped with diesel particle filters were 5 to 6 times more likely than filter-retrofitted trucks and trucks without filters to emit particles characterized by a single mode in the range of 10 to 30 nm in diameter.

  10. Fuel economy and exhaust emissions characteristics of diesel vehicles: Test results of a prototype Chrysler Volare, 225 CID (3.7-liter) automobile

    NASA Technical Reports Server (NTRS)

    Walter, R. A.

    1982-01-01

    The results obtained from fuel economy and emission tests conducted on a prototype Chrysler Volare diesel vehicle are documented. The vehicle was tested on a chassis dynamometer over selected drive cycles and steady-state conditions. The fuel used, was a DOE/BETC referee fuel. Particulate emission rates were calculated from dilution tunnel measurements and large volume particulate samples were collected for biological and chemical analysis. The vehicle obtained 32.7 mpg for the FTP urban cycle and 48.8 mpg for the highway cycle. The emissions rates were 0.42/1.58/1.17/0.28 g/mile of HC, CO, NOx and particulates respectively.

  11. Fuel economy and exhaust emissions characteristics of diesel vehicles: Test results of a prototype fiat 131TC 2.4 liter automobile

    NASA Technical Reports Server (NTRS)

    Quayle, S. S.

    1982-01-01

    The results obtained from fuel economy and emission tests conducted on a prototype Fiat 131 turbocharged diesel vehicle are presented. The vehicle was tested on a chassis dynamometer over selected drive cycles and steady-state conditions. Two fuels were used, a United States number 2 diesel and a European diesel fuel. Particulate emission rates were calculated from dilution tunnel measurements and large volume particulate samples were collected for biological and chemical analysis. It was determined that turbocharging accompanied by complementary modifications results in small but substantial improvements in regulated emissions, fuel economy, and performance. Notably, particulate levels were reduced by 30 percent.

  12. 40 CFR 63.11621 - What are the standards for new and existing prepared feeds manufacturing facilities?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emissions and route them to a cyclone designed to reduce emissions of particulate matter by 95 percent or...) You must demonstrate that the cyclone is designed to reduce emissions of particulate matter by 95... operation of the cyclone in accordance with the applicable requirement in paragraphs (e)(2)(i), (ii), or...

  13. 40 CFR 60.422 - Standards for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Manufacture § 60.422 Standards for particulate matter. On or after the date on which the performance test... sulfate dryer, particulate matter at an emission rate exceeding 0.15 kilogram of particulate per megagram...

  14. 40 CFR 60.422 - Standards for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for particulate matter. 60... Manufacture § 60.422 Standards for particulate matter. On or after the date on which the performance test... sulfate dryer, particulate matter at an emission rate exceeding 0.15 kilogram of particulate per megagram...

  15. 40 CFR 60.422 - Standards for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for particulate matter. 60... Manufacture § 60.422 Standards for particulate matter. On or after the date on which the performance test... sulfate dryer, particulate matter at an emission rate exceeding 0.15 kilogram of particulate per megagram...

  16. 40 CFR 60.422 - Standards for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for particulate matter. 60... Manufacture § 60.422 Standards for particulate matter. On or after the date on which the performance test... sulfate dryer, particulate matter at an emission rate exceeding 0.15 kilogram of particulate per megagram...

  17. 30 CFR 57.5066 - Maintenance standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Physical Agents, and Diesel Particulate Matter Diesel Particulate Matter-Underground Only § 57.5066... manufacturer specifications; and (3) The operator must maintain any emission or particulate control device...

  18. 30 CFR 57.5066 - Maintenance standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Physical Agents, and Diesel Particulate Matter Diesel Particulate Matter-Underground Only § 57.5066... manufacturer specifications; and (3) The operator must maintain any emission or particulate control device...

  19. Primary particulate emissions and secondary organic aerosol (SOA) formation from idling diesel vehicle exhaust in China.

    PubMed

    Deng, Wei; Hu, Qihou; Liu, Tengyu; Wang, Xinming; Zhang, Yanli; Song, Wei; Sun, Yele; Bi, Xinhui; Yu, Jianzhen; Yang, Weiqiang; Huang, Xinyu; Zhang, Zhou; Huang, Zhonghui; He, Quanfu; Mellouki, Abdelwahid; George, Christian

    2017-09-01

    In China diesel vehicles dominate the primary emission of particulate matters from on-road vehicles, and they might also contribute substantially to the formation of secondary organic aerosols (SOA). In this study tailpipe exhaust of three typical in-use diesel vehicles under warm idling conditions was introduced directly into an indoor smog chamber with a 30m 3 Teflon reactor to characterize primary emissions and SOA formation during photo-oxidation. The emission factors of primary organic aerosol (POA) and black carbon (BC) for the three types of Chinese diesel vehicles ranged 0.18-0.91 and 0.15-0.51gkg-fuel -1 , respectively; and the SOA production factors ranged 0.50-1.8gkg-fuel -1 and SOA/POA ratios ranged 0.7-3.7 with an average of 2.2. The fuel-based POA emission factors and SOA production factors from this study for idling diesel vehicle exhaust were 1-3 orders of magnitude higher than those reported in previous studies for idling gasoline vehicle exhaust. The emission factors for total particle numbers were 0.65-4.0×10 15 particleskg-fuel -1 , and particles with diameters less than 50nm dominated in total particle numbers. Traditional C 2 -C 12 precursor non-methane hydrocarbons (NMHCs) could only explain less than 3% of the SOA formed during aging and contribution from other precursors including intermediate volatile organic compounds (IVOC) needs further investigation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Characteristics of trace metals in traffic-derived particles in Hsuehshan Tunnel, Taiwan: size distribution, potential source, and fingerprinting metal ratio

    NASA Astrophysics Data System (ADS)

    Lin, Y.-C.; Tsai, C.-J.; Wu, Y.-C.; Zhang, R.; Chi, K.-H.; Huang, Y.-T.; Lin, S.-H.; Hsu, S.-C.

    2015-04-01

    Traffic emissions are a significant source of airborne particulate matter (PM) in ambient environments. These emissions contain an abundance of toxic metals and thus pose adverse effects on human health. Size-fractionated aerosol samples were collected from May to September 2013 by using micro-orifice uniform deposited impactors (MOUDIs). Sample collection was conducted simultaneously at the inlet and outlet sites of Hsuehshan Tunnel in northern Taiwan, which is the second-longest freeway tunnel (12.9 km) in Asia. This endeavor aims to characterize the chemical constituents and size distributions, as well as fingerprinting ratios of particulate metals emitted by vehicle fleets. A total of 36 metals in size-resolved aerosols were determined through inductively coupled plasma mass spectrometry. Three major groups - namely, tailpipe emissions (Zn, Pb, and V in fine mode), wear debris (Cu, Cd, Fe, Ga, Mn, Mo, Sb, and Sn), and resuspended dust (Ca, Mg, K, and Rb) - of airborne PM metals were categorized on the basis of the results of enrichment factor, correlation matrix, and principal component analysis. Size distributions of wear-originated metals resembled the pattern of crustal elements, which were predominated by super-micron particulates (PM1-10). By contrast, tailpipe exhaust elements such as Zn, Pb, and V were distributed mainly in submicron particles. By employing Cu as a tracer of wear abrasion, several inter-metal ratios - including Fe / Cu (14), Ba / Cu (1.05), Sb / Cu (0.16), Sn / Cu (0.10), and Ga / Cu (0.03) - served as fingerprints for wear debris. However, the data set collected in this work is useful for further studies on traffic emission inventory and human health effects of traffic-related PM.

  1. Organic aerosols over Indo-Gangetic Plain: Sources, distributions and climatic implications

    NASA Astrophysics Data System (ADS)

    Singh, Nandita; Mhawish, Alaa; Deboudt, Karine; Singh, R. S.; Banerjee, Tirthankar

    2017-05-01

    Organic aerosol (OA) constitutes a dominant fraction of airborne particulates over Indo-Gangetic Plain (IGP) especially during post-monsoon and winter. Its exposure has been associated with adverse health effects while there are evidences of its interference with Earth's radiation balance and cloud condensation (CC), resulting possible alteration of hydrological cycle. Therefore, presence and effects of OA directly link it with food security and thereby, sustainability issues. In these contexts, atmospheric chemistry involving formation, volatility and aging of primary OA (POA) and secondary OA (SOA) have been reviewed with specific reference to IGP. Systematic reviews on science of OA sources, evolution and climate perturbations are presented with databases collected from 82 publications available throughout IGP till 2016. Both gaseous and aqueous phase chemical reactions were studied in terms of their potential to form SOA. Efforts were made to recognize the regional variation of OA, its chemical constituents and sources throughout IGP and inferences were made on its possible impacts on regional air quality. Mass fractions of OA to airborne particulate showed spatial variation likewise in Lahore (37 and 44% in fine and coarse fractions, respectively), Patiala (28 and 37%), Delhi (25 and 38%), Kanpur (24 and 30%), Kolkata (11 and 21%) and Dhaka. Source apportionment studies indicate biomass burning, coal combustion and vehicular emissions as predominant OA sources. However, sources represent considerable seasonal variations with dominance of gasoline and diesel emissions during summer and coal and biomass based emissions during winter and post-monsoon. Crop residue burning over upper-IGP was also frequently held responsible for massive OA emission, mostly characterized by its hygroscopic nature, thus having potential to act as CC nuclei. Conclusively, climatic implication of particulate bound OA has been discussed in terms of its interaction with radiation balance.

  2. Detailed characterization and profiles of crankcase and diesel particulate matter exhaust emissions using speciated organics.

    PubMed

    Zielinska, Barbara; Campbell, David; Lawson, Douglas R; Ireson, Robert G; Weaver, Christopher S; Hesterberg, Thomas W; Larson, Timothy; Davey, Mark; Liu, L J Sally

    2008-08-01

    A monitoring campaign was conducted in August-September 2005 to compare different experimental approaches quantifying school bus self-pollution. As part of this monitoring campaign, a detailed characterization of PM2.5 diesel engine emissions from the tailpipe and crankcase emissions from the road draft tubes was performed. To distinguish between tailpipe and crankcase vent emissions, a deuterated alkane, n-hexatriacontane-d74 (n-C36D74) was added to the engine oil to serve as an intentional quantitative tracer for lubricating oil PM emissions. This paper focuses on the detailed chemical speciation of crankcase and tailpipe PM emissions from two school buses used in this study. We found that organic carbon emission rates were generally higher from the crankcase than from the tailpipe for these two school buses, while elemental carbon contributed significantly only in the tailpipe emissions. The n-C36D74 that was added to the engine oil was emitted at higher rates from the crankcase than the tailpipe. Tracers of engine oil (hopanes and steranes) were present in much higher proportion in crankcase emissions. Particle-associated PAH emission rates were generally very low (< 1 microg/km), but more PAH species were present in crankcase than in tailpipe emissions. The speciation of samples collected in the bus cabins was consistent with most of the bus self-pollution originating from crankcase emissions.

  3. Aircraft NOx and O3 measurements during wintertime temperature inversions in Salt Lake City, Utah

    NASA Astrophysics Data System (ADS)

    Womack, C.; Fibiger, D. L.; McDuffie, E. E.; Franchin, A.; Goldberger, L.; Moravek, A.; Middlebrook, A. M.; Thornton, J. A.; Murphy, J. G.; Baasandorj, M.; Brown, S. S.

    2017-12-01

    The topography of northern Utah results in several multi-day persistent cold-air pools (PCAPs) each winter, during which a temperature inversion prevents the mix-out of anthropogenic emissions. Pollutant levels rise over the course of several days, resulting in particulate matter (PM2.5) levels exceeding the US National Ambient Air Quality Standard of 35 µg/m3, often reaching 60-70 µg/m3 or higher. However, there is significant variability within individual valleys, whose emissions are predominately urban (as in Salt Lake City Valley), agricultural (as in Cache Valley), or a combination of the two. The Utah Winter Fine Particulate Matter Study (UWFPS 2017) was a ground- and aircraft-based field campaign that took place in Jan-Feb 2017 with the aim of better characterizing the complex chemistry involved in the buildup of PM2.5. On board the NOAA Twin Otter aircraft was a cavity ringdown instrument for measuring nitrogen oxides and ozone, an I- CIMS for gas phase oxidized reactive nitrogen, an AMS that measured particulate phase nitrate, and a mid-infrared absorption instrument for NH3. We report vertical and horizontal distributions of NOx, NOy, and O3, and their variation with meteorological conditions and time of day, in the urban and rural valleys of northern Utah.

  4. 40 CFR 52.2059 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. (a) Pennsylvania has committed to undertake a comprehensive program... Investigating and Controlling Nontraditional Particulate Matter Emissions Task Completion date Scheduled tasks...

  5. 40 CFR 52.2059 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. (a) Pennsylvania has committed to undertake a comprehensive program... Investigating and Controlling Nontraditional Particulate Matter Emissions Task Completion date Scheduled tasks...

  6. 40 CFR 52.2059 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. (a) Pennsylvania has committed to undertake a comprehensive program... Investigating and Controlling Nontraditional Particulate Matter Emissions Task Completion date Scheduled tasks...

  7. 40 CFR 52.2059 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. (a) Pennsylvania has committed to undertake a comprehensive program... Investigating and Controlling Nontraditional Particulate Matter Emissions Task Completion date Scheduled tasks...

  8. Submicron particulate organic matter in the urban atmosphere: a new method for real-time measurement, molecular-level characterization and source apportionment

    NASA Astrophysics Data System (ADS)

    Müller, Markus; Eichler, Philipp; D'Anna, Barbara; Tan, Wen; Wisthaler, Armin

    2017-04-01

    We used a novel chemical analytical method for measuring submicron particulate organic matter in the atmosphere of three European cities (Innsbruck, Lyon, Valencia). Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) was used in combination with the "chemical analysis of aerosol online" (CHARON) inlet for detecting particulate organic compounds on-line (i.e. without filter pre-collection), in real-time (1-min time resolution), at ng m-3 concentrations, with molecular-level resolution (i.e. obtaining molecular weight and elemental composition information). The CHARON-PTR-ToF-MS system monitored molecular tracers associated with different particle sources including levoglucosan from biomass combustion, PAHs from vehicular traffic, nicotine from cigarette smoking, and monoterpene oxidation products secondarily formed from biogenic emissions. The tracer information was used for interpreting positive matrix factorization (PMF) data which allowed us to apportion the sources of submicron particulate organic matter in the different urban environments. This work was funded through the PIMMS ITN, which was supported by the European Commission's 7th Framework Programme under grant agreement number 287382.

  9. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.

    PubMed

    Clack, Herek L

    2012-07-03

    The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions.

  10. Meteorological determinants of air quality

    NASA Astrophysics Data System (ADS)

    Turoldo, F.; Del Frate, S.; Gallai, I.; Giaiotti, D. B.; Montanari, F.; Stel, F.; Goi, D.

    2010-09-01

    Air quality is the result of complex phenomena, among which the major role is played by human emissions of pollutants. Atmospheric processes act as determinants, e.g., modulating, dumping or amplifying the effects of emissions as an orchestra's director does with musical instruments. In this work, a series of small-scale and meso-scale meteorological determinants of air-quality are presented as they are observed in an area characterized by complex orography (Friuli Venezia Giulia, in the north-eastern side of Italy). In particular, attention is devoted to: i) meso-scale flows favouring the persistence of high concentrations of particulate matter; ii) meso-scale periodic flows (breezes) favouring high values of particulate matter; iii) local-scale thermodynamic behaviour favouring high atmospheric values of nitrogen oxides. The effects of these different classes of determinants are shown through comparisons between anthropic emissions (mainly traffic) and ground-based measurements. The relevance of complex orography (relatively steep relieves near to the sea) is shown for the meso-scale flows and, in particular, for local-scale periodic flows, which favour the increase of high pollutants concentrations mainly in summer, when the breezes regime is particularly relevant. Part of these results have been achieved through the ETS - Alpine Space EU project iMONITRAF!

  11. Study of the ambient air metallic elements Cr, Cu, Zn, Cd and Pb at HAF sampling sites.

    PubMed

    Fang, Guor-Cheng; Kuo, Yu-Chen; Zhuang, Yuan-Jie; Tsai, Kai-Hsiang; Huang, Wen-Chuan

    2017-08-01

    This study characterized diurnal variations in the compositions of total suspended particulates (TSP) and dry deposits of particulates from ambient air, and the metallic elements that are contained in them at harbor, airport and farmland (HAF) sampling sites from August, 2013 to July, 2014. Two-way ANOVA of the amounts of metallic elements in the TSP and dry deposits was carried out in all four seasons at the HAF sampling sites. The metallic elements Cr and Cu originated in local emission sources at the airport. Metallic elements Zn and Pb originated in local emission sources at the harbor. Finally, metallic element Cd originated in local emissions form farmland. The following results were also obtained. (1) The metallic composition of the TSP differed significantly from that of the dry deposits in all four seasons at the harbor and farmland sampling sites, but not at the airport sampling site. (2) High correlations coefficients were found between the amounts of metallic elements Cr and Cu in the TSP and those in the dry deposits at the airport sampling site. (3) Pb was present in the TSP and the dry deposits at the harbor sampling site.

  12. Anthropogenic fugitive, combustion and industrial dust is a significant, underrepresented fine particulate matter source in global atmospheric models

    NASA Astrophysics Data System (ADS)

    Philip, Sajeev; Martin, Randall V.; Snider, Graydon; Weagle, Crystal L.; van Donkelaar, Aaron; Brauer, Michael; Henze, Daven K.; Klimont, Zbigniew; Venkataraman, Chandra; Guttikunda, Sarath K.; Zhang, Qiang

    2017-04-01

    Global measurements of the elemental composition of fine particulate matter across several urban locations by the Surface Particulate Matter Network reveal an enhanced fraction of anthropogenic dust compared to natural dust sources, especially over Asia. We develop a global simulation of anthropogenic fugitive, combustion, and industrial dust which, to our knowledge, is partially missing or strongly underrepresented in global models. We estimate 2-16 μg m-3 increase in fine particulate mass concentration across East and South Asia by including anthropogenic fugitive, combustion, and industrial dust emissions. A simulation including anthropogenic fugitive, combustion, and industrial dust emissions increases the correlation from 0.06 to 0.66 of simulated fine dust in comparison with Surface Particulate Matter Network measurements at 13 globally dispersed locations, and reduces the low bias by 10% in total fine particulate mass in comparison with global in situ observations. Global population-weighted PM2.5 increases by 2.9 μg m-3 (10%). Our assessment ascertains the urgent need of including this underrepresented fine anthropogenic dust source into global bottom-up emission inventories and global models.

  13. On-line Field Measurements of Speciated PM1 Emission Factors from Common South Asian Combustion Sources

    NASA Astrophysics Data System (ADS)

    DeCarlo, P. F.; Goetz, J. D.; Giordano, M.; Stockwell, C.; Maharjan, R.; Adhikari, S.; Bhave, P.; Praveen, P. S.; Panday, A. K.; Jayarathne, T. S.; Stone, E. A.; Yokelson, R. J.

    2017-12-01

    Characterization of aerosol emissions from prevalent but under sampled combustion sources in South Asia was performed as part of the Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) in April 2015. Targeted emission sources included cooking stoves with a variety of solid fuels, brick kilns, garbage burning, crop-residue burning, diesel irrigation pumps, and motorcycles. Real-time measurements of submicron non-refractory particulate mass concentration and composition were obtained using an Aerodyne mini Aerosol Mass Spectrometer (mAMS). Speciated PM1 mass emission factors were calculated for all particulate species (e.g. organics, sulfates, nitrates, chlorides, ammonium) and for each source type using the carbon mass balance approach. Size resolved emission factors were also acquired using a novel high duty cycle particle time-of-flight technique (ePTOF). Black carbon and brown carbon absorption emission factors and absorption Angström exponents were measured using filter loading and scattering corrected attenuation at 370 nm and 880 nm with a dual spot aethalometer (Magee Scientific AE-33). The results indicate that open garbage burning is a strong emitter of organic aerosol, black carbon, and internally mixed particle phase hydrogen chloride (HCl). Emissions of HCl were attributed to the presence chlorinated plastics. The primarily coal fired brick kilns were found to be large emitters of sulfate but large differences in the organic and light absorbing component of emissions were observed between the two kiln types investigated (technologically advanced vs. traditional). These results, among others, bring on-line and field-tested aerosol emission measurements to an area of atmoshperic research dominated by off-line or laboratory based measurements.

  14. 40 CFR 63.1446 - What alternative emission limitation may I meet for my combined gas streams?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... than a baghouse or venturi wet scrubber applied to meet any total particulate matter emission limit in... than 5 percent of the total operating time in any semiannual reporting period. (d) For each venturi wet scrubber applied to meet any total particulate matter emission limit in paragraph (b) of this section, you...

  15. Fine urban and precursor emissions control for diesel urban transit buses.

    PubMed

    Lanni, Thomas

    2003-01-01

    Particulate emission from diesel engines is one of the most important pollutants in urban areas. As a result, particulate emission control from urban bus diesel engines using particle filter technology is being evaluated at several locations in the US. A project entitled "Clean Diesel Air Quality Demonstration Program" has been initiated by the New York City Metropolitan Transit Authority (MTA) under the supervision of New York State Department of Environmental Conservation and with active participation from Johnson Matthey, Corning, Equilon, Environment Canada and RAD Energy. Under this program, several MTA transit buses with DDC Series 50 engines were equipped with Continuously Regenerating Technology (CRTTM) particulate filter systems and have been operated with ultra low sulfur diesel (<30 ppm S) in transit service in Manhattan since February 2000. These buses were evaluated over a 9-month period for durability and maintainability of the particulate filter. In addition, an extensive emissions testing program was carried out using transient cycles on a chassis dynamometer to evaluate the emissions reductions obtained with the particle filter. In this paper, the emissions testing data from the Clean Diesel Air Quality Demonstration Program are discussed in detail.

  16. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    DTIC Science & Technology

    2015-12-30

    FINAL REPORT Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM...Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M...report contains color. 14. ABSTRACT This project consists of demonstrating the performance and viability of two devices to condition aircraft turbine

  17. Dust emission from wet, low-emission coke quenching process

    NASA Astrophysics Data System (ADS)

    Komosiński, Bogusław; Bobik, Bartłomiej; Konieczny, Tomasz; Cieślik, Ewelina

    2018-01-01

    Coke plants, which produce various types of coke (metallurgical, foundry or heating), at temperatures between 600 and 1200°C, with limited access to oxygen, are major emitters of particulates and gaseous pollutants to air, water and soils. Primarily, the process of wet quenching should be mentioned, as one of the most cumbersome. Atmospheric pollutants include particulates, tar substances, organic pollutants including B(a)P and many others. Pollutants are also formed from the decomposition of water used to quench coke (CO, phenol, HCN, H2S, NH3, cresol) and decomposition of hot coke in the first phase of quenching (CO, H2S, SO2) [1]. The development of the coke oven technology has resulted in the changes made to different types of technological installations, such as the use of baffles in quench towers, the removal of nitrogen oxides by selective NOx reduction, and the introduction of fabric filters for particulates removal. The BAT conclusions for coke plants [2] provide a methodology for the measurement of particulate emission from a wet, low-emission technology using Mohrhauer probes. The conclusions define the emission level for wet quenching process as 25 g/Mgcoke. The conducted research was aimed at verification of the presented method. For two of three quench towers (A and C) the requirements included in the BAT conclusions are not met and emissions amount to 87.34 and 61.35 g/Mgcoke respectively. The lowest particulates emission was recorded on the quench tower B and amounted to 22.5 g/Mgcoke, therefore not exceeding the requirements.

  18. Environmental Quality and the U.S. Power Sector: Air Quality, Land Use and Environmental Justice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massetti, Emanuele; Brown, Marilyn Ann; Lapsa, Melissa Voss

    This baseline report summarizes key environmental quality issues associated with electricity generation, transmission, distribution, and end use in the United States. Its scope includes non-greenhouse gas air pollution (i.e., sulfur dioxide, nitrogen oxides, particulate matter and hazardous air pollutants), land use, water pollution, ecological impacts, human health, and environmental justice. The discussion characterizes both current impacts and recent trends, as well as assessments of key drivers of change. For example, the air emissions section includes a quantitative decomposition analysis of the drivers of change in sulfur dioxide emissions reductions from coal-fired power plants. The report is divided into four topicalmore » sections: air emissions, land use and ecology, water quality, and environmental justice.« less

  19. SENSOR FOR MONITORING OF PARTICULATE EMISSIONS IN DIESEL EXHAUST GASES - PHASE I

    EPA Science Inventory

    Active Spectrum, Inc., proposes a novel, low-cost soot sensor for on-board measurement of soot emissions in diesel exhaust gases. The proposed technology is differentiated from existing methods by excellent sensitivity, high specificity to carbon particulates, and robustness ...

  20. THE IMPACT OF PARTICULATE EMISSIONS CONTROL ON THE CONTROL OF OTHER MWC AIR EMISSIONS

    EPA Science Inventory

    On December 20, 1989, the Environmental Protection Agency (EPA) proposed revised new source performance standards for new municipal waste combustion (MWC) units and guidelines for existing sources. The proposed national regulations require tighter particulate matter control and a...

  1. An overview of particulate emissions from residential biomass combustion

    NASA Astrophysics Data System (ADS)

    Vicente, E. D.; Alves, C. A.

    2018-01-01

    Residential biomass burning has been pointed out as one of the largest sources of fine particles in the global troposphere with serious impacts on air quality, climate and human health. Quantitative estimations of the contribution of this source to the atmospheric particulate matter levels are hard to obtain, because emission factors vary greatly with wood type, combustion equipment and operating conditions. Updated information should improve not only regional and global biomass burning emission inventories, but also the input for atmospheric models. In this work, an extensive tabulation of particulate matter emission factors obtained worldwide is presented and critically evaluated. Existing quantifications and the suitability of specific organic markers to assign the input of residential biomass combustion to the ambient carbonaceous aerosol are also discussed. Based on these organic markers or other tracers, estimates of the contribution of this sector to observed particulate levels by receptor models for different regions around the world are compiled. Key areas requiring future research are highlighted and briefly discussed.

  2. Modelisation des emissions de particules microniques et nanometriques en usinage

    NASA Astrophysics Data System (ADS)

    Khettabi, Riad

    La mise en forme des pieces par usinage emet des particules, de tailles microscopiques et nanometriques, qui peuvent etre dangereuses pour la sante. Le but de ce travail est d'etudier les emissions de ces particules pour fins de prevention et reduction a la source. L'approche retenue est experimentale et theorique, aux deux echelles microscopique et macroscopique. Le travail commence par des essais permettant de determiner les influences du materiau, de l'outil et des parametres d'usinage sur les emissions de particules. E nsuite un nouveau parametre caracterisant les emissions, nomme Dust unit , est developpe et un modele predictif est propose. Ce modele est base sur une nouvelle theorie hybride qui integre les approches energetiques, tribologiques et deformation plastique, et inclut la geometrie de l'outil, les proprietes du materiau, les conditions de coupe et la segmentation des copeaux. Il ete valide au tournage sur quatre materiaux: A16061-T6, AISI1018, AISI4140 et fonte grise.

  3. Fine particulates over South Asia: Review and meta-analysis of PM2.5 source apportionment through receptor model.

    PubMed

    Singh, Nandita; Murari, Vishnu; Kumar, Manish; Barman, S C; Banerjee, Tirthankar

    2017-04-01

    Fine particulates (PM 2.5 ) constitute dominant proportion of airborne particulates and have been often associated with human health disorders, changes in regional climate, hydrological cycle and more recently to food security. Intrinsic properties of particulates are direct function of sources. This initiates the necessity of conducting a comprehensive review on PM 2.5 sources over South Asia which in turn may be valuable to develop strategies for emission control. Particulate source apportionment (SA) through receptor models is one of the existing tool to quantify contribution of particulate sources. Review of 51 SA studies were performed of which 48 (94%) were appeared within a span of 2007-2016. Almost half of SA studies (55%) were found concentrated over few typical urban stations (Delhi, Dhaka, Mumbai, Agra and Lahore). Due to lack of local particulate source profile and emission inventory, positive matrix factorization and principal component analysis (62% of studies) were the primary choices, followed by chemical mass balance (CMB, 18%). Metallic species were most regularly used as source tracers while use of organic molecular markers and gas-to-particle conversion were minimum. Among all the SA sites, vehicular emissions (mean ± sd: 37 ± 20%) emerged as most dominating PM 2.5 source followed by industrial emissions (23 ± 16%), secondary aerosols (22 ± 12%) and natural sources (20 ± 15%). Vehicular emissions (39 ± 24%) also identified as dominating source for highly polluted sites (PM 2.5 >100 μgm -3 , n = 15) while site specific influence of either or in combination of industrial, secondary aerosols and natural sources were recognized. Source specific trends were considerably varied in terms of region and seasonality. Both natural and industrial sources were most influential over Pakistan and Afghanistan while over Indo-Gangetic plain, vehicular, natural and industrial emissions appeared dominant. Influence of vehicular emission was found single dominating source over southern part while over Bangladesh, both vehicular, biomass burning and industrial sources were significant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. 77 FR 65107 - Implementation of the New Source Review (NSR) Program for Particulate Matter Less Than 2.5...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-25

    ...-AR30 Implementation of the New Source Review (NSR) Program for Particulate Matter Less Than 2.5... Particulate Matter AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: The EPA is... for particulate matter (PM) known as ``particulate matter emissions'' in the context of the PSD and...

  5. Passive degassing at Nyiragongo (D.R. Congo) and Etna (Italy) volcanoes: the chemical characterization of the emissions and assessment of their uptake of trace elements emissions on the local environment

    NASA Astrophysics Data System (ADS)

    Calabrese, Sergio; Scaglione, Sarah; Milazzo, Silvia; D'Alessandro, Walter; Bobrowski, Nicole; Giuffrida, Giovanni; Tedesco, Dario; Parello, Francesco

    2014-05-01

    Volcanoes are well known as an impressive large natural source of trace elements into the troposphere. Among others, Etna (Italy) and Nyiragongo (D.R. Congo), two noteworthy emitters on Earth, are two stratovolcanoes located in different geological settings, both characterized by persistent passive degassing from their summit craters. Here, we present some results on trace element composition in volcanic plume emissions, atmospheric bulk deposition (rainwater) and their uptake of the surrounding vegetation, with the aim to compare and identify differences and similarities between this these two volcanoes. Volcanic emissions were sampled by using active filter-pack for acid gases (sulfur and halogens) and specific teflon filters for particulates (major and trace elements). The impact of the volcanogenic deposition in the surrounding of the crater rims was investigated by using different sampling techniques: bulk rain collectors gauges were used to collect atmospheric bulk deposition, and biomonitoring technique was carried out to collect gases and particulates by using endemic plant species. Concentrations of major and trace elements of volcanic plume emissions (gases and particulates) were obtained by elution and microwave digestion of the collected filters: sulfur and halogens were determined by ion chromatography and ICP-MS, and untreated filters for particulate were acid digested and analysed by ICP-OES and ICP-MS. Rain water and plant samples were also analysed for major and trace elements by using ICP-OES and ICP-MS. In total 55 elements were determined. The estimates of the trace element fluxes confirm that Etna and Nyiragongo are large sources of metals to the atmosphere, especially considering their persistent state of passive degassing. In general, chemical composition of the volcanic aerosol particles of both volcanoes is characterized by two main components: one is related to the silicic component produced by magma bursting and fragmentation, enriching the plume in Si, Al, Fe, Ti, Mg, Ca, Na, K and other trace elements like Ni, Cr, Co, Th and U; another one components, is dominated by volatile trace elements (As, Bi, Cd, Cu, Hg, Se, Te, Tl) related to the gas volatile phase (H2O, CO2, SO2, HCl, HF) and transported to the atmosphere mainly as hydro-soluble salts and/or in gaseous form in some cases. The large amount of emitted trace elements have a strong impact on the close surrounding of both volcanoes. This is clearly reflected by in the chemical composition of rain water collected at the summit areas both for Etna and Nyiragongo. In fact, rain water samples have low pH values (<2) and high concentrations of dissolved toxic metals. Moreover, the biomonitoring results highlight that bioaccumulation of trace elements is extremely high in the proximity of the crater rim and decreases with the distance from the active craters. In particular, we found a good correlation between volatile elements (Tl, As, Bi, Cd, Se, Cu) concentrations in the leaves of Senecio species collected in on both volcanoes, showing a clear influence of volcanic deposition.

  6. 40 CFR 52.570 - Identification of plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-burning Equipment 7/20/05 2/9/09, 75 FR 6309 391-3-1-.02(2)(e) Particulate Emission from Manufacturing...) Particulate Emission from Asphaltic Concrete Hot Mix Plants 1/17/79 9/18/79, 44 FR 54047 391-3-1-.02(2)(l... 7/10/01, 66 FR 35906 391-3-1-.02(2)(lll) NOX Emissions from Fuel-burning Equipment 2/16/00 7/10/01...

  7. Global anthropogenic emissions of particulate matter including black carbon

    NASA Astrophysics Data System (ADS)

    Klimont, Zbigniew; Kupiainen, Kaarle; Heyes, Chris; Purohit, Pallav; Cofala, Janusz; Rafaj, Peter; Borken-Kleefeld, Jens; Schöpp, Wolfgang

    2017-07-01

    This paper presents a comprehensive assessment of historical (1990-2010) global anthropogenic particulate matter (PM) emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10), as well as primary carbonaceous aerosols including black carbon (BC) and organic carbon (OC). The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping), presented for 25 global regions, and allocated to 0.5° × 0.5° longitude-latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global anthropogenic total, and residential combustion was the most important sector, contributing about 60 % for BC and OC, 45 % for PM2. 5, and less than 40 % for PM10, where large combustion sources and industrial processes are equally important. Global anthropogenic emissions of BC were estimated at about 6.6 and 7.2 Tg in 2000 and 2010, respectively, and represent about 15 % of PM2. 5 but for some sources reach nearly 50 %, i.e. for the transport sector. Our global BC numbers are higher than previously published owing primarily to the inclusion of new sources. This PM estimate fills the gap in emission data and emission source characterization required in air quality and climate modelling studies and health impact assessments at a regional and global level, as it includes both carbonaceous and non-carbonaceous constituents of primary particulate matter emissions. The developed emission dataset has been used in several regional and global atmospheric transport and climate model simulations within the ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants) project and beyond, serves better parameterization of the global integrated assessment models with respect to representation of black carbon and organic carbon emissions, and built a basis for recently published global particulate number estimates.

  8. Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste.

    PubMed

    Wiedinmyer, Christine; Yokelson, Robert J; Gullett, Brian K

    2014-08-19

    The open burning of waste, whether at individual residences, businesses, or dump sites, is a large source of air pollutants. These emissions, however, are not included in many current emission inventories used for chemistry and climate modeling applications. This paper presents the first comprehensive and consistent estimates of the global emissions of greenhouse gases, particulate matter, reactive trace gases, and toxic compounds from open waste burning. Global emissions of CO2 from open waste burning are relatively small compared to total anthropogenic CO2; however, regional CO2 emissions, particularly in many developing countries in Asia and Africa, are substantial. Further, emissions of reactive trace gases and particulate matter from open waste burning are more significant on regional scales. For example, the emissions of PM10 from open domestic waste burning in China is equivalent to 22% of China's total reported anthropogenic PM10 emissions. The results of the emissions model presented here suggest that emissions of many air pollutants are significantly underestimated in current inventories because open waste burning is not included, consistent with studies that compare model results with available observations.

  9. Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States

    EPA Pesticide Factsheets

    This dataset provides all data used to generate the figures and tables in the article entitled Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States published in the Journal of Geophysical Research: AtmospheresThis dataset is associated with the following publication:Holder , A., G. Hagler , J. Aurell, M. Hays , and B. Gullett. Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES. American Geophysical Union, Washington, DC, USA, 121(7): 3465-3483, (2016).

  10. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    DTIC Science & Technology

    2017-03-06

    WP-201317) Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non -volatile Particulate Matter (PM...Engine Volatile and Non -Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M. DeWitt, C. Klingshirn, M.D. Cheng, R. Miake-Lye, J. Peck...the performance and viability of two devices to condition aircraft turbine engine exhaust to allow the accurate measurement of total (volatile and non

  11. Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines.

    PubMed

    Guan, Bin; Zhan, Reggie; Lin, He; Huang, Zhen

    2015-05-01

    The increasingly stringent emission regulations, such as US 2010, Tier 2 Bin 5 and beyond, off-road Tier 4 final, and Euro V/5 for particulate matter (PM) reduction applications, will mandate the use of the diesel particulate filters (DPFs) technology, which is proven to be the only way that can effectively control the particulate emissions. This paper covers a comprehensive overview of the state-of-the-art DPF technologies, including the advanced filter substrate materials, the novel catalyst formulations, the highly sophisticated regeneration control strategies, the DPF uncontrolled regenerations and their control methodologies, the DPF soot loading prediction, and the soot sensor for the PM on-board diagnostics (OBD) legislations. Furthermore, the progress of the highly optimized hybrid approaches, which involves the integration of diesel oxidation catalyst (DOC) + (DPF, NOx reduction catalyst), the selective catalytic reduction (SCR) catalyst coated on DPF, as well as DPF in the high-pressure exhaust gas recirculation (EGR) loop systems, is well discussed. Besides, the impacts of the quality of fuel and lubricant on the DPF performance and the maintenance and retrofit of DPF are fully elaborated. Meanwhile, the high efficiency gasoline particulate filter (GPF) technology is being required to effectively reduce the PM and particulate number (PN) emissions from the gasoline direct injection (GDI) engines to comply with the future increasingly stricter emissions regulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Characterization of Emissions from Open Burning of Meals ...

    EPA Pesticide Factsheets

    Emissions from burning current and candidate Meals Ready-to-Eat (MRE) packaging and shipping containers were characterized in an effort to assuage concerns that combustive disposal of waste at forward operating bases could pose an environmental or inhalation threat. Four types of container materials, both box and liners, including the currently used fiberboard, new corrugated fiberboard with Spektrakote polymer, new fiberboard without Spektrakote polymer, and the current fiberboard without wet strength were burned in an open burn test facility that simulated the burn pit disposal methods in Iraq and Afghanistan. MREs, including both current and proposed packaging materials, were added to a single container type to examine their effect on emissions. One quarter of the food was left in the packaging to represent unused meal components. The proposed packaging, consisting of a nano-composite polymer, was added in 25 % increments compared to traditional MRE packaging to create a range of usage levels. Emission factors, mass of pollutant per mass of burned material, were increased over the emission factors of the package containers themselves by the addition of the multi-component MREs, with the exception of Volatile Organic Compounds (VOCs). In general, little distinction was observed when comparing emission factors from the four container materials and when comparing the four MRE compositions. The majority of Particulate Matter (PM) emissions were of particles that

  13. Particulate emissions calculations from fall tillage operations using point and remote sensors

    USDA-ARS?s Scientific Manuscript database

    Preparation of soil for agricultural crops produces aerosols that may significantly contribute to seasonal atmospheric loadings of particulate matter (PM). Efforts to reduce PM emissions from tillage operations through a variety of conservation management practices (CMP) have been made but the reduc...

  14. Air Emissions Inventory Guidance for Implementation of Ozone and Particulate Matter NAAQS and Regional Haze Regulations

    EPA Pesticide Factsheets

    Guidance document on how to develop emission inventories to meet State Implementation Plan requirements for complying with the 8-hour ozone national ambient air quality standards (NAAQS), the revised particulate matter (PM) NAAQS, and the regional haze reg

  15. Novel Sampling Techniques for Measurement of Turbine Engine Total Particulate Matter Emissions

    EPA Science Inventory

    This is the first progress report of a study to evaluate two different condensation devices for the measurement of the total (volatile + non-volatile) particulate matter (PM) emissions from aircraft turbine engines by direct sampling at the engine exit. The characteristics of th...

  16. HIGHLIGHTS FROM TECHNICAL MANUAL ON HOOD SYSTEM CAPTURE OF PROCESS FUGITIVE PARTICULATE EMISSIONS

    EPA Science Inventory

    The paper discusses a technical manual whose emphasis is on the design and evaluation of actual hood systems used to control various fugitive particulate emission sources. Engineering analyses of the most important hood types are presented to provide a conceptual understanding of...

  17. Chemical characterization of freshly emitted particulate matter from aircraft exhaust using single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Abegglen, Manuel; Brem, B. T.; Ellenrieder, M.; Durdina, L.; Rindlisbacher, T.; Wang, J.; Lohmann, U.; Sierau, B.

    2016-06-01

    Non-volatile aircraft engine emissions are an important anthropogenic source of soot particles in the upper troposphere and in the vicinity of airports. They influence climate and contribute to global warming. In addition, they impact air quality and thus human health and the environment. The chemical composition of non-volatile particulate matter emission from aircraft engines was investigated using single particle time-of-flight mass spectrometry. The exhaust from three different aircraft engines was sampled and analyzed. The soot particulate matter was sampled directly behind the turbine in a test cell at Zurich Airport. Single particle analyses will focus on metallic compounds. The particles analyzed herein represent a subset of the emissions composed of the largest particles with a mobility diameter >100 nm due to instrumental restrictions. A vast majority of the analyzed particles was shown to contain elemental carbon, and depending on the engine and the applied thrust the elemental carbon to total carbon ratio ranged from 83% to 99%. The detected metallic compounds were all internally mixed with the soot particles. The most abundant metals in the exhaust were Cr, Fe, Mo, Na, Ca and Al; V, Ba, Co, Cu, Ni, Pb, Mg, Mn, Si, Ti and Zr were also detected. We further investigated potential sources of the ATOFMS-detected metallic compounds using Inductively Coupled Plasma Mass Spectrometry. The potential sources considered were kerosene, engine lubrication oil and abrasion from engine wearing components. An unambiguous source apportionment was not possible because most metallic compounds were detected in several of the analyzed sources.

  18. Variability of Ambient Aerosol in the Mexico City Metropolian Area

    NASA Astrophysics Data System (ADS)

    Onasch, T. B.; Worsnop, D. R.; Canagaratna, M.; Jayne, J. T.; Herndon, S.; Mortimer, P.; Kolb, C. E.; Rogers, T.; Knighton, B.; Dunlea, E.; Marr, L.; de Foy, B.; Molina, M.; Molina, L.; Salcedo, D.; Dzepina, K.; Jimenez, J. L.

    2004-12-01

    The spatial and temporal variations of the ambient aerosol in the Mexico City Metropolitan area was characterized during the springs of 2002 and 2003 using a mobile laboratory equipped with gas and particulate measurement instrumentation. The laboratory was operated at various fixed sites locations in and at the edge of the metropolitan area (Xalostoc, Merced, Cenica, Pedregal, and Santa Ana). Size-resolved aerosol mass and chemical composition was measured with an aerosol mass spectrometer and selected trace gas species (low mass organic compounds, NO, NO2, NOy, O3, SO2, CH2O, NH3, CO2) were measured using a proton transfer reaction mass spectrometer and various optical systems. The aerosol was predominantly organic in composition with lesser amounts of ammonium nitrate, sulfate, and chloride. The organic component was composed of mixed primary and secondary organic compounds. The mass loading and chemical composition of the aerosol was influenced by local and regional air pollution sources and the meteorology in Mexico City. Most urban sites were influenced by a strong diurnal particulate mass trend indicative of primary organic emissions from traffic during early morning and subsequently oxidized/processed organics and ammonium nitrate particles starting in the mid-morning (~9 AM) and continuing throughout the day. Morning traffic-related primary organic emissions were strongest at La Merced (center of Mexico City, located near a busy food market), more subdued at other fixed sites further from the city center, and varied depending upon the day of week and holiday schedules. Particle-bound polycyclic aromatic hydrocarbons were observed within Mexico City fixed sites and were correlated with traffic organic PM emissions. Oxidized organic and ammonium nitrate events occurred during mid-morning at all city sites and were well correlated with gas phase photochemical activity. The daily ammonium nitrate aerosol event occurred later at sites near the city limits, likely due to transported emissions from the city center. The sulfate particulate mass measured throughout most of the Mexico City area did not show a consistent diurnal pattern, characteristic of aged regional aerosol. Local refuse burns were observed to be a source of inorganic particulate chloride.

  19. Single-cylinder diesel engine study of four vegetable oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobus, M.J.; Geyer, S.M.; Lestz, S.S.

    A single-cylinder, 0.36l, D.I. Diesel engine was operated on Diesel fuel, sunflowerseed oil, cottonseed oil, soybean oil, and peanut oil. The purpose of this study was to provide a detailed comparison of performance and emissions data and to characterize the biological activity of the particulate soluble organic fraction for each fuel using the Ames Salmonella typhimurium test. In addition, exhaust gas aldehyde samples were collected using the DNPH method. These samples were analyzed gravimetrically and separated into components from formaldehyde to heptaldehyde with a gas chromatograph. Results comparing the vegetable oils to Diesel fuel generally show slight improvements in thermalmore » efficiency and indicated specific energy consumption; equal or higher gas-phase emissions; lower indicated specific revertant emissions; and significantly higher aldehyde emissions, including an increased percentage of formaldehyde.« less

  20. Real-time black carbon emission factor measurements from light duty vehicles.

    PubMed

    Forestieri, Sara D; Collier, Sonya; Kuwayama, Toshihiro; Zhang, Qi; Kleeman, Michael J; Cappa, Christopher D

    2013-11-19

    Eight light-duty gasoline low emission vehicles (LEV I) were tested on a Chassis dynamometer using the California Unified Cycle (UC) at the Haagen-Smit vehicle test facility at the California Air Resources Board in El Monte, CA during September 2011. The UC includes a cold start phase followed by a hot stabilized running phase. In addition, a light-duty gasoline LEV vehicle and ultralow emission vehicle (ULEV), and a light-duty diesel passenger vehicle and gasoline direct injection (GDI) vehicle were tested on a constant velocity driving cycle. A variety of instruments with response times ≥0.1 Hz were used to characterize how the emissions of the major particulate matter components varied for the LEVs during a typical driving cycle. This study focuses primarily on emissions of black carbon (BC). These measurements allowed for the determination of BC emission factors throughout the driving cycle, providing insights into the temporal variability of BC emission factors during different phases of a typical driving cycle.

  1. Particulate matter emissions from biochar-amended soils as a potential tradeoff to the negative emission potential

    NASA Astrophysics Data System (ADS)

    Ravi, Sujith; Sharratt, Brenton S.; Li, Junran; Olshevski, Stuart; Meng, Zhongju; Zhang, Jianguo

    2016-10-01

    Novel carbon sequestration strategies such as large-scale land application of biochar may provide sustainable pathways to increase the terrestrial storage of carbon. Biochar has a long residence time in the soil and hence comprehensive studies are urgently needed to quantify the environmental impacts of large-scale biochar application. In particular, black carbon emissions from soils amended with biochar may counteract the negative emission potential due to the impacts on air quality, climate, and biogeochemical cycles. We investigated, using wind tunnel experiments, the particulate matter emission potential of a sand and two agriculturally important soils amended with different concentrations of biochar, in comparison to control soils. Our results indicate that biochar application considerably increases particulate emissions possibly by two mechanisms-the accelerated emission of fine biochar particles and the generation and emission of fine biochar particles resulting from abrasion of large biochar particles by sand grains. Our study highlights the importance of considering the background soil properties (e.g., texture) and geomorphological processes (e.g., aeolian transport) for biochar-based carbon sequestration programs.

  2. Interannual Variability of Ammonia Concentrations over the United States: Sources and Implications for Inorganic Particulate Matter

    NASA Astrophysics Data System (ADS)

    Schiferl, L. D.; Heald, C. L.; Van Damme, M.; Pierre-Francois, C.; Clerbaux, C.

    2015-12-01

    Modern agricultural practices have greatly increased the emission of ammonia (NH3) to the atmosphere. Recent controls to reduce the emissions of sulfur and nitrogen oxides (SOX and NOX) have increased the importance of understanding the role ammonia plays in the formation of surface fine inorganic particulate matter (PM2.5) in the United States. In this study, we identify the interannual variability in ammonia concentration, explore the sources of this variability and determine their contribution to the variability in surface PM2.5 concentration. Over the summers of 2008-2012, measurements from the Ammonia Monitoring Network (AMoN) and the Infrared Atmospheric Sounding Interferometer (IASI) satellite instrument show considerable variability in both surface and column ammonia concentrations (+/- 29% and 28% of the mean), respectively. This observed variability is larger than that simulated by the GEOS-Chem chemical transport model, where meteorology dominates the variability in ammonia and PM2.5 concentrations compared to the changes caused by SOX and NOX reductions. Our initial simulation does not include year-to-year changes in ammonia agricultural emissions. We use county-wide information on fertilizer sales and livestock populations, as well as meteorological variations to account for the interannual variability in agricultural activity and ammonia volatilization. These sources of ammonia emission variability are important for replicating observed variations in ammonia and PM2.5, highlighting how accurate ammonia emissions characterization is central to PM air quality prediction.

  3. Measurement of regulated and unregulated exhaust emissions from a lawn mower with and without an oxidizing catalyst: a comparison of two different fuels.

    PubMed

    Christensen, A; Westerholm, R; Almén, J

    2001-06-01

    Relatively few emission characterization studies have been made on small engines used in garden equipment. The present investigation focuses on exhaust characterization from a lawn mower engine fueled with two different fuels in combination with and without an oxidizing catalyst. The compounds measured in the exhaust are carbon monoxide, hydrocarbons, nitrogen oxides, particulates, polycyclic aromatic hydrocarbons, methane, ethane, ethene, ethanol, and nitrous oxide. A significant reduction can be achieved by the use of a catalyst. By selection of the fuel, a significant reduction of certain carcinogenic compounds ("probably carcinogenic to humans" according to the IARC; benzo[a]pyrene and benzo[a]anthracene) may be achieved. The highest reduction improvement is achieved through the combination of an environmentally improved fuel, i.e., alkylate fuel, and a catalyst system. The data presented show that emissions from lawn mower engines are still relatively large although there is the potential for further improvements.

  4. Characterization of Particulate Emissions: Size Fractionation and Chemical Speciation

    DTIC Science & Technology

    2003-10-01

    Absorption by Aerosols. Aerosol Science and Technology 30(6) 1999 582-600. Hansen, A.D.A., H. Rosen, T. Novakov (1984). The Aethalometer - An...towards increasing levels of BC production ( Novakov , Ramanathan et al. 2003). It is unhealthy to breath the polycyclic aromatic hydrocarbons that... Novakov , T., V. Ramanathan, J. E. Hansen, T. W. Kirchstetter, M. Sato, J. E. Sinton and J. A. Sathaye (2003). "Large historical changes of fossil

  5. 40 CFR 60.532 - Standards for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for particulate matter. 60... Wood Heaters § 60.532 Standards for particulate matter. Unless exempted under § 60.530, each affected..., 1992, shall comply with the following particulate matter emission limits as determined by the test...

  6. 40 CFR 60.532 - Standards for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Wood Heaters § 60.532 Standards for particulate matter. Unless exempted under § 60.530, each affected..., 1992, shall comply with the following particulate matter emission limits as determined by the test...

  7. 40 CFR 60.532 - Standards for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for particulate matter. 60... Wood Heaters § 60.532 Standards for particulate matter. Unless exempted under § 60.530, each affected..., 1992, shall comply with the following particulate matter emission limits as determined by the test...

  8. 40 CFR 60.532 - Standards for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for particulate matter. 60... Wood Heaters § 60.532 Standards for particulate matter. Unless exempted under § 60.530, each affected..., 1992, shall comply with the following particulate matter emission limits as determined by the test...

  9. Importance of filter’s microstructure in dynamic filtration modeling of gasoline particulate filters (GPFs): Inhomogeneous porosity and pore size distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Jian; Stewart, Mark L.; Zelenyuk, Alla

    The state-of-the-art multiscale modeling of GPFs including channel scale, wall scale, and pore scale is described. The microstructures of two GPFs were experimentally characterized. The pore size distributions of the GPFs were determined by mercury porosimetry. The porosity was measured by X-ray computed tomography (CT) and found to be inhomogeneous across the substrate wall. The significance of pore size distribution with respect to filtration performance was analyzed. The predictions of filtration efficiency were improved by including the pore size distribution in the filtration model. A dynamic heterogeneous multiscale filtration (HMF) model was utilized to simulate particulate filtration on a singlemore » channel particulate filter with realistic particulate emissions from a spark-ignition direct-injection (SIDI) gasoline engine. The dynamic evolution of filter’s microstructure and macroscopic filtration characteristics including mass- and number-based filtration efficiencies and pressure drop were predicted and discussed. The microstructure of the GPF substrate including inhomogeneous porosity and pore size distribution is found to significantly influence local particulate deposition inside the substrate and macroscopic filtration performance and is recommended to be resolved in the filtration model to simulate and evaluate the filtration performance of GPFs.« less

  10. Diesel and CNG Transit Bus Emissions Characterization By Two Chassis Dynamometer Laboratories: Results and Issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigel N. Clark, Mridul Gautam; Byron L. Rapp; Donald W. Lyons

    1999-05-03

    Emissions of six 32 passenger transit buses were characterized using one of the West Virginia University (WVU) Transportable Heavy Duty Emissions Testing Laboratories, and the fixed base chassis dynamometer at the Colorado Institute for Fuels and High Altitude Engine Research (CIFHAER). Three of the buses were powered with 1997 ISB 5.9 liter Cummins diesel engines, and three were powered with the 1997 5.9 liter Cummins natural gas (NG) counterpart. The NG engines were LEV certified. Objectives were to contrast the emissions performance of the diesel and NG units, and to compare results from the two laboratories. Both laboratories found thatmore » oxides of nitrogen and particulate matter (PM) emissions were substantially lower for the natural gas buses than for the diesel buses. It was observed that by varying the rapidity of pedal movement during accelerations in the Central Business District cycle (CBD), CO and PM emissions from the diesel buses could be varied by a factor of three or more. The driving styles may be characterized as aggressive and non-aggressive, but both styles followed the CBD speed command acceptably. PM emissions were far higher for the aggressive driving style. For the NG fueled vehicles driving style had a similar, although smaller, effect on NO{sub x}. It is evident that driver habits may cause substantial deviation in emissions for the CBD cycle. When the CO emissions are used as a surrogate for driver aggression, a regression analysis shows that NO{sub x} and PM emissions from the two laboratories agree closely for equivalent driving style. Implications of driver habit for emissions inventories and regulations are briefly considered.« less

  11. Particulate measurement and control devices for hot mix asphalt plants.

    DOT National Transportation Integrated Search

    1973-01-01

    The emission of particulates is the main form of air pollution from hot mix asphalt plants. The measurement of these emissions in the ambient air may be used by the state and the plant personnel to monitor the quality of air in the area of a plant. S...

  12. COMPARATIVE TUMOR-INITIATING ACTIVITY OF COMPLEX MIXTURES FROM ENVIRONMENTAL PARTICULATE EMISSIONS ON SENCAR MOUSE SKIN

    EPA Science Inventory

    The value of the SENCAR mouse for testing tumorigenic properties of complex mixtures on mouse skin was studied. Seven complex mixtures were obtained as dichloromethane extracts of collected particulate emissions from three diesel-fueled automobiles, a heavy-duty diesel engine, a ...

  13. Assessment of particulate matter and ammonia emissions and respective plume profiles from a commercial poultry house

    USDA-ARS?s Scientific Manuscript database

    Poultry-emitted air pollutants, including particulate matter (PM) and ammonia, have raised concerns due to negative effects on human health and the environment. However, developing and optimizing remediation technologies requires a better understanding of air pollutant concentrations, the emission p...

  14. Effects of particulate oxidation catalyst on unregulated pollutant emission and toxicity characteristics from heavy-duty diesel engine.

    PubMed

    Feng, Xiangyu; Ge, Yunshan; Ma, Chaochen; Tan, Jianwei

    2015-01-01

    To evaluate the effects of particulate oxidation catalyst (POC) on unregulated pollutant emission and toxicity characteristics, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), soot, soluble organic fractions (SOF) and sulphate emissions emitted from a heavy-duty diesel engine retrofitted with a POC were investigated on a diesel bench. The particulate matter (PM) in the exhaust was collected by Teflon membrane, and the PAHs and VOCs were analysed by a gas chromatography/mass spectrometer (GC/MS). The results indicate that the POC exhibits good performance on the emission control of VOCs, PAHs and PM. The POC and the diesel particulate filters (DPF) both show a good performance on reducing the VOCs emission. Though the brake-specific emission (BSE) reductions of the total PAHs by the POC were lower than those by the DPF, the POC still removed almost more than 50% of the total PAHs emission. After the engine was retrofitted with the POC, the reductions of the PM mass, SOF and soot emissions were 45.2-89.0%, 7.8-97.7% and 41.7-93.3%, respectively. The sulphate emissions decreased at low and medium loads, whereas at high load, the results were contrary. The PAHs emissions were decreased by 32.4-69.1%, and the contributions of the PAH compounds were affected by the POC, as well as by load level. The benzo[a]pyrene equivalent (BaPeq) of PAHs emissions were reduced by 35.9-97.6% with the POC. The VOCs emissions were reduced by 21.8-94.1% with the POC, and the reduction was more evident under high load.

  15. Evolution of Submicrometer Organic Aerosols during a Complete Residential Coal Combustion Process.

    PubMed

    Zhou, Wei; Jiang, Jingkun; Duan, Lei; Hao, Jiming

    2016-07-19

    In the absence of particulate matter (PM) control devices, residential coal combustion contributes significantly to ambient PM pollution. Characterizing PM emissions from residential coal combustion with high time resolution is beneficial for developing control policies and evaluating the environmental impact of PM. This study reports the evolution of submicrometer organic aerosols (OA) during a complete residential coal combustion process, that is, from fire start to fire extinction. Three commonly used coal types (bituminous, anthracite, and semicoke coals) were evaluated in a typical residential stove in China. For all three types of coal, the OA emission exhibited distinct characteristics in the four stages, that is, ignition, fierce combustion, relatively stable combustion, and ember combustion. OA emissions during the ignition stage accounted for 58.2-85.4% of the total OA emission of a complete combustion process. The OA concentration decreased rapidly during the fierce combustion stage and remained low during the relatively stable combustion stage. During these two stages, a significant ion peak of m/z 73 from organic acids were observed. The degree of oxidation of the OA increased from the first stage to the last stage. Implications for ambient OA source-apportionment and residential PM emission characterization and control are discussed.

  16. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    DOE R&D Accomplishments Database

    Molina, Luisa T.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavala, Miguel; Velasco, Erik; Molina; Mario J.

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation.

  17. Source profiles of particulate matter emissions from a pilot-scale boiler burning North American coal blends.

    PubMed

    Lee, S W

    2001-11-01

    Recent awareness of suspected adverse health effects from ambient particulate matter (PM) emission has prompted publication of new standards for fine PM with aerodynamic diameter less than 2.5 microm (PM2.5). However, scientific data on fine PM emissions from various point sources and their characteristics are very limited. Source apportionment methods are applied to identify contributions of individual regional sources to tropospheric particulate concentrations. The existing industrial database developed using traditional source measurement techniques provides total emission rates only, with no details on chemical nature or size characteristics of particulates. This database is inadequate, in current form, to address source-receptor relationships. A source dilution system was developed for sampling and characterization of total PM, PM2.5, and PM10 (i.e., PM with aerodynamic diameter less than 10 pm) from residual oil and coal combustion. This new system has automatic control capabilities for key parameters, such as relative humidity (RH), temperature, and sample dilution. During optimization of the prototype equipment, three North American coal blends were burned using a 0.7-megawatt thermal (MWt) pulverized coal-fired, pilot-scale boiler. Characteristic emission profiles, including PM2.5 and total PM soluble acids, and elemental and carbon concentrations for three coal blends are presented. Preliminary results indicate that volatile trace elements such as Pb, Zn, Ti, and Se are preferentially enriched in PM2.5. PM2.5 is also more concentrated in soluble sulfates relative to total PM. Coal fly ash collected at the outlet of the electrostatic precipitator (ESP) contains about 85-90% PM10 and 30-50% PM2.5. Particles contain the highest elemental concentrations of Si and Al while Ca, Fe, Na, Ba, and K also exist as major elements. Approximately 4-12% of the materials exists as soluble sulfates in fly ash generated by coal blends containing 0.2-0.8% sulfur by mass. Source profile data for an eastern U.S. coal show good agreement with those reported from a similar study done in the United States. Based on the inadequacies identified in the initial sampling equipment, a new, plume-simulating fine PM measurement system with modular components for field use is being developed for determining coal combustion PM source profiles from utility boiler stacks.

  18. The effects of biodiesels on semivolatile and nonvolatile particulate matter emissions from a light-duty diesel engine.

    PubMed

    Cheng, Yuan; Li, Shao-Meng; Liggio, John; Hayden, Katherine; Han, Yuemei; Stroud, Craig; Chan, Tak; Poitras, Marie-Josée

    2017-11-01

    Semivolatile organic compounds (SVOCs) represent a dominant category of secondary organic aerosol precursors that are increasingly included in air quality models. In the present study, an experimental system was developed and applied to a light-duty diesel engine to determine the emission factors of particulate SVOCs (pSVOCs) and nonvolatile particulate matter (PM) components at dilution ratios representative of ambient conditions. The engine was tested under three steady-state operation modes, using ultra-low-sulfur diesel (ULSD), three types of pure biodiesels and their blends with ULSD. For ULSD, the contribution of pSVOCs to total particulate organic matter (POM) mass in the engine exhaust ranged between 21 and 85%. Evaporation of pSVOCs from the diesel particles during dilution led to decreases in the hydrogen to carbon ratio of POM and the PM number emission factor of the particles. Substituting biodiesels for ULSD could increase pSVOCs emissions but brought on large reductions in black carbon (BC) emissions. Among the biodiesels tested, tallow/used cooking oil (UCO) biodiesel showed advantages over soybean and canola biodiesels in terms of both pSVOCs and nonvolatile PM emissions. It is noteworthy that PM properties, such as particle size and BC mass fraction, differed substantially between emissions from conventional diesel and biodiesels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Particulate and gaseous emissions from different wood fuels during combustion in a small-scale biomass heating system

    NASA Astrophysics Data System (ADS)

    Olave, R. J.; Forbes, E. G. A.; Johnston, C. R.; Relf, J.

    2017-05-01

    Woodchip is widely used as fuel in dedicated biomass and, even in some conventional energy generation plants. However, there are concerns about atmospheric air pollution from flue gases emitted during wood biomass combustion, particularly oxides of nitrogen (NOx) and particulates <10 μm diameter (PM10). In the United Kingdom (UK) a small scale biomass heat generation support scheme, the Renewable Heat Incentive (RHI), has been introduced. Qualifying criteria for this scheme have included limits for flue gas emissions of NOX and PM10 of 150 and 30 g per gigajoule (g/GJ) of energy input, respectively. In an experiment, three locally available types of Willow (Salix spp) and one of Sitka spruce (Picea sitchensis) woodchips, showed significant differences in physical and chemical constituents, gaseous and particulate emissions. During combustion in a 120 kW biomass system, air flows, flue gas temperatures and energy output correlated with gaseous emissions, NOx with raw fuel ash, nitrogen, phosphorus and potassium content, as did all flue gas particulate fractions. PM10 ranged from 30.3 to 105.7 g/GJ and NOx from 91.2 to 174.3 g/GJ. Sitka spruce produced significantly lower emissions of PM10 and NOx (27.5 and 52.6% less, respectively) than the three willow fuels, from which emissions were above the RHI emissions limits.

  20. Investigation on the gaseous and particulate emissions of a compression ignition engine fueled with diesel-dimethyl carbonate blends.

    PubMed

    Cheung, C S; Zhu, Ruijun; Huang, Zuohua

    2011-01-01

    The effect of dimethyl carbonate (DMC) on the gaseous and particulate emissions of a diesel engine was investigated using Euro V diesel fuel blended with different proportions of DMC. Combustion analysis shows that, with the blended fuel, the ignition delay and the heat release rate in the premixed combustion phase increase, while the total combustion duration and the fuel consumed in the diffusion combustion phase decrease. Compared with diesel fuel, with an increase of DMC in the blended fuel, the brake thermal efficiency is slightly improved but the brake specific fuel consumption increases. On the emission side, CO increases significantly at low engine load but decreases at high engine load while HC decreases slightly. NO(x) reduces slightly but the reduction is not statistically significant, while NO(2) increases slightly. Particulate mass and number concentrations decrease upon using the blended fuel while the geometric mean diameter of the particles shifts towards smaller size. Overall speaking, diesel-DMC blends lead to significant improvement in particulate emissions while the impact on CO, HC and NO(x) emissions is small. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Particulate emissions from the combustion of birch, beech, and spruce logs cause different cytotoxic responses in A549 cells.

    PubMed

    Kasurinen, Stefanie; Jalava, Pasi I; Happo, Mikko S; Sippula, Olli; Uski, Oskari; Koponen, Hanna; Orasche, Jürgen; Zimmermann, Ralf; Jokiniemi, Jorma; Hirvonen, Maija-Riitta

    2017-05-01

    According to the World Health Organization particulate emissions from the combustion of solid fuels caused more than 110,000 premature deaths worldwide in 2010. Log wood combustion is the most prevalent form of residential biomass heating in developed countries, but it is unknown how the type of wood logs used in furnaces influences the chemical composition of the particulate emissions and their toxicological potential. We burned logs of birch, beech and spruce, which are used commonly as firewood in Central and Northern Europe in a modern masonry heater, and compared them to the particulate emissions from an automated pellet boiler fired with softwood pellets. We determined the chemical composition (elements, ions, and carbonaceous compounds) of the particulate emissions with a diameter of less than 1 µm and tested their cytotoxicity, genotoxicity, inflammatory potential, and ability to induce oxidative stress in a human lung epithelial cell line. The chemical composition of the samples differed significantly, especially with regard to the carbonaceous and metal contents. Also the toxic effects in our tested endpoints varied considerably between each of the three log wood combustion samples, as well as between the log wood combustion samples and the pellet combustion sample. The difference in the toxicological potential of the samples in the various endpoints indicates the involvement of different pathways of toxicity depending on the chemical composition. All three emission samples from the log wood combustions were considerably more toxic in all endpoints than the emissions from the pellet combustion. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1487-1499, 2017. © 2016 Wiley Periodicals, Inc.

  2. Effects of varying environmental conditions on emissivity spectra of bulk lunar soils: Application to Diviner thermal infrared observations of the Moon

    NASA Astrophysics Data System (ADS)

    Donaldson Hanna, K. L.; Greenhagen, B. T.; Patterson, W. R.; Pieters, C. M.; Mustard, J. F.; Bowles, N. E.; Paige, D. A.; Glotch, T. D.; Thompson, C.

    2017-02-01

    Currently, few thermal infrared measurements exist of fine particulate (<63 μm) analogue samples (e.g. minerals, mineral mixtures, rocks, meteorites, and lunar soils) measured under simulated lunar conditions. Such measurements are fundamental for interpreting thermal infrared (TIR) observations by the Diviner Lunar Radiometer Experiment (Diviner) onboard NASA's Lunar Reconnaissance Orbiter as well as future TIR observations of the Moon and other airless bodies. In this work, we present thermal infrared emissivity measurements of a suite of well-characterized Apollo lunar soils and a fine particulate (<25 μm) San Carlos olivine sample as we systematically vary parameters that control the near-surface environment in our vacuum chamber (atmospheric pressure, incident solar-like radiation, and sample cup temperature). The atmospheric pressure is varied between ambient (1000 mbar) and vacuum (<10-3 mbar) pressures, the incident solar-like radiation is varied between 52 and 146 mW/cm2, and the sample cup temperature is varied between 325 and 405 K. Spectral changes are characterized as each parameter is varied, which highlight the sensitivity of thermal infrared emissivity spectra to the atmospheric pressure and the incident solar-like radiation. Finally spectral measurements of Apollo 15 and 16 bulk lunar soils are compared with Diviner thermal infrared observations of the Apollo 15 and 16 sampling sites. This comparison allows us to constrain the temperature and pressure conditions that best simulate the near-surface environment of the Moon for future laboratory measurements and to better interpret lunar surface compositions as observed by Diviner.

  3. Emission factors of particulate matter, polycyclic aromatic hydrocarbons, and levoglucosan from wood combustion in south-central Chile.

    PubMed

    Jimenez, Jorge; Farias, Oscar; Quiroz, Roberto; Yañez, Jorge

    2017-07-01

    In south-central Chile, wood stoves have been identified as an important source of air pollution in populated areas. Eucalyptus (Eucalyptus globulus), Chilean oak (Nothofagus oblique), and mimosa (Acacia dealbata) were burned in a single-chamber slow-combustion wood stove at a controlled testing facility located at the University of Concepción, Chile. In each experiment, 2.7-3.1 kg of firewood were combusted while continuously monitoring temperature, exhaust gases, burn rate, and collecting particulate matter samples in Teflon filters under isokinetic conditions for polycyclic aromatic hydrocarbon and levoglucosan analyses. Mean particulate matter emission factors were 2.03, 4.06, and 3.84 g/kg dry wood for eucalyptus, oak, and mimosa, respectively. The emission factors were inversely correlated with combustion efficiency. The mean emission factors of the sums of 12 polycyclic aromatic hydrocarbons in particle phases were 1472.5, 2134.0, and 747.5 μg/kg for eucalyptus, oak, and mimosa, respectively. Fluoranthene, pyrene, benzo[a]anthracene, and chrysene were present in the particle phase in higher proportions compared with other polycyclic aromatic hydrocarbons that were analyzed. Mean levoglucosan emission factors were 854.9, 202.3, and 328.0 mg/kg for eucalyptus, oak, and mimosa, respectively. Since the emissions of particulate matter and other pollutants were inversely correlated with combustion efficiency, implementing more efficient technologies would help to reduce air pollutant emissions from wood combustion. Residential wood burning has been identified as a significant source of air pollution in populated areas. Local wood species are combusted for home cooking and heating, which releases several toxic air pollutants, including particulate matter, carbon monoxide, and polycyclic aromatic hydrocarbons. Air pollutant emissions depend on the type of wood and the technology and operational conditions of the wood stove. A better understanding of emissions from local wood species and wood stove performance would help to identify better biomass fuels and wood stove technologies in order to reduce air pollution from residential wood burning.

  4. Emissions of toxic pollutants from compressed natural gas and low sulfur diesel-fueled heavy-duty transit buses tested over multiple driving cycles.

    PubMed

    Kado, Norman Y; Okamoto, Robert A; Kuzmicky, Paul A; Kobayashi, Reiko; Ayala, Alberto; Gebel, Michael E; Rieger, Paul L; Maddox, Christine; Zafonte, Leo

    2005-10-01

    The number of heavy-duty vehicles using alternative fuels such as compressed natural gas (CNG) and new low-sulfur diesel fuel formulations and equipped with after-treatment devices are projected to increase. However, few peer-reviewed studies have characterized the emissions of particulate matter (PM) and other toxic compounds from these vehicles. In this study, chemical and biological analyses were used to characterize the identifiable toxic air pollutants emitted from both CNG and low-sulfur-diesel-fueled heavy-duty transit buses tested on a chassis dynamometer over three transient driving cycles and a steady-state cruise condition. The CNG bus had no after-treatment, and the diesel bus was tested first equipped with an oxidation catalyst (OC) and then with a catalyzed diesel particulate filter (DPF). Emissions were analyzed for PM, volatile organic compounds (VOCs; determined on-site), polycyclic aromatic hydrocarbons (PAHs), and mutagenic activity. The 2000 model year CNG-fueled vehicle had the highest emissions of 1,3-butadiene, benzene, and carbonyls (e.g., formaldehyde) of the three vehicle configurations tested in this study. The 1998 model year diesel bus equipped with an OC and fueled with low-sulfur diesel had the highest emission rates of PM and PAHs. The highest specific mutagenic activities (revertants/microg PM, or potency) and the highest mutagen emission rates (revertants/mi) were from the CNG bus in strain TA98 tested over the New York Bus (NYB) driving cycle. The 1998 model year diesel bus with DPF had the lowest VOCs, PAH, and mutagenic activity emission. In general, the NYB driving cycle had the highest emission rates (g/mi), and the Urban Dynamometer Driving Schedule (UDDS) had the lowest emission rates for all toxics tested over the three transient test cycles investigated. Also, transient emissions were, in general, higher than steady-state emissions. The emissions of toxic compounds from an in-use CNG transit bus (without an oxidation catalyst) and from a vehicle fueled with low-sulfur diesel fuel (equipped with DPF) were lower than from the low-sulfur diesel fueled vehicle equipped with OC. All vehicle configurations had generally lower emissions of toxics than an uncontrolled diesel engine. Tunnel backgrounds (measurements without the vehicle running) were measured throughout this study and were helpful in determining the incremental increase in pollutant emissions. Also, the on-site determination of VOCs, especially 1,3-butadiene, helped minimize measurement losses due to sample degradation after collection.

  5. Study on emission characteristics of hybrid bus under driving cycles in typical Chinese city

    NASA Astrophysics Data System (ADS)

    Xie, Yongdong; Xu, Guangju

    2017-09-01

    In this study, hybrid city bus was taken as the research object, through the vehicle drum test, the vehicle emissions of hybrid bus, the transient emissions of gas pollutants, as well as the particle size and number distribution were surveyed. The results of the studies are listed as follows: First, compared to traditional fuel bus, hybrid bus could reduce about 44% of the NOx emissions, 33% of the total hydrocarbon emissions, and 51% of the particles emissions. Furthermore, the distribution of particles number concentration of test vehicle became high in middle and low in both sides. More specifically, the particle number concentration was mainly concentrated in the range from 0.021 to 0.755μm, the maximum was 0.2μm, and particle size of particulate matter (PM) less than 1.2μm accounted for 95% of the total number concentration. Particulate mass concentration was increased with increment of particle size, and the maximum of particulate mass (PM) concentration was 6.2μm. On average, whether traditional fuel bus or hybrid bus, the particle size of particulate matter(PM) less than 2.5μm accounted for more than 98% in the particles emission. It is found that the particles are more likely to deposit to the lung, respiratory bronchioles and alveoli, causing respiratory and lung diseases. Therefore, how to control the PM emissions of hybrid bus is the key factor of the study.

  6. Effect of atmospheric ageing on volatility and ROS of biodiesel exhaust nano-particles

    NASA Astrophysics Data System (ADS)

    Pourkhesalian, A. M.; Stevanovic, S.; Rahman, M. M.; Faghihi, E. M.; Bottle, S. E.; Masri, A. R.; Brown, R. J.; Ristovski, Z. D.

    2015-03-01

    In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a~significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric ageing processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.

  7. A study to estimate and compare the total particulate matter emission indices (EIN) between traditional jet fuel and two blends of Jet A/Camelina biofuel used in a high by-pass turbofan engine: A case study of Honeywell TFE-109 engine

    NASA Astrophysics Data System (ADS)

    Shila, Jacob Joshua Howard

    The aviation industry is expected to grow at an annual rate of 5% until the year 2031 according to Boeing Outlook Report of 2012. Although the aerospace manufacturers have introduced new aircraft and engines technologies to reduce the emissions generated by aircraft engines, about 15% of all aircraft in 2032 will be using the older technologies. Therefore, agencies such as the National Aeronautics and Astronautics Administration (NASA), Federal Aviation Administration (FAA), the Environmental Protection Agency (EPA) among others together with some academic institutions have been working to characterize both physical and chemical characteristics of the aircraft particulate matter emissions to further understand their effects to the environment. The International Civil Aviation Organization (ICAO) is also working to establish an inventory with Particulate Matter emissions for all the aircraft turbine engines for certification purposes. This steps comes as a result of smoke measurements not being sufficient to provide detailed information on the effects of Particulate Matter (PM) emissions as far as the health and environmental concerns. The use of alternative fuels is essential to reduce the impacts of emissions released by Jet engines since alternative aviation fuels have been studied to lower particulate matter emissions in some types of engines families. The purpose of this study was to determine whether the emission indices of the biofuel blended fuels were lower than the emission indices of the traditional jet fuel at selected engine thrust settings. The biofuel blends observed were 75% Jet A-25% Camelina blend biofuel, and 50% Jet A-50% Jet A blend biofuel. The traditional jet fuel in this study was the Jet A fuel. The results of this study may be useful in establishing a baseline for aircraft engines' PM inventory. Currently the International Civil Aviation Organization (ICAO) engines emissions database contains only gaseous emissions data for only the TFE 731 and JT15D engines' families as representatives of other engines with rated thrust of 6000 pounds or below. The results of this study may be used to add to the knowledge of PM emission data that has been collected in other research studies. This study was quantitative in nature. Three factors were designated which were the types of fuels studied. The TFE-109 turbofan engine was the experimental subject. The independent variable was the engine thrust setting while the response variable was the emission index. Four engine runs were conducted for each fuel. In each engine run, four engine thrust settings were observed. The four engine thrust levels were 10%, 30%, 85%, and 100% rated thrusts levels. Therefore, for each engine thrust settings, there four replicates. The experiments were conducted using a TFE-109 engine test cell located in the Niswonger Aviation Technology building at the Purdue University Airport. The testing facility has the capability to conduct the aircraft PM emissions tests. Due to the equipment limitations, the study was limited to observe total PM emissions instead of specifically measuring the non-volatile PM emissions. The results indicate that the emissions indices of the blended biofuels were not statistically significantly lower compared to the emissions of the traditional jet fuel at rated thrust levels of 100% and 85% of TFE-109 turbofan engine. However, the emission indices for the 50%Jet A - 50%Camelina biofuel blend were statistically significantly lower compared to the emission indices of the 100% Jet A fuel at 10% and 30% engine rated thrusts levels of TFE-109 engine. The emission indices of the 50%-50% biofuel blend were lower by reductions of 15% and 17% at engine rated thrusts of 10% and 30% respectively compared to the emissions indices of the traditional jet fuel at the same engine thrust levels. Experimental modifications in future studies may provide estimates of the emissions indices range for this particular engine these estimates may be used to estimate the levels of PM emissions for other similar engines. Additional measurements steps such as heating of the sampling line, sampling dilution application, sampling line loss estimates, and calculations of the sampling line PM residence times will also be useful future results.

  8. MICRO AUTO GASIFICATION SYSTEM: EMISSIONS ...

    EPA Pesticide Factsheets

    A compact, CONEX-housed waste to energy unit, Micro Auto Gasification System (MAGS), was characterized for air emissions from burning of military waste types. The MAGS unit is a dual chamber gasifier with a secondary diesel-fired combustor. Eight tests were conducted with multiple waste types in a 7-day period at the Kilauea Military Camp in Hawai’i. The emissions characterized were chosen based on regulatory emissions limits as well as their ability to cause adverse health effects on humans: particulate matter (PM), mercury, heavy metals, volatile organic compounds (VOCs), polyaromatic hydrocarbons (PAHs), and polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Three military waste feedstock compositions reflecting the variety of wastes to be encountered in theatre were investigated: standard waste (SW), standard waste with increased plastic content (HP), standard waste without SW food components but added first strike ration (FSR) food and packaging material (termed FSR). A fourth waste was collected from the Kilauea dumpster that served the dining facility and room lodging (KMC). Limited scrubber water and solid ash residue samples were collected to obtain a preliminary characterization of these effluents/residues.Gasifying SW, HP, and KMC resulted in similar PCDD/PCDF stack concentrations, 0.26-0.27 ng TEQ/m3 at 7% O2, while FSR waste generated a notably higher stack concentration of 0.68 ng TEQ/m3 at 7% O2. The PM emission

  9. 40 CFR 60.292 - Standards for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for particulate matter. 60... Manufacturing Plants § 60.292 Standards for particulate matter. (a) On and after the date on which the..., particulate matter at emission rates exceeding those specified in table CC-1, Column 2 and Column 3...

  10. 40 CFR 60.292 - Standards for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Manufacturing Plants § 60.292 Standards for particulate matter. (a) On and after the date on which the..., particulate matter at emission rates exceeding those specified in table CC-1, Column 2 and Column 3...

  11. 40 CFR 60.382 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard cubic...

  12. 40 CFR 60.302 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.302... § 60.302 Standard for particulate matter. (a) On and after the 60th day of achieving the maximum... a grain dryer any process emission which: (1) Contains particulate matter in excess of 0.023 g/dscm...

  13. 40 CFR 60.302 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.302... § 60.302 Standard for particulate matter. (a) On and after the 60th day of achieving the maximum... a grain dryer any process emission which: (1) Contains particulate matter in excess of 0.023 g/dscm...

  14. 40 CFR 60.382 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard cubic...

  15. 40 CFR 60.292 - Standards for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for particulate matter. 60... Manufacturing Plants § 60.292 Standards for particulate matter. (a) On and after the date on which the..., particulate matter at emission rates exceeding those specified in table CC-1, Column 2 and Column 3...

  16. 40 CFR 60.302 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.302... § 60.302 Standard for particulate matter. (a) On and after the 60th day of achieving the maximum... a grain dryer any process emission which: (1) Contains particulate matter in excess of 0.023 g/dscm...

  17. 40 CFR 60.382 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard cubic...

  18. 40 CFR 60.302 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.302... § 60.302 Standard for particulate matter. (a) On and after the 60th day of achieving the maximum... a grain dryer any process emission which: (1) Contains particulate matter in excess of 0.023 g/dscm...

  19. 40 CFR 60.292 - Standards for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for particulate matter. 60... Manufacturing Plants § 60.292 Standards for particulate matter. (a) On and after the date on which the..., particulate matter at emission rates exceeding those specified in table CC-1, Column 2 and Column 3...

  20. 40 CFR 60.292 - Standards for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for particulate matter. 60... Manufacturing Plants § 60.292 Standards for particulate matter. (a) On and after the date on which the..., particulate matter at emission rates exceeding those specified in table CC-1, Column 2 and Column 3...

  1. 40 CFR 60.302 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.302... § 60.302 Standard for particulate matter. (a) On and after the 60th day of achieving the maximum... a grain dryer any process emission which: (1) Contains particulate matter in excess of 0.023 g/dscm...

  2. 40 CFR 60.382 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard cubic...

  3. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts.

    PubMed

    Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf

    2017-02-18

    Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor.

  4. Comparative Study of Different Methods for Soot Sensing and Filter Monitoring in Diesel Exhausts

    PubMed Central

    Feulner, Markus; Hagen, Gunter; Hottner, Kathrin; Redel, Sabrina; Müller, Andreas; Moos, Ralf

    2017-01-01

    Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor. PMID:28218700

  5. Influence of fuel ethanol content on primary emissions and secondary aerosol formation potential for a modern flex-fuel gasoline vehicle

    NASA Astrophysics Data System (ADS)

    Timonen, Hilkka; Karjalainen, Panu; Saukko, Erkka; Saarikoski, Sanna; Aakko-Saksa, Päivi; Simonen, Pauli; Murtonen, Timo; Dal Maso, Miikka; Kuuluvainen, Heino; Bloss, Matthew; Ahlberg, Erik; Svenningsson, Birgitta; Pagels, Joakim; Brune, William H.; Keskinen, Jorma; Worsnop, Douglas R.; Hillamo, Risto; Rönkkö, Topi

    2017-04-01

    The effect of fuel ethanol content (10, 85 and 100 %) on primary emissions and on subsequent secondary aerosol formation was investigated for a Euro 5 flex-fuel gasoline vehicle. Emissions were characterized during a New European Driving Cycle (NEDC) using a comprehensive set-up of high time-resolution instruments. A detailed chemical composition of the exhaust particulate matter (PM) was studied using a soot particle aerosol mass spectrometer (SP-AMS), and secondary aerosol formation was studied using a potential aerosol mass (PAM) chamber. For the primary gaseous compounds, an increase in total hydrocarbon emissions and a decrease in aromatic BTEX (benzene, toluene, ethylbenzene and xylenes) compounds was observed when the amount of ethanol in the fuel increased. In regard to particles, the largest primary particulate matter concentrations and potential for secondary particle formation was measured for the E10 fuel (10 % ethanol). As the ethanol content of the fuel increased, a significant decrease in the average primary particulate matter concentrations over the NEDC was found. The PM emissions were 0.45, 0.25 and 0.15 mg m-3 for E10, E85 and E100, respectively. Similarly, a clear decrease in secondary aerosol formation potential was observed with a larger contribution of ethanol in the fuel. The secondary-to-primary PM ratios were 13.4 and 1.5 for E10 and E85, respectively. For E100, a slight decrease in PM mass was observed after the PAM chamber, indicating that the PM produced by secondary aerosol formation was less than the PM lost through wall losses or the degradation of the primary organic aerosol (POA) in the chamber. For all fuel blends, the formed secondary aerosol consisted mostly of organic compounds. For E10, the contribution of organic compounds containing oxygen increased from 35 %, measured for primary organics, to 62 % after the PAM chamber. For E85, the contribution of organic compounds containing oxygen increased from 42 % (primary) to 57 % (after the PAM chamber), whereas for E100 the amount of oxidized organics remained the same (approximately 62 %) with the PAM chamber when compared to the primary emissions.

  6. Discrimination of particulate matter emission sources using stochastic methods

    NASA Astrophysics Data System (ADS)

    Szczurek, Andrzej; Maciejewska, Monika; Wyłomańska, Agnieszka; Sikora, Grzegorz; Balcerek, Michał; Teuerle, Marek

    2016-12-01

    Particulate matter (PM) is one of the criteria pollutants which has been determined as harmful to public health and the environment. For this reason the ability to recognize its emission sources is very important. There are a number of measurement methods which allow to characterize PM in terms of concentration, particles size distribution, and chemical composition. All these information are useful to establish a link between the dust found in the air, its emission sources and influence on human as well as the environment. However, the methods are typically quite sophisticated and not applicable outside laboratories. In this work, we considered PM emission source discrimination method which is based on continuous measurements of PM concentration with a relatively cheap instrument and stochastic analysis of the obtained data. The stochastic analysis is focused on the temporal variation of PM concentration and it involves two steps: (1) recognition of the category of distribution for the data i.e. stable or the domain of attraction of stable distribution and (2) finding best matching distribution out of Gaussian, stable and normal-inverse Gaussian (NIG). We examined six PM emission sources. They were associated with material processing in industrial environment, namely machining and welding aluminum, forged carbon steel and plastic with various tools. As shown by the obtained results, PM emission sources may be distinguished based on statistical distribution of PM concentration variations. Major factor responsible for the differences detectable with our method was the type of material processing and the tool applied. In case different materials were processed by the same tool the distinction of emission sources was difficult. For successful discrimination it was crucial to consider size-segregated mass fraction concentrations. In our opinion the presented approach is very promising. It deserves further study and development.

  7. Characterization of the Particulate Emissions from the BP ...

    EPA Pesticide Factsheets

    Opportunistic particle samples were gathered from the sail of a tethered aerostat during at-sea plume sampling of the purposely-burned surface oil during the BP Deepwater Horizon disaster in the Gulf of Mexico. Particles were analyzed for polycyclic aromatic hydrocarbons (PAHs), organic carbon (OC), elemental carbon (EC), metals, and polychlorinated dibenzodioxins/dibenzofurans (PCDDs/PCDFs). Emission factors were calculated using previous sampling values of background-adjusted CO2 and particulate matter (PM)-bound C. The mean of five thermal-optical analyses indicated that the burned crude oil particulate matter was 93% carbon (w/w) with the predominance being refractory elemental carbon (82% w/w) on average. PAHs accounted for roughly 60 ug/g of the PM mass or 4.5 mg/kg oil burned, at least an order of magnitude less than earlier laboratory based studies. Microscopy indicates that the soot from the in situ oil burns is distinct from more common soot by its aggregate size, primary particle size, and nanostructure within the primary particles. The PCDD/PCDF concentration of the PM was 1.5 to 3.3 ng toxic equivalency (TEQ)/kg PM sampled, about 10-fold lower than from a previous dedicated gas/solid sample, indicating loss of small particle-bound and more volatile PCDD/PCDF congeners through the aerostat sail. This work presents an analysis of smoke particles opportunistically caught during the in situ surface oil burns during the 2010 BP Deepwater Horizon di

  8. 75 FR 42132 - Notice of Lodging of Consent Decree Pursuant to the Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ... particulate filters. The hydraulic launch assist refuse collection vehicle is designed to be more efficient by... economy. The diesel particulate filters are aimed to reduce particulate matter emissions as well as carbon...

  9. 75 FR 42131 - Notice of Lodging of Consent Decree Pursuant to the Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ... particulate filters. The hydraulic launch assist refuse collection vehicle is designed to be more efficient by... economy. The diesel particulate filters are aimed to reduce particulate matter emissions as well as carbon...

  10. Impact of maritime transport on particulate matter concentrations and chemical compositions in four port-cities of the Adriatic/Ionian area: an overview of the results of POSEIDON project

    NASA Astrophysics Data System (ADS)

    Contini, Daniele; Gambaro, Andrea; Argiriou, Athanasios; Alebic-Juretic, Ana; Barbaro, Elena; Cesari, Daniela; Dimopoulos, Spiros; Dinoi, Adelaide; Donateo, Antonio; Gregoris, Elena; Karagiannidis, Athanasios; Ivosevic, Tatjana; Liora, Natalia; Melas, Dimitrios; Merico, Eva; Mifka, Boris; Orlic, Ivo; Poupkou, Anastasia; Sarovic, Kristina

    2015-04-01

    Pollutant emissions from ships and harbour activities constitute an important source of pollution of coastal areas with potential influences on the climate and the health of their inhabitants. A recent review (Viana et al., 2014) shows that these emissions could have an important impact on the Mediterranean and that there is a lack of data for the Eastern and South-Eastern part of this area. This work presents an analysis of the impact of ship emissions to atmospheric particle concentrations (PM) in four important port-cities (Patras Greece, Brindisi and Venice Italy, and Rijeka Croatia) of the Adriatic/Ionian area. The study was performed within the POSEIDON project (Pollution monitoring of ship emissions: an integrated approach for harbours of the Adriatic basin, funded within the MED Programme 2007-2013). The study uses an integrated approach using emission inventories, dispersion modelling and measurements taken at high temporal resolution (1 min) and low temporal resolution for chemical characterization of PM. The emission inventories of the four port-cities show that ships contribute between 11.7% and 31.0% of the total PM emissions being a source locally comparable with road traffic (ranging between 11.8% and 26.6%). The source apportionment using the receptor model PMF showed an oil combustion source (that includes ship emissions), characterized by V and Ni, in Brindisi, Venice and Rijeka with V/Ni ratio ranging between 1.4 and 4.2 indicating local differences in chemical profiles of the emissions. The V concentrations were used to evaluate the contributions of primary ship emissions to PM (Agrawal et al., 2009) that resulted between 1.3% and 2.8%. The contribution to secondary sulphate was 11% of PM2.5 in Brindisi (Cesari et al., 2014). The analysis of high-temporal resolution measurements taken near the harbour areas of Venice, Patras and Brindisi showed a contribution of ship emissions to PM2.5 varying between 3.5% and 7.4%. The relative contribution to particle number concentrations (PNC) was larger at all sites (between 6% and 26%). This demonstrates that ship particulate emissions include mainly small and ultrafine particles. The trend of the impact of passenger ships primary emissions to PM2.5 concentrations in Venice between 2007 and 2012 showed a decrease from 7% (±1%) to 3.5% (±1%) even if the gross tonnage of ship traffic increased in the same period by 47% (Contini et al., 2015). This was a consequence of the use of low-sulphur content fuels due to the application of local mitigation strategies and of the European Directive 2005/33/EC. The WRF-CAMx modeling system was applied over the Central and Eastern Mediterranean so as to identify the air quality impact of ship emissions. The zero-out modelling method was implemented involving model simulations performed while including and omitting the ship emissions. The results for both gaseous and particulate pollutant concentrations generally show a fairly good agreement with observations at the areas under study. Agrawal et al., 2009. Environmental Science and Technology 43, 5398-5402. Cesari et al., 2014. Science of the Total Environment 497-498, 392-400. Contini et al., 2015. Atmospheric Environment 102, 183-190. Viana et al., 2014. Atmospheric Environment 90, 96-105.

  11. Aerial sampling of emissions from biomass pile burns in ...

    EPA Pesticide Factsheets

    Emissions from burning piles of post-harvest timber slash in Grande Ronde, Oregon were sampled using an instrument platform lofted into the plume using a tether-controlled aerostat or balloon. Emissions of carbon monoxide, carbon dioxide, methane, particulate matter (PM2.5 µm), black carbon, ultraviolet absorbing PM, elemental/organic carbon, semi-volatile organics (polycyclic aromatic hydrocarbons and polychlorinated dibenzodioxins/dibenzofurans), filter-based metals, and volatile organics were sampled for determination of emission factors. The effect on emissions from covering or not covering piles with polyethylene sheets to prevent fuel wetting was determined. Results showed that the uncovered (“wet”) piles burned with lower combustion efficiency and higher emissions of volatile organic compounds. Results for other pollutants will also be discussed. This work determined the emissions from open burning of forest slash wood, with and without plastic sheeting. The foresters advocate the use of plastic to keep the slash wood dry and aid in the controlled combustion of the slash to reduce fuel loading. Concerns about the emissions from the burning plastic prompted this work which conducted an extensive characterization of dry, wet, and dry with plastic slash pile emissions.

  12. Effects of improved spatial and temporal modeling of on-road vehicle emissions.

    PubMed

    Lindhjem, Christian E; Pollack, Alison K; DenBleyker, Allison; Shaw, Stephanie L

    2012-04-01

    Numerous emission and air quality modeling studies have suggested the need to accurately characterize the spatial and temporal variations in on-road vehicle emissions. The purpose of this study was to quantify the impact that using detailed traffic activity data has on emission estimates used to model air quality impacts. The on-road vehicle emissions are estimated by multiplying the vehicle miles traveled (VMT) by the fleet-average emission factors determined by road link and hour of day. Changes in the fraction of VMT from heavy-duty diesel vehicles (HDDVs) can have a significant impact on estimated fleet-average emissions because the emission factors for HDDV nitrogen oxides (NOx) and particulate matter (PM) are much higher than those for light-duty gas vehicles (LDGVs). Through detailed road link-level on-road vehicle emission modeling, this work investigated two scenarios for better characterizing mobile source emissions: (1) improved spatial and temporal variation of vehicle type fractions, and (2) use of Motor Vehicle Emission Simulator (MOVES2010) instead of MOBILE6 exhaust emission factors. Emissions were estimated for the Detroit and Atlanta metropolitan areas for summer and winter episodes. The VMT mix scenario demonstrated the importance of better characterizing HDDV activity by time of day, day of week, and road type. More HDDV activity occurs on restricted access road types on weekdays and at nonpeak times, compared to light-duty vehicles, resulting in 5-15% higher NOx and PM emission rates during the weekdays and 15-40% lower rates on weekend days. Use of MOVES2010 exhaust emission factors resulted in increases of more than 50% in NOx and PM for both HDDVs and LDGVs, relative to MOBILE6. Because LDGV PM emissions have been shown to increase with lower temperatures, the most dramatic increase from MOBILE6 to MOVES2010 emission rates occurred for PM2.5 from LDGVs that increased 500% during colder wintertime conditions found in Detroit, the northernmost city modeled.

  13. Particle emission from heavy-duty engine fuelled with blended diesel and biodiesel.

    PubMed

    Martins, Leila Droprinchinski; da Silva Júnior, Carlos Roberto; Solci, Maria Cristina; Pinto, Jurandir Pereira; Souza, Davi Zacarias; Vasconcellos, Pérola; Guarieiro, Aline Lefol Nani; Guarieiro, Lílian Lefol Nani; Sousa, Eliane Teixeira; de Andrade, Jailson B

    2012-05-01

    In this study, particulate matter (PM) were characterized from a place impacted by heavy-duty vehicles (Bus Station) fuelled with diesel/biodiesel fuel blend (B3) in the city of Londrina, Brazil. Sixteen priority polycyclic aromatic hydrocarbons (PAH) concentrations were analyzed in the samples by their association with atmospheric PM, mass size distributions and major ions (fluorite, chloride, bromide, nitrate, phosphate, sulfate, nitrite, oxalate; fumarate, formate, succinate and acetate; lithium, sodium, potassium, magnesium, calcium and ammonium). Results indicate that major ions represented 21.2% particulate matter mass. Nitrate, sulfate, and ammonium, respectively, presented the highest concentration levels, indicating that biodiesel may also be a significant source for these ions, especially nitrate. Dibenzo[a,h]anthracene and indeno[1,2,3,-cd]pyrene were the main PAH found, and a higher fraction of PAH particles was found in diameters lower than 0.25 μm in Londrina bus station. The fine and ultrafine particles were dominant among the PM evaluated, suggesting that biodiesel decreases the total PAH emission. However, it does also increase the fraction of fine and ultrafine particles when compared to diesel.

  14. Feedbacks between Climate and Fire Emissions

    DTIC Science & Technology

    2011-11-29

    CH4 2. Direct emission of short-lived climate forcers - Black Carbon - Particulate organic matter 3. Production of tropospheric ozone and secondary... tropospheric ozone and secondary organic particulate matter 4. Changes in land surface properties - Black carbon on snow - Albedo Radiative Forcing of Black...lived  climate forcers:  particles 3.  Ozone   production 4. Change in  surface properties Fires Impacts on the Climate System 1. Emission of long lived

  15. QUANTIFYING THE EFFECTS OF THE MIXING PROCESS IN FABRICATED DILUTION SYSTEMS ON PARTICULATE EMISSION MEASUREMENTS VIA AN INTEGRATED EXPERIMENTAL AND MODELING APPROACH

    EPA Science Inventory

    Mixture properties vs Aerodynamic properties
     
    Considering a number of parameters influencing particulate emission measurements, we first categorize them into two groups based on their characteristics, i.e., to mixture propertie...

  16. Assessment of Small-Particle Emissions (Less Than 2 Micron).

    ERIC Educational Resources Information Center

    Shannon, Larry J.; And Others

    This paper is based on a particulate pollutant system study to delineate the deficiencies in knowledge regarding the nature and magnitude of particulate pollutant emissions from stationary sources. Presented at the 12th Conference on Methods in Air Pollution and Industrial Hygiene Studies, University of Southern California, April, 1971, it focuses…

  17. Laboratory evaluation of electrostatic spray wet scrubber to control particulate matter emissions from poultry facilities

    USDA-ARS?s Scientific Manuscript database

    Particulate matter (PM) is a major air pollutant emitted from animal production and has significant impacts on health and the environment. Abatement of PM emissions is imperative and effective PM control technologies are strongly needed. In this work, an electrostatic spray wet scrubber (ESWS) techn...

  18. 40 CFR 86.210-08 - Exhaust gas sampling system; Diesel-cycle vehicles not requiring particulate emissions measurements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas sampling system; Diesel... Vehicles; Cold Temperature Test Procedures § 86.210-08 Exhaust gas sampling system; Diesel-cycle vehicles not requiring particulate emissions measurements. (a) General applicability. The exhaust gas sampling...

  19. 40 CFR 86.210-08 - Exhaust gas sampling system; Diesel-cycle vehicles not requiring particulate emissions measurements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Exhaust gas sampling system; Diesel... Vehicles; Cold Temperature Test Procedures § 86.210-08 Exhaust gas sampling system; Diesel-cycle vehicles not requiring particulate emissions measurements. (a) General applicability. The exhaust gas sampling...

  20. 40 CFR 52.2087 - Original identification of plan section.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Content in Fuels” and 13, “Particulate Emissions from Fossil Fired Steam or Hot Water Generating Units..., “Sulfur Content of Fuels” and 13, “Particulate Emissions from Fossil Fuel Fired Steam or Hot Water... incorporated by reference in its present form on July 6, 1984 at paragraph (c)(22), above. The entire...

  1. 40 CFR 52.2087 - Original identification of plan section.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Content in Fuels” and 13, “Particulate Emissions from Fossil Fired Steam or Hot Water Generating Units..., “Sulfur Content of Fuels” and 13, “Particulate Emissions from Fossil Fuel Fired Steam or Hot Water... incorporated by reference in its present form on July 6, 1984 at paragraph (c)(22), above. The entire...

  2. 40 CFR 52.2087 - Original identification of plan section.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Content in Fuels” and 13, “Particulate Emissions from Fossil Fired Steam or Hot Water Generating Units..., “Sulfur Content of Fuels” and 13, “Particulate Emissions from Fossil Fuel Fired Steam or Hot Water... incorporated by reference in its present form on July 6, 1984 at paragraph (c)(22), above. The entire...

  3. 40 CFR 52.2087 - Original identification of plan section.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Content in Fuels” and 13, “Particulate Emissions from Fossil Fired Steam or Hot Water Generating Units..., “Sulfur Content of Fuels” and 13, “Particulate Emissions from Fossil Fuel Fired Steam or Hot Water... incorporated by reference in its present form on July 6, 1984 at paragraph (c)(22), above. The entire...

  4. 40 CFR 52.2087 - Original identification of plan section.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Content in Fuels” and 13, “Particulate Emissions from Fossil Fired Steam or Hot Water Generating Units..., “Sulfur Content of Fuels” and 13, “Particulate Emissions from Fossil Fuel Fired Steam or Hot Water... incorporated by reference in its present form on July 6, 1984 at paragraph (c)(22), above. The entire...

  5. RELIABILITY STUDY OF THE U.S. EPA'S METHODS 101A - DETERMINATION OF PARTICULATE AND GASEOUS MERCURY EMISSIONS

    EPA Science Inventory

    EPA Method 101A applies to the determination of particulate and gaseous mercury missions from sewage sludge incinerators and other sources. oncern has been expressed hat ammonia or hydrogen chloride (HCl) when present in the emissions, interferes in the analytical processes and p...

  6. 40 CFR 86.137-96 - Dynamometer test run, gaseous and particulate emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Dynamometer test run, gaseous and particulate emissions. 86.137-96 Section 86.137-96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.137-96 Dynamometer test run, gaseous...

  7. 40 CFR 86.137-96 - Dynamometer test run, gaseous and particulate emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Dynamometer test run, gaseous and particulate emissions. 86.137-96 Section 86.137-96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.137-96 Dynamometer test run, gaseous...

  8. Laboratory Validation of Four Black Carbon Measurement Methods for Determination of the Nonvolatile Particulate Matter (nvPM) Mass Emissions from Commercial Aircraft Engines

    EPA Science Inventory

    Four candidate black carbon (BC) measurement techniques have been identified by the SAE International E-31 Committee for possible use in determining nonvolatile particulate matter (nvPM) mass emissions during commercial aircraft engine certification. These techniques are carbon b...

  9. Development of emission factors for particulate matter in a school

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheff, P.A.; Paulius, V.; Conroy, L.M.

    1999-07-01

    Schools have complex indoor environments which are influenced by many factors such as number of occupants, building design, office equipment, cleaning agents, and school activities. Like large office buildings, school environments may be adversely influenced by deficiencies in ventilation which may be due to improper operation of HVAC systems, attempts at energy efficiency that limit the supply of outdoor air, or remodeling of building components. Most importantly, children spend up to a third of their time in these structures, and thus it is desirable to better understand the environmental quality in these buildings. A middle school (grades 6 to 8)more » in a residential section of Springfield, IL was selected for this baseline indoor air quality survey. The school was characterized as having no health complaints, good maintenance schedules, and did not contain carpeting within the classrooms or hallways. The focus of this paper is on the measurements of air quality in the school. The development of emission factors for particulate matter is also discussed. Four indoor locations including the Cafeteria, a Science Classroom, an Art Classroom, and the Lobby outside of the main office, and one outdoor location were sampled for various environmental comfort and pollutant parameters for one week in February of 1997. Integrated samples (8 hour sampling time) for respirable and total particulate matter, and short-term measurements of bioaerosols (two minute samples, three times per day) on three consecutive days were collected at each of the indoor and outdoor sites. Continuous measurements of carbon dioxide, carbon monoxide, temperature and humidity were logged at all locations for five days. Continuous measurements of respirable particulate matter were also collected in the Lobby area. Detailed logs of occupant activity were also collected at each indoor monitoring location throughout the study. Total particle concentrations ranged from 29 to 177 {micro}g/m{sup 3} in the art room and lobby, respectively. Respirable particle concentrations ranged from 13 to 38 {micro}g/m{sup 3} in the art room and lobby, respectively. The most abundant fungi identified were Aspergillus, Cladosporium, Penicillium, and Yeasts. Gram +, gram {minus} and actinomyces were also quantified. A strong relationship between occupancy and corresponding carbon dioxide and particle concentrations was seen. Use of a one compartment mass balance model applied to each room is shown to be a useful method for evaluating and pollutant emission rates. Emission factors represented by the slope of emission rate versus occupancy were the best estimate of occupancy based emissions.« less

  10. Differentiating local and regional sources of Chinese urban air pollution based on the effect of the Spring Festival

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Huang, Xiao-Feng; Zhu, Qiao; Cao, Li-Ming; Zhang, Bin; He, Ling-Yan

    2017-07-01

    The emission of pollutants is extremely reduced during the annual Chinese Spring Festival (SF) in Shenzhen, China. During the SF, traffic flow drops by ˜ 50 % and the industrial plants are almost entirely shut down in Shenzhen. To characterize the variation in ambient air pollutants due to the Spring Festival effect, various gaseous and particulate pollutants were measured in real time in urban Shenzhen over three consecutive winters (2014-2016). The results indicate that the concentrations of NOx, volatile organic compounds (VOCs), black carbon (BC), primary organic aerosols, chloride, and nitrate in submicron aerosols decrease by 50-80 % during SF periods relative to non-Spring Festival periods, regardless of meteorological conditions. This decrease suggests that these pollutants are mostly emitted or secondarily formed from urban local emissions. The concentration variation in species mostly from regional or natural sources, however, is found to be much less, such as for bulk fine particulate matter (PM2. 5). More detailed analysis of the Spring Festival effect reveals an urgent need to reduce emissions of SO2 and VOCs on a regional scale rather than on an urban scale to reduce urban PM2. 5 in Shenzhen, which can also be useful as a reference for other megacities in China.

  11. Chemical composition of PM2.5 at an urban site of Chengdu in southwestern China

    NASA Astrophysics Data System (ADS)

    Tao, Jun; Cheng, Tiantao; Zhang, Renjian; Cao, Junji; Zhu, Lihua; Wang, Qiyuan; Luo, Lei; Zhang, Leiming

    2013-07-01

    PM2.5 aerosols were sampled in urban Chengdu from April 2009 to January 2010, and their chemical compositions were characterized in detail for elements, water soluble inorganic ions, and carbonaceous matter. The annual average of PM2.5 was 165 μg m-3, which is generally higher than measurements in other Chinese cities, suggesting serious particulate pollution issues in the city. Water soluble ions contributed 43.5% to the annual total PM2.5 mass, carbonaceous aerosols including elemental carbon and organic carbon contributed 32.0%, and trace elements contributed 13.8%. Distinct daily and seasonal variations were observed in the mass concentrations of PM2.5 and its components, reflecting the seasonal variations of different anthropogenic and natural sources. Weakly acidic to neutral particles were found for PM2.5. Major sources of PM2.5 identified from source apportionment analysis included coal combustion, traffic exhaust, biomass burning, soil dust, and construction dust emissions. The low nitrate: sulfate ratio suggested that stationary emissions were more important than vehicle emissions. The reconstructed masses of ammonium sulfate, ammonium nitrate, particulate carbonaceous matter, and fine soil accounted for 79% of the total measured PM2.5 mass; they also accounted for 92% of the total measured particle scattering.

  12. Emissions from vehicles, tailpipe and vehicle re-entrained road dust

    NASA Astrophysics Data System (ADS)

    Zhu, Dongzi

    Emissions from transportation are some of the largest sources of urban air pollution. Transportation emissions originate from both the engine-through combustion processes and non-tailpipe re-suspended road dust emissions induced by vehicle travel on unpaved and paved roads. Gaseous and particulate emissions from transportation sources have negative impacts on human health, visibility and may influence the global radiation balance. Fugitive dust emissions originating from vehicle travel on paved and unpaved roads constitute a significant fraction of the PM10 in many areas of the western US impacting their attainment status of National Ambient Air Quality Standards. The research used three novel instrument platforms developed at the Desert Research Institute. The In-Plume Emissions Test Stand (IPETS) was designed to provide characterization of exhaust emissions from in-use individual vehicles or engines by analyzing air as close as 1 m from the exhaust port. Real-world emission factors can be quantified by in-plume measurements and provide more realistic measures for emission inventories, source modeling, and receptor modeling than certification measurements. The Testing Re-entrained Aerosol Kinetic Emissions from Roads (TRAKER) provides an effective alternate approach to the EPA AP-42 road dust emissions estimation techniques by sampling 1000s of km of roads versus isolated 3 m sections. The Portable Deposition Monitoring Platform (PDMP incorporates PM and meteorological instruments to characterize the downwind change in particle concentrations to define depositional losses in different environments. The research outcome provides important knowledge for understanding diesel engine emissions, road dust emissions and aerosol deposition process near road sources.

  13. Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic.

    PubMed

    Valavanidis, Athanasios; Iliopoulos, Nikiforos; Gotsis, George; Fiotakis, Konstantinos

    2008-08-15

    The production and use of polymeric materials worldwide has reached levels of 150 million tonnes per year, and the majority of plastic materials are discarded in waste landfills where are burned generating toxic emissions. In the present study we conducted laboratory experiments for batch combustion/burning of commercial polymeric materials, simulating conditions of open fire combustion, with the purpose to analyze their emissions for chemical characteristics of toxicological importance. We used common types of plastic materials: poly(vinyl chloride) (PVC), low and high density poly(ethylene) (LDPE, HDPE), poly(styrene) (PS), poly(propylene) (PP) and poly(ethylene terephthalate) (PET). Samples of particulate smoke (soot) collected on filters and residue solid ash produced by controlled burning conditions at 600-750 degrees C are used for analysis. Emissions of particulate matter, persistent free radicals embedded in the carbonaceous polymeric matrix, heavy metals, other elements and PAHs were determined in both types of samples. Results showed that all plastics burned easily generating charred residue solid ash and black airborne particulate smoke. Persistent carbon- and oxygen-centered radicals, known for their toxic effects in inhalable airborne particles, were detected in both particulate smoke emissions and residue solid ash. Concentrations of heavy metals and other elements (determined by Inductively Coupled Plasma Emission Spectrometry, ICP, method) were measured in the airborne soot and residue ash. Toxic heavy metals, such as Pb, Zn, Cr, Ni, and Cd were relatively at were found at low concentrations. High concentrations were found for some lithophilic elements, such as Na, Ca, Mg, Si and Al in particulate soot and residue solid ash. Measurements of PAHs showed that low molecular weight PAHs were at higher concentrations in the airborne particulate soot than in the residue solid ash for all types of plastic. Higher-ringed PAHs were detected at higher concentrations in the residue solid ash of PVC as compared to those from the other types of plastic. The open-air burning of plastic material and their toxic emissions is of growing concern in areas of municipal solid waste where open-fires occur intentionally or accidentally. Another problem is building fires in which victims may suffer severe smoke inhalation from burning plastic materials in homes and in working places.

  14. Evaluating Urban Methane Emissions with a Light Rail Vehicle Platform in Salt Lake City, UT

    NASA Astrophysics Data System (ADS)

    Mitchell, L.; Fasoli, B.; Crosman, E.; Lin, J. C.; Bowling, D. R.; Ehleringer, J. R.

    2016-12-01

    Urban environments are characterized by both spatial complexity and temporal variability, each of which present challenges for measurement strategies aimed at constraining estimates of greenhouse gas emissions and air quality. To address these challenges we initiated a project in December 2014 to measure trace species (CO2, CH4, O3, and Particulate Matter) by way of a Utah Transit Authority (UTA) electricity-powered light rail vehicle whose route traverses the metropolitan Salt Lake Valley in Utah, USA on an hourly basis, retracing the same route through commercial, residential, suburban, and rural typologies. Light rail vehicles present advantages as a measurement platform, including the absence of in-situ fossil fuel emissions, regular repeated transects across an urban region that provide both spatial and temporal information, and relatively low operating costs. We will present initial results investigating methane point sources and evaluating the magnitude and temporal characteristics of these emissions.

  15. On-road heavy-duty diesel particulate matter emissions modeled using chassis dynamometer data.

    PubMed

    Kear, Tom; Niemeier, D A

    2006-12-15

    This study presents a model, derived from chassis dynamometer test data, for factors (operational correction factors, or OCFs) that correct (g/mi) heavy-duty diesel particle emission rates measured on standard test cycles for real-world conditions. Using a random effects mixed regression model with data from 531 tests of 34 heavy-duty vehicles from the Coordinating Research Council's E55/E59 research project, we specify a model with covariates that characterize high power transient driving, time spent idling, and average speed. Gram per mile particle emissions rates were negatively correlated with high power transient driving, average speed, and time idling. The new model is capable of predicting relative changes in g/mi on-road heavy-duty diesel particle emission rates for real-world driving conditions that are not reflected in the driving cycles used to test heavy-duty vehicles.

  16. Exhaust emissions from engines of the Detroit Diesel Corporation in transit buses: a decade of trends.

    PubMed

    Prucz, J C; Clark, N N; Gautam, M; Lyons, D W

    2001-05-01

    In the U.S.A., exhaust emissions from city buses fueled by diesel are not characterized well because current emission standards require engine tests rather than tests of whole vehicles. Two transportable chassis dynamometer laboratories developed and operated by West Virginia University (WVU) have been used extensively to gather realistic emission data from heavy-duty vehicles, including buses, tested in simulated driving conditions. A subset of these data has been utilized for a comprehensive introspection into the trends of regulated emissions from transit buses over the last 7 years, which has been prompted by continuously tightening restrictions on one hand, along with remarkable technological progress, on the other hand. Two widely used models of diesel engines manufactured by the Detroit Diesel Corporation (DDC) have been selected as a case-study for such an overview, based on full-scale, on-site testing of actual city buses, driven in accordance with the SAE J1376 standard of a Commercial Business District (CBD) cycle. The results provide solid, quantitative evidence that most regulated emissions from engines produced by DDC have declined over the years, especially with the transition from the 6V-92TA to the Series 50 models. This improvement is remarkable mainly for the emissions of particulate matter (PM), that are lower by over 70%, on average, for the Series 50 engines, though the emissions of nitrogen oxides (NOx) exhibit a reversed trend, showing a degradation of about 6%, on average, with the transition from 6V-92TA to the Series 50 engines. The expected trend of decreasing emission levels with the model year of the engine is clear and consistent for particulate matter (PM), hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx), starting with the 1990 models, although it is not conclusive for carbon dioxide (CO2) emissions.

  17. 40 CFR 86.145-82 - Calculations; particulate emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... final reported test results for the mass particulate (Mp) in grams/mile shall be computed as follows. Mp = 0.43(Mp1 + Mp2)/(Dct + Ds) + 0.57(Mp3 + Mp2)/(Dht = Ds) where: (1) Mp1 = Mass of particulate...) for determination.) (2) Mp2 = Mass of particulate determined from the “stabilized” phase of the cold...

  18. 40 CFR 86.145-82 - Calculations; particulate emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... final reported test results for the mass particulate (Mp) in grams/mile shall be computed as follows. Mp = 0.43(Mp1 + Mp2)/(Dct + Ds) + 0.57(Mp3 + Mp2)/(Dht = Ds) where: (1) Mp1 = Mass of particulate...) for determination.) (2) Mp2 = Mass of particulate determined from the “stabilized” phase of the cold...

  19. Clean-burning diesel engines. Interim report, June-December 1985 on Phase 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietzmann, H.E.; Smith, L.R.

    Gaseous and particulate emissions were measured from diesel forklift engines under a variety of steady-state conditions. An EPA certification fuel was used to determine CO, CO/sub 2/, NOx, HC, particulate, aldehydes, smoke and SO/sub 2/ emission rates from Isuzu C-240, Peugeot XD3P, and Teledyne TMD-20 diesel engines. Emission rates were reported in b/hp-hr, g/hr, and observed concentration, i.e., ppm, percent, or mg/cu. m.

  20. Dispersion Modeling of Inert Particulate Matter in the El Paso, TX- Cd. Juarez, MX Region

    NASA Astrophysics Data System (ADS)

    Pearson, R.; Fitzgerald, R.

    2005-05-01

    The El Paso, TX-Cd. Juarez, MX region is subject to the emission of inert particulate matter (PM) into the atmosphere, from a variety of sources. The impact of these emissions has been studied extensively in for regulatory compliance in the area of health effects, air quality and visibility. Little work has been done to study the fate and transport of the particulate matter within the region. The Environmental Physics Group at The University of Texas at El Paso has recently applied the SARMAP Air Quality Model (SAQM) to model the dispersion of inert particulate matter in the region. The meteorological data for the SAQM was created with the Penn State/NCAR meteorological modeling system, version 5 (MM5). The SAQM was used to simulate three common occurrences for large particulate emission and concentration. The first was times of heavy traffic volume at the international bridges which cause large numbers of cars to sit, with engines running, for extended periods of time. The second was moderate to high wind events that cause large amounts of coarse particulate matter to become entrained in the atmosphere and transported into and around the region. The third is a temperature inversion which traps the particulate matter at the surface during morning rush hour. The initial conditions for particulate matter, for the two cases involving mobile emissions, were derived from the 1999 version 3 national emissions inventory (NEI) mobile, on-road data from the EPA. Output from the MM5 was used to as the meteorological driver for the SAQM. The MM5 was initialized with data from the NCAR reanalysis project. Meteorological data collected in the region bye the Texas Commission on Environmental Quality (TCEQ) and the EPA was used for Four Dimensional Data Assimilation. The MM5 was nudged with gridded, surface and observational data. Statistical analysis was done on the MM5 for the variables, wind speed, wind direction, temperature and mixing ratio. The statistics performed included RMSE, RMSEs, RMSEu and index of agreement. MM5 output with low RMSE and high index of agreement was used to drive the SAQM. The MM5 grid domains were 39x39 at 36km, 47x47 at 12km, 55x55 at 4 km and 40x40 at 1.3km. The SAQM was applied on to the 1.3km domain. For the case of emission at the international bridges, the bridges' latitude and longitude were translated to grid cell locations. The NEI data derived for those locations were set as emission rates for those cells. The SAQM was run for a 24hr period starting at twelve pm local time with the emissions ending after morning rush hour. The same conditions were done for the inversion time period with the addition of emissions for major roadways and arterial feeders. No data is available for concentrations of entrained particulate matter during wind events. Thus, the entrainment episodes were simulated with varying initial concentrations along the boundary of the domain. The emission rates were varied for each simulation to give both a very intense episode, and a moderate episode lasting for 12 hrs with the SAQM simulation ending after 24 hrs. Analysis for all the simulations was done to show the spatial and temporal evolution of the PM. Temporal comparisons were done between EPA PM2.5 to show identify similarities in the evolution of the SAQM with observation.

  1. 40 CFR 63.7326 - How do I demonstrate initial compliance with the emission limitations that apply to me?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Pollutants for Coke Ovens: Pushing, Quenching, and Battery Stacks Initial Compliance Requirements § 63.7326... coke oven battery subject to the emission limit for particulate matter from a control device applied to... process-weighted mass rate of particulate matter (lb/ton of coke), measured in accordance with the...

  2. 40 CFR 63.7326 - How do I demonstrate initial compliance with the emission limitations that apply to me?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Pollutants for Coke Ovens: Pushing, Quenching, and Battery Stacks Initial Compliance Requirements § 63.7326... coke oven battery subject to the emission limit for particulate matter from a control device applied to... process-weighted mass rate of particulate matter (lb/ton of coke), measured in accordance with the...

  3. 40 CFR 63.7326 - How do I demonstrate initial compliance with the emission limitations that apply to me?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Pollutants for Coke Ovens: Pushing, Quenching, and Battery Stacks Initial Compliance Requirements § 63.7326... coke oven battery subject to the emission limit for particulate matter from a control device applied to... process-weighted mass rate of particulate matter (lb/ton of coke), measured in accordance with the...

  4. 40 CFR 63.7326 - How do I demonstrate initial compliance with the emission limitations that apply to me?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Pollutants for Coke Ovens: Pushing, Quenching, and Battery Stacks Initial Compliance Requirements § 63.7326... coke oven battery subject to the emission limit for particulate matter from a control device applied to... process-weighted mass rate of particulate matter (lb/ton of coke), measured in accordance with the...

  5. 40 CFR 63.7326 - How do I demonstrate initial compliance with the emission limitations that apply to me?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Pollutants for Coke Ovens: Pushing, Quenching, and Battery Stacks Initial Compliance Requirements § 63.7326... coke oven battery subject to the emission limit for particulate matter from a control device applied to... process-weighted mass rate of particulate matter (lb/ton of coke), measured in accordance with the...

  6. Particulate Matter Stack Emission Compliance Test Procedure for Fuel Burning Units.

    ERIC Educational Resources Information Center

    West Virginia Air Pollution Control Commission, Charleston.

    This publication details the particulate matter emissions test procedure that is applicable for conducting compliance tests for fuel burning units required to be tested under Sub-section 7 of Regulation II (1972) as established by the state of West Virginia Air Pollution Control Commission. The testing procedure is divided into five parts:…

  7. Consumption-based Total Suspended Particulate Matter Emissions in Jing-Jin-Ji Area of China

    NASA Astrophysics Data System (ADS)

    Yang, S.; Chen, S.; Chen, B.

    2014-12-01

    The highly-industrialized regions in China have been facing a serious problem of haze mainly consisted of total suspended particulate matter (TSPM), which has attracted great attention from the public since it directly impairs human health and clinically increases the risks of various respiratory and pulmonary diseases. In this paper, we set up a multi-regional input-output (MRIO) model to analyze the transferring routes of TSPM emissions between regions through trades. TSPM emission from particulate source regions and sectors are identified by analyzing the embodied TSPM flows through monetary flow and carbon footprint. The track of TSPM from origin to end via consumption activities are also revealed by tracing the product supply chain associated with the TSPM emissions. Beijing-Tianjin-Hebei (Jing-Jin-Ji) as the most industrialized area of China is selected for a case study. The result shows that over 70% of TSPM emissions associated with goods consumed in Beijing and Tianjin occurred outside of their own administrative boundaries, implying that Beijing and Tianjin are net embodied TSPM importers. Meanwhile, 63% of the total TSPM emissions in Hebei Province are resulted from the outside demand, indicating Hebei is a net exporter. In addition, nearly half of TSPM emissions are the by-products related to electricity and heating supply and non-metal mineral products in Jing-Jin-Ji Area. Based on the model results, we provided new insights into establishing systemic strategies and identifying mitigation priorities to stem TSPM emissions in China. Keywords: total suspended particulate matter (TSPM); urban ecosystem modeling; multi-regional input-output (MRIO); China

  8. The effect of fuel processes on heavy duty automotive diesel engine emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, E.G.

    1995-12-31

    The effect of fuel quality on exhaust emissions from 2 heavy duty diesel engines has been measured over the ECE R49 test cycle. The engines were selected to represent technologies used to meet Euro 1 and 2 emission standards (1992/93 and 1995/96); engines 1 and 2 respectively. The test fuels were prepared by a combination of processing, blending and additive treatment. When comparing the emissions from engines 1 and 2, using base line data generated on the CEC reference fuel RF73-T-90, engine technology had the major effect on emission levels. Engine 2 reduced both particulate matter (PM) and carbon monoxidemore » levels by approximately 50%, with total hydrocarbon (THC) being approximately 75% lower. Oxides of nitrogen levels were similar for both engines. The variations in test fuel quality had marginal effects on emissions, with the two engines giving directionally opposite responses in some cases. For instance, there was an effect on CO and NOx but where one engine showed a reduction the other gave an increase. There were no significant changes in THC emissions from either engine when operating on any of the test fuels. When the reference fuel was hydrotreated, engine 1 showed a trend towards reduced particulate and NOx but with CO increasing. Engine 2 also showed a trend for reduced particulate levels, with an increase in NOx and no change in CO. Processing to reduce the final boiling point of the reference fuel showed a trend towards reduced particulate emissions with CO increasing on engine 1 but decreasing on engine 2.« less

  9. Gaseous and particulate emissions from prescribed burning in Georgia.

    PubMed

    Lee, Sangil; Baumann, Karsten; Schauer, James J; Sheesley, Rebecca J; Naeher, Luke P; Meinardi, Simone; Blake, Donald R; Edgerton, Eric S; Russell, Armistead G; Clements, Mark

    2005-12-01

    Prescribed burning is a significant source of fine particulate matter (PM2.5) in the southeastern United States. However, limited data exist on the emission characteristics from this source. Various organic and inorganic compounds both in the gas and particle phase were measured in the emissions of prescribed burnings conducted at two pine-dominated forest areas in Georgia. The measurements of volatile organic compounds (VOCs) and PM2.5 allowed the determination of emission factors for the flaming and smoldering stages of prescribed burnings. The VOC emission factors from smoldering were distinctly higher than those from flaming except for ethene, ethyne, and organic nitrate compounds. VOC emission factors show that emissions of certain aromatic compounds and terpenes such as alpha and beta-pinenes, which are important precursors for secondary organic aerosol (SOA), are much higher from active prescribed burnings than from fireplace wood and laboratory open burning studies. Levoglucosan is the major particulate organic compound (POC) emitted for all these studies, though its emission relative to total organic carbon (mg/g OC) differs significantly. Furthermore, cholesterol, an important fingerprint for meat cooking, was observed only in our in situ study indicating a significant release from the soil and soil organisms during open burning. Source apportionment of ambient primary fine particulate OC measured at two urban receptor locations 20-25 km downwind yields 74 +/- 11% during and immediately after the burns using our new in situ profile. In comparison with the previous source profile from laboratory simulations, however, this OC contribution is on average 27 +/- 5% lower.

  10. Performance and emissions characteristics of aqueous alcohol fumes in a DI diesel engine

    NASA Technical Reports Server (NTRS)

    Heisey, J. B.; Lestz, S. S.

    1981-01-01

    A single cylinder DI Diesel engine was fumigated with ethanol and methanol in amounts up to 55% of the total fuel energy. The effects of aqueous alcohol fumigation on engine thermal efficiency, combustion intensity and gaseous exhaust emissions were determined. Assessment of changes in the biological activity of raw particulate and its soluble organic fraction were also made using the Salmonella typhimurium test. Alcohol fumigation improved thermal efficiency slightly at moderate and heavy loads, but increased ignition delay at all operating conditions. Carbon monoxide and unburned hydrocarbon emission generally increased with alcohol fumigation and showed no dependence on alcohol type or quality. Oxide of nitrogen emission showed a strong dependence on alcohol quality; relative emission levels decreased with increasing water content of the fumigant. Particulate mass loading rates were lower for ethanol fueled conditions. However, the biological activity of both the raw particulate and its soluble organic fraction was enhanced by ethanol fumigation at most operating conditions.

  11. Effect of atmospheric aging on volatility and reactive oxygen species of biodiesel exhaust nano-particles

    NASA Astrophysics Data System (ADS)

    Pourkhesalian, A. M.; Stevanovic, S.; Rahman, M. M.; Faghihi, E. M.; Bottle, S. E.; Masri, A. R.; Brown, R. J.; Ristovski, Z. D.

    2015-08-01

    In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric aging processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.

  12. Particle Size Distributions of Particulate Emissions from the Ferroalloy Industry Evaluated by Electrical Low Pressure Impactor (ELPI)

    PubMed Central

    Kero, Ida; Naess, Mari K.; Tranell, Gabriella

    2015-01-01

    The present article presents a comprehensive evaluation of the potential use of an Electrical Low Pressure Impactor (ELPI) in the ferroalloy industry with respect to indoor air quality and fugitive emission control. The ELPI was used to assess particulate emission properties, particularly of the fine particles (Dp ≤ 1 μm), which in turn may enable more satisfactory risk assessments for the indoor working conditions in the ferroalloy industry. An ELPI has been applied to characterize the fume in two different ferroalloy plants, one producing silicomanganese (SiMn) alloys and one producing ferrosilicon (FeSi) alloys. The impactor classifies the particles according to their aerodynamic diameter and gives real-time particle size distributions (PSD). The PSD based on both number and mass concentrations are shown and compared. Collected particles have also been analyzed by transmission and scanning electron microscopy with energy dispersive spectroscopy. From the ELPI classification, particle size distributions in the range 7 nm – 10 μm have been established for industrial SiMn and FeSi fumes. Due to the extremely low masses of the ultrafine particles, the number and mass concentration PSD are significantly different. The average aerodynamic diameters for the FeSi and the SiMn fume particles were 0.17 and 0.10 μm, respectively. Based on this work, the ELPI is identified as a valuable tool for the evaluation of airborne particulate matter in the indoor air of metallurgical production sites. The method is well suited for real-time assessment of morphology (particle shape), particle size, and particle size distribution of aerosols. PMID:25380385

  13. An approach towards risk assessment for the use of a synergistic metallic diesel particulate filter (DPF) regeneration additive

    NASA Astrophysics Data System (ADS)

    Cook, S. L.; Richards, P. J.

    The motivations for legislation to set diesel emissions limits requiring the use of diesel particulate filters (DPF) are summarised. If the DPF is to be used, demonstration of regeneration (combustion of collected carbonaceous material) without additional emission problems is important. Potential metal emissions resulting from use of a synergistic Fe/Sr fuel-borne DPF regeneration catalyst are evaluated. Measurements over legislated drive cycle estimate the metals to comprise 1-2% of the solid material emitted, and the DPF to collect >99% of such material. Diesel particulate matter is used as a marker, and from existing air quality and emission inventory measurements, maximum conceivable increases of <1 ng m -3 and <250 pg m -3 for iron and strontium, respectively, are calculated. From environmental assessment levels, derived from occupational exposure limits, these are not significant. For humans, daily ingress of airborne Sr is estimated at 3.5 ng. This is small compared to the known Sr contents of lungs, blood and the daily diet. In the context of reductions of other metals, particulate matter and pollutant emissions, the overall assessment is that the use of these metals to enable use of a DPF allows significant net environmental benefit to be obtained.

  14. Volatile and semivolatile organic compounds in laboratory ...

    EPA Pesticide Factsheets

    Speciated volatile organic compounds (VOCs) and organic fine particulate matter (PM2.5) mass emission factors were determined from laboratory peat fire experiments. Peat samples originated from two wildlife reserves located near the coast of North Carolina, U.S. Gas and particulate organics were quantified by gas chromatography/mass spectrometry and by high pressure liquid chromatography. Hazardous air pollutants (HAPs) accounted for a large fraction (~60 %) of the speciated VOC emissions from peat burning, including large contributions of acetaldehyde, formaldehyde, benzene, toluene, and chloromethane. Speciated organic PM2.5 mass was dominated by the following compound classes: organic acids, levoglucosan, n-alkanes, and n-alkenes. Emission factors for PM2.5 organic acids including n-alkanoic acids, n-alkenoic acids, n-alkanedioic acids, and aromatic acids were reported for the first time for peat burning, representing the largest fraction of organic carbon (OC) mass (11-12 %) of all speciated compound classes measured in this work. Levoglucosan contributed 2-3 % of the OC mass, while methoxyphenols represented 0.2-0.3 % of the OC mass on a carbon mass basis. Retene was the most abundant particulate phase polycyclic aromatic hydrocarbon. Total HAP VOC and particulate polycyclic aromatic hydrocarbon emissions from a 2008 peat wildfire in North Carolina were estimated, suggesting that peat fires can contribute a large fraction of state-wide HAP emissions. This p

  15. Emission and atmospheric transport of particulate PAHs in Northeast Asia.

    PubMed

    Inomata, Yayoi; Kajino, Mizuo; Sato, Keiichi; Ohara, Toshimasa; Kurokawa, Jun-Ichi; Ueda, Hiromasa; Tang, Ning; Hayakawa, Kazuichi; Ohizumi, Tsuyoshi; Akimoto, Hajime

    2012-05-01

    The emission, concentration levels, and transboundary transport of particulate polycyclic aromatic hydrocarbons (PAHs) in Northeast Asia were investigated using particulate PAH measurements, the newly developed emission inventory (Regional Emission inventory in ASia for Persistent Organic Pollutants version, REAS-POP), and the chemical transport model (Regional Air Quality Model ver2 for POPs version, RAQM2-POP). The simulated concentrations of the nine particulate PAHs agreed well with the measured concentrations, and the results firmly established the efficacy of REAS/RAQM2-POP. It was found that the PAH concentrations in Beijing (China, source region), which were emitted predominantly from domestic coal, domestic biofuel, and other transformations of coal (including coke production), were approximately 2 orders of magnitude greater than those monitored at Noto (Japan, leeward region). In Noto, the PAH concentrations showed seasonal variations; the PAH concentrations were high from winter to spring due to contributions from domestic coal, domestic biofuel, and other transformations of coal, and low in summer. In summer, these contribution were decrease, instead, other sources, such as the on-road mobile source, were relatively increased compared with those in winter. These seasonal variations were due to seasonal variations in emissions from China, as well as transboundary transport across the Asian continent associated with meteorological conditions. © 2012 American Chemical Society

  16. Factors and characteristics of ammonia, hydrogen sulfide, carbon dioxide, and particulate matter emissions from two manure-belt layer hen houses

    NASA Astrophysics Data System (ADS)

    Ni, Ji-Qin; Diehl, Claude A.; Chai, Lilong; Chen, Yan; Heber, Albert J.; Lim, Teng-Teeh; Bogan, Bill W.

    2017-05-01

    Manure-belt layer hen houses are a relatively newer design and are replacing the old high-rise layer hen houses for egg production in USA. However, reliable aerial pollutant emission data from comprehensive and long-term on-farm monitoring at manure-belt houses are scarce. This paper reports the emission factors and characteristics of ammonia (NH3), hydrogen sulfide (H2S), carbon dioxide (CO2), and particulate matter (PM10) from two 250,000-bird capacity manure-belt layer hen houses (B-A and B-B) in northern Indiana, USA. The 2-year continuous field monitoring followed the Quality Assurance Project Plan of the National Air Emission Monitoring Study (NAEMS). Only days with more than 18 h (or 75%) of valid data were reported to avoid biased emission calculation. The results of 2-year average daily mean (ADM) gas emissions per hen from the two houses, excluding emissions from their manure shed, were 0.280 g for NH3, 1.952 mg for H2S, and 103.2 g for CO2. They were 67% lower for NH3, 77% higher for H2S, and 10% higher for CO2 compared with reported emissions from high-rise layer hen houses. Emissions of NH3 and CO2 exhibited evident seasonal variations. They were higher in winter than in summer and followed the NH3 and CO2 concentration seasonal patterns. Annual emission differences were observed for all the four pollutants. Reduced emissions of the three gases were shown during periods of layer hen molting and flock replacement. The 2-year ADM PM10 emission from B-B was 25.2 mg d-1 hen-1. A unique weekly PM10 emission pattern was identified for both houses. It was characterized with much lower Sunday emissions compared with the other single-day emissions of the week and was related to the weekly schedule of in-house production operations, including maintenance and cleaning.

  17. Regulated and unregulated emissions from modern 2010 emissions-compliant heavy-duty on-highway diesel engines.

    PubMed

    Khalek, Imad A; Blanks, Matthew G; Merritt, Patrick M; Zielinska, Barbara

    2015-08-01

    The U.S. Environmental Protection Agency (EPA) established strict regulations for highway diesel engine exhaust emissions of particulate matter (PM) and nitrogen oxides (NOx) to aid in meeting the National Ambient Air Quality Standards. The emission standards were phased in with stringent standards for 2007 model year (MY) heavy-duty engines (HDEs), and even more stringent NOX standards for 2010 and later model years. The Health Effects Institute, in cooperation with the Coordinating Research Council, funded by government and the private sector, designed and conducted a research program, the Advanced Collaborative Emission Study (ACES), with multiple objectives, including detailed characterization of the emissions from both 2007- and 2010-compliant engines. The results from emission testing of 2007-compliant engines have already been reported in a previous publication. This paper reports the emissions testing results for three heavy-duty 2010-compliant engines intended for on-highway use. These engines were equipped with an exhaust diesel oxidation catalyst (DOC), high-efficiency catalyzed diesel particle filter (DPF), urea-based selective catalytic reduction catalyst (SCR), and ammonia slip catalyst (AMOX), and were fueled with ultra-low-sulfur diesel fuel (~6.5 ppm sulfur). Average regulated and unregulated emissions of more than 780 chemical species were characterized in engine exhaust under transient engine operation using the Federal Test Procedure cycle and a 16-hr duty cycle representing a wide dynamic range of real-world engine operation. The 2010 engines' regulated emissions of PM, NOX, nonmethane hydrocarbons, and carbon monoxide were all well below the EPA 2010 emission standards. Moreover, the unregulated emissions of polycyclic aromatic hydrocarbons (PAHs), nitroPAHs, hopanes and steranes, alcohols and organic acids, alkanes, carbonyls, dioxins and furans, inorganic ions, metals and elements, elemental carbon, and particle number were substantially (90 to >99%) lower than pre-2007-technology engine emissions, and also substantially (46 to >99%) lower than the 2007-technology engine emissions characterized in the previous study.

  18. Overview of Megacity Air Pollutant Emissions and Impacts

    NASA Astrophysics Data System (ADS)

    Kolb, C. E.

    2013-05-01

    The urban metabolism that characterizes major cities consumes very large qualities of humanly produced and/or processed food, fuel, water, electricity, construction materials and manufactured goods, as well as, naturally provided sunlight, precipitation and atmospheric oxygen. The resulting urban respiration exhalations add large quantities of trace gas and particulate matter pollutants to urban atmospheres. Key classes of urban primary air pollutants and their sources will be reviewed and important secondary pollutants identified. The impacts of these pollutants on urban and downwind regional inhabitants, ecosystems, and climate will be discussed. Challenges in quantifying the temporally and spatially resolved urban air pollutant emissions and secondary pollutant production rates will be identified and possible measurement strategies evaluated.

  19. Comparison of the gaseous and particulate matter emissions from the combustion of agricultural and forest biomasses.

    PubMed

    Brassard, Patrick; Palacios, Joahnn H; Godbout, Stéphane; Bussières, Denis; Lagacé, Robert; Larouche, Jean-Pierre; Pelletier, Frédéric

    2014-03-01

    The aim of this study was to compare gaseous and particulate matter (PM) emissions from the combustion of agricultural (switchgrass, fast-growing willow and the dried solid fraction of pig manure) and forest (wood mixture of Black Spruce and Jack Pine) biomasses in a small-scale unit (17.58kW). Concentrations of CO2, CO, CH4, NO2, NH3, N2O, SO2, HCl, and H2O were measured by Fourier transform infrared spectroscopy and converted into emission rates. Opacity was also evaluated and particulates were sampled. Results showed significantly higher emissions of SO2, NO2 and PM with the combustion of agricultural biomass compared to the forest biomass. However, further studies should be carried out so regulations can be adapted in order to permit the combustion of agricultural biomass in small-scale combustion units. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A preliminary test method for masonry heater particulate matter and carbon monoxide emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, C.H.; Jaasma, D.R.; Shelton, J.W.

    1991-08-01

    A test method for determining carbon monoxide (CO) and particulate matter (PM) emissions from masonry heaters is described and results of tests on two masonry heaters are presented. The method specifies fueling protocol and laboratory measurement procedures for determination of both emission factors (g/kg) and rates (g/hr). The fuel load size and fueling intervals are dependent upon the firebox volume of the masonry heater. The test method starts with a room temperature masonry heater and involves five firings to achieve burn rates in two ranges, where the burn rate is defined as the dry mass of the fuel load dividedmore » by the time between loadings. Emission samples are extracted from a dilution tunnel with a set flow rate and configuration. Particulate matter sampling is similar to US EPA Method 5G for woodstoves, and Co concentration is measured by a nondispersive infrared (NDIR) gas analyzer. The emissions results for each firing are weighted according to EPA Method 28 to obtain the overall emission totals for the test.« less

  1. Size-segregated emissions and metal content of vehicle-emitted particles as a function of mileage: Implications to population exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golokhvast, Kirill S.; Chernyshev, Valery V.; Chaika, Vladimir V.

    2015-10-15

    The study aims at investigating the characteristics (size distribution, active surface and metal content) of particles emitted by cars as a function of mileage using a novel methodology for characterizing particulate emissions captured by Exhaust Gas Suspension (EGS). EGS was obtained by passing the exhaust gases through a container of deionized water. EGS analysis was performed using laser granulometry, electron scanning microscopy, and high resolution mass spectrometry. Implications of the differences in key features of the emitted particles on population exposure were investigated using numerical simulation for estimating size-segregated PM deposition across human respiratory tract (HRT). It was found thatmore » vehicle mileage, age and the respective emissions class have almost no effect on the size distribution of the exhaust gas particulate released into the environment; about half of the examined vehicles with low mileage were found to release particles of aerodynamic diameter above 10 μm. The exhaust gas particulate detected in the EGS of all cars can be classified into three major size classes: (1) 0.1–5 µm – soot and ash particles, metals (Au, Pt, Pd, Ir); (2) 10–30 µm – metal (Cr, Fe, Cu, Zr, Ni) and ash particles; (3) 400–1,000 µm – metal (Fe, Cr, Pb) and ash particles. Newer vehicles with low mileage are substantial sources of soot and metal particles with median diameter of 200 nm with a higher surface area (up to 89,871.16 cm{sup 2}/cm{sup 3}). These tend to deposit in the lower part of the human respiratory tract. - Highlights: • Car mileage has virtually no effect on the size of the solid particles released. • Newer diesel vehicles emit particles of lower aerodynamic diameter. • Particle active surface emitted by newer vehicles is on average 3 times higher. • Real-life emissions were translated into actual internal PM exposure.« less

  2. Emission factors for gases and particle-bound substances produced by firing lead-free small-caliber ammunition.

    PubMed

    Wingfors, H; Svensson, K; Hägglund, L; Hedenstierna, S; Magnusson, R

    2014-01-01

    Lead-free ammunition is becoming increasingly popular because of the environmental and human health issues associated with the use of leaded ammunition. However, there is a lack of data on the emissions produced by firing such ammunition. We report emission factors for toxic gases and particle-bound compounds produced by firing lead-free ammunition in a test chamber. Carbon monoxide, ammonia, and hydrogen cyanide levels within the chamber were analysed by Fourier transform infrared spectroscopy, while total suspended particles and respirable particles were determined gravimetrically. The metal content of the particulate emissions was determined and the associated organic compounds were characterized in detail using a method based on thermal desorption coupled to gas chromatography and mass spectrometry. The particulate matter (∼30 mg/round) consisted primarily of metals such as Cu, Zn, and Fe along with soot arising from incomplete combustion. Nitrogen-containing heterocyclic aromatic compounds such as carbazole, quinolone, and phenazine were responsible for some of the 25 most significant chromatographic peaks, together with PAHs, diphenylamine, and phthalates. Emission factors were determined for PAHs and oxygenated PAHs; the latter were less abundant in the gun smoke particles than in domestic dust and diesel combustion smoke. This may be due to the oxygen-deficient conditions that occur when the gun is fired. By using an electrical low pressure impactor, it was demonstrated that more than 90% of the particles produced immediately after firing the weapon had diameters of less than 30 nm, and so most of the gun smoke particles belonged to the nanoparticle regime.

  3. Differential Absorption Lidar (DIAL) in Alberta: A New Remote Sensing Tool for Wide Area Measurement of Particulates, CO2, and CH4 Emissions from Energy Extraction and Production Sites

    NASA Astrophysics Data System (ADS)

    Wojcik, M.; Lemon, R.; Crowther, B. G.; Valupadas, P.; Fu, L.; Yang, Z.; Huda, Q.; Leung, B.; Chambers, A.

    2014-12-01

    Alberta Environmental Monitoring, Evaluation and Reporting Agency (AEMERA) in cooperation with the Space Dynamics Laboratory (SDL) of Utah State University, have developed a mobile DIAL sensor designed specifically for particle, CO2 and CH4 emissions measurement. Rapid expansion of the oil and gas industry in Alberta, including the oil sands, has challenged the Alberta Government to keep pace in its efforts to monitor and mitigate the environmental impacts of development. The limitations of current monitoring systems has pushed the provincial government to seek out advanced sensing technologies such as differential absorption lidar (DIAL) to help assess the impact of energy development and industrial operations. This instrument is housed inside a 36' trailer and can be quickly staged and used to characterize source emissions and to locate fugitive leaks. DIAL is capable of measuring concentrations for carbon dioxide (CO2) and methane (CH4) at ranges of up to 3 km with a spatial resolution of 1.5 m. DIAL can map both CO2 and CH4, as well as particulate matter (PM) in a linear fashion; by scanning the laser beam in both azimuth and elevation, DIAL can create images of emissions concentrations and ultimately can be used to determine emission factors, locate fugitive leaks, assess plume dispersion and confirm air dispersion modeling. The DIAL system has been deployed at a landfill, a coal-fired power plant, and an oil sands production area. A system overview of the DIAL instrument and recent results will be discussed.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMeeking, Gavin R.; Kreidenweis, Sonia M.; Baker, Stephen

    We characterized the gas- and speciated aerosol-phase emissions from the open combustion of 33 different plant species during a series of 255 controlled laboratory burns during the Fire Laboratory at Missoula Experiments (FLAME). The plant species we tested were chosen to improve the existing database for U.S. domestic fuels: laboratory-based emission factors have not previously been reported for many commonly-burned species that are frequently consumed by fires near populated regions and protected scenic areas. The plants we tested included the chaparral species chamise, manzanita, and ceanothus, and species common to the southeastern US (common reed, hickory, kudzu, needlegrass rush, rhododendron,more » cord grass, sawgrass, titi, and wax myrtle). Fire-integrated emission factors for gas-phase CO{sub 2}, CO, CH{sub 4}, C{sub 2-4} hydrocarbons, NH{sub 3}, SO{sub 2}, NO, NO{sub 2}, HNO{sub 3} and particle-phase organic carbon (OC), elemental carbon (EC), SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, Cl{sup -}, Na{sup +}, K{sup +}, and NH{sub 4}{sup +} generally varied with both fuel type and with the fire-integrated modified combustion efficiency (MCE), a measure of the relative importance of flaming- and smoldering-phase combustion to the total emissions during the burn. Chaparral fuels tended to emit less particulate OC per unit mass of dry fuel than did other fuel types, whereas southeastern species had some of the largest observed EF for total fine particulate matter. Our measurements often spanned a larger range of MCE than prior studies, and thus help to improve estimates for individual fuels of the variation of emissions with combustion conditions.« less

  5. New Approaches for Estimating Motor Vehicle Emissions in Megacities

    NASA Astrophysics Data System (ADS)

    Marr, L. C.; Thornhill, D. A.; Herndon, S. C.; Onasch, T. B.; Wood, E. C.; Kolb, C. E.; Knighton, W. B.; Mazzoleni, C.; Zavala, M. A.; Molina, L. T.

    2007-12-01

    The rapid proliferation of megacities and their air quality problems is producing unprecedented air pollution health risks and management challenges. Quantifying motor vehicle emissions in the developing world's megacities, where vehicle ownership is skyrocketing, is critical for evaluating the cities' impacts on the atmosphere at urban, regional, and global scales. The main goal of this research is to quantify gasoline- and diesel-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA). We apply positive matrix factorization to fast measurements of gaseous and particulate pollutants made by the Aerodyne Mobile Laboratory as it drove throughout the MCMA in 2006. We consider carbon dioxide; carbon monoxide; volatile organic compounds including benzene and formaldehyde; nitrogen oxides; ammonia; fine particulate matter; particulate polycyclic aromatic hydrocarbons; and black carbon. Analysis of the video record confirms the apportionment of emissions to different engine types. From the derived source profiles, we calculate fuel-based fleet-average emission factors and then estimate the total motor vehicle emission inventory. The advantages of this method are that it can capture a representative sample of vehicles in a variety of on-road driving conditions and can separate emissions from gasoline versus diesel engines. The results of this research can be used to help assess the accuracy of emission inventories and to guide the development of strategies for reducing vehicle emissions.

  6. PAGEMS

    NASA Technical Reports Server (NTRS)

    Bulzan, Dan

    2001-01-01

    Glenn Research Center has extensive instrumentation developed for measuring particulate and gaseous emissions. The Particulate and Gaseous Emissions Measurement System (PAGEMS) is a mobile facility housing advanced instrumentation used for measuring combustion particulates and gaseous species. Particulates sizes ranging from 10 nm to 10 mm can be measured along with SO2, NO, NO2, CO, CO2, THC and O2 . Measurements can be made from subatmospheric up to 60 atm. Representative data from two engine tests will be discussed. In one test, the fuel sulfur content was changed, while the other test (T-63 engine) used various fuel additives. Probe design is essential to acquiring accurate particulate data. I will discuss the AEDC designed particulate probe, and the results of a University of Minnesota calibration study using the probe. Another suite of instrumentation, a tunable diode laser (TDL), enables in-situ real time gaseous species measurements. Representative TDL data from a T-38 aircraft will be presented. In conclusion, near term measurement opportunities will be discussed.

  7. Gasoline Particulate Filters as an Effective Tool to Reduce Particulate and Polycyclic Aromatic Hydrocarbon Emissions from Gasoline Direct Injection (GDI) Vehicles: A Case Study with Two GDI Vehicles.

    PubMed

    Yang, Jiacheng; Roth, Patrick; Durbin, Thomas D; Johnson, Kent C; Cocker, David R; Asa-Awuku, Akua; Brezny, Rasto; Geller, Michael; Karavalakis, Georgios

    2018-03-06

    We assessed the gaseous, particulate, and genotoxic pollutants from two current technology gasoline direct injection vehicles when tested in their original configuration and with a catalyzed gasoline particulate filter (GPF). Testing was conducted over the LA92 and US06 Supplemental Federal Test Procedure (US06) driving cycles on typical California E10 fuel. The use of a GPF did not show any fuel economy and carbon dioxide (CO 2 ) emission penalties, while the emissions of total hydrocarbons (THC), carbon monoxide (CO), and nitrogen oxides (NOx) were generally reduced. Our results showed dramatic reductions in particulate matter (PM) mass, black carbon, and total and solid particle number emissions with the use of GPFs for both vehicles over the LA92 and US06 cycles. Particle size distributions were primarily bimodal in nature, with accumulation mode particles dominating the distribution profile and their concentrations being higher during the cold-start period of the cycle. Polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs were quantified in both the vapor and particle phases of the PM, with the GPF-equipped vehicles practically eliminating most of these species in the exhaust. For the stock vehicles, 2-3 ring compounds and heavier 5-6 ring compounds were observed in the PM, whereas the vapor phase was dominated mostly by 2-3 ring aromatic compounds.

  8. 40 CFR 52.1783 - Original identification of plan section.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of Particulates from Hot Mix Asphalt Plants 2D.0507—Particulates from Chemical Fertilizer Manufacturing Plants 2D.0508—Control of Particulates from Pulp and Paper Mills 2D.0509—Particulates from Mica or... Emissions from Bulk Gasoline Terminals 2D.0918—Can Coating 2D.0919—Coil Coating 2D.0920—Paper Coating 2D...

  9. 40 CFR 52.1783 - Original identification of plan section.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of Particulates from Hot Mix Asphalt Plants 2D.0507—Particulates from Chemical Fertilizer Manufacturing Plants 2D.0508—Control of Particulates from Pulp and Paper Mills 2D.0509—Particulates from Mica or... Emissions from Bulk Gasoline Terminals 2D.0918—Can Coating 2D.0919—Coil Coating 2D.0920—Paper Coating 2D...

  10. 40 CFR 52.1783 - Original identification of plan section.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of Particulates from Hot Mix Asphalt Plants 2D.0507—Particulates from Chemical Fertilizer Manufacturing Plants 2D.0508—Control of Particulates from Pulp and Paper Mills 2D.0509—Particulates from Mica or... Emissions from Bulk Gasoline Terminals 2D.0918—Can Coating 2D.0919—Coil Coating 2D.0920—Paper Coating 2D...

  11. Performance of a Line Loss Correction Method for Gas Turbine Emission Measurements

    NASA Astrophysics Data System (ADS)

    Hagen, D. E.; Whitefield, P. D.; Lobo, P.

    2015-12-01

    International concern for the environmental impact of jet engine exhaust emissions in the atmosphere has led to increased attention on gas turbine engine emission testing. The Society of Automotive Engineers Aircraft Exhaust Emissions Measurement Committee (E-31) has published an Aerospace Information Report (AIR) 6241 detailing the sampling system for the measurement of non-volatile particulate matter from aircraft engines, and is developing an Aerospace Recommended Practice (ARP) for methodology and system specification. The Missouri University of Science and Technology (MST) Center for Excellence for Aerospace Particulate Emissions Reduction Research has led numerous jet engine exhaust sampling campaigns to characterize emissions at different locations in the expanding exhaust plume. Particle loss, due to various mechanisms, occurs in the sampling train that transports the exhaust sample from the engine exit plane to the measurement instruments. To account for the losses, both the size dependent penetration functions and the size distribution of the emitted particles need to be known. However in the proposed ARP, particle number and mass are measured, but size is not. Here we present a methodology to generate number and mass correction factors for line loss, without using direct size measurement. A lognormal size distribution is used to represent the exhaust aerosol at the engine exit plane and is defined by the measured number and mass at the downstream end of the sample train. The performance of this line loss correction is compared to corrections based on direct size measurements using data taken by MST during numerous engine test campaigns. The experimental uncertainty in these correction factors is estimated. Average differences between the line loss correction method and size based corrections are found to be on the order of 10% for number and 2.5% for mass.

  12. Optical remote sensing to quantify fugitive particulate mass emissions from stationary short-term and mobile continuous sources: part II. Field applications.

    PubMed

    Du, Ke; Yuen, Wangki; Wang, Wei; Rood, Mark J; Varma, Ravi M; Hashmonay, Ram A; Kim, Byung J; Kemme, Michael R

    2011-01-15

    Quantification of emissions of fugitive particulate matter (PM) into the atmosphere from military training operations is of interest by the United States Department of Defense. A new range-resolved optical remote sensing (ORS) method was developed to quantify fugitive PM emissions from puff sources (i.e., artillery back blasts), ground-level mobile sources (i.e., movement of tracked vehicles), and elevated mobile sources (i.e., airborne helicopters) in desert areas that are prone to generating fugitive dust plumes. Real-time, in situ mass concentration profiles for PM mass with particle diameters <10 μm (PM(10)) and <2.5 μm (PM(2.5)) were obtained across the dust plumes that were generated by these activities with this new method. Back blasts caused during artillery firing were characterized as a stationary short-term puff source whose plumes typically dispersed to <10 m above the ground with durations of 10-30 s. Fugitive PM emissions caused by artillery back blasts were related to the zone charge and ranged from 51 to 463 g PM/firing for PM(10) and 9 to 176 g PM/firing for PM(2.5). Movement of tracked vehicles and flying helicopters was characterized as mobile continuous sources whose plumes typically dispersed 30-50 m above the ground with durations of 100-200 s. Fugitive PM emissions caused by moving tracked vehicles ranged from 8.3 to 72.5 kg PM/km for PM(10) and 1.1 to 17.2 kg PM/km for PM(2.5), and there was no obvious correlation between PM emission and vehicle speed. The emission factor for the helicopter flying at 3 m above the ground ranged from 14.5 to 114.1 kg PM/km for PM(10) and 5.0 to 39.5 kg PM/km for PM(2.5), depending on the velocity of the helicopter and type of soil it flies over. Fugitive PM emissions by an airborne helicopter were correlated with helicopter speed for a particular soil type. The results from this range-resolved ORS method were also compared with the data obtained with another path-integrated ORS method and a Flux Tower method.

  13. CHARACTERIZATION OF PARTICULATE MATTER EMISSION FROM OPEN BURNING OF RICE STRAW

    PubMed Central

    Oanh, Nguyen Thi Kim; Bich, Thuy Ly; Tipayarom, Danutawat; Manadhar, Bhai R.; Prapat, Pongkiatkul; Simpson, Christopher D.; Liu, L-J Sally

    2010-01-01

    Emission from field burning of crop residue, a common practice in many parts of the world today, has potential effects on air quality, atmosphere and climate. This study provides a comprehensive size and compositional characterization of particulate matter (PM) emission from rice straw (RS) burning using both in situ experiments (11 spread field burning) and laboratory hood experiments (3 pile and 6 spread burning) that were conducted during 2003–2006 in Thailand. The carbon balance and emission ratio method was used to determine PM emission factors (EF) in the field experiments. The obtained EFs varied from field to hood experiments reflecting multiple factors affecting combustion and emission. In the hood experiments, EFs were found to be depending on the burning types (spread or pile), moisture content and the combustion efficiency. In addition, in the field experiments, burning rate and EF were also influenced by weather conditions, i.e. wind. Hood pile burning produced significantly higher EF (20±8 g kg−1 RS) than hood spread burning (4.7±2.2 g kg−1 RS). The majority of PM emitted from the field burning was PM2.5 with EF of 5.1±0.7 g m−2 or 8.3±2.7 g kg−1 RS burned. The coarse PM fraction (PM10-2.5) was mainly generated by fire attention activities and was relatively small, hence the resulting EF of PM10 (9.4±3.5 g kg−1 RS) was not significantly higher than PM2.5. PM size distribution was measured across 8 size ranges (from <0.4 μm to >9.0 μm). The largest fractions of PM, EC and OC were associated with PM1.1. The most significant components in PM2.5 and PM10 include OC, water soluble ions and levoglucosan. Relative abundance of some methoxyphenols (e.g., acetylsyringone), PAHs (e.g., fluoranthene and pyrene), organochlorine pesticides and PCBs may also serve as additional signatures for the PM emission. Presence of these toxic compounds in PM of burning smoke increases the potential toxic effects of the emission. For illustration, an estimation of the annual RS field burning in Thailand was made using the obtained in situ field burning EFs and preliminary burning activity data. PMID:21243095

  14. Control strategies for the reduction of airborne particulate nitrate in California's San Joaquin Valley

    NASA Astrophysics Data System (ADS)

    Kleeman, Michael J.; Ying, Qi; Kaduwela, Ajith

    The effect of NO x, volatile organic compound (VOC), and NH 3 emissions control programs on the formation of particulate ammonium nitrate in the San Joaquin Valley (SJV) was examined under the typical winter conditions that existed on 4-6 January, 1996. The UCD/CIT photochemical transport model was used for this study so that the source origin of primary particulate matter and secondary particulate matter could be identified. When averaged across the entire SJV, the model results predict that 13-18% of the reactive nitrogen (NO y=NO x+reaction products of NO x) emitted from local sources within the SJV was converted to nitrate at the ground level. Each gram of NO x emitted locally within the SJV (expressed as NO 2) produced 0.23-0.31 g of particulate ammonium nitrate (NH 4NO 3), which is much smaller than the maximum theoretical yield of 1.7 g of NH 4NO 3 per gram of NO 2. The fraction of reactive nitrogen converted to nitrate varied strongly as a function of location. Urban regions with large amounts of fresh NO emissions converted little reactive nitrogen to nitrate, while remote areas had up to 70% conversion (equivalent to approximately 1.2 g of NH 4NO 3 per gram of NO 2). The use of a single spatially averaged ratio of NH 4NO 3/NO x as a predictor of how changes to NO x emissions would affect particulate nitrate concentrations would not be accurate at all locations in the SJV under the conditions studied. The largest local sources of particulate nitrate in the SJV were predicted to be diesel engines and catalyst equipped gasoline engines under the conditions experienced on 6 January, 1996. Together, these sources accounted for less than half of the ground-level nitrate aerosol in the SJV. The remaining fraction of the aerosol nitrate originated from reactive nitrogen originally released upwind of the SJV. The majority of this upwind reactive nitrogen was already transformed to nitrate by the time it entered the SJV. The effect of local emissions controls on this upwind material was small. A 50% reduction in NO x emissions applied to sources within the SJV reduced the predicted concentration of total nitrate by approximately 25% during the study episode. VOC emissions controls were less effective, while reasonable NH 3 emissions controls had the smallest effect on the amount of ammonium nitrate produced. A 50% reduction in VOC emissions lowered predicted concentrations of total nitrate by 17.5%, while a 50% reduction in NH 3 emissions lowered predicted concentrations of total nitrate by only 10%. This latter result is expected since the formation of ammonium nitrate aerosol is limited by the availability of gas-phase nitric acid, with large amounts of excess NH 3 available. NO x emissions controls appear to be the most efficient method to reduce the concentration of locally generated particulate nitrate in the SJV under the conditions experienced on 4-6 January, 1996.

  15. Composition of diesel exhaust with particular reference to particle bound organics including formation of artifacts.

    PubMed

    Lies, K H; Hartung, A; Postulka, A; Gring, H; Schulze, J

    1986-01-01

    For particulate emissions, standards were established by the US EPA in February 1980. Regulations limiting particulates from new light duty diesel vehicles are valid by model year 1982. The corresponding standards on a pure mass basis do not take into account any chemical character of the diesel particulate matter. Our investigation of the material composition shows that diesel particulates consist mainly of soot (up to 80% by weight) and adsorptively bound organics including polycyclic aromatic hydrocarbons (PAH). The qualitative and quantitative nature of hydrocarbon compounds associated with the particulates is dependent not only on the combustion parameters of the engine but also to an important degree on the sampling conditions when the particulates are collected (dilution ratio, temperature, filter material, sampling time etc.). Various methods for the analyses of PAH and their oxy- and nitro-derivatives are described including sampling, extraction, fractionation and chemical analysis. Quantitative comparison of PAH, nitro-PAH and oxy-PAH from different engines are given. For assessing mutagenicity of particulate matter, short-term biological tests are widely used. These biological tests often need a great amount of particulate matter requiring prolonged filter sampling times. Since it is well known that facile PAH oxidation can take place under the conditions used for sampling and analysis, the question rises if these PAH-derivates found in particle extracts partly or totally are produced during sampling (artifacts). Various results concerning nitro- and oxy-PAH are presented characterizing artifact formation as a minor problem under the conditions of the Federal Test Procedure. But results show that under other sampling conditions, e.g. electrostatic precipitation, higher NO2-concentrations and longer sampling times, artifact formation can become a bigger problem. The more stringent particulate standard of 0.2 g/mi for model years 1986 and 1987 respectively requires particulate trap technology. Preliminary investigations of the efficiency of ceramic filters used reveal that the reduction of the adsorptively bound organics is lower than the decrease of the solid carbonaceous fractions.

  16. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of particulate matter from garbage burning, wood and dung cooking fires, motorcycles and brick kilns

    NASA Astrophysics Data System (ADS)

    Jayarathne, T. S.; Rathnayake, C.; Stockwell, C.; Daugherty, K.; Islam, R. M.; Christian, T. J.; Bhave, P.; Praveen, P. S.; Panday, A. K.; Adhikari, S.; Rasmi, M.; Goetz, D.; DeCarlo, P. F.; Saikawa, E.; Yokelson, R. J.; Stone, E. A.

    2016-12-01

    The Nepal Ambient Monitoring and Source Testing Experiment (NAMASTE) field campaign targeted the in-situ characterization of widespread and under-sampled combustion sources in South Asia by determining emission factors (EF) for fine particulate matter (PM2.5), organic carbon (OC), elemental carbon, inorganic ions, trace metals, and organic species. Garbage burning had the highest EF PM2.5 among the sampled sources ranging 7-124 g kg-1, with maximum EFs for garbage burned under higher moisture conditions. Garbage burning emissions contained high concentrations of polycyclic aromatic compounds (PAHs) and heavy metals (Pb, Cd, Zn) that are associated with acute and chronic health effects. Triphenylbenzene and antimony (Sb) were unique to garbage burning are good candidates for tracing this source. Cook stove emissions varied largely by stove technology (traditional mud stove, 3-stone cooking fire, chimney stove, etc.) and biomass fuel (dung, hardwood, twigs, and mixtures thereof). Burning dung consistently emitted more PM2.5 than burning wood and contained characteristic fecal sterols and stanols. Motorcycle emissions were evaluated before and after servicing, which decreased EF PM2.5 from 8.8 g kg-1 to 0.7 g kg-1. Organic species analysis indicated that this reduction in PM2.5­ is largely due to a decrease in emission of motor oil. For brick kilns, the forced draft zig-zag kilns had higher EF PM2.5 (12-19 g kg-1) compared to clamp kilns (8-13 g kg-1) and also exhibited chemical differences. PM2.5 emitted from the zig-zag kiln were mainly OC (7%), sulfate (32%) and uncharacterized chemical components (60%), while clamp kiln emissions were dominated by OC (64%) and ammonium sulfate (36%). The quantitative emission factors developed in this study may be used for source apportionment and to update regional emission inventories.

  17. Quarterly technical progress report, April-June 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1984-04-01

    Progress reports are presented for the following tasks: (1) preparation of low-rank coals; application of liquefaction processes to low-rank coals; (2) slagging fixed-bed gasification; (3) atmospheric fluidized-bed combustion of low-rank coal; (4) ash fouling and combustion modification for low-rank coal; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization and disposal; and (9) exploratory research.

  18. Characterizing and Quantifying Local and Regional Particulate Matter Emissions from Department of Defense Installations

    DTIC Science & Technology

    2005-03-01

    region (Fig. 4.1). A summary of the annual and seasonal average temperature, precipitation , and wind conditions for El Paso is presented in Table 4.1... Precipitation (cm) 2 Average Wind Speed 2 (km/hr) Prevailing Wind Direction 2 (degrees) Annual 17.3 22.4 14.2 360 Winter (Dec...Chow, 2001; Chow et al., 2003). The Teflon-membrane filters were analyzed for mass by gravimetry using a Cahn 31 Electro-microbalance and for 40

  19. Pattern recognition methods and air pollution source identification. [based on wind direction

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; King, R. B.

    1978-01-01

    Directional air samplers, used for resolving suspended particulate matter on the basis of time and wind direction were used to assess the feasibility of characterizing and identifying emission source types in urban multisource environments. Filters were evaluated for 16 elements and X-ray fluorescence methods yielded elemental concentrations for direction, day, and the interaction of direction and day. Large numbers of samples are necessary to compensate for large day-to-day variations caused by wind perturbations and/or source changes.

  20. Adjustment of the flue gas path in small combustion appliances with regard to particulate matter reduction

    NASA Astrophysics Data System (ADS)

    Sulovcová, Katarína; Jandačka, Jozef; Nosek, Radovan

    2014-08-01

    Concentration of solid particles in ambient atmosphere is increasing in many countries nowadays. Particulate matter pollution in higher concentration has harmful impact on human and animal health. Source of particulate matter are not only industry and traffic. Small heat sources with biomass combustion, especially during winter heating season, are also significant producer of particulate matter emission. There is a huge importance to decrease quantities of solid particles which are getting into the atmosphere in every region of their production in order to decrease environmental pollution and improve air quality. The ability of flue gas emission elimination can influence future using of biomass combustion. Therefore effective and affordable solutions are searching for. The paper deals with the reduction of particulate matter in small heat source with biomass combustion by modification of geometric parameters in flue gas path.

  1. The Role of Temporal Evolution in Modeling Atmospheric Emissions from Tropical Fires

    NASA Technical Reports Server (NTRS)

    Marlier, Miriam E.; Voulgarakis, Apostolos; Shindell, Drew T.; Faluvegi, Gregory S.; Henry, Candise L.; Randerson, James T.

    2014-01-01

    Fire emissions associated with tropical land use change and maintenance influence atmospheric composition, air quality, and climate. In this study, we explore the effects of representing fire emissions at daily versus monthly resolution in a global composition-climate model. We find that simulations of aerosols are impacted more by the temporal resolution of fire emissions than trace gases such as carbon monoxide or ozone. Daily-resolved datasets concentrate emissions from fire events over shorter time periods and allow them to more realistically interact with model meteorology, reducing how often emissions are concurrently released with precipitation events and in turn increasing peak aerosol concentrations. The magnitude of this effect varies across tropical ecosystem types, ranging from smaller changes in modeling the low intensity, frequent burning typical of savanna ecosystems to larger differences when modeling the short-term, intense fires that characterize deforestation events. The utility of modeling fire emissions at a daily resolution also depends on the application, such as modeling exceedances of particulate matter concentrations over air quality guidelines or simulating regional atmospheric heating patterns.

  2. EVALUATION OF STATIONARY SOURCE PARTICULATE MEASUREMENT METHODS. VOLUME II. OIL-FIRED STEAM GENERATORS

    EPA Science Inventory

    An experimental study was conducted to determine the reliability of the Method 5 procedure for providing particulate emission data from an oil-fired steam generator. The study was concerned with determining whether any 'false' particulate resulted from the collection process of f...

  3. USERS GUIDE FOR THE CONVERSION OF NAVY PAINT SPRAY BOOTH PARTICULATE EMISSION CONTROL SYSTEMS FROM WET TO DRY OPERATION

    EPA Science Inventory

    The report is a guide or convrting U.S. Navy paint spray booth particulate emission control systems from wet to dry operation. The use of water curtains for air pollution control of paint spray booths is considered a major source of water and solid waste pol-lution from industria...

  4. Determination of Vanadium, Tin and Mercury in Atmospheric Particulate Matter and Cement Dust Samples by Direct Current Plasma Atomic Emission Spectrometry.

    ERIC Educational Resources Information Center

    Hindy, Kamal T.; And Others

    1992-01-01

    An atmospheric pollution study applies direct current plasma atomic emission spectrometry (DCP-AES) to samples of total suspended particulate matter collected in two industrial areas and one residential area, and cement dust collected near major cement factories. These samples were analyzed for vanadium, tin, and mercury. The results indicate the…

  5. The mortality cost of particulate matter due to emissions in the Stockholm area : an investigation into harmfulness, sources and the geographical dimension of their impact

    DOT National Transportation Integrated Search

    2008-12-01

    The findings in this report are that there is not an one-to-one correspondence between emissions and costs. The reason for this is that the cost is based on health impacts which in turn are related to population exposure. Combustion particulate matte...

  6. Burning California Chaparral - An Exploratory Study of Some Common Shrubs and Their Combustion Characteristics

    Treesearch

    David R. Weise; Darold E. Ward

    1991-01-01

    Abstract. Prescribed fire is a tool used to manage vegetation in southern California. The nature and quantity of gaseous and particulate emissions have not been described for California chaparral. A study examining carbon monoxide (CO), carbon dioxide (CO2), and particulate matter emissions from fuel beds constructed from common chaparral shrubs was initiated. Chamise...

  7. EFFECTS OF INSTILLED EMISSION PARTICULATE MATTER ON ELECTROCARDIOGRAPHIC INDICES AND HEART RATE VARIABILITY (HRV) IN SPONTANEOUSLY HYPERTENSIVE RATS

    EPA Science Inventory

    EFFECTS OF INSTILLED EMISSION PARTICULATE MATTER (EPM) ON ELECTROCARDIOGRAPHIC INDICES AND HEART RATE VARIABILITY (HRV) IN SPONTANEOUSLY HYPERTENSIVE (SH) RATS. L.B. Wichers1, J.P. Nolan2, W.H. Rowan2, M.J. Campen3, T.P. Jenkins4, D.L. Costa2, and W.P. Watkinson2. 1UNC SPH, Chap...

  8. COMPARISON OF PULMONARY RESPONSES TO AUTOMOBILE-GENERATED AND NIST STANDARD REFERENCE MATERIAL DIESEL PARTICULATE EMISSIONS IN MICE

    EPA Science Inventory

    COMPARISON OF PULMONARY RESPONSES TO AUTOMOBILE-GENERATED AND NIST STANDARD REFERENCE MATERIAL DIESEL PARTICULATE EMISSIONS IN MICE. P. Singh1, C.A.J. Dick2, J. Richards3, M.J. Daniels3, and M.I. Gilmour3. 1NCSU, Raleigh, NC, 2UNC, Chapel Hill, NC and 3 USEPA, ORD, NHEERL, (ETD,...

  9. Characterization and origin of EC and OC particulate matter near the Doñana National Park (SW Spain).

    PubMed

    de la Campa, A M Sánchez; Pio, C; de la Rosa, J D; Querol, X; Alastuey, A; González-Castanedo, Y

    2009-08-01

    In the South of Spain, major industrial estates (e.g. Huelva) exist alongside ecologically interesting zones (e.g. Doñana National Park). Between June 2005 and June 2006, PM10 and PM2.5 were measured, for total mass, organic carbon (OC) and elemental carbon (EC) chemical composition, at a station in an ecologically interesting area located near Doñana National Park and an urban background area with industrial influence. The mean OC concentration is higher in the urban background (3.5 microg m(-3)) than in the rural monitoring station (2.8 microg m(-3)) as a consequence of local emissions (e.g. traffic). A total of 82% of TC is OC in the rural station, while the urban background station reveals 70% and 73% of TC in the PM10 and PM2.5 mass, respectively. The study of air-mass origin and characterization of carbonaceous species in the course of simultaneous sampling in rural and urban background monitoring stations differentiated three long-range air-mass transports: a North-African dust outbreak, Atlantic Advection and Continental (N-NW) episodes, the origins of the first and last of which are more heavily influenced by the anthropogenic emissions from industrial estates located around the city of Huelva (Punta del Sebo and Nuevo Puerto). Higher values were measured for OC and EC in the study area during the North-African dust outbreak, similar to those obtained during the Continental episode (N-NW), which was clearly influenced by industrial emissions, followed by the Atlantic Advection episodes. The comparison of carbon species with air-mass origin can help to discriminate the origin and source of particulate matter, as well as to determine the urban impact on rural areas.

  10. Particulate pollutants in the Brazilian city of São Paulo: 1-year investigation for the chemical composition and source apportionment

    NASA Astrophysics Data System (ADS)

    Martins Pereira, Guilherme; Teinilä, Kimmo; Custódio, Danilo; Gomes Santos, Aldenor; Xian, Huang; Hillamo, Risto; Alves, Célia A.; Bittencourt de Andrade, Jailson; Olímpio da Rocha, Gisele; Kumar, Prashant; Balasubramanian, Rajasekhar; de Fátima Andrade, Maria; de Castro Vasconcellos, Pérola

    2017-10-01

    São Paulo in Brazil has relatively relaxed regulations for ambient air pollution standards and often experiences high air pollution levels due to emissions of particulate pollutants from local sources and long-range transport of air masses impacted by biomass burning. In order to evaluate the sources of particulate air pollution and related health risks, a year-round sampling was done at the University of São Paulo campus (20 m a.g.l.), a green area near an important expressway. The sampling was performed for PM2. 5 ( ≤ 2. 5 µm) and PM10 ( ≤ 10 µm) in 2014 through intensive (everyday sampling in wintertime) and extensive campaigns (once a week for the whole year) with 24 h of sampling. This year was characterized by having lower average precipitation compared to meteorological data, and high-pollution episodes were observed all year round, with a significant increase in pollution level in the intensive campaign, which was performed during wintertime. Different chemical constituents, such as carbonaceous species, polycyclic aromatic hydrocarbons (PAHs) and derivatives, water-soluble ions, and biomass burning tracers were identified in order to evaluate health risks and to apportion sources. The species such as PAHs, inorganic and organic ions, and monosaccharides were determined using chromatographic techniques and carbonaceous species using thermal-optical analysis. Trace elements were determined using inductively coupled plasma mass spectrometry. The risks associated with particulate matter exposure based on PAH concentrations were also assessed, along with indexes such as the benzo[a]pyrene equivalent (BaPE) and lung cancer risk (LCR). High BaPE and LCR were observed in most of the samples, rising to critical values in the wintertime. Also, biomass burning tracers and PAHs were higher in this season, while secondarily formed ions presented low variation throughout the year. Meanwhile, vehicular tracer species were also higher in the intensive campaign, suggesting the influence of lower dispersion conditions in that period. Source apportionment was performed using positive matrix factorization (PMF), which indicated five different factors: road dust, industrial emissions, vehicular exhaust, biomass burning and secondary processes. The results highlighted the contribution of vehicular emissions and the significant input from biomass combustion in wintertime, suggesting that most of the particulate matter is due to local sources, in addition to the influence of pre-harvest sugarcane burning.

  11. On-road particulate emission measurement

    NASA Astrophysics Data System (ADS)

    Mazzoleni, Claudio

    Particulate matter (PM) suspended in the atmosphere has harmful health effects, contributes to visibility impairment, and affects atmospheric radiative transfer, thereby contributing to global change. Vehicles contribute substantially to the ambient PM concentration in urban areas, yet the fraction of ambient PM originating from vehicle emissions is poorly characterized because suitable measurement methods have not been available. This dissertation describes the development and the use of a new vehicle emission remote sensing system (VERSS) for the on-road measurement of PM emission factors for vehicles. The PM VERSS measures PM by ultraviolet backscattering and transmission. PM backscattering and transmission mass efficiencies have been calculated from Mie theory based on an homogeneous spherical model for gasoline particles and on a two-layers, spherical model for diesel particles. The VERSS was used in a large-scale study in Las Vegas, NV. A commercial gaseous VERSS was used for the measurement of gaseous emission factors (i.e., carbon monoxide, hydrocarbons, and nitrogen oxide). Speed and acceleration were also measured for each vehicle. A video image of each vehicle's rear license plate was acquired and license plate numbers were matched with the Clark County department of motor vehicle database to retrieve vehicle information such as model year, vehicle weight category and engine ignition type. PM VERSS has precisely estimated PM fleet average emission factors and clearly shown the dependence of PM emission factors on vehicle model year. Under mostly hot-stabilized operation, diesel vehicle PM emission factors are about 25 times higher than those of gasoline vehicles. Furthermore, the fleet frequency distributions of PM emission factors are highly skewed, meaning that most of the fleet emission factor is accounted for by a small portion of the fleet. The PM VERSS can measure PM emission factors for these high emitting vehicles on an individual basis. PM emission factors measured during this study are comparable to results of previous studies. Gaseous emissions in Las Vegas are similar to those in other urban areas in the United States. For individual vehicles, the pollutants do not correlate well with each other, however averaged data clearly show functional relationships.

  12. Atmospheric toxic metals emission inventory and spatial characteristics from anthropogenic sources of Guangdong province, China

    NASA Astrophysics Data System (ADS)

    Cher, S.; Menghua, L.; Xiao, X.; Yuqi, W.; Zhuangmin, Z.; Zhijiong, H.; Cheng, L.; Guanglin, J.; Zibing, Y.; Junyu, Z.

    2017-12-01

    Atmospheric toxic metals (TMs) are part of particulate matters, and may create adverse effects on the environment and human health depending upon their bioavailability and toxicity. Localized emission inventory is fundamental for parsing of toxic metals to identify key sources in order to formulate efficient toxic metals control strategies. With the use of the latest municipal level environment statistical data, this study developed a bottom-up emission inventory of five toxic metals (Hg, As, Pb, Cd, Cr) from anthropogenic activities in Guangdong province for the year of 2014. Major atmospheric toxic metals sources including combustion sources (coal, oil, biomass, municipal solid waste) and industrial process sources (cement production, nonferrous metal smelting, iron and steel industry, battery and fluorescent lamp production) were investigated. Results showed that: (1) The total emissions of Hg, As, Pb, Cd, Cr in Guangdong province were 18.14, 32.59, 411.34, 13.13, 84.16 t, respectively. (2) Different pollutants have obvious characteristics of emission sources. For total Hg emission, 46% comes from combustion sources, of which 32% from coal combustion and 8% from MSW combustion. Other 54% comes from industrial processes, which dominated by the cement (19%), fluorescent lamp (18%) and battery production (13%). Of the total Hg emission, 69% is released as Hg0 , 29% as Hg2+ , and only 2% as Hgp due to strict particulate matters controls policies. For As emissions, coal combustion, nonferrous metal smelting and iron and steel industry contributed approximate 48%, 25% and 24%, respectively. Pb emissions primarily come from battery production (42%), iron and steel industry (21%) and on-road mobile gasoline combustion (17%). Cd and Cr emissions were dominated by nonferrous metal smelting (71%) and iron and steel industry (82%), respectively. (3) In term of the spatial distribution, emissions of atmospheric toxic metals are mainly concentrated in the central region of the Pearl River Delta, such as, Guangzhou, Dongguan, and Foshan et.al. These areas were characterized with large amounts of coal combustion, battery production and fluorescent production. With the implementation of ultra-low emission standards in coal-fired power plant, TMs emissions from industrial process sources should be emphasized.

  13. Fine particulate matter emissions inventories: comparisons of emissions estimates with observations from recent field programs.

    PubMed

    Simon, Heather; Allen, David T; Wittig, Ann E

    2008-02-01

    Emissions inventories of fine particulate matter (PM2.5) were compared with estimates of emissions based on data emerging from U.S. Environment Protection Agency Particulate Matter Supersites and other field programs. Six source categories for PM2.5 emissions were reviewed: on-road mobile sources, nonroad mobile sources, cooking, biomass combustion, fugitive dust, and stationary sources. Ammonia emissions from all of the source categories were also examined. Regional emissions inventories of PM in the exhaust from on-road and nonroad sources were generally consistent with ambient observations, though uncertainties in some emission factors were twice as large as the emission factors. In contrast, emissions inventories of road dust were up to an order of magnitude larger than ambient observations, and estimated brake wear and tire dust emissions were half as large as ambient observations in urban areas. Although comprehensive nationwide emissions inventories of PM2.5 from cooking sources and biomass burning are not yet available, observational data in urban areas suggest that cooking sources account for approximately 5-20% of total primary emissions (excluding dust), and biomass burning sources are highly dependent on region. Finally, relatively few observational data were available to assess the accuracy of emission estimates for stationary sources. Overall, the uncertainties in primary emissions for PM2.s are substantial. Similar uncertainties exist for ammonia emissions. Because of these uncertainties, the design of PM2.5 control strategies should be based on inventories that have been refined by a combination of bottom-up and top-down methods.

  14. Particulate Matter (PM) Pollution

    EPA Pesticide Factsheets

    Particulate matter (PM) is one of the air pollutants regulated by the National Ambient Air Quality Standards (NAAQS). Reducing emissions of inhalable particles improves public health as well as visibility.

  15. Development and Characterization of Laser-Induced Incandescence Towards Nanoparticle (Soot) Detection

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.

    2000-01-01

    The production of particulates, notably soot, during combustion has both positive and negative ramifications. Exhaust from diesel engines under load (for example, shifting gears), flickering candle flames and fireplaces all produce soot leaving a flame. From an efficiency standpoint, emission of soot from engines, furnaces or even a simple flickering candle flame represents a loss of useful energy. The emission of soot from diesel engines, furnaces, power generation facilities, incinerators and even simple flames poses a serious environmental problem and health risk. Yet some industries intentionally produce soot as carbon black for use in inks, copier toner, tires and as pigments. Similarly, the presence of soot within flames can act both positively and negatively. Energy transfer from a combustion process is greatly facilitated by the radiative heat transfer from soot yet radiative heat transfer also facilitates the spread of unwanted fires. To understand soot formation and develop control strategies for soot emission/formation, measurements of soot concentration in both practical devices such as engines and controlled laboratory flames are necessary. Laser-induced incandescence (LII) has been developed and characterized to address this need, as described here.

  16. Emissions factors for gaseous and particulate pollutants from offshore diesel engine vessels in China

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Chen, Y.; Tian, C.; Li, J.; Zhang, G.; Matthias, V.

    2015-09-01

    Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbor districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel engine power offshore vessels in China were measured in this study. Concentrations, fuel-based and power-based emissions factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emissions factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low engine power vessel than for the two higher engine power vessels. Fuel-based average emissions factors for all pollutants except sulfur dioxide in the low engine power engineering vessel were significantly higher than that of the previous studies, while for the two higher engine power vessels, the fuel-based average emissions factors for all pollutants were comparable to the results of the previous studies. The fuel-based average emissions factor for nitrogen oxides for the small engine power vessel was more than twice the International Maritime Organization standard, while those for the other two vessels were below the standard. Emissions factors for all three vessels were significantly different during different operating modes. Organic carbon and elemental carbon were the main components of particulate matter, while water-soluble ions and elements were present in trace amounts. Best-fit engine speeds during actual operation should be based on both emissions factors and economic costs.

  17. Environmental assessment of a watertube boiler firing a coal-water slurry. Volume 1. Technical results. Final report, January 1984-March 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeRosier, R.; Waterland, L.R.

    1986-02-01

    The report describes results from field testing a watertube industrial boiler firing a coal/water slurry (CWS) containing about 60% coal. Emission measurements included continuous monitoring of flue-gas emissions; source assessment sampling system (SASS) sampling of the flue-gas, with subsequent analysis of samples to obtain total flue-gas organics in two boiling point ranges, compound category information within these ranges, specific quantitation of the semivolatile organic priority pollutants, and flue-gas concentrations of 73 trace elements: EPA Methods 5/8 sampling for particulate, SO/sub 2/, and SO/sub 3/ emissions; and grab sampling of fuel and ash for inorganic composition. NOx, SO/sub 2/, CO, andmore » TUHC emissions were in the 230-310, 880-960, 170-200, and 1-3 ppm ranges (corrected to 3% 02), respectively, over the two tests performed. Particulate levels at the boiler outlet (upstream of the unit's baghouse) were 7.3 g/dscm in the comprehensive test. Coarse particulate (>3 micrometers) predominated. Total organic emissions were almost 50 mg/dscm, with about 70% of the organic matter in the nonvolatile (>300 C) boiling point range. The bottom ash organic content was 8 mg/g, 80% of which was in the nonvolatile range. Of the PAHs, only naphthalene was detected in the flue gas particulate, with emission levels of 8.6 micrograms/dscm. Several PAHs were found in the bottom ash.« less

  18. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  19. 40 CFR 86.1320-90 - Gas meter or flow instrumentation calibration; particulate, methanol, and formaldehyde measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Gas meter or flow instrumentation... instrumentation calibration; particulate, methanol, and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas meters or flow instrumentation to determine...

  20. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  1. 40 CFR 86.1320-90 - Gas meter or flow instrumentation calibration; particulate, methanol, and formaldehyde measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Gas meter or flow instrumentation... instrumentation calibration; particulate, methanol, and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas meters or flow instrumentation to determine...

  2. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  3. 40 CFR 86.1320-90 - Gas meter or flow instrumentation calibration; particulate, methanol, and formaldehyde measurement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... instrumentation calibration; particulate, methanol, and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas meters or flow instrumentation to determine...

  4. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  5. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  6. 40 CFR 86.1320-90 - Gas meter or flow instrumentation calibration; particulate, methanol, and formaldehyde measurement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Gas meter or flow instrumentation... instrumentation calibration; particulate, methanol, and formaldehyde measurement. (a) Sampling for particulate, methanol and formaldehyde emissions requires the use of gas meters or flow instrumentation to determine...

  7. Semivolatile Particulate Organic Material Southern Africa during SAFARI 2000

    NASA Technical Reports Server (NTRS)

    Eatough, D. J.; Eatough, N. L.; Pang, Y.; Sizemore, S.; Kirchstetter, T. W.; Novakov, T.

    2005-01-01

    During August and September 2000, the University of Washington's Cloud and Aerosol Research Group (CARG) with its Convair-580 research aircraft participated in the Southern African Fire-Atmosphere Research Initiative (SAFARI) 2000 field study in southern Africa. Aboard this aircraft was a Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS), which was used to determine semivolatile particulate material with a diffusion denuder sampler. Denuded quartz filters and sorbent beds in series were used to measure nonvolatile and semivolatile materials, respectively. Results obtained with the PC-BOSS are compared to those obtained with conventional quartz-quartz and Teflon-quartz filter pack samplers. Various 10-120 min integrated samples were collected during flights through the h e troposphere, in the atmospheric boundary layer, and in plumes from savanna fires. Significant fine particulate semivolatile organic compounds (SVOC) were found in all samples. The SVOC was not collected by conventional filter pack samplers and therefore would not have been determined in previous studies that used only filter pack samplers. The SVOC averaged 24% of the fine particulate mass in emissions from the fires and 36% of the fine particulate mass in boundary layer samples heavily impacted by aged emissions from savanna fires. Concentrations of fine particulate material in the atmospheric mixed layer heavily impacted by aged savanna frre emissions averaged 130 micrograms per cubic meter. This aerosol was 85% carbonaceous mated.

  8. Characterization of the particulate emissions from the BP Deepwater Horizon surface oil burns.

    PubMed

    Gullett, Brian K; Hays, Michael D; Tabor, Dennis; Wal, Randy Vander

    2016-06-15

    Sampling of the smoke plumes from the BP Deepwater Horizon surface oil burns led to the unintentional collection of soot particles on the sail of an instrument-bearing, tethered aerostat. This first-ever plume sampling from oil burned at an actual spill provided an opportunistic sample from which to characterize the particles' chemical properties for polycyclic aromatic hydrocarbons (PAHs), organic carbon, elemental carbon, metals, and polychlorinated dibenzodioxins/dibenzofurans (PCDDs/PCDFs) and physical properties for size and nanostructure. Thermal-optical analyses indicated that the particulate matter was 93% carbon with 82% being refractory elemental carbon. PAHs accounted for roughly 68μg/g of the PM filter mass and 5mg/kg oil burned, much lower than earlier laboratory based studies. Microscopy indicated that the soot is distinct from more common soot by its aggregate size, primary particle size, and nanostructure. PM-bound metals were largely unremarkable but PCDD/PCDF formation was observed, contrary to other's findings. Levels of lighter PCDD/PCDF and PAH compounds were reduced compared to historical samples, possibly due to volatilization or photo-oxidation. Published by Elsevier Ltd.

  9. Advanced Hybrid Particulate Collector Project Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, S.J.

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the bestmore » method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting« less

  10. Chemical characterization of PM2.5 emitted from on-road heavy-duty diesel trucks in China

    NASA Astrophysics Data System (ADS)

    Zhang, Yingzhi; Yao, Zhiliang; Shen, Xianbao; Liu, Huan; He, Kebin

    2015-12-01

    Heavy-duty diesel trucks (HDDTs) are gaining more attention because of their contribution to NOX and PM2.5 emissions. To evaluate their contribution to ambient fine particulate matter (PM2.5), not only their emission factors, but also their source profile is required. We conducted on-road emissions tests to characterize the PM2.5 emission, documenting per second mass emission rates from in-use HDDTs in China, using portable emissions measurement systems. The average PM2.5 emission factors for pre-EURO and EURO 1 HDDTs were 1.104 g/km and 0.822 g/km, equivalent to 6.106 g/kg and 3.132 g/kg based on fuel consumption. Element carbon (EC) and organic carbon (OC) were the major components: EC accounted for 45-65% of PM2.5 for pre-EURO HDDTs and 36-69% for EURO 1 HDDTs, while the OC fraction for pre-EURO and EURO 1 HDDTs ranged from 20 to 31% and 19-31%, respectively. Thus, the average EC emission factors for pre-EURO and EURO 1 HDDTs were 0.667 g/km and 0.502 g/km, showing that implementation of tighter emission standards resulted in a 25% EC output reduction from pre-EURO to EURO 1 vehicles. Sulfate, comprising about 1% of PM2.5 mass, is still an abundant species in PM2.5 from HDDTs because of the high sulfur content in diesel fuel in China. Using these data, we updated national PM2.5 emission profiles for pre-EURO and EURO 1 HDDTs.

  11. A large source of dust missing in particulate matter emission inventories? Wind erosion of post-fire landscapes

    Treesearch

    N. S. Wagenbrenner; S. H. Chung; B. K. Lamb

    2017-01-01

    Wind erosion of soils burned by wildfire contributes substantial particulate matter (PM) in the form of dust to the atmosphere, but the magnitude of this dust source is largely unknown. It is important to accurately quantify dust emissions because they can impact human health, degrade visibility, exacerbate dust-on-snow issues (including snowmelt timing, snow chemistry...

  12. Fugitive emission rates assessment of PM2.5 and PM10 from open storage piles in China

    NASA Astrophysics Data System (ADS)

    Cao, Yiqi; Liu, Tao; He, Jiao

    2018-03-01

    An assessment of the fugitive emission rates of PM2.5 and PM10 from an open static coal and mine storage piles. The experiment was conducted at a large union steel enterprises in the East China region to effectively control the fugitive particulate emissions pollution on daily work and extreme weather conditions. Wind tunnel experiments conducted on the surface of static storage piles, and it generated specific fugitive emission rates (SERs) at ground level of between ca.10-1 and ca.102 (mg/m2·s) for PM2.5 and between ca.101 and ca.103 (mg/m2·s) for PM10 under the u*(wind velocity) between ca.3.0 (m/s) and 10.0 (m/s). Research results show that SERs of different materials differ a lot. Material particulate that has lower surface moisture content generate higher SER and coal material generate higher SER than mine material. For material storage piles with good water infiltrating properties, aspersion is a very effective measure for control fugitive particulate emission.

  13. Estimating Anthropogenic Emissions of Hydrogen Chloride and Fine Particulate Chloride in China

    NASA Astrophysics Data System (ADS)

    Fu, X.; Wang, T.; Wang, S.; Zhang, L.

    2017-12-01

    Nitryl chloride (ClNO2) can significantly impact the atmospheric photochemistry via photolysis and subsequent reactions of chlorine radical with other gases. The formation of ClNO2 in the atmosphere is sensitive to the emissions of chlorine-containing particulates from oceanic and anthropogenic sources. For China, the only available anthropogenic chlorine emission inventory was compiled for the year 1990 with a coarse resolution of 1 degree. In this study, we developed an up-to-date anthropogenic inventory of hydrogen chloride (HCl) and fine particulate chloride (Cl-) emissions in China for the year 2014, including coal burning, industrial processes, biomass burning and waste burning. Bottom-up and top-down methodologies were combined. Detailed local data (e.g. Cl content in coal, control technologies, etc.) were collected and applied. In order to improve the spatial resolution of emissions, detailed point source information were collected for coal-fired power plants, cement factories, iron & steel factories and waste incineration factories. Uncertainties of this emission inventory and their major causes were analyzed using the Monte Carlo method. This work enables better quantification of the ClNO2 production and impact over China.

  14. Temperature effects on particulate emissions from DPF-equipped diesel trucks operating on conventional and biodiesel fuels.

    PubMed

    Book, Emily K; Snow, Richard; Long, Thomas; Fang, Tiegang; Baldauf, Richard

    2015-06-01

    Emissions tests were conducted on two medium heavy-duty diesel trucks equipped with a particulate filter (DPF), with one vehicle using a NOx absorber and the other a selective catalytic reduction (SCR) system for control of nitrogen oxides (NOx). Both vehicles were tested with two different fuels (ultra-low-sulfur diesel [ULSD] and biodiesel [B20]) and ambient temperatures (70ºF and 20ºF), while the truck with the NOx absorber was also operated at two loads (a heavy weight and a light weight). The test procedure included three driving cycles, a cold start with low transients (CSLT), the federal heavy-duty urban dynamometer driving schedule (UDDS), and a warm start with low transients (WSLT). Particulate matter (PM) emissions were measured second-by-second using an Aethalometer for black carbon (BC) concentrations and an engine exhaust particle sizer (EEPS) for particle count measurements between 5.6 and 560 nm. The DPF/NOx absorber vehicle experienced increased BC and particle number concentrations during cold starts under cold ambient conditions, with concentrations two to three times higher than under warm starts at higher ambient temperatures. The average particle count for the UDDS showed an opposite trend, with an approximately 27% decrease when ambient temperatures decreased from 70ºF to 20ºF. This vehicle experienced decreased emissions when going from ULSD to B20. The DPF/SCR vehicle tested had much lower emissions, with many of the BC and particle number measurements below detectable limits. However, both vehicles did experience elevated emissions caused by DPF regeneration. All regeneration events occurred during the UDDS cycle. Slight increases in emissions were measured during the WSLT cycles after the regeneration. However, the day after a regeneration occurred, both vehicles showed significant increases in particle number and BC for the CSLT drive cycle, with increases from 93 to 1380% for PM number emissions compared with tests following a day with no regeneration. The use of diesel particulate filters (DPFs) on trucks is becoming more common throughout the world. Understanding how DPFs affect air pollution emissions under varying operating conditions will be critical in implementing effective air quality standards. This study evaluated particulate matter (PM) and black carbon (BC) emissions with two DPF-equipped heavy-duty diesel trucks operating on conventional fuel and a biodiesel fuel blend at varying ambient temperatures, loads, and drive cycles.

  15. Effects of polycyclic aromatic compounds in fine particulate matter generated from household coal combustion on response to EGFR mutations in vitro.

    PubMed

    Ho, Kin-Fai; Chang, Chih-Cheng; Tian, Linwei; Chan, Chi-Sing; Musa Bandowe, Benjamin A; Lui, Ka-Hei; Lee, Kang-Yun; Chuang, Kai-Jen; Liu, Chien-Ying; Ning, Zhi; Chuang, Hsiao-Chi

    2016-11-01

    Induction of PM 2.5 -associated lung cancer in response to EGFR-tyrosine kinase inhibitors (EGFR-TKI) remains unclear. Polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives (oxygenated PAHs: OPAHs and azaarenes: AZAs) were characterized in fine particulates (PM 2.5 ) emitted from indoor coal combustion. Samples were collected in Xuanwei (Yunnan Province), a region in China with a high rate of lung cancer. Human lung adenocarcinoma cells A549 (with wild-type EGFR) and HCC827 (with EGFR mutation) were exposed to the PM 2.5 , followed by treatment with EGFR-TKI. Two samples showed significant and dose-dependent reduction in the cell viability in A549. EGFR-TKI further demonstrated significantly decreased in cell viability in A549 after exposure to the coal emissions. Chrysene and triphenylene, dibenzo[a,h]anthracene, benzo[ghi]perylene, azaarenes and oxygenated polycyclic aromatic hydrocarbons (carbonyl-OPAHs) were all associated with EGFR-TKI-dependent reduced cell viability after 72-h exposure to the PM 2.5 . The findings suggest the coal emissions could influence the response of EGFR-TKI in lung cancer cells in Xuanwei. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Spatiotemporal distribution of airborne particulate metals and metalloids in a populated arid region

    NASA Astrophysics Data System (ADS)

    Prabhakar, Gouri; Sorooshian, Armin; Toffol, Emily; Arellano, Avelino F.; Betterton, Eric A.

    2014-08-01

    A statistical analysis of data from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network of aerosol samplers has been used to study the spatial and temporal concentration trends in airborne particulate metals and metalloids for southern Arizona. The study region is a rapidly growing area in southwestern North America characterized by high fine soil concentrations (among the highest in the United States), anthropogenic emissions from an area within the fastest growing region in the United States, and a high density of active and abandoned mining sites. Crustal tracers in the region are most abundant in the summer (April-June) followed by fall (October-November) as a result of dry meteorological conditions which favor dust emissions from natural and anthropogenic activity. A distinct day-of-week cycle is evident for crustal tracer mass concentrations, with the greatest amplitude evident in urban areas. There have been significant reductions since 1988 in the concentrations of toxic species that are typically associated with smelting and mining. Periods with high fine soil concentrations coincide with higher concentrations of metals and metalloids in the atmosphere, with the enhancement being higher at urban sites.

  17. Biodegradation of potential diesel oxygenate additives: dibutyl maleate (DBM), and tripropylene glycol methyl ether (TGME).

    PubMed

    Marchetti, Alfredo A; Knize, Mark G; Chiarappa-Zucca, Marina L; Pletcher, Ronald J; Layton, David W

    2003-08-01

    The addition of oxygen-bearing compounds to diesel fuel considerably reduces particulate emissions. TGME and DBM have been identified as possible diesel additives based on their physicochemical characteristics and performance in engine tests. Although these compounds will reduce particulate emissions, their potential environmental impacts are unknown. As a means of characterizing their persistence in environmental media such as soil and groundwater, we conducted a series of biodegradation tests of DBM and TGME. Benzene and methyl tertiary butyl ether (MTBE) were also tested as reference compounds. Primary degradation of DBM fully occurred within 3 days, while TGME presented a lag phase of approximately 8 days and was not completely degraded by day 28. Benzene primary degradation occurred completely by day 3 and MTBE did not degrade at all. The total mineralized fractions of DBM and TGME achieved constant values as a function of time of approximately 65% and approximately 40%, respectively. Transport predictions show that, released to the environment, DBM and TGME would concentrate mostly in soils and waters with minimal impact to air. From an environmental standpoint, these results combined with the transport predictions indicate that DBM is a better choice than TGME as a diesel additive.

  18. Evaluation of AirMSPI photopolarimetric retrievals of smoke properties with in-situ observations collected during the ImPACT-PM field campaign

    NASA Astrophysics Data System (ADS)

    Kalashnikova, O. V.; Garay, M. J.; Xu, F.; Seidel, F.; Diner, D. J.; Seinfeld, J.; Bates, K. H.; Kong, W.; Kenseth, C.; Cappa, C. D.

    2017-12-01

    We introduce and evaluate an approach for obtaining closure between in situ and polarimetric remote sensing observations of smoke properties obtained during the collocated CIRPAS Twin Otter and ER-2 aircraft measurements of the Lebec fire event on July 8, 2016. We investigate the utility of multi-angle, spectropolarimetric remote sensing imagery to evaluate the relative contribution of organics, non-organic and black carbon particles to smoke particulate composition. The remote sensing data were collected during the Imaging Polarimetric and Characterization of Tropospheric Particular Matter (ImPACT-PM) field campaign by the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), which flew on NASA's high-altitude ER-2 aircraft. The ImPACT-PM field campaign was a joint JPL/Caltech effort to combine measurements from the Terra Multi-angle Imaging SpectroRadiometer (MISR), AirMSPI, in situ airborne measurements, and a chemical transport model to validate remote sensing retrievals of different types of airborne particulate matter with a particular emphasis on carbonaceous aerosols. The in-situ aerosol data were collected with a suite of Caltech instruments on board the CIRPAS Twin Otter aircraft and included the Aerosol Mass Spectrometer (AMS), the Differential Mobility Analyzer (DMA), and the Single Particle Soot Photometer (SP-2). The CIRPAS Twin Otter aircraft was also equipped with the Particle Soot Absorption Photometer (PSAP), nephelometer, a particle counter, and meteorological sensors. We found that the multi-angle polarimetric observations are capable of fire particulate emission monitoring by particle type as inferred from the in-situ airborne measurements. Modeling of retrieval sensitivities show that the characterization of black carbon is the most challenging. The work aims at evaluating multi-angle, spectropolarimetric capabilities for particulate matter characterization in support of the Multi-Angle Imager for Aerosols (MAIA) satellite investigation, which is currently in development under NASA's third Earth Venture Instrument Program.

  19. 40 CFR 86.145-82 - Calculations; particulate emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., inside the dilution air filter box at EPA is very low. Pb will be assumed = 0, and background particulate.... 86.145-82 Section 86.145-82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... further defined in § 86.144. (3) P e = mass of particulate per test on the exhaust filter(s), grams. (4...

  20. 40 CFR 86.145-82 - Calculations; particulate emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., inside the dilution air filter box at EPA is very low. Pb will be assumed = 0, and background particulate.... 86.145-82 Section 86.145-82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... further defined in § 86.144. (3) P e = mass of particulate per test on the exhaust filter(s), grams. (4...

  1. 77 FR 1873 - Approval and Promulgation of Implementation Plans; Georgia; Rome; Fine Particulate Matter 2002...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ...] Approval and Promulgation of Implementation Plans; Georgia; Rome; Fine Particulate Matter 2002 Base Year... is taking direct final action to approve the fine particulate matter (PM 2.5 ) 2002 base year... progress (RFP) plan, contingency measures, a 2002 base year emissions inventory and other planning SIP...

  2. 77 FR 12487 - Approval and Promulgation of Implementation Plans; Georgia; Atlanta; Fine Particulate Matter 2002...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ...] Approval and Promulgation of Implementation Plans; Georgia; Atlanta; Fine Particulate Matter 2002 Base Year... is taking direct final action to approve the fine particulate matter (PM 2.5 ) 2002 base year... progress (RFP) plan, contingency measures, a 2002 base year emissions inventory and other planning SIP...

  3. 77 FR 12724 - Approval and Promulgation of Implementation Plans; Georgia; Macon; Fine Particulate Matter 2002...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ...] Approval and Promulgation of Implementation Plans; Georgia; Macon; Fine Particulate Matter 2002 Base Year... is taking direct final action to approve the fine particulate matter (PM 2.5 ) 2002 base year... progress (RFP) plan, contingency measures, a 2002 base year emissions inventory and other planning SIP...

  4. Individual and population intake fractions of diesel particulate matter (DPM) in bus stop microenvironments.

    PubMed

    Xu, Jia; Jin, Taosheng; Miao, Yaning; Han, Bin; Gao, Jiajia; Bai, Zhipeng; Xu, Xiaohong

    2015-12-01

    Diesel particulate matter (DPM) is associated with adverse human health effects. This study aims to investigate the relationship between DPM exposure and emissions by estimating the individual intake fraction (iFi) and population intake fraction (iFp) of DPM. Daily average concentrations of particulate matter at two bus stops during rush hours were measured, and then they were apportioned to DPM due to heavy-duty diesel bus emissions using Chemical Mass Balance Model. The DPM emissions of diesel buses for different driving conditions (idling, creeping and traveling) were estimated on the basis of field observations and published emission factors. The median iFi of DPM was 0.67 and 1.39 per million for commuters standing at the bus stop and pedestrians/cyclists passing through the bus stop during rush hours, respectively. The median iFp of DPM was 94 per million. Estimations of iFi and iFp of DPM are potentially significant for exposure assessment and risk management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Diesel particulate emissions from used cooking oil biodiesel.

    PubMed

    Lapuerta, Magín; Rodríguez-Fernández, José; Agudelo, John R

    2008-03-01

    Two different biodiesel fuels, obtained from waste cooking oils with different previous uses, were tested in a DI diesel commercial engine either pure or in 30% and 70% v/v blends with a reference diesel fuel. Tests were performed under a set of engine operating conditions corresponding to typical road conditions. Although the engine efficiency was not significantly affected, an increase in fuel consumption with the biodiesel concentration was observed. This increase was proportional to the decrease in the heating value. The main objective of the work was to study the effect of biodiesel blends on particulate emissions, measured in terms of mass, optical effect (smoke opacity) and size distributions. A sharp decrease was observed in both smoke and particulate matter emissions as the biodiesel concentration was increased. The mean particle size was also reduced with the biodiesel concentration, but no significant increases were found in the range of the smallest particles. No important differences in emissions were found between the two tested biodiesel fuels.

  6. Impacts of continuously regenerating trap and particle oxidation catalyst on the NO2 and particulate matter emissions emitted from diesel engine.

    PubMed

    Liu, Zhihua; Ge, Yunshan; Tan, Jianwei; He, Chao; Shah, Asad Naeem; Ding, Yan; Yu, Linxiao; Zhao, Wei

    2012-01-01

    Two continuously regenerating diesel particulate filter (CRDPF) with different configurations and one particles oxidation catalyst (POC) were employed to perform experiments in a controlled laboratory setting to evaluate their effects on NO2, smoke and particle number emissions. The results showed that the application of the after-treatments increased the emission ratios of NO2/NOx significantly. The results of smoke emissions and particle number (PN) emissions indicated that both CRDPFs had sufficient capacity to remove more than 90% of total particulate matter (PM) and more than 97% of solid particles. However, the POC was able to remove the organic components of total PM, and only partially to remove the carbonaceous particles with size less than 30 nm. The negligible effects of POC on larger particles were observed due to its honeycomb structure leads to an inadequate residence time to oxidize the solid particles or trap them. The particles removal efficiencies of CRDPFs had high degree of correlations with the emission ratio of NO2/NOx. The PN emission results from two CRDPFs indicated that more NO2 generating in diesel oxidation catalyst section could obtain the higher removal efficiency of solid particles. However this also increased the risk of NO2 exposure in atmosphere.

  7. PM2.5 and ultrafine particulate matter emissions from natural gas-fired turbine for power generation

    NASA Astrophysics Data System (ADS)

    Brewer, Eli; Li, Yang; Finken, Bob; Quartucy, Greg; Muzio, Lawrence; Baez, Al; Garibay, Mike; Jung, Heejung S.

    2016-04-01

    The generation of electricity from natural gas-fired turbines has increased more than 200% since 2003. In 2007 the South Coast Air Quality Management District (SCAQMD) funded a project to identify control strategies and technologies for PM2.5 and ultrafine emissions from natural gas-fired turbine power plants and test at pilot scale advanced PM2.5 technologies to reduce emissions from these gas turbine-based power plants. This prompted a study of the exhaust from new facilities to better understand air pollution in California. To characterize the emissions from new natural gas turbines, a series of tests were performed on a GE LMS100 gas turbine located at the Walnut Creek Energy Park in August 2013. These tests included particulate matter less than 2.5 μm in diameter (PM2.5) and wet chemical tests for SO2/SO3 and NH3, as well as ultrafine (less than 100 nm in diameter) particulate matter measurements. After turbine exhaust was diluted sevenfold with filtered air, particle concentrations in the 10-300 nm size range were approximately two orders of magnitude higher than those in the ambient air and those in the 2-3 nm size range were up to four orders of magnitude higher. This study also found that ammonia emissions were higher than expected, but in compliance with permit conditions. This was possibly due to an ammonia imbalance entering the catalyst, some flue gas bypassing the catalyst, or not enough catalyst volume. SO3 accounted for an average of 23% of the total sulfur oxides emissions measured. While some of the SO3 is formed in the combustion process, it is likely that the majority formed as the SO2 in the combustion products passed across the oxidizing CO catalyst and SCR catalyst. The 100 MW turbine sampled in this study emitted particle loadings of 3.63E-04 lb/MMBtu based on Methods 5.1/201A and 1.07E-04 lb/MMBtu based on SMPS method, which are similar to those previously measured from turbines in the SCAQMD area (FERCo et al., 2014), however, the turbine exhaust contained orders of magnitude higher particles than ambient air.

  8. Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: engine performance and regulated and unregulated exhaust emissions.

    PubMed

    Cardone, Massimo; Prati, Maria Vittoria; Rocco, Vittorio; Seggiani, Maurizia; Senatore, Adolfo; Vitoloi, Sandra

    2002-11-01

    A comparison of the performance of Brassica carinata oil-derived biodiesel with a commercial rapeseed oil-derived biodiesel and petroleum diesel fuel is discussed as regards engine performance and regulated and unregulated exhaust emissions. B. carinata is an oil crop that can be cultivated in coastal areas of central-southern Italy, where it is more difficult to achieve the productivity potentials of Brassica napus (by far the most common rapeseed cultivated in continental Europe). Experimental tests were carried out on a turbocharged direct injection passenger car diesel engine fueled with 100% biodiesel. The unregulated exhaust emissions were characterized by determining the SOOT and soluble organic fraction content in the particulate matter, together with analysis of the content and speciation of polycyclic aromatic hydrocarbons, some of which are potentially carcinogenic, and of carbonyl compounds (aldehydes, ketones) that act as ozone precursors. B. carinata and commercial biodiesel behaved similarly as far as engine performance and regulated and unregulated emissions were concerned. When compared with petroleum diesel fuel, the engine test bench analysis did not show any appreciable variation of output engine torque values, while there was a significant difference in specific fuel consumption data at the lowest loads for the biofuels and petroleum diesel fuel. The biofuels were observed to produce higher levels of NOx concentrations and lower levels of PM with respect to the diesel fuel. The engine heat release analysis conducted shows that there is a potential for increased thermal NOx generation when firing biodiesel with no prior modification to the injection timing. It seems that, for both the biofuels, this behavior is caused by an advanced combustion evolution, which is particularly apparent at the higher loads. When compared with petroleum diesel fuel, biodiesel emissions contain less SOOT, and a greater fraction of the particulate was soluble. The analysis and speciation of the soluble organic fraction of biodiesel particulate suggest that the carcinogenic potential of the biodiesel emissions is probably lower than that of petroleum diesel. Its better adaptivity and productivity in clay and sandy-type soils and in semiarid temperate climate and the fact that the performance of its derived biodiesel is quite similar to commercial biodiesel make B. carinata a promising oil crop that could offer the possibility of exploiting the Mediterranean marginal areas for energetic purposes.

  9. Characterization of the emissions impacts of hybrid excavators with a portable emissions measurement system (PEMS)-based methodology.

    PubMed

    Cao, Tanfeng; Russell, Robert L; Durbin, Thomas D; Cocker, David R; Burnette, Andrew; Calavita, Joseph; Maldonado, Hector; Johnson, Kent C

    2018-04-13

    Hybrid engine technology is a potentially important strategy for reduction of tailpipe greenhouse gas (GHG) emissions and other pollutants that is now being implemented for off-road construction equipment. The goal of this study was to evaluate the emissions and fuel consumption impacts of electric-hybrid excavators using a Portable Emissions Measurement System (PEMS)-based methodology. In this study, three hybrid and four conventional excavators were studied for both real world activity patterns and tailpipe emissions. Activity data was obtained using engine control module (ECM) and global positioning system (GPS) logged data, coupled with interviews, historical records, and video. This activity data was used to develop a test cycle with seven modes representing different types of excavator work. Emissions data were collected over this test cycle using a PEMS. The results indicated the HB215 hybrid excavator provided a significant reduction in tailpipe carbon dioxide (CO 2 ) emissions (from -13 to -26%), but increased diesel particulate matter (PM) (+26 to +27%) when compared to a similar model conventional excavator over the same duty cycle. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogge, W.F.; Hildemann, L.M.; Mazurek, M.A.

    Gasoline- and diesel-powered vehicles are known to contribute appreciable amounts of inhalable fine particulate matter to the atmosphere in urban areas. Internal combustion engines burning gasoline and diesel fuel contribute more than 21% of the primary fine particulate organic carbon emitted to the Los Angeles atmosphere. In the present study, particulate (d[sub p] [le] 2 [mu]m) exhaust emissions from six noncatalyst automobiles, seven catalyst-equipped automobiles, and two heavy-duty diesel trucks are examined by gas chromatography/mass spectrometry. The purposes of this study are as follows: (a) to search for conservative marker compounds suitable for tracing the presence of vehicular particulate exhaustmore » emissions in the urban atmosphere, (b) to compile quantitative source profiles, and (c) to study the contributions of fine organic particulate vehicular exhaust to the Los Angeles atmosphere. More than 100 organic compounds are quantified, including n-alkanes, n-alkanoic acids, benzoic acids, benzaldehydes, PAH, oxy-PAH, steranes, pentacyclic triterpanes, azanaphthalenes, and others. Although fossil fuel markers such as steranes and pentacyclic triterpanes can be emitted from other sources, it can be shown that their ambient concentrations measured in the Los Angeles atmosphere are attributable mainly to vehicular exhaust emissions. 102 refs., 9 figs., 6 tabs.« less

  11. Emission reduction from diesel engine using fumigation methanol and diesel oxidation catalyst.

    PubMed

    Zhang, Z H; Cheung, C S; Chan, T L; Yao, C D

    2009-07-15

    This study is aimed to investigate the combined application of fumigation methanol and a diesel oxidation catalyst for reducing emissions of an in-use diesel engine. Experiments were performed on a 4-cylinder naturally-aspirated direct-injection diesel engine operating at a constant speed of 1800 rev/min for five engine loads. The experimental results show that at low engine loads, the brake thermal efficiency decreases with increase in fumigation methanol; but at high loads, it slightly increases with increase in fumigation methanol. The fumigation method results in a significant increase in hydrocarbon (HC), carbon monoxide (CO), and nitrogen dioxide (NO(2)) emissions, but decrease in nitrogen oxides (NO(x)), smoke opacity and the particulate mass concentration. For the submicron particles, the total number of particles decreases. In all cases, there is little change in geometrical mean diameter of the particles. After catalytic conversion, the HC, CO, NO(2), particulate mass and particulate number concentrations were significantly reduced at medium to high engine loads; while the geometrical mean diameter of the particles becomes larger. Thus, the combined use of fumigation methanol and diesel oxidation catalyst leads to a reduction of HC, CO, NO(x), particulate mass and particulate number concentrations at medium to high engine loads.

  12. Communal biofuel burning for district heating: Emissions and immissions from medium-sized (0.4 and 1.5 MW) facilities

    NASA Astrophysics Data System (ADS)

    Fachinger, Friederike; Drewnick, Frank; Gieré, Reto; Borrmann, Stephan

    2018-05-01

    Particulate and gaseous emissions of two medium-sized district heating facilities (400 kW, fueled with miscanthus, and 1.5 MW, fueled with wood chips) were characterized for different operational conditions, and compared to previously obtained results for household wood and pellet stoves. SO2 and NOx emission factors (reported in mg MJFuel-1) were found to not only depend on fuel sulfur/nitrogen content, but also on combustion appliance type and efficiency. Emission factors of SO2, NOx, and PM (particulate matter) increased with increasing load. Particle chemical composition did not primarily depend on operational conditions, but varied mostly with combustion appliances, fuel types, and flue gas cleaning technologies. Black carbon content was decreasing with increasing combustion efficiency; chloride content was strongly enhanced when burning miscanthus. Flue gas cleaning using an electrostatic precipitator caused strong reduction not only in total PM, but also in the fraction of refractory and semi-refractory material within emitted PM1. For the impact of facilities on their surroundings (immissions) not only their total emissions are decisive, but also their stack heights. In immission measurements downwind of the two facilities, a plume could only be observed for the 400 kW facility with low (11 m) stack height (1.5 MW facility: 30 m), and measured immissions agreed reasonably well with predicted ones. The impact of these immissions is non-negligible: At a distance of 50 m from the facility, apart from CO2, also plume contributions of NOx, ultrafine particles, PM1, PM10, poly-aromatic hydrocarbons, and sulfate were detected, with enhancements above background values of 2-130%.

  13. Multifunctional Fuel Additives for Reduced Jet Particulate Emissions

    DTIC Science & Technology

    2006-06-01

    additives, turbine engine emissions, particulates, chemical kinetics, combustion, JP-8 chemistry 16. SECURITY CLASSIFICATION OF: 19a. NAME OF...from the UNICORN CFD code using the full and skeletal versions of the Violi et al JP-8 mechanism ...................114 Figure 64. Comparison of...calculated jet flame benzene mole fraction contours from the UNICORN CFD code using the full and skeletal versions of the Violi et al JP-8 mechanism

  14. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    DTIC Science & Technology

    2016-09-01

    AFRL-RQ-WP-TR-2016-0131 DEMONSTRATION OF NOVEL SAMPLING TECHNIQUES FOR MEASUREMENT OF TURBINE ENGINE VOLATILE AND NON-VOLATILE PARTICULATE...MATTER (PM) EMISSIONS Edwin Corporan Fuels and Energy Branch Turbine Engine Division Matthew DeWitt and Chris Klingshirn University of...Energy Branch Turbine Engine Division Turbine Engine Division Aerospace Systems Directorate //Signature// CHARLES W. STEVENS Lead Engineer

  15. Environmental Compliance Assessment System (ECAS). Kentucky Supplement (Revised)

    DTIC Science & Technology

    1994-02-01

    vehicles or vehicle bodies. "* FGD - Flue Gas Desulfurization . "* Field-Erected - assembled from components at a final site of operation. "* Flare - a...34* Spare Flue Gas Desulfurization System Module - a separate system of sulfur dioxide emission con- trol equipment capable of treating an amount of flue ...Carryover - particulate matter which is passed from the primary chamber of an incinerator into the flue gas stream. " Particulate Matter Emissions

  16. Influence of particulate trap oxidizers on emission of mutagenic compounds by diesel automobiles.

    PubMed

    Rasmussen, R E; Devillez, G; Smith, L R

    1989-06-01

    Diesel exhaust particles are known to contain mutagenic and carcinogenic chemicals. The aim of this study was to determine whether, and to what extent, catalytic particulate trap oxidizers on light-duty diesel engines may reduce the emission of particle-associated mutagenic chemicals into the environment. Exhaust particles were collected from Mercedes Benz and Volkswagen diesel automobiles, equipped with or without the manufacturer's exhaust traps, while running on a chassis dynamometer under specified load conditions. Exhaust particles were collected from a dilution tunnel onto 20" X 20" Teflon-coated fiberglass filters. Mutagenesis tests of dichloromethane (DCM) extracts of the particles were conducted using the Ames Salmonella bacterial test system. The mutation rate was calculated in terms of histidine revertants per mile of travel during a set of standard test cycles. With both vehicles the traps produced an 87-92% reduction in the total amount of particulate material collected by the filters. There was no significant change in the specific mutagenic activity (revertants per microgram of DCM particle extract) with or without the traps. These studies support the notion that installation of exhaust traps which reduce particulate emission on diesel-powered vehicles will also reduce the emission of particle-associated mutagenic and carcinogenic materials into the environment.

  17. Comparability between various field and laboratory wood-stove emission-measurement methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCrillis, R.C.; Jaasma, D.R.

    1991-01-01

    The paper compares various field and laboratory woodstove emission measurement methods. In 1988, the U.S. EPA promulgated performance standards for residential wood heaters (woodstoves). Over the past several years, a number of field studies have been undertaken to determine the actual level of emission reduction achieved by new technology woodstoves in everyday use. The studies have required the development and use of particulate and gaseous emission sampling equipment compatible with operation in private homes. Since woodstoves are tested for certification in the laboratory using EPA Methods 5G and 5H, it is of interest to determine the correlation between these regulatorymore » methods and the inhouse equipment. Two inhouse sampling systems have been used most widely: one is an intermittent, pump-driven particulate sampler that collects particulate and condensible organics on a filter and organic adsorbent resin; and the other uses an evacuated cylinder as the motive force and particulate and condensible organics are collected in a condenser and dual filter. Both samplers can operate unattended for 1-week periods. A large number of tests have been run comparing Methods 5G and 5H to both samplers. The paper presents these comparison data and determines the relationships between regulations and field samplers.« less

  18. Vehicle Traffic as a Source of Particulate Polycyclic Aromatic Hydrocarbon Exposure in the Mexico City Metropolitan Area

    PubMed Central

    MARR, LINSEY C.; GROGAN, LISA A.; WÖHRNSCHIMMEL, HENRY; MOLINA, LUISAT.; MOLINA, MARIO J.; SMITH, THOMAS J.; GARSHICK, ERIC

    2005-01-01

    Surface properties of aerosols in the Mexico City metropolitan area have been measured in a variety of exposure scenarios related to vehicle emissions in 2002, using continuous, real-time instruments. The objective of these experiments is to describe ambient and occupational particulate polycyclic aromatic hydrocarbon (PAH) concentrations associated with vehicular traffic and facilities using diesel vehicles. Median total particulate PAH concentrations along Mexico City’s roadways range from 60 to 910 ng m−3, averaged over a minimum of 1 h. These levels are approximately 5 times higher than concentrations measured in the United States and among the highest measured ambient values reported in the literature. The ratio of particulate PAH concentration to aerosol active surface area is much higher along roadways and in other areas of fresh vehicle emissions, compared to ratios measured at sites influenced more by aged emissions or noncombustion sources. For particles freshly emitted by vehicles, PAH and elemental carbon (EC) concentrations are correlated because they both originate during the combustion process. Comparison of PAH versus EC and active surface area concentrations at different locations suggests that surface PAH concentrations may diminish with particle aging. These results indicate that exposure to vehicle-related PAH emissions on Mexico City’s roadways may present an important public health risk. PMID:15180054

  19. LIDAR Remote Sensing of Particulate Matter Emissions from On-Road Vehicles

    NASA Astrophysics Data System (ADS)

    Keislar, R. E.; Kuhns, H.; Mazzoleni, C.; Moosmuller, H.; Watson, J.

    2002-12-01

    DRI has developed a remote sensing method for on-road particulate matter emissions from gasoline-powered and diesel-powered vehicles called the Vehicle Emissions Remote Sensing System (VERSS). Remote sensing of gaseous pollutants in vehicle exhaust is a well-established, economical way to determine on-road emissions for thousands of vehicles per day. The VERSS adds a particulate matter channel to complement gaseous pollutant measurements. The VERSS uses 266-nm ultraviolet laser light to achieve greater sensitivity than visible light to sub-micrometer particles, where the greatest mass fraction has been reported. The VERSS system integrates the lidar channel with a commercial remote sensing device (RSD) for gaseous pollutants, and the RSD CO2 measurement can be used to estimate fuel-based particle mass emissions. We describe the interpretation and processing of lidar returns from field measurements taken by the combined VERSS during the Southern Nevada Air Quality Study (SNAQS), conducted in the Las Vegas area. With suitable assumptions regarding size distribution and particle composition, the lidar backscatter signal and the RSD yield three basic measurements of particulate matter in the exhaust plume. For each passing vehicle, these three channels are: 1) Columnar extinction in the infrared (IR at 3.9 micrometers) 2) Columnar extinction in the ultraviolet (UV at 266 nm) 3) Range-resolved backscatter at 266 nm (horizontal spatial resolution of 20-25 cm) The 3.9-micrometer channel is a good surrogate for absorption by elemental carbon (EC) in tailpipe emissions and has been utilized in previous studies. Opacity measurements at 266 nm provide optical extinction due to scattering from tailpipe organic carbon (OC) and EC emissions.

  20. Primary particulate matter from ocean-going engines in the Southern California Air Basin.

    PubMed

    Agrawal, Harshit; Eden, Rudy; Zhang, Xinqiu; Fine, Philip M; Katzenstein, Aaron; Miller, J Wayne; Ospital, Jean; Teffera, Solomon; Cocker, David R

    2009-07-15

    The impact of primary fine particulate matter (PM2.5) from ship emissions within the Southern California Air Basin is quantified by comparing in-stack vanadium (V) and nickel (Ni) measurements from in-use ocean-going vessels (OGVs) with ambient measurements made at 10 monitoring stations throughout Southern California. V and Ni are demonstrated as robust markers for the combustion of heavy fuel oil in OGVs, and ambient measurements of fine particulate V and Ni within Southern California are shown to decrease inversely with increased distance from the ports of Los Angeles and Long Beach (ports). High levels of V and Ni were observed from in-stack emission measurements conducted on the propulsion engines of two different in-use OGVs. The in-stack V and Ni emission rates (g/h) normalized by the V and Ni contents in the fuel tested correlates with the stack total PM emission rates (g/h). The normalized emission rates are used to estimate the primary PM2.5 contributions from OGVs at 10 monitoring locations within Southern California. Primary PM2.5 contributions from OGVs were found to range from 8.8% of the total PM2.5 at the monitoring location closest to the port (West Long Beach) to 1.4% of the total PM2.5 at the monitoring location 80 km inland (Rubidoux). The calculated OGV contributions to ambient PM2.5 measurements at the 10 monitoring sites agree well with estimates developed using an emission inventory based regional model. Results of this analysis will be useful in determining the impacts of primary particulate emissions from OGVs upon worldwide communities downwind of port operations.

Top