Sample records for characterizing volatile organic

  1. Chemical evolution of atmospheric organic carbon over multiple generations of oxidation

    NASA Astrophysics Data System (ADS)

    Isaacman-VanWertz, Gabriel; Massoli, Paola; O'Brien, Rachel; Lim, Christopher; Franklin, Jonathan P.; Moss, Joshua A.; Hunter, James F.; Nowak, John B.; Canagaratna, Manjula R.; Misztal, Pawel K.; Arata, Caleb; Roscioli, Joseph R.; Herndon, Scott T.; Onasch, Timothy B.; Lambe, Andrew T.; Jayne, John T.; Su, Luping; Knopf, Daniel A.; Goldstein, Allen H.; Worsnop, Douglas R.; Kroll, Jesse H.

    2018-02-01

    The evolution of atmospheric organic carbon as it undergoes oxidation has a controlling influence on concentrations of key atmospheric species, including particulate matter, ozone and oxidants. However, full characterization of organic carbon over hours to days of atmospheric processing has been stymied by its extreme chemical complexity. Here we study the multigenerational oxidation of α-pinene in the laboratory, characterizing products with several state-of-the-art analytical techniques. Although quantification of some early generation products remains elusive, full carbon closure is achieved (within measurement uncertainty) by the end of the experiments. These results provide new insights into the effects of oxidation on organic carbon properties (volatility, oxidation state and reactivity) and the atmospheric lifecycle of organic carbon. Following an initial period characterized by functionalization reactions and particle growth, fragmentation reactions dominate, forming smaller species. After approximately one day of atmospheric aging, most carbon is sequestered in two long-lived reservoirs—volatile oxidized gases and low-volatility particulate matter.

  2. Chemical evolution of atmospheric organic carbon over multiple generations of oxidation.

    PubMed

    Isaacman-VanWertz, Gabriel; Massoli, Paola; O'Brien, Rachel; Lim, Christopher; Franklin, Jonathan P; Moss, Joshua A; Hunter, James F; Nowak, John B; Canagaratna, Manjula R; Misztal, Pawel K; Arata, Caleb; Roscioli, Joseph R; Herndon, Scott T; Onasch, Timothy B; Lambe, Andrew T; Jayne, John T; Su, Luping; Knopf, Daniel A; Goldstein, Allen H; Worsnop, Douglas R; Kroll, Jesse H

    2018-04-01

    The evolution of atmospheric organic carbon as it undergoes oxidation has a controlling influence on concentrations of key atmospheric species, including particulate matter, ozone and oxidants. However, full characterization of organic carbon over hours to days of atmospheric processing has been stymied by its extreme chemical complexity. Here we study the multigenerational oxidation of α-pinene in the laboratory, characterizing products with several state-of-the-art analytical techniques. Although quantification of some early generation products remains elusive, full carbon closure is achieved (within measurement uncertainty) by the end of the experiments. These results provide new insights into the effects of oxidation on organic carbon properties (volatility, oxidation state and reactivity) and the atmospheric lifecycle of organic carbon. Following an initial period characterized by functionalization reactions and particle growth, fragmentation reactions dominate, forming smaller species. After approximately one day of atmospheric aging, most carbon is sequestered in two long-lived reservoirs-volatile oxidized gases and low-volatility particulate matter.

  3. Chemically-resolved volatility measurements of organic aerosol fom different sources.

    PubMed

    Huffman, J A; Docherty, K S; Mohr, C; Cubison, M J; Ulbrich, I M; Ziemann, P J; Onasch, T B; Jimenez, J L

    2009-07-15

    A newly modified fast temperature-stepping thermodenuder (TD) was coupled to a High Resolution Time-of-Flight Aerosol Mass Spectrometer for rapid determination of chemically resolved volatility of organic aerosols (OA) emitted from individual sources. The TD-AMS system was used to characterize primary OA (POA) from biomass burning, trash burning surrogates (paper and plastic), and meat cooking as well as chamber-generated secondary OA (SOA) from alpha-pinene and gasoline vapor. Almost all atmospheric models represent POA as nonvolatile, with no allowance for evaporation upon heating or dilution, or condensation upon cooling. Our results indicate that all OAs observed show semivolatile behavior and that most POAs characterized here were at least as volatile as SOA measured in urban environments. Biomass-burning OA (BBOA) exhibited a wide range of volatilities, but more often showed volatility similar to urban OA. Paper-burning resembles some types of BBOA because of its relatively high volatility and intermediate atomic oxygen-to-carbon (O/C) ratio, while meat-cooking OAs (MCOA) have consistently lower volatility than ambient OA. Chamber-generated SOA under the relatively high concentrations used intraditional experiments was significantly more volatile than urban SOA, challenging extrapolation of traditional laboratory volatility measurements to the atmosphere. Most OAs sampled show increasing O/C ratio and decreasing H/C (hydrogen-to-carbon) ratio with temperature, further indicating that more oxygenated OA components are typically less volatile. Future experiments should systematically explore a wider range of mass concentrations to more fully characterize the volatility distributions of these OAs.

  4. RELATIONSHIPS BETWEEN LEVELS OF VOLATILE ORGANIC COMPOUNDS IN AIR AND BLOOD FROM THE GENERAL POPULATION

    EPA Science Inventory

    Background: The relationships between levels of volatile organic compounds (VOCs) in blood and air have not been well characterized in the general population where exposure concentrations are generally at ppb levels. Objectives: This study investigates relationships between ...

  5. RECOVERY OF SEMI-VOLATILE ORGANIC COMPOUNDS DURING SAMPLE PREPARATION: IMPLICATIONS FOR CHARACTERIZATION OF AIRBORNE PARTICULATE MATTER

    EPA Science Inventory

    Semi-volatile compounds present special analytical challenges not met by conventional methods for analysis of ambient particulate matter (PM). Accurate quantification of PM-associated organic compounds requires validation of the laboratory procedures for recovery over a wide v...

  6. Cold-trapped organic compounds at the poles of the Moon and Mercury: Implications for origins

    NASA Astrophysics Data System (ADS)

    Zhang, Jo Ann; Paige, David A.

    2009-08-01

    We have calculated evaporation rates for a range of organic compounds that may be cold-trapped at the poles of the Moon and Mercury. Organics vary widely in their volatilities and thus can be stable to evaporation at higher and lower temperatures than water. The detection of cold-trapped organics would point to volatile delivery by impacts, as comets and asteroids are the only plausible sources for organic molecules. The characterization of cold-trapped organics on both bodies may provide constraints on the thermal evolution of cold traps over time and the history of volatiles in the inner solar system.

  7. Microbial Volatile Organic Compound Emissions from Stachybotrys chartarum growing on Gypsum Wallboard and Ceiling tile

    EPA Science Inventory

    This study compared seven toxigenic strains of S. chartarum found in water-damaged buildings to characterize the microbial volatile organic compound (MVOC) emissions profile while growing on gypsum wallboard (W) and ceiling tile (C) coupons. The inoculated coupons with their sub...

  8. CHARACTERIZATION OF EMISSIONS OF VOLATILE ORGANIC COMPOUNDS FROM INTERIOR ALKYD PAINT

    EPA Science Inventory

    Alkyd paint continues to be used indoors for application to wood trim, cabinet surfaces, and some kitchen and bathroom walls. Paint may represent a significant source of volatile organic compounds (VOCs) indoors depending on the frequency of use and amount of surface paint. The U...

  9. Analysis of volatile metabolites in biological fluids as indicators of prodromal disease condition

    NASA Technical Reports Server (NTRS)

    Zlatkis, A.

    1982-01-01

    The volatile profile cannot be defined as a single class of substances, rather it is a broad spectrum of materials of different polarities characterized by having a boiling-point in the low to medium range (up to approximately 300 C) and the fact that the compounds are suitable for gas chromatography without derivatization. The organic volatile profiles are very complex mixtures of metabolic byproducts, intermediates, and terminal products of enzymatic degradations composed mainly of alcohols, ketones, aldehydes, pyrazines, sulfides, isothiocyanates, pyrroles, and furans. The concentration of organic volatiles in biological fluids covers a wide range with many important components present at trace levels. The complexity of the organic volatile fraction requires the use of capillary columns for their separation.

  10. Development of a sparging technique for volatile emissions from potato (Solanum tuberosum)

    NASA Technical Reports Server (NTRS)

    Berdis, Elizabeth; Peterson, Barbara Vieux; Yorio, Neil C.; Batten, Jennifer; Wheeler, Raymond M.

    1993-01-01

    Accumulation of volatile emissions from plants grown in tightly closed growth chambers may have allelopathic or phytotoxic properties. Whole air analysis of a closed chamber includes both biotic and abiotic volatile emissions. A method for characterization and quantification of biogenic emissions solely from plantlets was developed to investigate this complex mixture of volatile organic compounds. Volatile organic compounds from potato (Solanum tuberosum L. cv. Norland) were isolated, separated and identified using an in-line configuration consisting of a purge and trap concentrator with sparging vessels coupled to a GC/MS system. Analyses identified plant volatile compounds: transcaryophyllene, alpha-humulene, thiobismethane, hexanal, cis-3-hexen-1-ol, and cis-3-hexenyl acetate.

  11. Characterization of biosynthetic pathways for the production of the volatile homoterpenes DMNT and TMTT in Zea mays

    USDA-ARS?s Scientific Manuscript database

    Plant volatiles not only have multiple defense functions against herbivores, fungi, and bacteria, but also have been implicated in signaling within the plant and toward other organisms. Elucidating the function of individual plant volatiles will require more knowledge of their biosynthesis and regul...

  12. Estimates of the organic aerosol volatility in a boreal forest using two independent methods

    NASA Astrophysics Data System (ADS)

    Hong, Juan; Äijälä, Mikko; Häme, Silja A. K.; Hao, Liqing; Duplissy, Jonathan; Heikkinen, Liine M.; Nie, Wei; Mikkilä, Jyri; Kulmala, Markku; Prisle, Nønne L.; Virtanen, Annele; Ehn, Mikael; Paasonen, Pauli; Worsnop, Douglas R.; Riipinen, Ilona; Petäjä, Tuukka; Kerminen, Veli-Matti

    2017-03-01

    The volatility distribution of secondary organic aerosols that formed and had undergone aging - i.e., the particle mass fractions of semi-volatile, low-volatility and extremely low volatility organic compounds in the particle phase - was characterized in a boreal forest environment of Hyytiälä, southern Finland. This was done by interpreting field measurements using a volatility tandem differential mobility analyzer (VTDMA) with a kinetic evaporation model. The field measurements were performed during April and May 2014. On average, 40 % of the organics in particles were semi-volatile, 34 % were low-volatility organics and 26 % were extremely low volatility organics. The model was, however, very sensitive to the vaporization enthalpies assumed for the organics (ΔHVAP). The best agreement between the observed and modeled temperature dependence of the evaporation was obtained when effective vaporization enthalpy values of 80 kJ mol-1 were assumed. There are several potential reasons for the low effective enthalpy value, including molecular decomposition or dissociation that might occur in the particle phase upon heating, mixture effects and compound-dependent uncertainties in the mass accommodation coefficient. In addition to the VTDMA-based analysis, semi-volatile and low-volatility organic mass fractions were independently determined by applying positive matrix factorization (PMF) to high-resolution aerosol mass spectrometer (HR-AMS) data. The factor separation was based on the oxygenation levels of organics, specifically the relative abundance of mass ions at m/z 43 (f43) and m/z 44 (f44). The mass fractions of these two organic groups were compared against the VTDMA-based results. In general, the best agreement between the VTDMA results and the PMF-derived mass fractions of organics was obtained when ΔHVAP = 80 kJ mol-1 was set for all organic groups in the model, with a linear correlation coefficient of around 0.4. However, this still indicates that only about 16 % (R2) of the variation can be explained by the linear regression between the results from these two methods. The prospect of determining of extremely low volatility organic aerosols (ELVOAs) from AMS data using the PMF analysis should be assessed in future studies.

  13. Comprehensive characterization of atmospheric organic matter in Fresno, California fog water

    USGS Publications Warehouse

    Herckes, P.; Leenheer, J.A.; Collett, J.L.

    2007-01-01

    Fogwater collected during winter in Fresno (CA) was characterized by isolating several distinct fractions and characterizing them by infrared and nuclear magnetic resonance (NMR) spectroscopy. More than 80% of the organic matter in the fogwater was recovered and characterized. The most abundant isolated fractions were those comprised of volatile acids (24% of isolated carbon) and hydrophilic acids plus neutrals (28%). Volatile acids, including formic and acetic acid, have been previously identified as among the most abundant individual species in fogwater. Recovered hydrophobic acids exhibited some properties similar to aquatic fulvic acids. An insoluble particulate organic matter fraction contained a substantial amount of biological material, while hydrophilic and transphilic fractions also contained material suggestive of biotic origin. Together, these fractions illustrate the important contribution biological sources make to organic matter in atmospheric fog droplets. The fogwater also was notable for containing a large amount of organic nitrogen present in a variety of species, including amines, nitrate esters, peptides, and nitroso compounds. ?? 2007 American Chemical Society.

  14. Comprehensive characterization of atmospheric organic matter in Fresno, California fog water.

    PubMed

    Herckes, Pierre; Leenheer, Jerry A; Collett, Jeffrey L

    2007-01-15

    Fogwater collected during winter in Fresno (CA) was characterized by isolating several distinct fractions and characterizing them by infrared and nuclear magnetic resonance (NMR) spectroscopy. More than 80% of the organic matter in the fogwater was recovered and characterized. The most abundant isolated fractions were those comprised of volatile acids (24% of isolated carbon) and hydrophilic acids plus neutrals (28%). Volatile acids, including formic and acetic acid, have been previously identified as among the most abundant individual species in fogwater. Recovered hydrophobic acids exhibited some properties similar to aquatic fulvic acids. An insoluble particulate organic matter fraction contained a substantial amount of biological material, while hydrophilic and transphilic fractions also contained material suggestive of biotic origin. Together, these fractions illustrate the important contribution biological sources make to organic matter in atmospheric fog droplets. The fogwater also was notable for containing a large amount of organic nitrogen present in a variety of species, including amines, nitrate esters, peptides, and nitroso compounds.

  15. The Self-Reducing Pellet Production from Organic Household Waste

    NASA Astrophysics Data System (ADS)

    Nogueira, Alberto; Takano, Cyro; Mourão, Marcelo; Pillihuaman, Adolfo

    The organic household waste has a growing disposal problem, requiring costly disposal systems. It is necessary to find new applications for these materials; one could be the steelmaking raw material production. In this paper is studied the development of self-reducing pellets from the organic waste pyrolysis, where is generated carbon and condensable and non-condensable volatiles. Non-condensable volatiles were burned and condensable volatiles were recovered. The resulting tar was mixed with iron ore, coal powder and flux (CaO), to then be pelletized together. Compression, falls and tumbler tests were conducted to characterize the pellets before and after heat treatment and reduction processes. The reduction curve and their physical and morphological characterization were measured. The results were as was expected, the fluidized coal create sufficient adhesion that pellets earned resistance with an equivalent resistance of common pellets, showing a good feasibility of this process.

  16. Characterization of polar organosulfates in secondary organic aerosol from the green leaf volatile 3-Z-hexenal

    EPA Science Inventory

    Evidence is provided that the green leaf volatile 3-Z-hexenal serves as a precursor for biogenic secondary organic aerosol through formation of polar organosulfates (OSs) with molecular weights (MW) 226 and 214. The MW 226 C6-OSs and MW 214 C5M-OSs were che...

  17. Analysis of volatile organic compounds in pleural effusions by headspace solid-phase microextraction coupled with cryotrap gas chromatography and mass spectrometry.

    PubMed

    Huang, Zhongping; Zhang, Jie; Zhang, Peipei; Wang, Hong; Pan, Zaifa; Wang, Lili

    2016-07-01

    Headspace solid-phase microextraction coupled with cryotrap gas chromatography and mass spectrometry was applied to the analysis of volatile organic compounds in pleural effusions. The highly volatile organic compounds were separated successfully with high sensitivity by the employment of a cryotrap device, with the construction of a cold column head by freezing a segment of metal capillary with liquid nitrogen. A total of 76 volatile organic compounds were identified in 50 pleural effusion samples (20 malignant effusions and 30 benign effusions). Among them, 34 more volatile organic compounds were detected with the retention time less than 8 min, by comparing with the normal headspace solid-phase microextraction coupled with gas chromatography and mass spectrometry method. Furthermore, 24 volatile organic compounds with high occurrence frequency in pleural effusion samples, 18 of which with the retention time less than 8 min, were selected for the comparative analysis. The results of average peak area comparison and box-plot analysis showed that except for cyclohexanone, 2-ethyl-1-hexanol, and tetramethylbenzene, which have been reported as potential cancer biomarkers, cyclohexanol, dichloromethane, ethyl acetate, n-heptane, ethylbenzene, and xylene also had differential expression between malignant and benign effusions. Therefore, the proposed approach was valuable for the comprehensive characterization of volatile organic compounds in pleural effusions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Modeling the formation and properties of traditional and non-traditional secondary organic aerosol: problem formulation and application to aircraft exhaust

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Miracolo, M. A.; Presto, A. A.; Donahue, N. M.; Adams, P. J.; Robinson, A. L.

    2012-10-01

    We present a methodology to model secondary organic aerosol (SOA) formation from the photo-oxidation of unspeciated low-volatility organics (semi-volatile and intermediate volatile organic compounds) emitted by combustion systems. It is formulated using the volatility basis-set approach. Unspeciated low-volatility organics are classified by volatility and then allowed to react with the hydroxyl radical. The new methodology allows for larger reductions in volatility with each oxidation step than previous volatility basis set models, which is more consistent with the addition of common functional groups and similar to those used by traditional SOA models. The methodology is illustrated using data collected during two field campaigns that characterized the atmospheric evolution of dilute gas-turbine engine emissions using a smog chamber. In those experiments, photo-oxidation formed a significant amount of SOA, much of which could not be explained based on the emissions of traditional speciated precursors; we refer to the unexplained SOA as non-traditional SOA (NT-SOA). The NT-SOA can be explained by emissions of unspeciated low-volatility organics measured using sorbents. We show that the parameterization proposed by Robinson et al. (2007) is unable to explain the timing of the NT-SOA formation in the aircraft experiments because it assumes a very modest reduction in volatility of the precursors with every oxidation reaction. In contrast the new method better reproduces the NT-SOA formation. The NT-SOA yields estimated for the unspeciated low-volatility organic emissions in aircraft exhaust are similar to literature data for large n-alkanes and other low-volatility organics. The estimated yields vary with fuel composition (Jet Propellent-8 versus Fischer-Tropsch) and engine load (ground idle versus non-ground idle). The framework developed here is suitable for modeling SOA formation from emissions from other combustion systems.

  19. Photochemical Aging of Organic Aerosols: A Laboratory Study

    NASA Astrophysics Data System (ADS)

    Papanastasiou, Dimitrios K.; Kostenidou, Evangelia; Gkatzelis, Georgios I.; Psichoudaki, Magdalini; Louvaris, Evangelos; Pandis, Spyros N.

    2014-05-01

    Organic aerosols (OA) are either emitted directly (primary OA) or formed (secondary OA) in the atmosphere and consist of an extremely complex mixture of thousands of organic compounds. Although the scientific community has put significant effort, in the past few decades, to understand organic aerosol (OA) formation, evolution and fate in the atmosphere, traditional models often fail to reproduce the ambient OA levels. Secondary organic aerosol (SOA) formed, in traditional laboratory chamber experiments, from the gas phase oxidation of known precursors, such as α-pinene, is semi-volatile and with an O:C ratio of around 0.4. In contrast, OA found in the atmosphere is significantly less volatile, while the O:C ratio often ranges from 0.5 to 1. In conclusion, there is a significant gap of knowledge in our understanding of OA formation and photochemical transformation in the atmosphere. There is increased evidence that homogeneous gas phase aging by OH radicals might be able to explain, at least in part, the significantly higher OA mass loadings observed and also the oxidation state and volatility of OA in the atmosphere. In this study, laboratory chamber experiments were performed to study the role of the continued oxidation of first generation volatile and semi-volatile species by OH radicals in the evolution of the SOA characteristics (mass concentration, volatility, and oxidation state). Ambient air mixtures or freshly formed SOA from α-pinene ozonolysis were used as the source of organic aerosols and semi-volatile species. The initial mixture of organic aerosols and gas phase species (volatile and semi-volatile) was then exposed to atmospheric concentrations of OH radicals to study the aging of aerosols. Experiments were performed with various OH radical sources (H2O2 or HONO) and under various NOx conditions. A suite of instruments was employed to characterize both the gas and the aerosol phase. A Scanning Mobility Particle Sizer (SMPS) and a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) were used to measure the organic aerosol mass production and oxidation degree (O:C ratio) following OH aging. A thermodenuder system was used to measure the volatility distribution change as organic aerosol aged upon continuous oxidation. Organic gas phase species were characterized with a Proton Transfer Reaction - Mass Spectrometer (PTR-MS) while NOx and O3 were measured with the use of corresponding analyzers. Results from this study show that organic mass production occurs upon exposure to OH radicals indicating that continuous OH aging of semi-volatile is probably responsible for at least some of the gap between observed and modeled OA levels in the atmosphere. Additionally, this chemical aging process leads to a decrease in volatility and an increase in O:C ratio while the level of change in both properties depends on OH exposure. The atmospheric implications of this study are discussed.

  20. Flash pyrolysis of coal, coal maceral, and coal-derived pyrite with on-line characterization of volatile sulfur compounds

    USGS Publications Warehouse

    Chou, I.-Ming; Lake, M.A.; Griffin, R.A.

    1988-01-01

    A Pyroprobe flash pyrolysis-gas chromatograph equipped with a flame photometric detector was used to study volatile sulfur compounds produced during the thermal decomposition of Illinois coal, coal macerals and coal-derived pyrite. Maximum evolution of volatile organic sulfur compounds from all coal samples occurred at a temperature of approximately 700??C. At this temperature, the evolution of thiophene, its alkyl isomers, and short-chain dialkyl sulfide compounds relative to the evolution of benzothiophene and dibenzothiophene compounds was greater from coal high in organic sulfur than from coal low in organic sulfur. The variation in the evolution of sulfur compounds observed for three separate coal macerals (exinite, vitrinite, and inertinite) was similar to that observed for whole coal samples. However, the variation trend for the macerals was much more pronounced. Decomposition of coal-derived pyrite with the evolution of elemental sulfur was detected at a temperature greater than 700??C. The results of this study indicated that the gas chromotographic profile of the volatile sulfur compounds produced during flash pyrolysis of coals and coal macerals varied as a function of the amount of organic sulfur that occurred in the samples. Characterization of these volatile sulfur compounds provides a better understanding of the behavior of sulfur in coal during the thermolysis process, which could be incorporated in the design for coal cleaning using flash pyrolysis techniques. ?? 1988.

  1. Modeling the formation and properties of traditional and non-traditional secondary organic aerosol: problem formulation and application to aircraft exhaust

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Miracolo, M. A.; Presto, A. A.; Adams, P. J.; Robinson, A. L.

    2012-04-01

    We present a methodology to model secondary organic aerosol (SOA) formation from the photo-oxidation of low-volatility organics (semi-volatile and intermediate volatility organic compounds). The model is parameterized and tested using SOA data collected during two field campaigns that characterized the atmospheric evolution of dilute gas-turbine engine emissions using a smog chamber. Photo-oxidation formed a significant amount of SOA, much of which cannot be explained based on the emissions of traditional, speciated precursors; we refer to this as non-traditional SOA (NT-SOA). The NT-SOA can be explained by emissions of low-volatility organic vapors measured using sorbents. Since these vapors could not be speciated, we employ a volatility-based approach to model NT-SOA formation. We show that the method proposed by Robinson et al. (2007) is unable to explain the timing of NT-SOA formation because it assumes a very modest reduction in volatility of the precursors with every oxidation reaction. In contrast, a Hybrid method, similar to models of traditional SOA formation, assumes a larger reduction in volatility with each oxidation step and results in a better reproduction of NT-SOA formation. The NT-SOA yields estimated for the low-volatility organic vapor emissions are similar to literature data for large n-alkanes and other low-volatility organics. The yields vary with fuel composition (JP8 versus Fischer-Tropsch) and engine load (idle versus non-idle). These differences are consistent with the expected contribution of high (aromatics and n-alkanes) and low (branched alkanes and oxygenated species) SOA forming species to the exhaust.

  2. CHARACTERIZATION OF EMISSIONS FROM THE SIMULATED OPEN BURNING OF SCRAP TIRES

    EPA Science Inventory

    The report gives results of a small-scale combustion study, designed to collect, identify, and quantify products emitted during the simulated open burning of scrap tires. Fixed combustion gas, volatile and semi-volatile organic, particulate, and airborne metals data were collecte...

  3. Analysis of Volatile Organic Compounds in a Controlled Environment: Ethylene Gas Measurement Studies on Radish

    NASA Technical Reports Server (NTRS)

    Kong, Suk Bin

    2001-01-01

    Volatile organic compound(VOC), ethylene gas, was characterized and quantified by GC/FID. 20-50 ppb levels were detected during the growth stages of radish. SPME could be a good analytical tool for the purpose. Low temperature trapping method using dry ice/diethyl ether and liquid nitrogen bath was recommended for the sampling process for GC/PID and GC/MS analysis.

  4. Characterization of Preferential Ground-Water Seepage From a Chlorinated Hydrocarbon-Contaminated Aquifer to West Branch Canal Creek, Aberdeen Proving Ground, Maryland, 2002-04

    USGS Publications Warehouse

    Majcher, Emily H.; Phelan, Daniel J.; Lorah, Michelle M.; McGinty, Angela L.

    2007-01-01

    Wetlands act as natural transition zones between ground water and surface water, characterized by the complex interdependency of hydrology, chemical and physical properties, and biotic effects. Although field and laboratory demonstrations have shown efficient natural attenuation processes in the non-seep wetland areas and stream bottom sediments of West Branch Canal Creek, chlorinated volatile organic compounds are present in a freshwater tidal creek at Aberdeen Proving Ground, Maryland. Volatile organic compound concentrations in surface water indicate that in some areas of the wetland, preferential flow paths or seeps allow transport of organic compounds from the contaminated sand aquifer to the overlying surface water without undergoing natural attenuation. From 2002 through 2004, the U.S. Geological Survey, in cooperation with the Environmental Conservation and Restoration Division of the U.S. Army Garrison, Aberdeen Proving Ground, characterized preferential ground-water seepage as part of an ongoing investigation of contaminant distribution and natural attenuation processes in wetlands at this site. Seep areas were discrete and spatially consistent during thermal infrared surveys in 2002, 2003, and 2004 throughout West Branch Canal Creek wetlands. In these seep areas, temperature measurements in shallow pore water and sediment more closely resembled those in ground water than those in nearby surface water. Generally, pore water in seep areas contaminated with chlorinated volatile organic compounds had lower methane and greater volatile organic compound concentrations than pore water in non-seep wetland sediments. The volatile organic compounds detected in shallow pore water in seeps were spatially similar to the dominant volatile organic compounds in the underlying Canal Creek aquifer, with both parent and anaerobic daughter compounds detected. Seep locations characterized as focused seeps contained the highest concentrations of chlorinated parent compounds, relatively low concentrations of chlorinated daughter compounds, and insignificant concentrations of methane in shallow pore water samples. These seeps were primarily along the creek edge or formed a dendritic-like pattern between the wetland and creek channel. In contrast, seep locations characterized as diffuse seeps contained relatively high concentrations of chlorinated daughter compounds (or a mixture of daughter and parent compounds) and detectable methane concentrations in shallow pore water samples. These seeps were primarily along the wetland boundary. Qualitative thermal infrared surveys coupled with quantitative verification of temperature differences, and screening for volatile organic compound and methane concentrations proved to be effective tools in determining the overall extent of preferential seepage. Hydrologic and physical properties of wetland sediments were characterized at two focused and one diffuse seep location. In the seeps with focused discharge, measured seepage was consistent over the tidal cycle, whereas more variability with tidal fluctuation was measured in the diffuse seep location. At all locations, areas were identified within the general seep boundaries where discharge was minimal. In all cases, the geometric mean of non-zero vertical flux measurements was greater than those previously reported in the non-seep wetland sediments using flow-net analysis. Flux was greater in the focused discharge areas than in the diffuse discharge area, and all fluxes were within the range reported in the literature for wetland discharge. Vertical hydraulic conductivity estimated from seepage flux and a mean vertical gradient at seeps with focused discharge resulted in a minimum hydraulic conductivity two orders of magnitude greater than those estimated in the non-seep sediment. In contrast, vertical conductivity estimates at a diffuse seep were similar to estimates along a nearby line of section through a non-seep area. Horizontal hydraulic cond

  5. Effects of NOx on the volatility of secondary organic aerosol from isoprene photooxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Lu; Kollman, Matthew S.; Song, Chen

    2014-01-28

    The effects of NOx on the volatility of the secondary organic aerosol (SOA) formed from isoprene photooxidation are investigated in environmental chamber experiments. Two types of experiments are performed. In HO2-dominant experiments, organic peroxy radicals (RO2) primarily react with HO2. In mixed experiments, RO2 reacts through multiple pathways. The volatility and oxidation state of isoprene SOA is sensitive to and displays a non-linear dependence on NOx levels. When initial NO/isoprene ratio is approximately 3 (ppbv:ppbv), SOA are shown to be most oxidized and least volatile, associated with the highest SOA yield. A High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) is appliedmore » to characterize the key chemical properties of aerosols. While the composition of SOA in mixed experiments does not change substantially over time, SOA become less volatile and more oxidized as oxidation progresses in HO2-dominant experiments. Analysis of the SOA composition suggests that the further reactions of organic peroxides and alcohols may produce carboxylic acids, which might play a strong role in SOA aging.« less

  6. OH reactivity and potential SOA yields from volatile organic compounds and other trace gases measured in controlled laboratory biomass burns

    Treesearch

    J. B. Gilman; C. Warneke; W. C. Kuster; P. D. Goldan; P. R. Veres; J. M. Roberts; J. A. de Gouw; I. R. Burling; R. J. Yokelson

    2010-01-01

    A comprehensive suite of instruments were used to characterize volatile organic compounds (VOCs) and other trace gases (e.g., CO, CH4, NO2, etc.) emitted from controlled burns of various fuel types common to the Southeastern and Southwestern United States. These laboratory-based measurements were conducted in February 2009 at the U.S. Department of Agriculture’s Fire...

  7. Analysis of volatile organic compounds of ‘Fuji’ apples following electron beam irradiation and storage

    NASA Astrophysics Data System (ADS)

    Song, Hyun-Pa; Shim, Sung-Lye; Lee, Sun-Im; Kim, Dong-Ho; Kwon, Joong-Ho; Kim, Kyong-Su

    2012-08-01

    The volatile organic compounds of non-irradiated and electron-beam irradiated 'Fuji' apples (Malus domestica Borkh.) at 0, 0.5, and 1 kGy were isolated through simultaneous distillation extractions and analyzed using gas chromatograph-mass spectrometry. A total of 53 volatile organic compounds were characterized in 0 and 1 kGy irradiated samples, whereas two more compounds related to ketone and terpenoid group were identified in 0.5 kGy irradiated samples. The contents of volatile compounds were 24.33, 36.49, and 35.28 mg/kg in 0, 0.5, and 1 kGy irradiated samples, respectively. The major compounds identified were butanol, hexanal, [E]-2-hexenal, and hexanol in all samples. The relative content of alcohol increased after 30 days of storage in all samples, whereas that of aldehyde decreased. Although the contents of some volatile compounds were changed by electron-beam irradiation, the total yield and major flavor compounds of irradiated 'Fuji' apples were similar to, or even greater than, those of the control. Therefore, the application of e-beam irradiation if required for microbial decontamination of 'Fuji' apples is an acceptable method as it does not bring about any major quantitative changes of volatile organic compounds.

  8. Comprehensive characterization of atmospheric organic carbon at a forested site

    NASA Astrophysics Data System (ADS)

    Hunter, James F.; Day, Douglas A.; Palm, Brett B.; Yatavelli, Reddy L. N.; Chan, Arthur W. H.; Kaser, Lisa; Cappellin, Luca; Hayes, Patrick L.; Cross, Eben S.; Carrasquillo, Anthony J.; Campuzano-Jost, Pedro; Stark, Harald; Zhao, Yunliang; Hohaus, Thorsten; Smith, James N.; Hansel, Armin; Karl, Thomas; Goldstein, Allen H.; Guenther, Alex; Worsnop, Douglas R.; Thornton, Joel A.; Heald, Colette L.; Jimenez, Jose L.; Kroll, Jesse H.

    2017-10-01

    Atmospheric organic compounds are central to key chemical processes that influence air quality, ecological health, and climate. However, longstanding difficulties in predicting important quantities such as organic aerosol formation and oxidant lifetimes indicate that our understanding of atmospheric organic chemistry is fundamentally incomplete, probably due in part to the presence of organic species that are unmeasured using standard analytical techniques. Here we present measurements of a wide range of atmospheric organic compounds--including previously unmeasured species--taken concurrently at a single site (a ponderosa pine forest during summertime) by five state-of-the-art mass spectrometric instruments. The combined data set provides a comprehensive characterization of atmospheric organic carbon, covering a wide range in chemical properties (volatility, oxidation state, and molecular size), and exhibiting no obvious measurement gaps. This enables the first construction of a measurement-based local organic budget, highlighting the high emission, deposition, and oxidation fluxes in this environment. Moreover, previously unmeasured species, including semivolatile and intermediate-volatility organic species (S/IVOCs), account for one-third of the total organic carbon, and (within error) provide closure on both OH reactivity and potential secondary organic aerosol formation.

  9. Molecular Composition and Volatility of Organic Aerosol in the Southeastern U.S.: Implications for IEPOX Derived SOA.

    PubMed

    Lopez-Hilfiker, F D; Mohr, C; D'Ambro, E L; Lutz, A; Riedel, T P; Gaston, C J; Iyer, S; Zhang, Z; Gold, A; Surratt, J D; Lee, B H; Kurten, T; Hu, W W; Jimenez, J; Hallquist, M; Thornton, J A

    2016-03-01

    We present measurements as part of the Southern Oxidant and Aerosol Study (SOAS) during which atmospheric aerosol particles were comprehensively characterized. We present results utilizing a Filter Inlet for Gases and AEROsol coupled to a chemical ionization mass spectrometer (CIMS). We focus on the volatility and composition of isoprene derived organic aerosol tracers and of the bulk organic aerosol. By utilizing the online volatility and molecular composition information provided by the FIGAERO-CIMS, we show that the vast majority of commonly reported molecular tracers of isoprene epoxydiol (IEPOX) derived secondary organic aerosol (SOA) is derived from thermal decomposition of accretion products or other low volatility organics having effective saturation vapor concentrations <10(-3) μg m(-3). In addition, while accounting for up to 30% of total submicrometer organic aerosol mass, the IEPOX-derived SOA has a higher volatility than the remaining bulk. That IEPOX-SOA, and more generally bulk organic aerosol in the Southeastern U.S. is comprised of effectively nonvolatile material has important implications for modeling SOA derived from isoprene, and for mechanistic interpretations of molecular tracer measurements. Our results show that partitioning theory performs well for 2-methyltetrols, once accretion product decomposition is taken into account. No significant partitioning delays due to aerosol phase or viscosity are observed, and no partitioning to particle-phase water or other unexplained mechanisms are needed to explain our results.

  10. Statistical Method Based on Confidence and Prediction Regions for Analysis of Volatile Organic Compounds in Human Breath Gas

    NASA Astrophysics Data System (ADS)

    Wimmer, G.

    2008-01-01

    In this paper we introduce two confidence and two prediction regions for statistical characterization of concentration measurements of product ions in order to discriminate various groups of persons for prospective better detection of primary lung cancer. Two MATLAB algorithms have been created for more adequate description of concentration measurements of volatile organic compounds in human breath gas for potential detection of primary lung cancer and for evaluation of the appropriate confidence and prediction regions.

  11. Chemical and biological characterization of products of incomplete combustion from the simulated field burning of agricultural plastic.

    PubMed

    Linak, W P; Ryan, J V; Perry, E; Williams, R W; DeMarini, D M

    1989-06-01

    Chemical and biological analyses were performed to characterize products of incomplete combustion emitted during the simulated open field burning of agricultural plastic. A small utility shed equipped with an air delivery system was used to simulate pile burning and forced-air-curtain incineration of a nonhalogenated agricultural plastic that reportedly consisted of polyethylene and carbon black. Emissions were analyzed for combustion gases; volatile, semi-volatile, and particulate organics; and toxic and mutagenic properties. Emission samples, as well as samples of the used (possibly pesticide-contaminated) plastic, were analyzed for the presence of several pesticides to which the plastic may have been exposed. Although a variety of alkanes, alkenes, and aromatic and polycyclic aromatic hydrocarbon (PAH) compounds were identified in the volatile, semi-volatile, and particulate fractions of these emissions, a substantial fraction of higher molecular weight organic material was not identified. No pesticides were identified in either combustion emission samples or dichloromethane washes of the used plastic. When mutagenicity was evaluated by exposing Salmonella bacteria (Ames assay) to whole vapor and vapor/particulate emissions, no toxic or mutagenic effects were observed. However, organic extracts of the particulate samples were moderately mutagenic. This mutagenicity compares approximately to that measured from residential wood heating on a revertant per unit heat release basis. Compared to pile burning, forced air slightly decreased the time necessary to burn a charge of plastic. There was not a substantial difference, however, in the variety or concentrations of organic compounds identified in samples from these two burn conditions. This study highlights the benefits of a combined chemical/biological approach to the characterization of complex, multi-component combustion emissions. These results may not reflect those of other types of plastic that may be used for agricultural purposes, especially those containing halogens.

  12. Identification and characterization of terpene synthases potentially involved in the formation of volatile terpenes in carrot (Daucus carota L.) roots

    USDA-ARS?s Scientific Manuscript database

    Plants produce numerous volatile organic compounds, which are important in determining the quality and nutraceutical properties of fruit and root crops, including the taste and the aroma of carrots (Daucus carota L.). A combined chemical, biochemical and molecular study was conducted to evaluate the...

  13. Organic Chemical Characterization and Mass Balance of a Hydraulically Fractured Well: From Fracturing Fluid to Produced Water over 405 Days.

    PubMed

    Rosenblum, James; Thurman, E Michael; Ferrer, Imma; Aiken, George; Linden, Karl G

    2017-12-05

    A long-term field study (405 days) of a hydraulically fractured well from the Niobrara Formation in the Denver-Julesburg Basin was completed. Characterization of organic chemicals used in hydraulic fracturing and their changes through time, from the preinjected fracturing fluid to the produced water, was conducted. The characterization consisted of a mass balance by dissolved organic carbon (DOC), volatile organic analysis by gas chromatography/mass spectrometry, and nonvolatile organic analysis by liquid chromatography/mass spectrometry. DOC decreased from 1500 mg/L in initial flowback to 200 mg/L in the final produced water. Only ∼11% of the injected DOC returned by the end of the study, with this 11% representing a maximum fraction returned since the formation itself contributes DOC. Furthermore, the majority of returning DOC was of the hydrophilic fraction (60-85%). Volatile organic compound analysis revealed substantial concentrations of individual BTEX compounds (0.1-11 mg/L) over the 405-day study. Nonvolatile organic compounds identified were polyethylene glycols (PEGs), polypropylene glycols (PPG), linear alkyl-ethoxylates, and triisopropanolamine (TIPA). The distribution of PEGs, PPGs, and TIPA and their ubiquitous presence in our samples and the literature illustrate their potential as organic tracers for treatment operations or in the event of an environmental spill.

  14. Organic chemical characterization and mass balance of a hydraulically fractured well: From fracturing fluid to produced water over 405 days

    USGS Publications Warehouse

    Rosenblum, James; Thurman, E. Michael; Ferrer, Imma; Aiken, George R.; Linden, Karl G.

    2017-01-01

    A long-term field study (405 days) of a hydraulically fractured well from the Niobrara Formation in the Denver-Julesburg Basin was completed. Characterization of organic chemicals used in hydraulic fracturing and their changes through time, from the preinjected fracturing fluid to the produced water, was conducted. The characterization consisted of a mass balance by dissolved organic carbon (DOC), volatile organic analysis by gas chromatography/mass spectrometry, and nonvolatile organic analysis by liquid chromatography/mass spectrometry. DOC decreased from 1500 mg/L in initial flowback to 200 mg/L in the final produced water. Only ∼11% of the injected DOC returned by the end of the study, with this 11% representing a maximum fraction returned since the formation itself contributes DOC. Furthermore, the majority of returning DOC was of the hydrophilic fraction (60–85%). Volatile organic compound analysis revealed substantial concentrations of individual BTEX compounds (0.1–11 mg/L) over the 405-day study. Nonvolatile organic compounds identified were polyethylene glycols (PEGs), polypropylene glycols (PPG), linear alkyl-ethoxylates, and triisopropanolamine (TIPA). The distribution of PEGs, PPGs, and TIPA and their ubiquitous presence in our samples and the literature illustrate their potential as organic tracers for treatment operations or in the event of an environmental spill.

  15. The characterization of organic contaminants during the development of the Space Station water reclamation and management system

    NASA Technical Reports Server (NTRS)

    Cole, H.; Habercom, M.; Crenshaw, M.; Johnson, S.; Manuel, S.; Martindale, W.; Whitman, G.; Traweek, M.

    1991-01-01

    Examples of the application of various methods for characterizing samples for alcohols, fatty acids, detergents, and volatile/semivolatile basic, neutral, and phenolic acid contaminants are presented. Data, applications, and interpretations are given for a variety of methods including sample preparation/cleanup procedures, ion chromatography, and gas chromatography with various detectors. Summaries of the major organic contaminants that contribute to the total organic carbon content are presented.

  16. Trichomes and chemical composition of the volatile oil of Trichogonia cinerea (Gardner) R. M. King & H. Rob. (Eupatorieae, Asteraceae).

    PubMed

    Fernandes, Yanne S; Trindade, Luma M P; Rezende, Maria Helena; Paula, José R; Gonçalves, Letícia A

    2016-03-01

    Trichogonia cinerea is endemic to Brazil and occurs in areas of cerrado and campo rupestre. In this study, we characterized the glandular and non-glandular trichomes on the aerial parts of this species, determined the principal events in the development of the former, and identified the main constituents of the volatile oil produced in its aerial organs. Fully expanded leaves, internodes, florets, involucral bracts, and stem apices were used for the characterization of trichomes. Leaves, internodes, florets, and involucral bracts were examined by light microscopy and scanning electron microscopy, whereas stem apices were examined only by light microscopy. Branches in the reproductive phase were used for the extraction and determination of the composition of the volatile oil. The species has three types of glandular trichomes, biseriate vesicular, biseriate pedunculate, and multicellular uniseriate, which secrete volatile oils and phenolic compounds. The major components identified in the volatile oil were 3,5-muuroladiene (39.56%) and butylated hydroxytoluene (13.07%).

  17. IDENTIFICATION AND CHARACTERIZATION OF MISSING AND UNACCOUNTED FOR AREA SOURCE CATEGORIES

    EPA Science Inventory

    The report identifies and characterizes missing or unaccounted for area source categories. Area source emissions of particulate matter (TSP), sulfur dioxide (SO2), oxides of nitrogen (NOx), reactive volatile organic compounds (VOCs), and carbon monoxide (CO) are estimated annuall...

  18. Generation of Volatile Organic Compounds from Dissolved Organic Matter in far North Atlantic Surface Ocean Waters.

    NASA Astrophysics Data System (ADS)

    Hudson, E. D.; Ariya, P. A.

    2005-12-01

    The photochemical degradation of dissolved organic matter (DOM) in surface ocean waters is thought to be a source of volatile organic compounds (VOC) (including non-methane hydrocarbons and low MW carbonyl compounds) to the remote marine troposphere. We report on the characterization of DOM sampled at over 30 sites in the far North Atlantic (Greenland and Norwegian seas, Fram strait) during the summer of 2004, and on experiments to identify factors responsible for the photochemical generation of VOCs in these samples. The results will be discussed in the context of VOC profiles of whole air samples taken to match the seawater samples in time and space.

  19. Fine particle and organic vapor emissions from staged tests of an in-use aircraft engine

    NASA Astrophysics Data System (ADS)

    Presto, Albert A.; Nguyen, Ngoc T.; Ranjan, Manish; Reeder, Aaron J.; Lipsky, Eric M.; Hennigan, Christopher J.; Miracolo, Marissa A.; Riemer, Daniel D.; Robinson, Allen L.

    2011-07-01

    Staged tests were conducted to measure the particle and vapor emissions from a CFM56-2B1 gas-turbine engine mounted on a KC-135T Stratotanker airframe at different engine loads. Exhaust was sampled using a rake inlet installed 1-m downstream of the engine exit plane of a parked and chocked aircraft and a dilution sampler and portable smog chamber were used to investigate the particulate matter (PM) emissions. Total fine PM mass emissions were highest at low (4%) and high (85%) load and lower at intermediate loads (7% and 30%). PM mass emissions at 4% load are dominated by organics, while at 85% load elemental carbon is dominant. Quantifying the primary organic aerosol (POA) emissions is complicated by substantial filter sampling artifacts. Partitioning experiments reveal that the majority of the POA is semivolatile; for example, the POA emission factor changed by a factor of two when the background organic aerosol concentration was increased from 0.7 to 4 μg m -3. Therefore, one cannot define a single non-volatile PM emission factor for aircraft exhaust. The gas- and particle-phase organic emissions were comprehensively characterized by analyzing canister, sorbent and filter samples with gas-chromatography/mass-spectrometry. Vapor-phase organic emissions are highest at 4% load and decrease with increasing load. Low-volatility organics (less volatile than a C 12n-alkane) contributed 10-20% of the total organic emissions. The low-volatility organic emissions contain signatures of unburned fuel and aircraft lubricating oil but are dominated by an unresolved complex mixture (UCM) of presumably branched and cyclic alkanes. Emissions at all loads contain more low-volatility organic vapors than POA; thus secondary organic aerosol formation in the aging plume will likely exceed POA emissions.

  20. Generation and characterization of gasoline engine exhaust inhalation exposure atmospheres.

    PubMed

    McDonald, Jacob D; Barr, Edward B; White, Richard K; Kracko, Dean; Chow, Judith C; Zielinska, Barbara; Grosjean, Eric

    2008-10-01

    Exposure atmospheres for a rodent inhalation toxicology study were generated from the exhaust of a 4.3-L gasoline engine coupled to a dynamometer and operated on an adapted California Unified Driving Cycle. Exposure levels were maintained at three different dilution rates. One chamber at the lowest dilution had particles removed by filtration. Each exposure atmosphere was characterized for particle mass, particle number, particle size distribution, and detailed chemical speciation. The majority of the mass in the exposure atmospheres was gaseous carbon monoxide, nitrogen oxides, and volatile organics, with small amounts of particle-bound carbon/ions and metals. The atmospheres varied according to the cycle, with the largest spikes in volatile organic and inorganic species shown during the "cold start" portion of the cycle. Ammonia present from the exhaust and rodents interacted with the gasoline exhaust to form secondary inorganic particles, and an increase in exhaust resulted in higher proportions of secondary inorganics as a portion of the total particle mass. Particle size had a median of 10-20 nm by number and approximately 150 nm by mass. Volatile organics matched the composition of the fuel, with large proportions of aliphatic and aromatic hydrocarbons coupled to low amounts of oxygenated organics. A new measurement technique revealed organics reacting with nitrogen oxides have likely resulted in measurement bias in previous studies of combustion emissions. Identified and measured particle organic species accounted for about 10% of total organic particle mass and were mostly aliphatic acids and polycyclic aromatic hydrocarbons.

  1. Inorganic salts interact with organic di-acids in sub-micron particles to form material with low hygroscopicity and volatility

    NASA Astrophysics Data System (ADS)

    Drozd, G.; Woo, J.; Häkkinen, S. A. K.; Nenes, A.; McNeill, V. F.

    2013-11-01

    Volatility and hygroscopicity are two key properties of organic aerosol components, and both are strongly related to chemical identity. Here we show that inorganic-organic component interactions typically not considered in atmospheric models may strongly affect aerosol volatility and hygroscopicity. In particular, bi-dentate binding of di-carboxylic acids (DCA) to soluble inorganic ions can lead to very strongly bound metal-organic complexes with largely undetermined hygroscopicity and volatility. These reactions profoundly impact particle hygroscopicity, transforming hygroscopic components into irreversibly non-hygroscopic material. While the hygroscopicities of pure salts, DCA, and DCA salts are known, the hygroscopicity of internal mixtures of hygroscopic salts and DCA, as they are typically found in the atmosphere, has not been fully characterized. We have studied the volatility of pure, dry organic salt particles and the hygroscopicity of internal mixtures of oxalic acid (OxA, the dominant DCA in the atmosphere) and a number of salts, both mono- and di-valent. The formation of very low volatility organic salts was confirmed, with minimal evaporation of oxalate salt particles below 75 °C. Dramatic increases in the CCN activation diameter for particles with divalent salts (e.g. CaCl2) and relatively small particle mass fractions of OxA indicate that standard volume additivity rules for hygroscopicity do not apply. Thus small organic compounds with high O:C are capable of forming low volatility and very low hygroscopicity particles. Given current knowledge of the formation mechanisms of OxA and M-Ox salts, surface enrichment of insoluble M-Ox salts is expected. The resulting formation of an insoluble coating of metal-oxalate salts can explain low particle hygroscopicities. The formation of particles with a hard coating could offer an alternative explanation for observations of glass-like particles with very low viscosity.

  2. Chemical Signature of Biomass Burning Emitted PM2.5 as Revealed by a C/N/S Multi- Elemental Scanning Thermal Analysis (MESTA) Technique

    NASA Astrophysics Data System (ADS)

    Hsieh, Y.; Bugna, G.

    2006-12-01

    Uncertainty of black carbon (BC) research is often plagued by the analytical difficulty associated with separating carbon components in solid samples. A rapid and sensitive multi-elemental scanning thermal analysis (MESTA), originally developed for organic matter analysis in solid samples, was applied to this study. The objective was to identify the chemical signature of biomass burning emitted PM2.5 (aerosols less than 2.5 micron) for tracing purposes. We collected PM2.5 from the burning of various biomass of a pine forest and from the ambient air of an urban campus using a PM sampler. The MESTA provides simultaneous C, N and S thermograms of the PM2.5 samples that can be used for characterization and identification purposes. This study showed that the PM2.5 samples produced from the burning of forest biomass can be characterized by a high temperature (greater than 350 oC) volatile organic component with high C/N ratio and no S content while those produced from the ambient air can be characterized by a low temperature (less than 350 oC) volatile organic component with low C/N ratio and high S content. Burning of the soaked woody debris, however, produced significant amount of the low-temperature volatile organic component similar to that of the ambient air in C/N ratio but different in S content. Most PM2.5 samples have a very low temperature (less than 110 oC) volatile N component that is identified as absorbed ammonia. The absorbed ammonia is most significant in the PM2.5 of the ambient air and the burning of soaked woody debris. All PM2.5 samples have significant amount of BC which volatilized above 500 oC with very high C/N ratio. This study also shows that MESTA can provide an objective means to present the chemical signature of the whole spectrum of OC/BC in the PM2.5 samples.

  3. Inorganic salts interact with oxalic acid in submicron particles to form material with low hygroscopicity and volatility

    NASA Astrophysics Data System (ADS)

    Drozd, G.; Woo, J.; Häkkinen, S. A. K.; Nenes, A.; McNeill, V. F.

    2014-05-01

    Volatility and hygroscopicity are two key properties of organic aerosol components, and both are strongly related to chemical identity. While the hygroscopicities of pure salts, di-carboxylic acids (DCA), and DCA salts are known, the hygroscopicity of internal mixtures of these components, as they are typically found in the atmosphere, has not been fully characterized. Here we show that inorganic-organic component interactions typically not considered in atmospheric models can lead to very strongly bound metal-organic complexes and greatly affect aerosol volatility and hygroscopicity; in particular, the bi-dentate binding of DCA to soluble inorganic ions. We have studied the volatility of pure, dry organic salt particles and the hygroscopicity of internal mixtures of oxalic acid (OxA, the dominant DCA in the atmosphere) and a number of salts, both mono- and di-valent. The formation of very low volatility organic salts was confirmed, with minimal evaporation of oxalate salt particles below 75 °C. Dramatic increases in the cloud condensation nuclei (CCN) activation diameter for particles with di-valent salts (e.g., CaCl2) and relatively small particle volume fractions of OxA indicate that standard volume additivity rules for hygroscopicity do not apply. Thus small organic compounds with high O : C ratios are capable of forming low-volatility and very low hygroscopicity particles. Given current knowledge of the formation mechanisms of OxA and M-Ox salts, surface enrichment of insoluble M-Ox salts is expected. The resulting formation of an insoluble coating of metal-oxalate salts can explain low-particle hygroscopicities. The formation of particles with a hard coating could offer an alternative explanation for observations of glass-like particles without the need for a phase transition.

  4. Measuring volatile organic compounds and stable isotopes emitted from trees and soils of the Biosphere 2 Rainforest

    NASA Astrophysics Data System (ADS)

    Meraz, J. C.; Meredith, L. K.; Van Haren, J. L. M.; Volkmann, T. H. M.

    2017-12-01

    Rainforest trees and soils play an important role in volatile organic compound (VOC) emissions. It is known that many rainforest tree species emit these organic compounds, such as terpenes, which can have an impact on the atmosphere and can be indicative of their metabolic functions. Some VOCs also absorb infrared radiation at wavelengths at which water isotopes are measured with laser spectrometers. Normal concentrations are not high enough for ambient sampling, but increased concentrations resulting from soil and plant samples extracted using equilibrium methods affect observed isotope ratios. There is thus a need to characterize volatile emissions from soil and plant samples, and to develop better methods to account for VOC interference during water isotope measurements. In this study, we collected soil and leaf samples from plants of the Biosphere 2 Rainforest Biome, a mesocosm system created to stimulate natural tropical rainforest habitats . Volatile concentrations were measured using a Gasmet DX4015 FTIR analyzer and a custom sampling system with sulfur hexafluoride (SF6) used as a tracer gas to test for leakage, and a commercial laser spectrometer was used for isotopic analysis. We determined that the different types of tree species emit different kinds of VOCs, such as isoprenes, alcohols, and aldehydes, that will potentially have to be accounted for. This study will help build the understanding of which organic compounds are emitted and develop new methods to test for water isotopes and gas fluxes in clear and precise measures. Such measures can help characterize the functioning of environmental systems such as the Biosphere 2 Rainforest Biome.

  5. Framework for Site Characterization for Monitored Natural Attenuation of Volatile Organic Compounds in Ground Water

    EPA Science Inventory

    Monitored Natural Attenuation (MNA) is unique among remedial technologies in relying entirely on natural processes to achieve site-specific objectives. Site characterization is essential to provide site-specific data and interpretations for the decision-making process (i.e., to ...

  6. Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter.

    PubMed

    Adebesin, Funmilayo; Widhalm, Joshua R; Boachon, Benoît; Lefèvre, François; Pierman, Baptiste; Lynch, Joseph H; Alam, Iftekhar; Junqueira, Bruna; Benke, Ryan; Ray, Shaunak; Porter, Justin A; Yanagisawa, Makoto; Wetzstein, Hazel Y; Morgan, John A; Boutry, Marc; Schuurink, Robert C; Dudareva, Natalia

    2017-06-30

    Plants synthesize a diversity of volatile molecules that are important for reproduction and defense, serve as practical products for humans, and influence atmospheric chemistry and climate. Despite progress in deciphering plant volatile biosynthesis, their release from the cell has been poorly understood. The default assumption has been that volatiles passively diffuse out of cells. By characterization of a Petunia hybrida adenosine triphosphate-binding cassette (ABC) transporter, PhABCG1, we demonstrate that passage of volatiles across the plasma membrane relies on active transport. PhABCG1 down-regulation by RNA interference results in decreased emission of volatiles, which accumulate to toxic levels in the plasma membrane. This study provides direct proof of a biologically mediated mechanism of volatile emission. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. A Novel Method for Analyzing Microbially Affiliated Volatile Organic Compounds in Soil Environments

    NASA Astrophysics Data System (ADS)

    Ruhs, C. V.; McNeal, K. S.

    2010-12-01

    A concerted, international effort by citizens, governments, industries and educational systems is necessary to address the myriad environmental issues that face us today. The authors of this paper concentrate on soil environments and, specifically, the methods currently used to characterize them. The ability to efficiently and effectively monitor and characterize various soils is desired, allows for the study, supervision, and protection of natural and cultivated ecosystems, and may assist stakeholders in meeting governmentally-imposed environmental standards. This research addresses soil characterization by a comparison of four methods that emphasize a combination of microbial community and metabolic measures: BIOLOG, fatty acid methyl-ester analysis (FAME), descriptive physical and chemical analysis (moisture content, pH, carbon content, nutrient content, and grain size), and the novel soil-microbe volatile organic compound analysis (SMVOC) presented in this work. In order to achieve the method comparison, soils were collected from three climatic regions (Bahamas, Michigan, and Mississippi), with three samples taken from niche ecosystems found at each climatic region (a total of nine sites). Of interest to the authors is whether or not an investigation of microbial communities and the volatile organic compounds (VOCs) produced by microbial communities from nine separate soil ecosystems provides useful information about soil dynamics. In essence, is analysis of soil-derived VOCs using gas chromatography-mass spectrometry (GC-MS) an effective method for characterizing microbial communities and their metabolic activity of soils rapidly and accurately compared with the other three traditional characterization methods? Preliminary results suggest that VOCs in each of these locales differ with changes in soil types, soil moisture, and bacterial community. Each niche site shows distinct patterns in both VOCs and BIOLOG readings. Results will be presented to show the efficacy of the SMVOC approach and the statistical alignment of the VOC and community measures.

  8. Characterization of the gas sensors based on polymer-coated resonant microcantilevers for the detection of volatile organic compounds.

    PubMed

    Dong, Ying; Gao, Wei; Zhou, Qin; Zheng, Yi; You, Zheng

    2010-06-25

    The gas sensors based on polymer-coated resonant microcantilevers for volatile organic compounds (VOCs) detection are investigated. A method to characterize the gas sensors through sensor calibration is proposed. The expressions for the estimation of the characteristic parameters are derived. The effect of the polymer coating location on the sensor's sensitivity is investigated and the formula to calculate the polymer-analyte partition coefficient without knowing the polymer coating features is presented for the first time. Three polymers: polyethyleneoxide (PEO), polyethylenevinylacetate (PEVA) and polyvinylalcohol (PVA) are used to perform the experiments. Six organic solvents: toluene, benzene, ethanol, acetone, hexane and octane are used as analytes. The response time, reversibility, hydrophilicity, sensitivity and selectivity of the polymer layers are discussed. According to the results, highly sensitive sensors for each of the analytes are proposed. Based on the characterization method, a convenient and flexible way to the construction of electric nose system by the polymer-coated resonant microcantilevers can be achieved. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Elucidating the Chemical Complexity of Organic Aerosol Constituents Measured During the Southeastern Oxidant and Aerosol Study (SOAS)

    NASA Astrophysics Data System (ADS)

    Yee, L.; Isaacman, G. A.; Spielman, S. R.; Worton, D. R.; Zhang, H.; Kreisberg, N. M.; Wilson, K. R.; Hering, S. V.; Goldstein, A. H.

    2013-12-01

    Thousands of volatile organic compounds are uniquely created in the atmosphere, many of which undergo chemical transformations that result in more highly-oxidized and often lower vapor pressure species. These species can contribute to secondary organic aerosol, a complex mixture of organic compounds that is still not chemically well-resolved. Organic aerosol collected on filters taken during the Southeastern Oxidant and Aerosol Study (SOAS) constitute hundreds of unique chemical compounds. Some of these include known anthropogenic and biogenic tracers characterized using standardized analytical techniques (e.g. GC-MS, UPLC, LC-MS), but the majority of the chemical diversity has yet to be explored. By employing analytical techniques involving sample derivatization and comprehensive two-dimensional gas chromatography (GC x GC) with high-resolution-time-of-flight mass spectrometry (HR-ToF-MS), we elucidate the chemical complexity of the organic aerosol matrix along the volatility and polarity grids. Further, by utilizing both electron impact (EI) and novel soft vacuum ultraviolet (VUV) ionization mass spectrometry, a greater fraction of the organic mass is fully speciated. The GC x GC-HR-ToF-MS with EI/VUV technique efficiently provides an unprecedented level of speciation for complex ambient samples. We present an extensive chemical characterization and quantification of organic species that goes beyond typical atmospheric tracers in the SOAS samples. We further demonstrate that complex organic mixtures can be chemically deconvoluted by elucidation of chemical formulae, volatility, functionality, and polarity. These parameters provide insight into the sources (anthropogenic vs. biogenic), chemical processes (oxidation pathways), and environmental factors (temperature, humidity), controlling organic aerosol growth in the Southeastern United States.

  10. Characterization of microbial and chemical composition of shuttle wet waste with permanent gas and volatile organic compound analyses

    NASA Astrophysics Data System (ADS)

    Peterson, B. V.; Hummerick, M.; Roberts, M. S.; Krumins, V.; Kish, A. L.; Garland, J. L.; Maxwell, S.; Mills, A.

    2004-01-01

    Solid-waste treatment in space for Advanced Life Support, ALS, applications requires that the material can be safely processed and stored in a confined environment. Many solid-wastes are not stable because they are wet (40-90% moisture) and contain levels of soluble organic compounds that can contribute to the growth of undesirable microorganisms with concomitant production of noxious odors. In the absence of integrated Advanced Life Support systems on orbit, permanent gas, trace volatile organic and microbiological analyses were performed on crew refuse returned from the volume F "wet" trash of three consecutive Shuttle missions (STS-105, 109, and 110). These analyses were designed to characterize the short-term biological stability of the material and assess potential crew risks resulting from microbial decay processes during storage. Waste samples were collected post-orbiter landing and sorted into packaging material, food waste, toilet waste, and bulk liquid fractions deposited during flight in the volume F container. Aerobic and anaerobic microbial loads were determined in each fraction by cultivation on R2A and by acridine orange direct count (AODC). Dry and ash weights were performed to determine both water and organic content of the materials. Experiments to determine the aerobic and anaerobic biostability of refuse stored for varying periods of time were performed by on-line monitoring of CO 2 and laboratory analysis for production of hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA Method TO15 by USEPA et al. [EPA Method TO15, The Determination of Volatile Organic Compounds (VOCs) in Ambient Air using SUMMA, Passivated Canister Sampling and Gas Chromatographic Analysis, 1999] with gas chromatography/mass spectrometry and by gas chromatography with selective detectors. These baseline measures of waste stream content, labile organics, and microbial load in the volume F Shuttle trash provide data for waste subsystem analysis and atmospheric management within the ALS Project.

  11. Characterization of microbial and chemical composition of shuttle wet waste with permanent gas and volatile organic compound analyses

    NASA Technical Reports Server (NTRS)

    Peterson, B. V.; Hummerick, M.; Roberts, M. S.; Krumins, V.; Kish, A. L.; Garland, J. L.; Maxwell, S.; Mills, A.

    2004-01-01

    Solid-waste treatment in space for Advanced Life Support, ALS, applications requires that the material can be safely processed and stored in a confined environment. Many solid-wastes are not stable because they are wet (40-90% moisture) and contain levels of soluble organic compounds that can contribute to the growth of undesirable microorganisms with concomitant production of noxious odors. In the absence of integrated Advanced Life Support systems on orbit, permanent gas, trace volatile organic and microbiological analyses were performed on crew refuse returned from the volume F "wet" trash of three consecutive Shuttle missions (STS-105, 109, and 110). These analyses were designed to characterize the short-term biological stability of the material and assess potential crew risks resulting from microbial decay processes during storage. Waste samples were collected post-orbiter landing and sorted into packaging material, food waste, toilet waste, and bulk liquid fractions deposited during flight in the volume F container. Aerobic and anaerobic microbial loads were determined in each fraction by cultivation on R2A and by acridine orange direct count (AODC). Dry and ash weights were performed to determine both water and organic content of the materials. Experiments to determine the aerobic and anaerobic biostability of refuse stored for varying periods of time were performed by on-line monitoring of CO2 and laboratory analysis for production of hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA Method TO15 by USEPA et al. [EPA Method TO15, The Determination of Volatile Organic Compounds (VOCs) in Ambient Air using SUMMA, Passivated Canister Sampling and Gas Chromatographic Analysis,1999] with gas chromatography/mass spectrometry and by gas chromatography with selective detectors. These baseline measures of waste stream content, labile organics, and microbial load in the volume F Shuttle trash provide data for waste subsystem analysis and atmospheric management within the ALS Project. Published by Elsevier Ltd on behalf of COSPAR.

  12. Characterization of microbial and chemical composition of shuttle wet waste with permanent gas and volatile organic compound analyses.

    PubMed

    Peterson, B V; Hummerick, M; Roberts, M S; Krumins, V; Kish, A L; Garland, J L; Maxwell, S; Mills, A

    2004-01-01

    Solid-waste treatment in space for Advanced Life Support, ALS, applications requires that the material can be safely processed and stored in a confined environment. Many solid-wastes are not stable because they are wet (40-90% moisture) and contain levels of soluble organic compounds that can contribute to the growth of undesirable microorganisms with concomitant production of noxious odors. In the absence of integrated Advanced Life Support systems on orbit, permanent gas, trace volatile organic and microbiological analyses were performed on crew refuse returned from the volume F "wet" trash of three consecutive Shuttle missions (STS-105, 109, and 110). These analyses were designed to characterize the short-term biological stability of the material and assess potential crew risks resulting from microbial decay processes during storage. Waste samples were collected post-orbiter landing and sorted into packaging material, food waste, toilet waste, and bulk liquid fractions deposited during flight in the volume F container. Aerobic and anaerobic microbial loads were determined in each fraction by cultivation on R2A and by acridine orange direct count (AODC). Dry and ash weights were performed to determine both water and organic content of the materials. Experiments to determine the aerobic and anaerobic biostability of refuse stored for varying periods of time were performed by on-line monitoring of CO2 and laboratory analysis for production of hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA Method TO15 by USEPA et al. [EPA Method TO15, The Determination of Volatile Organic Compounds (VOCs) in Ambient Air using SUMMA, Passivated Canister Sampling and Gas Chromatographic Analysis,1999] with gas chromatography/mass spectrometry and by gas chromatography with selective detectors. These baseline measures of waste stream content, labile organics, and microbial load in the volume F Shuttle trash provide data for waste subsystem analysis and atmospheric management within the ALS Project. Published by Elsevier Ltd on behalf of COSPAR.

  13. Characterization of the volatile profile of Antarctic bacteria by using solid-phase microextraction-gas chromatography-mass spectrometry.

    PubMed

    Romoli, Riccardo; Papaleo, Maria Cristiana; de Pascale, Donatella; Tutino, Maria Luisa; Michaud, Luigi; LoGiudice, Angelina; Fani, Renato; Bartolucci, Gianluca

    2011-10-01

    Bacteria belonging to the Burkholderia cepacia complex (Bcc) are significant pathogens in Cystic Fibrosis (CF) patients and are resistant to a plethora of antibiotics. In this context, microorganisms from Antarctica are interesting because they produce antimicrobial compounds inhibiting the growth of other bacteria. This is particularly true for bacteria isolated from Antarctic sponges. The aim of this work was to characterize a set of Antarctic bacteria for their ability to produce new natural drugs that could be exploited in the control of infections in CF patients by Bcc bacteria. Hence, 11 bacterial strains allocated to different genera (e.g., Pseudoalteromonas, Arthrobacter and Psychrobacter) were tested for their ability to inhibit the growth of 21 Bcc strains and some other human pathogens. All these bacteria completely inhibited the growth of most, if not all, Bcc strains, suggesting a highly specific activity toward Bcc strains. Experimental evidences showed that the antimicrobial compounds are small volatile organic compounds, and are constitutively produced via an unknown pathway. The microbial volatile profile was obtained by SPME-GC-MS within the m/z interval of 40-450. Solid phase micro extraction technique affords the possibility to extract the volatile compounds in head space with a minimal sample perturbation. Principal component analysis and successive cluster discriminant analysis was applied to evaluate the relationships among the volatile organic compounds with the aim of classifying the microorganisms by their volatile profile. These data highlight the potentiality of Antarctic bacteria as novel sources of antibacterial substances to face Bcc infections in CF patients. Copyright © 2011 John Wiley & Sons, Ltd.

  14. GRAND PLAZA SITE INVESTIGATION USING THE TRIAD APPROACH AND EVALUATION OF VAPOR INTRUSION - (ITER)

    EPA Science Inventory

    This document provides a detailed report about a field study conducted by EQM/URS on behalf of EPA/NRMRL to characterize the subsurface contamination of volatile organic compounds (VOCs) at a Brownfield commercial site. The TRIAD approach was implemented to characterize the exten...

  15. Biomimicry of volatile-based microbial control for managing emerging fungal pathogens.

    PubMed

    Gabriel, K T; Joseph Sexton, D; Cornelison, C T

    2018-05-01

    Volatile organic compounds (VOCs) are known to be produced by a wide range of micro-organisms and for a number of purposes. Volatile-based microbial inhibition in environments such as soil is well-founded, with numerous antimicrobial VOCs having been identified. Inhibitory VOCs are of interest as microbial control agents, as low concentrations of gaseous VOCs can elicit significant antimicrobial effects. Volatile organic compounds are organic chemicals typically characterized as having low molecular weight, low solubility in water, and high vapour pressure. Consequently, VOCs readily evaporate to the gaseous phase at standard temperature and pressure. This contact-independent antagonism presents unique advantages over traditional, contact-dependent microbial control methods, including increased surface exposure and reduced environmental persistence. This approach has been the focus of our recent research, with positive results suggesting it may be particularly promising for the management of emerging fungal pathogens, such as the causative agents of white-nose syndrome of bats and snake fungal disease, which are difficult or impossible to treat using traditional approaches. Here, we review the history of volatile-based microbial control, discuss recent progress in formulations that mimic naturally antagonistic VOCs, outline the development of a novel treatment device, and highlight areas where further work is needed to successfully deploy VOCs against existing and emerging fungal pathogens. © 2017 The Society for Applied Microbiology.

  16. Diel rhythms in the volatile emission of apple and grape foliage.

    PubMed

    Giacomuzzi, Valentino; Cappellin, Luca; Nones, Stefano; Khomenko, Iuliia; Biasioli, Franco; Knight, Alan L; Angeli, Sergio

    2017-06-01

    This study investigated the diel emission of volatile organic compounds (VOCs) from intact apple (Malus x domestica Borkh., cv. Golden Delicious) and grape (Vitis vinifera L., cv. Pinot Noir) foliage. Volatiles were monitored continuously for 48 h by proton transfer reaction - time of flight - mass spectrometry (PTR-ToF-MS). In addition, volatiles were collected by closed-loop-stripping-analysis (CLSA) and characterized by gas chromatography-mass spectrometry (GC-MS) after 1 h and again 24 and 48 h later. Fourteen and ten volatiles were characterized by GC-MS in apple and grape, respectively. The majority of these were terpenes, followed by green leaf volatiles, and aromatic compounds. The PTR-ToF-MS identified 10 additional compounds and established their diel emission rhythms. The most abundant volatiles displaying a diel rhythm included methanol and dimethyl sulfide in both plants, acetone in grape, and mono-, homo- and sesquiterpenes in apple. The majority of volatiles were released from both plants during the photophase; whereas methanol, CO 2 , methyl-butenol and benzeneacetaldehyde were released at significantly higher levels during the scotophase. Acetaldehyde, ethanol, and some green leaf volatiles showed distinct emission bursts in both plants following the daily light switch-off. These new results obtained with a combined analytical approach broaden our understanding of the rhythms of constitutive volatile release from two important horticultural crops. In particular, diel emission of sulfur and nitrogen-containing volatiles are reported here for the first time in these two crops. Copyright © 2017. Published by Elsevier Ltd.

  17. Formation and evolution of molecular products in α-pinene secondary organic aerosol.

    PubMed

    Zhang, Xuan; McVay, Renee C; Huang, Dan D; Dalleska, Nathan F; Aumont, Bernard; Flagan, Richard C; Seinfeld, John H

    2015-11-17

    Much of our understanding of atmospheric secondary organic aerosol (SOA) formation from volatile organic compounds derives from laboratory chamber measurements, including mass yield and elemental composition. These measurements alone are insufficient to identify the chemical mechanisms of SOA production. We present here a comprehensive dataset on the molecular identity, abundance, and kinetics of α-pinene SOA, a canonical system that has received much attention owing to its importance as an organic aerosol source in the pristine atmosphere. Identified organic species account for ∼58-72% of the α-pinene SOA mass, and are characterized as semivolatile/low-volatility monomers and extremely low volatility dimers, which exhibit comparable oxidation states yet different functionalities. Features of the α-pinene SOA formation process are revealed for the first time, to our knowledge, from the dynamics of individual particle-phase components. Although monomeric products dominate the overall aerosol mass, rapid production of dimers plays a key role in initiating particle growth. Continuous production of monomers is observed after the parent α-pinene is consumed, which cannot be explained solely by gas-phase photochemical production. Additionally, distinct responses of monomers and dimers to α-pinene oxidation by ozone vs. hydroxyl radicals, temperature, and relative humidity are observed. Gas-phase radical combination reactions together with condensed phase rearrangement of labile molecules potentially explain the newly characterized SOA features, thereby opening up further avenues for understanding formation and evolution mechanisms of α-pinene SOA.

  18. Advanced Characterization of Semivolatile Organic Compounds Emitted from Biomass Burning

    NASA Astrophysics Data System (ADS)

    Hatch, L. E.; Liu, Y.; Rivas-Ubach, A.; Shaw, J. B.; Lipton, M. S.; Barsanti, K. C.

    2016-12-01

    Biomass burning (BB) emits large amounts of non-methane organic gases (NMOGs) and primary (directly emitted) particulate matter (PM). NMOGs also react in plume to form secondary PM (i.e., SOA) and ozone. BB-PM has been difficult to represent accurately in models used for chemistry and climate predictions, including for air quality and fire management purposes. Much recent research supports that many previously unconsidered SOA precursors exist, including oxidation of semivolatile compounds (SVOCs). Although many recent studies have characterized relatively volatile BB-derived NMOGs and relatively non-volatile particle-phase organic species, comparatively few studies have performed detailed characterization of SVOCs emitted from BB. Here we present efforts to expand the volatility and compositional ranges of compounds measured in BB smoke. In this work, samples of SVOCs in gas and particle phases were collected from 18 fires representing a range of fuel types during the 2016 FIREX fire laboratory campaign; samples were analyzed by two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-TOFMS) and Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS). Hundreds of compounds were detectable in both gas and particle phases by GCxGC-TOFMS whereas thousands of peaks were present in the FTICR mass spectra. Data from both approaches highlight that chemical fingerprints of smoke are fuel/burn-dependent. These efforts support our continued research in building the understanding and model representation of BB emissions and BB-derived SOA.

  19. Advanced Characterization of Semivolatile Organic Compounds Emitted from Biomass Burning

    NASA Astrophysics Data System (ADS)

    Hatch, L. E.; Liu, Y.; Rivas-Ubach, A.; Shaw, J. B.; Lipton, M. S.; Barsanti, K. C.

    2017-12-01

    Biomass burning (BB) emits large amounts of non-methane organic gases (NMOGs) and primary (directly emitted) particulate matter (PM). NMOGs also react in plume to form secondary PM (i.e., SOA) and ozone. BB-PM has been difficult to represent accurately in models used for chemistry and climate predictions, including for air quality and fire management purposes. Much recent research supports that many previously unconsidered SOA precursors exist, including oxidation of semivolatile compounds (SVOCs). Although many recent studies have characterized relatively volatile BB-derived NMOGs and relatively non-volatile particle-phase organic species, comparatively few studies have performed detailed characterization of SVOCs emitted from BB. Here we present efforts to expand the volatility and compositional ranges of compounds measured in BB smoke. In this work, samples of SVOCs in gas and particle phases were collected from 18 fires representing a range of fuel types during the 2016 FIREX fire laboratory campaign; samples were analyzed by two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-TOFMS) and Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS). Hundreds of compounds were detectable in both gas and particle phases by GCxGC-TOFMS whereas thousands of peaks were present in the FTICR mass spectra. Data from both approaches highlight that chemical fingerprints of smoke are fuel/burn-dependent. These efforts support our continued research in building the understanding and model representation of BB emissions and BB-derived SOA.

  20. Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China.

    PubMed

    Shan, Linan; He, Yunfeng; Chen, Jie; Huang, Qian; Wang, Hongcai

    2015-12-01

    Ammonia (NH3) volatilization is a major pathway of nitrogen (N) loss from soil-crop systems. As vegetable cultivation is one of the most important agricultural land uses worldwide, a deeper understanding of NH3 volatilization is necessary in vegetable production systems. We therefore conducted a 3-year (2010-2012) field experiment to characterize NH3 volatilization and evaluate the effect of different N fertilizer treatments on this process during the growth period of Chinese cabbage. Ammonia volatilization rate, rainfall, soil water content, pH, and soil NH4(+) were measured during the growth period. The results showed that NH3 volatilization was significantly and positively correlated to topsoil pH and NH4(+) concentration. Climate factors and fertilization method also significantly affected NH3 volatilization. Specifically, organic fertilizer (OF) increased NH3 volatilization by 11.77%-18.46%, compared to conventional fertilizer (CF, urea), while organic-inorganic compound fertilizer (OIF) reduced NH3 volatilization by 8.82%-12.67% compared to CF. Furthermore, slow-release fertilizers had significantly positive effects on controlling NH3 volatilization, with a 60.73%-68.80% reduction for sulfur-coated urea (SCU), a 71.85%-78.97% reduction for biological Carbon Power® urea (BCU), and a 77.66%-83.12% reduction for bulk-blend controlled-release fertilizer (BBCRF) relative to CF. This study provides much needed baseline information, which will help in fertilizer choice and management practices to reduce NH3 volatilization and encourage the development of new strategies for vegetable planting. Copyright © 2015. Published by Elsevier B.V.

  1. Single-particle characterization of biomass burning organic aerosol (BBOA): evidence for non-uniform mixing of high molecular weight organics and potassium

    NASA Astrophysics Data System (ADS)

    Lee, Alex K. Y.; Willis, Megan D.; Healy, Robert M.; Wang, Jon M.; Jeong, Cheol-Heon; Wenger, John C.; Evans, Greg J.; Abbatt, Jonathan P. D.

    2016-05-01

    Biomass burning organic aerosol (BBOA) can be emitted from natural forest fires and human activities such as agricultural burning and domestic energy generation. BBOA is strongly associated with atmospheric brown carbon (BrC) that absorbs near-ultraviolet and visible light, resulting in significant impacts on regional visibility degradation and radiative forcing. The mixing state of BBOA can play a critical role in the prediction of aerosol optical properties. In this work, single-particle measurements from a Soot-Particle Aerosol Mass Spectrometer coupled with a light scattering module (LS-SP-AMS) were performed to examine the mixing state of BBOA, refractory black carbon (rBC), and potassium (K, a tracer for biomass burning aerosol) in an air mass influenced by wildfire emissions transported from northern Québec to Toronto, representing aged biomass burning plumes. Cluster analysis of single-particle measurements identified five BBOA-related particle types. rBC accounted for 3-14 wt % of these particle types on average. Only one particle type exhibited a strong ion signal for K+, with mass spectra characterized by low molecular weight organic species. The remaining four particle types were classified based on the apparent molecular weight of the BBOA constituents. Two particle types were associated with low potassium content and significant amounts of high molecular weight (HMW) organic compounds. Our observations indicate non-uniform mixing of particles within a biomass burning plume in terms of molecular weight and illustrate that HMW BBOA can be a key contributor to low-volatility BrC observed in BBOA particles. The average mass absorption efficiency of low-volatility BBOA is about 0.8-1.1 m2 g-1 based on a theoretical closure calculation. Our estimates indicate that low-volatility BBOA contributes ˜ 33-44 % of thermo-processed particle absorption at 405 nm; and almost all of the BBOA absorption was associated with low-volatility organics.

  2. Next Generation Offline Approaches to Trace Gas-Phase Organic Compound Speciation: Sample Collection and Analysis

    NASA Astrophysics Data System (ADS)

    Sheu, R.; Marcotte, A.; Khare, P.; Ditto, J.; Charan, S.; Gentner, D. R.

    2017-12-01

    Intermediate-volatility and semi-volatile organic compounds (I/SVOCs) are major precursors to secondary organic aerosol, and contribute to tropospheric ozone formation. Their wide volatility range, chemical complexity, behavior in analytical systems, and trace concentrations present numerous hurdles to characterization. We present an integrated sampling-to-analysis system for the collection and offline analysis of trace gas-phase organic compounds with the goal of preserving and recovering analytes throughout sample collection, transport, storage, and thermal desorption for accurate analysis. Custom multi-bed adsorbent tubes are used to collect samples for offline analysis by advanced analytical detectors. The analytical instrumentation comprises an automated thermal desorption system that introduces analytes from the adsorbent tubes into a gas chromatograph, which is coupled with an electron ionization mass spectrometer (GC-EIMS) and other detectors. In order to optimize the collection and recovery for a wide range of analyte volatility and functionalization, we evaluated a variety of commercially-available materials, including Res-Sil beads, quartz wool, glass beads, Tenax TA, and silica gel. Key properties for optimization include inertness, versatile chemical capture, minimal affinity for water, and minimal artifacts or degradation byproducts; these properties were assessed with a diverse mix of traditionally-measured and functionalized analytes. Along with a focus on material selection, we provide recommendations spanning the entire sampling-and-analysis process to improve the accuracy of future comprehensive I/SVOC measurements, including oxygenated and other functionalized I/SVOCs. We demonstrate the performance of our system by providing results on speciated VOCs-SVOCs from indoor, outdoor, and chamber studies that establish the utility of our protocols and pave the way for precise laboratory characterization via a mix of detection methods.

  3. Fractionation and characterization of organic matter in wastewater from a swine waste-retention basin

    USGS Publications Warehouse

    Leenheer, Jerry A.; Rostad, Colleen E.

    2004-01-01

    Organic matter in wastewater sampled from a swine waste-retention basin in Iowa was fractionated into 14 fractions on the basis of size (particulate, colloid, and dissolved); volatility; polarity (hydrophobic, transphilic, hydrophilic); acid, base, neutral characteristics; and precipitate or flocculates (floc) formation upon acidification. The compound-class composition of each of these fractions was determined by infrared and 13C-NMR spectral analyses. Volatile acids were the largest fraction with acetic acid being the major component of this fraction. The second most abundant fraction was fine particulate organic matter that consisted of bacterial cells that were subfractionated into extractable lipids consisting of straight chain fatty acids, peptidoglycans components of bacterial cell walls, and protein globulin components of cellular plasma. The large lipid content of the particulate fraction indicates that non-polar contaminants, such as certain pharmaceuticals added to swine feed, likely associate with the particulate fraction through partitioning interactions. Hydrocinnamic acid is a major component of the hydrophobic acid fraction, and its presence is an indication of anaerobic degradation of lignin originally present in swine feed. This is the first study to combine particulate organic matter with dissolved organic matter fractionation into a total organic matter fractionation and characterization.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, A. H.; Yee, L. D.; Issacman-VanWertz, G.

    In areas where biogenic emissions are oxidized in the presence of anthropogenic pollutants such as SO2, NOx, and black carbon, it has become increasingly apparent that secondary organic aerosol (SOA) formation from biogenic volatile organic compounds (VOCs) is substantially enhanced. Research is urgently needed to elucidate fundamental processes of natural and anthropogenically influenced VOC oxidation and the contribution of these processes to SOA formation. GoAmazon 2014/15 afforded study of the chemical transformations in the region downwind of Manaus, Brazil, where local biogenic VOC emissions are high, and their chemical oxidation can be studied both inside and outside of the urbanmore » plume to differentiate the role of anthropogenic influence on secondary aerosol formation during oxidation of these natural VOC emissions. To understand the connection between primary biogenic VOC emissions and their secondary products that form aerosols, we made time-resolved molecular level measurements by deploying a Semi-Volatile Thermal Desorption Aerosol Gas Chromatograph (SV-TAG) and a sequential filter sampler during two intensive operational periods (IOPs) of the GoAmazon 2014/15 field campaign. The SV-TAG measured semi-volatile organic compounds in both the gas and particle phases and the sequential filter sampler collected aerosols on quartz fiber filters in four-hour increments used for offline analysis. SV-TAG employed novel online derivatization that provided chemical speciation of highly oxygenated or functionalized compounds that comprise a substantial fraction of secondary organic aerosols, yet are poorly characterized. It also provided partitioning of these compounds between the vapor and particle phases at sufficient time resolution to define the importance of competing atmospheric processes. These measurements were supported by offline analysis of the filters using two-dimensional gas chromatography (GC x GC) with high-resolution time-of-flight mass spectrometry (HR-TOF-MS) using both electron impact (EI) and soft vacuum ultraviolet (VUV) ionization with derivatization. Speciated chemical data from SV-TAG and filter measurements were used to elucidate the relative importance of potential oxidation pathways by providing detailed information on the product distribution from atmospheric reactions and the quantification of known tracers for various oxidation pathways. Together, these techniques provided unequivocal molecular identification of a wide range of atmospheric organic compounds spanning the volatile, semi-volatile, and non-volatile phases. This level of chemical characterization provided insight into the chemical and physical processes that control the atmospheric oxidation of biogenic VOC and subsequent formation of SOA.« less

  5. SEMI-VOLATILE ORGANIC COMPOUNDS FROM VEHICLES POWERED BY GASOLINE, DIESEL AND ALTERNATIVE FUELS: EMISSIONS AND FIELD MEASUREMENTS

    EPA Science Inventory

    This study will result in the development of a new method for the rapid measurement of SVOCs. The characterization of VOC and SVOC emissions of vehicles with different fuel types will improve our understanding of the processes leading to secondary organic aerosol pollution and...

  6. Emission of intermediate, semi and low volatile organic compounds from traffic and their impact on secondary organic aerosol concentrations over Greater Paris

    NASA Astrophysics Data System (ADS)

    Sartelet, K.; Zhu, S.; Moukhtar, S.; André, M.; André, J. M.; Gros, V.; Favez, O.; Brasseur, A.; Redaelli, M.

    2018-05-01

    Exhaust particle emissions are mostly made of black carbon and/or organic compounds, with some of these organic compounds existing in both the gas and particle phases. Although emissions of volatile organic compounds (VOC) are usually measured at the exhaust, emissions in the gas phase of lower volatility compounds (POAvapor) are not. However, these gas-phase emissions may be oxidised after emission and enhance the formation of secondary organic aerosols (SOA). They are shown here to contribute to most of the SOA formation in Central Paris. POAvapor emissions are usually estimated from primary organic aerosol emissions in the particle phase (POA). However, they could also be estimated from VOC emissions for both gasoline and diesel vehicles using previously published measurements from chamber measurements. Estimating POAvapor from VOC emissions and ageing exhaust emissions with a simple model included in the Polyphemus air-quality platform compare well to measurements of SOA formation performed in chamber experiments. Over Greater Paris, POAvapor emissions estimated using POA and VOC emissions are compared using the HEAVEN bottom-up traffic emissions model. The impact on the simulated atmospheric concentrations is then assessed using the Polyphemus/Polair3D chemistry-transport model. Estimating POAvapor emissions from VOC emissions rather than POA emissions lead to lower emissions along motorway axes (between -50% and -70%) and larger emissions in urban areas (up to between +120% and +140% in Central Paris). The impact on total organic aerosol concentrations (gas plus particle) is lower than the impact on emissions: between -8% and 25% along motorway axes and in urban areas respectively. Particle-phase organic concentrations are lower when POAvapor emissions are estimated from VOC than POA emissions, even in Central Paris where the total organic aerosol concentration is higher, because of different assumptions on the emission volatility distribution, stressing the importance of characterizing not only the emission strength, but also the emission volatility distribution.

  7. The Composition of Comet C 2012 K1 (PanSTARRS) and the Distribution of Primary Volatile Abundances Among Comets

    NASA Technical Reports Server (NTRS)

    Roth, Nathan X.; Gibb, Erika; Bonev, Boncho P.; Disanti, Michael A.; Mumma, Michael J.; Villanueva, Geronimo L.; Paganini, Lucas

    2017-01-01

    On 2014 May 22 and 24 we characterized the volatile composition of the dynamically new Oort cloud comet C2012 K1 (PanSTARRS) using the long-slit, high resolution ( lambda/delta lambda is approximately or equal to 25,000) near-infrared echelle spectrograph (NIRSPEC) at the 10 m Keck II telescope on Maunakea, Hawaii. We detected fluorescent emission from six primary volatiles (H2O, HCN, CH4, C2H6, CH3OH, and CO). Upper limits were derived for C2H2, NH3, and H2CO. We report rotational temperatures, production rates, and mixing ratios (relative to water). Compared with median abundance ratios for primary volatiles in other sampled Oort cloud comets, trace gas abundance ratios in C2012 K1 (PanSTARRS) for CO and HCN are consistent, but CH3OH and C2H6 are enriched while H2CO, CH4, and possibly C2H2 are depleted. When placed in context with comets observed in the near- infrared to date, the data suggest a continuous distribution of abundances of some organic volatiles (HCN, C2H6, CH3OH, CH4) among the comet population. The level of enrichment or depletion in a given comet does not necessarily correlate across all molecules sampled, suggesting that chemical diversity among comets may be more complex than the simple organics-enriched, organics-normal, and organics-depleted framework.

  8. Aerial sampling of emissions from biomass pile burns in ...

    EPA Pesticide Factsheets

    Emissions from burning piles of post-harvest timber slash in Grande Ronde, Oregon were sampled using an instrument platform lofted into the plume using a tether-controlled aerostat or balloon. Emissions of carbon monoxide, carbon dioxide, methane, particulate matter (PM2.5 µm), black carbon, ultraviolet absorbing PM, elemental/organic carbon, semi-volatile organics (polycyclic aromatic hydrocarbons and polychlorinated dibenzodioxins/dibenzofurans), filter-based metals, and volatile organics were sampled for determination of emission factors. The effect on emissions from covering or not covering piles with polyethylene sheets to prevent fuel wetting was determined. Results showed that the uncovered (“wet”) piles burned with lower combustion efficiency and higher emissions of volatile organic compounds. Results for other pollutants will also be discussed. This work determined the emissions from open burning of forest slash wood, with and without plastic sheeting. The foresters advocate the use of plastic to keep the slash wood dry and aid in the controlled combustion of the slash to reduce fuel loading. Concerns about the emissions from the burning plastic prompted this work which conducted an extensive characterization of dry, wet, and dry with plastic slash pile emissions.

  9. Detection of Volatile Indicators of Illicit Substances by the Olfactory Receptors of Drosophila melanogaster

    PubMed Central

    Marshall, Brenton; Warr, Coral G.

    2010-01-01

    Insects can detect a large range of odors with a numerically simple olfactory system that delivers high sensitivity and accurate discrimination. Therefore, insect olfactory receptors hold great promise as biosensors for detection of volatile organic chemicals in a range of applications. The array of olfactory receptor neurons of Drosophila melanogaster is rapidly becoming the best-characterized natural nose. We have investigated the suitability of Drosophila receptors as detectors for volatiles with applications in law enforcement, emergency response, and security. We first characterized responses of the majority of olfactory neuron types to a set of diagnostic odorants. Being thus able to correctly identify neurons, we then screened for responses from 38 different types of neurons to 35 agents. We identified 13 neuron types with responses to 13 agents. As individual Drosophila receptor genes have been mapped to neuron types, we can infer which genes confer responsiveness to the neurons. The responses were confirmed for one receptor by expressing it in a nonresponsive neuron. The fly olfactory system is mainly adapted to detect volatiles from fermenting fruits. However, our findings establish that volatiles associated with illicit substances, many of which are of nonnatural origin, are also detected by Drosophila receptors. PMID:20530374

  10. Integrative Analyses of Nontargeted Volatile Profiling and Transcriptome Data Provide Molecular Insight into VOC Diversity in Cucumber Plants (Cucumis sativus)1[OPEN

    PubMed Central

    Wei, Guo; Tian, Peng; Zhang, Fengxia; Qin, Hao; Miao, Han; Chen, Qingwen; Hu, Zhongyi; Wang, Meijiao; Chen, Mingsheng

    2016-01-01

    Plant volatile organic compounds, which are generated in a tissue-specific manner, play important ecological roles in the interactions between plants and their environments, including the well-known functions of attracting pollinators and protecting plants from herbivores/fungi attacks. However, to date, there have not been reports of holistic volatile profiling of the various tissues of a single plant species, even for the model plant species. In this study, we qualitatively and quantitatively analyzed 85 volatile chemicals, including 36 volatile terpenes, in 23 different tissues of cucumber (Cucumis sativus) plants using solid-phase microextraction combined with gas chromatography-mass spectrometry. Most volatile chemicals were found to occur in a highly tissue-specific manner. The consensus transcriptomes for each of the 23 cucumber tissues were generated with RNA sequencing data and used in volatile organic compound-gene correlation analysis to screen for candidate genes likely to be involved in cucumber volatile biosynthetic pathways. In vitro biochemical characterization of the candidate enzymes demonstrated that TERPENE SYNTHASE11 (TPS11)/TPS14, TPS01, and TPS15 were responsible for volatile terpenoid production in the roots, flowers, and fruit tissues of cucumber plants, respectively. A functional heteromeric geranyl(geranyl) pyrophosphate synthase, composed of an inactive small subunit (type I) and an active large subunit, was demonstrated to play a key role in monoterpene production in cucumber. In addition to establishing a standard workflow for the elucidation of plant volatile biosynthetic pathways, the knowledge generated from this study lays a solid foundation for future investigations of both the physiological functions of cucumber volatiles and aspects of cucumber flavor improvement. PMID:27457123

  11. Evaluation of the separation characteristics of application-specific (volatile organic compounds) open-tubular columns for gas chromatography.

    PubMed

    Poole, Colin F; Qian, Jing; Kiridena, Waruna; Dekay, Colleen; Koziol, Wladyslaw W

    2006-11-17

    The solvation parameter model is used to characterize the separation characteristics of two application-specific open-tubular columns (Rtx-Volatiles and Rtx-VGC) and a general purpose column for the separation of volatile organic compounds (DB-WAXetr) at five equally spaced temperatures over the range 60-140 degrees C. System constant differences and retention factor correlation plots are then used to determine selectivity differences between the above columns and their closest neighbors in a large database of system constants and retention factors for forty-four open-tubular columns. The Rtx-Volatiles column is shown to have separation characteristics predicted for a poly(dimethyldiphenylsiloxane) stationary phase containing about 16% diphenylsiloxane monomer. The Rtx-VGC column has separation properties similar to the poly(cyanopropylphenyldimethylsiloxane) stationary phase containing 14% cyanopropylphenylsiloxane monomer DB-1701 for non-polar and dipolar/polarizable compounds but significantly different characteristics for the separation of hydrogen-bond acids. For all practical purposes the DB-WAXetr column is shown to be selectivity equivalent to poly(ethylene glycol) columns prepared using different chemistries for bonding and immobilizing the stationary phase. Principal component analysis and cluster analysis are then used to classify the system constants for the above columns and a sub-database of eleven open-tubular columns (DB-1, HP-5, DB-VRX, Rtx-20, DB-35, Rtx-50, Rtx-65, DB-1301, DB-1701, DB-200, and DB-624) commonly used for the separation of volatile organic compounds. A rationale basis for column selection based on differences in intermolecular interactions is presented as an aid to method development for the separation of volatile organic compounds.

  12. Unraveling the chemical complexity of biomass burning VOC emissions via H3O+ ToF-CIMS (PTR-ToF): emissions characterization

    NASA Astrophysics Data System (ADS)

    Koss, A.; Sekimoto, K.; Gilman, J.; Selimovic, V.; Coggon, M.; Zarzana, K. J.; Yuan, B.; Lerner, B. M.; Brown, S. S.; Jimenez, J. L.; Krechmer, J. E.; Warneke, C.; Yokelson, R. J.; De Gouw, J. A.

    2017-12-01

    Gas-phase biomass burning emissions can include hundreds, if not thousands, of unique volatile and intermediate-volatility organic compounds. It is crucial to know the composition of these emissions to understand secondary organic aerosol formation, ozone formation, and human health effects resulting from fires. However, the composition can vary greatly with fuel type and fire combustion process. During the FIREX 2016 laboratory intensive at the US Forest Service Fire Sciences Laboratory in Missoula, Montana, high-resolution H3O+-CIMS (PTR-ToF) was deployed to characterize VOC emissions. More than 500 ion masses were consistently enhanced in each of 58 fires, which included a wide variety of fuel types representative of the western United States. Using a combination of extensive literature review, H3O+ and NO+ CIMS with GC preseparation, comparison to other instruments, and mass spectral context, we were able to identify the VOC contributors to 90% of the instrument signal. This provides unprecedented chemical detail in high time resolution. We present chemical characteristics of emissions, including OH reactivity and volatility, and highlight areas where better identification is needed.

  13. A Novel Inlet System for On-line Chemical Analysis of Semi-Volatile Submicron Particulate Matter

    NASA Astrophysics Data System (ADS)

    Wisthaler, A.; Eichler, P.; Müller, M.

    2015-12-01

    Semi-volatile organic molecules bound to particles are difficult to measure, especially if they are reactive in nature. Any technique based on aerosol collection onto a substrate generates sampling artifacts due to surface reactions and ad- and desorption of semi-volatile analytes. On-line sampling without sample pre-collection, as for example implemented in the AMS, has greatly reduced many sampling artifacts. AMS measurements of organics do, however, suffer from the drawback that molecular-level information is, in most cases, lost during hard ionization events. As a consequence, only little speciated and thus mechanistically informative data on organic matter is obtained. PTR-ToF-MS is a well-established on-line measurement technique for gas-phase organics. Soft ionization via gas-phase hydronium ions preserves, to a large extent, molecular-level information and thus allows identifying organic compounds at an elemental composition level. We have recently developed a particle inlet system for PTR-ToF-MS instruments (doi:10.5194/amt-8-1353-2015). The CHARON ("Chemical Analysis of Aerosol On-line") inlet consists of a gas-phase denuder, an aerodynamic lens and a thermodesorption unit. In its latest version, it includes a heatable tube upstream of the denuder to form a thermodenuder. Over the last year, the CHARON PTR-ToF-MS system has been successfully used in a series of measurement campaigns to characterize i) POA emitted from a marine diesel engine, ii) SOA generated from the photo-oxidation of toluene, iii) SOA generated from the photo-oxidation of selected amines, iv) ambient aerosol in two major European cities and v) SOA generated from the photo-oxidation of biogenic VOCs. These measurements have demonstrated that the CHARON PTR-ToF-MS system i) generates on-line and real-time elemental composition information of semi-volatile organics in submicron particles (both POA and SOA), ii) detects 80-100 % of the organic mass as measured by the AMS and iii) generates volatility information of semi-volatile organics at an elemental composition level. Selected application examples will be shown.

  14. SPECIATED VOC EMISSIONS FROM MODERN GDI LIGHT DUTY VEHICLES

    EPA Science Inventory

    Chassis dynamometer emissions testing was conducted to characterize speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs) and ozone precursors, in exhaust emissions from three modern gasoline direct injection (GDI) light-duty vehicles. Each GDI v...

  15. Relating sensory and chemical properties of sour cream to consumer acceptance.

    PubMed

    Shepard, L; Miracle, R E; Leksrisompong, P; Drake, M A

    2013-09-01

    Sour cream is a widely popular acidified dairy product. Volatile compounds and organic acids and their specific contributions to flavor or acceptance have not been established, nor has a comprehensive study been conducted to characterize drivers of liking for sour cream. The objective of this study was to characterize chemical and sensory properties of sour cream and to determine the drivers of liking for sour cream. Descriptive sensory and instrumental analyses followed by consumer testing were conducted. Flavor and texture attributes of 32 (22 full-fat, 6 reduced-fat, and 4 fat-free) commercial sour creams were evaluated by a trained descriptive sensory panel. Percent solids, percent fat, pH, titratable acidity, and colorimetric measurements were conducted to characterize physical properties of sour creams. Organic acids were evaluated by HPLC and volatile aroma active compounds were evaluated by gas chromatography-mass spectrometry with gas chromatography-olfactometry. Consumer acceptance testing (n=201) was conducted on selected sour creams, followed by external preference mapping. Full-fat sour creams were characterized by the lack of surface gloss and chalky textural attributes, whereas reduced-fat and fat-free samples displayed high intensities of these attributes. Full-fat sour creams were higher in cooked/milky and milk fat flavors than the reduced-fat and fat-free samples. Reduced-fat and fat-free sour creams were characterized by cardboard, acetaldehyde/green, and potato flavors, bitter taste, and astringency. Lactic acid was the prominent organic acid in all sour creams, followed by acetic and citric acids. High aroma-impact volatile compounds in sour creams were 2,3-butanedione, acetic acid, butyric acid, octanal, 2-methyl-3-furanthiol, 1-octene-3-one, and acetaldehyde. Positive drivers of liking for sour cream were milk fat, cooked/milky and sweet aromatic flavors, opacity, color intensity, and adhesiveness. This comprehensive study established sensory and instrumental properties of sour creams and their relationship to consumer acceptance. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. A field-deployable GC-EI-HRTOF-MS for in situ characterization of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Lerner, B. M.; Herndon, S. C.; Yacovitch, T. I.; Roscioli, J. R.; Fortner, E.; Knighton, W. B.; Sueper, D.; Isaacman-VanWertz, G. A.; Jayne, J. T.; Worsnop, D. R.

    2017-12-01

    Previous authors have demonstrated the value of coupling conventional gas chromatograph (GC) separation techniques with the new generation of electron-impact high-resolution time-of-flight mass spectrometry (EI-HR-ToF-MS) detectors for the measurement of halocarbons and semi-volatile organic species. Here, we present new instrumentation, analytical techniques and field data from the deployment of a GC-EI-HR-ToF-MS system in the mini Aerodyne mobile laboratory to sites upwind and downwind of San Antonio, Texas in May 2017. The instrument employed a multi-component adsorbent trap pre-concertation system followed by single-column separation. We will show results from the field work, including inter-comparison with other VOC measurements and characterization of C5-C10 hydrocarbon mixing ratios to distinguish urban and oil/gas emission sources in characterized air. We will discuss practical aspects of deployment of the GC-EI-HRTOF-MS in a mobile laboratory and system performance in the field. Will we also present further development of Aerodyne's TERN software package for chromatographic data analysis to processing of HRTOF-MS datasets.

  17. Gas and Particulate Aircraft Emissions Measurements: Impacts on local air quality.

    NASA Astrophysics Data System (ADS)

    Jayne, J. T.; Onasch, T.; Northway, M.; Canagaratna, M.; Worsnop, D.; Timko, M.; Wood, E.; Miake-Lye, R.; Herndon, S.; Knighton, B.; Whitefield, P.; Hagen, D.; Lobo, P.; Anderson, B.

    2007-12-01

    Air travel and freight shipping by air are becoming increasingly important and are expected to continue to expand. The resulting increases in the local concentrations of pollutants, including particulate matter (PM), volatile organic compounds (VOCs), and nitrogen oxides (NOX), can have negative impacts on regional air quality, human health and can impact climate change. In order to construct valid emission inventories, accurate measurements of aircraft emissions are needed. These measurements must be done both at the engine exit plane (certification) and downwind following the rapid cooling, dilution and initial atmospheric processing of the exhaust plume. We present here results from multiple field experiments which include the Experiment to Characterize Volatile Aerosol and Trace Species Emissions (EXCAVATE) and the four Aircraft Particle Emissions eXperiments (APEX- 1/Atlanta/2/3) which characterized gas and particle emissions from both stationary or in-use aircraft. Emission indices (EIs) for NOx and VOCs and for particle number concentration, refractory PM (black carbon soot) and volatile PM (primarily sulfate and organic) particles are reported. Measurements were made at the engine exit plane and at several downstream locations (10 and 30 meters) for a number of different engine types and engine thrust settings. A significant fraction of organic particle mass is composed of low volatility oil-related compounds and is not combustion related, potentially emitted by vents or heated surfaces within aircraft engines. Advected plumes measurements from in-use aircraft show that the practice of reduced thrust take-offs has a significant effect on total NOx and soot emitted in the vicinity of the airport. The measurements reported here represent a first observation of this effect and new insights have been gained with respect to the chemical processing of gases and particulates important to the urban airshed.

  18. User’s guide to the collection and analysis of tree cores to assess the distribution of subsurface volatile organic compounds

    USGS Publications Warehouse

    Vroblesky, Don A.

    2008-01-01

    Analysis of the volatile organic compound content of tree cores is an inexpensive, rapid, simple approach to examining the distribution of subsurface volatile organic compound contaminants. The method has been shown to detect several volatile petroleum hydrocarbons and chlorinated aliphatic compounds associated with vapor intrusion and ground-water contamination. Tree cores, which are approximately 3 inches long, are obtained by using an increment borer. The cores are placed in vials and sealed. After a period of equilibration, the cores can be analyzed by headspace analysis gas chromatography. Because the roots are exposed to volatile organic compound contamination in the unsaturated zone or shallow ground water, the volatile organic compound concentrations in the tree cores are an indication of the presence of subsurface volatile organic compound contamination. Thus, tree coring can be used to detect and map subsurface volatile organic compound contamination. For comparison of tree-core data at a particular site, it is important to maintain consistent methods for all aspects of tree-core collection, handling, and analysis. Factors affecting the volatile organic compound concentrations in tree cores include the type of volatile organic compound, the tree species, the rooting depth, ground-water chemistry, the depth to the contaminated horizon, concentration differences around the trunk related to variations in the distribution of subsurface volatile organic compounds, concentration differences with depth of coring related to volatilization loss through the bark and possibly other unknown factors, dilution by rain, seasonal influences, sorption, vapor-exchange rates, and within-tree volatile organic compound degradation.

  19. Characterization of polar organosulfates in secondary organic aerosol from the unsaturated aldehydes 2-E-pentenal, 2-E-hexenal, and 3-Z-hexenal

    EPA Science Inventory

    We show in the present study that the unsaturated aldehydes 2-E-pentenal, 2-E-hexenal, and 3-Z-hexenal are biogenic volatile organic compound (BVOC) precursors for polar organosulfates with molecular weights (MWs) 230 and 214, which are also present in ambient fine aerosol from a...

  20. Characterization of inhalable particulate matter, volatile organic compounds and other chemical species measured in urban areas in New Jersey—I. Summertime episodes

    NASA Astrophysics Data System (ADS)

    Lioy, Paul J.; Daisey, Joan M.; Reiss, Nathan M.; Harkov, Ronald

    The 1981 Summer Campaign results of the New Jersey Project on Airborne Toxic Elements and Organic Substances (ATEOS) have been examined for the accumulation of various pollutants during photochemical smog type episodes in Newark, Elizabeth and Camden, N.J. Background data were provided from a rural site in Ringwood, N.J. The interrelationships among inhalable particulate matter (IPM), particulate organic matter (POM), polycyclic aromatic hydrocarbons (PAH), SO 2-4, V, Pb, O 3, volatile organic compounds and alkylating agents are described. In addition, the prevailing synoptic meteorology was examined to characterize the episodes and define situations that significantly affected the accumulation patterns. The concentrations of PAH, toluene, benzene, V and Pb usually varied independently of the episodes indicating primary source contributions. The alkylating agent concentrations appeared to increase in association with episode periods. The results also indicated that 50-60% of the IPM mass in the urban areas was composed of the sum of SO 2-4 and POM. Between site analysis of the SO 2-4 indicated primarily a regional distribution pattern, while the POM appeared to be related to contributions from both local and regional sources.

  1. Use of the Endophytic Fungus Daldinia cf. concentrica and Its Volatiles as Bio-Control Agents

    PubMed Central

    Liarzi, Orna; Bar, Einat; Lewinsohn, Efraim; Ezra, David

    2016-01-01

    Endophytic fungi are organisms that spend most of their life cycle within plant tissues without causing any visible damage to the host plant. Many endophytes were found to secrete specialized metabolites and/or emit volatile organic compounds (VOCs), which may be biologically active and assist fungal survival inside the plant as well as benefit their hosts. We report on the isolation and characterization of a VOCs-emitting endophytic fungus, isolated from an olive tree (Olea europaea L.) growing in Israel; the isolate was identified as Daldinia cf. concentrica. We found that the emitted VOCs were active against various fungi from diverse phyla. Results from postharvest experiments demonstrated that D. cf. concentrica prevented development of molds on organic dried fruits, and eliminated Aspergillus niger infection in peanuts. Gas chromatography–mass spectrometry analysis of the volatiles led to identification of 27 VOCs. On the basis of these VOCs we prepared two mixtures that displayed a broad spectrum of antifungal activity. In postharvest experiments these mixtures prevented development of molds on wheat grains, and fully eliminated A. niger infection in peanuts. In light of these findings, we suggest use of D. cf. concentrica and/or its volatiles as an alternative approach to controlling phytopathogenic fungi in the food industry and in agriculture. PMID:27977739

  2. Chemical Properties of Brown Carbon Aerosol Generated at the Missoula Fire Sciences Laboratory

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Womack, C.; Franchin, A.; Middlebrook, A. M.; Wagner, N.; Manfred, K.

    2017-12-01

    Aerosol scattering and absorption are still among the largest uncertainties in quantifying radiative forcing. Biomass burning is a major source of light-absorbing carbonaceous aerosol in the United States. These aerosol are generally classified into two categories: black carbon (graphitic-like aerosol that absorbs broadly across the ultraviolet and visible spectral regions) and brown carbon (organic aerosol that absorbs strongly in the ultraviolet and near-visible spectral regions). The composition, volatility, and chemical aging of brown carbon are poorly known, but are important to understanding its radiative effects. We deployed three novel instruments to the Missoula Fire Sciences Laboratory in 2016 to measure brown carbon absorption: a photoacoustic spectrometer, broadband cavity enhanced spectrometer, and particle-into-liquid sampler coupled to a liquid waveguide capillary cell. The instruments sampled from a shared inlet with well-characterized dilution and thermal denuding. We sampled smoke from 32 controlled burns of fuels relevant to western U.S. wildfires. We use these measurements to determine the volatility of water-soluble brown carbon, and compare this to the volatility of water-soluble organic aerosol and total organic aerosol. We further examine the wavelength-dependence of the water-soluble brown carbon absorption as a function of denuder temperature. Together this gives new information about the solubility, volatility, and chemical composition of brown carbon.

  3. EXHALED BREATH ANALYSIS FOR HUMAN EXPOSURE RESEARCH

    EPA Science Inventory

    Exhaled breath collection and analysis has historically been used in environmental research studies to characterize exposures to volatile organic compounds. The use of this approach is based on the fact that many compounds present in blood are reflected in the breath, and that...

  4. CHARACTERIZATION OF MICROBIAL VOLATILE ORGANIC COMPOUNDS (MVOC) EMITTED BY STACHYBOTRYS CHARTARUM

    EPA Science Inventory

    Stachybotrys chartarum is a filamentous fungi usually found in water-damaged buildings. Severe illnesses have been reported after indoor exposure to this mold. Toxicity has caused the production of secondary metabolites or mycotoxins, and the emission of by-products, specifically...

  5. SOURCE CHARACTERIZATION OF AIR FRESHENERS

    EPA Science Inventory

    The paper discusses research in which five air fresheners of two styles were analyzed for their constituent volatile organic compounds. Both styles were refills to be inserted into heated electric plug-in units; one refill released the fragrance from a gel pack insert and the oth...

  6. INTERCOMPARISON OF ALTERNATIVE VEGETATION DATABASES FOR REGIONAL AIR QUALITY MODELING

    EPA Science Inventory

    Vegetation cover data are used to characterize several regional air quality modeling processes, including the calculation of heat, moisture, and momentum fluxes with the Mesoscale Meteorological Model (MM5) and the estimate of biogenic volatile organic compound and nitric oxide...

  7. SPECIATE 4.4: The Bridge Between Emissions Characterization and Modeling

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Some of the many uses of these source profiles include: (1) creating speciated emissions inventories for...

  8. Developing testing methods for characterizing emissions and sources of exposures from polyurehane products

    EPA Science Inventory

    The relationship between onsite manufacture of spray polyurethane foam insulation (SPFI) and potential exposures to diisocyanate compounds, amine catalysts, flame retardants, and blowing agents, as well as aldehydes and other volatile or semivolatile organic compounds that may be...

  9. Characterization of Crew Refuse Returned from Shuttle Missions with Permanent Gas, Volatile Organic Compound, and Microbial Analyses

    NASA Astrophysics Data System (ADS)

    Peterson, B.; Hummerick, M.; Roberts, M.; Krummins, V.; Kish, A.; Garland, J.; Maxwell, S.; Mills, A.

    In addition to the mass and energy costs associated with bioregenerative systems for advanced life support, the storage and processing of waste on spacecraft requires both atmospheric and biological management. Risks to crew health may arise from the presence of potential human pathogens in waste or from decay processes during waste storage and/or processing. This study reports on the permanent gas, trace volatile organic and microbiological analyses of crew refuse returned from shuttle missions STS-105, 109 and 110. The research objective is to characterize the biological stability of the waste stream, to assess the risks associated with its storage, and to provide baseline measures for the evaluation of waste processing technologies. Microbiological samples were collected from packaging material, food waste, bathroom waste, and bulk liquid collected from the volume F waste container. The number of culturable bacteria and total bacteria were determined by plating on R2A media and by Acridine Orange direct count, respectively. Samples of the trash were analyzed for the presence of fecal and total coliforms and other human-associated bacteria. Dry and ash weights were determined to estimate both water and organic content of the materials. The aerobic and anaerobic bio-stability of stored waste was determined by on-line monitoring of CO2 and by laboratory analysis of off-gas samples for hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA method TO15 with gas chromatography/mass spectrometry and by gas chromatography with selective detectors . This study establishes a baseline measure of waste composition, labile organics, and microbial load for this material.

  10. Aerosol volatility in a boreal forest environment

    NASA Astrophysics Data System (ADS)

    Häkkinen, S. A. K.; ńijälä, M.; Lehtipalo, K.; Junninen, H.; Virkkula, A.; Worsnop, D. R.; Kulmala, M.; Petäjä, T.; Riipinen, I.

    2012-04-01

    Climate and health effects of atmospheric aerosols are determined by their properties such as their chemical composition. Aerosol chemical composition can be studied indirectly by measuring volatility of aerosol particles. The volatility of submicron aerosol particles (20-500 nm) was studied in a boreal forest site at SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations II) station (Vesala et al., 1998) in Hyytiälä, Finland, during 01/2008-05/2010. The instrument used for the measurements was VDMPS (Volatility Differential Mobility Particle Sizer), which consists of two separate instruments: DMPS (Differential Mobility Particle Sizer, Aalto et al., 2001) and TD (Thermodenuder, Wehner et al., 2002). Aerosol evaporation was examined by heating the aerosol and comparing the total aerosol mass before and after heating. In the VDMPS system ambient aerosol sample was heated up to temperatures ranging from 80 °C to 280 °C. The higher the heating temperature was the more aerosol material was evaporated. There was a non-volatile residual present in aerosol particles when heated up to 280 °C. This residual explained (20±8)% of the total aerosol mass. Aerosol non-volatile mass fraction was highest during winter and smallest during summer months. The role of black carbon in the observed non-volatile residual was determined. Black carbon explained 40 to 90% of the non-volatile mass. Especially during colder seasons noticeable amount of non-volatile material, something else than black carbon, was observed. According to Kalberer et al. (2004) some atmospheric organic species can form polymers that have high evaporation temperatures. Also low-volatile organic salts may contribute to the non-volatile aerosol (Smith et al., 2010). Aerosol mass composition measured directly with AMS (Aerosol Mass Spectrometer, Jayne et al., 2000) was analyzed in order to examine the properties of the non-volatile material (other than black carbon). The AMS measurements were performed during spring and autumn 2008. Results from the aerosol mass spectrometry indicate that the non-volatile residual consists of nitrate and organic compounds, especially during autumn. These compounds may be low-volatile organic nitrates or salts. During winter and spring the non-volatile core (black carbon removed) correlated markedly with carbon monoxide, which is a tracer of anthropogenic emissions. Due to this, the non-volatile residual may also contain other pollutants in addition to black carbon. Thus, it seems that the amount of different compounds in submicron aerosol particles varies with season and as a result the chemical composition of the non-volatile residual changes within a year. This work was supported by University of Helsinki three-year research grant No 490082 and Maj and Tor Nessling Foundation grant No 2010143. Aalto et al., (2001). Physical characterization of aerosol particles during nucleation events. Tellus B, 53, 344-358. Jayne, et al., (2000). Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci. Technol., 33(1-2), 49-70. Kalberer et al., (2004). Identification of Polymers as Major Components of Atmospheric Organic Aerosols. Science, 303, 1659-1662. Smith et al., (2010). Observations of aminium salts in atmospheric nanoparticles and possible climatic implications. P. Natl. Acad. Sci., 107(15). Vesala et al., (1998). Long-term field measurements of atmosphere-surface interactions in boreal forest combining forest ecology, micrometeorology, aerosol physics and atmospheric chemistry. Trends Heat, Mass Mom. Trans., 4, 17-35. Wehner et al., (2002). Design and calibration of a thermodenuder with an improved heating unit to measure the size-dependent volatile fraction of aerosol particles. J. Aerosol Sci., 33, 1087-1093.

  11. Reducing health risk assigned to organic emissions from a chemical weapons incinerator.

    PubMed

    Laman, David M; Weiler, B Douglas; Skeen, Rodney S

    2013-03-01

    Organic emissions from a chemical weapons incinerator have been characterized with an improved set of analytical methods to reduce the human health risk assigned to operations of the facility. A gas chromatography/mass selective detection method with substantially reduced detection limits has been used in conjunction with scanning electron microscopy/energy dispersive X-ray spectrometry and Fourier transform infrared microscopy to improve the speciation of semi-volatile and non-volatile organics emitted from the incinerator. The reduced detection limits have allowed a significant reduction in the assumed polycyclic aromatic hydrocarbon (PAH) and aminobiphenyl (ABP) emission rates used as inputs to the human health risk assessment for the incinerator. A mean factor of 17 decrease in assigned human health risk is realized for six common local exposure scenarios as a result of the reduced PAH and ABP detection limits.

  12. Cold Temperature Effects on Speciated VOC Emissions from modern GDI Light Duty Truck

    EPA Science Inventory

    Although gasoline direct injection (GDI) vehicles represent nearly half of the light-duty vehicle market share, few studies have reported speciated volatile organic compounds (VOCs) in GDI vehicle exhaust emissions. In this study, speciated VOC emissions were characterized from t...

  13. Development of a Small Chamber for SVOCs Sink Effect Study

    EPA Science Inventory

    Semi-volatile organic compounds (SVOCs) have low emissions over a long period of time due to their low vapor pressure. Understanding the transport mechanisms of SVOCs between sources, air, house dust, and interior surfaces in the residential environment will help to characterize ...

  14. CHARACTERIZATION AND REDUCTION OF FORMALDEHYDE EMISSIONS FROM A LOW-VOC LATEX PAINT

    EPA Science Inventory

    The paper discusses the measurment and analysis of the patterns of formaldehyde emission from a low volatile organic compound (VOC) latex paint applied to gypsum board, using small environmental chamber tests. The formaldehyde emissions resulted in sharp increase of chamber air...

  15. MEASUREMENT OF VOCS DESORBED FROM BUILDING MATERIALS--A HIGH TEMPERATURE DYNAMIC CHAMBER METHOD

    EPA Science Inventory

    Mass balance is a commonly used approach for characterizing the source and sink behavior of building materials. Because the traditional sink test methods evaluate the adsorption and desorption of volatile organic compounds (VOC) at ambient temperatures, the desorption process is...

  16. LOW-VOC COATINGS FOR AUTOMOBILE REFINISHING USING NOVEL POLYMER RESINS

    EPA Science Inventory

    Coating operations release a significant portion of the non-mobile source, volatile organic compounds (VOCs) into the air. The U.S. EPA's Emissions Characterization and Prevention Branch has formulated novel low-VOC coatings for the automotive refinishing sector that reduce VOC l...

  17. RELEVANCE OF VISUAL EFFECTS OF VOLATILE ORGANIC COMPOUNDS TO HUMAN HEALTH RISK ASSESSMENT

    EPA Science Inventory

    Traditional measures of neurotoxicity have included assessment of sensory, cognitive, and motor function. Visual system function and the neurobiological substrates are well characterized across species. Dysfunction in the visual system may be specific or may be surrogate for mor...

  18. Use of volatile organic components in scat to identify canid species

    USGS Publications Warehouse

    Burnham, E.; Bender, L.C.; Eiceman, G.A.; Pierce, K.M.; Prasad, S.

    2008-01-01

    Identification of wildlife species from indirect evidence can be an important part of wildlife management, and conventional +methods can be expensive or have high error rates. We used chemical characterization of the volatile organic constituents (VOCs) in scat as a method to identify 5 species of North American canids from multiple individuals. We sampled vapors of scats in the headspace over a sample using solid-phase microextraction and determined VOC content using gas chromatography with a flame ionization detector. We used linear discriminant analysis to develop models for differentiating species with bootstrapping to estimate accuracy. Our method correcdy classified 82.4% (bootstrapped 95% CI = 68.8-93.8%) of scat samples. Red fox (Vulpes vulpes) scat was most frequendy misclassified (25.0% of scats misclassified); red fox was also the most common destination for misclassified samples. Our findings are the first reported identification of animal species using VOCs in vapor emissions from scat and suggest that identification of wildlife species may be plausible through chemical characterization of vapor emissions of scat.

  19. [Study on control and management for industrial volatile organic compounds (VOCs) in China].

    PubMed

    Wang, Hai-Lin; Zhang, Guo-Ning; Nei, Lei; Wang, Yu-Fei; Hao, Zheng-Ping

    2011-12-01

    Volatile organic compounds (VOCs) emitted from industrial sources account for a large percent of total anthropogenic VOCs. In this paper, VOCs emission characterization, control technologies and management were discussed. VOCs from industrial emissions were characterized by high intensity, wide range and uneven distribution, which focused on Bejing-Tianjin Joint Belt, Shangdong Peninsula, Yangtze River Delta and the Pearl River Delta. The current technologies for VOCs treatment include adsorption, catalytic combustion, bio-degradation and others, which were applied in petrochemical, oil vapor recovery, shipbuilding, printing, pharmaceutical, feather manufacturing and so on. The scarcity of related regulations/standards plus ineffective supervision make the VOCs management difficult. Therefore, it is suggested that VOCs treatment be firstly performed from key areas and industries, and then carried out step by step. By establishing of actual reducing amount control system and more detailed VOCs emission standards and regulations, applying practical technologies together with demonstration projects, and setting up VOCs emission registration and classification-related-charge system, VOCs could be reduced effectively.

  20. A Novel Wireless Wearable Volatile Organic Compound (VOC) Monitoring Device with Disposable Sensors.

    PubMed

    Deng, Yue; Chen, Cheng; Xian, Xiaojun; Tsow, Francis; Verma, Gaurav; McConnell, Rob; Fruin, Scott; Tao, Nongjian; Forzani, Erica S

    2016-12-03

    A novel portable wireless volatile organic compound (VOC) monitoring device with disposable sensors is presented. The device is miniaturized, light, easy-to-use, and cost-effective. Different field tests have been carried out to identify the operational, analytical, and functional performance of the device and its sensors. The device was compared to a commercial photo-ionization detector, gas chromatography-mass spectrometry, and carbon monoxide detector. In addition, environmental operational conditions, such as barometric change, temperature change and wind conditions were also tested to evaluate the device performance. The multiple comparisons and tests indicate that the proposed VOC device is adequate to characterize personal exposure in many real-world scenarios and is applicable for personal daily use.

  1. A Novel Wireless Wearable Volatile Organic Compound (VOC) Monitoring Device with Disposable Sensors

    PubMed Central

    Deng, Yue; Chen, Cheng; Xian, Xiaojun; Tsow, Francis; Verma, Gaurav; McConnell, Rob; Fruin, Scott; Tao, Nongjian; Forzani, Erica S.

    2016-01-01

    A novel portable wireless volatile organic compound (VOC) monitoring device with disposable sensors is presented. The device is miniaturized, light, easy-to-use, and cost-effective. Different field tests have been carried out to identify the operational, analytical, and functional performance of the device and its sensors. The device was compared to a commercial photo-ionization detector, gas chromatography-mass spectrometry, and carbon monoxide detector. In addition, environmental operational conditions, such as barometric change, temperature change and wind conditions were also tested to evaluate the device performance. The multiple comparisons and tests indicate that the proposed VOC device is adequate to characterize personal exposure in many real-world scenarios and is applicable for personal daily use. PMID:27918484

  2. 77 FR 52606 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compounds; Architectural and... sets limits on the amount of volatile organic compounds (VOC) in architectural and industrial... Indiana SIP a new rule within Title 326, Article 8 ``Volatile Organic Compound Rules'' that limits the VOC...

  3. 40 CFR 63.4561 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reduction by applying the volatile organic matter collection and recovery efficiency to the mass of organic... cumulative amount of volatile organic matter recovered by the solvent recovery system each month. The device... volatile organic matter recovered. (2) For each solvent recovery system, determine the mass of volatile...

  4. Growth and volatile compound production by Brettanomyces/Dekkera bruxellensis in red wine.

    PubMed

    Romano, A; Perello, M C; de Revel, G; Lonvaud-Funel, A

    2008-06-01

    Brettanomyces/Dekkera bruxellensis is a particularly troublesome wine spoilage yeast. This work was aimed at characterizing its behaviour in terms of growth and volatile compound production in red wine. Sterile red wines were inoculated with 5 x 10(3) viable cells ml(-1) of three B. bruxellensis strains and growth and volatile phenol production were followed for 1 month by means of plate counts and gas chromatography-mass spectrometry (GC-MS) respectively. Maximum population levels generally attained 10(6)-10(7) colony forming units (CFU) ml(-1) and volatile phenol concentrations ranged from 500 to 4000 microg l(-1). Brettanomyces bruxellensis multiplication was also accompanied by the production of organic acids (from C(2) to C(10)), short chain acid ethyl-esters and the 'mousy off-flavour' component 2-acetyl-tetrahydropyridine. Different kinds of 'Brett character' characterized by distinct metabolic and sensory profiles can arise in wine depending on the contaminating strain, wine pH and sugar content and the winemaking stage at which contamination occurs. We identified new chemical markers that indicate wine defects caused by B. bruxellensis. Further insight was provided into the role of some environmental conditions in promoting wine spoilage.

  5. Volatile Metabolites

    PubMed Central

    Rowan, Daryl D.

    2011-01-01

    Volatile organic compounds (volatiles) comprise a chemically diverse class of low molecular weight organic compounds having an appreciable vapor pressure under ambient conditions. Volatiles produced by plants attract pollinators and seed dispersers, and provide defense against pests and pathogens. For insects, volatiles may act as pheromones directing social behavior or as cues for finding hosts or prey. For humans, volatiles are important as flavorants and as possible disease biomarkers. The marine environment is also a major source of halogenated and sulfur-containing volatiles which participate in the global cycling of these elements. While volatile analysis commonly measures a rather restricted set of analytes, the diverse and extreme physical properties of volatiles provide unique analytical challenges. Volatiles constitute only a small proportion of the total number of metabolites produced by living organisms, however, because of their roles as signaling molecules (semiochemicals) both within and between organisms, accurately measuring and determining the roles of these compounds is crucial to an integrated understanding of living systems. This review summarizes recent developments in volatile research from a metabolomics perspective with a focus on the role of recent technical innovation in developing new areas of volatile research and expanding the range of ecological interactions which may be mediated by volatile organic metabolites. PMID:24957243

  6. Speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) in a pine forest during BEACHON-RoMBAS 2011

    DOE PAGES

    Chan, A. W. H.; Kreisberg, N. M.; Hohaus, T.; ...

    2016-02-02

    Understanding organic composition of gases and particles is essential to identifying sources and atmospheric processing leading to organic aerosols (OA), but atmospheric chemical complexity and the analytical techniques available often limit such analysis. Here we present speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) using a novel dual-use instrument (SV-TAG-AMS) deployed at Manitou Forest, CO, during the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H 2O, Organics & Nitrogen – Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) 2011 campaign. This instrument provides on-line speciation of ambient organic compounds with 2 h time resolution. The species in this volatility range aremore » complex in composition, but their chemical identities reveal potential sources. Observed compounds of biogenic origin include sesquiterpenes with molecular formula C 15H 24 (e.g., β-caryophyllene and longifolene), which were most abundant at night. A variety of other biogenic compounds were observed, including sesquiterpenoids with molecular formula C 15H 22, abietatriene and other terpenoid compounds. Many of these compounds have been identified in essential oils and branch enclosure studies but were observed in ambient air for the first time in our study. Semivolatile polycyclic aromatic hydrocarbons (PAHs) and alkanes were observed with highest concentrations during the day and the dependence on temperature suggests the role of an evaporative source. Using statistical analysis by positive matrix factorization (PMF), we classify observed S/IVOCs by their likely sources and processes, and characterize them based on chemical composition. The total mass concentration of elutable S/IVOCs was estimated to be on the order of 0.7 µg m –3 and their volatility distributions are estimated for modeling aerosol formation chemistry.« less

  7. Speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) in a pine forest during BEACHON-RoMBAS 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, A. W. H.; Kreisberg, N. M.; Hohaus, T.

    Understanding organic composition of gases and particles is essential to identifying sources and atmospheric processing leading to organic aerosols (OA), but atmospheric chemical complexity and the analytical techniques available often limit such analysis. Here we present speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) using a novel dual-use instrument (SV-TAG-AMS) deployed at Manitou Forest, CO, during the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H 2O, Organics & Nitrogen – Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) 2011 campaign. This instrument provides on-line speciation of ambient organic compounds with 2 h time resolution. The species in this volatility range aremore » complex in composition, but their chemical identities reveal potential sources. Observed compounds of biogenic origin include sesquiterpenes with molecular formula C 15H 24 (e.g., β-caryophyllene and longifolene), which were most abundant at night. A variety of other biogenic compounds were observed, including sesquiterpenoids with molecular formula C 15H 22, abietatriene and other terpenoid compounds. Many of these compounds have been identified in essential oils and branch enclosure studies but were observed in ambient air for the first time in our study. Semivolatile polycyclic aromatic hydrocarbons (PAHs) and alkanes were observed with highest concentrations during the day and the dependence on temperature suggests the role of an evaporative source. Using statistical analysis by positive matrix factorization (PMF), we classify observed S/IVOCs by their likely sources and processes, and characterize them based on chemical composition. The total mass concentration of elutable S/IVOCs was estimated to be on the order of 0.7 µg m –3 and their volatility distributions are estimated for modeling aerosol formation chemistry.« less

  8. MATRIX-VBS Condensing Organic Aerosols in an Aerosol Microphysics Model

    NASA Technical Reports Server (NTRS)

    Gao, Chloe Y.; Tsigaridis, Konstas; Bauer, Susanne E.

    2015-01-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  9. RECENT DEVELOPMENTS IN EXHALED BREATH ANALYSIS AND HUMAN EXPOSURE RESEARCH

    EPA Science Inventory

    Exhaled breath collection and analysis has historically been used in environmental research studies to characterize exposures to volatile organic compounds. The use of this approach is based on the fact that many compounds present in blood are reflected in the breath, and that u...

  10. CHARACTERIZATION OF ISOPRENE AND OXYGENATED VOLATILE ORGANIC CARBON COMPOUNDS AT RURAL, FORESTED SITES. (R825261)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  11. CHARACTERIZATION AND REDUCTION OF FORMALDEHYDE EMISSIONS FROM A LOW-VOC LATEX PAINT

    EPA Science Inventory

    The patterns of formaldehyde emission from a low volatile organic compound (VOC) latex paint applied to gypsum board were measured and analyzed by small environmental chamber tests. It was found that the formaldehyde emissions resulted in sharp increase of chamber air formaldehy...

  12. Characteristics of volatile organic compounds produced from five pathogenic bacteria by headspace-solid phase micro-extraction/gas chromatography-mass spectrometry.

    PubMed

    Chen, Juan; Tang, Junni; Shi, Hui; Tang, Cheng; Zhang, Rong

    2017-03-01

    The characteristics of volatile compounds from five different bacterial species, Escherichia coli O157:H7, Salmonella Enteritidis, Shigella flexneri, Staphylococcus aureus, and Listeria monocytogenes, growing, respectively, in trypticase soy broth were monitored by headspace solid-phase micro-extraction/gas chromatography-mass spectrometry. The results showed that most volatile organic compounds (VOCs) of five pathogens started to increase after the sixth to tenth hour. Methyl ketones and long chain alcohols were representative volatiles for three Gram-negative bacteria. The especially high production of indole was characterized to E. coli O157:H7. The production of 3-hydroxy-2-butanone was indicative of the presence of two Gram-positive bacteria. Both 3-methyl-butanoic acid and 3-methyl-butanal were unique biomarkers for S. aureus. The population dynamics of individual pathogen could be monitored using the accumulation of VOCs correlated with its growth. And these five pathogens could be distinguishable though principle component analysis of 18 volatile metabolites. Moreover, the mixed culture of S. aureus and E. coli O157:H7 was also investigated. The levels of 3-methyl-butanal and 3-methyl-butanoic acid were largely reduced; while the level of indole almost unchanged and correlated with E. coli O157:H7 growth very well. The characteristics of volatiles from the five foodborne pathogens could lay a fundamental basis for further research into pathogen contamination control by detecting volatile signatures of pathogens. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Screening of ground water samples for volatile organic compounds using a portable gas chromatograph

    USGS Publications Warehouse

    Buchmiller, R.C.

    1989-01-01

    A portable gas chromatograph was used to screen 32 ground water samples for volatile organic compounds. Seven screened samples were positive; four of the seven samples had volatile organic substances identified by second-column confirmation. Four of the seven positive, screened samples also tested positive in laboratory analyses of duplicate samples. No volatile organic compounds were detected in laboratory analyses of samples that headspace screening indicated to be negative. Samples that contained volatile organic compounds, as identified by laboratory analysis, and that contained a volatile organic compound present in a standard of selected compounds were correctly identified by using the portable gas chromatography. Comparisons of screened-sample data with laboratory data indicate the ability to detect selected volatile organic compounds at concentrations of about 1 microgram per liter in the headspace of water samples by use of a portable gas chromatography. -Author

  14. Analysis of the volatile organic matter of engine piston deposits by direct sample introduction thermal desorption gas chromatography/mass spectrometry.

    PubMed

    Diaby, M; Kinani, S; Genty, C; Bouchonnet, S; Sablier, M; Le Negrate, A; El Fassi, M

    2009-12-01

    This article establishes an alternative method for the characterization of volatiles organic matter (VOM) contained in deposits of the piston first ring grooves of diesel engines using a ChromatoProbe direct sample introduction (DSI) device coupled to gas chromatography/mass spectrometry (GC/MS) analysis. The addition of an organic solvent during thermal desorption leads to an efficient extraction and a good chromatographic separation of extracted products. The method was optimized investigating the effects of several solvents, the volume added to the solid sample, and temperature programming of the ChromatoProbe DSI device. The best results for thermal desorption were found using toluene as an extraction solvent and heating the programmable temperature injector from room temperature to 300 degrees C with a temperature step of 105 degrees C. With the use of the optimized thermal desorption conditions, several components have been positively identified in the volatile fraction of the deposits: aromatics, antioxidants, and antioxidant degradation products. Moreover, this work highlighted the presence of diesel fuel in the VOM of the piston deposits and gave new facts on the absence of the role of diesel fuel in the deposit formation process. Most importantly, it opens the possibility of quickly performing the analysis of deposits with small amounts of samples while having a good separation of the volatiles.

  15. Development of urine standard reference materials for metabolites of organic chemicals including polycyclic aromatic hydrocarbons, phthalates, phenols, parabens, and volatile organic compounds.

    PubMed

    Schantz, Michele M; Benner, Bruce A; Heckert, N Alan; Sander, Lane C; Sharpless, Katherine E; Vander Pol, Stacy S; Vasquez, Y; Villegas, M; Wise, Stephen A; Alwis, K Udeni; Blount, Benjamin C; Calafat, Antonia M; Li, Zheng; Silva, Manori J; Ye, Xiaoyun; Gaudreau, Éric; Patterson, Donald G; Sjödin, Andreas

    2015-04-01

    Two new Standard Reference Materials (SRMs), SRM 3672 Organic Contaminants in Smokers' Urine (Frozen) and SRM 3673 Organic Contaminants in Non-Smokers' Urine (Frozen), have been developed in support of studies for assessment of human exposure to select organic environmental contaminants. Collaborations among three organizations resulted in certified values for 11 hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and reference values for 11 phthalate metabolites, 8 environmental phenols and parabens, and 24 volatile organic compound (VOC) metabolites. Reference values are also available for creatinine and the free forms of caffeine, theobromine, ibuprofen, nicotine, cotinine, and 3-hydroxycotinine. These are the first urine Certified Reference Materials characterized for metabolites of organic environmental contaminants. Noteworthy, the mass fractions of the environmental organic contaminants in the two SRMs are within the ranges reported in population survey studies such as the National Health and Nutrition Examination Survey (NHANES) and the Canadian Health Measures Survey (CHMS). These SRMs will be useful as quality control samples for ensuring compatibility of results among population survey studies and will fill a void to assess the accuracy of analytical methods used in studies monitoring human exposure to these organic environmental contaminants.

  16. Development of urine standard reference materials for metabolites of organic chemicals including polycyclic aromatic hydrocarbons, phthalates, phenols, parabens, and volatile organic compounds

    PubMed Central

    Schantz, Michele M.; Benner, Bruce A.; Heckert, N. Alan; Sander, Lane C.; Sharpless, Katherine E.; Vander Pol, Stacy S.; Vasquez, Y.; Villegas, M.; Wise, Stephen A.; Alwis, K. Udeni; Blount, Benjamin C.; Calafat, Antonia M.; Li, Zheng; Silva, Manori J.; Ye, Xiaoyun; Gaudreau, Éric; Patterson, Donald G.; Sjödin, Andreas

    2016-01-01

    Two new Standard Reference Materials (SRMs), SRM 3672 Organic Contaminants in Smokers’ Urine (Frozen) and SRM 3673 Organic Contaminants in Non-Smokers’ Urine (Frozen), have been developed in support of studies for assessment of human exposure to select organic environmental contaminants. Collaborations among three organizations resulted in certified values for 11 hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and reference values for 11 phthalate metabolites, 8 environmental phenols and parabens, and 24 volatile organic compound (VOC) metabolites. Reference values are also available for creatinine and the free forms of caffeine, theobromine, ibuprofen, nicotine, cotinine, and 3-hydroxycotinine. These are the first urine Certified Reference Materials characterized for metabolites of organic environmental contaminants. Noteworthy, the mass fractions of the environmental organic contaminants in the two SRMs are within the ranges reported in population survey studies such as the National Health and Nutrition Examination Survey (NHANES) and the Canadian Health Measures Survey (CHMS). These SRMs will be useful as quality control samples for ensuring compatibility of results among population survey studies and will fill a void to assess the accuracy of analytical methods used in studies monitoring human exposure to these organic environmental contaminants. PMID:25651899

  17. Volatile organic compounds and trace metal level in some beers collected from Romanian market

    NASA Astrophysics Data System (ADS)

    Voica, Cezara; Kovacs, Melinda; Vadan, Marius

    2013-11-01

    Beer is one of the most popular beverages at worldwide level. Through this study fifteen different types of beer collected from Romanian market were analysed in order to evaluate their mineral, trace element as well the their organic content. Importance of such characterization of beer samples is supported by the fact that their chemical composition can affect both taste and stability of beer, as well the consumer health. Minerals and trace elements analysis were performed on ICP-MS while organic compounds analysis was done through GC-MS. Through ICP-MS analysis, elements as Ca, Na, K and Mg were evidenced at mgṡkg-1 order while elements as Cr, Ba, Co, Ni were detected at lower level. After GC-MS analysis the major volatile compounds that were detected belong to alcohols namely ethanol, propanol, isobutanol, isoamyl alcohol and linalool. Selected fatty acids and esters were evidenced also in the studied beer samples.

  18. Methods development for total organic carbon accountability

    NASA Technical Reports Server (NTRS)

    Benson, Brian L.; Kilgore, Melvin V., Jr.

    1991-01-01

    This report describes the efforts completed during the contract period beginning November 1, 1990 and ending April 30, 1991. Samples of product hygiene and potable water from WRT 3A were supplied by NASA/MSFC prior to contract award on July 24, 1990. Humidity condensate samples were supplied on August 3, 1990. During the course of this contract chemical analyses were performed on these samples to qualitatively determine specific components comprising, the measured organic carbon concentration. In addition, these samples and known standard solutions were used to identify and develop methodology useful to future comprehensive characterization of similar samples. Standard analyses including pH, conductivity, and total organic carbon (TOC) were conducted. Colorimetric and enzyme linked assays for total protein, bile acid, B-hydroxybutyric acid, methylene blue active substances (MBAS), urea nitrogen, ammonia, and glucose were also performed. Gas chromatographic procedures for non-volatile fatty acids and EPA priority pollutants were also performed. Liquid chromatography was used to screen for non-volatile, water soluble compounds not amenable to GC techniques. Methods development efforts were initiated to separate and quantitate certain chemical classes not classically analyzed in water and wastewater samples. These included carbohydrates, organic acids, and amino acids. Finally, efforts were initiated to identify useful concentration techniques to enhance detection limits and recovery of non-volatile, water soluble compounds.

  19. Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Lee, S. C.; Chiu, Gloria M. Y.

    Volatile organic compounds (VOCs), PAHs and carbonyl compounds are the major toxic components in Hong Kong. Emissions from motor vehicles have been one of the primary pollution sources in the metropolitan areas throughout Hong Kong for a long time. A 1-yr monitoring program for VOCs, PAHs and carbonyl compounds had been performed at a roadside urban station at Hong Kong Polytechnic University in order to determine the variations and correlations of each selected species (VOCs, PAHs and carbonyl compounds). This study is aimed to analyze toxic volatile organic compounds (benzene, toluene, ethylbenzene and xylene), two carbonyl compounds (formaldehyde, acetaldehyde), and selective polycyclic aromatic hydrocarbons. The monitoring program started from 16 April 1999 to 30 March 2000. Ambient VOC concentrations, many of which originate from the same sources as particulate PAHs and carbonyls compounds, show significant quantities of benzene, toluene and xylenes. Correlations and multivariate analysis of selected gaseous and particulate phase organic pollutants were performed. Source identification by principle component analysis and hierarchical cluster analysis allowed the identification of four sources (factors) for the roadside monitoring station. Factor 1 represents the effect of diesel vehicle exhaust. Factor 2 shows the contribution of aromatic compounds. Factor 3 explains photochemical products—formaldehyde and acetaldehyde. Factor 4 explains the effect of gasoline vehicle exhaust.

  20. 75 FR 60013 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Control of Volatile...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... Promulgation of Air Quality Implementation Plans; Maryland; Control of Volatile Organic Compounds Emissions... Maryland's Volatile Organic Compounds from Specific Processes Regulation. Maryland has adopted standards... (RACT) requirements for sources of volatile organic compounds (VOCs) covered by control techniques...

  1. Characterization of Semi-Volatile Organic Chemicals from Tire Crumb Rubber

    EPA Science Inventory

    Recycled tire crumb rubber (TCR) is often used as infill material in synthetic turf playing fields as well as some playgrounds. Concerns have been raised about the safety of this material and a multi-agency Federal Research Action Plan on Recycled Tire Crumb Used on Playing Field...

  2. Acute and Subchronic Toxicity of Inhaled Toluene in Male Long-Evans Rats: Oxidative Stress Markers in Brain

    EPA Science Inventory

    The effects of exposure to volatile organic compounds (VOCs), which are of concern to the EPA, are poorly understood, in part because of insufficient characterization of how human exposure duration impacts VOC effects. Two inhalation studies with multiple endpoints, one acute an...

  3. MATRIX-VBS (v1.0): Implementing an Evolving Organic Aerosol Volatility in an Aerosol Microphysics Model

    NASA Technical Reports Server (NTRS)

    Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-01-01

    The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.

  4. The Mars Organic Molecule Analyzer (MOMA) Instrument: Characterization of Organic Material in Martian Sediments

    PubMed Central

    Goesmann, Fred; Brinckerhoff, William B.; Raulin, François; Danell, Ryan M.; Getty, Stephanie A.; Siljeström, Sandra; Mißbach, Helge; Steininger, Harald; Arevalo, Ricardo D.; Buch, Arnaud; Freissinet, Caroline; Grubisic, Andrej; Meierhenrich, Uwe J.; Pinnick, Veronica T.; Stalport, Fabien; Szopa, Cyril; Vago, Jorge L.; Lindner, Robert; Schulte, Mitchell D.; Brucato, John Robert; Glavin, Daniel P.; Grand, Noel; Li, Xiang; van Amerom, Friso H. W.

    2017-01-01

    Abstract The Mars Organic Molecule Analyzer (MOMA) instrument onboard the ESA/Roscosmos ExoMars rover (to launch in July, 2020) will analyze volatile and refractory organic compounds in martian surface and subsurface sediments. In this study, we describe the design, current status of development, and analytical capabilities of the instrument. Data acquired on preliminary MOMA flight-like hardware and experimental setups are also presented, illustrating their contribution to the overall science return of the mission. Key Words: Mars—Mass spectrometry—Life detection—Planetary instrumentation. Astrobiology 17, 655–685.

  5. User's guide for polyethylene-based passive diffusion bag samplers to obtain volatile organic compound concentrations in wells. Part I, Deployment, recovery, data interpretation, and quality control and assurance

    USGS Publications Warehouse

    Vroblesky, Don A.

    2001-01-01

    Diffusion samplers installed in observation wells were found to be capable of yielding representative water samples for chlorinated volatile organic compounds. The samplers consisted of polyethylene bags containing deionized water and relied on diffusion of chlorinated volatile organic compounds through the polyethylene membrane. The known ability of polyethylene to transmit other volatile compounds, such as benzene and toluene, indicates that the samplers can be used for a variety of volatile organic compounds. In wells at the study area, the volatile organic compound concentrations in water samples obtained using the samplers without prior purging were similar to concentrations in water samples obtained from the respective wells using traditional purging and sampling approaches. The low cost associated with this approach makes it a viable option for monitoring large observation-well networks for volatile organic compounds.

  6. User's guide for polyethylene-based passive diffusion bag samplers to obtain volatile organic compound concentrations in wells. Part 2, Field tests

    USGS Publications Warehouse

    Vroblesky, Don A.

    2001-01-01

    Diffusion samplers installed in observation wells were found to be capable of yielding representative water samples for chlorinated volatile organic compounds. The samplers consisted of polyethylene bags containing deionized water and relied on diffusion of chlorinated volatile organic compounds through the polyethylene membrane. The known ability of polyethylene to transmit other volatile compounds, such as benzene and toluene, indicates that the samplers can be used for a variety of volatile organic compounds. In wells at the study area, the volatile organic compound concentrations in water samples obtained using the samplers without prior purging were similar to concentrations in water samples obtained from the respective wells using traditional purging and sampling approaches. The low cost associated with this approach makes it a viable option for monitoring large observation-well networks for volatile organic compounds.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, F.; Luo, G.; Pryor, S. C.

    Recent laboratory chamber studies indicate a significant role for highly oxidized low-volatility organics in new particle formation (NPF), but the actual role of these highly oxidized low-volatility organics in atmospheric NPF remains uncertain. Here, particle size distributions (PSDs) measured in nine forest areas in North America are used to characterize the occurrence and intensity of NPF and to evaluate model simulations using an empirical formulation in which formation rate is a function of the concentrations of sulfuric acid and low-volatility organics from alpha-pinene oxidation (Nucl-Org), and using an ion-mediated nucleation mechanism (excluding organics) (Nucl-IMN). On average, NPF occurred on ~more » 70 % of days during March for the four forest sites with springtime PSD measurements, while NPF occurred on only ~ 10 % of days in July for all nine forest sites. Both Nucl-Org and Nucl-IMN schemes capture the observed high frequency of NPF in spring, but the Nucl-Org scheme significantly overpredicts while the Nucl-IMN scheme slightly underpredicts NPF and particle number concentrations in summer. Statistical analyses of observed and simulated ultrafine particle number concentrations and frequency of NPF events indicate that the scheme without organics agrees better overall with observations. The two schemes predict quite different nucleation rates (including their spatial patterns), concentrations of cloud condensation nuclei, and aerosol first indirect radiative forcing in North America, highlighting the need to reduce NPF uncertainties in regional and global earth system models.« less

  8. A Combined Kinetic and Volatility Basis Set Approach to Model Secondary Organic Aerosol from Toluene and Diesel Exhaust/Meat Cooking Mixtures

    NASA Astrophysics Data System (ADS)

    Parikh, H. M.; Carlton, A. G.; Zhang, H.; Kamens, R.; Vizuete, W.

    2011-12-01

    Secondary organic aerosol (SOA) is simulated for 6 outdoor smog chamber experiments using a SOA model based on a kinetic chemical mechanism in conjunction with a volatility basis set (VBS) approach. The experiments include toluene, a non-SOA-forming hydrocarbon mixture, diesel exhaust or meat cooking emissions and NOx, and are performed under varying conditions of relative humidity. SOA formation from toluene is modeled using a condensed kinetic aromatic mechanism that includes partitioning of lumped semi-volatile products in particle organic-phase and incorporates particle aqueous-phase chemistry to describe uptake of glyoxal and methylglyoxal. Modeling using the kinetic mechanism alone, along with primary organic aerosol (POA) from diesel exhaust (DE) /meat cooking (MC) fails to simulate the rapid SOA formation at the beginning hours of the experiments. Inclusion of a VBS approach with the kinetic mechanism to characterize the emissions and chemistry of complex mixture of intermediate volatility organic compounds (IVOCs) from DE/MC, substantially improves SOA predictions when compared with observed data. The VBS model includes photochemical aging of IVOCs and evaporation of POA after dilution. The relative contribution of SOA mass from DE/MC is as high as 95% in the morning, but substantially decreases after mid-afternoon. For high humidity experiments, aqueous-phase SOA fraction dominates the total SOA mass at the end of the day (approximately 50%). In summary, the combined kinetic and VBS approach provides a new and improved framework to semi-explicitly model SOA from VOC precursors in conjunction with a VBS approach that can be used on complex emission mixtures comprised with hundreds of individual chemical species.

  9. Characterization of diesel particles: effects of fuel reformulation, exhaust aftertreatment, and engine operation on particle carbon composition and volatility.

    PubMed

    Alander, Timo J A; Leskinen, Ari P; Raunemaa, Taisto M; Rantanen, Leena

    2004-05-01

    Diesel exhaust particles are the major constituent of urban carbonaceous aerosol being linked to a large range of adverse environmental and health effects. In this work, the effects of fuel reformulation, oxidation catalyst, engine type, and engine operation parameters on diesel particle emission characteristics were investigated. Particle emissions from an indirect injection (IDI) and a direct injection (DI) engine car operating under steady-state conditions with a reformulated low-sulfur, low-aromatic fuel and a standard-grade fuel were analyzed. Organic (OC) and elemental (EC) carbon fractions of the particles were quantified by a thermal-optical transmission analysis method and particle size distributions measured with a scanning mobility particle sizer (SMPS). The particle volatility characteristics were studied with a configuration that consisted of a thermal desorption unit and an SMPS. In addition, the volatility of size-selected particles was determined with a tandem differential mobility analyzer technique. The reformulated fuel was found to produce 10-40% less particulate carbon mass compared to the standard fuel. On the basis of the carbon analysis, the organic carbon contributed 27-61% to the carbon mass of the IDI engine particle emissions, depending on the fuel and engine operation parameters. The fuel reformulation reduced the particulate organic carbon emissions by 10-55%. In the particles of the DI engine, the organic carbon contributed 14-26% to the total carbon emissions, the advanced engine technology, and the oxidation catalyst, thus reducing the OC/EC ratio of particles considerably. A relatively good consistency between the particulate organic fraction quantified with the thermal optical method and the volatile fraction measured with the thermal desorption unit and SMPS was found.

  10. Increase in volatilization of organic compounds using air sparging through addition in alcohol in a soil-water system.

    PubMed

    Chao, Huan-Ping; Hsieh, Lin-Han Chiang; Tran, Hai Nguyen

    2018-02-15

    This study developed a novel method to promote the remediation efficiency of air sparging. According to the enhanced-volatilization theory presented in this study, selected alcohols added to groundwater can highly enhance the volatilization amounts of organic compounds with high Henry's law constants. In this study, the target organic compounds consisted of n-hexane, n-heptane, benzene, toluene, 1,1,2-trichloroethane, and tetrachloroethene. n-pentanol, n-hexanol, and n-heptanol were used to examine the changes in the volatilization amounts of organic compounds in the given period. Two types of soils with high and low organic matter were applied to evaluate the transport of organic compounds in the soil-water system. The volatilization amounts of the organic compounds increased with increasing alcohol concentrations. The volatilization amounts of the test organic compounds exhibited a decreasing order: n-heptanol>n-hexanol>n-pentanol. When 10mg/L n-heptanol was added to the system, the maximum volatilization enhancement rate was 18-fold higher than that in distilled water. Samples of soil with high organic matter might reduce the volatilization amounts by a factor of 5-10. In the present study, the optimal removal efficiency for aromatic compounds was approximately 98%. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Volatile organic compounds in the unsaturated zone from radioactive wastes

    USGS Publications Warehouse

    Baker, Ronald J.; Andraski, Brian J.; Stonestrom, David A.; Luo, Wentai

    2012-01-01

    Volatile organic compounds (VOCs) are often comingled with low-level radioactive wastes (LLRW), but little is known about subsurface VOC emanations from LLRW landfills. The current study systematically quantified VOCs associated with LLRW over an 11-yr period at the USGS Amargosa Desert Research Site (ADRS) in southwestern Nevada. Unsaturated-zone gas samples of VOCs were collected by adsorption on resin cartridges and analyzed by thermal desorption and GC/MS. Sixty of 87 VOC method analytes were detected in the 110-m-thick unsaturated zone surrounding a LLRW disposal facility. Chlorofluorocarbons (CFCs) were detected in 100% of samples collected. Chlorofluorocarbons are powerful greenhouse gases, deplete stratospheric ozone, and are likely released from LLRW facilities worldwide. Soil-gas samples collected from a depth of 24 m and a horizontal distance 100 m south of the nearest waste-disposal trench contained >60,000 ppbv total VOCs, including >37,000 ppbv CFCs. Extensive sampling in the shallow unsaturated zone (0–2 m deep) identified areas where total VOC concentrations exceeded 5000 ppbv at the 1.5-m depth. Volatile organic compound concentrations exceeded background levels up to 300 m from the facility. Maximum vertical diffusive fluxes of total VOCs were estimated to be 1 g m-2 yr-1. Volatile organic compound distributions were similar but not identical to those previously determined for tritium and elemental mercury. To our knowledge, this study is the first to characterize the unsaturated zone distribution of VOCs emanating from a LLRW landfill. Our results may help explain anomalous transport of radionuclides at the ADRS and elsewhere.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Nathan X.; Gibb, Erika L.; Bonev, Boncho P.

    On 2014 May 22 and 24 we characterized the volatile composition of the dynamically new Oort cloud comet C/2012 K1 (PanSTARRS) using the long-slit, high resolution ( λ /Δ λ  ≈ 25,000) near-infrared echelle spectrograph (NIRSPEC) at the 10 m Keck II telescope on Maunakea, Hawaii. We detected fluorescent emission from six primary volatiles (H{sub 2}O, HCN, CH{sub 4}, C{sub 2}H{sub 6}, CH{sub 3}OH, and CO). Upper limits were derived for C{sub 2}H{sub 2}, NH{sub 3}, and H{sub 2}CO. We report rotational temperatures, production rates, and mixing ratios (relative to water). Compared with median abundance ratios for primary volatiles in other sampledmore » Oort cloud comets, trace gas abundance ratios in C/2012 K1 (PanSTARRS) for CO and HCN are consistent, but CH{sub 3}OH and C{sub 2}H{sub 6} are enriched while H{sub 2}CO, CH{sub 4}, and possibly C{sub 2}H{sub 2} are depleted. When placed in context with comets observed in the near-infrared to date, the data suggest a continuous distribution of abundances of some organic volatiles (HCN, C{sub 2}H{sub 6}, CH{sub 3}OH, CH{sub 4}) among the comet population. The level of “enrichment” or “depletion” in a given comet does not necessarily correlate across all molecules sampled, suggesting that chemical diversity among comets may be more complex than the simple organics-enriched, organics-normal, and organics-depleted framework.« less

  13. Characterization of volatile aroma compounds in different brewing barley cultivars.

    PubMed

    Dong, Liang; Hou, Yingmin; Li, Feng; Piao, Yongzhe; Zhang, Xiao; Zhang, Xiaoyu; Li, Cheng; Zhao, Changxin

    2015-03-30

    Beer is a popular alcoholic malt beverage resulting from fermentation of the aqueous extract of malted barley with hops. The aroma of brewing barley impacts the flavor of beer indirectly, because some flavor compounds or their precursors in beer come from the barley. The objectives of this research were to study volatile profiles and to characterize odor-active compounds of brewing barley in order to determine the variability of the aroma composition among different brewing barley cultivars. Forty-one volatiles comprising aldehydes, ketones, alcohols, organic acids, aromatic compounds and furans were identified using solid phase microextraction combined with gas chromatography/mass spectrometry, among which aldehydes, alcohols and ketones were quantitatively in greatest abundance. Quantitative measurements performed by means of solvent extraction and calculation of odor activity values revealed that acetaldehyde, 2-methylpropanal, 3-methylbutanal, 2-methylbutanal, hexanal, heptanal, octanal, nonanal, 3-methyl-1-butanol, cyclopentanol, 2,3-butanedione, 2,3-pentanedione, 2-heptanone, acetic acid, ethyl acetate, 2-pentylfuran and benzeneacetaldehyde, whose concentrations exceeded their odor thresholds, could be considered as odor-active compounds of brewing barley. Principal component analysis was employed to evaluate the differences among cultivars. The results demonstrated that the volatile profile based on the concentrations of aroma compounds enabled good differentiation of most barley cultivars. © 2014 Society of Chemical Industry.

  14. Characterization of the volatile profiles of beer using headspace solid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Rossi, Serena; Sileoni, Valeria; Perretti, Giuseppe; Marconi, Ombretta

    2014-03-30

    The objective of this study was a multivariate characterization of the volatile profile of beers. Such a characterization is timely considering the increasing worldwide consumption of beer, the continuous growth of microbreweries and the importance of volatile compounds to beer flavour. A method employing solid-phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS) was optimized and then applied to a sample set of 36 industrial and craft beers of various styles and fermentation types. The volatile profiles of different beer styles is described, with particular attention paid to the volatile compounds characteristic of a spontaneously fermented lambic raspberry framboise beer. Furthermore, it was also possible to identify which specific volatile compounds are principally responsible for the differences in the volatile profiles of top- and bottom-fermented beers. Moreover, a volatile fingerprint of the craft top-fermented Italian beers was defined, as they show a very similar volatile profile. Finally, the volatile compounds that are characteristic of the bock-style beers are described. The SPME-GC-MS analytical method optimized in this study is suitable for characterizing the volatile fingerprint of different beers, especially on the basis of the kind of fermentation (top, bottom or spontaneous), the method of production and the style of the beer. © 2013 Society of Chemical Industry.

  15. Analysis of volatile organic compounds. [trace amounts of organic volatiles in gas samples

    NASA Technical Reports Server (NTRS)

    Zlatkis, A. (Inventor)

    1977-01-01

    An apparatus and method are described for reproducibly analyzing trace amounts of a large number of organic volatiles existing in a gas sample. Direct injection of the trapped volatiles into a cryogenic percolum provides a sharply defined plug. Applications of the method include: (1) analyzing the headspace gas of body fluids and comparing a profile of the organic volatiles with standard profiles for the detection and monitoring of disease; (2) analyzing the headspace gas of foods and beverages and comparing the profile with standard profiles to monitor and control flavor and aroma; and (3) analyses for determining the organic pollutants in air or water samples.

  16. Acclimation to Chronic O3 in Field-grown Soybean is Characterized by Decreased Photosynthetic Capacity

    USDA-ARS?s Scientific Manuscript database

    Tropospheric ozone (O3) is a pollutant that is generated by volatile organic compounds, nitrogen oxides and sunlight. When plants take in O3 through stomata, harmful reactive oxygen species (ROS) are produced that induce the production of ROS scavenging antioxidants. Climate change predictions indic...

  17. Near-Road Mulltipollutant Profiles: Association between Volatile Organic Compounds and a Tracer Gas Surrogate Near a Busy Highway

    EPA Science Inventory

    This research characterizes associations between multiple pollutants in the near-road environment attributed to a roadway line source. It also examines the use of a tracer gas as a surrogate of mobile source pollutants. Air samples were collected in summa canisters along a 300 m ...

  18. Characterization of Regional Marginal Abatement Cost Curves for NOx that Incorporate Control Measures, Renewable Energy, Energy Efficiency and Fuel Switching

    EPA Science Inventory

    Anthropogenic nitrogen oxides (NOx) are emitted when fossil fuels are combusted. In the atmosphere, NOx reacts with volatile organic compounds (VOCs) to produce tropospheric ozone, a component of photochemical smog. In most parts of the country, strategies for reducing ozone gene...

  19. CAPSTONE REPORT ON THE DEVELOPMENT OF A STANDARD TEST METHOD FOR VOC EMISSIONS FROM INTERIOR LATEX PAINT AND ALKYD PAINTS

    EPA Science Inventory

    The report gives details of a small-chamber test method developed by the EPA for characterizing volatile organic compound (VOC) emissions from interior latex and alkyd paints. Current knowledge about VOC, including hazardous air pollutant, emissions from interior paints generated...

  20. Experimental Characterization and Hygroscopicity Determination of Secondary Aerosol from D5 Cyclic Siloxane Oxidation

    NASA Astrophysics Data System (ADS)

    Stanier, C. O.; Janechek, N. J.; Bryngelson, N.; Marek, R. F.; Lersch, T.; Bunker, K.; Casuccio, G.; Brune, W. H.; Hornbuckle, K. C.

    2017-12-01

    Cyclic volatile methyl siloxanes are anthropogenic chemicals present in personal care products such as antiperspirants and lotions. These are volatile chemicals that are readily released into the atmosphere by product use. Due to their emission and relatively slow kinetics of their major transformation pathway, reaction with hydroxyl radicals (OH), these compounds are present in high concentrations in indoor environments and widespread in outdoor environments. Cyclic siloxane reaction with OH can lead to secondary organic aerosols, and due to the widespread prevalence of the parent compounds, may be an important source of ambient aerosols. Atmospheric aerosols have important influences to the climate by affecting the radiative balance and by serving as cloud condensation nuclei (CCN) which influence clouds. While the parent compounds have been well-studied, the oxidation products have received much less attention, with almost no ambient measurements or experimental physical property data. We report physical properties of aerosols generated by reacting the cyclic siloxane D5 with OH using a Potential Aerosol Mass (PAM) photochemical chamber. The particles were characterized by SMPS, imaging and elemental analysis using both Transmission Electron Microscopy and Scanning Transmission Electron Microscopy equipped with Energy Dispersive X-ray Spectroscopy systems (TEM-EDS and STEM-EDS), volatility measurements using Volatility Tandem Differential Mobility Analyzer (V-TDMA), and hygroscopicity measurements to determine CCN potential using a Droplet Measurement Technologies Cloud Condensation Nuclei Counter (DMT-CCN). Aerosol yield sensitivity to D5 and OH concentrations, residence time, and seed aerosols were analyzed. TEM-EDS and STEM-EDS analysis show spherical particle morphology with elemental composition consistent with aerosols derived from cyclic siloxane sources. Measured aerosol yields were 20-50% with typical aerosol concentrations 300,000 particles cm-3, up to 200 μg m-3, and diameters of 30-90 nm. Particles experienced little diameter change after heating up to 200°C suggesting low volatility, while particle activation was shifted to higher supersaturations compared to ammonium sulfate suggesting moderate hygroscopicity in line with other secondary organics.

  1. Characterization of the geology, geochemistry, hydrology and microbiology of the in-situ air stripping demonstration site at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eddy, C.A.; Looney, B.B.; Dougherty, J.M.

    1991-05-01

    The Savannah River Site is the location of an Integrated Demonstration Project designed to evaluate innovative remediation technologies for environmental restoration at sites contaminated with volatile organic contaminants. This demonstration utilizes directionally drilled horizontal wells to deliver gases and extract contaminants from the subsurface. Phase I of the Integrated Demonstration focused on the application and development of in-situ air stripping technologies to remediate soils and sediments above and below the water table as well as groundwater contaminated with volatile organic contaminants. The objective of this report is to provide baseline information on the geology, geochemistry, hydrology, and microbiology of themore » demonstration site prior to the test. The distribution of contaminants in soils and sediments in the saturated zone and groundwater is emphasized. These data will be combined with data collected after the demonstration in order to evaluate the effectiveness of in-situ air stripping. New technologies for environmental characterization that were evaluated include depth discrete groundwater sampling (HydroPunch) and three-dimensional modeling of contaminant data.« less

  2. Surface microlayer enrichment of volatile organic compounds and semi-volatile organic compounds in drinking water source.

    PubMed

    Huang, Zhi; Zhou, Wen; Yu, Ya-juan; Zhang, Ai-qian; Han, Shuo-kui; Wang, Lian-sheng

    2004-01-01

    Enrichment of volatile organic compounds(VOC) and semi-volatility organic compounds(SVOC) in surface microlayer(SM) of three drinking water sources were studied. The enrichment factor(EFs) were 0.67 to 13.37 and 0.16 to 136, respectively. The results showed some VOC and most SVOC could enrich in SM. Some EFs of SVOC was quite high. Suspension and temperature could affect EFs of SVOC, slim wind and water movement do not destroy enrichment of organic in SM.

  3. Analysis of Organic Compounds in Mars Analog Samples

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Brinckerhoff, W. B.; Buch, A.; Cabane, M.; Coll, P.; Demick, J.; Glavin, D. P.

    2004-01-01

    The detailed characterization of organic compounds that might be preserved in rocks, ices, or sedimentary layers on Mars would be a significant step toward resolving the question of the habitability and potential for life on that planet. The fact that the Viking gas chromatograph mass spectrometer (GCMS) did not detect organic compounds should not discourage further investigations since (a) an oxidizing environment in the near surface fines analyzed by Viking is likely to have destroyed many reduced carbon species; (b) there are classes of refractory or partially oxidized species such as carboxylic acids that would not have been detected by the Viking GCMS; and (c) the Viking landing sites are not representative of Mars overall. These factors motivate the development of advanced in situ analytical protocols to carry out a comprehensive survey of organic compounds in martian regolith, ices, and rocks. We combine pyrolysis GCMS for analysis of volatile species, chemical derivatization for transformation of less volatile organics, and laser desorption mass spectrometry (LDMS) for analysis of elements and more refractory, higher-mass organics. To evaluate this approach and enable a comparison with other measurement techniques we analyze organics in Mars simulant samples.

  4. 40 CFR 60.441 - Definitions and symbols.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Fugitive volatile organic compounds means any volatile organic compounds which are emitted from the coating... capture fugitive volatile organic compounds. Oven means a chamber which uses heat or irradiation to bake... or label product. Solvent applied in the coating means all organic solvent contained in the adhesive...

  5. 40 CFR 60.441 - Definitions and symbols.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Fugitive volatile organic compounds means any volatile organic compounds which are emitted from the coating... capture fugitive volatile organic compounds. Oven means a chamber which uses heat or irradiation to bake... or label product. Solvent applied in the coating means all organic solvent contained in the adhesive...

  6. 40 CFR 60.441 - Definitions and symbols.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Fugitive volatile organic compounds means any volatile organic compounds which are emitted from the coating... capture fugitive volatile organic compounds. Oven means a chamber which uses heat or irradiation to bake... or label product. Solvent applied in the coating means all organic solvent contained in the adhesive...

  7. 40 CFR 60.441 - Definitions and symbols.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... = the weight fraction of organics applied of each coating (i) applied during a calendar month as.... Fugitive volatile organic compounds means any volatile organic compounds which are emitted from the coating... capture fugitive volatile organic compounds. Oven means a chamber which uses heat or irradiation to bake...

  8. 40 CFR 63.4351 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the organic HAP emissions reductions by applying the volatile organic matter collection and recovery... cumulative amount of volatile organic matter recovered by the solvent recovery system for the compliance... of the mass of volatile organic matter recovered. (ii) For each solvent recovery system, determine...

  9. 40 CFR 63.3961 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... balances, calculate the organic HAP emission reduction by applying the volatile organic matter collection... device that indicates the cumulative amount of volatile organic matter recovered by the solvent recovery....0 percent of the mass of volatile organic matter recovered. (2) For each solvent recovery system...

  10. 40 CFR 63.3961 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... balances, calculate the organic HAP emission reduction by applying the volatile organic matter collection... device that indicates the cumulative amount of volatile organic matter recovered by the solvent recovery....0 percent of the mass of volatile organic matter recovered. (2) For each solvent recovery system...

  11. 40 CFR 63.4351 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the organic HAP emissions reductions by applying the volatile organic matter collection and recovery... cumulative amount of volatile organic matter recovered by the solvent recovery system for the compliance... of the mass of volatile organic matter recovered. (ii) For each solvent recovery system, determine...

  12. 40 CFR 63.4351 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the organic HAP emissions reductions by applying the volatile organic matter collection and recovery... cumulative amount of volatile organic matter recovered by the solvent recovery system for the compliance... of the mass of volatile organic matter recovered. (ii) For each solvent recovery system, determine...

  13. Headspace, volatile and semi-volatile organic compounds diversity and radical scavenging activity of ultrasonic solvent extracts from Amorpha fruticosa honey samples.

    PubMed

    Jerković, Igor; Marijanović, Zvonimir; Kezić, Janja; Gugić, Mirko

    2009-07-27

    Volatile organic compounds of Amorpha fruticosa honey samples were isolated by headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE), followed by gas chromatography and mass spectrometry analyses (GC, GC-MS), in order to obtain complementary data for overall characterization of the honey aroma. The headspace of the honey was dominated by 2-phenylethanol (38.3-58.4%), while other major compounds were trans- and cis-linalool oxides, benzaldehyde and benzyl alcohol. 2-Phenylethanol (10.5-16.8%) and methyl syringate (5.8-8.2%) were the major compounds of ultrasonic solvent extracts, with an array of small percentages of linalool, benzene and benzoic acid derivatives, aliphatic hydrocarbons and alcohols, furan derivatives and others. The scavenging ability of the series of concentrations of the honey ultrasonic solvent extracts and the corresponding honey samples was tested by a DPPH (1,1-diphenyl-2-picrylhydrazyl) assay. Approximately 25 times lower concentration ranges (up to 2 g/L) of the extracts exhibited significantly higher free radical scavenging potential with respect to the honey samples.

  14. Evolution of Volatile Emission in Rhus coriaria Organs During Different Stages of Growth and Evaluation of the Essential Oil Composition.

    PubMed

    Reidel, Rose Vanessa Bandeira; Cioni, Pier Luigi; Majo, Luigi; Pistelli, Luisa

    2017-11-01

    Rhus coriaria, also known as Sumac, has been traditionally used in many countries as spice, condiment, dying agent, and medicinal herb. The chemical composition of essential oils (EOs) and the volatile emissions from different organs of this species collected in Sicily (Italy) were analyzed by gas chromatography-flame ionization detection and gas chromatography/mass spectrometry. Monoterpene and sesquiterpene hydrocarbons were the most abundant class in the volatile emissions with β-caryophyllene and α-pinene were the main constituents in the majority of the examined samples. The EO composition was characterized by high amount of monoterpene and sesquiterpene hydrocarbons together with diterpenes. The main compounds in the EO obtained from the leaves and both stages of fruit maturation were cembrene and β-caryophyllene, while α-pinene and tridecanoic acid were the key compounds in the flower EO. All the data were submitted to multivariate statistical analysis showing many differences among the different plant parts and their ontogenetic stages. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  15. Flavor profiling of apple ciders from the UK and Scandinavian region.

    PubMed

    Qin, Zihan; Petersen, Mikael A; Bredie, Wender L P

    2018-03-01

    The aim of this study was to characterize the flavor profiles of 14 commercial apple ciders from the United Kingdom and Scandinavian region. The flavor properties were established by sensory profiling and analysis of volatile and non-volatile components, including titratable acidity, pH, residual sugars and organic acids. A total of 72 volatile compounds were identified in the 14 apple ciders using dynamic headspace sampling (DHS) coupled to gas chromatography-mass spectrometry (GC/MS). The main volatile compounds found in apple ciders were esters and higher alcohols, followed by aldehydes and fatty acids. Sensory characterizations of the aroma and taste of apple ciders were carried out by a trained sensory panel using descriptive analysis with 23 sensory attributes. The attributes apple, cooked apple, yeasty, sweet and sour were the most predominant sensory descriptors used to describe the similarities and differences in the samples. Principal component analysis (PCA) showed that floral and fruity (fresh apple, banana and pear) odors were highly associated with sweet taste and opposed to the more complex aroma attributes (yeasty, lactic, chemical, mouldy, black pepper and earthy) and sour taste. Most of the UK apple ciders were characterized by these complex odors and taste notes sour, astringent and bitter, whereas ciders from the Scandinavian region had diverse sensory profiles. Partial least squares regression (PLS) based on the sensory and chemical data was able to cluster the ciders according to differences in production methods (oak-aged or spontaneous fermentation; controlled malolactic fermentation; industrial production with flavor modifications). Moreover, this study also suggested that ciders with marked levels of acetate esters were characterized by cooked/fresh apple, citrus and tropical fruit odors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A new tool for laboratory studies on volatilization: extension of applicability of the photovolatility chamber.

    PubMed

    Wolters, André; Kromer, Thomas; Linnemann, Volker; Schäffer, Andreas; Vereecken, Harry

    2003-04-01

    Volatilization from soil and plant surfaces after application is an important source of pesticide residues to the atmosphere. The laboratory photovolatility chamber allows the simultaneous measurement of volatilization and photodegradation of 14C-labeled pesticides under controlled climatic conditions. Both continuous air sampling, which quantifies volatile organic compounds and 14CO2 separately, and the detection of surface-located residues allow for a mass balance of radioactivity. The setup of the photovolatility chamber was optimized, and additional sensors were installed to characterize the influence of soil moisture, soil temperature, and evaporation on volatilization. The modified flow profile in the glass dome of the chamber arising from the use of a high-performance metal bellows pump was measured. Diminished air velocity near the soil surface and a wind velocity of 0.2 m/s in 3 cm height allowed the requirements of the German guideline on assessing pesticide volatilization for registration purposes to be fulfilled. Determination of soil moisture profiles of the upper soil layer illustrated that defined water content in the soil up to a depth of 4 cm could be achieved by water saturation of air. Cumulative volatilization of [phenyl-UL-14C]parathion-methyl ranged from 2.4% under dry conditions to 32.9% under moist conditions and revealed the clear dependence of volatilization on the water content in the top layer.

  17. Water-quality assessment of south-central Texas: Occurrence and distribution of volatile organic compounds in surface water and ground water, 1983-94, and implications for future monitoring

    USGS Publications Warehouse

    Ging, P.B.; Judd, L.J.; Wynn, K.H.

    1997-01-01

    The study area of the South-Central Texas study unit of the National Water-Quality Assessment Program comprises the Edwards aquifer in the San Antonio region and its catchment area. The first phase of the assessment includes evaluation of existing water-quality data for surface water and ground water, including volatile organic compounds, to determine the scope of planned monitoring. Most analyses of volatile organic compounds in surface water are from the National Pollutant Discharge Elimination System sites in San Antonio, Texas. Nine volatile organic compounds were detected at the six sites. The three compounds with the most detections at National Pollutant Discharge Elimination System sites are 1,2,4-trimethylbenzene, toluene, and xylene. Analysis of volatile organic compounds in ground water was limited to Edwards aquifer wells. Twenty-eight volatile organic compounds were detected in samples from 89 wells. The five most commonly detected compounds in samples from wells, in descending order, are tetrachloroethene, trichloroethene, bromoform, chloroform, and dibromochloromethane. Detections of volatile organic compounds in surface water and ground water within the South-Central Texas study area are limited to site-specific sources associated with development; therefore, planned monitoring for possible detections of volatile organic compounds as part of the National Water-Quality Assessment Program will emphasize areas of expanding population and development. Monitoring of volatile organic compounds is planned at National Pollutant Discharge Elimination System sites, at basic fixed surface-water sites, and in the ground-water study-unit surveys.

  18. 40 CFR 63.3541 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... volatile organic matter collection and recovery efficiency to the mass of organic HAP contained in the... indicates the cumulative amount of volatile organic matter recovered by the solvent recovery system each month. (2) For each solvent recovery system, determine the mass of volatile organic matter recovered for...

  19. 40 CFR 63.3541 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... volatile organic matter collection and recovery efficiency to the mass of organic HAP contained in the... indicates the cumulative amount of volatile organic matter recovered by the solvent recovery system each month. (2) For each solvent recovery system, determine the mass of volatile organic matter recovered for...

  20. 40 CFR 63.3541 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... volatile organic matter collection and recovery efficiency to the mass of organic HAP contained in the... indicates the cumulative amount of volatile organic matter recovered by the solvent recovery system each month. (2) For each solvent recovery system, determine the mass of volatile organic matter recovered for...

  1. Performance characterization of water recovery and water quality from chemical/organic waste products

    NASA Technical Reports Server (NTRS)

    Moses, W. M.; Rogers, T. D.; Chowdhury, H.; Cullingford, H. S.

    1989-01-01

    The water reclamation subsystems currently being evaluated for the Space Shuttle Freedom are briefly reviewed with emphasis on a waste water management system capable of processing wastes containing high concentrations of organic/inorganic materials. The process combines low temperature/pressure to vaporize water with high temperature catalytic oxidation to decompose volatile organics. The reclaimed water is of potable quality and has high potential for maintenance under sterile conditions. Results from preliminary experiments and modifications in process and equipment required to control reliability and repeatability of system operation are presented.

  2. Chemical characterization of organosulfates from the hydroxyl radical-initiated oxidation and ozonolysis of cis-3-hexen-1-ol

    NASA Astrophysics Data System (ADS)

    Barbosa, Thais S.; Riva, Matthieu; Chen, Yuzhi; da Silva, Cleyton M.; Ameida, Jose Claudino S.; Zhang, Zhenfa; Gold, Avram; Arbilla, Graciela; Bauerfeldt, Glauco F.; Surratt, Jason D.

    2017-08-01

    Cis-3-hexen-1-ol (cis-HXO) is a green leaf volatile emitted from plants under stress and belongs to an important class of biogenic volatile organic compounds. In this study, we have investigated the potential formation of organosulfates (OSs) from the hydroxyl radical (OH)-initiated oxidation and ozonolysis of cis-HXO using either non-acidified or acidified sulfate seed aerosols under different relative humidity (RH) conditions. For selected ozonolysis experiments, an OH scavenger was utilized. Ultra performance liquid chromatography interfaced to high-resolution quadrupole time-of-flight mass spectrometry with electrospray ionization (UPLC/ESI-HR-Q-TOFMS) was used to characterize cis-HXO-derived secondary organic aerosol (SOA) formation. Chemical characterization of cis-HXO-derived SOA products reveals that OSs were generated in significant quantity from multiphase chemistry of gas-phase oxidation products of cis-HXO. Ambient fine aerosol (PM2.5) samples collected from Rio de Janeiro, Brazil, were also analyzed. Seven cis-HXO-derived OSs identified in the lab study with molecular weights 154, 186, 170, 210, 212, 226 and 270 were also found in the PM2.5 samples collected in Brazil. This study provides direct evidence that the oxidation of cis-HXO by OH and O3 yields biogenic SOA through the formation of polar OSs.

  3. Spring and summer contrast in new particle formation over nine forest areas in North America

    DOE PAGES

    Yu, F.; Luo, G.; Pryor, S. C.; ...

    2015-12-18

    Recent laboratory chamber studies indicate a significant role for highly oxidized low-volatility organics in new particle formation (NPF), but the actual role of these highly oxidized low-volatility organics in atmospheric NPF remains uncertain. Here, particle size distributions (PSDs) measured in nine forest areas in North America are used to characterize the occurrence and intensity of NPF and to evaluate model simulations using an empirical formulation in which formation rate is a function of the concentrations of sulfuric acid and low-volatility organics from alpha-pinene oxidation (Nucl-Org), and using an ion-mediated nucleation mechanism (excluding organics) (Nucl-IMN). On average, NPF occurred on ~more » 70 % of days during March for the four forest sites with springtime PSD measurements, while NPF occurred on only ~ 10 % of days in July for all nine forest sites. Both Nucl-Org and Nucl-IMN schemes capture the observed high frequency of NPF in spring, but the Nucl-Org scheme significantly overpredicts while the Nucl-IMN scheme slightly underpredicts NPF and particle number concentrations in summer. Statistical analyses of observed and simulated ultrafine particle number concentrations and frequency of NPF events indicate that the scheme without organics agrees better overall with observations. The two schemes predict quite different nucleation rates (including their spatial patterns), concentrations of cloud condensation nuclei, and aerosol first indirect radiative forcing in North America, highlighting the need to reduce NPF uncertainties in regional and global earth system models.« less

  4. TEMPORAL VARIABILITY MEASUREMENT OF SPECIFIC VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    Methodology was developed to determine unambiguously trace levels of volatile organic compounds as they vary in concentration over a variety of time scales. his capability is important because volatile organic compounds (VOCs) are usually measure by time-integrative techniques th...

  5. HOx Radical Chemistry in an Indiana Forest Environment: Measurement and Model Comparison

    NASA Astrophysics Data System (ADS)

    Lew, M.; Bottorff, B.; Sigler, P. S. R.; Stevens, P. S.; Sklaveniti, S.; Leonardis, T.; Locoge, N.; Dusanter, S.; Kundu, S.; Deming, B.; Wood, E. C. D.; Gentner, D. R.

    2015-12-01

    Reactions of the hydroxyl (OH) and peroxy radicals (HO2 and RO2) play a central role in the chemistry of the atmosphere. In addition to controlling the lifetimes of many trace gases important to issues of global climate change, OH radical reactions initiate the oxidation of volatile organic compounds (VOCs) which can lead to the production of ozone and secondary organic aerosols in the atmosphere. Previous measurements of these radicals in forest environments characterized by high mixing ratios of isoprene and low mixing ratios of NOx have shown serious discrepancies with modeled concentrations. These results bring into question our understanding of the atmospheric chemistry of isoprene and other biogenic VOCs under low NOx conditions. In the summer of 2015, HOx radicals were measured using Laser-Induced Fluorescence Fluorescence Assay by Gas Expansion (LIF-FAGE) technique as part of the Indiana Radical, Reactivity and Ozone Production Intercomparison (IRRONIC). This campaign took place in a forested area at the Indiana Research and Teaching Preserve (IURTP) near the Bloomington campus characterized by high mixing ratios of isoprene and low mixing ratios of NOx. Supporting measurements of photolysis rates, volatile organic compounds, nitrogen oxides, and other species were used to constrain a zero-dimensional box model based on the Regional Atmospheric Chemistry Mechanism (RACM2) and the Master Chemical Mechanism (MCM).

  6. Volatility of organic aerosol and its components in the Megacity of Paris

    NASA Astrophysics Data System (ADS)

    Paciga, A.; Karnezi, E.; Kostenidou, E.; Hildebrandt, L.; Psichoudaki, M.; Engelhart, G. J.; Lee, B.-H.; Crippa, M.; Prévôt, A. S. H.; Baltensperger, U.; Pandis, S. N.

    2015-08-01

    Using a mass transfer model and the volatility basis set, we estimate the volatility distribution for the organic aerosol (OA) components during summer and winter in Paris, France as part of the collaborative project MEGAPOLI. The concentrations of the OA components as a function of temperature were measured combining data from a thermodenuder and an aerosol mass spectrometer (AMS) with Positive Matrix Factorization (PMF) analysis. The hydrocarbon-like organic aerosol (HOA) had similar volatility distributions for the summer and winter campaigns with half of the material in the saturation concentration bin of 10 μg m-3 and another 35-40 % consisting of low and extremely low volatility organic compounds (LVOCs and ELVOCs, respectively). The winter cooking OA (COA) was more than an order of magnitude less volatile than the summer COA. The low volatility oxygenated OA (LV-OOA) factor detected in the summer had the lowest volatility of all the derived factors and consisted almost exclusively of ELVOCs. The volatility for the semi-volatile oxygenated OA (SV-OOA) was significantly higher than that of the LV-OOA, containing both semi-volatile organic components (SVOCs) and LVOCs. The oxygenated OA (OOA) factor in winter consisted of SVOCs (45 %), LVOCs (25 %) and ELVOCs (30 %). The volatility of marine OA (MOA) was higher than that of the other factors containing around 60 % SVOCs. The biomass burning OA (BBOA) factor contained components with a wide range of volatilities with significant contributions from both SVOCs (50 %) and LVOCs (30 %). Finally, combining the O : C ratio and volatility distributions of the various factors, we incorporated our results into the two-dimensional volatility basis set (2D-VBS). Our results show that the factors cover a broad spectrum of volatilities with no direct link between the average volatility and average O : C of the OA components. Agreement between our findings and previous publications is encouraging for our understanding of the evolution of atmospheric OA.

  7. Secondary organic aerosol formation and composition from the photo-oxidation of methyl chavicol (estragole)

    NASA Astrophysics Data System (ADS)

    Pereira, K. L.; Hamilton, J. F.; Rickard, A. R.; Bloss, W. J.; Alam, M. S.; Camredon, M.; Muñoz, A.; Vásquez, M.; Borrás, E.; Ródenas, M.

    2013-12-01

    The increasing demand for palm oil for uses in biofuel and food products is leading to rapid expansion of oil palm agriculture. Methyl chavicol (also known as estragole and 1-allyl-4-methoxybenzene) is an oxygenated biogenic volatile organic compound that was recently identified as the main floral emission from an oil palm plantation in Malaysian Borneo. The emissions of methyl chavicol observed may impact regional atmospheric chemistry, but little is known of its ability to form secondary organic aerosol (SOA). The photo-oxidation of methyl chavicol was investigated at the European Photoreactor chamber as a part of the atmospheric chemistry of methyl chavicol (ATMECH) project. Aerosol samples were collected using a particle into liquid sampler (PILS) and analysed offline using an extensive range of instruments including; high performance liquid chromatography mass spectrometry (HPLC-ITMS), high performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-QTOFMS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The SOA yield was determined as 18-29% depending on initial precursor (VOC : NOx) mixing ratios. In total, 59 SOA compounds were observed and the structures of 10 compounds have been identified using high resolution tandem mass spectrometry. The addition of hydroxyl and/or nitro functional groups to the aromatic ring appears to be an important mechanistic pathway for aerosol formation. This results in the formation of compounds with both low volatility and high O : C ratios, where functionalisation rather than fragmentation is mainly observed as a~result of the stability of the ring. The SOA species observed can be characterized as semi-volatile to low volatile oxygenated organic aerosol (SVOOA and LVOOA) components and therefore may be important in aerosol formation and growth.

  8. BIOCONCENTRATION FACTORS FOR VOLATILE ORGANIC COMPOUNDS IN VEGETATION

    EPA Science Inventory

    Samples of air and leaves were taken at the University of Nevada-Las Vegas campus and analyzed for volatile organic compounds using vacuum distillation coupled with gas chromatography/mass spectrometry. The data were used to estimate the bioconcentration of volatile organic compo...

  9. REAL TIME, ON-LINE CHARACTERIZATION OF DIESEL GENERATOR AIR TOXIC EMISSIONS BY RESONANCE ENHANCED MULTI-PHOTON IONIZATION TIME OF FLIGHT MASS SPECTROMETRY

    EPA Science Inventory

    The laser based resonance, enhanced multi-photon ionization time-of-flight mass spectrometry (REMPI-TOFMS) technique has been applied to the exhaust gas stream of a diesel generator to measure, in real time, concentration levels of aromatic air toxics. Volatile organic compounds ...

  10. Measurements of Methane Emissions and Volatile Organic Compounds from Shale Gas Operations in the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Omara, M.; Subramanian, R.; Sullivan, M.; Robinson, A. L.; Presto, A. A.

    2014-12-01

    The Marcellus Shale is the most expansive shale gas reserve in play in the United States, representing an estimated 17 to 29 % of the total domestic shale gas reserves. The rapid and extensive development of this shale gas reserve in the past decade has stimulated significant interest and debate over the climate and environmental impacts associated with fugitive releases of methane and other pollutants, including volatile organic compounds. However, the nature and magnitude of these pollutant emissions remain poorly characterized. This study utilizes the tracer release technique to characterize total fugitive methane release rates from natural gas facilities in southwestern Pennsylvania and West Virginia that are at different stages of development, including well completion flowbacks and active production. Real-time downwind concentrations of methane and two tracer gases (acetylene and nitrous oxide) released onsite at known flow rates were measured using a quantum cascade tunable infrared laser differential absorption spectrometer (QC-TILDAS, Aerodyne, Billerica, MA) and a cavity ring down spectrometer (Model G2203, Picarro, Santa Clara, CA). Evacuated Silonite canisters were used to sample ambient air during downwind transects of methane and tracer plumes to assess volatile organic compounds (VOCs). A gas chromatograph with a flame ionization detector was used to quantify VOCs following the EPA Method TO-14A. A preliminary assessment of fugitive emissions from actively producing sites indicated that methane leak rates ranged from approximately 1.8 to 6.2 SCFM, possibly reflecting differences in facility age and installed emissions control technology. A detailed comparison of methane leak rates and VOCs emissions with recent published literature for other US shale gas plays will also be discussed.

  11. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    DOE PAGES

    Yu, L.; Smith, J.; Laskin, A.; ...

    2014-08-19

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol and two methoxy-phenols (syringol and guaiacol) with two major aqueous phase oxidants – the triplet excited states of an aromatic carbonyl ( 3C*) and hydroxyl radical (·OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). A large number of oxygenated molecules aremore » identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85–1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than ·OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenol had reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV-vis region, suggesting that aqueous-phase reactions of phenols are likely an important source of brown carbon in the atmosphere, especially in regions influenced by biomass burning.« less

  12. A novel inlet system for online chemical analysis of semi-volatile submicron particulate matter

    NASA Astrophysics Data System (ADS)

    Eichler, P.; Müller, M.; D'Anna, B.; Wisthaler, A.

    2015-03-01

    We herein present a novel modular inlet system designed to be coupled to low-pressure gas analyzers for online chemical characterization of semi-volatile submicron particles. The "chemical analysis of aerosol online" (CHARON) inlet consists of a gas-phase denuder for stripping off gas-phase analytes, an aerodynamic lens for particle collimation combined with an inertial sampler for the particle-enriched flow and a thermodesorption unit for particle volatilization prior to chemical analysis. The denuder was measured to remove gas-phase organics with an efficiency > 99.999% and to transmit particles in the 100-750 nm size range with a 75-90% efficiency. The measured average particle enrichment factor in the subsampling flow from the aerodynamic lens was 25.6, which is a factor of 3 lower than the calculated theoretical optimum. We coupled the CHARON inlet to a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) which quantitatively detects most organic analytes and ammonia. The combined CHARON-PTR-ToF-MS setup is thus capable of measuring both the organic and the ammonium fraction in submicron particles in real time. Individual organic compounds can be detected down to levels of 10-20 ng m-3. Two proof-of-principle studies were carried out for demonstrating the analytical power of this new instrumental setup: (i) oxygenated organics and their partitioning between the gas and the particulate phase were observed from the reaction of limonene with ozone and (ii) nicotine was measured in cigarette smoke particles demonstrating that selected organic target compounds can be detected in submicron particles in real time.

  13. 40 CFR 52.2420 - Identification of plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Enforceable, Implementation Plan, Potential to Emit, State Enforceable, Volatile Organic Compound 4/1/96 3/12..., Regulation of the Board, These regulations. Terms Revised—Good Engineering Practice, Person, Volatile organic... pressure, Vapor pressure, Volatile organic compounds. Terms Removed: Air Quality Maintenance Area. 5-10-20...

  14. 75 FR 2090 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compound...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compound Automobile Refinishing... automobile refinishing rule for approval into its State Implementation Plan (SIP). These rule revisions extend the applicability of Indiana's approved volatile organic compound (VOC) automobile refinishing...

  15. Volatile organic compounds and particulates as components of diesel engine exhaust gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, H.; Bandeira de Melo, G.; Ousmanov, F.

    1999-07-01

    Volatile organic compounds (VOC) and soot particles have been determined in a Diesel`s exhaust gas. A new sampling method allowed the measurement of emissions of organic compounds (C{sub 1} to C{sub 20}) in a gas chromatogram at a detection limit of ca. 0.2 mg/m{sup 3}. Particles were collected with a filter bed of ceramic particles and characterized by temperature programmed desorption (TPD) and oxidation (TPO). Engine runs were always performed at a fixed and constant air to fuel equivalence ratio ({lambda}) and with a constant volumetric efficiency, because these parameters strongly influenced the emissions in terms of both composition andmore » order of magnitude. The effective combustion temperature again strongly governed the nature of the emissions. Model fuels, composed of individual paraffins and aromatics and additions of sulfur compounds and an organic nitrate (for cetane number enhancement) were used. The results contribute to the understanding of the origin of specific emissions from Diesel engines. These newly developed methods are recommended for further application.« less

  16. SEMI-VOLATILE ORGANIC ACIDS AND OTHER POLAR COMPOUNDS COLLECTED IN NEW YORK CITY IN RESPONSE TO THE EVENTS OF 9/11

    EPA Science Inventory

    Concentrations of over 25 polar semi-volatile and non-volatile organic compounds were measured in Lower Manhattan, New York using a high capacity Integrated Organic Gas and Particle sampler, after the initial destruction of the World Trade Center. The polar organic compounds in...

  17. Metal-organic chemical vapor deposition of cerium oxide, gallium-indium-oxide, and magnesium oxide thin films: Precursor design, film growth, and film characterization

    NASA Astrophysics Data System (ADS)

    Edleman, Nikki Lynn

    A new class of volatile, low-melting, fluorine-free lanthanide metal-organic chemical vapor deposition (MOCVD) precursors has been developed. The neutral, monomeric cerium, neodymium, gadolinium, and erbium complexes are coordinatively saturated by a versatile, multidentate, ether-functionalized beta-ketoiminate ligand, and complex melting point and volatility characteristics can be tuned by altering the alkyl substituents on the ligand periphery. Direct comparison with lanthanide beta-diketonate complexes reveals that the present precursor class is a superior choice for lanthanide oxide MOCVD. Epitaxial CeO 2 buffer layer films have been grown on (001) YSZ substrates by MOCVD at significantly lower temperatures than previously reported using one of the newly developed cerium precursors. High-quality YBCO films grown on these CeO2 buffer layers by POMBE exhibit very good electrical transport properties. The cerium complex has therefore been explicitly demonstrated to be a stable and volatile precursor and is attractive for low-temperature growth of coated conductor multilayer structures by MOCVD. Gallium-indium-oxide thin films (GaxIn2-xO 3), x = 0.0˜1.1, have been grown by MOCVD using the volatile metal-organic precursors In(dpm)3 and Ga(dpm)3. The films have a homogeneously Ga-substituted, cubic In2O3 microstructure randomly oriented on quartz or heteroepitaxial on (100) YSZ single-crystal substrates. The highest conductivity of the as-grown films is found at x = 0.12. The optical transmission window and absolute transparency of the films rivals or exceeds that of the most transparent conductive oxides known. Reductive annealing results in improved charge transport characteristics with little loss of optical transparency. No significant difference in electrical properties is observed between randomly oriented and heteroepitaxial films, thus arguing that carrier scattering effects at high-angle grain boundaries play a minor role in the film conductivity mechanism. The synthesis and characterization of a new magnesium MOCVD precursor, Mg(dpm)2(TMEDA) is detailed. It is shown that the donating ligand TMEDA prevents oligomerization and subsequent volatility depression as observed in the commonly used [Mg(dpm)2]2. The superiority of Mg(dpm)2(TMEDA) as an MOCVD precursor is explicitly demonstrated by growth of epitaxial MgO thin films on single-crystal SrTiO3 substrates.

  18. 78 FR 49563 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... futures on all of the volatility indexes that underlie volatility index options trading on CBOE. Currently, volatility index (security) futures expirations correspond to each volatility index options expiration months...-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Proposed Rule To Amend Rule...

  19. Pyrolysis gas chromatography-mass spectrometry to characterize organic matter and its relationship to uranium content of Appalachian Devonian black shales

    USGS Publications Warehouse

    Leventhal, J.S.

    1981-01-01

    Gas Chromatographic analysis of volatile products formed by stepwise pyrolysis of black shales can be used to characterize the kerogen by relating it to separated, identified precursors such as land-derived vitrinite and marine-source Tasmanites. Analysis of a Tasmanites sample shows exclusively n-alkane and -alkene pyrolysis products, whereas a vitrinite sample shows a predominance of one- and two-ring substituted aromatics. For core samples from northern Tennessee and for a suite of outcrop samples from eastern Kentucky, the organic matter type and the U content (<10-120ppm) show variations that are related to precursor organic materials. The samples that show a high vitrinite component in their pyrolysis products are also those samples with high contents of U. ?? 1981.

  20. Volatility Properties of Internally- and Externally-Mixed Ambient Aerosols at an Anthropogenically-influenced Forest Site in Southeastern USA

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Subramanian, R.

    2015-12-01

    Secondary organic aerosol (SOA) from biogenic sources has a significant contribution to ambient aerosol loadings in Southeastern USA and thus contributes to adverse health effects of air pollution and influences regional and global climate. Volatility properties of biogenic SOA determine its concentration, reactivity, and lifetime, but are still largely unknown. As part of a larger study to assess the effect of biogenic SOA on aerosol optical properties, a set of instruments, including scanning mobility sizers (SMPS), single particle soot photometer (SP2), and a thermodenuder, was deployed during June 2015 at a Duke Forest site near Chapel Hill, NC. The site is characterized by a significant contribution of both biogenic and urban (mostly traffic) sources. Measurements of changes in aerosol volume and optical size upon heating in the thermodenuder at different temperatures are used to derive volatility properties of the ambient aerosol. A limited set of experiments was carried out using the tandem differential mobility analysis (TDMA) approach to investigate whether the ambient aerosol at the Duke Forest site is internally mixed with respect to its volatility properties. In this presentation we will discuss equilibrium and kinetic aspects of aerosol volatility observed during this study and implications of external vs. internal mixing for derivation of bulk volatility properties of ambient aerosol.

  1. 78 FR 11618 - Approval and Promulgation of Implementation Plans Tennessee: Revisions to Volatile Organic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... Promulgation of Implementation Plans Tennessee: Revisions to Volatile Organic Compound Definition AGENCY..., SIP revision adds 17 compounds to the list of compounds excluded from the definition of ``Volatile Organic Compound''. EPA is approving this SIP revision because the State has demonstrated that it is...

  2. 77 FR 52630 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compounds; Architectural and... rule that sets emissions limits on the amount of volatile organic compounds in architectural and... period. Any parties interested in commenting on this action should do so at this time. Please note that...

  3. 78 FR 22197 - Approval and Promulgation of Implementation Plans for Tennessee: Revisions to Volatile Organic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-15

    ... Promulgation of Implementation Plans for Tennessee: Revisions to Volatile Organic Compound Definition AGENCY... total of 17 compounds to the list of compounds excluded from the definition of ``Volatile Organic...: Sean Lakeman, Regulatory Development Section, Air Planning Branch, Air, Pesticides and Toxics...

  4. Certified reference material of volatile organic compounds for environmental analysis: BTEX in methanol.

    PubMed

    Neves, Laura A; Almeida, Renato R R; Rego, Eliane P; Rodrigues, Janaína Marques; de Carvalho, Lucas Junqueira; de M Goulart, Ana Letícia

    2015-04-01

    The Brazilian Metrology Institute (National Institute of Metrology, Quality, and Technology, Inmetro) has been developing a certified reference material (CRM) of the volatile organic compounds benzene; toluene; ethylbenzene; and ortho, meta, and para-xylenes (BTEX) in methanol, to ensure quality control for environmental-analysis measurements. The objective of this paper is to present the results of certification studies: uncertainty estimates related to characterization, a homogeneity study, and a stability study on a single lot of CRM composed of BTEX in methanol. The method used analysis of variance (ANOVA), a statistical tool, to evaluate the homogeneity and stability of the BTEX CRM, which complies with ISO Guide 30 series. The homogeneity and stability of the BTEX CRM was confirmed for all analytes and their respective properties. All the procedures used in this study complied with ISO GUIDE 34, ISO GUIDE 35, and the guide to the expression of uncertainty of measurement (GUM).

  5. Albuquerque Operations Office, Albuquerque, New Mexico: Technology summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-08-01

    This document has been prepared by the Department of Energy`s (DOE) Environmental Management (EM) Office of Technology Development (OTD) in order to highlight research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Albuquerque Operations Office. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information has been assembled from recently produced OTD documents that highlight technology development activities within each of the OTD program elements. These integrated program summaries include: Volatile Organic Compounds in Non-Arid Soils, Volatile Organic Compounds inmore » Arid Soils, Mixed Waste Landfill Integrated Demonstration, Uranium in Soils Integrated Demonstration, Characterization, Monitoring, and Sensor Technology, In Situ Remediation, Buried Waste Integrated Demonstration, Underground Storage Tank, Efficient Separations and Processing, Mixed Waste Integrated Program, Rocky Flats Compliance Program, Pollution Prevention Program, Innovation Investment Area, and Robotics Technology.« less

  6. Volatile organic compounds detected in the atmosphere of NASA's Biomass Production Chamber

    NASA Technical Reports Server (NTRS)

    Batten, J. H.; Stutte, G. W.; Wheeler, R. M.

    1996-01-01

    Atmospheres of enclosed environments in which 20 m2 stands of wheat, potato, and lettuce were grown were characterized and quantified by gas chromatography-mass spectrometry. A large number (in excess of 90) of volatile organic compounds (VOCs) were identified in the chambers. Twenty eight VOC's were assumed to be of biogenic origin for these were not found in the chamber atmosphere when air samples were analyzed in the absence of plants. Some of the compounds found were unique to a single crop. For example, only 35% of the biogenic compounds detected in the wheat atmosphere were unique to wheat, while 36% were unique to potato and 26% were unique to lettuce. The number of compounds detected in the wheat (20 compounds) atmosphere was greater than that of potato (11) and lettuce (15) and concentration levels of biogenic and non-biogenic VOC's were similar.

  7. Chemical composition of Titan's aerosols analogues characterized with a systematic pyrolysis-gas chromatography-mass spectrometry characterization

    NASA Astrophysics Data System (ADS)

    Szopa, Cyril; Raulin, Francois; Coll, Patrice; Cabane, Michel; GCMS Team

    2014-05-01

    The in situ chemical characterization of Titan's atmosphere was achieved in 2005 with two instruments present onboard the Huygens atmospheric probe : the Aerosol Collector and Pyrolyzer (ACP) devoted to collect and pyrolyse Titan's aerosols ; the Gas Chromatograph-Mass Spectrometer (GCMS) experiment devoted to analyze gases collected in the atmosphere or coming from the aerosols pyrolysis. The GCMS was developed by Hasso Niemann in the filiation of the quadrupole mass spectrometers he built for several former space missions. The main objectives were to : determine the concentration profile of the most abundant chemical species; seek for minor atmospheric organic species not detected with remote observations ; give a first view of the organic aerosols structure; characterize the condensed volatiles present at the surface (e.g. lakes) in case of survival of the probe to the landing impact. Taking into account for the potential complexity of the gaseous samples to be analyzed, it was decided to couple to the MS analyzer a gas chromatograph capable to separate volatile species from light inorganic molecules and noble gases, to organic compounds including aromatics. This was the first GCMS analyzer that worked in an extraterrestrial environment since the Viking missions on Mars. Even if the GCMS coupling mode did not provide any result of interest, it has been demonstrated to be functional during the Huygens descent. But, the direct MS analysis of the atmosphere, and the pyrolysis-MS analysis of aerosols allowed to make great discoveries which are still of primary importance to describe the Titan's lower atmosphere composition. This contribution aims at presenting this instrument that worked in the Titan's atmosphere, and summarizing the most important discoveries it allowed.

  8. The contribution of evaporative emissions from gasoline vehicles to the volatile organic compound inventory in Mexico City.

    PubMed

    Schifter, I; Díaz, L; Rodríguez, R; González-Macías, C

    2014-06-01

    The strategy for decreasing volatile organic compound emissions in Mexico has been focused much more on tailpipe emissions than on evaporative emissions, so there is very little information on the contribution of evaporative emissions to the total volatile organic compound inventory. We examined the magnitudes of exhaust and evaporative volatile organic compound emissions, and the species emitted, in a representative fleet of light-duty gasoline vehicles in the Metropolitan Area of Mexico City. The US "FTP-75" test protocol was used to estimate volatile organic compound emissions associated with diurnal evaporative losses, and when the engine is started and a journey begins. The amount and nature of the volatile organic compounds emitted under these conditions have not previously been accounted in the official inventory of the area. Evaporative emissions from light-duty vehicles in the Metropolitan Area of Mexico City were estimated to be 39 % of the total annual amount of hydrocarbons emitted. Vehicles built before 1992 (16 % of the fleet) were found to be responsible for 43 % of the total hydrocarbon emissions from exhausts and 31 % of the evaporative emissions of organic compounds. The relatively high amounts of volatile organic compounds emitted from older vehicles found in this study show that strong emission controls need to be implemented in order to decrease the contribution of evaporative emissions of this fraction of the fleet.

  9. Water-quality assessment of part of the upper Mississippi River basin, Minnesota and Wisconsin: Design and implementation of water-quality studies, 1995-98

    USGS Publications Warehouse

    Stark, James R.; Fallon, J.D.; Fong, A.L.; Goldstein, R.M.; Hanson, P.E.; Kroening, S.E.; Lee, K.E.

    1999-01-01

    This report describes the design, site-selection, and implementation of the study. Methods used to collect, process, and analyze samples; characterize sites; and assess habitat are described. A comprehensive list of sample sites is provided. Sample analyses for water-quality studies included chlorophyll a, major inorganic constituents, nutrients, trace elements, tritium, radon, environmental isotopes, organic carbon, pesticides, volatile organic compounds, and other synthetic and naturallyoccurring organic compounds. Aquatic-biological samples included fish, benthic macroinvertebrates, and algal enumeration and identification, as well as synthetic-organic compounds and trace elements in fish tissue.

  10. Volatility of organic aerosol and its components in the megacity of Paris

    NASA Astrophysics Data System (ADS)

    Paciga, Andrea; Karnezi, Eleni; Kostenidou, Evangelia; Hildebrandt, Lea; Psichoudaki, Magda; Engelhart, Gabriella J.; Lee, Byong-Hyoek; Crippa, Monica; Prévôt, André S. H.; Baltensperger, Urs; Pandis, Spyros N.

    2016-02-01

    Using a mass transfer model and the volatility basis set, we estimate the volatility distribution for the organic aerosol (OA) components during summer and winter in Paris, France as part of the collaborative project MEGAPOLI. The concentrations of the OA components as a function of temperature were measured combining data from a thermodenuder and an aerosol mass spectrometer (AMS) with Positive Matrix Factorization (PMF) analysis. The hydrocarbon-like organic aerosol (HOA) had similar volatility distributions for the summer and winter campaigns with half of the material in the saturation concentration bin of 10 µg m-3 and another 35-40 % consisting of low and extremely low volatility organic compounds (LVOCs with effective saturation concentrations C* of 10-3-0.1 µg m-3 and ELVOCs C* less or equal than 10-4 µg m-3, respectively). The winter cooking OA (COA) was more than an order of magnitude less volatile than the summer COA. The low-volatility oxygenated OA (LV-OOA) factor detected in the summer had the lowest volatility of all the derived factors and consisted almost exclusively of ELVOCs. The volatility for the semi-volatile oxygenated OA (SV-OOA) was significantly higher than that of the LV-OOA, containing both semi-volatile organic components (SVOCs with C* in the 1-100 µg m-3 range) and LVOCs. The oxygenated OA (OOA) factor in winter consisted of SVOCs (45 %), LVOCs (25 %) and ELVOCs (30 %). The volatility of marine OA (MOA) was higher than that of the other factors containing around 60 % SVOCs. The biomass burning OA (BBOA) factor contained components with a wide range of volatilities with significant contributions from both SVOCs (50 %) and LVOCs (30 %). Finally, combining the bulk average O : C ratios and volatility distributions of the various factors, our results are placed into the two-dimensional volatility basis set (2D-VBS) framework. The OA factors cover a broad spectrum of volatilities with no direct link between the average volatility and average O : C of the OA components.

  11. Receiver Operating Characteristic Analysis for Classification Based on Various Prior Probabilities of Groups with an Application to Breath Analysis

    NASA Astrophysics Data System (ADS)

    Cimermanová, K.

    2009-01-01

    In this paper we illustrate the influence of prior probabilities of diseases on diagnostic reasoning. For various prior probabilities of classified groups characterized by volatile organic compounds of breath profile, smokers and non-smokers, we constructed the ROC curve and the Youden index with related asymptotic pointwise confidence intervals.

  12. Characterization of fill deposits in the Calumet region of northwestern Indiana and northeastern Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Greeman, Theodore K.; Duwelius, Richard F.; King, Robin B.; Nazimek, John E.; Petrovski, David M.

    1997-01-01

    Industrial wastes, municipal solid wastes, steel-industry wastes, and, perhaps, dredging spoil can be associated with increased concentrations of volatile and semivolatile organic compounds, pesticides, cyanide, metals, or major ions in ground water in this area. Construction debris, ash, cinders, and natural fill may be associated with increased concentrations of major ions in ground water.

  13. Reactive trace gas emissions from stressed plants: a poorly characterized major source of atmospheric volatiles

    NASA Astrophysics Data System (ADS)

    Niinemets, Ülo

    2017-04-01

    Vegetation constitutes the greatest source of reactive volatile organic compounds in the atmosphere. The current emission estimates primarily rely on constitutive emissions that are present only in some plant species. However, all plant species can be induced to emit reactive volatiles by different abiotic and biotic stresses, but the stress-dependent emissions have been largely neglected in emission measurements and models. This presentation provides an overview of systematic screening of stress-dependent volatile emissions from a broad range of structurally and physiologically divergent plant species from temperate to tropical ecosystems. Ozone, heat, drought and wounding stress were the abiotic stresses considered in the screening, while biotic stress included herbivory, chemical elicitors simulating herbivory and fungal infections. The data suggest that any moderate to severe stress leads to significant emissions of a rich blend of volatiles, including methanol, green leaf volatiles (the lipoxygenase pathway volatiles, dominated by C6 aldehydes, alcohols and derivatives), different mono- and sesquiterpenes and benzenoids. The release of volatiles occurs in stress severity-dependent manner, although the emission responses are often non-linear with more severe stresses resulting in disproportionately greater emissions. Stress volatile release is induced in both non-constitutive and constitutive volatile emitters, whereas the rate of constitutive volatile emissions in constitutive emitters is often reduced under environmental and biotic stresses. Given that plants in natural conditions often experience stress, this analysis suggests that global volatile emissions have been significantly underestimated. Furthermore, in globally changing hotter climates, the frequency and severity of both abiotic and biotic stresses is expected to increase. Thus, the stress-induced volatile emissions are predicted to play a dominant role in plant-atmosphere interactions in near future. Quantitative models that link stress severity, plant volatile emissions and climatic feedbacks are currently being developed, and this presentation argues that incorporating stress-dependent feedbacks in Earth system models in inevitable to simulate future climates.

  14. MOMA Gas Chromatograph-Mass Spectrometer onboard the 2018 ExoMars Mission: results and performance

    NASA Astrophysics Data System (ADS)

    Buch, A.; Pinnick, V. T.; Szopa, C.; Grand, N.; Humeau, O.; van Amerom, F. H.; Danell, R.; Freissinet, C.; Brinckerhoff, W.; Gonnsen, Z.; Mahaffy, P. R.; Coll, P.; Raulin, F.; Goesmann, F.

    2015-10-01

    The Mars Organic Molecule Analyzer (MOMA) is a dual ion source linear ion trap mass spectrometer that was designed for the 2018 joint ESA-Roscosmos mission to Mars. The main scientific aim of the mission is to search for signs of extant or extinct life in the near subsurface of Mars by acquiring samples from as deep as 2 m below the surface. MOMA will be a key analytical tool in providing chemical (molecular and chiral) information from the solid samples, with particular focus on the characterization of organic content. The MOMA instrument, itself, is a joint venture for NASA and ESA to develop a mass spectrometer capable of analyzing samples from pyrolysis/chemical derivatization gas chromatography (GC) as well as ambient pressure laser desorption ionization (LDI). The combination of the two analytical techniques allows for the chemical characterization of a broad range of compounds, including volatile and non-volatile species. Generally, MOMA can provide information on elemental and molecular makeup, polarity, chirality and isotopic patterns of analyte species. Here we report on the current performance of the MOMA prototype instruments, specifically the demonstration of the gas chromatographymass spectrometry (GC-MS) mode of operation.

  15. PTR-MS Characterization of VOCs Associated with Commercial Aromatic Bakery Yeasts of Wine and Beer Origin.

    PubMed

    Capozzi, Vittorio; Makhoul, Salim; Aprea, Eugenio; Romano, Andrea; Cappellin, Luca; Sanchez Jimena, Ana; Spano, Giuseppe; Gasperi, Flavia; Scampicchio, Matteo; Biasioli, Franco

    2016-04-12

    In light of the increasing attention towards "green" solutions to improve food quality, the use of aromatic-enhancing microorganisms offers the advantage to be a natural and sustainable solution that did not negatively influence the list of ingredients. In this study, we characterize, for the first time, volatile organic compounds (VOCs) associated with aromatic bakery yeasts. Three commercial bakery starter cultures, respectively formulated with three Saccharomyces cerevisiae strains, isolated from white wine, red wine, and beer, were monitored by a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), a direct injection analytical technique for detecting volatile organic compounds with high sensitivity (VOCs). Two ethanol-related peaks (m/z 65.059 and 75.080) described qualitative differences in fermentative performances. The release of compounds associated to the peaks at m/z 89.059, m/z 103.075, and m/z 117.093, tentatively identified as acetoin and esters, are coherent with claimed flavor properties of the investigated strains. We propose these mass peaks and their related fragments as biomarkers to optimize the aromatic performances of commercial preparations and for the rapid massive screening of yeast collections.

  16. RECEPTOR MODEL COMPARISONS AND WIND DIRECTION ANALYSES OF VOLATILE ORGANIC COMPOUNDS AND SUBMICROMETER PARTICLES IN AN ARID, BINATIONAL, URBAN AIRSHED

    EPA Science Inventory

    The relationship between continuous measurements of volatile organic compounds sources and particle number was evaluated at a Photochemical Assessment Monitoring Station Network (PAMS) site located near the U.S.-Mexico Border in central El Paso, TX. Sources of volatile organic...

  17. Volatile Compound-Mediated Interactions between Barley and Pathogenic Fungi in the Soil

    PubMed Central

    Fiers, Marie; Lognay, Georges; Fauconnier, Marie-Laure; Jijakli, M. Haïssam

    2013-01-01

    Plants are able to interact with their environment by emitting volatile organic compounds. We investigated the volatile interactions that take place below ground between barley roots and two pathogenic fungi, Cochliobolus sativus and Fusarium culmorum. The volatile molecules emitted by each fungus, by non-infected barley roots and by barley roots infected with one of the fungi or the two of them were extracted by head-space solid phase micro extraction and analyzed by gas chromatography mass spectrometry. The effect of fungal volatiles on barley growth and the effect of barley root volatiles on fungal growth were assessed by cultivating both organisms in a shared atmosphere without any physical contact. The results show that volatile organic compounds, especially terpenes, are newly emitted during the interaction between fungi and barley roots. The volatile molecules released by non-infected barley roots did not significantly affect fungal growth, whereas the volatile molecules released by pathogenic fungi decreased the length of barley roots by 19 to 21.5% and the surface of aerial parts by 15%. The spectrum of the volatiles released by infected barley roots had no significant effect on F. culmorum growth, but decreased C. sativus growth by 13 to 17%. This paper identifies the volatile organic compounds emitted by two pathogenic fungi and shows that pathogenic fungi can modify volatile emission by infected plants. Our results open promising perspectives concerning the biological control of edaphic diseases. PMID:23818966

  18. Volatility measurement of atmospheric submicron aerosols in an urban atmosphere in southern China

    NASA Astrophysics Data System (ADS)

    Cao, Li-Ming; Huang, Xiao-Feng; Li, Yuan-Yuan; Hu, Min; He, Ling-Yan

    2018-02-01

    Aerosol pollution has been a very serious environmental problem in China for many years. The volatility of aerosols can affect the distribution of compounds in the gas and aerosol phases, the atmospheric fates of the corresponding components, and the measurement of the concentration of aerosols. Compared to the characterization of chemical composition, few studies have focused on the volatility of aerosols in China. In this study, a thermodenuder aerosol mass spectrometer (TD-AMS) system was deployed to study the volatility of non-refractory submicron particulate matter (PM1) species during winter in Shenzhen. To our knowledge, this paper is the first report of the volatilities of aerosol chemical components based on a TD-AMS system in China. The average PM1 mass concentration during the experiment was 42.7±20.1 µg m-3, with organic aerosol (OA) being the most abundant component (43.2 % of the total mass). The volatility of chemical species measured by the AMS varied, with nitrate showing the highest volatility, with a mass fraction remaining (MFR) of 0.57 at 50 °C. Organics showed semi-volatile characteristics (the MFR was 0.88 at 50 °C), and the volatility had a relatively linear correlation with the TD temperature (from the ambient temperature to 200 °C), with an evaporation rate of 0.45 % °C-1. Five subtypes of OA were resolved from total OA using positive matrix factorization (PMF) for data obtained under both ambient temperature and high temperatures through the TD, including a hydrocarbon-like OA (HOA, accounting for 13.5 %), a cooking OA (COA, 20.6 %), a biomass-burning OA (BBOA, 8.9 %), and two oxygenated OAs (OOAs): a less-oxidized OOA (LO-OOA, 39.1 %) and a more-oxidized OOA (MO-OOA, 17.9 %). Different OA factors presented different volatilities, and the volatility sequence of the OA factors at 50 °C was HOA (MFR of 0.56) > LO-OOA (0.70) > COA (0.85) ≈ BBOA (0.87) > MO-OOA (0.99), which was not completely consistent with the sequence of their O / C ratios. The high volatility of HOA implied that it had a high potential to be oxidized to secondary species in the gas phase. The aerosol volatility measurement results in this study provide useful parameters for the modeling work of aerosol evolution in China and are also helpful in understanding the formation mechanisms of secondary aerosols.

  19. A technique for the measurement of organic aerosol hygroscopicity, oxidation level, and volatility distributions

    NASA Astrophysics Data System (ADS)

    Cain, Kerrigan P.; Pandis, Spyros N.

    2017-12-01

    Hygroscopicity, oxidation level, and volatility are three crucial properties of organic pollutants. This study assesses the feasibility of a novel measurement and analysis technique to determine these properties and establish their relationship. The proposed experimental setup utilizes a cloud condensation nuclei (CCN) counter to quantify hygroscopic activity, an aerosol mass spectrometer to measure the oxidation level, and a thermodenuder to evaluate the volatility. The setup was first tested with secondary organic aerosol (SOA) formed from the ozonolysis of α-pinene. The results of the first experiments indicated that, for this system, the less volatile SOA contained species that had on average lower O : C ratios and hygroscopicities. In this SOA system, both low- and high-volatility components can have comparable oxidation levels and hygroscopicities. The method developed here can be used to provide valuable insights about the relationships among organic aerosol hygroscopicity, oxidation level, and volatility.

  20. Results of the First Mars Organic Molecule Analyzer (MOMA) GC-MS Coupling

    NASA Astrophysics Data System (ADS)

    Buch, Arnaud; Pinnick, Veronica; Szopa, Cyril; Danell, Ryan; Grand, Noel; Van Amerom, Friso; Glavin, Daniel; Freissinet, Caroline; Humeau, Olivier; Coll, Patrice; Arevalo, Ricardo; Stalport, Fabien; Brinckerhoff, William; Steininger, Harald; Goesmann, Fred; Mahaffy, Paul; Raulin, Francois

    2014-11-01

    The Mars Organic Molecule Analyzer (MOMA) aboard the ExoMars rover will be a key analytical tool in providing chemical (molecular) information from the solid samples collected by the rover, with a particular focus on the char-acterization of the organic content. The core of the MOMA instrument is a gas chromatograph coupled with a mass spectrometer (GC-MS) which provides the unique capability to characterize a broad range of compounds, including both of volatile and non-volatile species. Samples will be crushed and deposited into sample cups seated in a rotating carousel. Soil samples will be analyzed either by UV laser desorption / ionization (LDI) or pyrolysis gas chromatography ion trap mass spectrometry (pyr-GC-ITMS).The French GC brassboard was coupled to the US ion trap mass spectrometer brassboard in a flight-like con-figuration for several coupling campains. The MOMA GC setup is based on the SAM heritage design with a He reservoir and 4 separate analytical modules including traps, columns and Thermal Conductivity Detectors. Solid samples are sealed and heated in this setup using a manual tapping station, designed and built at MPS in Germany, for GC-MS analysis. The gaseous species eluting from the GC are then ionized by an electron impact ionization source in the MS chamber and analyzed by the linear ion trap mass spectrometer. Volatile and non-volatile compounds were injected in the MOMA instrumental suite. Both of these compounds classes were detected by the TCD and by the MS. MS signal (total ion current) and single mass spectra by comparison with the NIST library, gave us an unambiguous confirmation of these identifications. The mass spectra arise from an average of 10 mass spectra averaged around a given time point in the total ion chromatogram.Based on commercial instrument, the MOMA requirement for sensitivity in the GC-MS mode for organic molecules is 1 pmol. In this test, sensitivity was determined for the GC TCD and MS response to a dilution series containing isopropanol, hexane and benzene deposited onto silica beads in the MOMA oven. Generally, the MS was found to be 5 to10 times more sensitive than the GC TCD for hexane and benzene respectively.

  1. Extraterrestrial organic matter: a review

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.

    1998-01-01

    We review the nature of the widespread organic material present in the Milky Way Galaxy and in the Solar System. Attention is given to the links between these environments and between primitive Solar System objects and the early Earth, indicating the preservation of organic material as an interstellar cloud collapsed to form the Solar System and as the Earth accreted such material from asteroids, comets and interplanetary dust particles. In the interstellar medium of the Milky Way Galaxy more than 100 molecular species, the bulk of them organic, have been securely identified, primarily through spectroscopy at the highest radio frequencies. There is considerable evidence for significantly heavier organic molecules, particularly polycyclic aromatics, although precise identification of individual species has not yet been obtained. The so-called diffuse interstellar bands are probably important in this context. The low temperature kinetics in interstellar clouds leads to very large isotopic fractionation, particularly for hydrogen, and this signature is present in organic components preserved in carbonaceous chondritic meteorites. Outer belt asteroids are the probable parent bodies of the carbonaceous chondrites, which may contain as much as 5% organic material, including a rich variety of amino acids, purines, pyrimidines, and other species of potential prebiotic interest. Richer in volatiles and hence less thermally processed are the comets, whose organic matter is abundant and poorly characterized. Cometary volatiles, observed after sublimation into the coma, include many species also present in the interstellar medium. There is evidence that most of the Earth's volatiles may have been supplied by a 'late' bombardment of comets and carbonaceous meteorites, scattered into the inner Solar System following the formation of the giant planets. How much in the way of intact organic molecules of potential prebiotic interest survived delivery to the Earth has become an increasingly debated topic over the last several years. The principal source for such intact organics was probably accretion of interplanetary dust particles of cometary origin.

  2. POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) AND OTHER SEMI-VOLATILE ORGANIC COMPOUNDS COLLECTED IN NEW YORK CITY IN RESPONSE TO THE EVENTS OF 9/11

    EPA Science Inventory

    Concentrations of over 60 non-polar semi-volatile and non-volatile organic compounds were measured in Lower Manhattan, New York using a high capacity Integrated Organic Gas and Particle Sampler, after the initial destruction of the World Trade Center. The results indicate that th...

  3. POLYCYLIC AROMATIC HYDROCARBONS (PAHS) AND OTHER SEMI-VOLATILE ORGANIC COMPOUNDS COLLECTED IN NEW YORK CITY IN RESPONSE TO THE EVENTS OF 9/11

    EPA Science Inventory

    Concentrations of over 60 non-polar semi-volatile and non-volatile organic compounds were measured in Lower Manhattan, New York using a high capacity Integrated Organic Gas an Particle Sampler, after the initial destruction of the World Trade Center. The results indicate that t...

  4. POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) AND OTHER SEMI-VOLATILE ORGANIC COMPOUNDS COLLECTED IN NEW YORK CITY IN RESPONSE TO THE EVENTS OF 9/11

    EPA Science Inventory

    Concentrations of over 60 non-polar semi-volatile and non-volatile organic compounds were measured in Lower Manhattan, New York using a high capacity Integrated Organic Gas and Particle Sampler, after the initial destruction of the World Trade Center. The results indicate that ...

  5. 78 FR 53029 - Air Quality: Revision to Definition of Volatile Organic Compounds-Exclusion of trans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ... Air Quality: Revision to Definition of Volatile Organic Compounds--Exclusion of trans 1-chloro-3,3,3.... SUMMARY: The EPA is taking final action to revise the regulatory definition of volatile organic compounds..., June 16, 2010), and as a solvent for metals, electronics, and precision cleaning and in adhesives...

  6. 40 CFR Table 4 to Subpart Uuuu of... - Requirements for Performance Tests

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 25A if: an exhaust gas volatile organic matter concentration of 50 ppmv or less is required in order to comply with the emission limit; the volatile organic matter concentration at the inlet to the control device and the required level of control are such as to result in exhaust volatile organic matter...

  7. 40 CFR Table 4 to Subpart Uuuu of... - Requirements for Performance Tests

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 25A if: an exhaust gas volatile organic matter concentration of 50 ppmv or less is required in order to comply with the emission limit; the volatile organic matter concentration at the inlet to the control device and the required level of control are such as to result in exhaust volatile organic matter...

  8. 40 CFR 63.4362 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... applicable, during each test run. (b) Measure the volatile organic matter concentration as carbon at the... limit, only the outlet volatile organic matter concentration must be determined. The outlet volatile organic matter concentration is determined as the average of the three test runs. (1) Use Method 25 if the...

  9. 40 CFR Table 4 to Subpart Uuuu of... - Requirements for Performance Tests

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 25A if: an exhaust gas volatile organic matter concentration of 50 ppmv or less is required in order to comply with the emission limit; the volatile organic matter concentration at the inlet to the control device and the required level of control are such as to result in exhaust volatile organic matter...

  10. 40 CFR 63.4362 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... applicable, during each test run. (b) Measure the volatile organic matter concentration as carbon at the... limit, only the outlet volatile organic matter concentration must be determined. The outlet volatile organic matter concentration is determined as the average of the three test runs. (1) Use Method 25 if the...

  11. 40 CFR Table 4 to Subpart Uuuu of... - Requirements for Performance Tests

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 25A if: an exhaust gas volatile organic matter concentration of 50 ppmv or less is required in order to comply with the emission limit; the volatile organic matter concentration at the inlet to the control device and the required level of control are such as to result in exhaust volatile organic matter...

  12. 40 CFR 63.4362 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... applicable, during each test run. (b) Measure the volatile organic matter concentration as carbon at the... limit, only the outlet volatile organic matter concentration must be determined. The outlet volatile organic matter concentration is determined as the average of the three test runs. (1) Use Method 25 if the...

  13. 40 CFR 63.4362 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... applicable, during each test run. (b) Measure the volatile organic matter concentration as carbon at the... limit, only the outlet volatile organic matter concentration must be determined. The outlet volatile organic matter concentration is determined as the average of the three test runs. (1) Use Method 25 if the...

  14. Air monitoring of volatile organic compounds at relevant receptors during hydraulic fracturing operations in Washington County, Pennsylvania.

    PubMed

    Maskrey, Joshua R; Insley, Allison L; Hynds, Erin S; Panko, Julie M

    2016-07-01

    A 3-month air monitoring study was conducted in Washington County, Pennsylvania, at the request of local community members regarding the potential risks resulting from air emissions of pollutants related to hydraulic fracturing operations. Continuous air monitoring for total volatile organic compounds was performed at two sampling sites, including a school and a residence, located within 900 m of a hydraulic fracturing well pad that had been drilled prior to the study. Intermittent 24-hour air samples for 62 individual volatile organic compounds were also collected. The ambient air at both sites was monitored during four distinct periods of unconventional natural gas extraction activity: an inactive period prior to fracturing operations, during fracturing operations, during flaring operations, and during another inactive period after operations. The results of the continuous monitoring during fracturing and flaring sampling periods for total volatile organic compounds were similar to the results obtained during inactive periods. Total volatile organic compound 24-hour average concentrations ranged between 0.16 and 80 ppb during all sampling periods. Several individual volatile compounds were detected in the 24-hour samples, but they were consistent with background atmospheric levels measured previously at nearby sampling sites and in other areas in Washington County. Furthermore, a basic yet conservative screening level evaluation demonstrated that the detected volatile organic compounds were well below health-protective levels. The primary finding of this study was that the operation of a hydraulic fracturing well pad in Washington County did not substantially affect local air concentrations of total and individual volatile organic compounds.

  15. Measurement of the temperature dependent partitioning of semi-volatile organics onto aerosol near roadways

    NASA Astrophysics Data System (ADS)

    Wentzell, J. J.; Liggio, J.; Li, S.; Brook, J.; Staebler, R. M.; Evans, G. J.; Jeong, C.; Sheppard, A.; Lu, G.; Gordon, M.; Mihele, C.

    2010-12-01

    The volatility of the organic aerosol fraction has received a great deal of attention recently in light of new volatility-based modelling approaches and due to the inability of current models to fully account for secondary organic aerosol (SOA). In this regard, evaporation of primary organic aerosol species and their subsequent oxidation may contribute significantly to SOA downwind of sources. This implies that moderate ambient temperature fluctuations can significantly increase or decrease the aerosol bound fraction of semi-volatile and intermediate volatility (SVOC + IVOC) compounds. In order to examine the importance of these more volatile organic components, a temperature controlled inlet was developed with the ability to heat and cool the aerosol in 2 C increments to 15 C above or below ambient temperature. The inlet was coupled to an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and deployed on a mobile platform upwind and downwind of a major Southern Ontario highway as part of the Fast Evolution of Vehicle Emissions near Roadways (FEVER 2010) campaign. Preliminary results suggest that changes in temperature of 5-10 C can alter the partitioning of volatile organic aerosol components by up to 30%. Although the largest affect was observed 10-13 meters downwind of the vehicle emissions, a measurable affect was observed beyond 500 m and in aerosol upwind of the highway. These results suggest that a significant pool of semi-volatile organics exist, which can condense onto particles at slightly lower temperatures or evaporate to the gas phase and be further oxidized. The nature of these organic species at locations upwind and downwind of vehicle emissions will be discussed.

  16. Performances of the Mars Organic Molecule Analyzer (MOMA) GC-MS suite aboard ExoMars Mission

    NASA Astrophysics Data System (ADS)

    Buch, A.; Grand, N.; Pinnick, V. T.; Szopa, C.; Humeau, O.; Danell, R.; van Amerom, F. H. W.; Freissinet, C.; Glavin, D. P.; Belmahdi, I.; Coll, P. J.; Lustrement, B.; Brinckerhoff, W. B.; Arevalo, R. D., Jr.; Stalport, F.; Steininger, H.; Goesmann, F.; Raulin, F.; Mahaffy, P. R.

    2014-12-01

    The Mars Organic Molecule Analyzer (MOMA) aboard the ExoMars rover (Pasteur) will be a key analytical tool in providing chemical (molecular) information from the solid samples collected by the rover, with a particular focus on the characterization of the organic content. Samples will be extracted as deep as 2 meters below the martian surface to minimize effects of radiation and oxidation on organic materials. The core of the MOMA instrument is a dual source UV laser desorption / ionization (LDI) and pyrolysis gas chromatography (pyr-GC) ion trap mass spectrometer (ITMS) which provides the unique capability to characterize a broad range of compounds, including both of volatile and non-volatile species. Samples which undergo GC-ITMS analysis may be submitted to a derivatization process, consisting of the reaction of the sample components with specific reactants (MTBSTFA [1], DMF-DMA [2] or TMAH [3]) which increase the volatility of complex organic species. With the goal to optimize this instrumentation, and especially the GC-ITMS coupling, a series of tests is currently being carried out with prototypes of MOMA instrumentation and with the ETU models wich is similar to the flight model. The MOMA oven and tapping station are also part of these end-to-end experiments. Qualitative and quantitative tests has been done on gas, liquid and solid samples. The results obtained demonstrate the current status of the end-to-end performance of the gas chromatography-mass spectrometry mode of operation. Both prototypes individually meet the performance requirements, but this work particularly demonstrates the capabilities of the critical GC-MS interface. References: [1] Buch, A. et al. (2009) J chrom. A, 43, 143-151. [2] Freissinet et al. (2011) J Chrom A, 1306, 59-71. [3] Geffroy-Rodier, C. et al. (2009) JAAP, 85, 454-459. Acknowledgements: Funding provided by the Mars Exploration Program (point of contact, George Tahu, NASA/HQ). MOMA is a collaboration between NASA and ESA (PI Goesmann, MPS). MOMA-GC team acknowledges support from the French Space Agency (CNES), French National Programme of Planetology (PNP), National French Council (CNRS), Pierre Simon Laplace Institute.

  17. Direct sampling of sub-µm atmospheric particulate organic matter in sub-ng m-3 mass concentrations by proton-transfer-reaction mass spectrometry

    NASA Astrophysics Data System (ADS)

    Armin, W.; Mueller, M.; Klinger, A.; Striednig, M.

    2017-12-01

    A quantitative characterization of the organic fraction of atmospheric particulate matter is still challenging. Herein we present the novel modular "Chemical Analysis of Aerosol Online" (CHARON) particle inlet system coupled to a new-generation proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF 6000 X2, Ionicon Analytik, Austria) that quantitatively detects organic analytes in real-time and sub-pptV levels by chemical ionization with hydronium reagent ions. CHARON consists of a gas-phase denuder for stripping off gas-phase analytes (efficiency > 99.999%), an aerodynamic lens for particle collimation combined with an inertial sampler for the particle-enriched flow and a thermodesorption unit for particle volatilization prior to chemical analysis. With typical particle enrichment factors of around 30 for particle diameters (DP) between 120 nm and 1000 nm (somewhat reduced enrichment for 60 nm < DP < 120 nm) we boost the already excellent limits of detection of the PTR-TOF 6000 X2 system to unprecedented levels. We demonstrate that particulate organic analytes of mass concentrations down to 100 pg m-3 can be detected on-line and in single-minute time-resolutions. In addition, PTR-MS allows for a quantitative detection of almost the full range of particulate organics of intermediate to low volatility. With the high mass resolution (R > 6000) and excellent mass accuracies (< 10 ppm) chemical compositions can be assigned and included in further analyses. In addition to a detailed characterization of the CHARON PTR-TOF 6000 X2 we will present first results on the chemical composition of sub-µm particulate organic matter in the urban atmosphere in Innsbruck (Austria).

  18. Stand-off detection of plant-produced volatile organic compounds using short-range Raman LIDAR

    NASA Astrophysics Data System (ADS)

    Johnson, Lewis; Barnett, Cleon; Brown, Christopher; Crawford, Devron; Tumlinson, James

    2004-03-01

    Several plant species release volatile organic compounds (VOCs) when under stresses such as herbivore feeding attack. The release of these plant-produced VOCs (i.e. terpenes) triggers the release of active biochemical defenses, which target the attacker. In some cases, the VOCs send cues to nearby carnivorous predators to attract them to the feeding herbivore. Volatile compounds are released both locally by damaged leaves and systemically by the rest of the plant. These compounds are released in large quantities, which facilitate detection of pests in the field by parasitoids. Detecting the plant"s VOC emissions as a function of various parameters (e.g. ambient temperature, atmospheric nitrogen levels, etc.) is essential to designing effective biological control systems. In addition these VOC releases may serve as early warning indicator of chemo-bio attacks. By combining Raman spectroscopy techniques with Laser Remote Sensing (LIDAR) systems, we are developing a Standoff detection system. Initial results indicate that is it possible to detect and differentiate between various terpenes, plant species, and other chemical compounds at distances greater than 12 meters. Currently, the system uses the 2nd harmonic of a Nd:YAG; however plans are underway to improve the Raman signal by moving the illumination wavelength into the solar-blind UV region. We report on our initial efforts of designing and characterizing this in a laboratory proof of concept system. We envision that this effort will lead to the design of a portable field-deployable system to rapidly characterize, with a high spatial resolution, large crops and other fields.

  19. Edible Oil Barriers for Treatment of Chlorinated Solvent Contaminated Groundwater

    DTIC Science & Technology

    2009-07-01

    CF Chloroform Cl# Chlorine Number CO Carbon Monoxide CT Carbon Tetrachloride CVOC Chlorinated Volatile Organic Compound 1,2-DCA 1,2...As Safe HCl Hydrochloric Acid HRC® Hydrogen Release Compound IDW Investigation-Derived Waste ISCO In Situ Chemical Oxidation LEL Lower...Total Organic Carbon VC Vinyl Chloride VFA Volatile Fatty Acid VOC Volatile Organic Compound ZVI Zero Valent Iron viii ACKNOWLEDGEMENTS

  20. The micro-environmental impact of volatile organic compound emissions from large-scale assemblies of people in a confined space

    USDA-ARS?s Scientific Manuscript database

    Large-scale assemblies of people in a con'ned space can exert signi'cant impacts on the local air chemistry due to human emissions of volatile organics. Variations of air-quality in such small scale can be studied by quantifying 'ngerprint volatile organic compounds (VOCs) such as acetone, toluene, ...

  1. Field guide for collecting samples for analysis of volatile organic compounds in stream water for the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Shelton, Larry R.

    1997-01-01

    For many years, stream samples for analysis of volatile organic compounds have been collected without specific guidelines or a sampler designed to avoid analyte loss. In 1996, the U.S. Geological Survey's National Water-Quality Assessment Program began aggressively monitoring urban stream-water for volatile organic compounds. To assure representative samples and consistency in collection procedures, a specific sampler was designed to collect samples for analysis of volatile organic compounds in stream water. This sampler, and the collection procedures, were tested in the laboratory and in the field for compound loss, contamination, sample reproducibility, and functional capabilities. This report describes that sampler and its use, and outlines field procedures specifically designed to provide contaminant-free, reproducible volatile organic compound data from stream-water samples. These guidelines and the equipment described represent a significant change in U.S. Geological Survey instructions for collecting and processing stream-water samples for analysis of volatile organic compounds. They are intended to produce data that are both defensible and interpretable, particularly for concentrations below the microgram-per-liter level. The guidelines also contain detailed recommendations for quality-control samples.

  2. Acclimation to Chronic O3 in Field-grown Soybean is Characterized by Increased Levels of TCA Cycle Transcripts and ROS Scavenging Compounds in Addition to Decreased Photosynthetic Capacity

    USDA-ARS?s Scientific Manuscript database

    Tropospheric ozone (O3) is a pollutant that is generated by volatile organic compounds, nitrogen oxides and sunlight. When plants take in O3 through stomata, harmful reactive oxygen species (ROS) are produced that induce the production of ROS scavenging antioxidants. Climate change predictions indic...

  3. Proton-transfer-reaction mass spectrometry for the study of the production of volatile compounds by bakery yeast starters.

    PubMed

    Makhoul, Salim; Romano, Andrea; Cappellin, Luca; Spano, Giuseppe; Capozzi, Vittorio; Benozzi, Elisabetta; Märk, Tilmann D; Aprea, Eugenio; Gasperi, Flavia; El-Nakat, Hanna; Guzzo, Jean; Biasioli, Franco

    2014-09-01

    The aromatic impact of bakery yeast starters is currently receiving considerable attention. The flavor characteristics of the dough and the finished products are usually evaluated by gas chromatography and sensory analysis. The limit of both techniques resides in their low-throughput character. In the present work, proton-transfer-reaction mass spectrometry (PTR-MS), coupled to a time-of-flight mass analyzer, was employed, for the first time, to measure the volatile fractions of dough and bread, and to monitor Saccharomyces cerevisiae volatile production in a fermented food matrix. Leavening was performed on small-scale (1 g) dough samples inoculated with different commercial yeast strains. The leavened doughs were then baked, and volatile profiles were determined during leavening and after baking. The experimental setup included a multifunctional autosampler, which permitted the follow-up of the leavening process on a small scale with a typical throughput of 500 distinct data points in 16 h. The system allowed to pinpoint differences between starter yeast strains in terms of volatile emission kinetics, with repercussions on the final product (i.e. the corresponding micro-loaves). This work demonstrates the applicability of PTR-MS for the study of volatile organic compound production during bread-making, for the automated and online real-time monitoring of the leavening process, and for the characterization and selection of bakery yeast starters in view of their production of volatile compounds. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Plant leaf traits, canopy processes, and global atmospheric chemistry interactions.

    NASA Astrophysics Data System (ADS)

    Guenther, A. B.

    2017-12-01

    Plants produce and emit a diverse array of volatile metabolites into the atmosphere that participate in chemical reactions that influence distributions of air pollutants and short-lived climate forcers including organic aerosol, ozone and methane. It is now widely accepted that accurate estimates of these emissions are required as inputs for regional air quality and global climate models. Predicting these emissions is complicated by the large number of volatile organic compounds, driving variables (e.g., temperature, solar radiation, abiotic and biotic stresses) and processes operating across a range of scales. Modeling efforts to characterize emission magnitude and variations will be described along with an assessment of the observations available for parameterizing and evaluating these models including discussion of the limitations and challenges associated with existing model approaches. A new approach for simulating canopy scale organic emissions on regional to global scales will be described and compared with leaf, canopy and regional scale flux measurements. The importance of including additional compounds and processes as well as improving estimates of existing ones will also be discussed.

  5. Characterization of volatile compounds produced by Lactobacillus helveticus strains in a hard cheese model.

    PubMed

    Cuffia, Facundo; Bergamini, Carina V; Wolf, Irma V; Hynes, Erica R; Perotti, María C

    2018-01-01

    Starter cultures of Lactobacillus helveticus used in hard cooked cheeses play an important role in flavor development. In this work, we studied the capacity of three strains of L. helveticus, two autochthonous (Lh138 and Lh209) and one commercial (LhB02), to grow and to produce volatile compounds in a hard cheese extract. Bacterial counts, pH, profiles of organic acids, carbohydrates, and volatile compounds were analyzed during incubation of extracts for 14 days at 37 ℃. Lactobacilli populations were maintained at 10 6 CFU ml -1 for Lh138, while decreases of approx. 2 log orders were found for LhB02 and Lh209. Both Lh209 and LhB02 slightly increased the acetic acid content whereas mild increase in lactic acid was produced by Lh138. The patterns of volatiles were dependent on the strain which reflect their distinct enzymatic machineries: LhB02 and Lh209 produced a greater diversity of compounds, while Lh138 was the least producer strain. Extracts inoculated with LhB02 and Lh 209 were characterized by ketones, esters, alcohols, aldehydes, and acids, whereas in the extracts with Lh138 the main compounds belonged to aromatic, aldehydes, and ketones groups. Therefore, Lh209 and LhB02 could represent the best cheese starters to improve and intensify the flavor, and even a starter composed by combinations of LhB02 or Lh209 with Lh138 could also be a strategy to diversify cheese flavor.

  6. A customized metal oxide semiconductor-based gas sensor array for onion quality evaluation: system development and characterization.

    PubMed

    Konduru, Tharun; Rains, Glen C; Li, Changying

    2015-01-12

    A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS) sensors that are sensitive to a wide range of organic volatile compounds was developed to detect rotten onions during storage. These MOS sensors were enclosed in a specially designed Teflon chamber equipped with a gas delivery system to pump volatiles from the onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, non-volatile memory chip, and trickle-charge real time clock chip, serial communication chip, and parallel LCD panel. User preferences are communicated with the on-board microcontroller through a graphical user interface developed using LabVIEW. The developed gas sensor array was characterized and the discrimination potential was tested by exposing it to three different concentrations of acetone (ketone), acetonitrile (nitrile), ethyl acetate (ester), and ethanol (alcohol). The gas sensor array could differentiate the four chemicals of same concentrations and different concentrations within the chemical with significant difference. Experiment results also showed that the system was able to discriminate two concentrations (196 and 1964 ppm) of methlypropyl sulfide and two concentrations (145 and 1452 ppm) of 2-nonanone, two key volatile compounds emitted by rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct classification of sour skin infected onions. The customized low-cost gas sensor array could be a useful tool to detect onion postharvest diseases in storage.

  7. A Customized Metal Oxide Semiconductor-Based Gas Sensor Array for Onion Quality Evaluation: System Development and Characterization

    PubMed Central

    Konduru, Tharun; Rains, Glen C.; Li, Changying

    2015-01-01

    A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS) sensors that are sensitive to a wide range of organic volatile compounds was developed to detect rotten onions during storage. These MOS sensors were enclosed in a specially designed Teflon chamber equipped with a gas delivery system to pump volatiles from the onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, non-volatile memory chip, and trickle-charge real time clock chip, serial communication chip, and parallel LCD panel. User preferences are communicated with the on-board microcontroller through a graphical user interface developed using LabVIEW. The developed gas sensor array was characterized and the discrimination potential was tested by exposing it to three different concentrations of acetone (ketone), acetonitrile (nitrile), ethyl acetate (ester), and ethanol (alcohol). The gas sensor array could differentiate the four chemicals of same concentrations and different concentrations within the chemical with significant difference. Experiment results also showed that the system was able to discriminate two concentrations (196 and 1964 ppm) of methlypropyl sulfide and two concentrations (145 and 1452 ppm) of 2-nonanone, two key volatile compounds emitted by rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct classification of sour skin infected onions. The customized low-cost gas sensor array could be a useful tool to detect onion postharvest diseases in storage. PMID:25587975

  8. Effect of inorganic salts on the volatility of organic acids.

    PubMed

    Häkkinen, Silja A K; McNeill, V Faye; Riipinen, Ilona

    2014-12-02

    Particulate phase reactions between organic and inorganic compounds may significantly alter aerosol chemical properties, for example, by suppressing particle volatility. Here, chemical processing upon drying of aerosols comprised of organic (acetic, oxalic, succinic, or citric) acid/monovalent inorganic salt mixtures was assessed by measuring the evaporation of the organic acid molecules from the mixture using a novel approach combining a chemical ionization mass spectrometer coupled with a heated flow tube inlet (TPD-CIMS) with kinetic model calculations. For reference, the volatility, i.e. saturation vapor pressure and vaporization enthalpy, of the pure succinic and oxalic acids was also determined and found to be in agreement with previous literature. Comparison between the kinetic model and experimental data suggests significant particle phase processing forming low-volatility material such as organic salts. The results were similar for both ammonium sulfate and sodium chloride mixtures, and relatively more processing was observed with low initial aerosol organic molar fractions. The magnitude of low-volatility organic material formation at an atmospherically relevant pH range indicates that the observed phenomenon is not only significant in laboratory conditions but is also of direct atmospheric relevance.

  9. Molecular characterization of polar organosulfates in secondary organic aerosol from the green leaf volatile 3-Z-hexenal

    NASA Astrophysics Data System (ADS)

    Safi Shalamzari, Mohammad; Kahnt, Ariane; Wang, Wu; Vermeylen, Reinhilde; Kleindienst, Tadeusz; Lewandovski, Michael; Maenhaut, Willy; Claeys, Magda

    2014-05-01

    Much information is available about secondary organic aerosol (SOA) formation from terpenes, including mono- and sesquiterpenes, and isoprene. However, information about SOA formation from green leaf volatiles (GLVs), an important class of biogenic volatile organic compounds, which are emitted when plants are wounded or attacked by insects, is very scarce. In the present study, we provide evidence that 3-Z-hexenal is a potential precursor for SOA through formation of organosulfates. Organosulfate formation from 3-Z-hexenal was studied by conducting smog chamber photooxidation experiments in the presence of NO and acidic ammonium seed aerosol, where OH radicals were generated from the NOx mediated photochemical chain reactions. The focus of the study was on the structural characterization of products, i.e., organosulfates (OSs) with a molecular weight (MW) of 226, which are also present in ambient fine aerosol from a forested site (K puszta, Hungary) at a substantial relative abundance that is comparable to that of the MW 216 isoprene-related OSs. Polar OSs are of climatic relevance because of their capacity to increase the hydrophilic properties of aerosols and as such their cloud-condensation nuclei effects. Two different liquid chromatography (LC) techniques were employed to separate the polar OSs: the first technique uses a reversed-phase trifunctionally bonded C18 stationary phase, whereas the second one is based on ion-pairing C18 LC using dibutylammonium acetate as ion-pairing reagent. With regard to mass spectrometry (MS) techniques, use was made of high-resolution MS to determine the accurate mass (measured mass, 225.00809; elemental composition, C6H9O7S) as well as linear ion trap MS to obtain detailed structural information. The MW 226 OSs were structurally characterized as sulfated derivatives of 3,4-dihydroxyhex-2-enoic acid with the sulfate group positioned at C-3 or C-4. The formation of these OSs is explained through photooxidation in the gas phase resulting in a hydroperoxide, followed by acid-catalyzed rearrangement into an epoxyhydroxide and subsequent sulfation of the epoxy group in the particle phase. This work was supported by the Belgian Federal Science Policy Office through the network project "Biogenic Influence on Oxidants and Secondary Organic Aerosol: theoretical, laboratory and modeling investigations (BIOSOA)" and the Research Foundation - Flanders (FWO).

  10. Inkjet-printing of non-volatile organic resistive devices and crossbar array structures

    NASA Astrophysics Data System (ADS)

    Sax, Stefan; Nau, Sebastian; Popovic, Karl; Bluemel, Alexander; Klug, Andreas; List-Kratochvil, Emil J. W.

    2015-09-01

    Due to the increasing demand for storage capacity in various electronic gadgets like mobile phones or tablets, new types of non-volatile memory devices have gained a lot of attention over the last few years. Especially multilevel conductance switching elements based on organic semiconductors are of great interest due to their relatively simple device architecture and their small feature size. Since organic semiconductors combine the electronic properties of inorganic materials with the mechanical characteristics of polymers, this class of materials is suitable for solution based large area device preparation techniques. Consequently, inkjet based deposition techniques are highly capable of facing preparation related challenges. By gradually replacing the evaporated electrodes with inkjet printed silver, the preparation related influence onto device performance parameters such as the ON/OFF ratio was investigated with IV measurements and high resolution transmission electron microscopy. Due to the electrode surface roughness the solvent load during the printing of the top electrode as well as organic layer inhomogeneity's the utilization in array applications is hampered. As a prototypical example a 1diode-1resistor element and a 2×2 subarray from 5×5 array matrix were fully characterized demonstrating the versatility of inkjet printing for device preparation.

  11. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review

    PubMed Central

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; Hu, Suyun; Gasaway, Carley; Tao, Xiaowan

    2015-01-01

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advanced understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems. PMID:26694380

  12. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences--A Review.

    PubMed

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; Hu, Suyun; Gasaway, Carley; Tao, Xiaowan

    2015-12-18

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advanced understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems.

  13. Aging of organochlorine pesticides and polychlorinated biphenyls in muck soil: volatilization, bioaccessibility, and degradation.

    PubMed

    Wong, Fiona; Bidleman, Terry F

    2011-02-01

    An organic rich muck soil which is highly contaminated with native organochlorine pesticide (OCs) was spiked with known amounts of (13)C-labeled OCs and nonlabeled polychlorinated biphenyls (PCBs). Spiked soils were aged under indoor, outdoor, and sterile conditions and the change in volatility, surrogate bioaccessibility, and degradation of chemicals was monitored periodically over 730 d. Volatility was measured using a fugacity meter to characterize the soil-air partition coefficient (K(SA) = C(SOIL)/C(AIR)). The fraction of bioaccessible residues was estimated by comparing recoveries of chemical with a mild extractant, hydroxylpropyl-β-cyclodextrin (HPCD) vs a harsh extractant, DCM. K(SA) of the spiked OCs in the nonsterile (Indoor, Outdoor) soils were initially lower and approached the K(SA) of native OCs over time, showing reduction of volatility upon aging. HPCD extractability of spiked OCs and PCBs were negatively correlated with K(SA), which suggests that volatility can be used as a surrogate for bioaccessibility. Degradation of endosulfans, PCB 8 and 28 was observed in the nonsterile soils, and (13)C(6)-α-HCH showed selective degradation of the (+) enantiomer. Enantiomer fractions (EF) in air and HPCD extracts were lower than in nonsterile soils, suggesting greater sequestering of the (+) enantiomer in the soil during microbial degradation.

  14. Constraining a hybrid volatility basis-set model for aging of wood-burning emissions using smog chamber experiments: a box-model study based on the VBS scheme of the CAMx model (v5.40)

    NASA Astrophysics Data System (ADS)

    Ciarelli, Giancarlo; El Haddad, Imad; Bruns, Emily; Aksoyoglu, Sebnem; Möhler, Ottmar; Baltensperger, Urs; Prévôt, André S. H.

    2017-06-01

    In this study, novel wood combustion aging experiments performed at different temperatures (263 and 288 K) in a ˜ 7 m3 smog chamber were modelled using a hybrid volatility basis set (VBS) box model, representing the emission partitioning and their oxidation against OH. We combine aerosol-chemistry box-model simulations with unprecedented measurements of non-traditional volatile organic compounds (NTVOCs) from a high-resolution proton transfer reaction mass spectrometer (PTR-MS) and with organic aerosol measurements from an aerosol mass spectrometer (AMS). Due to this, we are able to observationally constrain the amounts of different NTVOC aerosol precursors (in the model) relative to low volatility and semi-volatile primary organic material (OMsv), which is partitioned based on current published volatility distribution data. By comparing the NTVOC / OMsv ratios at different temperatures, we determine the enthalpies of vaporization of primary biomass-burning organic aerosols. Further, the developed model allows for evaluating the evolution of oxidation products of the semi-volatile and volatile precursors with aging. More than 30 000 box-model simulations were performed to retrieve the combination of parameters that best fit the observed organic aerosol mass and O : C ratios. The parameters investigated include the NTVOC reaction rates and yields as well as enthalpies of vaporization and the O : C of secondary organic aerosol surrogates. Our results suggest an average ratio of NTVOCs to the sum of non-volatile and semi-volatile organic compounds of ˜ 4.75. The mass yields of these compounds determined for a wide range of atmospherically relevant temperatures and organic aerosol (OA) concentrations were predicted to vary between 8 and 30 % after 5 h of continuous aging. Based on the reaction scheme used, reaction rates of the NTVOC mixture range from 3.0 × 10-11 to 4. 0 × 10-11 cm3 molec-1 s-1. The average enthalpy of vaporization of secondary organic aerosol (SOA) surrogates was determined to be between 55 000 and 35 000 J mol-1, which implies a yield increase of 0.03-0.06 % K-1 with decreasing temperature. The improved VBS scheme is suitable for implementation into chemical transport models to predict the burden and oxidation state of primary and secondary biomass-burning aerosols.

  15. Research by the U.S. Geological Survey on organic materials in water

    USGS Publications Warehouse

    Baker, Robert Andrew

    1976-01-01

    The U.S. Geological Survey has responsibility for investigating the Nation's water resources for source, availability, quantity, and quality. This paper describes the Geological Survey's research on organic substances in water and fluvial sediments. Results and ongoing studies are examined. Typical research includes: Separation, concentration, and chromatographic identification of volatile acids; free-flow electrophoresis fractionation of natural organic materials; identification of chlorinated insecticides in suspended sediments and bottom materials; fate of organics following underground disposal; determination of humic and fulvic acid stability constants and characterizations; identification of low-molecular weight chloroorganic constituents in water; PCB (polychlorinated biphenyl compound) distribution in aquatic environments; dissolved organic carbon in ground water; and improvement in separation and concentration schemes prior to analyses.

  16. Current understandings and perspectives on non-cancer health effects of benzene: A global concern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahadar, Haji; Pharmaceutical Sciences Research Center and Faculty of Pharmacy, Tehran University of Medical Sciences; Mostafalou, Sara

    Objective: Benzene, as a volatile organic compound, is known as one of the main air pollutants in the environment. The aim of this review is to summarize all available evidences on non-cancerous health effects of benzene providing an overview of possible association of exposure to benzene with human chronic diseases, specially, in those regions of the world where benzene concentration is being poorly monitored. Methodology: A bibliographic search of scientific databases including PubMed, Google Scholar, and Scirus was conducted with key words of “benzene toxic health effects”, “environmental volatile organic compounds”, “diabetes mellitus and environmental pollutants”, “breast cancer and environmentalmore » pollution”, “prevalence of lung cancer”, and “diabetes prevalence”. More than 300 peer reviewed papers were examined. Experimental and epidemiologic studies reporting health effects of benzene and volatile organic compounds were included in the study. Results: Epidemiologic and experimental studies suggest that benzene exposure can lead to numerous non-cancerous health effects associated with functional aberration of vital systems in the body like reproductive, immune, nervous, endocrine, cardiovascular, and respiratory. Conclusion: Chronic diseases have become a health burden of global dimension with special emphasis in regions with poor monitoring over contents of benzene in petrochemicals. Benzene is a well known carcinogen of blood and its components, but the concern of benzene exposure is more than carcinogenicity of blood components and should be evaluated in both epidemiologic and experimental studies. Aspect of interactions and mechanism of toxicity in relation to human general health problems especially endocrine disturbances with particular reference to diabetes, breast and lung cancers should be followed up. - Highlights: • Benzene is a volatile organic compound and established blood carcinogen. • Exposure to benzene needs to be evaluated in related chronic diseases. • Cigarette smoke is the main source for indoor benzene exposure. • Health outcomes associated with air pollutants are poorly characterized due to lack of comprehensive monitoring system.« less

  17. 40 CFR 59.505 - How do I demonstrate compliance with the reactivity limits?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND... Volatile Organic Compounds (VOC) in Consumer Products and Reactive Organic Compounds in Aerosol Coating...

  18. Emissions from Produced Water Treatment Ponds, Uintah Basin, Utah, USA

    NASA Astrophysics Data System (ADS)

    Mansfield, M. L.; Lyman, S. N.; Tran, H.; O'Neil, T.; Anderson, R.

    2015-12-01

    An aqueous phase, known as "produced water," usually accompanies the hydrocarbon fluid phases that are extracted from Earth's crust during oil and natural gas extraction. Produced water contains dissolved and suspended organics and other contaminants and hence cannot be discharged directly into the hydrosphere. One common disposal method is to discharge produced water into open-pit evaporation ponds. Spent hydraulic fracturing fluids are also often discharged into the same ponds. It is obvious to anyone with a healthy olfactory system that such ponds emit volatile organics to the atmosphere, but very little work has been done to characterize such emissions. Because oil, gas, and water phases are often in contact in geologic formations, we can expect that more highly soluble compounds (e.g., salts, alcohols, carbonyls, carboxyls, BTEX, etc.) partition preferentially into produced water. However, as the water in the ponds age, many physical, chemical, and biological processes alter the composition of the water, and therefore the composition and strength of volatile organic emissions. For example, some ponds are aerated to hasten evaporation, which also promotes oxidation of organics dissolved in the water. Some ponds are treated with microbes to promote bio-oxidation. In other words, emissions from ponds are expected to be a complex function of the composition of the water as it first enters the pond, and also of the age of the water and of its treatment history. We have conducted many measurements of emissions from produced water ponds in the Uintah Basin of eastern Utah, both by flux chamber and by evacuated canister sampling with inverse modeling. These measurements include fluxes of CO2, CH4, methanol, and many other volatile organic gases. We have also measured chemical compositions and microbial content of water in the ponds. Results of these measurements will be reported.

  19. Diel variation in fig volatiles across syconium development: making sense of scents.

    PubMed

    Borges, Renee M; Bessière, Jean-Marie; Ranganathan, Yuvaraj

    2013-05-01

    Plants produce volatile organic compounds (VOCs) in a variety of contexts that include response to abiotic and biotic stresses, attraction of pollinators and parasitoids, and repulsion of herbivores. Some of these VOCs may also exhibit diel variation in emission. In Ficus racemosa, we examined variation in VOCs released by fig syconia throughout syconium development and between day and night. Syconia are globular enclosed inflorescences that serve as developing nurseries for pollinating and parasitic fig wasps. Syconia are attacked by gallers early in their development, serviced by pollinators in mid phase, and are attractive to parasitoids in response to the development of gallers at later stages. VOC bouquets of the different development phases of the syconium were distinctive, as were their day and night VOC profiles. VOCs such as α-muurolene were characteristic of the pollen-receptive diurnal phase, and may serve to attract the diurnally-active pollinating wasps. Diel patterns of release of volatiles could not be correlated with their predicted volatility as determined by Henry's law constants at ambient temperatures. Therefore, factors other than Henry's law constant such as stomatal conductance or VOC synthesis must explain diel variation in VOC emission. A novel use of weighted gene co-expression network analysis (WGCNA) on the volatilome resulted in seven distinct modules of co-emitted VOCs that could be interpreted on the basis of syconium ecology. Some modules were characterized by the response of fig syconia to early galling by parasitic wasps and consisted largely of green leaf volatiles (GLVs). Other modules, that could be characterized by a combination of syconia response to oviposition and tissue feeding by larvae of herbivorous galler pollinators as well as of parasitized wasps, consisted largely of putative herbivore-induced plant volatiles (HIPVs). We demonstrated the usefulness of WGCNA analysis of the volatilome in making sense of the scents produced by the syconia at different stages and diel phases of their development.

  20. Catalyst for Oxidation of Volatile Organic Compounds

    NASA Technical Reports Server (NTRS)

    Wood, George M. (Inventor); Upchurch, Billy T. (Inventor); Schryer, David R. (Inventor); Davis, Patricia P. (Inventor); Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); Schyryer, Jacqueline L. (Inventor); DAmbrosia, Christine M. (Inventor)

    2000-01-01

    Disclosed is a process for oxidizing volatile organic compounds to carbon dioxide and water with the minimal addition of energy. A mixture of the volatile organic compound and an oxidizing agent (e.g. ambient air containing the volatile organic compound) is exposed to a catalyst which includes a noble metal dispersed on a metal oxide which possesses more than one oxidation state. Especially good results are obtained when the noble metal is platinum, and the metal oxide which possesses more than one oxidation state is tin oxide. A promoter (i.e., a small amount of an oxide of a transition series metal) may be used in association with the tin oxide to provide very beneficial results.

  1. Measurements of Size Resolved Organic Particulate Mass Using An On-line Aerosol Mass Spectrometer (ams) Laboratory Validation; Analysis Tool Development; and Interpretation of Field Data

    NASA Astrophysics Data System (ADS)

    Alfarra, M. R.; Coe, H.; Allan, J. D.; Bower, K. N.; Garforth, A. A.; Canagaratna, M.; Worsnop, D.

    The aerosol mass spectrometer (AMS) is a quantitative instrument designed to deliver real-time size resolved chemical composition of the volatile and semi volatile aerosol fractions. The AMS response to a wide range of organic compounds has been exper- imentally characterized, and has been shown to compare well with standard libraries of 70 eV electron impact ionization mass spectra. These results will be presented. Due to the scanning nature of the quadrupole mass spectrometer, the AMS provides averaged composition of ensemble of particles rather than single particle composi- tion. However, the mass spectra measured by AMS are reproducible and similar to those of standard libraries so analysis tools can be developed on large mass spectral libraries that can provide chemical composition information about the type of organic compounds in the aerosol. One such tool is presented and compared with laboratory measurements of single species and mixed component organic particles by the AMS. We will then discuss the applicability of these tools to interpreting field AMS data ob- tained in a range of experiments at different sites in the UK and Canada. The data will be combined with other measurements to show the behaviour of the organic aerosol fraction in urban and sub-urban environments.

  2. Studies of volatiles and organic materials in early terrestrial and present-day outer solar system environments

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Thompson, W. Reid; Chyba, Christopher F.; Khare, B. N.

    1991-01-01

    A review and partial summary of projects within several areas of research generally involving the origin, distribution, chemistry, and spectral/dielectric properties of volatiles and organic materials in the outer solar system and early terrestrial environments are presented. The major topics covered include: (1) impact delivery of volatiles and organic compounds to the early terrestrial planets; (2) optical constants measurements; (3) spectral classification, chemical processes, and distribution of materials; and (4) radar properties of ice, hydrocarbons, and organic heteropolymers.

  3. Temperature Effects on Secondary Organic Aerosol (SOA) from the Dark Ozonolysis and Photo-Oxidation of Isoprene.

    PubMed

    Clark, Christopher H; Kacarab, Mary; Nakao, Shunsuke; Asa-Awuku, Akua; Sato, Kei; Cocker, David R

    2016-06-07

    Isoprene is globally the most ubiquitous nonmethane hydrocarbon. The biogenic emission is found in abundance and has a propensity for SOA formation in diverse climates. It is important to characterize isoprene SOA formation with varying reaction temperature. In this work, the effect of temperature on SOA formation, physical properties, and chemical nature is probed. Three experimental systems are probed for temperature effects on SOA formation from isoprene, NO + H2O2 photo-oxidation, H2O2 only photo-oxidation, and dark ozonolysis. These experiments show that isoprene readily forms SOA in unseeded chamber experiments, even during dark ozonolysis, and also reveal that temperature affects SOA yield, volatility, and density formed from isoprene. As temperature increases SOA yield is shown to generally decrease, particle density is shown to be stable (or increase slightly), and formed SOA is shown to be less volatile. Chemical characterization is shown to have a complex trend with both temperature and oxidant, but extensive chemical speciation are provided.

  4. Volatile organic compound emissions from engineered wood products

    Treesearch

    Steve Zylkowski; Charles Frihart

    2017-01-01

    Thirteen bonded engineered wood products representing those commonly used in building construction were evaluated for volatile organic chemicals using methods developed for interior bonded wood products. Although formaldehyde and acetaldehyde were emitted from all samples, they were not the dominant volatiles, which greatly depended on wood species and bonding...

  5. Analysis of Volatile Organic Compounds Emitted by Plant Growth-Promoting Fungus Phoma sp. GS8-3 for Growth Promotion Effects on Tobacco

    PubMed Central

    Naznin, Hushna Ara; Kimura, Minako; Miyazawa, Mitsuo; Hyakumachi, Mitsuro

    2013-01-01

    We extracted volatile organic compounds (VOCs) emitted by a plant growth-promoting fungus (PGPF) Phoma sp. GS8-3 by gas chromatography and identified them by mass spectrometry. All of the identified compounds belonged to C4-C8 hydrocarbons. Volatiles varied in number and quantity by the culture period of the fungus (in days). 2-Methyl-propanol and 3-methyl-butanol formed the main components of the volatile blends for all the culture periods of fungus. Growth-promoting effects of the identified synthetic compounds were analyzed individually and in blends using tobacco plants. We found that the mixture of volatiles extracted from 3-day-old culture showed significant growth promotion in tobacco in vitro. The volatile blend showed better growth promotion at lower than higher concentrations. Our results confirm the potential role of volatile organic compounds in the mechanism of growth enhancement by GS8-3. PMID:23080408

  6. Determination of volatile organic acids in oriental tobacco by needle-based derivatization headspace liquid-phase microextraction coupled to gas chromatography/mass spectrometry.

    PubMed

    Sun, Shi-Hao; Xie, Jian-Ping; Xie, Fu-Wei; Zong, Yong-Li

    2008-02-01

    A method coupling needle-based derivatization headspace liquid-phase microextraction with gas chromatography-mass spectrometry (HS-LPME/GC-MS) was developed to determine volatile organic acids in tobacco. The mixture of N,O-bis(trimethylsilyl)trifluoroacetamide and decane was utilized as the solvent for HS-LPME, resulting that extraction and derivatization were simultaneously completed in one step. The solvent served two purposes. First, it pre-concentrated volatile organic acids in the headspace of tobacco sample. Second, the volatile organic acids extracted were derivatized to form silyl derivatives in the drop. The main parameters affecting needle-based derivatization HS-LPME procedure such as extraction and derivatization reagent, microdrop volume, extraction and derivatization time, and preheating temperature and preheating time were optimized. The standard addition approach was essential to obtain accurate measurements by minimizing matrix effects. Good linearity (R(2)> or =0.9804) and good repeatability (RSDs< or =15.3%, n=5) for 16 analytes in spiked standard analytes sample were achieved. The method has the additional advantages that at the same time it is simple, fast, effective, sensitive, selective, and provides an overall profile of volatile organic acids in the oriental tobacco. This paper does offer an alternative approach to determine volatile organic acids in tobacco.

  7. Fungal colonization of air filters and insulation in a multi-story office building: production of volatile organics

    NASA Technical Reports Server (NTRS)

    Ahearn, D. G.; Crow, S. A.; Simmons, R. B.; Price, D. L.; Mishra, S. K.; Pierson, D. L.

    1997-01-01

    Secondary air filters in the air-handling units on four floors of a multi-story office building with a history of fungal colonization of insulation within the air distribution system were examined for the presence of growing fungi and production of volatile organic compounds. Fungal mycelium and conidia of Cladosporium and Penicillium spp. were observed on insulation from all floors and both sides of the air filters from one floor. Lower concentrations of volatile organics were released from air filter medium colonized with fungi as compared with noncolonized filter medium. However, the volatiles from the colonized filter medium included fungal metabolites such as acetone and a carbonyl sulfide-like compound that were not released from noncolonized filter medium. The growth of fungi in air distribution systems may affect the content of volatile organics in indoor air.

  8. Fungal colonization of air filters and insulation in a multi-story office building: production of volatile organics.

    PubMed

    Ahearn, D G; Crow, S A; Simmons, R B; Price, D L; Mishra, S K; Pierson, D L

    1997-11-01

    Secondary air filters in the air-handling units on four floors of a multi-story office building with a history of fungal colonization of insulation within the air distribution system were examined for the presence of growing fungi and production of volatile organic compounds. Fungal mycelium and conidia of Cladosporium and Penicillium spp. were observed on insulation from all floors and both sides of the air filters from one floor. Lower concentrations of volatile organics were released from air filter medium colonized with fungi as compared with noncolonized filter medium. However, the volatiles from the colonized filter medium included fungal metabolites such as acetone and a carbonyl sulfide-like compound that were not released from noncolonized filter medium. The growth of fungi in air distribution systems may affect the content of volatile organics in indoor air.

  9. Atmospheric PM and volatile organic compounds released from Mediterranean shrubland wildfires

    NASA Astrophysics Data System (ADS)

    Garcia-Hurtado, Elisa; Pey, Jorge; Borrás, Esther; Sánchez, Pilar; Vera, Teresa; Carratalá, Adoración; Alastuey, Andrés; Querol, Xavier; Vallejo, V. Ramon

    2014-06-01

    Wildfires produce a significant release of gases and particles affecting climate and air quality. In the Mediterranean region, shrublands significantly contribute to burned areas and may show specific emission profiles. Our objective was to depict and quantify the primary-derived aerosols and precursors of secondary particulate species released during shrubland experimental fires, in which fire-line intensity values were equivalent to those of moderate shrubland wildfires, by using a number of different methodologies for the characterization of organic and inorganic compounds in both gas-phase and particulate-phase. Emissions of PM mass, particle number concentrations and organic and inorganic PMx components during flaming and smouldering phases were characterized in a field shrubland fire experiment. Our results revealed a clear prevalence of K+ and SO42- as inorganic ions released during the flaming-smouldering processes, accounting for 68-80% of the inorganic soluble fraction. During the residual-smouldering phases, in addition to K+ and SO42-, Ca2+ was found in significant amounts probably due the predominance of re-suspension processes (ashes and soil dust) over other emission sources during this stage. Concerning organic markers, the chromatograms were dominated by phenols, n-alkanals and n-alkanones, as well as by alcohol biomarkers in all the PMx fractions investigated. Levoglucosan was the most abundant degradation compound with maximum emission factors between 182 and 261 mg kg-1 in PM2.5 and PM10 respectively. However, levoglucosan was also observed in significant amounts in the gas-phase. The most representative organic volatile constituents in the smoke samples were alcohols, carbonyls, acids, monocyclic and bicyclic arenes, isoprenoids and alkanes compounds. The emission factors obtained in this study may contribute to the validation and improvement of national and international emission inventories of this intricate and diffuse emission source.

  10. Infrared Spectroscopy of Wild 2 Particle Hypervelocity Tracks in Stardust Aerogel: Evidence for the presence of Volatile Organics in Comet Dust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajt, S; Sandford, S A; Flynn, G J

    2007-08-28

    Infrared spectroscopy maps of some tracks, made by cometary dust from 81P/Wild 2 impacting Stardust aerogel, reveal an interesting distribution of volatile organic material. Out of six examined tracks three show presence of volatile organic components possibly injected into the aerogel during particle impacts. When particle tracks contained excess volatile organic material, they were found to be -CH{sub 2}-rich. Off-normal particle tracks could indicate impacts by lower velocity particles that could have bounced off the Whipple shield, therefore carry off some contamination from it. However, this theory is not supported by data that show excess organic-rich material in normal andmore » off-normal particle tracks. It is clear that the population of cometary particles impacting the Stardust aerogel collectors also include grains that contained little or none of this volatile organic component. This observation is consistent with the highly heterogeneous nature of the collected grains, as seen by a multitude of other analytical techniques. We propose that at least some of the volatile organic material might be of cometary origin based on supporting data shown in this paper. However, we also acknowledge the presence of carbon (primarily as -CH{sub 3}) in the original aerogel, which complicates interpretation of these results.« less

  11. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    DOE PAGES

    Yu, L.; Smith, J.; Laskin, A.; ...

    2014-12-23

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol (compound with formula C 6H 5OH)), guaiacol (2-methoxyphenol), and syringol (2,6-dimethoxyphenol) with two major aqueous-phase oxidants – the triplet excited states of an aromatic carbonyl ( 3C *) and hydroxyl radical (· OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). Amore » large number of oxygenated molecules are identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85–1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C * are faster than · OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenolic compound has reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV–visible region, suggesting that aqueous-phase reactions of phenols may contribute to formation of secondary brown carbon in the atmosphere, especially in regions influenced by biomass burning.« less

  12. Real-Time and Delayed Analysis of Tree and Shrub Cores as Indicators of Subsurface Volatile Organic Compound Contamination, Durham Meadows Superfund Site, Durham, Connecticut, August 29, 2006

    USGS Publications Warehouse

    Vroblesky, Don A.; Willey, Richard E.; Clifford, Scott; Murphy, James J.

    2008-01-01

    This study examined volatile organic compound concentrations in cores from trees and shrubs for use as indicators of vadose-zone contamination or potential vapor intrusion by volatile organic compounds into buildings at the Durham Meadows Superfund Site, Durham, Connecticut. The study used both (1) real-time tree- and shrub-core analysis, which involved field heating the core samples for 5 to 10 minutes prior to field analysis, and (2) delayed analysis, which involved allowing the gases in the cores to equilibrate with the headspace gas in the sample vials unheated for 1 to 2 days prior to analysis. General correspondence was found between the two approaches, indicating that preheating and field analysis of vegetation cores is a viable approach to real-time monitoring of subsurface volatile organic compounds. In most cases, volatile organic compounds in cores from trees and shrubs at the Merriam Manufacturing Company property showed a general correspondence to the distribution of volatile organic compounds detected in a soil-gas survey, despite the fact that most of the soil-gas survey data in close proximity to the relevant trees were collected about 3 years prior to the tree-core collection. Most of the trees cored at the Durham Meadows Superfund Site, outside of the Merriam Manufacturing Company property, contained no volatile organic compounds and were in areas where indoor air sampling and soil-gas sampling showed little or no volatile organic compound concentrations. An exception was tree DM11, which contained barely detectable concentrations of trichloroethene near a house where previous investigations found low concentrations of trichloroethene (0.13 to 1.2 parts per billion by volume) in indoor air and 7.7 micrograms per liter of trichloroethene in the ground water. The barely detectable concentration of trichloroethene in tree DM11 and the lack of volatile organic compound detection in nearby tree DM10 (adjacent to the well having 7.7 micrograms of trichloroethene) may be attributable to the relatively large depth to water (17.6 feet), the relatively low soil-vapor trichloroethene concentration, and the large amount of rainfall during and preceding the tree-coring event. The data indicate that real-time and delayed analyses of tree cores are viable approaches to examining subsurface volatile organic compound soil-gas or vadose-zone contamination at the Durham Meadows Superfund Site and other similar sites. Thus, the methods may have application for determining the potential for vapor intrusion into buildings.

  13. Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes), Inhibits Candida Biofilms: A Metabolomic Approach.

    PubMed

    Bhardwaj, Anuja; Gupta, Payal; Kumar, Navin; Mishra, Jigni; Kumar, Ajai; Rakhee, Rajput; Misra, Kshipra

    2017-01-01

    This article presents a comparative gas chromatography (GC)-mass spectrometry (MS)-based metabolomic analysis of mycelia and fruiting bodies of the medicinal mushroom Ganoderma lucidum. Three aqueous extracts-mycelia, fruiting bodies, and a mixture of them-and their sequential fractions (methanolic and ethyl acetate), prepared using an accelerated solvent extractor, were characterized by GC-MS to determine volatile organic compounds and by high-performance thin-layer chromatography to quantify ascorbic acid, a potent antioxidant. In addition, these extracts and fractions were assessed against Candida albicans and C. glabrata biofilms via the XTT reduction assay, and their antioxidant potential was evaluated. Application of chemometrics (hierarchical cluster analysis and principal component analysis) to GC data revealed variability in volatile organic compound profiles among G. lucidum extracts and fractions. The mycelial aqueous extract demonstrated higher anti-Candida activity and ascorbic acid content among all the extracts and fractions. Thus, this study illustrates the preventive effect of G. lucidum against C. albicans and C. glabrata biofilms along with its nutritional value.

  14. Evaluation of non-enteric sources of non-methane volatile organic compound (NMVOC) emissions from dairies

    NASA Astrophysics Data System (ADS)

    Chung, Myeong Y.; Beene, Matt; Ashkan, Shawn; Krauter, Charles; Hasson, Alam S.

    2010-02-01

    Dairies are believed to be a major source of volatile organic compounds (VOC) in Central California, but few studies have characterized VOC emissions from these facilities. In this work, samples were collected from six sources of VOCs (Silage, Total Mixed Rations, Lagoons, Flushing Lanes, Open Lots and Bedding) at six dairies in Central California during 2006-2007 using emission isolation flux chambers and polished stainless steel canisters. Samples were analyzed by gas chromatography/mass spectrometry and gas chromatography/flame ionization detection. Forty-eight VOCs were identified and quantified in the samples, including alcohols, carbonyls, alkanes and aromatics. Silage and Total Mixed Rations are the dominant sources of VOCs tested, with ethanol as the major VOC present. Emissions from the remaining sources are two to three orders of magnitude smaller, with carbonyls and aromatics as the main components. The data suggest that animal feed rather than animal waste are the main source of non-enteric VOC emissions from dairies.

  15. Improved volatile fatty acid and biomethane production from lipid removed microalgal residue (LRμAR) through pretreatment.

    PubMed

    Suresh, Arumuganainar; Seo, Charles; Chang, Ho Nam; Kim, Yeu-Chun

    2013-12-01

    Renewable energy from lipid removed microalgal residues (LRμARs) serves as a promising tool for sustainable development of the microalgal biodiesel industry. Hence, in this study, LRμAR from Ettlia sp. was characterized for its physico-biochemical parameters, and applied to various pretreatment to increase the biodegradability and used in batch experiments for the production of volatile fatty acids (VFA) and biomethane. After various pretreatments, the soluble organic matters were increased at a maximum of 82% in total organic matters in alkali-autoclaved sample. In addition, VFA and methane production was enhanced by 30% and 40% in alkali-sonicated and alkali-autoclaved samples, respectively. Methane heating value was recovered at maximum of 6.6 MJ kg(-1)VS in alkali-autoclaved conditions with comparison to non-pretreated samples. The pretreatment remarkably improved LRμAR solubilization and enhanced VFA and biomethane production, which holds immense potential to eventually reduce the cost of algal biodiesel. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Volatile Organic Compounds in Blood as Biomarkers of Exposure to JP-8 Jet Fuel Among US Air Force Personnel.

    PubMed

    Maule, Alexis L; Proctor, Susan P; Blount, Benjamin C; Chambers, David M; McClean, Michael D

    2016-01-01

    This study aimed to evaluate blood volatile organic compound (VOC) levels as biomarkers of occupational jet propulsion fuel 8 (JP-8) exposure while controlling for smoking. Among 69 Air Force personnel, post-shift blood samples were analyzed for components of JP-8, including ethylbenzene, toluene, o-xylene, and m/p-xylene, and for the smoking biomarker, 2,5-dimethylfuran. JP-8 exposure was characterized based on self-report and measured work shift levels of total hydrocarbons in personal air. Multivariate regression was used to evaluate the relationship between JP-8 exposure and post-shift blood VOCs while controlling for potential confounding from smoking. Blood VOC concentrations were higher among US Air Force personnel who reported JP-8 exposure and work shift smoking. Breathing zone total hydrocarbons was a significant predictor of VOC blood levels, after controlling for smoking. These findings support the use of blood VOCs as a biomarker of occupational JP-8 exposure.

  17. Fluorescent Polystyrene Films for the Detection of Volatile Organic Compounds Using the Twisted Intramolecular Charge Transfer Mechanism.

    PubMed

    Borelli, Mirko; Iasilli, Giuseppe; Minei, Pierpaolo; Pucci, Andrea

    2017-08-06

    Thin films of styrene copolymers containing fluorescent molecular rotors were demonstrated to be strongly sensitive to volatile organic compounds (VOCs). Styrene copolymers of 2-[4-vinyl(1,1'-biphenyl)-4'-yl]-cyanovinyljulolidine (JCBF) were prepared with different P(STY- co -JCBF)(m) compositions (m% = 0.10-1.00) and molecular weights of about 12,000 g/mol. Methanol solutions of JCBF were not emissive due to the formation of the typical twisted intramolecular charge transfer (TICT) state at low viscosity regime, which formation was effectively hampered by adding progressive amounts of glycerol. The sensing performances of the spin-coated copolymer films (thickness of about 4 µm) demonstrated significant vapochromism when exposed to VOCs characterized by high vapour pressure and favourable interaction with the polymer matrix such as THF, CHCl₃ and CH₂Cl₂. The vapochromic response was also reversible and reproducible after successive exposure cycles, whereas the fluorescence variation scaled linearly with VOC concentration, thus suggesting future applications as VOC optical sensors.

  18. Investing the effectiveness of retention performance in a non-volatile floating gate memory device with a core-shell structure of CdSe nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Hoon; Kim, Jung-Min; Lim, Ki-Tae; Cho, Hyeong Jun; Bang, Jin Ho; Kim, Yong-Sang

    2016-03-01

    In this paper, we empirically investigate the retention performance of organic non-volatile floating gate memory devices with CdSe nanoparticles (NPs) as charge trapping elements. Core-structured CdSe NPs or core-shell-structured ZnS/CdSe NPs were mixed in PMMA and their performance in pentacene based device was compared. The NPs and self-organized thin tunneling PMMA inside the devices exhibited hysteresis by trapping hole during capacitance-voltage characterization. Despite of core-structured NPs showing a larger memory window, the retention time was too short to be adopted by an industry. By contrast core-shell structured NPs showed an improved retention time of >10000 seconds than core-structure NCs. Based on these results and the energy band structure, we propose the retention mechanism of each NPs. This investigation of retention performance provides a comparative and systematic study of the charging/discharging behaviors of NPs based memory devices. [Figure not available: see fulltext.

  19. Volatile-organic molecular characterization of shale-oil produced water from the Permian Basin

    USGS Publications Warehouse

    Khan, Naima A.; Engle, Mark A.; Dungan, Barry; Holguin, F. Omar; Xu, Pei; Carroll, Kenneth C.

    2016-01-01

    Growth in unconventional oil and gas has spurred concerns on environmental impact and interest in beneficial uses of produced water (PW), especially in arid regions such as the Permian Basin, the largest U.S. tight-oil producer. To evaluate environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of PW. Although hydraulic fracturing has caused a significant increase in shale-oil production, there are no high-resolution organic composition data for the shale-oil PW from the Permian Basin or other shale-oil plays (Eagle Ford, Bakken, etc.). PW was collected from shale-oil wells in the Midland sub-basin of the Permian Basin. Molecular characterization was conducted using high-resolution solid phase micro extraction gas chromatography time-of-flight mass spectrometry. Approximately 1400 compounds were identified, and 327 compounds had a >70% library match. PW contained alkane, cyclohexane, cyclopentane, BTEX (benzene, toluene, ethylbenzene, and xylene), alkyl benzenes, propyl-benzene, and naphthalene. PW also contained heteroatomic compounds containing nitrogen, oxygen, and sulfur. 3D van Krevelen and double bond equivalence versus carbon number analyses were used to evaluate molecular variability. Source composition, as well as solubility, controlled the distribution of volatile compounds found in shale-oil PW. The salinity also increased with depth, ranging from 105 to 162 g/L total dissolved solids. These data fill a gap for shale-oil PW composition, the associated petroleomics plots provide a fingerprinting framework, and the results for the Permian shale-oil PW suggest that partial treatment of suspended solids and organics would support some beneficial uses such as onsite reuse and bio-energy production.

  20. Volatile-organic molecular characterization of shale-oil produced water from the Permian Basin.

    PubMed

    Khan, Naima A; Engle, Mark; Dungan, Barry; Holguin, F Omar; Xu, Pei; Carroll, Kenneth C

    2016-04-01

    Growth in unconventional oil and gas has spurred concerns on environmental impact and interest in beneficial uses of produced water (PW), especially in arid regions such as the Permian Basin, the largest U.S. tight-oil producer. To evaluate environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of PW. Although hydraulic fracturing has caused a significant increase in shale-oil production, there are no high-resolution organic composition data for the shale-oil PW from the Permian Basin or other shale-oil plays (Eagle Ford, Bakken, etc.). PW was collected from shale-oil wells in the Midland sub-basin of the Permian Basin. Molecular characterization was conducted using high-resolution solid phase micro extraction gas chromatography time-of-flight mass spectrometry. Approximately 1400 compounds were identified, and 327 compounds had a >70% library match. PW contained alkane, cyclohexane, cyclopentane, BTEX (benzene, toluene, ethylbenzene, and xylene), alkyl benzenes, propyl-benzene, and naphthalene. PW also contained heteroatomic compounds containing nitrogen, oxygen, and sulfur. 3D van Krevelen and double bond equivalence versus carbon number analyses were used to evaluate molecular variability. Source composition, as well as solubility, controlled the distribution of volatile compounds found in shale-oil PW. The salinity also increased with depth, ranging from 105 to 162 g/L total dissolved solids. These data fill a gap for shale-oil PW composition, the associated petroleomics plots provide a fingerprinting framework, and the results for the Permian shale-oil PW suggest that partial treatment of suspended solids and organics would support some beneficial uses such as onsite reuse and bio-energy production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Major Volatiles from MSL SAM Evolved Gas Analyses: Yellowknife Bay Through Lower Mount Sharp

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Archer, P. D., Jr.; Sutter, B.; Franz, H. B.; Eigenbrode, J. L.; Ming, D. W.; Morris, R. V.; Niles, P. B.; Stern, J. C.; Freissinet, C.; hide

    2015-01-01

    The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) analysed several subsamples of <150 µm fines from five sites at Gale Crater. Three were in Yellowknife Bay: the Rocknest aeolian bedform ("RN") and drilled Sheepbed mudstone from sites John Klein ("JK") and Cumberland ("CB"). One was drilled from the Windjana ("WJ") site on a sandstone of the Kimberly formation investigated on route to Mount Sharp. Another was drilled from the Confidence Hills ("CH") site on a sandstone of the Murray Formation at the base of Mt. Sharp (Pahrump Hills). Outcrops are sedimentary rocks that are largely of fluvial or lacustrine origin, with minor aeolian deposits.. SAM's evolved gas analysis (EGA) mass spectrometry detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, and other trace gases, including organic fragments. The identity and evolution temperature (T) of evolved gases can support CheMin mineral detection and place constraints on trace volatile-bearing phases or phases difficult to characterize with XRD (e.g., X-ray amorphous phases). They can also give constraints on sample organic chemistry. Here, we discuss trends in major evolved volatiles from SAM EGA analyses to date.

  2. Characterization of submicron aerosols at a rural site in Pearl River Delta of China using an Aerodyne High-Resolution Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Huang, X.-F.; He, L.-Y.; Hu, M.; Canagaratna, M. R.; Kroll, J. H.; Ng, N. L.; Zhang, Y.-H.; Lin, Y.; Xue, L.; Sun, T.-L.; Liu, X.-G.; Shao, M.; Jayne, J. T.; Worsnop, D. R.

    2010-11-01

    The Pearl River Delta (PRD) region in South China is one of the most economically developed regions in China, but it is also noted for its severe air pollution due to industrial/metropolitan emissions. In order to continuously improve the understanding and quantification of air pollution in this region, an intensive campaign was executed in PRD during October-November 2008. Here, we report and analyze Aerodyne High-Resolution Aerosol Mass Spectrometer measurements at Kaiping, a rural site downwind of the highly-polluted central PRD area, to characterize the general features of submicron particulate pollution in the regional air. The mean measured PM1 mass concentration was 33.1 ± 18.1 μg m-3 during the campaign and composed of organic matter (33.8%), sulfate (33.7%), ammonium (14.0%), nitrate (10.7%), black carbon (6.7%), and chloride (1.1%), which is characterized by high fractions of inorganic ions due to huge emissions of SO2 and NOx in PRD. The average size distributions of the species (except BC) were all dominated by an accumulation mode peaking at ~450 nm in vacuum aerodynamic diameter. Calculations based on high-resolution organic mass spectra indicate that C, H, O, and N on average contributed 56.6, 7.0, 35.1, and 1.3% to the total organic mass, respectively, corresponding to an organic matter mass to organic carbon mass ratio (OM/OC) of 1.77 ± 0.08. Based on the high-resolution organic mass spectral dataset observed, Positive Matrix Factorization (PMF) analysis differentiated the organic aerosol into three components, i.e., biomass burning (BBOA) and two oxygenated (LV-OOA and SV-OOA) organic aerosols, which on average accounted for 24.5, 39.6 and 35.8% of the total organic mass, respectively. The BBOA showed strong features of biomass burning emissions and has been mainly attributed to field rice straw burning after harvest. The LV-OOA and SV-OOA were found to correspond to more aged (and thus less-volatile) and fresher (and semi-volatile) secondary organic aerosol, respectively. Analysis of meteorological influence supported that regional transport from the central PRD area was the major origin of the PM1 components observed at the Kaiping site.

  3. Effect of Inorganic Salts on the Volatility of Organic Acids

    PubMed Central

    2014-01-01

    Particulate phase reactions between organic and inorganic compounds may significantly alter aerosol chemical properties, for example, by suppressing particle volatility. Here, chemical processing upon drying of aerosols comprised of organic (acetic, oxalic, succinic, or citric) acid/monovalent inorganic salt mixtures was assessed by measuring the evaporation of the organic acid molecules from the mixture using a novel approach combining a chemical ionization mass spectrometer coupled with a heated flow tube inlet (TPD-CIMS) with kinetic model calculations. For reference, the volatility, i.e. saturation vapor pressure and vaporization enthalpy, of the pure succinic and oxalic acids was also determined and found to be in agreement with previous literature. Comparison between the kinetic model and experimental data suggests significant particle phase processing forming low-volatility material such as organic salts. The results were similar for both ammonium sulfate and sodium chloride mixtures, and relatively more processing was observed with low initial aerosol organic molar fractions. The magnitude of low-volatility organic material formation at an atmospherically relevant pH range indicates that the observed phenomenon is not only significant in laboratory conditions but is also of direct atmospheric relevance. PMID:25369247

  4. Intermediate Volatility Organic Compound Emissions from On-Road Gasoline Vehicles and Small Off-Road Gasoline Engines.

    PubMed

    Zhao, Yunliang; Nguyen, Ngoc T; Presto, Albert A; Hennigan, Christopher J; May, Andrew A; Robinson, Allen L

    2016-04-19

    Dynamometer experiments were conducted to characterize the intermediate volatility organic compound (IVOC) emissions from a fleet of on-road gasoline vehicles and small off-road gasoline engines. IVOCs were quantified through gas chromatography/mass spectrometry analysis of adsorbent samples collected from a constant volume sampler. The dominant fraction (>80%, on average) of IVOCs could not be resolved on a molecular level. These unspeciated IVOCs were quantified as two chemical classes (unspeciated branched alkanes and cyclic compounds) in 11 retention-time-based bins. IVOC emission factors (mg kg-fuel(-1)) from on-road vehicles varied widely from vehicle to vehicle, but showed a general trend of lower emissions for newer vehicles that met more stringent emission standards. IVOC emission factors for 2-stroke off-road engines were substantially higher than 4-stroke off-road engines and on-road vehicles. Despite large variations in the magnitude of emissions, the IVOC volatility distribution and chemical characteristics were consistent across all tests and IVOC emissions were strongly correlated with nonmethane hydrocarbons (NMHCs), primary organic aerosol and speciated IVOCs. Although IVOC emissions only correspond to approximately 4% of NMHC emissions from on-road vehicles over the cold-start unified cycle, they are estimated to produce as much or more SOA than single-ring aromatics. Our results clearly demonstrate that IVOCs from gasoline engines are an important class of SOA precursors and provide observational constraints on IVOC emission factors and chemical composition to facilitate their inclusion into atmospheric chemistry models.

  5. 77 FR 9275 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... ETF Volatility Index, the CBOE Brazil ETF Volatility Index and CBOE Oil ETF Volatility Index February... Schedule to establish fees for transactions in options on the CBOE Emerging Market ETF Volatility Index (``VXEEM''), the CBOE Brazil ETF Volatility Index (``VXEWZ'') and the CBOE Crude Oil ETF Volatility Index...

  6. Corrosion Finishing/Coating Systems for DoD Metallic Substrates Based on Non-Chromate Inhibitors and UV Curable, Zero VOC Materials

    DTIC Science & Technology

    2010-08-01

    Corrosion resistant coatings containing non-chromate inhibitors and no volatile organic compounds were developed and evaluated for DoD applications...Transmission Electron Microscopy TRI – Toxic Release Inventory UV – Ultraviolet UVAs – Ultraviolet Absorbers VOCs – Volatile Organic Compounds XPS – X...containing non-chromate inhibitors and no volatile organic compounds were developed and evaluated for DoD applications. The technical effort

  7. Use of integrated indoor concentrations of tracer gases and volatile organic compounds to distinguish soil sources from above-ground sources

    EPA Science Inventory

    Vapor intrusion refers to the situation in which harmful chemicals [such as halogenated or chlorinated volatile organic compounds (VOC) or petroleum products] in the groundwater or soil volatilize in the vadose zone and migrate into the indoor environment. These chemicals typical...

  8. 76 FR 61450 - Self-Regulatory Organizations; National Stock Exchange, Inc.; Notice of Filing of Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... Methodology for Determining When To Halt Trading in All Stocks Due to Extraordinary Market Volatility... all stocks due to extraordinary market volatility. II. Self-Regulatory Organization's Statement of the... determining when to halt trading in all stocks due to extraordinary market volatility. The Exchange is...

  9. The occurrence of volatile organic compounds in aquifers of the United States

    USGS Publications Warehouse

    Lapham, Wayne W.; Carter, Janet M.; Zogorski, John S.; Valder, Joshua F.

    2006-01-01

    The U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program recently completed a national assessment of volatile organic compounds (VOCs) in ground water (Zogorski and others, 2006). As part of this assessment, samples of ambient ground water collected from 3,498 wells during 1985-2002 were selected for characterizing the occurrence of 55 VOCs in 98 aquifer studies. The 55 VOCs were assigned to the following groups on the basis of their primary usage (or origin): (1) fumigants, (2) gasoline hydrocarbons, (3) gasoline oxygenates, (4) organic synthesis compounds, (5) refrigerants, (6) solvents, and (7) trihalo-methanes (chlorination by-products). The samples were collected throughout the conterminous United States as well as Alaska and Hawaii. The sampled wells had a variety of uses including domestic supply (61 percent), public supply (15 percent), monitoring (10 percent), other (13 percent), and unknown (1 percent). NAWQA aquifer studies are large-scale resource assessments of ground water that provide a general characterization of water-quality conditions in locally and regionally important aquifers or portions thereof. In general, the aquifers (or portions thereof) selected for study were some of the most intensively used aquifers for drinking water in greaterHawaiiOahuAlaskathe Nation. The 98 aquifer studies collectively provide an important national perspective on the current (1985-2002) extent of VOC contamination and regional patterns of VOC occurrence in ground water. More information about this national assessment of VOCs is available at a supporting Web site (http://water.usgs.gov/nawqa/vocs/national_assessment).

  10. VISTA: A μ-Thermogravimeter for Investigation of Volatile Compounds in Planetary Environments.

    PubMed

    Palomba, Ernesto; Longobardo, Andrea; Dirri, Fabrizio; Zampetti, Emiliano; Biondi, David; Saggin, Bortolino; Bearzotti, Andrea; Macagnano, Antonella

    2016-06-01

    This paper presents the VISTA (Volatile In Situ Thermogravimetry Analyser) instrument, conceived to perform planetary in-situ measurements. VISTA can detect and quantify the presence of volatile compounds of astrobiological interest, such as water and organics, in planetary samples. These measurements can be particularly relevant when performed on primitive asteroids or comets, or on targets of potential astrobiological interest such as Mars or Jupiter's satellite Europa. VISTA is based on a micro-thermogravimetry technique, widely used in different environments to study absorption and sublimation processes. The instrument core is a piezoelectric crystal microbalance, whose frequency variations are affected by variations of the mass of the deposited sample, due to chemical processes such as sublimation, condensation or absorption/desorption. The low mass (i.e. 40 g), the low volume (less than 10 cm(3)) and the low power (less than 1 W) required makes this kind of instrument very suitable for space missions. This paper discusses the planetary applications of VISTA, and shows the calibration operations performed on the breadboard, as well as the performance tests which demonstrate the capability of the breadboard to characterize volatile compounds of planetary interests.

  11. Characterization of organic residues of size-resolved fog droplets and their atmospheric implications

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Ervens, Barbara; Gupta, Tarun; Tripathi, Sachchida N.

    2016-04-01

    Size-resolved fog water samples were collected in two consecutive winters at Kanpur, a heavily polluted urban area of India. Samples were analyzed by an aerosol mass spectrometer after drying and directly in other instruments. Residues of fine fog droplets (diameter: 4-16 µm) are found to be more enriched with oxidized (oxygen to carbon ratio, O/C = 0.88) and low volatility organics than residues of coarse (diameter > 22 µm) and medium size (diameter: 16-22 µm) droplets with O/C of 0.68 and 0.74, respectively. These O/C ratios are much higher than those observed for background ambient organic aerosols, indicating efficient oxidation in fog water. Accompanying box model simulations reveal that longer residence times, together with high aqueous OH concentrations in fine droplets, can explain these trends. High aqueous OH concentrations in smaller droplets are caused by their highest surface-volume ratio and high Fe and Cu concentrations, allowing more uptake of gas phase OH and enhanced Fenton reaction rates, respectively. Although some volatile organic species may have escaped during droplet evaporation, these findings indicate that aqueous processing of dissolved organics varies with droplet size. Therefore, large (regional, global)-scale models need to consider the variable reaction rates, together with metal-catalyzed radical formation throughout droplet populations for accurately predicting aqueous secondary organic aerosol formation.

  12. Volatility of source apportioned wintertime organic aerosol in the city of Athens

    NASA Astrophysics Data System (ADS)

    Louvaris, Evangelos E.; Florou, Kalliopi; Karnezi, Eleni; Papanastasiou, Dimitrios K.; Gkatzelis, Georgios I.; Pandis, Spyros N.

    2017-06-01

    The volatility distribution of ambient organic aerosol (OA) and its components was measured during the winter of 2013 in the city of Athens combining a thermodenuder (TD) and a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). Positive Matrix Factorization (PMF) analysis of both the ambient and the thermodenuder AMS-spectra resulted in a four-factor solution for the OA, namely: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), cooking OA (COA), and oxygenated OA (OOA). The thermograms of the four factors were analyzed and the corresponding volatility distributions were estimated using the volatility basis set (VBS). All four factors included compounds with a wide range of effective volatilities from 10 to less than 10-4 μg m-3 at 298 K. Almost 40% of the HOA consisted of low-volatility organic compounds (LVOCs) with the semi-volatile compounds (SVOCs) representing roughly 30%, while the remaining 30% consisted of extremely low volatility organic compounds (ELVOCs). BBOA was more volatile than the HOA factor on average, with 10% ELVOCs, 40% LVOCs, and 50% SVOCs. 10% of the COA consisted of ELVOCs, another 65% LVOCs, and 50% SVOCs. Finally, the OOA was the least volatile factor and included 40% ELVOCs, 25% LVOCs, and 35% SVOCs. Combining the volatility distributions and the O:C ratios of the various factors, we placed our results in the 2D-VBS analysis framework of Donahue et al. (2012). HOA and BBOA are in the expected region but also include an ELVOC component. COA is in similar range as HOA, but on average is half an order of magnitude more volatile. The OOA in these wintertime conditions had a moderate O:C ratio and included both semi-volatile and extremely low volatility components. The above results are sensitive to the assumed values of the effective vaporization enthalpy and the accommodation coefficient. A reduction of the accommodation coefficient by an order of magnitude or the reduction of the vaporization enthalpy by 20 kJ mol-1 results in the increase of the average volatility by half an order of magnitude.

  13. Remedial Investigation/Feasibility Study/Interim Response Actions

    DTIC Science & Technology

    1988-03-25

    organosulfur compounds (CC/FP), organophosphorus compounds (CC/FPD), hydrocarbons (CC/FID), volatile aromatic compounds (GC/ PID ), volatile halogenated...ICP metals, mercury and arsenic (AA). Water samples are being analyzed for volatile halogenated organics (GC/CON), volatile aromatic organics (GC/ PID ...Feb Mar Apr May Jun Jul Aug SepSI - I I I I I • .. I I I ----+----- 685 27-90 so ONSITE DISPOSAL FACILITY .i * 686 27-01 Prep FLUE Plan Fz=m8u> 6e7

  14. Identification of Campylobacter infection in chickens from volatile faecal emissions.

    PubMed

    Garner, Catherine E; Smith, Stephen; Elviss, Nicola C; Humphrey, Tom J; White, Paul; Ratcliffe, Norman M; Probert, Christopher S

    2008-06-01

    Volatile organic compounds from chicken faeces were investigated as biomarkers for Campylobacter infection. Campylobacter are major poultry-borne zoonotic pathogens, colonizing the avian intestinal tract. Chicken faeces are the principal source of contamination of carcasses. Fresh faeces were collected on farm sites, and Campylobacter status established microbiologically. Volatile organic compounds were pre-concentrated from the headspace above 71 separate faecal samples using solid-phase microextraction and separated and identified by gas chromatography/mass spectrometry. A Campylobacter-specific profile was identified using six of the extracted volatile organic compounds. The model developed reliably identified the presence or absence of Campylobacter in >95% of chickens. The volatile biomarker identification approach for assessing avian infection is a novel approach to enhancing biosecurity in the poultry industry and should reduce the risk of disease transmission to humans.

  15. Henry`s law constant for selected volatile organic compounds in high-boiling oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poddar, T.K.; Sirkar, K.K.

    Absorption systems are often used to remove and recover organic vapors from process air/gas streams. A high boiling and inert liquid like silicone oil is an excellent absorbent for volatile organic compounds in air. Henry`s law constants of four different volatile organic compounds, namely, acetone, methanol, methylene chloride, and toluene between air and high-boiling oils were determined experimentally by the headspace-GC technique over a temperature range. The Henry`s law constants were fitted as a function of temperature to an equation.

  16. Darren J. Peterson | NREL

    Science.gov Websites

    volatile organic compounds at sub-parts-per-million concentration levels," Sensors and Actuators B : Chemical (2006) "The Volatile Organic Compound (VOC) Removal Performance of Desiccant-Based

  17. Quantitative organic vapor-particle sampler

    DOEpatents

    Gundel, Lara; Daisey, Joan M.; Stevens, Robert K.

    1998-01-01

    A quantitative organic vapor-particle sampler for sampling semi-volatile organic gases and particulate components. A semi-volatile organic reversible gas sorbent macroreticular resin agglomerates of randomly packed microspheres with the continuous porous structure of particles ranging in size between 0.05-10 .mu.m for use in an integrated diffusion vapor-particle sampler.

  18. Volatile organic compounds detected in vapor-diffusion samplers placed in sediments along and near the shoreline at Allen Harbor Landfill and Calf Pasture Point, Davisville, Rhode Island, March-April 1998

    USGS Publications Warehouse

    Lyford, F.P.; Kliever, J.D.; Scott, Clifford

    1999-01-01

    Volatile organic compounds are present in ground water at the Allen Harbor Landfill and the Calf Pasture Point sites on the former Naval Construction Battalion Center in Davisville, R.I. Vapor-diffusion samplers were used at the two sites during March-April 1998 to identify possible discharge points for contaminants along the shore of Allen Harbor and in two wetland areas near the shore. Results from vapor-diffusion samplers will be used in conjunction with other site information to evaluate proposed ground-water monitoring programs. Volatile organic compounds were detected in 41 of 115 samplers placed along the shoreline at the Allen Harbor Landfill. Trichloroethylene was the principal volatile organic compound detected of eight target compounds. The highest vapor concentration measured exceeded 300,000 parts per billion by volume in an area where TCE was detected in groundwater from nearby monitoring wells. Other chemicals detected in vapor-diffusion samplers included tetrachloroethylene, toluene, and benzene. Concentrations of individual volatile organic compounds were less than 100 parts per billion by volume in most samplers. Volatile organic compounds, principally trichloroethylene, were detected in 7 of 30 samplers placed along the shoreline at Calf Pasture Point; the highest trichloroethylene concentration was 1,900 parts per billion by volume. A trace concentration of tetrachloroethylene was detected in one of the samplers. One of 24 samplers placed in two wetland areas near the shore (suspected discharge areas for ground-water containing volatile organic compounds) detected trichloroethylene at a vapor concentration of 14 parts per billion by volume.

  19. [Study of volatile organic compounds of fresh allium species using headspace combined with surface-enhanced Raman scattering].

    PubMed

    Si, Min-Zhen; Zhang, De-Qing; Liu, Ren-Ming

    2014-09-01

    In order to identify volatile organic compounds of fresh plants at room temperature and avoid sample pretreatment and extractions which can be labor intensive, garlic, Chinese chives and scallion were chopped into pieces. Then some of them were placed in the headspace vial and sealed. The gases were drawn from the vial with a syringe and were injected very slowly into Ag colloids for test using R-3000 portable Raman spectrometer. The spectra of volatile organic compounds of allium species, fresh garlic, Chinese chive and shallot plants were successfully.recorded for the first time. For garlic high intensity bands are present at 307, 399, 569, 711, 1,182, 1,287, 1,397 and 1,622 cm(-1). For Chinese chives the high intensity band is present at 672 cm(-1). Low intensity bands are present at 274, 412, 575, 1,185, 1,289, 1,396, 1,618 cm(-1). For shallot high intensity bands are present at 693 cm(-1). Lower intensity bands are present at 372, 888, 1,023 cm(-1). Low intensity bands are present at 1,088, 1,211 and 1,322 cm(-1). The SERS of diallyl disulfide, allyl methyl sulfide and 1-propanethiol in liquid state and gas state were also obtained. The main volatile organic compound of fresh garlic, Chinese chive and shallot are diallyl disulfide, allyl methyl sulfide and 1-propanethiol respectively, and the volatile organic compound of fresh onion, scallion, shallot and chive are all 1-propanethiol. The presented results illustrate that combining headspace and SERS is a powerful tool for volatile organic compound analysis in fresh plants. The volatile organic compound can be detected in fresh plant samples directly and quickly without extraction.

  20. Sensory irritating potency of some microbial volatile organic compounds (MVOCs) and a mixture of five MVOCs.

    PubMed

    Korpi, A; Kasanen, J P; Alarie, Y; Kosma, V M; Pasanen, A L

    1999-01-01

    The authors investigated the ability/potencies of 3 microbial volatile organic compounds and a mixture of 5 microbial volatile organic compounds to cause eye and upper respiratory tract irritation (i.e., sensory irritation), with an animal bioassay. The authors estimated potencies by determining the concentration capable of decreasing the respiratory frequency of mice by 50% (i.e., the RD50 value). The RD50 values for 1-octen-3-ol, 3-octanol, and 3-octanone were 182 mg/m3 (35 ppm), 1359 mg/m3 (256 ppm), and 17586 mg/m3 (3360 ppm), respectively. Recommended indoor air levels calculated from the individual RD50 values for 1-octen-3-ol, 3-octanol, and 3-octanone were 100, 1000, and 13000 microg/m3, respectively-values considerably higher than the reported measured indoor air levels for these compounds. The RD50 value for a mixture of 5 microbial volatile organic compounds was also determined and found to be 3.6 times lower than estimated from the fractional concentrations and the respective RD50s of the individual components. The data support the conclusion that a variety of microbial volatile organic compounds may have some synergistic effects for the sensory irritation response, which constrains the interpretation and application of recommended indoor air levels of individual microbial volatile organic compounds. The results also showed that if a particular component of a mixture was much more potent than the other components, it may dominate the sensory irritation effect. With respect to irritation symptoms reported in moldy houses, the results of this study indicate that the contribution of microbial volatile organic compounds to these symptoms seems less than previously supposed.

  1. 40 CFR 60.16 - Priority list.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Categories Priority Number 1 Source Category 1. Synthetic Organic Chemical Manufacturing Industry (SOCMI) and Volatile Organic Liquid Storage Vessels and Handling Equipment (a) SOCMI unit processes (b) Volatile organic liquid (VOL) storage vessels and handling equipment (c) SOCMI fugitive sources (d) SOCMI secondary...

  2. Characterization of Botanical and Geographical Origin of Corsican "Spring" Honeys by Melissopalynological and Volatile Analysis.

    PubMed

    Yang, Yin; Battesti, Marie-José; Costa, Jean; Paolini, Julien

    2014-01-27

    Pollen spectrum, physicochemical parameters and volatile fraction of Corsican "spring" honeys were investigated with the aim of developing a multidisciplinary method for the qualification of honeys in which nectar resources are under-represented in the pollen spectrum. Forty-one Corsican "spring" honeys were certified by melissopalynological analysis using directory and biogeographical origin of 50 representative taxa. Two groups of honeys were distinguished according to the botanical origin of samples: "clementine" honeys characterized by the association of cultivated species from oriental plain and other "spring" honeys dominated by wild herbaceous taxa from the ruderal and/or maquis area. The main compounds of the "spring" honey volatile fraction were phenylacetaldehyde, benzaldehyde and methyl-benzene. The volatile composition of "clementine" honeys was also characterized by three lilac aldehyde isomers. Statistical analysis of melissopalynological, physicochemical and volatile data showed that the presence of Citrus pollen in "clementine" honeys was positively correlated with the amount of linalool derivatives and methyl anthranilate. Otherwise, the other "spring" honeys were characterized by complex nectariferous species associations and the content of phenylacetaldehyde and methyl syringate.

  3. Pollen diversity and volatile variability of honey from Corsican Anthyllis hermanniae L. habitat.

    PubMed

    Yang, Yin; Battesti, Marie-José; Paolini, Julien; Costa, Jean

    2014-12-01

    Melissopalynological, physicochemical, and volatile analyses of 29 samples of Corsican 'summer maquis' honey were performed. The pollen spectrum was characterized by a wide diversity of nectariferous and/or polleniferous taxa. The most important were Anthyllis hermanniae and Rubus sp., associated with some endemic taxa. Castanea sativa was also determined in these honeys with a great variation. The volatile fraction was characterized by 37 compounds and dominated by phenolic aldehydes and linear acids. The major compounds were phenylacetaldehyde, benzaldehyde, and nonanoic acid. Statistical analysis of pollen and volatile data showed that 18 samples were characterized by a high abundance of phenylacetaldehyde, which might relate to the high amount of A. hermanniae and Rubus sp. Eleven other samples displayed a higher proportion of phenolic ketones and linear acids, which characterized the nectar contribution of C. sativa and Thymus herba-barona, respectively. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  4. 76 FR 20779 - Self-Regulatory Organizations; The Options Clearing Corporation; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... Change To Provide Legal Certainty for the Trading of Futures on the CBOE Gold ETF Volatility Index April... CBOE Gold ETF Volatility Index (``GVZ Index''). II. Self-Regulatory Organization's Statement of the..., LLC (``CFE'') as an up-to-the-minute market estimate of the expected volatility of SPDR Gold Shares...

  5. Characterization of urban aerosol in Cork City (Ireland) using aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Ovadnevaite, J.; Ceburnis, D.; Martin, D.; Healy, R. M.; O'Connor, I. P.; Sodeau, J. R.; Wenger, J. C.; O'Dowd, C.

    2012-11-01

    Ambient wintertime background urban aerosol in Cork City, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the 1 200 000 single particles characterized by an Aerosol Time-Of-Flight Mass Spectrometer (TSI ATOFMS) were classified into five organic-rich particle types, internally-mixed to different proportions with Elemental Carbon (EC), sulphate and nitrate while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was also characterized using a High Resolution Time-Of-Flight Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS) and was also found to comprise organic matter as the most abundant species (62%), followed by nitrate (15%), sulphate (9%) and ammonium (9%), and then chloride (5%). Positive matrix factorization (PMF) was applied to the HR-ToF-AMS organic matrix and a five-factor solution was found to describe the variance in the data well. Specifically, "Hydrocarbon-like" Organic Aerosol (HOA) comprised 19% of the mass, "Oxygenated low volatility" Organic Aerosols (LV-OOA) comprised 19%, "Biomass wood Burning" Organic Aerosol (BBOA) comprised 23%, non-wood solid-fuel combustion "Peat and Coal" Organic Aerosol (PCOA) comprised 21%, and finally, a species type characterized by primary m/z peaks at 41 and 55, similar to previously-reported "Cooking" Organic Aerosol (COA) but possessing different diurnal variations to what would be expected for cooking activities, contributed 18%. Despite wood, cool and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosols mass and non refractory PM1, respectively).

  6. Characterization of urban aerosol in Cork city (Ireland) using aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Ovadnevaite, J.; Ceburnis, D.; Martin, D.; Healy, R. M.; O'Connor, I. P.; Kourtchev, I.; Sodeau, J. R.; Wenger, J. C.; O'Dowd, C.

    2013-05-01

    Ambient wintertime background urban aerosol in Cork city, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the ca. 1 350 000 single particles characterized by an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS) were classified into five organic-rich particle types, internally mixed to different proportions with elemental carbon (EC), sulphate and nitrate, while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was characterized using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS) and was also found to comprise organic aerosol as the most abundant species (62%), followed by nitrate (15%), sulphate (9%) and ammonium (9%), and chloride (5%). Positive matrix factorization (PMF) was applied to the HR-ToF-AMS organic matrix, and a five-factor solution was found to describe the variance in the data well. Specifically, "hydrocarbon-like" organic aerosol (HOA) comprised 20% of the mass, "low-volatility" oxygenated organic aerosol (LV-OOA) comprised 18%, "biomass burning" organic aerosol (BBOA) comprised 23%, non-wood solid-fuel combustion "peat and coal" organic aerosol (PCOA) comprised 21%, and finally a species type characterized by primary {m/z} peaks at 41 and 55, similar to previously reported "cooking" organic aerosol (COA), but possessing different diurnal variations to what would be expected for cooking activities, contributed 18%. Correlations between the different particle types obtained by the two aerosol mass spectrometers are also discussed. Despite wood, coal and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosol mass and non-refractory total PM1, respectively).

  7. Characterization of kerosene-heater emissions inside two mobile homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, R.M.; Seila, R.A.; Wilson, W.E.

    1990-03-01

    In an effort to determine the impact of kerosene heater emissions on indoor air quality, measurements were made in and around two mobile homes at a rural mobile home park near Apex, NC. The sampling was performed at two single-wide mobile homes equipped with kerosene heaters. The concentrations of acidic aerosols and gases, fine and coarse particulate aerosol mass, carbon monoxide, nitrogen oxides, volatile organic compounds and semivolatiles, were determined for periods of heater operation and for periods in which heaters were not operated. Simultaneous outdoor measurements of acid aerosols and gases, fine and coarse aerosol mass, and volatile organicmore » compounds were conducted to determine the contribution of outdoor pollutants to the indoor concentrations. Comparisons between the concentrations obtained from the analysis of outdoor, heater-on, and heater-off samples allowed the authors to examine the impacts of the kerosene emissions on indoor concentrations. Concentrations of sulfates, aerosol strong acidity, fine and coarse aerosol mass, carbon monoxide, and sulfur dioxide were found to be higher when the heater was operated; however, these heater-on concentrations were comparable to those observed in moderately polluted atmospheres. Indoor concentrations of nitrous acid and nitrogen oxides during heater operation were found to be considerably higher than those observed in polluted atmospheres. Finally, use of kerosene heaters was found to be responsible for increased concentrations of non-methane volatile and semi-volatile organic compounds indoors. Acid aerosol indoor concentrations were quite variable during the study and were found to exist in the presence of excess ammonia.« less

  8. Generation of sub-ppb level vapor phase mixtures of biogenic volatile organic compounds from liquid phase standards and stepwise characterization of their volatilization properties by thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Iqbal, Mohammad Asif; Kim, Ki-Hyun

    2014-12-19

    In the analysis of biogenic volatile organic compounds (BVOCs) in ambient air, preparation of a sub-ppb level standard is an important factor. This task is very challenging as most BVOCs (e.g., monoterpenes) are highly volatile and reactive in nature. As a means to produce sub-ppb gaseous standards for BVOCs, we investigated the dynamic headspace (HS) extraction technique through which their vapors are generated from a liquid standard (mixture of 10 BVOCs: (1) α-pinene, (2) β-pinene, (3) 3-carene, (4) myrcene, (5) α-phellandrene, (6) α-terpinene, (7) R-limonene, (8) γ-terpinene, (9) p-cymene, and (10) Camphene) spiked into a chamber-style impinger. The quantification of BVOCs was made by collection on multiple-bed sorbent tubes (STs) and subsequent analysis by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). Using this approach, sub-ppb level mixtures of gaseous BVOCs were generated at different sweep cycles. The mean concentrations of 10 BVOCs generated from the most stable conditions (i.e., in the third sweep cycle) varied in the range of 0.37±0.05 to 7.27±0.86ppb depending on the initial concentration of liquid standard spiked into the system. The reproducibility of the gaseous BVOCs generated as mixture standards, if expressed in terms of relative standard error using the concentration datasets acquired under stable conditions, ranged from 1.64 (α-phellandrene) to 9.67% (R-limonene). Copyright © 2014 Elsevier B.V. All rights reserved.

  9. The development and testing of a volatile organics concentrator for use in monitoring Space Station water quality

    NASA Technical Reports Server (NTRS)

    Bodek, Itamar; Ehntholt, Daniel J.; Stolki, Thomas J.; Trabanino, Rudy; Hinsdale, Lloyd; Webb, Johanna; Sauer, Richard L.

    1992-01-01

    The Volatile Organics Concentrator (VOC) system, designed to attach to a gas chromatograph/mass spectrometer (GC/MS) for the analyses of volatile organic compounds in water on Space Station Freedom, is described. Organic volatiles are collected and concentrated in the VOC by means of two primary solid sorbent tubes and desorbed into the GC/MS system. The paper describes the results of testing the VOC breadboard using a GC/MS system. Evaluations performed on 39 organic compounds recovered from water samples were compared with data for these compounds using direct injection/GC/MS and purge and trap/GC/MS procedures. The results demonstrate that the VOC/GC/MS system's detection limits for the 39 compounds analyzed are comparable to those of the EPA Method 524.2, and for many compounds reaching a factor of 5 lower.

  10. Description, Properties, and Degradation of Selected Volatile Organic Compounds Detected in Ground Water--A Review of Selected Literature

    USGS Publications Warehouse

    Lawrence, Stephen J.

    2006-01-01

    This report provides abridged information describing the most salient properties and biodegradation of 27 chlorinated volatile organic compounds detected during ground-water studies in the United States. This information is condensed from an extensive list of reports, papers, and literature published by the U.S. Government, various State governments, and peer-reviewed journals. The list includes literature reviews, compilations, and summaries describing volatile organic compounds in ground water. This report cross-references common names and synonyms associated with volatile organic compounds with the naming conventions supported by the International Union of Pure and Applied Chemistry. In addition, the report describes basic physical characteristics of those compounds such as Henry's Law constant, water solubility, density, octanol-water partition (log Kow), and organic carbon partition (log Koc) coefficients. Descriptions and illustrations are provided for natural and laboratory biodegradation rates, chemical by-products, and degradation pathways.

  11. The Origin of Carbon-Bearing Volatiles in a Continental Hydrothermal System in the Great Basin: Water Chemistry and Isotope Characterizations

    NASA Technical Reports Server (NTRS)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.; Romanek, Christopher; Datta, Saugata; Darnell, Mike

    2012-01-01

    Hydrothermal systems on Earth are active centers in the crust where organic molecules can be synthesized biotically or abiotically under a wide range of physical and chemical conditions [1-3]. Not only are volatile species (CO, CO2, H2, and hydrocarbons) a reflection of deep-seated hydrothermal alteration processes, but they also form an important component of biological systems. Studying carbon-bearing fluids from hydrothermal systems is of specific importance to understanding (bio-)geochemical processes within these systems. With recent detection of methane in the martian atmosphere [4-7] and the possibility of its hydrothermal origin [8, 9], understanding the formation mechanisms of methane may provide constraints on the history of the martian aqueous environments and climate.

  12. Volatile compounds of sulfur in the Fe-C-S system at 5.3 GPa and 1300°C

    NASA Astrophysics Data System (ADS)

    Zhimulev, E. I.; Sonin, V. M.; Bul'bak, T. A.; Chepurov, A. I.; Tomilenko, A. A.; Pokhilenko, N. P.

    2015-05-01

    This report presents the results of experimental studies of the fluid phase in the Fe-C-S system at high P and T values (5.3 GPa and 1300°C) conforming to diamond synthesis. The samples for experiments were mounted on air; therefore, the volatile compounds detected after the experiments are characterized by a wide variety and complicated composition involving both inorganic and organic components. Among the inorganic compounds, CO2, H2O, N2, SO2, CS2, and COS were detected. The GC/MS analysis revealed hydrocarbons (paraffins, olefins, and arenes), including high-molecular compounds. The formation of heavy hydrocarbons confirms their thermodynamic stability under high pressure. Oxygenated hydrocarbons (alcohols, aldehydes, ketones, carboxylic acids, and ethers) were also detected.

  13. The development of a volatile organics concentrator for use in monitoring Space Station water quality

    NASA Technical Reports Server (NTRS)

    Bodek, Itamar; Ehntholt, Daniel J.; Stolki, Thomas J.; Valentine, James R.; Trabanino, Rudy; Webb, Johanna V.; Sauer, Richard L.

    1991-01-01

    A breadboard concept of a volatile organics concentrator (VOC) is manufactured and tested for optimized water-quality analysis in a space environment. The VOC system is attached to a gas chromatograph/mass spectrometer to analyze the volatile chemicals relevant to the operation of Space Station Freedom. The preliminary tests include: (1) comparisons with analyses based on direct on-column injections of standards; (2) analyses of iodinated volatile organics; (3) comparisons of nitrogen vs helium as the chromatography carrier gas; and (4) measurements of collection efficiency. The VOC can analyze EPA method-624 analytes at comparable detection using flame-ionization detection and can analyze volatile iodinated compounds. The breadboard has good reproducibility and can use nitrogen as a carrier gas; good results are noted for the collection and concentration levels and for water removal.

  14. A volatile organics concentrator for use in monitoring Space Station water quality

    NASA Technical Reports Server (NTRS)

    Ehntholt, Daniel J.; Bodek, Itamar; Valentine, James R.; Trabanino, Rudy; Vincze, Johanna E.; Sauer, Richard L.

    1990-01-01

    The process used to identify, select, and design an approach to the isolation and concentration of volatile organic compounds from a water sample prior to chemical analysis in a microgravity environment is discerned. The trade analysis leading to the recommended volatile organics concentrator (VOC) concept to be tested in a breadboard device is presented. The system covers the areas of gases, volatile separation from water, and water removal/gas chromatograph/mass spectrometer interface. Five options for potential use in the VOC and GC/MS system are identified and ranked, and also nine options are presented for separation of volatiles from the water phase. Seven options for use in the water removal/GC column and MS interface are also identified and included in the overall considerations. A final overall recommendation for breadboard VOC testing is given.

  15. Characterization and treatment of dissolved organic matter from oilfield produced waters.

    PubMed

    Wang, Xiaojing; Goual, Lamia; Colberg, Patricia J S

    2012-05-30

    Dissolved organic matter (DOM) has been studied intensively in streams, lakes and oceans due to its role in the global carbon cycle and because it is a precursor of carcinogenic disinfection by-products in drinking water; however, relatively little research has been conducted on DOM in oilfield produced waters. In this study, recovery of DOM from two oilfield produced waters was relatively low (~34%), possibly due to the presence of high concentrations of volatile organic compounds (VOCs). A van Krevelen diagram of the extracted DOM suggested the presence of high concentrations of lipids, lignin, and proteins, but low concentrations of condensed hydrocarbons. Most of the compounds in the oilfield DOM contained sulfur in their structures. Fourier transform infrared (FTIR) spectra indicated the presence of methyl groups, amides, carboxylic acids, and aromatic compounds, which is in agreement with results of Fourier transform ion cyclotron resonance (FT-ICR) analysis. Qualitatively, DOM in oilfield produced waters is similar to that reported in oceans and freshwater, except that it contains much more sulfur and is less aromatic. Treatment studies conducted in a fluidized bed reactor suggested that volatilization of organics may be a more important mechanism of DOM removal than microbial degradation. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Quality of water and bed material in streams of Logan Township, Gloucester County, New Jersey, 1984

    USGS Publications Warehouse

    Hochreiter, J.J.; Kozinski, Jane

    1985-01-01

    The surface water and surficial-bed material at seven stations on three streams in Logan Township, Gloucester County, New Jersey, were sampled in the fall of 1984. Samples of water were analyzed for volatile organic compounds, trace metals, and organochlorine and organophosphorous compounds. Surficial-bed material was analyzed for extractable trace metals and organochlorine compounds. Water samples from two closely spaced sampling locations along Raccoon Creek contained elevated concentrations of methylene chloride (455 and 1800 micrograms/L, respectively), a volatile organic solvent. Bed-material samples taken from Little Timber and Birch Creeks contained elevated levels of trace metals and organochlorine compounds, including polychlorinated biphenyls (PCB's). Contaminant concentrations in bed-material samples taken from Raccoon Creek were much lower than those found previously by the U.S. Geological Survey in 1980. Only a trace of PCB 's was detected in any bed material sample taken from Racoon Creek. Gas chromatographic flame-ionization detector scans, performed on solvent extracts of all water and sediment samples, were useful in characterizing the presence or absence of organic contaminants in those samples. Changes in the character of organic contamination along the reaches of two streams were apparent when the fingerprints of chromatograms representing upstream sites were compared to those representing downstream sites. (Author 's abstract)

  17. Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health.

    PubMed

    Bitas, Vasileios; Kim, Hye-Seon; Bennett, Joan W; Kang, Seogchan

    2013-08-01

    Secreted proteins and metabolites play diverse and critical roles in organismal and organism-environment interactions. Volatile organic compounds (VOC) can travel far from the point of production through the atmosphere, porous soils, and liquid, making them ideal info-chemicals for mediating both short- and long-distance intercellular and organismal interactions. Critical ecological roles for animal- and plant-derived VOC in directing animal behaviors and for VOC as a language for plant-to-plant communication and regulators of various physiological processes have been well documented. Similarly, microbial VOC appear to be involved in antagonism, mutualism, intra- and interspecies regulation of cellular and developmental processes, and modification of their surrounding environments. However, the available knowledge of how microbial VOC affect other organisms is very limited. Evidence supporting diverse roles of microbial VOC with the focus on their impact on plant health is reviewed here. Given the vast diversity of microbes in nature and the critical importance of microbial communities associated with plants for their ecology and fitness, systematic exploration of microbial VOC and characterization of their biological functions and ecological roles will likely uncover novel mechanisms for controlling diverse biological processes critical to plant health and will also offer tangible practical benefits in addressing agricultural and environmental problems.

  18. Remarkable preservation of terpenoids and record of volatile signalling in plant-animal interactions from Miocene amber.

    PubMed

    Dutta, Suryendu; Mehrotra, Rakesh C; Paul, Swagata; Tiwari, R P; Bhattacharya, Sharmila; Srivastava, Gaurav; Ralte, V Z; Zoramthara, C

    2017-09-08

    Plants produce and release a large array of volatile organic compounds that play many ecological functions. These volatile plant metabolites serve as pollinator attractants, herbivore and pathogen repellents and protect plants from abiotic stresses. To date, the geological evolution of these organic compounds remains unknown. The preservation potential of these metabolites in the fossil record is very poor due to their low boiling points. Here we report a series of volatile sesquiterpenoids, including δ-elemene, α-copaene, β-elemene, β-caryophyllene, α-humulene, germacrene D, δ-cadiene and spathunenol, from early Miocene (~17 million year) amber from eastern India. The survival of these unaltered bioterpenoids can be attributed to the existence of extraordinary taphonomic conditions conducive to the preservation of volatile biomolecules through deep time. Furthermore, the occurrence of these volatiles in the early Miocene amber suggests that the plants from this period had evolved metabolic pathways to synthesize these organic molecules to play an active role in forest ecology, especially in plant-animal interactions.

  19. Reactions and mass spectra of complex particles using Aerosol CIMS

    NASA Astrophysics Data System (ADS)

    Hearn, John D.; Smith, Geoffrey D.

    2006-12-01

    Aerosol chemical ionization mass spectrometry (CIMS) is used both on- and off-line for the analysis of complex laboratory-generated and ambient particles. One of the primary advantages of Aerosol CIMS is the low degree of ion fragmentation, making this technique well suited for investigating the reactivity of complex particles. To demonstrate the usefulness of this "soft" ionization, particles generated from meat cooking were reacted with ozone and the composition was monitored as a function of reaction time. Two distinct kinetic regimes were observed with most of the oleic acid in these particles reacting quickly but with 30% appearing to be trapped in the complex mixture. Additionally, detection limits are measured to be sufficiently low (100-200 ng/m3) to detect some of the more abundant constituents in ambient particles, including sulfate, which is measured in real-time at 1.2 [mu]g/m3. To better characterize complex aerosols from a variety of sources, a novel off-line collection method was also developed in which non-volatile and semi-volatile organics are desorbed from particles and concentrated in a cold U-tube. Desorption from the U-tube followed by analysis with Aerosol CIMS revealed significant amounts of nicotine in cigarette smoke and levoglucosan in oak and pine smoke, suggesting that this may be a useful technique for monitoring particle tracer species. Additionally, secondary organic aerosol formed from the reaction of ozone with R-limonene and volatile organics from orange peel were analyzed off-line showing large molecular weight products (m/z > 300 amu) that may indicate the formation of oligomers. Finally, mass spectra of ambient aerosol collected offline reveal a complex mixture of what appears to be highly processed organics, some of which may contain nitrogen.

  20. Impacts of Microbial Growth on the Air Quality of the International Space Station

    NASA Technical Reports Server (NTRS)

    Macatangay, Ariel V.; Bruce, Rebekah J.

    2009-01-01

    An understanding of the various sources of non-methane volatile organic compounds (NMVOCs) is one facet to ensuring the habitability of crewed spacecraft. Even though the International Space Station (ISS) atmosphere is relatively well characterized in terms of what is in the atmosphere and approximately how much, linking the majority of these trace contaminants detected to their source is virtually impossible. Albeit a few of can be associated to a single source, the majority of these trace contaminants have their origins from multiple sources. On crewed spacecraft such as ISS, trace contaminants are broadly categorized as either coming from equipment, which includes systems and payloads, or from the metabolic processes of the crew members. Such widely encompassing categories clearly illustrate the difficulty in linking air contaminants to their source(s). It is well known that microbial growth in ISS can flourish if left unchecked. Although processes are in place to limit microbial growth, in reality, microbial growth has pervaded the habitable environment of ISS. This is simply a consequence of having crewed spacecraft, as humans are the largest contributor to the bioload. As with crew members, microbes also have metabolic processes which, in many ways, are comparable to human metabolism. As such, it can be expected that microbial growth can lead to the release of volatile organic compounds into the ISS atmosphere. Given a large enough microbial population, the impact to the air quality of ISS can be potentially large. A survey of the microbiology found in ISS will be presented as well as the possible types of volatile organic compounds that can result from such organisms. This will be correlated to the observations provided by ground-based analysis of ISS atmosphere samples.

  1. Impacts of Microbial Growth on the Air Quality of the International Space Station

    NASA Technical Reports Server (NTRS)

    Macatangay, Ariel V.; Bruce, Rebekah J.

    2010-01-01

    An understanding of the various sources of non-methane volatile organic compounds (NMVOCs) is one facet to ensuring the habitability of crewed spacecraft. Even though the International Space Station (ISS) atmosphere is relatively well characterized in terms of what is in the atmosphere and approximately how much, linking the majority of these trace contaminants detected to their source is virtually impossible. Albeit a few of can be associated to a single source, the majority of these trace contaminants have their origins from multiple sources. On crewed spacecraft such as ISS, trace contaminants are broadly categorized as either coming from equipment, which includes systems and payloads, or from the metabolic processes of the crew members. Such widely encompassing categories clearly illustrate the difficulty in linking air contaminants to their source(s). It is well known that microbial growth in ISS can flourish if left unchecked. Although processes are in place to limit microbial growth, in reality, microbial growth has pervaded the habitable environment of ISS. This is simply a consequence of having crewed spacecraft, as humans are the largest contributor to the bioload. As with crew members, microbes also have metabolic processes which, in many ways, are comparable to human metabolism. As such, it can be expected that microbial growth can lead to the release of volatile organic compounds into the ISS atmosphere. Given a large enough microbial population, the impact to the air quality of ISS can be potentially large. A survey of the microbiology found in ISS will be presented as well as the possible types of volatile organic compounds that can result from such organisms. This will be correlated to the observations provided by ground-based analysis of ISS atmosphere samples

  2. Malodorous volatile organic sulfur compounds: Sources, sinks and significance in inland waters.

    PubMed

    Watson, Susan B; Jüttner, Friedrich

    2017-03-01

    Volatile Organic Sulfur Compounds (VOSCs) are instrumental in global S-cycling and greenhouse gas production. VOSCs occur across a diversity of inland waters, and with widespread eutrophication and climate change, are increasingly linked with malodours in organic-rich waterbodies and drinking-water supplies. Compared with marine systems, the role of VOSCs in biogeochemical processes is far less well characterized for inland waters, and often involves different physicochemical and biological processes. This review provides an updated synthesis of VOSCs in inland waters, focusing on compounds known to cause malodours. We examine the major limnological and biochemical processes involved in the formation and degradation of alkylthiols, dialkylsulfides, dialkylpolysulfides, and other organosulfur compounds under different oxygen, salinity and mixing regimes, and key phototropic and heterotrophic microbial producers and degraders (bacteria, cyanobacteria, and algae) in these environs. The data show VOSC levels which vary significantly, sometimes far exceeding human odor thresholds, generated by a diversity of biota, biochemical pathways, enzymes and precursors. We also draw attention to major issues in sampling and analytical artifacts which bias and preclude comparisons among studies, and highlight significant knowledge gaps that need addressing with careful, appropriate methods to provide a more robust understanding of the potential effects of continued global development.

  3. Volatile Metabolites Emission by In Vivo Microalgae—An Overlooked Opportunity?

    PubMed Central

    Achyuthan, Komandoor E.; Harper, Jason C.; Manginell, Ronald P.; Moorman, Matthew W.

    2017-01-01

    Fragrances and malodors are ubiquitous in the environment, arising from natural and artificial processes, by the generation of volatile organic compounds (VOCs). Although VOCs constitute only a fraction of the metabolites produced by an organism, the detection of VOCs has a broad range of civilian, industrial, military, medical, and national security applications. The VOC metabolic profile of an organism has been referred to as its ‘volatilome’ (or ‘volatome’) and the study of volatilome/volatome is characterized as ‘volatilomics’, a relatively new category in the ‘omics’ arena. There is considerable literature on VOCs extracted destructively from microalgae for applications such as food, natural products chemistry, and biofuels. VOC emissions from living (in vivo) microalgae too are being increasingly appreciated as potential real-time indicators of the organism’s state of health (SoH) along with their contributions to the environment and ecology. This review summarizes VOC emissions from in vivo microalgae; tools and techniques for the collection, storage, transport, detection, and pattern analysis of VOC emissions; linking certain VOCs to biosynthetic/metabolic pathways; and the role of VOCs in microalgae growth, infochemical activities, predator-prey interactions, and general SoH. PMID:28788107

  4. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advancedmore » understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems.« less

  5. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review

    DOE PAGES

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; ...

    2015-12-18

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advancedmore » understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems.« less

  6. Generation of sub-part-per-billion gaseous volatile organic compounds at ambient temperature by headspace diffusion of aqueous standards through decoupling between ideal and nonideal Henry's law behavior.

    PubMed

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2013-05-21

    In the analysis of volatile organic compounds in air, the preparation of their gaseous standards at low (sub-ppb) concentration levels with high reliability is quite difficult. In this study, a simple dynamic headspace-based approach was evaluated as a means of generating vapor-phase volatile organic compounds from a liquid standard in an impinger at ambient temperature (25 °C). For a given sampling time, volatile organic compound vapor formed in the headspace was swept by bypassing the sweep gas through the impinger and collected four times in quick succession in separate sorbent tubes. In each experiment, a fresh liquid sample was used for each of the four sampling times (5, 10, 20, and 30 min) at a steady flow rate of 50 mL min(-1). The air-water partitioning at the most dynamic (earliest) sweeping stage was established initially in accord with ideal Henry's law, which was then followed by considerably reduced partitioning in a steady-state equilibrium (non-ideal Henry's law). The concentrations of gaseous volatile organic compounds, collected after the steady-state equilibrium, reached fairly constant values: for instance, the mole fraction of toluene measured at a sweeping interval of 10 and 30 min averaged 1.10 and 0.99 nmol mol(-1), respectively (after the initial 10 min sampling). In the second stage of our experiment, the effect of increasing the concentrations of liquid spiking standard was also examined by collecting sweep gas samples from two consecutive 10 min runs. The volatile organic compounds, collected in the first and second 10 min sweep gas samples, exhibited ideal and nonideal Henry's law behavior, respectively. From this observation, we established numerical relationships to predict the mole fraction (or mixing ratio) of each volatile organic compound in steady-state equilibrium in relation to the concentration of standard spiked into the system. This experimental approach can thus be used to produce sub-ppb levels of gaseous volatile organic compounds in a constant and predictable manner.

  7. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    EPA Science Inventory

    Speciated volatile organic compounds (VOCs) and organic fine particulate matter (PM2.5) mass emission factors were determined from laboratory peat fire experiments. Peat samples originated from two wildlife reserves located near the coast of North Carolina, U.S. Gas and particula...

  8. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol

    EPA Science Inventory

    Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 d...

  9. Volatility dependence of Henry's law constants of condensable organics: Application to estimate depositional loss of secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Aumont, B.; Knote, C.; Lee-Taylor, J.; Madronich, S.; Tyndall, G.

    2014-07-01

    The water solubility of oxidation intermediates of volatile organic compounds that can condense to form secondary organic aerosol (SOA) is largely unconstrained in current chemistry-climate models. We apply the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere to calculate Henry's law constants for these intermediate species. Results show a strong negative correlation between Henry's law constants and saturation vapor pressures. Details depend on precursor species, extent of photochemical processing, and NOx levels. Henry's law constants as a function of volatility are made available over a wide range of vapor pressures for use in 3-D models. In an application using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) over the U.S. in summer, we find that dry (and wet) deposition of condensable organic vapors leads to major reductions in SOA, decreasing surface concentrations by ~50% (10%) for biogenic and ~40% (6%) for short chain anthropogenic precursors under the considered volatility conditions.

  10. On the link between hygroscopicity, volatility, and oxidation state of ambient and water-soluble aerosol in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Cerully, K. M.; Bougiatioti, A.; Hite, J. R., Jr.; Guo, H.; Xu, L.; Ng, N. L.; Weber, R.; Nenes, A.

    2014-12-01

    The formation of secondary organic aerosol (SOA) combined with the partitioning of semi-volatile organic components can impact numerous aerosol properties including cloud condensation nuclei (CCN) activity, hygroscopicity and volatility. During the summer 2013 Southern Oxidant and Aerosol Study (SOAS) field campaign in a rural site in the Southeastern United States, a suite of instruments including a CCN counter, a thermodenuder (TD) and a high resolution time-of-flight aerosol mass spectrometer (AMS) were used to measure CCN activity, aerosol volatility, composition and oxidation state. Particles were either sampled directly from ambient or through a Particle Into Liquid Sampler (PILS), allowing the investigation of the water-soluble aerosol component. Ambient aerosol exhibited size-dependent composition with larger particles being more hygroscopic. The hygroscopicity of thermally-denuded aerosol was similar between ambient and PILS-generated aerosol and showed limited dependence on volatilization. Results of AMS 3-factor Positive Matrix Factorization (PMF) analysis for the PILS-generated aerosol showed that the most hygroscopic components are most likely the most and the least volatile features of the aerosol. No clear relationship was found between organic hygroscopicity and oxygen-to-carbon ratio; in fact, Isoprene organic aerosol (Isoprene-OA) was found to be the most hygroscopic factor, while at the same time being the least oxidized and likely most volatile of all PMF factors. Considering the diurnal variation of each PMF factor and its associated hygroscopicity, Isoprene-OA and More Oxidized - Oxidized Oxygenated Organic Aerosol (MO-OOA) are the prime contributors to hygroscopicity and covary with Less Oxidized - Oxidized Oxygenated Organic Aerosol (LO-OOA) in a way that induces the observed diurnal invariance in total organic hygroscopicity. Biomass Burning Organic Aerosol (BBOA) contributed little to aerosol hygroscopicity, which is expected since there was little biomass burning activity during the sampling period examined.

  11. Waterborne Diseases & Illnesses

    MedlinePlus

    ... Lead Arsenic Volatile Organic Compounds Plastics Pesticides Climate Change Climate Change Home What is Climate Change Greenhouse Gases ... Lead Arsenic Volatile Organic Compounds Plastics Pesticides Climate Change Climate Change Home What is Climate Change Greenhouse Gases ...

  12. Volatile organic compound emissions from green waste composting: Characterization and ozone formation

    NASA Astrophysics Data System (ADS)

    Kumar, Anuj; Alaimo, Christopher P.; Horowitz, Robert; Mitloehner, Frank M.; Kleeman, Michael J.; Green, Peter G.

    2011-04-01

    Composting of green waste separated from the disposed solid waste stream reduces biodegradable inputs into landfills, and contributes valuable soil amendments to agriculture. Agencies in regions with severe air quality challenges, such as California's San Joaquin Valley (SJV), have raised concerns about gases emitted during the composting process, which are suspected to contribute to persistent high levels of ground-level ozone formation. The goal of the current study is to thoroughly characterize volatile organic compound (VOC) emissions from green waste compost piles of different ages (fresh tipped piles, 3-6 day old windrows, and 2-3 week old windrows). Multiple sampling and analytical approaches were applied to ensure the detection of most gaseous organic components emitted. More than 100 VOCs were detected and quantified in this study, including aliphatic alkanes, alkenes, aromatic hydrocarbons, biogenic organics, aldehydes, ketones, alcohols, furans, acids, esters, ether, halogenated hydrocarbons and dimethyl disulfide (DMDS). Alcohols were found to be the dominating VOC in the emissions from a compost pile regardless of age, with fluxes ranging from 2.6 to 13.0 mg m -2 min -1 with the highest emissions coming from the younger composting windrows (3-6 days). Average VOC emissions other than alcohols were determined to be 2.3 mg m -2 min -1 from younger windows, which was roughly two times higher than either the fresh tipping pile (1.2 mg m -2 min -1) or the older windrows (1.4 mg m -2 min -1). It was also observed that the older windrows emit a slightly larger proportion of more reactive compounds. Approximately 90% of the total VOCs were found to have maximum incremental reactivity of less than 2. Net ozone formation potential of the emissions was also assessed.

  13. Nitrate radicals and biogenic volatile organic compounds ...

    EPA Pesticide Factsheets

    Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry–climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in

  14. Polycyclic Aromatic Hydrocarbon Sources and Trapping within Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Wallace, H. W., IV; Sanchez, N. P.; Flynn, J. H., III; Lefer, B. L.; Bottenus, C. L. H.; VanReken, T. M.; Griffin, R. J.

    2017-12-01

    As part of the BEETEX field study, which occurred from Feburary 7 to 27, 2015, a mobile air quality laboratory was stationed near a major refinery proximate to the Houston Ship Channel to characterize the chemical nature and sources of atmospheric particulate matter (PM) using a high-resolution time-of-flight mass spectrometer. Positive matrix factorization (PMF) was performed on the organic signal of the aerosol mass spectra, resulting in five factors totaling an average of 4.1 μg/m3 of organic aerosol: hydrocarbon-like (0.67 μg/m3), cooking (0.35 μg/m3), biomass burning (1.14 μg/m3), low-volatility oxidized (1.15 μg/m3), and semi-volatile oxidized (0.78 μg/m3). As part of this study, two techniques to quantify particulate polycyclic aromatic hydrocarbons (PAHs) were compared: one capable of quantifying non-refractory molecular ion PAHs and the other sensitive only to surface bound PAHs. Together with PMF model results on the non-refractory organic PM data, we show that particulate PAHs likely are trapped inside secondary organic aerosol (SOA) as it deposits onto particles and that the two major sources of PAHs in the area are from biomass burning and use of internal combustion engines. Because this SOA may prevent particle-phase consumption of the PAH material, these results have important implications for long-range transport of particulate PAHs.

  15. Compositional Signatures of Conventional, Free Range, and Organic Pork Meat Using Fingerprint Techniques.

    PubMed

    Oliveira, Gislene B; Alewijn, Martin; Boerrigter-Eenling, Rita; van Ruth, Saskia M

    2015-08-25

    Consumers' interest in the way meat is produced is increasing in Europe. The resulting free range and organic meat products retail at a higher price, but are difficult to differentiate from their counterparts. To ascertain authenticity and prevent fraud, relevant markers need to be identified and new analytical methodology developed. The objective of this pilot study was to characterize pork belly meats of different animal welfare classes by their fatty acid (Fatty Acid Methyl Ester-FAME), non-volatile compound (electrospray ionization-tandem mass spectrometry-ESI-MS/MS), and volatile compound (proton-transfer-reaction mass spectrometry-PTR-MS) fingerprints. Well-defined pork belly meat samples (13 conventional, 15 free range, and 13 organic) originating from the Netherlands were subjected to analysis. Fingerprints appeared to be specific for the three categories, and resulted in 100%, 95.3%, and 95.3% correct identity predictions of training set samples for FAME, ESI-MS/MS, and PTR-MS respectively and slightly lower scores for the validation set. Organic meat was also well discriminated from the other two categories with 100% success rates for the training set for all three analytical approaches. Ten out of 25 FAs showed significant differences in abundance between organic meat and the other categories, free range meat differed significantly for 6 out of the 25 FAs. Overall, FAME fingerprinting presented highest discrimination power.

  16. Compositional Signatures of Conventional, Free Range, and Organic Pork Meat Using Fingerprint Techniques

    PubMed Central

    Oliveira, Gislene B.; Alewijn, Martin; Boerrigter-Eenling, Rita; van Ruth, Saskia M.

    2015-01-01

    Consumers’ interest in the way meat is produced is increasing in Europe. The resulting free range and organic meat products retail at a higher price, but are difficult to differentiate from their counterparts. To ascertain authenticity and prevent fraud, relevant markers need to be identified and new analytical methodology developed. The objective of this pilot study was to characterize pork belly meats of different animal welfare classes by their fatty acid (Fatty Acid Methyl Ester—FAME), non-volatile compound (electrospray ionization-tandem mass spectrometry—ESI-MS/MS), and volatile compound (proton-transfer-reaction mass spectrometry—PTR-MS) fingerprints. Well-defined pork belly meat samples (13 conventional, 15 free range, and 13 organic) originating from the Netherlands were subjected to analysis. Fingerprints appeared to be specific for the three categories, and resulted in 100%, 95.3%, and 95.3% correct identity predictions of training set samples for FAME, ESI-MS/MS, and PTR-MS respectively and slightly lower scores for the validation set. Organic meat was also well discriminated from the other two categories with 100% success rates for the training set for all three analytical approaches. Ten out of 25 FAs showed significant differences in abundance between organic meat and the other categories, free range meat differed significantly for 6 out of the 25 FAs. Overall, FAME fingerprinting presented highest discrimination power. PMID:28231211

  17. Groundwater geochemical and selected volatile organic compound data, Operable Unit 1, Naval Undersea Warfare Center, Division Keyport, Washington, June 2011

    USGS Publications Warehouse

    Huffman, Raegan L.; Frans, L.M.

    2012-01-01

    Previous investigations indicate that concentrations of chlorinated volatile organic compounds are substantial in groundwater beneath the 9-acre former landfill at Operable Unit 1, Naval Undersea Warfare Center, Division Keyport, Washington. Phytoremediation combined with ongoing natural attenuation processes was the preferred remedy selected by the U.S. Navy, as specified in the Record of Decision for the site. The U.S. Navy planted two hybrid poplar plantations on the landfill in spring 1999 to remove and to control the migration of chlorinated volatile organic compounds in shallow groundwater. The U.S. Geological Survey has continued to monitor groundwater geochemistry to ensure that conditions remain favorable for contaminant biodegradation as specified in the Record of Decision. This report presents groundwater geochemical and selected volatile organic compound data collected at Operable Unit 1 by the U.S. Geological Survey during June 20-22, 2011, in support of long-term monitoring for natural attenuation. In 2011, groundwater samples were collected from 13 wells and 9 piezometers. Samples from all wells and piezometers were analyzed for redox sensitive constituents and dissolved gases, and samples from 5 of 13 wells and all piezometers also were analyzed for chlorinated volatile organic compounds. Concentrations of redox sensitive constituents measured in 2011 were consistent with previous years, with dissolved oxygen concentrations all at 0.4 milligram per liter or less; little to no detectable nitrate; abundant dissolved manganese, iron, and methane; and commonly detected sulfide. The reductive declorination byproducts - methane, ethane, and ethene - were either not detected in samples collected from the upgradient wells in the landfill and the upper aquifer beneath the northern phytoremediation plantation or were detected at concentrations less than those measured in 2010. Chlorinated volatile organic compound concentrations in 2011 at most piezometers were similar to or slightly less than chlorinated volatile organic compound concentrations measured in previous years. For the upper aquifer beneath the southern phytoremediation plantation, chlorinated volatile organic compound concentrations in 2011 in groundwater from the piezometers were extremely high and continued to vary considerably over space and between years. At piezometer P1-9, the total chlorinated volatile organic compound concentrations increased from 9,500 micrograms per liter in 2010 to more than 44,000 micrograms per liter in 2011. Total chlorinated volatile organic compound concentrations decreased at piezometers P1-6, P1-7, and P1-10 compared to the concentrations measured in 2010. One or both of the reductive dechlorination byproducts ethane and ethene were detected at all piezometers and three of the four wells in the southern plantation. For the intermediate aquifer, concentrations of redox sensitive constituents and chlorinated volatile organic compounds in 2011 were consistent with concentrations measured in previous years, with the exception of notable decreases in sulfate and chloride concentrations at well MW1-28. Concentrations of the reductive dechlorination byproducts ethane and ethene decreased at wells MW1-25 and MW1-28 compared to previously measured concentrations.

  18. Characterization of organics, microorganisms, desert soils, and Mars-like soils by thermal volatilization coupled to mass spectrometry and their implications for the search for organics on Mars by Phoenix and future space missions.

    PubMed

    Navarro-González, Rafael; Iñiguez, Enrique; de la Rosa, José; McKay, Christopher P

    2009-10-01

    A key goal for astrobiology is the search for evidence of life on Mars. Because liquid water is a fundamental environmental requirement for life, the recent set of missions to Mars have focused on a strategy known as "follow the water." Since life is made of organic molecules, a logical next step is "follow the organics." However, organics are expected to be present at very low levels on Mars, which would make their detection challenging. Viking was unable to detect organics at parts per billion (ppb), but the effective upper limit could be higher due to the low efficiency of the thermal volatilization (TV) step in releasing organics. Due to its ease of use, TV is still the method selected for current and future NASA and ESA missions. Here, we show that when organics are present in the soil at levels above 1500 parts per million (ppm), there are several characteristic organic fragments detected by TV-mass spectrometry; however, when the levels are below <150 ppm, TV oxidizes them, and no organic fragments are released. Instead, nitric oxide (NO) is produced and can be used to determine quantitatively the organic content if the C/N ratio is determined. Any atmospheric NO sorbed or mineral nitrogen (e.g., nitrates) present in the soil would release NO by TV at distinctive temperature regimes that would not overlap with the organic nitrogen source. Therefore, we suggest that monitoring NO provides the best chance for Phoenix and other future Mars missions to detect nitrogen-containing organics in the soil or ice.

  19. Experimental Measurements of the Effects of Photo-chemical Oxidation on Aerosol Emissions in Aircraft Exhaust

    NASA Astrophysics Data System (ADS)

    Miracolo, M. A.; Presto, A. A.; Hennigan, C. J.; Nguyen, N.; Ranjan, M.; Reeder, A.; Lipsky, E.; Donahue, N. M.; Robinson, A. L.

    2009-12-01

    Many military and commercial airfields are located in non-attainment areas for particulate matter (PM2.5), but the contribution of emissions from in-use aircraft to local and regional PM2.5 concentrations is uncertain. In collaboration with the Pennsylvania Air National Guard 171st Air Refueling Wing, the Carnegie Mellon University (CMU) Mobile Laboratory was deployed to measure fresh and aged emissions from a CFM56-2B1 gas-turbine engine mounted on a KC-135 Stratotanker airframe. The CFM-56 family of engine powers many different types of military and civilian aircraft, including the Boeing 737 and several Airbus models. It is one of the most widely deployed models of engines in the world. The goal of this work was to measure the gas-particle partitioning of the fresh emissions at atmospherically relevant conditions and to investigate the effect of atmospheric oxidation on aerosol loadings as the emissions age. Emissions were sampled from an inlet installed one meter downstream of the engine exit plane and transferred into a portable smog chamber via a heated inlet line. Separate experiments were conducted at different engine loads ranging from ground idle to take-off rated thrust. During each experiment, some diluted exhaust was added to the chamber and the volatility of the fresh emissions was then characterized using a thermodenuder. After this characterization, the chamber was exposed to either ambient sunlight or UV lights to initiate photochemical oxidation, which produced secondary aerosol and ozone. A suite of gas and particle-phase instrumentation was used to characterize the evolution of the gas and particle-phase emissions, including an aerosol mass spectrometer (AMS) to measure particle size and composition distributions. Fresh emissions of fine particles varied with engine load with peak emission factors at low and high loads. At high engine loads, the fresh emissions were dominated by black carbon; at low loads volatile organic carbon emissions were dominant. At low loads, photo-oxidation increased aerosol loadings in the chamber by a factor of fifty. We attribute this substantial secondary organic aerosol (SOA) production to oxidation of low-volatility organic vapors emitted under low loads. At higher loads, we see more modest secondary aerosol production from both organics and inorganics. Therefore secondary aerosol production can substantially exceed the direct aerosol emissions from aircraft. The results underscore the dramatic effects that photo-oxidation has on aerosol emissions from aircraft.

  20. SITE TECHNOLOGY CAPSULE: ZENOGEM™ WASTEWATER TREATMENT PROCESS

    EPA Science Inventory

    Zenon Environmental System's ZenoGem™ Wastewater Treatment Process treats aqueous media contaminated with volatile/semi-volatile organic compounds. This technology combines aerobic biological treatment to remove biodegradable organic compounds with ultrafiltration to separate res...

  1. Indoor Semi-volatile Organic Compounds (i-SVOC) Version 1.0

    EPA Pesticide Factsheets

    i-SVOC Version 1.0 is a general-purpose software application for dynamic modeling of the emission, transport, sorption, and distribution of semi-volatile organic compounds (SVOCs) in indoor environments.

  2. Arsenic (Environmental Health Student Portal)

    MedlinePlus

    ... Lead Arsenic Volatile Organic Compounds Plastics Pesticides Climate Change Climate Change Home What is Climate Change Greenhouse Gases ... Lead Arsenic Volatile Organic Compounds Plastics Pesticides Climate Change Climate Change Home What is Climate Change Greenhouse Gases ...

  3. Architectural Coatings: National Volatile Organic Compounds Emission Standards

    EPA Pesticide Factsheets

    Read about the section 183(e) rule for volatile organic compounds for architectural coatings. Read the rule summary and history, find the code of federal regulations test, and additional documents, including compliance information.

  4. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or operator... (other than a condenser) on a magnetic tape coating operation shall control emissions from the coating...

  5. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or operator... (other than a condenser) on a magnetic tape coating operation shall control emissions from the coating...

  6. Characterization of Emissions of Volatile Organic Compounds from Interior Alkyd Paint.

    PubMed

    Fortmann, Roy; Roache, Nancy; Chang, John C S; Guo, Zhishi

    1998-10-01

    Alkyd paint continues to be used indoors for application to wood trim, cabinet surfaces, and some kitchen and bathroom walls. Alkyd paint may represent a significant source of volatile organic compounds (VOCs) indoors because of the frequency of use and amount of surface painted. The U.S. Environmental Protection Agency (EPA) is conducting research to characterize VOC emissions from paint and to develop source emission models that can be used for exposure assessment and risk management. The technical approach for this research involves both analysis of the liquid paint to identify and quantify the VOC contents and dynamic small chamber emissions tests to characterize the VOC emissions after application. The predominant constituents of the primer and two alkyd paints selected for testing were straight-chain alkanes (C9-C12); C8-C9 aromatics were minor constituents. Branched chain alkanes were the predominant VOCs in a third paint. A series of tests were performed to evaluate factors that may affect emissions following application of the coatings. The type of substrate (glass, wallboard, or pine board) did not have a substantial impact on the emissions with respect to peak concentrations, the emissions profile, or the amount of VOC mass emitted from the paint. Peak concentrations of total volatile organic compounds (TVOCs) as high as 10,000 mg/m 3 were measured during small chamber emissions tests at 0.5 air exchanges per hour (ACH). Over 90% of the VOCs were emitted from the primer and paints during the first 10 hr following application. Emissions were similar from paint applied to bare pine board, a primed board, or a board previously painted with the same paint. The impact of other variables, including film thickness, air velocity at the surface, and air-exchange rate (AER) were consistent with theoretical predictions for gas-phase, mass transfer-controlled emissions. In addition to the alkanes and aromatics, aldehydes were detected in the emissions during paint drying. Hexanal, the predominant aldehyde in the emissions, was not detected in the liquid paint and was apparently an oxidation product formed during drying. This paper summarizes the results of the product analyses and a series of small chamber emissions tests. It also describes the use of a mass balance approach to evaluate the impact of test variables and to assess the quality of the emissions data.

  7. Characterization of emissions of volatile organic compounds from interior alkyd paint.

    PubMed

    Fortmann, R; Roache, N; Chang, J C; Guo, Z

    1998-10-01

    Alkyd paint continues to be used indoors for application to wood trim, cabinet surfaces, and some kitchen and bathroom walls. Alkyd paint may represent a significant source of volatile organic compounds (VOCs) indoors because of the frequency of use and amount of surface painted. The U.S. Environmental Protection Agency (EPA) is conducting research to characterize VOC emissions from paint and to develop source emission models that can be used for exposure assessment and risk management. The technical approach for this research involves both analysis of the liquid paint to identify and quantify the VOC contents and dynamic small chamber emissions tests to characterize the VOC emissions after application. The predominant constituents of the primer and two alkyd paints selected for testing were straight-chain alkanes (C9-C12); C8-C9 aromatics were minor constituents. Branched chain alkanes were the predominant VOCs in a third paint. A series of tests were performed to evaluate factors that may affect emissions following application of the coatings. The type of substrate (glass, wallboard, or pine board) did not have a substantial impact on the emissions with respect to peak concentrations, the emissions profile, or the amount of VOC mass emitted from the paint. Peak concentrations of total volatile organic compounds (TVOCs) as high as 10,000 mg/m3 were measured during small chamber emissions tests at 0.5 air exchanges per hour (ACH). Over 90% of the VOCs were emitted from the primer and paints during the first 10 hr following application. Emissions were similar from paint applied to bare pine board, a primed board, or a board previously painted with the same paint. The impact of other variable, including film thickness, air velocity at the surface, and air-exchange rate (AER) were consistent with theoretical predictions for gas-phase, mass transfer-controlled emissions. In addition to the alkanes and aromatics, aldehydes were detected in the emissions during paint drying. Hexanal, the predominant aldehyde in the emissions, was not detected in the liquid paint and was apparently an oxidation product formed during drying. This paper summarizes the results of the product analyses and a series of small chamber emissions tests. It also describes the use of a mass balance approach to evaluate the impact of test variables and to assess the quality of the emissions data.

  8. Environmental Aspects of Two Volatile Organic Compound Groundwater Treatment Designs at the Rocky Flats Site - 13135

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalski, Casey C.; DiSalvo, Rick; Boylan, John

    2013-07-01

    DOE's Rocky Flats Site in Colorado is a former nuclear weapons production facility that began operations in the early 1950's. Because of releases of hazardous substances to the environment, the federally owned property and adjacent offsite areas were placed on the CERCLA National Priorities List in 1989. The final remedy was selected in 2006. Engineered components of the remedy include four groundwater treatment systems that were installed before closure as CERCLA-accelerated actions. Two of the systems, the Mound Site Plume Treatment System and the East Trenches Plume Treatment System, remove low levels of volatile organic compounds using zero-valent iron media,more » thereby reducing the loading of volatile organic compounds in surface water resulting from the groundwater pathway. However, the zero-valent iron treatment does not reliably reduce all volatile organic compounds to consistently meet water quality goals. While adding additional zero-valent iron media capacity could improve volatile organic compound removal capability, installation of a solar powered air-stripper has proven an effective treatment optimization in further reducing volatile organic compound concentrations. A comparison of the air stripper to the alternative of adding additional zero-valent iron capacity to improve Mound Site Plume Treatment System and East Trenches Plume Treatment System treatment based on several key sustainable remediation aspects indicates the air stripper is also more 'environmentally friendly'. These key aspects include air pollutant emissions, water quality, waste management, transportation, and costs. (authors)« less

  9. Metal organic frameworks as sorption media for volatile and semi-volatile organic compounds at ambient conditions

    PubMed Central

    Vellingiri, Kowsalya; Szulejko, Jan E.; Kumar, Pawan; Kwon, Eilhann E.; Kim, Ki-Hyun; Deep, Akash; Boukhvalov, Danil W.; Brown, Richard J. C.

    2016-01-01

    In this research, we investigated the sorptive behavior of a mixture of 14 volatile and semi-volatile organic compounds (four aromatic hydrocarbons (benzene, toluene, p-xylene, and styrene), six C2-C5 volatile fatty acids (VFAs), two phenols, and two indoles) against three metal-organic frameworks (MOFs), i.e., MOF-5, Eu-MOF, and MOF-199 at 5 to 10 mPa VOC partial pressures (25 °C). The selected MOFs exhibited the strongest affinity for semi-volatile (polar) VOC molecules (skatole), whereas the weakest affinity toward was volatile (non-polar) VOC molecules (i.e., benzene). Our experimental results were also supported through simulation analysis in which polar molecules were bound most strongly to MOF-199, reflecting the presence of strong interactions of Cu2+ with polar VOCs. In addition, the performance of selected MOFs was compared to three well-known commercial sorbents (Tenax TA, Carbopack X, and Carboxen 1000) under the same conditions. The estimated equilibrium adsorption capacity (mg.g−1) for the all target VOCs was in the order of; MOF-199 (71.7) >Carboxen-1000 (68.4) >Eu-MOF (27.9) >Carbopack X (24.3) >MOF-5 (12.7) >Tenax TA (10.6). Hopefully, outcome of this study are expected to open a new corridor to expand the practical application of MOFs for the treatment diverse VOC mixtures. PMID:27324522

  10. Recovery of several volatile organic compounds from simulated water samples: Effect of transport and storage

    USGS Publications Warehouse

    Friedman, L.C.; Schroder, L.J.; Brooks, M.G.

    1986-01-01

    Solutions containing volatile organic compounds were prepared in organic-free water and 2% methanol and submitted to two U.S. Geological Survey laboratories. Data from the determination of volatile compounds in these samples were compared to analytical data for the same volatile compounds that had been kept in solutions 100 times more concentrated until immediately before analysis; there was no statistically significant difference in the analytical recoveries. Addition of 2% methanol to the storage containers hindered the recovery of bromomethane and vinyl chloride. Methanol addition did not enhance sample stability. Further, there was no statistically significant difference in results from the two laboratories, and the recovery efficiency was more than 80% in more than half of the determinations made. In a subsequent study, six of eight volatile compounds showed no significant loss of recovery after 34 days.

  11. Site characterization and qualitative human risk assessment for the Walter Reed Army Institute of Research Building Site, Forest Glen, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, W.; Nashold, B.; Meshkov, N.K.

    1990-07-01

    The proposed eight-acre building site for the Walter Reed Army Institute of Research (WRAIR) facility is a former uncontrolled landfill. As a prerequisite to foundation design and to formulation of an excavation plan, it was necessary to characterize the landfill materials and to conduct a qualitative human risk assessment. Chemical analysis of surface-water, groundwater, and landfill soils followed the analytical protocol promulgated under the US Environmental Protection Agency's (EPA's) Contract Laboratory Program for its Target Compound List of contaminants. This protocol was used to determine concentrations of volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs) polychlorinated biphenyls (PCBs)/pesticides, inorganic compounds,more » radioactive materials, asbestos, and many of the metals analyzed. 49 refs., 19 figs., 24 tabs.« less

  12. Characterization of Botanical and Geographical Origin of Corsican “Spring” Honeys by Melissopalynological and Volatile Analysis

    PubMed Central

    Yang, Yin; Battesti, Marie-José; Costa, Jean; Paolini, Julien

    2014-01-01

    Pollen spectrum, physicochemical parameters and volatile fraction of Corsican “spring” honeys were investigated with the aim of developing a multidisciplinary method for the qualification of honeys in which nectar resources are under-represented in the pollen spectrum. Forty-one Corsican “spring” honeys were certified by melissopalynological analysis using directory and biogeographical origin of 50 representative taxa. Two groups of honeys were distinguished according to the botanical origin of samples: “clementine” honeys characterized by the association of cultivated species from oriental plain and other “spring” honeys dominated by wild herbaceous taxa from the ruderal and/or maquis area. The main compounds of the “spring” honey volatile fraction were phenylacetaldehyde, benzaldehyde and methyl-benzene. The volatile composition of “clementine” honeys was also characterized by three lilac aldehyde isomers. Statistical analysis of melissopalynological, physicochemical and volatile data showed that the presence of Citrus pollen in “clementine” honeys was positively correlated with the amount of linalool derivatives and methyl anthranilate. Otherwise, the other “spring” honeys were characterized by complex nectariferous species associations and the content of phenylacetaldehyde and methyl syringate. PMID:28234308

  13. Soil sampling kit and a method of sampling therewith

    DOEpatents

    Thompson, Cyril V.

    1991-01-01

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allow an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds.

  14. Soil sampling kit and a method of sampling therewith

    DOEpatents

    Thompson, C.V.

    1991-02-05

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allows an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds. 11 figures.

  15. Analysis of selected volatile organic compounds at background level in South Africa.

    NASA Astrophysics Data System (ADS)

    Ntsasa, Napo; Tshilongo, James; Lekoto, Goitsemang

    2017-04-01

    Volatile organic compounds (VOC) are measured globally at urban air pollution monitoring and background level at specific locations such as the Cape Point station. The urban pollution monitoring is legislated at government level; however, the background levels are scientific outputs of the World Meteorological Organisation Global Atmospheric Watch program (WMO/GAW). The Cape Point is a key station in the Southern Hemisphere which monitors greenhouse gases and halocarbons, with reported for over the past decade. The Cape Point station does not have the measurement capability VOC's currently. A joint research between the Cape Point station and the National Metrology Institute of South Africa (NMISA) objective is to perform qualitative and quantitative analysis of volatile organic compounds listed in the GAW program. NMISA is responsible for development, maintain and disseminate primary reference gas mixtures which are directly traceable to the International System of Units (SI) The results of some volatile organic compounds which where sampled in high pressure gas cylinders will be presented. The analysis of samples was performed on the gas chromatography with flame ionisation detector and mass selective detector (GC-FID/MSD) with a dedicate cryogenic pre-concentrator system. Keywords: volatile organic compounds, gas chromatography, pre-concentrator

  16. 77 FR 1417 - Partial Approval and Partial Disapproval of Air Quality Implementation Plans; California; San...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-10

    ... following three rules identified under group 4: 1. Rule 4566--Organic Material Composting Operations... Volatile Organic Compound Regulations--California Department of Pesticide Regulation--submitted August 2... from VOC control requirements, while the CTG for this source category (``Control of Volatile Organic...

  17. 40 CFR 52.1783 - Original identification of plan section.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Residual Oil Burners 15 NCAC 2D.0902, Applicability (Volatile Organic Compounds) 15 NCAC 2H.0603... or Residual Oil Burners 15 NCAC 2D.0939, Determination of Volatile Organic Compound Emissions (B) The... 2D.0943, Synthetic Organic Chemical and Polymer Manufacturing 15 NCAC 2D.0944, Manufacturing of...

  18. 40 CFR 63.827 - Performance test methods.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... means of a monthly liquid-liquid material balance. (b) Determination of the weight fraction organic HAP... organic volatile matter concentration of 50 parts per million by volume (ppmv) or less as carbon is... gas organic volatile matter concentrations of 50 ppmv or less as carbon, or (C) Because of the high...

  19. 40 CFR 63.827 - Performance test methods.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... means of a monthly liquid-liquid material balance. (b) Determination of the weight fraction organic HAP... organic volatile matter concentration of 50 parts per million by volume (ppmv) or less as carbon is... gas organic volatile matter concentrations of 50 ppmv or less as carbon, or (C) Because of the high...

  20. 40 CFR 63.3541 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... matter collection and recovery efficiency to the mass of organic HAP contained in the coatings and... cumulative amount of volatile organic matter recovered by the solvent recovery system each month. (2) For each solvent recovery system, determine the mass of volatile organic matter recovered for the month, kg...

  1. 40 CFR 63.3541 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... matter collection and recovery efficiency to the mass of organic HAP contained in the coatings and... cumulative amount of volatile organic matter recovered by the solvent recovery system each month. (2) For each solvent recovery system, determine the mass of volatile organic matter recovered for the month, kg...

  2. EPA Air Method, Toxic Organics - 15 (TO-15): Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS)

    EPA Pesticide Factsheets

    Method T)-15 describes procedures for for preparation and analysis of air samples containing volatile organic compounds collected in specially-prepared canisters, using gas chromatography-mass spectrometry.

  3. 77 FR 38761 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compounds; Consumer Products AGENCY... organic compound (VOC) emissions limits and other restrictions on consumer products that are sold... this proposed rule. EPA will not institute a second comment period. Any parties interested in...

  4. EMERGING TECHNOLOGY BULLETIN: VOLATILE ORGANIC COMPOUND REMOVAL FROM AIR STREAMS BY MEMBRANES SEPARATION MEMBRANE TECHNOLOGY AND RESEARCH, INC.

    EPA Science Inventory

    This membrane separation technology developed by Membrane Technology and Research (MTR), Incorporated, is designed to remove volatile organic compounds (VOCs) from contaminated air streams. In the process, organic vapor-laden air contacts one side of a membrane that is permeable ...

  5. MOMA and other next-generation ion trap mass spectrometers for planetary exploration

    NASA Astrophysics Data System (ADS)

    Arevalo, R. D., Jr.; Brinckerhoff, W. B.; Getty, S.; Mahaffy, P. R.; van Amerom, F. H. W.; Danell, R.; Pinnick, V. T.; Li, X.; Grubisic, A.; Southard, A. E.; Hovmand, L.; Cottin, H.; Makarov, A.

    2016-12-01

    Since the 1970's, quadrupole mass spectrometer (QMS) systems have served as low-risk, cost-efficient means to explore the inner and outer reaches of the solar system. These legacy instruments have interrogated the compositions of the lunar exosphere (LADEE), surface materials on Mars (MSL), and the atmospheres of Venus (Pioneer Venus), Mars (MAVEN) and outer planets (Galileo and Cassini-Huygens). However, the in situ detection of organic compounds on Mars and Titan, coupled with ground-based measurements of amino acids in meteorites and a variety of organics in comets, has underlined the importance of molecular disambiguation in the characterization of high-priority planetary environments. The Mars Organic Molecule Analyzer (MOMA) flight instrument, centered on a linear ion trap, enables the in situ detection of volatile and non-volatile organics, but also the characterization of molecular structures through SWIFT ion isolation/excitation and tandem mass spectrometry (MSn). Like the SAM instrument on MSL, the MOMA investigation also includes a gas chromatograph (GC), thereby enabling the chemical separation of potential isobaric interferences based on retention times. The Linear Ion Trap Mass Spectrometer (LITMS; PI: William Brinckerhoff), developed to TRL 6 via the ROSES MatISSE Program, augments the core MOMA design and adds: expanded mass range (from 20 - 2000 Da); high-temperature evolved gas analysis (up to 1300°C); and, dual polarity detector assemblies (supporting the measurement of negative ions). The LITMS instrument will be tested in the field in 2017 through the Atacama Rover Astrobiology Drilling Studies (ARADS; PI: Brian Glass) ROSES PSTAR award. Following on these advancements, the Advanced Resolution Organic Molecule Analyzer (AROMA; PI: Ricardo Arevalo Jr.), supported through the ROSES PICASSO Program, combines a highly capable MOMA/LITMS-like linear ion trap and the ultrahigh resolution CosmOrbitrap mass analyzer developed by a consortium of five French laboratories. Phase I of this project has seen the development of a dedicated testbed that enables performance characterization of an Orbitrap analyzer as a function of compromised environmental conditions, simulating the reduced resources expected for planetary missions to small bodies and/or cryogenic worlds.

  6. Metabolomics Characterization of U.S. and Japanese F-15 and C-130 Flight Line Crews Exposed to Jet Fuel Volatile Organic Compounds and Aerosols

    DTIC Science & Technology

    2014-09-30

    resulted in the identification of metabolite patterns indicative of flight line exposure when compared to non -flight line control subjects...virtually non -invasive sample collection, minimal sample processing, robust and stable analytical platform, with excellent analytical and biological...identification of metabolite patterns indicative of flight line exposure when compared to non -flight line control subjects. Regardless of fuel (JP-4 or

  7. Characterizations of volatile organic compounds (VOCs) from vehicular emissions at roadside environment: The first comprehensive study in Northwestern China

    NASA Astrophysics Data System (ADS)

    Li, Bowei; Ho, Steven Sai Hang; Xue, Yonggang; Huang, Yu; Wang, Liqin; Cheng, Yan; Dai, Wenting; Zhong, Haobin; Cao, Junji; Lee, Shuncheng

    2017-07-01

    Vehicular emission (VE) is one of the important anthropogenic sources for ground-level volatile organic compounds (VOCs) in both urban and suburban areas. A first comprehensive campaign was conducted at an urban roadside in Xi'an, China in summer, 2016. A total of 57 VOCs, as known as critical surface ozone (O3) precursors, and other trace gases were measured simultaneously during the sampling period. Iso-pentane, a tracer of gasoline evaporation, was the most abundant VOC in the roadside samples, followed by isobutane and benzene, attributed to the largest composition (∼70%) of gasoline-fueled vehicles on the road. The molar ratio of toluene/benzene (T/B) in our study (0.36) is far lower than the range reported in other cities, indicating the stronger contributions from diesel emissions. The results of source apportionment achieved with positive matrix factorization (PMF) receptor model were highly consistent with the vehicles compositions, strongly evidenced that the precise characterization of the VE sources from those marker species. The degrees of individual compound contributed to O3 production were weighed by ozone formation potential (OFP). Propylene (20%), 1-butene (11%) and iso-pentane(10%) were the top three contributors at the roadside. The information of this study complements the VOCs database regarding to the VE sources in Northwestern China.

  8. Characterization the potential of biochar from cow and pig manure for geoecology application

    NASA Astrophysics Data System (ADS)

    Gunamantha, I. M.; Widana, G. A. B.

    2018-03-01

    Biochar is a solid product generated from the carbonization of biomass with various potential benefits. The utilisation of biochar should be adapted to its characteristic which is mainly influenced by its feedstock. In this study, cow and pig manure biochar generated by a conventional process, were characterized by its physical and chemical analysis and its potential to be used as soil amendment. For this purpose, several main parameters were analyzed: organic carbon, Nutrient (total-N, available P and K) status, Cation Exchange Capacity (CEC), proximate data analysis (moisture content, ash, volatile matter and fixed carbon) and its ash composition. The comparison between biochar and feedstock will be based on these parameters. The results of this study show that the organic carbon, available P, ash, and fixed carbon content of pig-manure biochar is higher than cow manure-derived biochar; while total-N, available K, CEC and volatile matter is lower. On its ash composition, the pig manure-derived biochar is dominated by SiO2, Al2O3, Fe2O3, P2O5, and CaO while the cow manure-derived biochar is dominated by SiO2, CaO, Al2O3, K2O, and P2O5. However, both biochar show potential for improving soil quality and reducing carbon emission from animal manure.

  9. TOXIC ORGANIC VOLATILIZATION FROM LAND TREATMENT SYSTEMS

    EPA Science Inventory

    Methodology was evaluated for estimating volatilization of toxic organic chemicals from unsaturated soils. Projections were compared with laboratory data for simulated rapid infiltration wastewater treatment systems receiving primary municipal wastewater spiked with a suite of 18...

  10. VOLATILE ORGANIC COMPOUNDS AS EXPOSURE BIOMARKERS

    EPA Science Inventory

    Alveolar breath sampling and analysis can be extremely useful in exposure assessment studies involving volatile organic compounds (VOCs). Over recent years scientists from the US Environmental Protection Agency's National Exposure Research Laboratory have developed and refined...

  11. Anaerobic digestion of municipal solid waste composed of food waste, wastepaper, and plastic in a single-stage system: performance and microbial community structure characterization.

    PubMed

    Wan, Shungang; Sun, Lei; Douieb, Yaniv; Sun, Jian; Luo, Wensui

    2013-10-01

    The performance of municipal organic solid waste anaerobic digestion was investigated using a single-stage bioreactor, and the microbial community structures were characterized during the digestion. The results showed that the biogas and methane production rates were 592.4 and 370.1L/kg with volatile solid added at the ratio of 2:1:1 for food waste, wastepaper, and plastic based on dry weight. The methane volume concentration fluctuated between 44.3% and 75.4% at steady stage. Acetic acid, propionic acid, and butyric acid were the major volatile fatty acids produced during the digestion process. The anaerobic process was not inhibited by the accumulation of ammonia and free ammonia. The bacterial community was found to consist of at least 21 bands of bacteria and 12 bands of archaea at the steady state. All of the results indicated that the mixture of food waste, wastepaper, and plastic could be efficiently co-digested using the anaerobic digestion system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Measurements of particulate semi-volatile material

    NASA Astrophysics Data System (ADS)

    Pang, Yanbo

    2000-10-01

    A new innovative sampling system, PC-BOSS, was developed by the combination of particle concentrator and BOSS denuder techniques in response to the new EPA PM2.5 standard and to meet top research priorities for particulate matter that were identified by the National Research Council. The PC-BOSS (P_article C_oncentrator- B_righam Young University O_rganic S_ampling S_ystem) can accurately determine not only PM2.5 stable mass and species such as sulfate, but also particulate semi- volatile material. Several field comparison studies of the PC-BOSS with the EPA PM2.5 reference method and state-of-the-art fine particle measurement methods confirm the capability of the PC-BOSS to accurately determine particulate semi-volatile material, especially organic compounds. This is the first routine sampling system for the determination of both particulate semi-volatile inorganic and organic material. Two other denuder system samplers for the determination of PM2.5 total mass including semi-volatile material were also developed for PM2.5 research and exposure monitoring. Results of studies around the United States indicate that the EPA PM2.5 FRM (Federal Reference Method) under- measured PM2.5 mass by 20-30% compared to PC-BOSS results due to the loss of particulate nitrate and semi-volatile organic compounds during sampling. Organic material is mostly responsible for this under- measurement by the FRM. Using our new sampling system in epidemiological and exposure studies will be essential to providing answers to some top research priorities for particulate matter and promote a better PM2.5 standard for the protection of human health because some fractions of particulate semi-volatile organic compounds are toxic and are possibly responsible for health effects associated with exposure to particulate matter. The atmospheric chemistry of organic aerosols in the troposphere and stratosphere is still largely unknown because of the lack of detailed organic aerosol information. The importance of organic aerosols might also be underestimated because current data on organic aerosols in the troposphere and stratosphere were mostly obtained by traditional methods, like the FRM method. Using PC-BOSS to study organic aerosols in the troposphere and stratosphere will provide not only more but also more accurate information about organic aerosols, and significantly improve the understanding of the role of aerosols in global warming, ozone depletion, and atmospheric heterogenous chemistry.

  13. Volatile organic compounds (VOCs) from biomass burning: GC-MS analysis of primary combustion emissions of fuels common to North America

    NASA Astrophysics Data System (ADS)

    Gilman, J.; De Gouw, J. A.; Coggon, M.; Koss, A.; Lerner, B. M.; Roberts, J. M.; Selimovic, V.; Sekimoto, K.; Yokelson, R. J.; Yuan, B.; Warneke, C.

    2017-12-01

    Biomass burning (BB), both natural and human-caused, is a significant source of atmospheric gases and particles. Combustion of biomass releases a complex variety of carbon-containing gases called volatile organic compounds (VOCs) that may adversely affect air quality and climate. Here we present results from the first phase of Fire Influence on Regional and Global Environments Experiment (FIREX) that was conducted at the USDA Fire Sciences Laboratory in Missoula, Montana in the fall of 2016. The goal of these laboratory experiments were to measure primary combustion emissions of fuels common to Northwestern U.S. and Canada using a variety of state-of-the-art analytical instrumentation. The data presented here utilizes a custom-built gas chromatography - mass spectrometry (GC-MS) instrument to characterize C2-C12 VOCs via in-situ sampling as well as offline analysis of diluted smoke samples stored in electropolished stainless steel whole air samplers (WAS). This analysis focuses on identifying VOCs that are (i) biomass burning and/or fuel-specific tracers, (ii) air toxics and (iii) highly-reactive VOCs that are potential precursors for photochemical ozone and/or organic aerosol formation. Of particular interest, is the identification and characterization of VOC tracers that may be useful for biomass burning specific photochemical clocks such as furan and nitrile-based molecules. Comparison of concurrently collected in-situ and whole air samples of diluted smoke will be used to identify potential sampling artefacts associated with WAS intended for use in the upcoming FIREX NOAA WP-3D research flights in 2019.

  14. Characterization of volatile compounds responsible for the aroma in naturally fermented sausages by gas chromatography-olfactometry.

    PubMed

    Olivares, Alicia; Navarro, José Luis; Flores, Mónica

    2015-03-01

    The objective of this study was to characterize naturally fermented dry sausages produced without the use of microbial starters and to determine which odour-active compounds are responsible for their aroma. The traditional manufacture was responsible for different chemical characteristics and consumer's acceptance. The volatile compounds detected in the headspace comprised a complex mixture of volatile compounds derived from bacterial metabolism (mainly esterase activity of Staphyloccoci), spices and lipid auto-oxidation. The odour-active volatile compounds were identified using gas chromatography coupled to olfactometry (GC-O) using the detection frequency method. The aroma profile was characterized by the presence of several compounds such as acetic acid, ethyl butanoate, hexanal, methional, 1-octen-3-ol, benzeneacetaldehyde and 4-methyl-phenol. However, naturally fermented sausages were also characterized by numerous esters, both ethyl and methyl esters, which impart a wide variety of fruity notes. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  15. Fact Sheets for the Architectural Coating Rule for Volatile Organic Compounds

    EPA Pesticide Factsheets

    This page contains an August 1998 fact sheet with information regarding the National Volatile Organic Compounds Emission Standards for Architectural Coatings Rule. This page also contains information on applicability and compliance for this rule.

  16. Nanostructuring on zinc phthalocyanine thin films for single-junction organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhary, Dhirendra K.; Kumar, Lokendra, E-mail: lokendrakr@allduniv.ac.in

    2016-05-23

    Vertically aligned and random oriented crystalline molecular nanorods of organic semiconducting Zinc Phthalocyanine (ZnPc) have been grown on ITO coated glass substrate using solvent volatilization method. Interesting changes in surface morphology were observed under different solvent treatment. Vertically aligned nanorods of ZnPc thin film were observed in the films treated with acetone, where as the random oriented nanorods were observed in the films treated with chloroform. The X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) have been used for characterization of nanostructures. The optical properties of the nanorods have been investigated by UV-Vis. absorption spectroscopy.

  17. Monitoring the emission of volatile organic compounds from flowers of Jasminum sambac using solid-phase micro-extraction fibers and gas chromatography with mass spectrometry detection.

    PubMed

    Pragadheesh, Vppalayam Shanmugam; Yadav, Anju; Chanotiya, Chandan Singh; Rout, Prasanta Kumar; Uniyal, Girish Chandra

    2011-09-01

    Solid-phase micro-extraction (SPME) was studied as a solvent free alternative method for the extraction and characterization of volatile compounds in intact and plucked flowers of Jasminum sambac at different day time intervals using gas chromatography (GC-FID) and gas chromatography-quadrupole mass spectrometry. The analytes identified included alcohols, esters, phenolic compounds, and terpenoids. The main constituents identified in the flower aroma using different fibers were cis-3-hexenyl acetate, (E)-beta-ocimene, linalool, benzyl acetate, and (E,E)-alpha-farnesene. The benzyl acetate proportion decreased from morning to afternoon and then increased in evening collections. PDMS fiber showed a high proportion of (E,E)-alpha-farnesene in jasmine floral aroma. Among other constituents identified, cis-3-hexenyl acetate, linalool, and benzyl acetate were major aroma contributors in plucked and living flowers extracts using PDMS/DVB, Carboxen/PDMS, and DVB/Carboxen/PDMS fibers. PDMS/DVB recorded the highest emission for benzyl acetate while the (E)-beta-ocimene proportion was highest in DVB/Carboxen/PDMS when compared with the rest. The highest linalool content, with increasing proportion from morning to noon, was found using mixed coating fibers. Almost negligible volatile adsorption was recorded for the polyacrylate fiber for intact flower aroma, whereas it was most effective for benzyl acetate, followed by indole under plucked conditions. Moreover, the highest amounts extracted, evaluated from the sum of peak areas, were achieved using Carboxen/PDMS, and DVB/Carboxen/PDMS. Introduction of a rapid, and solvent free SPME method for the analysis of multicomponent volatiles can be successfully employed to monitor the extraction and characterization of flower aroma constituents.

  18. Volatile organic compounds: sampling methods and their worldwide profile in ambient air.

    PubMed

    Kumar, Anuj; Víden, Ivan

    2007-08-01

    The atmosphere is a particularly difficult analytical system because of the very low levels of substances to be analysed, sharp variations in pollutant levels with time and location, differences in wind, temperature and humidity. This makes the selection of an efficient sampling technique for air analysis a key step to reliable results. Generally, methods for volatile organic compounds sampling include collection of the whole air or preconcentration of samples on adsorbents. All the methods vary from each other according to the sampling technique, type of sorbent, method of extraction and identification technique. In this review paper we discuss various important aspects for sampling of volatile organic compounds by the widely used and advanced sampling methods. Characteristics of various adsorbents used for VOCs sampling are also described. Furthermore, this paper makes an effort to comprehensively review the concentration levels of volatile organic compounds along with the methodology used for analysis, in major cities of the world.

  19. Electronic-Nose Applications for Fruit Identification, Ripeness and Quality Grading

    PubMed Central

    Baietto, Manuela; Wilson, Alphus D.

    2015-01-01

    Fruits produce a wide range of volatile organic compounds that impart their characteristically distinct aromas and contribute to unique flavor characteristics. Fruit aroma and flavor characteristics are of key importance in determining consumer acceptance in commercial fruit markets based on individual preference. Fruit producers, suppliers and retailers traditionally utilize and rely on human testers or panels to evaluate fruit quality and aroma characters for assessing fruit salability in fresh markets. We explore the current and potential utilization of electronic-nose devices (with specialized sensor arrays), instruments that are very effective in discriminating complex mixtures of fruit volatiles, as new effective tools for more efficient fruit aroma analyses to replace conventional expensive methods used in fruit aroma assessments. We review the chemical nature of fruit volatiles during all stages of the agro-fruit production process, describe some of the more important applications that electronic nose (e-nose) technologies have provided for fruit aroma characterizations, and summarize recent research providing e-nose data on the effectiveness of these specialized gas-sensing instruments for fruit identifications, cultivar discriminations, ripeness assessments and fruit grading for assuring fruit quality in commercial markets. PMID:25569761

  20. Volatiles in Inter-Specific Bacterial Interactions

    PubMed Central

    Tyc, Olaf; Zweers, Hans; de Boer, Wietse; Garbeva, Paolina

    2015-01-01

    The importance of volatile organic compounds for functioning of microbes is receiving increased research attention. However, to date very little is known on how inter-specific bacterial interactions effect volatiles production as most studies have been focused on volatiles produced by monocultures of well-described bacterial genera. In this study we aimed to understand how inter-specific bacterial interactions affect the composition, production and activity of volatiles. Four phylogenetically different bacterial species namely: Chryseobacterium, Dyella, Janthinobacterium, and Tsukamurella were selected. Earlier results had shown that pairwise combinations of these bacteria induced antimicrobial activity in agar media whereas this was not the case for monocultures. In the current study, we examined if these observations were also reflected by the production of antimicrobial volatiles. Thus, the identity and antimicrobial activity of volatiles produced by the bacteria were determined in monoculture as well in pairwise combinations. Antimicrobial activity of the volatiles was assessed against fungal, oomycetal, and bacterial model organisms. Our results revealed that inter-specific bacterial interactions affected volatiles blend composition. Fungi and oomycetes showed high sensitivity to bacterial volatiles whereas the effect of volatiles on bacteria varied between no effects, growth inhibition to growth promotion depending on the volatile blend composition. In total 35 volatile compounds were detected most of which were sulfur-containing compounds. Two commonly produced sulfur-containing volatile compounds (dimethyl disulfide and dimethyl trisulfide) were tested for their effect on three target bacteria. Here, we display the importance of inter-specific interactions on bacterial volatiles production and their antimicrobial activities. PMID:26733959

  1. Secondary organic aerosol production from pinanediol, a semi-volatile surrogate for first-generation oxidation products of monoterpenes

    NASA Astrophysics Data System (ADS)

    Ye, Penglin; Zhao, Yunliang; Chuang, Wayne K.; Robinson, Allen L.; Donahue, Neil M.

    2018-05-01

    We have investigated the production of secondary organic aerosol (SOA) from pinanediol (PD), a precursor chosen as a semi-volatile surrogate for first-generation oxidation products of monoterpenes. Observations at the CLOUD facility at CERN have shown that oxidation of organic compounds such as PD can be an important contributor to new-particle formation. Here we focus on SOA mass yields and chemical composition from PD photo-oxidation in the CMU smog chamber. To determine the SOA mass yields from this semi-volatile precursor, we had to address partitioning of both the PD and its oxidation products to the chamber walls. After correcting for these losses, we found OA loading dependent SOA mass yields from PD oxidation that ranged between 0.1 and 0.9 for SOA concentrations between 0.02 and 20 µg m-3, these mass yields are 2-3 times larger than typical of much more volatile monoterpenes. The average carbon oxidation state measured with an aerosol mass spectrometer was around -0.7. We modeled the chamber data using a dynamical two-dimensional volatility basis set and found that a significant fraction of the SOA comprises low-volatility organic compounds that could drive new-particle formation and growth, which is consistent with the CLOUD observations.

  2. Response characterization of a fiber optic sensor array with dye-coated planar waveguide for detection of volatile organic compounds.

    PubMed

    Lee, Jae-Sung; Yoon, Na-Rae; Kang, Byoung-Ho; Lee, Sang-Won; Gopalan, Sai-Anand; Jeong, Hyun-Min; Lee, Seung-Ha; Kwon, Dae-Hyuk; Kang, Shin-Won

    2014-07-01

    We have developed a multi-array side-polished optical-fiber gas sensor for the detection of volatile organic compound (VOC) gases. The side-polished optical-fiber coupled with a polymer planar waveguide (PWG) provides high sensitivity to alterations in refractive index. The PWG was fabricated by coating a solvatochromic dye with poly(vinylpyrrolidone). To confirm the effectiveness of the sensor, five different sensing membranes were fabricated by coating the side-polished optical-fiber using the solvatochromic dyes Reinhardt's dye, Nile red, 4-aminophthalimide, 4-amino-N-methylphthalimide, and 4-(dimethylamino)cinnamaldehyde, which have different polarities that cause changes in the effective refractive index of the sensing membrane owing to evanescent field coupling. The fabricated gas detection system was tested with five types of VOC gases, namely acetic acid, benzene, dimethylamine, ethanol, and toluene at concentrations of 1, 2,…,10 ppb. Second-regression and principal component analyses showed that the response properties of the proposed VOC gas sensor were linearly shifted bathochromically, and each gas showed different response characteristics.

  3. Electrospinning Hetero-Nanofibers In2O3/SnO2 of Homotype Heterojunction with High Gas Sensing Activity

    PubMed Central

    Du, Haiying; Yao, PengJun; Sun, Yanhui; Wang, Jing; Wang, Huisheng; Yu, Naisen

    2017-01-01

    In2O3/SnO2 composite hetero-nanofibers were synthesized by an electrospinning technique for detecting indoor volatile organic gases. The physical and chemical properties of In2O3/SnO2 hetero-nanofibers were characterized and analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), Energy Dispersive X-Ray Spectroscopy (EDX), specific surface Brunauer–Emmett–Teller (BET) and X-ray photoelectron spectroscopy (XPS). Gas sensing properties of In2O3/SnO2 composite hetero-nanofibers were measured with six kinds of indoor volatile organic gases in concentration range of 0.5~50 ppm at the operating temperature of 275 °C. The In2O3/SnO2 composite hetero-nanofibers sensor exhibited good formaldehyde sensing properties, which would be attributed to the formation of n-n homotype heterojunction in the In2O3/SnO2 composite hetero-nanofibers. Finally, the sensing mechanism of the In2O3/SnO2 composite hetero-nanofibers was analyzed based on the energy-band principle. PMID:28792433

  4. Characterization of the volatile organic compounds present in the headspace of decomposing human remains.

    PubMed

    Hoffman, Erin M; Curran, Allison M; Dulgerian, Nishan; Stockham, Rex A; Eckenrode, Brian A

    2009-04-15

    Law enforcement agencies frequently use canines trained to detect the odor of human decomposition to aid in determining the location of clandestine burials and human remains deposited or scattered on the surface. However, few studies attempt to identify the specific volatile organic compounds (VOCs) that elicit an appropriate response from victim recovery (VR) canines. Solid-phase microextraction (SPME) was combined with gas chromatography-mass spectrometry (GC-MS) to identify the VOCs released into the headspace associated with 14 separate tissue samples of human remains previously used for VR canine training. The headspace was found to contain various classes of VOCs, including acids, alcohols, aldehydes, halogens, aromatic hydrocarbons, ketones, and sulfides. Analysis of the data indicates that the VOCs associated with human decomposition share similarities across regions of the body and across types of tissue. However, sufficient differences exist to warrant VR canine testing to identify potential mimic odor chemical profiles that can be used as training aids. The resulting data will assist in the identification of the most suitable mixture and relative concentrations of VOCs to appropriately train VR canines.

  5. Direct observation of conductive filament formation in Alq3 based organic resistive memories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busby, Y., E-mail: yan.busby@unamur.be; Pireaux, J.-J.; Nau, S.

    2015-08-21

    This work explores resistive switching mechanisms in non-volatile organic memory devices based on tris(8-hydroxyquinolie)aluminum (Alq{sub 3}). Advanced characterization tools are applied to investigate metal diffusion in ITO/Alq{sub 3}/Ag memory device stacks leading to conductive filament formation. The morphology of Alq{sub 3}/Ag layers as a function of the metal evaporation conditions is studied by X-ray reflectivity, while depth profile analysis with X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry is applied to characterize operational memory elements displaying reliable bistable current-voltage characteristics. 3D images of the distribution of silver inside the organic layer clearly point towards the existence of conductive filamentsmore » and allow for the identification of the initial filament formation and inactivation mechanisms during switching of the device. Initial filament formation is suggested to be driven by field assisted diffusion of silver from abundant structures formed during the top electrode evaporation, whereas thermochemical effects lead to local filament inactivation.« less

  6. Estimation of Qualitative and Quantitative Parameters of Air Cleaning by a Pulsed Corona Discharge Using Multicomponent Standard Mixtures

    NASA Astrophysics Data System (ADS)

    Filatov, I. E.; Uvarin, V. V.; Kuznetsov, D. L.

    2018-05-01

    The efficiency of removal of volatile organic impurities in air by a pulsed corona discharge is investigated using model mixtures. Based on the method of competing reactions, an approach to estimating the qualitative and quantitative parameters of the employed electrophysical technique is proposed. The concept of the "toluene coefficient" characterizing the relative reactivity of a component as compared to toluene is introduced. It is proposed that the energy efficiency of the electrophysical method be estimated using the concept of diversified yield of the removal process. Such an approach makes it possible to substantially intensify the determination of energy parameters of removal of impurities and can also serve as a criterion for estimating the effectiveness of various methods in which a nonequilibrium plasma is used for air cleaning from volatile impurities.

  7. 77 FR 71129 - Revisions to the California State Implementation Plan, San Joaquin Valley United Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-29

    ... Register on June 21, 2012 and concerns volatile organic compound (VOC) emissions from chipping and grinding... Organic Material 8/18/11 11/18/11 Composting Operations. We proposed to approve these rules because we... ozone forming volatile organic compound (VOC) emissions from greenwaste composting that contains food...

  8. 77 FR 64445 - Approval and Promulgation of Air Quality Implementation Plans; Illinois; Greif Packaging, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... applies to emissions of volatile organic matter (VOM) from Greif's fiber drum container manufacturing facility. VOM, as defined by the State of Illinois, is identical to volatile organic compound, as defined... Environmental Protection Agency submitted to EPA for approval an adjustment to the general rule, Organic...

  9. Fate of Volatile Organic Compounds in Constructed Wastewater Treatment Wetlands

    USGS Publications Warehouse

    Keefe, S.H.; Barber, L.B.; Runkel, R.L.; Ryan, J.N.

    2004-01-01

    The fate of volatile organic compounds was evaluated in a wastewater-dependent constructed wetland near Phoenix, AZ, using field measurements and solute transport modeling. Numerically based volatilization rates were determined using inverse modeling techniques and hydraulic parameters established by sodium bromide tracer experiments. Theoretical volatilization rates were calculated from the two-film method incorporating physicochemical properties and environmental conditions. Additional analyses were conducted using graphically determined volatilization rates based on field measurements. Transport (with first-order removal) simulations were performed using a range of volatilization rates and were evaluated with respect to field concentrations. The inverse and two-film reactive transport simulations demonstrated excellent agreement with measured concentrations for 1,4-dichlorobenzene, tetrachloroethene, dichloromethane, and trichloromethane and fair agreement for dibromochloromethane, bromo-dichloromethane, and toluene. Wetland removal efficiencies from inlet to outlet ranged from 63% to 87% for target compounds.

  10. Heating-Induced Evaporation of Nine Different Secondary Organic Aerosol Types

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolesar, Katheryn R.; Li, Ziyue; Wilson, Kevin R.

    The volatility of the compounds comprising organic aerosol (OA) determines their distribution between the gas and particle phases. However, there is a disconnect between volatility distributions as typically derived from secondary OA (SOA) growth experiments and the effective particle volatility as probed in evaporation experiments. Specifically, the evaporation experiments indicate an overall much less volatile SOA. This raises questions regarding the use of traditional volatility distributions in the simulation and prediction of atmospheric SOA concentrations. Here, we present results from measurements of thermally induced evaporation of SOA for nine different SOA types (i.e., distinct volatile organic compound and oxidant pairs)more » encompassing both anthropogenic and biogenic compounds and O 3 and OH to examine the extent to which the low effective volatility of SOA is a general phenomenon or specific to a subset of SOA types. The observed extents of evaporation with temperature were similar for all the SOA types and indicative of a low effective volatility. Furthermore, minimal variations in the composition of all the SOA types upon heating-induced evaporation were observed. These results suggest that oligomer decomposition likely plays a major role in controlling SOA evaporation, and since the SOA formation time scale in these measurements was less than a minute, the oligomer-forming reactions must be similarly rapid. Overall, these results emphasize the importance of accounting for the role of condensed phase reactions in altering the composition of SOA when assessing particle volatility.« less

  11. Heating-Induced Evaporation of Nine Different Secondary Organic Aerosol Types

    DOE PAGES

    Kolesar, Katheryn R.; Li, Ziyue; Wilson, Kevin R.; ...

    2015-09-22

    The volatility of the compounds comprising organic aerosol (OA) determines their distribution between the gas and particle phases. However, there is a disconnect between volatility distributions as typically derived from secondary OA (SOA) growth experiments and the effective particle volatility as probed in evaporation experiments. Specifically, the evaporation experiments indicate an overall much less volatile SOA. This raises questions regarding the use of traditional volatility distributions in the simulation and prediction of atmospheric SOA concentrations. Here, we present results from measurements of thermally induced evaporation of SOA for nine different SOA types (i.e., distinct volatile organic compound and oxidant pairs)more » encompassing both anthropogenic and biogenic compounds and O 3 and OH to examine the extent to which the low effective volatility of SOA is a general phenomenon or specific to a subset of SOA types. The observed extents of evaporation with temperature were similar for all the SOA types and indicative of a low effective volatility. Furthermore, minimal variations in the composition of all the SOA types upon heating-induced evaporation were observed. These results suggest that oligomer decomposition likely plays a major role in controlling SOA evaporation, and since the SOA formation time scale in these measurements was less than a minute, the oligomer-forming reactions must be similarly rapid. Overall, these results emphasize the importance of accounting for the role of condensed phase reactions in altering the composition of SOA when assessing particle volatility.« less

  12. Surface-water-quality assessment of the Upper Illinois River basin in Illinois, Indiana, and Wisconsin : data on manmade nonagricultural volatile and semivolatile organic chemicals in water, May 1988 through March 1990

    USGS Publications Warehouse

    Fitzpatrick, F.A.; Colman, J.A.

    1993-01-01

    This report contains data from the survey of manmade nonagricultural volatile and semivolatile organic chemicals in surface water in the upper Illinois River basin from May 1988 through March l990. In addition to the data, sampling methods and quality-assurance procedures are described. The survey was part of the upper Illinois River basin pilot project of the National Water-Quality Assessment program conducted by the U.S. Geological Survey. The organic chemicals analyzed from the water samples were those expected to be associated primarily with effluent from point sources in urban areas. A low-flow synoptic investigation of 52 volatile and 54 semivolatile organic chemicals was conducted at 31 sites in July 1988. Additional samples were collected monthly at two sites to continue to test for the presence of 43 volatile organic chemicals from December 1988 through March l990, and of all semivolatile organic chemicals at two sites from August through September 1988.

  13. Enabling the identification, quantification, and characterization of organics in complex mixtures to understand atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Isaacman, Gabriel Avram

    Particles in the atmosphere are known to have negative health effects and important but highly uncertain impacts on global and regional climate. A majority of this particulate matter is formed through atmospheric oxidation of naturally and anthropogenically emitted gases to yield highly oxygenated secondary organic aerosol (SOA), an amalgamation of thousands of individual chemical compounds. However, comprehensive analysis of SOA composition has been stymied by its complexity and lack of available measurement techniques. In this work, novel instrumentation, analysis methods, and conceptual frameworks are introduced for chemically characterizing atmospherically relevant mixtures and ambient aerosols, providing a fundamentally new level of detailed knowledge on their structures, chemical properties, and identification of their components. This chemical information is used to gain insights into the formation, transformation and oxidation of organic aerosols. Biogenic and anthropogenic mixtures are observed in this work to yield incredible complexity upon oxidation, producing over 100 separable compounds from a single precursor. As a first step toward unraveling this complexity, a method was developed for measuring the polarity and volatility of individual compounds in a complex mixture using two-dimensional gas chromatography, which is demonstrated in Chapter 2 for describing the oxidation of SOA formed from a biogenic compound (longifolene: C15H24). Several major products and tens of substantial minor products were produced, but none could be identified by traditional methods or have ever been isolated and studied in the laboratory. A major realization of this work was that soft ionization mass spectrometry could be used to identify the molecular mass and formula of these unidentified compounds, a major step toward a comprehensive description of complex mixtures. This was achieved by coupling gas chromatography to high resolution time-of-flight mass spectrometry with vacuum ultraviolet (VUV) photo-ionization. Chapters 3 and 4 describe this new analytical technique and its initial application to determine the structures of unknown compounds and formerly unresolvable mixtures, including a complete description of the chemical composition of two common petroleum products related to anthropogenic emissions: diesel fuel and motor oil. The distribution of hydrocarbon isomers in these mixtures - found to be mostly of branched, cyclic, and saturated -- is described with unprecedented detail. Instead of measuring average bulk aerosol properties, the methods developed and applied in this work directly measure the polarity, volatility, and structure of individual components to allow a mechanistic understanding of oxidation processes. Novel characterizations of these complex mixtures are used to elucidate the role of structure and functionality in particle-phase oxidation, including in Chapter 4 the first measurements of relative reaction rates in a complex hydrocarbon particle. Molecular structure is observed to influence particle-phase oxidation in unexpected and important ways, with cyclization decreasing reaction rates by ~30% and branching increasing reaction rates by ~20-50%. The observed structural dependence is proposed to result in compositional changes in anthropogenic organic aerosol downwind of urban areas, which has been confirmed in subsequent work by applying the techniques described here. Measurement of organic aerosol components is extended to ambient environments through the development of instrumentation with the unprecedented capability to measure hourly concentrations and gas/particle partitioning of individual highly oxygenated organic compounds in the atmosphere. Chapters 5 and 6 describe development of new procedures and hardware for the calibration and analysis of oxygenates using the Semi-Volatile Thermal desorption Aerosol Gas chromatograph (SV-TAG), a custom instrument for in situ quantification of gas- and particle-phase organic compounds in the atmosphere. High time resolution measurement of oxygenated compounds is achieved through a reproducible and quantitative methodology for in situ "derivatization" -- replacing highly polar functional groups that cannot be analyzed by traditional gas chromatography with less polar groups. Implementation of a two-channel sampling system for the simultaneous collection of particle-phase and total gas-plus-particle phase samples allows for the first direct measurements of gas/particle partitioning in the atmosphere, significantly advancing the study of atmospheric composition and variability, as well as the processes governing condensation and re-volatilization. This work presents the first in situ measurements of a large suite of highly oxygenated biogenic oxidation products in both the gas- and particle-phase. Isoprene, the most ubiquitous biogenic emission, oxidizes to form 2-methyltetrols and C5 alkene triols, while α-pinene, the most common monoterpene, forms pinic, pinonic, hydroxyglutaric, and other acids. These compounds are reported in Chapter 7 with unprecedented time resolution and are shown for the first time to have a large gas-phase component, contrary to typical assumptions. Hourly comparisons of these products with anthropogenic aerosol components elucidate the interaction of human and natural emissions at two rural sites: the southeastern, U.S. and Amazonia, Brazil. Anthropogenic influence on SOA formation is proposed to occur through the increase in liquid water caused by anthropogenic sulfate. Furthermore, these unparalleled observations of gas/particle partitioning of biogenic oxidation products demonstrate that partitioning of oxygenates is unexpectedly independent of volatility: many volatile, highly oxygenated compounds have a large particle-phase component that is poorly described by traditional models. These novel conclusions are reached in part by applying the new frameworks developed in previous chapters to understand the properties of unidentified compounds, demonstrating the importance of detailed characterization of atmospheric organic mixtures. Comprehensive analysis of anthropogenic and biogenic emissions and oxidation product mixtures is coupled in this work with high time-resolution measurement of individual organic components to yield significant insights into the transformations of organic aerosols. Oxidation chemistry is observed in both laboratory and field settings to depend on molecular properties, volatility, and atmospheric composition. However, this work demonstrates that these complex processes can be understood through the quantification of individual known and unidentified compounds, combined with their classification into descriptive frameworks.

  14. Long-term ground-water monitoring program and performance-evaluation plan for the extraction system at the former Nike Missile Battery Site, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Senus, Michael P.; Tenbus, Frederick J.

    2000-01-01

    This report presents lithologic and ground-water-quality data collected during April and May 2000 in the remote areas of the tidal wetland of West Branch Canal Creek, Aberdeen Proving Ground, Maryland. Contamination of the Canal Creek aquifer with volatile organic compounds has been documented in previous investigations of the area. This study was conducted to investigate areas that were previously inaccessible because of deep mud and shallow water, and to support ongoing investigations of the fate and transport of volatile organic compounds in the Canal Creek aquifer. A unique vibracore drill rig mounted on a hovercraft was used for drilling and ground-water sampling. Continuous cores of the wetland sediment and of the Canal Creek aquifer were collected at five sites. Attempts to sample ground water were made by use of a continuous profiler at 12 sites, without well installation, at a total of 81 depths within the aquifer. Of those 81 attempts, only 34 sampling depths produced enough water to collect samples. Ground-water samples from two sites had the highest concentrations of volatile organic compounds?with total volatile organic compound concentrations in the upper part of the aquifer ranging from about 15,000 to 50,000 micrograms per liter. Ground-water samples from five sites had much lower total volatile organic compound concentrations (95 to 2,100 micrograms per liter), whereas two sites were essentially not contaminated, with total volatile organic compound concentrations less than or equal to 5 micrograms per liter.

  15. Characteristics of major volatile organic hazardous air pollutants in the urban air of Kaohsiung city.

    PubMed

    Huang, Mei-Chuan; Lin, Jim Juimin

    2007-10-01

    The concentrations and characteristics of volatile organic hazardous air pollutants (HAPs) in the urban city of Kaohsiung from motor vehicles and dense pollutant sources has become a national concern. To continuously monitor volatile organic HAPs, sampling sites were selected near the four air-quality monitoring stations established by Ethe nvironmental Protection Administration of Taiwan ROC, namely Nan-tz, Tso-ying, San-min and Hsiao-kang, from north to south. An on-site automated online monitor of volatile organic compounds (VOCs) was used for continuous monitoring. This study performed two consecutive days of 24-h monitoring of five volatile organic HAPs form August to October 2005 at the four monitoring sites, which cover the northern, central, and southern areas of Kaohsiung city. The average monitored concentration was 2.78-4.84 ppb for benzene, 5.90-9.66 ppb for toluene, 3.62-5.90 ppb for ethylbenzene, 3.73-5.34 ppb for m,p-xylene, 3.38-4.22 ppb for o-xylene, and 4.48-7.00 ppb for styrene. The average monitored concentrations of the major volatile organic HAPs tended to follow the pattern San-min > Nan-tz > Hsiao-kang > Tso-ying. Among all the species monitored in this study, toluene had the highest ambient concentration, followed by styrene, m,p-xylene, ethylbenzene, o-xylene, and benzene. The results showed that the concentration at night was higher than that in the day for toluene at Nan-tz, San-min, Hsiao-kang, and for benzene at Nan-tz and Hsiao-kang.

  16. Lithologic and ground-water-quality data collected using Hoverprobe drilling techniques at the West Branch Canal Creek wetland, Aberdeen Proving Ground, Maryland, April-May 2000

    USGS Publications Warehouse

    Phelan, Daniel J.; Senus, Michael P.; Olsen, Lisa D.

    2001-01-01

    This report presents lithologic and groundwater- quality data collected during April and May 2000 in the remote areas of the tidal wetland of West Branch Canal Creek, Aberdeen Proving Ground, Maryland. Contamination of the Canal Creek aquifer with volatile organic compounds has been documented in previous investigations of the area. This study was conducted to investigate areas that were previously inaccessible because of deep mud and shallow water, and to support ongoing investigations of the fate and transport of volatile organic compounds in the Canal Creek aquifer. A unique vibracore drill rig mounted on a hovercraft was used for drilling and groundwater sampling. Continuous cores of the wetland sediment and of the Canal Creek aquifer were collected at five sites. Attempts to sample ground water were made by use of a continuous profiler at 12 sites, without well installation, at a total of 81 depths within the aquifer. Of those 81 attempts, only 34 sampling depths produced enough water to collect samples. Ground-water samples from two sites had the highest concentrations of volatile organic compounds?with total volatile organic compound concentrations in the upper part of the aquifer ranging from about 15,000 to 50,000 micrograms per liter. Ground-water samples from five sites had much lower total volatile organic compound concentrations (95 to 2,100 micrograms per liter), whereas two sites were essentially not contaminated, with total volatile organic compound concentrations less than or equal to 5 micrograms per liter.

  17. Analysis of volatile organic compounds from illicit cocaine samples

    NASA Astrophysics Data System (ADS)

    Robins, W. H.; Wright, Bob W.

    1994-10-01

    Detection of illicit cocaine hydrochloride shipments can be improved if there is a greater understanding of the identity and quantity of volatile compounds present. This study provides preliminary data concerning the volatile organic compounds detected in a limited set of cocaine hydrochloride samples. In all cases, cocaine was one of the major volatile compounds detected. Other tropeines were detected in almost all samples. Low concentrations of compounds which may be residues of processing solvents were observed in some samples. The equilibrium emissivity of cocaine from cocaine hydrochloride was investigated and a value of 83 parts-per-trillion was determined.

  18. Oxidation and cyclization of organics in Mars-like soils during evolved gas analysis

    NASA Astrophysics Data System (ADS)

    Navarro-Gonzalez, Rafael; Iñiguez, Enrique; de La Rosa, Jose; McKay, Chris

    Thermal volatilization (TV) of soils has been used as the method of choice in space because of its simplicity and reproducibility. TV was first used by the Viking Landers, which failed to detect organics at ppb levels and subsequently by the Phoenix Lander that did not find organics but instead detected the release of carbon dioxide from 400 to 680° C which was attributed to magnesium or iron carbonate, adsorbed carbon dioxide, or organics present in the soil. Future missions such as the Mars Science Laboratory from NASA and ExoMars from ESA will also use this method to release soil organics to the analytical instruments. The presence of inorganic salts or minerals can strongly modify the release of soil organics leading to their degradation and/or oxidation resulting in loss of sensitivity by several orders of magnitude. The purpose of this work is to study the matrix effects of some minerals and Martian soil analogues in the analysis of organics by TV. Samples were analyzed by TV-MS and/or TV-GC-MS in neutral (He) and reducing (H2 ) atmospheres following the methods reported by Navarro-González eta al., 2006, 2009 and Iñiguez et al., 2009. Our results show that oxidation of organic matter is n promoted by several soil minerals (iron oxides) and inorganic salts (perchlorates, persulphates, sulfates, nitrates) in a neutral atmosphere; however, in a reducing atmosphere the oxidation of organics by the mineral matrix is reduced. Furthermore it was found that the stable organics that were thermally evolved were aromatic in nature (benzene and methyl benzene). Therefore, depending on the mineral matrix there is completion between formation of aromatic compounds versus oxidation. Iñiguez, E., Navarro-González, R., de la Rosa, J., Ureña-Núnez, F., Coll, P., Raulin, F., and McKay, C.P.: 2009, On the oxidation ability of the NASA Mars-1 soil simulant during the thermal volatilization step. Implications for the search of organics on Mars. Geophys Res Lett 36, L21205, doi:10.1029/2009GL040454. Navarro-González, R., Navarro, K.F., de la Rosa, J., Molina, P., Iñiguez, E., Miranda, L.D., a n Morales, P., Cienfuegos, E., Coll, P., Raulin, F., Amils, R. and McKay, C.P.: 2006. The limitations on organic detection in Mars-like soils by thermal volatilization-gas chromatography-MS and their implications for the Viking results. Proc Natl Acad Sci USA 103, 16089-16094. Navarro-González, R., Iñiguez, E., de la Rosa, J. and McKay, C.P.: 2009, Characterization of a n organics, microorganisms, desert soils and Mars-like soils by thermal volatilization coupled to mass spectrometry and their implications for the search of organics on Mars by Phoenix and future space missions. Astrobiology 9, 703-715, doi: 10.1089/ast.2008.0284.

  19. 77 FR 74115 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; The 2002 Base Year...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... ), volatile organic compounds (VOCs), ammonia (NH 3 ), and sulfur dioxide (SO 2 ). EPA has reviewed the... , coarse particles (PM 10 ), nitrogen oxides (NO X ), volatile organic compounds (VOCs), ammonia (NH 3...

  20. PERTURBATION OF VOLTAGE-SENSITIVE CALCIUM FUNCTION IN PHEOCHROMOCYTOMA CELLS BY VOLATILE ORGANIC SOLVENTS.

    EPA Science Inventory

    Volatile organic solvents such as toluene (TOL) and trichloroethylene perturb nervous system function and share characteristic effects with other central nervous system depressants such as anesthetic gasses, ethanol, benzodiazepines and barbiturates. Recently, mechanistic studies...

  1. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia.

    PubMed

    Huang, R; Li, G Q; Zhang, J; Yang, L; Che, H J; Jiang, D H; Huang, H C

    2011-07-01

    A study was conducted to identify volatile organic compounds or volatiles produced by Candida intermedia strain C410 using gas chromatography-mass spectrometry, and to determine efficacy of the volatiles of C. intermedia in suppression of conidial germination and mycelial growth of Botrytis cinerea and control of Botrytis fruit rot of strawberry. Results showed that, among 49 volatiles (esters, alcohols, alkenes, alkanes, alkynes, organic acids, ketones, and aldehydes) identified from C. intermedia cultures on yeast extract peptone dextrose agar, two compounds, 1,3,5,7-cyclooctatetraene and 3-methyl-1-butanol, were the most abundant. Synthetic chemicals of 1,3,5,7-cyclooctatetraene; 3-methyl-1-butanol; 2-nonanone; pentanoic acid, 4-methyl-, ethyl ester; 3-methyl-1-butanol, acetate; acetic acid, pentyl ester; and hexanoic acid, ethyl ester were highly inhibitory to conidial germination and mycelial growth of B. cinerea. Inhibition of conidial germination and mycelial growth of B. cinerea by volatiles of C. intermedia was also observed. Meanwhile, results showed that incidence and severity of Botrytis fruit rot of strawberry was significantly (P < 0.01) reduced by exposure of the strawberry fruit to the volatiles from C. intermedia cultures or C. intermedia-infested strawberry fruit. These results suggest that the volatiles of C. intermedia C410 are promising biofumigants for control of Botrytis fruit rot of strawberry.

  2. Development and validation of a portable gas phase standard generation and calibration system for volatile organic compounds

    Treesearch

    P. Veres; J. B. Gilman; J. M. Roberts; W. C. Kuster; C. Warneke; I. R. Burling; J. de Gouw

    2010-01-01

    We report on the development of an accurate, portable, dynamic calibration system for volatile organic compounds (VOCs). The Mobile Organic Carbon Calibration System (MOCCS) combines the production of gas-phase VOC standards using permeation or diffusion sources with quantitative total organic carbon (TOC) conversion on a palladium surface to CO2 in the presence of...

  3. Louisiana SIP: LAC 33:III Ch 21 Subchap J, 2147--Limiting Volatile Organic Compound (VOC) Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical manufacturing Industry (SOCMI); SIP effective 1998-02-02 (LAc74) to more..

    EPA Pesticide Factsheets

    Louisiana SIP: LAC 33:III Ch 21 Subchap J, 2147--Limiting Volatile Organic Compound (VOC) Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical manufacturing Industry (SOCMI); SIP effective 1998-02-02 (LAc74) more...

  4. Louisiana SIP: LAC 33:III Ch 2147. Limiting Volatile Organic Compound (VOC) Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical manufacturing Industry (SOCMI); SIP effective 2011-08-04 (LAd34) to 2017-09-27

    EPA Pesticide Factsheets

    Louisiana SIP: LAC 33:III Ch 2147. Limiting Volatile Organic Compound (VOC) Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical manufacturing Industry (SOCMI); SIP effective 2011-08-04 (LAd34) to 2017-09-27

  5. Method and apparatus for detection of chemical vapors

    DOEpatents

    Mahurin, Shannon Mark [Knoxville, TN; Dai, Sheng [Knoxville, TN; Caja, Josip [Knoxville, TN

    2007-05-15

    The present invention is a gas detector and method for using the gas detector for detecting and identifying volatile organic and/or volatile inorganic substances present in unknown vapors in an environment. The gas detector comprises a sensing means and a detecting means for detecting electrical capacitance variance of the sensing means and for further identifying the volatile organic and volatile inorganic substances. The sensing means comprises at least one sensing unit and a sensing material allocated therein the sensing unit. The sensing material is an ionic liquid which is exposed to the environment and is capable of dissolving a quantity of said volatile substance upon exposure thereto. The sensing means constitutes an electrochemical capacitor and the detecting means is in electrical communication with the sensing means.

  6. Regulation of the Rhythmic Emission of Plant Volatiles by the Circadian Clock.

    PubMed

    Zeng, Lanting; Wang, Xiaoqin; Kang, Ming; Dong, Fang; Yang, Ziyin

    2017-11-13

    Like other organisms, plants have endogenous biological clocks that enable them to organize their metabolic, physiological, and developmental processes. The representative biological clock is the circadian system that regulates daily (24-h) rhythms. Circadian-regulated changes in growth have been observed in numerous plants. Evidence from many recent studies indicates that the circadian clock regulates a multitude of factors that affect plant metabolites, especially emitted volatiles that have important ecological functions. Here, we review recent progress in research on plant volatiles showing rhythmic emission under the regulation of the circadian clock, and on how the circadian clock controls the rhythmic emission of plant volatiles. We also discuss the potential impact of other factors on the circadian rhythmic emission of plant volatiles.

  7. Regulatory off-gas analysis from the evaporation of Hanford simulated waste spiked with organic compounds.

    PubMed

    Saito, Hiroshi H; Calloway, T Bond; Ferrara, Daro M; Choi, Alexander S; White, Thomas L; Gibson, Luther V; Burdette, Mark A

    2004-10-01

    After strontium/transuranics removal by precipitation followed by cesium/technetium removal by ion exchange, the remaining low-activity waste in the Hanford River Protection Project Waste Treatment Plant is to be concentrated by evaporation before being mixed with glass formers and vitrified. To provide a technical basis to permit the waste treatment facility, a relatively organic-rich Hanford Tank 241-AN-107 waste simulant was spiked with 14 target volatile, semi-volatile, and pesticide compounds and evaporated under vacuum in a bench-scale natural circulation evaporator fitted with an industrial stack off-gas sampler at the Savannah River National Laboratory. An evaporator material balance for the target organics was calculated by combining liquid stream mass and analytical data with off-gas emissions estimates obtained using U.S. Environmental Protection Agency (EPA) SW-846 Methods. Volatile and light semi-volatile organic compounds (<220 degrees C BP, >1 mm Hg vapor pressure) in the waste simulant were found to largely exit through the condenser vent, while heavier semi-volatiles and pesticides generally remain in the evaporator concentrate. An OLI Environmental Simulation Program (licensed by OLI Systems, Inc.) evaporator model successfully predicted operating conditions and the experimental distribution of the fed target organics exiting in the concentrate, condensate, and off-gas streams, with the exception of a few semi-volatile and pesticide compounds. Comparison with Henry's Law predictions suggests the OLI Environmental Simulation Program model is constrained by available literature data.

  8. Pedologic Factors Affecting Virgin Olive Oil Quality of "Chemlali" Olive Trees (Olea europaea L.).

    PubMed

    Rached, Mouna Ben; Galaverna, Gianni; Cirlini, Martina; Boujneh, Dalenda; Zarrouk, Mokhtar; Guerfel, Mokhtar

    2017-08-01

    The aim of this study examined the characterization of extra virgin olive oil samples from the main cultivar Chemlali, grown in five olive orchards with different soil type (Sandy, Clay, Stony, Brown, Limestone and Gypsum). Volatile compounds were studied using headspace-solid phase micro-extraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS) technics. Moreover, the sterol profile was established using gas chromatography-mass spectrometry. 35 different volatile compounds were identified: alcohols, esters, aldehydes, ketones and hydrocarbons. The chemical composition of the volatile fraction was characterized by the preeminence of 2-hexenal (32.75%) and 1-hexanol (31.88%). Three sterols were identified and characterized. For all olive oil samples, ß-sitosterol (302.25 mg/kg) was the most abundant sterol. Interestingly, our results showed significant qualitative and quantitative differences in the levels of the volatile compounds and sterols from oils obtained from olive trees grown in different soil type.

  9. Hydrogeologic and chemical data for the O-Field area, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Nemoff, P.R.; Vroblesky, D.A.

    1989-01-01

    O-Field, located at the Edgewood area of Aberdeen Proving Ground , Maryland, was periodically used for disposal of munitions, waste chemicals, and chemical-warfare agents from World War II through the 1950' s. This report includes various physical, geologic, chemical, and hydrologic data obtained from well-core, groundwater, surface water, and bottom-sediment sampling sites at and near the O-Field disposal area. The data are presented in tables and hydrographs. Three site-location maps are also included. Well-core data include lithologic logs for 11 well- cluster sites, grain-size distributions, various chemical characteristics, and confining unit characteristics. Groundwater data include groundwater chemistry, method blanks for volatile organic carbon, available data on volatile and base/neutral organics, and compilation of corresponding method blanks, chemical-warfare agents, explosive-related products, radionuclides, herbicides, and groundwater levels. Surface-water data include field-measured characteristics; concentrations of various inorganic constituents including arsenic; selected organic constituents with method blanks; detection limits of organics; and a compilation of information on corresponding acids, volatiles, and semivolatiles. Bottom- sediment data include inorganic properties and constituents; organic chemistry; detection limits for organic chemicals; a compilation of information on acids, volatiles, and semivolatiles; and method blanks corresponding to acids, volatiles, and semivolatiles. A set of 15 water- level hydrographs for the period March 1986 through September 1987 also is included in the report. (USGS)

  10. COMPACT, CONTINUOUS MONITORING FOR VOLATILE ORGANIC COMPOUNDS - PHASE I

    EPA Science Inventory

    Improved methods for onsite measurement of multiple volatile organic compounds are needed for process control, monitoring, and remediation. This Phase I SBIR project sets forth an optical measurement method that meets these needs. The proposed approach provides an instantaneous m...

  11. 77 FR 60626 - Approval and Promulgation of Air Quality Implementation Plans; Virginia; The 2002 Base Year...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... nitrogen oxides (NO X ), volatile organic compounds (VOCs), PM 2.5 , coarse particles (PM 10 ), ammonia (NH... X ), volatile organic compounds (VOCs), PM 2.5 , coarse particles (PM 10 ), ammonia (NH 3 ), and...

  12. 77 FR 61513 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; The 2002 Base Year...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ... X ), volatile organic compounds (VOCs), PM 2.5 , coarse particles (PM 10 ), ammonia (NH 3 ), and... oxides (NO X ), volatile organic compounds (VOCs), PM 2.5 , coarse particles (PM 10 ), ammonia (NH 3...

  13. 78 FR 46141 - Approval and Disapproval of Air Quality State Implementation Plans; Arizona; Regional Haze and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... volatile organic compounds. (42) The initials WRAP mean or refer to the Western Regional Air Partnership... sources of NO X, SO 2 or volatile organic compounds (VOCs) or on point sources [[Page 46144

  14. 78 FR 38648 - Approval and Promulgation of Air Quality Implementation Plans; State of New Jersey; Redesignation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... ) and Volatile Organic Compounds (VOC) that were submitted as part of the supplement, in conjunction...] that volatile organic compounds and NH 3 are not PM 2.5 precursors, as subpart 4 expressly governs...

  15. 78 FR 37973 - Change of Address for Region 7; Technical Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... recordkeeping requirements, Sulfur oxides, Volatile organic compounds. 40 CFR Part 59 Environmental protection... requirements, Volatile organic compounds. 40 CFR Part 60 Environmental protection, Administrative practice and..., Cement industry, Chemicals, Coal, Copper, Dry cleaners, Electric power plants, Fertilizers, Fluoride...

  16. 40 CFR 59.106 - Variance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Automobile Refinish Coatings § 59.106 Variance. (a) Any regulated entity... confidential information in reaching a decision on a variance application. Interested members of the public...

  17. HENRY'S LAW CONSTANTS AND MICELLAR PARTITIONING OF VOLATILE ORGANIC COMPOUNDS IN SURFACTANT SOLUTIONS

    EPA Science Inventory

    Partitioning of volatile organic compounds (VOCs) into surfactant micelles affects the apparent vapor-liquid equilibrium of VOCs in surfactant solutions. This partitioning will complicate removal of VOCs from surfactant solutions by standard separation processes. Headspace expe...

  18. 40 CFR 59.512 - Addresses of EPA regional offices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.512 Addresses of EPA..., Air Pesticides and Toxics, Management Division, Atlanta Federal Center, 61 Forsyth Street, SW...

  19. 40 CFR 59.512 - Addresses of EPA regional offices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.512 Addresses of EPA..., Air Pesticides and Toxics, Management Division, Atlanta Federal Center, 61 Forsyth Street, SW...

  20. 40 CFR 59.512 - Addresses of EPA regional offices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.512 Addresses of EPA..., Air Pesticides and Toxics, Management Division, Atlanta Federal Center, 61 Forsyth Street, SW...

  1. 40 CFR 59.512 - Addresses of EPA regional offices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.512 Addresses of EPA..., Air Pesticides and Toxics, Management Division, Atlanta Federal Center, 61 Forsyth Street, SW...

  2. IMPROVEMENT IN AIR TOXICS METHODS FOR VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    Innovative and customized monitoring methods for air toxic volatile organic compounds (VOCs) are being developed for applications in exposure and trends monitoring. This task addresses the following applications of specific interest:

    o Contributions to EPA Regional Monit...

  3. DETERMINATION OF SORPTION PARAMETERS FOR 36 VOC/MATERIAL COMBINATIONS

    EPA Science Inventory

    EPA's Air Pollution Prevention and Control Division is currently investigating sorptive interactions (sink effects) of volatile organic compounds and semi-volatile organic compounds when exposed to common indoor surface materials. The objective is to recommend the best sink mode...

  4. FACTORS CONTROLLING THE EMISSIONS OF MONOTERPENES AND OTHER VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    Plants contain a number of volatile organic compounds, including isoprene, mono- and sesquiterpenes, alcohols, aldehydes, ketones, and esters. ndividual plant species have unique combinations of these compounds; consequently, the emission pattern for each species is also specific...

  5. 40 CFR 59.412 - Incorporations by reference.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Architectural Coatings § 59.412 Incorporations by... 19428-2959. (1) ASTM Method C 1315-95, Standard Specification for Liquid Membrane-Forming Compounds...

  6. 40 CFR 59.412 - Incorporations by reference.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Architectural Coatings § 59.412 Incorporations by... 19428-2959. (1) ASTM Method C 1315-95, Standard Specification for Liquid Membrane-Forming Compounds...

  7. Modeling study of secondary organic aerosol in winter in China using NAQPMS

    NASA Astrophysics Data System (ADS)

    Yang, W.; Li, J.

    2017-12-01

    The concentration of organic aerosol (OA) in the central and eastern China is much higher than that in Europe and America. Compared with the observation, the current numerical modeling studies largely underestimated the concentration of OA, especially the secondary component. Based on the volatility basis set framework, a secondary organic aerosol (SOA) module was developed, which considering the multi-generation oxidation of volatile organic compounds (VOCs), semi-volatile POA and intermediate volatility organic compounds (IVOCs). The newly developed SOA module was coupled into the NAQPMS, and the performance of the simulation was validated by the observation with high temporal resolution. In wintertime, the OA concentration in the central and eastern China was maintained above 15-20 μg·m-3, and SOA accounted for 50-65% of OA concentration. The OA concentration even reached 40 μg·m-3 in the provinces emitting most pollutants (such as Hunan, Hubei, Henan, Anhui, Jiangsu, Shandong and Hubei province). IVOCs were important precursors of SOA in China, and could reduce the great discrepancy between simulation and observation. In wintertime, the contribution from IVOCs accounted for 60-80% of SOA formation. The aging of semi-volatile POA had less impact on the SOA formation, which maintained only 2-8% over central and eastern China.

  8. Distribution of volatile organic compounds over a semiconductor Industrial Park in Taiwan.

    PubMed

    Chiu, Kong-Hwa; Wu, Ben-Zen; Chang, Chih-Chung; Sree, Usha; Lo, Jiunn-Guang

    2005-02-15

    This study examined volatile organic compounds (VOC) concentration in ambient air collected during the years 2000--2003 at several different locations of Hsinchu Science-based Industrial Park (HSIP) in Taiwan. A canister automated GC-MS system analyzed the volatile organics in ambient air grasp samples according to T0-15 method. Oxygenated volatiles were the most abundant VOC detected in HSIP followed by aromatics that are commonly used as solvents in the semiconductor industries. The major components measured in the ambient air are 2-propanol (29-135 ppbv), acetone (12-164 ppbv), benzene (0.7-1.7 ppbv), and toluene (13-20 ppbv). At some of the sampling locations, odorous compounds such as carbon disulfide and dimethyl sulfide levels exceed threshold values. The estimated toluene/benzene ratio is very high at most of the sites. However, the total amount of VOC is reduced over the years from 2000 to 2003 due to strict implementation on use and discharge of solvents in industries. There exists no definite seasonal pattern for sporadic occurrence of high levels of some of the volatile organics. Stagnant weather conditions with low wind speeds aid accumulation of toxic species at ground level. The results entail that hi-tech semiconductor industries are still a potential source for harmful organic substances to surrounding microenvironment.

  9. RESOLVE Projects: Lunar Water Resource Demonstration and Regolith Volatile Characterization

    NASA Technical Reports Server (NTRS)

    2008-01-01

    To sustain affordable human and robotic space exploration, the ability to live off the land at the exploration site will be essential. NASA calls this ability in situ resource utilization (ISRU) and is focusing on finding ways to sustain missions first on the Moon and then on Mars. The ISRU project aims to develop capabilities to technology readiness level 6 for the Robotic Lunar Exploration Program and early human missions returning to the Moon. NASA is concentrating on three primary areas of ISRU: (1) excavating, handling, and moving lunar regolith, (2) extracting oxygen from lunar regolith, and (3) finding, characterizing, extracting, separating, and storing volatile lunar resources, especially in the permanently shadowed polar craters. To meet the challenges related to technology development for these three primary focus areas, the Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) project was initiated in February 2005, through funding by the Exploration Systems Mission Directorate. RESOLVE's objectives are to develop requirements and conceptual designs and to perform breadboard concept verification testing of each experiment module. The final goal is to deliver a flight prototype unit that has been tested in a relevant lunar polar environment. Here we report progress toward the third primary area creating ways to find, characterize, extract, separate, and store volatile lunar resources. The tasks include studying thermal, chemical, and electrical ways to collect such volatile resources as hydrogen, water, nitrogen, methane, and ammonia. We approached this effort through two subtasks: lunar water resource demonstration (LWRD) and regolith volatile characterization (RVC).

  10. Fast detection and characterization of organic and inorganic gunshot residues on the hands of suspects by CMV-GC-MS and LIBS.

    PubMed

    Tarifa, Anamary; Almirall, José R

    2015-05-01

    A rapid method for the characterization of both organic and inorganic components of gunshot residues (GSR) is proposed as an alternative tool to facilitate the identification of a suspected shooter. In this study, two fast screening methods were developed and optimized for the detection of organic compounds and inorganic components indicative of GSR presence on the hands of shooters and non-shooters. The proposed methods consist of headspace extraction of volatile organic compounds using a capillary microextraction of volatiles (CMV) device previously reported as a high-efficiency sampler followed by detection by GC-MS. This novel sampling technique has the potential to yield fast results (<2min sampling) and high sensitivity capable of detecting 3ng of diphenylamine (DPA) and 8ng of nitroglycerine (NG). Direct analysis of the headspace of over 50 swabs collected from the hands of suspected shooters (and non-shooters) provides information regarding VOCs present on their hands. In addition, a fast laser induced breakdown spectroscopy (LIBS) screening method for the detection of the inorganic components indicative of the presence of GSR (Sb, Pb and Ba) is described. The sampling method for the inorganics consists of liquid extraction of the target elements from the same cotton swabs (previously analyzed for VOCs) and an additional 30 swab samples followed by spiking 1μL of the extract solution onto a Teflon disk and then analyzed by LIBS. Advantages of LIBS include fast analysis (~12s per sample) and high selectivity and sensitivity, with expected LODs 0.1-18ng for each of the target elements after sampling. The analytical performance of the LIBS method is also compared to previously reported methods (inductively coupled plasma-optical emission spectroscopy). The combination of fast CMV sampling, unambiguous organic compound identification with GC-MS and fast LIBS analysis provides the basis for a new comprehensive screening method for GSR. Copyright © 2015 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  11. A Monte-Carlo Analysis of Organic Volatility with Aerosol Microphysics

    NASA Astrophysics Data System (ADS)

    Gao, Chloe; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-04-01

    A newly developed box model, MATRIX-VBS, includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves aerosol mass and number concentrations and aerosol mixing state. The new scheme advanced the representation of organic aerosols in models by improving the traditional and simplistic treatment of organic aerosols as non-volatile and with a fixed size distribution. Further development includes adding the condensation of organics on coarse mode aerosols - dust and sea salt, thus making all organics in the system semi-volatile. To test and simplify the model, a Monte-Carlo analysis is performed to pin point which processes affect organics the most under varied chemical and meteorological conditions. Since the model's parameterizations have the ability to capture a very wide range of conditions, all possible scenarios on Earth across the whole parameter space, including temperature, humidity, location, emissions and oxidant levels, are examined. The Monte-Carlo simulations provide quantitative information on the sensitivity of the newly developed model and help us understand how organics are affecting the size distribution, mixing state and volatility distribution at varying levels of meteorological conditions and pollution levels. In addition, these simulations give information on which parameters play a critical role in the aerosol distribution and evolution in the atmosphere and which do not, that will facilitate the simplification of the box model, an important step in its implementation in the global model GISS ModelE as a module.

  12. Assessment of dispersive liquid-liquid microextraction conditions for gas chromatography time-of-flight mass spectrometry identification of organic compounds in honey.

    PubMed

    Moniruzzaman, M; Rodríguez, I; Rodríguez-Cabo, T; Cela, R; Sulaiman, S A; Gan, S H

    2014-11-14

    The suitability of the dispersive liquid-liquid microextraction (DLLME) technique for gas chromatography (GC) characterization of minor organic compounds in honey samples is evaluated. Under optimized conditions, samples were pre-treated by liquid-liquid extraction with acetonitrile followed by DLLME using carbon tetrachloride (CCl4, 0.075 mL) as extractant. The yielded settled phase was analyzed by GC using high resolution time-of-flight (TOF) mass spectrometry (MS). The whole sample preparation process is completed in approximately 10 min, with a total consumption of organic solvents below 4 mL, relative standard deviations lower than 12% and with more than 70 organic compounds, displaying linear retention index in the range from 990 to 2900, identified in the obtained extracts. In comparison with HS SPME extraction, higher peak intensities were attained for most volatile and semi-volatile compounds amenable to both extraction techniques. Furthermore, other species such as highly polar and water soluble benzene acids, long chain fatty acids, esters and flavonoids, which are difficult to concentrate by HS SPME, could be identified in DLLME extracts. Some of the compounds identified in DLLME extracts have been proposed as useful for samples classification and/or they are recognized as markers of honeys from certain geographic areas. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A chemometrics as a powerful tool in the elucidation of the role of metals in the biosynthesis of volatile organic compounds in Hungarian thyme samples.

    PubMed

    Arsenijević, Jelena; Marković, Jelena; Soštarić, Ivan; Ražić, Slavica

    2013-10-01

    The volatile fraction of the leaves of Thymus pannonicus All. (Lamiaceae) was analyzed by headspace extraction followed by GC-FID and GC-MS analysis. The different headspace profiles were recognized, with citral and with monoterpene hydrocarbons as dominant compounds. In addition, the determination of Cr, Co, Ni, Mo, Cu, Zn, Mn, Fe, Mg, Ca, K and Na was conducted by spectroscopic techniques (FAAS, GFAAS and ICP-OES). In order to evaluate the relationship between volatile organic compounds and metals, a chemometrics approach was applied. The data obtained by analysis of the headspace and elemental content were subjected to correlation analysis, factor analysis, principal component analysis and cluster analysis. A number of significant correlations of metals with plant volatiles were found. Correlation of Zn with citral, Mn with oxygenated monoterpenes and Mg with β-bourbonene, could be explained by involvement of metals in the biosynthesis of volatile organic compounds. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. Characterization of wood plastic composites made from landfill-derived plastic and sawdust: Volatile compounds and olfactometric analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Félix, Juliana S., E-mail: jfelix@unizar.es; Domeño, Celia, E-mail: cdomeno@unizar.es; Nerín, Cristina, E-mail: cnerin@unizar.es

    Graphical abstract: This work details the characterization of VOCs of WPC, produced from residual materials which would have landfills as current destination, and evaluates their odor profile. Highlights: ► More than 140 volatile compounds were identified in raw materials and WPC products. ► Markers were related to the thermal degradation, sawdust or coupling agents. ► WPC prototype showed a characteristic odor profile of burnt, sweet and wax-like. ► Aldehydes, carboxylic acids, ketones and phenols were odor descriptors of WPC. - Abstract: Application of wood plastic composites (WPCs) obtained from recycled materials initially intended for landfill is usually limited by theirmore » composition, mainly focused on release of volatile organic compounds (VOCs) which could affect quality or human safety. The study of the VOCs released by a material is a requirement for new composite materials. Characterization and quantification of VOCs of several WPC produced with low density polyethylene (LDPE) and polyethylene/ethylene vinyl acetate (PE/EVA) films and sawdust were carried out, in each stage of production, by solid phase microextraction in headspace mode (HS-SPME) and gas chromatography–mass spectrometry (GC–MS). An odor profile was also obtained by HS-SPME and GC–MS coupled with olfactometry analysis. More than 140 compounds were observed in the raw materials and WPC samples. Some quantified compounds were considered WPC markers such as furfural, 2-methoxyphenol, N-methylphthalimide and 2,4-di-tert-butylphenol. Hexanoic acid, acetic acid, 2-methoxyphenol, acetylfuran, diacetyl, and aldehydes were the most important odorants. None of the VOCs were found to affect human safety for use of the WPC.« less

  15. Ecology of plant volatiles: taking a plant community perspective.

    PubMed

    Pierik, Ronald; Ballaré, Carlos L; Dicke, Marcel

    2014-08-01

    Although plants are sessile organisms, they can modulate their phenotype so as to cope with environmental stresses such as herbivore attack and competition with neighbouring plants. Plant-produced volatile compounds mediate various aspects of plant defence. The emission of volatiles has costs and benefits. Research on the role of plant volatiles in defence has focused primarily on the responses of individual plants. However, in nature, plants rarely occur as isolated individuals but are members of plant communities where they compete for resources and exchange information with other plants. In this review, we address the effects of neighbouring plants on plant volatile-mediated defences. We will outline the various roles of volatile compounds in the interactions between plants and other organisms, address the mechanisms of plant neighbour perception in plant communities, and discuss how neighbour detection and volatile signalling are interconnected. Finally, we will outline the most urgent questions to be addressed in the future. © 2014 John Wiley & Sons Ltd.

  16. 40 CFR 52.970 - Identification of plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FR 54308 Ref 52.999(c)(66) Chapter 21—Control of Emissions of Organic Compounds Subchapter A General... Storage of Volatile Organic Compounds (Large Tanks) Dec. 1995, LR21:1333 10/22/96, 61 FR 54737 Ref 52.999(c)(71)(E)(F)(G) Section 2105 Storage of Volatile Organic Components (Small Tanks) NOT IN SIP Section...

  17. Cost Effective, Ultra Sensitive Groundwater Monitoring for Site Remediation and Management

    DTIC Science & Technology

    2015-05-01

    feasibility studies. ................... 30  Table 5. Compounds screened in the laboratory for IS2 sampling...tank SVOC semivolatile organic compound TCE trichloroethene TPH total petroleum hydrocarbon USEPA U.S. Environmental Protection Agency UST...underground storage tank V volt VOA volatile organic analysis VOC volatile organic compound Technical material contained in this report has

  18. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR ANALYSIS OF VOLATILE ORGANIC COMPOUNDS COLLECTED WITH A PASSIVE SAMPLER (BCO-L-17.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the methodology used for the analysis of the 3M OVM 3500 Organic Vapor Monitors for volatile organic compounds (VOCs), using solvent extraction and standard gas chromatography/mass spectrometry (GC/MS) analysis procedures. This procedure was...

  19. Modelling winter organic aerosol at the European scale with CAMx: evaluation and source apportionment with a VBS parameterization based on novel wood burning smog chamber experiments

    NASA Astrophysics Data System (ADS)

    Ciarelli, Giancarlo; Aksoyoglu, Sebnem; El Haddad, Imad; Bruns, Emily A.; Crippa, Monica; Poulain, Laurent; Äijälä, Mikko; Carbone, Samara; Freney, Evelyn; O'Dowd, Colin; Baltensperger, Urs; Prévôt, André S. H.

    2017-06-01

    We evaluated a modified VBS (volatility basis set) scheme to treat biomass-burning-like organic aerosol (BBOA) implemented in CAMx (Comprehensive Air Quality Model with extensions). The updated scheme was parameterized with novel wood combustion smog chamber experiments using a hybrid VBS framework which accounts for a mixture of wood burning organic aerosol precursors and their further functionalization and fragmentation in the atmosphere. The new scheme was evaluated for one of the winter EMEP intensive campaigns (February-March 2009) against aerosol mass spectrometer (AMS) measurements performed at 11 sites in Europe. We found a considerable improvement for the modelled organic aerosol (OA) mass compared to our previous model application with the mean fractional bias (MFB) reduced from -61 to -29 %. We performed model-based source apportionment studies and compared results against positive matrix factorization (PMF) analysis performed on OA AMS data. Both model and observations suggest that OA was mainly of secondary origin at almost all sites. Modelled secondary organic aerosol (SOA) contributions to total OA varied from 32 to 88 % (with an average contribution of 62 %) and absolute concentrations were generally under-predicted. Modelled primary hydrocarbon-like organic aerosol (HOA) and primary biomass-burning-like aerosol (BBPOA) fractions contributed to a lesser extent (HOA from 3 to 30 %, and BBPOA from 1 to 39 %) with average contributions of 13 and 25 %, respectively. Modelled BBPOA fractions were found to represent 12 to 64 % of the total residential-heating-related OA, with increasing contributions at stations located in the northern part of the domain. Source apportionment studies were performed to assess the contribution of residential and non-residential combustion precursors to the total SOA. Non-residential combustion and road transportation sector contributed about 30-40 % to SOA formation (with increasing contributions at urban and near industrialized sites), whereas residential combustion (mainly related to wood burning) contributed to a larger extent, around 60-70 %. Contributions to OA from residential combustion precursors in different volatility ranges were also assessed: our results indicate that residential combustion gas-phase precursors in the semivolatile range (SVOC) contributed from 6 to 30 %, with higher contributions predicted at stations located in the southern part of the domain. On the other hand, the oxidation products of higher-volatility precursors (the sum of intermediate-volatility compounds (IVOCs) and volatile organic compounds (VOCs)) contribute from 15 to 38 % with no specific gradient among the stations. Although the new parameterization leads to a better agreement between model results and observations, it still under-predicts the SOA fraction, suggesting that uncertainties in the new scheme and other sources and/or formation mechanisms remain to be elucidated. Moreover, a more detailed characterization of the semivolatile components of the emissions is needed.

  20. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE PAGES

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; ...

    2015-07-16

    We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas andmore » particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO–HR-ToF-CIMS are highly correlated with, and explain at least 25–50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.« less

  1. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE PAGES

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; ...

    2015-02-18

    We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gasmore » and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.« less

  2. Final Report - Glass Formulation Testing to Increase Sulfate Volatilization from Melter, VSL-04R4970-1, Rev. 0, dated 2/24/05

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Matlack, K. A.; Pegg, I. L.

    2013-11-13

    The principal objectives of the DM100 and DM10 tests were to determine the impact of four different organics and one inorganic feed additive on sulfate volatilization and to determine the sulfur partitioning between the glass and the off-gas system. The tests provided information on melter processing characteristics and off-gas data including sulfur incorporation and partitioning. A series of DM10 and DM100 melter tests were conducted using a LAW Envelope A feed. The testing was divided into three parts. The first part involved a series of DM10 melter tests with four different organic feed additives: sugar, polyethylene glycol (PEG), starch, andmore » urea. The second part involved two confirmatory 50-hour melter tests on the DM100 using the best combination of reductants and conditions based on the DM10 results. The third part was performed on the DM100 with feeds containing vanadium oxide (V{sub 2}O{sub 5}) as an inorganic additive to increase sulfur partitioning to the off-gas. Although vanadium oxide is not a reductant, previous testing has shown that vanadium shows promise for partitioning sulfur to the melter exhaust, presumably through its known catalytic effect on the SO{sub 2}/SO{sub 3} reaction. Crucible-scale tests were conducted prior to the melter tests to confirm that the glasses and feeds would be processable in the melter and that the glasses would meet the waste form (ILAW) performance requirements. Thus, the major objectives of these tests were to: Perform screening tests on the DM10 followed by tests on the DM100-WV system using a LAW -Envelope A feed with four organic additives to assess their impact on sulfur volatilization. Perform tests on the DM100-WV system using a LAW -Envelope A feed containing vanadium oxide to assess its impact on sulfur volatilization. Determine feed processability and product quality with the above additives. Collect melter emissions data to determine the effect of additives on sulfur partitioning and melter emissions. Collect and analyze discharged glass to determine sulfur retention in the glass. Prepare and characterize feeds and glasses with the additives to confirm that the feeds and the glass melts are suitable for processing in the DM100 melter. Prepare and characterize glasses with the additives to confirm that the glasses meet the waste form (ILAW) performance requirements.« less

  3. Assessment of solid phase microfiber extraction fibers for the monitoring of volatile organoarsinicals emitted from a plant-soil system.

    PubMed

    Ruppert, L; Lin, Z-Q; Dixon, R P; Johnson, K A

    2013-11-15

    Phytoremediation, the use of plants and microbes to clean up inorganic and organic pollutants, has shown great promise as an inexpensive and feasible form of remediation. More recently, studies have shown that some plants have an amazing capacity to volatilize contaminants and can be an effective remediation strategy if the chemicals released are non-toxic. Arsenic contamination and remediation has drawn great attention in the scientific community. However, its toxicity also varies depending on its form. We evaluated, optimized, and then utilized a solid phase microfiber extraction (SPME) head space sampling technique to characterize the organoarsinical emissions from rabbitfoot grass (Polypogon monspeliensis) in arsenic treated soils to determine if the potentially more toxic organic forms of arsenic (AsH3, AsH2CH3, AsH(CH3)2, and As(CH3)3) were being emitted from the plant-soil system. The SPME fiber that proved best fitted for this application was the DVB/CAR/PDMS fiber with a 45 min sampling period. We did detect and confirm the emissions of dimethylchloroarsine (AsCl(CH3)2) and pentamethylarsine (As(CH3)5). However, it was determined that the more toxic organic forms of arsenic were not released during phytovolatilization. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Method for depositing a uniform layer of particulate material on the surface of an article having interconnected porosity

    DOEpatents

    Wrenn, Jr., George E.; Lewis, Jr., John

    1984-01-01

    The invention is a method for depositing liquid-suspended particles on an immersed porous article characterized by interconnected porosity. In one form of the invention, coating is conducted in a vessel containing an organic liquid supporting a colloidal dispersion of graphite sized to lodge in surface pores of the article. The liquid comprises a first volatile component (e.g., acetone) and a second less-volatile component (e.g., toluene) containing a dissolved organic graphite-bonding agent. The liquid also contains an organic agent (e.g., cellulose gum) for maintaining the particles in suspension. A porous carbon article to be coated is immersed in the liquid so that it is permeated therewith. While the liquid is stirred to maintain a uniform blend, the vessel headspace is evacuated to effect flashing-off of the first component from the interior of the article. This causes particle-laden liquid exterior of the article to flow inwardly through its surface pores, lodging particles in these pores and forming a continuous graphite coating. The coated article is retrieved and heated to resin-bond the graphite. The method can be used to form a smooth, adherent, continuous coating of various materials on various porous articles. The method is rapid and reproducible.

  5. Method for depositing a uniform layer of particulate material on the surface of an article having interconnected porosity

    DOEpatents

    Wrenn, G.E. Jr.; Lewis, J. Jr.

    1982-09-29

    The invention is a method for depositing liquid-suspended particles on an immersed porous article characterized by interconnected porosity. In one form of the invention, coating is conducted in a vessel containing an organic liquid supporting a colloidal dispersion of graphite sized to lodge in surface pores of the article. The liquid comprises a first volatile component (e.g., acetone) and a second less-volatile component (e.g., toluene) containing a dissolved organic graphite-bonding agent. The liquid also contains an organic agent (e.g., cellulose gum) for maintaining the particles in suspension. A porous carbon article to be coated is immersed in the liquid so that it is permeated therewith. While the liquid is stirred to maintain a uniform blend, the vessel headspace is evacuated to effect flashing-off of the first component from the interior of the article. This causes particle-laden liquid exterior of the article to flow inwardly through its surface pores, lodging particles in these pores and forming a continuous graphite coating. The coated article is retrieved and heated to resin-bond the graphite. The method can be used to form a smooth, adherent, continuous coating of various materials on various porous articles. The method is rapid and reproducible.

  6. SEPARATION OF VOLATILE ORGANIC COMPOUNDS FROM SURFACTANT SOLUTIONS BY PERVAPORATION

    EPA Science Inventory

    Pervaporation is gradually becoming an accepted and practical method for the recovery of volatile organic compounds (VOCs) from aqueous process and waste streams. As the technolog has matured, new applications for pervaporation have emerged. One such application is the separati...

  7. 77 FR 73544 - Approval and Promulgation of Air Quality Implementation Plans; West Virginia; The 2002 Base Year...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-11

    ... nitrogen oxides (NO X ), volatile organic compounds (VOCs), PM 2.5 , coarse particles (PM 10 ), ammonia (NH... oxides (NO X ), volatile organic compounds (VOCs), PM 2.5 , coarse particles (PM 10 ), ammonia (NH 3...

  8. VOLATILE ORGANIC COMPOUNDS (VOCS) CHAPTER 31.

    EPA Science Inventory

    The term "volatile organic compounds' (VOCs) was originally coined to refer, as a class, to carbon-containing chemicals that participate in photochemical reactions in the ambient (outdoor) are. The regulatory definition of VOCs used by the U.S. EPA is: Any compound of carbon, ex...

  9. MICROBIAL VOLATILE ORGANIC COMPOUND EMISSION RATES AND EXPOSURE MODEL

    EPA Science Inventory

    This paper presents the results from a study that examined microbial volatile organic compound (MVOC) emissions from six fungi and one bacterial species (Streptomyces spp.) commonly found in indoor environments. Data are presented on peak emission rates from inoculated agar plate...

  10. REGIONAL METHODS INITIATIVE RESEARCH PROJECTS AT HEASD

    EPA Science Inventory

    EPA Regional Laboratories are currently using high volume samplers with a combination of filter and sorbent vapor trap to collect large volume samples (250 liter/min for 24 hours) of semi-volatile organic compounds (SVOCs) and non-volatile organic compounds (NVOCs). These are su...

  11. PERTURBATION OF VOLTAGE-SENSITIVE Ca2+ CHANNEL FUNCTION BY VOLATILE ORGANIC SOLVENTS.

    EPA Science Inventory

    The mechanisms underlying the acute neurophysiological and behavioral effects of volatile organic compounds (VOCs) remain to be elucidated. However, the function of neuronal ion channels is perturbed by VOCs. The present study examined effects of toluene (TOL), trichloroethylene ...

  12. IMPROVED METHOD FOR THE STORAGE OF GROUND WATER SAMPLES CONTAINING VOLATILE ORGANIC ANALYTES

    EPA Science Inventory

    The sorption of volatile organic analytes from water samples by the Teflon septum surface used with standard glass 40-ml sample collection vials was investigated. Analytes tested included alkanes, isoalkanes, olefins, cycloalkanes, a cycloalkene, monoaromatics, a polynuclear arom...

  13. MODELING OF MULTICOMPONENT PERVAPORATION FOR REMOVAL OF VOLATILE ORGANIC COMPOUNDS FROM WATER

    EPA Science Inventory

    A resistance-in-series model was used to study the pervaporation of multiple volatile organic compounds (VOCs)-water mixtures. Permeation experiments were carried out for four membranes: poly(dimethylsiloxane) (PDMS), polyether-block-polyamides (PEBA), polyurethane (PUR) and sil...

  14. 40 CFR 59.206 - Variances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Consumer Products § 59.206 Variances. (a) Any regulated entity who cannot... reaching a decision on a variance application. Interested members of the public will be allowed a...

  15. Volatile Organic Sulfur Compounds of Environmental Interest: Dimethyl Sulfide and Methanethiol

    ERIC Educational Resources Information Center

    Chasteen, Thomas G.; Bentley, Ronald

    2004-01-01

    Volatile organic sulfur compounds (VOSCs) have been assigned environmental roles in global warming, acid precipitation, and cloud formation where two important members dimethyl sulfide (CH3)2 S, DMS, and methanethiol, CH3SH, MT, of VOSC group are involved.

  16. VOLATILE ORGANIC COMPOUNDS MEASURED IN DEARS PASSIVE SAMPLERS

    EPA Science Inventory

    A suite of 27 volatile organic compounds (VOCs) were monitored in personal exposures, indoors and outdoors of participant's residences, and at a central community site during the DEARS summer 2004 monitoring season. The list of VOCs focused on compounds typically associated with ...

  17. 40 CFR 59.102 - Standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic... § 59.106 of this subpart, any coating resulting from the mixing instructions of a regulated entity must... § 59.104(a). (b) Different combinations or mixing ratios of coating components constitute different...

  18. SUPERCRITICAL FLUID EXTRACTION OF SEMI-VOLATILE ORGANIC COMPOUNDS FROM PARTICLES

    EPA Science Inventory

    A nitrogen oxide flux chamber was modified to measure the flux of semi-volatile organic compounds (SVOCs). Part of the modification involved the development of methods to extract SVOCs from polyurethane foam (PUF), sand, and soil. Breakthroughs and extraction efficiencies were ...

  19. LEAVES AS INDICATORS OF EXPOSURE TO AIRBORNE VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    The concentration of volatile organic compounds (VOCs) in leaves is primarily a product of airborne exposures and dependent upon bioconcentration factors and release rates. The bioconcentration factors for VOCs in grass are found to be related to their partitioning between octan...

  20. Language of plants: Where is the word?

    PubMed

    Šimpraga, Maja; Takabayashi, Junji; Holopainen, Jarmo K

    2016-04-01

    Plants emit biogenic volatile organic compounds (BVOCs) causing transcriptomic, metabolomic and behavioral responses in receiver organisms. Volatiles involved in such responses are often called "plant language". Arthropods having sensitive chemoreceptors can recognize language released by plants. Insect herbivores, pollinators and natural enemies respond to composition of volatiles from plants with specialized receptors responding to different types of compounds. In contrast, the mechanism of how plants "hear" volatiles has remained obscured. In a plant-plant communication, several individually emitted compounds are known to prime defense response in receiver plants with a specific manner according to the chemical structure of each volatile compound. Further, composition and ratio of volatile compounds in the plant-released plume is important in plant-insect and plant-plant interactions mediated by plant volatiles. Studies on volatile-mediated plant-plant signaling indicate that the signaling distances are rather short, usually not longer than one meter. Volatile communication from plants to insects such as pollinators could be across distances of hundreds of meters. As many of the herbivore induced VOCs have rather short atmospheric life times, we suggest that in long-distant communications with plant volatiles, reaction products in the original emitted compounds may have additional information value of the distance to emission source together with the original plant-emitted compounds. © 2015 Institute of Botany, Chinese Academy of Sciences.

  1. Differential Profiling of Volatile Organic Compound Biomarker Signatures Utilizing a Logical Statistical Filter-Set and Novel Hybrid Evolutionary Classifiers

    DTIC Science & Technology

    2012-04-01

    for automated SPME headspace sampling and in-line with a Thermo DSQII single quadrupole mass spectrometer. Collection of organic volatiles from the...urine was accomplished using a 2cm CAR/DVB/PDMS solid phase micro extraction fiber ( SPME ), Supelco supplier, inserted by the Triplus autosampler into...automated direct injection. Volatiles gathered by the SPME fiber were analyzed through desorption of the fiber by heating to elevated temperature and

  2. Uncertainty in aerosol hygroscopicity resulting from semi-volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Goulden, Olivia; Crooks, Matthew; Connolly, Paul

    2018-01-01

    We present a novel method of exploring the effect of uncertainties in aerosol properties on cloud droplet number using existing cloud droplet activation parameterisations. Aerosol properties of a single involatile particle mode are randomly sampled within an uncertainty range and resulting maximum supersaturations and critical diameters calculated using the cloud droplet activation scheme. Hygroscopicity parameters are subsequently derived and the values of the mean and uncertainty are found to be comparable to experimental observations. A recently proposed cloud droplet activation scheme that includes the effects of co-condensation of semi-volatile organic compounds (SVOCs) onto a single lognormal mode of involatile particles is also considered. In addition to the uncertainties associated with the involatile particles, concentrations, volatility distributions and chemical composition of the SVOCs are randomly sampled and hygroscopicity parameters are derived using the cloud droplet activation scheme. The inclusion of SVOCs is found to have a significant effect on the hygroscopicity and contributes a large uncertainty. For non-volatile particles that are effective cloud condensation nuclei, the co-condensation of SVOCs reduces their actual hygroscopicity by approximately 25 %. A new concept of an effective hygroscopicity parameter is introduced that can computationally efficiently simulate the effect of SVOCs on cloud droplet number concentration without direct modelling of the organic compounds. These effective hygroscopicities can be as much as a factor of 2 higher than those of the non-volatile particles onto which the volatile organic compounds condense.

  3. Estimation of the volatility distribution of organic aerosol combining thermodenuder and isothermal dilution measurements

    NASA Astrophysics Data System (ADS)

    Louvaris, Evangelos E.; Karnezi, Eleni; Kostenidou, Evangelia; Kaltsonoudis, Christos; Pandis, Spyros N.

    2017-10-01

    A method is developed following the work of Grieshop et al. (2009) for the determination of the organic aerosol (OA) volatility distribution combining thermodenuder (TD) and isothermal dilution measurements. The approach was tested in experiments that were conducted in a smog chamber using organic aerosol (OA) produced during meat charbroiling. A TD was operated at temperatures ranging from 25 to 250 °C with a 14 s centerline residence time coupled to a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a scanning mobility particle sizer (SMPS). In parallel, a dilution chamber filled with clean air was used to dilute isothermally the aerosol of the larger chamber by approximately a factor of 10. The OA mass fraction remaining was measured as a function of temperature in the TD and as a function of time in the isothermal dilution chamber. These two sets of measurements were used together to estimate the volatility distribution of the OA and its effective vaporization enthalpy and accommodation coefficient. In the isothermal dilution experiments approximately 20 % of the OA evaporated within 15 min. Almost all the OA evaporated in the TD at approximately 200 °C. The resulting volatility distributions suggested that around 60-75 % of the cooking OA (COA) at concentrations around 500 µg m-3 consisted of low-volatility organic compounds (LVOCs), 20-30 % of semivolatile organic compounds (SVOCs), and around 10 % of intermediate-volatility organic compounds (IVOCs). The estimated effective vaporization enthalpy of COA was 100 ± 20 kJ mol-1 and the effective accommodation coefficient was 0.06-0.07. Addition of the dilution measurements to the TD data results in a lower uncertainty of the estimated vaporization enthalpy as well as the SVOC content of the OA.

  4. Formation and aging of secondary organic aerosol from toluene: Changes in chemical composition, volatility, and hygroscopicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hildebrandt Ruiz, L.; Paciga, A. L.; Cerully, K. M.

    Secondary organic aerosol (SOA) is transformed after its initial formation, but this chemical aging of SOA is poorly understood. Experiments were conducted in the Carnegie Mellon environmental chamber to form secondary organic aerosol (SOA) from the photo-oxidation of toluene and other small aromatic volatile organic compounds (VOCs) in the presence of NO x under different oxidizing conditions. The effects of the oxidizing condition on organic aerosol (OA) composition, mass yield, volatility, and hygroscopicity were explored. Higher exposure to the hydroxyl radical resulted in different OA composition, average carbon oxidation state (OS c), and mass yield. The OA oxidation state generallymore » increased during photo-oxidation, and the final OA OS c ranged from –0.29 to 0.16 in the performed experiments. The volatility of OA formed in these different experiments varied by as much as a factor of 30, demonstrating that the OA formed under different oxidizing conditions can have a significantly different saturation concentration. In conclusion, there was no clear correlation between hygroscopicity and oxidation state for this relatively hygroscopic SOA.« less

  5. Formation and aging of secondary organic aerosol from toluene: Changes in chemical composition, volatility, and hygroscopicity

    DOE PAGES

    Hildebrandt Ruiz, L.; Paciga, A. L.; Cerully, K. M.; ...

    2015-07-24

    Secondary organic aerosol (SOA) is transformed after its initial formation, but this chemical aging of SOA is poorly understood. Experiments were conducted in the Carnegie Mellon environmental chamber to form secondary organic aerosol (SOA) from the photo-oxidation of toluene and other small aromatic volatile organic compounds (VOCs) in the presence of NO x under different oxidizing conditions. The effects of the oxidizing condition on organic aerosol (OA) composition, mass yield, volatility, and hygroscopicity were explored. Higher exposure to the hydroxyl radical resulted in different OA composition, average carbon oxidation state (OS c), and mass yield. The OA oxidation state generallymore » increased during photo-oxidation, and the final OA OS c ranged from –0.29 to 0.16 in the performed experiments. The volatility of OA formed in these different experiments varied by as much as a factor of 30, demonstrating that the OA formed under different oxidizing conditions can have a significantly different saturation concentration. In conclusion, there was no clear correlation between hygroscopicity and oxidation state for this relatively hygroscopic SOA.« less

  6. Generation and characterization of four dilutions of diesel engine exhaust for a subchronic inhalation study.

    PubMed

    McDonald, Jacob D; Barr, Edward B; White, Richard K; Chow, Judith C; Schauer, James J; Zielinska, Barbara; Grosjean, Eric

    2004-05-01

    Exposure atmospheres for a rodent inhalation toxicology study were generated from the exhaust of a 2000 Cummins ISB 5.9L diesel engine coupled to a dynamometer and operated on a slightly modified heavy-duty Federal Test Procedure cycle. Exposures were conducted to one clean air control and four diesel exhaust levels maintained at four different dilution rates (300:1, 100:1, 30:1, 10:1) that yielded particulate mass concentrations of 30, 100, 300, and 1000 microg/m3. Exposures at the four dilutions were characterized for particle mass, particle size distribution (reported elsewhere), detailed chemical speciation of gaseous, semivolatile, and particle-phase inorganic and organic compounds. Target analytes included metals, inorganic ions and gases, organic and elemental carbon, alkanes, alkenes, aromatic and aliphatic acids, aromatic hydrocarbons, polycyclic aromatic hydrocarbons (PAH), oxygenated PAH, nitrogenated PAH, isoprenoids, carbonyls, methoxyphenols, sugar derivatives, and sterols. The majority of the mass of material in the exposure atmospheres was gaseous nitrogen oxides and carbon monoxide, with lesser amounts of volatile organics and particle mass (PM) composed of carbon (approximately 90% of PM) and ions (approximately 10% of PM). Measured particle organic species accounted for about 10% of total organic particle mass and were mostly alkanes and aliphatic acids. Several of the components in the exposure atmosphere scaled in concentration with dilution but did not scale precisely with the dilution rate because of background from the rodents and scrubbed dilution air, interaction of animal derived emissions with diesel exhaust components, and day-to-day variability in the output of the engine. Rodent-derived ammonia reacted with exhaust to form secondary inorganic particles (at different rates dependent on dilution), and rodent respiration accounted for volatile organics (especially carbonyls and acids) in the same range as the diesel exhaust at the lowest exhaust exposure concentrations. Day-to-day variability in the engine output was implicated partially for differences of several components, including some of the particle bound organics. Though these observations have likely occurred in nearly all inhalation exposure atmospheres that contain complex mixtures of material, the speciations conducted here illustrate many of them for the first time.

  7. High hydrostatic pressure treatments enhance volatile components of pre-germinated brown rice revealed by aromatic fingerprinting based on HS-SPME/GC-MS and chemometric methods.

    PubMed

    Xia, Qiang; Mei, Jun; Yu, Wenjuan; Li, Yunfei

    2017-01-01

    Germination favors to significantly enhance functional components and health attributes of whole-grain brown rice (BR), but the production of germinated BR (GBR) compromises the typical rice flavor perception due to soaking process. Simultaneously, high hydrostatic pressure (HHP) is considered as an effective processing technique to enhance micronutrients utilization efficiency of GBR and improve products flavor, but no information about the effects of HHP treatments on volatile fingerprinting of GBR has been reported. Therefore, the objective of this work was to apply HHP to improve the flavor and odor of GBR grains by exploring HHP-induced changes in aroma compounds. GBR grains were obtained by incubating at 37°C for 36h, and subsequently subjected to HHP treatments at pressures 100, 300 and 500MPa for 15min, using 0.1MPa as control. Headspace solid-phase micro extraction coupled to gas chromatography mass spectrometry was used to characterize process-induced shifts of volatile organic compounds fingerprinting, followed by multivariate analysis. Our results confirmed the significant reduction of total volatile fractions derived from germination process. Contrarily, the following HHP treatments greatly enhanced the flavor components of GBR, particularly characteristic odorants including aldehydes, ketones, and alcohols. Principal component analysis further indicated the different influence of germination and high pressure on the changes in volatile components. Partial least square-discrimination analysis suggested that 4-vinylguaiacol was closely linked to germination, whereas E,E-2,4-decadienal, E-2-hexenal, E,E-2,4-heptadienal and benzyl alcohol could be considered as volatile biomarkers of high pressure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Constraining the Volatility Distributions and Possible Diffusion Limitations of Secondary Organic Aerosols Using Laboratory Dilution Experiments

    NASA Astrophysics Data System (ADS)

    Ye, Q.; Robinson, E. S.; Mahfouz, N.; Sullivan, R. C.; Donahue, N. M.

    2016-12-01

    Secondary organic aerosols (SOA) dominate the mass of fine particles in the atmosphere. Their formation involves both oxidation of volatile organics from various sources that produce products with uncertain volatilities, and diffusion of these products into the condensed phase. Therefore, constraining volatility distribution and diffusion timescales of the constituents in SOA are important in predicting size, concentration and composition of SOA, as well as how these properties of SOA evolve in the atmosphere. In this work, we demonstrate how carefully designed laboratory isothermal dilution experiments in smog chambers can shed light into the volatility distribution and any diffusion barriers of common types of SOA over time scales relevant to atmospheric transport and diurnal cycling. We choose SOA made from mono-terpenes (alpha-pinene and limonene) and toluene to represent biogenic and anthropogenic SOA. We look into how moisture content can alter any evaporation behaviors of SOA by varying relative humidity during SOA generation and during dilution process. This provides insight into whether diffusion in the condensed phase is rate limiting in reaching gas/particle equilibrium of semi-volatile organic compounds. Our preliminary results show that SOA from alpha-pinene evaporates continuously over several hours of experiments, and there is no substantial discernible differences over wide ranges of the chamber humidity. SOA from toluene oxidation shows slower evaporation. We fit these experimental data using absorptive partitioning theory and a particle dynamic model to obtain volatility distributions and to predict particle size evolution. This in the end will help us to improve representation of SOA in large scale chemical transport models.

  9. 76 FR 20742 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... price movements between 9:30 a.m. and 4 p.m. Eastern Standard Time (``EST''). Volatility Guard is... March 11, 2011, the Commission approved Rule 4753(c) (the ``Volatility Guard''), a volatility-based... six month pilot applied to the NASDAQ 100 Index securities.\\3\\ The Volatility Guard automatically...

  10. VOLATILE ORGANIC COMPOUND EMISSION RATES FROM MIXED DECIDUOUS AND CONIFEROUS FORESTS IN NORTHERN WISCONSIN, USA

    EPA Science Inventory

    Biogenic emissions of volatile organic compounds (VOC) from forests play an important role in regulating the atmospheric trace gas composition including global tropospheric ozone concentrations. However, more information is needed on VOC emission rates from different forest regio...

  11. A GLOBAL INVENTORY OF VOLATILE ORGANIC COMPOUND EMISSIONS FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    As part of an effort to assess the potential impacts associated with global climate change, the U.S. Environmental Protection Agency's Office of Research and Development is supporting global atmospheric chemistry research by developing global scale estimates of volatile organic c...

  12. 78 FR 55234 - Approval and Promulgation of Implementation Plans; Indiana; Volatile Organic Compound Emission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-10

    ... Measures for Industrial Solvent Cleaning for Northwest Indiana AGENCY: Environmental Protection Agency (EPA...) submitted revisions to its volatile organic compound (VOC) industrial solvent cleaning rule for...). These revisions are approvable because they are consistent with EPA's Industrial Solvent Cleaning...

  13. EXPOSURE TO VOLATILE ORGANIC COMPOUNDS MEASURED IN A SOURCE IMPACTED AIRSHED

    EPA Science Inventory

    A three-year exposure monitoring study is being conducted in a large city in the Midwestern U.S. The study is aimed at determining the factors influencing exposures to air pollutants of outdoor origin, including volatile organic compounds (VOCs) and particulate matter.

  14. Spatial analysis of volatile organic compounds in South Philadelphia using passive samplers

    EPA Science Inventory

    Select volatile organic compounds (VOCs) were measured in the vicinity of a petroleum refinery and related operations in South Philadelphia, Pennsylvania, USA, using passive air sampling and laboratory analysis methods. Two-week, time-integrated samplers were deployed at 17 sites...

  15. Predicting Age-Appropriate Pharmacokinetics of Six Volatile Organic Compounds in the Rat Utilizing Physiologically Based Pharmacokinetic Modeling

    EPA Science Inventory

    The capability of physiologically based pharmacokinetic models to incorporate age-appropriate physiological and chemical-specific parameters was utilized to predict changes in internal dosimetry for six volatile organic compounds (VOCs) across different ages of rats.

  16. ECOS E-MATRIX Methane and Volatile Organic Carbon (VOC) Emissions Best Practices Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parisien, Lia

    2016-01-31

    This final scientific/technical report on the ECOS e-MATRIX Methane and Volatile Organic Carbon (VOC) Emissions Best Practices Database provides a disclaimer and acknowledgement, table of contents, executive summary, description of project activities, and briefing/technical presentation link.

  17. VOLATILE ORGANIC COMPOUNDS AS BREATH BIOMARKERS FOR ACTIVE AND PASSIVE SMOKING

    EPA Science Inventory

    Real-time breath measurement technology was used to investigate the suitability of some volatile organic compounds (VOCs) to serve as breath biomarkers for active and passive smoking and to measure actual exposures and resulting breath concentrations for persons exposed to toba...

  18. Spatial Gradients and Source Apportionment of Volatile Organic Compounds Near Roadways

    EPA Science Inventory

    Concentrations of 55 volatile organic compounds (VOCs) are reported near a highway in Raleigh, NC (traffic volume of approximately 125,000 vehicles/day). Levels of VOCs generally decreased exponentially with perpendicular distance from the roadway 10-100m). The EPA Chemical Mass ...

  19. NATURAL EMISSIONS OF NON-METHANE VOLATILE ORGANIC COMPOUNDS, CARBON MONOXIDE, AND OXIDES OF NITROGEN FROM NORTH AMERICA

    EPA Science Inventory

    The magnitudes, distributions, controlling processes and uncertainties associated with North American natural emissions of oxidant precursors are reviewed. Natural emissions are repsonsible for a major portion of the compounds, including non-methane volatile organic compounds (N...

  20. INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.

    EPA Science Inventory

    INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.
    A.S. Bale*; P.J. Bushnell; C.A. Meacham; T.J. Shafer
    Neurotoxicology Division, NHEERL, ORD, US Environmental Protection Agency, Research Triangle Park, NC, USA
    Toluene (TOL...

  1. EVALUATION OF CONTROL STRATEGIES FOR VOLATILE ORGANIC COMPOUND IN INDOOR AIR

    EPA Science Inventory

    The Air and Energy Engineering Research Laboratory of the U.S. Environmental Protection Agency (U.S. EPA) conducts and sponsors research on technology to reduce or eliminate emissions of potentially toxic volatile organic compounds (VOCs) from industrial/commercial sources. The r...

  2. EVALUATION OF SOLID ADSORBENTS FOR THE COLLECTION AND ANALYSES OF AMBIENT BIOGENIC VOLATILE ORGANICS

    EPA Science Inventory

    Micrometeorological flux measurements of biogenic volatile organic compounds (BVOCs) usually require that large volumes of air be collected (whole air samples) or focused during the sampling process (cryogenic trapping or gas-solid partitioning on adsorbents) in order to achiev...

  3. OPTIMIZATION OF MULTICOMPONENT PERVAPORATION FOR REMOVAL OF VOLATILE ORGANIC COMPOUNDS FROM WATER

    EPA Science Inventory

    Optimal operation of a hollow fiber membrane module for pervaporative removal of multicomponent volatile organic compounds (VOCs) from wastewater was studied. A shell-and-tube heat-exchange type of hollow fiber module was considered for treatment of a wastewater containing toluen...

  4. Impact of elevated CO2 and O3 concentrations on biogenic volatile organic compounds emissions from Ginkgo biloba.

    PubMed

    Li, Dewen; Chen, Ying; Shi, Yi; He, Xingyuan; Chen, Xin

    2009-04-01

    In natural environment with ambient air, ginkgo trees emitted volatile organic compounds 0.18 microg g(-1) h(-1) in July, and 0.92 microg g(-1) h(-1) in September. Isoprene and limonene were the most abundant detected compounds. In September, alpha-pinene accounted for 22.5% of the total. Elevated CO(2) concentration in OTCs increased isoprene emission significantly in July (p<0.05) and September (p<0.05), while the total monoterpenes emission was enhanced in July and decreased in September by elevated CO(2). Exposed to elevated O(3) increased the isoprene and monoterpenes emissions in July and September, and the total volatile organic compounds emission rates were 0.48 microg g(-1) h(-1) (in July) and 2.24 microg g(-1) h(-1) (in September), respectively. The combination of elevated CO(2) and O(3) did not have any effect on biogenic volatile organic compounds emissions, except increases of isoprene and Delta3-carene in September.

  5. Cost-Effective, Ultra-Sensitive Groundwater Monitoring for Site Remediation and Management

    DTIC Science & Technology

    2015-05-01

    Example anion concentrations in groundwater used for feasibility studies. ................... 30 Table 5. Compounds screened in the laboratory for IS2...phase extraction ST storage tank SVOC semivolatile organic compound TCE trichloroethene TPH total petroleum hydrocarbon USEPA U.S. Environmental...Protection Agency UST underground storage tank V volt VOA volatile organic analysis VOC volatile organic compound Technical material

  6. Characterization of Volatiles Loss from Soil Samples at Lunar Environments

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Smith, Jim; Roush, Ted; Colaprete, Anthony; Zacny, Kris; Paulsen, Gale; Wang, Alex; Paz, Aaron

    2017-01-01

    Resource Prospector Integrated Thermal Vacuum Test Program A series of ground based dirty thermal vacuum tests are being conducted to better understand the subsurface sampling operations for RP Volatiles loss during sampling operations Hardware performance Sample removal and transfer Concept of operationsInstrumentation5 test campaigns over 5 years have been conducted with RP hardware with advancing hardware designs and additional RP subsystems Volatiles sampling 4 years Using flight-forward regolith sampling hardware, empirically determine volatile retention at lunar-relevant conditions Use data to improve theoretical predictions Determine driving variables for retention Bound water loss potential to define measurement uncertainties. The main goal of this talk is to introduce you to our approach to characterizing volatiles loss for RP. Introduce the facility and its capabilities Overview of the RP hardware used in integrated testing (most recent iteration) Summarize the test variables used thus farReview a sample of the results.

  7. Performance of the MOMA Gas Chromatograph-Mass Spectrometer onboard the 2018 ExoMars Mission

    NASA Astrophysics Data System (ADS)

    Buch, Arnaud; Pinnick, Veronica; Szopa, Cyril; Grand, Noël; Freissinet, Caroline; Danell, Ryan; van Ameron, Friso; Arevalo, Ricardo; Brinckerhoff, William; Raulin, François; Mahaffy, Paul; Goesmann, Fred

    2015-04-01

    The Mars Organic Molecule Analyzer (MOMA) is a dual ion source linear ion trap mass spectrometer that was designed for the 2018 joint ESA-Roscosmos mission to Mars. The main scientific aim of the mission is to search for signs of extant or extinct life in the near subsurface of Mars by acquir-ing samples from as deep as 2 m below the surface. MOMA will be a key analytical tool in providing chemical (molecular) information from the solid samples, with particular focus on the characterization of organic content. The MOMA instrument, itself, is a joint venture for NASA and ESA to develop a mass spectrometer capable of analyzing samples from pyrolysis gas chromatograph (GC) as well as ambient pressure laser desorption ionization (LDI). The combination of the two analytical techniques allows for the chemical characterization of a broad range of compounds, including volatile and non-volatile species. Generally, MOMA can provide in-formation on elemental and molecular makeup, po-larity, chirality and isotopic patterns of analyte spe-cies. Here we report on the current performance of the MOMA prototype instruments, specifically the demonstration of the gas chromatography-mass spec-trometry (GC-MS) mode of operation. Both instruments have been tested separately first and have been coupled in order to test the efficiency of the future MOMA GC-MS instrument. The main objective of the second step has been to test the quantitative response of both instruments while they are coupled and to characterize the combined instrument detection limit for several compounds. A final experiment has been done in order to test the feasibility of the separation and detection of a mixture contained in a soil sample introduced in the MOMA oven.

  8. HS-SPME analysis of volatile organic compounds of coniferous needle litter

    NASA Astrophysics Data System (ADS)

    Isidorov, V. A.; Vinogorova, V. T.; Rafałowski, K.

    The composition of volatile emission of Scots pine ( Pinus sylvestris) and spruce ( Picea exelsa) litter was studied by gas chromatography-mass spectrometry (GC-MS) and samples were collected by solid-phase microextraction (SPME) method. The list of identified compounds includes over 60 organic substances of different classes. It was established that volatile emission contain not only components of essential oils of pine and spruce needles but also a large number of organic compounds which are probably secondary metabolites of litter-decomposing fungi. They include lower carbonyl compounds and alcohols as well as products of terpene dehydration and oxidation. These data show that the processes of litter decomposition are an important source of reactive organic compounds under canopy of coniferous forests.

  9. Studies on the Effect of Sub-zero Temperatures on the Formation of Extremely Low Volatility Dimer Esters in Secondary Organic Aerosol from Alpha-Pinene

    NASA Astrophysics Data System (ADS)

    Kristensen, Kasper; Normann Jensen, Louise; Bilde, Merete

    2016-04-01

    The oxidation of volatile organic compounds (VOC) is considered a major source of secondary organic aerosols (SOA) in the atmosphere. Recently, extremely low volatility organic compounds, or ELVOC, formed from the oxidation of VOCs have been shown to play a crucial role in new particle formation (Ehn et al., 2014). In addition, higher molecular weight dimer esters originating from the oxidation of the biogenic VOC alpha-pinene have been observed in both laboratory-generated and ambient SOA (Kristensen et al., 2013). The low volatility of the dimer esters along with an observed rapid formation makes these high molecular weight compounds likely candidates involved in new particle formation from the oxidation of alpha-pinene. Furthermore, laboratory experiments show that the dimer esters only form in the presence of ozone, thus may be used as tracers for the ozone-initiated oxidation of alpha-pinene, and are therefore indicative of enhanced anthropogenic activities. In this work, we present the results of a series of oxidation experiments performed in the newly constructed cold-room smog chamber at Aarhus University. This unique and state-of-the-art Teflon chamber allows for atmospheric simulations of the oxidation VOCs and subsequent SOA formation at temperatures down to -16 °C. In this study, ozonolysis and photochemical oxidations of alpha-pinene are performed at temperatures ranging from +20 to -16 °C. Chemical characterization of the formed SOA is performed using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. The results show significant differences in the chemical composition related to the experiment temperature. In particularly, the concentration of the high molecular weight dimer esters showed to be highly affected by temperature. Interestingly, preliminary results show higher formation of dimer esters related to increased SOA formation rate, thus indicating that these particle-phase ELVOCs may be linked with new particle formation. Ehn, M., Thornton, J. A., Kleist, E., Sipila, M., Junninen, H., Pullinen, I., Springer, M., Rubach, F., Tillmann, R., Lee, B., Lopez-Hilfiker, F., Andres, S., Acir, I. H., Rissanen, M., Jokinen, T., Schobesberger, S., Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurten, T., Nielsen, L. B., Jorgensen, S., Kjaergaard, H. G., Canagaratna, M., Dal Maso, M., Berndt, T., Petaja, T., Wahner, A., Kerminen, V. M., Kulmala, M., Worsnop, D. R., Wildt, J., and Mentel, T. F.: A large source of low-volatility secondary organic aerosol, Nature, 506, 476-+, 10.1038/nature13032, 2014. Kristensen, K., Enggrob, K. L., King, S. M., Worton, D. R., Platt, S. M., Mortensen, R., Rosenoern, T., Surratt, J. D., Bilde, M., Goldstein, A. H., and Glasius, M.: Formation and occurrence of dimer esters of pinene oxidation products in atmospheric aerosols, Atmospheric Chemistry and Physics, 13, 3763-3776, 2013.

  10. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol

    NASA Astrophysics Data System (ADS)

    Ng, Nga Lee; Brown, Steven S.; Archibald, Alexander T.; Atlas, Elliot; Cohen, Ronald C.; Crowley, John N.; Day, Douglas A.; Donahue, Neil M.; Fry, Juliane L.; Fuchs, Hendrik; Griffin, Robert J.; Guzman, Marcelo I.; Herrmann, Hartmut; Hodzic, Alma; Iinuma, Yoshiteru; Jimenez, José L.; Kiendler-Scharr, Astrid; Lee, Ben H.; Luecken, Deborah J.; Mao, Jingqiu; McLaren, Robert; Mutzel, Anke; Osthoff, Hans D.; Ouyang, Bin; Picquet-Varrault, Benedicte; Platt, Ulrich; Pye, Havala O. T.; Rudich, Yinon; Schwantes, Rebecca H.; Shiraiwa, Manabu; Stutz, Jochen; Thornton, Joel A.; Tilgner, Andreas; Williams, Brent J.; Zaveri, Rahul A.

    2017-02-01

    Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry-climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.

  11. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, Nga Lee; Brown, Steven S.; Archibald, Alexander T.

    Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO 3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO 3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of importantmore » uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO 3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO 3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO 3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry–climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO 3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO 3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.« less

  12. SITE TECHNOLOGY CAPSULE: SUBSURFACE VOLATILIZATION AND VENTILATION SYSTEM (SVVS)

    EPA Science Inventory

    The Subsurface Volatilization and Ventilation System is an integrated technology used for attacking all phases of volatile organic compound (VOC) contamination in soil and groundwater. The SVVS technology promotes insitu remediation of soil and groundwater contaminated with or-ga...

  13. Tunable Gas Sensing Gels by Cooperative Assembly

    PubMed Central

    Hussain, Abid; Semeano, Ana T. S.; Palma, Susana I. C. J.; Pina, Ana S.; Almeida, José; Medrado, Bárbara F.; Pádua, Ana C. C. S.; Carvalho, Ana L.; Dionísio, Madalena; Li, Rosamaria W. C.; Gamboa, Hugo; Ulijn, Rein V.; Gruber, Jonas; Roque, Ana C. A.

    2017-01-01

    The cooperative assembly of biopolymers and small molecules can yield functional materials with precisely tunable properties. Here, the fabrication, characterization, and use of multicomponent hybrid gels as selective gas sensors are reported. The gels are composed of liquid crystal droplets self-assembled in the presence of ionic liquids, which further coassemble with biopolymers to form stable matrices. Each individual component can be varied and acts cooperatively to tune gels’ structure and function. The unique molecular environment in hybrid gels is explored for supramolecular recognition of volatile compounds. Gels with distinct compositions are used as optical and electrical gas sensors, yielding a combinatorial response conceptually mimicking olfactory biological systems, and tested to distinguish volatile organic compounds and to quantify ethanol in automotive fuel. The gel response is rapid, reversible, and reproducible. These robust, versatile, modular, pliant electro-optical soft materials possess new possibilities in sensing triggered by chemical and physical stimuli. PMID:28747856

  14. Thermal engine driven heat pump for recovery of volatile organic compounds

    DOEpatents

    Drake, Richard L.

    1991-01-01

    The present invention relates to a method and apparatus for separating volatile organic compounds from a stream of process gas. An internal combustion engine drives a plurality of refrigeration systems, an electrical generator and an air compressor. The exhaust of the internal combustion engine drives an inert gas subsystem and a heater for the gas. A water jacket captures waste heat from the internal combustion engine and drives a second heater for the gas and possibly an additional refrigeration system for the supply of chilled water. The refrigeration systems mechanically driven by the internal combustion engine effect the precipitation of volatile organic compounds from the stream of gas.

  15. Gas-liquid chromatography in lunar organic analysis.

    NASA Technical Reports Server (NTRS)

    Gehrke, C. W.

    1972-01-01

    Gas-liquid chromatography (GLC) is a powerful and sensitive method for the separation and detection of organic compounds at nanogram levels. The primary requirement for successful analyses is that the compounds of interest must be volatile under the chromatographic conditions employed. Nonvolatile organic compounds must be converted to volatile derivatives prior to analysis. The derivatives of choice must be both amenable to chromatographic separation and be relatively stable. The condition of volatility necessitates the development of efficient derivatization reactions for important groups of compounds as amino acids, carbohydrates, nucleosides, etc. Trimethylsilylation and trifluoroacetylation represent specific areas of recent prominence. Some relevant practical aspects of GLC are discussed.

  16. Efficacy of indigenous soil microbes in arsenic mitigation from contaminated alluvial soil of India.

    PubMed

    Majumder, Aparajita; Bhattacharyya, Kallol; Kole, S C; Ghosh, Sagarmoy

    2013-08-01

    Selected arsenic-volatilizing indigenous soil bacteria were isolated and their ability to form volatile arsenicals from toxic inorganic arsenic was assessed. Approximately 37 % of AsIII (under aerobic conditions) and 30 % AsV (under anaerobic conditions) were volatilized by new bacterial isolates in 3 days. In contrast to genetically modified organism, indigenous soil bacteria was capable of removing 16 % of arsenic from contaminated soil during 60 days incubation period while applied with a low-cost organic nutrient supplement (farm yard manure).

  17. Modeling comprehensive chemical composition of weathered oil following a marine spill to predict ozone and potential secondary aerosol formation and constrain transport pathways

    NASA Astrophysics Data System (ADS)

    Drozd, Greg T.; Worton, David R.; Aeppli, Christoph; Reddy, Christopher M.; Zhang, Haofei; Variano, Evan; Goldstein, Allen H.

    2015-11-01

    Releases of hydrocarbons from oil spills have large environmental impacts in both the ocean and atmosphere. Oil evaporation is not simply a mechanism of mass loss from the ocean, as it also causes production of atmospheric pollutants. Monitoring atmospheric emissions from oil spills must include a broad range of volatile organic compounds (VOC), including intermediate-volatile and semivolatile compounds (IVOC, SVOC), which cause secondary organic aerosol (SOA) and ozone production. The Deepwater Horizon (DWH) disaster in the northern Gulf of Mexico during Spring/Summer of 2010 presented a unique opportunity to observe SOA production due to an oil spill. To better understand these observations, we conducted measurements and modeled oil evaporation utilizing unprecedented comprehensive composition measurements, achieved by gas chromatography with vacuum ultraviolet time of flight mass spectrometry (GC-VUV-HR-ToFMS). All hydrocarbons with 10-30 carbons were classified by degree of branching, number of cyclic rings, aromaticity, and molecular weight; these hydrocarbons comprise ˜70% of total oil mass. Such detailed and comprehensive characterization of DWH oil allowed bottom-up estimates of oil evaporation kinetics. We developed an evaporative model, using solely our composition measurements and thermodynamic data, that is in excellent agreement with published mass evaporation rates and our wind-tunnel measurements. Using this model, we determine surface slick samples are composed of oil with a distribution of evaporative ages and identify and characterize probable subsurface transport of oil.

  18. Fusarium oxysporum induces the production of proteins and volatile organic compounds by Trichoderma harzianum T-E5.

    PubMed

    Zhang, Fengge; Yang, Xingming; Ran, Wei; Shen, Qirong

    2014-10-01

    Trichoderma species have been used widely as biocontrol agents for the suppression of soil-borne pathogens. However, some antagonistic mechanisms of Trichoderma are not well characterized. In this study, a series of laboratory experiments were designed to characterize the importance of mycoparasitism, exoenzymes, and volatile organic compounds (VOCs) by Trichoderma harzianum T-E5 for the control of Fusarium oxysporum f. sp. cucumerinum (FOC). We further tested whether these mechanisms were inducible and upregulated in presence of FOC. The results were as follows: T-E5 heavily parasitized FOC by coiling and twisting the entire mycelium of the pathogen in dual cultures. T-E5 growing medium conditioned with deactivated FOC (T2) showed more proteins and higher cell wall-degrading enzyme activities than T1, suggesting that FOC could induce the upregulation of exoenzymes. The presence of deactivated FOC (T2') also resulted in the upregulation of VOCs that five and eight different types T-E5-derived VOCs were identified from T1' and T2', respectively. Further, the excreted VOCs in T2' showed significantly higher antifungal activities against FOC than T1'. In conclusion, mycoparasitism of T-E5 against FOC involved mycelium contact and the production of complex extracellular substances. Together, these data provide clues to help further clarify the interactions between these fungi. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. A Monte-Carlo Analysis of Organic Aerosol Volatility with Aerosol Microphysics

    NASA Astrophysics Data System (ADS)

    Gao, C. Y.; Tsigaridis, K.; Bauer, S. E.

    2016-12-01

    A newly developed box model scheme, MATRIX-VBS, includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves aerosol mass and number concentrations and aerosol mixing state. The new scheme advanced the representation of organic aerosols in Earth system models by improving the traditional and simplistic treatment of organic aerosols as non-volatile and with a fixed size distribution. Further development includes adding the condensation of organics on coarse mode aerosols - dust and sea salt, thus making all organics in the system semi-volatile. To test and simplify the model, a Monte-Carlo analysis is performed to pin point which processes affect organics the most under which chemical and meteorological conditions. Since the model's parameterizations have the ability to capture a very wide range of conditions, from very clean to very polluted and for a wide range of meteorological conditions, all possible scenarios on Earth across the whole parameter space, including temperature, location, emissions and oxidant levels, are examined. The Monte-Carlo simulations provide quantitative information on the sensitivity of the newly developed model and help us understand how organics are affecting the size distribution, mixing state and volatility distribution at varying levels of meteorological conditions and pollution levels. In addition, these simulations give information on which parameters play a critical role in the aerosol distribution and evolution in the atmosphere and which do not, that will facilitate the simplification of the box model, an important step in its implementation in the global model.

  20. 40 CFR 59.510 - What records am I required to maintain?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.510 What records... providing the written certification to the Administrator in accordance with § 59.511(g), the certifying...

  1. REVIEW OF VOLATILE ORGANIC COMPOUND SOURCE APPORTIONMENT BY CHEMICAL MASS BALANCE. (R826237)

    EPA Science Inventory

    The chemical mass balance (CMB) receptor model has apportioned volatile organic compounds (VOCs) in more than 20 urban areas, mostly in the United States. These applications differ in terms of the total fraction apportioned, the calculation method, the chemical compounds used ...

  2. INHIBITION OF HUMAN A7 NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS BY THE VOLATILE ORGANIC SOLVENT TRICHLOROETHYLENE.

    EPA Science Inventory

    Volatile organic compounds such as toleune, trichloroethylene and perchloroethylene are potent and reversible blockers of voltage-gated calcium current in nerve growth factor (NGF)-differentiated pheochromocytoma (PC12) cells. It is hypothesized that effects of VOCs on ICa contri...

  3. EVALUATION OF INNOVATIVE VOLATILE ORGANIC COMPOUND AND HAZARDOUS AIR POLLUTANT CONTROL TECHNOLOGIES FOR U.S. AIR FORCE PAINT SPRAY BOOTHS

    EPA Science Inventory

    This report gives results of an evaluation of carbon paper adsorption catalytic incineration (CPACI) and fluidized-bed catalytic incineration (FBCI) as control technologies to reduce volatile organic compound (VOC) emissions from paint spray booths.

  4. TREATMENT OF CHLORINATED VOLATILE ORGANIC COMPOUNDS IN UPFLOW WETLAND MESOCOSMS. (R828773C003)

    EPA Science Inventory

    Sorption, biodegradation and hydraulic parameters were determined in the laboratory for two candidate soil substrate mixtures for construction of an upflow treatment wetland for volatile organic compounds (VOCs) at a Superfund site. The major parent contaminants in the groundw...

  5. SEPARATION AND ISOLATION OF VOLATILE ORGANIC COMPOUNDS USING VACUUM DISTILLATION WITH GC/MS DETERMINATION

    EPA Science Inventory

    Vacuum distillation of water, soil, oil, and fish samples is presented as an alternative technique for determining volatile organic compounds (VOCs). Analyses of samples containing VOCs and non-VOCs at 50ppb concentrations were performed to evaluate method limitations. Analyte re...

  6. 76 FR 74014 - Approval and Promulgation of Implementation Plans; Illinois; Volatile Organic Compound Emission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-30

    ... Promulgation of Implementation Plans; Illinois; Volatile Organic Compound Emission Control Measures for Chicago... Act's (the Act) requirement that States revise their SIPs to include reasonably available control... rules are approvable because they are consistent with the Control Technique Guideline (CTG) documents...

  7. 76 FR 4835 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Volatile Organic Compound...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... Promulgation of Air Quality Implementation Plans; Ohio; Volatile Organic Compound Reinforced Plastics...) emissions from reinforced plastic composites production operations to Ohio's State Implementation plan (SIP). This rule applies to any facility that has reinforced plastic composites production operations. This...

  8. 75 FR 24404 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compound...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compound Automobile Refinishing... approving into the Indiana State Implementation Plan (SIP) amendments to Indiana's automobile refinishing... (VOC) automobile refinishing rules to all persons in Indiana who sell or manufacture automobile...

  9. Analysis of breath volatile organic compounds as a screening tool for detection of Tuberculosis in cattle

    USDA-ARS?s Scientific Manuscript database

    • Keywords: bovine tuberculosis; Mycobacterium bovis; breath analysis; volatile organic compound; gas chromatography; mass spectrometry; NaNose • Introduction: This presentation describes two studies exploring the use of breath VOCs to identify Mycobacterium bovis infection in cattle. • Methods: ...

  10. Modeling emissions of volatile organic compounds from silage storages and feed lanes

    USDA-ARS?s Scientific Manuscript database

    An initial volatile organic compound (VOC) emission model for silage sources, developed using experimental data from previous studies, was incorporated into the Integrated Farm System Model (IFSM), a whole-farm simulation model used to assess the performance, environmental impacts, and economics of ...

  11. US EPA Base Study Standard Operating Procedure for Sampling Volatile Organic Compounds in Indoor Air using Multisorbent Samplers

    EPA Pesticide Factsheets

    The objective of this procedure is to collect representative samples of volatile organic compound (VOC) contaminants present in indoor and outdoor environments using multisorbent samplers, and to subsequently analyze the concentration of VOCs, as selected by EPA.

  12. NATURAL VOLATILE ORGANIC COMPOUND EMISSION RATE ESTIMATES FOR U.S. WOODLAND LANDSCAPES

    EPA Science Inventory

    Volatile organic compound (VOC) emission rate factors are estimated for 49 tree genera based on a review of foliar emission rate measurements. oliar VOC emissions are grouped into three categories: isoprene, monoterpenes and other VOC'S. ypical emission rates at a leaf temperatur...

  13. IDENTIFICATION OF POLAR VOLATILE ORGANIC COMPOUNDS IN CONSUMER PRODUCTS AND COMMON MICROENVIRONMENTS

    EPA Science Inventory

    Polar volatile organic compounds were identified in the headspace of 31 fragrance products such as perfumes, colognes and soaps. About 150 different chemicals were identified in a semiquantitative fashion, using two methods to analyze the headspace: direct injection into a gas ch...

  14. FINAL REPORT: MEMBRANE-MEDIATED EXTRACTION AND BIODEGRADATION OF VOLATILE ORGANIC COMPOUNDS FROM AIR

    EPA Science Inventory

    The report describes feasibility tests of a two-step strategy for air pollution control applicable to exhaust air contaminated with volatile organic compounds (VOCs) from painting aircraft. In the first step, the VOC-contaminated air passes over coated, polypropylene, hollow-fibe...

  15. SOIL SORPTION OF VOLATILE AND SEMIVOLATILE ORGANIC COMPOUNDS IN A MIXTURE

    EPA Science Inventory

    Studies were conducted to evaluate lipophilicity as a predictor sorption for a mixture of organic compounds with high vapor pressures commonly present at hazardous waste sites. Sorption partition coefficients (Kp) for the mixture of 16 volatile and semivolatile ...

  16. Predicting Age-appropriate Pharmacokinetics of Six Volatile Organic Compounds in the Rat Utilizing Physiologically-based Pharmacokinetic Modeling (T)

    EPA Science Inventory

    The capability of physiologically-based pharmacokinetic (PBPK) models to incorporate ageappropriate physiological and chemical-specific parameters was utilized in this study to predict changes in internal dosimetry for six volatile organic compounds (VOCs) across different ages o...

  17. Spring and summer contrast in new particle formation over nine forest areas in North America

    EPA Science Inventory

    Recent laboratory chamber studies indicate a significant role for highly oxidized low volatility organics in new particle formation (NPF), but the actual role of these highly oxidized low volatility organics in atmospheric NPF remains uncertain. Here, particle size distributions ...

  18. Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: A review

    USDA-ARS?s Scientific Manuscript database

    Residual pollutants including polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and carbon(aceous) nanoparticles are inevitably generated during the pyrolysis of waste biomass, and remain on the solid co-product called biochar. Such pollutants could have adverse effects on ...

  19. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected petroleum solvent dry cleaning dryer that is installed at a petroleum dry cleaning plant after December 14, 1982...

  20. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected petroleum solvent dry cleaning dryer that is installed at a petroleum dry cleaning plant after December 14, 1982...

Top