On the estimation of sound speed in two-dimensional Yukawa fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semenov, I. L., E-mail: Igor.Semenov@dlr.de; Thomas, H. M.; Khrapak, S. A.
2015-11-15
The longitudinal sound speed in two-dimensional Yukawa fluids is estimated using the conventional hydrodynamic expression supplemented by appropriate thermodynamic functions proposed recently by Khrapak et al. [Phys. Plasmas 22, 083706 (2015)]. In contrast to the existing approaches, such as quasi-localized charge approximation (QLCA) and molecular dynamics simulations, our model provides a relatively simple estimate for the sound speed over a wide range of parameters of interest. At strong coupling, our results are shown to be in good agreement with the results obtained using the QLCA approach and those derived from the phonon spectrum for the triangular lattice. On the othermore » hand, our model is also expected to remain accurate at moderate values of the coupling strength. In addition, the obtained results are used to discuss the influence of the strong coupling effects on the adiabatic index of two-dimensional Yukawa fluids.« less
Point Charges Optimally Placed to Represent the Multipole Expansion of Charge Distributions
Onufriev, Alexey V.
2013-01-01
We propose an approach for approximating electrostatic charge distributions with a small number of point charges to optimally represent the original charge distribution. By construction, the proposed optimal point charge approximation (OPCA) retains many of the useful properties of point multipole expansion, including the same far-field asymptotic behavior of the approximate potential. A general framework for numerically computing OPCA, for any given number of approximating charges, is described. We then derive a 2-charge practical point charge approximation, PPCA, which approximates the 2-charge OPCA via closed form analytical expressions, and test the PPCA on a set of charge distributions relevant to biomolecular modeling. We measure the accuracy of the new approximations as the RMS error in the electrostatic potential relative to that produced by the original charge distribution, at a distance the extent of the charge distribution–the mid-field. The error for the 2-charge PPCA is found to be on average 23% smaller than that of optimally placed point dipole approximation, and comparable to that of the point quadrupole approximation. The standard deviation in RMS error for the 2-charge PPCA is 53% lower than that of the optimal point dipole approximation, and comparable to that of the point quadrupole approximation. We also calculate the 3-charge OPCA for representing the gas phase quantum mechanical charge distribution of a water molecule. The electrostatic potential calculated by the 3-charge OPCA for water, in the mid-field (2.8 Å from the oxygen atom), is on average 33.3% more accurate than the potential due to the point multipole expansion up to the octupole order. Compared to a 3 point charge approximation in which the charges are placed on the atom centers, the 3-charge OPCA is seven times more accurate, by RMS error. The maximum error at the oxygen-Na distance (2.23 Å ) is half that of the point multipole expansion up to the octupole order. PMID:23861790
Convergence of the strong-potential-Born approximation in Z/sub less-than//Z/sub greater-than/
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuire, J.H.; Sil, N.C.
1986-01-01
Convergence of the strong-potential Born (SPB) approximation as a function of the charges of the projectile and target is studied numerically. Time-reversal invariance (or detailed balance) is satisfied at sufficiently high velocities even when the charges are asymmetric. This demonstarates that the SPB approximation converges to the correct result even when the charge of the ''weak'' potential, which is kept to first order, is larger than the charge of the ''strong'' potential, which is retained to all orders. Consequently, the SPB approximation is valid for systems of arbitrary charge symmetry (including symmetric systems) at sufficiently high velocities.
Variationally consistent approximation scheme for charge transfer
NASA Technical Reports Server (NTRS)
Halpern, A. M.
1978-01-01
The author has developed a technique for testing various charge-transfer approximation schemes for consistency with the requirements of the Kohn variational principle for the amplitude to guarantee that the amplitude is correct to second order in the scattering wave functions. Applied to Born-type approximations for charge transfer it allows the selection of particular groups of first-, second-, and higher-Born-type terms that obey the consistency requirement, and hence yield more reliable approximation to the amplitude.
NASA Astrophysics Data System (ADS)
Rosenfeld, Yaakov
1989-01-01
The linearized mean-force-field approximation, leading to a Gaussian distribution, provides an exact formal solution to the mean-spherical integral equation model for the electric microfield distribution at a charged point in the general charged-hard-particles fluid. Lado's explicit solution for plasmas immediately follows this general observation.
Komsa, Darya N; Staroverov, Viktor N
2016-11-08
Standard density-functional approximations often incorrectly predict that heteronuclear diatomic molecules dissociate into fractionally charged atoms. We demonstrate that these spurious charges can be eliminated by adapting the shape-correction method for Kohn-Sham potentials that was originally introduced to improve Rydberg excitation energies [ Phys. Rev. Lett. 2012 , 108 , 253005 ]. Specifically, we show that if a suitably determined fraction of electron charge is added to or removed from a frontier Kohn-Sham orbital level, the approximate Kohn-Sham potential of a stretched molecule self-corrects by developing a semblance of step structure; if this potential is used to obtain the electron density of the neutral molecule, charge delocalization is blocked and spurious fractional charges disappear beyond a certain internuclear distance.
2D/3D image charge for modeling field emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Kevin L.; Shiffler, Donald A.; Harris, John R.
Analytic image charge approximations exist for planar and spherical metal surfaces but approximations for more complex geometries, such as the conical and wirelike structures characteristic of field emitters, are lacking. Such models are the basis for the evaluation of Schottky lowering factors in equations for current density. The development of a multidimensional image charge approximation, useful for a general thermal-field emission equation used in space charge studies, is given and based on an analytical model using a prolate spheroidal geometry. A description of how the model may be adapted to be used with a line charge model appropriate for carbonmore » nanotube and carbon fiber field emitters is discussed. [http://dx.doi.org/10.1116/1.4968007]« less
2D/3D image charge for modeling field emission
Jensen, Kevin L.; Shiffler, Donald A.; Harris, John R.; ...
2017-03-01
Analytic image charge approximations exist for planar and spherical metal surfaces but approximations for more complex geometries, such as the conical and wirelike structures characteristic of field emitters, are lacking. Such models are the basis for the evaluation of Schottky lowering factors in equations for current density. The development of a multidimensional image charge approximation, useful for a general thermal-field emission equation used in space charge studies, is given and based on an analytical model using a prolate spheroidal geometry. A description of how the model may be adapted to be used with a line charge model appropriate for carbonmore » nanotube and carbon fiber field emitters is discussed. [http://dx.doi.org/10.1116/1.4968007]« less
Yang, Weitao; Mori-Sánchez, Paula; Cohen, Aron J
2013-09-14
The exact conditions for density functionals and density matrix functionals in terms of fractional charges and fractional spins are known, and their violation in commonly used functionals has been shown to be the root of many major failures in practical applications. However, approximate functionals are designed for physical systems with integer charges and spins, not in terms of the fractional variables. Here we develop a general framework for extending approximate density functionals and many-electron theory to fractional-charge and fractional-spin systems. Our development allows for the fractional extension of any approximate theory that is a functional of G(0), the one-electron Green's function of the non-interacting reference system. The extension to fractional charge and fractional spin systems is based on the ensemble average of the basic variable, G(0). We demonstrate the fractional extension for the following theories: (1) any explicit functional of the one-electron density, such as the local density approximation and generalized gradient approximations; (2) any explicit functional of the one-electron density matrix of the non-interacting reference system, such as the exact exchange functional (or Hartree-Fock theory) and hybrid functionals; (3) many-body perturbation theory; and (4) random-phase approximations. A general rule for such an extension has also been derived through scaling the orbitals and should be useful for functionals where the link to the Green's function is not obvious. The development thus enables the examination of approximate theories against known exact conditions on the fractional variables and the analysis of their failures in chemical and physical applications in terms of violations of exact conditions of the energy functionals. The present work should facilitate the calculation of chemical potentials and fundamental bandgaps with approximate functionals and many-electron theories through the energy derivatives with respect to the fractional charge. It should play an important role in developing accurate approximate density functionals and many-body theory.
Charge noise in quantum dot qubits: beyond the Markovian approximation.
NASA Astrophysics Data System (ADS)
Yang, Yuan-Chi; Friesen, Mark; Coppersmith, S. N.
Charge noise is a limiting factor in the performance of semiconductor quantum dot qubits, including both spin and charge qubits. In this work, we develop an analytical formalism for treating semiclassical noise beyond the Markovian approximation, which allows us to investigate noise models relevant for quantum dots, such as 1 / f noise. We apply our methods to both charge qubits and quantum dot hybrid qubits, and study the effects of charge noise on single-qubit rotations in these systems. The formalism is also directly applicable to the case of strong microwave driving, for which the rotating wave approximation breaks down. This work was supported in part by ARO (W911NF-12-0607) and ONR (N00014-15-1-0029), and the University of Wisconsin-Madison.
Leverentz, Hannah R; Truhlar, Donald G
2009-06-09
This work tests the capability of the electrostatically embedded many-body (EE-MB) method to calculate accurate (relative to conventional calculations carried out at the same level of electronic structure theory and with the same basis set) binding energies of mixed clusters (as large as 9-mers) consisting of water, ammonia, sulfuric acid, and ammonium and bisulfate ions. This work also investigates the dependence of the accuracy of the EE-MB approximation on the type and origin of the charges used for electrostatically embedding these clusters. The conclusions reached are that for all of the clusters and sets of embedding charges studied in this work, the electrostatically embedded three-body (EE-3B) approximation is capable of consistently yielding relative errors of less than 1% and an average relative absolute error of only 0.3%, and that the performance of the EE-MB approximation does not depend strongly on the specific set of embedding charges used. The electrostatically embedded pairwise approximation has errors about an order of magnitude larger than EE-3B. This study also explores the question of why the accuracy of the EE-MB approximation shows such little dependence on the types of embedding charges employed.
Yuan, Wei; Li, Guanglei; Gil, Eun Seok; Lowe, Tao Lu; Fu, Bingmei M
2010-04-01
Charge carried by the surface glycocalyx layer (SGL) of the cerebral endothelium has been shown to significantly modulate the permeability of the blood-brain barrier (BBB) to charged solutes in vivo. The cultured monolayer of bEnd3, an immortalized mouse cerebral endothelial cell line, is becoming a popular in vitro BBB model due to its easy growth and maintenance of many BBB characteristics over repeated passages. To test whether the SGL of bEnd3 monolayer carries similar charge as that in the intact BBB and quantify this charge, which can be characterized by the SGL thickness (L(f)) and charge density (C(mf)), we measured the solute permeability of bEnd3 monolayer to neutral solutes and to solutes with similar size but opposite charges: negatively charged alpha-lactalbumin (-11) and positively charged ribonuclease (+3). Combining the measured permeability data with a transport model across the cell monolayer, we predicted the L(f) and the C(mf) of bEnd3 monolayer, which is approximately 160 nm and approximately 25 mEq/L, respectively. We also investigated whether orosomucoid, a plasma glycoprotein modulating the charge of the intact BBB, alters the charge of bEnd3 monolayer. We found that 1 mg/mL orosomucoid would increase SGL charge density of bEnd3 monolayer to approximately 2-fold of its control value.
On approximate formulas for the electrostatic force between two conducting spheres
NASA Astrophysics Data System (ADS)
Sliško, Josip; Brito-Orta, Raúl A.
1998-04-01
A series expression for the electrostatic force between two charged conducting spheres having equal radii and charges is derived using the method of electrical images. This expression is a special case of that for two spheres with arbitrary charges and radii, found by Maxwell using zonal harmonics. Keeping in mind the use of approximate formulas for the interpretation of classroom measurements of the electrostatic force between spheres, we comment on two incorrect approximate formulas and examine the contribution of the first few non-Coulomb terms of the correct formula by comparing with values obtained using a computational approach.
Apparent Ionic Charge in Electrolyte and Polyelectrolyte Solutions
ERIC Educational Resources Information Center
Magdelenat, H.; And Others
1978-01-01
Compares average displacements of charged particles under thermal motion alone with those obtained by the action of an external electric field to develop a concept of "apparent charge" to approximate actual structural charge in an electrolyte solution. (SL)
Determination of the charge of relativistic heavy nuclei from emulsion tracks
NASA Technical Reports Server (NTRS)
Morgan, S. H., Jr.; Eby, P. B.
1971-01-01
The number of delta rays with energies between 50 and 150 keV that are produced by heavy nuclei in emulsions is calculated. The Z(2) dependence predicted by the first Born approximation is corrected by a direct calculation of the Mott exact phase-shift scattering cross section. Comparisons are made with corrections predicted by the second Born approximation. When the phase-shift results are applied to the problem of charge identification, corrections of up to 4 units of charge for 1.457-GeV/nucleon nuclei with charge Z = 75 are found.
New instrument for tribocharge measurement due to single particle impacts.
Watanabe, Hideo; Ghadiri, Mojtaba; Matsuyama, Tatsushi; Ding, Yu Long; Pitt, Kendal G
2007-02-01
During particulate solid processing, particle-particle and particle-wall collisions can generate electrostatic charges. This may lead to a variety of problems ranging from fire and explosion hazards to segregation, caking, and blocking. A fundamental understanding of the particle charging in such situations is therefore essential. For this purpose we have developed a new device that can measure charge transfer due to impact between a single particle and a metal plate. The device consists of an impact test system and two sets of Faraday cage and preamplifier for charge measurement. With current amplifiers, high-resolution measurements of particle charges of approximately 1 and 10 fC have been achieved before and after the impact, respectively. The device allows charge measurements of single particles with a size as small as approximately 100 microm impacting on the target at different incident angles with a velocity up to about 80 m/s. Further analyses of the charge transfer as a function of particle initial charge define an equilibrium charge, i.e., an initial charge level prior to impact for which no net charge transfer would occur as a result of impact.
Bardhan, Jaydeep P; Knepley, Matthew G
2011-09-28
We analyze the mathematically rigorous BIBEE (boundary-integral based electrostatics estimation) approximation of the mixed-dielectric continuum model of molecular electrostatics, using the analytically solvable case of a spherical solute containing an arbitrary charge distribution. Our analysis, which builds on Kirkwood's solution using spherical harmonics, clarifies important aspects of the approximation and its relationship to generalized Born models. First, our results suggest a new perspective for analyzing fast electrostatic models: the separation of variables between material properties (the dielectric constants) and geometry (the solute dielectric boundary and charge distribution). Second, we find that the eigenfunctions of the reaction-potential operator are exactly preserved in the BIBEE model for the sphere, which supports the use of this approximation for analyzing charge-charge interactions in molecular binding. Third, a comparison of BIBEE to the recent GBε theory suggests a modified BIBEE model capable of predicting electrostatic solvation free energies to within 4% of a full numerical Poisson calculation. This modified model leads to a projection-framework understanding of BIBEE and suggests opportunities for future improvements. © 2011 American Institute of Physics
Hickey, Owen A; Shendruk, Tyler N; Harden, James L; Slater, Gary W
2012-08-31
We introduce a mesoscale simulation method based on multiparticle collision dynamics (MPCD) for the electrohydrodynamics of polyelectrolytes with finite Debye lengths. By applying the Debye-Hückel approximation to assign an effective charge to MPCD particles near charged monomers, our simulations are able to reproduce the rapid rise in the electrophoretic mobility with respect to the degree of polymerization for the shortest polymer lengths followed by a small decrease for longer polymers due to charge condensation. Moreover, these simulations demonstrate the importance of a finite Debye length in accurately determining the mobility of uniformly charged polyelectrolytes and net neutral polyampholytes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendive-Tapia, David; Vacher, Morgane; Bearpark, Michael J.
Coupled electron-nuclear dynamics, implemented using the Ehrenfest method, has been used to study charge migration with fixed nuclei, together with charge transfer when nuclei are allowed to move. Simulations were initiated at reference geometries of neutral benzene and 2-phenylethylamine (PEA), and at geometries close to potential energy surface crossings in the cations. Cationic eigenstates, and the so-called sudden approximation, involving removal of an electron from a correlated ground-state wavefunction for the neutral species, were used as initial conditions. Charge migration without coupled nuclear motion could be observed if the Ehrenfest simulation, using the sudden approximation, was started near a conicalmore » intersection where the states were both strongly coupled and quasi-degenerate. Further, the main features associated with charge migration were still recognizable when the nuclear motion was allowed to couple. In the benzene radical cation, starting from the reference neutral geometry with the sudden approximation, one could observe sub-femtosecond charge migration with a small amplitude, which results from weak interaction with higher electronic states. However, we were able to engineer large amplitude charge migration, with a period between 10 and 100 fs, corresponding to oscillation of the electronic structure between the quinoid and anti-quinoid cationic electronic configurations, by distorting the geometry along the derivative coupling vector from the D{sub 6h} Jahn-Teller crossing to lower symmetry where the states are not degenerate. When the nuclear motion becomes coupled, the period changes only slightly. In PEA, in an Ehrenfest trajectory starting from the D{sub 2} eigenstate and reference geometry, a partial charge transfer occurs after about 12 fs near the first crossing between D{sub 1}, D{sub 2} (N{sup +}-Phenyl, N-Phenyl{sup +}). If the Ehrenfest propagation is started near this point, using the sudden approximation without coupled nuclear motion, one observes an oscillation of the spin density – charge migration – between the N atom and the phenyl ring with a period of 4 fs. When the nuclear motion becomes coupled, this oscillation persists in a damped form, followed by an effective charge transfer after 30 fs.« less
NASA Astrophysics Data System (ADS)
Mendive-Tapia, David; Vacher, Morgane; Bearpark, Michael J.; Robb, Michael A.
2013-07-01
Coupled electron-nuclear dynamics, implemented using the Ehrenfest method, has been used to study charge migration with fixed nuclei, together with charge transfer when nuclei are allowed to move. Simulations were initiated at reference geometries of neutral benzene and 2-phenylethylamine (PEA), and at geometries close to potential energy surface crossings in the cations. Cationic eigenstates, and the so-called sudden approximation, involving removal of an electron from a correlated ground-state wavefunction for the neutral species, were used as initial conditions. Charge migration without coupled nuclear motion could be observed if the Ehrenfest simulation, using the sudden approximation, was started near a conical intersection where the states were both strongly coupled and quasi-degenerate. Further, the main features associated with charge migration were still recognizable when the nuclear motion was allowed to couple. In the benzene radical cation, starting from the reference neutral geometry with the sudden approximation, one could observe sub-femtosecond charge migration with a small amplitude, which results from weak interaction with higher electronic states. However, we were able to engineer large amplitude charge migration, with a period between 10 and 100 fs, corresponding to oscillation of the electronic structure between the quinoid and anti-quinoid cationic electronic configurations, by distorting the geometry along the derivative coupling vector from the D6h Jahn-Teller crossing to lower symmetry where the states are not degenerate. When the nuclear motion becomes coupled, the period changes only slightly. In PEA, in an Ehrenfest trajectory starting from the D2 eigenstate and reference geometry, a partial charge transfer occurs after about 12 fs near the first crossing between D1, D2 (N+-Phenyl, N-Phenyl+). If the Ehrenfest propagation is started near this point, using the sudden approximation without coupled nuclear motion, one observes an oscillation of the spin density - charge migration - between the N atom and the phenyl ring with a period of 4 fs. When the nuclear motion becomes coupled, this oscillation persists in a damped form, followed by an effective charge transfer after 30 fs.
NASA Astrophysics Data System (ADS)
Min'kov, L. L.; Shrager, É. R.
2015-03-01
A study has been made of ways of optimum distribution of particles of dispersed metal in the solid-propellant charge with a cylindrical central channel, which is firmly fastened to the case. The efficiency of combustion of this metal has been analyzed. Consideration has been given to the influence of the dynamic nonequilibrium of two-phase flow on the optimum distribution of metal particles in the indicated charge in the approximation of one-dimensionality of the flow field.
NASA Technical Reports Server (NTRS)
Zhou, Zhimin (Inventor); Pain, Bedabrata (Inventor)
1999-01-01
An analog-to-digital converter for on-chip focal-plane image sensor applications. The analog-to-digital converter utilizes a single charge integrating amplifier in a charge balancing architecture to implement successive approximation analog-to-digital conversion. This design requires minimal chip area and has high speed and low power dissipation for operation in the 2-10 bit range. The invention is particularly well suited to CMOS on-chip applications requiring many analog-to-digital converters, such as column-parallel focal-plane architectures.
Interacting charges and the classical electron radius
NASA Astrophysics Data System (ADS)
De Luca, Roberto; Di Mauro, Marco; Faella, Orazio; Naddeo, Adele
2018-03-01
The equation of the motion of a point charge q repelled by a fixed point-like charge Q is derived and studied. In solving this problem useful concepts in classical and relativistic kinematics, in Newtonian mechanics and in non-linear ordinary differential equations are revised. The validity of the approximations is discussed from the physical point of view. In particular the classical electron radius emerges naturally from the requirement that the initial distance is large enough for the non-relativistic approximation to be valid. The relevance of this topic for undergraduate physics teaching is pointed out.
Beaucamp, Sylvain; Mathieu, Didier; Agafonov, Viatcheslav
2005-09-01
A method to estimate the lattice energies E(latt) of nitrate salts is put forward. First, E(latt) is approximated by its electrostatic component E(elec). Then, E(elec) is correlated with Mulliken atomic charges calculated on the species that make up the crystal, using a simple equation involving two empirical parameters. The latter are fitted against point charge estimates of E(elec) computed on available X-ray structures of nitrate crystals. The correlation thus obtained yields lattice energies within 0.5 kJ/g from point charge values. A further assessment of the method against experimental data suggests that the main source of error arises from the point charge approximation.
Equal Plate Charges on Series Capacitors?
ERIC Educational Resources Information Center
Illman, B. L.; Carlson, G. T.
1994-01-01
Provides a line of reasoning in support of the contention that the equal charge proposition is at best an approximation. Shows how the assumption of equal plate charge on capacitors in series contradicts the conservative nature of the electric field. (ZWH)
The effectiveness of Hong Kong's Construction Waste Disposal Charging Scheme.
Hao, Jane L; Hills, Martin J; Tam, Vivian W Y
2008-12-01
The Hong Kong Government introduced the Construction Waste Disposal Charging Scheme in December 2005 to ensure that disposal of construction and demolition (C&D) waste is properly priced to reduce such waste. The charging scheme is not only intended to provide an economic incentive for contractors and developers to reduce waste but also to encourage reuse and recycling of waste material thereby slowing down the depletion of limited landfill and public filling capacities. This paper examines the effectiveness of the charging scheme 1 year after implementation. A survey was conducted at Tseung Kwan O Area 137 and Tuen Mun Area 38, and daily C&D waste records were collected from landfills and public filling facilities between January 2006 and December 2006. The results of the survey show that waste has been reduced by approximately 60% in landfills, by approximately 23% in public fills, and by approximately 65% in total waste between 2005 and 2006. Suggestions for improving the scheme are provided.
Charged particle periodicity in the Saturnian magnetosphere
NASA Technical Reports Server (NTRS)
Carbary, J. F.; Krimigis, S. M.
1982-01-01
The present investigation is concerned with the first definitive evidence for charged particle modulations near the magnetic rotation period at Saturn. This periodicity is apparent in the ratios (and spectra) of low energy charged particles in the Saturnian magnetosphere. Most of the data presented were taken during the Voyager 2 outbound portion of the Saturn encounter. During this time the spacecraft was at high latitudes (approximately 30 deg) in the southern hemisphere of the Saturnian magnetosphere. The probe's trajectory was approximately along the dawn meridian at an essentially constant local time. The observation that the charged particle modulation is consistent with the Saturn Kilometric Radiation (SKR) period provides a basic input for the resolution of a puzzle which has existed ever since the discovery of the SKR modulation. The charged particle periodicity identified suggests that a basic asymmetry must exist in the Saturnian magnetosphere.
On the exchange-hole model of London dispersion forces
NASA Astrophysics Data System (ADS)
Ángyán, János G.
2007-07-01
First-principles derivation is given for the heuristic exchange-hole model of London dispersion forces by Becke and Johnson [J. Chem. Phys. 122, 154104 (2005)]. A one-term approximation is used for the dynamic charge density response function, and it is shown that a central nonempirical ingredient of the approximate nonexpanded dispersion energy is the charge density autocorrelation function, a two-particle property, related to the exchange-correlation hole. In the framework of a dipolar approximation of the Coulomb interaction around the molecular origin, one obtains the so-called Salem-Tang-Karplus approximation to the C6 dispersion coefficient. Alternatively, by expanding the Coulomb interaction around the center of charge (centroid) of the exchange-correlation hole associated with each point in the molecular volume, a multicenter expansion is obtained around the centroids of electron localization domains, always in terms of the exchange-correlation hole. In order to get a formula analogous to that of Becke and Johnson, which involves the exchange-hole only, further assumptions are needed, related to the difficulties of obtaining the expectation value of a two-electron operator from a single determinant. Thus a connection could be established between the conventional fluctuating charge density model of London dispersion forces and the notion of the "exchange-hole dipole moment" shedding some light on the true nature of the approximations implicit in the Becke-Johnson model.
Yang, Yang; Yu, Haibo; York, Darrin; Cui, Qiang; Elstner, Marcus
2007-10-25
The standard self-consistent-charge density-functional-tight-binding (SCC-DFTB) method (Phys. Rev. B 1998, 58, 7260) is derived by a second-order expansion of the density functional theory total energy expression, followed by an approximation of the charge density fluctuations by charge monopoles and an effective damped Coulomb interaction between the atomic net charges. The central assumptions behind this effective charge-charge interaction are the inverse relation of atomic size and chemical hardness and the use of a fixed chemical hardness parameter independent of the atomic charge state. While these approximations seem to be unproblematic for many covalently bound systems, they are quantitatively insufficient for hydrogen-bonding interactions and (anionic) molecules with localized net charges. Here, we present an extension of the SCC-DFTB method to incorporate third-order terms in the charge density fluctuations, leading to chemical hardness parameters that are dependent on the atomic charge state and a modification of the Coulomb scaling to improve the electrostatic treatment within the second-order terms. These modifications lead to a significant improvement in the description of hydrogen-bonding interactions and proton affinities of biologically relevant molecules.
Continuum Electrostatics Approaches to Calculating pKas and Ems in Proteins
Gunner, MR; Baker, Nathan A.
2017-01-01
Proteins change their charge state through protonation and redox reactions as well as through binding charged ligands. The free energy of these reactions are dominated by solvation and electrostatic energies and modulated by protein conformational relaxation in response to the ionization state changes. Although computational methods for calculating these interactions can provide very powerful tools for predicting protein charge states, they include several critical approximations of which users should be aware. This chapter discusses the strengths, weaknesses, and approximations of popular computational methods for predicting charge states and understanding their underlying electrostatic interactions. The goal of this chapter is to inform users about applications and potential caveats of these methods as well as outline directions for future theoretical and computational research. PMID:27497160
Reese, Chad E; Asher, Sanford A
2002-04-01
We have developed emulsifier-free, emulsion polymerization recipes for the synthesis of highly charged, monodisperse latex particles of diameters between 500 and 1100 nm. These latexes consist of poly[styrene-(co-2-hydroxyethyl methacrylate)] spherical particles whose surfaces are functionalized with sulfate and carboxylic acid groups. These highly charged, monodisperse particles readily self-assemble into robust, three-dimensionally ordered crystalline colloidal array photonic crystals that Bragg diffract light in the near infrared spectral region. By altering the particle number density, the diffraction wavelength can be tuned from approximately 1000 to approximately 4000 nm.
Impact of public electric vehicle charging infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levinson, Rebecca S.; West, Todd H.
Our work uses market analysis and simulation to explore the potential of public charging infrastructure to spur US battery electric vehicle (BEV) sales, increase national electrified mileage, and lower greenhouse gas (GHG) emissions. By employing both scenario and parametric analysis for policy driven injection of public charging stations we find the following: (1) For large deployments of public chargers, DC fast chargers are more effective than level 2 chargers at increasing BEV sales, increasing electrified mileage, and lowering GHG emissions, even if only one DC fast charging station can be built for every ten level 2 charging stations. (2) Amore » national initiative to build DC fast charging infrastructure will see diminishing returns on investment at approximately 30,000 stations. (3) Some infrastructure deployment costs can be defrayed by passing them back to electric vehicle consumers, but once those costs to the consumer reach the equivalent of approximately 12¢/kWh for all miles driven, almost all gains to BEV sales and GHG emissions reductions from infrastructure construction are lost.« less
Impact of public electric vehicle charging infrastructure
Levinson, Rebecca S.; West, Todd H.
2017-10-16
Our work uses market analysis and simulation to explore the potential of public charging infrastructure to spur US battery electric vehicle (BEV) sales, increase national electrified mileage, and lower greenhouse gas (GHG) emissions. By employing both scenario and parametric analysis for policy driven injection of public charging stations we find the following: (1) For large deployments of public chargers, DC fast chargers are more effective than level 2 chargers at increasing BEV sales, increasing electrified mileage, and lowering GHG emissions, even if only one DC fast charging station can be built for every ten level 2 charging stations. (2) Amore » national initiative to build DC fast charging infrastructure will see diminishing returns on investment at approximately 30,000 stations. (3) Some infrastructure deployment costs can be defrayed by passing them back to electric vehicle consumers, but once those costs to the consumer reach the equivalent of approximately 12¢/kWh for all miles driven, almost all gains to BEV sales and GHG emissions reductions from infrastructure construction are lost.« less
Generalized Skyrme model with the loosely bound potential
NASA Astrophysics Data System (ADS)
Gudnason, Sven Bjarke; Zhang, Baiyang; Ma, Nana
2016-12-01
We study a generalization of the loosely bound Skyrme model which consists of the Skyrme model with a sixth-order derivative term—motivated by its fluidlike properties—and the second-order loosely bound potential—motivated by lowering the classical binding energies of higher-charged Skyrmions. We use the rational map approximation for the Skyrmion of topological charge B =4 , calculate the binding energy of the latter, and estimate the systematic error in using this approximation. In the parameter space that we can explore within the rational map approximation, we find classical binding energies as low as 1.8%, and once taking into account the contribution from spin-isospin quantization, we obtain binding energies as low as 5.3%. We also calculate the contribution from the sixth-order derivative term to the electric charge density and axial coupling.
NASA Technical Reports Server (NTRS)
Scholer, M.; Ipavich, F. M.; Gloeckler, G.
1981-01-01
Two beamlike particle events (30 keV/charge to 160 keV/charge) upstream of the earth's bow shock have been investigated with the Max-Planck-Institut/University of Maryland ultralow energy and charge analyzer on ISEE 1. These beams consist of protons as well as of alpha particles, and the spectra are generally steep and are decreasing with increasing energy. During one event the spectra of both protons and alpha particles have a maximum at approximately 65 keV/charge. During these events, the interplanetary magnetic field through the satellite position was almost tangent to the bow shock, and application of the theory of acceleration predicts acceleration of a solar wind particle up to 60 keV/nucleon in a single reflection. The observation of reflected protons as well as alpha particles has implications for the physical reflection process usually not discussed in acceleration theories.
Implementation of the reduced charge state method of calculating impurity transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crume, E.C. Jr.; Arnurius, D.E.
1982-07-01
A recent review article by Hirshman and Sigmar includes expressions needed to calculate the parallel friction coefficients, the essential ingredients of the plateau-Pfirsch-Schluter transport coefficients, using the method of reduced charge states. These expressions have been collected and an expanded notation introduced in some cases to facilitate differentiation between reduced charge state and full charge state quantities. A form of the Coulomb logarithm relevant to the method of reduced charge states is introduced. This method of calculating the f/sub ij//sup ab/ has been implemented in the impurity transport simulation code IMPTAR and has resulted in an overall reduction in computationmore » time of approximately 25% for a typical simulation of impurity transport in the Impurity Study Experiment (ISX-B). Results obtained using this treatment are almost identical to those obtained using an earlier approximate theory of Hirshman.« less
SWICS/Ulysses and MASS/wind observations of solar wind sulfur charge states
NASA Technical Reports Server (NTRS)
Cohen, C. M. S.; Galvin, A. B.; Hamilton, D. C.; Gloeckler, G.; Geiss, J.; Bochsler, P.
1995-01-01
As Ulysses journeys from the southern to the northern solar pole, the newly launched Wind spacecraft is monitoring the solar wind near 1 AU, slightly upstream of the Earth. Different solar wind structures pass over both spacecraft as coronal holes and other features rotate in and out of view. Ulysses and Wind are presently on opposing sides of the sun allowing us to monitor these streams for extended periods of time. Composition measurements made by instruments on both spacecraft provide information concerning the evolution and properties of these structures. We have combined data from the Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses and the high mass resolution spectrometer (MASS) on Wind to determine the charge state distribution of sulfur in the solar wind. Both instruments employ electrostatic deflection with time-of-flight measurement. The high mass resolution of the MASS instrument (M/Delta-M approximately 100) allows sulfur to be isolated easily while the stepping energy/charge selection provides charge state information. SWICS measurements allow the unique identification of heavy ions by their mass and mass/charge with resolutions of M/Delta-M approximately 3 and M/q/Delta(M/q) approximately 20. The two instruments complement each other nicely in that MASS has the greater mass resolution while SWICS has the better mass/charge resolution and better statistics.
NASA Technical Reports Server (NTRS)
Vivian, H. C.
1985-01-01
Charge-state model for lead/acid batteries proposed as part of effort to make equivalent of fuel gage for battery-powered vehicles. Models based on equations that approximate observable characteristics of battery electrochemistry. Uses linear equations, easier to simulate on computer, and gives smooth transitions between charge, discharge, and recuperation.
New aspect of critical nonlinearly charged black hole
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Taghadomi, Z. S.; Corda, C.
2018-04-01
The motion of a point charged particle moving in the background of the critical power Maxwell charged AdS black holes in a probe approximation is studied. The extended phase space, where the cosmological constant appears as a pressure, is regarded and the effective potential is investigated. At last, the mass-to-charge ratio and the large q limit are studied.
Kohut, Sviataslau V; Staroverov, Viktor N
2013-10-28
The exchange-correlation potential of Kohn-Sham density-functional theory, vXC(r), can be thought of as an electrostatic potential produced by the static charge distribution qXC(r) = -(1∕4π)∇(2)vXC(r). The total exchange-correlation charge, QXC = ∫qXC(r) dr, determines the rate of the asymptotic decay of vXC(r). If QXC ≠ 0, the potential falls off as QXC∕r; if QXC = 0, the decay is faster than coulombic. According to this rule, exchange-correlation potentials derived from standard generalized gradient approximations (GGAs) should have QXC = 0, but accurate numerical calculations give QXC ≠ 0. We resolve this paradox by showing that the charge density qXC(r) associated with every GGA consists of two types of contributions: a continuous distribution and point charges arising from the singularities of vXC(r) at each nucleus. Numerical integration of qXC(r) accounts for the continuous charge but misses the point charges. When the point-charge contributions are included, one obtains the correct QXC value. These findings provide an important caveat for attempts to devise asymptotically correct Kohn-Sham potentials by modeling the distribution qXC(r).
A unitary convolution approximation for the impact-parameter dependent electronic energy loss
NASA Astrophysics Data System (ADS)
Schiwietz, G.; Grande, P. L.
1999-06-01
In this work, we propose a simple method to calculate the impact-parameter dependence of the electronic energy loss of bare ions for all impact parameters. This perturbative convolution approximation (PCA) is based on first-order perturbation theory, and thus, it is only valid for fast particles with low projectile charges. Using Bloch's stopping-power result and a simple scaling, we get rid of the restriction to low charge states and derive the unitary convolution approximation (UCA). Results of the UCA are then compared with full quantum-mechanical coupled-channel calculations for the impact-parameter dependent electronic energy loss.
Continuum Electrostatics Approaches to Calculating pKas and Ems in Proteins.
Gunner, M R; Baker, N A
2016-01-01
Proteins change their charge state through protonation and redox reactions as well as through binding charged ligands. The free energy of these reactions is dominated by solvation and electrostatic energies and modulated by protein conformational relaxation in response to the ionization state changes. Although computational methods for calculating these interactions can provide very powerful tools for predicting protein charge states, they include several critical approximations of which users should be aware. This chapter discusses the strengths, weaknesses, and approximations of popular computational methods for predicting charge states and understanding the underlying electrostatic interactions. The goal of this chapter is to inform users about applications and potential caveats of these methods as well as outline directions for future theoretical and computational research. © 2016 Elsevier Inc. All rights reserved.
Interaction between two point-like charges in nonlinear electrostatics
NASA Astrophysics Data System (ADS)
Breev, A. I.; Shabad, A. E.
2018-01-01
We consider two point-like charges in electrostatic interaction within the framework of a nonlinear model, associated with QED, that provides finiteness of their field energy. We find the common field of the two charges in a dipole-like approximation, where the separation between them R is much smaller than the observation distance r : with the linear accuracy with respect to the ratio R / r, and in the opposite approximation, where R≫ r, up to the term quadratic in the ratio r / R. The consideration proposes the law a+b R^{1/3} for the energy, when the charges are close to one another, R→ 0. This leads to the singularity of the force between them to be R^{-2/3}, which is weaker than the Coulomb law, R^{-2}.
Induced charging of shuttle orbiter by high electron-beam currents
NASA Technical Reports Server (NTRS)
Liemohn, H. B.
1977-01-01
Emission of high-current electron beams that was proposed for some Spacelab payloads required substantial return currents to the orbiter skin in order to neutralize the beam charge. Since the outer skin of the vehicle was covered with approximately 1200 sq m of thermal insulation which has the dielectric quality of air and an electrical conductivity that was estimated by NASA at 10 to the -9 power to 10 to the -10 power mhos/m, considerable transient charging and local potential differences were anticipated across the insulation. The theory for induced charging of spacecraft due to operation of electron guns was only developed for spherical metal vehicles and constant emission currents, which were not directly applicable to the orbiter situation. Field-aligned collection of electron return current from the ambient ionosphere at orbiter altitudes provides up to approximately 150 mA on the conducting surfaces and approximately 2.4 A on the dielectric thermal insulation. Local ionization of the neutral atmosphere by energetic electron bombardment or electrical breakdown may provide somewhat more return current.
Describing long-range charge-separation processes with subsystem density-functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solovyeva, Alisa; Neugebauer, Johannes, E-mail: j.neugebauer@uni-muenster.de; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu
2014-04-28
Long-range charge-transfer processes in extended systems are difficult to describe with quantum chemical methods. In particular, cost-effective (non-hybrid) approximations within time-dependent density functional theory (DFT) are not applicable unless special precautions are taken. Here, we show that the efficient subsystem DFT can be employed as a constrained DFT variant to describe the energetics of long-range charge-separation processes. A formal analysis of the energy components in subsystem DFT for such excitation energies is presented, which demonstrates that both the distance dependence and the long-range limit are correctly described. In addition, electronic couplings for these processes as needed for rate constants inmore » Marcus theory can be obtained from this method. It is shown that the electronic structure of charge-separated states constructed by a positively charged subsystem interacting with a negatively charged one is difficult to converge — charge leaking from the negative subsystem to the positive one can occur. This problem is related to the delocalization error in DFT and can be overcome with asymptotically correct exchange–correlation (XC) potentials or XC potentials including a sufficiently large amount of exact exchange. We also outline an approximate way to obtain charge-transfer couplings between locally excited and charge-separated states.« less
Biernat, Elmar P.; Gross, Franz; Peña, M. T.; ...
2015-10-26
The pion form factor is calculated in the framework of the charge-conjugation invariant covariant spectator theory. This formalism is established in Minkowski space, and the calculation is set up in momentum space. In a previous calculation we included only the leading pole coming from the spectator quark (referred to as the relativistic impulse approximation). In this study we also include the contributions from the poles of the quark which interacts with the photon and average over all poles in both the upper and lower half-planes in order to preserve charge conjugation invariance (referred to as the C-symmetric complete impulse approximation).more » We find that for small pion mass these contributions are significant at all values of the four-momentum transfer Q 2 but, surprisingly, do not alter the shape obtained from the spectator poles alone.« less
NASA Astrophysics Data System (ADS)
Hall, D. J.; Skottfelt, J.; Soman, M. R.; Bush, N.; Holland, A.
2017-12-01
Charge-Coupled Devices (CCDs) have been the detector of choice for imaging and spectroscopy in space missions for several decades, such as those being used for the Euclid VIS instrument and baselined for the SMILE SXI. Despite the many positive properties of CCDs, such as the high quantum efficiency and low noise, when used in a space environment the detectors suffer damage from the often-harsh radiation environment. High energy particles can create defects in the silicon lattice which act to trap the signal electrons being transferred through the device, reducing the signal measured and effectively increasing the noise. We can reduce the impact of radiation on the devices through four key methods: increased radiation shielding, device design considerations, optimisation of operating conditions, and image correction. Here, we concentrate on device design operations, investigating the impact of narrowing the charge-transfer channel in the device with the aim of minimising the impact of traps during readout. Previous studies for the Euclid VIS instrument considered two devices, the e2v CCD204 and CCD273, the serial register of the former having a 50 μm channel and the latter having a 20 μm channel. The reduction in channel width was previously modelled to give an approximate 1.6× reduction in charge storage volume, verified experimentally to have a reduction in charge transfer inefficiency of 1.7×. The methods used to simulate the reduction approximated the charge cloud to a sharp-edged volume within which the probability of capture by traps was 100%. For high signals and slow readout speeds, this is a reasonable approximation. However, for low signals and higher readout speeds, the approximation falls short. Here we discuss a new method of simulating and calculating charge storage variations with device design changes, considering the absolute probability of capture across the pixel, bringing validity to all signal sizes and readout speeds. Using this method, we can optimise the device design to suffer minimum impact from radiation damage effects, here using detector development for the SMILE mission to demonstrate the process.
NASA Astrophysics Data System (ADS)
Liang, Sang-Zi; Chen, Gugang; Harutyunyan, Avetik R.; Sofo, Jorge O.
2014-09-01
In carbon nanotube and graphene gas sensing, the measured conductance change after the sensor is exposed to target molecules has been traditionally attributed to carrier density change due to charge transfer between the sample and the adsorbed molecule. However, this explanation has many problems when it is applied to graphene: The increased amount of Coulomb impurities should lead to decrease in carrier mobility which was not observed in many experiments, carrier density is controlled by the gate voltage in the experimental setup, and there are inconsistencies in the energetics of the charge transfer. In this paper we explore an alternative mechanism. Charged functional groups and dipolar molecules on the surface of graphene may counteract the effect of charged impurities on the substrate. Because scattering of electrons with these charged impurities has been shown to be the limiting factor in graphene conductivity, this leads to significant changes in the transport behavior. A model for the conductivity is established using the random phase approximation dielectric function of graphene and the first-order Born approximation for scattering. The model predicts optimal magnitudes for the charge and dipole moment which maximally screen a given charged impurity. The dipole screening is shown to be generally weaker than the charge screening although the former becomes more effective with higher gate voltage away from the charge neutrality point. The model also predicts that with increasing amount of adsorbates, the charge impurities eventually become saturated and additional adsorption always lead to decreasing conductivity.
Study, Design and Fabricate a Cold Crucible System
1975-03-31
Fritz iuettinger Blektronik GmbH, Freiburg, Germany) tuned to operate at approximately 4 megahertz. Using kilogram charges of zirconia powder , densification...ut’. rho skull was filled with stabilized zirconia powder and approximate’Iy 10 grams of zirconium metal chips (1/8" diameter) were buried In the...show the results of Run M-tO. A 700 gram zirconia powder charge (Johnson Matthey Chemicals, Ltd., 99.992 purity) was used with 10 wt % yttria (Rare Earth
Charge recombination in organic photovoltaic devices with high open-circuit voltages.
Westenhoff, Sebastian; Howard, Ian A; Hodgkiss, Justin M; Kirov, Kiril R; Bronstein, Hugo A; Williams, Charlotte K; Greenham, Neil C; Friend, Richard H
2008-10-15
A detailed charge recombination mechanism is presented for organic photovoltaic devices with a high open-circuit voltage. In a binary blend comprised of polyfluorene copolymers, the performance-limiting process is found to be the efficient recombination of tightly bound charge pairs into neutral triplet excitons. We arrive at this conclusion using optical transient absorption (TA) spectroscopy with visible and IR probes and over seven decades of time resolution. By resolving the polarization of the TA signal, we track the movement of polaronic states generated at the heterojunction not only in time but also in space. It is found that the photogenerated charge pairs are remarkably immobile at the heterojunction during their lifetime. The charge pairs are shown to be subject to efficient intersystem crossing and terminally recombine into F8BT triplet excitons within approximately 40 ns. Long-range charge separation competes rather unfavorably with intersystem crossing--75% of all charge pairs decay into triplet excitons. Triplet exciton states are thermodynamically accessible in polymer solar cells with high open circuit voltage, and we therefore suggest this loss mechanism to be general. We discuss guidelines for the design of the next generation of organic photovoltaic materials where separating the metastable interfacial charge pairs within approximately 40 ns is paramount.
Nickel-hydrogen battery state of charge during low rate trickle charging
NASA Technical Reports Server (NTRS)
Lurie, C.; Foroozan, S.; Brewer, J.; Jackson, L.
1995-01-01
Battery temperature increase, due to low rate trickle charging, has been determined experimentally, using a six cell battery module in a test setup simulating the anticipated AXAF-1 prelaunch environment. Test results indicate trickle charge rates less than or equal to the self discharge rate do not increase dissipation beyond that due to the self discharge. Significant trickle charge rates (approximately C/500) result in battery temperatures only a few degrees (F) higher than those observed during periods of open circuit stand.
NASA Astrophysics Data System (ADS)
Emersic, C.; Macgorman, D.; Schuur, T.; Lund, N.; Payne, C.; Bruning, E.
2007-12-01
We have examined lightning activity relative to the microphysical and kinematic structure of a winter thunderstorm complex (a thunder-snow episode) observed east of Norman, Oklahoma during the evening of 29-30 November 2006. Polarimetric radar provided information about the type of particles present in various regions of the storms. The Lightning Mapping Array (LMA) recorded VHF signals produced by developing lightning channels. The times of arrival of these lightning signals across the array were then used to reconstruct the location and structure of lightning, and these reconstructions were overlaid with radar data to examine the relationship between lightning properties and storm particle types. Four storms in this winter complex have been examined. It was inferred from lightning structure that, in their mature stage, all cells we examined had a positive tripole electrical structure (an upper positive charge center, a midlevel negative charge center, and a lower positive charge center). The storms began with lightning activity in the lower dipole (lower positive and midlevel negative regions), but this evolved into lightning activity throughout the tripole structure within approximately 15-20 minutes. In the longer lived storms, the mature stage lasted for approximately 1.5-2 hours. During this stage, the lower positive charge region was situated less than 5 km above ground, the midlevel negative charge region was typically above 5 km, and the upper positive charge region was located at an altitude of less than 10 km in all the storm cells analyzed. The charge regions descended over approximately the last 30 minutes of lightning activity, the lower charge regions eventually reaching ground. This resulted in the loss of the lower positive charge center and the subsequent diminishment of the lower negative charge center. Lightning initiation usually coincided with the edges of regions of high reflectivity and was coincident with the presence of graupel and ice crystals in the lower dipole. Radar data suggest that ice crystals were the dominant charge carriers in the upper positive region.
Scrape-off layer modeling with kinetic or diffusion description of charge-exchange atoms
NASA Astrophysics Data System (ADS)
Tokar, M. Z.
2016-12-01
Hydrogen isotope atoms, generated by charge-exchange (c-x) of neutral particles recycling from the first wall of a fusion reactor, are described either kinetically or in a diffusion approximation. In a one-dimensional (1-D) geometry, kinetic calculations are accelerated enormously by applying an approximate pass method for the assessment of integrals in the velocity space. This permits to perform an exhaustive comparison of calculations done with both approaches. The diffusion approximation is deduced directly from the velocity distribution function of c-x atoms in the limit of charge-exchanges with ions occurring much more frequently than ionization by electrons. The profiles across the flux surfaces of the plasma parameters averaged along the main part of the scrape-off layer (SOL), beyond the X-point and divertor regions, are calculated from the one-dimensional equations where parallel flows of charged particles and energy towards the divertor are taken into account as additional loss terms. It is demonstrated that the heat losses can be firmly estimated from the SOL averaged parameters only; for the particle loss the conditions in the divertor are of importance and the sensitivity of the results to the so-called "divertor impact factor" is investigated. The coupled 1-D models for neutral and charged species, with c-x atoms described either kinetically or in the diffusion approximation, are applied to assess the SOL conditions in a fusion reactor, with the input parameters from the European DEMO project. It is shown that the diffusion approximation provides practically the same profiles across the flux surfaces for the plasma density, electron, and ion temperatures, as those obtained with the kinetic description for c-x atoms. The main difference between the two approaches is observed in the characteristics of these species themselves. In particular, their energy flux onto the wall is underestimated in calculations with the diffusion approximation by 20 % - 30 % . This discrepancy can be significantly reduced if after the convergence of coupled plasma-neutral calculations, the final computation for c-x atoms is done kinetically.
NASA Astrophysics Data System (ADS)
Poursina, Mohammad; Anderson, Kurt S.
2014-08-01
This paper presents a novel algorithm to approximate the long-range electrostatic potential field in the Cartesian coordinates applicable to 3D coarse-grained simulations of biopolymers. In such models, coarse-grained clusters are formed via treating groups of atoms as rigid and/or flexible bodies connected together via kinematic joints. Therefore, multibody dynamic techniques are used to form and solve the equations of motion of such coarse-grained systems. In this article, the approximations for the potential fields due to the interaction between a highly negatively/positively charged pseudo-atom and charged particles, as well as the interaction between clusters of charged particles, are presented. These approximations are expressed in terms of physical and geometrical properties of the bodies such as the entire charge, the location of the center of charge, and the pseudo-inertia tensor about the center of charge of the clusters. Further, a novel substructuring scheme is introduced to implement the presented far-field potential evaluations in a binary tree framework as opposed to the existing quadtree and octree strategies of implementing fast multipole method. Using the presented Lagrangian grids, the electrostatic potential is recursively calculated via sweeping two passes: assembly and disassembly. In the assembly pass, adjacent charged bodies are combined together to form new clusters. Then, the potential field of each cluster due to its interaction with faraway resulting clusters is recursively calculated in the disassembly pass. The method is highly compatible with multibody dynamic schemes to model coarse-grained biopolymers. Since the proposed method takes advantage of constant physical and geometrical properties of rigid clusters, improvement in the overall computational cost is observed comparing to the tradition application of fast multipole method.
Symmetric Resonance Charge Exchange Cross Section Based on Impact Parameter Treatment
NASA Technical Reports Server (NTRS)
Omidvar, Kazem; Murphy, Kendrah; Atlas, Robert (Technical Monitor)
2002-01-01
Using a two-state impact parameter approximation, a calculation has been carried out to obtain symmetric resonance charge transfer cross sections between nine ions and their parent atoms or molecules. Calculation is based on a two-dimensional numerical integration. The method is mostly suited for hydrogenic and some closed shell atoms. Good agreement has been obtained with the results of laboratory measurements for the ion-atom pairs H+-H, He+-He, and Ar+-Ar. Several approximations in a similar published calculation have been eliminated.
Nocera, Alberto; Wang, Yan; Patel, Niravkumar D.; ...
2018-05-31
Here, we study the magnetic and charge dynamical response of a Hubbard model in a two-leg ladder geometry using the density matrix renormalization group (DMRG) method and the random phase approximation within the fluctuation-exchange approximation (FLEX). Our calculations reveal that FLEX can capture the main features of the magnetic response from weak up to intermediate Hubbard repulsion for doped ladders, when compared with the numerically exact DMRG results. However, while at weak Hubbard repulsion both the spin and charge spectra can be understood in terms of weakly interacting electron-hole excitations across the Fermi surface, at intermediate coupling DMRG shows gappedmore » spin excitations at large momentum transfer that remain gapless within the FLEX approximation. For the charge response, FLEX can only reproduce the main features of the DMRG spectra at weak coupling and high doping levels, while it shows an incoherent character away from this limit. Overall, our analysis shows that FLEX works surprisingly well for spin excitations at weak and intermediate Hubbard U values even in the difficult low-dimensional geometry such as a two-leg ladder. Finally, we discuss the implications of our results for neutron scattering and resonant inelastic x-ray scattering experiments on two-leg ladder cuprate compounds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nocera, Alberto; Wang, Yan; Patel, Niravkumar D.
Here, we study the magnetic and charge dynamical response of a Hubbard model in a two-leg ladder geometry using the density matrix renormalization group (DMRG) method and the random phase approximation within the fluctuation-exchange approximation (FLEX). Our calculations reveal that FLEX can capture the main features of the magnetic response from weak up to intermediate Hubbard repulsion for doped ladders, when compared with the numerically exact DMRG results. However, while at weak Hubbard repulsion both the spin and charge spectra can be understood in terms of weakly interacting electron-hole excitations across the Fermi surface, at intermediate coupling DMRG shows gappedmore » spin excitations at large momentum transfer that remain gapless within the FLEX approximation. For the charge response, FLEX can only reproduce the main features of the DMRG spectra at weak coupling and high doping levels, while it shows an incoherent character away from this limit. Overall, our analysis shows that FLEX works surprisingly well for spin excitations at weak and intermediate Hubbard U values even in the difficult low-dimensional geometry such as a two-leg ladder. Finally, we discuss the implications of our results for neutron scattering and resonant inelastic x-ray scattering experiments on two-leg ladder cuprate compounds.« less
Bardhan, Jaydeep P
2008-10-14
The importance of molecular electrostatic interactions in aqueous solution has motivated extensive research into physical models and numerical methods for their estimation. The computational costs associated with simulations that include many explicit water molecules have driven the development of implicit-solvent models, with generalized-Born (GB) models among the most popular of these. In this paper, we analyze a boundary-integral equation interpretation for the Coulomb-field approximation (CFA), which plays a central role in most GB models. This interpretation offers new insights into the nature of the CFA, which traditionally has been assessed using only a single point charge in the solute. The boundary-integral interpretation of the CFA allows the use of multiple point charges, or even continuous charge distributions, leading naturally to methods that eliminate the interpolation inaccuracies associated with the Still equation. This approach, which we call boundary-integral-based electrostatic estimation by the CFA (BIBEE/CFA), is most accurate when the molecular charge distribution generates a smooth normal displacement field at the solute-solvent boundary, and CFA-based GB methods perform similarly. Conversely, both methods are least accurate for charge distributions that give rise to rapidly varying or highly localized normal displacement fields. Supporting this analysis are comparisons of the reaction-potential matrices calculated using GB methods and boundary-element-method (BEM) simulations. An approximation similar to BIBEE/CFA exhibits complementary behavior, with superior accuracy for charge distributions that generate rapidly varying normal fields and poorer accuracy for distributions that produce smooth fields. This approximation, BIBEE by preconditioning (BIBEE/P), essentially generates initial guesses for preconditioned Krylov-subspace iterative BEMs. Thus, iterative refinement of the BIBEE/P results recovers the BEM solution; excellent agreement is obtained in only a few iterations. The boundary-integral-equation framework may also provide a means to derive rigorous results explaining how the empirical correction terms in many modern GB models significantly improve accuracy despite their simple analytical forms.
Universal charge-radius relation for subatomic and astrophysical compact objects.
Madsen, Jes
2008-04-18
Electron-positron pair creation in supercritical electric fields limits the net charge of any static, spherical object, such as superheavy nuclei, strangelets, and Q balls, or compact stars like neutron stars, quark stars, and black holes. For radii between 4 x 10(2) and 10(4) fm the upper bound on the net charge is given by the universal relation Z=0.71R(fm), and for larger radii (measured in femtometers or kilometers) Z=7 x 10(-5)R_(2)(fm)=7 x 10(31)R_(2)(km). For objects with nuclear density the relation corresponds to Z approximately 0.7A(1/3)( (10(8)10(12)), where A is the baryon number. For some systems this universal upper bound improves existing charge limits in the literature.
Molecular control of pentacene/ZnO photoinduced charge transfer
NASA Astrophysics Data System (ADS)
Spalenka, Josef W.; Paoprasert, Peerasak; Franking, Ryan; Hamers, Robert J.; Gopalan, Padma; Evans, Paul G.
2011-03-01
Photoinduced charge transfer modifies the device properties of illuminated pentacene field effect transistors (FETs) incorporating ZnO quantum dots at the gate insulator/pentacene interface. The transferred charge is trapped on electronic states associated with the ZnO quantum dots, with a steady state population approximately proportional to the rate of organic-inorganic charge transfer. Trapped charge shifts the threshold voltage of the FETs, providing the means to evaluate the rate of organic/inorganic charge transfer and the effects of interface modification. Monolayers of the wide-gap alkane stearic acid and the conjugated oligomer terthiophene attached to the ZnO suppress or permit charge transfer, respectively.
Radiative loss and charge exchange in low energy Na - Ca+ collisions
NASA Astrophysics Data System (ADS)
McLaughlin, B. M.; McAlpine, K.; McCann, J. F.; Pattillo, R.; Stancil, P. C.; Forrey, R. C.; Babb, J. F.
2016-05-01
Experiments on radiative loss and capture are currently being performed at the University of Connecticut. In response to this experimental effort we have performed detailed calculations for a variety of loss and capture processes. Several low lying states of the NaCa+ cation are used with the accurate potentials energy curves, transition dipole moments and non-adiabatic coupling matrix elements between the states, obtained at the MRCI+Q level of approximation with the MOLPRO suite of quantum chemistry codes. Cross sections and rate coefficients are calculated for radiative charge transfer (RCX), radiative association (RA) and charge exchange in a fully quantum molecular close-coupling (MOCC) approximation at the higher energies. We use a variety of approaches, the optical potential method, semi-classical and MOCC methods to compare and contrast approximations. In addition a kinetic theory recently applied to SiO is utilized which illustrates the dramatic impact resonances have on the radiative association rates. Supported by NASA and HLRS at Stuttgart University.
Analytical Debye-Huckel model for electrostatic potentials around dissolved DNA.
Wagner, K; Keyes, E; Kephart, T W; Edwards, G
1997-07-01
We present an analytical, Green-function-based model for the electric potential of DNA in solution, treating the surrounding solvent with the Debye-Huckel approximation. The partial charge of each atom is accounted for by modeling DNA as linear distributions of atoms on concentric cylindrical surfaces. The condensed ions of the solvent are treated with the Debye-Huckel approximation. The resultant leading term of the potential is that of a continuous shielded line charge, and the higher order terms account for the helical structure. Within several angstroms of the surface there is sufficient information in the electric potential to distinguish features and symmetries of DNA. Plots of the potential and equipotential surfaces, dominated by the phosphate charges, reflect the structural differences between the A, B, and Z conformations and, to a smaller extent, the difference between base sequences. As the distances from the helices increase, the magnitudes of the potentials decrease. However, the bases and sugars account for a larger fraction of the double helix potential with increasing distance. We have found that when the solvent is treated with the Debye-Huckel approximation, the potential decays more rapidly in every direction from the surface than it did in the concentric dielectric cylinder approximation.
Vibrationally-resolved Charge Transfer of O^3+ Ions with Molecular Hydrogen
NASA Astrophysics Data System (ADS)
Wang, J. G.; Stancil, P. C.; Turner, A. R.; Cooper, D. L.
2003-05-01
Charge transfer processes due to collisions of ground state O^3+ ions with H2 are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. Vibrationally-resolved cross sections for energies between 0.1 eV/u and 2 keV/u using the infinite order sudden approximation (IOSA), vibrational sudden approximation (VSA), and electronic approximation (EA), but including Frank-Condon factors (the centroid approximation) will be presented. Comparison with existing experimental data for total cross sections shows best agreement with IOSA and discrepancies for VSA and EA. Triplet-singlet cross section ratios obtained with IOSA are found generally to be in harmony with experiment. JGW and PCS acknowledge support from NASA grant 11453.
Analytical Model for Gyro-Phase Drift Arising from Abrupt Inhomogeneity
NASA Technical Reports Server (NTRS)
Walker, Jeffrey J.; Koepke, M. E.; Zimmerman, M. I.; Farrell, W. M.; Demidov, V. I.
2013-01-01
If a magnetized-orbit-charged grain encounters any abrupt inhomogeneity in plasma conditions during a gyro-orbit, such that the resulting in-situ equilibrium charge is significantly different between these regions (q(sub1)/q(sub 2) approximately 2, where q(sub 1) is the in-situ equilibrium charge on one side of the inhomogeneity, q(sub 2) is the in-situ equilibrium charge on the other side, and q(sub1) less than q(sub 2) less than 0), then the capacitive effects of charging and discharging of the dust grain can result in a modification to the orbit-averaged grain trajectory, i.e. gyro-phase drift. The special case of q(sub 1)/q(sub 2) is notioned for the purpose of illustrating the utility of the method. An analytical expression is derived for the grain velocity, assuming a capacitor approximation to the OML charging model. For cases in which a strong electric field suddenly appears in the wake or at the space-plasma-to-crater interface from solar wind and/or ultraviolet illumination and in which a magnetic field permeates an asteroid, comet, or moon, this model could contribute to the interpretation of the distribution of fields and particles.
Internal electric fields of electrolytic solutions induced by space-charge polarization
NASA Astrophysics Data System (ADS)
Sawada, Atsushi
2006-10-01
The dielectric dispersion of electrolytic solutions prepared using chlorobenzene as a solvent and tetrabutylammonium tetraphenylborate as a solute is analyzed in terms of space-charge polarization in order to derive the ionic constants, and the Stokes radius obtained is discussed in comparison with the values that have been measured by conductometry. A homogeneous internal electric field is assumed for simplicity in the analysis of the space-charge polarization. The justification of the approximation by the homogeneous field is discussed from two points of view: one is the accuracy of the Stokes radius value observed and the other is the effect of bound charges on electrodes in which they level the highly inhomogeneous field, which has been believed in the past. In order to investigate the actual electric field, numerical calculations based on the Poisson equation are carried out by considering the influence of the bound charges. The variation of the number of bound charges with time is clarified by determining the relaxation function of the dielectric constant attributed to the space-charge polarization. Finally, a technique based on a two-field approximation, where homogeneous and hyperbolic fields are independently applied in relevant frequency ranges, is introduced to analyze the space-charge polarization of the electrolytic solutions, and further improvement of the accuracy in the determination of the Stokes radius is achieved.
Charge Transport in Spiro-OMeTAD Investigated through Space-Charge-Limited Current Measurements
NASA Astrophysics Data System (ADS)
Röhr, Jason A.; Shi, Xingyuan; Haque, Saif A.; Kirchartz, Thomas; Nelson, Jenny
2018-04-01
Extracting charge-carrier mobilities for organic semiconductors from space-charge-limited conduction measurements is complicated in practice by nonideal factors such as trapping in defects and injection barriers. Here, we show that by allowing the bandlike charge-carrier mobility, trap characteristics, injection barrier heights, and the shunt resistance to vary in a multiple-trapping drift-diffusion model, a numerical fit can be obtained to the entire current density-voltage curve from experimental space-charge-limited current measurements on both symmetric and asymmetric 2 ,2',7 ,7' -tetrakis(N ,N -di-4-methoxyphenylamine)-9 ,9' -spirobifluorene (spiro-OMeTAD) single-carrier devices. This approach yields a bandlike mobility that is more than an order of magnitude higher than the effective mobility obtained using analytical approximations, such as the Mott-Gurney law and the moving-electrode equation. It is also shown that where these analytical approximations require a temperature-dependent effective mobility to achieve fits, the numerical model can yield a temperature-, electric-field-, and charge-carrier-density-independent mobility. Finally, we present an analytical model describing trap-limited current flow through a semiconductor in a symmetric single-carrier device. We compare the obtained charge-carrier mobility and trap characteristics from this analytical model to the results from the numerical model, showing excellent agreement. This work shows the importance of accounting for traps and injection barriers explicitly when analyzing current density-voltage curves from space-charge-limited current measurements.
Ewald Electrostatics for Mixtures of Point and Continuous Line Charges.
Antila, Hanne S; Tassel, Paul R Van; Sammalkorpi, Maria
2015-10-15
Many charged macro- or supramolecular systems, such as DNA, are approximately rod-shaped and, to the lowest order, may be treated as continuous line charges. However, the standard method used to calculate electrostatics in molecular simulation, the Ewald summation, is designed to treat systems of point charges. We extend the Ewald concept to a hybrid system containing both point charges and continuous line charges. We find the calculated force between a point charge and (i) a continuous line charge and (ii) a discrete line charge consisting of uniformly spaced point charges to be numerically equivalent when the separation greatly exceeds the discretization length. At shorter separations, discretization induces deviations in the force and energy, and point charge-point charge correlation effects. Because significant computational savings are also possible, the continuous line charge Ewald method presented here offers the possibility of accurate and efficient electrostatic calculations.
Population inversion calculations using near resonant charge exchange as a pumping mechanism
NASA Technical Reports Server (NTRS)
Chubb, D. L.; Rose, J. R.
1972-01-01
Near resonance charge exchange between ions of a large ionization potential gas such as helium or neon and vapors of metals such as zinc, cadmium, selenium, or tellurium has produced laser action in the metal ion gas. The possibility of obtaining population inversions in near resonant charge exchange systems (Xe-Ca, Xe-Mg, Xe-Sr, Xe-Ba, Ar-Mg, N-Ca) was investigated. The analysis is an initial value problem that utilizes rate equations for the densities of relevant levels of the laser gas (Ca, Ba, Mg, or Sr) and an electron energy equation. Electron excitation rates are calculated using the Bohr-Thomson approximation for the cross section. Approximations to experimental values of the electron ionization cross section and the ion-atom charge exchange cross section are used. Preliminary results have been obtained for the Ca-Xe system and show that it is possible to obtain gains greater than 10 to the 14th power/m with inversion times up to 8x10 to the minus 7th power second. A possible charge exchange laser system using a MPD arc plasma accelerator is also described.
Novel molecular device based on electrostatic interactions in organic polymers.
Kwok, H L; Xu, J B
2004-04-01
A number of researchers have reported attempts to design molecular level devices. One approach is to make use of electrostatic interactions in different parts of a polymeric molecule. This paper reports a means to achieve this by adding space charge to a molecule consisting of symmetric and asymmetric subgroups. Physically, space charge residing in a subgroup produces a dipolar charge layer thereby creating a potential trough in the polymer backbone. By lifting or lowering this potential minimum, it is possible to modify the terminal current. The effect of space charge on the potential profile in the polymer backbone was examined and the change correlated to data on carrier mobilities for OC1C10-PPV reported in the literature. Modulation of space charge in the subgroup allows the manipulation of current flow along the polymer backbone, forming the basis for the development of a molecular device. A first-order analysis suggested that such a device could have current-voltage (I-V) characteristics similar to those of a MOSFET at subthreshold, with an estimated transconductance approximately 1-2 pAV and a cutoff frequency approximately 10(15) Hz.
NASA Astrophysics Data System (ADS)
Chigvintsev, A. Yu; Zorina, I. G.; Noginova, L. Yu; Iosilevskiy, I. L.
2018-01-01
Impressive appearance of discontinuities in equilibrium spatial charge profiles in non-uniform Coulomb systems is under discussions in wide number of thermoelectrostatics problems. Such discontinuities are considered as peculiar micro-level manifestation of phase transitions and intrinsic macro-level non-ideality effects in local equation of state (EOS), which should be used for description of non-ideal ionic subsystem in frames of local-density (or “pseudofluid”, or “jellium” etc) approximation. Such discontinuities were discussed already by the authors for electronic subsystems. Special emphasis is made in present paper on the mentioned above non-ideality effects in non-uniform ionic subsystems, such as micro-ions profile within screening “cloud” around macro-ion in complex (dusty, colloid etc) plasmas, equilibrium charge profile in ionic traps or (and) in the neighborhood vicinity of “charged wall” etc). Multiphase EOS for simplified ionic model of classical charged hard spheres on uniformly compressible electrostatic compensating background was constructed and several illustrative examples of discussed discontinuous ionic profiles were calculated.
Wu, Fei; Sioshansi, Ramteen
2017-05-04
Here, we develop a model to optimize the location of public fast charging stations for electric vehicles (EVs). A difficulty in planning the placement of charging stations is uncertainty in where EV charging demands appear. For this reason, we use a stochastic flow-capturing location model (SFCLM). A sample-average approximation method and an averaged two-replication procedure are used to solve the problem and estimate the solution quality. We demonstrate the use of the SFCLM using a Central-Ohio based case study. We find that most of the stations built are concentrated around the urban core of the region. As the number ofmore » stations built increases, some appear on the outskirts of the region to provide an extended charging network. We find that the sets of optimal charging station locations as a function of the number of stations built are approximately nested. We demonstrate the benefits of the charging-station network in terms of how many EVs are able to complete their daily trips by charging midday—six public charging stations allow at least 60% of EVs that would otherwise not be able to complete their daily tours without the stations to do so. We finally compare the SFCLM to a deterministic model, in which EV flows are set equal to their expected values. We show that if a limited number of charging stations are to be built, the SFCLM outperforms the deterministic model. As the number of stations to be built increases, the SFCLM and deterministic model select very similar station locations.« less
Surface-potential decay of biased-probe contact-charged amorphous polymer films
NASA Astrophysics Data System (ADS)
Knorr, Nikolaus; Rosselli, Silvia; Nelles, Gabriele
2010-03-01
We have investigated the decay of scanning Kelvin probe force microscopy (KPFM) and electric force microscopy (EFM) signals from biased-probe contact-charged films of three different amorphous polymers representing wide-ranging water absorption capabilities. The surface-potential decay (SPD) has been measured by repeatedly scanning the charge pattern as a function of dissipation time t while varying the relative humidity (RH), the film thickness d, the temperature, the charging voltage, and the load on the scanning probe. Whereas increases in KPFM and EFM peak widths are appreciable only in the long run, the decay in the peak heights is rapid at the beginning and then strongly slowing down with time. Peak heights can be approximated for t <1 hour by power laws of negative exponents (-β), with 0<β<0.5 in dry conditions. β increases for thinner films and when scanning with higher probe loads. Raising the humidity or heating to temperatures well below the glass transition temperature of the polymer considerably increases β, with much stronger impacts for polymers with a higher water uptake capability. From the findings, we conclude that ionic charge carriers are trapped by the charge injection process in the volume of the polymers at low depths. A main contribution to SPD is by drift of the ions in their own space-charge field, mutually repelling each other and being attracted by their mirror charge in the grounded back electrode. Lateral drifts for small t are not resolved, increases in peak widths for t ≫1 h are predominantly due to increased probe—charge carrier distances. We interpret the power law approximation in terms of dispersive transport theory. We approximate trap-controlled apparent mobilities μ from isothermal KPFM peak height data, taken within a few minutes after charging, by a linear and a hyperbolic SPD model. Both models yield μ ≈10-14 cm2/(V s) for thin films (d ≈50 nm) in dry conditions. For mobilities derived similarly from isohumid measurements series, we find an exponential increase as a function of RH%. We furthermore suggest that two more mechanisms contributing to SPD are: first, by potential shielding of charge carriers by water dipoles, and second, in an indirect manner, by diffusion of injected water.
The mean ionic charge of silicon in 3HE-rich solar flares
NASA Technical Reports Server (NTRS)
Luhn, A.; Klecker, B.; Hovestadt, E.; Moebius, E.
1985-01-01
Mean ionic charge of iron in 3He-rich solar flares and the average mean charge of Silicon for 23 #He-rich periods during the time interval from September 1978 to October 1979 were determined. It is indicated that the value of the mean charge state of Silicon is higher than the normal flare average by approximately 3 units and in perticular it is higher then the value predicted by resonant heating models for 3He-rich solar flares.
Influences of the coordinate dependent noncommutative space on charged and spin currents
NASA Astrophysics Data System (ADS)
Ren, Ya-Jie; Ma, Kai
2018-06-01
We study the charged and spin currents on a coordinate dependent noncommutative space. Starting from the noncommutative extended relativistic equation of motion, the nonrelativistic approximation is obtained by using the Foldy-Wouthuysen transformation, and then the charged and spin currents are derived by using the extended Drude model. We find that the charged current is twisted by modifying the off-diagonal elements of the Hall conductivity, however, the spin current is not affected up to leading order of the noncommutative parameter.
Charging and heat collection by a positively charged dust grain in a plasma.
Delzanno, Gian Luca; Tang, Xian-Zhu
2014-07-18
Dust particulates immersed in a quasineutral plasma can emit electrons in several important applications. Once electron emission becomes strong enough, the dust enters the positively charged regime where the conventional orbital-motion-limited (OML) theory can break down due to potential-well effects on trapped electrons. A minimal modification of the trapped-passing boundary approximation in the so-called OML(+) approach is shown to accurately predict the dust charge and heat collection flux for a wide range of dust size and temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kemp, B. A., E-mail: bkemp@astate.edu; Nikolayev, I.; Sheppard, C. J.
2016-04-14
Like-charges repel, and opposite charges attract. This fundamental tenet is a result of Coulomb's law. However, the electrostatic interactions between dielectric particles remain topical due to observations of like-charged particle attraction and the self-assembly of colloidal systems. Here, we show, using both an approximate description and an exact solution of Maxwell's equations, that nonlinear charged particle forces result even for linear material systems and can be responsible for anomalous electrostatic interactions such as like-charged particle attraction and oppositely charged particle repulsion. Furthermore, these electrostatic interactions and the deformation of such particles have fundamental implications for our understanding of macroscopic electrodynamics.
Charging of nonspherical macroparticles in a plasma
NASA Astrophysics Data System (ADS)
Holgate, J. T.; Coppins, M.
2016-03-01
The current theories of macroparticle charging in a plasma are limited to spheres, and are unsuitable for the multitude of nonspherical objects existing in astrophysical, atmospheric, laboratory, and fusion plasmas. This paper extends the most widely used spherical charging theory, orbit motion limited theory, to spheroids and, as such, provides a comprehensive study of the charging of nonspherical objects in a plasma. The spherical charging theory is shown to be a reasonable approximation for a considerable range of spheroids. However, the electric potential of highly elongated spheroids can be almost twice the spherical value. Furthermore, the total charge on the spheroids increases by a significantly larger factor than their potential.
The mean ionic charge state of solar energetic Fe ions above 200 MeV per nucleon
NASA Technical Reports Server (NTRS)
Tylka, A. J.; Boberg, P. R.; Adams, J. H., Jr.; Beahm, L. P.; Dietrich, W. F.; Kleis, T.
1995-01-01
We have analyzed the geomagnetic transmission of solar energetic Fe ions at approximately 200-600 MeV per nucleon during the great solar energetic particle (SEP) events of 1989 September-October. By comparing fluences from the Chicago charged-particle telescope on IMP-8 in interplanetary space and from NRL's Heavy Ions in Space (HIIS) experiment aboard the Long Duration Exposure Facility (LDEF) in low-Earth orbit, we obtain a mean ionic charge (Q(sub 3)) = 14.2 +/- 1.4. This result is significantly lower than (Q) observed at approximately 1 MeV per nucleon in impulsive, He-3 rich SEP events, indicating that neither acceleration at the flare site nor flare-heated plasma significantly contributes to the high-energy Fe ions we observe. But it agrees well with the (Q) observed in gradual SEP events at approximately 1 MeV per nucleon, in which ions are accelerated by shocks driven by fast coronal mass ejections, and hence shows that particles are accelerated to very high energies in this way. We also note apparent differences between solar wind and SEP charge state distributions, which may favor a coronal (rather than solar wind) seed population or may suggest additional ionization in the ambient shock-region plasma.
Some astrophysical processes around magnetized black hole
NASA Astrophysics Data System (ADS)
Kološ, M.; Tursunov, A.; Stuchlík, Z.
2018-01-01
We study the dynamics of charged test particles in the vicinity of a black hole immersed into an asymptotically uniform external magnetic field. A real magnetic field around a black hole will be far away from to be completely regular and uniform, a uniform magnetic field is used as linear approximation. Ionized particle acceleration, charged particle oscillations and synchrotron radiation of moving charged particle have been studied.
Dynamics of bulk versus nanoscale W S2 : Local strain and charging effects
NASA Astrophysics Data System (ADS)
Luttrell, R. D.; Brown, S.; Cao, J.; Musfeldt, J. L.; Rosentsveig, R.; Tenne, R.
2006-01-01
We measured the infrared vibrational properties of bulk and nanoparticle WS2 in order to investigate the structure-property relations in these materials. In addition to the symmetry-breaking effects of local strain, nanoparticle curvature modifies the local charging environment of the bulk material. Performing a charge analysis on the xy -polarized E1u vibrational mode, we find an approximate 1.5:1 intralayer charge difference between the layered 2H material and inorganic fullerene-like (IF) nanoparticles. This effective charge difference may impact the solid-state lubrication properties of nanoscale metal dichalcogenides.
Dynamics of Bulk vs. Nanoscale WS2: Local Strain and Charging Effects
NASA Astrophysics Data System (ADS)
Musfeldt, J. L.; Brown, S.; Luttrell, R. D.; Cao, J.; Rosentsveig, R.; Tenne, R.
2006-03-01
We measured the infrared vibrational properties of bulk and nanoparticle WS2 in order to investigate the structure- property relations in these novel materials. In addition to the symmetry-breaking effects of local strain, nanoparticle curvature modifies the local charging environment of the bulk material. Performing a charge analysis on the xy-polarized E1u vibrational mode, we find an approximate 1.5:1 intralayer charge difference between the layered 2H material and inorganic fullerene-like (IF) nanoparticles. This effective charge difference may impact the solid-state lubrication properties of nanoscale metal dichalcogenides.
NASA Astrophysics Data System (ADS)
Joseph, Dwayne C.; Saha, Bidhan C.
2012-11-01
Charge transfer cross sections are calculated by employing both the quantal and semiclassical ɛ(R) molecular orbital close coupling (MOCC) approximations in the adiabatic representation and compared with other theoretical and experimental results
David Norris with Ford Focus electric cars
2017-09-29
David Norris, Marshall transportation specialist, stands alongside two new, fully electric cars capable of traveling approximately 115 miles on a 5 1/2-hour charge using Marshall's 240-volt charging station. The electric cars join five "green" vehicles in use at Marshall since spring 2016.
Adaptive matching of the iota ring linear optics for space charge compensation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanov, A.; Bruhwiler, D. L.; Cook, N.
Many present and future accelerators must operate with high intensity beams when distortions induced by space charge forces are among major limiting factors. Betatron tune depression of above approximately 0.1 per cell leads to significant distortions of linear optics. Many aspects of machine operation depend on proper relations between lattice functions and phase advances, and can be i proved with proper treatment of space charge effects. We implement an adaptive algorithm for linear lattice re matching with full account of space charge in the linear approximation for the case of Fermilab’s IOTA ring. The method is based on a searchmore » for initial second moments that give closed solution and, at the same predefined set of goals for emittances, beta functions, dispersions and phase advances at and between points of interest. Iterative singular value decomposition based technique is used to search for optimum by varying wide array of model parameters« less
THEORETICAL METHODS FOR COMPUTING ELECTRICAL CONDITIONS IN WIRE-PLATE ELECTROSTATIC PRECIPITATORS
The paper describes a new semi-empirical, approximate theory for predicting electrical conditions. In the approximate theory, analytical expressions are derived for calculating voltage-current characteristics and electric potential, electric field, and space charge density distri...
Analytical Debye-Huckel model for electrostatic potentials around dissolved DNA.
Wagner, K; Keyes, E; Kephart, T W; Edwards, G
1997-01-01
We present an analytical, Green-function-based model for the electric potential of DNA in solution, treating the surrounding solvent with the Debye-Huckel approximation. The partial charge of each atom is accounted for by modeling DNA as linear distributions of atoms on concentric cylindrical surfaces. The condensed ions of the solvent are treated with the Debye-Huckel approximation. The resultant leading term of the potential is that of a continuous shielded line charge, and the higher order terms account for the helical structure. Within several angstroms of the surface there is sufficient information in the electric potential to distinguish features and symmetries of DNA. Plots of the potential and equipotential surfaces, dominated by the phosphate charges, reflect the structural differences between the A, B, and Z conformations and, to a smaller extent, the difference between base sequences. As the distances from the helices increase, the magnitudes of the potentials decrease. However, the bases and sugars account for a larger fraction of the double helix potential with increasing distance. We have found that when the solvent is treated with the Debye-Huckel approximation, the potential decays more rapidly in every direction from the surface than it did in the concentric dielectric cylinder approximation. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 7 PMID:9199767
High Performance Polymer Memory and Its Formation
2007-04-26
the retention time of the device was performed to estimate the barrier height of the charge trap . The activation energy was approximated to be about...characteristics and presented a model to explain the mechanism of electrical switching in the device. By exploiting an electric-field induced charge transfer...electrical current in the high conductivity state would be due to some temperature-independent charge tunneling processes. The IV curves could be
On the work function and the charging of small ( r ≤ 5 nm) nanoparticles in plasmas
NASA Astrophysics Data System (ADS)
Kalered, E.; Brenning, N.; Pilch, I.; Caillault, L.; Minéa, T.; Ojamäe, L.
2017-01-01
The growth of nanoparticles (NPs) in plasmas is an attractive technique where improved theoretical understanding is needed for quantitative modeling. The variation of the work function W with size for small NPs, rN P≤ 5 nm, is a key quantity for modeling of three NP charging processes that become increasingly important at a smaller size: electron field emission, thermionic electron emission, and electron impact detachment. Here we report the theoretical values of the work function in this size range. Density functional theory is used to calculate the work functions for a set of NP charge numbers, sizes, and shapes, using copper for a case study. An analytical approximation is shown to give quite accurate work functions provided that rN P > 0.4 nm, i.e., consisting of about >20 atoms, and provided also that the NPs have relaxed close to spherical shape. For smaller sizes, W deviates from the approximation, and also depends on the charge number. Some consequences of these results for nanoparticle charging are outlined. In particular, a decrease in W for NP radius below about 1 nm has fundamental consequences for their charge in a plasma environment, and thereby on the important processes of NP nucleation, early growth, and agglomeration.
Comparison of dust charging between orbital-motion-limited theory and particle-in-cell simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delzanno, Gian Luca, E-mail: delzanno@lanl.gov; Tang, Xian-Zhu, E-mail: xtang@lanl.gov
The Orbital-Motion-Limited (OML) theory has been modified to predict the dust charge and the results were contrasted with the Whipple approximation [X. Z. Tang and G. L. Delzanno, Phys. Plasmas 21, 123708 (2014)]. To further establish its regime of applicability, in this paper, the OML predictions (for a non-electron-emitting, spherical dust grain at rest in a collisionless, unmagnetized plasma) are compared with particle-in-cell simulations that retain the absorption radius effect. It is found that for large dust grain radius r{sub d} relative to the plasma Debye length λ{sub D}, the revised OML theory remains a very good approximation as, formore » the parameters considered (r{sub d}/λ{sub D} ≤ 10, equal electron and ion temperatures), it yields the dust charge to within 20% accuracy. This is a substantial improvement over the Whipple approximation. The dust collected currents and energy fluxes, which remain the same in the revised and standard OML theories, are accurate to within 15%–30%.« less
Resolution of identity approximation for the Coulomb term in molecular and periodic systems.
Burow, Asbjörn M; Sierka, Marek; Mohamed, Fawzi
2009-12-07
A new formulation of resolution of identity approximation for the Coulomb term is presented, which uses atom-centered basis and auxiliary basis functions and treats molecular and periodic systems of any dimensionality on an equal footing. It relies on the decomposition of an auxiliary charge density into charged and chargeless components. Applying the Coulomb metric under periodic boundary conditions constrains the explicit form of the charged part. The chargeless component is determined variationally and converged Coulomb lattice sums needed for its determination are obtained using chargeless linear combinations of auxiliary basis functions. The lattice sums are partitioned in near- and far-field portions which are treated through an analytical integration scheme employing two- and three-center electron repulsion integrals and multipole expansions, respectively, operating exclusively in real space. Our preliminary implementation within the TURBOMOLE program package demonstrates consistent accuracy of the method across molecular and periodic systems. Using common auxiliary basis sets the errors of the approximation are small, in average about 20 muhartree per atom, for both molecular and periodic systems.
Resolution of identity approximation for the Coulomb term in molecular and periodic systems
NASA Astrophysics Data System (ADS)
Burow, Asbjörn M.; Sierka, Marek; Mohamed, Fawzi
2009-12-01
A new formulation of resolution of identity approximation for the Coulomb term is presented, which uses atom-centered basis and auxiliary basis functions and treats molecular and periodic systems of any dimensionality on an equal footing. It relies on the decomposition of an auxiliary charge density into charged and chargeless components. Applying the Coulomb metric under periodic boundary conditions constrains the explicit form of the charged part. The chargeless component is determined variationally and converged Coulomb lattice sums needed for its determination are obtained using chargeless linear combinations of auxiliary basis functions. The lattice sums are partitioned in near- and far-field portions which are treated through an analytical integration scheme employing two- and three-center electron repulsion integrals and multipole expansions, respectively, operating exclusively in real space. Our preliminary implementation within the TURBOMOLE program package demonstrates consistent accuracy of the method across molecular and periodic systems. Using common auxiliary basis sets the errors of the approximation are small, in average about 20 μhartree per atom, for both molecular and periodic systems.
Simulation of the Universal-Time Diurnal Variation of the Global Electric Circuit Charging Rate
NASA Technical Reports Server (NTRS)
Mackerras, David; Darveniza, Mat; Orville, Richard E.; Williams, Earle R.; Goodman, Steven J.
1999-01-01
A global lightning model that includes diurnal and annual lightning variation, and total flash density versus latitude for each major land and ocean, has been used as the basis for simulating the global electric circuit charging rate. A particular objective has been to reconcile the difference in amplitude ratios [AR=(max-min)/mean] between global lightning diurnal variation (AR approximately equals 0.8) and the diurnal variation of typical atmospheric potential gradient curves (AR approximately equals 0.35). A constraint on the simulation is that the annual mean charging current should be about 1000 A. The global lightning model shows that negative ground flashes can contribute, at most, about 10-15% of the required current. For the purpose of the charging rate simulation, it was assumed that each ground flash contributes 5 C to the charging process. It was necessary to assume that all electrified clouds contribute to charging by means other than lightning, that the total flash rate can serve as an indirect indicator of the rate of charge transfer, and that oceanic electrified clouds contribute to charging even though they are relatively inefficient in producing lightning. It was also found necessary to add a diurnally invariant charging current component. By trial and error it was found that charging rate diurnal variation curves could be produced with amplitude ratios and general shapes similar to those of the potential gradient diurnal variation curves measured over ocean and arctic regions during voyages of the Carnegie Institute research vessels. The comparisons were made for the northern winter (Nov.-Feb.), the equinox (Mar., Apr., Sept., Oct.), the northern summer (May-Aug.), and the whole year.
Charge scheduling of an energy storage system under time-of-use pricing and a demand charge.
Yoon, Yourim; Kim, Yong-Hyuk
2014-01-01
A real-coded genetic algorithm is used to schedule the charging of an energy storage system (ESS), operated in tandem with renewable power by an electricity consumer who is subject to time-of-use pricing and a demand charge. Simulations based on load and generation profiles of typical residential customers show that an ESS scheduled by our algorithm can reduce electricity costs by approximately 17%, compared to a system without an ESS and by 8% compared to a scheduling algorithm based on net power.
Charge Scheduling of an Energy Storage System under Time-of-Use Pricing and a Demand Charge
Yoon, Yourim
2014-01-01
A real-coded genetic algorithm is used to schedule the charging of an energy storage system (ESS), operated in tandem with renewable power by an electricity consumer who is subject to time-of-use pricing and a demand charge. Simulations based on load and generation profiles of typical residential customers show that an ESS scheduled by our algorithm can reduce electricity costs by approximately 17%, compared to a system without an ESS and by 8% compared to a scheduling algorithm based on net power. PMID:25197720
Search for lightly ionizing particles with the MACRO detector
NASA Astrophysics Data System (ADS)
Ambrosio, M.; Antolini, R.; Auriemma, G.; Bakari, D.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bisi, V.; Bloise, C.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B. C.; Coutu, S.; de Cataldo, G.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; Derkaoui, J.; de Vincenzi, M.; di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Gray, L.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Mikheyev, S.; Miller, L.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolò, D.; Nolty, R.; Orth, C.; Okada, C.; Osteria, G.; Ouchrif, M.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Pistilli, P.; Popa, V.; Rainò, A.; Reynoldson, J.; Ronga, F.; Satriano, C.; Satta, L.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Vakili, M.; Vilela, E.; Walter, C. W.; Webb, R.
2000-09-01
A search for lightly ionizing particles has been performed with the MACRO detector. This search was sensitive to particles with charges between 15 e and close to the charge of an electron, with β between approximately 0.25 and 1.0. Unlike previous searches both single track events and tracks buried within high multiplicity muon showers were examined. In a period of approximately one year no candidates were observed. Assuming an isotropic flux, for the single track sample this corresponds to a 90% C.L. upper flux limit Φ<=9.2×10-15 cm-2 s-1 sr-1.
NASA Astrophysics Data System (ADS)
Zou, You-Hao; Zhang, Jian-Bo; Xiong, Guang-Yi; Chen, Ying; Liu, Chuan; Liu, Yu-Bin; Ma, Jian-Ping
2017-10-01
The topological charge density and topological susceptibility are determined by a multi-probing approximation using overlap fermions in quenched SU(3) gauge theory. Then we investigate the topological structure of the quenched QCD vacuum, and compare it with results from the all-scale topological density. The results are consistent. Random permuted topological charge density is used to check whether these structures represent underlying ordered properties. The pseudoscalar glueball mass is extracted from the two-point correlation function of the topological charge density. We study 3 ensembles of different lattice spacing a with the same lattice volume 163×32. The results are compatible with the results of all-scale topological charge density, and the topological structures revealed by multi-probing are much closer to all-scale topological charge density than those from eigenmode expansion. Supported by National Natural Science Foundation of China (NSFC) (11335001, 11275169, 11075167), It is also supported in part by the DFG and the NSFC (11261130311) through funds provided to the Sino-German CRC 110 "Symmetries and the Emergence of Structure in QCD". This work was also funded in part by National Basic Research Program of China (973 Program) (2015CB856700)
Charge renormalization at the large-D limit for N-electron atoms and weakly bound systems
NASA Astrophysics Data System (ADS)
Kais, S.; Bleil, R.
1995-05-01
We develop a systematic way to determine an effective nuclear charge ZRD such that the Hartree-Fock results will be significantly closer to the exact energies by utilizing the analytically known large-D limit energies. This method yields an expansion for the effective nuclear charge in powers of (1/D), which we have evaluated to the first order. This first order approximation to the desired effective nuclear charge has been applied to two-electron atoms with Z=2-20, and weakly bound systems such as H-. The errors for the two-electron atoms when compared with exact results were reduced from ˜0.2% for Z=2 to ˜0.002% for large Z. Although usual Hartree-Fock calculations for H- show this to be unstable, our results reduce the percent error of the Hartree-Fock energy from 7.6% to 1.86% and predicts the anion to be stable. For N-electron atoms (N=3-18, Z=3-28), using only the zeroth order approximation for the effective charge significantly reduces the error of Hartree-Fock calculations and recovers more than 80% of the correlation energy.
A Novel Spacecraft Charge Monitor for LEO
NASA Technical Reports Server (NTRS)
Goembel, Luke
2004-01-01
Five years ago we introduced a new method for measuring spacecraft chassis floating potential relative to the space plasma (absolute spacecraft potential) in low Earth orbit. The method, based on a straightforward interpretation of photoelectron spectra, shows promise for numerous applications, but has not yet been tried. In the interest of testing the method, and ultimately supplying another tool for measuring absolute spacecraft charge, we are producing a flight prototype Spacecraft Charge Monitor (SCM) with support from NASA's Small Business Innovation Research (SBIR) program. Although insight into the technique came from data collected in space over two decades ago, very little data are available. The data indicate that it may be possible to determine spacecraft floating potential to within 0.1 volt each with the SCM second under certain conditions. It is debatable that spacecraft floating potential has ever been measured with such accuracy. The compact, easily deployed SCM also offers the advantage of long-term stability in calibration. Accurate floating potential determinations from the SCM could be used to correct biases in space plasma measurements and evaluate charge mitigation and/or sensing devices. Although this paper focuses on the device's use in low Earth orbit (LEO), the device may also be able to measure spacecraft charge at higher altitudes, in the solar wind, and in orbits around other planets. The flight prototype SCM we are producing for delivery to NASA in the third quarter of 2004 will measure floating potential from 0 to -150 volts with 0.1 volt precision, weigh approximately 600-700 grams, consume approximately 2 watts, and will measure approximately 8 x 10 x 17 cm.
Charged and uncharged vortices in quasiclassical theory
NASA Astrophysics Data System (ADS)
Masaki, Yusuke; Kato, Yusuke
2018-03-01
The charging effect of a superconducting vortex core is very important for transport properties of superconducting vortices. The chiral p-wave superconductor, known as a topological superconductor (SC), has a Majorana fermion in a vortex core and the charging effect has been studied using microscopic Bogoliubov{de Gennes (BdG) theory. According to calculations based on the BdG theory, one type of the vortex is charged as well as the vortex of the s-wave SC, while the other is uncharged. We reproduce this interesting charging effect using an augmented quasiclassical theory in chiral p-wave SCs, by which we can deal with particle-hole asymmetry in the quasiclassical approximation.
NASA Astrophysics Data System (ADS)
Spinlove, K. E.; Vacher, M.; Bearpark, M.; Robb, M. A.; Worth, G. A.
2017-01-01
Recent work, particularly by Cederbaum and co-workers, has identified the phenomenon of charge migration, whereby charge flow occurs over a static molecular framework after the creation of an electronic wavepacket. In a real molecule, this charge migration competes with charge transfer, whereby the nuclear motion also results in the re-distribution of charge. To study this competition, quantum dynamics simulations need to be performed. To break the exponential scaling of standard grid-based algorithms, approximate methods need to be developed that are efficient yet able to follow the coupled electronic-nuclear motion of these systems. Using a simple model Hamiltonian based on the ionisation of the allene molecule, the performance of different methods based on Gaussian Wavepackets is demonstrated.
NASA Technical Reports Server (NTRS)
Fuerstenau, Stephen; Wilson, Gregory R.
2008-01-01
An instrument for rapidly measuring the electric charges and sizes (from approximately 1 to approximately 100 micrometers) of airborne particles is undergoing development. Conceived for monitoring atmospheric dust particles on Mars, instruments like this one could also be used on Earth to monitor natural and artificial aerosols in diverse indoor and outdoor settings for example, volcanic regions, clean rooms, powder-processing machinery, and spray-coating facilities. The instrument incorporates a commercially available, low-noise, ultrasensitive charge-sensing preamplifier circuit. The input terminal of this circuit--the gate of a field-effect transistor--is connected to a Faraday-cage cylindrical electrode. The charged particles of interest are suspended in air or other suitable gas that is made to flow along the axis of the cylindrical electrode without touching the electrode. The flow can be channeled and generated by any of several alternative means; in the prototype of this instrument, the gas is drawn along a glass capillary tube (see upper part of figure) coaxial with the electrode. The size of a particle affects its rate of acceleration in the flow and thus affects the timing and shape of the corresponding signal peak generated by the charge-sensing amplifier. The charge affects the magnitude (and thus also the shape) of the signal peak. Thus, the signal peak (see figure) conveys information on both the size and electric charge of a sensed particle. In experiments thus far, the instrument has been found to be capable of measuring individual aerosol particle charges of magnitude greater than 350 e (where e is the fundamental unit of electric charge) with a precision of +/- 150 e. The instrument can sample particles at a rate as high as several thousand per second.
Investigating the electronic properties of Al2O3/Cu(In,Ga)Se2 interface
NASA Astrophysics Data System (ADS)
Kotipalli, R.; Vermang, B.; Joel, J.; Rajkumar, R.; Edoff, M.; Flandre, D.
2015-10-01
Atomic layer deposited (ALD) Al2O3 films on Cu(In,Ga)Se2 (CIGS) surfaces have been demonstrated to exhibit excellent surface passivation properties, which is advantageous in reducing recombination losses at the rear metal contact of CIGS thin-film solar cells. Here, we report, for the first time, experimentally extracted electronic parameters, i.e. fixed charge density (Qf) and interface-trap charge density (Dit), for as-deposited (AD) and post-deposition annealed (PDA) ALD Al2O3 films on CIGS surfaces using capacitance-voltage (C-V) and conductance-frequency (G-f) measurements. These results indicate that the AD films exhibit positive fixed charges Qf (approximately 1012 cm-2), whereas the PDA films exhibit a very high density of negative fixed charges Qf (approximately 1013 cm-2). The extracted Dit values, which reflect the extent of chemical passivation, were found to be in a similar range of order (approximately 1012 cm-2 eV-1) for both AD and PDA samples. The high density of negative Qf in the bulk of the PDA Al2O3 film exerts a strong Coulomb repulsive force on the underlying CIGS minority carriers (ns), preventing them to recombine at the CIGS/Al2O3 interface. Using experimentally extracted Qf and Dit values, SCAPS simulation results showed that the surface concentration of minority carriers (ns) in the PDA films was approximately eight-orders of magnitude lower than in the AD films. The electrical characterization and estimations presented in this letter construct a comprehensive picture of the interfacial physics involved at the Al2O3/CIGS interface.
Solar photovoltaic charging of lithium-ion batteries
NASA Astrophysics Data System (ADS)
Gibson, Thomas L.; Kelly, Nelson A.
Solar photovoltaic (PV) charging of batteries was tested by using high efficiency crystalline and amorphous silicon PV modules to recharge lithium-ion battery modules. This testing was performed as a proof of concept for solar PV charging of batteries for electrically powered vehicles. The iron phosphate type lithium-ion batteries were safely charged to their maximum capacity and the thermal hazards associated with overcharging were avoided by the self-regulating design of the solar charging system. The solar energy to battery charge conversion efficiency reached 14.5%, including a PV system efficiency of nearly 15%, and a battery charging efficiency of approximately 100%. This high system efficiency was achieved by directly charging the battery from the PV system with no intervening electronics, and matching the PV maximum power point voltage to the battery charging voltage at the desired maximum state of charge for the battery. It is envisioned that individual homeowners could charge electric and extended-range electric vehicles from residential, roof-mounted solar arrays, and thus power their daily commuting with clean, renewable solar energy.
NASA Technical Reports Server (NTRS)
Tylka, Allan J.; Boberg, Paul R.; Adams, James H., Jr.; Beahm, Lorraine P.; Kleis, Thomas
1995-01-01
It has long been known that low-energy solar energetic particles (SEP's) are partially-ionized. For example, in large, so-called 'gradual' solar energetic particle events, at approximately 1 MeV/nucleon the measured mean ionic charge state, Q, of Fe ions is 14.1 +/- 0.2, corresponding to a plasma temperature of approximately 2 MK in the coronal or solar-wind source material. Recent studies, which have greatly clarified the origin of solar energetic particles and their relation to solar flares, suggest that ions in these SEP events are accelerated not at a flare site, but by shocks propagating through relatively low-density regions in the interplanetary medium. As a result, the partially-ionized states observed at low energies are expected to continue to higher energies. However, up to now there have been no high-energy measurements of ionic charge states to confirm this notion. We report here HIIS observations of Fe-group ions at 50-600 MeV/nucleon, at energies and fluences which cannot be explained by fully-ionized galactic cosmic rays, even in the presence of severe geomagnetic cutoff suppression. Above approximately 200 MeV/nucleon, all features of our data -- fluence, energy spectrum, elemental composition, and arrival directions -- can be explained by the large SEP events of October 1989, provided that the mean ionic charge state at these high energies is comparable to the measured value at approximately 1 MeV/nucleon. By comparing the HIIS observations with measurements in interplanetary space in October 1989, we determine the mean ionic charge state of SEP Fe ions at approximately 200-600 MeV/nucleon to be Q = 13.4 plus or minus 1.0, in good agreement with the observed value at approximately 1 MeV/nucleon. The source of the ions below approximately 200 MeV/nucleon is not yet clear. Partially-ionized ions are less effectively deflected by the Earth's magnetic field than fully-ionized cosmic rays and therefore have greatly enhanced access to low-Earth orbit. Moreover, at the high energies observed in HIIS, these ions can penetrate typical amounts of shielding. We discuss the significance of the HIIS results for estimates of the radiation hazard posed by large SEP events to satellites in low-Earth orbit, including the proposed Space Station orbit. Finally, we comment on previous reports of low-energy below-cutoff Fe-group ions, which some authors have interpreted as evidence for partially-ionized galactic cosmic rays. The LDEF flux levels are much smaller than the corresponding fluxes in these previous reports, implying that the source of these ions has an unusual solar-cycle variation and/or strongly increases with decreasing altitude.
Production of soft X-ray emitting slow multiply charged ions - Recoil ion spectroscopy
NASA Technical Reports Server (NTRS)
Sellin, I. A.; Elston, S. B.; Forester, J. P.; Griffin, P. M.; Pegg, D. J.; Peterson, R. S.; Thoe, R. S.; Vane, C. R.; Wright, J. J.; Groeneveld, K.-O.
1977-01-01
S ions with a mean charge state of about 14+ and Cl ions with a mean charge state of 12+ were used to study Ne L-shell vacancy production. The ions caused copious production of NeII-NeVIII excited states with approximately 10 to the minus 18 sq cm cross sections. The induced recoil velocities might have application to a significantly higher resolution spectroscopy than is possible with beam-foil methods.
ERIC Educational Resources Information Center
Spencer, James; And Others
1996-01-01
Shows how ionization energies provide a convenient method for obtaining electronegativity values that is simpler than the conventional methods. Demonstrates how approximate atomic charges can be calculated for polar molecules and how this method of determining electronegativities may lead to deeper insights than are typically possible for the…
DOT National Transportation Integrated Search
1998-10-01
The report uses police-reported crash data that have been linked to hospital discharge data to evaluate charges for hospital care provided to motor vehicle crash victims in Pennsylvania. Approximately 17,000 crash victims were hospitalized in Pennsyl...
Self-consistent field calculations of conductance through conjugated molecules at finite bias
NASA Astrophysics Data System (ADS)
Paulsson, Magnus; Stafström, Sven
2001-03-01
Conductance through conjugated molecules have previously been calculated for a large number of systems using the Landauer formula but only a few calculations have included charging effects. In this study we present calculations in the mean field approximation of the conductance of metal-molecule-metal systems using two different kinds of molecules for a large number of configurations and applied biases. The molecules are described in the Pariser-Parr Pople model. Current-voltage (I-V) characteristics and charge distribution of the molecule connected by one dimensional leads to reservoirs is solved within the Hartree-Fock approximation. Charging of the molecule occurs when the chemical potential of the reservoirs approach the resonant tunneling levels. The ensuing potential difference, due to the charging, shifts the tunneling peaks which affects the I-V curves considerably. Asymmetrical interaction with the metal leads, e.g. molecule on a metal surface contacted with an STM-tip, also give asymmetrical I-V curves where the potential of the molecule is shown to more closely follow the potential of the surface. Negative differential conductance is discussed in systems consisting of two weakly coupled molecules.
Lindén, Fredrik; Cederquist, Henrik; Zettergren, Henning
2016-11-21
We present exact analytical solutions for charge transfer reactions between two arbitrarily charged hard dielectric spheres. These solutions, and the corresponding exact ones for sphere-sphere interaction energies, include sums that describe polarization effects to infinite orders in the inverse of the distance between the sphere centers. In addition, we show that these exact solutions may be approximated by much simpler analytical expressions that are useful for many practical applications. This is exemplified through calculations of Langevin type cross sections for forming a compound system of two colliding spheres and through calculations of electron transfer cross sections. We find that it is important to account for dielectric properties and finite sphere sizes in such calculations, which for example may be useful for describing the evolution, growth, and dynamics of nanometer sized dielectric objects such as molecular clusters or dust grains in different environments including astrophysical ones.
A dynamic programming approach to estimate the capacity value of energy storage
Sioshansi, Ramteen; Madaeni, Seyed Hossein; Denholm, Paul
2013-09-17
Here, we present a method to estimate the capacity value of storage. Our method uses a dynamic program to model the effect of power system outages on the operation and state of charge of storage in subsequent periods. We combine the optimized dispatch from the dynamic program with estimated system loss of load probabilities to compute a probability distribution for the state of charge of storage in each period. This probability distribution can be used as a forced outage rate for storage in standard reliability-based capacity value estimation methods. Our proposed method has the advantage over existing approximations that itmore » explicitly captures the effect of system shortage events on the state of charge of storage in subsequent periods. We also use a numerical case study, based on five utility systems in the U.S., to demonstrate our technique and compare it to existing approximation methods.« less
Litigated Metal Clusters - Structures, Energy and Reactivity
2016-04-01
projection superposition approximation ( PSA ) algorithm through a more careful consideration of how to calculate cross sections for elongated molecules...superposition approximation ( PSA ) is now complete. We have made it available free of charge to the scientific community on a dedicated website at UCSB. We...by AFOSR. We continued to improve the projection superposition approximation ( PSA ) algorithm through a more careful consideration of how to calculate
Coulomb-stable triply charged diatomic: HeY3+
NASA Astrophysics Data System (ADS)
Wesendrup, Ralf; Pernpointner, Markus; Schwerdtfeger, Peter
1999-11-01
Accurate relativistic coupled-cluster calculations show that the triply charged species HeY3+ is a stable molecule and represents the lightest diatomic trication that does not undergo a Coulomb fragmentation into charged fragments. The diatomic potential-energy curve is approximated by an extended Morse potential, and vibrational-rotational constants for HeY3+ are predicted (Re=224.3 pm, D0=0.394 eV, ωe=437 cm-1, ωexe=15.8 cm-1, Be=0.877 cm-1). It is further shown that the He-Y3+ bond can basically be described as a charge-induced dipole interaction.
Insulator edge voltage gradient effects in spacecraft charging phenomena
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Purvis, C. K.; Staskus, J. V.
1978-01-01
Insulating surfaces on geosynchronous satellites were charged by geomagnetic substorms to a point where discharges occur. The electromagnetic pulses from these discharges couple into satellite electronic systems disrupting operations are examined. Laboratory tests conducted on insulator charging have indicated that discharges appear to be initiated at insulator edges where voltage gradients can exist. An experimental investigation was conducted to measure edge voltage gradients on silvered Teflon samples as they are charged by monoenergetic electron beams. It was found that the surface voltage at insulator edges can be approximated by an exponential expression based on an electron current density balance.
Nagornov, Yuri S
2018-05-01
The charge model for efficiency of betavoltaics effect is proposed. It allows calculating the charge value for pin structures under irradiation of Ni-63. We approximated the current-voltage characteristics of the structures using an equivalent diode circuit with a charge on the barrier capacitance. We calculated the charge function from current-voltage characteristics for two types of silicon pin structures - with and without getter annealing. The charging on the surface of pin structure decreases the efficiency of betavoltaics effect. Value of charge for our structures is changed in the range from -50 to +15mC/cm 2 and depends on the applied potential. The getter annealing allows getting the structures with a higher efficiency of betavoltaic effect, but it does not exclude the surface charging under beta irradiation from Ni-63. Copyright © 2018 Elsevier Ltd. All rights reserved.
Micromechanical potentiometric sensors
Thundat, Thomas G.
2000-01-01
A microcantilever potentiometric sensor utilized for detecting and measuring physical and chemical parameters in a sample of media is described. The microcantilevered spring element includes at least one chemical coating on a coated region, that accumulates a surface charge in response to hydrogen ions, redox potential, or ion concentrations in a sample of the media being monitored. The accumulation of surface charge on one surface of the microcantilever, with a differing surface charge on an opposing surface, creates a mechanical stress and a deflection of the spring element. One of a multitude of deflection detection methods may include the use of a laser light source focused on the microcantilever, with a photo-sensitive detector receiving reflected laser impulses. The microcantilevered spring element is approximately 1 to 100 .mu.m long, approximately 1 to 50 .mu.m wide, and approximately 0.3 to 3.0 .mu.m thick. An accuracy of detection of deflections of the cantilever is provided in the range of 0.01 nanometers of deflection. The microcantilever apparatus and a method of detection of parameters require only microliters of a sample to be placed on, or near the spring element surface. The method is extremely sensitive to the detection of the parameters to be measured.
NASA Technical Reports Server (NTRS)
Heinrich, W.; Drechsel, H.; Brechtmann, C.; Beer, J.
1985-01-01
Charge changing nuclear collisions in plastic nuclear track detectors were studied using a new experimental technique of automatic track measurement for etched tracks in plastic detectors. Partial cross sections for the production of fragments of charge Z approximately 8 were measured for projectile nuclei of charge 9 approximately Z approximately 26 in the detector material CR39 and in silver. for this purpose three independent experiments were performed using Bevalac beams. The first one was an exposure of a stack of CR39 plastic plates to 1.8 GeV/nucl. Ar-40 nuclei. The second one was an exposure of another CR39 stack of 1.7 GeV/nucl. Fe-56 projectiles. In the third experiment a mixed stack of CR39 plates and silver foils was irradiated with 1.7 GeV/nucl. Fe-56 nuclei. Thus the measurement of nuclear cross sections in a light target (CR39 = C12H18O7) and as well in a heavy target (silver) was possible.
Apparent electric charge of protein molecules. Human thyroxine - binding proteins.
Hocman, G; Sadlon, J
1977-01-01
1. By comparison of electrophoretic mobilities of two different charged particles under the same conditions the net elementary electrostatic charge of one particle could be calculated when the charge of the other is known. 2. The electrophoretic mobility of human thyroxine - binding globulin does not depend upon the concentration of Tris - HCl buffer in the range 0.05 to 0.20 molar. The value of this mobility is 0.078 and 0.083 cm2 vol(-1) hour(-1) at pH 7.0 and 8.6, respectively. 3. The net elementary electrostatic charge of the human thyroxine - binding globulin appears to be approximately 22 negative elementary electrostatic units in mild alkaline solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaltak, Merzuk; Fernandez-Serra, Marivi; Hybertsen, Mark S.
The phases of A 2Mn 8O 16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3d electrons are more explicitly considered with the DFT + Umore » approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn 3+ centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Lastly, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.« less
Beard, D A; Schlick, T
2001-01-01
Much progress has been achieved on quantitative assessment of electrostatic interactions on the all-atom level by molecular mechanics and dynamics, as well as on the macroscopic level by models of continuum solvation. Bridging of the two representations-an area of active research-is necessary for studying integrated functions of large systems of biological importance. Following perspectives of both discrete (N-body) interaction and continuum solvation, we present a new algorithm, DiSCO (Discrete Surface Charge Optimization), for economically describing the electrostatic field predicted by Poisson-Boltzmann theory using a discrete set of Debye-Hückel charges distributed on a virtual surface enclosing the macromolecule. The procedure in DiSCO relies on the linear behavior of the Poisson-Boltzmann equation in the far zone; thus contributions from a number of molecules may be superimposed, and the electrostatic potential, or equivalently the electrostatic field, may be quickly and efficiently approximated by the summation of contributions from the set of charges. The desired accuracy of this approximation is achieved by minimizing the difference between the Poisson-Boltzmann electrostatic field and that produced by the linearized Debye-Hückel approximation using our truncated Newton optimization package. DiSCO is applied here to describe the salt-dependent electrostatic environment of the nucleosome core particle in terms of several hundred surface charges. This representation forms the basis for modeling-by dynamic simulations (or Monte Carlo)-the folding of chromatin. DiSCO can be applied more generally to many macromolecular systems whose size and complexity warrant a model resolution between the all-atom and macroscopic levels. Copyright 2000 John Wiley & Sons, Inc.
Kaltak, Merzuk; Fernandez-Serra, Marivi; Hybertsen, Mark S.
2017-12-01
The phases of A 2Mn 8O 16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3d electrons are more explicitly considered with the DFT + Umore » approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn 3+ centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Lastly, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.« less
NASA Astrophysics Data System (ADS)
Kaltak, Merzuk; Fernández-Serra, Marivi; Hybertsen, Mark S.
2017-12-01
The phases of A2Mn8O16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3 d electrons are more explicitly considered with the DFT + U approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn3 + centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Finally, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.
A model to determine payments associated with radiology procedures.
Mabotuwana, Thusitha; Hall, Christopher S; Thomas, Shiby; Wald, Christoph
2017-12-01
Across the United States, there is a growing number of patients in Accountable Care Organizations and under risk contracts with commercial insurance. This is due to proliferation of new value-based payment models and care delivery reform efforts. In this context, the business model of radiology within a hospital or health system context is shifting from a primary profit-center to a cost-center with a goal of cost savings. Radiology departments need to increasingly understand how the transactional nature of the business relates to financial rewards. The main challenge with current reporting systems is that the information is presented only at an aggregated level, and often not broken down further, for instance, by type of exam. As such, the primary objective of this research is to provide better visibility into payments associated with individual radiology procedures in order to better calibrate expense/capital structure of the imaging enterprise to the actual revenue or value-add to the organization it belongs to. We propose a methodology that can be used to determine technical payments at a procedure level. We use a proportion based model to allocate payments to individual radiology procedures based on total charges (which also includes non-radiology related charges). Using a production dataset containing 424,250 radiology exams we calculated the overall average technical charge for Radiology to be $873.08 per procedure and the corresponding average payment to be $326.43 (range: $48.27 for XR and $2750.11 for PET/CT) resulting in an average payment percentage of 37.39% across all exams. We describe how charges associated with a procedure can be used to approximate technical payments at a more granular level with a focus on Radiology. The methodology is generalizable to approximate payment for other services as well. Understanding payments associated with each procedure can be useful during strategic practice planning. Charge-to-total charge ratio can be used to approximate radiology payments at a procedure level. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Qing; Beard, Daniel A; Schlick, Tamar
2003-12-01
Salt-mediated electrostatics interactions play an essential role in biomolecular structures and dynamics. Because macromolecular systems modeled at atomic resolution contain thousands of solute atoms, the electrostatic computations constitute an expensive part of the force and energy calculations. Implicit solvent models are one way to simplify the model and associated calculations, but they are generally used in combination with standard atomic models for the solute. To approximate electrostatics interactions in models on the polymer level (e.g., supercoiled DNA) that are simulated over long times (e.g., milliseconds) using Brownian dynamics, Beard and Schlick have developed the DiSCO (Discrete Surface Charge Optimization) algorithm. DiSCO represents a macromolecular complex by a few hundred discrete charges on a surface enclosing the system modeled by the Debye-Hückel (screened Coulombic) approximation to the Poisson-Boltzmann equation, and treats the salt solution as continuum solvation. DiSCO can represent the nucleosome core particle (>12,000 atoms), for example, by 353 discrete surface charges distributed on the surfaces of a large disk for the nucleosome core particle and a slender cylinder for the histone tail; the charges are optimized with respect to the Poisson-Boltzmann solution for the electric field, yielding a approximately 5.5% residual. Because regular surfaces enclosing macromolecules are not sufficiently general and may be suboptimal for certain systems, we develop a general method to construct irregular models tailored to the geometry of macromolecules. We also compare charge optimization based on both the electric field and electrostatic potential refinement. Results indicate that irregular surfaces can lead to a more accurate approximation (lower residuals), and the refinement in terms of the electric field is more robust. We also show that surface smoothing for irregular models is important, that the charge optimization (by the TNPACK minimizer) is efficient and does not depend on the initial assigned values, and that the residual is acceptable when the distance to the model surface is close to, or larger than, the Debye length. We illustrate applications of DiSCO's model-building procedure to chromatin folding and supercoiled DNA bound to Hin and Fis proteins. DiSCO is generally applicable to other interesting macromolecular systems for which mesoscale models are appropriate, to yield a resolution between the all-atom representative and the polymer level. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 2063-2074, 2003
Ion charge state distribution effects on elastic X-ray Thomson scattering
NASA Astrophysics Data System (ADS)
Iglesias, Carlos A.
2018-03-01
Analytic models commonly applied in elastic X-ray Thomson scattering cross-section calculations are used to generate results from a discrete ion charge distribution and an average charge description. Comparisons show that interchanging the order of the averaging procedure can appreciably alter the cross-section, especially for plasmas with partially filled K-shell bound electrons. In addition, two common approximations to describe the free electron density around an ion are shown to yield significantly different elastic X-ray Thomson scattering cross-sections.
NASA Astrophysics Data System (ADS)
Tanaka, Koichi; Han, Liang; Zhou, Xue; Anders, André
2015-08-01
Charge-state-resolved ion energy-time distributions of pulsed Cu arc plasma were obtained by using direct (time-dependent) acquisition of the ion detection signal from a commercial ion mass-per-charge and energy-per-charge analyzer. We find a shift of energies of Cu2+, Cu3+ and Cu4+ ions to lower values during the first few hundred microseconds after arc ignition, which is evidence for particle collisions in the plasma. The generation of Cu+ ions in the later part of the pulse, measured by the increase of Cu+ signal intensity and an associated slight reduction of the mean charge state, points to charge exchange reactions between ions and neutrals. At the very beginning of the pulse, when the plasma expands into vacuum and the plasma potential strongly fluctuates, ions with much higher energy (over 200 eV) are observed. Early in the pulse, the ion energies observed are approximately proportional to the ion charge state, and we conclude that the acceleration mechanism is primarily based on acceleration in an electric field. This field is directed away from the cathode, indicative of a potential hump. Measurements by a floating probe suggest that potential structures travel, and ions moving in the traveling field can gain high energies up to a few hundred electron-volts. Later in the pulse, the approximate proportionality is lost, which is related to increased smearing out of different energies due to collisions with neutrals, and/or to a change of the acceleration character from electrostatic to ‘gas-dynamic’, i.e. dominated by pressure gradient.
Electric field soundings through thunderstorms
NASA Technical Reports Server (NTRS)
Marshall, Thomas C.; Rust, W. D.
1991-01-01
Twelve balloon soundings of the electric field in thunderstorms are reported. The maximum magnitude of E in the storms averaged 96 +/-28 kV/m, with the largest being 146 kV/m. The maximum was usually observed between vertically adjacent regions of opposite charge. Using a 1D approximation to Gauss' law, four to ten charge regions in the storms are inferred. The magnitude of the density in the charge regions varied between 0.2 and 13 nC/cu m. The vertical extent of the charge regions ranged from 130 to 2100 m. None of the present 12 storms had charge distributions that fit the long-accepted model of Simpson et al. (1937, 1941) of a lower positive charge, a main negative charge, and an upper positive charge. In addition to regions similar to the Simpson model, the present storms had screening layers at the upper and lower cloud boundaries and extra charge regions, usually in the lower part of the cloud.
NASA Technical Reports Server (NTRS)
Rule, D. W.
1977-01-01
The first born approximation (FBA) is applied to the calculation of single electron loss cross sections for various ions and atoms containing from one to seven electrons. Screened hydrogenic wave functions were used for the states of the electron ejected from the projectile, and Hartree-Fock elastic and incoherent scattering factors were used to describe the target. The effect of the target atom on the scaling of projectile ionization cross sections with respect to the projectile nuclear charge was explored in the case of hydrogen-like ions. Scaling of the cross section with respect to the target nuclear charge for electron loss by Fe (+25) in collision with neutral atoms ranging from H to Fe is also examined. These results were compared to those of the binary encounter approximation and to the FBA for the case of ionization by completely stripped target ions.
New instrument for tribocharge measurement due to single particle impacts
NASA Astrophysics Data System (ADS)
Watanabe, Hideo; Ghadiri, Mojtaba; Matsuyama, Tatsushi; Long Ding, Yu; Pitt, Kendal G.
2007-02-01
During particulate solid processing, particle-particle and particle-wall collisions can generate electrostatic charges. This may lead to a variety of problems ranging from fire and explosion hazards to segregation, caking, and blocking. A fundamental understanding of the particle charging in such situations is therefore essential. For this purpose we have developed a new device that can measure charge transfer due to impact between a single particle and a metal plate. The device consists of an impact test system and two sets of Faraday cage and preamplifier for charge measurement. With current amplifiers, high-resolution measurements of particle charges of approximately 1 and 10fC have been achieved before and after the impact, respectively. The device allows charge measurements of single particles with a size as small as ˜100μm impacting on the target at different incident angles with a velocity up to about 80m/s. Further analyses of the charge transfer as a function of particle initial charge define an equilibrium charge, i.e., an initial charge level prior to impact for which no net charge transfer would occur as a result of impact.
A switchable polymer layer: Chain folding in end-charged polymer brushes
NASA Astrophysics Data System (ADS)
Heine, David; Wu, David T.
2001-03-01
We use a self-consistent field approximation to model the configurations of end-charged homopolymer and block copolymer brushes in response to an external electric field due to charges on the grafting surface. By varying the charge density on the grafting surface, we can cause the chains either to extend outward, greatly increasing the brush height, or to loop back to the grafting surface. We show that such a copolymer brush can present one block at the exposed surface in the extended state and present the other block in the retracted state. This occurs for both a solvated brush and a dry brush. We also compare these results to those of a modified Alexander-de Gennes model for the end-charged homopolymer brush.
Electron in higher-dimensional weakly charged rotating black hole spacetimes
NASA Astrophysics Data System (ADS)
Cariglia, Marco; Frolov, Valeri P.; Krtouš, Pavel; Kubizňák, David
2013-03-01
We demonstrate separability of the Dirac equation in weakly charged rotating black hole spacetimes in all dimensions. The electromagnetic field of the black hole is described by a test field approximation, with the vector potential proportional to the primary Killing vector field. It is shown that the demonstrated separability can be intrinsically characterized by the existence of a complete set of mutually commuting first-order symmetry operators generated from the principal Killing-Yano tensor. The presented results generalize the results on integrability of charged particle motion and separability of charged scalar field studied in V. P. Frolov and P. Krtous [Phys. Rev. D 83, 024016 (2011)].
Corona And Ultraviolet Equipment For Testing Materials
NASA Technical Reports Server (NTRS)
Laue, Eric G.
1993-01-01
Two assemblies of laboratory equipment developed for use in testing abilities of polymers, paints, and other materials to withstand ultraviolet radiation and charged particles. One is vacuum ultraviolet source built around commercial deuterium lamp. Other exposes specimen in partial vacuum to both ultraviolet radiation and brush corona discharge. Either or both assemblies used separately or together to simulate approximately combination of solar radiation and charged particles encountered by materials aboard spacecraft in orbit around Earth. Also used to provide rigorous environmental tests of materials exposed to artificial ultraviolet radiation and charged particles in industrial and scientific settings or to natural ultraviolet radiation and charged particles aboard aircraft at high altitudes.
The relationship between kappa and temperature in energetic ion spectra at Jupiter
NASA Technical Reports Server (NTRS)
Collier, Michael R.; Hamilton, D. C.
1995-01-01
A universal energy per charge kappa function fit is simultaneously applied to the spectra of Voyager 2 Low Energy Charged Particle (LECP) proton, helium, oxygen, sulfur, and carbon ions during 33 Jovian plasma sheet crossings from 26 to 160 R(sub J). The fits yield an approximately linear relationship between high energy spectral index, kappa, and core proton temperature of the form kappa (T(sub H)) approximately = eta dot T(sub H) + kappa(sub 0) with eta = 0.080 ke/V, kappa(sub 0) = 2.86, and T(sub H) measured in keV. Core proton temperatures range from 5 to 35 keV with spectral indices ranging from 3 to 6.
Charge transfer excitations from exact and approximate ensemble Kohn-Sham theory
NASA Astrophysics Data System (ADS)
Gould, Tim; Kronik, Leeor; Pittalis, Stefano
2018-05-01
By studying the lowest excitations of an exactly solvable one-dimensional soft-Coulomb molecular model, we show that components of Kohn-Sham ensembles can be used to describe charge transfer processes. Furthermore, we compute the approximate excitation energies obtained by using the exact ensemble densities in the recently formulated ensemble Hartree-exchange theory [T. Gould and S. Pittalis, Phys. Rev. Lett. 119, 243001 (2017)]. Remarkably, our results show that triplet excitations are accurately reproduced across a dissociation curve in all cases tested, even in systems where ground state energies are poor due to strong static correlations. Singlet excitations exhibit larger deviations from exact results but are still reproduced semi-quantitatively.
Determining the maximum charging currents of lithium-ion cells for small charge quantities
NASA Astrophysics Data System (ADS)
Grimsmann, F.; Gerbert, T.; Brauchle, F.; Gruhle, A.; Parisi, J.; Knipper, M.
2017-10-01
In order to optimize the operating parameters of battery management systems for electric and hybrid vehicles, great interest has been shown in achieving the maximum permissible charging currents during recuperation, without causing a cell damage due to lithium plating, in relation to the temperature, charge quantity and state of charge. One method for determining these recuperation currents is measuring the cell thickness, where excessively high charging currents can be detected by an irreversible increase in thickness. It is not possible to measure particularly small charge quantities by employing mechanic dial indicators, which have a limited resolution of 1 μm. This is why we developed a measuring setup that has a resolution limit of less than 10 nm using a high-resolution contactless inductance sensor. Our results show that the permissible charging current I can be approximated in relation to the charge quantity x by a correlating function I =a /√{(x) } which is compliant with the Arrhenius law. Small charge quantities therefore have an optimization potential for energy recovery during recuperation.
A new class of non-topological solitons
NASA Technical Reports Server (NTRS)
Frieman, Joshua A.; Lynn, Bryan W.
1989-01-01
A class of non-topological solitons was constructed in renormalizable scalar field theories with nonlinear self-interactions. For large charge Q, the soliton mass increases linearly with Q, i.e., the soliton mass density is approximately independent of charge. Such objects could be naturally produced in a phase transition in the early universe or in the decay of superconducting cosmic strings.
Criticality in charge-asymmetric hard-sphere ionic fluids.
Aqua, Jean-Noël; Banerjee, Shubho; Fisher, Michael E
2005-10-01
Phase separation and criticality are analyzed in z:1 charge-asymmetric ionic fluids of equisized hard spheres by generalizing the Debye-Hückel approach combined with ionic association, cluster solvation by charged ions, and hard-core interactions, following lines developed by Fisher and Levin for the 1:1 case (i.e., the restricted primitive model). Explicit analytical calculations for 2:1 and 3:1 systems account for ionic association into dimers, trimers, and tetramers and subsequent multipolar cluster solvation. The reduced critical temperatures, Tc* (normalized by z), decrease with charge asymmetry, while the critical densities increase rapidly with . The results compare favorably with simulations and represent a distinct improvement over all current theories such as the mean spherical approximation, symmetric Poisson-Boltzmann theory, etc. For z not equal to 1, the interphase Galvani (or absolute electrostatic) potential difference, Deltaphi(T), between coexisting liquid and vapor phases is calculated and found to vanish as absolute value (T-Tc) beta when T-->Tc-with, since our approximations are classical, beta = (1/2). Above Tc, the compressibility maxima and so-called k-inflection loci (which aid the fast and accurate determination of the critical parameters) are found to exhibit a strong z dependence.
The electrokinetic behavior of calcium oxalate monohydrate in macromolecular solutions
NASA Technical Reports Server (NTRS)
Curreri, P. A.; Onoda, G. Y., Jr.; Finlayson, B.
1988-01-01
Electrophoretic mobilities were measured for calcium oxalate monohydrate (COM) in solutions containing macromolecules. Two mucopolysaccharides (sodium heparin and chrondroitin sulfate) and two proteins (positively charged lysozyme and negatively charged bovine serum albumin) were studied as adsorbates. The effects of pH, calcium oxalate surface charge (varied by calcium or oxalate ion activity), and citrate concentration were investigated. All four macromolecules showed evidence for chemical adsorption. The macromolecule concentrations needed for reversing the surface charge indicated that the mucopopolysacchrides have greater affinity for the COM surface than the proteins. The amount of proteins that can chemically adsorb appears to be limited to approximately one monomolecular layer. When the surface charge is high, an insufficient number of proteins can chemically adsorb to neutralize or reverse the surface charge. The remaining surface charge is balanced by proteins held near the surface by longer range electrostatic forces only. Citrate ions at high concentrations appear to compete effectively with the negative protein for surface sites but show no evidence for competing with the positively charged protein.
Explosively driven air blast in a conical shock tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Joel B., E-mail: joel.b.stewart2.civ@mail.mil; Pecora, Collin, E-mail: collin.r.pecora.civ@mail.mil
2015-03-15
Explosively driven shock tubes present challenges in terms of safety concerns and expensive upkeep of test facilities but provide more realistic approximations to the air blast resulting from free-field detonations than those provided by gas-driven shock tubes. Likewise, the geometry of conical shock tubes can naturally approximate a sector cut from a spherically symmetric blast, leading to a better agreement with the blast profiles of free-field detonations when compared to those provided by shock tubes employing constant cross sections. The work presented in this article documents the design, fabrication, and testing of an explosively driven conical shock tube whose goalmore » was to closely replicate the blast profile seen from a larger, free-field detonation. By constraining the blast through a finite area, large blasts (which can add significant damage and safety constraints) can be simulated using smaller explosive charges. The experimental data presented herein show that a close approximation to the free-field air blast profile due to a 1.5 lb charge of C4 at 76 in. can be achieved by using a 0.032 lb charge in a 76-in.-long conical shock tube (which translates to an amplification factor of nearly 50). Modeling and simulation tools were used extensively in designing this shock tube to minimize expensive fabrication costs.« less
A direct measurement of the charge states of energetic iron emitted by the sun
NASA Technical Reports Server (NTRS)
Gloeckler, G.; Sciambi, R. K.; Fan, C. Y.; Hovestadt, D.
1976-01-01
The charge states of energetic iron have been measured directly for the first time in a solar particle event. In the energy interval 0.01 to 0.25 MeV per nucleon, iron is not fully stripped but has a mean ionization state of 11.6. This value is remarkably similar to the mean ionization state of iron in the quiet solar wind and suggests that the charge states were "frozen-in" at a coronal temperature of approximately 1,500,000 K.
Program to Research Laser-Driven Thermionic Electron Sources for Free Electron Lasers.
1988-01-01
by sinal I lengths of coaxial cable. With the ’. corresponding charge to the diode also reduced, a series of temporall y sho rter -Ioctron pulse-s was...e combination of approximately 1.6 eV. With the Nd:glass laser beam pulse heating the cathode " and the charge supplied by 0.5/ F capacitor, a series ...available charge stored in the h-arg ing ’apar i tor. A series of experiments was performed wilh lowetr capacitances of sevoral tens of picofarads furnished
The global monopole spacetime and its topological charge
NASA Astrophysics Data System (ADS)
Tan, Hongwei; Yang, Jinbo; Zhang, Jingyi; He, Tangmei
2018-03-01
We show that the global monopole spacetime is one of the exact solutions of the Einstein equations by treating the matter field as a non-linear sigma model, without the weak field approximation applied in the original derivation by Barriola and Vilenkin. Furthermore, we find the physical origin of the topological charge in the global monopole spacetime. Finally, we generalize the proposal which generates spacetime from thermodynamical laws to the case of spacetime with global monopole charge. Project supported by the National Natural Science Foundation of China (Grant Nos. 11273009 and 11303006).
NASA Astrophysics Data System (ADS)
Chan, Kevin T.; Lee, Hoonkyung; Cohen, Marvin L.
2011-10-01
Graphene provides many advantages for controlling the electronic structure of adatoms and other adsorbates via gating. Using the projected density of states and charge density obtained from first-principles density-functional periodic supercell calculations, we investigate the possibility of performing “alchemy” of adatoms on graphene, i.e., transforming the electronic structure of one species of adatom into that of another species by application of a gate voltage. Gating is modeled as a change in the number of electrons in the unit cell, with the inclusion of a compensating uniform background charge. Within this model and the generalized gradient approximation to the exchange-correlation functional, we find that such transformations are possible for K, Ca, and several transition-metal adatoms. Gate control of the occupation of the p states of In on graphene is also investigated. The validity of the supercell approximation with uniform compensating charge and the model for exchange and correlation is also discussed.
Electroosmosis in a Finite Cylindrical Pore: Simple Models of End Effects
2015-01-01
A theoretical model of electroosmosis through a circular pore of radius a that traverses a membrane of thickness h is investigated. Both the cylindrical surface of the pore and the outer surfaces of the membrane are charged. When h ≫ a, end effects are negligible, and the results of full numerical computations of electroosmosis in an infinite pore agree with theory. When h = 0, end effects dominate, and computations again agree with analysis. For intermediate values of h/a, an approximate analysis that combines these two limiting cases captures the main features of computational results when the Debye length κ–1 is small compared with the pore radius a. However, the approximate analysis fails when κ–1 ≫ a, when the charge cloud due to the charged cylindrical walls of the pore spills out of the ends of the pore, and the electroosmotic flow is reduced. When this spilling out is included in the analysis, agreement with computation is restored. PMID:25020257
Jakobsen, Sofie; Jensen, Frank
2014-12-09
We assess the accuracy of force field (FF) electrostatics at several levels of approximation from the standard model using fixed partial charges to conformational specific multipole fits including up to quadrupole moments. Potential-derived point charges and multipoles are calculated using least-squares methods for a total of ∼1000 different conformations of the 20 natural amino acids. Opposed to standard charge fitting schemes the procedure presented in the current work employs fitting points placed on a single isodensity surface, since the electrostatic potential (ESP) on such a surface determines the ESP at all points outside this surface. We find that the effect of multipoles beyond partial atomic charges is of the same magnitude as the effect due to neglecting conformational dependency (i.e., polarizability), suggesting that the two effects should be included at the same level in FF development. The redundancy at both the partial charge and multipole levels of approximation is quantified. We present an algorithm which stepwise reduces or increases the dimensionality of the charge or multipole parameter space and provides an upper limit of the ESP error that can be obtained at a given truncation level. Thereby, we can identify a reduced set of multipole moments corresponding to ∼40% of the total number of multipoles. This subset of parameters provides a significant improvement in the representation of the ESP compared to the simple point charge model and close to the accuracy obtained using the complete multipole parameter space. The selection of the ∼40% most important multipole sites is highly transferable among different conformations, and we find that quadrupoles are of high importance for atoms involved in π-bonding, since the anisotropic electric field generated in such regions requires a large degree of flexibility.
Tunneling of Charged and Magnetized Fermions from a Rotating Dyonic Taub-NUT Black Hole
NASA Astrophysics Data System (ADS)
Sultana, Kausari
2017-12-01
We investigate tunneling of charged and magnetized Dirac particles from a rotating dyonic Taub-NUT (TN) black hole (BH) called the Kerr-Newman-KasuyaTub-NUT (KNKTN) BH endowed with electric as well as magnetic charges. We derive the tunneling probability of outgoing charged particles by using the semiclassical WKB approximation to the covariant Dirac equation and obtain the corresponding Hawking temperature. The emission spectrum deviates from the purely thermal spectrum with the leading term exactly the Boltzman factor, if energy conservation and the backreaction of particles to the spacetime are considered. The results provides a quantumcorrected radiation temperature depending on the BH background and the radiation particles energy, angular momentum, and charges. The results are consistent with those already available in literature.
Charge-based MOSFET model based on the Hermite interpolation polynomial
NASA Astrophysics Data System (ADS)
Colalongo, Luigi; Richelli, Anna; Kovacs, Zsolt
2017-04-01
An accurate charge-based compact MOSFET model is developed using the third order Hermite interpolation polynomial to approximate the relation between surface potential and inversion charge in the channel. This new formulation of the drain current retains the same simplicity of the most advanced charge-based compact MOSFET models such as BSIM, ACM and EKV, but it is developed without requiring the crude linearization of the inversion charge. Hence, the asymmetry and the non-linearity in the channel are accurately accounted for. Nevertheless, the expression of the drain current can be worked out to be analytically equivalent to BSIM, ACM and EKV. Furthermore, thanks to this new mathematical approach the slope factor is rigorously defined in all regions of operation and no empirical assumption is required.
NASA Astrophysics Data System (ADS)
Chafai, A.; Essaoudi, I.; Ainane, A.; Dujardin, F.; Ahuja, R.
2018-07-01
The recombination energy of isolated neutral exciton and that of isolated negatively charged exciton inside a type-II core/shell spherical quantum dot are studied. Our investigation considers the charge-carriers effective mass discontinuity at the surface contact between the core and shell materials. Although our model omits the effect of the surface polarization, the dielectric-constant mismatch at the nanodot boundaries was taken into account. In order to achieve the exciton and negative trion energies, we proceed by a variational calculation in the framework of the envelope approximation. Our results reveal a strong correlation between the nanodot morphology and the energy spectrum of the neutral and negatively charged exciton.
Mean-field description of topological charge 4e superconductors
NASA Astrophysics Data System (ADS)
Gabriele, Victoria; Luo, Jing; Teo, Jeffrey C. Y.
BCS superconductors can be understood by a mean-field approximation of two-body interacting Hamiltonians, whose ground states break charge conservation spontaneously by allowing non-vanishing expectation values of charge 2e Cooper pairs. Topological superconductors, such as one-dimensional p-wave wires, have non-trivial ground states that support robust gapless boundary excitations. We construct a four-body Hamiltonian in one dimension and perform a mean-field analysis. The mean-field Hamiltonian is now quartic in fermions but is still exactly solvable. The ground state exhibits 4-fermion expectation values instead of Cooper pair ones. There also exists a topological phase, where the charge 4e superconductor carries exotic zero energy boundary excitations.
Lightning Channel Corona Formation Treated as a Large System of Streamers
NASA Astrophysics Data System (ADS)
Carlson, B.; Lehtinen, N. G.; Kochkin, P.
2017-12-01
Transfer of charge along a lightning channel leads to strong electric fields that drive such charge outward. This charge flow is nonuniform, breaking up into millimeter-scale discharge structures called streamers. The motion of such streamers can carry charge many meters outward from the channel, but each individual streamer only carries a small amount of charge. Transfer of macroscopic charge outward thus requires a large population of streamers that are expected to interact and exhibit interesting collective behaviors. We attempt to simulate such collective behaviors by approximating the behavior of each streamer but retaining streamer interactions and overall electrodynamic effects and apply this simulation to a few key scenarios. For the case of flow of charge off a lightning channel, we simulate a continually growing population of streamers injected near a charged conducting channel. Further, motivated by lightning initiation, we simulate the growth of a population of streamers from a single seed streamer as might initiate from a hydrometeor. For all cases considered, we characterize the charges and currents involved, compare to observations where possible, and characterize the collective effects including spatial and temporal non-uniformity.
NASA Technical Reports Server (NTRS)
Venturini, C. C.; Spann, J. F.; Comfort, R. H.
1999-01-01
The interaction of micron sized particles or "dust particles" with different space and planetary environments has become an important area of research. One particular area of interest is how dust particles interact with plasmas. Studies have shown that charged dust particles immersed in plasmas can alter plasma characteristics, while ions and electrons in plasmas can affect a particle's potential and thereby, its interaction with other particles. The basis for understanding these phenomena is the charging mechanisms of the dust particle, specifically, how the particle's charge and characteristics are affected when exposed to ions and electrons. At NASA Marshall Space Flight Center, a laboratory experiment has been developed to study the interaction of dust particles with electrons. Using a unique laboratory technique known as electrodynamic suspension, a single charged particle is suspended in a modified quadrupole trap. Once suspended, the particle is then exposed to an electron beam to study the charging/discharging mechanisms due to collisions of energetic electrons. The change in the particle's charge, approximations of the charging/discharging currents, and the charging/discharging yield are calculated.
NASA Astrophysics Data System (ADS)
Weinberg, Steven
2015-09-01
Preface; Notation; 1. Historical introduction; 2. Particle states in a central potential; 3. General principles of quantum mechanics; 4. Spin; 5. Approximations for energy eigenstates; 6. Approximations for time-dependent problems; 7. Potential scattering; 8. General scattering theory; 9. The canonical formalism; 10. Charged particles in electromagnetic fields; 11. The quantum theory of radiation; 12. Entanglement; Author index; Subject index.
Inspirals into a charged black hole
NASA Astrophysics Data System (ADS)
Zhu, Ruomin; Osburn, Thomas
2018-05-01
We model the quasicircular inspiral of a compact object into a more massive charged black hole. Extreme and intermediate mass-ratio inspirals are considered through a small mass-ratio approximation. Reissner-Nordström spacetime is used to describe the charged black hole. The effect of radiation reaction on the smaller body is quantified through calculation of electromagnetic and gravitational energy fluxes via solution of Einstein's and Maxwell's equations. Inspiral trajectories are determined by matching the orbital energy decay rate to the rate of radiative energy dissipation. We observe that inspirals into a charged black hole evolve more rapidly than comparable inspirals into a neutral black hole. Through analysis of a variety of inspiral configurations, we conclude that electric charge is an important effect concerning gravitational wave observations when the charge exceeds the threshold |Q |/M ≳0.071 √{ɛ }, where ɛ is the mass ratio.
Multipole correction of atomic monopole models of molecular charge distribution. I. Peptides
NASA Technical Reports Server (NTRS)
Sokalski, W. A.; Keller, D. A.; Ornstein, R. L.; Rein, R.
1993-01-01
The defects in atomic monopole models of molecular charge distribution have been analyzed for several model-blocked peptides and compared with accurate quantum chemical values. The results indicate that the angular characteristics of the molecular electrostatic potential around functional groups capable of forming hydrogen bonds can be considerably distorted within various models relying upon isotropic atomic charges only. It is shown that these defects can be corrected by augmenting the atomic point charge models by cumulative atomic multipole moments (CAMMs). Alternatively, sets of off-center atomic point charges could be automatically derived from respective multipoles, providing approximately equivalent corrections. For the first time, correlated atomic multipoles have been calculated for N-acetyl, N'-methylamide-blocked derivatives of glycine, alanine, cysteine, threonine, leucine, lysine, and serine using the MP2 method. The role of the correlation effects in the peptide molecular charge distribution are discussed.
NASA Astrophysics Data System (ADS)
Ji, Y.; Shen, C.
2014-03-01
With consideration of magnetic field line curvature (FLC) pitch angle scattering and charge exchange reactions, the O+ (>300 keV) in the inner magnetosphere loss rates are investigated by using an eigenfunction analysis. The FLC scattering provides a mechanism for the ring current O+ to enter the loss cone and influence the loss rates caused by charge exchange reactions. Assuming that the pitch angle change is small for each scattering event, the diffusion equation including a charge exchange term is constructed and solved; the eigenvalues of the equation are identified. The resultant loss rates of O+ are approximately equal to the linear superposition of the loss rate without considering the charge exchange reactions and the loss rate associated with charge exchange reactions alone. The loss time is consistent with the observations from the early recovery phases of magnetic storms.
Spectroscopic study of carbaryl sorption on smectite from aqueous suspension.
de Oliveira, Maurilio Fernandes; Johnston, Cliff T; Premachandra, G S; Teppen, Brian J; Li, Hui; Laird, David A; Zhu, Dongqiang; Boyd, Stephen A
2005-12-01
Sorption of carbaryl (1-naphthyl-N-methyl-carbamate) from aqueous suspension to smectite was studied using Fourier transform infrared (FTIR), high-performance liquid chromatography (HPLC) (for batch sorption), and quantum chemical methods. The amount of carbaryl sorbed was strongly dependent on the surface-charge density of the smectite with more sorption occurring on the two "low" surface-charge density smectites (SHCa-1 and SWy-2) compared to that of the high surface-charge SAz-1 smectite. In addition, the amount of carbaryl sorbed was strongly dependent on the nature of the exchangeable cation and followed the order of Ba approximately Cs approximately Ca > Mg approximately K > Na approximately Li for SWy-2. A similartrend was found for hectorite (SHCa-1) of Cs > Ba > Ca > K approximately Mg > Na approximately Li. Using the shift of the carbonyl stretching band as an indicator of the strength of interaction between carbaryl and the exchangeable cation, the observed order was Mg > Ca > Ba approximately K > Na > Cs. The position of the carbonyl stretching band shifted to lower wavenumbers with increasing ionic potential of the exchangeable cation. Density functional theory predicted a cation-induced lengthening of the C=O bond, resulting from the carbonyl group interacting directly with the exchangeable cation in support of the spectroscopic observations. Further evidence was provided by a concomitant shift in the opposite direction by several vibrational bands in the 1355-1375 cm(-1) region assigned to stretching bands of the carbamate N-Ccarbonyl and Oether-Ccarbonyl bonds. These data indicate that carbaryl sorption is due, in part, to site-specific interactions between the carbamate functional group and exchangeable cations, as evidenced by the FTIR data. However, these data suggest that hydrophobic interactions also contribute to the overall amount of carbaryl sorbed. For example, the FTIR data indicated thatthe weakest interaction occurred when Cs+ was the exchangeable cation. In contrast, the highest amount of carbaryl sorption was observed on Cs-exchanged smectite. Of all the cations studied, Cs has the lowest enthalpy of hydration. It is suggested that this low hydration energy provides the carbaryl with greater access to the hydrophobic regions of the siloxane surface.
Huang, Qinglan; Evmenenko, Guennadi; Dutta, Pulak; Marks, Tobin J
2003-12-03
Molecule-scale structure effects at organic light-emitting diodes (OLED) anode-organic transport layer interfaces are probed via a self-assembly approach. A series of ITO anode-linked silyltriarylamine molecules differing in aryl group and linker density are synthesized for this purpose and used to probe the relationship between nanoscale interfacial chemical structure, charge injection and electroluminescence properties. Dramatic variations in hole injection magnitude and OLED performance can be correlated with the molecular structures and electrochemically derived heterogeneous electron-transfer rates of such triarylamine fragments, placed precisely at the anode-hole transport layer interface. Very bright and efficient ( approximately 70 000 cd/m2 and approximately 2.5% forward external quantum efficiency) OLEDs have thereby been fabricated.
Real-space mapping of the strongly coupled plasmons of nanoparticle dimers.
Kim, Deok-Soo; Heo, Jinhwa; Ahn, Sung-Hyun; Han, Sang Woo; Yun, Wan Soo; Kim, Zee Hwan
2009-10-01
We carried out the near-field optical imaging of isolated and dimerized gold nanocubes to directly investigate the strong coupling between two adjacent nanoparticles. The high-resolution (approximately 10 nm) local field maps (intensities and phases) of self-assembled nanocube dimers reveal antisymmetric plasmon modes that are starkly different from a simple superposition of two monomeric dipole plasmons, which is fully reproduced by the electrodynamics simulations. The result decisively proves that, for the closely spaced pair of nanoparticles (interparticle distance/particle size approximately 0.04), the strong Coulombic attraction between the charges at the interparticle gap dominates over the intraparticle charge oscillations, resulting in a hybridized dimer plasmon mode that is qualitatively different from those expected from a simple dipole-dipole coupling model.
Exp(1076) Shades of Black: Aspects of Black Hole Microstates
NASA Astrophysics Data System (ADS)
Vasilakis, Orestis
In this thesis we examine smooth supergravity solutions known as "microstate geometries". These solutions have neither a horizon, nor a singularity, yet they have the same asymptotic structure and conserved charges as black holes. Specifically we study supersymmetric and extremal non-supersymmetric solutions. The goal of this program is to construct enough microstates to account for the correct scaling behavior of the black hole entropy with respect to the charges within the supergravity approximation. For supersymmetric systems that are ⅛-BPS, microstate geometries account so far only for Q5/4 of the total entropy S ˜ Q3/2, while for non-supersymmetric systems the known microstate geometries are sporadic. For the supersymmetric case we construct solutions with three and four charges. Five-dimensional systems with three and four charges are ⅛-BPS. Thus they admit macroscopic horizons making the supergravity approximation valid. For the three-charge case we present some steps towards the construction of the superstratum, a microstate geometry depending on arbitrary functions of two variables, which is expected to provide the necessary entropy for this class of solutions. Specifically we construct multiple concentric solutions with three electric and two dipole magnetic charges which depend on arbitrary functions of two variables and examine their properties. These solutions have no KKM charge and thus are singular. For the four-charge case we construct microstate geometries by extending results available in the literature for three charges. We find smooth solutions in terms of bubbled geometries with ambipolar Gibbons-Hawking base space and by constructing the relevant supertubes. In the non-supersymmetric case we work with a three-charge system of extremal black holes known as almost-BPS, which provides a controlled way of breaking sypersymmetry. By using supertubes we construct the first systematic example of a family of almost-BPS microstate geometries and examine the moduli space of solutions. Furthermore by using brane probe analysis we show that, despite the breaking of supersymmetry, almost-BPS solutions receive no quantum corrections and thus must be subject to some kind of non-renormalization theorem.
Forsberg, Björn; Ulander, Johan; Kjellander, Roland
2005-02-08
The effects of ionic size asymmetry on long-range electrostatic interactions in electrolyte solutions are investigated within the primitive model. Using the formalism of dressed ion theory we analyze correlation functions from Monte Carlo simulations and the hypernetted chain approximation for size asymmetric 1:1 electrolytes. We obtain decay lengths of the screened Coulomb potential, effective charges of ions, and effective permittivity of the solution. It is found that the variation of these quantities with the degree of size asymmetry depends in a quite intricate manner on the interplay between the electrostatic coupling and excluded volume effects. In most cases the magnitude of the effective charge of the small ion species is larger than that of the large species; the difference increases with increasing size asymmetry. The effective charges of both species are larger (in absolute value) than the bare ionic charge, except for high asymmetry where the effective charge of the large ions can become smaller than the bare charge.
NASA Astrophysics Data System (ADS)
Hu, Bo
2015-08-01
Based on semiclassical Boltzamnn transport theory in random phase approximation, we develop a theoretical model to investigate low-temperature carrier transport properties in relatively high doped bilayer graphene. In the presence of both electron-hole puddles and band gap induced by charged impurities, we calculate low-temperature charged impurity scattering-limited conductivity in relatively high doped bilayer graphene. Our calculated conductivity results are in excellent agreement with published experimental data in all compensated gate voltage regime of study by using potential fluctuation parameter as only one free fitting parameter, indicating that both electron-hole puddles and band gap induced by charged impurities play an important role in carrier transport. More importantly, we also find that the conductivity not only depends strongly on the total charged impurity density, but also on the top layer charged impurity density, which is different from that obtained by neglecting the opening of band gap, especially for bilayer graphene with high top layer charged impurity density.
Overcharging and charge reversal in the electrical double layer around the point of zero charge.
Guerrero-García, G Iván; González-Tovar, Enrique; Chávez-Páez, Martín; Lozada-Cassou, Marcelo
2010-02-07
The ionic adsorption around a weakly charged spherical colloid, immersed in size-asymmetric 1:1 and 2:2 salts, is studied. We use the primitive model (PM) of an electrolyte to perform Monte Carlo simulations as well as theoretical calculations by means of the hypernetted chain/mean spherical approximation (HNC/MSA) and the unequal-radius modified Gouy-Chapman (URMGC) integral equations. Structural quantities such as the radial distribution functions, the integrated charge, and the mean electrostatic potential are reported. Our Monte Carlo "experiments" evidence that near the point of zero charge, the smallest ionic species is preferentially adsorbed onto the macroparticle, independently of the sign of the charge carried by this tiniest electrolytic component, giving rise to the appearance of the phenomena of charge reversal (CR) and overcharging (OC). Accordingly, colloidal CR, due to an excessive attachment of counterions, is observed when the macroion is slightly charged and the coions are larger than the counterions. In the opposite situation, i.e., if the counterions are larger than the coions, the central macroion acquires additional like-charge (coions) and hence becomes "overcharged," a feature theoretically predicted in the past [F. Jiménez-Angeles and M. Lozada-Cassou, J. Phys. Chem. B 108, 7286 (2004)]. In other words, here we present the first simulation data on OC in the PM electrical double layer, showing that close to the point of zero charge, this novel effect surges as a consequence of the ionic size asymmetry. We also find that the HNC/MSA theory captures well the CR and OC phenomena exhibited by the computer experiments, especially as the macroion's charge increases. On the contrary, even if URMGC also displays CR and OC, its predictions do not compare favorably with the Monte Carlo data, evidencing that the inclusion of hard-core correlations in Monte Carlo and HNC/MSA enhances and extends those effects. We explain our findings in terms of the energy-entropy balance. In the field of electrophoresis, it has been generally agreed that the charge of a colloid in motion is partially decreased by counterion adsorption. Depending on the location of the macroion's slipping surface, the OC results of this paper could imply an increase in the expected electrophoretic mobility. These observations aware about the interpretation of electrokinetic measurements using the standard Poisson-Boltzmann approximation beyond its validity region.
Cross sections and rate coefficients for inner-shell excitation of Li-like ions with 6 < Z < 42
NASA Astrophysics Data System (ADS)
Safronova, U. I.; Safronova, M. S.; Kato, T.
1996-07-01
Excitation cross sections and rate coefficients by electron impact were calculated for the 1s22s-1s2s2p, 1s22s-1s2s2 and 1s22s-1s2p2 transitions of the Li-like ions (C IV, N V, O VI, Ne VIII, Mg X, Al XI, Si XII, S XIV, Ar XVI, Ca XVIII, Ti XX, Fe XXIV, Ni XXVI, Zn XXVIII, Ge XXX, Se XXXII, Kr XXXIV and Mo XXXX) in the Coulomb-Born approximation with exchange including relativistic effects and configuration interaction. Level energies, mixing coefficients and transition wavelengths and probabilities were also computed. Calculations performed by the 1/Z perturbation theory and Coulomb-Born approximation are compared with the R-matrix method and the distorted-wave approximation were Z is the nuclear charge. Formulae obtained for the angular factors of n-electron atomic system allow one to generalize this method to an arbitrary system of highly charged ions.
Variational extension of the mean spherical approximation to arbitrary dimensions
NASA Astrophysics Data System (ADS)
Velázquez, Esov S.; Blum, Lesser; Frisch, Harry L.
1997-10-01
We generalize a variational principle for the mean spherical approximation for a system of charged hard spheres in 3D to arbitrary dimensions. We first construct a free energy variational trial function from the Debye-Hückel excess charging internal energy at a finite concentration and an entropy obtained at the zero-concentration limit by thermodynamic integration. In three dimensions the minimization of this expression with respect to the screening parameter leads to the mean spherical approximation, usually obtained by solution of the Ornstein-Zernike equation. This procedure, which interpolates naturally between the zero concentration/coupling limit and the high-concentration/ coupling limit, is extended to arbitrary dimensions. We conjecture that this result is also equivalent to the MSA as originally defined, although a technical proof of this point is left for the future. The Onsager limit T ΔS MSA / ΔE MSA → 0 for infinite concentration/coupling is satisfied for all d ≠ 2, while for d=2 this limit is 1.
Meteoroid-Induced Anomalies on Spacecraft
NASA Technical Reports Server (NTRS)
Cooke, Bill
2015-01-01
Sporadic meteoroid background is directional (not isotropic) and accounts for 90 percent of the meteoroid risk to a typical spacecraft. Meteor showers get all the press, but account for only approximately10 percent of spacecraft risk. Bias towards assigning meteoroid cause to anomalies during meteor showers. Vast majority of meteoroids come from comets and have a bulk density of approximately 1 gram per cubic centimeter (ice). High speed meteoroids (approximately 50 kilometers per second) can induce electrical anomalies in spacecraft through discharging of charged surfaces (also EMP (electromagnetic pulse?).
NASA Astrophysics Data System (ADS)
Panda, Rudrashish; Sahu, Sivabrata; Rout, G. C.
2017-05-01
We communicate here a tight binding theoretical model study of the band filling effect on the charge gap in graphene-on-substrate. The Hamiltonian consists of nearest neighbor electron hopping and substrate induced gap. Besides this the Coulomb interaction is considered here within mean-field approximation in the paramagnetic limit. The electron occupancies at two sublattices are calculated by Green's function technique and are solved self consistently. Finally the charge gap i.e. Δ ¯=U [ < na > -< nb > ] is calculated and computed numerically. The results are reported.
Luo, Weidong; Franceschetti, Alberto; Varela, Maria; Tao, Jing; Pennycook, Stephen J; Pantelides, Sokrates T
2007-07-20
The structural, electronic, and magnetic properties of mixed-valence compounds are believed to be governed by strong electron correlations. Here we report benchmark density-functional calculations in the spin-polarized generalized-gradient approximation (GGA) for the ground-state properties of doped CaMnO(3). We find excellent agreement with all available data, while inclusion of strong correlations in the GGA+U scheme impairs this agreement. We demonstrate that formal oxidation states reflect only orbital occupancies, not charge transfer, and resolve outstanding controversies about charge ordering.
NASA Astrophysics Data System (ADS)
Luo, Weidong; Franceschetti, Alberto; Varela, Maria; Tao, Jing; Pennycook, Stephen J.; Pantelides, Sokrates T.
2007-07-01
The structural, electronic, and magnetic properties of mixed-valence compounds are believed to be governed by strong electron correlations. Here we report benchmark density-functional calculations in the spin-polarized generalized-gradient approximation (GGA) for the ground-state properties of doped CaMnO3. We find excellent agreement with all available data, while inclusion of strong correlations in the GGA+U scheme impairs this agreement. We demonstrate that formal oxidation states reflect only orbital occupancies, not charge transfer, and resolve outstanding controversies about charge ordering.
Anion-exchange behavior of several alkylsilica reversed-phase columns.
Marchand, D H; Snyder, L R
2008-10-31
Some alkylsilica columns carry a positive charge at low pH, as determined by anion-exchange with nitrate ion. In the present study, the relative positive charge for 14 alkylsilica columns was measured for a mobile-phase pH 3.0. All but 3 of these columns were found to carry a significant positive charge under these conditions. The relative positive charge on these columns was found to correlate approximately with two other column characteristics: relative cation-exchange behavior as measured by the hydrophobic-subtraction model (values of C-2.8), and slow equilibration of the column to changes in the mobile-phase-as evidenced by a slow change in the retention of anionic and cationic solutes with time. The origin of this positive charge may arise from the bonding process, with incorporation of some cationic entity into the stationary phase.
Rational orbits around charged black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misra, Vedant; Levin, Janna; Institute for Strings, Cosmology and Astroparticle Physics, Columbia University, New York, New York 10027
2010-10-15
We show that all eccentric timelike orbits in Reissner-Nordstroem spacetime can be classified using a taxonomy that draws upon an isomorphism between periodic orbits and the set of rational numbers. By virtue of the fact that the rationals are dense, the taxonomy can be used to approximate aperiodic orbits with periodic orbits. This may help reduce computational overhead for calculations in gravitational wave astronomy. Our dynamical systems approach enables us to study orbits for both charged and uncharged particles in spite of the fact that charged particle orbits around a charged black hole do not admit a simple one-dimensional effectivemore » potential description. Finally, we show that comparing periodic orbits in the Reissner-Nordstroem and Schwarzschild geometries enables us to distinguish charged and uncharged spacetimes by looking only at the orbital dynamics.« less
Electrostatic field and charge distribution in small charged dielectric droplets
NASA Astrophysics Data System (ADS)
Storozhev, V. B.
2004-08-01
The charge distribution in small dielectric droplets is calculated on the basis of continuum medium approximation. There are considered charged liquid spherical droplets of methanol in the range of nanometer sizes. The problem is solved by the following way. We find the free energy of some ion in dielectric droplet, which is a function of distribution of other ions in the droplet. The probability of location of the ion in some element of volume in the droplet is a function of its free energy in this element of volume. The same approach can be applied to other ions in the droplet. The obtained charge distribution differs considerably from the surface distribution. The curve of the charge distribution in the droplet as a function of radius has maximum near the surface. Relative concentration of charges in the vicinity of the center of the droplet does not equal to zero, and it is the higher, the less is the total charge of the droplet. According to the estimates the model is applicable if the droplet radius is larger than 10 nm.
Characterization of trapped charges distribution in terms of mirror plot curve.
Al-Obaidi, Hassan N; Mahdi, Ali S; Khaleel, Imad H
2018-01-01
Accumulation of charges (electrons) at the specimen surface in scanning electron microscope (SEM) lead to generate an electrostatic potential. By using the method of image charges, this potential is defined in the chamber's space of such apparatus. The deduced formula is expressed in terms a general volumetric distribution which proposed to be an infinitesimal spherical extension. With aid of a binomial theorem the defined potential is expanded to a multipolar form. Then resultant formula is adopted to modify a novel mirror plot equation so as to detect the real distribution of trapped charges. Simulation results reveal that trapped charges may take a various sort of arrangement such as monopole, quadruple and octuple. But existence of any of these arrangements alone may never be take place, rather are some a formations of a mix of them. Influence of each type of these profiles depends on the distance between the incident electron and surface of a sample. Result also shows that trapped charge's amount of trapped charges can refer to a threshold for failing of point charge approximation. Copyright © 2017 Elsevier B.V. All rights reserved.
Recovery Act Final Project Report -- Transportation Electrification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gogineni, Kumar
2013-12-31
ChargePoint America demonstrated the viability, economic and environmental benefits of an electric vehicle-charging infrastructure. Electric vehicles (EVs) and plug-in electric vehicles (PHEVs) arrived in late 2010, there was a substantial lack of infrastructure to support these vehicles. ChargePoint America deployed charging infrastructure in ten (10) metropolitan regions in coordination with vehicle deliveries targeting those same regions by our OEM partners: General Motors, Nissan, Fisker Automotive, Ford, smart USA, and BMW. The metropolitan regions include Central Texas (Austin/San Antonio), Bellevue/Redmond (WA), Southern Michigan, Los Angeles area (CA), New York Metro (NY), Central Florida (Orlando/Tampa), Sacramento (CA), San Francisco/San Jose (CA), Washingtonmore » DC and Boston (MA). ChargePoint America installed more than 4,600 Level 2 (220v) SAE J1772™ UL listed networked charging ports in home, public and commercial locations to support approximately 2000 program vehicles. ChargePoint collected data to analyze how individuals, businesses and local governments used their vehicles. Understanding driver charging behavior patterns will provide the DoE with critical information as EV adoption increases in the United States.« less
Balance of baryon number in the quark coalescence model
NASA Astrophysics Data System (ADS)
Bialas, A.; Rafelski, J.
2006-02-01
The charge and baryon balance functions are studied in the coalescence hadronization mechanism of quark-gluon plasma. Assuming that in the plasma phase the qqbar pairs form uncorrelated clusters whose decay is also uncorrelated, one can understand the observed small width of the charge balance function in the Gaussian approximation. The coalescence model predicts even smaller width of the baryon-antibaryon balance function: σBBbar /σ+ - =√{ 2 / 3 }.
Molecular dynamics simulations of field emission from a prolate spheroidal tip
NASA Astrophysics Data System (ADS)
Torfason, Kristinn; Valfells, Agust; Manolescu, Andrei
2016-12-01
High resolution molecular dynamics simulations with full Coulomb interactions of electrons are used to investigate field emission from a prolate spheroidal tip. The space charge limited current is several times lower than the current calculated with the Fowler-Nordheim formula. The image-charge is taken into account with a spherical approximation, which is good around the top of the tip, i.e., region where the current is generated.
Mid-Latitude Ionospheric Disturbances Due to Geomagnetic Storms at ISS Altitudes
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Willis, Emily M.; Parker, Linda Neergaard
2014-01-01
Spacecraft charging of the International Space Station (ISS) is dominated by the interaction of the high voltage US solar arrays with the F2-region ionospheric plasma environment. We are working to fully understand the charging behavior of the ISS solar arrays and determine how well future charging behavior can be predicted from in-situ measurements of plasma density and temperature. One aspect of this work is a need to characterize the magnitude of electron density and temperature variations that may be encountered at ISS orbital altitudes (approximately 400 km), the latitudes over which they occur, and the time periods for which the disturbances persist. We will present preliminary results from a study of ionospheric disturbances in the "mid-latitude" region defined as the approximately 30 - 60 degree extra-equatorial magnetic latitudes sampled by ISS. The study is focused on geomagnetic storm periods because they are well known drivers for disturbances in the high-latitude and mid-latitude ionospheric plasma. Changes in the F2 peak electron density obtained from ground based ionosonde records are compared to in-situ electron density and temperature measurements from the CHAMP and ISS spacecraft at altitudes near, or above, the F2 peak. Results from a number of geomagnetic storms will be presented and their potential impact on ISS charging will be discussed.
Solar San Diego: The Impact of Binomial Rate Structures on Real PV-Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Geet, O.; Brown, E.; Blair, T.
2008-01-01
There is confusion in the marketplace regarding the impact of solar photovoltaics (PV) on the user's actual electricity bill under California Net Energy Metering, particularly with binomial tariffs (those that include both demand and energy charges) and time-of-use (TOU) rate structures. The City of San Diego has extensive real-time electrical metering on most of its buildings and PV systems, with interval data for overall consumption and PV electrical production available for multiple years. This paper uses 2007 PV-system data from two city facilities to illustrate the impacts of binomial rate designs. The analysis will determine the energy and demand savingsmore » that the PV systems are achieving relative to the absence of systems. A financial analysis of PV-system performance under various rates structures is presented. The data revealed that actual demand and energy use benefits of bionomial tariffs increase in summer months, when solar resources allow for maximized electricity production. In a binomial tariff system, varying on- and semi-peak times can result in approximately $1,100 change in demand charges per month over not having a PV system in place, an approximate 30% cost savings. The PV systems are also shown to have a 30%-50% reduction in facility energy charges in 2007. Future work will include combining demand and electricity charges and increasing the breadth of rate structures tested, including the impacts of non-coincident demand charges.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.
Spectra of identified charged hadrons are measured in pp collisions at the LHC for sqrt(s) = 0.9, 2.76, and 7 TeV. Charged pions, kaons, and protons in the transverse-momentum range pt approximately 0.1-1.7 GeV and for rapidities abs(y) < 1 are identified via their energy loss in the CMS silicon tracker. The average pt increases rapidly with the mass of the hadron and the event charged-particle multiplicity, independently of the center-of-mass energy. The fully corrected pt spectra and integrated yields are compared to various tunes of the PYTHIA6 and PYTHIA8 event generators.
Shore, Joel D.; Thurston, George M.
2018-01-01
We report a charge-patterning phase transition on two-dimensional square lattices of titratable sites, here regarded as protonation sites, placed in a low-dielectric medium just below the planar interface between this medium and a salt solution. We calculate the work-of-charging matrix of the lattice with use of a linear Debye-Hückel model, as input to a grand-canonical partition function for the distribution of occupancy patterns. For a large range of parameter values, this model exhibits an approximate inverse cubic power-law decrease of the voltage produced by an individual charge, as a function of its in-lattice separation from neighboring titratable sites. Thus, the charge coupling voltage biases the local probabilities of proton binding as a function of the occupancy of sites for many neighbors beyond the nearest ones. We find that even in the presence of these longer-range interactions, the site couplings give rise to a phase transition in which the site occupancies exhibit an alternating, checkerboard pattern that is an analog of antiferromagnetic ordering. The overall strength W of this canonical charge coupling voltage, per unit charge, is a function of the Debye length, the charge depth, the Bjerrum length, and the dielectric coefficients of the medium and the solvent. The alternating occupancy transition occurs above a curve of thermodynamic critical points in the (pH-pK,W) plane, the curve representing a charge-regulation analog of variation of the Néel temperature of an Ising antiferromagnet as a function of an applied, uniform magnetic field. The analog of a uniform magnetic field in the antiferromagnet problem is a combination of pH-pK and W, and 1/W is the analog of the temperature in the antiferromagnet problem. We use Monte Carlo simulations to study the occupancy patterns of the titratable sites, including interactions out to the 37th nearest-neighbor category (a distance of 74 lattice constants), first validating simulations through comparison with exact and approximate results for the nearest-neighbor case. We then use the simulations to map the charge-patterning phase boundary in the (pH-pK,W) plane. The physical parameters that determine W provide a framework for identifying and designing real surfaces that could exhibit charge-patterning phase transitions. PMID:26764648
Shore, Joel D; Thurston, George M
2015-12-01
We report a charge-patterning phase transition on two-dimensional square lattices of titratable sites, here regarded as protonation sites, placed in a low-dielectric medium just below the planar interface between this medium and a salt solution. We calculate the work-of-charging matrix of the lattice with use of a linear Debye-Hückel model, as input to a grand-canonical partition function for the distribution of occupancy patterns. For a large range of parameter values, this model exhibits an approximate inverse cubic power-law decrease of the voltage produced by an individual charge, as a function of its in-lattice separation from neighboring titratable sites. Thus, the charge coupling voltage biases the local probabilities of proton binding as a function of the occupancy of sites for many neighbors beyond the nearest ones. We find that even in the presence of these longer-range interactions, the site couplings give rise to a phase transition in which the site occupancies exhibit an alternating, checkerboard pattern that is an analog of antiferromagnetic ordering. The overall strength W of this canonical charge coupling voltage, per unit charge, is a function of the Debye length, the charge depth, the Bjerrum length, and the dielectric coefficients of the medium and the solvent. The alternating occupancy transition occurs above a curve of thermodynamic critical points in the (pH-pK,W) plane, the curve representing a charge-regulation analog of variation of the Néel temperature of an Ising antiferromagnet as a function of an applied, uniform magnetic field. The analog of a uniform magnetic field in the antiferromagnet problem is a combination of pH-pK and W, and 1/W is the analog of the temperature in the antiferromagnet problem. We use Monte Carlo simulations to study the occupancy patterns of the titratable sites, including interactions out to the 37th nearest-neighbor category (a distance of √74 lattice constants), first validating simulations through comparison with exact and approximate results for the nearest-neighbor case. We then use the simulations to map the charge-patterning phase boundary in the (pH-pK,W) plane. The physical parameters that determine W provide a framework for identifying and designing real surfaces that could exhibit charge-patterning phase transitions.
NASA Astrophysics Data System (ADS)
Shore, Joel D.; Thurston, George M.
2015-12-01
We report a charge-patterning phase transition on two-dimensional square lattices of titratable sites, here regarded as protonation sites, placed in a low-dielectric medium just below the planar interface between this medium and a salt solution. We calculate the work-of-charging matrix of the lattice with use of a linear Debye-Hückel model, as input to a grand-canonical partition function for the distribution of occupancy patterns. For a large range of parameter values, this model exhibits an approximate inverse cubic power-law decrease of the voltage produced by an individual charge, as a function of its in-lattice separation from neighboring titratable sites. Thus, the charge coupling voltage biases the local probabilities of proton binding as a function of the occupancy of sites for many neighbors beyond the nearest ones. We find that even in the presence of these longer-range interactions, the site couplings give rise to a phase transition in which the site occupancies exhibit an alternating, checkerboard pattern that is an analog of antiferromagnetic ordering. The overall strength W of this canonical charge coupling voltage, per unit charge, is a function of the Debye length, the charge depth, the Bjerrum length, and the dielectric coefficients of the medium and the solvent. The alternating occupancy transition occurs above a curve of thermodynamic critical points in the (p H-p K ,W ) plane, the curve representing a charge-regulation analog of variation of the Néel temperature of an Ising antiferromagnet as a function of an applied, uniform magnetic field. The analog of a uniform magnetic field in the antiferromagnet problem is a combination of p H-p K and W , and 1 /W is the analog of the temperature in the antiferromagnet problem. We use Monte Carlo simulations to study the occupancy patterns of the titratable sites, including interactions out to the 37th nearest-neighbor category (a distance of √{74 } lattice constants), first validating simulations through comparison with exact and approximate results for the nearest-neighbor case. We then use the simulations to map the charge-patterning phase boundary in the (p H-p K ,W ) plane. The physical parameters that determine W provide a framework for identifying and designing real surfaces that could exhibit charge-patterning phase transitions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escobar-Ruiz, M.A., E-mail: mauricio.escobar@nucleares.unam.mx; Turbiner, A.V., E-mail: turbiner@nucleares.unam.mx
Low-lying bound states for the problem of two Coulomb charges of finite masses on a plane subject to a constant magnetic field B perpendicular to the plane are considered. Major emphasis is given to two systems: two charges with the equal charge-to-mass ratio (quasi-equal charges) and neutral systems with concrete results for the hydrogen atom and two electrons (quantum dot). It is shown that for these two cases, when a neutral system is at rest (the center-of-mass momentum is zero), some outstanding properties occur: in double polar coordinates in CMS (R,ϕ) and relative (ρ,φ) coordinate systems (i) the eigenfunctions aremore » factorizable, all factors except for ρ-dependent are found analytically, they have definite relative angular momentum, (ii) dynamics in ρ-direction is the same for both systems being described by a funnel-type potential; (iii) at some discrete values of dimensionless magnetic fields b≤1 the system becomes quasi-exactly-solvable and a finite number of eigenfunctions in ρ are polynomials. The variational method is employed. Trial functions are based on combining for the phase of a wavefunction (a) the WKB expansion at large distances, (b) the perturbation theory at small distances (c) with a form of the known analytically (quasi-exactly-solvable) eigenfunctions. Such a form of trial function appears as a compact uniform approximation for lowest eigenfunctions. For the lowest states with relative magnetic quantum numbers s=0,1,2 this approximation gives not less than 7 s.d., 8 s.d., 9 s.d., respectively, for the total energy E(B) for magnetic fields 0.049a.u.« less
Bazant, Martin Z; Kilic, Mustafa Sabri; Storey, Brian D; Ajdari, Armand
2009-11-30
The venerable theory of electrokinetic phenomena rests on the hypothesis of a dilute solution of point-like ions in quasi-equilibrium with a weakly charged surface, whose potential relative to the bulk is of order the thermal voltage (kT/e approximately 25 mV at room temperature). In nonlinear electrokinetic phenomena, such as AC or induced-charge electro-osmosis (ACEO, ICEO) and induced-charge electrophoresis (ICEP), several V approximately 100 kT/e are applied to polarizable surfaces in microscopic geometries, and the resulting electric fields and induced surface charges are large enough to violate the assumptions of the classical theory. In this article, we review the experimental and theoretical literatures, highlight discrepancies between theory and experiment, introduce possible modifications of the theory, and analyze their consequences. We argue that, in response to a large applied voltage, the "compact layer" and "shear plane" effectively advance into the liquid, due to the crowding of counterions. Using simple continuum models, we predict two general trends at large voltages: (i) ionic crowding against a blocking surface expands the diffuse double layer and thus decreases its differential capacitance, and (ii) a charge-induced viscosity increase near the surface reduces the electro-osmotic mobility; each trend is enhanced by dielectric saturation. The first effect is able to predict high-frequency flow reversal in ACEO pumps, while the second may explain the decay of ICEO flow with increasing salt concentration. Through several colloidal examples, such as ICEP of an uncharged metal sphere in an asymmetric electrolyte, we show that nonlinear electrokinetic phenomena are generally ion-specific. Similar theoretical issues arise in nanofluidics (due to confinement) and ionic liquids (due to the lack of solvent), so the paper concludes with a general framework of modified electrokinetic equations for finite-sized ions.
Electron-ion collision rates in noble gas clusters irradiated by femtosecond laser pulse
NASA Astrophysics Data System (ADS)
Dey, R.; Roy, A. C.
2012-05-01
We report a theoretical analysis of electron-ion collision rates in xenon gas clusters irradiated by femtosecond laser pulses. The present analysis is based on the eikonal approximation (EA), the first Born approximation (FBA) and the classical (CL) methods. The calculations are performed using the plasma-screened Rogers potential introduced by Moll et al. [J. Phys. B. 43, 135103 (2010)] as well as the Debye potential for a wide range of experimental parameters. We find that the magnitudes of electron-ion collision frequency obtained in the EA do not fall as rapidly with the kinetic energy of electrons as in the FBA and CL methods for higher charge states of xenon ion (Xe8+ and Xe14+). Furthermore, EA shows that the effect of the inner structure of ion is most dominant for the lowest charge state of xenon ion (Xe1+). In the case of the present effective potential, FBA overestimates the CL results for all three different charge states of xenon, whereas for the Debye potential, both the FBA and CL methods predict collision frequencies which are nearly close to each other.
Charged-particle pseudorapidity distributions in Au+Au collisions at sNN=62.4 GeV
NASA Astrophysics Data System (ADS)
Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; Nieuwenhuizen, G. J. Van; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.
2006-08-01
The charged-particle pseudorapidity density for Au+Au collisions at sNN=62.4 GeV has been measured over a wide range of impact parameters and compared to results obtained at other energies. As a function of collision energy, the pseudorapidity distribution grows systematically both in height and width. The midrapidity density is found to grow approximately logarithmically between BNL Alternating Gradient Synchrotron (AGS) energies and the top BNL Relativistic Heavy Ion Collider (RHIC) energy. There is also an approximate factorization of the centrality and energy dependence of the midrapidity yields. The new results at sNN=62.4 GeV confirm the previously observed phenomenon of “extended longitudinal scaling” in the pseudorapidity distributions when viewed in the rest frame of one of the colliding nuclei. It is also found that the evolution of the shape of the distribution with centrality is energy independent, when viewed in this reference frame. As a function of centrality, the total charged particle multiplicity scales linearly with the number of participant pairs as it was observed at other energies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medasani, Bharat; Ovanesyan, Zaven; Thomas, Dennis G.
In this article we present a classical density functional theory for electrical double layers of spherical macroions that extends the capabilities of conventional approaches by accounting for electrostatic ion correlations, size asymmetry and excluded volume effects. The approach is based on a recent approximation introduced by Hansen-Goos and Roth for the hard sphere excess free energy of inhomogeneous fluids (J. Chem. Phys. 124, 154506). It accounts for the proper and efficient description of the effects of ionic asymmetry and solvent excluded volume, especially at high ion concentrations and size asymmetry ratios including those observed in experimental studies. Additionally, we utilizemore » a leading functional Taylor expansion approximation of the ion density profiles. In addition, we use the Mean Spherical Approximation for multi-component charged hard sphere fluids to account for the electrostatic ion correlation effects. These approximations are implemented in our theoretical formulation into a suitable decomposition of the excess free energy which plays a key role in capturing the complex interplay between charge correlations and excluded volume effects. We perform Monte Carlo simulations in various scenarios to validate the proposed approach, obtaining a good compromise between accuracy and computational cost. We use the proposed computational approach to study the effects of ion size, ion size asymmetry and solvent excluded volume on the ion profiles, integrated charge, mean electrostatic potential, and ionic coordination number around spherical macroions in various electrolyte mixtures. Our results show that both solvent hard sphere diameter and density play a dominant role in the distribution of ions around spherical macroions, mainly for experimental water molarity and size values where the counterion distribution is characterized by a tight binding to the macroion, similar to that predicted by the Stern model.« less
NASA Astrophysics Data System (ADS)
Omiya, S.; Sato, A.
2010-12-01
Blowing snow particles are known to have an electrostatic charge. This charge may be a contributing factor in the formation of snow drifts and snow cornices and changing of the trajectory of blowing snow particles. These formations and phenomena can cause natural disaster such as an avalanche and a visibility deterioration, and obstruct transportation during winter season. Therefore, charging phenomenon of the blowing snow particles is an important issue in terms of not only precise understanding of the particle motion but disaster prevention. The primary factor of charge accumulation to the blowing snow particles is thought to be due to “saltation” of them. The “saltation” is one of movement forms of blowing snow: when the snow particles are transported by the wind, they repeat frictional collisions with the snow surface. In previous studies, charge-to-mass ratios measured in the field were approximately -50 to -10 μC/kg, and in the wind tunnel were approximately -0.8 to -0.1 μC/kg. While there were qualitatively consistent in sign, negative, there were huge gaps quantitatively between them. One reason of those gaps is speculated to be due to differences in fetch. In other words, the difference of the collision frequency of snow particles to the snow surface has caused the gaps. But it is merely a suggestion and that has not been confirmed. The purpose of this experiment is to measure the charge of blowing snow particles focusing on the collision frequency and clarify the relationship between them. Experiments were carried out in the cryogenic wind tunnel of Snow and Ice Research Center (NIED, JAPAN). A Faraday cage and an electrometer were used to measure the charge of snow particles. These experiments were conducted over the hard snow surface condition to prevent the erosion of the snow surface and the generation of new snow particles from the surface. The collision frequency of particle was controlled by changing the wind velocity (4.5 to 7 m/s) under the fixed fetch (12m). The number of collisions of particle was converted from the wind velocity using an equation obtained by Kosugi et al. (2004). Blowing snow particles tend to accumulate negative charges gradually with increase of the number of collisions to the snow surface. As a result, it is demonstrated that the gaps between the field values and the wind tunnel ones were due to difference of the collision frequency of snow particles. Assuming a logarithmic relationship as first approximation between the measured charges and the number of collisions, the charge-to-mass ratios will reach roughly the same value which was obtained in the field with several hundreds collisions. For instance, fetch is needed roughly 200m for blowing snow particles to gain -30 μC/kg under the following conditions: air temperature -20 degrees Celsius, wind velocity 7m/s and hard snow surface. REFERENCE: Kosugi et al., (2004): Dependence of drifting snow saltation length on snow surface hardness. Cold Reg. Sci. Technol., 39, 133-139.
Charge distribution of the neven sulphur isotopes from elastic electron scattering
NASA Astrophysics Data System (ADS)
Rychel, D.; Emrich, H. J.; Miska, H.; Gyufko, R.; Wiedner, C. A.
1983-10-01
Elastic electron scattering experiments on the isotopes 32,34,36S were performed covering a range in momentum transfer q = 0.5-2.6 fm -. The cross sections were analysed with the Fourier-Bessel method yielding model-independent charge distributions and their differences. The extracted rms radii follow approximately the systematics of even-even nuclei; this also holds for the gross features as expressed in dms radii and skin thicknesses.
Microscopic Simulations of Charge Transport in Disordered Organic Semiconductors
2011-01-01
Charge carrier dynamics in an organic semiconductor can often be described in terms of charge hopping between localized states. The hopping rates depend on electronic coupling elements, reorganization energies, and driving forces, which vary as a function of position and orientation of the molecules. The exact evaluation of these contributions in a molecular assembly is computationally prohibitive. Various, often semiempirical, approximations are employed instead. In this work, we review some of these approaches and introduce a software toolkit which implements them. The purpose of the toolkit is to simplify the workflow for charge transport simulations, provide a uniform error control for the methods and a flexible platform for their development, and eventually allow in silico prescreening of organic semiconductors for specific applications. All implemented methods are illustrated by studying charge transport in amorphous films of tris-(8-hydroxyquinoline)aluminum, a common organic semiconductor. PMID:22076120
Determination of detonation parameters for liquid High Explosives
NASA Astrophysics Data System (ADS)
Mochalova, Valentina; Utkin, Alexander
2011-06-01
The experimental investigation of detonation parameters and reaction zone structure in liquid HE (bis-(2-fluoro-2,2-dinitroethyl)formal (FEFO), tetranitromethane (TNM), nitromethane (NM)) was conducted. Detonation front in TNM and NM was stable while the instability of detonation in FEFO was observed. Von Neumann spike was recorded for these HE and its parameters were determined. The different methods for C-J point determination were used for each HE. For FEFO reaction time τ was found from experiments with different charge diameters (τ is approximately equal to 300 ns); for TNM - at fixed diameter and different lengths of charges (τ ~ 200 ns); for NM - at fixed diameter and length of charges, but detonation initiation was carried out by different explosive charges (τ ~ 50 ns). It was found that in TNM the detonation velocity depends on charge diameter. Maximum value of reaction rate in investigated liquid HE was observed after shock jump and induction time was not recorded.
Determination of detonation parameters for liquid high explosives
NASA Astrophysics Data System (ADS)
Mochalova, Valentina; Utkin, Alexander
2012-03-01
The experimental investigation of detonation parameters and reaction zone structure in liquid HE (bis-(2-fluoro-2,2-dinitroethyl)formal (FEFO), tetranitromethane (TNM), nitromethane (NM)) was conducted by means of laser interferometer VISAR. Detonation front in TNM and NM was stable while the instability of detonation in FEFO was observed. The parameters of Von Neumann spike were determined for these HE. The different methods for C-J point determination were used for each HE. For FEFO reaction time t was found from experiments with different charge diameters (τ is approximately equal to 300 ns); for TNM - at fixed diameter and different lengths of charges (τ ≈ 200 ns); for NM - at fixed diameter and length of charges, but detonation initiation was carried out by different explosive charges (τ ≈ 50 ns). It was found that in TNM the detonation velocity depends on charge diameter. Maximum value of reaction rate in investigated liquid HE was observed after shock jump.
NASA Astrophysics Data System (ADS)
Warwick, C. N.; Venkateshvaran, D.; Sirringhaus, H.
2015-09-01
We present measurements of the Seebeck coefficient in two high mobility organic small molecules, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) and 2,9-didecyl-dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (C10-DNTT). The measurements are performed in a field effect transistor structure with high field effect mobilities of approximately 3 cm2/V s. This allows us to observe both the charge concentration and temperature dependence of the Seebeck coefficient. We find a strong logarithmic dependence upon charge concentration and a temperature dependence within the measurement uncertainty. Despite performing the measurements on highly polycrystalline evaporated films, we see an agreement in the Seebeck coefficient with modelled values from Shi et al. [Chem. Mater. 26, 2669 (2014)] at high charge concentrations. We attribute deviations from the model at lower charge concentrations to charge trapping.
Photodissociation spectroscopy of (benzene-toluene) +. Charge delocalization in the hetero-dimer ion
NASA Astrophysics Data System (ADS)
Ohashi, Kazuhiko; Nakane, Youko; Inokuchi, Yoshiya; Nakai, Yasuhiro; Nishi, Nobuyuki
1998-12-01
The electronic spectrum of the benzene-toluene hetero-dimer ion is measured in the 380-1400 nm region. The spectrum shows intense bands around 1175 and 670 nm and a weaker band around 920 nm, which correspond to charge resonance (CR) bands of homo-dimer ions. The observation indicates that the positive charge stays on the benzene part in some probability, although the ionization potential of benzene is 0.4162 eV higher than that of toluene. A local excitation (LE) band is observed around 420 nm, where a π←π transition is locally excited in the charged benzene or toluene molecule. On the basis of the positions of the CR-like bands, as well as the intensity of the LE band relative to that of homo-dimer ions, the probability of finding the charge on the benzene molecule is analyzed to be approximately 36%.
Wang, Kai; Yi, Chao; Liu, Chang; ...
2015-03-18
The price of energy to separate tightly bound electron-hole pair (or charge-transfer state) and extract freely movable charges from low-mobility materials represents fundamental losses for many low-cost photovoltaic devices. In bulk heterojunction (BHJ) polymer solar cells (PSCs), approximately 50% of the total efficiency lost among all energy loss pathways is due to the photogenerated charge carrier recombination within PSCs and low charge carrier mobility of disordered organic materials. To address these issues, we introduce magnetic nanoparticles (MNPs) and orientate these MNPS within BHJ composite by an external magnetostatic field. Over 50% enhanced efficiency was observed from BHJ PSCs incorporated withmore » MNPs and an external magnetostatic field alignment when compared to the control BHJ PSCs. The optimization of BHJ thin film morphology, suppression of charge carrier recombination, and enhancement in charge carrier collection result in a greatly increased short-circuit current density and fill factor, as a result, enhanced power conversion efficiency.« less
Image charge effects on electron capture by dust grains in dusty plasmas.
Jung, Y D; Tawara, H
2001-07-01
Electron-capture processes by negatively charged dust grains from hydrogenic ions in dusty plasmas are investigated in accordance with the classical Bohr-Lindhard model. The attractive interaction between the electron in a hydrogenic ion and its own image charge inside the dust grain is included to obtain the total interaction energy between the electron and the dust grain. The electron-capture radius is determined by the total interaction energy and the kinetic energy of the released electron in the frame of the projectile dust grain. The classical straight-line trajectory approximation is applied to the motion of the ion in order to visualize the electron-capture cross section as a function of the impact parameter, kinetic energy of the projectile ion, and dust charge. It is found that the image charge inside the dust grain plays a significant role in the electron-capture process near the surface of the dust grain. The electron-capture cross section is found to be quite sensitive to the collision energy and dust charge.
Ding, Mingnan; Lu, Bing-Sui; Xing, Xiangjun
2016-10-01
Self-consistent field theory (SCFT) is used to study the mean potential near a charged plate inside a m:-n electrolyte. A perturbation series is developed in terms of g=4πκb, where band1/κ are Bjerrum length and bare Debye length, respectively. To the zeroth order, we obtain the nonlinear Poisson-Boltzmann theory. For asymmetric electrolytes (m≠n), the first order (one-loop) correction to mean potential contains a secular term, which indicates the breakdown of the regular perturbation method. Using a renormalizaton group transformation, we remove the secular term and obtain a globally well-behaved one-loop approximation with a renormalized Debye length and a renormalized surface charge density. Furthermore, we find that if the counterions are multivalent, the surface charge density is renormalized substantially downwards and may undergo a change of sign, if the bare surface charge density is sufficiently large. Our results agrees with large MC simulation even when the density of electrolytes is relatively high.
Wang, Xun-Li; An, Ke; Cai, Lu; Feng, Zhili; Nagler, Stephen E.; Daniel, Claus; Rhodes, Kevin J.; Stoica, Alexandru D.; Skorpenske, Harley D.; Liang, Chengdu; Zhang, Wei; Kim, Joon; Qi, Yue; Harris, Stephen J.
2012-01-01
We report an in-situ neutron diffraction study of a large format pouch battery cell. The succession of Li-Graphite intercalation phases was fully captured under an 1C charge-discharge condition (i.e., charge to full capacity in 1 hour). However, the lithiation and dilithiation pathways are distinctively different and, unlike in slowing charging experiments with which the Li-Graphite phase diagram was established, no LiC24 phase was found during charge at 1C rate. Approximately 75 mol. % of the graphite converts to LiC6 at full charge, and a lattice dilation as large as 4% was observed during a charge-discharge cycle. Our work demonstrates the potential of in-situ, time and spatially resolved neutron diffraction study of the dynamic chemical and structural changes in “real-world” batteries under realistic cycling conditions, which should provide microscopic insights on degradation and the important role of diffusion kinetics in energy storage materials. PMID:23087812
Strong and weak adsorptions of polyelectrolyte chains onto oppositely charged spheres
NASA Astrophysics Data System (ADS)
Cherstvy, A. G.; Winkler, R. G.
2006-08-01
We investigate the complexation of long thin polyelectrolyte (PE) chains with oppositely charged spheres. In the limit of strong adsorption, when strongly charged PE chains adapt a definite wrapped conformation on the sphere surface, we analytically solve the linear Poisson-Boltzmann equation and calculate the electrostatic potential and the energy of the complex. We discuss some biological applications of the obtained results. For weak adsorption, when a flexible weakly charged PE chain is localized next to the sphere in solution, we solve the Edwards equation for PE conformations in the Hulthén potential, which is used as an approximation for the screened Debye-Hückel potential of the sphere. We predict the critical conditions for PE adsorption. We find that the critical sphere charge density exhibits a distinctively different dependence on the Debye screening length than for PE adsorption onto a flat surface. We compare our findings with experimental measurements on complexation of various PEs with oppositely charged colloidal particles. We also present some numerical results of the coupled Poisson-Boltzmann and self-consistent field equation for PE adsorption in an assembly of oppositely charged spheres.
High negative charge of a dust particle in a hot cathode discharge.
Arnas, C; Mikikian, M; Doveil, F
1999-12-01
Dust particle levitation experiments in a plasma produced by a hot filament discharge, operating at low argon pressure, are presented. The basic characteristics of a dust grain trapped in a plate sheath edge in these experimental conditions are reported. Taking into account the sheath potential profiles measured with a differential emissive probe diagnostic, the forces applied to an isolated dust grain can be determined. Two different experimental methods yield approximately the same value for the dust charge. The observed high negative charge is mainly due to the contribution of the primary electrons emitted by the filaments as predicted by a simple model.
Auzinsh, M; Dashevskaya, E I; Litvin, I; Nikitin, E E; Troe, J
2013-08-28
The rate coefficients for capture of charged particles by dipolar polarizable symmetric top molecules in the quantum collision regime are calculated within an axially nonadiabatic channel approach. It uses the adiabatic approximation with respect to rotational transitions of the target within first-order charge-dipole interaction and takes into account the gyroscopic effect that decouples the intrinsic angular momentum from the collision axis. The results are valid for a wide range of collision energies (from single-wave capture to the classical limit) and dipole moments (from the Vogt-Wannier and fly-wheel to the adiabatic channel limit).
Child-Langmuir flow in a planar diode filled with charged dust impurities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang Xiaoyan; Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44870 Bochum; Shukla, Padma Kant
The Child-Langmuir (CL) flow in a planar diode in the presence of stationary charged dust particles is studied. The limiting electron current density and other diode properties, such as the electrostatic potential, the electron flow speed, and the electron number density, are calculated analytically. A comparison of the results with the case without dust impurities reveals that the diode parameters mentioned above decrease with the increase of the dust charge density. Furthermore, it is found that the classical scaling of D{sup -2} (the gap spacing D) for the CL current density remains exactly valid, while the scaling of V{sup 3/2}more » (the applied gap voltage V) can be a good approximation for low applied gap voltage and for low dust charge density.« less
Comparisons of single event vulnerability of GaAs SRAMS
NASA Astrophysics Data System (ADS)
Weatherford, T. R.; Hauser, J. R.; Diehl, S. E.
1986-12-01
A GaAs MESFET/JFET model incorporated into SPICE has been used to accurately describe C-EJFET, E/D MESFET and D MESFET/resistor GaAs memory technologies. These cells have been evaluated for critical charges due to gate-to-drain and drain-to-source charge collection. Low gate-to-drain critical charges limit conventional GaAs SRAM soft error rates to approximately 1E-6 errors/bit-day. SEU hardening approaches including decoupling resistors, diodes, and FETs have been investigated. Results predict GaAs RAM cell critical charges can be increased to over 0.1 pC. Soft error rates in such hardened memories may approach 1E-7 errors/bit-day without significantly reducing memory speed. Tradeoffs between hardening level, performance and fabrication complexity are discussed.
NASA Technical Reports Server (NTRS)
Clark, D. M.; Hall, D. F.
1980-01-01
The significance of the fraction of the mass outgassed by a negatively charged space vehicle which is ionized within the vehicle plasma sheath and electrostatically reattracted to the space vehicle was determined. The ML-12 retarding potential analyzer/temperature controlled quartz crystal microbalances (RPA/TQCMs) distinguishes between charged and neutral molecules and investigates contamination mass transport mechanism. Two long term, quick look flight data sets indicate that on the average a significant fraction of mass arriving at one RPA/TQCM is ionized. It is assumed that vehicle frame charging during these periods was approximately uniformly distributed in degree and frequency. It is shown that electrostatic reattraction of ionized molecules is an important contamination mechanism at and near geosynchronous altitudes.
Encapsulation of indocyanine green into cell membrane capsules for photothermal cancer therapy.
Sheng, Guoping; Chen, Ying; Han, Lijie; Huang, Yong; Liu, Xiaoli; Li, Lanjuan; Mao, Zhengwei
2016-10-01
Although indocyanine green (ICG) has promising applications in photothermal therapy (PPT) because of its low toxicity and high efficiency in inducing heat and singlet oxygen formation in response to near-infrared light with a wavelength of approximately 800nm, its clinical application has been restricted because of its rapid body clearance and poor water stability. Therefore, cell membrane capsules (CMCs) derived from mammalian cells were used to encapsulate negatively charged ICG by temporarily permeating the plasma membrane and resealing using positively charged doxorubicin hydrochloride (DOX). The resulting CMCs@DOX/ICG exhibited a spherical shape, with a diameter of approximately 800nm. The DOX and ICG encapsulation was confirmed by the UV-vis spectrum; a very small amount of DOX (0.8μg) and a very high amount of ICG (∼110μg) were encapsulated in 200μg CMCs. Encapsulation in the CMCs leads to sustained release of ICG, especially in the presence of positively charged DOX. The temperature enhancement and generation of ROS by ICG encapsulated in CMCs were confirmed upon laser irradiation in vitro, leading to cell death. CMCs@DOX/ICG also can significantly enhance the retention of ICG in a tumor after intratumoral injection in vivo. As a result, combination treatment with CMCs@DOX/ICG and laser irradiation demonstrated much better anticancer efficacy than that of free DOX/ICG and CMCs@ICG. The encapsulation of ICG into CMCs, especially with the assistance of DOX, significantly slows down the body clearance of ICG, with a retained PPT effect against tumors, an important step forward in the practical application of ICG in cancer therapy. In this study, cell membrane capsules (CMCs) derived from mammalian cells were used to encapsulate negatively charged indocyanine green (ICG) by temporarily permeating the plasma membrane and resealing, in the presence of positively charged doxorubicin hydrochloride (DOX). The resulting CMCs@DOX/ICG exhibited a spherical shape, with a diameter of approximately 800nm. Encapsulation in the CMCs leads to sustained release of ICG and thus slower clearance inside body, especially in the presence of positively charged DOX. The system provides a better photothermal effect against tumors, an important step forward in the practical application of ICG in cancer therapy. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kipp, Dylan; Ganesan, Venkat
2013-06-01
We develop a kinetic Monte Carlo model for photocurrent generation in organic solar cells that demonstrates improved agreement with experimental illuminated and dark current-voltage curves. In our model, we introduce a charge injection rate prefactor to correct for the electrode grid-size and electrode charge density biases apparent in the coarse-grained approximation of the electrode as a grid of single occupancy, charge-injecting reservoirs. We use the charge injection rate prefactor to control the portion of dark current attributed to each of four kinds of charge injection. By shifting the dark current between electrode-polymer pairs, we align the injection timescales and expand the applicability of the method to accommodate ohmic energy barriers. We consider the device characteristics of the ITO/PEDOT/PSS:PPDI:PBTT:Al system and demonstrate the manner in which our model captures the device charge densities unique to systems with small injection energy barriers. To elucidate the defining characteristics of our model, we first demonstrate the manner in which charge accumulation and band bending affect the shape and placement of the various current-voltage regimes. We then discuss the influence of various model parameters upon the current-voltage characteristics.
Patsahan, O; Ciach, A
2012-09-01
Effects of size and charge asymmetry between oppositely charged ions or particles on spatial inhomogeneities are studied for a large range of charge and size ratios. We perform a stability analysis of the primitive model of ionic systems with respect to periodic ordering using the collective variables-based theory. We extend previous studies [Ciach et al., Phys. Rev. E 75, 051505 (2007)] in several ways. First, we employ a nonlocal approximation for the reference hard-sphere fluid which leads to the Percus-Yevick pair direct correlation functions for the uniform case. Second, we use the Weeks-Chandler-Anderson regularization scheme for the Coulomb potential inside the hard core. We determine the relevant order parameter connected with the periodic ordering and analyze the character of the dominant fluctuations along the λ lines. We show that the above-mentioned modifications produce large quantitative and partly qualitative changes in the phase diagrams obtained previously. We discuss possible scenarios of the periodic ordering for the whole range of size and charge ratios of the two ionic species, covering electrolytes, ionic liquids, charged globular proteins or nanoparticles in aqueous solutions, and charge-stabilized colloids.
Extreme Markup: The Fifty US Hospitals With The Highest Charge-To-Cost Ratios.
Bai, Ge; Anderson, Gerard F
2015-06-01
Using Medicare cost reports, we examined the fifty US hospitals with the highest charge-to-cost ratios in 2012. These hospitals have markups (ratios of charges over Medicare-allowable costs) approximately ten times their Medicare-allowable costs compared to a national average of 3.4 and a mode of 2.4. Analysis of the fifty hospitals showed that forty-nine are for profit (98 percent), forty-six are owned by for-profit hospital systems (92 percent), and twenty (40 percent) operate in Florida. One for-profit hospital system owns half of these fifty hospitals. While most public and private health insurers do not use hospital charges to set their payment rates, uninsured patients are commonly asked to pay the full charges, and out-of-network patients and casualty and workers' compensation insurers are often expected to pay a large portion of the full charges. Because it is difficult for patients to compare prices, market forces fail to constrain hospital charges. Federal and state governments may want to consider limitations on the charge-to-cost ratio, some form of all-payer rate setting, or mandated price disclosure to regulate hospital markups. Project HOPE—The People-to-People Health Foundation, Inc.
Partial Ionic Character beyond the Pauling Paradigm: Metal Nanoparticles
Duanmu, Kaining; Truhlar, Donald G.
2014-11-12
A canonical perspective on the chemical bond is the Pauling paradigm: a bond in a molecule containing only identical atoms has no ionic character. However, we show that homonuclear silver clusters have very uneven charge distributions (for example, the C 2v structure of Ag 4 has a larger dipole moment than formaldehyde or acetone), and we show how to predict the charge distribution from coordination numbers and Hirshfeld charges. The new charge model is validated against Kohn–Sham calculations of dipole moments with four approximations for the exchange–correlation functional. We report Kohn–Sham studies of the binding energies of CO on silvermore » monomer and silver clusters containing 2–18 atoms. We also find that an accurate charge model is essential for understanding the site dependence of binding. In particular we find that atoms with more positive charges tend to have higher binding energies, which can be used for guidance in catalyst modeling and design. Furthermore, the nonuniform charge distribution of silver clusters predisposes the site preference of binding of carbon monoxide, and we conclude that nonuniform charge distributions are an important property for understanding binding of metal nanoparticles in general.« less
A semi-analytical study of positive corona discharge in wire-plane electrode configuration
NASA Astrophysics Data System (ADS)
Yanallah, K.; Pontiga, F.; Chen, J. H.
2013-08-01
Wire-to-plane positive corona discharge in air has been studied using an analytical model of two species (electrons and positive ions). The spatial distributions of electric field and charged species are obtained by integrating Gauss's law and the continuity equations of species along the Laplacian field lines. The experimental values of corona current intensity and applied voltage, together with Warburg's law, have been used to formulate the boundary condition for the electron density on the corona wire. To test the accuracy of the model, the approximate electric field distribution has been compared with the exact numerical solution obtained from a finite element analysis. A parametrical study of wire-to-plane corona discharge has then been undertaken using the approximate semi-analytical solutions. Thus, the spatial distributions of electric field and charged particles have been computed for different values of the gas pressure, wire radius and electrode separation. Also, the two dimensional distribution of ozone density has been obtained using a simplified plasma chemistry model. The approximate semi-analytical solutions can be evaluated in a negligible computational time, yet provide precise estimates of corona discharge variables.
Semi-analytical modelling of positive corona discharge in air
NASA Astrophysics Data System (ADS)
Pontiga, Francisco; Yanallah, Khelifa; Chen, Junhong
2013-09-01
Semianalytical approximate solutions of the spatial distribution of electric field and electron and ion densities have been obtained by solving Poisson's equations and the continuity equations for the charged species along the Laplacian field lines. The need to iterate for the correct value of space charge on the corona electrode has been eliminated by using the corona current distribution over the grounded plane derived by Deutsch, which predicts a cos m θ law similar to Warburg's law. Based on the results of the approximated model, a parametric study of the influence of gas pressure, the corona wire radius, and the inter-electrode wire-plate separation has been carried out. Also, the approximate solutions of the electron number density has been combined with a simplified plasma chemistry model in order to compute the ozone density generated by the corona discharge in the presence of a gas flow. This work was supported by the Consejeria de Innovacion, Ciencia y Empresa (Junta de Andalucia) and by the Ministerio de Ciencia e Innovacion, Spain, within the European Regional Development Fund contracts FQM-4983 and FIS2011-25161.
Particle dynamics around time conformal regular black holes via Noether symmetries
NASA Astrophysics Data System (ADS)
Jawad, Abdul; Umair Shahzad, M.
The time conformal regular black hole (RBH) solutions which are admitting the time conformal factor e𝜖g(t), where g(t) is an arbitrary function of time and 𝜖 is the perturbation parameter are being considered. The approximate Noether symmetries technique is being used for finding the function g(t) which leads to t α. The dynamics of particles around RBHs are also being discussed through symmetry generators which provide approximate energy as well as angular momentum of the particles. In addition, we analyze the motion of neutral and charged particles around two well known RBHs such as charged RBH using Fermi-Dirac distribution and Kehagias-Sftesos asymptotically flat RBH. We obtain the innermost stable circular orbit and corresponding approximate energy and angular momentum. The behavior of effective potential, effective force and escape velocity of the particles in the presence/absence of magnetic field for different values of angular momentum near horizons are also being analyzed. The stable and unstable regions of particle near horizons due to the effect of angular momentum and magnetic field are also explained.
NASA Astrophysics Data System (ADS)
Panholzer, Martin; Gatti, Matteo; Reining, Lucia
2018-04-01
The charge-density response of extended materials is usually dominated by the collective oscillation of electrons, the plasmons. Beyond this feature, however, intriguing many-body effects are observed. They cannot be described by one of the most widely used approaches for the calculation of dielectric functions, which is time-dependent density functional theory (TDDFT) in the adiabatic local density approximation (ALDA). Here, we propose an approximation to the TDDFT exchange-correlation kernel which is nonadiabatic and nonlocal. It is extracted from correlated calculations in the homogeneous electron gas, where we have tabulated it for a wide range of wave vectors and frequencies. A simple mean density approximation allows one to use it in inhomogeneous materials where the density varies on a scale of 1.6 rs or faster. This kernel contains effects that are completely absent in the ALDA; in particular, it correctly describes the double plasmon in the dynamic structure factor of sodium, and it shows the characteristic low-energy peak that appears in systems with low electronic density. It also leads to an overall quantitative improvement of spectra.
Gravitomagnetic acceleration of accretion disk matter to polar jets
NASA Astrophysics Data System (ADS)
Poirier, John; Mathews, Grant
2016-03-01
The motion of the masses of an accretion disk around a black hole creates a general relativistic, gravitomagnetic field (GEM) from the moving matter (be it charged or uncharged) of the accretion disk. This GEM field accelerates moving masses (neutral or charged) near the accretion disk vertically upward and away from the disk, and then inward toward the axis of the disk. As the accelerated material nears the axis with approximately vertical angles, a frame dragging effect contributes to the formation of narrow jets emanating from the poles. This GEM effect is numerically evaluated in the first post Newtonian (1PN) approximation from observable quantities like the mass and velocity of the disk. This GEM force is linear in the total mass of the accretion disk matter and quadratic in the velocity of matter near to the disk with approximately the same velocity. Since these masses and velocities can be quite high in astrophysical contexts, the GEM force, which in other contexts is weak, is quite significant. This GEM effect is compared to the ordinary electromagnetic effects applied to this problem in the past.
Panholzer, Martin; Gatti, Matteo; Reining, Lucia
2018-04-20
The charge-density response of extended materials is usually dominated by the collective oscillation of electrons, the plasmons. Beyond this feature, however, intriguing many-body effects are observed. They cannot be described by one of the most widely used approaches for the calculation of dielectric functions, which is time-dependent density functional theory (TDDFT) in the adiabatic local density approximation (ALDA). Here, we propose an approximation to the TDDFT exchange-correlation kernel which is nonadiabatic and nonlocal. It is extracted from correlated calculations in the homogeneous electron gas, where we have tabulated it for a wide range of wave vectors and frequencies. A simple mean density approximation allows one to use it in inhomogeneous materials where the density varies on a scale of 1.6 r_{s} or faster. This kernel contains effects that are completely absent in the ALDA; in particular, it correctly describes the double plasmon in the dynamic structure factor of sodium, and it shows the characteristic low-energy peak that appears in systems with low electronic density. It also leads to an overall quantitative improvement of spectra.
Numerical Methods for Analysis of Charged Vacancy Diffusion in Dielectric Solids
2006-12-01
theory for charged vacancy diffusion in elastic dielectric materials is formulated and implemented numerically in a finite difference code. The...one of the co-authors on neutral vacancy kinetics (Grinfeld and Hazzledine, 1997). The theory is implemented numerically in a finite difference code...accuracy of order ( )2x∆ , using a finite difference approximation (Hoffman, 1992) for the second spatial derivative of φ : ( )21 1 0ˆ2 /i i i i Rxφ
Statistics of optical vortex wander on propagation through atmospheric turbulence.
Gu, Yalong
2013-04-01
The transverse position of an optical vortex on propagation through atmospheric turbulence is studied. The probability density of the optical vortex position on a transverse plane in the atmosphere is formulated in weak turbulence by using the Born approximation. With these formulas, the effect of aperture averaging on topological charge detection is investigated. These results provide quantitative guidelines for the design of an optimal detector of topological charge, which has potential application in optical vortex communication systems.
Asymptotics of quasi-classical localized states in 2D system of charged hard-core bosons
NASA Astrophysics Data System (ADS)
Panov, Yu. D.; Moskvin, A. S.
2018-05-01
The continuous quasi-classical two-sublattice approximation is constructed for the 2D system of charged hard-core bosons to explore metastable inhomogeneous states analogous to inhomogeneous localized excitations in magnetic systems. The types of localized excitations are determined by asymptotic analysis and compared with numerical results. Depending on the homogeneous ground state, the excitations are the ferro and antiferro type vortices, the skyrmion-like topological excitations or linear domain walls.
Capabilities of the LDEF-2 heavy nuclei collection
NASA Technical Reports Server (NTRS)
Drach, J.; Price, P. B.; Salamon, M. H.; Tarle, G.; Ahlen, S. P.
1985-01-01
To take the next big step beyond High Energy Astronomy Observatory (HEAO-3) the Heavy Nuclei Collector (HNC), to be carried on an LDEF reflight, has the goals of greatly increased collecting power ( 30 actinides) and charge resolution sigma sub Z or = 0.25 E for Z up to approximately 100, which will provide abundances of all the charges 40 or Z or = 96 and permit sensitive searches for hypothetical particles such as monopoles, superheavy elements, and quark nuggets.
Correlation of transarterial transport of various dextrans with their physicochemical properties.
Elmalak, O; Lovich, M A; Edelman, E
2000-11-01
Local vascular drug delivery provides elevated concentrations of drug in the target tissue while minimizing systemic side effects. To better characterize local pharmacokinetics we examined the arterial transport of locally applied dextran and dextran derivatives in vivo. Using a two-compartment pharmacokinetic model to correct the measured transmural flux of these compounds for systemic redistribution and elimination as delivered from a photopolymerizable hydrogel surrounding rat carotid arteries, we found that the diffusivities and the transendothelial permeabilities were strongly dependent on molecular weight and charge. For neutral dextrans, the effective diffusive resistance in the media increased with molecular weight approximately 4.1-fold between the molecular weights of 10 and 282 kDa. Similarly, endothelial resistance increased 28-fold over the same molecular weight range. The effective medial diffusive resistance was unaffected by cationic charge as such molecules moved identically to neutral compounds, but increased approximately 40% when dextrans were negatively charged. Transendothelial resistance was 20-fold lower for the cationic dextrans, and 11-fold higher for the anionic dextrans, when both were compared to neutral counterparts. These results suggest that, while low molecular weight drugs will rapidly traverse the arterial wall with the endothelium posing a minimal barrier, the reverse is true for high molecular weight agents. With these data, the deposition and distribution of locally released vasotherapeutic compounds might be predicted based upon chemical properties, such as molecular weight and charge.
ECR Plasma Source for Heavy Ion Beam Charge Neutralization
NASA Astrophysics Data System (ADS)
Efthimion, P. C.; Gilson, E.; Grishman, L.; Kolchin, P.; Davidson, R. C.
2002-01-01
Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1 - 100 times the ion beam density and at a length of approximately 0.1-2 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1-10 gauss. The goal is to operate the source at pressures of approximately 10-6 torr at full ionization. The initial operation of the source has been at pressures of 10-4 - 10-1. Electron densities in the range of 108 - 1011 per cubic centimeter have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. To further improve breakdown at low pressure, a weak electron source will be placed near the end of the ECR source.
Ziegler, Tom; Krykunov, Mykhaylo
2010-08-21
It is well known that time-dependent density functional theory (TD-DFT) based on standard gradient corrected functionals affords both a quantitative and qualitative incorrect picture of charge transfer transitions between two spatially separated regions. It is shown here that the well known failure can be traced back to the use of linear response theory. Further, it is demonstrated that the inclusion of higher order terms readily affords a qualitatively correct picture even for simple functionals based on the local density approximation. The inclusion of these terms is done within the framework of a newly developed variational approach to excitation energies called constrained variational density functional theory (CV-DFT). To second order [CV(2)-DFT] this theory is identical to adiabatic TD-DFT within the Tamm-Dancoff approximation. With inclusion of fourth order corrections [CV(4)-DFT] it affords a qualitative correct description of charge transfer transitions. It is finally demonstrated that the relaxation of the ground state Kohn-Sham orbitals to first order in response to the change in density on excitation together with CV(4)-DFT affords charge transfer excitations in good agreement with experiment. The new relaxed theory is termed R-CV(4)-DFT. The relaxed scheme represents an effective way in which to introduce double replacements into the description of single electron excitations, something that would otherwise require a frequency dependent kernel.
Influence of the quantum dot geometry on p -shell transitions in differently charged quantum dots
NASA Astrophysics Data System (ADS)
Holtkemper, M.; Reiter, D. E.; Kuhn, T.
2018-02-01
Absorption spectra of neutral, negatively, and positively charged semiconductor quantum dots are studied theoretically. We provide an overview of the main energetic structure around the p -shell transitions, including the influence of nearby nominally dark states. Based on the envelope function approximation, we treat the four-band Luttinger theory as well as the direct and short-range exchange Coulomb interactions within a configuration interaction approach. The quantum dot confinement is approximated by an anisotropic harmonic potential. We present a detailed investigation of state mixing and correlations mediated by the individual interactions. Differences and similarities between the differently charged quantum dots are highlighted. Especially large differences between negatively and positively charged quantum dots become evident. We present a visualization of energetic shifts and state mixtures due to changes in size, in-plane asymmetry, and aspect ratio. Thereby we provide a better understanding of the experimentally hard to access question of quantum dot geometry effects. Our findings show a method to determine the in-plane asymmetry from photoluminescence excitation spectra. Furthermore, we supply basic knowledge for tailoring the strength of certain state mixtures or the energetic order of particular excited states via changes of the shape of the quantum dot. Such knowledge builds the basis to find the optimal QD geometry for possible applications and experiments using excited states.
Plasma observations near Jupiter - Initial results from Voyager 1
NASA Technical Reports Server (NTRS)
Bridge, H. S.; Belcher, J. W.; Lazarus, A. J.; Sullivan, J. D.; Mcnutt, R. L.; Bagenal, F.; Scudder, J. D.; Sittler, E. C.; Siscoe, G. L.; Vasyliunas, V. M.
1979-01-01
Extensive measurements of low-energy positive ions and electrons were made throughout the Jupiter encounter of Voyager 1. The bow shock and magnetopause were crossed several times at distances consistent with variations in the upstream solar wind pressure measured on Voyager 2. During the inbound pass, the number density increased by six orders of magnitude between the innermost magnetopause crossing at approximately 47 Jupiter radii and near closest approach at approximately 5 Jupiter radii; the plasma flow during this period was predominately in the direction of corotation. Marked increases in number density were observed twice per planetary rotation, near the magnetic equator. Jupiterward of the Io plasma torus, a cold, corotating plasma was observed and the energy/charge spectra show well-resolved, heavy-ion peaks at mass-to-charge ratios equal to 8, 16, 32, and 64.
Giera, Brian; Lawrence Livermore National Lab.; Henson, Neil; ...
2015-02-27
We evaluate the accuracy of local-density approximations (LDAs) using explicit molecular dynamics simulations of binary electrolytes comprised of equisized ions in an implicit solvent. The Bikerman LDA, which considers ions to occupy a lattice, poorly captures excluded volume interactions between primitive model ions. Instead, LDAs based on the Carnahan–Starling (CS) hard-sphere equation of state capture simulated values of ideal and excess chemical potential profiles extremely well, as is the relationship between surface charge density and electrostatic potential. Excellent agreement between the EDL capacitances predicted by CS-LDAs and computed in molecular simulations is found even in systems where ion correlations drivemore » strong density and free charge oscillations within the EDL, despite the inability of LDAs to capture the oscillations in the detailed EDL profiles.« less
NASA Astrophysics Data System (ADS)
van de Waterbeemd, Michiel; Snijder, Joost; Tsvetkova, Irina B.; Dragnea, Bogdan G.; Cornelissen, Jeroen J.; Heck, Albert J. R.
2016-06-01
Since the concept was first introduced by Brian Chait and co-workers in 1991, mass spectrometry of proteins and protein complexes under non-denaturing conditions (native MS) has strongly developed, through parallel advances in instrumentation, sample preparation, and data analysis tools. However, the success rate of native MS analysis, particularly in heterogeneous mega-Dalton (MDa) protein complexes, still strongly depends on careful instrument modification. Here, we further explore these boundaries in native mass spectrometry, analyzing two related endogenous multipartite viruses: the Brome Mosaic Virus (BMV) and the Cowpea Chlorotic Mottle Virus (CCMV). Both CCMV and BMV are approximately 4.6 megadalton (MDa) in mass, of which approximately 1 MDA originates from the genomic content of the virion. Both viruses are produced as mixtures of three particles carrying different segments of the genome, varying by approximately 0.1 MDA in mass (~2%). This mixture of particles poses a challenging analytical problem for high-resolution native MS analysis, given the large mass scales involved. We attempt to unravel the particle heterogeneity using both Q-TOF and Orbitrap mass spectrometers extensively modified for analysis of very large assemblies. We show that manipulation of the charging behavior can provide assistance in assigning the correct charge states. Despite their challenging size and heterogeneity, we obtained native mass spectra with resolved series of charge states for both BMV and CCMV, demonstrating that native MS of endogenous multipartite virions is feasible.
NASA Astrophysics Data System (ADS)
Maksyuta, N. V.; Vysotskii, V. I.; Efimenko, S. V.; Slinchenko, Y. A.
2018-04-01
In this paper the interaction potentials of relativistic electrons with the charged (2m+1, 2n+1, 2p+1) and (2m+1, 2n, 2p) planes (m, n, p=0,1,dot s, and Miller indices are mutually prime numbers) in the crystals with a zinc blende structure are calculated using Moliere approximation. It is shown that at the change of the type of used crystal plane (from the main (100) to the high-index charged planes), the structures of potential wells are transformed from non-unimodal to unimodal ones. In this case for the crystals constructed from ions with close nucleus charges, there arise so-called positron-like potential wells for the channeled electrons, i.e. with minima in the interplanar space. The influence of temperature factor on interaction potentials structures is also investigated. For the electrons with Lorentz-factors γ = 25, 50, 75 in the main (100) and (111) planes the transverse energy levels and corresponding wave functions in single planar approximation are found numerically. By means of these data the spectra of channeling radiation (CR) in dipole approximation are calculated for the electrons beams with a Lorentz-factor γ = 50 and an angular dispersion θ 0 ≈ 0,5 mrad, arising in the main charged (100) and (111) planes in ZnS, ZnSe and ZnTe crystals. It is shown that the CR generated at electron channeling along the (111) planes is more intense. It is shown also that spectra of CR arising in (111) planes of silicon and AlP crystals at using of channeled electron beam with γ = 25 and an angular dispersion θ 0 ≈ 0,5 mrad, due to similarity of structures of potential wells are identical. The spectra of CR at γ = 25, 50, 75 are calculated for a number of crystals with a zinc blende structure, namely AlP, AlAs, AlSb, GaP, GaAs, InP, InAs, InSb.
NASA Technical Reports Server (NTRS)
Schaffer, L.; Burns, J. A.
1995-01-01
Dust grains in planetary rings acquire stochastically fluctuating electric charges as they orbit through any corotating magnetospheric plasma. Here we investigate the nature of this stochastic charging and calculate its effect on the Lorentz resonance (LR). First we model grain charging as a Markov process, where the transition probabilities are identified as the ensemble-averaged charging fluxes due to plasma pickup and photoemission. We determine the distribution function P(t;N), giving the probability that a grain has N excess charges at time t. The autocorrelation function tau(sub q) for the strochastic charge process can be approximated by a Fokker-Planck treatment of the evolution equations for P(t; N). We calculate the mean square response to the stochastic fluctuations in the Lorentz force. We find that transport in phase space is very small compared to the resonant increase in amplitudes due to the mean charge, over the timescale that the oscillator is resonantly pumped up. Therefore the stochastic charge variations cannot break the resonant interaction; locally, the Lorentz resonance is a robust mechanism for the shaping of etheral dust ring systems. Slightly stronger bounds on plasma parameters are required when we consider the longer transit times between Lorentz resonances.
Lauw, Y; Leermakers, F A M; Stuart, M A Cohen
2007-07-19
The persistence length of a wormlike micelle composed of ionic surfactants C(n)E(m)X(k) in an aqueous solvent is predicted by means of the self-consistent-field theory where C(n)E(m) is the conventional nonionic surfactant and X(k) is an additional sequence of k weakly charged (pH-dependent) segments. By considering a toroidal micelle at infinitesimal curvature, we evaluate the bending modulus of the wormlike micelle that corresponds to the total persistence length, consisting of an elastic/intrinsic and an electrostatic contribution. The total persistence length increases with pH and decreases with increasing background salt concentration. We estimate that the electrostatic persistence length l(p,e)(0) scales with respect to the Debye length kappa(-1) as l(p,e)(0) approximately kappa(-p) where p approximately 1.98 for wormlike micelles consisting of C(20)E(10)X(1) surfactants and p approximately 1.54 for wormlike micelles consisting of C(20)E(10)X(2) surfactants. The total persistence length l(p,t)(0) is a weak function of the head group length m but scales with the tail length n as l(p,t)(0) approximately n(x) where x approximately 2-2.6, depending on the corresponding head group length. Interestingly, l(p,t)(0) varies nonmonotonically with the number of charged groups k due to the opposing trends in the electrostatic and elastic bending rigidities upon variation of k.
A 50 AH nickel cadmium battery activation and charge retention parametric study for LANDSAT-D
NASA Technical Reports Server (NTRS)
Tasevoli, M.
1982-01-01
An alternate nickel-cadmium cell activation scheme was developed which significantly reduces battery dissipation while maintaining the cell active material in the proper electrochemical state. The new procedure of charging at C/20 for 8 hours, C/10 for 6 hours and followed by C/5 to a voltage limit of 1.430 volt/cell significantly reduces the heat dissipation and charge period when compared to the standard activation practice of charging at C/20 for 48 hours. In addition, subsequent discharge voltage profiles using the new scheme are higher when compared to the standard practice. The effects of extended open-circuit periods on nickel-cadmium cell results in a capacity loss of approximately 0.7 percent and 1.4 percent per day at 23 and 35 degrees Celsius, respectively.
Correlation-driven charge order at the interface between a Mott and a band insulator.
Pentcheva, Rossitza; Pickett, Warren E
2007-07-06
To study digital Mott insulator LaTiO3 and band insulator SrTiO3 interfaces, we apply correlated band theory within the local density approximation including a Hubbard U to (n, m) multilayers, 1
Exhibitionism: findings from a Midwestern police contact sample.
Bader, Shannon M; Schoeneman-Morris, Katherine A; Scalora, Mario J; Casady, Thomas K
2008-06-01
This study used a police sample to examine offense characteristics, recidivism rates, and other types of sexual offending among individuals suspected of exhibitionism. The sample consisted of 202 incidents of indecent exposure perpetrated by 106 identified individuals. Demographic information showed that one quarter of the sample had symptoms of a mental illness and one quarter had a history of substance abuse. More than 84% of the sample had other nonsexual criminal charges. Approximately 30% of the perpetrators were charged for more than one exposure incident. Masturbating during the offense, exposing to child victims, and speaking to the victim did not show any relationship to the occurrence of more sexually aggressive behaviors. However, individuals who had subsequent rape or molestation charges (16.9%) were more likely than those who did not to have had multiple exposure incidents and a history of physical assault charges.
DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB).
Gaus, Michael; Cui, Qiang; Elstner, Marcus
2012-04-10
The self-consistent-charge density-functional tight-binding method (SCC-DFTB) is an approximate quantum chemical method derived from density functional theory (DFT) based on a second-order expansion of the DFT total energy around a reference density. In the present study we combine earlier extensions and improve them consistently with, first, an improved Coulomb interaction between atomic partial charges, and second, the complete third-order expansion of the DFT total energy. These modifications lead us to the next generation of the DFTB methodology called DFTB3, which substantially improves the description of charged systems containing elements C, H, N, O, and P, especially regarding hydrogen binding energies and proton affinities. As a result, DFTB3 is particularly applicable to biomolecular systems. Remaining challenges and possible solutions are also briefly discussed.
Production of Highly Charged Pharmaceutical Aerosols Using a New Aerosol Induction Charger
Golshahi, Laleh; Longest, P. Worth; Holbrook, Landon; Snead, Jessica; Hindle, Michael
2015-01-01
Purpose Properly charged particles can be used for effective lung targeting of pharmaceutical aerosols. The objective of this study was to characterize the performance of a new induction charger that operates with a mesh nebulizer for the production of highly charged submicrometer aerosols to bypass the mouth-throat and deliver clinically relevant doses of medications to the lungs. Methods Variables of interest included combinations of model drug (i.e. albuterol sulfate) and charging excipient (NaCl) as well as strength of the charging field (1–5 kV/cm). Aerosol charge and size were measured using a modified electrical low pressure impactor system combined with high performance liquid chromatography. Results At the approximate mass median aerodynamic diameter (MMAD) of the aerosol (~ 0.4 μm), the induction charge on the particles was an order of magnitude above the field and diffusion charge limit. The nebulization rate was 439.3 ± 42.9 μl/min, which with a 0.1 % w/v solution delivered 419.5 ± 34.2 μg of medication per minute. A new correlation was developed to predict particle charge produced by the induction charger. Conclusions The combination of the aerosol induction charger and predictive correlations will allow for the practical generation and control of charged submicrometer aerosols for targeting deposition within the lungs. PMID:25823649
2009-06-24
bimetallic surfaces also possess additional polarity, approximated by atomic charges of +0.3e and -0.3e at the Pd and Au sides of the interface , which...as well as polarization and charge transfer at the metal interface (only qualitatively considered here). A hexagonal spacing of ∼1.6 Å between...as results from quantum-mechanical calculations on small peptide and surface fragments. Interfaces were modeled using the consistent valence force
Hawking temperature of rotating charged black strings from tunneling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Jamil; Saifullah, K., E-mail: jamil_051@yahoo.com, E-mail: saifullah@qau.edu.pk
2011-11-01
Thermal radiations from spherically symmetric black holes have been studied from the point of view of quantum tunneling. In this paper we extend this approach to study radiation of fermions from charged and rotating black strings. Using WKB approximation and Hamilton-Jacobi method we work out the tunneling probabilities of incoming and outgoing fermions and find the correct Hawking temperature for these objects. We show that in appropriate limits the results reduce to those for the uncharged and non-rotating black strings.
Semiclassical perturbation Stark widths of singly charged argon spectral lines
NASA Astrophysics Data System (ADS)
Hamdi, Rafik; Ben Nessib, Nabil; Sahal-Bréchot, Sylvie; Dimitrijević, Milan S.
2018-03-01
Using a semiclassical perturbation approach with the impact approximation, Stark widths for singly charged argon (Ar II) spectral lines have been calculated. Energy levels and oscillator strengths needed for this calculation have been determined using the Hartree-Fock method with relativistic corrections. Our Stark widths are compared with experimental results for 178 spectral lines. Our results may be of interest not only for laboratory plasma, lasers and technological plasmas but also for white dwarfs and A- and B-type stars.
NASA Astrophysics Data System (ADS)
Xie, Z. Q.; Antaya, T. A.
1990-01-01
We have obtained excellent agreement between BEAM-3D calculations and beam profile and emittance measurements of the total extracted beam from the room temperature electron cyclotron resonance (RTECR), when a low degree of beam neutralization is assumed in the calculations, as will be presented in this paper. The beam envelope has approximately a quadratic dependence on drift distance, and space-charge effects dominate the early beam formation and beamline optics matching process.
NASA Astrophysics Data System (ADS)
Xie, Z. Q.; Antaya, T. A.
1990-02-01
We have obtained excellent agreement between BEAM-3D calculations and beam profile and emittance measurements of the total extracted beam from the room temperature electron cyclotron resonance (RTECR), when a low degree of beam neutralization is assumed in the calculations, as will be presented in this paper. The beam envelope has approximately a quadratic dependence on drift distance, and space-charge effects dominate the early beam formation and beamline optics matching process.
Tanabe, T; Noda, K; Saito, M; Starikov, E B; Tateno, M
2004-07-23
Electron-DNA anion collisions were studied using an electrostatic storage ring with a merging electron-beam technique. The rate of neutral particles emitted in collisions started to increase from definite threshold energies, which increased regularly with ion charges in steps of about 10 eV. These threshold energies were almost independent of the length and sequence of DNA, but depended strongly on the ion charges. Neutral particles came from breaks of DNAs, rather than electron detachment. The step of the threshold energy increase approximately agreed with the plasmon excitation energy. It is deduced that plasmon excitation is closely related to the reaction mechanism. Copyright 2004 The American Physical Society
SPM observation of slow highly charged ion induced nanodots on highly orientated pyrolytic graphite
NASA Astrophysics Data System (ADS)
Mitsuda, Y.; Nakamura, B. E. O'Rourke1 N.; Kanai, Y.; Ohtani, S.; Yamazaki, Y.
2007-03-01
We have observed nanodots on a highly orientated pyrolytic graphite (HOPG) surface produced by highly charged ion impacts using a scanning tunneling microscope. Previous measurements have con.rmed the dominant role of the potential energy or the incident ion charge state on the size and height of the observed nanodots. The present results extend these previous measurements to much lower kinetic energy. It appears that there is no observable influence on the lateral size of the nanodots due to the incident ion kinetic energy down to approximately 200 eV. In contrast some slight reduction in the nanodot height was observed as the kinetic energy was reduced.
NASA Astrophysics Data System (ADS)
Cui, Ze-Qun; Wang, Shun; Chen, Jian-Mei; Gao, Xu; Dong, Bin; Chi, Li-Feng; Wang, Sui-Dong
2015-03-01
Electron and hole trapping into the nano-floating-gate of a pentacene-based organic field-effect transistor nonvolatile memory is directly probed by Kelvin probe force microscopy. The probing is straightforward and non-destructive. The measured surface potential change can quantitatively profile the charge trapping, and the surface characterization results are in good accord with the corresponding device behavior. Both electrons and holes can be trapped into the nano-floating-gate, with a preference of electron trapping than hole trapping. The trapped charge quantity has an approximately linear relation with the programming/erasing gate bias, indicating that the charge trapping in the device is a field-controlled process.
Simulation of charge exchange plasma propagation near an ion thruster propelled spacecraft
NASA Technical Reports Server (NTRS)
Robinson, R. S.; Kaufman, H. R.; Winder, D. R.
1981-01-01
A model describing the charge exchange plasma and its propagation is discussed, along with a computer code based on the model. The geometry of an idealized spacecraft having an ion thruster is outlined, with attention given to the assumptions used in modeling the ion beam. Also presented is the distribution function describing charge exchange production. The barometric equation is used in relating the variation in plasma potential to the variation in plasma density. The numerical methods and approximations employed in the calculations are discussed, and comparisons are made between the computer simulation and experimental data. An analytical solution of a simple configuration is also used in verifying the model.
One- and Two-Equation Models to Simulate Ion Transport in Charged Porous Electrodes
Gabitto, Jorge; Tsouris, Costas
2018-01-19
Energy storage in porous capacitor materials, capacitive deionization (CDI) for water desalination, capacitive energy generation, geophysical applications, and removal of heavy ions from wastewater streams are some examples of processes where understanding of ionic transport processes in charged porous media is very important. In this work, one- and two-equation models are derived to simulate ionic transport processes in heterogeneous porous media comprising two different pore sizes. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A two-step volume averaging technique is used to derive the averaged transportmore » equations for multi-ionic systems without any further assumptions, such as thin electrical double layers or Donnan equilibrium. A comparison between both models is presented. The effective transport parameters for isotropic porous media are calculated by solving the corresponding closure problems. An approximate analytical procedure is proposed to solve the closure problems. Numerical and theoretical calculations show that the approximate analytical procedure yields adequate solutions. Lastly, a theoretical analysis shows that the value of interphase pseudo-transport coefficients determines which model to use.« less
Low Mach number fluctuating hydrodynamics for electrolytes
NASA Astrophysics Data System (ADS)
Péraud, Jean-Philippe; Nonaka, Andy; Chaudhri, Anuj; Bell, John B.; Donev, Aleksandar; Garcia, Alejandro L.
2016-11-01
We formulate and study computationally the low Mach number fluctuating hydrodynamic equations for electrolyte solutions. We are interested in studying transport in mixtures of charged species at the mesoscale, down to scales below the Debye length, where thermal fluctuations have a significant impact on the dynamics. Continuing our previous work on fluctuating hydrodynamics of multicomponent mixtures of incompressible isothermal miscible liquids [A. Donev et al., Phys. Fluids 27, 037103 (2015), 10.1063/1.4913571], we now include the effect of charged species using a quasielectrostatic approximation. Localized charges create an electric field, which in turn provides additional forcing in the mass and momentum equations. Our low Mach number formulation eliminates sound waves from the fully compressible formulation and leads to a more computationally efficient quasi-incompressible formulation. We demonstrate our ability to model saltwater (NaCl) solutions in both equilibrium and nonequilibrium settings. We show that our algorithm is second order in the deterministic setting and for length scales much greater than the Debye length gives results consistent with an electroneutral approximation. In the stochastic setting, our model captures the predicted dynamics of equilibrium and nonequilibrium fluctuations. We also identify and model an instability that appears when diffusive mixing occurs in the presence of an applied electric field.
One- and Two-Equation Models to Simulate Ion Transport in Charged Porous Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabitto, Jorge; Tsouris, Costas
Energy storage in porous capacitor materials, capacitive deionization (CDI) for water desalination, capacitive energy generation, geophysical applications, and removal of heavy ions from wastewater streams are some examples of processes where understanding of ionic transport processes in charged porous media is very important. In this work, one- and two-equation models are derived to simulate ionic transport processes in heterogeneous porous media comprising two different pore sizes. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A two-step volume averaging technique is used to derive the averaged transportmore » equations for multi-ionic systems without any further assumptions, such as thin electrical double layers or Donnan equilibrium. A comparison between both models is presented. The effective transport parameters for isotropic porous media are calculated by solving the corresponding closure problems. An approximate analytical procedure is proposed to solve the closure problems. Numerical and theoretical calculations show that the approximate analytical procedure yields adequate solutions. Lastly, a theoretical analysis shows that the value of interphase pseudo-transport coefficients determines which model to use.« less
NASA Astrophysics Data System (ADS)
Chernenkaya, A.; Morherr, A.; Backes, S.; Popp, W.; Witt, S.; Kozina, X.; Nepijko, S. A.; Bolte, M.; Medjanik, K.; Öhrwall, G.; Krellner, C.; Baumgarten, M.; Elmers, H. J.; Schönhense, G.; Jeschke, H. O.; Valentí, R.
2016-07-01
We have investigated the charge transfer mechanism in single crystals of DTBDT-TCNQ and DTBDT-F4TCNQ (where DTBDT is dithieno[2,3-d;2',3'-d'] benzo[1,2-b;4,5-b']dithiophene) using a combination of near-edge X-ray absorption spectroscopy (NEXAFS) and density functional theory calculations (DFT) including final state effects beyond the sudden state approximation. In particular, we find that a description that considers the partial screening of the electron-hole Coulomb correlation on a static level as well as the rearrangement of electronic density shows excellent agreement with experiment and allows to uncover the details of the charge transfer mechanism in DTBDT-TCNQ and DTBDT-F4 TCNQ, as well as a reinterpretation of previous NEXAFS data on pure TCNQ. Finally, we further show that almost the same quality of agreement between theoretical results and experiment is obtained by the much faster Z+1/2 approximation, where the core hole effects are simulated by replacing N or F with atomic number Z with the neighboring atom with atomic number Z+1/2.
Nonstationary stochastic charge fluctuations of a dust particle in plasmas.
Shotorban, B
2011-06-01
Stochastic charge fluctuations of a dust particle that are due to discreteness of electrons and ions in plasmas can be described by a one-step process master equation [T. Matsoukas and M. Russell, J. Appl. Phys. 77, 4285 (1995)] with no exact solution. In the present work, using the system size expansion method of Van Kampen along with the linear noise approximation, a Fokker-Planck equation with an exact Gaussian solution is developed by expanding the master equation. The Gaussian solution has time-dependent mean and variance governed by two ordinary differential equations modeling the nonstationary process of dust particle charging. The model is tested via the comparison of its results to the results obtained by solving the master equation numerically. The electron and ion currents are calculated through the orbital motion limited theory. At various times of the nonstationary process of charging, the model results are in a very good agreement with the master equation results. The deviation is more significant when the standard deviation of the charge is comparable to the mean charge in magnitude.
Charge modulation as fingerprints of phase-string triggered interference
NASA Astrophysics Data System (ADS)
Zhu, Zheng; Tian, Chushun; Jiang, Hong-Chen; Qi, Yang; Weng, Zheng-Yu; Zaanen, Jan
2015-07-01
Charge order appears to be an ubiquitous phenomenon in doped Mott insulators, which is currently under intense experimental and theoretical investigations particularly in the high Tc cuprates. This phenomenon is conventionally understood in terms of Hartree-Fock-type mean-field theory. Here we demonstrate a mechanism for charge modulation which is rooted in the many-particle quantum physics arising in the strong coupling limit. Specifically, we consider the problem of a single hole in a bipartite t -J ladder. As a remnant of the fermion signs, the hopping hole picks up subtle phases pending the fluctuating spins, the so-called phase-string effect. We demonstrate the presence of charge modulations in the density matrix renormalization group solutions which disappear when the phase strings are switched off. This form of charge modulation can be understood analytically in a path-integral language with a mean-field-like approximation adopted, showing that the phase strings give rise to constructive interferences leading to self-localization. When the latter occurs, left- and right-moving propagating modes emerge inside the localization volume and their interference is responsible for the real space charge modulation.
Sugihara-Seki, Masako; Akinaga, Takeshi; O-Tani, Hideyuki
2012-01-01
A fluid mechanical and electrostatic model for the transport of solute molecules across the vascular endothelial surface glycocalyx layer (EGL) was developed to study the charge effect on the diffusive and convective transport of the solutes. The solute was assumed to be a spherical particle with a constant surface charge density, and the EGL was represented as an array of periodically arranged circular cylinders of like charge, with a constant surface charge density. By combining the fluid mechanical analyses for the flow around a solute suspended in an electrolyte solution and the electrostatic analyses for the free energy of the interaction between the solute and cylinders based on a mean field theory, we estimated the transport coefficients of the solute across the EGL. Both of diffusive and convective transports are reduced compared to those for an uncharged system, due to the stronger exclusion of the solute that results from the repulsive electrostatic interaction. The model prediction for the reflection coefficient for serum albumin agreed well with experimental observations if the charge density in the EGL is ranged from approximately -10 to -30 mEq/l.
Genesis of charge orders in high temperature superconductors
Tu, Wei-Lin; Lee, Ting-Kuo
2016-01-01
One of the most puzzling facts about cuprate high-temperature superconductors in the lightly doped regime is the coexistence of uniform superconductivity and/or antiferromagnetism with many low-energy charge-ordered states in a unidirectional charge density wave or a bidirectional checkerboard structure. Recent experiments have discovered that these charge density waves exhibit different symmetries in their intra-unit-cell form factors for different cuprate families. Using a renormalized mean-field theory for a well-known, strongly correlated model of cuprates, we obtain a number of charge-ordered states with nearly degenerate energies without invoking special features of the Fermi surface. All of these self-consistent solutions have a pair density wave intertwined with a charge density wave and sometimes a spin density wave. Most of these states vanish in the underdoped regime, except for one with a large d-form factor that vanishes at approximately 19% doping of the holes, as reported by experiments. Furthermore, these states could be modified to have a global superconducting order, with a nodal-like density of states at low energy. PMID:26732076
Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.; ...
2017-07-26
Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. In this paper, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation and isolate the effects of charge and cavitation, comparing tomore » the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. Finally, this suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.
Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. In this paper, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation and isolate the effects of charge and cavitation, comparing tomore » the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. Finally, this suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.« less
NASA Astrophysics Data System (ADS)
Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.; Mundy, Chistopher J.
2017-10-01
Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. Here, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation and isolate the effects of charge and cavitation, comparing to the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. This suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.
Charged particle layers in the Debye limit.
Golden, Kenneth I; Kalman, Gabor J; Kyrkos, Stamatios
2002-09-01
We develop an equivalent of the Debye-Hückel weakly coupled equilibrium theory for layered classical charged particle systems composed of one single charged species. We consider the two most important configurations, the charged particle bilayer and the infinite superlattice. The approach is based on the link provided by the classical fluctuation-dissipation theorem between the random-phase approximation response functions and the Debye equilibrium pair correlation function. Layer-layer pair correlation functions, screened and polarization potentials, static structure functions, and static response functions are calculated. The importance of the perfect screening and compressibility sum rules in determining the overall behavior of the system, especially in the r--> infinity limit, is emphasized. The similarities and differences between the quasi-two-dimensional bilayer and the quasi-three-dimensional superlattice are highlighted. An unexpected behavior that emerges from the analysis is that the screened potential, the correlations, and the screening charges carried by the individual layers exhibit a marked nonmonotonic dependence on the layer separation.
Hydrodynamics with chiral anomaly and charge separation in relativistic heavy ion collisions
Yin, Yi; Liao, Jinfeng
2016-03-03
Matter with chiral fermions is microscopically described by theory with quantum anomaly and macroscopically described (at low energy) by anomalous hydrodynamics. For such systems in the presence of external magnetic field and chirality imbalance, a charge current is generated along the magnetic field direction ₋ a phenomenon known as the Chiral Magnetic Effect (CME). The quark- gluon plasma created in relativistic heavy ion collisions provides an (approximate) example, for which the CME predicts a charge separation perpendicular to the collisional reaction plane. Charge correlation measurements designed for the search of such signal have been done at RHIC and the LHCmore » for which the interpretations, however, remain unclear due to contamination by background effects that are collective flow driven, theoretically poorly constrained, and experimentally hard to separate. Using anomalous (and viscous) hydrodynamic simulations, we make a first attempt at quantifying contributions to observed charge correlations from both CME and background effects in one and same framework. We discuss the implications for the search of CME.« less
Freeze-out conditions in heavy ion collisions from QCD thermodynamics.
Bazavov, A; Ding, H-T; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Mukherjee, Swagato; Petreczky, P; Schmidt, C; Smith, D; Soeldner, W; Wagner, M
2012-11-09
We present a determination of freeze-out conditions in heavy ion collisions based on ratios of cumulants of net electric charge fluctuations. These ratios can reliably be calculated in lattice QCD for a wide range of chemical potential values by using a next-to-leading order Taylor series expansion around the limit of vanishing baryon, electric charge and strangeness chemical potentials. From a computation of up to fourth order cumulants and charge correlations we first determine the strangeness and electric charge chemical potentials that characterize freeze-out conditions in a heavy ion collision and confirm that in the temperature range 150 MeV ≤ T ≤ 170 MeV the hadron resonance gas model provides good approximations for these parameters that agree with QCD calculations on the 5%-15% level. We then show that a comparison of lattice QCD results for ratios of up to third order cumulants of electric charge fluctuations with experimental results allows us to extract the freeze-out baryon chemical potential and the freeze-out temperature.
Positive column of a glow discharge in neon with charged dust grains (a review)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polyakov, D. N., E-mail: cryolab@ihed.ras.ru; Shumova, V. V.; Vasilyak, L. M.
The effect of charged micron-size dust grains (microparticles) on the electric parameters of the positive column of a low-pressure dc glow discharge in neon has been studied experimentally and numerically. Numerical analysis is carried out in the diffusion-drift approximation with allowance for the interaction of dust grains with metastable neon atoms. In a discharge with a dust grain cloud, the longitudinal electric field increases. As the number density of dust grains in an axisymmetric cylindrical dust cloud rises, the growth of the electric field saturates. It is shown that the contribution of metastable atoms to ionization is higher in amore » discharge with dust grains, in spite of the quenching of metastable atoms on dust grains. The processes of charging of dust grains and the dust cloud are considered. As the number density of dust grains rises, their charge decreases, while the space charge of the dust cloud increases. The results obtained can be used in plasma technologies involving microparticles.« less
Coulomb energy of uniformly charged spheroidal shell systems.
Jadhao, Vikram; Yao, Zhenwei; Thomas, Creighton K; de la Cruz, Monica Olvera
2015-03-01
We provide exact expressions for the electrostatic energy of uniformly charged prolate and oblate spheroidal shells. We find that uniformly charged prolate spheroids of eccentricity greater than 0.9 have lower Coulomb energy than a sphere of the same area. For the volume-constrained case, we find that a sphere has the highest Coulomb energy among all spheroidal shells. Further, we derive the change in the Coulomb energy of a uniformly charged shell due to small, area-conserving perturbations on the spherical shape. Our perturbation calculations show that buckling-type deformations on a sphere can lower the Coulomb energy. Finally, we consider the possibility of counterion condensation on the spheroidal shell surface. We employ a Manning-Oosawa two-state model approximation to evaluate the renormalized charge and analyze the behavior of the equilibrium free energy as a function of the shell's aspect ratio for both area-constrained and volume-constrained cases. Counterion condensation is seen to favor the formation of spheroidal structures over a sphere of equal area for high values of shell volume fractions.
Electrostatic twisted modes in multi-component dusty plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayub, M. K.; National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000; Pohang University of Sciences and Technology, Pohang, Gyeongbuk 790-784
Various electrostatic twisted modes are re-investigated with finite orbital angular momentum in an unmagnetized collisionless multi-component dusty plasma, consisting of positive/negative charged dust particles, ions, and electrons. For this purpose, hydrodynamical equations are employed to obtain paraxial equations in terms of density perturbations, while assuming the Gaussian and Laguerre-Gaussian (LG) beam solutions. Specifically, approximated solutions for potential problem are studied by using the paraxial approximation and expressed the electric field components in terms of LG functions. The energy fluxes associated with these modes are computed and corresponding expressions for orbital angular momenta are derived. Numerical analyses reveal that radial/angular modemore » numbers as well as dust number density and dust charging states strongly modify the LG potential profiles attributed to different electrostatic modes. Our results are important for understanding particle transport and energy transfer due to wave excitations in multi-component dusty plasmas.« less
Theory of the interface between a classical plasma and a hard wall
NASA Astrophysics Data System (ADS)
Ballone, P.; Pastore, G.; Tosi, M. P.
1983-09-01
The interfacial density profile of a classical one-component plasma confined by a hard wall is studied in planar and spherical geometries. The approach adapts to interfacial problems a modified hypernetted-chain approximation developed by Lado and by Rosenfeld and Ashcroft for the bulk structure of simple liquids. The specific new aim is to embody selfconsistently into the theory a contact theorem, fixing the plasma density at the wall through an equilibrium condition which involves the electrical potential drop across the interface and the bulk pressure. The theory is brought into fully quantitative contact with computer simulation data for a plasma confined in a spherical cavity of large but finite radius. The interfacial potential at the point of zero charge is accurately reproduced by suitably combining the contact theorem with relevant bulk properties in a simple, approximate representation of the interfacial charge density profile.
Theory of the interface between a classical plasma and a hard wall
NASA Astrophysics Data System (ADS)
Ballone, P.; Pastore, G.; Tosi, M. P.
1984-12-01
The interfacial density profile of a classical one-component plasma confined by a hard wall is studied in planar and spherical geometries. The approach adapts to interfacial problems a modified hypernetted-chain approximation developed by Lado and by Rosenfeld and Ashcroft for the bulk structure of simple liquids. The specific new aim is to embody self-consistently into the theory a “contact theorem”, fixing the plasma density at the wall through an equilibrium condition which involves the electrical potential drop across the interface and the bulk pressure. The theory is brought into fully quantitative contact with computer simulation data for a plasma confined in a spherical cavity of large but finite radius. It is also shown that the interfacial potential at the point of zero charge is accurately reproduced by suitably combining the contact theorem with relevant bulk properties in a simple, approximate representation of the interfacial charge density profile.
NASA Astrophysics Data System (ADS)
Rindani, Saurabh D.
2002-04-01
QCD corrections to order as in the soft-gluon approximation to angular distributions of decay charged leptons in the process e+e- --> t t(bar), followed by semileptonic decay of t or t(bar), are obtained in the e+e- centre-of-mass frame. As compared to distributions in the top rest frame, these have the advantage that they would allow direct comparison with experiment without the need to reconstruct the top rest frame. The results also do not depend on the choice of a spin quantization axis for t or t (bar). Analytic expression for the triple distribution in the polar angle of t and polar and azimuthal angles of the lepton is obtained. Analytic expression is also derived for the distribution in the charged-lepton polar angle. Numerical values are discussed for (s) 1/2 = 400, 800 and 1500 GeV.
Like-sign dimuon charge asymmetry at the Tevatron: Corrections from B meson fragmentation
NASA Astrophysics Data System (ADS)
Mitov, Alexander
2011-07-01
The existing predictions for the like-sign dimuon charge asymmetry at the Tevatron are expressed in terms of parameters related to B mesons’ mixing and inclusive production fractions. We show that in the realistic case when phase-space cuts are applied, the asymmetry depends also on the details of the production mechanism for the B mesons. In particular, it is sensitive to the difference in the fragmentation functions of Bd0 and Bs0 mesons. We estimate these fragmentation effects and find that they shift the theory prediction for this observable by approximately 10%. We also point out the approximately 20% sensitivity of the asymmetry depending on which set of values for the B meson production fractions is used: as measured at the Z pole or at the Tevatron. The impact of these effects on the extraction of ASLs from the D0 measurement is presented.
Calibration of a stack of NaI scintillators at the Berkeley Bevalac
NASA Technical Reports Server (NTRS)
Schindler, S. M.; Buffington, A.; Lau, K.; Rasmussen, I. L.
1983-01-01
An analysis of the carbon and argon data reveals that essentially all of the charge-changing fragmentation reactions within the stack can be identified and removed by imposing the simple criteria relating the observed energy deposition profiles to the expected Bragg curve depositions. It is noted that these criteria are even capable of identifying approximately one-third of the expected neutron-stripping interactions, which in these cases have anomalous deposition profiles. The contribution of mass error from uncertainty in delta E has an upper limit of 0.25 percent for Mn; this produces an associated mass error for the experiment of about 0.14 amu. It is believed that this uncertainty will change little with changing gamma. Residual errors in the mapping produce even smaller mass errors for lighter isotopes, whereas photoelectron fluctuations and delta-ray effects are approximately the same independent of the charge and energy deposition.
SEE rate estimation based on diffusion approximation of charge collection
NASA Astrophysics Data System (ADS)
Sogoyan, Armen V.; Chumakov, Alexander I.; Smolin, Anatoly A.
2018-03-01
The integral rectangular parallelepiped (IRPP) method remains the main approach to single event rate (SER) prediction for aerospace systems, despite the growing number of issues impairing method's validity when applied to scaled technology nodes. One of such issues is uncertainty in parameters extraction in the IRPP method, which can lead to a spread of several orders of magnitude in the subsequently calculated SER. The paper presents an alternative approach to SER estimation based on diffusion approximation of the charge collection by an IC element and geometrical interpretation of SEE cross-section. In contrast to the IRPP method, the proposed model includes only two parameters which are uniquely determined from the experimental data for normal incidence irradiation at an ion accelerator. This approach eliminates the necessity of arbitrary decisions during parameter extraction and, thus, greatly simplifies calculation procedure and increases the robustness of the forecast.
Nonlinear responses of chiral fluids from kinetic theory
NASA Astrophysics Data System (ADS)
Hidaka, Yoshimasa; Pu, Shi; Yang, Di-Lun
2018-01-01
The second-order nonlinear responses of inviscid chiral fluids near local equilibrium are investigated by applying the chiral kinetic theory (CKT) incorporating side-jump effects. It is shown that the local equilibrium distribution function can be nontrivially introduced in a comoving frame with respect to the fluid velocity when the quantum corrections in collisions are involved. For the study of anomalous transport, contributions from both quantum corrections in anomalous hydrodynamic equations of motion and those from the CKT and Wigner functions are considered under the relaxation-time (RT) approximation, which result in anomalous charge Hall currents propagating along the cross product of the background electric field and the temperature (or chemical-potential) gradient and of the temperature and chemical-potential gradients. On the other hand, the nonlinear quantum correction on the charge density vanishes in the classical RT approximation, which in fact satisfies the matching condition given by the anomalous equation obtained from the CKT.
Lateral distribution on charged particles in EAS
NASA Technical Reports Server (NTRS)
Dedenko, L. G.; Kulikov, G. V.; Solovjeva, V. I.; Sulakov, V. F.
1985-01-01
Lateral distribution of charged particles which allow for the finiteness of energy gamma-quanta, the inhomogeneity of the atmosphere and the experimental selection of EAS are needed to interpret experimental data. The effects of finiteness of energy of gamma-quanta which produce the partial electron-photon cascades were considered by substituting K R sub m instead of R sub m in NKG approximation where K was found to be 0.56 from comparison with the experimental data. New results on the lateral distribution of electrons in the partial cascades from gamma-quanta were obtained. It is shown that the coefficient K can be regarded as a constant. The last approximation of K was found to be most adequate when compared with the experimental data. The inhomogeneity of the atmosphere, muons and experimental selection are considered. The calculation of Ne are extended from 100,000 to 10 million for sea level and for Akeno level.
Self-interaction effects on charge-transfer collisions
Quashie, Edwin E.; Saha, Bidhan C.; Andrade, Xavier; ...
2017-04-27
In this article, we investigate the role of the self-interaction error in the simulation of collisions using time-dependent density functional theory (TDDFT) and Ehrenfest dynamics. In addition, we compare many different approximations of the exchange and correlation potential, using as a test system the collision of H + + CH 4 at 30 eV. We find that semilocal approximations, like the Perdew-Burke- Ernzerhof (PBE), and even hybrid functionals, such as the Becke, 3-parameter, Lee-Yang-Parr (B3LYP), produce qualitatively incorrect predictions for the scattering of the proton. This discrepancy appears because the self-interaction error allows the electrons to jump too easily tomore » the proton, leading to radically different forces with respect to the non-self-interacting case. Lastly, from our results, we conclude that using a functional that is self-interaction free is essential to properly describing charge-transfer collisions between ions and molecules in TDDFT.« less
Plasma entry into the earth's magnetosphere
NASA Technical Reports Server (NTRS)
Frank, L. A.
1972-01-01
Both high- and low-altitude measurements are used to establish the salient features of the three regions presently thought to be the best candidates for the entry of magnetosheath plasma into the magnetosphere, and hence the primal sources of charged particles for the plasma sheet and its earthward termination in the ring current. These three regions are (1) the polar cusps and their extensions into the nighttime magnetosphere, (2) the downstream flanks of the magnetosphere at geocentric radial distances approximately equal to 10 to 50 earth radii along the plasma sheet-magnetosheath interface, and (3) the distant magnetotail at radial distances greater than or approximately equal to 50 earth radii. Present observational knowledge of each of these regions is discussed critically as to evidences for charged particle entry into the magnetosphere from the magnetosheath. The possibility that all three of these magnetospheric domains share an intimate topological relationship is also examined.
Charge-equilibrium and radiation of low-energy cosmic rays passing through interstellar medium
NASA Technical Reports Server (NTRS)
Rule, D. W.; Omidvar, K.
1977-01-01
The charge equilibrium and radiation of an oxygen and an iron beam in the MeV per nucleon energy range, representing a typical beam of low-energy cosmic rays passing through the interstellar medium, is considered. Electron loss of the beam has been taken into account by means of the First Born approximation allowing for the target atom to remain unexcited, or to be excited to all possible states. Electron capture cross sections have been calculated by means of the scaled Oppenheimer-Brinkman-Kramers approximation, taking into account all atomic shells of the target atoms. Radiation of the beam due to electron capture into the excited states of the ion, collisional excitation and collisional inner-shell ionization of the ions has been considered. Effective X-ray production cross sections and multiplicities for the most energetic X-ray lines emitted by the Fe and O beams have been calculated.
Screening in ionic systems: simulations for the Lebowitz length.
Kim, Young C; Luijten, Erik; Fisher, Michael E
2005-09-30
Simulations of the Lebowitz length, xiL (T, rho), are reported for the restricted primitive model hard-core (diameter a) 1:1 electrolyte for densities rho approximately < 4rho(c) and T(c) approximately < T approximately < 40T(c). Finite-size effects are elucidated for the charge fluctuations in various subdomains that serve to evaluate xiL. On extrapolation to the bulk limit for T approximately > 10T(c) the exact low-density expansions are seen to fail badly when rho > 1/10 rho(c) (with rho(c)a3 approximately = 0.08). At higher densities xiL rises above the Debye length, xiD proportional to square root(T/rho), by 10%-30% (up to rho approximately =1.3rho(c)); the variation is portrayed fairly well by the generalized Debye-Hückel theory. On approaching criticality at fixed rho or fixed T, xiL (T, rho) remains finite with xiL(c) approximately = 0.30a approximately = 1.3xiD(c) but displays a weak entropylike singularity.
1985-01-01
To obtain small membrane markers easily accessible to the charged groups of the cell surface, we prepared, from hemeundecapeptide (HUP), three derivatives that maintain the peroxidatic activity: the anionized hemeundecapeptide, Mr 1,963, estimated diameter 1.68 nm, pl 3.5, for the detection of basic groups; and both a cationized hemeundecapeptide containing predominantly tertiary amino groups, Mr 2,215, estimated diameter 1.75 nm, pl 9.0, and a cationized hemeundecapeptide containing only primary amino groups, Mr 2,271, estimated diameter 1.75 nm, pl 10.6, for labeling acidic residues. The markers were perfused in situ in mice to label the luminal surface of fenestrated endothelium of pancreatic capillaries. Specimens were processed through the cytochemical reaction for peroxidatic activity and examined by electron microscopy. The anionized HUP and HUP (pl 4.85) marked the plasmalemma proper, the coated pits, and the membrane and diaphragms of plasmalemmal vesicles and transendothelial channels. The cationized HUP containing predominantly tertiary amino groups (pl 9.0) decorated all cell surface components with the exception of plasmalemmal vesicles and channels; the latter were, however, labeled by the cationized HUP containing only primary groups (pl 10.6), which suggests that these structures contain on their luminal surface very weak acidic residues of high pKa values. The fact that the membrane of plasmalemmal vesicles can discriminate against permeant cationic macromolecules only up to a pl of approximately 9.0 indicates that in the electrostatic restriction there is a charge limit. In the case of fenestrated capillary endothelium, the upper charge limit seems to be a pl of approximately 9.0. In these vessels, the charge discrimination is effective for molecules as small as 2 nm. PMID:3968182
Ghinea, N; Simionescu, N
1985-02-01
To obtain small membrane markers easily accessible to the charged groups of the cell surface, we prepared, from hemeundecapeptide (HUP), three derivatives that maintain the peroxidatic activity: the anionized hemeundecapeptide, Mr 1,963, estimated diameter 1.68 nm, pl 3.5, for the detection of basic groups; and both a cationized hemeundecapeptide containing predominantly tertiary amino groups, Mr 2,215, estimated diameter 1.75 nm, pl 9.0, and a cationized hemeundecapeptide containing only primary amino groups, Mr 2,271, estimated diameter 1.75 nm, pl 10.6, for labeling acidic residues. The markers were perfused in situ in mice to label the luminal surface of fenestrated endothelium of pancreatic capillaries. Specimens were processed through the cytochemical reaction for peroxidatic activity and examined by electron microscopy. The anionized HUP and HUP (pl 4.85) marked the plasmalemma proper, the coated pits, and the membrane and diaphragms of plasmalemmal vesicles and transendothelial channels. The cationized HUP containing predominantly tertiary amino groups (pl 9.0) decorated all cell surface components with the exception of plasmalemmal vesicles and channels; the latter were, however, labeled by the cationized HUP containing only primary groups (pl 10.6), which suggests that these structures contain on their luminal surface very weak acidic residues of high pKa values. The fact that the membrane of plasmalemmal vesicles can discriminate against permeant cationic macromolecules only up to a pl of approximately 9.0 indicates that in the electrostatic restriction there is a charge limit. In the case of fenestrated capillary endothelium, the upper charge limit seems to be a pl of approximately 9.0. In these vessels, the charge discrimination is effective for molecules as small as 2 nm.
Financial ratios in diagnostic radiology practices: variability and trends.
Hogan, Christopher; Sunshine, Jonathan H
2004-03-01
To evaluate variation in financial ratios for radiology practices nationwide and trends in these ratios and in payments. In 1999, the American College of Radiology surveyed radiology practices by mail. The final response rate was 66%. Weighting was used to make responses representative of all radiology practices in the United States. Self-reported financial ratios (payments, charges, accounts receivable turnover) were analyzed; 449 responses had usable data on these ratios. Comparison with results of a similar 1992 survey and combined analysis with Medicare data on billed charges provided information on trends. All measures of payment collections declined sharply from 1992 to 1999, with the gross collections rate (revenues as percentage of billed charges) decreasing from 71% to 55%. Average payment for a typical radiology service decreased approximately 4% in dollar terms or approximately 19% in inflation-adjusted terms. In 1999, nonmetropolitan practices appeared to fare better than others. Among insurers, Medicaid stood out as a low and slow payer, but neither managed care nor Medicare had a consistent effect on financial ratios. The gross collections rate varied substantially across geographic areas, as did, in an inverse pattern, the level of billed charges. One-quarter of practices had accounts receivable equal to 90 or more days of billings. The opposing geographic pattern of billed charges and gross collection rate suggests that geographic variation in the latter is driven more by variation in billed charges than by variation in payment levels. Radiologists saw a substantial decrease in the real (inflation-adjusted) value of payment per service during the 1990s. The large fraction of practices with accounts receivable of 90 or more days of billings-a level considered potentially imprudent by financial management advisors-suggests that many practices should improve financial management and that state prompt-payment laws have not had a substantial positive effect. Copyright RSNA, 2004
Relationship between ion pair geometries and electrostatic strengths in proteins.
Kumar, Sandeep; Nussinov, Ruth
2002-01-01
The electrostatic free energy contribution of an ion pair in a protein depends on two factors, geometrical orientation of the side-chain charged groups with respect to each other and the structural context of the ion pair in the protein. Conformers in NMR ensembles enable studies of the relationship between geometry and electrostatic strengths of ion pairs, because the protein structural contexts are highly similar across different conformers. We have studied this relationship using a dataset of 22 unique ion pairs in 14 NMR conformer ensembles for 11 nonhomologous proteins. In different NMR conformers, the ion pairs are classified as salt bridges, nitrogen-oxygen (N-O) bridges and longer-range ion pairs on the basis of geometrical criteria. In salt bridges, centroids of the side-chain charged groups and at least a pair of side-chain nitrogen and oxygen atoms of the ion-pairing residues are within a 4 A distance. In N-O bridges, at least a pair of the side-chain nitrogen and oxygen atoms of the ion-pairing residues are within 4 A distance, but the distance between the side-chain charged group centroids is greater than 4 A. In the longer-range ion pairs, the side-chain charged group centroids as well as the side-chain nitrogen and oxygen atoms are more than 4 A apart. Continuum electrostatic calculations indicate that most of the ion pairs have stabilizing electrostatic contributions when their side-chain charged group centroids are within 5 A distance. Hence, most (approximately 92%) of the salt bridges and a majority (68%) of the N-O bridges are stabilizing. Most (approximately 89%) of the destabilizing ion pairs are the longer-range ion pairs. In the NMR conformer ensembles, the electrostatic interaction between side-chain charged groups of the ion-pairing residues is the strongest for salt bridges, considerably weaker for N-O bridges, and the weakest for longer-range ion pairs. These results suggest empirical rules for stabilizing electrostatic interactions in proteins. PMID:12202384
Pouran, Behdad; Arbabi, Vahid; Zadpoor, Amir A; Weinans, Harrie
2016-12-01
The metabolic function of cartilage primarily depends on transport of solutes through diffusion mechanism. In the current study, we use contrast enhanced micro-computed tomography to determine equilibrium concentration of solutes through different cartilage zones and solute flux in the cartilage, using osteochondral plugs from equine femoral condyles. Diffusion experiments were performed with two solutes of different charge and approximately equal molecular weight, namely iodixanol (neutral) and ioxaglate (charge=-1) in order to isolate the effects of solute's charge on diffusion. Furthermore, solute concentrations as well as bath osmolality were changed to isolate the effects of steric hindrance on diffusion. Bath concentration and bath osmolality only had minor effects on the diffusion of the neutral solute through cartilage at the surface, middle and deep zones, indicating that the diffusion of the neutral solute was mainly Fickian. The negatively charged solute diffused considerably slower through cartilage than the neutral solute, indicating a large non-Fickian contribution in the diffusion of charged molecules. The numerical models determined maximum solute flux in the superficial zone up to a factor of 2.5 lower for the negatively charged solutes (charge=-1) as compared to the neutral solutes confirming the importance of charge-matrix interaction in diffusion of molecules across cartilage. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Boukezzi, L.; Rondot, S.; Jbara, O.; Boubakeur, A.
2018-08-01
The effect of thermal aging on the charging phenomena in cross-linked polyethylene (XLPE) has been studied under electron beam irradiation in scanning electron microscope (SEM). The dynamic variation of trapped charge represents the trapping process of XLPE under electron beam irradiation. We have found that the trapped charge variation can be approximated by a first order exponential function. The amount of trapped charge presents enhanced values at the beginning of aging at lower temperatures (80 °C and 100 °C). This suggests the diffusion of cross-linking by-products to the surface of sample that acts as traps for injected electrons. The oxidation which is a very important form of XLPE degradation has an effect at the advanced stage of the aging process. For higher temperatures (120 °C and 140 °C), the taken part process in the evolution of the trapped charge is the crystallinity increase at the beginning of aging leading to the trapped charge decreasing, and the polar groups generated by thermo-oxidation process at the end of aging leading to the trapped charge increase. Variations of leakage current according to the aging time have quite similar trends with the dielectric losses factor and consequently some correlations must be made between charging mechanisms and the electrical behaviour of XLPE under thermal aging.
Molecular Model of a Quantum Dot Beyond the Constant Interaction Approximation
NASA Astrophysics Data System (ADS)
Temirov, Ruslan; Green, Matthew F. B.; Friedrich, Niklas; Leinen, Philipp; Esat, Taner; Chmielniak, Pawel; Sarwar, Sidra; Rawson, Jeff; Kögerler, Paul; Wagner, Christian; Rohlfing, Michael; Tautz, F. Stefan
2018-05-01
We present a physically intuitive model of molecular quantum dots beyond the constant interaction approximation. It accurately describes their charging behavior and allows the extraction of important molecular properties that are otherwise experimentally inaccessible. The model is applied to data recorded with a noncontact atomic force microscope on three different molecules that act as a quantum dot when attached to the microscope tip. The results are in excellent agreement with first-principles simulations.
AQUEOUS PROTONATION PROPERTIES OF AMPHOTERIC NANOPARTICLES
A divergence is predicted between the acidity behavior of charged sites on micron sized colloidal particles and nanoparticles. Utilizing the approximate analytical solution to the Poisson-Boltzmann equation published by Ohshima et al. (1982), findings from the work included: 1):...
30 CFR 57.8520 - Ventilation plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... depots, oil fuel storage depots, hoist rooms, compressors, battery charging stations and explosive... and booster fans including manufacturer's name, type, size, fan speed, blade setting, approximate... sketches showing how ventilation is accomplished in each typical type of working place including the...
30 CFR 57.8520 - Ventilation plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... depots, oil fuel storage depots, hoist rooms, compressors, battery charging stations and explosive... and booster fans including manufacturer's name, type, size, fan speed, blade setting, approximate... sketches showing how ventilation is accomplished in each typical type of working place including the...
30 CFR 57.8520 - Ventilation plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... depots, oil fuel storage depots, hoist rooms, compressors, battery charging stations and explosive... and booster fans including manufacturer's name, type, size, fan speed, blade setting, approximate... sketches showing how ventilation is accomplished in each typical type of working place including the...
30 CFR 57.8520 - Ventilation plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... depots, oil fuel storage depots, hoist rooms, compressors, battery charging stations and explosive... and booster fans including manufacturer's name, type, size, fan speed, blade setting, approximate... sketches showing how ventilation is accomplished in each typical type of working place including the...
Multiplexed charge-locking device for large arrays of quantum devices
NASA Astrophysics Data System (ADS)
Puddy, R. K.; Smith, L. W.; Al-Taie, H.; Chong, C. H.; Farrer, I.; Griffiths, J. P.; Ritchie, D. A.; Kelly, M. J.; Pepper, M.; Smith, C. G.
2015-10-01
We present a method of forming and controlling large arrays of gate-defined quantum devices. The method uses an on-chip, multiplexed charge-locking system and helps to overcome the restraints imposed by the number of wires available in cryostat measurement systems. The device architecture that we describe here utilises a multiplexer-type scheme to lock charge onto gate electrodes. The design allows access to and control of gates whose total number exceeds that of the available electrical contacts and enables the formation, modulation and measurement of large arrays of quantum devices. We fabricate such devices on n-type GaAs/AlGaAs substrates and investigate the stability of the charge locked on to the gates. Proof-of-concept is shown by measurement of the Coulomb blockade peaks of a single quantum dot formed by a floating gate in the device. The floating gate is seen to drift by approximately one Coulomb oscillation per hour.
Electrostatic potential of B-DNA: effect of interionic correlations.
Gavryushov, S; Zielenkiewicz, P
1998-01-01
Modified Poisson-Boltzmann (MPB) equations have been numerically solved to study ionic distributions and mean electrostatic potentials around a macromolecule of arbitrarily complex shape and charge distribution. Results for DNA are compared with those obtained by classical Poisson-Boltzmann (PB) calculations. The comparisons were made for 1:1 and 2:1 electrolytes at ionic strengths up to 1 M. It is found that ion-image charge interactions and interionic correlations, which are neglected by the PB equation, have relatively weak effects on the electrostatic potential at charged groups of the DNA. The PB equation predicts errors in the long-range electrostatic part of the free energy that are only approximately 1.5 kJ/mol per nucleotide even in the case of an asymmetrical electrolyte. In contrast, the spatial correlations between ions drastically affect the electrostatic potential at significant separations from the macromolecule leading to a clearly predicted effect of charge overneutralization. PMID:9826596
Camargo, Manuel; Téllez, Gabriel
2008-04-07
The renormalized charge of a simple two-dimensional model of colloidal suspension was determined by solving the hypernetted chain approximation and Ornstein-Zernike equations. At the infinite dilution limit, the asymptotic behavior of the correlation functions is used to define the effective interactions between the components of the system and these effective interactions were compared to those derived from the Poisson-Boltzmann theory. The results we obtained show that, in contrast to the mean-field theory, the renormalized charge does not saturate, but exhibits a maximum value and then decays monotonically as the bare charge increases. The results also suggest that beyond the counterion layer near to the macroion surface, the ionic cloud is not a diffuse layer which can be handled by means of the linearized theory, as the two-state model claims, but a more complex structure is settled by the correlations between microions.
Crater Formation on Electrodes during Charge Transfer with Aqueous Droplets or Solid Particles
NASA Astrophysics Data System (ADS)
Elton, Eric S.; Rosenberg, Ethan R.; Ristenpart, William D.
2017-11-01
We report that metallic electrodes are physically pitted during charge transfer events with water droplets or other conductive objects moving in strong electric fields (>1 kV/cm). Post situ microscopic inspection of the electrode shows that an individual charge transfer event yields a crater approximately 1 to 3 microns wide, often with features similar to splash coronae. We interpret the crater formation in terms of localized melting of the electrode via resistive heating concurrent with dielectric breakdown through the surrounding insulating fluid. A scaling analysis indicates that the crater diameter scales as the inverse cube root of the melting point temperature Tm of the metal, in accord with measurements on several metals (660°C <=Tm <= 3414°C). The process of crater formation provides a possible explanation for the longstanding difficulty in quantitatively corroborating Maxwell's prediction for the amount of charge acquired by spheres contacting a planar electrode.
Nonequilibrium mechanisms of weak electrolyte electrification under the action of constant voltage
NASA Astrophysics Data System (ADS)
Stishkov, Yu. K.; Chirkov, V. A.
2016-07-01
The formation of space charge in weak electrolytes, specifically in liquid dielectrics, has been considered. An analytical solution is given to a simplified set of Nernst-Planck equations that describe the formation of nonequilibrium recombination layers in weak electrolytes. This approximate analytical solution is compared with computer simulation data for a complete set of Poisson-Nernst-Planck equations. It has been shown that the current passage in weak electrolytes can be described by a single dimensionless parameter that equals the length of a near-electrode recombination layer divided by the width of the interelectrode gap. The formation mechanism and the structure of charged nonequilibrium near-electrode layers in the nonstationary regime have been analyzed for different injection-to-conduction current ratios. It has been found that almost all charge structures encountered in weak dielectrics can be accounted for by the nonequilibrium dissociation-recombination mechanism of space charge formation.
Ab initio estimates of the size of the observable universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Page, Don N., E-mail: profdonpage@gmail.com
2011-09-01
When one combines multiverse predictions by Bousso, Hall, and Nomura for the observed age and size of the universe in terms of the proton and electron charge and masses with anthropic predictions of Carter, Carr, and Rees for these masses in terms of the charge, one gets that the age of the universe should be roughly the inverse 64th power, and the cosmological constant should be around the 128th power, of the proton charge. Combining these with a further renormalization group argument gives a single approximate equation for the proton charge, with no continuous adjustable or observed parameters, and withmore » a solution that is within 8% of the observed value. Using this solution gives large logarithms for the age and size of the universe and for the cosmological constant that agree with the observed values within 17%.« less
Redundant information encoding in QED during decoherence
NASA Astrophysics Data System (ADS)
Tuziemski, J.; Witas, P.; Korbicz, J. K.
2018-01-01
Broadly understood decoherence processes in quantum electrodynamics, induced by neglecting either the radiation [L. Landau, Z. Phys. 45, 430 (1927), 10.1007/BF01343064] or the charged matter [N. Bohr and L. Rosenfeld, K. Danske Vidensk. Selsk, Math.-Fys. Medd. XII, 8 (1933)], have been studied from the dawn of the theory. However, what happens in between, when a part of the radiation may be observed, as is the case in many real-life situations, has not been analyzed yet. We present such an analysis for a nonrelativistic, pointlike charge and thermal radiation. In the dipole approximation, we solve the dynamics and show that there is a regime where, despite the noise, the observed field carries away almost perfect and hugely redundant information about the charge momentum. We analyze a partial charge-field state and show that it approaches a so-called spectrum broadcast structure.
NASA Astrophysics Data System (ADS)
Schmidt, Christian; Piel, Alexander
2015-10-01
The Brownian motion of a single particle in the plasma sheath is studied to separate the effect of stochastic heating by charge fluctuations from heating by collective effects. By measuring the particle velocities in the ballistic regime and by carefully determining the particle mass from the Epstein drag it is shown that for a pressure of 10 Pa, which is typical of many experiments, the proper kinetic temperature of the Brownian particle remains close to the gas temperature and rises only slightly with particle size. This weak effect is confirmed by a detailed model for charging and charge fluctuations in the sheath. A substantial temperature rise is found for decreasing pressure, which approximately shows the expected scaling with p-2. The system under study is an example for non-equilibrium Brownian motion under the influence of white noise without corresponding dissipation.
Extremely Stable Polypyrrole Achieved via Molecular Ordering for Highly Flexible Supercapacitors.
Huang, Yan; Zhu, Minshen; Pei, Zengxia; Huang, Yang; Geng, Huiyuan; Zhi, Chunyi
2016-01-27
The cycling stability of flexible supercapacitors with conducting polymers as electrodes is limited by the structural breakdown arising from repetitive counterion flow during charging/discharging. Supercapacitors made of facilely electropolymerized polypyrrole (e-PPy) have ultrahigh capacitance retentions of more than 97, 91, and 86% after 15000, 50000, and 100000 charging/discharging cycles, respectively, and can sustain more than 230000 charging/discharging cycles with still approximately half of the initial capacitance retained. To the best of our knowledge, such excellent long-term cycling stability was never reported. The fully controllable electropolymerization shows superiority in molecular ordering, favoring uniform stress distribution and charge transfer. Being left at ambient conditions for even 8 months, e-PPy supercapacitors completely retain the good electrochemical performance. The extremely stable supercapacitors with excellent flexibility and scalability hold considerable promise for the commerical application of flexible and wearable electronics.
Crater Formation on Electrodes during Charge Transfer with Aqueous Droplets or Solid Particles
NASA Astrophysics Data System (ADS)
Elton, E. S.; Rosenberg, E. R.; Ristenpart, W. D.
2017-09-01
We report that metallic electrodes are physically pitted during charge transfer events with water droplets or other conductive objects moving in strong electric fields (>1 kV /cm ). Post situ microscopic inspection of the electrode shows that an individual charge transfer event yields a crater approximately 1-3 μ m wide, often with features similar to a splash corona. We interpret the crater formation in terms of localized melting of the electrode via resistive heating concurrent with dielectric breakdown through the surrounding insulating fluid. A scaling analysis indicates that the crater diameter scales as the inverse cube root of the melting point temperature Tm of the metal, in accord with measurements on several metals (660 °C ≤Tm≤3414 °C ). The process of crater formation provides a possible explanation for the longstanding difficulty in quantitatively corroborating Maxwell's prediction for the amount of charge acquired by spheres contacting a planar electrode.
Structure of Weakly Charged Polyelectrolyte Brushes: Monomer Density Profiles
NASA Astrophysics Data System (ADS)
Borisov, O. V.; Zhulina, E. B.
1997-03-01
The internal structure (the monomer density profiles) of weakly charged polyelectrolyte brushes of different morphologies has been analyzed on the basis of the self-consistent-field approach. In contrast to previous studies based on the local electroneutrality approximation valid for sufficiently strongly charged or densely grafted (“osmotic") brushes we consider the opposite limit of sparse brushes which are unable to retain the counterions inside the brush. We have shown that an exact analytical solution of the SCF-equations is available in the case of a planar brush. In contrast to Gaussian monomer density profile known for “osmotic" polyelectrolyte brushes we have found that weakly charged brushes are characterized by constant monomer density. At the same time free ends of grafted polyions are distributed throughout the brush. Thus, the structural cross-over between polyelectrolyte “mushrooms" and dense brush regimes is established.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemons, Don S.
2012-01-15
We develop a Markov process theory of charged particle scattering from stationary, transverse, magnetic waves. We examine approximations that lead to quasilinear theory, in particular the resonant diffusion approximation. We find that, when appropriate, the resonant diffusion approximation simplifies the result of the weak turbulence approximation without significant further restricting the regime of applicability. We also explore a theory generated by expanding drift and diffusion rates in terms of a presumed small correlation time. This small correlation time expansion leads to results valid for relatively small pitch angle and large wave energy density - a regime that may govern pitchmore » angle scattering of high-energy electrons into the geomagnetic loss cone.« less
A classical density functional theory for the asymmetric restricted primitive model of ionic liquids
NASA Astrophysics Data System (ADS)
Lu, Hongduo; Nordholm, Sture; Woodward, Clifford E.; Forsman, Jan
2018-05-01
A new three-parameter (valency, ion size, and charge asymmetry) model, the asymmetric restricted primitive model (ARPM) of ionic liquids, has recently been proposed. Given that ionic liquids generally are composed of monovalent species, the ARPM effectively reduces to a two-parameter model. Monte Carlo (MC) simulations have demonstrated that the ARPM is able to reproduce key properties of room temperature ionic liquids (RTILs) in bulk and at charged surfaces. The relatively modest complexity of the model raises the possibility, which is explored here, that a classical density functional theory (DFT) could resolve its properties. This is relevant because it might generate great improvements in terms of both numerical efficiency and understanding in the continued research of RTILs and their applications. In this report, a DFT for rod-like molecules is proposed as an approximate theoretical tool for an ARPM fluid. Borrowing data on the ion pair fraction from a single bulk simulation, the ARPM is modelled as a mixture of dissociated ions and connected ion pairs. We have specifically studied an ARPM where the hard-sphere diameter is 5 Å, with the charge located 1 Å from the hard-sphere centre. We focus on fluid structure and electrochemical behaviour of this ARPM fluid, into which a model electrode is immersed. The latter is modelled as a perfect conductor, and surface polarization is handled by the method of image charges. Approximate methods, which were developed in an earlier study, to take image interactions into account, are also incorporated in the DFT. We make direct numerical comparisons between DFT predictions and corresponding simulation data. The DFT theory is implemented both in the normal mean field form with respect to the electrostatic interactions and in a correlated form based on hole formation by both steric repulsions and ion-ion Coulomb interactions. The results clearly show that ion-ion correlations play a very important role in the screening of the charged surfaces by our ARPM ionic liquid. We have studied electrostatic potentials and ion density profiles as well the differential capacitance. The mean-field DFT fails to reproduce these properties, but the inclusion of ion-ion correlation by a simple approximate treatment yields quite reasonable agreement with the corresponding simulation results. An interesting finding is that there appears to be a surface phase transition at relatively low surface charge which is readily explored by DFT, but seen also in the MC simulations at somewhat higher asymmetry.
NASA Astrophysics Data System (ADS)
Uk Lee, Dong; Jun Lee, Hyo; Kyu Kim, Eun; You, Hee-Wook; Cho, Won-Ju
2012-02-01
A WSi2 nanocrystal nonvolatile memory device was fabricated with an Al2O3/HfO2/Al2O3 (AHA) tunnel layer and its electrical characteristics were evaluated at 25, 50, 70, 100, and 125 °C. The program/erase (P/E) speed at 125 °C was approximately 500 μs under threshold voltage shifts of 1 V during voltage sweeping of 8 V/-8 V. When the applied pulse voltage was ±9 V for 1 s for the P/E conditions, the memory window at 125 °C was approximately 1.25 V after 105 s. The activation energies for the charge losses of 5%, 10%, 15%, 20%, 25%, 30%, and 35% were approximately 0.05, 0.11, 0.17, 0.21, 0.23, 0.23, and 0.23 eV, respectively. The charge loss mechanisms were direct tunneling and Pool-Frenkel emission between the WSi2 nanocrystals and the AHA barrier engineered tunneling layer. The WSi2 nanocrystal memory device with multi-stacked high-K tunnel layers showed strong potential for applications in nonvolatile memory devices.
NASA Astrophysics Data System (ADS)
Yao, Yi; Kanai, Yosuke
Our ability to correctly model the association of oppositely charged ions in water is fundamental in physical chemistry and essential to various technological and biological applications of molecular dynamics (MD) simulations. MD simulations using classical force fields often show strong clustering of NaCl in the aqueous ionic solutions as a consequence of a deep contact pair minimum in the potential of mean force (PMF) curve. First-Principles Molecular Dynamics (FPMD) based on Density functional theory (DFT) with the popular PBE exchange-correlation approximation, on the other hand, show a different result with a shallow contact pair minimum in the PMF. We employed two of most promising exchange-correlation approximations, ωB97xv by Mardiorossian and Head-Gordon and SCAN by Sun, Ruzsinszky and Perdew, to examine the PMF using FPMD simulations. ωB97xv is highly empirically and optimized in the space of range-separated hybrid functional with a dispersion correction while SCAN is the most recent meta-GGA functional that is constructed by satisfying various known conditions in well-defined physical limits. We will discuss our findings for PMF, charge transfer, water dipoles, etc.
Xu, Zhenli; Ma, Manman; Liu, Pei
2014-07-01
We propose a modified Poisson-Nernst-Planck (PNP) model to investigate charge transport in electrolytes of inhomogeneous dielectric environment. The model includes the ionic polarization due to the dielectric inhomogeneity and the ion-ion correlation. This is achieved by the self energy of test ions through solving a generalized Debye-Hückel (DH) equation. We develop numerical methods for the system composed of the PNP and DH equations. Particularly, toward the numerical challenge of solving the high-dimensional DH equation, we developed an analytical WKB approximation and a numerical approach based on the selective inversion of sparse matrices. The model and numerical methods are validated by simulating the charge diffusion in electrolytes between two electrodes, for which effects of dielectrics and correlation are investigated by comparing the results with the prediction by the classical PNP theory. We find that, at the length scale of the interface separation comparable to the Bjerrum length, the results of the modified equations are significantly different from the classical PNP predictions mostly due to the dielectric effect. It is also shown that when the ion self energy is in weak or mediate strength, the WKB approximation presents a high accuracy, compared to precise finite-difference results.
Structure and osmotic pressure of ionic microgel dispersions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedrick, Mary M.; Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050; Chung, Jun Kyung
We investigate structural and thermodynamic properties of aqueous dispersions of ionic microgels—soft colloidal gel particles that exhibit unusual phase behavior. Starting from a coarse-grained model of microgel macroions as charged spheres that are permeable to microions, we perform simulations and theoretical calculations using two complementary implementations of Poisson-Boltzmann (PB) theory. Within a one-component model, based on a linear-screening approximation for effective electrostatic pair interactions, we perform molecular dynamics simulations to compute macroion-macroion radial distribution functions, static structure factors, and macroion contributions to the osmotic pressure. For the same model, using a variational approximation for the free energy, we compute bothmore » macroion and microion contributions to the osmotic pressure. Within a spherical cell model, which neglects macroion correlations, we solve the nonlinear PB equation to compute microion distributions and osmotic pressures. By comparing the one-component and cell model implementations of PB theory, we demonstrate that the linear-screening approximation is valid for moderately charged microgels. By further comparing cell model predictions with simulation data for osmotic pressure, we chart the cell model’s limits in predicting osmotic pressures of salty dispersions.« less
NASA Astrophysics Data System (ADS)
Bartczak, Witold M.; Kroh, Jerzy
The simulation of the transient d.c. conductivity in a quasi one-dimensional system of charges produced by a pulse of ionizing radiation in a solid sample has been performed. The simulation is based on the macroscopic conductivity equations and can provide physical insight into d.c. conductivity measurements, particularly for the case of transient currents in samples with internal space charge. We consider the system of mobile (negative) and immobile (positive) charges produced by a pulse of ionizing radiation in the sample under a fixed external voltage V0. The presence of space charge results in an electric field which is a function of both the spatial and the time variable: E( z, t). Given the space charge density, the electric field can be calculated from the Poisson equation. However, for an arbitrary space charge distribution, the corresponding equations can only be solved numerically. The two non-trivial cases for which approximate analytical solutions can be provided are: (i) The density of the current carriers n( z, t) is negligible in comparison with the density of immobile space charge N( z). A general analytical solution has been found for this case using Green's functions. The solutions for two cases, viz. the homogeneous distribution of space charge N( z) = N, and the non-homogeneous exponential distribution N( z) = A exp(- Bz), have been separately discussed. (ii) The space charge created in the pulse without any space charge present prior to the irradiation.
A new type of localized fast moving electronic excitations in molecular chains
NASA Astrophysics Data System (ADS)
Korshunova, A. N.; Lakhno, V. D.
2014-06-01
It is shown that in a Holstein molecular chain placed in a strong longitudinal electric field some new types of excitations can arise. These excitations can transfer a charge over large distance (more than 1000 nucleotide pairs) along the chain retaining approximately their shapes. Excitations are formed only when a strong electric field either exists or quickly arises under especially preassigned conditions. These excitations transfer a charge even in the case when Holstein polarons are practically immobile. The results obtained are applied to synthetic homogeneous PolyG/PolyC DNA duplexes. They can also be provide the basis for explanation of famous H.W. Fink and C. Schönenberger experiment on long-range charge transfer in DNA.
Wakes and precursor soliton excitations by a moving charged object in a plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar Tiwari, Sanat, E-mail: sanat-tiwari@uiowa.edu; Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242; Sen, Abhijit, E-mail: senabhijit@gmail.com
2016-02-15
We study the evolution of nonlinear ion acoustic wave excitations due to a moving charged source in a plasma. Our numerical investigations of the full set of cold fluid equations go beyond the usual weak nonlinearity approximation and show the existence of a rich variety of solutions including wakes, precursor solitons, and “pinned” solitons that travel with the source velocity. These solutions represent a large amplitude generalization of solutions obtained in the past for the forced Korteweg deVries equation and can find useful applications in a variety of situations in the laboratory and in space, wherever there is a largemore » relative velocity between the plasma and a charged object.« less
Charge-Spot Model for Electrostatic Forces in Simulation of Fine Particulates
NASA Technical Reports Server (NTRS)
Walton, Otis R.; Johnson, Scott M.
2010-01-01
The charge-spot technique for modeling the static electric forces acting between charged fine particles entails treating electric charges on individual particles as small sets of discrete point charges, located near their surfaces. This is in contrast to existing models, which assume a single charge per particle. The charge-spot technique more accurately describes the forces, torques, and moments that act on triboelectrically charged particles, especially image-charge forces acting near conducting surfaces. The discrete element method (DEM) simulation uses a truncation range to limit the number of near-neighbor charge spots via a shifted and truncated potential Coulomb interaction. The model can be readily adapted to account for induced dipoles in uncharged particles (and thus dielectrophoretic forces) by allowing two charge spots of opposite signs to be created in response to an external electric field. To account for virtual overlap during contacts, the model can be set to automatically scale down the effective charge in proportion to the amount of virtual overlap of the charge spots. This can be accomplished by mimicking the behavior of two real overlapping spherical charge clouds, or with other approximate forms. The charge-spot method much more closely resembles real non-uniform surface charge distributions that result from tribocharging than simpler approaches, which just assign a single total charge to a particle. With the charge-spot model, a single particle may have a zero net charge, but still have both positive and negative charge spots, which could produce substantial forces on the particle when it is close to other charges, when it is in an external electric field, or when near a conducting surface. Since the charge-spot model can contain any number of charges per particle, can be used with only one or two charge spots per particle for simulating charging from solar wind bombardment, or with several charge spots for simulating triboelectric charging. Adhesive image-charge forces acting on charged particles touching conducting surfaces can be up to 50 times stronger if the charge is located in discrete spots on the particle surface instead of being distributed uniformly over the surface of the particle, as is assumed by most other models. Besides being useful in modeling particulates in space and distant objects, this modeling technique is useful for electrophotography (used in copiers) and in simulating the effects of static charge in the pulmonary delivery of fine dry powders.
Chao, Jerry; Ram, Sripad; Ward, E. Sally; Ober, Raimund J.
2014-01-01
The extraction of information from images acquired under low light conditions represents a common task in diverse disciplines. In single molecule microscopy, for example, techniques for superresolution image reconstruction depend on the accurate estimation of the locations of individual particles from generally low light images. In order to estimate a quantity of interest with high accuracy, however, an appropriate model for the image data is needed. To this end, we previously introduced a data model for an image that is acquired using the electron-multiplying charge-coupled device (EMCCD) detector, a technology of choice for low light imaging due to its ability to amplify weak signals significantly above its readout noise floor. Specifically, we proposed the use of a geometrically multiplied branching process to model the EMCCD detector’s stochastic signal amplification. Geometric multiplication, however, can be computationally expensive and challenging to work with analytically. We therefore describe here two approximations for geometric multiplication that can be used instead. The high gain approximation is appropriate when a high level of signal amplification is used, a scenario which corresponds to the typical usage of an EMCCD detector. It is an accurate approximation that is computationally more efficient, and can be used to perform maximum likelihood estimation on EMCCD image data. In contrast, the Gaussian approximation is applicable at all levels of signal amplification, but is only accurate when the initial signal to be amplified is relatively large. As we demonstrate, it can importantly facilitate the analysis of an information-theoretic quantity called the noise coefficient. PMID:25075263
Optical properties of new wide heterogeneous waveguides with thermo optical shifters.
De Leonardis, Francesco; Tsarev, Andrei V; Passaro, Vittorio M
2008-12-22
We present analysis and simulation of novel silicon-on-insulator (SOI) heterogeneous waveguides with thermo-optic phase shifters. New structure design contains a p-n junction on both sides of SOI ridge waveguide with 220 nm x 35 microm silicon core. Strongly mode-dependent optical losses (by additional free charge absorption) provide quasi-singe-mode behavior of wide waveguide with mode size approximately 10 microm. Local heater produces an efficient phase shifting by small temperature increase (DeltaT approximately 2K), switching power (< 40 mW) and switching time (< 10 micros). Mode optical losses are significantly decreased at high heating (DeltaT approximately 120 K).
Charge Generation and Propagation in Igneous Rocks
NASA Technical Reports Server (NTRS)
Freund, Friedemann
2002-01-01
Various electrical phenomena have been reported prior to or concurrent with earthquakes such as resistivity changes, ground potentials, electromagnetic (EM), and luminous signals. Doubts have been raised as to whether some of these phenomena are real and indeed precursory. One of the reasons for uncertainty is that, despite decades of intense work, there is still no physically coherent model. Using low- to medium-velocity impacts to measure electrical signals with microsecond time resolution, it has now been observed that when dry gabbro and diorite cores are impacted at relatively low velocities, approximately 100 m/s, highly mobile charge carriers are generated in a small volume near the impact point. They spread through the rocks, causing electric potentials exceeding +400 mV, EM, and light emission. As the charge cloud spreads, the rock becomes momentarily conductive. When a dry granite block is impacted at higher velocity, approximately 1.5 km/s, the propagation of the P and S waves is registered through the transient piezoelectric response of quartz. After the sound waves have passed, the surface of the granite block becomes positively charged, suggesting the same charge carriers as observed during the low-velocity impact experiments, expanding from within the bulk. During the next 2-3 ms the surface potential oscillates, indicating pulses of electrons injected from ground and contact electrodes. The observations are consistent with positive holes, e.g., defect electrons in the O(2-) sublattice, traveling via the O 2p-dominated valence band of the silicate minerals. Before activation, the positive holes lay dormant in the form of electrically inactive positive hole pairs (PHP), chemically equivalent to peroxy links, O3X/OO\\XO3, with X=Si(4+), Al(3+), etc. PHPs are introduced into the minerals by way of hydroxyl,O3X-OH, which all nominally anhydrous minerals incorporate when crystallizing in H2O-laden environments. The fact that positive holes can be activated by low-energy impacts, and their attendant sound waves, suggests that they can also be activated by microfracturing. Depending on where in the stressed rock volume the charge carriers are activated, they will form rapidly moving or fluctuating charge clouds that may account for earthquake-related electrical signals and EM emission. Wherever such charge clouds intersect the surface, high fields are expected, causing electric discharges and earthquake lights.
Costs and Benefits of Fly Ash Control (1973)
The purpose of this paper is to provide qualified answers to these questions: What level of charge will induce a power plant operator to meet the standards? Is the standard one at which marginal costs are approximately equal to marginal benefits?
Imaging Demonstration of a Glass Gas Electron Multiplier with Electronic Charge Readout
NASA Astrophysics Data System (ADS)
Mitsuya, Yuki; Thuiner, Patrik; Oliveri, Eraldo; Resnati, Filippo; Stenis, Miranda van; Fujiwara, Takeshi; Takahashi, Hiroyuki; Ropelewski, Leszek
2018-02-01
We have developed a Glass Gas Electron Multiplier (Glass GEM, G-GEM), which is composed of two copper electrodes separated by a photosensitive etchable glass substrate having holes arranged in a hexagonal pattern. In this paper, we report the result of imaging using a G-GEM combined with a 2D electronic charge readout. We used a crystallized photosensitive etchable glass as the G-GEM substrate. A precise X-ray image of a small mammal was successfully obtained with position resolutions of approximately 110 to 140 μm in RMS.
Modeling hole transport in wet and dry DNA.
Pavanello, Michele; Adamowicz, Ludwik; Volobuyev, Maksym; Mennucci, Benedetta
2010-04-08
We present a DFT/classical molecular dynamics model of DNA charge conductivity. The model involves a temperature-driven, hole-hopping charge transfer and includes the time-dependent nonequilibrium interaction of DNA with its molecular environment. We validate our method against a variety of hole transport experiments. The method predicts a significant hole-transfer slowdown of approximately 35% from dry to wet DNA with and without electric field bias. In addition, in agreement with experiments, it also predicts an insulating behavior of (GC)(N) oligomers for 40 < N < 1000, depending on the experimental setup.
NASA Astrophysics Data System (ADS)
Rossani, A.; Scarfone, A. M.
2009-06-01
The linear Boltzmann equation for elastic and/or inelastic scattering is applied to derive the distribution function of a spatially homogeneous system of charged particles spreading in a host medium of two-level atoms and subjected to external electric and/or magnetic fields. We construct a Fokker-Planck approximation to the kinetic equations and derive the most general class of distributions for the given problem by discussing in detail some physically meaningful cases. The equivalence with the transport theory of electrons in a phonon background is also discussed.
Adhikari, Jwala M; Gadinski, Matthew R; Li, Qi; Sun, Kaige G; Reyes-Martinez, Marcos A; Iagodkine, Elissei; Briseno, Alejandro L; Jackson, Thomas N; Wang, Qing; Gomez, Enrique D
2016-12-01
A novel photopatternable high-k fluoropolymer, poly(vinylidene fluoride-bromotrifluoroethylene) P(VDF-BTFE), with a dielectric constant (k) between 8 and 11 is demonstrated in thin-film transistors. Crosslinking P(VDF-BTFE) reduces energetic disorder at the dielectric-semiconductor interface by controlling the chain conformations of P(VDF-BTFE), thereby leading to approximately a threefold enhancement in the charge mobility of rubrene single-crystal field-effect transistors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Adiabatic charging of nickel-hydrogen batteries
NASA Technical Reports Server (NTRS)
Lurie, Chuck; Foroozan, S.; Brewer, Jeff; Jackson, Lorna
1995-01-01
Battery management during prelaunch activities has always required special attention and careful planning. The transition from nickel-cadium to nickel-hydrogen batteries, with their high self discharge rate and lower charge efficiency, as well as longer prelaunch scenarios, has made this aspect of spacecraft battery management even more challenging. The AXAF-I Program requires high battery state of charge at launch. The use of active cooling, to ensure efficient charging, was considered and proved to be difficult and expensive. Alternative approaches were evaluated. Optimized charging, in the absence of cooling, appeared promising and was investigated. Initial testing was conducted to demonstrate the feasibility of the 'Adiabatic Charging' approach. Feasibility was demonstrated and additional testing performed to provide a quantitative, parametric data base. The assumption that the battery is in an adiabatic environment during prelaunch charging is a conservative approximation because the battery will transfer some heat to its surroundings by convective air cooling. The amount is small compared to the heat dissipated during battery overcharge. Because the battery has a large thermal mass, substantial overcharge can occur before the cells get too hot to charge efficiently. The testing presented here simulates a true adiabatic environment. Accordingly the data base may be slightly conservative. The adiabatic charge methodology used in this investigation begins with stabilizing the cell at a given starting temperature. The cell is then fully insulated on all sides. Battery temperature is carefully monitored and the charge terminated when the cell temperature reaches 85 F. Charging has been evaluated with starting temperatures from 55 to 75 F.
Bulk synthesis of nanoporous palladium and platinum powders
Robinson, David B [Fremont, CA; Fares, Stephen J [Pleasanton, CA; Tran, Kim L [Livermore, CA; Langham, Mary E [Pleasanton, CA
2012-04-17
Disclosed is a method for providing nanoporous palladium and platinum powders. These materials were synthesized on milligram to gram scales by chemical reduction of tetrahalo-complexes with ascorbate in a concentrated aqueous surfactant at temperatures between -20.degree. C. and 30.degree. C. The prepared particles have diameters of approximately 50 nm, wherein each particle is perforated by pores having diameters of approximately 3 nm, as determined by electron tomography. These materials are of potential value for hydrogen and electrical charge storage applications.
Approximate Green's function methods for HZE transport in multilayered materials
NASA Technical Reports Server (NTRS)
Wilson, John W.; Badavi, Francis F.; Shinn, Judy L.; Costen, Robert C.
1993-01-01
A nonperturbative analytic solution of the high charge and energy (HZE) Green's function is used to implement a computer code for laboratory ion beam transport in multilayered materials. The code is established to operate on the Langley nuclear fragmentation model used in engineering applications. Computational procedures are established to generate linear energy transfer (LET) distributions for a specified ion beam and target for comparison with experimental measurements. The code was found to be highly efficient and compared well with the perturbation approximation.
Bulk synthesis of nanoporous palladium and platinum powders
Robinson, David B; Fares, Stephen J; Tran, Kim L; Langham, Mary E
2014-04-15
Disclosed is a method for providing nanoporous palladium and platinum powders. These materials were synthesized on milligram to gram scales by chemical reduction of tetrahalo-complexes with ascorbate in a concentrated aqueous surfactant at temperatures between -20.degree. C. and 30.degree. C. The prepared particles have diameters of approximately 50 nm, wherein each particle is perforated by pores having diameters of approximately 3 nm, as determined by electron tomography. These materials are of potential value for hydrogen and electrical charge storage applications.
Energy Spectra, Composition, and Other Properties of Ground-Level Events During Solar Cycle 23
NASA Technical Reports Server (NTRS)
Mewaldt, R. A.; COhen, C. M. S.; Labrador, A. W.; Leske, R. A.; Looper, M. D.; Haggerty, D. K.; Mason, G. M.; Mazur, J. E.; vonRosenvinge, T. T.
2012-01-01
We report spacecraft measurements of the energy spectra of solar protons and other solar energetic particle properties during the 16 Ground Level Events (GLEs) of Solar Cycle 23. The measurements were made by eight instruments on the ACE, GOES, SAMPBX, and STEREO spacecraft and extend from approximately 0.1 to approximately 500-700 MeV. All of the proton spectra exhibit spectral breaks at energies ranging from approximately 2 to approximately 46 MeV and all are well fit by a double power-law shape. A comparison of GLE events with a larger sample of other solar energetic particle (SEP) events shows that the typical spectral indices are harder in GLE events, with a mean slope of -3.18 at greater than 40 MeV/nuc. In the energy range 45 to 80 MeV/nucleon about approximately 50% of GLE events have properties in common with impulsive He-3-rich SEP events, including enrichments in Ne/O, Fe/O, Ne-22/Ne-20, and elevated mean charge states of Fe. These He-3 rich events contribute to the seed population accelerated by CME-driven shocks. An analysis is presented of whether highly-ionized Fe ions observed in five events could be due to electron stripping during shock acceleration in the low corona. Making use of stripping calculations by others and a coronal density model, we can account for events with mean Fe charge states of (Q(sub Fe) is approximately equal to +20 if the acceleration starts at approximately 1.24-1.6 solar radii, consistent with recent comparisons of CME trajectories and type-II radio bursts. In addition, we suggest that gradual stripping of remnant ions from earlier large SEP events may also contribute a highly-ionized suprathermal seed population. We also discuss how observed SEP spectral slopes relate to the energetics of particle acceleration in GLE and other large SEP events.
Pion single and double charge exchange in the resonance region: Dynamical corrections
NASA Astrophysics Data System (ADS)
Johnson, Mikkel B.; Siciliano, E. R.
1983-04-01
We consider pion-nucleus elastic scattering and single- and double-charge-exchange scattering to isobaric analog states near the (3,3) resonance within an isospin invariant framework. We extend previous theories by introducing terms into the optical potential U that are quadratic in density and consistent with isospin invariance of the strong interaction. We study the sensitivity of single and double charge exchange angular distributions to parameters of the second-order potential both numerically, by integrating the Klein-Gordon equation, and analytically, by using semiclassical approximations that explicate the dependence of the exact numerical results to the parameters of U. The magnitude and shape of double charge exchange angular distributions are more sensitive to the isotensor term in U than has been hitherto appreciated. An examination of recent experimental data shows that puzzles in the shape of the 18O(π+, π-)18Ne angular distribution at 164 MeV and in the A dependence of the forward double charge exchange scattering on 18O, 26Mg, 42Ca, and 48Ca at the same energy may be resolved by adding an isotensor term in U. NUCLEAR REACTIONS Scattering theory for elastic, single-, and double-charge-exchange scattering to IAS in the region of the P33 resonance. Second-order effects on charge-exchange calculations of σ(A, θ).
NASA Astrophysics Data System (ADS)
Khan, MD Shahrukh Adnan; Kuni, Sharsad Kara; Rajkumar, Rajprasad; Syed, Anas; Hawladar, Masum; Rahman, Md. Moshiur
2017-12-01
In this paper, an extensive effort has been made to design and develop a prototype in a laboratory setup environment in order to investigate experimentally the response of a novel Supercapacitor based energy harvesting circuit; particularly the phenomena of instantaneous charging and discharging cycle is analysed. To maximize battery lifespan and storage capacity, charging/discharging cycles need to be optimized in such a way, it ultimately enhances the system performances reliably. Keeping this into focus, an Arduino-MOSFET based control system is developed to charge the Supercapacitor from a low wind Vertical Axis Turbine (VAWT) and discharge it through a 6V battery. With a wind speed of 5m/s, the wind turbine requires approximately 8.1 hours to charge the 6V battery through Supercapacitor bank that constitutes 18 cycles in which each cycle consumes 27 minutes. The overall performance of the proposed system was quite convincing in a sense that the efficiency of the developed Energy Harvesting Circuit EHC raises to 19% in comparison to direct charging of the battery from the Vertical wind turbine. At low wind speed, such value of efficiency margin is quite encouraging which essentially validates the system design.
Martian Atmospheric Pressure Static Charge Elimination Tool
NASA Technical Reports Server (NTRS)
Johansen, Michael R.
2014-01-01
A Martian pressure static charge elimination tool is currently in development in the Electrostatics and Surface Physics Laboratory (ESPL) at NASA's Kennedy Space Center. In standard Earth atmosphere conditions, static charge can be neutralized from an insulating surface using air ionizers. These air ionizers generate ions through corona breakdown. The Martian atmosphere is 7 Torr of mostly carbon dioxide, which makes it inherently difficult to use similar methods as those used for standard atmosphere static elimination tools. An initial prototype has been developed to show feasibility of static charge elimination at low pressure, using corona discharge. A needle point and thin wire loop are used as the corona generating electrodes. A photo of the test apparatus is shown below. Positive and negative high voltage pulses are sent to the needle point. This creates positive and negative ions that can be used for static charge neutralization. In a preliminary test, a floating metal plate was charged to approximately 600 volts under Martian atmospheric conditions. The static elimination tool was enabled and the voltage on the metal plate dropped rapidly to -100 volts. This test data is displayed below. Optimization is necessary to improve the electrostatic balance of the static elimination tool.
Charged Water Droplets can Melt Metallic Electrodes
NASA Astrophysics Data System (ADS)
Elton, Eric; Rosenberg, Ethan; Ristenpart, William
2016-11-01
A water drop, when immersed in an insulating fluid, acquires charge when it contacts an energized electrode. Provided the electric field is strong enough, the drop will move away to the opposite electrode, acquire the opposite charge, and repeat the process, effectively 'bouncing' back and forth between the electrodes. A key implicit assumption, dating back to Maxwell, has been that the electrode remains unaltered by the charging process. Here we demonstrate that the electrode is physically deformed during each charge transfer event with an individual water droplet or other conducting object. We used optical, electron, and atomic force microscopy to characterize a variety of different metallic electrodes before and after drops were electrically bounced on them. Although the electrodes appear unchanged to the naked eye, the microscopy reveals that each charge transfer event yielded a crater approximately 1 micron wide and 50 nm deep, with the exact dimensions proportional to the applied field strength. We present evidence that the craters are formed by localized melting of the electrodes via Joule heating in the metal and concurrent dielectric breakdown of the surrounding fluid, suggesting that the electrode locally achieves temperatures exceeding 3400°C. Present address: Dept. Materials Sci. Engineering, MIT.
Nuclear effects in (anti)neutrino charge-current quasielastic scattering at MINER νA kinematics
NASA Astrophysics Data System (ADS)
Ivanov, M. V.; Antonov, A. N.; Megias, G. D.; González-Jiménez, R.; Barbaro, M. B.; Caballero, J. A.; Donnelly, T. W.; Udías, J. M.
2018-05-01
We compare the characteristics of the charged-current quasielastic (anti)neutrino scattering obtained in two different nuclear models, the phenomenological SuperScaling Approximation and the model using a realistic spectral function S(p, ɛ) that gives a scaling function in accordance with the (e, e‧ ) scattering data, with the recent data published by the MiniBooNE, MINER νA, and NOMAD collaborations. The spectral function accounts for the nucleon-nucleon (NN) correlations by using natural orbitals from the Jastrow correlation method and has a realistic energy dependence. Both models provide a good description of the MINER νA and NOMAD data without the need of an ad hoc increase of the value of the mass parameter in the axial-vector dipole form factor. The models considered in this work, based on the the impulse approximation (IA), underpredict the MiniBooNE data for the flux-averaged charged-current quasielastic {ν }μ ({\\bar{ν }}μ ){+}12\\text{C} differential cross section per nucleon and the total cross sections, although the shape of the cross sections is represented by the approaches. The discrepancy is most likely due to missing of the effects beyond the IA, e.g., those of the 2p–2h meson exchange currents that have contribution in the transverse responses.
McGeachy, A C; Dalchand, N; Caudill, E R; Li, T; Doğangün, M; Olenick, L L; Chang, H; Pedersen, J A; Geiger, F M
2018-04-25
Charge densities of cationic polymers adsorbed to lipid bilayers are estimated from second harmonic generation (SHG) spectroscopy and quartz crystal microbalance with dissipation monitoring (QCM-D) measurements. The systems surveyed included poly(vinylamine hydrochloride) (PVAm), poly(diallyldimethylammonium chloride) (PDADMAC), poly-l-lysine (PLL), and poly-l-arginine (PLR), as well as polyalcohol controls. Upon accounting for the number of positive charges associated with each polyelectrolyte, the binding constants and apparent free energies of adsorption as estimated from SHG data are comparable despite differences in molecular masses and molecular structure, with ΔGads values of -61 ± 2, -58 ± 2, -57 ± 1, -52 ± 2, -52 ± 1 kJ mol-1 for PDADMAC400, PDADMAC100, PVAm, PLL, and PLR, respectively. Moreover, we find charge densities for polymer adlayers of approximately 0.3 C m-2 for poly(diallyldimethylammonium chloride) while those of poly(vinylamine) hydrochloride, poly-l-lysine, and poly-l-arginine are approximately 0.2 C m-2. Time-dependent studies indicate that polycation adsorption to supported lipid bilayers is only partially reversible for most of the polymers explored. Poly(diallyldimethylammonium chloride) does not demonstrate reversible binding even over long timescales (>8 hours).
Low Mach number fluctuating hydrodynamics for electrolytes
Péraud, Jean-Philippe; Nonaka, Andy; Chaudhri, Anuj; ...
2016-11-18
Here, we formulate and study computationally the low Mach number fluctuating hydrodynamic equations for electrolyte solutions. We are also interested in studying transport in mixtures of charged species at the mesoscale, down to scales below the Debye length, where thermal fluctuations have a significant impact on the dynamics. Continuing our previous work on fluctuating hydrodynamics of multicomponent mixtures of incompressible isothermal miscible liquids (A. Donev, et al., Physics of Fluids, 27, 3, 2015), we now include the effect of charged species using a quasielectrostatic approximation. Localized charges create an electric field, which in turn provides additional forcing in the massmore » and momentum equations. Our low Mach number formulation eliminates sound waves from the fully compressible formulation and leads to a more computationally efficient quasi-incompressible formulation. Furthermore, we demonstrate our ability to model saltwater (NaCl) solutions in both equilibrium and nonequilibrium settings. We show that our algorithm is second-order in the deterministic setting, and for length scales much greater than the Debye length gives results consistent with an electroneutral/ambipolar approximation. In the stochastic setting, our model captures the predicted dynamics of equilibrium and nonequilibrium fluctuations. We also identify and model an instability that appears when diffusive mixing occurs in the presence of an applied electric field.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balsa Terzic, Gabriele Bassi
In this paper we discuss representations of charge particle densities in particle-in-cell (PIC) simulations, analyze the sources and profiles of the intrinsic numerical noise, and present efficient methods for their removal. We devise two alternative estimation methods for charged particle distribution which represent significant improvement over the Monte Carlo cosine expansion used in the 2d code of Bassi, designed to simulate coherent synchrotron radiation (CSR) in charged particle beams. The improvement is achieved by employing an alternative beam density estimation to the Monte Carlo cosine expansion. The representation is first binned onto a finite grid, after which two grid-based methodsmore » are employed to approximate particle distributions: (i) truncated fast cosine transform (TFCT); and (ii) thresholded wavelet transform (TWT). We demonstrate that these alternative methods represent a staggering upgrade over the original Monte Carlo cosine expansion in terms of efficiency, while the TWT approximation also provides an appreciable improvement in accuracy. The improvement in accuracy comes from a judicious removal of the numerical noise enabled by the wavelet formulation. The TWT method is then integrated into Bassi's CSR code, and benchmarked against the original version. We show that the new density estimation method provides a superior performance in terms of efficiency and spatial resolution, thus enabling high-fidelity simulations of CSR effects, including microbunching instability.« less
NASA Astrophysics Data System (ADS)
Csanak, G.; Fontes, C. J.; Kilcrease, D. P.; Hakel, P.; Inal, M. K.
2017-05-01
The rate equations used to model plasma kinetics and spectroscopy are typically obtained from intuitive considerations. A few years ago, the authors (Csanak et al 2011 J. Phys. B: At. Mol. Opt. Phys. 44 215701) have shown that the population-alignment collisional-radiative (CR) model and the magnetic sublevel to magnetic sublevel rate-equation scheme can be obtained from the Fano-Ben-Reuven quantum impact approximation (QIA). Here we provide a formal derivation of the rate-equation schemes for modeling hydrogenic plasmas and highly charged ionic plasmas with cylindrical symmetry using the QIA under certain approximations. In the case of hydrogenic plasmas the ‘accidental degeneracy’ (if present) leads to some coherences among the excited states of the atom (or ion) that have to be taken into account when constructing the rate equations. In the case of highly charged plasmas the Coulomb potential can be taken into account (as suggested originally by Baranger) in defining the ‘bath particles’, which leads to a derivation of the kinetic equations where no singularity occurs. For the case of spherically symmetric plasmas, this method also provides a derivation of the standard CR equations that have been implemented in many codes to successfully model the kinetics and spectra of highly charged ions.
Solar San Diego: The Impact of Binomial Rate Structures on Real PV Systems; Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
VanGeet, O.; Brown, E.; Blair, T.
2008-05-01
There is confusion in the marketplace regarding the impact of solar photovoltaics (PV) on the user's actual electricity bill under California Net Energy Metering, particularly with binomial tariffs (those that include both demand and energy charges) and time-of-use (TOU) rate structures. The City of San Diego has extensive real-time electrical metering on most of its buildings and PV systems, with interval data for overall consumption and PV electrical production available for multiple years. This paper uses 2007 PV-system data from two city facilities to illustrate the impacts of binomial rate designs. The analysis will determine the energy and demand savingsmore » that the PV systems are achieving relative to the absence of systems. A financial analysis of PV-system performance under various rate structures is presented. The data revealed that actual demand and energy use benefits of binomial tariffs increase in summer months, when solar resources allow for maximized electricity production. In a binomial tariff system, varying on- and semi-peak times can result in approximately $1,100 change in demand charges per month over not having a PV system in place, an approximate 30% cost savings. The PV systems are also shown to have a 30%-50% reduction in facility energy charges in 2007.« less
Charge versus orbital-occupancy ordering in manganites
NASA Astrophysics Data System (ADS)
Luo, Weidong; Varela, Maria; Tao, Jing; Pennycook, Stephen J.; Pantelides, Sokrates T.
2006-03-01
It is generally assumed that density-functional theory (DFT) in the local-spin-density approximation (LSDA) or the generalized- gradient approximation (GGA) is not adequate to describe mixed- valence manganites. Here we report benchmark DFT/GGA calculations for the ground-state structural, electronic and magnetic properties for both undoped and doped CaMnO3 and find the results to be in excellent agreement with available data, including new atomic-resolution Z-contrast imaging and electron-energy loss spectra. More specifically, we found that the DFT results predict two inequivalent Mn atoms in both 0.33 and 0.5 electron-doped CaMnO3, in agreement with experimental evidence of Mn^+3/Mn^+4 oxidation state ordering. The inequivalent Mn atoms are marked by their distinctive orbital occupancies, dissimilar local Jahn-Teller distortion and different magnetic moments from DFT calculations. We also show that the spherically integrated charges associated with the two inequivalent Mn atoms are the same, and they are actually the same as in the Mn metal. This charge neutrality with different orbital occupancies is the result of self-consistency and atomic relaxations in the crystal. We conclude that DFT without additional correlations can account for the observed properties of oxidation-state ordering in this system. The impact of the results on other mixed-valence systems will be discussed.
Sheets, Michael F; Hanck, Dorothy A
2005-02-15
Recovery from fast inactivation in voltage-dependent Na+ channels is associated with a slow component in the time course of gating charge during repolarization (i.e. charge immobilization), which results from the slow movement of the S4 segments in domains III and IV (S4-DIII and S4-DIV). Previous studies have shown that the non-specific removal of fast inactivation by the proteolytic enzyme pronase eliminated charge immobilization, while the specific removal of fast inactivation (by intracellular MTSET modification of a cysteine substituted for the phenylalanine in the IFM motif, ICMMTSET, in the inactivation particle formed by the linker between domains III and IV) only reduced the amount of charge immobilization by nearly one-half. To investigate the molecular origin of the remaining slow component of charge immobilization we studied the human cardiac Na+ channel (hH1a) in which the outermost arginine in the S4-DIV, which contributes approximately 20% to total gating charge (Qmax), was mutated to a cysteine (R1C-DIV). Gating charge could be fully restored in R1C-DIV by exposure to extracellular MTSEA, a positively charged methanethiosulphonate reagent. The RIC-DIV mutation was combined with ICMMTSET to remove fast inactivation, and the gating currents of R1C-DIV-ICM(MTSET) were recorded before and after modification with MTSEAo. Prior to MTSEAo, the time course of the gating charge during repolarization (off-charge) was best described by a single fast time constant. After MTSEA, the off-charge had both fast and slow components, with the slow component accounting for nearly 35% of Qmax. These results demonstrate that the slow movement of the S4-DIV during repolarization is not dependent upon the normal binding of the inactivation particle.
Protonic and Electronic Charge Carriers in Solvated Biomacromolecules
1989-01-01
samples with sufficient mechanical strength. The pellets were approximately one millimeter thick and were placed between two platinium foil...attached to the vacuum line, Figure 2, by simply tilting them. The platinium electrodes were blocking for protons so all protonic carriers were released
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Spann, J. F.; LeClair, A. C.
2010-01-01
Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions. Knowledge of the dust grain charges and equilibrium potentials is important for understanding of a variety of physical and dynamical processes in the interstellar medium (ISM), and heliospheric, interplanetary, planetary, and lunar environments. The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. It has been well recognized that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the corresponding values for bulk materials and theoretical models. In this paper we present experimental results on charging of individual dust grains selected from Apollo 11 and Apollo 17 dust samples by exposing them to mono-energetic electron beams in the 10- 400 eV energy range. The charging rates of positively and negatively charged particles of approximately 0.2 to 13 microns diameters are discussed in terms of the secondary electron emission (SEE) process, which is found to be a complex charging process at electron energies as low as 10-25 eV, with strong particle size dependence. The measurements indicate substantial differences between dust charging properties of individual small size dust grains and of bulk materials.
Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; ...
2014-06-01
Spectra of identified charged hadrons are measured in pPb collisions with the CMS detector at the LHC at sqrt(sNN) = 5.02 TeV. Charged pions, kaons, and protons in the transverse-momentum range pt approximately 0.1-1.7 GeV and laboratory rapidity abs(y) < 1 are identified via their energy loss in the silicon tracker. The average pt increases with particle mass and the charged multiplicity of the event. The increase of the average pt with charged multiplicity is greater for heavier hadrons. Comparisons to Monte Carlo event generators reveal that EPOS LHC, which incorporates additional hydrodynamic evolution of the created system, is ablemore » to reproduce most of the data features, unlike HIJING and AMPT. The pt spectra and integrated yields are also compared to those measured in pp and PbPb collisions at various energies. The average transverse momentum and particle ratio measurements indicate that particle production at LHC energies is strongly correlated with event particle multiplicity.« less
Baumeier, Björn; Andrienko, Denis; Rohlfing, Michael
2012-08-14
Excited states of donor-acceptor dimers are studied using many-body Green's functions theory within the GW approximation and the Bethe-Salpeter equation. For a series of prototypical small-molecule based pairs, this method predicts energies of local Frenkel and intermolecular charge-transfer excitations with the accuracy of tens of meV. Application to larger systems is possible and allowed us to analyze energy levels and binding energies of excitons in representative dimers of dicyanovinyl-substituted quarterthiophene and fullerene, a donor-acceptor pair used in state of the art organic solar cells. In these dimers, the transition from Frenkel to charge transfer excitons is endothermic and the binding energy of charge transfer excitons is still of the order of 1.5-2 eV. Hence, even such an accurate dimer-based description does not yield internal energetics favorable for the generation of free charges either by thermal energy or an external electric field. These results confirm that, for qualitative predictions of solar cell functionality, accounting for the explicit molecular environment is as important as the accurate knowledge of internal dimer energies.
Search for charged Higgs bosons in e+e- collisions at [Formula: see text].
Abbiendi, G; Ainsley, C; Åkesson, P F; Alexander, G; Anagnostou, G; Anderson, K J; Asai, S; Axen, D; Bailey, I; Barberio, E; Barillari, T; Barlow, R J; Batley, R J; Bechtle, P; Behnke, T; Bell, K W; Bell, P J; Bella, G; Bellerive, A; Benelli, G; Bethke, S; Biebel, O; Boeriu, O; Bock, P; Boutemeur, M; Braibant, S; Brown, R M; Burckhart, H J; Campana, S; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Ciocca, C; Csilling, A; Cuffiani, M; Dado, S; Dallavalle, M; De Roeck, A; De Wolf, E A; Desch, K; Dienes, B; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Etzion, E; Fabbri, F; Ferrari, P; Fiedler, F; Fleck, I; Ford, M; Frey, A; Gagnon, P; Gary, J W; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Giunta, M; Goldberg, J; Gross, E; Grunhaus, J; Gruwé, M; Gupta, A; Hajdu, C; Hamann, M; Hanson, G G; Harel, A; Hauschild, M; Hawkes, C M; Hawkings, R; Herten, G; Heuer, R D; Hill, J C; Hoffman, K; Horváth, D; Igo-Kemenes, P; Ishii, K; Jeremie, H; Jovanovic, P; Junk, T R; Kanzaki, J; Karlen, D; Kawagoe, K; Kawamoto, T; Keeler, R K; Kellogg, R G; Kennedy, B W; Kluth, S; Kobayashi, T; Kobel, M; Komamiya, S; Krämer, T; Krasznahorkay, A; Krieger, P; von Krogh, J; Kuhl, T; Kupper, M; Lafferty, G D; Landsman, H; Lanske, D; Lellouch, D; Letts, J; Levinson, L; Lillich, J; Lloyd, S L; Loebinger, F K; Lu, J; Ludwig, A; Ludwig, J; Mader, W; Marcellini, S; Marchant, T E; Martin, A J; Mashimo, T; Mättig, P; McKenna, J; McPherson, R A; Meijers, F; Menges, W; Merritt, F S; Mes, H; Meyer, N; Michelini, A; Mihara, S; Mikenberg, G; Miller, D J; Mohr, W; Mori, T; Mutter, A; Nagai, K; Nakamura, I; Nanjo, H; Neal, H A; O'Neale, S W; Oh, A; Okpara, A; Oreglia, M J; Orito, S; Pahl, C; Pásztor, G; Pater, J R; Pilcher, J E; Pinfold, J; Plane, D E; Pooth, O; Przybycień, M; Quadt, A; Rabbertz, K; Rembser, C; Renkel, P; Roney, J M; Rossi, A M; Rozen, Y; Runge, K; Sachs, K; Saeki, T; Sarkisyan, E K G; Schaile, A D; Schaile, O; Scharff-Hansen, P; Schieck, J; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Seuster, R; Shears, T G; Shen, B C; Sherwood, P; Skuja, A; Smith, A M; Sobie, R; Söldner-Rembold, S; Spano, F; Stahl, A; Strom, D; Ströhmer, R; Tarem, S; Tasevsky, M; Teuscher, R; Thomson, M A; Torrence, E; Toya, D; Trigger, I; Trócsányi, Z; Tsur, E; Turner-Watson, M F; Ueda, I; Ujvári, B; Vollmer, C F; Vannerem, P; Vértesi, R; Verzocchi, M; Voss, H; Vossebeld, J; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Zer-Zion, D; Zivkovic, L
A search is made for charged Higgs bosons predicted by Two-Higgs-Doublet extensions of the Standard Model (2HDM) using electron-positron collision data collected by the OPAL experiment at [Formula: see text], corresponding to an integrated luminosity of approximately 600 pb -1 . Charged Higgs bosons are assumed to be pair-produced and to decay into [Formula: see text], τν τ or AW ± . No signal is observed. Model-independent limits on the charged Higgs-boson production cross section are derived by combining these results with previous searches at lower energies. Under the assumption [Formula: see text], motivated by general 2HDM type II models, excluded areas on the [Formula: see text] plane are presented and charged Higgs bosons are excluded up to a mass of 76.3 GeV at 95 % confidence level, independent of the branching ratio BR(H ± → τν τ ). A scan of the 2HDM type I model parameter space is performed and limits on the Higgs-boson masses [Formula: see text] and m A are presented for different choices of tan β .
NASA Astrophysics Data System (ADS)
Uematsu, Yuki; Netz, Roland R.; Bonthuis, Douwe Jan
2018-02-01
Using a box profile approximation for the non-electrostatic surface adsorption potentials of anions and cations, we calculate the differential capacitance of aqueous electrolyte interfaces from a numerical solution of the Poisson-Boltzmann equation, including steric interactions between the ions and an inhomogeneous dielectric profile. Preferential adsorption of the positive (negative) ion shifts the minimum of the differential capacitance to positive (negative) surface potential values. The trends are similar for the potential of zero charge; however, the potential of zero charge does not correspond to the minimum of the differential capacitance in the case of asymmetric ion adsorption, contrary to the assumption commonly used to determine the potential of zero charge. Our model can be used to obtain more accurate estimates of ion adsorption properties from differential capacitance or electrocapillary measurements. Asymmetric ion adsorption also affects the relative heights of the characteristic maxima in the differential capacitance curves as a function of the surface potential, but even for strong adsorption potentials the effect is small, making it difficult to reliably determine the adsorption properties from the peak heights.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Zheng; Tian, Chushun; Jiang, Hong-Chen
Charge order appears to be an ubiquitous phenomenon in doped Mott insulators, which is currently under intense experimental and theoretical investigations particularly in the high T c cuprates. This phenomenon is conventionally understood in terms of Hartree-Fock-type mean-field theory. Here we demonstrate a mechanism for charge modulation which is rooted in the many-particle quantum physics arising in the strong coupling limit. Specifically, we consider the problem of a single hole in a bipartite t - J ladder. As a remnant of the fermion signs, the hopping hole picks up subtle phases pending the fluctuating spins, the so-called phase-string effect. Wemore » demonstrate the presence of charge modulations in the density matrix renormalization group solutions which disappear when the phase strings are switched off. This form of charge modulation can be understood analytically in a path-integral language with a mean-field-like approximation adopted, showing that the phase strings give rise to constructive interferences leading to self-localization. When the latter occurs, left- and right-moving propagating modes emerge inside the localization volume and their interference is responsible for the real space charge modulation.« less
Surface correlation effects in two-band strongly correlated slabs.
Esfahani, D Nasr; Covaci, L; Peeters, F M
2014-02-19
Using an extension of the Gutzwiller approximation for an inhomogeneous system, we study the two-band Hubbard model with unequal band widths for a slab geometry. The aim is to investigate the mutual effect of individual bands on the spatial distribution of quasi-particle weight and charge density, especially near the surface of the slab. The main effect of the difference in band width is the presence of two different length scales corresponding to the quasi-particle profile of each band. This is enhanced in the vicinity of the critical interaction of the narrow band where an orbitally selective Mott transition occurs and a surface dead layer forms for the narrow band. For the doped case, two different regimes of charge transfer between the surface and the bulk of the slab are revealed. The charge transfer from surface/center to center/surface depends on both the doping level and the average relative charge accumulated in each band. Such effects could also be of importance when describing the accumulation of charges at the interface between structures made of multi-band strongly correlated materials.
A filament of energetic particles near the high-latitude dawn magnetopause
NASA Technical Reports Server (NTRS)
Lui, A. T. Y.; Williams, D. J.; Mcentire, R. W.; Christon, S. P.; Jacquey, C.; Angelopoulos, V.; Yamamoto, T.; Kokubun, S.; Frank, L. A.; Ackerson, K. L.
1994-01-01
The Geotail satelite detected a filament of tailward-streaming energetic particles spatially separated from the boundary layer of energetic particles at the high-latitude dawn magnetopause at a downstream distance of approximately 80 R(sub E) on October 27, 1992. During this event, the composition and charge states of energetic ions at energies above approximately 10 keV show significant intermix of ions from solar wind and ionospheric sources. Detailed analysis leads to the deduction that the filament was moving southward towards the neutral sheet at an average speed of approximately 80 km/s, implying an average duskward electric field of approximately 1 mV/m. Its north-south dimension was approximately 1 R(sub E) and it was associated with an earthward directed field-aligned current of approximately 5 mA/m. The filament was separated from the energetic particle boundary layer straddling the magnetopause by approximately 0.8 R(sub E) and was inferred to be detached from the boundary layer at downstream distance beyond approximately 70 R(sub E) in the distant tail.
Pradhan, Tuhin; Ghoshal, Piue; Biswas, Ranjit
2008-02-07
The excited state intramolecular charge transfer reaction of 4-(1-azetidinyl)benzonitrile (P4C) has been studied in water-tertiary butanol (TBA) mixtures at different alcohol mole fractions by using steady state and time-resolved fluorescence spectroscopy. The ratio between the areas under the locally excited (LE) and charge transferred (CT) emission bands is found to exhibit a sharp rise at alcohol mole fraction approximately 0.04, a value at which several thermodynamic properties of this mixture is known to show anomalous change due to the enhancement of H-bonding network. The radiative rate associated with the LE emission also shows a maximum at this TBA mole fraction. Although the structural transition from the water-like tetrahedral network to the alcohol-like chain is reflected in the red shift of the absorption spectrum up to TBA mole fraction approximately 0.10, the emission bands (both LE and CT) show the typical nonideal alcohol mole fraction dependence at all TBA mole fractions. Quantum yield, CT radiative rate as well as transition moments also exhibit a nonideal alcohol mole fraction dependence. The time-resolved emission decay of P4C has been found to be biexponential at all TBA mole fractions, regardless of emission collection around either the LE or the CT bands. The time constant associated with the slow component (tau(slow)) shows a minimum at TBA mole fraction approximately 0.04, whereas such a minimum for the fast time constant, tau(fast) (representing the rate of LE --> CT conversion reaction) is not observed. The nonobservation of the minimum in tau(fast) might be due to the limited time resolution employed in our experiments.
Yu, X; Hao, L; Inesi, G
1994-06-17
Proteoliposomal vesicles reconstituted with sarcoplasmic reticulum ATPase and exogenous lipids sustain ATP-dependent Ca2+ uptake and H+ ejection, as well as net charge displacement by Ca2+. We have studied the effect of lumenal (inner) and medium (extravesicular) pH variations on the countertransport ratios of H+ and Ca2+. We find that the Ca2+/H+ molar ratio is approximately 1 when the lumenal and medium pH is near neutrality, but changes with a specific pattern when the medium pH is varied in the presence of a constant lumenal pH and when the lumenal pH is varied in the presence of a constant medium pH. Empirical analysis of the experimental data shows that the apparent pK of the residue(s) releasing H+ into the medium is approximately 6.1, whereas the apparent pK of the residue(s) binding lumenal H+ is approximately 7.7. Assuming that the same acidic residues are involved in H+ and Ca2+ countertransport, our findings suggest a lower affinity for H+ in their outward orientation (prevalent in the ground state of the enzyme) and a higher affinity for H+ in lumenal orientation (prevalent in the phosphorylated state of the enzyme). Cyclic pK changes, coupled to ATP utilization, promote cation exchange, Ca2+ uptake, and H+ ejection by the vesicles. The stoichiometry of countertransport and net charge displacement is matched by a corresponding electrogenic behavior. A calculation of voltage development related to initial rates of charge transfer (dV/dt = (dQ/dt)/Cm) is given as a corrective replacement of a previous steady state calculation.
Development of highly accurate approximate scheme for computing the charge transfer integral
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pershin, Anton; Szalay, Péter G.
The charge transfer integral is a key parameter required by various theoretical models to describe charge transport properties, e.g., in organic semiconductors. The accuracy of this important property depends on several factors, which include the level of electronic structure theory and internal simplifications of the applied formalism. The goal of this paper is to identify the performance of various approximate approaches of the latter category, while using the high level equation-of-motion coupled cluster theory for the electronic structure. The calculations have been performed on the ethylene dimer as one of the simplest model systems. By studying different spatial perturbations, itmore » was shown that while both energy split in dimer and fragment charge difference methods are equivalent with the exact formulation for symmetrical displacements, they are less efficient when describing transfer integral along the asymmetric alteration coordinate. Since the “exact” scheme was found computationally expensive, we examine the possibility to obtain the asymmetric fluctuation of the transfer integral by a Taylor expansion along the coordinate space. By exploring the efficiency of this novel approach, we show that the Taylor expansion scheme represents an attractive alternative to the “exact” calculations due to a substantial reduction of computational costs, when a considerably large region of the potential energy surface is of interest. Moreover, we show that the Taylor expansion scheme, irrespective of the dimer symmetry, is very accurate for the entire range of geometry fluctuations that cover the space the molecule accesses at room temperature.« less
Truzzolillo, D; Bordi, F; Sciortino, F; Sennato, S
2010-07-14
We study the effective interaction between differently charged polyelectrolyte-colloid complexes in electrolyte solutions via Monte Carlo simulations. These complexes are formed when short and flexible polyelectrolyte chains adsorb onto oppositely charged colloidal spheres, dispersed in an electrolyte solution. In our simulations the bending energy between adjacent monomers is small compared to the electrostatic energy, and the chains, once adsorbed, do not exchange with the solution, although they rearrange on the particles surface to accommodate further adsorbing chains or due to the electrostatic interaction with neighbor complexes. Rather unexpectedly, when two interacting particles approach each other, the rearrangement of the surface charge distribution invariably produces antiparallel dipolar doublets that invert their orientation at the isoelectric point. These findings clearly rule out a contribution of dipole-dipole interactions to the observed attractive interaction between the complexes, pointing out that such suspensions cannot be considered dipolar fluids. On varying the ionic strength of the electrolyte, we find that a screening length kappa(-1), short compared with the size of the colloidal particles, is required in order to observe the attraction between like-charged complexes due to the nonuniform distribution of the electric charge on their surface ("patch attraction"). On the other hand, by changing the polyelectrolyte/particle charge ratio xi(s), the interaction between like-charged polyelectrolyte-decorated particles, at short separations, evolves from purely repulsive to strongly attractive. Hence, the effective interaction between the complexes is characterized by a potential barrier, whose height depends on the net charge and on the nonuniformity of their surface charge distribution.
Low-background performance of a monolithic InSb CCD array
NASA Technical Reports Server (NTRS)
Bregman, J. D.; Goebel, J. H.; Mccreight, C. R.; Matsumoto, T.
1982-01-01
A 20 element monolithic InSb charge coupled device (CCD) detector array was measured under low background conditions to assess its potential for orbital astronomical applications. At a temperature of 64 K, previous results for charge transfer efficiency (CTE) were reproduced, and a sensitivity of about 2 x 10 to the minus 15th power joules was measured. At 27 and 6 K, extended integration times were achieved, but CTE was substantially degraded. The noise was approximately 6000 charges, which was in excess of the level where statistical fluctuations from the illumination could be detected. A telescope demonstration was performed showing that the array sensitivity and difficulty of operation were not substantially different from laboratory levels. Ways in which the device could be improved for astronomical applications were discussed.
NASA Astrophysics Data System (ADS)
Ovsyannikov, V. D.; Kamenskii, A. A.
2002-03-01
The changes in the wave functions and the energies of a hydrogen-like atom in the static field of a structureless charged particle are calculated in the asymptotic approximation. The corrections to the energy of states, as well as to the dipole matrix elements of radiative transitions caused by the interaction of the atom with the point charge at long range are calculated using the perturbation theory and the Sturm series for a reduced Coulomb Green’s function in parabolic coordinates. The analytical expressions are derived and tables of numerical values of the coefficients of asymptotic series that determine the corrections to the matrix elements and the intensities of transitions of the Lyman and Balmer series are presented.
The importance of the external potential on group electronegativity.
Leyssens, Tom; Geerlings, Paul; Peeters, Daniel
2005-11-03
The electronegativity of groups placed in a molecular environment is obtained using CCSD calculations of the electron affinity and ionization energy. A point charge model is used as an approximation of the molecular environment. The electronegativity values obtained in the presence of a point charge model are compared to the isolated group property to estimate the importance of the external potential on the group's electronegativity. The validity of the "group in molecule" electronegativities is verified by comparing EEM (electronegativity equalization method) charge transfer values to the explicitly calculated natural population analysis (NPA) ones, as well as by comparing the variation in electronegativity between the isolated functional group and the functional group in the presence of a modeled environment with the variation based on a perturbation expansion of the chemical potential.
Solution of the Fokker-Planck equation with mixing of angular harmonics by beam-beam charge exchange
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikkelsen, D.R.
1989-09-01
A method for solving the linear Fokker-Planck equation with anisotropic beam-beam charge exchange loss is presented. The 2-D equation is transformed to a system of coupled 1-D equations which are solved iteratively as independent equations. Although isotropic approximations to the beam-beam losses lead to inaccurate fast ion distributions, typically only a few angular harmonics are needed to include accurately the effect of the beam-beam charge exchange loss on the usual integrals of the fast ion distribution. Consequently, the algorithm converges very rapidly and is much more efficient than a 2-D finite difference method. A convenient recursion formula for the couplingmore » coefficients is given and generalization of the method is discussed. 13 refs., 2 figs.« less
Electron detachment of the hydrogen-bonded amino acid side-chain guanine complexes
NASA Astrophysics Data System (ADS)
Wang, Jing; Gu, Jiande; Leszczynski, Jerzy
2007-07-01
The photoelectron spectra of the hydrogen-bonded amino acid side-chain-guanine complexes has been studied at the partial third order (P3) self-energy approximation of the electron propagator theory. The correlation between the vertical electron detachment energy and the charge distributions on the guanine moiety reveals that the vertical electron detachment energy (VDE) increases as the positive charge distribution on the guanine increases. The low VDE values determined for the negatively charged complexes of the guanine-side-chain-group of Asp/Glu suggest that the influence of the H-bonded anionic groups on the VDE of guanine could be more important than that of the anionic backbone structure. The even lower vertical electron detachment energy for guanine is thus can be expected in the H-bonded protein-DNA systems.
NASA Astrophysics Data System (ADS)
Bagli, Enrico; Guidi, Vincenzo
2013-08-01
A toolkit for the simulation of coherent interactions between high-energy charged particles and complex crystal structures, called DYNECHARM++ has been developed. The code has been written in C++ language taking advantage of this object-oriented programing method. The code is capable to evaluating the electrical characteristics of complex atomic structures and to simulate and track the particle trajectory within them. Calculation method of electrical characteristics based on their expansion in Fourier series has been adopted. Two different approaches to simulate the interaction have been adopted, relying on the full integration of particle trajectories under the continuum potential approximation and on the definition of cross-sections of coherent processes. Finally, the code has proved to reproduce experimental results and to simulate interaction of charged particles with complex structures.
Magnitude of pseudopotential localization errors in fixed node diffusion quantum Monte Carlo
Kent, Paul R.; Krogel, Jaron T.
2017-06-22
Growth in computational resources has lead to the application of real space diffusion quantum Monte Carlo to increasingly heavy elements. Although generally assumed to be small, we find that when using standard techniques, the pseudopotential localization error can be large, on the order of an electron volt for an isolated cerium atom. We formally show that the localization error can be reduced to zero with improvements to the Jastrow factor alone, and we define a metric of Jastrow sensitivity that may be useful in the design of pseudopotentials. We employ an extrapolation scheme to extract the bare fixed node energymore » and estimate the localization error in both the locality approximation and the T-moves schemes for the Ce atom in charge states 3+/4+. The locality approximation exhibits the lowest Jastrow sensitivity and generally smaller localization errors than T-moves although the locality approximation energy approaches the localization free limit from above/below for the 3+/4+ charge state. We find that energy minimized Jastrow factors including three-body electron-electron-ion terms are the most effective at reducing the localization error for both the locality approximation and T-moves for the case of the Ce atom. Less complex or variance minimized Jastrows are generally less effective. Finally, our results suggest that further improvements to Jastrow factors and trial wavefunction forms may be needed to reduce localization errors to chemical accuracy when medium core pseudopotentials are applied to heavy elements such as Ce.« less
Ray-theory approach to electrical-double-layer interactions.
Schnitzer, Ory
2015-02-01
A novel approach is presented for analyzing the double-layer interaction force between charged particles in electrolyte solution, in the limit where the Debye length is small compared with both interparticle separation and particle size. The method, developed here for two planar convex particles of otherwise arbitrary geometry, yields a simple asymptotic approximation limited to neither small zeta potentials nor the "close-proximity" assumption underlying Derjaguin's approximation. Starting from the nonlinear Poisson-Boltzmann formulation, boundary-layer solutions describing the thin diffuse-charge layers are asymptotically matched to a WKBJ expansion valid in the bulk, where the potential is exponentially small. The latter expansion describes the bulk potential as superposed contributions conveyed by "rays" emanating normally from the boundary layers. On a special curve generated by the centers of all circles maximally inscribed between the two particles, the bulk stress-associated with the ray contributions interacting nonlinearly-decays exponentially with distance from the center of the smallest of these circles. The force is then obtained by integrating the traction along this curve using Laplace's method. We illustrate the usefulness of our theory by comparing it, alongside Derjaguin's approximation, with numerical simulations in the case of two parallel cylinders at low potentials. By combining our result and Derjaguin's approximation, the interaction force is provided at arbitrary interparticle separations. Our theory can be generalized to arbitrary three-dimensional geometries, nonideal electrolyte models, and other physical scenarios where exponentially decaying fields give rise to forces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kent, Paul R.; Krogel, Jaron T.
Growth in computational resources has lead to the application of real space diffusion quantum Monte Carlo to increasingly heavy elements. Although generally assumed to be small, we find that when using standard techniques, the pseudopotential localization error can be large, on the order of an electron volt for an isolated cerium atom. We formally show that the localization error can be reduced to zero with improvements to the Jastrow factor alone, and we define a metric of Jastrow sensitivity that may be useful in the design of pseudopotentials. We employ an extrapolation scheme to extract the bare fixed node energymore » and estimate the localization error in both the locality approximation and the T-moves schemes for the Ce atom in charge states 3+/4+. The locality approximation exhibits the lowest Jastrow sensitivity and generally smaller localization errors than T-moves although the locality approximation energy approaches the localization free limit from above/below for the 3+/4+ charge state. We find that energy minimized Jastrow factors including three-body electron-electron-ion terms are the most effective at reducing the localization error for both the locality approximation and T-moves for the case of the Ce atom. Less complex or variance minimized Jastrows are generally less effective. Finally, our results suggest that further improvements to Jastrow factors and trial wavefunction forms may be needed to reduce localization errors to chemical accuracy when medium core pseudopotentials are applied to heavy elements such as Ce.« less
Light metal decorated graphdiyne nanosheets for reversible hydrogen storage.
Panigrahi, P; Dhinakaran, A K; Naqvi, S R; Gollu, S R; Ahuja, R; Hussain, T
2018-05-29
The sensitive nature of molecular hydrogen (H 2 ) interaction with the surfaces of pristine and functionalized nanostructures, especially two-dimensional materials, has been a subject of debate for a while now. An accurate approximation of the H 2 adsorption mechanism has vital significance for fields such as H 2 storage applications. Owing to the importance of this issue, we have performed a comprehensive density functional theory (DFT) study by means of several different approximations to investigate the structural, electronic, charge transfer and energy storage properties of pristine and functionalized graphdiyne (GDY) nanosheets. The dopants considered here include the light metals Li, Na, K, Ca, Sc and Ti, which have a uniform distribution over GDY even at high doping concentration due to their strong binding and charge transfer mechanism. Upon 11% of metal functionalization, GDY changes into a metallic state from being a small band-gap semiconductor. Such situations turn the dopants to a partial positive state, which is favorable for adsorption of H 2 molecules. The adsorption mechanism of H 2 on GDY has been studied and compared by different methods like generalized gradient approximation, van der Waals density functional and DFT-D3 functionals. It has been established that each functionalized system anchors multiple H 2 molecules with adsorption energies that fall into a suitable range regardless of the functional used for approximations. A significantly high H 2 storage capacity would guarantee that light metal-doped GDY nanosheets could serve as efficient and reversible H 2 storage materials.
Ambient Scattering from Ring-Symmetric Spacecraft Exhaust Plume.
1987-04-01
spacecraft is shielded from ambient scattering by its own plume. Assuming hard- speres collisions, the first-collision model is given by a simple...may change upon replacing the hard- speres approximation by a more realistic collision model. A possible modification of spacecraft charging by the
Ab-initio study on electronic properties of rocksalt SnAs
NASA Astrophysics Data System (ADS)
Babariya, Bindiya; Vaghela, M. V.; Gajjar, P. N.
2018-05-01
Within the frame work of Local Density Approximation of Exchange and Correlation, ab-initio method of density functional theory with Abinit code is used to compute electronic energy band structure, density of States and charge density of SnAs in rocksalt phase. Our result after optimization for lattice constant agrees with experimental value within 0.59% deviation. The computed electronic energy bands in high symmetry directions Γ→K→X→Γ→L→X→W→L→U shown metallic nature. The lowest band in the electronic band structure is showing band-gap approximately 1.70 eV from next higher band and no crossing between lowest two bands are seen. The density of states revels p-p orbit hybridization between Sn and As atoms. The spherical contour around Sn and As in the charge density plot represent partly ionic and partly covalent bonding. Fermi surface topology is the resultant effect of the single band crossing along L direction at Ef.
X-ray and gamma-ray line production by nonthermal ions
NASA Technical Reports Server (NTRS)
Bussard, R. W.; Omidvar, K.; Ramaty, R.
1977-01-01
X-ray production was calculated at approximately 6.8 keV by the 2p to 1s transition in fast hydrogen- and helium-like iron ions, following both electron capture to excited levels and collisional excitation. A refinement of the OBK approximation was used to obtain an improved charge exchange cross section. This, and the corresponding ionization cross section were used to determine equilibrium charge fractions for iron ions as functions of their energy. The effective X-ray line production cross section was found to be sharply peaked in energy at about 8 to 12 MeV/amu. Because fast ions of similar energies can also excite nuclear levels, the ratio of selected strong gamma ray line emissivities to the X-ray line emissivity was also calculated. Limits set by this method on the intensity of gamma ray line emission from the galactic center and the radio galaxy Centaurus A are generally lower than those reported in the literature.
Using RIXS to uncover elementary charge and spin excitations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Chunjing; Wohlfeld, Krzysztof; Wang, Yao
2016-05-13
Despite significant progress in resonant inelastic x-ray scattering (RIXS) experiments on cuprates at the Cu L-edge, a theoretical understanding of the cross section remains incomplete in terms of elementary excitations and the connection to both charge and spin structure factors. Here, we use state-of-the-art, unbiased numerical calculations to study the low-energy excitations probed by RIXS in the Hubbard model, relevant to the cuprates. The results highlight the importance of scattering geometry, in particular, both the incident and scattered x-ray photon polarization, and they demonstrate that on a qualitative level the RIXS spectral shape in the cross-polarized channel approximates that ofmore » the spin dynamical structure factor. Furthermore, in the parallel-polarized channel, the complexity of the RIXS process beyond a simple two-particle response complicates the analysis and demonstrates that approximations and expansions that attempt to relate RIXS to less complex correlation functions cannot reproduce the full diversity of RIXS spectral features.« less
A new, simple electrostatic-acoustic hybrid levitator
NASA Technical Reports Server (NTRS)
Lierke, E. G.; Loeb, H.; Gross, D.
1990-01-01
Battelle has developed a hybrid levitator by combining the known single-axis acoustic standing wave levitator with a coaxial DC electric field. The resulting Coulomb forces on the charged liquid or solid sample support its weight and, together with the acoustic force, center the sample. Liquid samples with volumes approximately less than 100 micro-liters are deployed from a syringe reservoir into the acoustic pressure node. The sample is charged using a miniature high voltage power supply (approximately less than 20 kV) connected to the syringe needle. As the electric field, generated by a second miniature power supply, is increased, the acoustic intensity is reduced. The combination of both fields allows stable levitation of samples larger than either single technique could position on the ground. Decreasing the acoustic intensity reduces acoustic convection and sample deformation. Neither the electrostatic nor the acoustic field requires sample position sensing or active control. The levitator, now used for static and dynamic fluid physics investigations on the ground, can be easily modified for space operations.
Space-charge-limited currents for cathodes with electric field enhanced geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Dingguo, E-mail: laidingguo@nint.ac.cn; Qiu, Mengtong; Xu, Qifu
This paper presents the approximate analytic solutions of current density for annulus and circle cathodes. The current densities of annulus and circle cathodes are derived approximately from first principles, which are in agreement with simulation results. The large scaling laws can predict current densities of high current vacuum diodes including annulus and circle cathodes in practical applications. In order to discuss the relationship between current density and electric field on cathode surface, the existing analytical solutions of currents for concentric cylinder and sphere diodes are fitted from existing solutions relating with electric field enhancement factors. It is found that themore » space-charge-limited current density for the cathode with electric-field enhanced geometry can be written in a general form of J = g(β{sub E}){sup 2}J{sub 0}, where J{sub 0} is the classical (1D) Child-Langmuir current density, β{sub E} is the electric field enhancement factor, and g is the geometrical correction factor depending on the cathode geometry.« less
NASA Astrophysics Data System (ADS)
Ireland, R. M.; Wu, Liang; Salehi, M.; Oh, S.; Armitage, N. P.; Katz, H. E.
2018-04-01
We demonstrate the ability to reduce the carrier concentration of thin films of the topological insulator (TI) Bi2 Se3 by utilizing a nonvolatile electrostatic gating via corona charging of electret polymers. Sufficient electric field can be imparted to a polymer-TI bilayer to result in significant electron density depletion, even without the continuous connection of a gate electrode or the chemical modification of the TI. We show that the Fermi level of Bi2 Se3 is shifted toward the Dirac point with this method. Using terahertz spectroscopy, we find that the surface chemical potential is lowered into the bulk band gap (approximately 50 meV above the Dirac point and 170 meV below the conduction-band minimum), and it is stabilized in the intrinsic regime while enhancing electron mobility. The mobility of surface state electrons is enhanced to a value as high as approximately 1600 cm2/V s at 5 K.
Automated Microorganism Detector
NASA Astrophysics Data System (ADS)
Keahey, Pelham; Hardy, Will; Cradit, Mason; Solis, Steven; Holland, Andrea; Wade, Gerry
2010-10-01
The detection and identification of bacteria in blood samples is crucial for treating patients suspected of having a blood infection. Current hospital methods for pathogen detection are time-consuming processes with multiple steps. This project's goal was to develop an efficient biomedical device to detect bacterial growth in blood samples, based on Gerald J. Wade's 1979 invention (US patents 4250266 and 4267276). Detection was accomplished using a system of electronics to examine the change in the electrochemical properties of a sample in response to bacterial growth, by measuring the sample's electrical charging and charge dispersion characteristics. After initial trials, it was found that a sample yielded consistent voltage measurements of approximately 200 millivolts prior to any detectable microbial growth. The first species tested, Escherichia coli (E. coli), was detected 11.7 hours after its inoculation in a culture bottle at a concentration of approximately 5-10 organisms per milliliter. In future tests, it is expected that detection times will vary in proportion to the growth rate of each species.
Performance of laminar-flow leading-edge test articles in cloud encounters
NASA Technical Reports Server (NTRS)
Davis, Richard E.; Maddalon, Dal V.; Wagner, Richard D.
1987-01-01
An extensive data bank of concurrent measurements of laminar flow (LF), particle concentration, and aircraft charging state was gathered for the first time. From this data bank, 13 flights in the simulated airline service (SAS) portion were analyzed to date. A total of 6.86 hours of data at one-second resolution were analyzed. An extensive statistical analysis, for both leading-edge test articles, shows that there is a significant effect of cloud and haze particles on the extent of laminar flow obtained. Approximately 93 percent of data points simulating LFC flight were obtained in clear air conditions; approximately 7 percent were obtained in cloud and haze. These percentages are consistent with earlier USAF and NASA estimates and results. The Hall laminar flow loss criteria was verified qualitatively. Larger particles and higher particle concentrations have a more marked effect on LF than do small particles. A particle spectrometer of a charging patch are both acceptable as diagnostic indicators of the presence of particles detrimental to laminar flow.
Nikezić, D; Krstić, D
1995-12-01
Radon progeny are positively charged immediately after formation. A negatively charged electret collects radon progeny atoms which are produced in the diffusion chamber. The detector sensitivity may be increased by using an electret in front of solid state nuclear track detector. Dependence of detection sensitivity on distance between electret and detector LR115 II is studied theoretically and experimentally in this paper. A relatively small fraction of 218Po atoms that formed in the diffusion chamber are collected by the electret. We estimated that the attracted fraction of 218Po was 17% while the attracted fraction of 214Bi-214Po is considerably larger and amounted to approximately 60%. These results confirm previous finding that 218Po atoms discharge quickly after their formation. The comparative radon measurements using diffusion chambers with and without electrets were performed. The amplification of detector sensitivity due to the electret amounted to approximately 80%.
The electric double layer at a metal electrode in pure water
NASA Astrophysics Data System (ADS)
Brüesch, Peter; Christen, Thomas
2004-03-01
Pure water is a weak electrolyte that dissociates into hydronium ions and hydroxide ions. In contact with a charged electrode a double layer forms for which neither experimental nor theoretical studies exist, in contrast to electrolytes containing extrinsic ions like acids, bases, and solute salts. Starting from a self-consistent solution of the one-dimensional modified Poisson-Boltzmann equation, which takes into account activity coefficients of point-like ions, we explore the properties of the electric double layer by successive incorporation of various correction terms like finite ion size, polarization, image charge, and field dissociation. We also discuss the effect of the usual approximation of an average potential as required for the one-dimensional Poisson-Boltzmann equation, and conclude that the one-dimensional approximation underestimates the ion density. We calculate the electric potential, the ion distributions, the pH-values, the ion-size corrected activity coefficients, and the dissociation constants close to the electric double layer and compare the results for the various model corrections.
Heavy ion charge-state distribution effects on energy loss in plasmas.
Barriga-Carrasco, Manuel D
2013-10-01
According to dielectric formalism, the energy loss of the heavy ion depends on its velocity and its charge density. Also, it depends on the target through its dielectric function; here the random phase approximation is used because it correctly describes fully ionized plasmas at any degeneracy. On the other hand, the Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler et al. is used to determine its mean charge state [Q]. This latter criterion implies that the mean charge state depends on the electron density and temperature of the plasma. Also, the initial charge state of the heavy ion is crucial for calculating [Q] inside the plasma. Comparing our models and estimations with experimental data, a very good agreement is found. It is noticed that the energy loss in plasmas is higher than that in the same cold gas cases, confirming the well-known enhanced plasma stopping (EPS). In this case, EPS is only due to the increase in projectile effective charge Q(eff), which is obtained as the ratio between the energy loss of each heavy ion and that of the proton in the same plasma conditions. The ratio between the effective charges in plasmas and in cold gases is higher than 1, but it is not as high as thought in the past. Finally, another significant issue is that the calculated effective charge in plasmas Q(eff) is greater than the mean charge state [Q], which is due to the incorporation of the BK charge distribution. When estimations are performed without this distribution, they do not fit well with experimental data.
Topics in elementary particle physics
NASA Astrophysics Data System (ADS)
Jin, Xiang
The author of this thesis discusses two topics in elementary particle physics:
Effect of paraelectrode processes on contraction of space charge in periodic-pulse lasers
NASA Astrophysics Data System (ADS)
Arytyunyan, R. V.; Baranov, V. Yu.; Borisov, V. M.; Vinokhodov, A. Yu.; Kiryukhin, Yu. B.
1986-05-01
A characteristic feature of periodic-pulse electric-discharge CO2-lasers and excimer lasers is contraction of the space charge as the pulse repetition rate increases. The emission energy per pulse decreases as a consequence, with the average laser power first ceasing to increase linearly beyond a certain corner repetition rate and then decreasing beyond a certain critical repetition rate. A study of this phenomenon was made, for the purpose of separating the effect of paracathode processes from the effect of gas dynamics and then evaluating the effect of the former alone. Paraelectrode perturbations were simulated by focusing the radiation from the an XeCl-laser on the cathode surface in an atmosphere of nonabsorbing gases. Laser pulses of up to approximately 0.5 J energy and of approximately 50 ns duration were focused within a spot of 1 mm(2) area on a cathode inside a discharge chamber, with the power density of incident radiation regulated by means of an attenuator. A space charge within a volume of 2.5x4.5x9 cm(3) was generated between this specially shaped cathode and a mesh anode with an approximately 50% optical transmission coefficient. The space charge in helium and in neon was photographed, and the time lag of a discharge pulse behind a contracting laser pulse was measured as a function of the laser pulse energy for these two gases, as well as for a He+C12 gas mixture. The general trend was found to be the same in each case, the time lag increasing with increasing energy first at a slower rate up to a critical energy level and then faster. It has been established that plasma does not build up on the cathode before the laser pulse energy reaches 30 mJ (for a 3 mm(2) surface area), while plasma glow begins as the laser pulse energy reaches 150 mJ. A contracted channel begins to form within the laser-cathode interaction space, with an attendant fast increase of the time lag owing to evaporation of the cathode metal.
Mass flow meter using the triboelectric effect for measurement in cryogenics
NASA Technical Reports Server (NTRS)
Bernatowicz, Henry; Cunningham, Jock; Wolff, Steve
1987-01-01
The use of triboelectric charge to measure the mass flow rate of cryogens for the Space Shuttle Main Engine was investigated. Cross correlation of the triboelectric charge signals was used to determine the transit time of the cryogen between two sensor locations in a .75-in tube. The ring electrode sensors were mounted in a removable spool piece. Three spool pieces were constructed for delivery, each with a different design. One set of electronics for implementation of the cross correlation and flow calculation was constructed for delivery. Tests were made using a laboratory flow loop using liquid freon and transformer oil. The measured flow precision was 1 percent and the response was linear. The natural frequency distribution of the triboelectric signal was approximately 1/f. The sensor electrodes should have an axial length less than approximately one/tenth pipe diameter. The electrode spacing should be less than approximately one pipe diameter. Tests using liquid nitrogen demonstrated poor tribo-signal to noise ratio. Most of the noise was microphonic and common to both electrode systems. The common noise rejection facility of the correlator was successful in compensating for this noise but the signal was too small to enable reliable demonstration of the technique in liquid nitrogen.
NASA Astrophysics Data System (ADS)
Arkhangelskaja, I. V.; Arkhangelskiy, A. I.
2016-02-01
The gamma-ray background physical origin for low altitude orbits defined by: diffuse cosmic gamma-emission, atmospheric gamma-rays, gamma-emission formed in interactions of charged particles (both prompt and activation) and transient events such as electrons precipitations and solar flares. The background conditions in the energy range from 0.1 MeV up to several MeV for low altitude orbits differ due to frequency of Earth Radiation Belts - ERBs (included South Atlantic Anomaly - SAA) passes and cosmic rays rigidity. The detectors and satellite constructive elements are activated by trapped in ERBs and moving along magnetic lines charged particles. In this case we propose simplified polynomial model separately for polar and equatorial orbits parts: background count rate temporal profile approximation by 4-5 order polynomials in equatorial regions, and linear approximations, parabolas or constants in polar caps. The polynomials’ coefficients supposed to be similar for identical spectral channels for each analyzed equatorial part taken into account normalization coefficients defined due to Kp-indexes study within period corresponding to calibration coefficients being approximately constants. The described model was successfully applied for the solar flares hard X-ray and gamma-ray emission characteristic studies by AVS-F apparatus data onboard CORONAS-F satellite.
Self-stimulation in the rat: quantitative characteristics of the reward pathway.
Gallistel, C R
1978-12-01
Quantitative characteristics of the neural pathway that carries the reinforcing signal in electrical self-stimulation of the brain were established by finding which combinations of stimulation parameters give the same performance in a runway. The reward for each run was a train of evenly spaced monophasic cathodal pulses from a monopolar electrode. With train duration and pulse frequency held constant, the required current was a hyperbolic function of pulse duration, with chronaxie c approximately 1.5 msec. With pulse duration held constant, the required strength of the train (the charge delivered per second) was a hyperbolic function of train duration, with chronaxie C approximately 500 msec. To a first approximation, the values of c and C were independent of the choice either of train duration and pulse frequency or of pulse duration, respectively. Hence, the current intensity required by any choice of train duration, pulse frequency, and pulse duration dependent on only two basic parameters, c and C, and one quantity, Qi, the required impulse charge. These may reflect, respectively, current integration by directly excited neurons; temporal integration of neural activity by synaptic processes in a neural network; and the peak of the impulse response of the network, assuming that the network has linear dynamics and that the reward depends on the peak of the output of the network.
Charge exchange collisions of slow C6 + with atomic and molecular H
NASA Astrophysics Data System (ADS)
Saha, Bidhan C.; Guevara, Nicolais L.; Sabin, John R.; Deumens, Erik; Öhrn, Yngve
2016-04-01
Charge exchange in collisions of C6+ ions with H and H2 is investigated theoretically at projectile energies 0.1 < E < 10 keV/amu, using electron nuclear dynamics (END) - a semi-classical approximation which not only includes electron translation factors for avoiding spurious couplings but also employs full dynamical trajectories to treat nuclear motions. Both the total and partial cross sections are reported for the collision of C6+ ions with atomic and molecular hydrogen. A comparison with other theoretical and experimental results shows, in general good agreement except at very low energy, considered here. For H2, the one- and two-electron charge exchange cross sections are calculated and compared with other theoretical and experimental results. Small but non-negligible isotope effects are found at the lowest energy studied in the charge transfer of C6+ with H. In low energy region, it is observed that H2 has larger isotope effects than H atom due to the polarizability effect which is larger than the mass effect.
Scattering of charge and spin excitations and equilibration of a one-dimensional Wigner crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matveev, K. A.; Andreev, A. V.; Klironomos, A. D.
2014-07-01
We study scattering of charge and spin excitations in a system of interacting electrons in one dimension. At low densities, electrons form a one-dimensional Wigner crystal. To a first approximation, the charge excitations are the phonons in the Wigner crystal, and the spin excitations are described by the Heisenberg model with nearest-neighbor exchange coupling. This model is integrable and thus incapable of describing some important phenomena, such as scattering of excitations off each other and the resulting equilibration of the system. We obtain the leading corrections to this model, including charge-spin coupling and the next-nearest-neighbor exchange in the spin subsystem.more » We apply the results to the problem of equilibration of the one-dimensional Wigner crystal and find that the leading contribution to the equilibration rate arises from scattering of spin excitations off each other. We discuss the implications of our results for the conductance of quantum wires at low electron densities« less
Li-ion cells for terrestrial robots
NASA Technical Reports Server (NTRS)
Chin, Keith B.; Smart, M. C.; Narayanan, S. R.; Ratnakumar, B. V.; Whitcanack, L. D.; Davies, E. D.; Surampudi, S.; Raman, N. S.
2003-01-01
SAFT prismatic wound 5 Ahr MP series cells were evaluated for potential application in a lithium ion battery designed for Tactical Mobile Robots (TMR). In order to satisfy battery design requirements, a 10 Ahr battery containing two parallel 8-cell strings was proposed. The proposed battery has a weight and volume of approximately 3.2kg and 1.6 liters, respectively. Cell qualification procedures include initial characterization, followed by charge/discharge cycling at 100% DOD with intermittent EIS measurements at various state of charge. Certain cells were also subjected to extreme operational temperatures for worst-case analysis. Excellent specific energy (>130 Whr/kg) was obtained with initial characterization cycles. Even at abusive thermal conditions, the cell capacity fade was less than Ahr after 300 cycles. Rate characterization showed good cell discharge behavior with minimal decrease in capacity. At various state of charge, impedance measurements suggest that the cathode play a more significant role in capacity. At various state of charge impedance measurements suggest that the cathode play a more significant role in capacity fade than the anode.
Patra, Chandra N
2014-11-14
A systematic investigation of the spherical electric double layers with the electrolytes having size as well as charge asymmetry is carried out using density functional theory and Monte Carlo simulations. The system is considered within the primitive model, where the macroion is a structureless hard spherical colloid, the small ions as charged hard spheres of different size, and the solvent is represented as a dielectric continuum. The present theory approximates the hard sphere part of the one particle correlation function using a weighted density approach whereas a perturbation expansion around the uniform fluid is applied to evaluate the ionic contribution. The theory is in quantitative agreement with Monte Carlo simulation for the density and the mean electrostatic potential profiles over a wide range of electrolyte concentrations, surface charge densities, valence of small ions, and macroion sizes. The theory provides distinctive evidence of charge and size correlations within the electrode-electrolyte interface in spherical geometry.
On-Demand Generation of Neutral and Negatively Charged Silicon-Vacancy Centers in Diamond
NASA Astrophysics Data System (ADS)
Dhomkar, Siddharth; Zangara, Pablo R.; Henshaw, Jacob; Meriles, Carlos A.
2018-03-01
Point defects in wide-band-gap semiconductors are emerging as versatile resources for nanoscale sensing and quantum information science, but our understanding of the photoionization dynamics is presently incomplete. Here, we use two-color confocal microscopy to investigate the dynamics of charge in type 1b diamond hosting nitrogen-vacancy (NV) and silicon-vacancy (SiV) centers. By examining the nonlocal fluorescence patterns emerging from local laser excitation, we show that, in the simultaneous presence of photogenerated electrons and holes, SiV (NV) centers selectively transform into the negative (neutral) charge state. Unlike NVs, 532 nm illumination ionizes SiV- via a single-photon process, thus hinting at a comparatively shallower ground state. In particular, slower ionization rates at longer wavelengths suggest the latter lies approximately ˜1.9 eV below the conduction band minimum. Building on the above observations, we demonstrate on-demand SiV and NV charge initialization over large areas via green laser illumination of variable intensity.
Analytical and exact solutions of the spherical and cylindrical diodes of Langmuir-Blodgett law
NASA Astrophysics Data System (ADS)
Torres-Cordoba, Rafael; Martinez-Garcia, Edgar
2017-10-01
This paper discloses the exact solutions of a mathematical model that describes the cylindrical and spherical electron current emissions within the context of a physics approximation method. The solution involves analyzing the 1D nonlinear Poisson equation, for the radial component. Although an asymptotic solution has been previously obtained, we present a theoretical solution that satisfies arbitrary boundary conditions. The solution is found in its parametric form (i.e., φ(r )=φ(r (τ)) ) and is valid when the electric field at the cathode surface is non-zero. Furthermore, the non-stationary spatial solution of the electric potential between the anode and the cathode is also presented. In this work, the particle-beam interface is considered to be at the end of the plasma sheath as described by Sutherland et al. [Phys. Plasmas 12, 033103 2005]. Three regimes of space charge effects—no space charge saturation, space charge limited, and space charge saturation—are also considered.
Space charge in nanostructure resonances
NASA Astrophysics Data System (ADS)
Price, Peter J.
1996-10-01
In quantum ballistic propagation of electrons through a variety of nanostructures, resonance in the energy-dependent transmission and reflection probabilities generically is associated with (1) a quasi-level with a decay lifetime, and (2) a bulge in electron density within the structure. It can be shown that, to a good approximation, a simple formula in all cases connects the density of states for the latter to the energy dependence of the phase angles of the eigen values of the S-matrix governing the propagation. For both the Lorentzian resonances (normal or inverted) and for the Fano-type resonances, as a consequence of this eigen value formula, the space charge due to filled states over the energy range of a resonance is just equal (for each spin state) to one electron charge. The Coulomb interaction within this space charge is known to 'distort' the electrical characteristics of resonant nanostructures. In these systems, however, the exchange effect should effectively cancel the interaction between states with parallel spins, leaving only the anti-parallel spin contribution.
NASA Astrophysics Data System (ADS)
Wang, X. L.; Xu, Z. Y.; Luo, W.; Lu, H. Y.; Zhu, Z. C.; Yan, X. Q.
2017-09-01
Photo-transmutation of long-lived nuclear waste induced by a high-charge relativistic electron beam (e-beam) from a laser plasma accelerator is demonstrated. A collimated relativistic e-beam with a high charge of approximately 100 nC is produced from high-intensity laser interaction with near-critical-density (NCD) plasma. Such e-beam impinges on a high-Z convertor and then radiates energetic bremsstrahlung photons with flux approaching 1011 per laser shot. Taking a long-lived radionuclide 126Sn as an example, the resulting transmutation reaction yield is the order of 109 per laser shot, which is two orders of magnitude higher than obtained from previous studies. It is found that at lower densities, a tightly focused laser irradiating relatively longer NCD plasmas can effectively enhance the transmutation efficiency. Furthermore, the photo-transmutation is generalized by considering mixed-nuclide waste samples, which suggests that the laser-accelerated high-charge e-beam could be an efficient tool to transmute long-lived nuclear waste.
NASA Technical Reports Server (NTRS)
Nieman, R. A.
1971-01-01
The charge exchange cross sections for protons and various alkali atoms are calculated using the classical approximation of Gryzinski. It is assumed that the hydrogen atoms resulting from charge exchange exist in all possible excited states. Charge transfer collisions between protons and potassium as well as protons and sodium atoms are studied. The energy range investigated is between 4 and 30 keV. The theoretical calculations of the capture cross section and the cross section for the creation of metastable 2S hydrogen are compared to experimental values. Good quantitative agreement is found for the capture cross section but only qualitative agreement for the metastable cross section. Analysis of the Lyman alpha window in molecular oxygen suggests that measured values of the metastable cross section may be in error. Thick alkali target data are also presented. This allows the determination of the total electron loss cross section. Finally, some work was done with H2(+).
NASA Astrophysics Data System (ADS)
Sasaki, Atsuya; Sasaki, Akito; Hirabayashi, Hideaki; Saito, Shuichi; Aoki, Katsuaki; Kataoka, Yoshinori; Suzuki, Koji; Yabuhara, Hidehiko; Ito, Takahiro; Takagi, Shigeyuki
2018-04-01
Li-ion batteries have attracted interest for use as storage batteries. However, the risk of fire has not yet been resolved. Although solid Li-ion batteries are possible alternatives, their performance characteristics are unsatisfactory. Recently, research on utilizing the accumulation of carriers at the trap levels of semiconductors has been performed. However, the detailed charge/discharge characteristics and principles have not been reported. In this report, we attempted to form new n-type oxide semiconductor/insulator/p-type oxide semiconductor structures. The battery characteristics of these structures were evaluated by charge/discharge measurements. The obtained results clearly indicated the characteristics of rechargeable batteries. Furthermore, the fabricated structure accumulated an approximately 5000 times larger number of carriers than a parallel plate capacitor. Additionally, by constructing circuit models based on the experimental results, the charge/discharge mechanisms were considered. This is the first detailed experimental report on a rechargeable battery that operates without the double injection of ions and electrons.
Localized Charges Control Exciton Energetics and Energy Dissipation in Doped Carbon Nanotubes.
Eckstein, Klaus H; Hartleb, Holger; Achsnich, Melanie M; Schöppler, Friedrich; Hertel, Tobias
2017-10-24
Doping by chemical or physical means is key for the development of future semiconductor technologies. Ideally, charge carriers should be able to move freely in a homogeneous environment. Here, we report on evidence suggesting that excess carriers in electrochemically p-doped semiconducting single-wall carbon nanotubes (s-SWNTs) become localized, most likely due to poorly screened Coulomb interactions with counterions in the Helmholtz layer. A quantitative analysis of blue-shift, broadening, and asymmetry of the first exciton absorption band also reveals that doping leads to hard segmentation of s-SWNTs with intrinsic undoped segments being separated by randomly distributed charge puddles approximately 4 nm in width. Light absorption in these doped segments is associated with the formation of trions, spatially separated from neutral excitons. Acceleration of exciton decay in doped samples is governed by diffusive exciton transport to, and nonradiative decay at charge puddles within 3.2 ps in moderately doped s-SWNTs. The results suggest that conventional band-filling in s-SWNTs breaks down due to inhomogeneous electrochemical doping.
Meng, Xian; Liu, Zhimeng; Deng, Cheng; Zhu, Mengfu; Wang, Deyin; Li, Kui; Deng, Yu; Jiang, Mingming
2016-12-15
A novel microporous nano-MgO/diatomite ceramic membrane with high positive surface charge was prepared, including synthesis of precursor colloid, dip-coating and thermal decomposition. Combined SEM, EDS, XRD and XPS studies show the nano-MgO is irregularly distributed on the membrane surface or pore walls and forms a positively charged nano coating. And the nano-MgO coating is firmly attached to the diatomite membrane via SiO chemical bond. Thus the nano-MgO/diatomite membrane behaves strong electropositivity with the isoelectric point of 10.8. Preliminary filtration tests indicate that the as-prepared nano-MgO/diatomite membrane could remove approximately 99.7% of tetracycline in water through electrostatic adsorption effect. The desirable electrostatic property enables the nano-MgO/diatomite membrane to be a candidate for removal of organic pollutants from water. And it is convinced that there will be a great application prospect of charged ceramic membrane in water treatment field. Copyright © 2016 Elsevier B.V. All rights reserved.
Charging of nanoparticles in stationary plasma in a gas aggregation cluster source
NASA Astrophysics Data System (ADS)
Blažek, J.; Kousal, J.; Biederman, H.; Kylián, O.; Hanuš, J.; Slavínská, D.
2015-10-01
Clusters that grow into nanoparticles near the magnetron target of the gas aggregation cluster source (GAS) may acquire electric charge by collecting electrons and ions or through other mechanisms like secondary- or photo-electron emissions. The region of the GAS close to magnetron may be considered as stationary plasma. The steady state charge distribution on nanoparticles can be determined by means of three possible models—fluid model, kinetic model and model employing Monte Carlo simulations—of cluster charging. In the paper the mathematical and numerical aspects of these models are analyzed in detail and close links between them are clarified. Among others it is shown that Monte Carlo simulation may be considered as a particular numerical technique of solving kinetic equations. Similarly the equations of the fluid model result, after some approximation, from averaged kinetic equations. A new algorithm solving an in principle unlimited set of kinetic equations is suggested. Its efficiency is verified on physical models based on experimental input data.
Trajectories of charged particles in radial electric and uniform axial magnetic fields
NASA Technical Reports Server (NTRS)
Englert, G. W.
1979-01-01
Trajectories of charged particles were determined over a wide range of parameters characterizing motion in cylindrical low-pressure gas discharges and plasma heating devices which have steady radial electric fields perpendicular to uniform steady magnetic fields. Consideration was given to radial distributions characteristic of fields measured in a modified Penning discharge, in two NASA Lewis burnout-type plasma heating devices, and that estimated for the Ixion device. Numerical calculations of trajectories for such devices showed that differences between cyclotron frequency and qB/m and between azimuthal drift and a guiding center approximation are appreciable.
Nascap-2k Version 4.2 Scientific Documentation
2014-10-31
approximation is valid. g2Do 2 λ φ −= ε ρ =φ∇− (39) Nonlinear. The Nonlinear space charge model is appropriate for most low- Earth -orbit type plasmas . It...ratio of the available photocurrent to the plasma density is less than 2% of the typical value for this ratio at Earth orbit, ( ) 02.0 n 107 1078 0j a 6...Beyond the barrier in the ambient plasma , the charge density of the escaping photocurrent is ( )( ) ⌡ ⌠ φ− =ρ ∞ )2( maxB s e escape photoescaping
Generalized approach to cooling charge-coupled devices using thermoelectric coolers
NASA Technical Reports Server (NTRS)
Petrick, S. Walter
1987-01-01
This paper is concerned with the use of thermoelectric coolers (TECs) to cool charge-coupled devices (CCDs). Heat inputs to the CCD from the warmer environment are identified, and generalized graphs are used to approximate the major heat inputs. A method of choosing and estimating the power consumption of the TEC is discussed. This method includes the use of TEC performance information supplied by the manufacturer and equations derived from this information. Parameters of the equations are tabulated to enable the reader to use the TEC performance equations for choosing and estimating the power needed for specific TEC applications.
NASA Astrophysics Data System (ADS)
Diachkovskii, A. S.; Zykova, A. I.; Ishchenko, A. N.; Kasimov, V. Z.; Rogaev, K. S.; Sidorov, A. D.
2017-11-01
This paper describes a software package that allows to explore the interior ballistics processes occurring in a shot scheme with bulk charges using propellant pasty substances at various loading schemes, etc. As a mathematical model, a model of a polydisperse mixture of non-deformable particles and a carrier gas phase is used in the quasi-one-dimensional approximation. Writing the equations of the mathematical model allows to use it to describe a broad class of interior ballistics processes. Features of the using approach are illustrated by calculating the ignition period for the charge of tubular propellant.
Zero-energy state in graphene in a high magnetic field.
Checkelsky, Joseph G; Li, Lu; Ong, N P
2008-05-23
The fate of the charge-neutral Dirac point in graphene in a high magnetic field H has been investigated at low temperatures (T approximately 0.3 K). In samples with small gate-voltage offset V0, the resistance R0 at the Dirac point diverges steeply with H, signaling a crossover to a state with a very large R0. The approach to this state is highly unusual. Despite the steep divergence in R0, the profile of R0 vs T in fixed H saturates to a T-independent value below 2 K, consistent with gapless charge-carrying excitations.
A new scanning electron microscopy approach to image aerogels at the nanoscale
NASA Astrophysics Data System (ADS)
Solá, F.; Hurwitz, F.; Yang, J.
2011-04-01
A new scanning electron microscopy (SEM) technique to image poor electrically conductive aerogels is presented. The process can be performed by non-expert SEM users. We showed that negative charging effects on aerogels can be minimized significantly by inserting dry nitrogen gas close to the region of interest. The process involves the local recombination of accumulated negative charges with positive ions generated from ionization processes. This new technique made possible the acquisition of images of aerogels with pores down to approximately 3 nm in diameter using a positively biased Everhart-Thornley (ET) detector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyao, Tadahiro; Spohn, Herbert
The retarded van der Waals potential, as first obtained by Casimir and Polder, is usually computed on the basis of nonrelativistic quantum electrodynamics . The Hamiltonian describes two infinitely heavy nuclei, charge e, separated by a distance R and two spinless electrons, charge -e, nonrelativistically coupled to the quantized radiation field. Casimir and Polder used the dipole approximation and small coupling to the Maxwell field. We employ here the full Hamiltonian and determine the asymptotic strength of the leading -R{sup -7} potential, which is valid for all e. Our computation is based on a path integral representation and expands inmore » 1/R, rather than in e.« less
Van der Waals corrected DFT study of adsorption of groups VA and VIA hydrides on graphene monoxide
NASA Astrophysics Data System (ADS)
Notash, M. Yaghoobi; Ebrahimzadeh, A. Rastkar
2016-06-01
Adsorption properties of H2O, H2S, NH3 and PH3 on graphene monoxide (GMO) nano flack are investigated using density functional theory (DFT). Calculations were carried out by van der Waals correction and general gradient approximation. The adsorption energies and charge transfer between species are obtained and discussed for the considered positions of adsorbate molecules. Charge transfer analysis show that the gas molecules act as an electron acceptor in all cases. The analysis of the adsorption energies suggest GMO can be a good candidate for the adsorption of these molecules.
NASA Astrophysics Data System (ADS)
Bruno, Ezio; Mammano, Francesco; Fiorino, Antonino; Morabito, Emanuela V.
2008-04-01
The class of the generalized coherent-potential approximations (GCPAs) to the density functional theory (DFT) is introduced within the multiple scattering theory formalism with the aim of dealing with ordered or disordered metallic alloys. All GCPA theories are based on a common ansatz for the kinetic part of the Hohenberg-Kohn functional and each theory of the class is specified by an external model concerning the potential reconstruction. Most existing DFT implementations of CPA-based theories belong to the GCPA class. The analysis of the formal properties of the density functional defined by GCPA theories shows that it consists of marginally coupled local contributions. Furthermore, it is shown that the GCPA functional does not depend on the details of the charge density and that it can be exactly rewritten as a function of the appropriate charge multipole moments to be associated with each lattice site. A general procedure based on the integration of the qV laws is described that allows for the explicit construction of the same function. The coarse-grained nature of the GCPA density functional implies a great deal of computational advantages and is connected with the O(N) scalability of GCPA algorithms. Moreover, it is shown that a convenient truncated series expansion of the GCPA functional leads to the charge-excess functional (CEF) theory [E. Bruno , Phys. Rev. Lett. 91, 166401 (2003)], which here is offered in a generalized version that includes multipolar interactions. CEF and the GCPA numerical results are compared with status of art linearized augmented plane wave (LAPW) full-potential density functional calculations for 62 bcc- and fcc-based ordered CuZn alloys, in all the range of concentrations. Two facts clearly emerge from these extensive tests. In the first place, the discrepancies between GCPA and CEF results are always within the numerical accuracy of the calculations, both for the site charges and the total energies. In the second place, the GCPA (or the CEF) is able to very carefully reproduce the LAPW site charges and a good agreement is obtained also about the total energies.
Convergence of the Light-Front Coupled-Cluster Method in Scalar Yukawa Theory
NASA Astrophysics Data System (ADS)
Usselman, Austin
We use Fock-state expansions and the Light-Front Coupled-Cluster (LFCC) method to study mass eigenvalue problems in quantum field theory. Specifically, we study convergence of the method in scalar Yukawa theory. In this theory, a single charged particle is surrounded by a cloud of neutral particles. The charged particle can create or annihilate neutral particles, causing the n-particle state to depend on the n + 1 and n - 1-particle state. Fock state expansion leads to an infinite set of coupled equations where truncation is required. The wave functions for the particle states are expanded in a basis of symmetric polynomials and a generalized eigenvalue problem is solved for the mass eigenvalue. The mass eigenvalue problem is solved for multiple values for the coupling strength while the number of particle states and polynomial basis order are increased. Convergence of the mass eigenvalue solutions is then obtained. Three mass ratios between the charged particle and neutral particles were studied. This includes a massive charged particle, equal masses and massive neutral particles. Relative probability between states can also be explored for more detailed understanding of the process of convergence with respect to the number of Fock sectors. The reliance on higher order particle states depended on how large the mass of the charge particle was. The higher the mass of the charged particle, the more the system depended on higher order particle states. The LFCC method solves this same mass eigenvalue problem using an exponential operator. This exponential operator can then be truncated instead to form a finite system of equations that can be solved using a built in system solver provided in most computational environments, such as MatLab and Mathematica. First approximation in the LFCC method allows for only one particle to be created by the new operator and proved to be not powerful enough to match the Fock state expansion. The second order approximation allowed one and two particles to be created by the new operator and converged to the Fock state expansion results. This showed the LFCC method to be a reliable replacement method for solving quantum field theory problems.
ERIC Educational Resources Information Center
California Community Colleges, Chancellor's Office, 2015
2015-01-01
The California Community Colleges serves approximately 2.1 million students each year and is the largest system of higher education in the nation. The state's 112 community colleges are charged with providing workforce training, basic skills education and preparing students to transfer to four-year universities. Currently, 78 of our 112 community…
Electromagnetic Dissociation of Uranium in Heavy Ion Collisions at 120 Mev/a
NASA Astrophysics Data System (ADS)
Justice, Marvin Lealon
The heavy-ion induced electromagnetic dissociation (EMD) of a 120 MeV/A ^{238}U beam incident on five targets (^9Be, ^{27}Al, ^ {nat}Cu, ^{nat} Ag, and ^{nat}U) has been studied experimentally. Electromagnetic dissociation at this beam energy is essentially a two step process involving the excitation of a giant resonance followed by particle decay. At 120 MeV/A there is predicted to be a significant contribution (~25%) of the giant quadrupole resonance to the EMD cross sections. The specific exit channel which was looked at was projectile fission. The two fission fragments were detected in coincidence by an array of solid-state DeltaE-E detectors, allowing the charges of the fragments to be determined to within +/- .5 units. The events were sorted on the basis of the sums of the fragments' charges, acceptance corrections were applied, and total cross sections for the most peripheral events (i.e. those leading to charge sums of approximately 92) were determined. Electromagnetic fission at the beam energy of this experiment always leads to a true charge sum of 92. Due to the imperfect resolution of the detectors, charge sums of 91 and 93 were included in order to account for all of the electromagnetic fission events. The experimentally observed cross sections are due to nuclear interaction processes as well as electromagnetic processes. Under the conditions of this experiment, the cross sections for the beryllium target are almost entirely due to nuclear processes. The nuclear cross sections for the other four targets were determined by extrapolation from the beryllium data using a geometrical scaling model. After subtraction of the nuclear cross sections, the resulting electromagnetic cross sections are compared to theoretical calculations based on the equivalent photon approximation. Systematic uncertainties associated with the normalization of the data make quantitative comparisons with theory difficult, however. The systematic uncertainties are discussed and suggestions for improving the experiment are given.
Chueh, William C; El Gabaly, Farid; Sugar, Joshua D; Bartelt, Norman C; McDaniel, Anthony H; Fenton, Kyle R; Zavadil, Kevin R; Tyliszczak, Tolek; Lai, Wei; McCarty, Kevin F
2013-03-13
The intercalation pathway of lithium iron phosphate (LFP) in the positive electrode of a lithium-ion battery was probed at the ∼40 nm length scale using oxidation-state-sensitive X-ray microscopy. Combined with morphological observations of the same exact locations using transmission electron microscopy, we quantified the local state-of-charge of approximately 450 individual LFP particles over nearly the entire thickness of the porous electrode. With the electrode charged to 50% state-of-charge in 0.5 h, we observed that the overwhelming majority of particles were either almost completely delithiated or lithiated. Specifically, only ∼2% of individual particles were at an intermediate state-of-charge. From this small fraction of particles that were actively undergoing delithiation, we conclude that the time needed to charge a particle is ∼1/50 the time needed to charge the entire particle ensemble. Surprisingly, we observed a very weak correlation between the sequence of delithiation and the particle size, contrary to the common expectation that smaller particles delithiate before larger ones. Our quantitative results unambiguously confirm the mosaic (particle-by-particle) pathway of intercalation and suggest that the rate-limiting process of charging is initiating the phase transformation by, for example, a nucleation-like event. Therefore, strategies for further enhancing the performance of LFP electrodes should not focus on increasing the phase-boundary velocity but on the rate of phase-transformation initiation.
Predictors of resource utilization in transsphenoidal surgery for Cushing disease.
Little, Andrew S; Chapple, Kristina
2013-08-01
The short-term cost associated with subspecialized surgical care is an increasingly important metric and economic concern. This study sought to determine factors associated with hospital charges in patients undergoing transsphenoidal surgery for Cushing disease in an effort to identify the drivers of resource utilization. The authors analyzed the Nationwide Inpatient Sample (NIS) hospital discharge database from 2007 to 2009 to determine factors that influenced hospital charges in patients who had undergone transsphenoidal surgery for Cushing disease. The NIS discharge database approximates a 20% sample of all inpatient admissions to nonfederal US hospitals. A multistep regression model was developed that adjusted for patient demographics, acuity measures, comorbidities, hospital characteristics, and complications. In 116 hospitals, 454 transsphenoidal operations were performed. The mean hospital charge was $48,272 ± $32,060. A multivariate regression model suggested that the primary driver of resource utilization was length of stay (LOS), followed by surgeon volume, hospital characteristics, and postoperative complications. A 1% increase in LOS increased hospital charges by 0.60%. Patient charges were 13% lower when performed by high-volume surgeons compared with low-volume surgeons and 22% lower in large hospitals compared with small hospitals. Hospital charges were 12% lower in cases with no postoperative neurological complications. The proposed model accounted for 46% of hospital charge variance. This analysis of hospital charges in transsphenoidal surgery for Cushing disease suggested that LOS, hospital characteristics, surgeon volume, and postoperative complications are important predictors of resource utilization. These findings may suggest opportunities for improvement.
Preliminary Results of a Microgravity Investigation to Measure Net Charge on Granular Materials
NASA Technical Reports Server (NTRS)
Green, Robert D.; Myers, Jerry G.; Hansen, Bonnie L.
2003-01-01
Accurate characterization of the electrostatic charge on granular materials has typically been limited to materials with diameters on the order of 10 microns and below due to high settling velocities of larger particles. High settling velocities limit both the time and the acceptable uncertainty with which a measurement can be made. A prototype device has been developed at NASA Glenn Research Center (GRC) to measure coulombic charge on individual particles of granular materials that are 50 to 500 microns in diameter. This device, a novel extension of Millikan's classic oil drop experiment, utilizes the NASA GRC 2.2 second drop tower to extend the range of electrostatic charge measurements to accommodate moderate size granular materials. A dielectric material with a nominal grain diameter between 1.06 and 250 microns was tribocharged using a dry gas jet, suspended in a 5x10x10 cm enclosure during a 2.2 second period of microgravity and exposed to a known electric field. The response was recorded on video and post processed to allow tracking of individual particles. By determining the particle trajectory and velocity, estimates of the coulombic charge were made. Over 30 drops were performed using this technique and the analysis showed that first order approximations of coulombic charge could successfully be obtained, with the mean charge of 3.4E-14 coulombs measured for F-75 Ottawa quartz sand. Additionally, the measured charge showed a near-Gaussian distribution, with a standard deviation of 2.14E -14 coulombs.
NASA Astrophysics Data System (ADS)
Kumar, Naveen; Zhao, Cunlu; Klaassen, Aram; van den Ende, Dirk; Mugele, Frieder; Siretanu, Igor
2016-02-01
Most solid surfaces, in particular clay minerals and rock surfaces, acquire a surface charge upon exposure to an aqueous environment due to adsorption and/or desorption of ionic species. Macroscopic techniques such as titration and electrokinetic measurements are commonly used to determine the surface charge and ζ -potential of these surfaces. However, because of the macroscopic averaging character these techniques cannot do justice to the role of local heterogeneities on the surfaces. In this work, we use dynamic atomic force microscopy (AFM) to determine the distribution of surface charge on the two (gibbsite-like and silica-like) basal planes of kaolinite nanoparticles immersed in aqueous electrolyte with a lateral resolution of approximately 30 nm. The surface charge density is extracted from force-distance curves using DLVO theory in combination with surface complexation modeling. While the gibbsite-like and the silica-like facet display on average positive and negative surface charge values as expected, our measurements reveal lateral variations of more than a factor of two on seemingly atomically smooth terraces, even if high resolution AFM images clearly reveal the atomic lattice on the surface. These results suggest that simple surface complexation models of clays that attribute a unique surface chemistry and hence homogeneous surface charge densities to basal planes may miss important aspects of real clay surfaces.
NASA Astrophysics Data System (ADS)
Nonoyama, Yoshito; Maekawa, Yukiko; Kobayashi, Akito; Suzumura, Yoshikazu; Yamada, Jun-ichi
2008-10-01
Mechanisms of superconductivity in quasi-two-dimensional organic conductors have been investigated using an extended Hubbard model by using the transfer energies between BDA-TTP molecules for β-(BDA-TTP)2I3 based on the X-ray experiment data and the extended Hückel calculation. We obtain several mean-field solutions with charge orderings which may represent short-range orderings or low-energy fluctuations in the low-dimensional electronic system. In the pressure-temperature phase diagram, a charge ordered metal state almost degenerates with a normal metal state between an insulating phase with charge ordering and the normal metal phase. Using the random phase approximation (RPA) and the linearized gap equation, the transition temperature of the superconducting state is estimated for the charge-ordered metal state and the normal metal state. It is found that transition temperature of the superconductivity induced by spin fluctuations in the charge-ordered metal state is much higher than that of the normal metal state and that the superconductivity in the charge-ordered metal state is the gapless d-wave. This suggests that the short range charge ordering may also contribute to an enhancement of spin-fluctuation-mediated superconductivity. The difference in the superconducting states between β-(BDA-TTP)2I3 and β-(BDA-TTP)2SbF6 are briefly discussed.
Charged perfect fluid tori in strong central gravitational and dipolar magnetic fields
NASA Astrophysics Data System (ADS)
Kovář, Jiří; Slaný, Petr; Cremaschini, Claudio; Stuchlík, Zdeněk; Karas, Vladimír; Trova, Audrey
2016-06-01
We study electrically charged perfect fluid toroidal structures encircling a spherically symmetric gravitating object with Schwarzschild spacetime geometry and endowed with a dipole magnetic field. The work represents a direct continuation of our previous general-relativistic studies of electrically charged fluid in the approximation of zero conductivity, which formed tori around a Reissner-Nordström black hole or a Schwarzschild black hole equipped with a test electric charge and immersed in an asymptotically uniform magnetic field. After a general introduction of the zero-conductivity charged fluid model, we discuss a variety of possible topologies of the toroidal fluid configurations. Along with the charged equatorial tori forming interesting coupled configurations, we demonstrate the existence of the off-equatorial tori, for which the dipole type of magnetic field seems to be necessary. We focus on orbiting structures with constant specific angular momentum and on those in permanent rigid rotation. We stress that the general analytical treatment developed in our previous works is enriched here by the integrated form of the pressure equations. To put our work into an astrophysical context, we identify the central object with an idealization of a nonrotating magnetic neutron star. Constraining ranges of its parameters and also parameters of the circling fluid, we discuss a possible relevance of the studied toroidal structures, presenting along with their topology also pressure, density, temperature and charge profiles.
Disordering of ultra thin WO3 films by high-energy ions
NASA Astrophysics Data System (ADS)
Matsunami, N.; Kato, M.; Sataka, M.; Okayasu, S.
2017-10-01
We have studied disordering or atomic structure modification of ultra thin WO3 films under impact of high-energy ions with non-equilibrium and equilibrium charge incidence, by means of X-ray diffraction (XRD). WO3 films were prepared by thermal oxidation of W deposited on MgO substrate. Film thickness obtained by Rutherford backscattering spectrometry (RBS) is as low as 2 nm. Smoothness of film surface was observed by atomic force microscopy. It is found that the ratio of XRD intensity degradation per 90 MeV Ni+10 ion (the incident charge is lower than the equilibrium charge) to that per 90 MeV Ni ion with the equilibrium charge depends on the film thickness. Also, film thickness dependence is observed for 100 MeV Xe+14. By comparison of the experimental result with a simple model calculation based on the assumption that the mean charge of ions along the depth follows a saturation curve with power-law approximation to the charge dependent electronic stopping power, the characteristic length attaining the equilibrium charge is obtained to be ∼7 nm for 90 MeV Ni+10 ion incidence or the electron loss cross section of ∼1016 cm2, demonstrating that disordering of ultra WO3 films has been observed and a fundamental quantity can be derived through material modification.
Architectures and economics for pervasive broadband satellite networks
NASA Technical Reports Server (NTRS)
Staelin, D. H.; Harvey, R. L.
1979-01-01
The size of a satellite network necessary to provide pervasive high-data-rate business communications is estimated, and one possible configuration is described which could interconnect most organizations in the United States. Within an order of magnitude, such a network might reasonably have a capacity equivalent to 10,000 simultaneous 3-Mbps channels, and rely primarily upon a cluster of approximately 3-5 satellites in a single orbital slot. Nominal prices for 3-6 Mbps video conference services might then be approximately $2000 monthly lease charge plus perhaps 70 cents per minute one way.
NASA Astrophysics Data System (ADS)
Schiwietz, G.; Grande, P. L.
2011-11-01
Recent developments in the theoretical treatment of electronic energy losses of bare and screened ions in gases are presented. Specifically, the unitary-convolution-approximation (UCA) stopping-power model has proven its strengths for the determination of nonequilibrium effects for light as well as heavy projectiles at intermediate to high projectile velocities. The focus of this contribution will be on the UCA and its extension to specific projectile energies far below 100 keV/u, by considering electron-capture contributions at charge-equilibrium conditions.
Nonparaxial and paraxial focusing of azimuthal-variant vector beams.
Gu, Bing; Cui, Yiping
2012-07-30
Based on the vectorial Rayleigh-Sommerfeld formulas under the weak nonparaxial approximation, we investigate the propagation behavior of a lowest-order Laguerre-Gaussian beam with azimuthal-variant states of polarization. We present the analytical expressions for the radial, azimuthal, and longitudinal components of the electric field with an arbitrary integer topological charge m focused by a nonaperturing thin lens. We illustrate the three-dimensional optical intensities, energy flux distributions, beam waists, and focal shifts of the focused azimuthal-variant vector beams under the nonparaxial and paraxial approximations.
NASA Technical Reports Server (NTRS)
Omidvar, K.
1972-01-01
Three charged particles 1, 2, 3 collide according to the reaction 1+(2+3) yields (1+3)+2, where (2+3) and (1+3) are hydrogenlike bound states. It is shown when (1+3) is in a highly excited state n, due to the repulsive potential, the cross section in the first Born approximation behaves as 1/n which makes the total cross section to diverge like ln n. The total cross sections in the higher orders of the Born approximation are similarly divergent logarithmically.
Basic corrections to predictions of solar cell performance required by nonlinearities
NASA Technical Reports Server (NTRS)
Lindholm, F. A.; Fossum, J. G.; Burgess, E. L.
1976-01-01
The superposition principle is used to derive the approximation that the current-voltage characteristic of an illuminated solar cell is the dark current-voltage characteristic shifted by the short-circuit photocurrent. The derivation requires the linearity of the boundary value problems that underlie the electrical characteristics. The shifting approximation is invalid if considerable photocurrent and considerable dark current both occur within the junction space-charge region; it is invalid also if sizable series resistance is present or if high-injection concentrations of holes and electrons exist within the quasi-neutral regions.
Exact Doppler broadening of tabulated cross sections. [SIGMA 1 kernel broadening method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cullen, D.E.; Weisbin, C.R.
1976-07-01
The SIGMA1 kernel broadening method is presented to Doppler broaden to any required accuracy a cross section that is described by a table of values and linear-linear interpolation in energy-cross section between tabulated values. The method is demonstrated to have no temperature or energy limitations and to be equally applicable to neutron or charged-particle cross sections. The method is qualitatively and quantitatively compared to contemporary approximate methods of Doppler broadening with particular emphasis on the effect of each approximation introduced.
Charging of Proteins in Native Mass Spectrometry
Susa, Anna C.; Xia, Zijie; Tang, Henry Y. H.; ...
2016-10-12
Factors that influence the charging of protein ions formed by electrospray ionization from aqueous solutions in which proteins have native structures and function were investigated. Protein ions ranging in molecular weight from 12.3 to 79.7 kDa and pI values from 5.4 to 9.6 were formed from different solutions and reacted with volatile bases of gas-phase basicities higher than that of ammonia in the cell of a Fourier-transform ion cyclotron resonance mass spectrometer. The charge-state distribution of cytochrome c ions formed from aqueous ammonium or potassium acetate is the same. Moreover, ions formed from these two solutions do not undergo protonmore » transfer to 2-fluoropyridine, which is 8 kcal/mol more basic than ammonia. These results provide compelling evidence that proton transfer between ammonia and protein ions does not limit protein ion charge in native electrospray ionization. Both circular dichroism and ion mobility measurements indicate that there are differences in conformations of proteins in pure water and aqueous ammonium acetate, and these differences can account for the difference in the extent of charging and proton-transfer reactivities of protein ions formed from these solutions. The extent of proton transfer of the protein ions with higher gas-phase basicity bases trends with how closely the protein ions are charged to the value predicted by the Rayleigh limit for spherical water droplets approximately the same size as the proteins. These results indicate that droplet charge limits protein ion charge in native mass spectrometry and are consistent with these ions being formed by the charged residue mechanism.« less
Isegawa, Miho; Gao, Jiali; Truhlar, Donald G
2011-08-28
Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi-Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi-Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred. © 2011 American Institute of Physics
Isegawa, Miho; Gao, Jiali; Truhlar, Donald G.
2011-01-01
Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi–Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi–Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred. PMID:21895159
Charging of Proteins in Native Mass Spectrometry
NASA Astrophysics Data System (ADS)
Susa, Anna C.; Xia, Zijie; Tang, Henry Y. H.; Tainer, John A.; Williams, Evan R.
2017-02-01
Factors that influence the charging of protein ions formed by electrospray ionization from aqueous solutions in which proteins have native structures and function were investigated. Protein ions ranging in molecular weight from 12.3 to 79.7 kDa and pI values from 5.4 to 9.6 were formed from different solutions and reacted with volatile bases of gas-phase basicities higher than that of ammonia in the cell of a Fourier-transform ion cyclotron resonance mass spectrometer. The charge-state distribution of cytochrome c ions formed from aqueous ammonium or potassium acetate is the same. Moreover, ions formed from these two solutions do not undergo proton transfer to 2-fluoropyridine, which is 8 kcal/mol more basic than ammonia. These results provide compelling evidence that proton transfer between ammonia and protein ions does not limit protein ion charge in native electrospray ionization. Both circular dichroism and ion mobility measurements indicate that there are differences in conformations of proteins in pure water and aqueous ammonium acetate, and these differences can account for the difference in the extent of charging and proton-transfer reactivities of protein ions formed from these solutions. The extent of proton transfer of the protein ions with higher gas-phase basicity bases trends with how closely the protein ions are charged to the value predicted by the Rayleigh limit for spherical water droplets approximately the same size as the proteins. These results indicate that droplet charge limits protein ion charge in native mass spectrometry and are consistent with these ions being formed by the charged residue mechanism.
Characterization and correction of charge-induced pixel shifts in DECam
Gruen, D.; Bernstein, G. M.; Jarvis, M.; ...
2015-05-28
Interaction of charges in CCDs with the already accumulated charge distribution causes both a flux dependence of the point-spread function (an increase of observed size with flux, also known as the brighter/fatter effect) and pixel-to-pixel correlations of the Poissonian noise in flat fields. We describe these effects in the Dark Energy Camera (DECam) with charge dependent shifts of effective pixel borders, i.e. the Antilogus et al. (2014) model, which we fit to measurements of flat-field Poissonian noise correlations. The latter fall off approximately as a power-law r -2.5 with pixel separation r, are isotropic except for an asymmetry in themore » direct neighbors along rows and columns, are stable in time, and are weakly dependent on wavelength. They show variations from chip to chip at the 20% level that correlate with the silicon resistivity. The charge shifts predicted by the model cause biased shape measurements, primarily due to their effect on bright stars, at levels exceeding weak lensing science requirements. We measure the flux dependence of star images and show that the effect can be mitigated by applying the reverse charge shifts at the pixel level during image processing. Differences in stellar size, however, remain significant due to residuals at larger distance from the centroid.« less
NASA Astrophysics Data System (ADS)
Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Böttger, S.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Mcdonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Munzer, R. H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pal, S. K.; Pan, J.; Pandey, A. K.; Papcun, P.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stefanek, G.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yang, H.; Yang, P.; Yano, S.; Yasar, C.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.
2016-03-01
The centrality dependence of the charged-particle pseudorapidity density measured with ALICE in Pb-Pb collisions at √{sNN} = 2.76 TeV over a broad pseudorapidity range is presented. This Letter extends the previous results reported by ALICE to more peripheral collisions. No strong change of the overall shape of charged-particle pseudorapidity density distributions with centrality is observed, and when normalised to the number of participating nucleons in the collisions, the evolution over pseudorapidity with centrality is likewise small. The broad pseudorapidity range (- 3.5 < η < 5) allows precise estimates of the total number of produced charged particles which we find to range from 162 ± 22(syst.) to 17170 ± 770(syst.) in 80-90% and 0-5% central collisions, respectively. The total charged-particle multiplicity is seen to approximately scale with the number of participating nucleons in the collision. This suggests that hard contributions to the charged-particle multiplicity are limited. The results are compared to models which describe dNch / dη at mid-rapidity in the most central Pb-Pb collisions and it is found that these models do not capture all features of the distributions.
Forward-backward multiplicity correlations in pp, p+Pb and Pb+Pb collisions with the ATLAS detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Jiangyong
2016-12-01
Two-particle pseudorapidity correlations are measured in √s NN = 2.76 TeV Pb+Pb, √s NN = 5.02 TeV p +Pb and √s = 13 TeV pp collisions [ATLAS Collaboration, ATLAS-CONF-2015-051; ATLAS-CONF-2015-020]. Correlation function is measured using charged particles in the pseudorapidity range |η|<2.4 with transverse momentum p T>0.2 GeV, and it is measured as a function of event multiplicity, defined by number of charged particles with |η|<2.5 and p T>0.4 GeV. The correlation function is decomposed into a short-range component (SRC) and a long-range component (LRC). The SRC differs significantly between the opposite-charge pairs and same-charge pairs, and between the threemore » collision systems at similar multiplicity. The LRC is described approximately by 1 + n1n2 in all collision systems over the full multiplicity range. The values of are consistent between the opposite-charge and same-charge pairs, and are similar for the three collision systems at similar multiplicity. The values of and the magnitude of the SRC both follow a power-law dependence on the event multiplicity.« less
Effects of Ni particle morphology on cell performance of Na/NiCl2 battery
NASA Astrophysics Data System (ADS)
Kim, Mangi; Ahn, Cheol-Woo; Hahn, Byung-Dong; Jung, Keeyoung; Park, Yoon-Cheol; Cho, Nam-ung; Lee, Heesoo; Choi, Joon-Hwan
2017-11-01
Electrochemical reaction of Ni particle, one of active cathode materials in the Na/NiCl2 battery, occurs on the particle surface. The NiCl2 layer formed on the Ni particle surface during charging can disconnect the electron conduction path through Ni particles because the NiCl2 layer has very low conductivity. The morphology and size of Ni particles, therefore, need to be controlled to obtain high charge capacity and excellent cyclic retention. Effects of the Ni particle size on the cell performance were investigated using spherical Ni particles with diameters of 0.5 μm, 6 μm, and 50 μm. The charge capacities of the cells with spherical Ni particles increased when the Ni particle size becomes smaller because of their higher surface area but their charge capacities were significantly decreased with increasing cyclic tests owing to the disconnection of electron conduction path. The inferior cyclic retention of charge capacity was improved using reticular Ni particles which maintained the reliable connection for the electron conduction in the Na/NiCl2 battery. The charge capacity of the cell with the reticular Ni particles was higher than the cell with the small-sized spherical Ni particles approximately by 26% at 30th cycle.
Adam, J.; Adamová, D.; Aggarwal, M. M.; ...
2016-01-26
The centrality dependence of the charged-particle pseudorapidity density measured with ALICE in Pb-Pb collisions at √s NN = 2.76 TeV over a broad pseudorapidity range is presented. This Letter extends the previous results reported by ALICE to more peripheral collisions. No strong change of the overall shape of charged-particle pseudorapidity density distributions with centrality is observed, and when normalised to the number of participating nucleons in the collisions, the evolution over pseudorapidity with centrality is likewise small. Broadening the pseudorapidity range (-3.5 < η < 5) allows precise estimates of the total number of produced charged particles which we findmore » to range from 162 ± 22(syst.) to 17170 ± 770(syst.) in 80-90% and 0-5% central collisions, respectively. The total charged-particle multiplicity is seen to approximately scale with the number of participating nucleons in the collision. This suggests that hard contributions to the charged-particle multiplicity are limited. Our results are compared to models which describe dN ch/dη at mid-rapidity in the most central Pb-Pb collisions and it is found that these models do not capture all features of the distributions.« less
NASA Astrophysics Data System (ADS)
Thompson, Tammy M.; King, Carey W.; Allen, David T.; Webber, Michael E.
2011-04-01
The air quality impacts of replacing approximately 20% of the gasoline-powered light duty vehicle miles traveled (VMT) with electric VMT by the year 2018 were examined for four major cities in Texas: Dallas/Ft Worth, Houston, Austin, and San Antonio. Plug-in hybrid electric vehicle (PHEV) charging was assumed to occur on the electric grid controlled by the Electricity Reliability Council of Texas (ERCOT), and three charging scenarios were examined: nighttime charging, charging to maximize battery life, and charging to maximize driver convenience. A subset of electricity generating units (EGUs) in Texas that were found to contribute the majority of the electricity generation needed to charge PHEVs at the times of day associated with each scenario was modeled using a regional photochemical model (CAMx). The net impacts of the PHEVs on the emissions of precursors to the formation of ozone included an increase in NOx emissions from EGUs during times of day when the vehicle is charging, and a decrease in NOx from mobile emissions. The changes in maximum daily 8 h ozone concentrations and average exposure potential at twelve air quality monitors in Texas were predicted on the basis of these changes in NOx emissions. For all scenarios, at all monitors, the impact of changes in vehicular emissions, rather than EGU emissions, dominated the ozone impact. In general, PHEVs lead to an increase in ozone during nighttime hours (due to decreased scavenging from both vehicles and EGU stacks) and a decrease in ozone during daytime hours. A few monitors showed a larger increase in ozone for the convenience charging scenario versus the other two scenarios. Additionally, cumulative ozone exposure results indicate that nighttime charging is most likely to reduce a measure of ozone exposure potential versus the other two scenarios.
Dimuon production by neutrinos in the Fermilab 15-ft bubble chamber at the Tevatron
NASA Astrophysics Data System (ADS)
Jain, V.; Harris, F. A.; Aderholz, M.; Aggarwal, M. M.; Akbari, H.; Allport, P. P.; Baba, P. V.; Badyal, S. K.; Barth, M.; Baton, J. P.; Bingham, H. H.; Brucker, E. B.; Burnstein, R. A.; Campbell, J. R.; Cence, R. J.; Chatterjee, T. K.; Clayton, E. F.; Corrigan, G.; Coutures, C.; Deprospo, D.; Devanand; de Wolf, E.; Faulkner, P. J.; Fretter, W. B.; Gupta, V. K.; Guy, J.; Hanlon, J.; Harigel, G. G.; Jabiol, M. A.; Jacques, P.; Jones, G. T.; Jones, M. D.; Kafka, T.; Kalelkar, M.; Kasper, P.; Kaul, G. L.; Kaur, M.; Kohli, J. M.; Koller, E. L.; Krawiec, R. J.; Lauko, M.; Lys, J.; Marage, P.; Milburn, R. H.; Miller, D. B.; Mittra, I. S.; Mobayyen, M. M.; Moreels, J.; Morrison, D. R.; Myatt, G.; Nailor, P.; Naon, R.; Napier, A.; Neveu, M.; Passmore, D.; Peters, M. W.; Peterson, V. Z.; Plano, R.; Rao, N. K.; Rubin, H. A.; Sacton, J.; Saitta, B.; Schmid, P.; Schmitz, N.; Schneps, J.; Sekulin, R.; Sewell, S.; Singh, J. B.; Sood, P. M.; Smart, W.; Stamer, P.; Varvell, K. E.; Venus, W.; Verluyten, L.; Voyvodic, L.; Wachsmuth, H.; Wainstein, S.; Willocq, S.; Yost, G. P.
1990-04-01
The Fermilab 15-ft bubble chamber has been exposed to a quadrupole triplet neutrino beam produced at the Tevatron. The ratio of ν to ν¯ in the beam is approximately 2.5. The mean event energy for ν-induced charged-current events is 150 GeV, and for ν¯-induced charged-current events it is 110 GeV. A total of 64 dimuon candidates (1 μ+μ+, 52 μ-μ+ and μ+μ-, and 11 μ-μ-) is observed in the data sample of approximately 13 300 charged-current events. The number and properties of the μ-μ- and μ+μ+ candidates are consistent with their being produced by background processes, the important sources being π and K decay and punchthrough. The 90%-C.L. upper limit for μ-μ-/μ- for muon momenta above 4 GeV/c is 1.2×10-3, and for momenta above 9 GeV/c this limit is 1.1×10-3. The opposite-sign-dimuon-to-single-muon ratio is (0.62+/-0.13)% for muon momenta above 4 GeV/c. There are eight neutral strange particles in the opposite-sign sample, leading to a rate per dimuon event of 0.65+/-0.29. The opposite-sign-dimuon sample is consistent with the hypothesis of charm production and decay.
Suppression of the Hall number due to charge density wave order in high-Tc cuprates
NASA Astrophysics Data System (ADS)
Sharma, Girish; Nandy, S.; Taraphder, A.; Tewari, Sumanta
2018-05-01
Understanding the pseudogap phase in hole-doped high-temperature cuprate superconductors remains a central challenge in condensed-matter physics. From a host of recent experiments there is now compelling evidence of translational-symmetry-breaking charge density wave (CDW) order in a wide range of doping inside this phase. Two distinct types of incommensurate charge order, bidirectional at zero or low magnetic fields and unidirectional at high magnetic fields close to the upper critical field Hc 2, have been reported so far in approximately the same doping range between p ≃0.08 and p ≃0.16 . In concurrent developments, recent high-field Hall experiments have also revealed two indirect but striking signatures of Fermi surface reconstruction in the pseudogap phase, namely, a sign change of the Hall coefficient to negative values at low temperatures in the intermediate range of hole doping and a rapid suppression of the positive Hall number without a change in sign near optimal doping p ˜0.19 . We show that the assumption of a unidirectional incommensurate CDW (with or without a coexisting weak bidirectional order) at high magnetic fields near optimal doping and the coexistence of both types of orders of approximately equal magnitude at high magnetic fields in the intermediate range of doping may help explain the striking behavior of the low-temperature Hall effect in the entire pseudogap phase.
Strong electromagnetic pulses generated in high-intensity laser-matter interactions
NASA Astrophysics Data System (ADS)
Rączka, P.; Dubois, J.-L.; Hulin, S.; Rosiński, M.; Zaraś-Szydłowska, A.; Badziak, J.
2018-01-01
Results are reported of an experiment performed at the Eclipse laser facility in CELIA, Bordeaux, on the generation of strong electromagnetic pulses. Measurements were performed of the target neutralization current, the total target charge and the tangential component of the magnetic field for the laser energies ranging from 45 mJ to 92 mJ with the pulse duration approximately 40 fs, and for the pulse durations ranging from 39 fs to 1000 fs, with the laser energy approximately 90 mJ. It was found that the values obtained for thick (mm scale) Cu targets are visibly higher than values reported in previous experiments, which is argued to be a manifestation of a strong dependence of the target electric polarization process on the laser contrast and hence on the amount of preplasma. It was also found that values obtained for thin (μm scale) Al foils were visibly higher than values for thick Cu targets, especially for pulse durations longer than 100 fs. The correlations between the total target charge versus the maximum value of the target neutralization current, and the maximum value of the tangential component of the magnetic field versus the total target charge were analysed. They were found to be in very good agreement with correlations seen in data from previous experiments, which provides a good consistency check on our experimental procedures.
A molecularly based theory for electron transfer reorganization energy.
Zhuang, Bilin; Wang, Zhen-Gang
2015-12-14
Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule's permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory.
Aaboud, M.; Aad, G.; Abbott, B.; ...
2017-06-28
Two-particle pseudorapidity correlations are measured in √ sNN = 2.76TeV Pb + Pb, √ sNN = 5.02TeV p + Pb, and √s = 13 TeV pp collisions at the Large Hadron Collider (LHC), with total integrated luminosities of approximately 7μb –1, 28 nb –1, and 65 nb –1, respectively. The correlation function C N(η 1,η 2) is measured as a function of event multiplicity using charged particles in the pseudorapidity range |η| < 2.4. The correlation function contains a significant short-range component, which is estimated and subtracted. After removal of the short-range component, the shape of the correlation function ismore » described approximately by 1 + < a2 1 > 1/2η 1η 2 in all collision systems over the full multiplicity range. The values of < a 2 1 > 1/2 are consistent for the opposite-charge pairs and same-charge pairs, and for the three collision systems at similar multiplicity. The values of < a 2 1 > 1/2 and the magnitude of the short-range component both follow a power-law dependence on the event multiplicity. Here, the short-range component in p + Pb collisions, after symmetrizing the proton and lead directions, is found to be smaller at a given η than in pp collisions with comparable multiplicity.« less
NASA Astrophysics Data System (ADS)
Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alstaty, M.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao de Mendizabal, J.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanisch, S.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herget, V.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Kawade, K.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koehler, N. M.; Koffas, T.; Koffeman, E.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Leyton, M.; Li, B.; Li, C.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Melo, M.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perez Codina, E.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valdes Santurio, E.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Deijl, P. C.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wolf, T. M. H.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zwalinski, L.; Atlas Collaboration
2017-06-01
Two-particle pseudorapidity correlations are measured in √{sNN}=2.76 TeV Pb +Pb , √{sNN}=5.02 TeV p +Pb, and √{s }=13 TeV p p collisions at the Large Hadron Collider (LHC), with total integrated luminosities of approximately 7 μ b-1 , 28 nb-1, and 65 nb-1, respectively. The correlation function CN(η1,η2) is measured as a function of event multiplicity using charged particles in the pseudorapidity range |η |<2.4 . The correlation function contains a significant short-range component, which is estimated and subtracted. After removal of the short-range component, the shape of the correlation function is described approximately by 1 +
Magnetic monopoles, Galilean invariance, and Maxwell's equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, F.S.
1992-02-01
Maxwell's equations have space reserved for magnetic monopoles. Whether or not they exist in our part of the universe, monopoles provide a useful didactic tool to help us recognize relations among Maxwell's equations less easily apparent in the approach followed by many introductory textbooks, wherein Coulomb's law, Biot and Savart's law, Ampere's law, Faraday's law, Maxwell's displacement current, etc., are introduced independently, as demanded by experiment.'' Instead a conceptual path that deduces all of Maxwell's equations from the near-minimal set of assumptions: (a) Inertial frames exist, in which Newton's laws hold, to a first approximation; (b) the laws of electrodynamicsmore » are Galilean invariant---i.e., they have the same form in every inertial frame, to a first approximation; (c) magnetic poles (as well as the usual electric charges) exist; (d) the complete Lorentz force on an electric charge is known; (e) the force on a monopole at rest is known; (f) the Coulomb-like field produced by a resting electric charge and by a resting monopole are known. Everything else is deduced. History is followed in the assumption that Newtonian mechanics have been discovered, but not special relativity. (Only particle velocities {ital v}{much lt}{ital c} are considered.) This ends up with Maxwell's equations (Maxwell did not need special relativity, so why should we,) but facing Einstein's paradox, the solution of which is encapsulated in the Einstein velocity-addition formula.« less
Terahertz radiation from accelerating charge carriers in graphene under ultrafast photoexcitation
NASA Astrophysics Data System (ADS)
Rustagi, Avinash; Stanton, C. J.
2016-11-01
We study the generation of terahertz (THz) radiation from the acceleration of ultrafast photoexcited charge carriers in graphene in the presence of a dc electric field. Our model is based on calculating the transient current density from the time-dependent distribution function which is determined using the Boltzmann transport equation (BTE) within a relaxation time approximation. We include the time-dependent generation of carriers by the pump pulse by solving for the carrier generation rate using the optical Bloch equations in the rotating wave approximation (RWA). The linearly polarized pump pulse generates an anisotropic distribution of photoexcited carriers in the kx-ky plane. The collision integral in the Boltzmann equation includes a term that leads to the thermalization of carriers via carrier-carrier scattering to an effective temperature above the lattice temperature, as well as a cooling term, which leads to energy relaxation via inelastic carrier-phonon scattering. The radiated signal is proportional to the time derivative of the transient current density. In spite of the fact that the magnitude of the velocity is the same for all the carriers in graphene, there is still emitted radiation from the photoexcited charge carriers with frequency components in the THz range due to a change in the direction of velocity of the photoexcited carriers in the external electric field as well as cooling of the photoexcited carriers on a subpicosecond time scale.
XMM-Newton Observations of Solar Wind Charge Exchange Emission
NASA Technical Reports Server (NTRS)
Snowden, S. L.; Collier, M. R.; Kuntz, K. D.
2004-01-01
We present an XMM-Newton spectrum of diffuse X-ray emission from within the solar system. The spectrum is dominated by O VII and O VIII lines at 0.57 keV and 0.65 keV, O VIII (and possibly Fe XVII) lines at approximately 0.8 keV, Ne IX lines at approximately 0.92 keV, and Mg XI lines at approximately 1.35 keV. This spectrum is consistent with what is expected from charge exchange emission between the highly ionized solar wind and either interstellar neutrals in the heliosphere or material from Earth's exosphere. The emission is clearly seen as a low-energy ( E less than 1.5 keV) spectral enhancement in one of a series of observations of the Hubble Deep Field North. The X-ray enhancement is concurrent with an enhancement in the solar wind measured by the ACE satellite. The solar wind enhancement reaches a flux level an order of magnitude more intense than typical fluxes at 1 AU, and has ion ratios with significantly enhanced higher ionization states. Whereas observations of the solar wind plasma made at a single point reflect only local conditions which may only be representative of solar wind properties with spatial scales ranging from less than half of an Earth radii (approximately 10 s) to 100 Earth radii, X-ray observations of solar wind charge exchange are remote sensing measurements which may provide observations which are significantly more global in character. Besides being of interest in its own right for studies of the solar system, this emission can have significant consequences for observations of more cosmological objects. It can provide emission lines at zero redshift which are of particular interest (e.g., O VII and O VIII) in studies of diffuse thermal emission, and which can therefore act as contamination in objects which cover the entire detector field of view. We propose the use of solar wind monitoring data, such as from the ACE and Wind spacecraft, as a diagnostic to screen for such possibilities.
Electromagnetic Detection of a Perfect Carpet Cloak
Shi, Xihang; Gao, Fei; Lin, Xiao; Zhang, Baile
2015-01-01
It has been shown that a spherical invisibility cloak originally proposed by Pendry et al. can be electromagnetically detected by shooting a charged particle through it, whose underlying mechanism stems from the asymmetry of transformation optics applied to motions of photons and charges [PRL 103, 243901 (2009)]. However, the conceptual three-dimensional invisibility cloak that exactly follows specifications of transformation optics is formidably difficult to implement, while the simplified cylindrical cloak that has been experimentally realized is inherently visible. On the other hand, the recent carpet cloak model has acquired remarkable experimental development, including a recently demonstrated full-parameter carpet cloak without any approximation in the required constitutive parameters. In this paper, we numerically investigate the electromagnetic radiation from a charged particle passing through a perfect carpet cloak and propose an experimentally verifiable model to demonstrate symmetry breaking of transformation optics. PMID:25997798
Fabrication Method Study of ZnO Nanocoated Cellulose Film and Its Piezoelectric Property
Ko, Hyun-U; Kim, Hyun Chan; Kim, Jung Woong; Zhai, Lindong; Kim, Jaehwan
2017-01-01
Recently, a cellulose-based composite material with a thin ZnO nanolayer—namely, ZnO nanocoated cellulose film (ZONCE)—was fabricated to increase its piezoelectric charge constant. However, the fabrication method has limitations to its application in mass production. In this paper, a hydrothermal synthesis method suitable for the mass production of ZONCE (HZONCE) is proposed. A simple hydrothermal synthesis which includes a hydrothermal reaction is used for the production, and the reaction time is controlled. To improve the piezoelectric charge constant, the hydrothermal reaction is conducted twice. HZONCE fabricated by twice-hydrothermal reaction shows approximately 1.6-times improved piezoelectric charge constant compared to HZONCE fabricated by single hydrothermal reaction. Since the fabricated HZONCE has high transparency, dielectric constant, and piezoelectric constant, the proposed method can be applied for continuous mass production. PMID:28772971
Electron transfer beyond the static picture: A TDDFT/TD-ZINDO study of a pentacene dimer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reslan, Randa; Lopata, Kenneth; Arntsen, Christopher
2012-12-14
We use time-dependent density functional theory and time-dependent ZINDO (a semi-empirical method) to study transfer of an extra electron between a pair of pentacene molecules. A measure of the electronic transfer integral is computed in a dynamic picture via the vertical excitation energy from a delocalized anionic ground state. With increasing dimer separation, this dynamical measurement of charge transfer is shown to be significantly larger than the commonly used static approximation (i.e., LUMO+1–LUMO of the neutral dimer, or HOMO–LUMO of the charged dimer), up to an order of magnitude higher at 6 Å. These results offer a word of cautionmore » for calculations involving large separations, as in organic photovoltaics, where care must be taken when using a static picture to model charge transfer.« less
Electron transfer beyond the static picture: A TDDFT/TD-ZINDO study of a pentacene dimer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reslan, Randa; Lopata, Kenneth A.; Arntsen, Christopher D.
2012-12-14
We use time-dependent density functional theory and time-dependent ZINDO (a semi-empirical method) to study transfer of an extra electron between a pair of pentacene dimers. A measure of the electronic transfer integral is computed in a dynamic picture via the vertical excitation energy from a delocalized anionic ground state. With increasing dimer separation, this dynamical measurement of charge transfer is shown to be significantly larger than the commonly used static approximation (i.e., LUMO+1 - LUMO of the neutral dimer, or HOMO - LUMO of the charged dimer), up to an order of magnitude higher at 6 Å. These results offermore » a word of caution for calculations involving large separations, as in organic photovoltaics, where care must be taken when using a static picture to model charge transfer.« less
Study of charge symmetry breaking in dd collisions with WASA-at-COSY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wronska, Aleksandra
2011-10-24
Charge symmetry is an approximate symmetry of the strong interaction. Studies of its breaking can yield information on the u and d quark mass difference. A theoretical collaboration is currently working on the description of charge symmetry breaking mechanisms for dd{yields}{alpha}{pi}{sup 0} and np{yields}d{pi}{sup 0} within Chiral Perturbation Theory, using the data from TRI-UMF and IUCF. One of the items in the program of the WASA-at-COSY collaboration is to extend the data base for the dd{yields}{alpha}{pi}{sup 0} reaction to higher energies, which would allow the extraction of the information on the p-wave. Status of the analysis of experimental data alongmore » with the preliminary results from the pilot run will be presented here.« less
The virtual infinite capacitor
NASA Astrophysics Data System (ADS)
Yona, Guy; Weiss, George
2017-01-01
We define the virtual infinite capacitor (VIC) as a nonlinear capacitor that has the property that for an interval of the charge Q (the operating range), the voltage V remains constant. We propose a lossless approximate realisation for the VIC as a simple circuit with two controllers: a voltage controller acts fast to maintain the desired terminal voltage, while a charge controller acts more slowly and maintains the charge Q in the desired operating range by influencing the incoming current. The VIC is useful as a filter capacitor for various applications, for example, power factor compensators (PFC), as we describe. In spite of using small capacitors, the VIC can replace a very large capacitor in applications that do not require substantial energy storage. We give simulation results for a PFC working in critical conduction mode with a VIC for output voltage filtering.
Counting statistics of tunneling current
NASA Astrophysics Data System (ADS)
Levitov, L. S.; Reznikov, M.
2004-09-01
The form of electron counting statistics of the tunneling current noise in a generic many-body interacting electron system is obtained and universal relations between its different moments are derived. A generalized fluctuation-dissipation theorem providing a relation between current and noise at arbitrary bias-to-temperature ratio eV/kBT is established in the tunneling Hamiltonian approximation. The third correlator of current fluctuations S3 (the skewness of the charge counting distribution) has a universal Schottky-type relation with the current and quasiparticle charge that holds in a wide bias voltage range, both at large and small eV/kBT . The insensitivity of S3 to the Nyquist-Schottky crossover represents an advantage compared to the Schottky formula for the noise power. We discuss the possibility of using the correlator S3 for detecting quasiparticle charge at high temperatures.
Space-charge behavior of 'Thin-MOS' diodes with MBE-grown silicon films
NASA Technical Reports Server (NTRS)
Lieneweg, U.; Bean, J. C.
1984-01-01
Basic theoretical and experimental characteristics of a novel 'Thin-MOS' technology, which has promising aspects for integrated high-frequency devices up to several hundred gigahertz are presented. The operation of such devices depends on charge injection into undoped silicon layers of about 1000-A thickness, grown by molecular beam epitaxy on heavily doped substrates, and isolation by thermally grown oxides of about 100-A thickness. Capacitance-voltage characteristics measured at high and low frequencies agree well with theoretical ones derived from uni and ambipolar space-charge models. It is concluded that after oxidation the residual doping in the epilayer is less than approximately 10 to the 16th/cu cm and rises by 3 orders of magnitude at the substrate interface within less than 100 A and that interface states at the oxide interface can be kept low.
Solar wind/local interstellar medium interaction including charge exchange with neural hydrogen
NASA Technical Reports Server (NTRS)
Pauls, H. Louis; Zank, Gary P.
1995-01-01
We present results from a hydrodynamic model of the interaction of the solar wind with the local interstellar medium (LISM), self-consistently taking into account the effects of charge exchange between the plasma component and the interstellar neutrals. The simulation is fully time dependent, and is carried out in two or three dimensions, depending on whether the helio-latitudinal dependence of the solar wind speed and number density (both giving rise to three dimensional effects) are included. As a first approximation it is assumed that the neutral component of the flow can be described by a single, isotropic fluid. Clearly, this is not the actual situation, since charge exchange with the supersonic solar wind plasma in the region of the nose results in a 'second' neutral fluid propagating in the opposite direction as that of the LISM neutrals.
A group electronegativity equalization scheme including external potential effects.
Leyssens, Tom; Geerlings, Paul; Peeters, Daniel
2006-07-20
By calculating the electron affinity and ionization energy of different functional groups, CCSD electronegativity values are obtained, which implicitly account for the effect of the molecular environment. This latter is approximated using a chemically justified point charge model. On the basis of Sanderson's electronegativity equalization principle, this approach is shown to lead to reliable "group in molecule" electronegativities. Using a slight adjustment of the modeled environment and first-order principles, an electronegativity equalization scheme is obtained, which implicitly accounts for the major part of the external potential effect. This scheme can be applied in a predictive manner to estimate the charge transfer between two functional groups, without having to rely on cumbersome calibrations. A very satisfactory correlation is obtained between these charge transfers and those obtained from an ab initio calculation of the entire molecule.
Impact of Many-Body Effects on Landau Levels in Graphene
NASA Astrophysics Data System (ADS)
Sonntag, J.; Reichardt, S.; Wirtz, L.; Beschoten, B.; Katsnelson, M. I.; Libisch, F.; Stampfer, C.
2018-05-01
We present magneto-Raman spectroscopy measurements on suspended graphene to investigate the charge carrier density-dependent electron-electron interaction in the presence of Landau levels. Utilizing gate-tunable magnetophonon resonances, we extract the charge carrier density dependence of the Landau level transition energies and the associated effective Fermi velocity vF. In contrast to the logarithmic divergence of vF at zero magnetic field, we find a piecewise linear scaling of vF as a function of the charge carrier density, due to a magnetic-field-induced suppression of the long-range Coulomb interaction. We quantitatively confirm our experimental findings by performing tight-binding calculations on the level of the Hartree-Fock approximation, which also allow us to estimate an excitonic binding energy of ≈6 meV contained in the experimentally extracted Landau level transitions energies.
Electromagnetic Detection of a Perfect Carpet Cloak
NASA Astrophysics Data System (ADS)
Shi, Xihang; Gao, Fei; Lin, Xiao; Zhang, Baile
2015-05-01
It has been shown that a spherical invisibility cloak originally proposed by Pendry et al. can be electromagnetically detected by shooting a charged particle through it, whose underlying mechanism stems from the asymmetry of transformation optics applied to motions of photons and charges [PRL 103, 243901 (2009)]. However, the conceptual three-dimensional invisibility cloak that exactly follows specifications of transformation optics is formidably difficult to implement, while the simplified cylindrical cloak that has been experimentally realized is inherently visible. On the other hand, the recent carpet cloak model has acquired remarkable experimental development, including a recently demonstrated full-parameter carpet cloak without any approximation in the required constitutive parameters. In this paper, we numerically investigate the electromagnetic radiation from a charged particle passing through a perfect carpet cloak and propose an experimentally verifiable model to demonstrate symmetry breaking of transformation optics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matcha, R.L.; Pettitt, B.M.
1979-03-15
An interesting empirical relationship between zero point Compton profile anisotropies ..delta..J (0) and nuclear charges is noted. It is shown that, for alkali halide molecules AB, to a good approximation ..delta..J (0) =N ln(Z/sub b//Z/sub a/).
38 CFR 21.4255 - Refund policy; nonaccredited courses.
Code of Federal Regulations, 2013 CFR
2013-07-01
...; nonaccredited courses. 21.4255 Section 21.4255 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS... Programs Courses § 21.4255 Refund policy; nonaccredited courses. (a) Acceptable refund policy. A refund..., fees, and other charges for a portion of the course does not exceed the approximate pro rata portion of...
38 CFR 21.4255 - Refund policy; nonaccredited courses.
Code of Federal Regulations, 2014 CFR
2014-07-01
...; nonaccredited courses. 21.4255 Section 21.4255 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS... Programs Courses § 21.4255 Refund policy; nonaccredited courses. (a) Acceptable refund policy. A refund..., fees, and other charges for a portion of the course does not exceed the approximate pro rata portion of...
38 CFR 21.4255 - Refund policy; nonaccredited courses.
Code of Federal Regulations, 2012 CFR
2012-07-01
...; nonaccredited courses. 21.4255 Section 21.4255 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS... Programs Courses § 21.4255 Refund policy; nonaccredited courses. (a) Acceptable refund policy. A refund..., fees, and other charges for a portion of the course does not exceed the approximate pro rata portion of...
NASA Astrophysics Data System (ADS)
Terzić, Balša; Bassi, Gabriele
2011-07-01
In this paper we discuss representations of charge particle densities in particle-in-cell simulations, analyze the sources and profiles of the intrinsic numerical noise, and present efficient methods for their removal. We devise two alternative estimation methods for charged particle distribution which represent significant improvement over the Monte Carlo cosine expansion used in the 2D code of Bassi et al. [G. Bassi, J. A. Ellison, K. Heinemann, and R. Warnock, Phys. Rev. ST Accel. Beams 12, 080704 (2009); PRABFM1098-440210.1103/PhysRevSTAB.12.080704G. Bassi and B. Terzić, in Proceedings of the 23rd Particle Accelerator Conference, Vancouver, Canada, 2009 (IEEE, Piscataway, NJ, 2009), TH5PFP043], designed to simulate coherent synchrotron radiation (CSR) in charged particle beams. The improvement is achieved by employing an alternative beam density estimation to the Monte Carlo cosine expansion. The representation is first binned onto a finite grid, after which two grid-based methods are employed to approximate particle distributions: (i) truncated fast cosine transform; and (ii) thresholded wavelet transform (TWT). We demonstrate that these alternative methods represent a staggering upgrade over the original Monte Carlo cosine expansion in terms of efficiency, while the TWT approximation also provides an appreciable improvement in accuracy. The improvement in accuracy comes from a judicious removal of the numerical noise enabled by the wavelet formulation. The TWT method is then integrated into the CSR code [G. Bassi, J. A. Ellison, K. Heinemann, and R. Warnock, Phys. Rev. ST Accel. Beams 12, 080704 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.080704], and benchmarked against the original version. We show that the new density estimation method provides a superior performance in terms of efficiency and spatial resolution, thus enabling high-fidelity simulations of CSR effects, including microbunching instability.
Molina, A; Laborda, E; González, J; Compton, R G
2013-05-21
Nuances of the linear diffusion layer approximation are examined for slow charge transfer reactions at (hemi)spherical micro- and nanoelectrodes. This approximation is widely employed in Electrochemistry to evaluate the extent of electrolyte solution perturbed by the electrode process, which is essential to the understanding of the effects arising from thin-layer diffusion, convergent diffusion, convection, coupled chemical reactions and the double layer. The concept was well established for fast charge transfer processes at macroelectrodes, but remains unclear under other conditions such that a thorough assessment of its meaning was necessary. In a previous publication [A. Molina, J. González, E. Laborda and R. G. Compton, Phys. Chem. Chem. Phys., 2013, 15, 2381-2388] we shed some light on the influence of the reversibility degree. In the present work, the meaning of the diffusion layer thickness is investigated when very small electrodes are employed and so the contribution of convergent diffusion to the mass transport is very important. An analytical expression is given to calculate the linear diffusion layer thickness at (hemi)spherical electrodes and its behaviour is studied for a wide range of conditions of reversibility (from reversible to fully-irreversible processes) and electrode size (from macro- to nano-electrodes). Rigorous analytical solutions are deduced for true concentration profiles, surface concentrations, linear diffusion layer thickness and current densities when a potential pulse is applied at (hemi)spherical electrodes. The expressions for the magnitudes mentioned above are valid for electrodes of any size (including (hemi)spherical nanoelectrodes) and for any degree of reversibility, provided that mass transport occurs exclusively via diffusion. The variation of the above with the electrode size, applied potential and charge transfer kinetics is studied.
Ultrafast Photoinduced Electron Transfer in a π-Conjugated Oligomer/Porphyrin Complex.
Aly, Shawkat M; Goswami, Subhadip; Alsulami, Qana A; Schanze, Kirk S; Mohammed, Omar F
2014-10-02
Controlling charge transfer (CT), charge separation (CS), and charge recombination (CR) at the donor-acceptor interface is extremely important to optimize the conversion efficiency in solar cell devices. In general, ultrafast CT and slow CR are desirable for optimal device performance. In this Letter, the ultrafast excited-state CT between platinum oligomer (DPP-Pt(acac)) as a new electron donor and porphyrin as an electron acceptor is monitored for the first time using femtosecond (fs) transient absorption (TA) spectroscopy with broad-band capability and 120 fs temporal resolution. Turning the CT on/off has been shown to be possible either by switching from an organometallic oligomer to a metal-free oligomer or by controlling the charge density on the nitrogen atom of the porphyrin meso unit. Our time-resolved data show that the CT and CS between DPP-Pt(acac) and cationic porphyrin are ultrafast (approximately 1.5 ps), and the CR is slow (ns time scale), as inferred from the formation and the decay of the cationic and anionic species. We also found that the metallic center in the DPP-Pt(acac) oligomer and the positive charge on the porphyrin are the keys to switching on/off the ultrafast CT process.
IONIZATION AND DUST CHARGING IN PROTOPLANETARY DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivlev, A. V.; Caselli, P.; Akimkin, V. V., E-mail: ivlev@mpe.mpg.de
2016-12-10
Ionization–recombination balance in dense interstellar and circumstellar environments is a key factor for a variety of important physical processes, such as chemical reactions, dust charging and coagulation, coupling of the gas with magnetic field, and development of instabilities in protoplanetary disks. We determine a critical gas density above which the recombination of electrons and ions on the grain surface dominates over the gas-phase recombination. For this regime, we present a self-consistent analytical model, which allows us to calculate exactly the abundances of charged species in dusty gas, without making assumptions on the grain charge distribution. To demonstrate the importance ofmore » the proposed approach, we check whether the conventional approximation of low grain charges is valid for typical protoplanetary disks, and discuss the implications for dust coagulation and development of the “dead zone” in the disk. The presented model is applicable for arbitrary grain-size distributions and, for given dust properties and conditions of the disk, has only one free parameter—the effective mass of the ions, shown to have a small effect on the results. The model can be easily included in numerical simulations following the dust evolution in dense molecular clouds and protoplanetary disks.« less
In vivo encapsulation of nucleic acids using an engineered nonviral protein capsid.
Lilavivat, Seth; Sardar, Debosmita; Jana, Subrata; Thomas, Geoffrey C; Woycechowsky, Kenneth J
2012-08-15
In Nature, protein capsids function as molecular containers for a wide variety of molecular cargoes. Such containers have great potential for applications in nanotechnology, which often require encapsulation of non-native guest molecules. Charge complementarity represents a potentially powerful strategy for engineering novel encapsulation systems. In an effort to explore the generality of this approach, we engineered a nonviral, 60-subunit capsid, lumazine synthase from Aquifex aeolicus (AaLS), to act as a container for nucleic acid. Four mutations were introduced per subunit to increase the positive charge at the inner surface of the capsid. Characterization of the mutant (AaLS-pos) revealed that the positive charges lead to the uptake of cellular RNA during production and assembly of the capsid in vivo. Surprisingly, AaLS-pos capsids were found to be enriched with RNA molecules approximately 200-350 bases in length, suggesting that this simple charge complementarity approach to RNA encapsulation leads to both high affinity and a degree of selectivity. The ability to control loading of RNA by tuning the charge at the inner surface of a protein capsid could illuminate aspects of genome recognition by viruses and pave the way for the development of improved RNA delivery systems.
Chen, Yue; Fang, Zhao-Xiang; Ren, Yu-Xuan; Gong, Lei; Lu, Rong-De
2015-09-20
Optical vortices are associated with a spatial phase singularity. Such a beam with a vortex is valuable in optical microscopy, hyper-entanglement, and optical levitation. In these applications, vortex beams with a perfect circle shape and a large topological charge are highly desirable. But the generation of perfect vortices with high topological charges is challenging. We present a novel method to create perfect vortex beams with large topological charges using a digital micromirror device (DMD) through binary amplitude modulation and a narrow Gaussian approximation. The DMD with binary holograms encoding both the spatial amplitude and the phase could generate fast switchable, reconfigurable optical vortex beams with significantly high quality and fidelity. With either the binary Lee hologram or the superpixel binary encoding technique, we were able to generate the corresponding hologram with high fidelity and create a perfect vortex with topological charge as large as 90. The physical properties of the perfect vortex beam produced were characterized through measurements of propagation dynamics and the focusing fields. The measurements show good consistency with the theoretical simulation. The perfect vortex beam produced satisfies high-demand utilization in optical manipulation and control, momentum transfer, quantum computing, and biophotonics.
Laboratory Measurements of Solar-Wind/Comet X-Ray Emission and Charge Exchange Cross Sections
NASA Technical Reports Server (NTRS)
Chutjian, A.; Cadez, I.; Greenwood, J. B.; Mawhorter, R. J.; Smith, S. J.; Lozano, J.
2002-01-01
The detection of X-rays from comets such as Hyakutake, Hale-Bopp, d Arrest, and Linear as they approach the Sun has been unexpected and exciting. This phenomenon, moreover, should be quite general, occurring wherever a fast solar or stellar wind interacts with neutrals in a comet, a planetary atmosphere, or a circumstellar cloud. The process is, O(+8) + H2O --> O(+7*) + H2O(+), where the excited O(+7*) ions are the source of the X-ray emissions. Detailed modeling has been carried out of X-ray emissions in charge-transfer collisions of heavy solar-wind Highly Charged Ions (HCIs) and interstellar/interplanetary neutral clouds. In the interplanetary medium the solar wind ions, including protons, can charge exchange with interstellar H and He. This can give rise to a soft X-ray background that could be correlated with the long-term enhancements seen in the low-energy X-ray spectrum of ROSAT. Approximately 40% of the soft X-ray background detected by Exosat, ROSAT, Chandra, etc. is due to Charge Exchange (CXE): our whole heliosphere is glowing in the soft X-ray due to CXE.
Inversion of membrane surface charge by trivalent cations probed with a cation-selective channel
Gurnev, Philip A.; Bezrukov, Sergey M.
2014-01-01
We demonstrate that the cation-selective channel formed by gramicidin A can be used as a reliable sensor for studying the multivalent ion accumulation at the surfaces of charged lipid membranes and the “charge inversion” phenomenon. In asymmetrically charged membranes with the individual leaflets formed from pure negative and positive lipids bathed by 0.1 M CsCl solutions the channel exhibits current rectification which is comparable to that of a typical n/p semiconductor diode. We show that even at these highly asymmetrical conditions the channel conductance can be satisfactorily described by the electrodiffusion equation in the constant field approximation but, due to predictable limitations, only when the applied voltages do not exceed 50 mV. Analysis of the changes in the voltage-dependent channel conductance upon addition of trivalent cations allows us to gauge their interactions with the membrane surface. The inversion of the sign of the effective surface charge takes place at the concentrations which correlate with the cation size. Specifically, these concentrations are close to 0.05 mM for lanthanum, 0.25 mM for hexaamminecobalt, and 4 mM for spermidine. PMID:23088396
Inversion of membrane surface charge by trivalent cations probed with a cation-selective channel.
Gurnev, Philip A; Bezrukov, Sergey M
2012-11-13
We demonstrate that the cation-selective channel formed by gramicidin A can be used as a reliable sensor for studying the multivalent ion accumulation at the surfaces of charged lipid membranes and the "charge inversion" phenomenon. In asymmetrically charged membranes with the individual leaflets formed from pure negative and positive lipids bathed by 0.1 M CsCl solutions the channel exhibits current rectification, which is comparable to that of a typical n/p semiconductor diode. We show that even at these highly asymmetrical conditions the channel conductance can be satisfactorily described by the electrodiffusion equation in the constant field approximation but, due to predictable limitations, only when the applied voltages do not exceed 50 mV. Analysis of the changes in the voltage-dependent channel conductance upon addition of trivalent cations allows us to gauge their interactions with the membrane surface. The inversion of the sign of the effective surface charge takes place at the concentrations, which correlate with the cation size. Specifically, these concentrations are close to 0.05 mM for lanthanum, 0.25 mM for hexaamminecobalt, and 4 mM for spermidine.
Fast Atom Ionization in Strong Electromagnetic Radiation
NASA Astrophysics Data System (ADS)
Apostol, M.
2018-05-01
The Goeppert-Mayer and Kramers-Henneberger transformations are examined for bound charges placed in electromagnetic radiation in the non-relativistic approximation. The consistent inclusion of the interaction with the radiation field provides the time evolution of the wavefunction with both structural interaction (which ensures the bound state) and electromagnetic interaction. It is shown that in a short time after switching on the high-intensity radiation the bound charges are set free. In these conditions, a statistical criterion is used to estimate the rate of atom ionization. The results correspond to a sudden application of the electromagnetic interaction, in contrast with the well-known ionization probability obtained by quasi-classical tunneling through classically unavailable non-stationary states, or other equivalent methods, where the interaction is introduced adiabatically. For low-intensity radiation the charges oscillate and emit higher-order harmonics, the charge configuration is re-arranged and the process is resumed. Tunneling ionization may appear in these circumstances. Extension of the approach to other applications involving radiation-induced charge emission from bound states is discussed, like ionization of molecules, atomic clusters or proton emission from atomic nuclei. Also, results for a static electric field are included.
NASA Astrophysics Data System (ADS)
Pahk, Ian
Non-photochemical quenching (NPQ) is a photoprotective regulatory mechanism essential to the robustness of the photosynthetic apparatus of green plants. Energy flow within the low-light adapted reaction centers is dynamically optimized to match the continuously fluctuating light conditions found in nature. Activated by compartmentalized decreases in pH resulting from photosynthetic activity during periods of elevated photon flux, NPQ induces rapid thermal dissipation of excess excitation energy that would otherwise overwhelm the apparatus's ability to consume it. Consequently, the frequency of charge separation decreases and the formation of potentially deleterious, high-energy intermediates slows, thereby reducing the threat of photodamage by disallowing their accumulation. Herein is described the synthesis and photophysical analysis of a molecular triad that mimics the effects of NPQ on charge separation within the photosynthetic reaction centers. Steady-state absorption and emission, time-resolved fluorescence, and transient absorption spectroscopies were used to demonstrate reversible quenching of the first singlet excited state affecting the quantum yield of charge separation by approximately one order of magnitude. As in the natural system, the populations of unquenched and quenched states and, therefore, the overall yields of charge separation were found to be dependent upon acid concentration.
NASA Astrophysics Data System (ADS)
Bünemann, Jörg; Seibold, Götz
2017-12-01
Pump-probe experiments have turned out as a powerful tool in order to study the dynamics of competing orders in a large variety of materials. The corresponding analysis of the data often relies on standard linear-response theory generalized to nonequilibrium situations. Here we examine the validity of such an approach for the charge and pairing response of systems with charge-density wave and (or) superconducting (SC) order. Our investigations are based on the attractive Hubbard model which we study within the time-dependent Hartree-Fock approximation. In particular, we calculate the quench and pump-probe dynamics for SC and charge order parameters in order to analyze the frequency spectra and the coupling of the probe field to the specific excitations. Our calculations reveal that the "linear-response assumption" is justified for small to moderate nonequilibrium situations (i.e., pump pulses) in the case of a purely charge-ordered ground state. However, the pump-probe dynamics on top of a superconducting ground state is determined by phase and amplitude modes which get coupled far from the equilibrium state indicating the failure of the linear-response assumption.
NASA Technical Reports Server (NTRS)
Omidvar, K.
1971-01-01
Expressions for the excitation cross section of the highly excited states of the hydrogenlike atoms by fast charged particles have been derived in the dipole approximation of the semiclassical impact parameter and the Born approximations, making use of a formula for the asymptotic expansion of the oscillator strength of the hydrogenlike atoms given by Menzel. When only the leading term in the asymptotic expansion is retained, the expression for the cross section becomes identical to the expression obtained by the method of the classical collision and correspondence principle given by Percival and Richards. Comparisons are made between the Bethe coefficients obtained here and the Bethe coefficients of the Born approximation for transitions where the Born calculation is available. Satisfactory agreement is obtained only for n yields n + 1 transitions, with n the principal quantum number of the excited state.
Charging Electric Vehicles in Smart Cities: An EVI-Pro Analysis of Columbus, Ohio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Eric W.; Rames, Clement L.; Muratori, Matteo
With the support of the U.S. Department of Energy's Vehicle Technologies Office, the National Renewable Energy Laboratory (NREL) worked with the City of Columbus, Ohio, to develop a plan for the expansion of the region's network of charging stations to support increased adoption of plug-in electric vehicles (PEVs) in the local market. NREL's Electric Vehicle Infrastructure Projection (EVI-Pro) model was used to generate scenarios of regional charging infrastructure to support consumer PEV adoption. Results indicate that approximately 400 Level 2 plugs at multi-unit dwellings and 350 Level 2 plugs at non-residential locations are required to support Columbus' primary PEV goalmore » of 5,300 PEVs on the road by the end of 2019. This analysis finds that while consumer demand for fast charging is expected to remain low (due to modest anticipated adoption of short-range battery electric vehicles), a minimum level of fast charging coverage across the city is required to ease consumer range anxiety concerns by providing a safety net for unexpected charging events. Sensitivity analyses around some key assumptions have also been performed; of these, consumer preference for PHEV versus BEV and for their electric driving range, ambient conditions, and availability of residential charging at multi-unit dwellings were identified as key determinants of the non-residential PEV charging infrastructure required to support PEV adoption. The results discussed in this report can be leveraged by similar U.S. cities as part of a strategy to accelerate PEV adoption in the light-duty vehicle market.« less
Wu, Fei; Sioshansi, Ramteen
2017-05-25
Electric vehicles (EVs) hold promise to improve the energy efficiency and environmental impacts of transportation. However, widespread EV use can impose significant stress on electricity-distribution systems due to their added charging loads. This paper proposes a centralized EV charging-control model, which schedules the charging of EVs that have flexibility. This flexibility stems from EVs that are parked at the charging station for a longer duration of time than is needed to fully recharge the battery. The model is formulated as a two-stage stochastic optimization problem. The model captures the use of distributed energy resources and uncertainties around EV arrival timesmore » and charging demands upon arrival, non-EV loads on the distribution system, energy prices, and availability of energy from the distributed energy resources. We use a Monte Carlo-based sample-average approximation technique and an L-shaped method to solve the resulting optimization problem efficiently. We also apply a sequential sampling technique to dynamically determine the optimal size of the randomly sampled scenario tree to give a solution with a desired quality at minimal computational cost. Here, we demonstrate the use of our model on a Central-Ohio-based case study. We show the benefits of the model in reducing charging costs, negative impacts on the distribution system, and unserved EV-charging demand compared to simpler heuristics. Lastly, we also conduct sensitivity analyses, to show how the model performs and the resulting costs and load profiles when the design of the station or EV-usage parameters are changed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susa, Anna C.; Xia, Zijie; Tang, Henry Y. H.
Factors that influence the charging of protein ions formed by electrospray ionization from aqueous solutions in which proteins have native structures and function were investigated. Protein ions ranging in molecular weight from 12.3 to 79.7 kDa and pI values from 5.4 to 9.6 were formed from different solutions and reacted with volatile bases of gas-phase basicities higher than that of ammonia in the cell of a Fourier-transform ion cyclotron resonance mass spectrometer. The charge-state distribution of cytochrome c ions formed from aqueous ammonium or potassium acetate is the same. Moreover, ions formed from these two solutions do not undergo protonmore » transfer to 2-fluoropyridine, which is 8 kcal/mol more basic than ammonia. These results provide compelling evidence that proton transfer between ammonia and protein ions does not limit protein ion charge in native electrospray ionization. Both circular dichroism and ion mobility measurements indicate that there are differences in conformations of proteins in pure water and aqueous ammonium acetate, and these differences can account for the difference in the extent of charging and proton-transfer reactivities of protein ions formed from these solutions. The extent of proton transfer of the protein ions with higher gas-phase basicity bases trends with how closely the protein ions are charged to the value predicted by the Rayleigh limit for spherical water droplets approximately the same size as the proteins. These results indicate that droplet charge limits protein ion charge in native mass spectrometry and are consistent with these ions being formed by the charged residue mechanism.« less
NASA Astrophysics Data System (ADS)
Yuge, Ryota; Kuroshima, Sadanori; Toda, Akio; Miyazaki, Takashi; Tabuchi, Mitsuharu; Doumae, Kyosuke; Shibuya, Hideka; Tamura, Noriyuki
2017-10-01
Structural change and the charge compensation mechanism of lithium-rich layered cathode (Li1.23Fe0.15Ni0.15Mn0.46O2) in charged and discharged states were investigated. Selected area electron diffraction analysis revealed that in discharged state, an initial structure composed of a single phase of monoclinic layered rock-salt changed to a mixture of hexagonal layered rock-salt and spinel-like structures. In charged state, the spinel-like phase became dominant as transition-metal ions migrate. 57Fe Mössbauer spectroscopy, X-ray absorption spectroscopy (XAS), and Soft-XAS showed that the valence of Fe and Ni ions approximately changed from Fe3+ to Fe3.2+ and Ni2+ to Ni3.5+ during charge-discharge, although Mn ions remained as Mn4+. Various oxidation states of oxide ions such as superoxide, peroxide, and hole states have also been detected in charged state. Considering that actual discharge capacity was 255 mAh/g, the contribution to charge compensation from the valence change of Fe and Ni ions was extremely small, and it only contributed to about one-third of total capacity. Therefore, the mechanism to yield high capacity of the Li1.23Fe0.15Ni0.15Mn0.46O2 cathode relates strongly to the redox reaction of oxide ions. Moreover, the decrease in capacity during charge-discharge cycling was mainly due to the irreversible redox reaction of Mn, Fe, and oxide ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grach, V. S., E-mail: vsgrach@app.sci-nnov.ru; Garasev, M. A.
2015-07-15
We consider the interaction of a isolated conducting sphere with a collisional weakly ionized plasma in an external field. We assume that the plasma consists of two species of ions neglecting of electrons. We take into account charging of the sphere due to sedimentation of plasma ions on it, the field of the sphere charge and the space charge, as well as recombination and molecular diffusion. The nonstationary problem of interaction of the sphere with the surrounding plasma is solved numerically. The temporal dynamics of the sphere charge and plasma perturbations is analyzed, as well as the properties of themore » stationary state. It is shown that the duration of transient period is determined by the recombination time and by the reverse conductivity of ions. The temporal dynamics of the sphere charge and plasma perturbations is determined by the intensity of recombination processes relative to the influence of the space charge field and diffusion. The stationary absolute value of the sphere charge increases linearly with the external electric field, decreases with the relative intensity of recombination processes and increases in the presence of substantial diffusion. The scales of the perturbed region in the plasma are determined by the radius of the sphere, the external field, the effect of diffusion, and the relative intensity of recombination processes. In the limiting case of the absence of molecular diffusion and a strong external field, the properties of the stationary state coincide with those obtained earlier as a result of approximate solution.« less
Absence of Disorder-Driven Metal-Insulator Transitions in Simple Holographic Models
NASA Astrophysics Data System (ADS)
Grozdanov, Sašo; Lucas, Andrew; Sachdev, Subir; Schalm, Koenraad
2015-11-01
We study electrical transport in a strongly coupled strange metal in two spatial dimensions at finite temperature and charge density, holographically dual to the Einstein-Maxwell theory in an asymptotically four-dimensional anti-de Sitter space spacetime, with arbitrary spatial inhomogeneity, up to mild assumptions including emergent isotropy. In condensed matter, these are candidate models for exotic strange metals without long-lived quasiparticles. We prove that the electrical conductivity is bounded from below by a universal minimal conductance: the quantum critical conductivity of a clean, charge-neutral plasma. Beyond nonperturbatively justifying mean-field approximations to disorder, our work demonstrates the practicality of new hydrodynamic insight into holographic transport.
NASA Astrophysics Data System (ADS)
Rincón, Ángel; Panotopoulos, Grigoris
2018-01-01
We study for the first time the stability against scalar perturbations, and we compute the spectrum of quasinormal modes of three-dimensional charged black holes in Einstein-power-Maxwell nonlinear electrodynamics assuming running couplings. Adopting the sixth order Wentzel-Kramers-Brillouin (WKB) approximation we investigate how the running of the couplings change the spectrum of the classical theory. Our results show that all modes corresponding to nonvanishing angular momentum are unstable both in the classical theory and with the running of the couplings, while the fundamental mode can be stable or unstable depending on the running parameter and the electric charge.
Singly charged energetic helium emitted in solar flares
NASA Technical Reports Server (NTRS)
Hovestadt, D.; Hoefner, H.; Klecker, B.; Scholer, M.; Gloeckler, G.; Ipavich, F. M.; Fan, C. Y.; Fisk, L. A.; Ogallagher, J. J.
1981-01-01
First direct charge state measurements of 0.41-1.05 MeV per nucleon helium accelerated at the sun reveal surprisingly large abundances of singly ionized helium, with typical He(+)/He(++) ratios between 0.04 and 0.21. This unexpected overabundance of He(+) was observed in each of the three large solar-flare particle events which occurred between 1978 August and 1979 October. The data were obtained with the Max-Planck-Institut/University of Maryland Experiment on board the ISEE-3 spacecraft. The observations suggest either strong coronal temperature inhomogeneities including cool regions of approximately 100,000 K or injection of 'cold' chromospheric/photospheric material into the flare acceleration region.
NASA Astrophysics Data System (ADS)
Beer, Chris; Whall, Terry; Parker, Evan; Leadley, David; De Jaeger, Brice; Nicholas, Gareth; Zimmerman, Paul; Meuris, Marc; Szostak, Slawomir; Gluszko, Grzegorz; Lukasiak, Lidia
2007-12-01
Effective mobility measurements have been made at 4.2K on high performance high-k gated germanium p-type metal-oxide-semiconductor field effect transistors with a range of Ge/gate dielectric interface state densities. The mobility is successfully modelled by assuming surface roughness and interface charge scattering at the SiO2 interlayer/Ge interface. The deduced interface charge density is approximately equal to the values obtained from the threshold voltage and subthreshold slope measurements on each device. A hydrogen anneal reduces both the interface state density and the surface root mean square roughness by 20%.
Final environmental assessment: Sacramento Energy Service Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-03-01
The Sacramento Area Office (SAO) of the Western Area Power Administration (Western) needs to increase the security of operations, to eliminate overcrowding at the current leased location of the existing facilities, to provide for future growth, to improve efficiency, and to reduce operating costs. The proposed action is to construct an approximate 40,000-square foot building and adjacent parking lot with a Solar Powered Electric Vehicle Charging Station installed to promote use of energy efficient transportation. As funding becomes available and technology develops, additional innovative energy-efficient measures will be incorporated into the building. For example the proposed construction of the Solarmore » Powered Electric Vehicle Charging.« less
Charged hadron transverse momentum distributions in Au+Au collisions at √ SNN = 200 GeV
NASA Astrophysics Data System (ADS)
Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; van Nieuwenhuizen, Gerrit; PHOBOS Collaboration
2003-04-01
We present transverse momentum distributions of charged hadrons produced in Au+Au collisions at √ SNN = 200 GeV. The evolution of the spectra for transverse momenta p T from 0.25 to 5 GeV/C is studied as a function of collision centrality. We find a significant change of the spectral shape between proton-antiproton and peripheral Au+Au collisions. When comparing peripheral to central Au+Au collisions, we find that the yields at the highest p T exhibit approximate scaling with the number of participating nucleons, rather than scaling with the number of binary collisions.
Finite element simulation of thunderstorm electrodynamics in the proximity of the storm
NASA Technical Reports Server (NTRS)
Baginski, Michael Edward
1988-01-01
Observations of electric fields, Maxwell current density, and air conductivity over thunderstorms were presented. The measurements were obtained using electric field mils and conductivity probes installed on a U2 aircraft as the aircraft passed approximately directly over an active thunderstorm at an altitude of 18 to 20 km. Accurate electrical observations of this type are rare and provide important information to those involved in numerically modeling a thunderstorm. A preliminary set of computer simulations based on this data were conducted and are described. The simulations show good agreement with measurements and are used to infer the thundercloud's charging current and amount of charge exchanged per flash.
Track structure: time evolution from physics to chemistry.
Dingfelder, M
2006-01-01
This review discusses interaction cross sections of charged particles (electrons, protons, light ions) with atoms and molecules. The focus is on biological relevant targets like liquid water which serves as a substitute of soft tissue in most Monte Carlo codes. The spatial distribution of energy deposition patterns by different radiation qualities and their importance to the time evolution from the physical to the chemical stage or radiation response is discussed. The determination of inelastic interaction cross sections for charged particles in condensed matter is discussed within the relativistic plane-wave Born approximation and semi-empirical models. The dielectric-response-function of liquid water is discussed.
Vacancies in epitaxial graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davydov, S. Yu., E-mail: Sergei-Davydov@mail.ru
The coherent-potential method is used to consider the problem of the influence of a finite concentration of randomly arranged vacancies on the density of states of epitaxial graphene. To describe the density of states of the substrate, simple models (the Anderson model, Haldane-Anderson model, and parabolic model) are used. The electronic spectrum of free single-sheet graphene is considered in the low-energy approximation. Charge transfer in the graphene-substrate system is discussed. It is shown that, in all cases, the density of states of epitaxial graphene decreases proportionally to the vacancy concentration. At the same time, the average charge transferred from graphenemore » to the substrate increases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yonemura, Takumi, E-mail: yonemura-takumi@sei.co.jp; Iihara, Junji; Uemura, Shigeaki
We have succeeded in measuring X-ray absorption fine structure (TEY-XAFS) spectra of insulating plate samples by total electron yield. The biggest problem is how to suppress the charge-up. We have attempted to deposit a gold stripe electrode on the surface and obtained a TEY-XAFS spectrum. This indicates that the metal stripe electrode is very useful in the TEY-XAFS measurement of the insulating plate samples. In the detailed analysis, we have found that the effective area for suppressing charge-up was approximately 120 μm from the edge of the electrode.
Electron transfer in proton-hydrogen collisions under dense quantum plasma
NASA Astrophysics Data System (ADS)
Nayek, Sujay; Bhattacharya, Arka; Kamali, Mohd Zahurin Mohamed; Ghoshal, Arijit; Ratnavelu, Kurunathan
2017-09-01
The effects of dense quantum plasma on 1 s → nlm charge transfer, for arbitrary n,l,m, in proton-hydrogen collisions have been studied by employing a distorted wave approximation. The interactions among the charged particles in the plasma have been represented by modified Debye-Huckel potentials. A detailed study has been made to explore the effects of background plasma environment on the differential and total cross sections for electron capture into different angular momentum states for the incident energy in the range 10-1000 keV. For the unscreened case, our results agree well with some of the most accurate results available in the literature.
NASA Technical Reports Server (NTRS)
Wattson, R. B.; Harvey, P.; Swift, R.
1975-01-01
An intrinsic silicon charge injection device (CID) television sensor array has been used in conjunction with a CaMoO4 colinear tunable acousto optic filter, a 61 inch reflector, a sophisticated computer system, and a digital color TV scan converter/computer to produce near IR images of Saturn and Jupiter with 10A spectral resolution and approximately 3 inch spatial resolution. The CID camera has successfully obtained digitized 100 x 100 array images with 5 minutes of exposure time, and slow-scanned readout to a computer. Details of the equipment setup, innovations, problems, experience, data and final equipment performance limits are given.
High-resolution multiphoton microscopy with a low-power continuous wave laser pump.
Chen, Xiang-Dong; Li, Shen; Du, Bo; Dong, Yang; Wang, Ze-Hao; Guo, Guang-Can; Sun, Fang-Wen
2018-02-15
Multiphoton microscopy (MPM) has been widely used for three-dimensional biological imaging. Here, based on the photon-induced charge state conversion process, we demonstrated a low-power high-resolution MPM with a nitrogen vacancy (NV) center in diamond. Continuous wave green and orange lasers were used to pump and detect the two-photon charge state conversion, respectively. The power of the laser for multiphoton excitation was 40 μW. Both the axial and lateral resolutions were improved approximately 1.5 times compared with confocal microscopy. The results can be used to improve the resolution of the NV center-based quantum sensing and biological imaging.
Theoretical study of Ag doping-induced vacancies defects in armchair graphene
NASA Astrophysics Data System (ADS)
Benchallal, L.; Haffad, S.; Lamiri, L.; Boubenider, F.; Zitoune, H.; Kahouadji, B.; Samah, M.
2018-06-01
We have performed a density functional theory (DFT) study of the absorption of silver atoms (Ag,Ag2 and Ag3) in graphene using SIESTA code, in the generalized gradient approximation (GGA). The absorption energy, geometry, magnetic moments and charge transfer of Ag clusters-graphene system are calculated. The minimum energy configuration demonstrates that all structures remain planar and silver atoms fit into this plane. The charge transfer between the silver clusters and carbon atoms constituting the graphene surface is an indicative of a strong bond. The structure doped with a single silver atom has a magnetic moment and the two other are nonmagnetic.
Steady-State Ion Beam Modeling with MICHELLE
NASA Astrophysics Data System (ADS)
Petillo, John
2003-10-01
There is a need to efficiently model ion beam physics for ion implantation, chemical vapor deposition, and ion thrusters. Common to all is the need for three-dimensional (3D) simulation of volumetric ion sources, ion acceleration, and optics, with the ability to model charge exchange of the ion beam with a background neutral gas. The two pieces of physics stand out as significant are the modeling of the volumetric source and charge exchange. In the MICHELLE code, the method for modeling the plasma sheath in ion sources assumes that the electron distribution function is a Maxwellian function of electrostatic potential over electron temperature. Charge exchange is the process by which a neutral background gas with a "fast" charged particle streaming through exchanges its electron with the charged particle. An efficient method for capturing this is essential, and the model presented is based on semi-empirical collision cross section functions. This appears to be the first steady-state 3D algorithm of its type to contain multiple generations of charge exchange, work with multiple species and multiple charge state beam/source particles simultaneously, take into account the self-consistent space charge effects, and track the subsequent fast neutral particles. The solution used by MICHELLE is to combine finite element analysis with particle-in-cell (PIC) methods. The basic physics model is based on the equilibrium steady-state application of the electrostatic particle-in-cell (PIC) approximation employing a conformal computational mesh. The foundation stems from the same basic model introduced in codes such as EGUN. Here, Poisson's equation is used to self-consistently include the effects of space charge on the fields, and the relativistic Lorentz equation is used to integrate the particle trajectories through those fields. The presentation will consider the complexity of modeling ion thrusters.
Ishizuka, Ryosuke; Matubayasi, Nobuyuki
2017-11-15
A self-consistent scheme combining the molecular dynamics (MD) simulation and density functional theory (DFT) was recently proposed to incorporate the effects of the charge transfer and polarization of ions into non-poralizable force fields of ionic liquids for improved description of energetics and dynamics. The purpose of the present work is to analyze the detailed setups of the MD/DFT scheme by focusing on how the basis set, exchange-correlation (XC) functional, charge-fitting method or force field for the intramolecular and Lennard-Jones interactions affects the MD/DFT results of 1,3-dimethylimidazolium bis(trifluoromethylsulfonyl) imide ( [C1mim][NTf2]) and 1-ethyl-3-methylimidazolium glycinate ( [C2mim][Gly]). It was found that the double-zeta valence polarized or larger size of basis set is required for the convergence of the effective charge of the ion. The choice of the XC functional was further not influential as far as the generalized gradient approximation is used. The charge-fitting method and force field govern the accuracy of the MD/DFT scheme, on the other hand. We examined the charge-fitting methods of Blöchl, the iterative Hirshfeld (Hirshfeld-I), and REPEAT in combination with Lopes et al.'s force field and general AMBER force field. There is no single combination of charge fitting and force field that provides good agreements with the experiments, while the MD/DFT scheme reduces the effective charges of the ions and leads to better description of energetics and dynamics compared to the original force field with unit charges. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Determination of the “NiOOH” charge and discharge mechanisms at ideal activity
Merrill, Matthew; Worsley, Marcus; Wittstock, Arne; ...
2014-01-24
Here, optimization of electrodeposition conditions produced Ni(OH) 2 deposits chargeable up to 1.84 ± 0.02 e – per Ni on and the resulting nickel oxide/hydroxide active material could subsequently deliver 1.58 ± 0.02 e – per Ni ion (462 mA h/g) over a potential range <0.2 V. The ability of the “NiOOH” active material to deliver an approximately ideal charge and discharge facilitated a coulometric and thermodynamic analysis through which the charge/discharge mechanisms were determined from known enthalpies of formation. The (dis)charge states were confirmed with in situ Raman spectroscopy. The mechanisms were additionally evaluated with respect to pH andmore » potential dependence, charge quantities, hysteresis, and fluoride ion partial inhibition of the charge mechanism. The results indicate that the “NiOOH” (dis)charges as a solid-state system with mechanisms consistent with known nickel and oxygen redox reactions. A defect chemistry mechanism known for the LiNiO 2 system also occurs for “NiOOH” to cause both high activity and hysteresis. Similar to other cation insertion nickel oxides, the activity of the “NiOOH” mechanism is predominantly due to oxygen redox activity and does not involve the Ni4 + oxidation state. The “NiOOH” was produced from cathodic electrodeposition of Ni(OH) 2 from nickel nitrate solutions onto highly oriented pyrolytic graphite at ideal electrodeposition current efficiencies and the deposition mechanism was also characterized.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Hsiu-Ling; Hsieh, Chien-Te; Li, Jianlin
A liquid-phase mixing method is adopted to uniformly disperse the graphene nanosheets onto LiNi 1/3Co 1/3Mn 1/3O 2 cathode for high-performance Li-ion batteries (LIBs). The electrochemical performance was characterized using a full pouch cells with state-of-the-art electrode areal loading (compared to half coin cells). The addition of graphene sheets (i.e., only 1 wt%) significantly improves the high rate capability for charging and discharging operation. For example, 6 times improvement in 5 C charging was achieved providing further insights in enabling extreme fast charging for LIBs. Other benefits include longer cycleability, lower internal resistance, and higher lithium ion diffusion coefficient, demonstratedmore » by charge-discharge cycling tests and electrochemical impedance spectroscopy. Higher capacity retention of 88.2% and decreased internal resistance of ~0.9 Ω are observed after 400 cycles. The diffusion coefficient of Li ions is 6.49 × 10 -8 cm 2 s -1 when charged to 4.2 V, which is approximately 1.37 times higher compared to the configuration with no graphene sheet (4.74 × 10 -8 cm 2 s -1). To conclude, the improved performance is ascribed to a robust network among the active materials formed by graphene sheets, which serves as an extended current conductor and facilitates charge transfer, ionic reversibility, and ionic transportation.« less
Tsai, Hsiu-Ling; Hsieh, Chien-Te; Li, Jianlin; ...
2018-03-27
A liquid-phase mixing method is adopted to uniformly disperse the graphene nanosheets onto LiNi 1/3Co 1/3Mn 1/3O 2 cathode for high-performance Li-ion batteries (LIBs). The electrochemical performance was characterized using a full pouch cells with state-of-the-art electrode areal loading (compared to half coin cells). The addition of graphene sheets (i.e., only 1 wt%) significantly improves the high rate capability for charging and discharging operation. For example, 6 times improvement in 5 C charging was achieved providing further insights in enabling extreme fast charging for LIBs. Other benefits include longer cycleability, lower internal resistance, and higher lithium ion diffusion coefficient, demonstratedmore » by charge-discharge cycling tests and electrochemical impedance spectroscopy. Higher capacity retention of 88.2% and decreased internal resistance of ~0.9 Ω are observed after 400 cycles. The diffusion coefficient of Li ions is 6.49 × 10 -8 cm 2 s -1 when charged to 4.2 V, which is approximately 1.37 times higher compared to the configuration with no graphene sheet (4.74 × 10 -8 cm 2 s -1). To conclude, the improved performance is ascribed to a robust network among the active materials formed by graphene sheets, which serves as an extended current conductor and facilitates charge transfer, ionic reversibility, and ionic transportation.« less
Thermionic field emission in gold nitride Schottky nanodiodes
NASA Astrophysics Data System (ADS)
Spyropoulos-Antonakakis, N.; Sarantopoulou, E.; Kollia, Z.; Samardžija, Z.; Kobe, S.; Cefalas, A. C.
2012-11-01
We report on the thermionic field emission and charge transport properties of gold nitride nanodomains grown by pulsed laser deposition with a molecular fluorine laser at 157 nm. The nanodomains are sandwiched between the metallic tip of a conductive atomic force microscope and a thin gold layer forming thus a metal-semiconductor-metal junction. Although the limited existing data in the literature indicate that gold nitride was synthesized previously with low efficiency, poor stability, and metallic character; in this work, it is shown that gold nitride nanodomains exhibit semiconducting behavior and the metal-semiconductor-metal contact can be modeled with the back-to-back Schottky barrier model. From the experimental I-V curves, the main charge carrier transport process is found to be thermionic field emission via electron tunneling. The rectifying, near symmetric and asymmetric current response of nanocontacts is related to the effective contact area of the gold nitride nanodomains with the metals. A lower limit for the majority charge carriers concentration at the boundaries of nanodomains is also established using the full depletion approximation, as nanodomains with thickness as low as 6 nm were found to be conductive. Current rectification and charge memory effects are also observed in "quite small" conductive nanodomains (6-10 nm) due to stored charges. Indeed, charges near the surface are identified as inversion domains in the phase shift mapping performed with electrostatic force microscopy and are attributed to charge trapping at the boundaries of the nanodomains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alston, S.G.
1982-01-01
A complete systematic derivation is given of a new approximation for the calculation of the cross section for electron capture from a hydrogen-like ion of large nuclear charge Z/sub T/e by a bare ion of charge Z/sub p/e moving with speed v. The amplitude in the wave treatment is obtained through consistent expansion in the small parameters Z/sub p//Z/sub T/ and Z/sub p/e/sup 2//hv; however, the ratio Z/sub T/e/sup 2//hv is not assumed small. Electron-target nucleus interactions are included to all orders and electron-projectile interactions were included consistently to first order so that the theory is called the strong potentialmore » Born (SPB). Following a careful analysis of the approach to the energy shell, an off-shell factor is seen to arise which does not appear in the impulse approximation (IA). The effects of this factor on the capture amplitude are explored. It is shown that, in comparison with the IA, the correct weighting of the target spectrum of intermediate states in the SPB significantly alters the 1s ..-->.. ns cross section and at the same time makes peaking approximations to the amplitude more realistic, even for intermediate velocity Z/sub p/e/sup 2//h<« less
NASA Astrophysics Data System (ADS)
Casalegno, Mosè; Bernardi, Andrea; Raos, Guido
2013-07-01
Numerical approaches can provide useful information about the microscopic processes underlying photocurrent generation in organic solar cells (OSCs). Among them, the Kinetic Monte Carlo (KMC) method is conceptually the simplest, but computationally the most intensive. A less demanding alternative is potentially represented by so-called Master Equation (ME) approaches, where the equations describing particle dynamics rely on the mean-field approximation and their solution is attained numerically, rather than stochastically. The description of charge separation dynamics, the treatment of electrostatic interactions and numerical stability are some of the key issues which have prevented the application of these methods to OSC modelling, despite of their successes in the study of charge transport in disordered system. Here we describe a three-dimensional ME approach to photocurrent generation in OSCs which attempts to deal with these issues. The reliability of the proposed method is tested against reference KMC simulations on bilayer heterojunction solar cells. Comparison of the current-voltage curves shows that the model well approximates the exact result for most devices. The largest deviations in current densities are mainly due to the adoption of the mean-field approximation for electrostatic interactions. The presence of deep traps, in devices characterized by strong energy disorder, may also affect result quality. Comparison of the simulation times reveals that the ME algorithm runs, on the average, one order of magnitude faster than KMC.
New description of charged particle propagation in random magnetic fields
NASA Technical Reports Server (NTRS)
Earl, James A.
1994-01-01
When charged particles spiral along a large constant magnetic field, their trajectories are scattered by random components that are superposed on the guiding field. In the simplest analysis of this situation, scattering causes the particles to diffuse parallel to the guiding field. At the next level of approximation, moving pulses that correspond to a coherent mode of propagation are present, but they are represented by delta-functions whose infinitely narrow width makes no sense physically and is inconsistent with the finite duration of coherent pulses observed in solar energetic particle events. To derive a more realistic description, the transport problem is formulated in terms of 4 x 4 matrices, which derive from a representation of the particle distribution function in terms of eigenfunctions of the scattering operator, and which lead to useful approximations that give explicit predictions of the detailed evolution not only of the coherent pulses, but also of the diffusive wake. More specifically, the new description embodies a simple convolution of a narrow Gaussian with the solutions above that involve delta-functions, but with a slightly reduced coherent velocity. The validity of these approximations, which can easily be calculated on a desktop computer, has been exhaustively confirmed by comparison with results of Monte Carlo simulations which kept track of 50 million particles and which were carried out on the Maspar computer at Goddard Space Flight Center.
The electrostatics of a dusty plasma
NASA Technical Reports Server (NTRS)
Whipple, E. C.; Mendis, D. A.; Northrop, T. G.
1986-01-01
The potential distribution in a plasma containing dust grains were derived where the Debye length can be larger or smaller than the average intergrain spacing. Three models were treated for the grain-plasma system, with the assumption that the system of dust and plasma is charge-neutral: a permeable grain model, an impermeable grain model, and a capacitor model that does not require the nearest neighbor approximation of the other two models. A gauge-invariant form of Poisson's equation was used which is linearized about the average potential in the system. The charging currents to a grain are functions of the difference between the grain potential and this average potential. Expressions were obtained for the equilibrium potential of the grain and for the gauge-invariant capacitance between the grain and the plasma. The charge on a grain is determined by the product of this capacitance and the grain-plasma potential difference.
Theoretical study of the Raman active CDW gap mode in manganites.
Rout, G C; Panda, Saswati; Behera, S N
2010-09-22
We report here the microscopic theory of the Raman spectra of the colossal magnetoresistive (CMR) manganite systems. The system is described by a model Hamiltonian consisting of the double exchange interaction in addition to the charge ordering interaction in the e(g) band and spin-spin interaction among the t(2g) core electrons. Further the phonon coupling to the conduction electron density is incorporated in the model for phonons in the harmonic approximation. The spectral density function for the Raman spectra is calculated from the imaginary part of the phonon Green's function. The calculated spectra display the Raman active bare phonon peak along with the charge ordering peak. The magnetic field and temperature dependence of the charge ordering peak agrees with the 480 cm(-1) JT mode observed in the experiments. The evolution of this mode is investigated in the report.
Kelvin-Mach Wake in a Two-Dimensional Fermi Sea
NASA Astrophysics Data System (ADS)
Kolomeisky, Eugene B.; Straley, Joseph P.
2018-06-01
The dispersion law for plasma oscillations in a two-dimensional electron gas in the hydrodynamic approximation interpolates between Ω ∝√{q } and Ω ∝q dependences as the wave vector q increases. As a result, downstream of a charged impurity in the presence of a uniform supersonic electric current flow, a wake pattern of induced charge density and potential is formed whose geometry is controlled by the Mach number M . For 1
Free-bound electron exchange contribution to l-split atomic structure in dense plasmas
NASA Astrophysics Data System (ADS)
Bennadji, K.; Rosmej, F.; Lisitsa, V. S.
2013-11-01
An analytical expression for the exchange energy between the bound electron in hydrogen-like ions and the free electrons of plasma is proposed. Two limiting cases are identified: 1) the low temperature limit where the energy depends linearly on density and on the ion charge as 1/Z2 but does not depend on the temperature itself, 2) the high temperature limit where the energy depends on temperature as 1/T but does not depend on the ion charge. These two regimes are separated by a characteristic temperature (T∗ = 4Z2Ry) which is a universal parameter depending only on the charge Z of the ions. We presented numerical results for aluminum: the exchange energy contributes about 15% to the total plasma energy and can reach an order of 10-4 of the total transition energy. Comparison to the Local-density Approximation (Kohn-Sham) exchange energy shows a good agreement.
Dissociative charge transfer of H/+/ ions with H2 and D2 molecules from 78 to 330 K
NASA Technical Reports Server (NTRS)
Johnsen, R.; Chen, A.; Biondi, M. A.
1980-01-01
The dissociative charge transfer of He(+) ions with H2 and D2 molecules has been studied using a temperature-variable drift-tube mass-spectrometer apparatus over the temperature range 78 to 330 K. The binary rate coefficients are small at 300 K, approximately 10 to the -13th to 10 to the -14th cu cm/sec, and only slightly larger at 78 K. Termolecular contributions to the binary rate coefficients are found to be small at 330 K but increase substantially with decreasing temperature. Two-body charge transfer with D2 is found to be slower than with H2 by a factor of 10, in good agreement with recent theoretical predictions, although the measured values of the rate coefficients are larger by a factor of about 4 than the predicted values.
Electrostatic effects on dust particles in space
NASA Astrophysics Data System (ADS)
Leung, Philip; Wuerker, Ralph
1992-02-01
The star scanner of the Magellan spacecraft experienced operational anomalies continuously during Magellan's journey to Venus. These anomalies were attributed to the presence of dust particles in the vicinity of the spacecraft. The dust particles, which were originated from the surface of thermal blankets, were liberated when the electrostatic force acting on them was of sufficient magnitude. In order to verify this hypothesis, an experimental program was initiated to study the mechanisms responsible for the release of dust particles from a spacecraft surface. In the experiments, dust particles were immersed in a plasma and/or subjected to ultra-violet irradiation. Results showed that the charging state of a dust particle was strongly dependent on the environment, and the charge on a dust particle was approximately 10(exp 3) elementary charges. Consequently, in the space environment, electrostatic force could be the most dominant force acting on a dust particle.
Charge pumping with finger capacitance for body sensor energy harvesting.
Zhou, Alyssa Y; Maharbiz, Michel M
2017-07-01
Sensors are becoming ubiquitous and increasingly integrated with and on the human body; powering such "body network" devices remains an outstanding problem. In this paper, we demonstrate a touch interrogation powered energy harvesting system. This system transforms the kinetic energy of a human finger to electric energy, with each tap producing approximately 1 nJ of energy at a storage capacitor. As is well known for touch display devices, the proximity of a finger can alter the effective value of small capacitances; we demonstrate that these capacitance changes can drive a current which is rectified to charge a capacitor. As a demonstration, an untethered circuit charged this way can deliver enough instantaneous power to light a red LED every ~ 10 seconds. This technology illustrates the ability to communicate with and operate low-power sensors with motions already used for interfacing to devices.
Energy gaps, valence and conduction charge densities and optical properties of GaAs1‑xPx
NASA Astrophysics Data System (ADS)
Al-Hagan, O. A.; Algarni, H.; Bouarissa, N.; Alhuwaymel, T. F.; Ajmal Khan, M.
2018-04-01
The electronic structure and its derived valence and conduction charge distributions along with the optical properties of zinc-blende GaAs1‑xPx ternary alloys have been studied. The calculations are performed using a pseudopotential approach under the virtual crystal approximation (VCA) which takes into account the compositional disorder effect. Our findings are found to be generally in good accord with experiment. The composition dependence of direct and indirect bandgaps showed a clear bandgap bowing. The nature of the gap is found to depend on phosphorous content. The bonding and ionicity of the material of interest have been examined in terms of the anti-symmetric gap and charge densities. The variation in the optical constants versus phosphorous concentration has been discussed. The present investigation may give a useful applications in infrared and visible spectrum light emitters.
Final Technical Report for Grant DE-FG02-04ER54795
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merlino, Robert L
This is the final technical report for DOE Grant #DE-FG02-04ER54795-Experimental Investigations of Fundamental Processes in Dusty Plasmas. A plasma is an ionized gas, and a dusty plasmas is a plasma that contains, in addition to electrons and ions, micron-sized dust particles. The dust particles acquire and electric charge in the plasma by collecting electrons and ions. The electrons move more rapidly than the ions, so the dust charge is negative. A 1 micron dust particle in a typical low temperature plasma has a charge corresponding to approximately 2000 electrons. Dusty plasmas are naturally found in astrophysical plasmas, planetary rings, technologicalmore » plasmas, and magnetic fusion plasmas. The goal of this project was to study in the laboratory, the basic physical processes that occur in dusty plasmas. This report provides a summary of the major scientific products and activities of this award.« less
Suppression of low-frequency charge noise in gates-defined GaAs quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Jie; Li, Hai-Ou, E-mail: haiouli@ustc.edu.cn, E-mail: gpguo@ustc.edu.cn; Wang, Ke
To reduce the charge noise of a modulation-doped GaAs/AlGaAs quantum dot, we have fabricated shallow-etched GaAs/AlGaAs quantum dots using the wet-etching method to study the effects of two-dimensional electron gas (2DEG) underneath the metallic gates. The low-frequency 1/f noise in the Coulomb blockade region of the shallow-etched quantum dot is compared with a non-etched quantum dot on the same wafer. The average values of the gate noise are approximately 0.5 μeV in the shallow-etched quantum dot and 3 μeV in the regular quantum dot. Our results show the quantum dot low-frequency charge noise can be suppressed by the removal ofmore » the 2DEG underneath the metallic gates, which provides an architecture for noise reduction.« less
Zhou, Yecheng; Deng, Wei-Qiao; Zhang, Hao-Li
2016-09-14
Cn-[1]benzothieno[3,2-b][1]-benzothiophene (BTBT) crystals show very high hole mobilities in experiments. These high mobilities are beyond existing theory prediction. Here, we employed different quantum chemistry methods to investigate charge transfer in Cn-BTBT crystals and tried to find out the reasons for the underestimation in the theory. It was found that the hopping rate estimated by the Fermi Golden Rule is higher than that of the Marcus theory due to the high temperature approximation and failure at the classic limit. More importantly, molecular dynamics simulations revealed that the phonon induced fluctuation of electronic transfer integral is much larger than the average of the electronic transfer integral itself. Mobilities become higher if simulations implement the phonon-electron coupling. This conclusion indicates that the phonon-electron coupling promotes charge transfer in organic semi-conductors at room temperature.
NASA Astrophysics Data System (ADS)
Zhou, Yecheng; Deng, Wei-Qiao; Zhang, Hao-Li
2016-09-01
Cn-[1]benzothieno[3,2-b][1]-benzothiophene (BTBT) crystals show very high hole mobilities in experiments. These high mobilities are beyond existing theory prediction. Here, we employed different quantum chemistry methods to investigate charge transfer in Cn-BTBT crystals and tried to find out the reasons for the underestimation in the theory. It was found that the hopping rate estimated by the Fermi Golden Rule is higher than that of the Marcus theory due to the high temperature approximation and failure at the classic limit. More importantly, molecular dynamics simulations revealed that the phonon induced fluctuation of electronic transfer integral is much larger than the average of the electronic transfer integral itself. Mobilities become higher if simulations implement the phonon-electron coupling. This conclusion indicates that the phonon-electron coupling promotes charge transfer in organic semi-conductors at room temperature.
Status of the evidence for a magnetic monopole
NASA Technical Reports Server (NTRS)
Price, P. B.
1975-01-01
The experimental evidence supporting the detection of a moving magnetic monopole, using a balloon-borne array of track detectors, was presented. Although the results cannot be proved to have been produced by a monopole, they do not seem to have been produced by any nucleus. The very high, roughly constant ionization rate inferred from track etch rate measurements in a stack of Lexan detectors implies passage of a minimum-ionizing particle more highly charged than any known nucleus, yet the Cerenkov film detectors indicated a velocity less than about 0.68 times the speed of light and the size of the track in the nuclear emulsion indicated a velocity approximately equal to 0.5 times the speed of light. At this velocity the ionization rate of a highly electrically charged particle would have changed dramatically with pathlength unless its mass to charge ratio were far greater than that of a nucleus.
Charging and Discharging of Lichtenberg Electrets
NASA Astrophysics Data System (ADS)
Wood, Monika
The research presented here describes a unique way to deposit a large amount of charge onto the surface of a thin dielectric sheet to create a Lichtenberg electret that can be discharged elsewhere to form spectacular Lichtenberg figures. This study examines how the amount of charge deposited onto the surface, the geometry of the probes, and the type of material used can all impact the formation of the Lichtenberg figures. Photographs of the Lichtenberg figures were taken and used to determine the voltage, current, and energy released during each discharge. It was found that a single discharge can release 0.49 J of energy in 1.24 micros for a Lichtenberg figure that covers approximately 500 cm. 2. Lichtenberg figures can be used to characterize high-voltage surgeson power lines, to diagnose lightning strike victims, to analyze electrical breakdown of insulating materials, for artistic purposes, and for similar applications where pulsed capacitors are commonly used.
Huang, Jier; Huang, Zhuangqun; Yang, Ye; Zhu, Haiming; Lian, Tianquan
2010-04-07
Multiexciton generation in quantum dots (QDs) may provide a new approach for improving the solar-to-electric power conversion efficiency in QD-based solar cells. However, it remains unclear how to extract these excitons before the ultrafast exciton-exciton annihilation process. In this study we investigate multiexciton dissociation dynamics in CdSe QDs adsorbed with methylene blue (MB(+)) molecules by transient absorption spectroscopy. We show that excitons in QDs dissociate by ultrafast electron transfer to MB(+) with an average time constant of approximately 2 ps. The charge separated state is long-lived (>1 ns), and the charge recombination rate increases with the number of dissociated excitons. Up to three MB(+) molecules per QD can be reduced by exciton dissociation. Our result demonstrates that ultrafast interfacial charge separation can effectively compete with exciton-exciton annihilation, providing a viable approach for utilizing short-lived multiple excitons in QDs.
Theory of the stopping power of fast multicharged ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yudin, G.L.
1991-12-01
The processes of Coulomb excitation and ionization of atoms by a fast charged particle moving along a classical trajectory are studied. The target electrons are described by the Dirac equation, while the field of the incident particle is described by the Lienard-Wiechert potential. The theory is formulated in the form most convenient for investigation of various characteristics of semiclassical atomic collisions. The theory of sudden perturbations, which is valid at high enough velocities for a high projectile charge, is employed to obtain probabilities and cross sections of the Coulomb excitation and ionization of atomic hydrogen by fast multiply charged ions.more » Based on the semiclassical sudden Born approximation, the ionization cross section and the average electronic energy loss of a fast ion in a single collision with an atom are investigated over a wide specific energy range from 500 keV/amu to 50 MeV/amu.« less
Geometrical Description of fractional quantum Hall quasiparticles
NASA Astrophysics Data System (ADS)
Park, Yeje; Yang, Bo; Haldane, F. D. M.
2012-02-01
We examine a description of fractional quantum Hall quasiparticles and quasiholes suggested by a recent geometrical approach (F. D. M. Haldane, Phys. Rev. Lett. 108, 116801 (2011)) to FQH systems, where the local excess electric charge density in the incompressible state is given by a topologically-quantized ``guiding-center spin'' times the Gaussian curvature of a ``guiding-center metric tensor'' that characterizes the local shape of the correlation hole around electrons in the fluid. We use a phenomenological energy function with two ingredients: the shear distortion energy of area-preserving distortions of the fluid, and a local (short-range) approximation to the Coulomb energy of the fluctuation of charge density associated with the Gaussian curvature. Quasiparticles and quasiholes of the 1/3 Laughlin state are modeled as ``punctures'' in the incompressible fluid which then relax by geometric distortion which generates Gaussian curvature, giving rise to the charge-density profile around the topological excitation.
Vibrational modes of thin oblate clouds of charge
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Spencer, Ross L.
2002-07-01
A numerical method is presented for finding the eigenfunctions (normal modes) and mode frequencies of azimuthally symmetric non-neutral plasmas confined in a Penning trap whose axial thickness is much smaller than their radial size. The plasma may be approximated as a charged disk in this limit; the normal modes and frequencies can be found if the surface charge density profile σ(r) of the disk and the trap bounce frequency profile ωz(r) are known. The dependence of the eigenfunctions and equilibrium plasma shapes on nonideal components of the confining Penning trap fields is discussed. The results of the calculation are compared with the experimental data of Weimer et al. [Phys. Rev. A 49, 3842 (1994)] and it is shown that the plasma in this experiment was probably hollow and had mode displacement functions that were concentrated near the center of the plasma.