Adams, J; Adler, C; Ahammed, Z; Allgower, C; Amonett, J; Anderson, B D; Anderson, M; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Caines, H; Calderónde la Barca Sánchez, M; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Corral, M M; Cramer, J G; Crawford, H J; Derevschikov, A A; Didenko, L; Dietel, T; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Grachov, O; Grigoriev, V; Guedon, M; Guertin, S M; Gushin, E; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Igo, G; Ishihara, A; Ivanshin, Yu I; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Kollegger, T; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Magestro, D; Majka, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mitchell, J; Moore, C F; Morozov, V; de Moura, M M; Munhoz, M G; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Rykov, V; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schüttauf, A; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shestermanov, K E; Shimanskii, S S; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; de Toledo, A Szanto; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Thompson, M; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; Vander Molen, A M; Vasilevski, I M; Vasiliev, A N; Vigdor, S E; Voloshin, S A; Wang, F; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zoulkarneev, R; Zubarev, A N
2003-05-02
The balance function is a new observable based on the principle that charge is locally conserved when particles are pair produced. Balance functions have been measured for charged particle pairs and identified charged pion pairs in Au+Au collisions at the square root of SNN = 130 GeV at the Relativistic Heavy Ion Collider using STAR. Balance functions for peripheral collisions have widths consistent with model predictions based on a superposition of nucleon-nucleon scattering. Widths in central collisions are smaller, consistent with trends predicted by models incorporating late hadronization.
Balance of baryon number in the quark coalescence model
NASA Astrophysics Data System (ADS)
Bialas, A.; Rafelski, J.
2006-02-01
The charge and baryon balance functions are studied in the coalescence hadronization mechanism of quark-gluon plasma. Assuming that in the plasma phase the qqbar pairs form uncorrelated clusters whose decay is also uncorrelated, one can understand the observed small width of the charge balance function in the Gaussian approximation. The coalescence model predicts even smaller width of the baryon-antibaryon balance function: σBBbar /σ+ - =√{ 2 / 3 }.
Causal electric charge diffusion and balance functions in relativistic heavy-ion collisions
NASA Astrophysics Data System (ADS)
Kapusta, Joseph I.; Plumberg, Christopher
2018-01-01
We study the propagation and diffusion of electric charge fluctuations in high-energy heavy-ion collisions using the Cattaneo form for the dissipative part of the electric current. As opposed to the ordinary diffusion equation this form limits the speed at which charge can propagate. Including the noise term in the current, which arises uniquely from the fluctuation-dissipation theorem, we calculate the balance functions for charged hadrons in a simple 1+1-dimensional Bjorken hydrodynamical model. Limiting the speed of propagation of charge fluctuations increases the height and reduces the width of these balance functions when plotted versus rapidity. We also estimate the numerical value of the associated diffusion time constant from anti-de Sitter-space/conformal-field theory.
Balance and Self-Efficacy of Balance in Children with CHARGE Syndrome
ERIC Educational Resources Information Center
Haibach, Pamela S.; Lieberman, Lauren J.
2013-01-01
Introduction: Balance is a critical component of daily living, because it affects all movements and the ability to function independently. Children with CHARGE syndrome have sensory and motor impairments that could negatively affect their balance and postural control. The purpose of the study presented in this article was to assess the balance and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.
Balance functions have been measured in terms of relative pseudorapidity ( Δη ) for charged particle pairs at the BNL Relativistic Heavy Ion Collider (RHIC) from Au + Au collisions atmore » $$\\sqrt{s}$$$_{NN}$$ = 7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at $$\\sqrt{s}$$$_{NN}$$ = 2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). Finally, the narrowing of the balance function in central collisions at $$\\sqrt{s}$$$_{NN}$$ = 7.7 GeV implies that a QGP is still being created at this relatively low energy.« less
NASA Astrophysics Data System (ADS)
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, H. F.; Cheng, J.; Cherney, M.; Christie, W.; Codrington, M. J. M.; Contin, G.; Crawford, H. J.; Cui, X.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Filip, P.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, X.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, Z. M.; Li, X.; Li, W.; Li, Y.; Li, X.; Li, C.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, R. M.; Ma, Y. G.; Magdy, N.; Mahapatra, D. P.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D. L.; Page, B. S.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Simko, M.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solanki, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B. J.; Sun, X. M.; Sun, Z.; Sun, Y.; Sun, X.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Takahashi, J.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, H.; Wang, F.; Wang, G.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, N.; Xu, Z.; Xu, H.; Xu, Y.; Xu, Q. H.; Yan, W.; Yang, Y.; Yang, C.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, Z. P.; Zhang, J. B.; Zhang, J. L.; Zhang, Y.; Zhang, S.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, Y. H.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration
2016-08-01
Balance functions have been measured in terms of relative pseudorapidity (Δ η ) for charged particle pairs at the BNL Relativistic Heavy Ion Collider from Au + Au collisions at √{sNN}=7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at √{sNN}=2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at √{sNN}=7.7 GeV implies that a QGP is still being created at this relatively low energy.
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...
2016-08-16
Balance functions have been measured in terms of relative pseudorapidity ( Δη ) for charged particle pairs at the BNL Relativistic Heavy Ion Collider (RHIC) from Au + Au collisions atmore » $$\\sqrt{s}$$$_{NN}$$ = 7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at $$\\sqrt{s}$$$_{NN}$$ = 2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). Finally, the narrowing of the balance function in central collisions at $$\\sqrt{s}$$$_{NN}$$ = 7.7 GeV implies that a QGP is still being created at this relatively low energy.« less
Battery model for electrical power system energy balance
NASA Technical Reports Server (NTRS)
Hafen, D. P.
1983-01-01
A model to simulate nickel-cadmium battery performance and response in a spacecraft electrical power system energy balance calculation was developed. The voltage of the battery is given as a function of temperature, operating depth-of-charge (DOD), and battery state-of-charge. Also accounted for is charge inefficiency. A battery is modeled by analysis of the results of a multiparameter battery cycling test at various temperatures and DOD's.
NASA Astrophysics Data System (ADS)
Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Böttger, S.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Mcdonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Munzer, R. H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pal, S. K.; Pan, J.; Pandey, A. K.; Papcun, P.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stefanek, G.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yang, H.; Yang, P.; Yano, S.; Yasar, C.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.
2016-02-01
We report on two-particle charge-dependent correlations in pp, p-Pb, and Pb-Pb collisions as a function of the pseudorapidity and azimuthal angle difference, Δ η and Δ \\varphi respectively. These correlations are studied using the balance function that probes the charge creation time and the development of collectivity in the produced system. The dependence of the balance function on the event multiplicity as well as on the trigger and associated particle transverse momentum (p_{{T}}) in pp, p-Pb, and Pb-Pb collisions at √{s_{NN}}= 7, 5.02, and 2.76 TeV, respectively, are presented. In the low transverse momentum region, for 0.2 < p_{{T}} < 2.0 GeV/ c, the balance function becomes narrower in both Δ η and Δ \\varphi directions in all three systems for events with higher multiplicity. The experimental findings favor models that either incorporate some collective behavior (e.g. AMPT) or different mechanisms that lead to effects that resemble collective behavior (e.g. PYTHIA8 with color reconnection). For higher values of transverse momenta the balance function becomes even narrower but exhibits no multiplicity dependence, indicating that the observed narrowing with increasing multiplicity at low p_{{T}} is a feature of bulk particle production.
Adam, J.; Adamová, D.; Aggarwal, M. M.; ...
2016-02-19
Here, we report on two-particle charge-dependent correlations in pp, p–Pb, and Pb–Pb collisions as a function of the pseudorapidity and azimuthal angle difference, Δη and Δφ respectively. These correlations are studied using the balance function that probes the charge creation time and the development of collectivity in the produced system. The dependence of the balance function on the event multiplicity as well as on the trigger and associated particle transverse momentum (p T) in pp, p–Pb, and Pb–Pb collisions at √ sNN = 7, 5.02, and 2.76 TeV, respectively, are presented. In the low transverse momentum region, for 0.2
Adam, J; Adamová, D; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agrawal, N; Ahammed, Z; Ahn, S U; Aiola, S; Akindinov, A; Alam, S N; Aleksandrov, D; Alessandro, B; Alexandre, D; Alfaro Molina, R; Alici, A; Alkin, A; Almaraz, J R M; Alme, J; Alt, T; Altinpinar, S; Altsybeev, I; Alves Garcia Prado, C; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arcelli, S; Arnaldi, R; Arnold, O W; Arsene, I C; Arslandok, M; Audurier, B; Augustinus, A; Averbeck, R; Azmi, M D; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Baldisseri, A; Baral, R C; Barbano, A M; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartalini, P; Barth, K; Bartke, J; Bartsch, E; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batista Camejo, A; Batyunya, B; Batzing, P C; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Bello Martinez, H; Bellwied, R; Belmont, R; Belmont-Moreno, E; Belyaev, V; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhat, I R; Bhati, A K; Bhattacharjee, B; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Biswas, R; Biswas, S; Bjelogrlic, S; Blair, J T; Blau, D; Blume, C; Bock, F; Bogdanov, A; Bøggild, H; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Borri, M; Bossú, F; Botta, E; Böttger, S; Bourjau, C; Braun-Munzinger, P; Bregant, M; Breitner, T; Broker, T A; Browning, T A; Broz, M; Brucken, E J; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buncic, P; Busch, O; Buthelezi, Z; Butt, J B; Buxton, J T; Caffarri, D; Cai, X; Caines, H; Calero Diaz, L; Caliva, A; Calvo Villar, E; Camerini, P; Carena, F; Carena, W; Carnesecchi, F; Castillo Castellanos, J; Castro, A J; Casula, E A R; Ceballos Sanchez, C; Cepila, J; Cerello, P; Cerkala, J; Chang, B; Chapeland, S; Chartier, M; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chelnokov, V; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Cho, S; Chochula, P; Choi, K; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Colocci, M; Conesa Balbastre, G; Conesa Del Valle, Z; Connors, M E; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortés Maldonado, I; Cortese, P; Cosentino, M R; Costa, F; Crochet, P; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Dahms, T; Dainese, A; Danu, A; Das, D; Das, I; Das, S; Dash, A; Dash, S; De, S; De Caro, A; de Cataldo, G; de Conti, C; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; Deisting, A; Deloff, A; Dénes, E; Deplano, C; Dhankher, P; Di Bari, D; Di Mauro, A; Di Nezza, P; Diaz Corchero, M A; Dietel, T; Dillenseger, P; Divià, R; Djuvsland, Ø; Dobrin, A; Domenicis Gimenez, D; Dönigus, B; Dordic, O; Drozhzhova, T; Dubey, A K; Dubla, A; Ducroux, L; Dupieux, P; Ehlers, R J; Elia, D; Engel, H; Epple, E; Erazmus, B; Erdemir, I; Erhardt, F; Espagnon, B; Estienne, M; Esumi, S; Eum, J; Evans, D; Evdokimov, S; Eyyubova, G; Fabbietti, L; Fabris, D; Faivre, J; Fantoni, A; Fasel, M; Feldkamp, L; Feliciello, A; Feofilov, G; Ferencei, J; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Festanti, A; Feuillard, V J G; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Fleck, M G; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Frankenfeld, U; Fuchs, U; Furget, C; Furs, A; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A M; Gallio, M; Gangadharan, D R; Ganoti, P; Gao, C; Garabatos, C; Garcia-Solis, E; Gargiulo, C; Gasik, P; Gauger, E F; Germain, M; Gheata, A; Gheata, M; Ghosh, P; Ghosh, S K; Gianotti, P; Giubellino, P; Giubilato, P; Gladysz-Dziadus, E; Glässel, P; Goméz Coral, D M; Gomez Ramirez, A; Gonzalez, V; González-Zamora, P; Gorbunov, S; Görlich, L; Gotovac, S; Grabski, V; Grachov, O A; Graczykowski, L K; Graham, K L; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Gronefeld, J M; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerzoni, B; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Haake, R; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Harris, J W; Harton, A; Hatzifotiadou, D; Hayashi, S; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Hess, B A; Hetland, K F; Hillemanns, H; Hippolyte, B; Hosokawa, R; Hristov, P; Huang, M; Humanic, T J; Hussain, N; Hussain, T; Hutter, D; Hwang, D S; Ilkaev, R; Inaba, M; Ippolitov, M; Irfan, M; Ivanov, M; Ivanov, V; Izucheev, V; Jacobs, P M; Jadhav, M B; Jadlovska, S; Jadlovsky, J; Jahnke, C; Jakubowska, M J; Jang, H J; Janik, M A; Jayarathna, P H S Y; Jena, C; Jena, S; Jimenez Bustamante, R T; Jones, P G; Jung, H; Jusko, A; Kalinak, P; Kalweit, A; Kamin, J; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karayan, L; Karpechev, E; Kebschull, U; Keidel, R; Keijdener, D L D; Keil, M; Mohisin Khan, M; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, D W; Kim, D J; Kim, D; Kim, H; Kim, J S; Kim, M; Kim, M; Kim, S; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, C; Klein, J; Klein-Bösing, C; Klewin, S; Kluge, A; Knichel, M L; Knospe, A G; Kobayashi, T; Kobdaj, C; Kofarago, M; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Kondratyuk, E; Konevskikh, A; Kopcik, M; Kour, M; Kouzinopoulos, C; Kovalenko, O; Kovalenko, V; Kowalski, M; Koyithatta Meethaleveedu, G; Králik, I; Kravčáková, A; Kretz, M; Krivda, M; Krizek, F; Kryshen, E; Krzewicki, M; Kubera, A M; Kučera, V; Kuhn, C; Kuijer, P G; Kumar, A; Kumar, J; Kumar, L; Kumar, S; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kweon, M J; Kwon, Y; La Pointe, S L; La Rocca, P; Ladron de Guevara, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; Lara, C; Lardeux, A; Lattuca, A; Laudi, E; Lea, R; Leardini, L; Lee, G R; Lee, S; Lehas, F; Lemmon, R C; Lenti, V; Leogrande, E; León Monzón, I; León Vargas, H; Leoncino, M; Lévai, P; Li, S; Li, X; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Ljunggren, H M; Lodato, D F; Loenne, P I; Loginov, V; Loizides, C; Lopez, X; López Torres, E; Lowe, A; Luettig, P; Lunardon, M; Luparello, G; Maevskaya, A; Mager, M; Mahajan, S; Mahmood, S M; Maire, A; Majka, R D; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manko, V; Manso, F; Manzari, V; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Margutti, J; Marín, A; Markert, C; Marquard, M; Martin, N A; Martin Blanco, J; Martinengo, P; Martínez, M I; Martínez García, G; Martinez Pedreira, M; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastroserio, A; Matyja, A; Mayer, C; Mazer, J; Mazzoni, M A; Mcdonald, D; Meddi, F; Melikyan, Y; Menchaca-Rocha, A; Meninno, E; Mercado Pérez, J; Meres, M; Miake, Y; Mieskolainen, M M; Mikhaylov, K; Milano, L; Milosevic, J; Minervini, L M; Mischke, A; Mishra, A N; Miśkowiec, D; Mitra, J; Mitu, C M; Mohammadi, N; Mohanty, B; Molnar, L; Montaño Zetina, L; Montes, E; Moreira De Godoy, D A; Moreno, L A P; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Mühlheim, D; Muhuri, S; Mukherjee, M; Mulligan, J D; Munhoz, M G; Munzer, R H; Murray, S; Musa, L; Musinsky, J; Naik, B; Nair, R; Nandi, B K; Nania, R; Nappi, E; Naru, M U; Natal da Luz, H; Nattrass, C; Nayak, K; Nayak, T K; Nazarenko, S; Nedosekin, A; Nellen, L; Ng, F; Nicassio, M; Niculescu, M; Niedziela, J; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Noferini, F; Nomokonov, P; Nooren, G; Noris, J C C; Norman, J; Nyanin, A; Nystrand, J; Oeschler, H; Oh, S; Oh, S K; Ohlson, A; Okatan, A; Okubo, T; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Oliver, M H; Onderwaater, J; Oppedisano, C; Orava, R; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Ozdemir, M; Pachmayer, Y; Pagano, P; Paić, G; Pal, S K; Pan, J; Pandey, A K; Papcun, P; Papikyan, V; Pappalardo, G S; Pareek, P; Park, W J; Parmar, S; Passfeld, A; Paticchio, V; Patra, R N; Paul, B; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Perez Lezama, E; Peskov, V; Pestov, Y; Petráček, V; Petrov, V; Petrovici, M; Petta, C; Piano, S; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Piyarathna, D B; Płoskoń, M; Planinic, M; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Poljak, N; Poonsawat, W; Pop, A; Porteboeuf-Houssais, S; Porter, J; Pospisil, J; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puccio, M; Puddu, G; Pujahari, P; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Raha, S; Rajput, S; Rak, J; Rakotozafindrabe, A; Ramello, L; Rami, F; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rathee, D; Read, K F; Redlich, K; Reed, R J; Rehman, A; Reichelt, P; Reidt, F; Ren, X; Renfordt, R; Reolon, A R; Reshetin, A; Revol, J-P; Reygers, K; Riabov, V; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Ristea, C; Rocco, E; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Ronflette, L; Rosnet, P; Rossi, A; Roukoutakis, F; Roy, A; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Ryabov, Y; Rybicki, A; Sadovsky, S; Šafařík, K; Sahlmuller, B; Sahoo, P; Sahoo, R; Sahoo, S; Sahu, P K; Saini, J; Sakai, S; Saleh, M A; Salzwedel, J; Sambyal, S; Samsonov, V; Šándor, L; Sandoval, A; Sano, M; Sarkar, D; Scapparone, E; Scarlassara, F; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schuchmann, S; Schukraft, J; Schulc, M; Schuster, T; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Šefčík, M; Seger, J E; Sekiguchi, Y; Sekihata, D; Selyuzhenkov, I; Senosi, K; Senyukov, S; Serradilla, E; Sevcenco, A; Shabanov, A; Shabetai, A; Shadura, O; Shahoyan, R; Shangaraev, A; Sharma, A; Sharma, M; Sharma, M; Sharma, N; Shigaki, K; Shtejer, K; Sibiriak, Y; Siddhanta, S; Sielewicz, K M; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Slupecki, M; Smirnov, N; Snellings, R J M; Snellman, T W; Søgaard, C; Song, J; Song, M; Song, Z; Soramel, F; Sorensen, S; Sozzi, F; Spacek, M; Spiriti, E; Sputowska, I; Spyropoulou-Stassinaki, M; Stachel, J; Stan, I; Stefanek, G; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Strmen, P; Suaide, A A P; Sugitate, T; Suire, C; Suleymanov, M; Suljic, M; Sultanov, R; Šumbera, M; Szabo, A; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szymanski, M; Tabassam, U; Takahashi, J; Tambave, G J; Tanaka, N; Tangaro, M A; Tarhini, M; Tariq, M; Tarzila, M G; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terasaki, K; Terrevoli, C; Teyssier, B; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Toia, A; Trogolo, S; Trombetta, G; Trubnikov, V; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ullaland, K; Uras, A; Usai, G L; Utrobicic, A; Vajzer, M; Vala, M; Valencia Palomo, L; Vallero, S; Van Der Maarel, J; Van Hoorne, J W; van Leeuwen, M; Vanat, T; Vande Vyvre, P; Varga, D; Vargas, A; Vargyas, M; Varma, R; Vasileiou, M; Vasiliev, A; Vauthier, A; Vechernin, V; Veen, A M; Veldhoen, M; Velure, A; Venaruzzo, M; Vercellin, E; Vergara Limón, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Villatoro Tello, A; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Vislavicius, V; Viyogi, Y P; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S A; Volpe, G; von Haller, B; Vorobyev, I; Vranic, D; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, J; Wang, H; Wang, M; Watanabe, D; Watanabe, Y; Weber, M; Weber, S G; Weiser, D F; Wessels, J P; Westerhoff, U; Whitehead, A M; Wiechula, J; Wikne, J; Wilde, M; Wilk, G; Wilkinson, J; Williams, M C S; Windelband, B; Winn, M; Yaldo, C G; Yang, H; Yang, P; Yano, S; Yasar, C; Yin, Z; Yokoyama, H; Yoo, I-K; Yoon, J H; Yurchenko, V; Yushmanov, I; Zaborowska, A; Zaccolo, V; Zaman, A; Zampolli, C; Zanoli, H J C; Zaporozhets, S; Zardoshti, N; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zgura, I S; Zhalov, M; Zhang, H; Zhang, X; Zhang, Y; Zhang, C; Zhang, Z; Zhao, C; Zhigareva, N; Zhou, D; Zhou, Y; Zhou, Z; Zhu, H; Zhu, J; Zichichi, A; Zimmermann, A; Zimmermann, M B; Zinovjev, G; Zyzak, M
We report on two-particle charge-dependent correlations in pp, p-Pb, and Pb-Pb collisions as a function of the pseudorapidity and azimuthal angle difference, [Formula: see text] and [Formula: see text] respectively. These correlations are studied using the balance function that probes the charge creation time and the development of collectivity in the produced system. The dependence of the balance function on the event multiplicity as well as on the trigger and associated particle transverse momentum ([Formula: see text]) in pp, p-Pb, and Pb-Pb collisions at [Formula: see text] 7, 5.02, and 2.76 TeV, respectively, are presented. In the low transverse momentum region, for [Formula: see text] GeV/ c , the balance function becomes narrower in both [Formula: see text] and [Formula: see text] directions in all three systems for events with higher multiplicity. The experimental findings favor models that either incorporate some collective behavior (e.g. AMPT) or different mechanisms that lead to effects that resemble collective behavior (e.g. PYTHIA8 with color reconnection). For higher values of transverse momenta the balance function becomes even narrower but exhibits no multiplicity dependence, indicating that the observed narrowing with increasing multiplicity at low [Formula: see text] is a feature of bulk particle production.
Modeling and Analysis of Ultrarelativistic Heavy Ion Collisions
NASA Astrophysics Data System (ADS)
McCormack, William; Pratt, Scott
2014-09-01
High-energy collisions of heavy ions, such as gold, copper, or uranium serve as an important means of studying quantum chromodynamic matter. When relativistic nuclei collide, a hot, energetic fireball of dissociated partonic matter is created; this super-hadronic matter is believed to be the quark gluon plasma (QGP), which is theorized to have comprised the universe immediately following the big bang. As the fireball expands and cools, it reaches freeze-out temperatures, and quarks hadronize into baryons and mesons. To characterize this super-hadronic matter, one can use balance functions, a means of studying correlations due to local charge conservation. In particular, the simple model used in this research assumed two waves of localized charge-anticharge production, with an abrupt transition from the QGP stage to hadronization. Balance functions were constructed as the sum of these two charge production components, and four parameters were manipulated to match the model's output with experimental data taken from the STAR Collaboration at RHIC. Results show that the chemical composition of the super-hadronic matter are consistent with that of a thermally equilibrated QGP. High-energy collisions of heavy ions, such as gold, copper, or uranium serve as an important means of studying quantum chromodynamic matter. When relativistic nuclei collide, a hot, energetic fireball of dissociated partonic matter is created; this super-hadronic matter is believed to be the quark gluon plasma (QGP), which is theorized to have comprised the universe immediately following the big bang. As the fireball expands and cools, it reaches freeze-out temperatures, and quarks hadronize into baryons and mesons. To characterize this super-hadronic matter, one can use balance functions, a means of studying correlations due to local charge conservation. In particular, the simple model used in this research assumed two waves of localized charge-anticharge production, with an abrupt transition from the QGP stage to hadronization. Balance functions were constructed as the sum of these two charge production components, and four parameters were manipulated to match the model's output with experimental data taken from the STAR Collaboration at RHIC. Results show that the chemical composition of the super-hadronic matter are consistent with that of a thermally equilibrated QGP. An MSU REU Project.
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...
2016-11-09
Interactions between jets and the quark-gluon plasma produced in heavy ion collisions are studied via the angular distributions of summed charged-particle transverse momenta (p T) with respect to both the leading and subleading jet axes in high-pt dijet events. The contributions of charged particles in different momentum ranges to the overall event pt balance are decomposed into short-range jet peaks and a long-range azimuthal asymmetry in charged-particle p T. The results for PbPb collisions are compared to those in pp collisions using data collected in 2011 and 2013, at collision energymore » $$ \\sqrt{s_{\\mathrm{N}\\;\\mathrm{N}}}=2.76 $$ TeV with integrated luminosities of 166 μb –1 and 5.3 pb –1, respectively, by the CMS experiment at the LHC. Furthermore, measurements are presented as functions of PbPb collision centrality, charged-particle pt, relative azimuth, and radial distance from the jet axis for balanced and unbalanced dijets.« less
NASA Astrophysics Data System (ADS)
Douay, N.
2011-10-01
In the frame of GALILEO In-Orbit Validation program which is composed of 4 satellites, Thales Alenia Space France has designed, developed and tested the Electrical Power Subsystem. Besides some classical design choices like: -50V regulated main power bus provided by the PCDU manufactured by Terma (DK), -Solar array, manufactured by Dutch-Space (NL), using Ga-As triple junction technology from Azur Space Power Solar GmbH, -SAFT (FR) Lithium-ion Battery for which cell package balancing function is required, -Solar Array Drive Mechanism, provided by RUAG Space Switzerland, to transfer the power. This subsystem features a fully autonomous, failure tolerant, battery charge management able to operate even after a complete unavailability of the on-board software. The battery charge management is implemented such that priority is always given to satisfy the satellite main bus needs in order to maintain the main bus regulation under MEA control. This battery charge management principle provides very high reliability and operational robustness. So, the paper describes : -the battery charge management concept using a combination of PCDU hardware and relevant battery lines monitoring, -the functional aspect of the single point failure free S4R (Sequential Switching Shunt Switch Regulator) and associated performances, -the failure modes isolated and passivated by this architecture. The paper will address as well the autonomous balancing function characteristics and performances.
5 CFR 831.105 - Computation of interest.
Code of Federal Regulations, 2010 CFR
2010-01-01
... thereafter, compounded annually, is charged. Interest is charged on the outstanding balance of a deposit from... outstanding balance of a refund from the date the refund was paid. Interest is charged to the date of deposit... Secretary of Treasury, compounded annually. Interest is charged on the outstanding balance of a deposit from...
Shendkar, Chandrashekhar; Lenka, Prasanna K; Biswas, Abhishek; Kumar, Ratnesh; Mahadevappa, Manjunatha
2015-10-01
Functional electric stimulators that produce near-ideal, charge-balanced biphasic stimulation waveforms with interphase delay are considered safer and more efficacious than conventional stimulators. An indigenously designed, low-cost, portable FES device named InStim is developed. It features a charge-balanced biphasic single channel. The authors present the complete design, mathematical analysis of the circuit and the clinical evaluation of the device. The developed circuit was tested on stroke patients affected by foot drop problems. It was tested both under laboratory conditions and in clinical settings. The key building blocks of this circuit are low dropout regulators, a DC-DC voltage booster and a single high-power current source OP-Amp with current-limiting capabilities. This allows the device to deliver high-voltage, constant current, biphasic pulses without the use of a bulky step-up transformer. The advantages of the proposed design over the currently existing devices include improved safety features (zero DC current, current-limiting mechanism and safe pulses), waveform morphology that causes less muscle fatigue, cost-effectiveness and compact power-efficient circuit design with minimal components. The device is also capable of producing appropriate ankle dorsiflexion in patients having foot drop problems of various Medical Research Council scale grades.
The Charge-Balancing Role of Calcium and Alkali Ions in Per-Alkaline Aluminosilicate Glasses.
Thomsen, René M; Skibsted, Jørgen; Yue, Yuanzheng
2018-03-29
The structural arrangement of alkali-modified calcium aluminosilicate glasses has implications for important properties of these glasses in a wide range of industrial applications. The roles of sodium and potassium and their competition with calcium as network modifiers in peralkaline aluminosilicate glasses have been investigated by 27 Al and 29 Si MAS NMR spectroscopy. The 29 Si MAS NMR spectra are simulated using two models for distributing Al in the silicate glass network. One model assumes a hierarchical, quasi-heterogeneous aluminosilicate network, whereas the other is based on differences in relative lattice energies between Si-O-Si, Al-O-Al, and Si-O-Al linkages. A systematic divergence between these simulations and the experimental 29 Si NMR spectra is observed as a function of the sodium content exceeding that required for stoichiometric charge-balancing of the negatively charged AlO 4 tetrahedra. Similar correlations between simulations and experimental 29 Si NMR spectra cannot be made for the excess calcium content. Moreover, systematic variations in the 27 Al isotropic chemical shifts and the second-order quadrupole effect parameters, derived from the 27 Al MAS NMR spectra, are reported as a function of the SiO 2 content. These observations strongly suggest that alkali ions preferentially charge-balance AlO 4 3- as compared to alkaline earth (calcium) ions. In contrast, calcium dominates over the alkali ions in the formation of nonbridging oxygens associated with the SiO 4 tetrahedra.
An Balancing Strategy Based on SOC for Lithium-Ion Battery Pack
NASA Astrophysics Data System (ADS)
Li, Peng
2017-09-01
According to the two kinds of working state of a battery pack, we designed a balancing strategy based on SOC, and expounds the working principle of balanced control strategy: the battery is charging, the battery charged state of the highest monomer battery is balanced discharge, strong single battery charging current decreases, while the other single cell in the same group is not affected; the battery is in a discharge or static state, single cell battery is the weakest balanced charge, while the other single cell in the same group are not affected. In this paper, we design a kind of lithium ion battery charging and discharging equalizer based on Buck chopper circuit and Boost-Buck chopper circuit. The equalizer is balanced charging and discharging experiments of series four lithium iron phosphate battery, the experimental results show that this equalizer has not only improved the degree not equilibrium between single cells, and improve the battery charge and discharge capacity.
Nanoscale Charge-Balancing Mechanism in Alkali-Substituted Calcium-Silicate-Hydrate Gels.
Özçelik, V Ongun; White, Claire E
2016-12-15
Alkali-activated materials and related alternative cementitious systems are sustainable technologies that have the potential to substantially lower the CO 2 emissions associated with the construction industry. However, these systems have augmented chemical compositions as compared to ordinary Portland cement (OPC), which may impact the evolution of the hydrate phases. In particular, calcium-silicate-hydrate (C-S-H) gel, the main hydrate phase in OPC, is likely to be altered at the atomic scale due to changes in the bulk chemical composition, specifically via the addition of alkalis (i.e., Na or K) and aluminum. Here, via density functional theory calculations, we reveal the presence of a charge balancing mechanism at the molecular level in C-S-H gel (as modeled using crystalline 14 Å tobermorite) when alkalis and aluminum atoms are introduced into the structure. Different structural representations are obtained depending on the level of substitution and the degree of charge balancing incorporated in the structures. The impact of these substitutional and charge balancing effects on the structures is assessed by analyzing the formation energies, local bonding environments, diffusion barriers and mechanical properties. The results of this computational study provide information on the phase stability of alkali/aluminum containing C-S-H gels, shedding light on the fundamental atomic level mechanisms that play a crucial role in these complex disordered materials.
Convergence of the strong-potential-Born approximation in Z/sub less-than//Z/sub greater-than/
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuire, J.H.; Sil, N.C.
1986-01-01
Convergence of the strong-potential Born (SPB) approximation as a function of the charges of the projectile and target is studied numerically. Time-reversal invariance (or detailed balance) is satisfied at sufficiently high velocities even when the charges are asymmetric. This demonstarates that the SPB approximation converges to the correct result even when the charge of the ''weak'' potential, which is kept to first order, is larger than the charge of the ''strong'' potential, which is retained to all orders. Consequently, the SPB approximation is valid for systems of arbitrary charge symmetry (including symmetric systems) at sufficiently high velocities.
NASA Astrophysics Data System (ADS)
Han, Deming; Gong, Ping; Lv, Shuhui; Zhao, Lihui; Zhao, Henan
2018-05-01
The photophysical properties of four Ir(III) complexes have been investigated by means of the density functional theory/time-dependent density functional theory (DFT/TDDFT). The effect of the electron-withdrawing and electron-donating substituents on charge injection, transport, absorption and phosphorescent properties has been studied. The theoretical calculation shows that the lowest-lying singlet absorptions for complexes 1-4 are located at 387, 385, 418 and 386 nm, respectively. For 1-4, the phosphorescence at 465, 485, 494 and 478 nm is mainly attributed to the LUMO → HOMO and LUMO → HOMO-1 transition configurations characteristics. In addition, ionisation potential (IP), electron affinities (EAs) and reorganisation energy have been investigated to evaluate the charge transfer and balance properties between hole and electron. The balance of the reorganisation energies for complex 3 is better than others. The difference between hole transport and electron transport for complex 3 is the smallest among these complexes, which is beneficial to achieve the hole and electron transfer balance in emitting layer.
Vitrac, Heidi; Bogdanov, Mikhail; Heacock, Phil; Dowhan, William
2011-04-29
The N-terminal six-transmembrane domain (TM) bundle of lactose permease of Escherichia coli is uniformly inverted when assembled in membranes lacking phosphatidylethanolamine (PE). Inversion is dependent on the net charge of cytoplasmically exposed protein domains containing positive and negative residues, net charge of the membrane surface, and low hydrophobicity of TM VII acting as a molecular hinge between the two halves of lactose permease (Bogdanov, M., Xie, J., Heacock, P., and Dowhan, W. (2008) J. Cell Biol. 182, 925-935). Net neutral lipids suppress the membrane translocation potential of negatively charged amino acids, thus increasing the cytoplasmic retention potential of positively charged amino acids. Herein, TM organization of sucrose permease (CscB) and phenylalanine permease (PheP) as a function of membrane lipid composition was investigated to extend these principles to other proteins. For CscB, topological dependence on PE only becomes evident after a significant increase in the net negative charge of the cytoplasmic surface of the N-terminal TM bundle. High negative charge is required to overcome the thermodynamic block to inversion due to the high hydrophobicity of TM VII. Increasing the positive charge of the cytoplasmic surface of the N-terminal TM hairpin of PheP, which is misoriented in PE-lacking cells, favors native orientation in the absence of PE. PheP and CscB also display co-existing dual topologies dependent on changes in the charge balance between protein domains and the membrane lipids. Therefore, the topology of both permeases is dependent on PE. However, CscB topology is governed by thermodynamic balance between opposing lipid-dependent electrostatic and hydrophobic interactions.
Electrical neurostimulation with imbalanced waveform mitigates dissolution of platinum electrodes
Kumsa, Doe; Hudak, Eric M; Montague, Fred W; Kelley, Shawn C; Untereker, Darrel F; Hahn, Benjamin P; Condit, Chris; Cholette, Martin; Lee, Hyowon; Bardot, Dawn; Takmakov, Pavel
2017-01-01
Objective Electrical neurostimulation has traditionally been limited to the use of charge-balanced waveforms. Charge-imbalanced and monophasic waveforms are not used to deliver clinical therapy, because it is believed that these stimulation paradigms may generate noxious electrochemical species that cause tissue damage. Approach In this study, we investigated the dissolution of platinum as one of such irreversible reactions over a range of charge densities up to 160 µC cm−2 with current-controlled first phase, capacitive discharge second phase waveforms of both cathodic-first and anodic-first polarity. We monitored the concentration of platinum in solution under different stimulation delivery conditions including charge-balanced, charge-imbalanced, and monophasic pulses. Main results We observed that platinum dissolution decreased during charge-imbalanced and monophasic stimulation when compared to charge-balanced waveforms. Significance This observation provides an opportunity to re-evaluate the charge-balanced waveform as the primary option for sustainable neural stimulation. PMID:27650936
Review of Variable Generation Integration Charges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, K.; Fink, S.; Buckley, M.
2013-03-01
The growth of wind and solar generation in the United States, and the expectation of continued growth of these technologies, dictates that the future power system will be operated in a somewhat different manner because of increased variability and uncertainty. A small number of balancing authorities have attempted to determine an 'integration cost' to account for these changes to their current operating practices. Some balancing authorities directly charge wind and solar generators for integration charges, whereas others add integration charges to projected costs of wind and solar in integrated resource plans or in competitive solicitations for generation. This report reviewsmore » the balancing authorities that have calculated variable generation integration charges and broadly compares and contrasts the methodologies they used to determine their specific integration charges. The report also profiles each balancing authority and how they derived wind and solar integration charges.« less
Green's function enriched Poisson solver for electrostatics in many-particle systems
NASA Astrophysics Data System (ADS)
Sutmann, Godehard
2016-06-01
A highly accurate method is presented for the construction of the charge density for the solution of the Poisson equation in particle simulations. The method is based on an operator adjusted source term which can be shown to produce exact results up to numerical precision in the case of a large support of the charge distribution, therefore compensating the discretization error of finite difference schemes. This is achieved by balancing an exact representation of the known Green's function of regularized electrostatic problem with a discretized representation of the Laplace operator. It is shown that the exact calculation of the potential is possible independent of the order of the finite difference scheme but the computational efficiency for higher order methods is found to be superior due to a faster convergence to the exact result as a function of the charge support.
Blunt, Nick S.; Neuscamman, Eric
2017-11-16
We present a simple and efficient wave function ansatz for the treatment of excited charge-transfer states in real-space quantum Monte Carlo methods. Using the recently-introduced variation-after-response method, this ansatz allows a crucial orbital optimization step to be performed beyond a configuration interaction singles expansion, while only requiring calculation of two Slater determinant objects. As a result, we demonstrate this ansatz for the illustrative example of the stretched LiF molecule, for a range of excited states of formaldehyde, and finally for the more challenging ethylene-tetrafluoroethylene molecule.
Electron density modification in ionospheric E layer by inserting fine dust particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misra, Shikha, E-mail: shikhamish@gmail.com; Mishra, S. K.
2015-02-15
In this paper, we have developed the kinetics of E-region ionospheric plasma comprising of fine dust grains and shown that the electron density in E-layer can purposely be reduced/enhanced up to desired level by inserting fine dust particles of appropriate physical/material properties; this may certainly be promising for preferred rf-signal processing through these layers. The analytical formulation is based on average charge theory and includes the number and energy balance of the plasma constituents along with charge balance over dust particles. The effect of varying number density, work function, and photo-efficiency of dust particles on ionospheric plasma density at differentmore » altitude in E-layer has been critically examined and presented graphically.« less
Zakim, D; Eibl, H
1992-07-05
Studies of the mechanism of lipid-induced regulation of the microsomal enzyme UDP-glucuronosyltransferase have been extended by examining the influence of charge within the polar region on the ability of lipids to activate delipidated pure enzyme. The effects of net negative charge, of charge separation in phosphocholine, and of the distribution of charge in the polar region of lipids were studied using the GT2p isoform isolated from pig liver. Prior experiments have shown that lipids with net negative charge inhibit the enzyme (Zakim, D., Cantor, M., and Eibl, H. (1988) J. Biol. Chem. 263, 5164-5169). The current experiments show that the extent of inhibition on a molar basis increases as the net negative charge increases from -1 to -2. The inhibitory effect of negatively charged lipids is on the functional state of the enzyme and is not due to electrostatic repulsion of negatively charged substrates of the enzyme. Although the inhibitory effect of net negative charge is removed when negative charge is balanced by a positive charge due to a quaternary nitrogen, neutrality of the polar region is not a sufficient condition for activation of the enzyme. In addition to a balance of charge between Pi and the quaternary nitrogen, the distance between the negative and positive charges and the orientation of the dipole created by them are critical for activation of GT2p. The negative and positive charges must be separated by the equivalent of three -CH2- groups for optimal activation by a lipid. Shortening this distance by one -CH2- unit leads to a lipid that is ineffective in activating the enzyme. Reversal of the orientation of the dipole in which the negative charge is on the polymethylene side of the lipid-water interface and the positive charge extends into water also produces a lipid that is not effective for activating GT2p. On the other hand, lipids with phosphoserine as the polar region, which has the "normal" P-N distance but carries a net negative charge, do not inhibit GT2p. This result again illustrates the importance of the dipole of phosphocholine for modulating the functional state of GT2p.
Modular Battery Charge Controller
NASA Technical Reports Server (NTRS)
Button, Robert; Gonzalez, Marcelo
2009-01-01
A new approach to masterless, distributed, digital-charge control for batteries requiring charge control has been developed and implemented. This approach is required in battery chemistries that need cell-level charge control for safety and is characterized by the use of one controller per cell, resulting in redundant sensors for critical components, such as voltage, temperature, and current. The charge controllers in a given battery interact in a masterless fashion for the purpose of cell balancing, charge control, and state-of-charge estimation. This makes the battery system invariably fault-tolerant. The solution to the single-fault failure, due to the use of a single charge controller (CC), was solved by implementing one CC per cell and linking them via an isolated communication bus [e.g., controller area network (CAN)] in a masterless fashion so that the failure of one or more CCs will not impact the remaining functional CCs. Each micro-controller-based CC digitizes the cell voltage (V(sub cell)), two cell temperatures, and the voltage across the switch (V); the latter variable is used in conjunction with V(sub cell) to estimate the bypass current for a given bypass resistor. Furthermore, CC1 digitizes the battery current (I1) and battery voltage (V(sub batt) and CC5 digitizes a second battery current (I2). As a result, redundant readings are taken for temperature, battery current, and battery voltage through the summation of the individual cell voltages given that each CC knows the voltage of the other cells. For the purpose of cell balancing, each CC periodically and independently transmits its cell voltage and stores the received cell voltage of the other cells in an array. The position in the array depends on the identifier (ID) of the transmitting CC. After eight cell voltage receptions, the array is checked to see if one or more cells did not transmit. If one or more transmissions are missing, the missing cell(s) is (are) eliminated from cell-balancing calculations. The cell-balancing algorithm is based on the error between the cell s voltage and the other cells and is categorized into four zones of operation. The algorithm is executed every second and, if cell balancing is activated, the error variable is set to a negative low value. The largest error between the cell and the other cells is found and the zone of operation determined. If the error is zero or negative, then the cell is at the lowest voltage and no balancing action is needed. If the error is less than a predetermined negative value, a Cell Bad Flag is set. If the error is positive, then cell balancing is needed, but a hysteretic zone is added to prevent the bypass circuit from triggering repeatedly near zero error. This approach keeps the cells within a predetermined voltage range.
Choo, Daniel I; Tawfik, Kareem O; Martin, Donna M; Raphael, Yehoash
2017-12-01
The inner ear contains the sensory organs for hearing and balance. Both hearing and balance are commonly affected in individuals with CHARGE syndrome (CS), an autosomal dominant condition caused by heterozygous pathogenic variants in the CHD7 gene. Semicircular canal dysplasia or aplasia is the single most prevalent feature in individuals with CHARGE leading to deficient gross motor skills and ambulation. Identification of CHD7 as the major gene affected in CHARGE has enabled acceleration of research in this field. Great progress has been made in understanding the role of CHD7 in the development and function of the inner ear, as well as in related organs such as the middle ear and auditory and vestibular neural pathways. The goals of current research on CHD7 and CS are to (a) improve our understanding of the pathology caused by CHD7 pathogenic variants and (b) to provide better tools for prognosis and treatment. Current studies utilize cells and whole animals, from flies to mammals. The mouse is an excellent model for exploring mechanisms of Chd7 function in the ear, given the evolutionary conservation of ear structure, function, Chd7 expression, and similarity of mutant phenotypes between mice and humans. Newly recognized developmental functions for mouse Chd7 are shedding light on how abnormalities in CHD7 might lead to CS symptoms in humans. Here we review known human inner ear phenotypes associated with CHD7 pathogenic variants and CS, summarize progress toward diagnosis and treatment of inner ear-related pathologies, and explore new avenues for treatment based on basic science discoveries. © 2017 Wiley Periodicals, Inc.
12 CFR 226.6 - Account-opening disclosures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... compute the finance charge, the range of balances to which it is applicable,11 and the corresponding... required to adjust the range of balances disclosure to reflect the balance below which only a minimum... balance on which the finance charge may be computed. (iv) An explanation of how the amount of any finance...
Battery Cell Balancing Optimisation for Battery Management System
NASA Astrophysics Data System (ADS)
Yusof, M. S.; Toha, S. F.; Kamisan, N. A.; Hashim, N. N. W. N.; Abdullah, M. A.
2017-03-01
Battery cell balancing in every electrical component such as home electronic equipment and electric vehicle is very important to extend battery run time which is simplified known as battery life. The underlying solution to equalize the balance of cell voltage and SOC between the cells when they are in complete charge. In order to control and extend the battery life, the battery cell balancing is design and manipulated in such way as well as shorten the charging process. Active and passive cell balancing strategies as a unique hallmark enables the balancing of the battery with the excellent performances configuration so that the charging process will be faster. The experimental and simulation covers an analysis of how fast the battery can balance for certain time. The simulation based analysis is conducted to certify the use of optimisation in active or passive cell balancing to extend battery life for long periods of time.
NASA Astrophysics Data System (ADS)
Ozcelik, Ongun; White, Claire
Alkali-activated materials which have augmented chemical compositions as compared to ordinary Portland cement are sustainable technologies that have the potential to lower CO2 emissions associated with the construction industry. In particular, calcium-silicate-hydrate (C-S-H) gel is altered at the atomic scale due to changes in its chemical composition. Here, based on first-principles calculations, we predict a charge balancing mechanism at the molecular level in C-S-H gels when alkali atoms are introduced into their structure. This charge balancing process is responsible for the formation of novel structures which possess superior mechanical properties compared to their charge unbalanced counterparts. Different structural representations are obtained depending on the level of substitution and the degree of charge balancing incorporated in the structures. The impact of these charge balancing effects on the structures is assessed by analyzing their formation energies, local bonding environments, diffusion barriers and mechanical properties. These results provide information on the phase stability of alkali/aluminum containing C-S-H gels, shedding light on the fundamental mechanisms that play a crucial role in these complex disordered materials. We acknowledge funding from the Princeton Center for Complex Materials, a MRSEC supported by NSF.
Unudurthi, Sathya D.; Wolf, Roseanne M.; Hund, Thomas J.
2014-01-01
Normal heart rhythm (sinus rhythm) depends on regular activity of the sinoatrial node (SAN), a heterogeneous collection of specialized myocytes in the right atrium. SAN cells, in general, possess a unique electrophysiological profile that promotes spontaneous electrical activity (automaticity). However, while automaticity is required for normal pacemaking, it is not necessarily sufficient. Less appreciated is the importance of the elaborate structure of the SAN complex for proper pacemaker function. Here, we review the important structural features of the SAN with a focus on how these elements help manage a precarious balance between electrical charge generated by the SAN (“source”) and the charge needed to excite the surrounding atrial tissue (“sink”). We also discuss how compromised “source-sink” balance due, for example to fibrosis, may promote SAN dysfunction, characterized by slow and/or asynchronous pacemaker activity and even failure, in the setting of cardiovascular disease (e.g., heart failure, atrial fibrillation). Finally, we discuss implications of the “source-sink” balance in the SAN complex for cell and gene therapies aimed at creating a biological pacemaker as replacement or bridge to conventional electronic pacemakers. PMID:25505419
17 CFR 240.10b-16 - Disclosure of credit terms in margin transactions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, SECURITIES EXCHANGE ACT OF 1934 Rules and... determining the debit balance or balances on which interest is to be charged and whether credit is to be given for credit balances in cash accounts; (vi) what other charges resulting from the extension of credit...
Spacecraft Charging Current Balance Model Applied to High Voltage Solar Array Operations
NASA Technical Reports Server (NTRS)
Willis, Emily M.; Pour, Maria Z. A.
2016-01-01
Spacecraft charging induced by high voltage solar arrays can result in power losses and degradation of spacecraft surfaces. In some cases, it can even present safety issues for astronauts performing extravehicular activities. An understanding of the dominant processes contributing to spacecraft charging induced by solar arrays is important to current space missions, such as the International Space Station, and to any future space missions that may employ high voltage solar arrays. A common method of analyzing the factors contributing to spacecraft charging is the current balance model. Current balance models are based on the simple idea that the spacecraft will float to a potential such that the current collecting to the surfaces equals the current lost from the surfaces. However, when solar arrays are involved, these currents are dependent on so many factors that the equation becomes quite complicated. In order for a current balance model to be applied to solar array operations, it must incorporate the time dependent nature of the charging of dielectric surfaces in the vicinity of conductors1-3. This poster will present the factors which must be considered when developing a current balance model for high voltage solar array operations and will compare results of a current balance model with data from the Floating Potential Measurement Unit4 on board the International Space Station.
2011-01-01
Supporting functional molecules on crystal facets is an established technique in nanotechnology. To preserve the original activity of ionic metallorganic agents on a supporting template, conservation of the charge and oxidation state of the active center is indispensable. We present a model system of a metallorganic agent that, indeed, fulfills this design criterion on a technologically relevant metal support with potential impact on Au(III)-porphyrin-functionalized nanoparticles for an improved anticancer-drug delivery. Employing scanning tunneling microscopy and -spectroscopy in combination with photoemission spectroscopy, we clarify at the single-molecule level the underlying mechanisms of this exceptional adsorption mode. It is based on the balance between a high-energy oxidation state and an electrostatic screening-response of the surface (image charge). Modeling with first principles methods reveals submolecular details of the metal–ligand bonding interaction and completes the study by providing an illustrative electrostatic model relevant for ionic metalorganic agent molecules, in general. PMID:21736315
Insulator charging limits direct current across tunneling metal-insulator-semiconductor junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilan, Ayelet
Molecular electronics studies how the molecular nature affects the probability of charge carriers to tunnel through the molecules. Nevertheless, transport is also critically affected by the contacts to the molecules, an aspect that is often overlooked. Specifically, the limited ability of non-metallic contacts to maintain the required charge balance across the fairly insulating molecule often have dramatic effects. This paper shows that in the case of lead/organic monolayer-silicon junctions, a charge balance is responsible for an unusual current scaling, with the junction diameter (perimeter), rather than its area. This is attributed to the balance between the 2D charging at themore » metal/insulator interface and the 3D charging of the semiconductor space-charge region. A derivative method is developed to quantify transport across tunneling metal-insulator-semiconductor junctions; this enables separating the tunneling barrier from the space-charge barrier for a given current-voltage curve, without complementary measurements. The paper provides practical tools to analyze specific molecular junctions compatible with existing silicon technology, and demonstrates the importance of contacts' physics in modeling charge transport across molecular junctions.« less
7 CFR 3016.23 - Period of availability of funds.
Code of Federal Regulations, 2010 CFR
2010-01-01
... of availability of funds. (a) General. Where a funding period is specified, a grantee may charge to... balances is permitted, in which case the carryover balances may be charged for costs resulting from...
24 CFR 85.23 - Period of availability of funds.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Period of availability of funds. (a) General. Where a funding period is specified, a grantee may charge... unobligated balances is permitted, in which case the carryover balances may be charged for costs resulting...
Wu, Dongni; Zhang, Shuangying; Zhao, Yuyuan; Ao, Ningjian; Ramakrishna, Seeram; He, Liumin
2018-03-16
RADA16-I (Ac-(RADA) 4 -CONH 2 ) is a widely investigated self-assembling peptide (SAP) in the biomedical field. It can undergo ordered self-assembly to form stable secondary structures, thereby further forming a nanofiber hydrogel. The modification of RADA16-I with functional peptide motifs has become a popular research topic. Researchers aim to exhibit particular biomedical signaling, and subsequently, further expand its applications. However, only a few fundamental reports are available on the influences of the peptide motifs on self-assembly mechanisms of designer functional RADA16-I SAPs. In this study, we designed RGD-modified RADA16-I SAPs with a series of net charges and amphiphilicities. The assembly/reassembly of these functionally designer SAPs was thoroughly studied using Raman spectroscopy, CD spectroscopy, and AFM. The nanofiber morphology and the secondary structure largely depended on the balance between the hydrophobic effects versus like-charge repulsions of the motifs, which should be to the focus in order to achieve a tailored nanostructure. Our study would contribute insight into considerations for sophisticated design of SAPs for biomedical applications.
NASA Astrophysics Data System (ADS)
Pan, Jinjin; Alice Collaboration
2017-09-01
The charge pair creation and transport processes in heavy-ion collisions are investigated experimentally by measurements of charge-dependent correlations of identified particle pairs, related to the Balance Function. The produced pair separation in rapidity is expected to be larger for hadrons arising from quark-antiquark pair creation in the early stages of the collision than for hadrons emerging from the later hadronization stage. Correlations are reported for charged-pion pairs in Pb-Pb, p-Pb and pp collisions at √{sNN } = 2.76, 5.02 and 7 TeV, respectively; and for charged-kaon pairs in Pb-Pb collisions at √{sNN } = 2.76 TeV. The correlations are measured as a function of relative rapidity Δy and azimuthal angle Δϕ , and are dominated by a peak centered at Δy = Δϕ = 0. We observe that the peak widths in Δy and Δϕ are narrower in higher multiplicity events in Pb-Pb, p-Pb, and pp collisions, which is consistent with the effects of radial flow, as well as the two-wave quark production mechanism. We investigate the charge transport and system evolution further by studying the Δϕ width of the peak as a function of Δy. Funded by the US Department of Energy.
The Role of Hydrophobicity in the Cellular Uptake of Negatively Charged Macromolecules.
Abou Matar, Tamara; Karam, Pierre
2018-02-01
It is generally accepted that positively charged molecules are the gold standard to by-pass the negatively charged cell membrane. Here, it is shown that cellular uptake is also possible for polymers with negatively charged side chains and hydrophobic backbones. Specifically, poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene], a conjugated polyelectrolyte with sulfonate, as water-soluble functional groups, is shown to accumulate in the intracellular region. When the polymer hydrophobic backbone is dissolved using polyvinylpyrrolidone, an amphiphilic macromolecule, the cellular uptake is dramatically reduced. The report sheds light on the fine balance between negatively charged side groups and the hydrophobicity of polymers to either enhance or reduce cellular uptake. As a result, these findings will have important ramifications on the future design of targeted cellular delivery nanocarriers for imaging and therapeutic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Configurational Heat Capacity of Na- and Ca-bearing Aluminosilicate Melts
NASA Astrophysics Data System (ADS)
Webb, S. L.
2006-12-01
The Na2O-Al2O3-SiO2 and CaO-Al2O3-SiO2 systems are used as analogs for the more complex natural magmatic systems of the Earth in studies of the physical properties, structure and flow mechanisms of silicate melts. Although the description of flow in binary alkali-silicate melts is clear; that for multi-oxide compositions quickly becomes very complex. The addition of aluminium to melts creates the need for a charge-balancing cation for the tetrahedrally co-ordinated Al3+. With the presence of both mono- and di-valent ions there are questions about which atom is preferred as the charge balancer and which will create non-bridging oxygens. This study addresses the structure of peraluminous and peralkaline/metaluminous Na2O-CaO-Al2O3-SiO2 melts and the change in structure with composition via determination of their shear viscosity and heat capacity. Viscosity has been determined using the micropenetration technique and the heat capacity and configurational heat capacity have been determined by differential scanning calorimetry. While the viscosity of these melts indicates structural changes at the condition where there are no longer enough Na+ or Ca2+ to charge balance all of the Al3+ in tetrahedral co-ordination, it is the heat capacity data which provides more information about the energy required for flow to occur in the melts as the structure changes due to changing composition. The configurational heat capacity can be determined from the difference between the liquid (cpl) and the glass (cpg) heat capacity at the glass transition temperature. To a first approximation cpg can be calculated from a linear summation of the cps of the oxide components. Similarly, if there are no anomalous changes in melt structure upon heating through Tg, the cpl will be a linear sum of the contributions of the component oxides. Configurational entropy Sconf(Tg) has been calculated from the viscosity data using the Adam-Gibbs equation for viscosity as a function of configurational entropy and temperature. In addition to the change in structure implied from changes in the trends of the viscosity and heat capacity data when there are no longer enough charge balancers for all of the Al3+ in tetrahedral co-ordination, there also appears to be a change in structure at the composition where there are no longer enough Ca2+ in the melt that each Al3+ tetrahedron has its own charge balancer that is the composition at which pairs of Al3+ tetrahedra must share a Ca2+ as charge balancer.
NASA Astrophysics Data System (ADS)
Sun, Jiawei; Li, Xianfeng; Xi, Xiaoli; Lai, Qinzhi; Liu, Tao; Zhang, Huamin
2014-12-01
The transfer behavior of different ions (V2+, V3+, VO2+, VO2+, H+, SO42-) across ion exchange membranes is investigated under vanadium flow battery (VFB) operating condition. VX-20 anion exchange membrane (AEM) and Nafion 115 cation exchange membrane (CEM) are selected to investigate the influence of fixed charged groups on the transfer behavior of different ions. The interaction between different ions and water is discussed in detail aiming to ascertain the variation of different ions in the charge-discharge process. Under the VFB medium, the transfer behavior and function of different ions are very different for the AEM and CEM. V2+ ions at the negative side accumulate when VFB is assembled with Nafion 115, while the VO2+ ions at the positive side accumulate for VX-20. The SO42- ions will transfer across Nafion 115 to balance the charges and the protons can balance the charges of VX-20. Finally the capacity fade mechanism of different membranes is investigated, showing that the capacity decay of VFB assembled with Nafion 115 mainly results from the cross mix of vanadium ions across the membrane, however, for VX-20, the side reactions can be the major reason. This paper provides important information about electrolyte for the application of VFB.
Datta-Mannan, Amita; Thangaraju, Arunkumar; Leung, Donmienne; Tang, Ying; Witcher, Derrick R; Lu, Jirong; Wroblewski, Victor J
2015-01-01
Lowering the isoelectric point (pI) through engineering the variable region or framework of an IgG can improve its exposure and half-life via a reduction in clearance mediated through non-specific interactions. As such, net charge is a potentially important property to consider in developing therapeutic IgG molecules having favorable pharmaceutical characteristics. Frequently, it may not be possible to shift the pI of monoclonal antibodies (mAbs) dramatically without the introduction of other liabilities such as increased off-target interactions or reduced on-target binding properties. In this report, we explored the influence of more subtle modifications of molecular charge on the in vivo properties of an IgG1 and IgG4 monoclonal antibody. Molecular surface modeling was used to direct residue substitutions in the complementarity-determining regions (CDRs) to disrupt positive charge patch regions, resulting in a reduction in net positive charge without affecting the overall pI of the mAbs. The effect of balancing the net positive charge on non-specific binding was more significant for the IgG4 versus the IgG1 molecule that we examined. This differential effect was connected to the degree of influence on cellular degradation in vitro and in vivo clearance, distribution and metabolism in mice. In the more extreme case of the IgG4, balancing the charge yielded an ∼7-fold improvement in peripheral exposure, as well as significantly reduced tissue catabolism and subsequent excretion of proteolyzed products in urine. Balancing charge on the IgG1 molecule had a more subtle influence on non-specific binding and yielded only a modest alteration in clearance, distribution and elimination. These results suggest that balancing CDR charge without affecting the pI can lead to improved mAb pharmacokinetics, the magnitude of which is likely dependent on the relative influence of charge imbalance and other factors affecting the molecule's disposition.
Datta-Mannan, Amita; Thangaraju, Arunkumar; Leung, Donmienne; Tang, Ying; Witcher, Derrick R; Lu, Jirong; Wroblewski, Victor J
2015-01-01
Lowering the isoelectric point (pI) through engineering the variable region or framework of an IgG can improve its exposure and half-life via a reduction in clearance mediated through non-specific interactions. As such, net charge is a potentially important property to consider in developing therapeutic IgG molecules having favorable pharmaceutical characteristics. Frequently, it may not be possible to shift the pI of monoclonal antibodies (mAbs) dramatically without the introduction of other liabilities such as increased off-target interactions or reduced on-target binding properties. In this report, we explored the influence of more subtle modifications of molecular charge on the in vivo properties of an IgG1 and IgG4 monoclonal antibody. Molecular surface modeling was used to direct residue substitutions in the complementarity-determining regions (CDRs) to disrupt positive charge patch regions, resulting in a reduction in net positive charge without affecting the overall pI of the mAbs. The effect of balancing the net positive charge on non-specific binding was more significant for the IgG4 versus the IgG1 molecule that we examined. This differential effect was connected to the degree of influence on cellular degradation in vitro and in vivo clearance, distribution and metabolism in mice. In the more extreme case of the IgG4, balancing the charge yielded an ∼7-fold improvement in peripheral exposure, as well as significantly reduced tissue catabolism and subsequent excretion of proteolyzed products in urine. Balancing charge on the IgG1 molecule had a more subtle influence on non-specific binding and yielded only a modest alteration in clearance, distribution and elimination. These results suggest that balancing CDR charge without affecting the pI can lead to improved mAb pharmacokinetics, the magnitude of which is likely dependent on the relative influence of charge imbalance and other factors affecting the molecule's disposition. PMID:25695748
Barter, Laura M. C.; Durrant, James R.; Klug, David R.
2003-01-01
Light-induced charge separation is the primary photochemical event of photosynthesis. Efficient charge separation in photosynthetic reaction centers requires the balancing of electron and excitation energy transfer processes, and in Photosystem II (PSII), these processes are particularly closely entangled. Calculations that treat the cofactors of the PSII reaction center as a supermolecular complex allow energy and electron transfer reactions to be described in a unified way. This calculational approach is shown to be in good agreement with experimentally observed energy and electron transfer dynamics. This supermolecular view also correctly predicts the effect of changing the redox potentials of cofactors by site-directed mutagenesis, thus providing a unified and quantitative structure–function relationship for the PSII reaction center. PMID:12538865
Charging and coagulation of radioactive and nonradioactive particles in the atmosphere
Kim, Yong-ha; Yiacoumi, Sotira; Nenes, Athanasios; ...
2016-01-01
Charging and coagulation influence one another and impact the particle charge and size distributions in the atmosphere. However, few investigations to date have focused on the coagulation kinetics of atmospheric particles accumulating charge. This study presents three approaches to include mutual effects of charging and coagulation on the microphysical evolution of atmospheric particles such as radioactive particles. The first approach employs ion balance, charge balance, and a bivariate population balance model (PBM) to comprehensively calculate both charge accumulation and coagulation rates of particles. The second approach involves a much simpler description of charging, and uses a monovariate PBM and subsequentmore » effects of charge on particle coagulation. The third approach is further simplified assuming that particles instantaneously reach their steady-state charge distributions. It is found that compared to the other two approaches, the first approach can accurately predict time-dependent changes in the size and charge distributions of particles over a wide size range covering from the free molecule to continuum regimes. The other two approaches can reliably predict both charge accumulation and coagulation rates for particles larger than about 0.04 micrometers and atmospherically relevant conditions. These approaches are applied to investigate coagulation kinetics of particles accumulating charge in a radioactive neutralizer, the urban atmosphere, and an atmospheric system containing radioactive particles. Limitations of the approaches are discussed.« less
F4TCNQ on Cu, Ag, and Au as prototypical example for a strong organic acceptor on coinage metals
NASA Astrophysics Data System (ADS)
Rangger, Gerold M.; Hofmann, Oliver T.; Romaner, Lorenz; Heimel, Georg; Bröker, Benjamin; Blum, Ralf-Peter; Johnson, Robert L.; Koch, Norbert; Zojer, Egbert
2009-04-01
Metal work-function modification with the help of organic acceptors is an efficient tool to significantly enhance the performance of modern state-of-the-art organic molecular electronic devices. Here, the prototypical organic acceptor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane, F4TCNQ, is characterized on Ag(111), Au(111), and Cu(111) metal surfaces by means of density-functional theory calculations. Particular attention is paid to charge-transfer processes at the metal-organic interface; a subtle balance between charge forward and backward donations in combination with a strong adsorption-induced geometry change are found to be responsible for the observed increase in the system work function. A larger effect is obtained for the metals with larger initial work function. Interestingly, this results in similar charge-injection barriers from the substrate metal into an organic semiconductor deposited on top of the F4TCNQ layer. The impact of the F4TCNQ packing density of the electronic properties of the interface is also addressed. Comparing the calculated energy-level alignments and work-function modifications to experimental data from ultraviolet photoelectron spectroscopy yields good agreement between experiments and simulations.
Self-balancing feature of Lithium-Sulfur batteries
NASA Astrophysics Data System (ADS)
Knap, Vaclav; Stroe, Daniel-Ioan; Christensen, Andreas E.; Propp, Karsten; Fotouhi, Abbas; Auger, Daniel J.; Schaltz, Erik; Teodorescu, Remus
2017-12-01
The Li-S batteries are a prospective battery technology, which despite to its currently remaining drawbacks offers useable performance and interesting features. The polysulfide shuttle mechanism, a characteristic phenomenon for the Li-S batteries, causes a significant self-discharge at higher state-of-charge (SOC) levels, which leads to the energy dissipation of cells with higher charge. In an operation of series-connected Li-S cells, the shuttle mechanism results into a self-balancing effect which is studied here. A model for prediction of the self-balancing effect is proposed in this work and it is validated by experiments. Our results confirm the self-balancing feature of Li-S cells and illustrate their dependence on various conditions such as temperature, charging limits and idling time at high SOC.
Tagliazucchi, Mario; de la Cruz, Mónica Olvera; Szleifer, Igal
2010-03-23
The competition between chemical equilibrium, for example protonation, and physical interactions determines the molecular organization and functionality of biological and synthetic systems. Charge regulation by displacement of acid-base equilibrium induced by changes in the local environment provides a feedback mechanism that controls the balance between electrostatic, van der Waals, steric interactions and molecular organization. Which strategies do responsive systems follow to globally optimize chemical equilibrium and physical interactions? We address this question by theoretically studying model layers of end-grafted polyacids. These layers spontaneously form self-assembled aggregates, presenting domains of controlled local pH and whose morphologies can be manipulated by the composition of the solution in contact with the film. Charge regulation stabilizes micellar domains over a wide range of pH by reducing the local charge in the aggregate at the cost of chemical free energy and gaining in hydrophobic interactions. This balance determines the boundaries between different aggregate morphologies. We show that a qualitatively new form of organization arises from the coupling between physical interactions and protonation equilibrium. This optimization strategy presents itself with polyelectrolytes coexisting in two different and well-defined protonation states. Our results underline the need of considering the coupling between chemical equilibrium and physical interactions due to their highly nonadditive behavior. The predictions provide guidelines for the creation of responsive polymer layers presenting self-organized patterns with functional properties and they give insights for the understanding of competing interactions in highly inhomogeneous and constrained environments such as those relevant in nanotechnology and those responsible for biological cells function.
Fan, Haijun; Zhang, Maojie; Guo, Xia; Li, Yongfang; Zhan, Xiaowei
2011-09-01
Understanding effect of morphology on charge carrier transport within polymer/fullerene bulk heterojunction is necessary to develop high-performance polymer solar cells. In this work, we synthesized a new benzodithiophene-based polymer with good self-organization behavior as well as favorable morphology evolution of its blend films with PC(71)BM under improved processing conditions. Charge carrier transport behavior of blend films was characterized by space charge limited current method. Evolved blend film morphology by controlling blend composition and additive content gradually reaches an optimized state, featured with nanoscale fibrilla polymer phase in moderate size and balanced mobility ratio close to 1:1 for hole and electron. This optimized morphology toward more balanced charge carrier transport accounts for the best power conversion efficiency of 3.2%, measured under simulated AM 1.5 solar irradiation 100 mW/cm(2), through enhancing short circuit current and reducing geminate recombination loss.
Luminescent tunable polydots: Charge effects in confined geometry
Wijesinghe, Sidath; Maskey, Sabina; Perahia, Dvora; ...
2017-06-28
Long-lived soft nanoparticles, formed by conjugated polymers, constitute a new class of far-from-equilibrium responsive structures for nano-medicine. Tethering ionizable groups to the polymers enables functionality. However concurrently, the ionic groups perturb the delicate balance of interactions that governs these particles. Using fully atomistic molecular dynamics simulations, this study probed the effects of charged groups tethered to poly para phenylene ethynylene substituted by alkyl groups on the polymer conformation and dynamics in confined geometry. As a result, we find that the ionizable groups affect the entire shape of the polydots and impact the conformation and dynamics of the polymer.
12 CFR 204.6 - Charges for reserve deficiencies.
Code of Federal Regulations, 2010 CFR
2010-01-01
.... (a) Deficiencies in a depository institution's required reserve balance, after application of the... authorized to assess charges for deficiencies in required reserves at a rate of 1 percentage point per year... involved, permit a depository institution to eliminate deficiencies in its required reserve balance by...
Hsu, Wen-Yang; Schmid, Alexandre
2017-08-01
Safety and energy efficiency are two major concerns for implantable neural stimulators. This paper presents a novel high-frequency, switched capacitor (HFSC) stimulation and active charge balancing scheme, which achieves high energy efficiency and well-controlled stimulation charge in the presence of large electrode impedance variations. Furthermore, the HFSC can be implemented in a compact size without any external component to simultaneously enable multichannel stimulation by deploying multiple stimulators. The theoretical analysis shows significant benefits over the constant-current and voltage-mode stimulation methods. The proposed solution was fabricated using a 0.18 μm high-voltage technology, and occupies only 0.035 mm 2 for a single stimulator. The measurement result shows 50% peak energy efficiency and confirms the effectiveness of active charge balancing to prevent the electrode dissolution.
Charge-Carrier Balance for Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells.
Chen, Ke; Hu, Qin; Liu, Tanghao; Zhao, Lichen; Luo, Deying; Wu, Jiang; Zhang, Yifei; Zhang, Wei; Liu, Feng; Russell, Thomas P; Zhu, Rui; Gong, Qihuang
2016-12-01
The charge-carrier balance strategy by interface engineering is employed to optimize the charge-carrier transport in inverted planar heterojunction perovskite solar cells. N,N-Dimethylformamide-treated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and poly(methyl methacrylate)-modified PCBM are utilized as the hole and electron selective contacts, respectively, leading to a high power conversion efficiency of 18.72%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaltak, Merzuk; Fernandez-Serra, Marivi; Hybertsen, Mark S.
The phases of A 2Mn 8O 16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3d electrons are more explicitly considered with the DFT + Umore » approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn 3+ centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Lastly, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.« less
Kaltak, Merzuk; Fernandez-Serra, Marivi; Hybertsen, Mark S.
2017-12-01
The phases of A 2Mn 8O 16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3d electrons are more explicitly considered with the DFT + Umore » approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn 3+ centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Lastly, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.« less
NASA Astrophysics Data System (ADS)
Kaltak, Merzuk; Fernández-Serra, Marivi; Hybertsen, Mark S.
2017-12-01
The phases of A2Mn8O16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3 d electrons are more explicitly considered with the DFT + U approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn3 + centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Finally, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.
29 CFR 97.23 - Period of availability of funds.
Code of Federal Regulations, 2010 CFR
2010-07-01
... availability of funds. (a) General. Where a funding period is specified, a grantee may charge to the award only costs resulting from obligations of the funding period unless carryover of unobligated balances is permitted, in which case the carryover balances may be charged for costs resulting from obligations of the...
43 CFR 12.63 - Period of availability of funds.
Code of Federal Regulations, 2010 CFR
2010-10-01
... of funds. (a) General. Where a funding period is specified, a grantee may charge to the award only costs resulting from obligations of the funding period unless carryover of unobligated balances is permitted, in which case the carryover balances may be charged for costs resulting from obligations of the...
Analysis of the internal temperature of the cells in a battery pack during SOC balancing
NASA Astrophysics Data System (ADS)
Mizanur, R.; Rashid, M. M.; Rahman, A.; Zahirul Alam, A. H. M.; Ihsan, S.; Mollik, M. S.
2017-03-01
Lithium-ion batteries are more suitable for the application of electric vehicle due to high energy and power density compared to other rechargeable batteries. However, the battery pack temperature has a great impact on the overall performance, cycle life, normal charging-discharging behaviour and even safety. During rapid charge transferring process, the internal temperature may exceed its allowable limit (460C). In this paper, an analysis of internal temperature during charge balancing and discharging conditions is presented. Specific interest is paid to the effects of temperature on the different rate of ambient temperature and discharging current. Matlab/Simulink Li-ion battery model and quasi-resonant converter base balancing system are used to study the temperature effect. Rising internal temperature depends on the rate of balancing current and ambient temperature found in the simulation results.
Simulation of demand management and grid balancing with electric vehicles
NASA Astrophysics Data System (ADS)
Druitt, James; Früh, Wolf-Gerrit
2012-10-01
This study investigates the potential role of electric vehicles in an electricity network with a high contribution from variable generation such as wind power. Electric vehicles are modelled to provide demand management through flexible charging requirements and energy balancing for the network. Balancing applications include both demand balancing and vehicle-to-grid discharging. This study is configured to represent the UK grid with balancing requirements derived from wind generation calculated from weather station wind speeds on the supply side and National Grid data from on the demand side. The simulation models 1000 individual vehicle entities to represent the behaviour of larger numbers of vehicles. A stochastic trip generation profile is used to generate realistic journey characteristics, whilst a market pricing model allows charging and balancing decisions to be based on realistic market price conditions. The simulation has been tested with wind generation capacities representing up to 30% of UK consumption. Results show significant improvements to load following conditions with the introduction of electric vehicles, suggesting that they could substantially facilitate the uptake of intermittent renewable generation. Electric vehicle owners would benefit from flexible charging and selling tariffs, with the majority of revenue derived from vehicle-to-grid participation in balancing markets.
Important parameters affecting the cell voltage of aqueous electrical double-layer capacitors
NASA Astrophysics Data System (ADS)
Wu, Tzu-Ho; Hsu, Chun-Tsung; Hu, Chi-Chang; Hardwick, Laurence J.
2013-11-01
This study discusses and demonstrates how the open-circuit potential and charges stored in the working potential window on positive and negative electrodes affect the cell voltage of carbon-based electrical double-layer capacitors (EDLCs) in aqueous electrolytes. An EDLC consisting of two activated carbon electrodes is employed as the model system for identifying these key parameters although the potential window of water decomposition can be simply determined by voltammetric methods. First, the capacitive performances of an EDLC with the same charge on positive and negative electrodes are evaluated by cyclic voltammetric, charge-discharge, electrochemical impedance spectroscopic (EIS) analyses, and inductance-capacitance-resistance meter (LCR meter). The principles for obtaining the highest acceptable cell voltage of such symmetric ECs with excellent reversibility and capacitor-like behaviour are proposed. Aqueous charge-balanced EDLCs can be operated as high as 2.0 V with high energy efficiency (about 90%) and only 4% capacitance loss after the 600-cycle stability checking. The necessity of charge balance (but not capacitance balance) for positive and negative electrodes is substantiated from the lower acceptable cell voltage of charge-unbalanced EDLCs.
NASA Astrophysics Data System (ADS)
Luque-Caballero, Germán; Martín-Molina, Alberto; Quesada-Pérez, Manuel
2014-05-01
Both experiments and theory have evidenced that multivalent cations can mediate the interaction between negatively charged polyelectrolytes and like-charged objects, such as anionic lipoplexes (DNA-cation-anionic liposome complexes). In this paper, we use Monte Carlo simulations to study the electrostatic interaction responsible for the trivalent-counterion-mediated adsorption of polyelectrolytes onto a like-charged planar surface. The evaluation of the Helmholtz free energy allows us to characterize both the magnitude and the range of the interaction as a function of the polyelectrolyte charge, surface charge density, [3:1] electrolyte concentration, and cation size. Both polyelectrolyte and surface charge favor the adsorption. It should be stressed, however, that the adsorption will be negligible if the surface charge density does not exceed a threshold value. The effect of the [3:1] electrolyte concentration has also been analyzed. In certain range of concentrations, the counterion-mediated attraction seems to be independent of this parameter, whereas very high concentrations of salt weaken the adsorption. If the trivalent cation diameter is doubled the adsorption moderates due to the excluded volume effects. The analysis of the integrated charge density and ionic distributions suggests that a delicate balance between charge inversion and screening effects governs the polyelectrolyte adsorption onto like-charged surfaces mediated by trivalent cations.
A Balanced Approach to Managing Student Meal Charges
ERIC Educational Resources Information Center
Frye, Lisa K.
2012-01-01
As with most things in life, managing student meal charges is all about balance. To be successful, the program needs to include a fair and reasonable policy, to serve nutritious and flavorful meals, and to include students as active stakeholders in the program. A plan that acknowledges simple forgetfulness, explains expectations of all…
Molecular layers of ZnPc and FePc on Au(111) surface: Charge transfer and chemical interaction
NASA Astrophysics Data System (ADS)
Ahmadi, Sareh; Shariati, M. Nina; Yu, Shun; Göthelid, Mats
2012-08-01
We have studied zinc phthalocyanine (ZnPc) and iron phthalocyanine (FePc) thick films and monolayers on Au(111) using photoelectron spectroscopy and x-ray absorption spectroscopy. Both molecules are adsorbed flat on the surface at monolayer. ZnPc keeps this orientation in all investigated coverages, whereas FePc molecules stand up in the thick film. The stronger inter-molecular interaction of FePc molecules leads to change of orientation, as well as higher conductivity in FePc layer in comparison with ZnPc, which is reflected in thickness-dependent differences in core-level shifts. Work function changes indicate that both molecules donate charge to Au; through the π-system. However, the Fe3d derived lowest unoccupied molecular orbital receives charge from the substrate when forming an interface state at the Fermi level. Thus, the central atom plays an important role in mediating the charge, but the charge transfer as a whole is a balance between the two different charge transfer channels; π-system and the central atom.
Su, Ting; Zhang, Haifeng
2017-01-01
Charge trapping properties of electrons and holes in copper-doped zinc oxide (ZnO:Cu) films have been studied by scanning probe microscopy. We investigated the surface potential dependence on the voltage and duration applied to the copper-doped ZnO films by Kelvin probe force microscopy. It is found that the Fermi Level of the 8 at.% Cu-doped ZnO films shifted by 0.53 eV comparing to undoped ZnO films. This shift indicates significant change in the electronic structure and energy balance in Cu-doped ZnO films. The Fermi Level (work function) of zinc oxide films can be tuned by Cu doping, which are important for developing this functional material. In addition, Kelvin probe force microscopy measurements demonstrate that the nature of contact at Pt-coated tip/ZnO:Cu interface is changed from Schottky contact to Ohmic contact by increasing sufficient amount of Cu ions. The charge trapping property of the ZnO films enhance greatly by Cu doping (~10 at.%). The improved stable bipolar charge trapping properties indicate that copper-doped ZnO films are promising for nonvolatile memory applications. PMID:28135335
Code of Federal Regulations, 2010 CFR
2010-10-01
... risk is borne by the contractor; that is, when the balance in the Employees' Life Insurance Fund is no... charge; or unless the Fund balance falls below the level defined in 2115.404-70(a) and 30 days' notice of... BY NEGOTIATION Contract Pricing 2115.404-70 Profit. (a) Risk charge. (1) Section 8711(d) of title 5...
NASA Astrophysics Data System (ADS)
Protsenko, Dimitry E.; Lim, Amanda; Wu, Edward C.; Manuel, Cyrus; Wong, Brian J. F.
2011-03-01
Electromechanical reshaping (EMR) of cartilage has been suggested as an alternative to the classical surgical techniques of modifying the shape of facial cartilages. The method is based on exposure of mechanically deformed cartilaginous tissue to a low level electric field. Electro-chemical reactions within the tissue lead to reduction of internal stress, and establishment of a new equilibrium shape. The same reactions offset the electric charge balance between collagen and proteoglycan matrix and interstitial fluid responsible for maintenance of cartilage mechanical properties. The objective of this study was to investigate correlation between the electric charge transferred during EMR and equilibrium elastic modulus. We used a finite element model based on the triphasic theory of cartilage mechanical properties to study how electric charges transferred in the electro-chemical reactions in cartilage can change its mechanical responses to step displacements in unconfined compression. The concentrations of the ions, the strain field and the fluid and ion velocities within the specimen subject to an applied mechanical deformation were estimated and apparent elastic modulus (the ratio of the equilibrium axial stress to the axial strain) was calculated as a function of transferred charge. The results from numerical calculations showed that the apparent elastic modulus decreases with increase in electric charge transfer. To compare numerical model with experimental observation we measured elastic modulus of cartilage as a function of electric charge transferred in electric circuit during EMR. Good correlation between experimental and theoretical data suggests that electric charge disbalance is responsible for alteration of cartilage mechanical properties.
Kumsa, Doe W; Montague, Fred W; Hudak, Eric M; Mortimer, J Thomas
2016-10-01
The application of a train of cathodic-first/charge-balanced/biphasic pulses applied to a platinum electrode resulted in a positive creep of the anodic phase potential that increases with increasing charge injection but reaches a steady-state value before 1000 pulses have been delivered. The increase follows from the fact that charge going into irreversible reactions occurring during the anodic phase must equal the charge going into irreversible reactions during the cathodic phase for charge-balanced pulses. In an oxygenated electrolyte the drift of the measured positive potential moved into the platinum oxidation region of the i(V e) profile when the charge injection level exceeds k = 1.75. Platinum dissolution may occur in this region and k = 1.75 defines a boundary between damaging and non-damaging levels on the Shannon Plot. In a very low oxygen environment, the positive potential remained below the platinum oxidation region for the highest charge injection values studied, k = 2.3. The results support the hypothesis that platinum dissolution is the defining factor for the Shannon limit, k = 1.75. Numerous instrumentation issues were encountered in the course of making measurements. The solutions to these issues are provided.
The effect of surface conditions on the work function of insulators and semiconductors
NASA Technical Reports Server (NTRS)
George, A.
1973-01-01
Ionization energies of organic semiconductors were determined using single crystals of the material. The theory of the method is essentially that of Millikan's oil drop experiment. The technique employed in the experiment is based on the electrostatic method of balancing a charged particle in an electric field against the force of gravity for different excitation energies above the threshold value, and from an estimate of the balancing voltages, read off the ionization energy from the intercept of the energy axis in a plot wavelength corresponding to the balancing potential for the incident radiation of wavelength. In the modified technique which is adopted in the present experimental investigation, a small single crystal is suspended by a fine quartz fiber between two vertical capacitor plates to which a suitable high voltage is applied.
Electrostatic charge on a dust size distribution in a plasma. [in interplanetary space
NASA Technical Reports Server (NTRS)
Houpis, Harry L. F.; Whipple, Elden C., Jr.
1987-01-01
The capacitance of a grain immersed in a steady state plasma containing a size distribution of dust particles is studied. The grain charge is determined by assuming the equilibrium potential has been obtained by a simple balance of electron and ion collection currents. It is shown that the validity of the analytical treatment given here for the linearized Poisson equation is confined to a certain region of space. Within this region and starting at very small plasma Debye length lambda(D), the capacitance at first exhibits a monotonic increase with increasing lambda(D). The capacitance eventually reaches a maximum, followed by a monotonic decrease. The charge density of the dust in the plasma is found to be only a function of the lambda(D); there is no significant dependence on the interparticle spacing.
31 CFR 586.508 - Entries in certain accounts for normal service charges authorized.
Code of Federal Regulations, 2010 CFR
2010-07-01
... institution by the owner of such blocked account. (b) As used in this section, the term normal service charge..., and Statements of Licensing Policy § 586.508 Entries in certain accounts for normal service charges... by way of limitation, minimum balance charges, notary and protest fees, and charges for reference...
31 CFR 543.505 - Entries in certain accounts for normal service charges authorized.
Code of Federal Regulations, 2010 CFR
2010-07-01
... reimbursement for normal service charges owed it by the owner of that blocked account. (b) As used in this....505 Entries in certain accounts for normal service charges authorized. (a) A U.S. financial... charges to correct bookkeeping errors; and, but not by way of limitation, minimum balance charges, notary...
The role of natural solidification paths on REE partitioning between clinopyroxene and melt
NASA Astrophysics Data System (ADS)
Scarlato, P.; Mollo, S.; Blundy, J. D.; Iezzi, G.; Tiepolo, M.
2014-03-01
We document for the first time the role played by natural solidification paths on the partitioning of rare earth elements (REE) between clinopyroxene and melt. To do this, we investigated the compositional variation of clinopyroxenes formed under increasing cooling rate conditions from core to rim of a dike at Mt. Etna volcano. As the rate of cooling increases, clinopyroxenes are progressively depleted in Si + Ca + Mg counter-balanced by enrichments in Al + Na + Ti. Consequently, the concentration of REE in clinopyroxene increases due to an increased ease of locally balancing the excess charge at the M2 site as the number of surrounding tetrahedral aluminium atoms increases. Since Aliv in clinopyroxene is a charge-balancing cation for REE, the partition coefficients (DREE) measured at the dike chilled margin are distinctly higher than those from the dike interior. We conclude that, in naturally solidifying magmas, kinetically controlled cation substitution reactions can be treated in terms of the energetics of the various charge-imbalanced configurations. This finding is corroborated by the near-parabolic dependence of DREE on cation radius due to charge-balance mechanisms described by the lattice strain model.
NASA Technical Reports Server (NTRS)
Darcy, Eric; Davies, Frank
2009-01-01
Charger design that is 2-fault tolerant to catastrophic has been achieved for the Spacesuit Li-ion Battery with key features. Power supply control circuit and 2 microprocessors independently control against overcharge. 3 microprocessor control against undercharge (false positive: Go for EVA) conditions. 2 independent channels provide functional redundancy. Capable of charge balancing cell banks in series. Cell manufacturing and performance uniformity is excellent with both designs. Once a few outliers are removed, LV cells are slightly more uniform than MoliJ cells. If cell balance feature of charger is ever invoked, it will be an indication of a significant degradation issue, not a nominal condition.
Balancing Hole and Electron Conduction in Ambipolar Split-Gate Thin-Film Transistors.
Yoo, Hocheon; Ghittorelli, Matteo; Lee, Dong-Kyu; Smits, Edsger C P; Gelinck, Gerwin H; Ahn, Hyungju; Lee, Han-Koo; Torricelli, Fabrizio; Kim, Jae-Joon
2017-07-10
Complementary organic electronics is a key enabling technology for the development of new applications including smart ubiquitous sensors, wearable electronics, and healthcare devices. High-performance, high-functionality and reliable complementary circuits require n- and p-type thin-film transistors with balanced characteristics. Recent advancements in ambipolar organic transistors in terms of semiconductor and device engineering demonstrate the great potential of this route but, unfortunately, the actual development of ambipolar organic complementary electronics is currently hampered by the uneven electron (n-type) and hole (p-type) conduction in ambipolar organic transistors. Here we show ambipolar organic thin-film transistors with balanced n-type and p-type operation. By manipulating air exposure and vacuum annealing conditions, we show that well-balanced electron and hole transport properties can be easily obtained. The method is used to control hole and electron conductions in split-gate transistors based on a solution-processed donor-acceptor semiconducting polymer. Complementary logic inverters with balanced charging and discharging characteristics are demonstrated. These findings may open up new opportunities for the rational design of complementary electronics based on ambipolar organic transistors.
Simulating the thermodynamics of charging in weak polyelectrolytes: the Debye-Hückel limit
NASA Astrophysics Data System (ADS)
Rathee, Vikramjit S.; Sikora, Benjamin J.; Sidky, Hythem; Whitmer, Jonathan K.
2018-01-01
The coil-globule transition in weak (annealed) polyelectrolytes involves a subtle balance of pH, charge strength, and solvation forces. In this work, we utilize a coarse-grained hybrid grand-canonical Monte Carlo and molecular dynamics approach to explore the swelling behavior of weak linear and star polyelectrolytes under different ionic screening conditions and pH. Importantly, we are able to quantify topology-dependent effects in charging which arise at the core of star polymers. Our results are suggestive of suppression of charging in star weak polyelectrolytes in comparison to linear weak polyelectrolytes. Furthermore, we characterize the coil-globule transition in linear and star weak polyelectrolyte through expanded ensemble density-of-states simulations which suggest a change from a first order to second order phase transition moving from linear to star polyelectrolytes. Lastly, we characterize the inhomogeneous charging across the weak star polyelectrolyte through observed shifts in {{Δ }}{{{pK}}}{{o}}, and compare with experimental work. We discuss these results in relation to surfaces functionalized by weak polyelectrolyte brushes and weak polyelectrolyte-based drug delivery applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-01
... depository institutions' disclosure practices related to overdraft services, including balances disclosed to... institutions' disclosure practices related to overdraft services, including balances disclosed to consumers... daily or sustained overdraft, negative balance, or similar fees or charges imposed by the institution...
Point-Defect Nature of the Ultraviolet Absorption Band in AlN
NASA Astrophysics Data System (ADS)
Alden, D.; Harris, J. S.; Bryan, Z.; Baker, J. N.; Reddy, P.; Mita, S.; Callsen, G.; Hoffmann, A.; Irving, D. L.; Collazo, R.; Sitar, Z.
2018-05-01
We present an approach where point defects and defect complexes are identified using power-dependent photoluminescence excitation spectroscopy, impurity data from SIMS, and density-functional-theory (DFT)-based calculations accounting for the total charge balance in the crystal. Employing the capabilities of such an experimental computational approach, in this work, the ultraviolet-C absorption band at 4.7 eV, as well as the 2.7- and 3.9-eV luminescence bands in AlN single crystals grown via physical vapor transport (PVT) are studied in detail. Photoluminescence excitation spectroscopy measurements demonstrate the relationship between the defect luminescent bands centered at 3.9 and 2.7 eV to the commonly observed absorption band centered at 4.7 eV. Accordingly, the thermodynamic transition energy for the absorption band at 4.7 eV and the luminescence band at 3.9 eV is estimated at 4.2 eV, in agreement with the thermodynamic transition energy for the CN- point defect. Finally, the 2.7-eV PL band is the result of a donor-acceptor pair transition between the VN and CN point defects since nitrogen vacancies are predicted to be present in the crystal in concentrations similar to carbon-employing charge-balance-constrained DFT calculations. Power-dependent photoluminescence measurements reveal the presence of the deep donor state with a thermodynamic transition energy of 5.0 eV, which we hypothesize to be nitrogen vacancies in agreement with predictions based on theory. The charge state, concentration, and type of impurities in the crystal are calculated considering a fixed amount of impurities and using a DFT-based defect solver, which considers their respective formation energies and the total charge balance in the crystal. The presented results show that nitrogen vacancies are the most likely candidate for the deep donor state involved in the donor-acceptor pair transition with peak emission at 2.7 eV for the conditions relevant to PVT growth.
47 CFR 69.610 - Other hypothetical net balances.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 3 2011-10-01 2011-10-01 false Other hypothetical net balances. 69.610 Section... (CONTINUED) ACCESS CHARGES Exchange Carrier Association § 69.610 Other hypothetical net balances. (a) The hypothetical net balance for an access element other than a Common Line element shall be computed as provided...
47 CFR 69.610 - Other hypothetical net balances.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 3 2010-10-01 2010-10-01 false Other hypothetical net balances. 69.610 Section... (CONTINUED) ACCESS CHARGES Exchange Carrier Association § 69.610 Other hypothetical net balances. (a) The hypothetical net balance for an access element other than a Common Line element shall be computed as provided...
31 CFR 547.505 - Entries in certain accounts for normal service charges authorized.
Code of Federal Regulations, 2010 CFR
2010-07-01
... reimbursement for normal service charges owed it by the owner of that blocked account. (b) As used in this... Policy § 547.505 Entries in certain accounts for normal service charges authorized. (a) A U.S. financial... charges to correct bookkeeping errors; and, but not by way of limitation, minimum balance charges, notary...
31 CFR 544.505 - Entries in certain accounts for normal service charges authorized.
Code of Federal Regulations, 2010 CFR
2010-07-01
... payment or reimbursement for normal service charges owed it by the owner of that blocked account. (b) As... Licensing Policy § 544.505 Entries in certain accounts for normal service charges authorized. (a) A U.S... adjustment charges to correct bookkeeping errors; and, but not by way of limitation, minimum balance charges...
46 CFR 401.427 - Charge on past due accounts.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 8 2010-10-01 2010-10-01 false Charge on past due accounts. 401.427 Section 401.427... REGULATIONS Rates, Charges, and Conditions for Pilotage Services § 401.427 Charge on past due accounts. A charge of two percent (2%) per month shall be paid on the opening monthly balance on accounts remaining...
31 CFR 593.505 - Entries in certain accounts for normal service charges authorized.
Code of Federal Regulations, 2010 CFR
2010-07-01
... payment or reimbursement for normal service charges owed it by the owner of that blocked account. (b) As... Licensing Policy § 593.505 Entries in certain accounts for normal service charges authorized. (a) A U.S... adjustment charges to correct bookkeeping errors; and, but not by way of limitation, minimum balance charges...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 5 2010-10-01 2010-10-01 false If I am forced to relinquish a collect-on-delivery shipment before the payment of ALL charges, how do I collect the balance? 375.805 Section 375.805... the balance? On “collect-on-delivery” shipments, you must present your freight bill for all...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 5 2011-10-01 2011-10-01 false If I am forced to relinquish a collect-on-delivery shipment before the payment of ALL charges, how do I collect the balance? 375.805 Section 375.805... the balance? On “collect-on-delivery” shipments, you must present your freight bill for all...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-13
... month on all past due amounts that are not the subject of a legitimate and bona fide dispute. The... assess a charge of 1% per month on the past due portion of the balance on a Member's account that is past... and reasonable to charge a Member a late fee on past due balances because it offsets administrative...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-13
... month on all past due amounts that are not the subject of a legitimate and bona fide dispute. The... assess a charge of 1% per month on the past due portion of the balance on a Member's account that is past... it is equitable and reasonable to charge a Member a late fee on past due balances because it offsets...
NASA Astrophysics Data System (ADS)
Shakhatov, V. A.; Lebedev, Yu. A.
2018-01-01
A review is given of experimental and theoretical data on the cross sections for ionization, excitation, and deexcitation of atomic hydrogen. The set of the cross sections required to calculate the electron energy distribution function and find the level-to-level rate coefficients needed to solve balance equations for the densities of neutral and charged particles in hydrogen plasma is determined.
Underground Data Acquisition and Telemetry System
1977-02-28
modulation is achieved in the circuit containing Q5, Ul, U2, Q6, and triac Q7, an RCA 40526. The function of the modulator is to switch the capacitor bank...approximately balance the charge current between the four battery strings. The ac-coupled Triac circuit is designed to provide additional EMP protection...I 4-9 CH * .* -.... ...... .. .. .. 0 :4 4-1 Each wafer, Figure 4.2-5, within an electronics module subassembly consists of a circuit
Whole body acid-base modeling revisited.
Ring, Troels; Nielsen, Søren
2017-04-01
The textbook account of whole body acid-base balance in terms of endogenous acid production, renal net acid excretion, and gastrointestinal alkali absorption, which is the only comprehensive model around, has never been applied in clinical practice or been formally validated. To improve understanding of acid-base modeling, we managed to write up this conventional model as an expression solely on urine chemistry. Renal net acid excretion and endogenous acid production were already formulated in terms of urine chemistry, and we could from the literature also see gastrointestinal alkali absorption in terms of urine excretions. With a few assumptions it was possible to see that this expression of net acid balance was arithmetically identical to minus urine charge, whereby under the development of acidosis, urine was predicted to acquire a net negative charge. The literature already mentions unexplained negative urine charges so we scrutinized a series of seminal papers and confirmed empirically the theoretical prediction that observed urine charge did acquire negative charge as acidosis developed. Hence, we can conclude that the conventional model is problematic since it predicts what is physiologically impossible. Therefore, we need a new model for whole body acid-base balance, which does not have impossible implications. Furthermore, new experimental studies are needed to account for charge imbalance in urine under development of acidosis. Copyright © 2017 the American Physiological Society.
Material-balance assessment of the New Albany-Chesterian petroleum system of the Illinois basin
Lewan, M.D.; Henry, M.E.; Higley, D.K.; Pitman, Janet K.
2002-01-01
The New Albany-Chesterian petroleum system of the Illinois basin is a well-constrained system from which petroleum charges and losses were quantified through a material-balance assessment. This petroleum system has nearly 90,000 wells penetrating the Chesterian section, a single New Albany Shale source rock accounting for more than 99% of the produced oil, well-established stratigraphic and structural frameworks, and accessible source rock samples at various maturity levels. A hydrogen index (HI) map based on Rock-Eval analyses of source rock samples of New Albany Shale defines the pod of active source rock and extent of oil generation. Based on a buoyancy-drive model, the system was divided into seven secondary-migration catchments. Each catchment contains a part of the active pod of source rock from which it derives a petroleum charge, and this charge is confined to carrier beds and reservoirs within these catchments as accountable petroleum, petroleum losses, or undiscovered petroleum. A well-constrained catchment with no apparent erosional or leakage losses is used to determine an actual petroleum charge from accountable petroleum and residual migration losses. This actual petroleum charge is used to calibrate the other catchments in which erosional petroleum losses have occurred. Petroleum charges determined by laboratory pyrolysis are exaggerated relative to the actual petroleum charge. Rock-Eval charges are exaggerated by a factor of 4-14, and hydrouspyrolysis charges are exaggerated by a factor of 1.7. The actual petroleum charge provides a more meaningful material balance and more realistic estimates of petroleum losses and remaining undiscovered petroleum. The total petroleum charge determined for the New Albany-Chesterian system is 78 billion bbl, of which 11.4 billion bbl occur as a accountable in place petroleum, 9 billion bbl occur as residual migration losses, and 57.6 billion bbl occur as erosional losses. Of the erosional losses, 40 billion bbl were lost from two catchments that have highly faulted and extensively eroded sections. Anomalies in the relationship between erosional losses and degree of erosion suggest there is potential for undiscovered petroleum in one of the catchments. These results demonstrate that a material-balance assessment of migration catchments provides a useful means to evaluate and rank areas within a petroleum system. The article provides methodologies for obtaining more realistic petroleum charges and losses that can be applied to less data-rich petroleum systems.
Ab initio studies of isolated hydrogen vacancies in graphane
NASA Astrophysics Data System (ADS)
Mapasha, R. E.; Molepo, M. P.; Chetty, N.
2016-05-01
We present a density functional study of various hydrogen vacancies located on a single hexagonal ring of graphane (fully hydrogenated graphene) considering the effects of charge states and the position of the Fermi level. We find that uncharged vacancies that lead to a carbon sublattice balance are energetically favorable and are wide band gap systems just like pristine graphane. Vacancies that do create a sublattice imbalance introduce spin polarized states into the band gap, and exhibit a half-metallic behavior with a magnetic moment of 1.00 μB per vacancy. The results show the possibility of using vacancies in graphane for novel spin-based applications. When charging such vacancy configurations, the deep donor (+1/0) and deep acceptor (0/-1) transition levels within the band gap are noted. We also note a half-metallic to metallic transition and a significant reduction of the induced magnetic moment due to both negative and positive charge doping.
Kinetics of wet sodium vapor complex plasma
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Sodha, M. S.
2014-04-01
In this paper, we have investigated the kinetics of wet (partially condensed) Sodium vapor, which comprises of electrons, ions, neutral atoms, and Sodium droplets (i) in thermal equilibrium and (ii) when irradiated by light. The formulation includes the balance of charge over the droplets, number balance of the plasma constituents, and energy balance of the electrons. In order to evaluate the droplet charge, a phenomenon for de-charging of the droplets, viz., evaporation of positive Sodium ions from the surface has been considered in addition to electron emission and electron/ion accretion. The analysis has been utilized to evaluate the steady state parameters of such complex plasmas (i) in thermal equilibrium and (ii) when irradiated; the results have been graphically illustrated. As a significant outcome irradiated, Sodium droplets are seen to acquire large positive potential, with consequent enhancement in the electron density.
NASA Astrophysics Data System (ADS)
Juan, Y. L.; Lee, Y. T.; Lee, Y. L.; Chen, L. L.; Huang, M. L.
2017-11-01
A four-phase interleaved balance charger for series-connected batteries with power factor correction is proposed in this dissertation. In the two phases of two buckboost converters, the rectified ac power is firstly converted to a dc link capacitor. In the other two phases of two flyback converters, the rectified ac power is directly converted to charge the corresponding batteries. Additionally, the energy on the leakage inductance of flyback converter is bypassed to the dc link capacitor. Then, a dual-output balance charging circuit is connected to the dc link to deliver the dc link power to charge two batteries in the series-connected batteries module. The constant-current/constant-voltage charging strategy is adopted. Finally, a prototype of the proposed charger with rated power 500 W is constructed. From the experimental results, the performance and validity of the proposed topology are verified. Compared to the conventional topology with passive RCD snubber, the efficiency of the proposed topology is improved about 3% and the voltage spike on the active switch is also reduced. The efficiency of the proposed charger is at least 83.6 % within the CC/CV charging progress.
75 FR 47173 - Truth in Savings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-05
... unions' disclosure practices related to overdraft services, including balances disclosed to members... overdraft services, including balances disclosed to consumers through automated systems. 74 FR 5584 (January... sustained overdraft, negative balance, or similar fees or charges imposed by the credit union. See comment...
Systematic Approach to Calculate the Concentration of Chemical Species in Multi-Equilibrium Problems
ERIC Educational Resources Information Center
Baeza-Baeza, Juan Jose; Garcia-Alvarez-Coque, Maria Celia
2011-01-01
A general systematic approach is proposed for the numerical calculation of multi-equilibrium problems. The approach involves several steps: (i) the establishment of balances involving the chemical species in solution (e.g., mass balances, charge balance, and stoichiometric balance for the reaction products), (ii) the selection of the unknowns (the…
31 CFR 594.505 - Entries in certain accounts for normal service charges authorized.
Code of Federal Regulations, 2010 CFR
2010-07-01
... reimbursement for normal service charges owed it by the owner of that blocked account. (b) As used in this....505 Entries in certain accounts for normal service charges authorized. (a) A U.S. financial... to correct bookkeeping errors; and, but not by way of limitation, minimum balance charges, notary and...
Zea mays iRS1563: A Comprehensive Genome-Scale Metabolic Reconstruction of Maize Metabolism
Saha, Rajib; Suthers, Patrick F.; Maranas, Costas D.
2011-01-01
The scope and breadth of genome-scale metabolic reconstructions have continued to expand over the last decade. Herein, we introduce a genome-scale model for a plant with direct applications to food and bioenergy production (i.e., maize). Maize annotation is still underway, which introduces significant challenges in the association of metabolic functions to genes. The developed model is designed to meet rigorous standards on gene-protein-reaction (GPR) associations, elementally and charged balanced reactions and a biomass reaction abstracting the relative contribution of all biomass constituents. The metabolic network contains 1,563 genes and 1,825 metabolites involved in 1,985 reactions from primary and secondary maize metabolism. For approximately 42% of the reactions direct literature evidence for the participation of the reaction in maize was found. As many as 445 reactions and 369 metabolites are unique to the maize model compared to the AraGEM model for A. thaliana. 674 metabolites and 893 reactions are present in Zea mays iRS1563 that are not accounted for in maize C4GEM. All reactions are elementally and charged balanced and localized into six different compartments (i.e., cytoplasm, mitochondrion, plastid, peroxisome, vacuole and extracellular). GPR associations are also established based on the functional annotation information and homology prediction accounting for monofunctional, multifunctional and multimeric proteins, isozymes and protein complexes. We describe results from performing flux balance analysis under different physiological conditions, (i.e., photosynthesis, photorespiration and respiration) of a C4 plant and also explore model predictions against experimental observations for two naturally occurring mutants (i.e., bm1 and bm3). The developed model corresponds to the largest and more complete to-date effort at cataloguing metabolism for a plant species. PMID:21755001
Phosphatidic acid in neuronal development: a node for membrane and cytoskeleton rearrangements.
Ammar, Mohamed-Raafet; Kassas, Nawal; Bader, Marie-France; Vitale, Nicolas
2014-12-01
Phosphatidic acid (PA) is the simplest phospholipid naturally existing in all-living organisms. It constitutes only a minor fraction of the total cell lipids but has attracted considerable attention being both a lipid second messenger and a modulator of membrane shape. The pleiotropic functions of PA are the direct consequence of its very simple chemical structure consisting of only two acyl chains linked by ester bonds to two adjacent hydroxyl groups of glycerol, whose remaining hydroxyl group is esterified with a phosphomonoester group. Hence the small phosphate head group of PA gives it the shape of a cone providing flexibility and negative curvatures in the context of a lipid bilayer. In addition, the negatively charged phosphomonoester headgroup of PA is unique because it can potentially carry one or two negative charges playing a role in the recruitment of positively charged molecules to biomembranes. In consequence, PA has been proposed to play various key cellular functions. In the brain, a fine balance between cell growth, migration and differentiation, and cell death is required to sculpt the nervous system during development. In this review, we will summarize the various functions that have been proposed for PA in neuronal development. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Magnetic Field Effect in Conjugated Molecules-Based Devices
2017-10-23
triplet annihilation process (TTA) process in charge- balanced polymer light emitting diode (PLED) containing a super yellow poly-(phenylene vinylene...current density. Our results demonstrate a clear correlation between TTA process and current density as well as temperature in charge- balanced SY-PPV...dimethyl sulfoxide (DMSO) (7:3, v/v) at 60 °C for 12 h inside the nitrogen -filled glove box. The perovskite films were spin-cast by a consecutive two-step
Ending an Insurgency Violently: The Samar and Batangas Punitive Campaigns
2010-03-01
outrage over charges of excessive cruelty and war crimes. In contrast, the Batangas campaign plan, under the direction of BG J. Franklin Bell, is... cruelty and war crimes. In contrast, the Batangas campaign plan, under the direction of BG J. Franklin Bell, is remembered as a balanced strategy of...over charges of excessive cruelty and war crimes. Nevertheless, both campaigns provide an opportunity to study the proper balance of attraction and
Zhang, Yingjie; Aziz, Hany
2017-01-11
We study the relative importance of deterioration of material quantum yield and charge balance to the electroluminescence stability of PHOLEDs, with a special emphasis on blue devices. Investigations show that the quantum yields of both host and emitter in the emission layer degrade due to exciton-polaron interactions and that the deterioration in material quantum yield plays the primary role in device degradation under operation. On the other hand, the results show that the charge balance factor is also affected by exciton-polaron interactions but only plays a secondary role in determining device stability. Finally, we show that the degradation mechanisms in blue PHOLEDs are fundamentally the same as those in green PHOLEDs. The limited stability of the blue devices is a result of faster deterioration in the quantum yield of the emitter.
Auxiliary quasi-resonant dc tank electrical power converter
Peng, Fang Z.
2006-10-24
An auxiliary quasi-resonant dc tank (AQRDCT) power converter with fast current charging, voltage balancing (or charging), and voltage clamping circuits is provided for achieving soft-switched power conversion. The present invention is an improvement of the invention taught in U.S. Pat. No. 6,111,770, herein incorporated by reference. The present invention provides faster current charging to the resonant inductor, thus minimizing delay time of the pulse width modulation (PWM) due to the soft-switching process. The new AQRDCT converter includes three tank capacitors or power supplies to achieve the faster current charging and minimize the soft-switching time delay. The new AQRDCT converter further includes a voltage balancing circuit to charge and discharge the three tank capacitors so that additional isolated power supplies from the utility line are not needed. A voltage clamping circuit is also included for clamping voltage surge due to the reverse recovery of diodes.
31 CFR 542.505 - Entries in certain accounts for normal service charges authorized.
Code of Federal Regulations, 2010 CFR
2010-07-01
... normal service charges owed it by the owner of that blocked account. (b) As used in this section, the... Entries in certain accounts for normal service charges authorized. (a) A U.S. financial institution is... bookkeeping errors; and, but not by way of limitation, minimum balance charges, notary and protest fees, and...
31 CFR 546.505 - Entries in certain accounts for normal service charges authorized.
Code of Federal Regulations, 2010 CFR
2010-07-01
... normal service charges owed it by the owner of that blocked account. (b) As used in this section, the... Entries in certain accounts for normal service charges authorized. (a) A U.S. financial institution is... bookkeeping errors; and, but not by way of limitation, minimum balance charges, notary and protest fees, and...
31 CFR 588.505 - Entries in certain accounts for normal service charges authorized.
Code of Federal Regulations, 2010 CFR
2010-07-01
... reimbursement for normal service charges owed it by the owner of that blocked account. (b) As used in this... § 588.505 Entries in certain accounts for normal service charges authorized. (a) A U.S. financial... to correct bookkeeping errors; and, but not by way of limitation, minimum balance charges, notary and...
31 CFR 548.505 - Entries in certain accounts for normal service charges authorized.
Code of Federal Regulations, 2010 CFR
2010-07-01
... normal service charges owed it by the owner of that blocked account. (b) As used in this section, the... Entries in certain accounts for normal service charges authorized. (a) A U.S. financial institution is... bookkeeping errors; and, but not by way of limitation, minimum balance charges, notary and protest fees, and...
31 CFR 545.504 - Entries in certain accounts for normal service charges authorized.
Code of Federal Regulations, 2010 CFR
2010-07-01
... reimbursement for normal service charges owed it by the owner of that blocked account. (b) As used in this... § 545.504 Entries in certain accounts for normal service charges authorized. (a) A U.S. financial... to correct bookkeeping errors; and, but not by way of limitation, minimum balance charges, notary and...
31 CFR 541.505 - Entries in certain accounts for normal service charges authorized.
Code of Federal Regulations, 2010 CFR
2010-07-01
... normal service charges owed it by the owner of that blocked account. (b) As used in this section, the... Entries in certain accounts for normal service charges authorized. (a) A U.S. financial institution is... bookkeeping errors; and, but not by way of limitation, minimum balance charges, notary and protest fees, and...
31 CFR 551.505 - Entries in certain accounts for normal service charges authorized.
Code of Federal Regulations, 2010 CFR
2010-07-01
... normal service charges owed it by the owner of that blocked account. (b) As used in this section, the... Entries in certain accounts for normal service charges authorized. (a) A U.S. financial institution is... bookkeeping errors; and, but not by way of limitation, minimum balance charges, notary and protest fees, and...
31 CFR 537.505 - Entries in certain accounts for normal service charges authorized.
Code of Federal Regulations, 2010 CFR
2010-07-01
... normal service charges owed it by the owner of that blocked account. (b) As used in this section, the... Entries in certain accounts for normal service charges authorized. (a) A U.S. financial institution is... bookkeeping errors; and, but not by way of limitation, minimum balance charges, notary and protest fees, and...
A Novel Methodology for Charging Station Deployment
NASA Astrophysics Data System (ADS)
Sun, Zhonghao; Zhao, Yunwei; He, Yueying; Li, Mingzhe
2018-02-01
Lack of charging stations has been a main obstacle to the promotion of electric vehicles. This paper studies deploying charging stations in traffic networks considering grid constraints to balance the charging demand and grid stability. First, we propose a statistical model for charging demand. Then we combine the charging demand model with power grid constraints and give the formulation of the charging station deployment problem. Finally, we propose a theoretical solution for the problem by transforming it to a Markov Decision Process.
Escape rate for nonequilibrium processes dominated by strong non-detailed balance force
NASA Astrophysics Data System (ADS)
Tang, Ying; Xu, Song; Ao, Ping
2018-02-01
Quantifying the escape rate from a meta-stable state is essential to understand a wide range of dynamical processes. Kramers' classical rate formula is the product of an exponential function of the potential barrier height and a pre-factor related to the friction coefficient. Although many applications of the rate formula focused on the exponential term, the prefactor can have a significant effect on the escape rate in certain parameter regions, such as the overdamped limit and the underdamped limit. There have been continuous interests to understand the effect of non-detailed balance on the escape rate; however, how the prefactor behaves under strong non-detailed balance force remains elusive. In this work, we find that the escape rate formula has a vanishing prefactor with decreasing friction strength under the strong non-detailed balance limit. We both obtain analytical solutions in specific examples and provide a derivation for more general cases. We further verify the result by simulations and propose a testable experimental system of a charged Brownian particle in electromagnetic field. Our study demonstrates that a special care is required to estimate the effect of prefactor on the escape rate when non-detailed balance force dominates.
75 FR 31673 - Truth in Savings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-04
... practices related to overdraft services, including balances disclosed to consumers through automated systems..., including balances disclosed to consumers through automated systems. The rule was published in the Federal... balance, or similar fees or charges imposed by the institution. See comment 11(a)(1)-2. Thus, the use of...
Narth, Christophe; Lagardère, Louis; Polack, Étienne; Gresh, Nohad; Wang, Qiantao; Bell, David R; Rackers, Joshua A; Ponder, Jay W; Ren, Pengyu Y; Piquemal, Jean-Philip
2016-02-15
We propose a general coupling of the Smooth Particle Mesh Ewald SPME approach for distributed multipoles to a short-range charge penetration correction modifying the charge-charge, charge-dipole and charge-quadrupole energies. Such an approach significantly improves electrostatics when compared to ab initio values and has been calibrated on Symmetry-Adapted Perturbation Theory reference data. Various neutral molecular dimers have been tested and results on the complexes of mono- and divalent cations with a water ligand are also provided. Transferability of the correction is adressed in the context of the implementation of the AMOEBA and SIBFA polarizable force fields in the TINKER-HP software. As the choices of the multipolar distribution are discussed, conclusions are drawn for the future penetration-corrected polarizable force fields highlighting the mandatory need of non-spurious procedures for the obtention of well balanced and physically meaningful distributed moments. Finally, scalability and parallelism of the short-range corrected SPME approach are addressed, demonstrating that the damping function is computationally affordable and accurate for molecular dynamics simulations of complex bio- or bioinorganic systems in periodic boundary conditions. Copyright © 2016 Wiley Periodicals, Inc.
Voltage balanced multilevel voltage source converter system
Peng, Fang Zheng; Lai, Jih-Sheng
1997-01-01
A voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means.
Voltage balanced multilevel voltage source converter system
Peng, F.Z.; Lai, J.S.
1997-07-01
Disclosed is a voltage balanced multilevel converter for high power AC applications such as adjustable speed motor drives and back-to-back DC intertie of adjacent power systems. This converter provides a multilevel rectifier, a multilevel inverter, and a DC link between the rectifier and the inverter allowing voltage balancing between each of the voltage levels within the multilevel converter. The rectifier is equipped with at least one phase leg and a source input node for each of the phases. The rectifier is further equipped with a plurality of rectifier DC output nodes. The inverter is equipped with at least one phase leg and a load output node for each of the phases. The inverter is further equipped with a plurality of inverter DC input nodes. The DC link is equipped with a plurality of rectifier charging means and a plurality of inverter discharging means. The plurality of rectifier charging means are connected in series with one of the rectifier charging means disposed between and connected in an operable relationship with each adjacent pair of rectifier DC output nodes. The plurality of inverter discharging means are connected in series with one of the inverter discharging means disposed between and connected in an operable relationship with each adjacent pair of inverter DC input nodes. Each of said rectifier DC output nodes are individually electrically connected to the respective inverter DC input nodes. By this means, each of the rectifier DC output nodes and each of the inverter DC input nodes are voltage balanced by the respective charging and discharging of the rectifier charging means and the inverter discharging means. 15 figs.
Helium escape from the Earth's atmosphere - The charge exchange mechanism revisited
NASA Technical Reports Server (NTRS)
Lie-Svendsen, O.; Rees, M. H.; Stamnes, K.
1992-01-01
We have studied the escape of neutral helium from the terrestrial atmosphere through exothermic charge exchange reactions between He(+) ions and the major atmospheric constituents N2, O2 and O. Elastic collisions with the neutral background particles were treated quantitatively using a recently developed kinetic theory approach. An interhemispheric plasma transport model was employed to provide a global distribution of He(+) ions as a function of altitude, latitude and local solar time and for different levels of solar ionization. Combining these ion densities with neutral densities from an MSIS model and best estimates for the reaction rate coefficients of the charge exchange reactions, we computed the global distribution of the neutral He escape flux. The escape rates show large diurnal and latitudinal variations, while the global average does not vary by more than a factor of three over a solar cycle. We find that this escape mechanism is potentially important for the overall balance of helium in the Earth's atmosphere. However, more accurate values for the reaction rate coefficients of the charge exchange reactions are required to make a definitive assessment of its importance.
Battery Cell Balancing System and Method
NASA Technical Reports Server (NTRS)
Davies, Francis J. (Inventor)
2014-01-01
A battery cell balancing system is operable to utilize a relatively small number of transformers interconnected with a battery having a plurality of battery cells to selectively charge the battery cells. Windings of the transformers are simultaneously driven with a plurality of waveforms whereupon selected battery cells or groups of cells are selected and charged. A transformer drive circuit is operable to selectively vary the waveforms to thereby vary a weighted voltage associated with each of the battery cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hans, M., E-mail: hans@mch.rwth-aachen.de; Baben, M. to; Music, D.
2014-09-07
Ti-Al-O-N coatings were synthesized by cathodic arc and high power pulsed magnetron sputtering. The chemical composition of the coatings was determined by means of elastic recoil detection analysis and energy dispersive X-ray spectroscopy. The effect of oxygen incorporation on the stress-free lattice parameters and Young's moduli of Ti-Al-O-N coatings was investigated by X-ray diffraction and nanoindentation, respectively. As nitrogen is substituted by oxygen, implications for the charge balance may be expected. A reduction in equilibrium volume with increasing O concentration is identified by X-ray diffraction and density functional theory calculations of Ti-Al-O-N supercells reveal the concomitant formation of metal vacancies.more » Hence, the oxygen incorporation-induced formation of metal vacancies enables charge balancing. Furthermore, nanoindentation experiments reveal a decrease in elastic modulus with increasing O concentration. Based on ab initio data, two causes can be identified for this: First, the metal vacancy-induced reduction in elasticity; and second, the formation of, compared to the corresponding metal nitride bonds, relatively weak Ti-O and Al-O bonds.« less
12 CFR 226.14 - Determination of annual percentage rate.
Code of Federal Regulations, 2010 CFR
2010-01-01
... percentage point above or below the annual percentage rate determined in accordance with this section. 31a... finance charge for the billing cycle by the sum of the balances to which the periodic rates were applied... of the balance(s) to which it is applicable 32 and multiplying the quotient (expressed as a...
Towards a Switched-Capacitor Based Stimulator for Efficient Deep-Brain Stimulation
Vidal, Jose; Ghovanloo, Maysam
2013-01-01
We have developed a novel 4-channel prototype stimulation circuit for implantable neurological stimulators (INS). This Switched-Capacitor based Stimulator (SCS) aims to utilize charge storage and charge injection techniques to take advantage of both the efficiency of conventional voltage-controlled stimulators (VCS) and the safety and controllability of current-controlled stimulators (CCS). The discrete SCS prototype offers fine control over stimulation parameters such as voltage, current, pulse width, frequency, and active electrode channel via a LabVIEW graphical user interface (GUI) when connected to a PC through USB. Furthermore, the prototype utilizes a floating current sensor to provide charge-balanced biphasic stimulation and ensure safety. The stimulator was analyzed using an electrode-electrolyte interface (EEI) model as well as with a pair of pacing electrodes in saline. The primary motivation of this research is to test the feasibility and functionality of a safe, effective, and power-efficient switched-capacitor based stimulator for use in Deep Brain Stimulation. PMID:21095987
10 CFR 600.223 - Period of availability of funds.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Requirements § 600.223 Period of availability of funds. (a) General. Where a funding period is specified, a... carryover of unobligated balances is permitted, in which case the carryover balances may be charged for...
49 CFR 18.23 - Period of availability of funds.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Administration § 18.23 Period of availability of funds. (a) General. Where a funding period is specified, a... carryover of unobligated balances is permitted, in which case the carryover balances may be charged for...
22 CFR 135.23 - Period of availability of funds.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Administration § 135.23 Period of availability of funds. (a) General. Where a funding period is specified, a... carryover of unobligated balances is permitted, in which case the carryover balances may be charged for...
20 CFR 437.23 - Period of availability of funds.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Administration § 437.23 Period of availability of funds. (a) General. Where a funding period is specified, a... carryover of unobligated balances is permitted, in which case the carryover balances may be charged for...
45 CFR 1157.23 - Period of availability of funds.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Administration § 1157.23 Period of availability of funds. (a) General. Where a funding period is specified, a... carryover of unobligated balances is permitted, in which case the carryover balances may be charged for...
45 CFR 1174.23 - Period of availability of funds.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Administration § 1174.23 Period of availability of funds. (a) General. Where a funding period is specified, a... carryover of unobligated balances is permitted, in which case the carryover balances may be charged for...
45 CFR 1183.23 - Period of availability of funds.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Administration § 1183.23 Period of availability of funds. (a) General. Where a funding period is specified, a... carryover of unobligated balances is permitted, in which case the carryover balances may be charged for...
48 CFR 52.241-9 - Connection Charge.
Code of Federal Regulations, 2010 CFR
2010-10-01
... connection charge, shall be and remain the property of the Contractor and shall, at all times during the life... Contractor shall pay to the Government an amount equal to the uncredited balance of the connection charge as... right, the Contractor shall be paid the cost of any work accomplished, including direct and indirect...
Development and characteristics of children with Usher syndrome and CHARGE syndrome.
Dammeyer, Jesper
2012-09-01
Individuals with Usher syndrome or CHARGE syndrome are faced with a number of difficulties concerning hearing, vision, balance, and language development. The aim of the study is to describe the developmental characteristics of children with Usher syndrome and CHARGE syndrome, respectively. Data about the developmental characteristics of 26 children with Usher syndrome and 17 children with CHARGE syndrome was obtained. Associations between deafblindness (dual sensory loss), motor development (age of walking), language abilities, and intellectual outcome of these children were explored for each group independently. Both groups of children face a number of difficulties associated with vision, hearing, language, balance and intellectual outcome. Intellectual disability and/or language delay was found among 42% of the children with Usher syndrome and among 82% of the children with CHARGE syndrome. Intellectual disability was associated with language delay and age of walking for both groups. Even though Usher and CHARGE are two different genetic syndromes, both groups are challenged with a number of similar developmental delays. Clinicians need to be aware of several developmental issues in order to offer adequate support to children with Usher or CHARGE syndrome. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Generation of Suprathermal Electrons by Collective Processes in Collisional Plasma
NASA Astrophysics Data System (ADS)
Tigik, S. F.; Ziebell, L. F.; Yoon, P. H.
2017-11-01
The ubiquity of high-energy tails in the charged particle velocity distribution functions (VDFs) observed in space plasmas suggests the existence of an underlying process responsible for taking a fraction of the charged particle population out of thermal equilibrium and redistributing it to suprathermal velocity and energy ranges. The present Letter focuses on a new and fundamental physical explanation for the origin of suprathermal electron velocity distribution function (EVDF) in a collisional plasma. This process involves a newly discovered electrostatic bremsstrahlung (EB) emission that is effective in a plasma in which binary collisions are present. The steady-state EVDF dictated by such a process corresponds to a Maxwellian core plus a quasi-inverse power-law tail, which is a feature commonly observed in many space plasma environments. In order to demonstrate this, the system of self-consistent particle- and wave-kinetic equations are numerically solved with an initially Maxwellian EVDF and Langmuir wave spectral intensity, which is a state that does not reflect the presence of EB process, and hence not in force balance. The EB term subsequently drives the system to a new force-balanced steady state. After a long integration period it is demonstrated that the initial Langmuir fluctuation spectrum is modified, which in turn distorts the initial Maxwellian EVDF into a VDF that resembles the said core-suprathermal VDF. Such a mechanism may thus be operative at the coronal source region, which is characterized by high collisionality.
Pulsed field sample neutralization
Appelhans, Anthony D.; Dahl, David A.; Delmore, James E.
1990-01-01
An apparatus and method for alternating voltage and for varying the rate of extraction during the extraction of secondary particles, resulting in periods when either positive ions, or negative ions and electrons are extracted at varying rates. Using voltage with alternating charge during successive periods to extract particles from materials which accumulate charge opposite that being extracted causes accumulation of surface charge of opposite sign. Charge accumulation can then be adjusted to a ratio which maintains a balance of positive and negative charge emission, thus maintaining the charge neutrality of the sample.
76 FR 66860 - Single Family Housing Guaranteed Loan Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-28
... percent of the outstanding principal balance of the loan for the life of the loan. The intent of the... of 0.3 percent of the outstanding principal balance will be required in order that the SFHGLP may... to charge an annual fee of 0.3 percent of the outstanding principal balance of the loan for the life...
Plasma source for spacecraft potential control
NASA Technical Reports Server (NTRS)
Olsen, R. C.
1983-01-01
A stable electrical ground which enables the particle spectrometers to measure the low energy particle populations was investigated and the current required to neutralize the spacecraft was measured. In addition, the plasma source for potential control (PSPO C) prevents high charging events which could affect the spacecraft electrical integrity. The plasma source must be able to emit a plasma current large enough to balance the sum of all other currents to the spacecraft. In ion thrusters, hollow cathodes provide several amperes of electron current to the discharge chamber. The PSPO C is capable of balancing the net negative currents found in eclipse charging events producing 10 to 100 microamps of electron current. The largest current required is the ion current necessary to balance the total photoelectric current.
Eckenrode, Heather M; Jen, Shih-Hui; Han, Jun; Yeh, An-Gong; Dai, Hai-Lung
2005-03-17
Nonlinear optical probe, second harmonic generation (SHG), of the adsorption of the dye molecule malachite green (MG), in cationic form at pH < or = 5, on polystyrene microspheres in aqueous solution is used to study the effect of surface charge and composition on molecular adsorption. Three types of polystyrene microspheres with different surface composition are investigated: (1) a sulfate terminated, anionic surface, (2) a neutral surface without any functional group termination, and (3) an amine terminated, cationic surface. The cationic dye was found to adsorb at all three surfaces, regardless of surface charge. The adsorption free energies, DeltaG's, measured for the three surfaces are -12.67, -12.39, and -10.46 kcal/mol, respectively, with the trend as expected from the charge interactions. The adsorption density on the anionic surface, where attractive charge-charge interaction dominates, is determined by the surface negative charge density. The adsorption densities on the neutral and cationic surfaces are on the other hand higher, perhaps as a result of a balance between minimizing repulsive charge interaction and maximizing attractive molecule-substrate and intermolecular interactions. The relative strength of the SH intensity per molecule, in combination of a model calculation, reveals that the C(2) axis of the MG molecule is nearly perpendicular to the surface on the anionic surface and tilts away from the surface norm when the surface is neutral and further away when cationic. Changing the pH of the solution may alter the surface charge and subsequently affect the adsorption configuration and SH intensity.
Laboratory Measurements of Charging of Apollo 17 Lunar Dust Grains by Low Energy Electrons
NASA Technical Reports Server (NTRS)
Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.; Gaskin, Jessica
2007-01-01
It is well recognized that the charging properties of individual micron/sub-micron size dust grains by various processes are expected to be substantially different from the currently available measurements made on bulk materials. Solar UV radiation and the solar wind plasma charge micron size dust grains on the lunar surface with virtually no atmosphere. The electrostatically charged dust grains are believed to be levitated and transported long distances over the lunar terminator from the day to the night side. The current models do not fully explain the lunar dust phenomena and laboratory measurements are needed to experimentally determine the charging properties of lunar dust grains. An experimental facility has been developed in the Dusty Plasma Laboratory at NASA Marshall Space Flight Center MSFC for investigating the charging properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present laboratory measurements on charging of Apollo 17 individual lunar dust grains by low energy electron beams in the 5-100 eV energy range. The measurements are made by levitating Apollo 17 dust grains of 0.2 to 10 micrometer diameters, in an electrodynamic balance and exposing them to mono-energetic electron beams. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission processes are discussed.
Navigating Through Chaos: Charge Nurses and Patient Safety.
Cathro, Heather
2016-04-01
The aim of this study was to explore actions and the processes charge nurses (CNs) implement to keep patients safe and generate an emerging theory to inform CN job descriptions, orientation, and training to promote patient safety in practice. Healthcare workers must provide a safe environment for patients. CNs are the frontline leaders on most hospital units and can function as gatekeepers for safe patient care. This grounded theory study utilized purposive sampling of CNs on medical-surgical units in a 400-bed metropolitan hospital. Data collection consisted of 11 interviews and 6 observations. The emerging theory was navigating through chaos: CNs balancing multiple roles, maintaining a watchful eye, and working with and leading the healthcare team to keep patients safe. CNs have knowledge of patients, staff, and complex healthcare environments, putting them in opportune positions to influence patient safety.
Farsi, Zohreh; Preobraschenski, Julia; van den Bogaart, Geert; Riedel, Dietmar; Jahn, Reinhard; Woehler, Andrew
2016-02-26
Synaptic transmission is mediated by the release of neurotransmitters, which involves exo-endocytotic cycling of synaptic vesicles. To maintain synaptic function, synaptic vesicles are refilled with thousands of neurotransmitter molecules within seconds after endocytosis, using the energy provided by an electrochemical proton gradient. However, it is unclear how transmitter molecules carrying different net charges can be efficiently sequestered while maintaining charge neutrality and osmotic balance. We used single-vesicle imaging to monitor pH and electrical gradients and directly showed different uptake mechanisms for glutamate and γ-aminobutyric acid (GABA) operating in parallel. In contrast to glutamate, GABA was exchanged for protons, with no other ions participating in the transport cycle. Thus, only a few components are needed to guarantee reliable vesicle filling with different neurotransmitters. Copyright © 2016, American Association for the Advancement of Science.
Sensors and regulators of intracellular pH.
Casey, Joseph R; Grinstein, Sergio; Orlowski, John
2010-01-01
Protons dictate the charge and structure of macromolecules and are used as energy currency by eukaryotic cells. The unique function of individual organelles therefore depends on the establishment and stringent maintenance of a distinct pH. This, in turn, requires a means to sense the prevailing pH and to respond to deviations from the norm with effective mechanisms to transport, produce or consume proton equivalents. A dynamic, finely tuned balance between proton-extruding and proton-importing processes underlies pH homeostasis not only in the cytosol, but in other cellular compartments as well.
Joint quantum measurement using unbalanced array detection.
Beck, M; Dorrer, C; Walmsley, I A
2001-12-17
We have measured the joint Q-function of a highly multimode field using unbalanced heterodyne detection with a charge-coupled device array detector. We use spectral interferometry between a weak signal field and a strong, 100 fs duration local oscillator pulse to reconstruct the joint quadrature amplitude statistics of about 25 temporal modes. By adjusting the time delay between the signal and local oscillator pulses we are able to shift all the classical noise to modes distinct from the signal. This obviates the need to use a balanced detector.
Kinetics of laser irradiated nanoparticles cloud
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Upadhyay Kahaly, M.; Misra, Shikha
2018-02-01
A comprehensive kinetic model describing the complex kinetics of a laser irradiated nanoparticle ensemble has been developed. The absorbed laser radiation here serves dual purpose, viz., photoenhanced thermionic emission via rise in its temperature and direct photoemission of electrons. On the basis of mean charge theory along with the equations for particle (electron) and energy flux balance over the nanoparticles, the transient processes of charge/temperature evolution over its surface and mass diminution on account of the sublimation (phase change) process have been elucidated. Using this formulation phenomenon of nanoparticle charging, its temperature rise to the sublimation point, mass ablation, and cloud disintegration have been investigated; afterwards, typical timescales of disintegration, sublimation and complete evaporation in reference to a graphite nanoparticle cloud (as an illustrative case) have been parametrically investigated. Based on a numerical analysis, an adequate parameter space describing the nanoparticle operation below the sublimation temperature, in terms of laser intensity, wavelength and nanoparticle material work function, has been identified. The cloud disintegration is found to be sensitive to the nanoparticle charging through photoemission; as a consequence, it illustrates that radiation operating below the photoemission threshold causes disintegration in the phase change state, while above the threshold, it occurs with the onset of surface heating.
Safe Direct Current Stimulation to Expand Capabilities of Neural Prostheses
Fridman, Gene Y.; Della Santina, Charles C.
2014-01-01
While effective in treating some neurological disorders, neuroelectric prostheses are fundamentally limited because they must employ charge-balanced stimuli to avoid evolution of irreversible electrochemical reactions and their byproducts at the interface between metal electrodes and body fluids. Charge-balancing is typically achieved by using brief biphasic alternating current (AC) pulses, which typically excite nearby neural tissues but cannot efficiently inhibit them. In contrast, direct current (DC) applied via a metal electrode in contact with body fluids can excite, inhibit and modulate sensitivity of neurons; however, DC stimulation is biologically unsafe because it violates “safe charge injection” limits that have long been considered unavoidable constraints. In this report, we describe the design and fabrication of a safe DC stimulator (SDCS) that overcomes this constraint. The SCDS drives DC ionic current into target tissue via salt-bridge micropipette electrodes by switching valves in phase with AC square waves applied to metal electrodes contained within the device. This approach achieves DC ionic flow through tissue while still adhering to charge-balancing constraints at each electrode-saline interface. We show the SDCS’s ability to both inhibit and excite neural activity to achieve improved dynamic range during prosthetic stimulation of the vestibular part of the inner ear in chinchillas. PMID:23476007
Code of Federal Regulations, 2010 CFR
2010-01-01
... unpaid balance of the amount financed is increased by the finance charge earned during that period and is... contrast, under the United States Rule method, at the end of each payment period, the unpaid balance of the... earned, the adjustment of the unpaid balance of the amount financed is postponed until the end of the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-14
...) and 45 U.S.C. 362(r)(3), respectively), the Board gives notice of the following: 1. The balance to the.... The September 30, 2011, balance of any new loans to the RUI Account, including accrued interest, is... system unallocated charge balance is ($335,379,239.56) as of June 30, 2011; 5. The pooled credit ratio...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-18
... balance to the credit of the Railroad Unemployment Insurance (RUI) Account, as of June 30, 2013, is $204,247,991.98; 2. The September 30, 2013, balance of any new loans to the RUI Account, including accrued... cumulative system unallocated charge balance is ($363,515,181.06) as of June 30, 2013; 5. The pooled credit...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-07
...) and 45 U.S.C. 362(r)(3), respectively), the Board gives notice of the following: 1. The balance to the.... The September 30, 2012, balance of any new loans to the RUI Account, including accrued interest, is... system unallocated charge balance is ($348,280,856.36) as of June 30, 2012; 5. The pooled credit ratio...
The Effect of the Minimum Compensating Cash Balance on School District Investments.
ERIC Educational Resources Information Center
Dembowski, Frederick L.
Banks are usually reimbursed for their checking account services either by a fixed service charge or by requiring a minimum or minimum-average compensating cash balance. This paper demonstrates how to determine the optimal minimum balance for a school district to maintain in its account. It is assumed that both the bank and the school district use…
Asp133 Residue in NhaA Na+/H+ Antiporter Is Required for Stability Cation Binding and Transport.
Rimon, Abraham; Dwivedi, Manish; Friedler, Assaf; Padan, Etana
2018-03-16
Na + /H + antiporters have a crucial role in pH and Na + homeostasis in cells. The crystal structure of NhaA, the main antiporter of Escherichia coli, has provided general insights into antiporter mechanisms and revealed a previously unknown structural fold, which has since been identified in several secondary active transporters. This unique structural fold is very delicately electrostatically balanced. Asp133 and Lys 300 have been ascribed essential roles in this balance and, more generally, in the structure and function of the antiporter. In this work, we show the multiple roles of Asp133 in NhaA: (i) The residue's negative charge is critical for the stability of the NhaA structure. (ii) Its main chain is part of the active site. (iii) Its side chain functions as an alkaline-pH-dependent gate, changing the protein's conformation from an inward-facing conformation at acidic pH to an outward-open conformation at alkaline pH, opening the periplasm funnel. On the basis of the experimental data, we propose a tentative mechanism integrating the structural and functional roles of Asp133. Copyright © 2018 Elsevier Ltd. All rights reserved.
Minimum energy control for in vitro neurons.
Nabi, Ali; Stigen, Tyler; Moehlis, Jeff; Netoff, Theoden
2013-06-01
To demonstrate the applicability of optimal control theory for designing minimum energy charge-balanced input waveforms for single periodically-firing in vitro neurons from brain slices of Long-Evans rats. The method of control uses the phase model of a neuron and does not require prior knowledge of the neuron's biological details. The phase model of a neuron is a one-dimensional model that is characterized by the neuron's phase response curve (PRC), a sensitivity measure of the neuron to a stimulus applied at different points in its firing cycle. The PRC for each neuron is experimentally obtained by measuring the shift in phase due to a short-duration pulse injected into the periodically-firing neuron at various phase values. Based on the measured PRC, continuous-time, charge-balanced, minimum energy control waveforms have been designed to regulate the next firing time of the neuron upon application at the onset of an action potential. The designed waveforms can achieve the inter-spike-interval regulation for in vitro neurons with energy levels that are lower than those of conventional monophasic pulsatile inputs of past studies by at least an order of magnitude. They also provide the advantage of being charge-balanced. The energy efficiency of these waveforms is also shown by performing several supporting simulations that compare the performance of the designed waveforms against that of phase shuffled surrogate inputs, variants of the minimum energy waveforms obtained from suboptimal PRCs, as well as pulsatile stimuli that are applied at the point of maximum PRC. It was found that the minimum energy waveforms perform better than all other stimuli both in terms of control and in the amount of energy used. Specifically, it was seen that these charge-balanced waveforms use at least an order of magnitude less energy than conventional monophasic pulsatile stimuli. The significance of this work is that it uses concepts from the theory of optimal control and introduces a novel approach in designing minimum energy charge-balanced input waveforms for neurons that are robust to noise and implementable in electrophysiological experiments.
Minimum energy control for in vitro neurons
NASA Astrophysics Data System (ADS)
Nabi, Ali; Stigen, Tyler; Moehlis, Jeff; Netoff, Theoden
2013-06-01
Objective. To demonstrate the applicability of optimal control theory for designing minimum energy charge-balanced input waveforms for single periodically-firing in vitro neurons from brain slices of Long-Evans rats. Approach. The method of control uses the phase model of a neuron and does not require prior knowledge of the neuron’s biological details. The phase model of a neuron is a one-dimensional model that is characterized by the neuron’s phase response curve (PRC), a sensitivity measure of the neuron to a stimulus applied at different points in its firing cycle. The PRC for each neuron is experimentally obtained by measuring the shift in phase due to a short-duration pulse injected into the periodically-firing neuron at various phase values. Based on the measured PRC, continuous-time, charge-balanced, minimum energy control waveforms have been designed to regulate the next firing time of the neuron upon application at the onset of an action potential. Main result. The designed waveforms can achieve the inter-spike-interval regulation for in vitro neurons with energy levels that are lower than those of conventional monophasic pulsatile inputs of past studies by at least an order of magnitude. They also provide the advantage of being charge-balanced. The energy efficiency of these waveforms is also shown by performing several supporting simulations that compare the performance of the designed waveforms against that of phase shuffled surrogate inputs, variants of the minimum energy waveforms obtained from suboptimal PRCs, as well as pulsatile stimuli that are applied at the point of maximum PRC. It was found that the minimum energy waveforms perform better than all other stimuli both in terms of control and in the amount of energy used. Specifically, it was seen that these charge-balanced waveforms use at least an order of magnitude less energy than conventional monophasic pulsatile stimuli. Significance. The significance of this work is that it uses concepts from the theory of optimal control and introduces a novel approach in designing minimum energy charge-balanced input waveforms for neurons that are robust to noise and implementable in electrophysiological experiments.
Charge carrier transport and photogeneration in P3HT:PCBM photovoltaic blends.
Laquai, Frédéric; Andrienko, Denis; Mauer, Ralf; Blom, Paul W M
2015-06-01
This article reviews the charge transport and photogeneration in bulk-heterojunction solar cells made from blend films of regioregular poly(3-hexylthiophene) (RR-P3HT) and methano-fullerene (PCBM). The charge transport, specifically the hole mobility in the RR-P3HT phase of the polymer:fullerene photovoltaic blend, is dramatically affected by thermal annealing. The hole mobility increases more than three orders of magnitude and reaches a value of up to 2 × 10(-4) cm(2) V(-1) s(-1) after the thermal annealing process as a result of an improved semi-crystallinity of the film. This significant increase of the hole mobility balances the electron and hole mobilities in a photovoltaic blend in turn reducing space-charge formation, and this is the most important factor for the strong enhancement of the photovoltaic efficiency compared to an as cast, that is, non-annealed device. In fact, the balanced charge carrier mobility in RR-P3HT:PCBM blends in combination with a field- and temperature-independent charge carrier generation and greatly reduced non-geminate recombination explains the large quantum efficiencies mea-sured in P3HT:PCBM photovoltaic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Path length differencing and energy conservation of the S[sub N] Boltzmann/Spencer-Lewis equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippone, W.L.; Monahan, S.P.
It is shown that the S[sub N] Boltzmann/Spencer-Lewis equations conserve energy locally if and only if they satisfy particle balance and diamond differencing is used in path length. In contrast, the spatial differencing schemes have no bearing on the energy balance. Energy is conserved globally if it is conserved locally and the multigroup cross sections are energy conserving. Although the coupled electron-photon cross sections generated by CEPXS conserve particles and charge, they do not precisely conserve energy. It is demonstrated that these cross sections can be adjusted such that particles, charge, and energy are conserved. Finally, since a conventional negativemore » flux fixup destroys energy balance when applied to path legend, a modified fixup scheme that does not is presented.« less
NASA Astrophysics Data System (ADS)
Kim, Jae-Min; Lee, Chang-Heon; Kim, Jang-Joo
2017-11-01
Organic light-emitting diode (OLED) displays are lighter and more flexible, have a wider color gamut, and consume less power than conventional displays. Stable materials and the structural design of the device are important for OLED longevity. Control of charge transport and accumulation in the device is particularly important because the interaction of excitons and polarons results in material degradation. This research investigated the charge dynamics of OLEDs experimentally and by drift-diffusion modeling. Parallel capacitance-voltage measurements of devices provided knowledge of charge behavior at different driving voltages. A comparison of exciplex-forming co-host and single host structures established that the mobility balance in the emitting layers determined the amount of accumulated polarons in those layers. Consequently, an exciplex-forming co-host provides a superior structure in terms of device lifetime and efficiency because of its well-balanced mobility. Minimizing polaron accumulation is key to achieving long OLED device lifetimes. This is a crucial aspect of device physics that must be considered in the device design structure.
Ion heat transport in improved confinement MST plasmas
NASA Astrophysics Data System (ADS)
Xing, Zichuan; Nornberg, Mark; den Hartog, Daniel J.; Kumar, Santhosh; Anderson, Jay K.
2016-10-01
Ion power balance in improved confinement (PPCD) plasmas in MST is dominated by electron collisional heating balanced by charge exchange transport. Neoclassical effects on ions in the RFP are inherently small and PPCD plasmas have reduced turbulence and stochasticity. Thus PPCD plasmas provide a good starting point for a transport model developed to account for collisional equilibration between species, classical conductive energy transport, and energy loss due to charge exchange collisions. This model also allows a possible noncollisional anomalous term to be isolated for study, and correlations between residual magnetic fluctuations during PPCD plasmas and anomalous heating and transport will be investigated. Recent modeling with DEGAS2 Monte Carlo neutral simulation suggests higher core neutral temperature than previously estimated with more simplistic assumptions. However, the working model does not fully account for the electron density increase in the core during PPCD, which is higher than expected from classical particle transport, and neutral and impurity ionization. Other possible mechanisms are considered and analyzed, including more complex impurity charge-state balance and pinch effects. Work supported by the US DOE. DEGAS2 is provided by PPPL.
Chemical equilibrium modeling of organic acids, pH, aluminum, and iron in Swedish surface waters.
Sjöstedt, Carin S; Gustafsson, Jon Petter; Köhler, Stephan J
2010-11-15
A consistent chemical equilibrium model that calculates pH from charge balance constraints and aluminum and iron speciation in the presence of natural organic matter is presented. The model requires input data for total aluminum, iron, organic carbon, fluoride, sulfate, and charge balance ANC. The model is calibrated to pH measurements (n = 322) by adjusting the fraction of active organic matter only, which results in an error of pH prediction on average below 0.2 pH units. The small systematic discrepancy between the analytical results for the monomeric aluminum fractionation and the model results is corrected for separately for two different fractionation techniques (n = 499) and validated on a large number (n = 3419) of geographically widely spread samples all over Sweden. The resulting average error for inorganic monomeric aluminum is around 1 µM. In its present form the model is the first internally consistent modeling approach for Sweden and may now be used as a tool for environmental quality management. Soil gibbsite with a log *Ks of 8.29 at 25°C together with a pH dependent loading function that uses molar Al/C ratios describes the amount of aluminum in solution in the presence of organic matter if the pH is roughly above 6.0.
Hidden Oceans? Unraveling the Structure of Hydrous Defects in the Earth's Deep Interior.
Grüninger, Helen; Armstrong, Katherine; Greim, Dominik; Boffa-Ballaran, Tiziana; Frost, Daniel J; Senker, Jürgen
2017-08-02
High-pressure silicates making up the main proportion of the earth's interior can incorporate a significant amount of water in the form of OH defects. Generally, they are charge balanced by removing low-valent cations such as Mg 2+ . By combining high-resolution multidimensional single- and double-quantum 1 H solid-state NMR spectroscopy with density functional theory calculations, we show that, for ringwoodite (γ-Mg 2 SiO 4 ), additionally, Si 4+ vacancies are formed, even at a water content as low as 0.1 wt %. They are charge balanced by either four protons or one Mg 2+ and two protons. Surprisingly, also a significant proportion of coupled Mg and Si vacancies are present. Furthermore, all defect types feature a pronounced orientational disorder of the OH groups, which results in a significant range of OH···O bond distributions. As such, we are able to present unique insight into the defect chemistry of ringwoodite's spinel structure, which not only accounts for a potentially large fraction of the earth's entire water budget, but will also control transport properties in the mantle. We expect that our results will even impact other hydrous spinel-type materials, helping to understand properties such as ion conduction and heterogeneous catalysis.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-10
...) and 45 U.S.C. 362(r)(3), respectively), the Board gives notice of the following: 1. The balance to the... September 30, 2010, balance of any new loans to the RUI Account, including accrued interest, is $47,377,543... system unallocated charge balance is ($328,338,446.22) as of June 30, 2010; 5. The pooled credit ratio...
On the Energy and Momentum of an Accelerated Charged Particle and the Sources of Radiation
ERIC Educational Resources Information Center
Eriksen, Erik; Gron, Oyvind
2007-01-01
We give a systematic development of the theory of the radiation field of an accelerated charged particle with reference to an inertial reference frame in flat spacetime. Special emphasis is given to the role of the Schott energy and momentum in the energy-momentum balance of the charge and its field. It is shown that the energy of the radiation…
KP Equation in a Three-Dimensional Unmagnetized Warm Dusty Plasma with Variable Dust Charge
NASA Astrophysics Data System (ADS)
El-Shorbagy, Kh. H.; Mahassen, Hania; El-Bendary, Atef Ahmed
2017-12-01
In this work, we investigate the propagation of three-dimensional nonlinear dust-acoustic and dust-Coulomb waves in an unmagnetized warm dusty plasma consisting of electrons, ions, and charged dust particles. The grain charge fluctuation is incorporated through the current balance equation. Using the perturbation method, a Kadomtsev-Petviashvili (KP) equation is obtained. It has been shown that the charge fluctuation would modify the wave structures, and the waves in such systems are unstable due to high-order long wave perturbations.
NASA Astrophysics Data System (ADS)
Rau, Uwe; Brendel, Rolf
1998-12-01
It is shown that a recently described general relationship between the local collection efficiency of solar cells and the dark carrier concentration (reciprocity theorem) directly follows from the principle of detailed balance. We derive the relationship for situations where transport of charge carriers occurs between discrete states as well as for the situation where electronic transport is described in terms of continuous functions. Combining both situations allows to extend the range of applicability of the reciprocity theorem to all types of solar cells, including, e.g., metal-insulator-semiconductor-type, electrochemical solar cells, as well as the inclusion of the impurity photovoltaic effect. We generalize the theorem further to situations where the occupation probability of electronic states is governed by Fermi-Dirac statistics instead of Boltzmann statistics as underlying preceding work. In such a situation the reciprocity theorem is restricted to small departures from equilibrium.
Role of Anions Associated with the Formation and Properties of Silver Clusters.
Wang, Quan-Ming; Lin, Yu-Mei; Liu, Kuan-Guan
2015-06-16
Metal clusters have been very attractive due to their aesthetic structures and fascinating properties. Different from nanoparticles, each cluster of a macroscopic sample has a well-defined structure with identical composition, size, and shape. As the disadvantages of polydispersity are ruled out, informative structure-property relationships of metal clusters can be established. The formation of a high-nuclearity metal cluster involves the organization of metal ions into a complex entity in an ordered way. To achieve controllable preparation of metal clusters, it is helpful to introduce a directing agent in the formation process of a cluster. To this end, anion templates have been used to direct the formation of high nuclearity clusters. In this Account, the role of anions played in the formation of a variety of silver clusters has been reviewed. Silver ions are positively charged, so anionic species could be utilized to control the formation of silver clusters on the basis of electrostatic interactions, and the size and shape of the resulted clusters can be dictated by the templating anions. In addition, since the anion is an integral component in the silver clusters described, the physical properties of the clusters can be modulated by functional anions. The templating effects of simple inorganic anions and polyoxometales are shown in silver alkynyl clusters and silver thiolate clusters. Intercluster compounds are also described regarding the importance of anions in determining the packing of the ion pairs and making contribution to electron communications between the positive and negative counterparts. The role of the anions is threefold: (a) an anion is advantageous in stabilizing a cluster via balancing local positive charges of the metal cations; (b) an anion template could help control the size and shape of a cluster product; (c) an anion can be a key factor in influencing the function of a cluster through bringing in its intrinsic properties. Properties including electron communication, luminescent thermochromism, single-molecule magnet, and intercluster charge transfer associated with anion-directed silver clusters have been discussed. We intend to attract chemists' attention to the role that anions could play in determining the structures and properties of metal complexes, especially clusters. We hope that this Account will stimulate more efforts in exploiting new role of anions in various metal cluster systems. Anions can do much more than counterions for charge balance, and they should be considered in the design and synthesis of cluster-based functional materials.
Electrical manipulation of oligonucleotides grafted to charged surfaces.
Rant, Ulrich; Arinaga, Kenji; Fujita, Shozo; Yokoyama, Naoki; Abstreiter, Gerhard; Tornow, Marc
2006-09-21
The electrical manipulation of short DNA molecules on surfaces offers novel functionalities with fascinating possibilities in the field of bio-interfaces. Here we present systematic investigations of the electrical interactions which govern the structure of oligonucleotides on charged gold surfaces. Successively, we address influences of the applied field strength, the role of DC electrode potentials, in particular for polycrystalline surfaces, as well as screening effects of the surrounding electrolyte solution. Data obtained for single and double stranded DNA exhibit differences which can be attributed to the dissimilar flexibility of the different molecular conformations. A comparison of the experimental results with a basic model shows how the alignment of the molecules adjusts according to a balance between electrically induced ordering and stochastic thermal motions. The presented conclusions are expected to be of general relevance for the behaviour of polyelectrolytes exposed to localized electric fields at interfaces.
Tunable Crystallinity and Charge Transfer in Two-Dimensional G-Quadruplex Organic Frameworks.
Wu, Yi-Lin; Bobbitt, N Scott; Logsdon, Jenna L; Powers-Riggs, Natalia E; Nelson, Jordan N; Liu, Xiaolong; Wang, Timothy C; Snurr, Randall Q; Hupp, Joseph T; Farha, Omar K; Hersam, Mark C; Wasielewski, Michael R
2018-04-03
DNA G-quadruplex structures were recently discovered to provide reliable scaffolding for two-dimensional organic frameworks due to the strong hydrogen-bonding ability of guanine. Herein, 2,7-diaryl pyrene building blocks with high HOMO energies and large optical gaps are incorporated into G-quadruplex organic frameworks. The adjustable substitution on the aryl groups provides an opportunity to elucidate the framework formation mechanism; molecular non-planarity is found to be beneficial for restricting interlayer slippage, and the framework crystallinity is highest when intermolecular interaction and non-planarity strike a fine balance. When guanine-functionalized pyrenes are co-crystallized with naphthalene diimide, charge-transfer (CT) complexes are obtained. The photophysical properties of the pyrene-only and CT frameworks are characterized by UV/Vis and steady-state and time-resolved photoluminescence spectroscopies, and by EPR spectroscopy for the CT complex frameworks. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, Cabell
The costs associated with EVSE begin with picking the best location and unit for the job, but they continue with electricity and network charges through the life of your vehicle. This presentation tells how to balance electricity demand charges and network management costs through smart planning at your program's inception.
Theoretical investigation of gas-surface interactions
NASA Technical Reports Server (NTRS)
Dyall, Kenneth G.
1990-01-01
A Dirac-Hartree-Fock code was developed for polyatomic molecules. The program uses integrals over symmetry-adapted real spherical harmonic Gaussian basis functions generated by a modification of the MOLECULE integrals program. A single Gaussian function is used for the nuclear charge distribution, to ensure proper boundary conditions at the nuclei. The Gaussian primitive functions are chosen to satisfy the kinetic balance condition. However, contracted functions which do not necessarily satisfy this condition may be used. The Fock matrix is constructed in the scalar basis and transformed to a jj-coupled 2-spinor basis before diagonalization. The program was tested against numerical results for atoms with a Gaussian nucleus and diatomic molecules with point nuclei. The energies converge on the numerical values as the basis set size is increased. Full use of molecular symmetry (restricted to D sub 2h and subgroups) is yet to be implemented.
17 CFR 31.15 - Reporting to leverage customers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... short leverage contract. (3) The net ledger balance carried in the leverage customer's account as of the... customer; (4) A detailed accounting of all financial charges and credits to the previous ledger balance...-point type: IF YOU BELIEVE YOUR MONTHLY STATEMENT IS INACCURATE YOU SHOULD PROMPTLY CONTACT (name of LTM...
45 CFR 2541.230 - Period of availability of funds.
Code of Federal Regulations, 2010 CFR
2010-10-01
... LOCAL GOVERNMENTS Post-Award Requirements § 2541.230 Period of availability of funds. (a) General. Where... obligations of the funding period unless carryover of unobligated balances is permitted, in which case the carryover balances may be charged for costs resulting from obligations of the subsequent funding period. (b...
76 FR 6088 - Installed Systems and Equipment for Use by the Flightcrew
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-03
... requirements proposed here with the intent of achieving that balance. General Discussion of the Proposal..., ``General requirements.'' Under that section, the FAA is charged with prescribing regulations and minimum... appropriate balance is needed among them. There have been cases in the past where design characteristics known...
NASA Astrophysics Data System (ADS)
Lee, S.; Doyle, C. S.; Stebbins, J. F.
2001-12-01
Aluminosilicate melts are one of the dominant components in upper mantle and crust. Essential to the thermodynamic and transport properties of these systems is the full understanding on the atomic arrangements and the extent of disorder. Recent quantification of the extent of disorder among 'framework cations' in silicate melts using NMR provided improved prospects on the atomic structure of the glasses and melt and their corresponding properties and allowed the degree of randomness to be evaluated in terms of the degree of Al-avoidance (Q) and degree of phase separations (P) (Lee and Stebbins, J. Phys. Chem. B 104, 4091; Lee and Stebbins, GCA in press). Quantitative estimation of the extent of disorder among 'charge-balancing cations' including Na in aluminosilicate glasses, however, has remained an unsolved problem and these cations have often been assumed to be randomly distributed. Here, we explore the intermediate range order around Na in charge-balanced aluminosilicate glasses using Na-23 NMR and Near-edge X-ray absorption fine structure (NEXAFS) with full multiple scattering (FMS) simulations combined with ab initio molecular orbital calculations. We also quantify the extent of disorder in charge balancing cations as a function of Na-O bond length (d(Na-O)) distribution with composition and present a structural model favoring ordered Na distributions. Peak position in Na-23 magic angle spinning (MAS) spectra of aluminosilicate glasses with varying R (Si/Al) at 14.1 T varies from -10.28 ppm (R = 0.7) to -19.98 ppm (R = 6). These results suggest that average d(Na-O) increases with increasing R, which is confirmed by Na-23 multiple quantum MAS spectra where the chemical shift moves toward lower frequency with increasing Si and shows the individual Gaussian components of Na-O distributions such as Na-(Al-O-Al), Na-(Si-O-Al) and Na-(Si-O-Si). Calculated d(Na-(Al-O-Al)) of 2.57 Å is shorter than d(Na-(Si-O-Si)) of 2.88 Å. Strong compositional dependence is further manifested in Na K-edge NEXAFS spectra for aluminosilicate glasses that are characterized by two main peaks at about 1057 ev (A) and 1062 ev (B). The intensity ratio between peak A and B increases with increasing R, which is consistent with our FMS simulations of model clusters with R and implies that the Na has rather well ordered oxygen coordination and Na-O distribution depends on the types of nearby framework cations. The potential energy surfaces for model six-member rings (NaAl2Si4O6(OH)12, with and without Al-O-Al) were calculated using ab initio calculations at the HF/6-311G(d) level in order to investigate the equilibrium atomic configurations around Na. The results manifest the varying bonding preference of Na to different framework oxygens. Na is located at single deep and narrow basin in potential energy surfaces. The motion of Na is therefore restricted to near equilibrium position even at higher temperature contrary to conventional random distribution model with moderate Na mobility, demonstrating that dynamics of Na should be associated with the collective motions of framework cations and oxygens. In this study, we provide new insights into the nature of disorder in charge-balancing cations in silicate glasses using spectroscopy combined with simulations, highlighting more complete, atomic-level understanding on the dynamic processes in silicate magmas.
24 CFR 203.552 - Fees and charges after endorsement.
Code of Federal Regulations, 2010 CFR
2010-04-01
... AUTHORITIES SINGLE FAMILY MORTGAGE INSURANCE Servicing Responsibilities Payments, Charges and Accounts § 203... work performed including out-of-pocket expenses. Directors of HUD Area and Insuring Offices are... mortgage or the unpaid principal balance due on the mortgage. [41 FR 49736, Nov. 10, 1976, as amended at 52...
Forecasting College Costs Through 1988-89.
ERIC Educational Resources Information Center
Henderson, Cathy
1986-01-01
If inflation and unemployment remain low, then average annual increases in total student charges should continue to drop. The key to slower growth in student charges is sustained low inflation rates. The return of high unemployment or dramatic cuts in need-based federal student aid programs could upset the balance. (MLW)
20 CFR 345.403 - Multiple base year employers.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true Multiple base year employers. 345.403 Section... INSURANCE ACT EMPLOYERS' CONTRIBUTIONS AND CONTRIBUTION REPORTS Benefit Charging § 345.403 Multiple base... than one base year employer shall be charged to the cumulative benefit balances of such employers, as...
20 CFR 345.403 - Multiple base year employers.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false Multiple base year employers. 345.403 Section... INSURANCE ACT EMPLOYERS' CONTRIBUTIONS AND CONTRIBUTION REPORTS Benefit Charging § 345.403 Multiple base... than one base year employer shall be charged to the cumulative benefit balances of such employers, as...
20 CFR 345.403 - Multiple base year employers.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false Multiple base year employers. 345.403 Section... INSURANCE ACT EMPLOYERS' CONTRIBUTIONS AND CONTRIBUTION REPORTS Benefit Charging § 345.403 Multiple base... than one base year employer shall be charged to the cumulative benefit balances of such employers, as...
20 CFR 345.403 - Multiple base year employers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Multiple base year employers. 345.403 Section... INSURANCE ACT EMPLOYERS' CONTRIBUTIONS AND CONTRIBUTION REPORTS Benefit Charging § 345.403 Multiple base... than one base year employer shall be charged to the cumulative benefit balances of such employers, as...
Revisiting the Velocity Selector Problem with VPython
ERIC Educational Resources Information Center
Milbourne, Jeff; Lim, Halson
2015-01-01
The velocity selector is a classic first-year physics problem that demonstrates the influence of perpendicular electric and magnetic fields on a charged particle. Traditionally textbooks introduce this problem in the context of balanced forces, often asking for field strengths that would allow a charged particle, with a specific target velocity,…
Using the electrochemical dimension to build water/Ru(0001) phase diagram
NASA Astrophysics Data System (ADS)
Lespes, Nicolas; Filhol, Jean-Sébastien
2015-01-01
The water monolayer/Ru(0001) electrochemical phase diagram as a function of surface potential and temperature is built using a DFT approach. The monolayer structure with temperature is extracted following the zero-charge line in good agreement with experiments. Below 140 K, a mix of oppositely charged hydroxyl/water and hydride/water domains is found stable; above 140 K, water molecules desorb from the hydride phase leading to a mixture of oppositely charged surface hydride and hydroxyl/water phases; above 280 K, all the residual adsorbed water desorbs. For undissociated water, a Chain structure is found stable and desorbs above 150 K. The observed nano-sized domains are suggested to be the balance between hydroxyl/hydride repulsion that tends to create two well separated domains and opposite charging that tends to favor a domain mix. An isotopic effect is computed to reduce by a factor of 160 the kinetic rate of D2O dissociation (compared to H2O) and is linked to the reduction of the ZPE in the transition state caused by a proton transport chain. Water monolayer/Ru(0001) has a specific reactivity and its organization is highly sensitive to the surface potential suggesting that under electrochemical conditions, the potential is not only tuning directly the chemical reactivity but also indirectly through the solvent structure.
Han, Tae-Hee; Kim, Young-Hoon; Kim, Myung Hwan; Song, Wonjun; Lee, Tae-Woo
2016-03-09
We used various nondestructive analyses to investigate various host material systems in the emitting layer (EML) of simple-structured, green phosphorescent organic light-emitting diodes (OLEDs) to clarify how the host systems affect its luminous efficiency (LE) and operational stability. An OLED that has a unipolar single-host EML with conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) showed high operating voltage, low LE (∼26.6 cd/A, 13.7 lm/W), and short lifetime (∼4.4 h @ 1000 cd/m(2)). However, the combined use of a gradient mixed-host EML and a molecularly controlled HIL that has increased surface work function (WF) remarkably decreased operating voltage and improved LE (∼68.7 cd/A, 77.0 lm/W) and lifetime (∼70.7 h @ 1000 cd/m(2)). Accumulated charges at the injecting interfaces and formation of a narrow recombination zone close to the interfaces are the major factors that accelerate degradation of charge injection/transport and electroluminescent properties of OLEDs, so achievement of simple-structured OLEDs with high efficiency and long lifetime requires facilitating charge injection and balanced transport into the EML and distributing charge carriers and excitons in EML.
Chemical and biochemical thermodynamics: Is it time for a reunification?
Iotti, Stefano; Raff, Lionel; Sabatini, Antonio
2017-02-01
The thermodynamics of chemical reactions in which all species are explicitly considered with atoms and charge balanced is compared with the transformed thermodynamics generally used to treat biochemical reactions where atoms and charges are not balanced. The transformed thermodynamic quantities suggested by Alberty are obtained by execution of Legendre transformation of the usual thermodynamic potentials. The present analysis demonstrates that the transformed values for Δ r G' 0 and Δ r H' 0 can be obtained directly without performing Legendre transformations by simply writing the chemical reactions with all the pseudoisomers explicitly included and charges balanced. The appropriate procedures for computing the stoichiometric coefficients for the pseudoisomers are fully explained by means of an example calculation for the biochemical ATP hydrolysis reaction. It is concluded that the analysis has reunited the "two separate worlds" of conventional thermodynamics and transformed thermodynamics. In addition, it is also shown that the value of the conditional Gibbs energy of reaction, Δ r G', for a biochemical reaction is the same of the value of Δ r G for any chemical reaction involving pseudoisomers of the biochemical reagents. Copyright © 2016 Elsevier B.V. All rights reserved.
Ion energy balance in enhanced-confinement reversed-field pinch plasmas
NASA Astrophysics Data System (ADS)
Xing, Z. A.; Nornberg, M. D.; Boguski, J.; Craig, D.; den Hartog, D. J.; McCollam, K.
2017-10-01
Testing the applicability of collisional ion transport theory using tearing suppressed RFP plasma in MST achieved through Pulsed Poloidal Current Drive (PPCD), we find that the ion temperature dynamics in the core to be well-predicted by classical and collisional terms. Prior work demonstrated that impurity ion particle transport in PPCD plasmas is classical. Neoclassical effects on ions in the RFP are small and the stochastic transport is greatly suppressed during PPCD. Recent neutral modelling with DEGAS2 suggests higher core neutral temperatures than expected due to the preferential penetration of higher temperature neutrals generated by charge exchange. Further, investigations through equilibrium reconstruction point to the existence of an inward pinch flow associated with ExB drift. The heat balance model pulls together a wide range of diagnostic data to forward model Ti evolution in PPCD, which is then compared to charge exchange spectroscopy measurements of Ti. Ion power balance is mostly driven by classical effects including compressional heating, electron collisional heating, and charge exchange transport. This understanding provides a good baseline for investigations of anomalous heating in plasmas with tearing mode activity. This work is supported by US DOE.
An Investigation of Low Earth Orbit Internal Charging
NASA Technical Reports Server (NTRS)
NeergaardParker, Linda; Minow, Joseph I.; Willis, Emily M.
2014-01-01
Low Earth orbit is usually considered a relatively benign environment for internal charging threats due to the low flux of penetrating electrons with energies of a few MeV that are encountered over an orbit. There are configurations, however, where insulators and ungrounded conductors used on the outside of a spacecraft hull may charge when exposed to much lower energy electrons of some 100's keV in a process that is better characterized as internal charging than surface charging. For example, the minimal radiation shielding afforded by thin thermal control materials such as metalized polymer sheets (e.g., aluminized Kapton or Mylar) and multilayer insulation may allow electrons of 100's of keV to charge underlying materials. Yet these same thermal control materials protect the underlying insulators and ungrounded conductors from surface charging currents due to electrons and ions at energies less than a few keV as well as suppress the photoemission, secondary electron, and backscattered electron processes associated with surface charging. We investigate the conditions required for this low Earth orbit "internal charging" to occur and evaluate the environments for which the process may be a threat to spacecraft. First, we describe a simple one-dimensional internal charging model that is used to compute the charge accumulation on materials under thin shielding. Only the electron flux that penetrates exposed surface shielding material is considered and we treat the charge balance in underlying insulation as a parallel plate capacitor accumulating charge from the penetrating electron flux and losing charge due to conduction to a ground plane. Charge dissipation due to conduction can be neglected to consider the effects of charging an ungrounded conductor. In both cases, the potential and electric field is computed as a function of time. An additional charge loss process is introduced due to an electrostatic discharge current when the electric field reaches a prescribed breakdown strength. For simplicity, the amount of charge lost in the discharge is treated as a random percentage of the total charge between a set maximum and minimum amount so a user can consider partial discharges of insulating materials (small loss of charge) or arcing from a conductor (large loss of charge). We apply the model to electron flux measurements from the NOAA-19 spacecraft to demonstrate that charging can reach levels where electrostatic discharges occur and estimate the magnitude of the discharge.
Observational aspects of polycyclic aromatic hydrocarbon charging in the Interstellar Medium
NASA Technical Reports Server (NTRS)
Bakes, E. L. O.; Tielens, Alexander G. G. M.
1995-01-01
We have investigated the charging processes which affect small carbonaceous dust grains and polycyclic aromatic hydrocarbons (PAH's). Because of their high abundance, interstellar PAH molecules can dominate the charge balance of the interstellar medium (ISM), which controls the heating and cooling interstellar gas and interstellar chemistry. We present the results of our model, which compare well with observations and suggest further applications to both laboratory measurements and data obtainable from the KAO.
Shao, Mei; Hirsch, June C.
2012-01-01
After unilateral peripheral vestibular lesions, the brain plasticity underlying early recovery from the static symptoms is not fully understood. Principal cells of the chick tangential nucleus offer a subset of morphologically defined vestibular nuclei neurons to study functional changes after vestibular lesions. Chickens show posture and balance deficits immediately after unilateral vestibular ganglionectomy (UVG), but by 3 days most subjects begin to recover, although some remain uncompensated. With the use of whole cell voltage-clamp, spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) and miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs) were recorded from principal cells in brain slices 1 and 3 days after UVG. One day after UVG, sEPSC frequency increased on the lesion side and remained elevated at 3 days in uncompensated chickens only. Also by 3 days, sIPSC frequency increased on the lesion side in all operated chickens due to major increases in GABAergic events. Significant change also occurred in decay time of the events. To determine whether fluctuations in frequency and kinetics influenced overall excitatory or inhibitory synaptic drive, synaptic charge transfer was calculated. Principal cells showed significant increase in excitatory synaptic charge transfer only on the lesion side of uncompensated chickens. Thus compensation continues when synaptic charge transfer is in balance bilaterally. Furthermore, excessive excitatory drive in principal cells on the lesion side may prevent vestibular compensation. Altogether, this work is important for it defines the time course and excitatory and inhibitory nature of changing spontaneous synaptic inputs to a morphologically defined subset of vestibular nuclei neurons during critical early stages of recovery after UVG. PMID:21957228
Jin, Xiao; Chang, Chun; Zhao, Weifeng; Huang, Shujuan; Gu, Xiaobing; Zhang, Qin; Li, Feng; Zhang, Yubao; Li, Qinghua
2018-05-09
The electron-blocking layer (EBL) is important to balance the charge carrier transfer and achieve highly efficient quantum dot light-emitting diodes (QLEDs). Here, we report the utilization of a soluble tert-butyldimethylsilyl chloride-modified poly( p-phenylene benzobisoxazole) (TBS-PBO) as an EBL for simultaneous good charge carrier transfer balance while maintaining a high current density. We show that the versatile TBS-PBO blocks excess electron injection into the quantum dots (QDs), thus leading to better charge carrier transfer balance. It also restricts the undesired QD-to-EBL electron-transfer process, which preserves the superior emission capabilities of the emitter. As a consequence, the TBS-PBO device delivers an external quantum efficiency (EQE) maximum of 16.7% along with a remarkable current density as high as 139 mA/cm 2 with a brightness of 5484 cd/m 2 . The current density of our device is higher than those of insulator EBL-based devices because of the higher conductivity of the TBS-PBO versus insulator EBL, thus helping achieve high luminance values ranging from 1414 to 20 000 cd/cm 2 with current densities ranging from 44 to 648 mA/cm 2 and EQE > 14%. We believe that these unconventional features of the present TBS-PBO-based QLEDs will expand the wide use of TBS-PBO as buffer layers in other advanced QLED applications.
Assessing District Energy Systems Performance Integrated with Multiple Thermal Energy Storages
NASA Astrophysics Data System (ADS)
Rezaie, Behnaz
The goal of this study is to examine various energy resources in district energy (DE) systems and then DE system performance development by means of multiple thermal energy storages (TES) application. This study sheds light on areas not yet investigated precisely in detail. Throughout the research, major components of the heat plant, energy suppliers of the DE systems, and TES characteristics are separately examined; integration of various configurations of the multiple TESs in the DE system is then analysed. In the first part of the study, various sources of energy are compared, in a consistent manner, financially and environmentally. The TES performance is then assessed from various aspects. Then, TES(s) and DE systems with several sources of energy are integrated, and are investigated as a heat process centre. The most efficient configurations of the multiple TESs integrated with the DE system are investigated. Some of the findings of this study are applied on an actual DE system. The outcomes of this study provide insight for researchers and engineers who work in this field, as well as policy makers and project managers who are decision-makers. The accomplishments of the study are original developments TESs and DE systems. As an original development the Enviro-Economic Function, to balance the economic and environmental aspects of energy resources technologies in DE systems, is developed; various configurations of multiple TESs, including series, parallel, and general grid, are developed. The developed related functions are discharge temperature and energy of the TES, and energy and exergy efficiencies of the TES. The TES charging and discharging behavior of TES instantaneously is also investigated to obtain the charging temperature, the maximum charging temperature, the charging energy flow, maximum heat flow capacity, the discharging temperature, the minimum charging temperature, the discharging energy flow, the maximum heat flow capacity, and performance cycle time functions of the TES. Expanding to analysis of one TES integrated with the DE system, characteristics of various configurations of TES integrated with DE systems are obtained as functions of known properties, energy and exergy balances of the DE system including the TES(s); and energy and exergy efficiencies of the DE system. The energy, exergy, economic, and CO2 emissions of various energy options for the DE system are investigated in a consistent manner. Different sources of energy considered include natural gas, solar energy, ground source heat pump (GSHP), and municipal solid waste. The economic and environmental aspects and prioritization, and the advantages of each technology are reported. A community-based DE system is considered as a case study. For the considered case study, various existing sizing methods are applied, and then compared. The energy sources are natural gas, solar thermal, geothermal, and solid waste. The technologies are sized for each energy option, then the CO2 emissions and economic characteristics of each technology are analysed. The parallel configuration of the TESs delivers more energy to the DE system compared with other configurations, when the stored energy is the same. With increasing the number of parallel TESs results in a higher energy supply to the DE system. The efficiency of the set of the TESs is also improved by increasing the number of parallel TESs. The tax policy, including the tax benefits and carbon tax, is a strong tool which will influence the overall cost of the energy supplier's technology for the DE systems. The Enviro-Economic Function for the TESs is proposed and is integrated with the DE system, which suggests that the number of TESs required. The energy and exergy analyses are applied to the charging and discharging stages of an actual TES in the Friedrichshafen DE system. For the Friedrichshafen DE system, the performance is analysed based on energy and exergy analyses approach. Furthermore, by using the developed functions in the present study some modifications are suggested for the Friedrichshafen DE system for better performance.
The effect of dust charge variation, due to ion flow and electron depletion, on dust levitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Land, Victor; Douglass, Angela; Qiao Ke
2011-11-29
Using a fluid model, the plasma densities, electron temperature and ion Mach number in front of a powered electrode in different plasma discharges is computed. The dust charge is computed using OML theory for Maxwellian electrons and ions distributed according to a shifted-Maxwellian. By assuming force balance between gravity and the electrostatic force, the dust levitation height is obtained. The importance of the dust charge variation is investigated.
2012-09-23
balance between disordered SAMs to promote large pentacene grains and thick SAMs to aid in physically buffering the charge carriers in pentacene from...to 0.76 µF/cm2), and enhanced pentacene OFET device performance such as higher charge carrier mobility, current on/off ratio, and lower threshold...surface charge trap • Tuning of surface energy • Control of surface group orientation SAM/MO ultrathin dielectric: • Low-voltage operation
Wong, Alice M K; Lan, Ching
2008-01-01
Balance function begins to decline from middle age on, and poor balance function increases the risk of fall and injury. Suitable exercise training may improve balance function and prevent accidental falls. The coordination of visual, proprioceptive, vestibular and musculoskeletal system is important to maintain balance. Balance function can be evaluated by functional balance testing and sensory organization testing. Tai Chi Chuan (TC) is a popular conditioning exercise in the Chinese community, and recent studies substantiate that TC is effective in balance function enhancement and falls prevention. In studies utilizing functional balance testing, TC may increase the duration of one-leg standing and the distance of functional reach. In studies utilizing sensory organization testing, TC improves static and dynamic balance, especially in more challenging sensory perturbed condition. Therefore, TC may be prescribed as an alternative exercise program for elderly subjects or balance-impaired patients. Participants can choose to perform a complete set of TC or selected movements according to their needs. In conclusion, TC may improve balance function and is appropriate for implementation in the community.
Subunit assembly of hemoglobin: an important determinant of hematologic phenotype.
Bunn, H F
1987-01-01
Hemoglobin's physiologic properties depend on the orderly assembly of its subunits in erythropoietic cells. The biosynthesis of alpha- and beta-globin polypeptide chains is normally balanced. Heme rapidly binds to the globin subunit, either during translation or shortly thereafter. The formation of the alpha beta-dimer is facilitated by electrostatic attraction of a positively charged alpha-subunit to a negatively charged beta-subunit. The alpha beta-dimer dissociates extremely slowly. The difference between the rate of dissociation of alpha beta- and alpha gamma-dimers with increasing pH explains the well-known alkaline resistance of Hb F. Two dimers combine to form the functioning alpha 2 beta 2-tetramer. This model of hemoglobin assembly explains the different levels of positively charged and negatively charged mutant hemoglobins that are encountered in heterozygotes and the effect of alpha-thalassemia and heme deficiency states in modifying the level of the variant hemoglobin as well as Hb A2. Electrostatic interactions also affect the binding of hemoglobin to the cytoplasmic surface of the red cell membrane and may underlie the formation of target cells. Enhanced binding of positively charged variants such as S and C trigger a normally dormant pathway for potassium and water loss. Thus, the positive charge on beta c is responsible for the two major contributors to the pathogenesis of Hb SC disease: increased proportion of Hb S and increased intracellular hemoglobin concentration. It is likely that electrostatic interactions play an important role in the assembly of a number of other multisubunit macromolecules, including membrane receptors, cytoskeletal proteins, and DNA binding proteins.
Controlling Two-dimensional Tethered Vesicle Motion Using an Electric Field
Yoshina-Ishii, Chiaki; Boxer, Steven G.
2008-01-01
We recently introduced methods to tether phospholipid vesicles or proteoliposomes onto a fluid supported lipid bilayer using DNA hybridization. These intact tethered vesicles diffuse in two dimensions parallel to the supporting membrane surface. In this paper, we report the dynamic response of individual tethered vesicles to an electric field applied parallel to the bilayer surface. Vesicles respond to the field by moving in the direction of electro-osmotic flow, and this can be used to reversibly concentrate tethered vesicles against a barrier. By adding increasing amounts of negatively charged phosphatidylserine to the supporting bilayer to increase electro-osmosis, the electrophoretic mobility of the tethered vesicles can be increased. The electro-osmotic contribution can be modeled well by a sphere connected to a cylindrical anchor in a viscous membrane with charged head groups. The electrophoretic force on the negatively charged tethered vesicles opposes the electro-osmotic force. By increasing the amount of negative charge on the tethered vesicle, drift in the direction of electro-osmotic flow can be slowed; at high negative charge on the tethered vesicle, motion can be forced in the direction of electrophoresis. The balance between these forces can be visualized on a patterned supporting bilayer containing negatively charged lipids which themselves reorganize in an externally applied electric field to create a gradient of charge within a corralled region. The charge gradient at the surface creates a gradient of electro-osmotic flow, and vesicles carrying similar amounts of negative charge can be focused to a region perpendicular to the applied field where electrophoresis is balanced by electro-osmosis, away from the corral boundary. Electric fields are effective tools to direct tethered vesicles, concentrate them and to measure the tethered vesicle’s electrostatic properties. PMID:16489833
Electron correlation and the self-interaction error of density functional theory
NASA Astrophysics Data System (ADS)
Polo, Victor; Kraka, Elfi; Cremer, Dieter
The self-interaction error (SIE) of commonly used DFT functionals has been systematically investigated by comparing the electron density distribution ρ( r ) generated by self-interaction corrected DFT (SIC-DFT) with a series of reference densities obtained by DFT or wavefunction theory (WFT) methods that cover typical electron correlation effects. Although the SIE of GGA functionals is considerably smaller than that of LDA functionals, it has significant consequences for the coverage of electron correlation effects at the DFT level of theory. The exchange SIE mimics long range (non-dynamic) pair correlation effects, and is responsible for the fact that the electron density of DFT exchange-only calculations resembles often that of MP4, MP2 or even CCSD(T) calculations. Changes in the electron density caused by SICDFT exchange are comparable with those that are associated with HF exchange. Correlation functionals contract the density towards the bond and the valence region, thus taking negative charge out of the van der Waals region where these effects are exaggerated by the influence of the SIE of the correlation functional. Hence, SIC-DFT leads in total to a relatively strong redistribution of negative charge from van der Waals, non-bonding, and valence regions of heavy atoms to the bond regions. These changes, although much stronger, resemble those obtained when comparing the densities of hybrid functionals such as B3LYP with the corresponding GGA functional BLYP. Hence, the balanced mixing of local and non-local exchange and correlation effects as it is achieved by hybrid functionals mimics SIC-DFT and can be considered as an economic way to include some SIC into standard DFT. However, the investigation shows also that the SIC-DFT description of molecules is unreliable because the standard functionals used were optimized for DFT including the SIE.
On the possibility of collective attraction in complex plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaudhuri, M.; Morfill, G. E.; Kompaneets, R.
2010-06-15
An investigation on the possible collective electric attraction between like-charged dust particles has been performed in an isotropic homogeneous complex (dusty) plasma in which a balance between plasma creation due to ionization and plasma loss due to the absorption on dust particles has been reached. The analysis is made on the basis of a self-consistent fluid model, which includes plasma ionization, plasma loss on dust particles, dust charge variations, and ion-neutral friction. It is shown that the interaction potential can have an attractive part in the stability regime of the ionization-absorption balance with respect to ion perturbations only under verymore » limited circumstances.« less
26 CFR 1.163-2 - Installment purchases where interest charge is not separately stated.
Code of Federal Regulations, 2010 CFR
2010-04-01
.... (a) In general. (1) Whenever there is a contract with a seller for the purchase of personal property... payments to be treated as interest shall be equal to 6 percent of the average unpaid balance under the contract during the taxable year. For purposes of this computation, the average unpaid balance under the...
Advanced Modular "All in One" Battery System with Intelligent Autonomous Cell Balancing Management
NASA Astrophysics Data System (ADS)
Petitdidier, X.; Pasquier, E.; Defer, M.; Koch, M.; Knorr, W.
2008-09-01
A new generation of energy storage systems based on Li-ion technology emerged at the end of the last century.To perform the first tests in safe conditions, Saft designed a simple electronic.Today, all Li-ion batteries for autonomous applications such as drones, launchers, missiles, torpedoes and "human" applications such as cellular, laptop, hybrid vehicle and nearly sub-marines need a Battery Management System.The minimum in terms of functions is the overcharge and over-discharge protections.For a battery made of 2 cells connected in series or more, a balancing system is added to maintain the available energy during all the life of the battery. For stringent/demanding applications, the state of charge and state of health are calculated by one or more computers.It is now time to take benefit of the past 10 years of Saft's experience in the domain to re-evaluate the constraints of Li-ion batteries and provide customers with improved products by optimizing the battery management.Benefits of electronic for satellite applications:• Full control over battery.• Confidence whatever the possible change of conditions in environment.• The battery system can resist long exposure to gradient conditions with mitigated and stabilized impact on performances.• The balancing function allow to use all the energy of all the cells: optimize of installed energy (compact design, mass saving). It started out with the basic fact that electrochemists are not intended to be space rated electronic experts and vice versa, even if Saft has a good heritage in the electronic battery management system. Consequently, considering heritage and expertise in their respective core businesses, Saft and ASP teamed up.It became necessary to provide an "all in one" modular energy storage system with intelligent autonomous cell balancing management.
Direct measurement of sub-Debye-length attraction between oppositely charged surfaces.
Kampf, Nir; Ben-Yaakov, Dan; Andelman, David; Safran, S A; Klein, Jacob
2009-09-11
Using a surface force balance with fast video analysis, we have measured directly the attractive forces between oppositely charged solid surfaces (charge densities sigma(+), sigma(-)) across water over the entire range of interaction, in particular, at surface separations D below the Debye screening length lambda(S). At very low salt concentration we find a long-ranged attraction between the surfaces (onset ca. 100 nm), whose variation at D
Insulator edge voltage gradient effects in spacecraft charging phenomena
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Purvis, C. K.; Staskus, J. V.
1978-01-01
Insulating surfaces on geosynchronous satellites were charged by geomagnetic substorms to a point where discharges occur. The electromagnetic pulses from these discharges couple into satellite electronic systems disrupting operations are examined. Laboratory tests conducted on insulator charging have indicated that discharges appear to be initiated at insulator edges where voltage gradients can exist. An experimental investigation was conducted to measure edge voltage gradients on silvered Teflon samples as they are charged by monoenergetic electron beams. It was found that the surface voltage at insulator edges can be approximated by an exponential expression based on an electron current density balance.
12 CFR 226.5a - Credit and charge card applications and solicitations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... used to compute the finance charge on an outstanding balance for purchases, a cash advance, or a... applicable shall also be disclosed. The annual percentage rate for purchases disclosed pursuant to this... for the use of the card for purchases. (5) Grace period. The date by which or the period within which...
Improvement and scale-up of the NASA Redox storage system
NASA Technical Reports Server (NTRS)
Reid, M. A.; Thaller, L. H.
1980-01-01
A preprototype full-function 1.0 kW Redox system (2 kW peak) with 11 kW storage capacity has been built and integrated with the NASA/DOE photovoltaic test facility. The system includes four substacks of 39 cells each (1/3 sq ft active area) which are connected hydraulically in parallel and electrically in series. An open circuit voltage cell and a set of rebalance cells are used to continuously monitor the system state of charge and automatically maintain the anode and cathode reactants electrochemically in balance. Technological advances in membrane and electrodes and results of multicell stack tests are reviewed.
Daneshzand, Mohammad; Faezipour, Miad; Barkana, Buket D.
2017-01-01
Deep brain stimulation (DBS) has compelling results in the desynchronization of the basal ganglia neuronal activities and thus, is used in treating the motor symptoms of Parkinson's disease (PD). Accurate definition of DBS waveform parameters could avert tissue or electrode damage, increase the neuronal activity and reduce energy cost which will prolong the battery life, hence avoiding device replacement surgeries. This study considers the use of a charge balanced Gaussian waveform pattern as a method to disrupt the firing patterns of neuronal cell activity. A computational model was created to simulate ganglia cells and their interactions with thalamic neurons. From the model, we investigated the effects of modified DBS pulse shapes and proposed a delay period between the cathodic and anodic parts of the charge balanced Gaussian waveform to desynchronize the firing patterns of the GPe and GPi cells. The results of the proposed Gaussian waveform with delay outperformed that of rectangular DBS waveforms used in in-vivo experiments. The Gaussian Delay Gaussian (GDG) waveforms achieved lower number of misses in eliciting action potential while having a lower amplitude and shorter length of delay compared to numerous different pulse shapes. The amount of energy consumed in the basal ganglia network due to GDG waveforms was dropped by 22% in comparison with charge balanced Gaussian waveforms without any delay between the cathodic and anodic parts and was also 60% lower than a rectangular charged balanced pulse with a delay between the cathodic and anodic parts of the waveform. Furthermore, by defining a Synchronization Level metric, we observed that the GDG waveform was able to reduce the synchronization of GPi neurons more effectively than any other waveform. The promising results of GDG waveforms in terms of eliciting action potential, desynchronization of the basal ganglia neurons and reduction of energy consumption can potentially enhance the performance of DBS devices. PMID:28848417
Daneshzand, Mohammad; Faezipour, Miad; Barkana, Buket D
2017-01-01
Deep brain stimulation (DBS) has compelling results in the desynchronization of the basal ganglia neuronal activities and thus, is used in treating the motor symptoms of Parkinson's disease (PD). Accurate definition of DBS waveform parameters could avert tissue or electrode damage, increase the neuronal activity and reduce energy cost which will prolong the battery life, hence avoiding device replacement surgeries. This study considers the use of a charge balanced Gaussian waveform pattern as a method to disrupt the firing patterns of neuronal cell activity. A computational model was created to simulate ganglia cells and their interactions with thalamic neurons. From the model, we investigated the effects of modified DBS pulse shapes and proposed a delay period between the cathodic and anodic parts of the charge balanced Gaussian waveform to desynchronize the firing patterns of the GPe and GPi cells. The results of the proposed Gaussian waveform with delay outperformed that of rectangular DBS waveforms used in in-vivo experiments. The Gaussian Delay Gaussian (GDG) waveforms achieved lower number of misses in eliciting action potential while having a lower amplitude and shorter length of delay compared to numerous different pulse shapes. The amount of energy consumed in the basal ganglia network due to GDG waveforms was dropped by 22% in comparison with charge balanced Gaussian waveforms without any delay between the cathodic and anodic parts and was also 60% lower than a rectangular charged balanced pulse with a delay between the cathodic and anodic parts of the waveform. Furthermore, by defining a Synchronization Level metric, we observed that the GDG waveform was able to reduce the synchronization of GPi neurons more effectively than any other waveform. The promising results of GDG waveforms in terms of eliciting action potential, desynchronization of the basal ganglia neurons and reduction of energy consumption can potentially enhance the performance of DBS devices.
Hydrogen incorporation and charge balance in natural zircon
NASA Astrophysics Data System (ADS)
De Hoog, J. C. M.; Lissenberg, C. J.; Brooker, R. A.; Hinton, R.; Trail, D.; Hellebrand, E.
2014-09-01
The water and trace element contents of natural igneous zircons were determined to constrain the mechanism of hydrogen incorporation. The low radiation-damage zircons were derived from Fe-Ti oxide gabbros from the Vema Fracture Zone (11°N, Mid-Atlantic Ridge). They contain up to 1212 ppmw H2O, 1.9 wt.% Y2O3 and 0.6 wt.% P2O5 and are generally strongly zoned. REE + Y are partially charge-balanced by P (Y, REE3+ + P5+ = Zr4+ + Si4+), but a large REE excess is present. On an atomic basis, this excess is closely approximated by the amount of H present in the zircons. We therefore conclude that H is incorporated by a charge-balance mechanism (H+ + REE3+ = Zr4+). This interpretation is consistent with FTIR data of the Vema zircons, which shows a strongly polarised main absorption band at ca. 3100 cm-1, similar to experimentally grown Lu-doped hydrous zircon. The size of this 3100 cm-1 band scales with H and REE contents. Apart from a small overlapping band at 3200 cm-1, no other absorption bands are visible, indicating that a hydrogrossular-type exchange mechanism does not appear to be operating in these zircons. Because of charge-balanced uptake of H, P and REE in zircon, the partitioning of these elements into zircon is dependent on each of their concentrations. For instance, DREEzrc/melt increases with increasing H and P contents of the melt, whereas DHzrc/melt increases with increasing REE content but decreases with increasing P content. In addition, H-P-REE systematics of sector zoning indicate kinetic effects may play an important role. Hence, using H in zircon to determine the water content of melts is problematic, and REE partitioning studies need to take into account P and H2O contents of the melt.
Takahashi, Masateru; Takahashi, Etsuko; Joudeh, Luay I; Marini, Monica; Das, Gobind; Elshenawy, Mohamed M; Akal, Anastassja; Sakashita, Kosuke; Alam, Intikhab; Tehseen, Muhammad; Sobhy, Mohamed A; Stingl, Ulrich; Merzaban, Jasmeen S; Di Fabrizio, Enzo; Hamdan, Samir M
2018-01-24
The deep-sea brines of the Red Sea are remote and unexplored environments characterized by high temperatures, anoxic water, and elevated concentrations of salt and heavy metals. This environment provides a rare system to study the interplay between halophilic and thermophilic adaptation in biologic macromolecules. The present article reports the first DNA polymerase with halophilic and thermophilic features. Biochemical and structural analysis by Raman and circular dichroism spectroscopy showed that the charge distribution on the protein's surface mediates the structural balance between stability for thermal adaptation and flexibility for counteracting the salt-induced rigid and nonfunctional hydrophobic packing. Salt bridge interactions via increased negative and positive charges contribute to structural stability. Salt tolerance, conversely, is mediated by a dynamic structure that becomes more fixed and functional with increasing salt concentration. We propose that repulsive forces among excess negative charges, in addition to a high percentage of negatively charged random coils, mediate this structural dynamism. This knowledge enabled us to engineer a halophilic version of KOD DNA polymerase.-Takahashi, M., Takahashi, E., Joudeh, L. I., Marini, M., Das, G., Elshenawy, M. M., Akal, A., Sakashita, K., Alam, I., Tehseen, M., Sobhy, M. A., Stingl, U., Merzaban, J. S., Di Fabrizio, E., Hamdan, S. M. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.
Reeve, Stephanie M; Scocchera, Eric; Ferreira, Jacob J; G-Dayanandan, Narendran; Keshipeddy, Santosh; Wright, Dennis L; Anderson, Amy C
2016-07-14
Drug-resistant enzymes must balance catalytic function with inhibitor destabilization to provide a fitness advantage. This sensitive balance, often involving very subtle structural changes, must be achieved through a selection process involving a minimal number of eligible point mutations. As part of a program to design propargyl-linked antifolates (PLAs) against trimethoprim-resistant dihydrofolate reductase (DHFR) from Staphylococcus aureus, we have conducted a thorough study of several clinically observed chromosomal mutations in the enzyme at the cellular, biochemical, and structural levels. Through this work, we have identified a promising lead series that displays significantly greater activity against these mutant enzymes and strains than TMP. The best inhibitors have enzyme inhibition and MIC values near or below that of trimethoprim against wild-type S. aureus. Moreover, these studies employ a series of crystal structures of several mutant enzymes bound to the same inhibitor; analysis of the structures reveals a more detailed molecular understanding of drug resistance in this important enzyme.
Smith, Tyler; Elson, Leah; Anderson, Christopher; Leone, William
2016-01-01
Despite technological advances in operative technique and component materials, the total knee arthroplasty (TKA) revision burden, in the United States, has remained static for the past decade. In light of an anticipated exponential increase in annual surgical volume, it is important to thoroughly understand contemporary challenges associated with technologically driven TKA. This descriptive literature review harvested 69 relevant publications to extrapolate patient trends, benefits, costs, and complications associated with computer-assisted surgery, patient specific instrumentation, and intra-operative sensors. Due to additional charges, a steep learning curve, and questionable cost-effectiveness, widespread use of these systems has been limited. Intra-operative sensors are a relatively recent development, and have been shown to improve both soft-tissue balance and overall functional outcomes at a relatively low price and without disrupting operative workflow. The introduction of new technology into the operating suite should be considered carefully, especially with respect to combined clinically efficacy and cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atayan, M.R.; Gulkanyan, H.; Bai Yuting
Rapidity, azimuthal and multiplicity dependence of mean transverse momentum and transverse momentum correlations of charged particles is studied in {pi}{sup +}p and K{sup +}p collisions at 250 GeV/c incident beam momentum. For the first time, it is found that the rapidity dependence of the two-particle transverse momentum correlation is different from that of the mean transverse momentum, but both have similar multiplicity dependence. In particular, the transverse momentum correlations are boost invariant. This is similar to the recently found boost invariance of the charge balance function. A strong azimuthal dependence of the transverse momentum correlations originates from the constraint ofmore » energy-momentum conservation. The results are compared with those from the PYTHIA Monte Carlo generator. The similarities to and differences with the results from current heavy ion experiments are discussed.« less
Shu, Longfei; Suter, Marc J-F; Laurila, Anssi; Räsänen, Katja
2015-11-01
Environmental stress, such as acidification, can challenge persistence of natural populations and act as a powerful evolutionary force at ecological time scales. The ecological and evolutionary responses of natural populations to environmental stress at early life-stages are often mediated via maternal effects. During early life-stages, maternal effects commonly arise from egg coats (the extracellular structures surrounding the embryo), but the role of egg coats has rarely been studied in the context of adaptation to environmental stress. Previous studies on the moor frog Rana arvalis found that the egg coat mediated adaptive divergence along an acidification gradient in embryonic acid stress tolerance. However, the exact mechanisms underlying these adaptive maternal effects remain unknown. Here, we investigated the role of water balance and charge state (zeta potential) of egg jelly coats in embryonic adaptation to acid stress in three populations of R. arvalis. We found that acidic pH causes severe water loss in the egg jelly coat, but that jelly coats from an acid-adapted population retained more water than jelly coats from populations not adapted to acidity. Moreover, embryonic acid tolerance (survival at pH 4.0) correlated with both water loss and charge state of the jelly, indicating that negatively charged glycans influence jelly water balance and contribute to embryonic adaptation to acidity. These results indicate that egg coats can harbor extensive intra-specific variation, probably facilitated in part via strong selection on water balance and glycosylation status of egg jelly coats. These findings shed light on the molecular mechanisms of environmental stress tolerance and adaptive maternal effects.
Gautam, Bhoj R; Lee, Changyeon; Younts, Robert; Lee, Wonho; Danilov, Evgeny; Kim, Bumjoon J; Gundogdu, Kenan
2015-12-23
All-polymer solar cells exhibit rapid progress in power conversion efficiency (PCE) from 2 to 7.7% over the past few years. While this improvement is primarily attributed to efficient charge transport and balanced mobility between the carriers, not much is known about the charge generation dynamics in these systems. Here we measured exciton relaxation and charge separation dynamics using ultrafast spectroscopy in polymer/polymer blends with different molecular packing and morphology. These measurements indicate that preferential face-on configuration with intermixed nanomorphology increases the charge generation efficiency. In fact, there is a direct quantitative correlation between the free charge population in the ultrafast time scales and the external quantum efficiency, suggesting not only the transport but also charge generation is key for the design of high performance all polymer solar cells.
12 CFR Appendix G to Part 226 - Open-End Model Forms and Clauses
Code of Federal Regulations, 2011 CFR
2011-01-01
... RESERVE SYSTEM TRUTH IN LENDING (REGULATION Z) Pt. 226, App. G Appendix G to Part 226—Open-End Model Forms... charges]. We do not add in any new [purchases/advances/loans]. This gives us the daily balance. Then, we... “average daily balance” we take the beginning balance of your account each day, add any new [purchases...
12 CFR Appendix G to Part 226 - Open-End Model Forms and Clauses
Code of Federal Regulations, 2010 CFR
2010-01-01
... the “adjusted balance” by taking the balance you owed at the end of the previous billing cycle and... cycle. (b) Previous balance method We figure [a portion of] the finance charge on your account by applying the periodic rate to the amount you owe at the beginning of each billing cycle [minus any unpaid...
Discrete bivariate population balance modelling of heteroaggregation processes.
Rollié, Sascha; Briesen, Heiko; Sundmacher, Kai
2009-08-15
Heteroaggregation in binary particle mixtures was simulated with a discrete population balance model in terms of two internal coordinates describing the particle properties. The considered particle species are of different size and zeta-potential. Property space is reduced with a semi-heuristic approach to enable an efficient solution. Aggregation rates are based on deterministic models for Brownian motion and stability, under consideration of DLVO interaction potentials. A charge-balance kernel is presented, relating the electrostatic surface potential to the property space by a simple charge balance. Parameter sensitivity with respect to the fractal dimension, aggregate size, hydrodynamic correction, ionic strength and absolute particle concentration was assessed. Results were compared to simulations with the literature kernel based on geometric coverage effects for clusters with heterogeneous surface properties. In both cases electrostatic phenomena, which dominate the aggregation process, show identical trends: impeded cluster-cluster aggregation at low particle mixing ratio (1:1), restabilisation at high mixing ratios (100:1) and formation of complex clusters for intermediate ratios (10:1). The particle mixing ratio controls the surface coverage extent of the larger particle species. Simulation results are compared to experimental flow cytometric data and show very satisfactory agreement.
Surface charge accumulation of particles containing radionuclides in open air
Kim, Yong-ha; Yiacoumi, Sotira; Tsouris, Costas
2015-05-01
Radioactivity can induce charge accumulation on radioactive particles. But, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. Moreover, a charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify themore » particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. Our study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes.« less
Yatar, Gozde Iyigun; Yildirim, Sibel Aksu
2015-04-01
[Purpose] The aim of this study was to compare the effects of Wii Fit balance training (WBT) and progressive balance training (PBT) approaches on balance functions, balance confidence, and activities of daily living in chronic stroke patients. [Subjects] A total of 30 patients were randomized into the WBT (n=15) and PBT (n=15) groups. [Methods] All of the subjects received exercise training based on a neurodevelopemental approach in addition to either Wii Fit or progressive balance training for total of 1 hour a day, 3 days per week for 4 weeks. Primary measurements were static balance function measured with a Wii Balance Board and dynamic balance function assessed with the Berg Balance Scale, Timed Up and Go test, Dynamic Gait Index, and Functional Reach Test. Secondary measures were balance confidence assessed with the Activities-specific Balance Confidence scale and activities of daily living evaluated with the Frenchay Activity Index. [Results] There was not remarkable difference between the two treatments in dynamic balance functions, balance confidence, and activities of daily living. [Conclusion] Although both of the approaches were found to be effective in improving the balance functions, balance confidence, and activities of daily living, neither of them were more preferable than the other for the treatment of balance in patients with chronic stroke.
Mercier-Bonin, Muriel; Adoue, Mathieu; Zanna, Sandrine; Marcus, Philippe; Combes, Didier; Schmitz, Philippe
2009-10-01
Spherical microbeads functionalized with two types of chemical groups (NH(2), OH) were chosen as a simplified bacterial model, in order to elucidate the role of macromolecular interactions between specific biopolymers and 316 L stainless steel, in the frame of biofilm formation in the marine environment. NH(2) microbeads were used in their native form or after covalent binding to BSA or different representative poly-amino acids. OH microbeads were used in their native form. Adhesion force between microbeads and bare or BSA-coated stainless steel was quantified at nanoscale. Shear-flow-induced detachment experiments were combined with a simplified version of a theoretical model, based on the balance of hydrodynamic forces and torque exerted on microbeads. A maximal adhesion force of 27.6+/-8.5 nN was obtained for BSA-coated NH(2) microbeads. The high reactivity of OH functional groups was assessed (adhesion force of 15.6+/-4.8 nN for large microbeads). When charge-conducting stainless steel was coated with BSA, adhesion force was significantly lower than the one estimated with the bare surface, probably due to an increase in hydrophilic surface properties or suppression of charge transfer. The mechanism for microbead detachment was established (mainly rolling). The flow chamber and the associated theoretical modelling were demonstrated to be a relevant approach to quantify nanoscale forces between interacting surfaces.
Density functional theory calculations of continuum lowering in strongly coupled plasmas.
Vinko, S M; Ciricosta, O; Wark, J S
2014-03-24
An accurate description of the ionization potential depression of ions in plasmas due to their interaction with the environment is a fundamental problem in plasma physics, playing a key role in determining the ionization balance, charge state distribution, opacity and plasma equation of state. Here we present a method to study the structure and position of the continuum of highly ionized dense plasmas using finite-temperature density functional theory in combination with excited-state projector augmented-wave potentials. The method is applied to aluminium plasmas created by intense X-ray irradiation, and shows excellent agreement with recently obtained experimental results. We find that the continuum lowering for ions in dense plasmas at intermediate temperatures is larger than predicted by standard plasma models and explain this effect through the electronic structure of the valence states in these strong-coupling conditions.
NASA Technical Reports Server (NTRS)
Zhou, Zhimin (Inventor); Pain, Bedabrata (Inventor)
1999-01-01
An analog-to-digital converter for on-chip focal-plane image sensor applications. The analog-to-digital converter utilizes a single charge integrating amplifier in a charge balancing architecture to implement successive approximation analog-to-digital conversion. This design requires minimal chip area and has high speed and low power dissipation for operation in the 2-10 bit range. The invention is particularly well suited to CMOS on-chip applications requiring many analog-to-digital converters, such as column-parallel focal-plane architectures.
Yatar, Gozde Iyigun; Yildirim, Sibel Aksu
2015-01-01
[Purpose] The aim of this study was to compare the effects of Wii Fit balance training (WBT) and progressive balance training (PBT) approaches on balance functions, balance confidence, and activities of daily living in chronic stroke patients. [Subjects] A total of 30 patients were randomized into the WBT (n=15) and PBT (n=15) groups. [Methods] All of the subjects received exercise training based on a neurodevelopemental approach in addition to either Wii Fit or progressive balance training for total of 1 hour a day, 3 days per week for 4 weeks. Primary measurements were static balance function measured with a Wii Balance Board and dynamic balance function assessed with the Berg Balance Scale, Timed Up and Go test, Dynamic Gait Index, and Functional Reach Test. Secondary measures were balance confidence assessed with the Activities-specific Balance Confidence scale and activities of daily living evaluated with the Frenchay Activity Index. [Results] There was not remarkable difference between the two treatments in dynamic balance functions, balance confidence, and activities of daily living. [Conclusion] Although both of the approaches were found to be effective in improving the balance functions, balance confidence, and activities of daily living, neither of them were more preferable than the other for the treatment of balance in patients with chronic stroke. PMID:25995576
Hybrid power systems for autonomous MEMS
NASA Astrophysics Data System (ADS)
Bennett, Daniel M.; Selfridge, Richard H.; Humble, Paul; Harb, John N.
2001-08-01
This paper describes the design of a hybrid power system for use with autonomous MEMS and other microdevices. This hybrid power system includes energy conversion and storage along with an electronic system for managing the collection and distribution of power. It offers flexibility and longevity in a compact package. The hybrid power system couples a silicon solar cell with a microbattery specially designed for MEMS applications. We have designed a control/interface charging circuit to be compatible with a MEMS duty cycle. The design permits short pulses of 'high' power while taking care to avoid excessive charging or discharging of the battery. Charging is carefully controlled to provide a balance between acceptably small charging times and a charging profile that extends battery life. Our report describes the charging of our Ni/Zn microbatteries using solar cells. To date we have demonstrated thousands of charge/discharge cycles of a simulated MEMS duty cycle.
Geochemical mole-balance modeling with uncertain data
Parkhurst, David L.
1997-01-01
Geochemical mole-balance models are sets of chemical reactions that quantitatively account for changes in the chemical and isotopic composition of water along a flow path. A revised mole-balance formulation that includes an uncertainty term for each chemical and isotopic datum is derived. The revised formulation is comprised of mole-balance equations for each element or element redox state, alkalinity, electrons, solvent water, and each isotope; a charge-balance equation and an equation that relates the uncertainty terms for pH, alkalinity, and total dissolved inorganic carbon for each aqueous solution; inequality constraints on the size of the uncertainty terms; and inequality constraints on the sign of the mole transfer of reactants. The equations and inequality constraints are solved by a modification of the simplex algorithm combined with an exhaustive search for unique combinations of aqueous solutions and reactants for which the equations and inequality constraints can be solved and the uncertainty terms minimized. Additional algorithms find only the simplest mole-balance models and determine the ranges of mixing fractions for each solution and mole transfers for each reactant that are consistent with specified limits on the uncertainty terms. The revised formulation produces simpler and more robust mole-balance models and allows the significance of mixing fractions and mole transfers to be evaluated. In an example from the central Oklahoma aquifer, inclusion of up to 5% uncertainty in the chemical data can reduce the number of reactants in mole-balance models from seven or more to as few as three, these being cation exchange, dolomite dissolution, and silica precipitation. In another example from the Madison aquifer, inclusion of the charge-balance constraint requires significant increases in the mole transfers of calcite, dolomite, and organic matter, which reduce the estimated maximum carbon 14 age of the sample by about 10,000 years, from 22,700 years to 12,600 years.
NASA Astrophysics Data System (ADS)
Ragan-Kelley, Benjamin
Space-charge limited flow is a topic of much interest and varied application. We extend existing understanding of space-charge limits by simulations, and develop new tools and techniques for doing these simulations along the way. The Child-Langmuir limit is a simple analytic solution for space-charge limited current density in a one-dimensional diode. It has been previously extended to two dimensions by numerical calculation in planar geometries. By considering an axisymmetric cylindrical system with axial emission from a circular cathode of finite radius r and outer drift tube R > r and gap length L, we further examine the space charge limit in two dimensions. We simulate a two-dimensional axisymmetric parallel plate diode of various aspect ratios (r/L), and develop a scaling law for the measured two-dimensional space-charge limit (2DSCL) relative to the Child-Langmuir limit as a function of the aspect ratio of the diode. These simulations are done with a large (100T) longitudinal magnetic field to restrict electron motion to 1D, with the two-dimensional particle-in-cell simulation code OOPIC. We find a scaling law that is a monotonically decreasing function of this aspect ratio, and the one-dimensional result is recovered in the limit as r >> L. The result is in good agreement with prior results in planar geometry, where the emission area is proportional to the cathode width. We find a weak contribution from the effects of the drift tube for current at the beam edge, and a strong contribution of high current-density "wings" at the outer-edge of the beam, with a very large relative contribution when the beam is narrow. Mechanisms for enhancing current beyond the Child-Langmuir limit remain a matter of great importance. We analyze the enhancement effects of upstream ion injection on the transmitted current in a one-dimensional parallel plate diode. Electrons are field-emitted at the cathode, and ions are injected at a controlled current from the anode. An analytic solution is derived for maximizing the electron current throughput in terms of the ion current. This analysis accounts for various energy regimes, from classical to fully relativistic. The analytical result is then confirmed by simulation of the diode in each energy regime. Field-limited emission is an approach for using Gauss's law to satisfy the space charge limit for emitting current in particle-in-cell simulations. We find that simple field-limited emission models make several assumptions, which introduce small, systematic errors in the system. We make a thorough analysis of each assumption, and ultimately develop and test a new emission scheme that accounts for each. The first correction we make is to allow for a non-zero surface field at the boundary. Since traditional field-emission schemes only aim to balance Gauss's law at the surface, a zero surface field is an assumed condition. But for many systems, this is not appropriate, so the addition of a target surface field is made. The next correction is to account for nonzero initial velocity, which, if neglected, results in a systematic underestimation of the current, due to assuming that all emitted charge will be weighted to the boundary, when in fact it will be weighted as a fraction strictly less than unity, depending on the distance across the initial cell the particle travels in its initial fractional timestep. A correction is made to the scheme, to use the actual particle weight to adjust the target emission. The final analyses involve geometric terms, analyzing the effects of cylindrical coordinates, and taking particular care to analyze the center of a cylindrical beam, as well as the outer edge of the beam, in Cartesian coordinates. We find that balancing Gauss's law at the edge of the beam is not the correct behavior, and that it is important to resolve the profile of the emitted current, in order to avoid systematic errors. A thorough analysis is done of the assumptions made in prior implementations, and corrections are introduced for cylindrical geometry, non-zero injection velocity, and non-zero surface field. Particular care is taken to determine special conditions for the outermost node, where we find that forcing a balance of Gauss's law would be incorrect. (Abstract shortened by UMI.)
Laboratory Studies of Charging Properties of Dust Grains in Astrophysical/Planetary Environments
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2012-01-01
Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper we focus on charging of individual micron/submicron dust grains by processes that include: (a) UV photoelectric emissions involving incident photon energies higher than the work function of the material and b) electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). It is well accepted that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the bulk materials. However, no viable models for calculation of the charging properties of individual micron size dust grains are available at the present time. Therefore, the photoelectric yields, and secondary electron emission yields of micron-size dust grains have to be obtained by experimental methods. Currently, very limited experimental data are available for charging of individual micron-size dust grains. Our experimental results, obtained on individual, micron-size dust grains levitated in an electrodynamic balance facility (at NASA-MSFC), show that: (1) The measured photoelectric yields are substantially higher than the bulk values given in the literature and indicate a particle size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains; (2) dust charging by low energy electron impact is a complex process. Also, our measurements indicate that the electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Laboratory measurements on charging of analogs of the interstellar dust as well as Apollo 11 dust grains conducted at the NASA-MSFC Dusty Plasma Lab. are presented here
Wan, Wenshuai; Itri, Jason
2016-01-01
Prices charged for imaging services can be found in the charge master, a catalog of retail list prices for medical goods and services. This article reviews the evolution of reimbursement in the United States and provides a balanced discussion of the factors that influence charge master prices. Reduced payments to hospitals have pressured hospitals to generate additional revenue by increasing charge master prices. An unfortunate consequence is that those least able to pay for health care, the uninsured, are subjected to the highest charges. Yet, differences in pricing also represent an opportunity for radiology practices, which provide imaging services that are larger in scope or superior in quality to promote product differentiation. Physicians, hospital executives, and policy makers need to work together to improve the existing reimbursement system to promote high-quality, low-cost imaging. Copyright © 2016 Mosby, Inc. All rights reserved.
Relativistic well-tempered Gaussian basis sets for helium through mercury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, S.; Matsuoka, O.
1989-10-01
Exponent parameters of the nonrelativistically optimized well-tempered Gaussian basis sets of Huzinaga and Klobukowski have been employed for Dirac--Fock--Roothaan calculations without their reoptimization. For light atoms He (atomic number {ital Z}=2)--Rh ({ital Z}=45), the number of exponent parameters used has been the same as the nonrelativistic basis sets and for heavier atoms Pd ({ital Z}=46)--Hg({ital Z}=80), two 2{ital p} (and three 3{ital d}) Gaussian basis functions have been augmented. The scheme of kinetic energy balance and the uniformly charged sphere model of atomic nuclei have been adopted. The qualities of the calculated basis sets are close to the Dirac--Fock limit.
Improvement and scale-up of the NASA Redox storage system
NASA Technical Reports Server (NTRS)
Reid, M. A.; Thaller, L. H.
1980-01-01
A preprototype 1.0 kW redox system (2 kW peak) with 11 kWh storage capacity was built and integrated with the NASA/DOE photovoltaic test facility at NASA Lewis. This full function redox system includes four substacks of 39 cells each (1/3 cu ft active area) which are connected hydraulically in parallel and electrically in series. An open circuit voltage cell and a set of rebalance cells are used to continuously monitor the system state of charge and automatically maintain the anode and cathode reactants electrochemically in balance. Recent membrane and electrode advances are summarized and the results of multicell stack tests of 1 cu ft are described.
Application of a territorial-based filtering algorithm in turbomachinery blade design optimization
NASA Astrophysics Data System (ADS)
Bahrami, Salman; Khelghatibana, Maryam; Tribes, Christophe; Yi Lo, Suk; von Fellenberg, Sven; Trépanier, Jean-Yves; Guibault, François
2017-02-01
A territorial-based filtering algorithm (TBFA) is proposed as an integration tool in a multi-level design optimization methodology. The design evaluation burden is split between low- and high-cost levels in order to properly balance the cost and required accuracy in different design stages, based on the characteristics and requirements of the case at hand. TBFA is in charge of connecting those levels by selecting a given number of geometrically different promising solutions from the low-cost level to be evaluated in the high-cost level. Two test case studies, a Francis runner and a transonic fan rotor, have demonstrated the robustness and functionality of TBFA in real industrial optimization problems.
NASA Astrophysics Data System (ADS)
Rossi, Francesco; Londrillo, Pasquale; Sgattoni, Andrea; Sinigardi, Stefano; Turchetti, Giorgio
2012-12-01
We present `jasmine', an implementation of a fully relativistic, 3D, electromagnetic Particle-In-Cell (PIC) code, capable of running simulations in various laser plasma acceleration regimes on Graphics-Processing-Units (GPUs) HPC clusters. Standard energy/charge preserving FDTD-based algorithms have been implemented using double precision and quadratic (or arbitrary sized) shape functions for the particle weighting. When porting a PIC scheme to the GPU architecture (or, in general, a shared memory environment), the particle-to-grid operations (e.g. the evaluation of the current density) require special care to avoid memory inconsistencies and conflicts. Here we present a robust implementation of this operation that is efficient for any number of particles per cell and particle shape function order. Our algorithm exploits the exposed GPU memory hierarchy and avoids the use of atomic operations, which can hurt performance especially when many particles lay on the same cell. We show the code multi-GPU scalability results and present a dynamic load-balancing algorithm. The code is written using a python-based C++ meta-programming technique which translates in a high level of modularity and allows for easy performance tuning and simple extension of the core algorithms to various simulation schemes.
Should Torsion Balance Technique Continue to be Taught to Pharmacy Students?
Bilger, Rhonda; Chereson, Rasma; Salama, Noha Nabil
2017-06-01
Objective. To determine the types of balances used in compounding pharmacies: torsion or digital. Methods. A survey was mailed to the pharmacist-in-charge at 698 pharmacies, representing 47% of the pharmacies in Missouri as of July 2013. The pharmacies were randomly selected and stratified by region into eight regions to ensure a representative sample. Information was gathered regarding the type and use of balances and pharmacists' perspectives on the need to teach torsion balance technique to pharmacy students. Results. The response rate for the survey was 53.3%. Out of the total responses received, those pharmacies having a torsion balance, digital balance or both were 46.8%, 27.4% and 11.8%, respectively. About 68.3% of respondents compound prescriptions. The study showed that 52% of compounding pharmacies use torsion balances in their practice. Of those with a balance in their pharmacy, 65.6% favored continuation of torsion balance instruction. Conclusions. Digital balances have become increasingly popular and have replaced torsion balances in some pharmacies, especially those that compound a significant number of prescriptions. The results of this study indicate that torsion balances remain integral to compounding practice. Therefore, students should continue being taught torsion balance technique at the college.
Should Torsion Balance Technique Continue to be Taught to Pharmacy Students?
Bilger, Rhonda; Chereson, Rasma
2017-01-01
Objective. To determine the types of balances used in compounding pharmacies: torsion or digital. Methods. A survey was mailed to the pharmacist-in-charge at 698 pharmacies, representing 47% of the pharmacies in Missouri as of July 2013. The pharmacies were randomly selected and stratified by region into eight regions to ensure a representative sample. Information was gathered regarding the type and use of balances and pharmacists’ perspectives on the need to teach torsion balance technique to pharmacy students. Results. The response rate for the survey was 53.3%. Out of the total responses received, those pharmacies having a torsion balance, digital balance or both were 46.8%, 27.4% and 11.8%, respectively. About 68.3% of respondents compound prescriptions. The study showed that 52% of compounding pharmacies use torsion balances in their practice. Of those with a balance in their pharmacy, 65.6% favored continuation of torsion balance instruction. Conclusions. Digital balances have become increasingly popular and have replaced torsion balances in some pharmacies, especially those that compound a significant number of prescriptions. The results of this study indicate that torsion balances remain integral to compounding practice. Therefore, students should continue being taught torsion balance technique at the college. PMID:28720913
The electrokinetic behavior of calcium oxalate monohydrate in macromolecular solutions
NASA Technical Reports Server (NTRS)
Curreri, P. A.; Onoda, G. Y., Jr.; Finlayson, B.
1988-01-01
Electrophoretic mobilities were measured for calcium oxalate monohydrate (COM) in solutions containing macromolecules. Two mucopolysaccharides (sodium heparin and chrondroitin sulfate) and two proteins (positively charged lysozyme and negatively charged bovine serum albumin) were studied as adsorbates. The effects of pH, calcium oxalate surface charge (varied by calcium or oxalate ion activity), and citrate concentration were investigated. All four macromolecules showed evidence for chemical adsorption. The macromolecule concentrations needed for reversing the surface charge indicated that the mucopopolysacchrides have greater affinity for the COM surface than the proteins. The amount of proteins that can chemically adsorb appears to be limited to approximately one monomolecular layer. When the surface charge is high, an insufficient number of proteins can chemically adsorb to neutralize or reverse the surface charge. The remaining surface charge is balanced by proteins held near the surface by longer range electrostatic forces only. Citrate ions at high concentrations appear to compete effectively with the negative protein for surface sites but show no evidence for competing with the positively charged protein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheppard, Colin; Waraich, Rashid; Campbell, Andrew
This report summarizes the BEAM modeling framework (Behavior, Energy, Mobility, and Autonomy) and its application to simulating plug-in electric vehicle (PEV) mobility, energy consumption, and spatiotemporal charging demand. BEAM is an agent-based model of PEV mobility and charging behavior designed as an extension to MATSim (the Multi-Agent Transportation Simulation model). We apply BEAM to the San Francisco Bay Area and conduct a preliminary calibration and validation of its prediction of charging load based on observed charging infrastructure utilization for the region in 2016. We then explore the impact of a variety of common modeling assumptions in the literature regarding chargingmore » infrastructure availability and driver behavior. We find that accurately reproducing observed charging patterns requires an explicit representation of spatially disaggregated charging infrastructure as well as a more nuanced model of the decision to charge that balances tradeoffs people make with regards to time, cost, convenience, and range anxiety.« less
Wireless Battery Management System of Electric Transport
NASA Astrophysics Data System (ADS)
Rahman, Ataur; Rahman, Mizanur; Rashid, Mahbubur
2017-11-01
Electric vehicles (EVs) are being developed and considered as the future transportation to reduce emission of toxic gas, cost and weight. The battery pack is one of the main crucial parts of the electric vehicle. The power optimization of the battery pack has been maintained by developing a two phase evaporative thermal management system which operation has been controlled by using a wireless battery management system. A large number of individual cells in a battery pack have many wire terminations that are liable for safety failure. To reduce the wiring problem, a wireless battery management system based on ZigBee communication protocol and point-to-point wireless topology has been presented. Microcontrollers and wireless modules are employed to process the information from several sensors (voltage, temperature and SOC) and transmit to the display devices respectively. The WBMS multistage charge balancing system offering more effective and efficient responses for several numbers of series connected battery cells. The concept of double tier switched capacitor converter and resonant switched capacitor converter is used for reducing the charge balancing time of the cells. The balancing result for 2 cells and 16 cells are improved by 15.12% and 25.3% respectively. The balancing results are poised to become better when the battery cells are increased.
Advanced Cell-Level Control for Extending Electric Vehicle Battery Pack Lifetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehman, M. Muneeb Ur; Zhang, Fan; Evzelman, Michael
A cell-level control approach for electric vehicle battery packs is presented that enhances traditional battery balancing goals to not only provide cell balancing but also achieve significant pack lifetime extension. These goals are achieved by applying a new life-prognostic based control algorithm that biases individual cells differently based on their state of charge, capacity and internal resistance. The proposed life control approach reduces growth in capacity mismatch typically seen in large battery packs over life while optimizing usable energy of the pack. The result is a longer lifetime of the overall pack and a more homogeneous distribution of cell capacitiesmore » at the end of the first life for vehicle applications. Active cell balancing circuits and associated algorithms are used to accomplish the cell-level life extension objectives. This paper presents details of the cell-level control approach, selection and design of the active balancing system, and low-complexity state-of-charge, capacity, and series-resistance estimation algorithms. A laboratory prototype is used to demonstrate the proposed control approach. The prototype consists of twenty-one 25 Ah Panasonic lithium-Ion NMC battery cells from a commercial electric vehicle and an integrated BMS/DC-DC system that provides 750 W to the vehicle low voltage auxiliary loads.« less
Advanced Cell-Level Control for Extending Electric Vehicle Battery Pack Lifetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehman, M. Muneeb Ur; Zhang, Fan; Evzelman, Michael
2017-02-16
A cell-level control approach for electric vehicle battery packs is presented that enhances traditional battery balancing goals to not only provide cell balancing but also achieve significant pack lifetime extension. These goals are achieved by applying a new life-prognostic based control algorithm that biases individual cells differently based on their state of charge, capacity and internal resistance. The proposed life control approach reduces growth in capacity mismatch typically seen in large battery packs over life while optimizing usable energy of the pack. The result is a longer lifetime of the overall pack and a more homogeneous distribution of cell capacitiesmore » at the end of the first life for vehicle applications. Active cell balancing circuits and associated algorithms are used to accomplish the cell-level life extension objectives. This paper presents details of the cell-level control approach, selection and design of the active balancing system, and low-complexity state-of-charge, capacity, and series-resistance estimation algorithms. A laboratory prototype is used to demonstrate the proposed control approach. The prototype consists of twenty-one 25 Ah Panasonic lithium-Ion NMC battery cells from a commercial electric vehicle and an integrated BMS/DC-DC system that provides 750 W to the vehicle low voltage auxiliary loads.« less
Surface charge accumulation of particles containing radionuclides in open air.
Kim, Yong-Ha; Yiacoumi, Sotira; Tsouris, Costas
2015-05-01
Radioactivity can induce charge accumulation on radioactive particles. However, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. A charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify the particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. The study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Experiments on Dust Grain Charging
NASA Technical Reports Server (NTRS)
Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.
2004-01-01
Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.
NASA Astrophysics Data System (ADS)
Ben Sassi, Hicham; Errahimi, Fatima; Es-Sbai, Najia; Alaoui, Chakib
2018-05-01
Nowadays, electric mobility is starting to define society and is becoming more and more irreplaceable and essential to daily activities. Safe and durable battery is of a great significance for this type of mobility, hence the increasing interest of research activity oriented to battery studies, in order to assure safe operating mode and to control the battery in case of any abnormal functioning conditions that could damage the battery if not properly managed. Lithium-ion technology is considered the most suitable existing technology for electrical storage, because of their interesting features such as their relatively long cycle life, lighter weight, their high energy density, However, there is a lot of work that is still needed to be done in order to assure safe operating lithium-ion batteries, starting with their internal status monitoring, cell balancing within a battery pack, and thermal management. Tasks that are accomplished by the battery management system (BMS) which uses the state of charge (SOC) as an indicator of the internal charge level of the battery, in order to avoid unpredicted system interruption. Since the state of charge is an inner state of a the battery which cannot be directly measured, a powerful estimation technique is inevitable, in this paper we investigate the performances of tow estimation strategies; kalman filtering based observers and sliding mode observers, both strategies are compared in terms of accuracy, design requirement, and overall performances.
NASA Astrophysics Data System (ADS)
Kaçar, Rifat; Mucur, Selin Pıravadılı; Yıldız, Fikret; Dabak, Salih; Tekin, Emine
2018-04-01
Inverted bottom-emission organic light emitting diodes (IBOLEDs) have attracted increasing attention due to their exceptional air stability and applications in active-matrix displays. For gaining high IBOLED device efficiencies, it is crucial to develop an effective strategy to make the bottom electrode easy for charge injection and transport. Charge selectivity, blocking the carrier flow towards the unfavourable side, plays an important role in determining charge carrier balance and accordingly radiative recombination efficiency. It is therefore highly desirable to functionalize an interfacial layer which will perform many different tasks simultaneously. Here, we contribute to the hole-blocking ability of the zinc oxide/polyethyleneimine (ZnO:PEI) nano-composite (NC) interlayer with the intention of increasing the OLED device efficiency. With this purpose in mind, a small amount of 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene (TPBi) was added as a hole-blocking molecule into the binary blend of ZnO and PEI solution. The device with a ternary ZnO:PEI:TPBi NC interlayer achieved a maximum current efficiency of 38.20 cd A-1 and a power efficiency of 34.29 lm W-1 with a luminance of 123 200 cd m-2, which are high performance parameters for inverted device architecture. The direct comparisons of device performances incorporating ZnO only, ZnO/PEI bilayers, and ZnO:PEI binary NC counterparts were also performed, which shed light on the origin of device performance enhancement.
Stimuli responsive charge-switchable lipids: Capture and release of nucleic acids.
Hersey, Joseph S; LaManna, Caroline M; Lusic, Hrvoje; Grinstaff, Mark W
2016-03-01
Stimuli responsive lipids, which enable control over the formation, transformation, and disruption of supramolecular assemblies, are of interest for biosensing, diagnostics, drug delivery, and basic transmembrane protein studies. In particular, spatiotemporal control over a supramolecular structure can be achieved using light activated compounds to induce significant supramolecular rearrangements. As such, a family of cationic lipids are described which undergo a permanent switch in charge upon exposure to 365 nm ultraviolet (UV) light to enable the capture of negatively charged nucleic acids within the self-assembled supramolecular structure of the lipids and subsequent release of these macromolecules upon exposure to UV light and disruption of the assemblies. The lipids are composed of either two different tripeptide head groups, Lysine-Glycine-Glycine (KGG) and Glycine-Glycine-Glycine (GGG) and three different hydrocarbon chain lengths (C6, C10, or C14) terminated by a UV light responsive 1-(2-nitrophenyl)ethanol (NPE) protected carboxylic acid. The photolysis of the NPE protected lipid is measured as a function of time, and the resulting changes in net molecular charge are observed using zeta potential analysis for each head group and chain length combination. A proof of concept study for the capture and release of both linear DNA (calf thymus) and siRNA is presented using an ethidium bromide quenching assay where a balance between binding affinity and supramolecular stability are found to be the key to optimal nucleic acid capture and release. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Overcharging and charge reversal in the electrical double layer around the point of zero charge.
Guerrero-García, G Iván; González-Tovar, Enrique; Chávez-Páez, Martín; Lozada-Cassou, Marcelo
2010-02-07
The ionic adsorption around a weakly charged spherical colloid, immersed in size-asymmetric 1:1 and 2:2 salts, is studied. We use the primitive model (PM) of an electrolyte to perform Monte Carlo simulations as well as theoretical calculations by means of the hypernetted chain/mean spherical approximation (HNC/MSA) and the unequal-radius modified Gouy-Chapman (URMGC) integral equations. Structural quantities such as the radial distribution functions, the integrated charge, and the mean electrostatic potential are reported. Our Monte Carlo "experiments" evidence that near the point of zero charge, the smallest ionic species is preferentially adsorbed onto the macroparticle, independently of the sign of the charge carried by this tiniest electrolytic component, giving rise to the appearance of the phenomena of charge reversal (CR) and overcharging (OC). Accordingly, colloidal CR, due to an excessive attachment of counterions, is observed when the macroion is slightly charged and the coions are larger than the counterions. In the opposite situation, i.e., if the counterions are larger than the coions, the central macroion acquires additional like-charge (coions) and hence becomes "overcharged," a feature theoretically predicted in the past [F. Jiménez-Angeles and M. Lozada-Cassou, J. Phys. Chem. B 108, 7286 (2004)]. In other words, here we present the first simulation data on OC in the PM electrical double layer, showing that close to the point of zero charge, this novel effect surges as a consequence of the ionic size asymmetry. We also find that the HNC/MSA theory captures well the CR and OC phenomena exhibited by the computer experiments, especially as the macroion's charge increases. On the contrary, even if URMGC also displays CR and OC, its predictions do not compare favorably with the Monte Carlo data, evidencing that the inclusion of hard-core correlations in Monte Carlo and HNC/MSA enhances and extends those effects. We explain our findings in terms of the energy-entropy balance. In the field of electrophoresis, it has been generally agreed that the charge of a colloid in motion is partially decreased by counterion adsorption. Depending on the location of the macroion's slipping surface, the OC results of this paper could imply an increase in the expected electrophoretic mobility. These observations aware about the interpretation of electrokinetic measurements using the standard Poisson-Boltzmann approximation beyond its validity region.
A wireless wearable surface functional electrical stimulator
NASA Astrophysics Data System (ADS)
Wang, Hai-Peng; Guo, Ai-Wen; Zhou, Yu-Xuan; Xia, Yang; Huang, Jia; Xu, Chong-Yao; Huang, Zong-Hao; Lü, Xiao-Ying; Wang, Zhi-Gong
2017-09-01
In this paper, a wireless wearable functional electrical stimulator controlled by Android phone with real-time-varying stimulation parameters for multichannel surface functional electrical stimulation application has been developed. It can help post-stroke patients using more conveniently. This study focuses on the prototype design, including the specific wristband concept, circuits and stimulation pulse-generation algorithm. A novel stimulator circuit with a driving stage using a complementary current source technique is proposed to achieve a high-voltage compliance, a large output impedance and an accurate linear voltage-to-current conversion. The size of the prototype has been significantly decreased to 17 × 7.5 × 1 cm3. The performance of the prototype has been tested with a loaded resistor and wrist extension/flexion movement of three hemiplegic patients. According to the experiments, the stimulator can generate four-channel charge-balanced biphasic stimulation with a voltage amplitude up to 60 V, and the pulse frequency and width can be adjusted in real time with a range of 100-600 μs and 20-80 Hz, respectively.
Nuclear Weak Rates and Detailed Balance in Stellar Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misch, G. Wendell, E-mail: wendell@sjtu.edu, E-mail: wendell.misch@gmail.com
Detailed balance is often invoked in discussions of nuclear weak transitions in astrophysical environments. Satisfaction of detailed balance is rightly touted as a virtue of some methods of computing nuclear transition strengths, but I argue that it need not necessarily be strictly obeyed in astrophysical environments, especially when the environment is far from weak equilibrium. I present the results of shell model calculations of nuclear weak strengths in both charged-current and neutral-current channels at astrophysical temperatures, finding some violation of detailed balance. I show that a slight modification of the technique to strictly obey detailed balance has little effect onmore » the reaction rates associated with these strengths under most conditions, though at high temperature the modified technique in fact misses some important strength. I comment on the relationship between detailed balance and weak equilibrium in astrophysical conditions.« less
Calculation of the radial electric field with RF sheath boundary conditions in divertor geometry
NASA Astrophysics Data System (ADS)
Gui, B.; Xia, T. Y.; Xu, X. Q.; Myra, J. R.; Xiao, X. T.
2018-02-01
The equilibrium electric field that results from an imposed DC bias potential, such as that driven by a radio frequency (RF) sheath, is calculated using a new minimal two-field model in the BOUT++ framework. Biasing, using an RF-modified sheath boundary condition, is applied to an axisymmetric limiter, and a thermal sheath boundary is applied to the divertor plates. The penetration of the bias potential into the plasma is studied with a minimal self-consistent model that includes the physics of vorticity (charge balance), ion polarization currents, force balance with E× B , ion diamagnetic flow (ion pressure gradient) and parallel electron charge loss to the thermal and biased sheaths. It is found that a positive radial electric field forms in the scrape-off layer and it smoothly connects across the separatrix to the force-balanced radial electric field in the closed flux surface region. The results are in qualitative agreement with the experiments. Plasma convection related to the E× B net flow in front of the limiter is also obtained from the calculation.
NASA Astrophysics Data System (ADS)
Khomenko, V.; Raymundo-Piñero, E.; Béguin, F.
A new type of low cost and high energy asymmetric capacitor based on only activated carbons for both electrodes has been developed in a safe and environment friendly aqueous electrolyte. In such electrolyte, the charges are stored in the electrical double-layer and through fast faradaic charge transfer processes. By taking profit of different redox reactions occurring in the positive and negative ranges of potential, it is possible to optimize the capacitor either by balancing the mass of the electrodes or by using different optimized carbons for the positive and negative electrodes. The best results are obtained in the latter case, by utilizing different pseudo-faradaic properties of carbons in order to increase the capacitance and to shift the potentials of water decomposition and destructive oxidation of activated carbon to more negative and positive values, respectively. After an additional adjustment of potentials by mass-balancing the two electrodes, the electrochemical capacitor can be reversibly charged/discharged at 1.6 V in aqueous medium, with energy densities close to the values obtained with electrical double-layer capacitors working in organic electrolytes, while avoiding their disadvantages.
Decomposition method for zonal resource allocation problems in telecommunication networks
NASA Astrophysics Data System (ADS)
Konnov, I. V.; Kashuba, A. Yu
2016-11-01
We consider problems of optimal resource allocation in telecommunication networks. We first give an optimization formulation for the case where the network manager aims to distribute some homogeneous resource (bandwidth) among users of one region with quadratic charge and fee functions and present simple and efficient solution methods. Next, we consider a more general problem for a provider of a wireless communication network divided into zones (clusters) with common capacity constraints. We obtain a convex quadratic optimization problem involving capacity and balance constraints. By using the dual Lagrangian method with respect to the capacity constraint, we suggest to reduce the initial problem to a single-dimensional optimization problem, but calculation of the cost function value leads to independent solution of zonal problems, which coincide with the above single region problem. Some results of computational experiments confirm the applicability of the new methods.
Self-consistent electronic structure of disordered Fe/sub 0. 65/Ni/sub 0. 35/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.D.; Pinski, F.J.; Stocks, G.M.
1985-04-15
We present the results of the first ab initio calculation of the electronic structure of the disordered alloy Fe/sub 0.65/Ni/sub 0.35/. The calculation is based on the multiple-scattering coherent-potential approach (KKR-CPA) and is fully self-consistent and spin polarized. Magnetic effects are included within local-spin-density functional theory using the exchange-correlation function of Vosko--Wilk--Nusair. The most striking feature of the calculation is that electrons of different spins experience different degrees of disorder. The minority spin electrons see a very large disorder, whereas the majority spin electrons see little disorder. Consequently, the minority spin density of states is smooth compared to the verymore » structured majority spin density of states. This difference is due to a subtle balance between exchange splitting and charge neutrality.« less
Self-consistent electronic structure of disordered Fe/sub 0/ /sub 65/Ni/sub 0/ /sub 35/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.D.; Pinski, F.J.; Stocks, G.M.
1984-01-01
We present the results of the first ab-initio calculation of the electronic structure of a disordered Fe/sub 0/ /sub 65/Ni/sub 0/ /sub 35/ alloy. The calculation is based on the multiple-scattering coherent-potential approach (KKR-CPA) and is fully self-consistent and spin-polarized. Magnetic effects are included within local-spin-density functional theory using the exchange-correlation function of Vosko-Wilk-Nusair. The most striking feature of the calculation is that electrons of different spins experience different degrees of disorder. The minority spin electrons see a very large disorder; whereas, the majority spin electrons see little disorder. Consequently, the minority spin density of states is smooth compared tomore » the very structured majority spin density of states. This difference is due to a subtle balance between exchange-splitting and charge neutrality. 15 references, 2 figures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokár, K.; Derian, R.; Mitas, L.
Using explicitly correlated fixed-node quantum Monte Carlo and density functional theory (DFT) methods, we study electronic properties, ground-state multiplets, ionization potentials, electron affinities, and low-energy fragmentation channels of charged half-sandwich and multidecker vanadium-benzene systems with up to 3 vanadium atoms, including both anions and cations. It is shown that, particularly in anions, electronic correlations play a crucial role; these effects are not systematically captured with any commonly used DFT functionals such as gradient corrected, hybrids, and range-separated hybrids. On the other hand, tightly bound cations can be described qualitatively by DFT. A comparison of DFT and quantum Monte Carlo providesmore » an in-depth understanding of the electronic structure and properties of these correlated systems. The calculations also serve as a benchmark study of 3d molecular anions that require a balanced many-body description of correlations at both short- and long-range distances.« less
Preliminary measurements of kinetic dust temperature using stereoscopic particle image velocimetry
NASA Astrophysics Data System (ADS)
Williams, Jeremiah; Thomas, Edward
2004-11-01
A dusty (or complex) plasma is a four-component system composed of ions, electrons, neutral particles and charged microparticles. The presence of the microparticle (i.e., dust) component alters the plasma environment, giving rise to a wide variety of new plasma phenomena. Recently, the Auburn Plasma Sciences Laboratory (PSL) has acquired and installed a stereoscopic PIV (stereo-PIV) diagnostic tool for dusty plasma investigations [Thomas, et. al., Phys. Plasmas, 11, L37 (2004)]. This presentation discusses the use of the stereo-PIV technique for determining the velocity space distribution function of the microparticle component of a dc glow discharge dusty plasma. These distribution functions are then used to make preliminary estimates of the kinetic temperature of the dust component. The data is compared to a simple energy balance model that relates the dust temperature to the electric field and neutral pressure.
Elastin-like Polypeptide (ELP) Charge Influences Self-Assembly of ELP-mCherry Fusion Proteins.
Mills, Carolyn E; Michaud, Zachary; Olsen, Bradley D
2018-05-23
Self-assembly of protein-polymer bioconjugates presents an elegant strategy for controlling nanostructure and orientation of globular proteins in functional materials. Recent work has shown that genetic fusion of globular protein mCherry to an elastin-like polypeptide (ELP) yields similar self-assembly behavior to these protein-polymer bioconjugates. In the context of studying protein-polymer bioconjugate self-assembly, the mutability of the ELP sequence allows several different properties of the ELP block to be tuned orthogonally while maintaining consistent polypeptide backbone chemistry. This work uses this ELP sequence tunability in combination with the precise control offered by genetic engineering of an amino acid sequence to generate a library of four novel ELP sequences that are used to study the combined effect of charge and hydrophobicity on ELP-mCherry fusion protein self-assembly. Concentrated solution self-assembly is studied by small-angle X-ray scattering (SAXS) and depolarized light scattering (DPLS). These experiments show that fusions containing a negatively charged ELP block do not assemble at all, and fusions with a charge balanced ELP block exhibit a weak propensity for assembly. By comparison, the fusion containing an uncharged ELP block starts to order at 40 wt % in solution and at all concentrations measured has sharper, more intense SAXS peaks than other fusion proteins. These experiments show that charge character of the ELP block is a stronger predictor of self-assembly behavior than the hydrophobicity of the ELP block. Dilute solution small-angle neutron scattering (SANS) on the ELPs alone suggests that all ELPs used in this study (including the uncharged ELP) adopt dilute solution conformations similar to those of traditional polymers, including polyampholytes and polyelectrolytes. Finally, dynamic light scattering studies on ELP-mCherry blends shows that there is no significant complexation between the charged ELPs and mCherry. Therefore, it is proposed that the superior self-assembly of fusion proteins containing uncharged ELP block is due to effective repulsions between charged and uncharged blocks due to local charge correlation effects and, in the case of anionic ELPs, repulsion between like charges within the ELP block.
The contributions of balance to gait capacity and motor function in chronic stroke.
Lee, Kyoung Bo; Lim, Seong Hoon; Kim, Young Dong; Yang, Byung Il; Kim, Kyung Hoon; Lee, Kang Sung; Kim, Eun Ja; Hwang, Byong Yong
2016-06-01
[Purpose] The aim of this study was to identify the contributions of balance to gait and motor function in chronic stroke. [Subjects and Methods] Twenty-three outpatients participated in a cross-sectional assessment. Gait ability was assessed using the functional ambulation category, self-paced 10-m walking speed, and fastest 10-m walking speed. Standing balance and trunk control measures included the Berg Balance Scale and the Trunk Impairment Scale. Univariate and multivariate regression analyses were performed. [Results] Balance was the best predictor of the FAC, self-paced walking speed, and fastest walking speed, accounting for 57% to 61% of the variances. Additionally, the total score of TIS was the only predictor of the motor function of the lower limbs and the dynamic balance of TIS was a predictor of the motor function of the upper limbs, accounting for 41% and 29% of the variance, respectively. [Conclusion] This study demonstrated the relative contribution of standing balance and trunk balance to gait ability and motor function. They show that balance has a high power of explanation of gait ability and that trunk balance is a determinant of motor function rather than gait ability.
The contributions of balance to gait capacity and motor function in chronic stroke
Lee, Kyoung Bo; Lim, Seong Hoon; Kim, Young Dong; Yang, Byung Il; Kim, Kyung Hoon; Lee, Kang Sung; Kim, Eun Ja; Hwang, Byong Yong
2016-01-01
[Purpose] The aim of this study was to identify the contributions of balance to gait and motor function in chronic stroke. [Subjects and Methods] Twenty-three outpatients participated in a cross-sectional assessment. Gait ability was assessed using the functional ambulation category, self-paced 10-m walking speed, and fastest 10-m walking speed. Standing balance and trunk control measures included the Berg Balance Scale and the Trunk Impairment Scale. Univariate and multivariate regression analyses were performed. [Results] Balance was the best predictor of the FAC, self-paced walking speed, and fastest walking speed, accounting for 57% to 61% of the variances. Additionally, the total score of TIS was the only predictor of the motor function of the lower limbs and the dynamic balance of TIS was a predictor of the motor function of the upper limbs, accounting for 41% and 29% of the variance, respectively. [Conclusion] This study demonstrated the relative contribution of standing balance and trunk balance to gait ability and motor function. They show that balance has a high power of explanation of gait ability and that trunk balance is a determinant of motor function rather than gait ability. PMID:27390395
The Role of Solution Conditions in the Bacteriophage PP7 Capsid Charge Regulation
Nap, Rikkert J.; Bozic, Anze Losdorfer; Szleifer, Igal; ...
2014-10-21
Here, we investigate and quantify the effects of pH and salt concentration on the charge regulation of the bacteriophage PP7 capsid. These effects are found to be extremely important and substantial, introducing qualitative changes in the charge state of the capsid such as a transition from net-positive to net-negative charge depending on the solution pH. The overall charge of the virus capsid arises as a consequence of a complicated balance with the chemical dissociation equilibrium of the amino acids and the electrostatic interaction between them, and the translational entropy of the mobile solution ions, i.e., counterion release. We show thatmore » to properly describe and predict the charging equilibrium of viral capsids in general, one needs to include molecular details as exemplified by the acid-base equilibrium of the detailed distribution of amino acids in the proteinaceous capsid shell.« less
Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura
2015-08-11
The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.
Models for Cometary Comae Containing Negative Ions
NASA Technical Reports Server (NTRS)
Cordiner, M. A.; Charnley, S. B.
2012-01-01
The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions O(-), OH(-), C(-), CH(-) and CN(-) have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu [I]. Organic molecular anions such as C4H(-) and C6H(-) are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been fully explored. We present details of our new models for the chemistry of cometary comae that include atomic and molecular anions. We calculate the impact of these anions on the charge balance and examine their importance for cometary coma chemistry.
Shen, Na; Liang, Qiong; Liu, Yuehong; Lai, Bin; Li, Wen; Wang, Zhengmin; Li, Shufeng
2016-06-15
Intracochlear application of exogenous or transgenic neurotrophins, such as neurotrophin-3 (NT-3) and brain derived neurotrophic factor (BDNF), could promote the resprouting of spiral ganglion neuron (SGN) neurites in deafened animals. These resprouting neurites might reduce the gap between cochlear implant electrodes and their targeting SGNs, allowing for an improvement of spatial resolution of electrical stimulation. This study is to investigate the impact of electrical stimulation employed in CI on the extension of resprouting SGN neurites. We established an in vitro model including the devices delivering charge-balanced biphasic electrical stimulation, and spiral ganglion (SG) dissociated culture treated with BDNF and NT-3. After electrical stimulation with varying durations and intensities, we quantified neurite lengths and Schwann cell densities in SG cultures. Stimulations that were greater than 50μA or longer than 8h significantly decreased SG neurite length. Schwann cell density under 100μA electrical stimulation for 48h was significantly lower compared to that in non-stimulated group. These electrical stimulation-induced decreases of neurite extension and Schwann cell density were attenuated by various types of voltage-dependent calcium channel (VDCC) blockers, or completely prevented by their combination, cadmium or calcium-free medium. Our study suggested that charge-balanced biphasic electrical stimulation inhibited the extension of resprouting SGN neurites and decreased Schwann cell density in vitro. Calcium influx through multiple types of VDCCs was involved in the electrical stimulation-induced inhibition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Improved Barrier Properties in Flexible Plastic Substrates
2009-01-01
layer 2:1 sandwich is required to balance this charge deficit. The extra charge is provided by a layer of large cations, usually potassium or sodium...ions (K+).32,30 Each of the potassium ions in this interiayer is shared among 12 oxygen atoms and the electrostatic force between the potassium ion...layer. Potassium • Aluminum • Silicon • Oxygen {-* Hydroxyl pair b axfs" This tabulation giving the layer by layer population of elements
Experimental Investigation of Neutral Species from Micrometeoroid Bombardment
NASA Astrophysics Data System (ADS)
Collette, A.; Sternovsky, Z.; Rocha, J. R.; Munsat, T. L.; Horanyi, M.
2014-12-01
Surface-boundary exospheres exist in a balance between source and loss processes. An important area of uncertainty, highlighted by the MESSENGER observations of Mg and Ca at Mercury, and the recently concluded LADEE observations at the Moon, is the role of micrometeoroid bombardment as a source process for liberating surface species. Unlike sputtering or photon stimulated desorption processes, the physics of micrometeoroid impacts are still poorly understood; in particular, no comprehensive model exists to predict partitioning of impact products between ejecta fragments, charged particles, and neutrals. We present initial experiments at the IMPACT dust accelerator facility (University of Colorado Boulder) aimed at directly measuring the fraction of neutral species liberated in micrometeoroid impacts. Simulated micrometeoroids (micron- and submicron-sized iron spheres) are fired at targets containing refractory elements, including fused silica (SiO2), sapphire (Al2O3), and magnesium fluoride (MgF2). Total quantities of specific impact-generated neutral species are measured using a mass spectrometer, as a function of impactor speed and mass, and compared with well-established scaling laws for charged particle production.
Charge and energy minimization in electrical/magnetic stimulation of nervous tissue
NASA Astrophysics Data System (ADS)
Jezernik, Sašo; Sinkjaer, Thomas; Morari, Manfred
2010-08-01
In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.
Charge and energy minimization in electrical/magnetic stimulation of nervous tissue.
Jezernik, Saso; Sinkjaer, Thomas; Morari, Manfred
2010-08-01
In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.
Equalizer system and method for series connected energy storing devices
Rouillard, Jean; Comte, Christophe; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ross, Guy
1999-01-01
An apparatus and method for regulating the charge voltage of a number of electrochemical cells connected in series is disclosed. Equalization circuitry is provided to control the amount of charge current supplied to individual electrochemical cells included within the series string of electrochemical cells without interrupting the flow of charge current through the series string. The equalization circuitry balances the potential of each of the electrochemical cells to within a pre-determined voltage setpoint tolerance during charging, and, if necessary, prior to initiating charging. Equalization of cell potentials may be effected toward the end of a charge cycle or throughout the charge cycle. Overcharge protection is also provided for each of the electrochemical cells coupled to the series connection. During a discharge mode of operation in accordance with one embodiment, the equalization circuitry is substantially non-conductive with respect to the flow of discharge current from the series string of electrochemical cells. In accordance with another embodiment, equalization of the series string of cells is effected during a discharge cycle.
Interplay between efficiency and device architecture for small molecule organic solar cells.
Williams, Graeme; Sutty, Sibi; Aziz, Hany
2014-06-21
Small molecule organic solar cells (OSCs) have experienced a resurgence of interest over their polymer solar cell counterparts, owing to their improved batch-to-batch (thus, cell-to-cell) reliability. In this systematic study on OSC device architecture, we investigate five different small molecule OSC structures, including the simple planar heterojunction (PHJ) and bulk heterojunction (BHJ), as well as several planar-mixed structures. The different OSC structures are studied over a wide range of donor:acceptor mixing concentrations to gain a comprehensive understanding of their charge transport behavior. Transient photocurrent decay measurements provide crucial information regarding the interplay between charge sweep-out and charge recombination, and ultimately hint toward space charge effects in planar-mixed structures. Results show that the BHJ/acceptor architecture, comprising a BHJ layer with high C60 acceptor content, generates OSCs with the highest performance by balancing charge generation with charge collection. The performance of other device architectures is largely limited by hole transport, with associated hole accumulation and space charge effects.
NASA Astrophysics Data System (ADS)
Shekhar, Himanshu; Tzabari, Lior; Solomeshch, Olga; Tessler, Nir
2016-10-01
We have investigated the influence of the active layer thickness on the balance of the internal mechanisms affecting the efficiency of copper phthalocyanine - fullerene (C60) based vacuum deposited bulk heterojunction organic photocell. We fabricated a range of devices for which we varied the thickness of the active layer from 40 to 120 nm and assessed their performance using optical and electrical characterization techniques. As reported previously for phthalocyanine:C60, the performance of the device is highly dependent on the active layer thickness and of all the thicknesses we tried, the 40 nm thin active layer device showed the best solar cell characteristic parameters. Using the transfer matrix based optical model, which includes interference effects, we calculated the optical power absorbed in the active layers for the entire absorption band, and we found that this cannot explain the trend with thickness. Measurement of the cell quantum efficiency as a function of light intensity showed that the relative weight of the device internal processes changes when going from 40 nm to 120 nm thick active layer. Electrical modeling of the device, which takes different internal processes into account, allowed to quantify the changes in the processes affecting the generation - recombination balance. Sub gap external quantum efficiency and morphological analysis of the surface of the films agree with the model's result. We found that as the thickness grows the density of charge transfer states and of dark carriers goes up and the uniformity in the vertical direction is reduced.
Charge management for gravitational-wave observatories using UV LEDs
NASA Astrophysics Data System (ADS)
Pollack, S. E.; Turner, M. D.; Schlamminger, S.; Hagedorn, C. A.; Gundlach, J. H.
2010-01-01
Accumulation of electrical charge on the end mirrors of gravitational-wave observatories can become a source of noise limiting the sensitivity of such detectors through electronic couplings to nearby surfaces. Torsion balances provide an ideal means for testing gravitational-wave technologies due to their high sensitivity to small forces. Our torsion pendulum apparatus consists of a movable plate brought near a plate pendulum suspended from a nonconducting quartz fiber. A UV LED located near the pendulum photoejects electrons from the surface, and a UV LED driven electron gun directs photoelectrons towards the pendulum surface. We have demonstrated both charging and discharging of the pendulum with equivalent charging rates of ˜105e/s, as well as spectral measurements of the pendulum charge resulting in a white noise level equivalent to 3×105e/Hz.
Muir-Hunter, Susan W; Clark, Jennifer; McLean, Stephanie; Pedlow, Sam; Van Hemmen, Alysia; Montero Odasso, Manuel; Overend, Tom
2014-01-01
The mechanisms linking cognition, balance function, and fall risk among older adults are not fully understood. An evaluation of the effect of cognition on balance tests commonly used in clinical practice to assess community-dwelling older adults could enhance the identification of at-risk individuals. The study aimed to determine (1) the association between cognition and clinical tests of balance and (2) the relationship between executive function (EF) and balance under single- and dual-task testing. Participants (24 women, mean age of 76.18 [SD 16.45] years) completed six clinical balance tests, four cognitive tests, and two measures of physical function. Poor balance function was associated with poor performance on cognitive testing of EF. In addition, the association with EF was strongest under the dual-task timed up-and-go (TUG) test and the Fullerton Advanced Balance Scale. Measures of global cognition were associated only with the dual-task performance of the TUG. Postural sway measured with the Standing Balance Test, under single- or dual-task test conditions, was not associated with cognition. Decreased EF was associated with worse performance on functional measures of balance. The relationship between EF and balance was more pronounced with dual-task testing using a complex cognitive task combined with the TUG.
Reentrant behaviour in polyvinyl alcohol-borax hydrogels
NASA Astrophysics Data System (ADS)
Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.
2018-01-01
Polyvinyl alcohol (PVA) hydrogels, cross-linked with varying concentrations of borax, were studied with small angle neutron scattering (SANS), x-ray diffraction (XRD) and differential thermal analysis (DTA). The SANS data satisfy the Ornstein-Zernike approximation. The hydrogels are modelled as PVA chains bound by borate cross-links. Water occupies the spaces within the three-dimensional hydrogel network. The mesh size ξ indicates reentrant behaviour i.e. at first, ξ increases and later decreases as a function of borax concentration. The behaviour is explained on the basis of the balance between the charged di-diol cross-links and the shielding by free ions in the solvent. XRD and DTA show the molecular size of water in the solvent and the glass transition temperature commensurate with reentrant behaviour.
Assessment of postural balance function.
Kostiukow, Anna; Rostkowska, Elzbieta; Samborski, Włodzimierz
2009-01-01
Postural balance is defined as the ability to stand unassisted without falling. Examination of the patient's postural balance function is a difficult diagnostic task. Most of the balance tests used in medicine provide incomplete information on this coordination ability of the human body. The aim of this study was to review methods of assessment of the patient's postural balance function, including various tests used in medical diagnostics centers.
Simulating Donnan equilibria based on the Nernst-Planck equation
NASA Astrophysics Data System (ADS)
Gimmi, Thomas; Alt-Epping, Peter
2018-07-01
Understanding ion transport through clays and clay membranes is important for many geochemical and environmental applications. Ion transport is affected by electrostatic forces exerted by charged clay surfaces. Anions are partly excluded from pore water near these surfaces, whereas cations are enriched. Such effects can be modeled by the Donnan approach. Here we introduce a new, comparatively simple way to represent Donnan equilibria in transport simulations. We include charged surfaces as immobile ions in the balance equation and calculate coupled transport of all components, including the immobile charges, with the Nernst-Planck equation. This results in an additional diffusion potential that influences ion transport, leading to Donnan ion distributions while maintaining local charge balance. The validity of our new approach was demonstrated by comparing Nernst-Planck simulations using the reactive transport code Flotran with analytical solutions available for simple Donnan systems. Attention has to be paid to the numerical evaluation of the electrochemical migration term in the Nernst-Planck equation to obtain correct results for asymmetric electrolytes. Sensitivity simulations demonstrate the influence of various Donnan model parameters on simulated anion accessible porosities. It is furthermore shown that the salt diffusion coefficient in a Donnan pore depends on local concentrations, in contrast to the aqueous salt diffusion coefficient. Our approach can be easily implemented into other transport codes. It is versatile and facilitates, for instance, assessing the implications of different activity models for the Donnan porosity.
Mao, Yuezhi; Demerdash, Omar; Head-Gordon, Martin; Head-Gordon, Teresa
2016-11-08
AMOEBA is a molecular mechanics force field that addresses some of the shortcomings of a fixed partial charge model, by including permanent atomic point multipoles through quadrupoles, as well as many-body polarization through the use of point inducible dipoles. In this work, we investigate how well AMOEBA formulates its non-bonded interactions, and how it implicitly incorporates quantum mechanical effects such as charge penetration (CP) and charge transfer (CT), for water-water and water-ion interactions. We find that AMOEBA's total interaction energies, as a function of distance and over angular scans for the water dimer and for a range of water-monovalent cations, agree well with an advanced density functional theory (DFT) model, whereas the water-halides and water-divalent cations show significant disagreement with the DFT result, especially in the compressed region when the two fragments overlap. We use a second-generation energy decomposition analysis (EDA) scheme based on absolutely localized molecular orbitals (ALMOs) to show that in the best cases AMOEBA relies on cancellation of errors by softening of the van der Waals (vdW) wall to balance permanent electrostatics that are too unfavorable, thereby compensating for the missing CP effect. CT, as another important stabilizing effect not explicitly taken into account in AMOEBA, is also found to be incorporated by the softened vdW interaction. For the water-halides and water-divalent cations, this compensatory approach is not as well executed by AMOEBA over all distances and angles, wherein permanent electrostatics remains too unfavorable and polarization is overdamped in the former while overestimated in the latter. We conclude that the DFT-based EDA approach can help refine a next-generation AMOEBA model that either realizes a better cancellation of errors for problematic cases like those illustrated here, or serves to guide the parametrization of explicit functional forms for short-range contributions from CP and/or CT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haarmeyer, Carolyn N.; Smith, Matthew D.; Chundawat, Shishir P. S.
Biological-mediated conversion of pretreated lignocellulosic biomass to biofuels and biochemicals is a promising avenue towards energy sustainability. However, a critical impediment to the commercialization of cellulosic biofuel production is the high cost of cellulase enzymes needed to deconstruct biomass into fermentable sugars. One major factor driving cost is cellulase adsorption and inactivation in the presence of lignin, yet we currently have a poor understanding of the protein structure-function relationships driving this adsorption. In this work, we have systematically investigated the role of protein surface potential on lignin adsorption using a model monomeric fluorescent protein. We have designed and experimentally characterizedmore » 16 model protein variants spanning the physiological range of net charge (-24 to +16 total charges) and total charge density (0.28 to 0.40 charges per sequence length) typical for natural proteins. Protein designs were expressed, purified, and subjected to in silico and in vitro biophysical measurements to evaluate the relationship between protein surface potential and lignin adsorption properties. The designs were comparable to model fluorescent protein in terms of thermostability and heterologous expression yield, although the majority of the designs unexpectedly formed homodimers. Protein adsorption to lignin was studied at two different temperatures using Quartz Crystal Microbalance with Dissipation Monitoring and a subtractive mass balance assay. We found a weak correlation between protein net charge and protein-binding capacity to lignin. No other single characteristic, including apparent melting temperature and 2nd virial coefficient, showed correlation with lignin binding. Analysis of an unrelated cellulase dataset with mutations localized to a family I carbohydrate-binding module showed a similar correlation between net charge and lignin binding capacity. Altogether, our study provides strategies to identify highly active, low lignin-binding cellulases by either rational design or by computational screening genomic databases.« less
Haarmeyer, Carolyn N.; Smith, Matthew D.; Chundawat, Shishir P. S.; ...
2016-10-17
Biological-mediated conversion of pretreated lignocellulosic biomass to biofuels and biochemicals is a promising avenue towards energy sustainability. However, a critical impediment to the commercialization of cellulosic biofuel production is the high cost of cellulase enzymes needed to deconstruct biomass into fermentable sugars. One major factor driving cost is cellulase adsorption and inactivation in the presence of lignin, yet we currently have a poor understanding of the protein structure-function relationships driving this adsorption. In this work, we have systematically investigated the role of protein surface potential on lignin adsorption using a model monomeric fluorescent protein. We have designed and experimentally characterizedmore » 16 model protein variants spanning the physiological range of net charge (-24 to +16 total charges) and total charge density (0.28 to 0.40 charges per sequence length) typical for natural proteins. Protein designs were expressed, purified, and subjected to in silico and in vitro biophysical measurements to evaluate the relationship between protein surface potential and lignin adsorption properties. The designs were comparable to model fluorescent protein in terms of thermostability and heterologous expression yield, although the majority of the designs unexpectedly formed homodimers. Protein adsorption to lignin was studied at two different temperatures using Quartz Crystal Microbalance with Dissipation Monitoring and a subtractive mass balance assay. We found a weak correlation between protein net charge and protein-binding capacity to lignin. No other single characteristic, including apparent melting temperature and 2nd virial coefficient, showed correlation with lignin binding. Analysis of an unrelated cellulase dataset with mutations localized to a family I carbohydrate-binding module showed a similar correlation between net charge and lignin binding capacity. Altogether, our study provides strategies to identify highly active, low lignin-binding cellulases by either rational design or by computational screening genomic databases.« less
Haarmeyer, Carolyn N; Smith, Matthew D; Chundawat, Shishir P S; Sammond, Deanne; Whitehead, Timothy A
2017-04-01
Biological-mediated conversion of pretreated lignocellulosic biomass to biofuels and biochemicals is a promising avenue toward energy sustainability. However, a critical impediment to the commercialization of cellulosic biofuel production is the high cost of cellulase enzymes needed to deconstruct biomass into fermentable sugars. One major factor driving cost is cellulase adsorption and inactivation in the presence of lignin, yet we currently have a poor understanding of the protein structure-function relationships driving this adsorption. In this work, we have systematically investigated the role of protein surface potential on lignin adsorption using a model monomeric fluorescent protein. We have designed and experimentally characterized 16 model protein variants spanning the physiological range of net charge (-24 to +16 total charges) and total charge density (0.28-0.40 charges per sequence length) typical for natural proteins. Protein designs were expressed, purified, and subjected to in silico and in vitro biophysical measurements to evaluate the relationship between protein surface potential and lignin adsorption properties. The designs were comparable to model fluorescent protein in terms of thermostability and heterologous expression yield, although the majority of the designs unexpectedly formed homodimers. Protein adsorption to lignin was studied at two different temperatures using Quartz Crystal Microbalance with Dissipation Monitoring and a subtractive mass balance assay. We found a weak correlation between protein net charge and protein-binding capacity to lignin. No other single characteristic, including apparent melting temperature and 2nd virial coefficient, showed correlation with lignin binding. Analysis of an unrelated cellulase dataset with mutations localized to a family I carbohydrate-binding module showed a similar correlation between net charge and lignin binding capacity. Overall, our study provides strategies to identify highly active, low lignin-binding cellulases by either rational design or by computational screening genomic databases. Biotechnol. Bioeng. 2017;114: 740-750. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
31 CFR 321.23 - Paying agent fees and charges.
Code of Federal Regulations, 2010 CFR
2010-07-01
... securities received by a Bank in mixed cash letters. (2) To comply with the provisions of the Balanced Budget... accordance with the schedule of fees as hereafter published, subject to the availability of funds therefor...
Modeling thermionic emission from laser-heated nanoparticles
Mitrani, J. M.; Shneider, M. N.; Stratton, B. C.; ...
2016-02-01
An adjusted form of thermionic emission is applied to calculate emitted current from laser-heated nanoparticles and to interpret time-resolved laser-induced incandescence (TR-LII) signals. This adjusted form of thermionic emission predicts significantly lower values of emitted current compared to the commonly used Richardson-Dushman equation, since the buildup of positive charge in a laser-heated nanoparticle increases the energy barrier for further emission of electrons. Thermionic emission influences the particle's energy balance equation, which can influence TR-LII signals. Additionally, reports suggest that thermionic emission can induce disintegration of nanoparticle aggregates when the electrostatic Coulomb repulsion energy between two positively charged primary particles ismore » greater than the van der Waals bond energy. Furthermore, since the presence and size of aggregates strongly influences the particle's energy balance equation, using an appropriate form of thermionic emission to calculate emitted current may improve interpretation of TR-LII signals.« less
NASA Technical Reports Server (NTRS)
Charnley, Steven B.
2011-01-01
The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.
Charge management for gravitational-wave observatories using UV LEDs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollack, S. E.; Turner, M. D.; Schlamminger, S.
Accumulation of electrical charge on the end mirrors of gravitational-wave observatories can become a source of noise limiting the sensitivity of such detectors through electronic couplings to nearby surfaces. Torsion balances provide an ideal means for testing gravitational-wave technologies due to their high sensitivity to small forces. Our torsion pendulum apparatus consists of a movable plate brought near a plate pendulum suspended from a nonconducting quartz fiber. A UV LED located near the pendulum photoejects electrons from the surface, and a UV LED driven electron gun directs photoelectrons towards the pendulum surface. We have demonstrated both charging and discharging ofmore » the pendulum with equivalent charging rates of {approx}10{sup 5}e/s, as well as spectral measurements of the pendulum charge resulting in a white noise level equivalent to 3x10{sup 5}e/{radical}(Hz).« less
Grain-scale supercharging and breakdown on airless regoliths
NASA Astrophysics Data System (ADS)
Zimmerman, M. I.; Farrell, W. M.; Hartzell, C. M.; Wang, X.; Horanyi, M.; Hurley, D. M.; Hibbitts, K.
2016-10-01
Interactions of the solar wind and emitted photoelectrons with airless bodies have been studied extensively. However, the details of how charged particles interact with the regolith at the scale of a single grain have remained largely uncharacterized. Recent efforts have focused upon determining total surface charge under photoemission and solar wind bombardment and the associated electric field and potential. In this work, theory and simulations are used to show that grain-grain charge differences can exceed classical sheath predictions by several orders of magnitude, sometimes reaching dielectric breakdown levels. Temperature-dependent electrical conductivity works against supercharging by allowing current to leak through individual grains; the balance between internal conduction and surface charging controls the maximum possible grain-to-grain electric field. Understanding the finer details of regolith grain charging, conductive equilibrium, and dielectric breakdown will improve future numerical studies of space weathering and dust levitation on airless bodies.
Grain-Scale Supercharging and Breakdown on Airless Regoliths
NASA Technical Reports Server (NTRS)
Zimmerman, M. I.; Farrell, W. M.; Hartzell, C.M.; Wang, X.; Horanyi, M.; Hurley, D. M.; Hibbitts, K.
2016-01-01
Interactions of the solar wind and emitted photoelectrons with airless bodies have been studied extensively. However, the details of how charged particles interact with the regolith at the scale of a single grain have remained largely uncharacterized. Recent efforts have focused upon determining total surface charge under photoemission and solar wind bombardment and the associated electric field and potential. In this work, theory and simulations are used to show that grain-grain charge differences can exceed classical sheath predictions by several orders of magnitude, sometimes reaching dielectric breakdown levels. Temperature-dependent electrical conductivity works against supercharging by allowing current to leak through individual grains; the balance between internal conduction and surface charging controls the maximum possible grain-to-grain electric field. Understanding the finer details of regolith grain charging, conductive equilibrium, and dielectric breakdown will improve future numerical studies of space weathering and dust levitation on airless bodies.
NASA Astrophysics Data System (ADS)
Ye, Qian; Lin, Haoze
2017-07-01
Though extensively used in calculating optical force and torque acting on a material object illuminated by laser, the Maxwell stress tensor (MST) method follows the electromagnetic linear and angular momentum balance that is usually derived in most textbooks for a continuous volume charge distribution in free space, if not resorting to the application of Noether’s theorem in electrodynamics. To cast the conservation laws into a physically appealing form involving the current densities of linear and angular momentum, on which the MST method is based, the divergence theorem is employed to transform a volume integral into a surface integral. When a material object of finite volume is put into the field, it brings about a discontinuity of field across its surface, due to the presence of induced surface charge and surface current. Ambiguity arises among students in whether the divergence theorem can still be directly used without any justification. By taking into account the effect of the induced surface charge and current, we present a simple pedagogical derivation for the MST method for calculating the optical force and torque on an object immersed in monochromatic optical field, without resorting to Noether’s theorem. Although the results turn out to be identical to those given in the standard textbooks, our derivation avoids the direct use of the divergence theorem on a discontinuous function.
Hyltegren, Kristin; Skepö, Marie
2017-05-15
The adsorbed amount of the polyelectrolyte-like protein histatin 5 on a silica surface depends on the pH and the ionic strength of the solution. Interestingly, an increase in ionic strength affects the adsorbed amount differently depending on the pH of the solution, as shown by ellipsometry measurements (Hyltegren, 2016). We have tested the hypothesis that the same (qualitative) trends can be found also from a coarse-grained model that takes all charge-charge interactions into account within the frameworks of Gouy-Chapman and Debye-Hückel theories. Using the same coarse-grained model as in our previous Monte Carlo study of single protein adsorption (Hyltegren, 2016), simulations of systems with many histatin 5 molecules were performed and then compared with ellipsometry measurements. The strength of the short-ranged attractive interaction between the protein and the surface was varied. The coarse-grained model does not qualitatively reproduce the pH-dependence of the experimentally observed trends in adsorbed amount as a function of ionic strength. However, the simulations cast light on the balance between electrostatic attraction between protein and surface and electrostatic repulsion between adsorbed proteins, the deficiencies of the Langmuir isotherm, and the implications of protein charge regulation in concentrated systems. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zainudin, W. N. R. A.; Ramli, N. A.
2017-09-01
In 2010, Energy Commission (EC) had introduced Incentive Based Regulation (IBR) to ensure sustainable Malaysian Electricity Supply Industry (MESI), promotes transparent and fair returns, encourage maximum efficiency and maintains policy driven end user tariff. To cater such revolutionary transformation, a sophisticated system to generate policy driven electricity tariff structure is in great need. Hence, this study presents a data analytics framework that generates altered revenue function based on varying power consumption distribution and tariff charge function. For the purpose of this study, the power consumption distribution is being proxy using proportion of household consumption and electricity consumed in KwH and the tariff charge function is being proxy using three-tiered increasing block tariff (IBT). The altered revenue function is useful to give an indication on whether any changes in the power consumption distribution and tariff charges will give positive or negative impact to the economy. The methodology used for this framework begins by defining the revenue to be a function of power consumption distribution and tariff charge function. Then, the proportion of household consumption and tariff charge function is derived within certain interval of electricity power. Any changes in those proportion are conjectured to contribute towards changes in revenue function. Thus, these changes can potentially give an indication on whether the changes in power consumption distribution and tariff charge function are giving positive or negative impact on TNB revenue. Based on the finding of this study, major changes on tariff charge function seems to affect altered revenue function more than power consumption distribution. However, the paper concludes that power consumption distribution and tariff charge function can influence TNB revenue to some great extent.
Clean vehicles as an enabler for a clean electricity grid
NASA Astrophysics Data System (ADS)
Coignard, Jonathan; Saxena, Samveg; Greenblatt, Jeffery; Wang, Dai
2018-05-01
California has issued ambitious targets to decarbonize transportation through the deployment of electric vehicles (EVs), and to decarbonize the electricity grid through the expansion of both renewable generation and energy storage. These parallel efforts can provide an untapped synergistic opportunity for clean transportation to be an enabler for a clean electricity grid. To quantify this potential, we forecast the hourly system-wide balancing problems arising out to 2025 as more renewables are deployed and load continues to grow. We then quantify the system-wide balancing benefits from EVs modulating the charging or discharging of their batteries to mitigate renewable intermittency, without compromising the mobility needs of drivers. Our results show that with its EV deployment target and with only one-way charging control of EVs, California can achieve much of the same benefit of its Storage Mandate for mitigating renewable intermittency, but at a small fraction of the cost. Moreover, EVs provide many times these benefits if two-way charging control becomes widely available. Thus, EVs support the state’s renewable integration targets while avoiding much of the tremendous capital investment of stationary storage that can instead be applied towards further deployment of clean vehicles.
Kato-Narita, Eliane Mayumi; Nitrini, Ricardo; Radanovic, Marcia
2011-04-01
To analyze the correlation between balance, falls and loss of functional capacity in mild and moderate Alzheimer's disease(AD). 40 subjects without cognitive impairment (control group) and 48 AD patients (25 mild, 23 moderate) were evaluated with the Berg Balance Scale (BBS) and the Disability Assessment for Dementia (DAD). Subjects answered a questionnaire about falls occurrence in the last twelve months. Moderate AD patients showed poorer balance (p=0.001) and functional capacity (p <0.0001) and it was observed a correlation between falls and balance (r= -0.613; p=0.045). There is a decline of balance related to AD which is a factor associated to the occurrence of falls, albeit not the most relevant one. The loss of functional capacity is associated with the disease's progress but not to a higher occurrence of falls. The balance impairment did not correlate with functional decline in AD patients.
Charge transfer collisions of Si^3+ with H at low energies
NASA Astrophysics Data System (ADS)
Joseph, D. C.; Gu, J. P.; Saha, B. C.
2009-11-01
Charge transfer of positively charged ions with atomic hydrogen is important not only in magnetically confined plasmas between impurity ions and H atoms from the chamber walls influences the overall ionization balance and effects the plasma cooling but also in astrophysics, where it plays a key role in determining the properties of the observed gas. It also provides a recombination mechanism for multiply charged ions in X-ray ionized astronomical environments. We report an investigation using the molecular-orbital close-coupling (MOCC) method, both quantum mechanically and semi-classically, in the adiabatic representation. Ab initio adiabatic potentials and coupling matrix elements--radial and angular--are calculated using the MRD-CI method. Comparison of our results with other theoretical as well as experimental findings will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, Herwig, E-mail: hahn@gan.rwth-aachen.de; Reuters, Benjamin; Geipel, Sascha
2015-03-14
GaN-based heterostructure FETs (HFETs) featuring a 2-D electron gas (2DEG) can offer very attractive device performance for power-switching applications. This performance can be assessed by evaluation of the dynamic on-resistance R{sub on,dyn} vs. the breakdown voltage V{sub bd}. In literature, it has been shown that with a high V{sub bd}, R{sub on,dyn} is deteriorated. The impairment of R{sub on,dyn} is mainly driven by electron injection into surface, barrier, and buffer traps. Electron injection itself depends on the electric field which typically peaks at the gate edge towards the drain. A concept suitable to circumvent this issue is the charge-balancing conceptmore » which employs a 2-D hole gas (2DHG) on top of the 2DEG allowing for the electric field peak to be suppressed. Furthermore, the 2DEG concentration in the active channel cannot decrease by a change of the surface potential. Hence, beside an improvement in breakdown voltage, also an improvement in dynamic behaviour can be expected. Whereas the first aspect has already been demonstrated, the second one has not been under investigation so far. Hence, in this report, the effect of charge-balancing is discussed and its impact on the dynamic characteristics of HFETs is evaluated. It will be shown that with appropriate device design, the dynamic behaviour of HFETs can be improved by inserting an additional 2DHG.« less
Laboratory simulation of irradiation-induced dielectric breakdown in spacecraft charging
NASA Technical Reports Server (NTRS)
Yadlowsky, E. J.; Churchill, R. J.; Hazelton, R. C.
1980-01-01
The discharging of dielectric samples irradiated by a beam of monoenergetic electrons is investigated. The development of a model, or models, which describe the discharge phenomena occuring on the irradiated dielectric targets is discussed. The electrical discharge characteristics of irradiated dielectric samples are discussed and the electrical discharge paths along dielectric surfaces and within the dielectric material are determined. The origin and destination of the surface emitted particles is examined and the charge and energy balance in the system is evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.
Structure–property relationships of ionic block copolymer (BCP) surfactant complexes are critical toward the progress of favorable engineering design of efficient charge-transport materials. In this paper, molecular dynamics simulations are used to understand the dynamics of charged-neutral BCP and surfactant complexes. The dynamics are examined for two different systems: charged-neutral double-hydrophilic and hydrophobic–hydrophilic block copolymers with oppositely charged surfactant moieties. The dynamics of the surfactant head, tails, and charges are studied for five different BCP volume fractions. We observe that the dynamics of the different species solely depend on the balance between electrostatic and entropic interactions between the charged species andmore » the neutral monomers. The favorable hydrophobic–hydrophobic interactions and the unfavorable hydrophobic–hydrophilic interactions determine the mobilities of the monomers. The dynamical properties of the charge species influence complex formation. Structural relaxations exhibit length-scale dependent behavior, with slower relaxation at the radius of gyration length-scale and faster relaxation at the segmental length-scale, consistent with previous results. The dynamical analysis correlates ion-exchange kinetics to the self-assembly behavior of the complexes.« less
Liao, Chun-De; Lin, Li-Fong; Huang, Yi-Ching; Huang, Shih-Wei; Chou, Lin-Chuan; Liou, Tsan-Hon
2015-09-01
To evaluate whether balance training after total knee replacement surgery improves functional outcomes and to determine whether postoperative balance is associated with mobility. A prospective intervention study and randomized controlled trial with an intention-to-treat analysis. The rehabilitation center of a university-based teaching hospital. A total of 130 patients with knee osteoarthritis who had undergone total knee replacement surgery were recruited to attend an outpatient rehabilitation program. They were randomly allocated to additional balance rehabilitation and functional rehabilitation groups. During the eight-week outpatient rehabilitation program, both groups received general functional training. Patients in the balance rehabilitation group received an additional balance-based rehabilitation program. The functional reach test, single-leg stance test, 10-m walk test, Timed Up and Go Test, timed chair-stand test, stair-climb test, and Western Ontario and McMaster Universities Osteoarthritis Index were measured at baseline, eight weeks (T(1)), and 32 weeks (T(2)). The balance rehabilitation group patients demonstrated significant improvement in the results of the functional reach test at T(1) (37.6 ±7.8 cm) and T(2) (39.3 ±9.7 cm) compared with the baseline assessment (11.5 ±2.9 cm) and Timed Up and Go Test at T(1) (8.9 ±1.2 seconds) and T(2) (8.0 ±1.9 seconds) compared with the baseline assessment (12.5 ±1.8 seconds). Moreover, the balance rehabilitation group patients exhibited significantly greater improvements in balance and mobility than did the functional rehabilitation group patients (all P < 0.001). Furthermore, improved balance was significantly associated with improved mobility at T(2). Postoperative outpatient rehabilitation with balance training improves the balance, mobility, and functional outcomes in patients with knee osteoarthritis after total knee replacement. © The Author(s) 2014.
Hartvig, Rune A; van de Weert, Marco; Østergaard, Jesper; Jorgensen, Lene; Jensen, Henrik
2011-03-15
The understanding of protein adsorption at charged surfaces is important for a wide range of scientific disciplines including surface engineering, separation sciences and pharmaceutical sciences. Compared to chemical entities having a permanent charge, the adsorption of small ampholytes and proteins is more complicated as the pH near a charged surface can be significantly different from the value in bulk solution. In this work, we have developed a phenomenological adsorption model which takes into account the combined role of interfacial ion distribution, interfacial charge regulation of amino acids in the proximity of the surface, electroneutrality, and mass balance. The model is straightforward to apply to a given set of experimental conditions as most model parameters are obtained from bulk properties and therefore easy to estimate or are directly measurable. The model provides a detailed understanding of the importance of surface charge on adsorption and in particular of how changes in surface charge, concentration, and surface area may affect adsorption behavior. The model is successfully used to explain the experimental adsorption behavior of the two model proteins lysozyme and α-lactalbumin. It is demonstrated that it is possible to predict the pH and surface charge dependent adsorption behavior from experimental or theoretical estimates of a preferred orientation of a protein at a solid charged interface.
Visual Biofeedback Balance Training Using Wii Fit after Stroke: A Randomized Controlled Trial
Barcala, Luciana; Grecco, Luanda André Collange; Colella, Fernanda; Lucareli, Paulo Roberto Garcia; Salgado, Afonso Shiguemi Inoue; Oliveira, Claudia Santos
2013-01-01
[Purpose] The aim of the present study was to investigate the effect of balance training with visual biofeedback on balance, body symmetry, and function among individuals with hemiplegia following a stroke. [Subjects and Methods] The present study was performed using a randomized controlled clinical trial with a blinded evaluator. The subjects were twenty adults with hemiplegia following a stroke. The experimental group performed balance training with visual biofeedback using Wii Fit® together with conventional physical therapy. The control group underwent conventional physical therapy alone. The intervention lasted five weeks, with two sessions per week. Body symmetry (baropodometry), static balance (stabilometry), functional balance (Berg Balance Scale), functional mobility (Timed Up and Go test), and independence in activities of daily living (Functional Independence Measure) were assessed before and after the intervention. [Results] No statistically significant differences were found between the experimental and control groups. In the intragroup analysis, both groups demonstrated a significant improvement in all variables studied. [Conclusion] The physical therapy program combined with balance training involving visual biofeedback (Wii Fit®) led to an improvement in body symmetry, balance, and function among stroke victims. However, the improvement was similar to that achieved with conventional physical therapy alone. PMID:24259909
Functional Performance and Balance in the Oldest-Old.
Kafri, Michal; Hutzler, Yeshayahu; Korsensky, Olga; Laufer, Yocheved
2017-06-01
The group of individuals 85 years and over (termed oldest-old) is the fastest-growing population in the Western world. Although daily functional abilities and balance capabilities are known to decrease as an individual grows older, little is known about the balance and functional characteristics of the oldest-old population. The aims of this study were to characterize balance control, functional abilities, and balance self-efficacy in the oldest-old, to test the correlations between these constructs, and to explore differences between fallers and nonfallers in this age group. Forty-five individuals living in an assisted living facility who ambulated independently participated in the study. The mean age was 90.3 (3.7) years. Function was tested using the Late-Life Function and Disability Instrument (LLFDI). Balance was tested with the mini-Balance Evaluation System Test (mini-BESTest) and the Timed Up and Go (TUG) test. Balance self-efficacy was tested with the Activities-Specific Balance Confidence (ABC) scale. The mean total function LLFDI score was 63.2 (11.4). The mean mini-BESTest score was 69.8% (18.6%) and the mean TUG time was 12.6 (6.9) seconds. The mean ABC score was 80.2% (14.2%). Good correlation (r > 0.7) was observed between the ABC and the function component of the LLFDI, as well as with the lower extremity domains. Correlations between the mini-BESTest scores and the LLFDI were fair to moderate (r's range: 0.38-0.62). Age and ABC scores were significant independent explanators of LLFDI score (P = .0141 and P = .0009, respectively). Fallers and nonfallers differed significantly across all outcome measures scores, except for TUG and for the "Reactive Postural Control" and "Sensory Orientation" domains of the mini-BESTest. The results of this study provide normative data regarding the balance and functional abilities of the oldest-old, and indicate a strong association between self-efficacy and function. These results emphasize the importance of incorporating strategies that maintain and improve balance self-efficacy in interventions aimed at enhancing the functional level of this cohort.
NASA Astrophysics Data System (ADS)
Park, Joonam; Appiah, Williams Agyei; Byun, Seoungwoo; Jin, Dahee; Ryou, Myung-Hyun; Lee, Yong Min
2017-10-01
To overcome the limitation of simple empirical cycle life models based on only equivalent circuits, we attempt to couple a conventional empirical capacity loss model with Newman's porous composite electrode model, which contains both electrochemical reaction kinetics and material/charge balances. In addition, an electrolyte depletion function is newly introduced to simulate a sudden capacity drop at the end of cycling, which is frequently observed in real lithium-ion batteries (LIBs). When simulated electrochemical properties are compared with experimental data obtained with 20 Ah-level graphite/LiFePO4 LIB cells, our semi-empirical model is sufficiently accurate to predict a voltage profile having a low standard deviation of 0.0035 V, even at 5C. Additionally, our model can provide broad cycle life color maps under different c-rate and depth-of-discharge operating conditions. Thus, this semi-empirical model with an electrolyte depletion function will be a promising platform to predict long-term cycle lives of large-format LIB cells under various operating conditions.
Improving traditional balancing methods for high-speed rotors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ling, J.; Cao, Y.
1996-01-01
This paper introduces frequency response functions, analyzes the relationships between the frequency response functions and influence coefficients theoretically, and derives corresponding mathematical equations for high-speed rotor balancing. The relationships between the imbalance masses on the rotor and frequency response functions are also analyzed based upon the modal balancing method, and the equations related to the static and dynamic imbalance masses and the frequency response function are obtained. Experiments on a high-speed rotor balancing rig were performed to verify the theory, and the experimental data agree satisfactorily with the analytical solutions. The improvement on the traditional balancing method proposed in thismore » paper will substantially reduce the number of rotor startups required during the balancing process of rotating machinery.« less
Stochastic approach and fluctuation theorem for charge transport in diodes
NASA Astrophysics Data System (ADS)
Gu, Jiayin; Gaspard, Pierre
2018-05-01
A stochastic approach for charge transport in diodes is developed in consistency with the laws of electricity, thermodynamics, and microreversibility. In this approach, the electron and hole densities are ruled by diffusion-reaction stochastic partial differential equations and the electric field generated by the charges is determined with the Poisson equation. These equations are discretized in space for the numerical simulations of the mean density profiles, the mean electric potential, and the current-voltage characteristics. Moreover, the full counting statistics of the carrier current and the measured total current including the contribution of the displacement current are investigated. On the basis of local detailed balance, the fluctuation theorem is shown to hold for both currents.
Battery and capacitor technology for uniform charge time in implantable cardioverter-defibrillators
NASA Astrophysics Data System (ADS)
Skarstad, Paul M.
Implantable cardioverter-defibrillators (ICDs) are implantable medical devices designed to treat ventricular fibrillation by administering a high-voltage shock directly to the heart. Minimizing the time a patient remains in fibrillation is an important goal of this therapy. Both batteries and high-voltage capacitors used in these devices can display time-dependency in performance, resulting in significant extension of charge time. Altering the electrode balance in lithium/silver vanadium oxide batteries used to power these devices has minimized time-dependent changes in battery resistance. Charge-interval dependent changes in capacitor cycling efficiency have been minimized for stacked-plate aluminum electrolytic capacitors by a combination of material and processing factors.
NASA Astrophysics Data System (ADS)
Dan, Li; Guo, Li-Xin; Li, Jiang-Ting; Chen, Wei; Yan, Xu; Huang, Qing-Qing
2017-09-01
The expression of complex dielectric permittivity for non-magnetized fully ionized dusty plasma is obtained based on the kinetic equation in the Fokker-Planck-Landau collision model and the charging equation of the statistical theory. The influences of density, average size of dust grains, and balanced charging of the charge number of dust particles on the attenuation properties of electromagnetic waves in fully ionized dusty plasma are investigated by calculating the attenuation constant. In addition, the attenuation characteristics of weakly ionized and fully ionized dusty plasmas are compared. Results enriched the physical mechanisms of microwave attenuation for fully ionized dusty plasma and provide a theoretical basis for future studies.
NASA Astrophysics Data System (ADS)
Kim, Jin-Hoon; Triambulo, Ross E.; Park, Jin-Woo
2017-03-01
We investigated the charge injection properties of silver nanowire networks (AgNWs) in a composite-like structure with poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrenesulfonate) (PEDOT:PSS). The composite films acted as the anodes and hole transport layers (HTLs) in organic light-emitting diodes (OLEDs). The current density (J)-voltage (V)-luminance (L) characteristics and power efficiency (ɛ) of the OLEDs were measured to determine their electrical and optical properties. The charge injection properties of the AgNWs in the OLEDs during operation were characterized via impedance spectroscopy (IS) by determining the variations in the capacitances (C) of the devices with respect to the applied V and the corresponding frequency (f). All measured results were compared with results for OLEDs fabricated on indium tin oxide (ITO) anodes. The OLEDs on AgNWs showed lower L and ɛ values than the OLEDs on ITO. It was also observed that AgNWs exhibit excellent charge injection properties and that the interfaces between the AgNWs and the HTL have very small charge injection barriers, resulting in an absence of charge carrier traps when charges move across these interfaces. However, in the AgNW-based OLED, there was a large mismatch in the number of injected holes and electrons. Furthermore, the highly conductive electrical paths of the AgNWs in the composite-like AgNW and PEDOT:PSS structure allowed a large leakage current of holes that did not participate in radiative recombination with the electrons; consequently, a lower ɛ was observed for the AgNW-based OLEDs than for the ITO-based OLEDs. To match the injection of electrons by the electron transport layer (ETL) in the AgNW-based OLED with that of holes by the AgNW/PEDOT:PSS composite anode, the electron injection barrier of the ETL was decreased by using the low work function polyethylenimine ethoxylated (PEIE) doped with n-type cesium carbonate (Cs2CO3). With the doped-PEIE, the performance of the AgNW-based OLED was significantly enhanced through the balanced injection of holes and electrons, which clearly verified our analysis results by IS.
Multi-Scale Structure of Coacervates formed by Oppositely Charged Polyelectrolytes
NASA Astrophysics Data System (ADS)
Rubinstein, Michael
We develop a scaling model of coacervates formed by oppositely charged polyelectrolytes and demonstrate that they self-organize into multi-scale structures. The intramolecular electrostatic interactions in dilute polyanion or polycation solutions are characterized by the electrostatic blobs with size D- and D+ respectively, that repel neighboring blobs on the same chains with electrostatic energy on the order of thermal energy kT . After mixing, electrostatic intramolecular repulsion of polyelectrolytes with higher charged density, say polyanions, keeps these polyanions in coacervates aligned into stretched arrays of electrostatic blobs of size D-
Laser Detection of Nanoparticles In the Environment
The United States Environmental Protection Agency (EPA) is charged by Congress to protect the nation’s natural resources. Under the mandate of national environmental laws, the EPA strives to formulate and implement actions leading to a compatible balance between human activities ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.
Structure–property relationships of ionic block copolymer (BCP) surfactant complexes are critical toward the progress of favorable engineering design of efficient charge-transport materials. In this paper, molecular dynamics simulations are used to understand the dynamics of charged-neutral BCP and surfactant complexes. The dynamics are examined for two different systems: charged-neutral double-hydrophilic and hydrophobic–hydrophilic block copolymers with oppositely charged surfactant moieties. The dynamics of the surfactant head, tails, and charges are studied for five different BCP volume fractions. We observe that the dynamics of the different species solely depend on the balance between electrostatic and entropic interactions between the charged species andmore » the neutral monomers. The favorable hydrophobic–hydrophobic interactions and the unfavorable hydrophobic–hydrophilic interactions determine the mobilities of the monomers. The dynamical properties of the charge species influence complex formation. Structural relaxations exhibit length-scale dependent behavior, with slower relaxation at the radius of gyration length-scale and faster relaxation at the segmental length-scale, consistent with previous results. The dynamical analysis correlates ion-exchange kinetics to the self-assembly behavior of the complexes.« less
Brummer, S B; Robblee, L S; Hambrecht, F T
1983-01-01
Smaller, more charge-intensive electrodes are needed for "safe" stimulation of the nervous system. In this paper we review critical concepts and the state of the art in electrodes. Control of charge density and charge balance are essential to avoid tissue electrolysis. Chemical criteria for "safe" stimulation are reviewed ("safe" is equated with "chemically reversible"). An example of a safe, but generally impractical, charge-injection process is double-layer charging. The limit here is the onset of irreversible faradaic processes. More charge can be safely injected with so-called "capacitor" electrodes, such as porous intermixtures of Ta/Ta2O5. BaTiO3 has excellent dielectric properties and may provide a new generation of capacitor electrodes. Faradaic charge injection is usually partially irreversible since some of the products escape into the solution. With Pt, up to 400 muc/cm2 real area can be absorbed by faradaic reactions of surface-adsorbed species, but a small part is lost due to metal dissolution. The surface of "activated" Ir is covered with a multilayer hydrated oxide. Charge injection occurs via rapid valence change within this oxide. Little or no metal dissolution is observed, and gassing limits are not exceeded even under stringent conditions.
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2012-01-01
Observations made during Apollo missions, as well as theoretical models indicate that the lunar surface and dust grains are electrostatically charged, levitated and transported. Lunar dust grains are charged by UV photoelectric emissions on the lunar dayside and by the impact of the solar wind electrons on the nightside. The knowledge of charging properties of individual lunar dust grains is important for developing appropriate theoretical models and mitigating strategies. Currently, very limited experimental data are available for charging of individual micron-size size lunar dust grains in particular by low energy electron impact. However, experimental results based on extensive laboratory measurements on the charging of individual 0.2-13 micron size lunar dust grains by the secondary electron emissions (SEE) have been presented in a recent publication. The SEE process of charging of micron-size dust grains, however, is found to be very complex phenomena with strong particle size dependence. In this paper we present some examples of the complex nature of the SEE properties of positively charged individual lunar dust grains levitated in an electrodynamic balance (EDB), and show that they remain unaffected by the variation of the AC field employed in the above mentioned measurements.
Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.; ...
2017-06-21
Structure–property relationships of ionic block copolymer (BCP) surfactant complexes are critical toward the progress of favorable engineering design of efficient charge-transport materials. In this paper, molecular dynamics simulations are used to understand the dynamics of charged-neutral BCP and surfactant complexes. The dynamics are examined for two different systems: charged-neutral double-hydrophilic and hydrophobic–hydrophilic block copolymers with oppositely charged surfactant moieties. The dynamics of the surfactant head, tails, and charges are studied for five different BCP volume fractions. We observe that the dynamics of the different species solely depend on the balance between electrostatic and entropic interactions between the charged species andmore » the neutral monomers. The favorable hydrophobic–hydrophobic interactions and the unfavorable hydrophobic–hydrophilic interactions determine the mobilities of the monomers. The dynamical properties of the charge species influence complex formation. Structural relaxations exhibit length-scale dependent behavior, with slower relaxation at the radius of gyration length-scale and faster relaxation at the segmental length-scale, consistent with previous results. The dynamical analysis correlates ion-exchange kinetics to the self-assembly behavior of the complexes.« less
Humic substance charge determination by titration with a flexible cationic polyelectrolyte
NASA Astrophysics Data System (ADS)
Tan, Wen-Feng; Norde, Willem; Koopal, Luuk K.
2011-10-01
The anionic charge of humic substances (HS) plays a major role in the interaction of HS with other components. Therefore, the potential of the polyelectrolyte titration technique to obtain the charge density of HS in simple 1-1 electrolyte solutions has been investigated. Titrations are carried out with an automatic titrator combined with the "Mütek particle charge detector" which allows determination of the Mütek potential and the pH as a function of the added amount of titrant which is a solution of poly-diallyldimethylammonium chloride (polyDADMAC), a cationic strong polyelectrolyte. When the Mütek potential reverses its sign the iso-electric point (IEP) of the polyDADMAC-HS complex is reached. The polyDADMAC/HS mass ratio at the IEP gives information on the HS charge density and from the pH changes in solution an estimate of the charge regulation in the HS-polyDADMAC complex can be obtained. In general, for polyDADMAC-HS complexes an increase in the dissociation of the acid groups of HS is found (charge regulation). The charge regulation decreases with increasing concentration of 1-1 background electrolyte. Cation incorporation can be neglected at 1-1 electrolyte concentrations ⩽ 1 mmol L -1 and a 1-1 stoichiometry exists between the polyDADMAC and HS charge. However, at these low salt concentrations the charge regulation is substantial. A detailed analysis of purified Aldrich humic acid (PAHA) at pH 5 and a range of KCl concentrations reveals that the anionic charge of PAHA in the complex increases at 5 mmol L -1 KCl by 30% and at 150 mmol L -1 KCl by 12%. On the other hand, increasing amounts of K + become incorporated in the complex: at 5 mmol L -1 KCl 5% and at 150 mmol L -1 KCl 24% of the PAHA charge is balanced by K +. By comparing at pH 5 the mass ratios polyDADMAC/PAHA in the complex at the IEP with the theoretical mass ratios of polyDADMAC/PAHA required to neutralize PAHA in the absence of charge regulation and K + incorporation, it is found that at 50 mmol L -1 KCl the extra negative charge due to the interaction between polyDADMAC and PAHA is just compensated by K + incorporation in the complex. Therefore, a pseudo 1-1 stoichiometry exists at about 50 mmol L -1 1-1 electrolyte concentration and only at this salt concentration polyDADMAC titrations and conventional proton titrations give identical results. Most likely this is also true for other HA samples and other pH values. For FA further study is required to reveal the conditions for which polyDADMAC and proton titrations give identical results.
Electron-emission-induced cooling of boundary region in fusion devices
NASA Astrophysics Data System (ADS)
Mishra, Sanjay K.; Avinash, K.; Kaw, Predhiman; Kaw
2014-12-01
In this brief communication we have explored whether the electron emission from the boundary region surfaces (or from additional fine structured dust particles/droplets of some benign material put purposely in the area surrounding the surfaces) can act as an efficient cooling mechanism for boundary region surfaces/dust electrons and hence the lattice. In order to estimate the contribution of this cooling process a simple kinetic model based on charge flux balance and associated energetics has been established. Along with some additional sophistication like suitable choice of material and modification in the work function via surface coating, the estimates show that it is possible to keep the temperature of the plate/particles well within the critical limit, i.e. melting/sublimation point for the desired regime of incident heat flux.
Pua, Yong-Hao; Liang, Zhiqi; Ong, Peck-Hoon; Bryant, Adam L; Lo, Ngai-Nung; Clark, Ross A
2011-12-01
Knee extensor strength is an important correlate of physical function in patients with knee osteoarthritis; however, it remains unclear whether standing balance is also a correlate. The purpose of this study was to evaluate the cross-sectional associations of knee extensor strength, standing balance, and their interaction with physical function. One hundred four older adults with end-stage knee osteoarthritis awaiting a total knee replacement (mean ± SD age 67 ± 8 years) participated. Isometric knee extensor strength was measured using an isokinetic dynamometer. Standing balance performance was measured by the center of pressure displacement during quiet standing on a balance board. Physical function was measured by the self-report Short Form 36 (SF-36) questionnaire and by the 10-meter fast-pace gait speed test. After adjustment for demographic and knee pain variables, we detected significant knee strength by standing balance interaction terms for both SF-36 physical function and fast-pace gait speed. Interrogation of the interaction revealed that standing balance in the anteroposterior plane was positively related to physical function among patients with lower knee extensor strength. Conversely, among patients with higher knee extensor strength, the standing balance-physical function associations were, or tended to be, negative. These findings suggest that although standing balance was related to physical function in patients with knee osteoarthritis, this relationship was complex and dependent on knee extensor strength level. These results are of importance in developing intervention strategies and refining theoretical models, but they call for further study. Copyright © 2011 by the American College of Rheumatology.
Soil pH on mobility of imazaquin in oxisols with positive balance of charges.
Regitano, Jussara B; da Rocha, Wadson S D; Alleoni, Luís R F
2005-05-18
The influence of soil pH on the leaching potential of the ionizable herbicide imazaquin was assessed on the profile of two highly weathered soils having a net positive charge in the B horizon, in contrast to a soil having a net negative charge in the whole profile, using packed soil column experiments. Imazaquin leached to a large extent and faster at Kd values lower than 1.0 L kg(-1), a much more lenient limit than usually proposed for pesticides in the literature (Kd < 5.0 L kg(-1)). The amount of imazaquin leached increased with soil pH. As the soil pH increased, the percentage of imazaquin in the anionic forms, the negative surface potential of the soils, as well as imazaquin water solubility also increased, thus reducing sorption because of repulsive electrostatic forces (hydrophilic interactions). For all surface samples (0-0.2 m), imazaquin did not leach at soil pH values lower than pKa (3.8) and more than 80% of the applied amount was leached at pH values higher than 5.5. For subsurface samples from the acric soils, imazaquin only began to leach at soil pH values > zero point of salt effects (ZPSE > 5.7). In conclusion, the use of surface K(oc) values to predict the amount of imazaquin leached within soil profiles having a positive balance of charges may greatly overestimate its actual leaching potential.
Simplified efficient phosphorescent organic light-emitting diodes by organic vapor phase deposition
NASA Astrophysics Data System (ADS)
Pfeiffer, P.; Beckmann, C.; Stümmler, D.; Sanders, S.; Simkus, G.; Heuken, M.; Vescan, A.; Kalisch, H.
2017-12-01
The most efficient phosphorescent organic light-emitting diodes (OLEDs) are comprised of complex stacks with numerous organic layers. State-of-the-art phosphorescent OLEDs make use of blocking layers to confine charge carriers and excitons. On the other hand, simplified OLEDs consisting of only three organic materials have shown unexpectedly high efficiency when first introduced. This was attributed to superior energy level matching and suppressed external quantum efficiency (EQE) roll-off. In this work, we study simplified OLED stacks, manufactured by organic vapor phase deposition, with a focus on charge balance, turn-on voltage (Von), and efficiency. To prevent electrons from leaking through the device, we implemented a compositionally graded emission layer. By grading the emitter with the hole transport material, charge confinement is enabled without additional blocking layers. Our best performing organic stack is composed of only three organic materials in two layers including the emitter Ir(ppy)3 and yields a Von of 2.5 V (>1 cd/m2) and an EQE of 13% at 3000 cd/m2 without the use of any additional light extraction techniques. Changes in the charge balance, due to barrier tuning or adjustments in the grading parameters and layer thicknesses, are clearly visible in the current density-voltage-luminance (J-V-L) measurements. As charge injection at the electrodes and organic interfaces is of great interest but difficult to investigate in complex device structures, we believe that our simplified organic stack is not only a potent alternative to complex state-of-the-art OLEDs but also a well suited test vehicle for experimental studies focusing on the modification of the electrode-organic semiconductor interface.
Subtle charge balance controls surface-nucleated self-assembly of designed biopolymers.
Charbonneau, Céline; Kleijn, J Mieke; Cohen Stuart, Martien A
2014-03-25
We report the surface-nucleated self-assembly into fibrils of a biosynthetic amino acid polymer synthesized by the yeast Pichia pastoris. This polymer has a block-like architecture, with a central silk-like block labeled SH, responsible for the self-assembly into fibrils, and two collagen-like random coil end blocks (C) that colloidally stabilize the fibers in aqueous solution. The silk-like block contains histidine residues (pKa≈6) that are positively charged in the low pH region, which hinders self-assembly. In aqueous solution, CSHC self-assembles into fibers above a pH-dependent critical nucleation concentration Ccb. Below Ccb, where no self-assembly occurs in solution, fibril formation can be induced by a negatively charged surface (silica) in the pH range of 3.5-7. The density of the fibers at the surface and their length are controlled by a subtle balance in charge between the protein polymer and the silica surface, which is evidenced from the dependence on pH. With increasing number density of the fibers at the surface, their average length decreases. The results can be explained on the basis of a nucleation-and-growth mechanism: the surface density of fibers depends on the rate of nucleation, while their growth rate is limited by transport of proteins from solution. Screening of the charges on the surface and histidine units by adding NaCl influences the nucleation-and-growth process in a complicated fashion: at low pH, the growth is improved, while at high pH, the nucleation is limited. Under conditions where nucleation in the bulk solution is not possible, growth of the surface-nucleated fibers into the solution--away from the surface--can still occur.
NASA Astrophysics Data System (ADS)
Liu, Shujie; Li, Yangen; Hu, Xiaoying; Liu, Xiangdong; Guan, Bo
2018-01-01
With the help of DFT and TDDFT, a series of functionalized mononuclear iridium (III) complexes were systematically investigated to make clear the effect of auxiliary ligands on their electrionic and photophysical properties. It can be found that introducing electron withdrawing group (sbnd CF3) on benzene moiety can stabilize HOMO level, thus leading to wider HOMO-LUMO gap and blue shift in spectrum. More importantly, introducing sbnd CF3 on benzene moiety can also significantly improve the radiative decay rate (kr). On the other hand, the incorporation of electron donating groups (such as -Ph(CH3)3) into pyridine moiety on ligand reduce kr. The complexes 1c-3c and 1d-3d have improved charge balance ability and larger percentage of metal character. The results revealed the nature of the different substituents have a significant effect on the HOMO, LUMO energy levels and kr, resulting in the change of emission color and the quantum efficiency (Φp).
Darbin, Olivier; Gubler, Coral; Naritoku, Dean; Dees, Daniel; Martino, Anthony; Adams, Elizabeth
2016-01-01
This study describes a cost-effective screening protocol for parkinsonism based on combined objective and subjective monitoring of balance function. Objective evaluation of balance function was performed using a game industry balance board and an automated analyses of the dynamic of the center of pressure in time, frequency, and non-linear domains collected during short series of stand up tests with different modalities and severity of sensorial deprivation. The subjective measurement of balance function was performed using the Dizziness Handicap Inventory questionnaire. Principal component analyses on both objective and subjective measurements of balance function allowed to obtained a specificity and selectivity for parkinsonian patients (vs. healthy subjects) of 0.67 and 0.71 respectively. The findings are discussed regarding the relevance of cost-effective balance-based screening system as strategy to meet the needs of broader and earlier screening for parkinsonism in communities with limited access to healthcare.
NASA Astrophysics Data System (ADS)
Tammet, H.
2006-12-01
Measuring of charged nanometer particles in atmospheric air is a routine task in research on atmospheric electricity, where these particles are called the atmospheric ions. An aspiration condenser is the most popular instrument for measuring atmospheric ions. Continuous scanning of a mobility distribution is possible when the aspiration condenser is connected as an arm of a balanced bridge. Transfer function of an aspiration condenser is calculated according to the measurements of geometric dimensions, air flow rate, driving voltage, and electric current. The most complicated phase of the calibration is the estimation of the inlet loss of ions due to the Brownian deposition. The available models of ion deposition on the protective inlet screen and the inlet control electrofilter have the uncertainty of about 20%. To keep the uncertainty of measurements low the adsorption should not exceed a few tens of percent. The online conversion of the mobility distribution to the size distribution and a correct reduction of inlet losses are possible when air temperature and pressure are measured simultaneously with the mobility distribution. Two instruments called the Balanced Scanning Mobility Analyzers (BSMA) were manufactured and tested in routine atmospheric measurements. The concentration of atmospheric ions of the size of about a few nanometers is very low and a high air flow rate is required to collect enough of ion current. The air flow of 52 l/s exceeds the air flow in usual aerosol instruments by 2-3 orders of magnitude. The high flow rate reduces the time of ion passage to 60 ms and the heating of air in an analyzer to 0.2 K, which suppresses a possible transformation of ions inside the instrument. The mobility range of the BSMA of 0.032-3.2 cm 2 V - 1 s - 1 is logarithmically uniformly divided into 16 fractions. The size distribution is presented by 12 fractions in the diameter range of 0.4-7.5 nm. The measurement noise of a fraction concentration is typically about 5 cm - 3 and the time resolution is about 10 min when measuring simultaneously both positive and negative ions in atmospheric air.
VUV Emission of Microwave Driven Argon Plasma Source
NASA Astrophysics Data System (ADS)
Henriques, Julio; Espinho, Susana; Felizardo, Edgar; Tatarova, Elena; Dias, Francisco; Ferreira, Carlos
2013-09-01
An experimental and kinetic modeling investigation of a low-pressure (0.1-1.2 mbar), surface wave (2.45 GHz) induced Ar plasma as a source vacuum ultraviolet (VUV) light is presented, using visible and VUV optical spectroscopy. The electron density and the relative VUV emission intensities of excited Ar atoms (at 104.8 nm and 106.6 nm) and ions (at 92.0 nm and 93.2 nm) were determined as a function of the microwave power and pressure. The experimental results were analyzed using a 2D self-consistent theoretical model based on a set of coupled equations including the electron Boltzmann equation, the rate balance equations for the most important electronic excited species and for charged particles, the gas thermal balance equation, and the wave electrodynamics. The principal collisional and radiative processes for neutral Ar(3p54s) and Ar(3p54p) and ionized Ar(3s3p6 2S1/2) levels are accounted for. Model predictions are in good agreement with the experimental measurements. This study was funded by the Foundation for Science and Technology, Portuguese Ministry of Education and Science, under the research contract PTDC/FIS/108411/2008.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundararaman, Ravishankar; Goddard, III, William A.; Arias, Tomas A.
First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solvemore » the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Lastly, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.« less
Sundararaman, Ravishankar; Goddard, William A; Arias, Tomas A
2017-03-21
First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solve the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Finally, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.
Sundararaman, Ravishankar; Goddard, III, William A.; Arias, Tomas A.
2017-03-16
First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solvemore » the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Lastly, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.« less
Design and engineering of water-soluble light-harvesting protein maquettes
Kodali, Goutham; Mancini, Joshua A.; Solomon, Lee A.; ...
2017-01-01
Natural selection in photosynthesis has engineered tetrapyrrole based, nanometer scale, light harvesting and energy capture in light-induced charge separation. By designing and creating nanometer scale artificial light harvesting and charge separating proteins, we have the opportunity to reengineer and overcome the limitations of natural selection to extend energy capture to new wavelengths and to tailor efficient systems that better meet human as opposed to cellular energetic needs. While tetrapyrrole cofactor incorporation in natural proteins is complex and often assisted by accessory proteins for cofactor transport and insertion, artificial protein functionalization relies on a practical understanding of the basic physical chemistrymore » of protein and cofactors that drive nanometer scale self-assembly. Patterning and balancing of hydrophobic and hydrophilic tetrapyrrole substituents is critical to avoid natural or synthetic porphyrin and chlorin aggregation in aqueous media and speed cofactor partitioning into the non-polar core of a man-made water soluble protein designed according to elementary first principles of protein folding. In conclusion, this partitioning is followed by site-specific anchoring of tetrapyrroles to histidine ligands strategically placed for design control of rates and efficiencies of light energy and electron transfer while orienting at least one polar group towards the aqueous phase.« less
Multiscale modeling and computation of optically manipulated nano devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Gang, E-mail: baog@zju.edu.cn; Liu, Di, E-mail: richardl@math.msu.edu; Luo, Songting, E-mail: luos@iastate.edu
2016-07-01
We present a multiscale modeling and computational scheme for optical-mechanical responses of nanostructures. The multi-physical nature of the problem is a result of the interaction between the electromagnetic (EM) field, the molecular motion, and the electronic excitation. To balance accuracy and complexity, we adopt the semi-classical approach that the EM field is described classically by the Maxwell equations, and the charged particles follow the Schrödinger equations quantum mechanically. To overcome the numerical challenge of solving the high dimensional multi-component many-body Schrödinger equations, we further simplify the model with the Ehrenfest molecular dynamics to determine the motion of the nuclei, andmore » use the Time-Dependent Current Density Functional Theory (TD-CDFT) to calculate the excitation of the electrons. This leads to a system of coupled equations that computes the electromagnetic field, the nuclear positions, and the electronic current and charge densities simultaneously. In the regime of linear responses, the resonant frequencies initiating the out-of-equilibrium optical-mechanical responses can be formulated as an eigenvalue problem. A self-consistent multiscale method is designed to deal with the well separated space scales. The isomerization of azobenzene is presented as a numerical example.« less
Design and engineering of water-soluble light-harvesting protein maquettes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kodali, Goutham; Mancini, Joshua A.; Solomon, Lee A.
Natural selection in photosynthesis has engineered tetrapyrrole based, nanometer scale, light harvesting and energy capture in light-induced charge separation. By designing and creating nanometer scale artificial light harvesting and charge separating proteins, we have the opportunity to reengineer and overcome the limitations of natural selection to extend energy capture to new wavelengths and to tailor efficient systems that better meet human as opposed to cellular energetic needs. While tetrapyrrole cofactor incorporation in natural proteins is complex and often assisted by accessory proteins for cofactor transport and insertion, artificial protein functionalization relies on a practical understanding of the basic physical chemistrymore » of protein and cofactors that drive nanometer scale self-assembly. Patterning and balancing of hydrophobic and hydrophilic tetrapyrrole substituents is critical to avoid natural or synthetic porphyrin and chlorin aggregation in aqueous media and speed cofactor partitioning into the non-polar core of a man-made water soluble protein designed according to elementary first principles of protein folding. In conclusion, this partitioning is followed by site-specific anchoring of tetrapyrroles to histidine ligands strategically placed for design control of rates and efficiencies of light energy and electron transfer while orienting at least one polar group towards the aqueous phase.« less
Tekin, Fatih; Kavlak, Erdogan; Cavlak, Ugur; Altug, Filiz
2018-01-01
The aim of this study was to show the effects of an 8-week Neurodevelopmental Treatment based posture and balance training on postural control and balance in diparetic and hemiparetic Cerebral Palsied children (CPC). Fifteen CPC (aged 5-15 yrs) were recruited from Denizli Yağmur Çocukları Rehabilitation Centre. Gross Motor Function Classification System, Gross Motor Function Measure, 1-Min Walking Test, Modified Timed Up and Go Test, Paediatric Balance Scale, Functional Independence Measure for Children and Seated Postural Control Measure were used for assessment before and after treatment. An 8-week NDT based posture and balance training was applied to the CPC in one session (60-min) 2 days in a week. After the treatment program, all participants showed statistically significant improvements in terms of gross motor function (p< 0.05). They also showed statistically significant improvements about balance abilities and independence in terms of daily living activities (p< 0.05). Seated Postural Control Measure scores increased after the treatment program (p< 0.05). The results of this study indicate that an 8-week Neurodevelopmental Treatment based posture and balance training is an effective approach in order to improve functional motor level and functional independency by improving postural control and balance in diparetic and hemiparetic CPC.
Moraes, Celso; Myung, Sunghee; Lee, Sangkeum; Har, Dongsoo
2017-01-10
Provision of energy to wireless sensor networks is crucial for their sustainable operation. Sensor nodes are typically equipped with batteries as their operating energy sources. However, when the sensor nodes are sited in almost inaccessible locations, replacing their batteries incurs high maintenance cost. Under such conditions, wireless charging of sensor nodes by a mobile charger with an antenna can be an efficient solution. When charging distributed sensor nodes, a directional antenna, rather than an omnidirectional antenna, is more energy-efficient because of smaller proportion of off-target radiation. In addition, for densely distributed sensor nodes, it can be more effective for some undercharged sensor nodes to harvest energy from neighboring overcharged sensor nodes than from the remote mobile charger, because this reduces the pathloss of charging signal due to smaller distances. In this paper, we propose a hybrid charging scheme that combines charging by a mobile charger with a directional antenna, and energy trading, e.g., transferring and harvesting, between neighboring sensor nodes. The proposed scheme is compared with other charging scheme. Simulations demonstrate that the hybrid charging scheme with a directional antenna achieves a significant reduction in the total charging time required for all sensor nodes to reach a target energy level.
Moraes, Celso; Myung, Sunghee; Lee, Sangkeum; Har, Dongsoo
2017-01-01
Provision of energy to wireless sensor networks is crucial for their sustainable operation. Sensor nodes are typically equipped with batteries as their operating energy sources. However, when the sensor nodes are sited in almost inaccessible locations, replacing their batteries incurs high maintenance cost. Under such conditions, wireless charging of sensor nodes by a mobile charger with an antenna can be an efficient solution. When charging distributed sensor nodes, a directional antenna, rather than an omnidirectional antenna, is more energy-efficient because of smaller proportion of off-target radiation. In addition, for densely distributed sensor nodes, it can be more effective for some undercharged sensor nodes to harvest energy from neighboring overcharged sensor nodes than from the remote mobile charger, because this reduces the pathloss of charging signal due to smaller distances. In this paper, we propose a hybrid charging scheme that combines charging by a mobile charger with a directional antenna, and energy trading, e.g., transferring and harvesting, between neighboring sensor nodes. The proposed scheme is compared with other charging scheme. Simulations demonstrate that the hybrid charging scheme with a directional antenna achieves a significant reduction in the total charging time required for all sensor nodes to reach a target energy level. PMID:28075372
CAN WE HAVE IT ALL? BALANCING ENVIRONMENTAL PROTECTION AND PUBLIC POLICY
The US Environmental Protection Agency is charged with the responsibility for protecting public health and safeguarding our natural environment. This mission, developed in the aftermath of Silent Spring, faces new challenges with the ever increasing human domination of ecosystem...
Power loss for high-voltage solar-cell arrays
NASA Technical Reports Server (NTRS)
Parker, L. W.
1979-01-01
Electric field particle collection and power loss are calculated in program written in FORTRAN IV for use on UNIVAC 1100/40 computer. Program incorporates positive and negative and negative charge flows and balance between positive and negative flows is performed by iteration.
The groundwater balance in alluvial plain aquifer at Dehgolan, Kurdistan, Iran
NASA Astrophysics Data System (ADS)
Amini, Ata; Homayounfar, Vafa
2017-10-01
In this research, groundwater balance in Dehgolan plain, Kurdistan, Iran was carried out to assess changes in the level and volume of groundwater and water resources management. For this purpose, water resources supplies and consumption data, amount of charging and discharge and water level data recorded from wells and piezometers from 2010 to 2011 water year were gathered and analyzed. Rainfall and water losses of the study area were determined and required maps, including Iso-maps of the temperature, the evaporation, the groundwater level and the aquifer conductivity, were drawn by GIS software. Using the information and drawn maps and the equality of inputs and outputs data, the aquifer water balance was calculated. The results of balance equations showed that the balance is negative indicated a notably decline of groundwater equal to 15.029 million cubic meter (MCM). Such rate of decline is due to the large number of agricultural wells in the region, without considering the hydrological potential of the aquifer.
NASA Astrophysics Data System (ADS)
Qiao, Xianfeng; Tao, Youtian; Wang, Qiang; Ma, Dongge; Yang, Chuluo; Wang, Lixiang; Qin, Jingui; Wang, Fosong
2010-08-01
Highly efficient single-layer organic light-emitting diodes with reduced efficiency roll-off are demonstrated by using a bipolar host material of 2,5-bis(2-(9H-carbazol-9-yl)phenyl)-1,3,4-oxadiazole (o-CzOXD) doped with iridium complexes as the emissive layer. For example, the green single-layer device, employing fac-tris(2-phenylpyridine)iridium Ir(ppy)3 as dopant, shows a peak current efficiency of 45.57 cd A-1, corresponding to external quantum efficiency (EQE) of 12.42%, and still exhibits efficiencies of 45.26 cd A-1 and 40.42 cd A-1 at luminance of 1000 and 10 000 cd m-2, respectively. In addition, the yellow and red single-layer devices, with bis(2-(9,9- diethyl-9H-fluoren-2-yl)-1-phenyl-1H-benzoimidazol-N ,C3)iridium(acetylacetonate) (fbi)2Ir(acac) and bis(1-phenylisoquinolinolato-C2,N)iridium(acetylacetonate) (piq)2Ir(acac) as emitter, also show high EQE of 7.04% and 7.28%, respectively. The transport properties of o-CzOXD film are well investigated by current-voltage measurement, from which both hole and electron mobility are determined. It is found that the o-CzOXD shows appealing bipolar transport character, which is favor for the balanced charge distribution in the whole doped zone. More importantly, the multifunctional role of hole trapping and electron transporting of the iridium complex in o-CzOXD further balances the charge carriers and broadens the recombination zone. As a result, the recombination of electrons and holes is significantly improved and the triplet-triplet annihilation and triplet-polaron quenching processes are effectively suppressed, eventually leading to the high efficiency as well as the reduced efficiency roll-off.
Maeshima, Kazuhiro; Matsuda, Tomoki; Shindo, Yutaka; Imamura, Hiromi; Tamura, Sachiko; Imai, Ryosuke; Kawakami, Syoji; Nagashima, Ryosuke; Soga, Tomoyoshi; Noji, Hiroyuki; Oka, Kotaro; Nagai, Takeharu
2018-02-05
For cell division, negatively charged chromatin, in which nucleosome fibers (10 nm fibers) are irregularly folded [1-5], must be condensed into chromosomes and segregated. While condensin and other proteins are critical for organizing chromatin into the appropriate chromosome shape [6-17], free divalent cations such as Mg 2+ and Ca 2+ , which condense chromatin or chromosomes in vitro [18-28], have long been considered important, especially for local condensation, because the nucleosome fiber has a net negative charge and is by itself stretched like "beads on a string" by electrostatic repulsion. For further folding, other positively charged factors are required to decrease the charge and repulsion [29]. However, technical limitations to measure intracellular free divalent cations, but not total cations [30], especially Mg 2+ , have prevented us from elucidating their function. Here, we developed a Förster resonance energy transfer (FRET)-based Mg 2+ indicator that monitors free Mg 2+ dynamics throughout the cell cycle. By combining this indicator with Ca 2+ [31] and adenosine triphosphate (ATP) [32] indicators, we demonstrate that the levels of free Mg 2+ , but not Ca 2+ , increase during mitosis. The Mg 2+ increase is coupled with a decrease in ATP, which is normally bound to Mg 2+ in the cell [33]. ATP inhibited Mg 2+ -dependent chromatin condensation in vitro. Chelating Mg 2+ induced mitotic cell arrest and chromosome decondensation, while ATP reduction had the opposite effect. Our results suggest that ATP-bound Mg 2+ is released by ATP hydrolysis and contributes to mitotic chromosome condensation with increased rigidity, suggesting a novel regulatory mechanism for higher-order chromatin organization by the intracellular Mg 2+ -ATP balance. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Guerrero, Antonio; Marchesi, Luís F; Boix, Pablo P; Ruiz-Raga, Sonia; Ripolles-Sanchis, Teresa; Garcia-Belmonte, Germà; Bisquert, Juan
2012-04-24
Electronic equilibration at the metal-organic interface, leading to equalization of the Fermi levels, is a key process in organic optoelectronic devices. How the energy levels are set across the interface determines carrier extraction at the contact and also limits the achievable open-circuit voltage under illumination. Here, we report an extensive investigation of the cathode energy equilibration of organic bulk-heterojunction solar cells. We show that the potential to balance the mismatch between the cathode metal and the organic layer Fermi levels is divided into two contributions: spatially extended band bending in the organic bulk and voltage drop at the interface dipole layer caused by a net charge transfer. We scan the operation of the cathode under a varied set of conditions, using metals of different work functions in the range of ∼2 eV, different fullerene acceptors, and several cathode interlayers. The measurements allow us to locate the charge-neutrality level within the interface density of sates and calculate the corresponding dipole layer strength. The dipole layer withstands a large part of the total Fermi level mismatch when the polymer:fullerene blend ratio approaches ∼1:1, producing the practical alignment between the metal Fermi level and the charge-neutrality level. Origin of the interface states is linked with fullerene reduced molecules covering the metal contact. The dipole contribution, and consequently the band bending, is highly sensitive to the nature and amount of fullerene molecules forming the interface density of states. Our analysis provides a detailed picture of the evolution of the potentials in the bulk and the interface of the solar cell when forward voltage is applied or when photogeneration takes place.
Moon, Hyun Im; Lee, Hyo Jeong; Yoon, Seo Yeon
2017-06-01
Impaired gait function after stroke contributes strongly to overall patient disability. However, the response to rehabilitation varies between individuals. The aims of this study were to identify predictors of gait velocity change and to elucidate lesion location associated with change of balance and gait function. We reviewed 102 stroke patients. The patients were divided into two groups according to gait ability post-rehabilitation, and we analyzed differences in their characteristics, such as demographic information, lesion factors, and initial balance function. Multivariate regression analyses were performed to examine the predictors of rehabilitation response. Lesion location and volume were measured on brain magnetic resonance images. We generated statistical maps of the lesions related to functional gains in gait and balance using voxel-based lesion symptom mapping (VLSM). The group of patients who regained independent ambulation function showed a smaller lesion size, a shorter duration from stroke onset, and higher initial balance function. In the regression model, gait velocity changes were predicted with the initial Berg balance scale (BBS) and duration post-onset. Absolute BBS changes were also correlated with the duration post-onset and initial BBS, and relative BBS changes were predicted by the baseline BBS. Using VLSM, lesion locations associated with gait velocity changes and balance adjusting for other factors were the insula, internal capsule, and adjacent white matter. Initial balance function as well as the interval between stroke onset and the initiation of therapy might influence balance recovery and gait velocity changes. Damage to the insula and internal capsule also affected gait velocity change after rehabilitation.
Electrohydrodynamics of drops in strong electric fields: Simulations and theory
NASA Astrophysics Data System (ADS)
Saintillan, David; Das, Debasish
2016-11-01
Weakly conducting dielectric liquid drops suspended in another dielectric liquid exhibit a wide range of dynamical behaviors when subject to an applied uniform electric field contingent on field strength and material properties. These phenomena are best described by the much celebrated Maylor-Taylor leaky dielectric model that hypothesizes charge accumulation on the drop-fluid interface and prescribes a balance between charge relaxation, the jump in Ohmic currents and charge convection by the interfacial fluid flow. Most previous numerical simulations based on this model have either neglected interfacial charge convection or restricted themselves to axisymmetric drops. In this work, we develop a three-dimensional boundary element method for the complete leaky dielectric model to systematically study the deformation and dynamics of liquid drops in electric fields. The inclusion of charge convection in our simulation permits us to investigate drops in the Quincke regime, in which experiments have demonstrated symmetry-breaking bifurcations leading to steady electrorotation. Our simulation results show excellent agreement with existing experimental data and small deformation theories. ACSPRF Grant 53240-ND9.
Kim, Yong-Ha; Yiacoumi, Sotira; Lee, Ida; McFarlane, Joanna; Tsouris, Costas
2014-01-01
Radioactivity can influence surface interactions, but its effects on particle aggregation kinetics have not been included in transport modeling of radioactive particles. In this research, experimental and theoretical studies have been performed to investigate the influence of radioactivity on surface charging and aggregation kinetics of radioactive particles in the atmosphere. Radioactivity-induced charging mechanisms have been investigated at the microscopic level, and heterogeneous surface potential caused by radioactivity is reported. The radioactivity-induced surface charging is highly influenced by several parameters, such as rate and type of radioactive decay. A population balance model, including interparticle forces, has been employed to study the effects of radioactivity on particle aggregation kinetics in air. It has been found that radioactivity can hinder aggregation of particles because of similar surface charging caused by the decay process. Experimental and theoretical studies provide useful insights into the understanding of transport characteristics of radioactive particles emitted from severe nuclear events, such as the recent accident of Fukushima or deliberate explosions of radiological devices.
The Long-Term Performance of Small-Cell Batteries Without Cell-Balancing Electronics
NASA Technical Reports Server (NTRS)
Pearson, C.; Thwaite, C.; Curzon, D.; Rao, G.
2006-01-01
Tests approx.8 yrs ago showed Sony HC do not imbalance. AEA developed a theory (ESPC 2002): a) Self-discharge (SD) decreases with state-of-charge (SOC); b) Cells diverge to a state of dynamic equilibrium; c) Equilibrium spread depends on cell SD uniformity. Balancing model verified against test data. Short-term measures of SD difficult in Sony cells and very small values, depends on technique. Long-term evidence supports lower SD at low SD. Battery testing best proof of performance, typically mission specific tests.
Economic Impact of Blood Transfusions: Balancing Cost and Benefits
Oge, Tufan; Kilic, Cemil Hakan; Kilic, Gokhan Sami
2014-01-01
Blood transfusions may be lifesaving, but they inherit their own risks. Risk of transfusion to benefit is a delicate balance. In addition, blood product transfusions purchases are one of the largest line items among the hospital and laboratory charges. In this review, we aimed to discuss the transfusion strategies and share our transfusion protocol as well as the steps for hospitals to build-up a blood management program while all these factors weight in. Moreover, we evaluate the financial burden to the health care system. PMID:25610294
Aartolahti, Eeva; Häkkinen, Arja; Lönnroos, Eija; Kautiainen, Hannu; Sulkava, Raimo; Hartikainen, Sirpa
2013-10-01
Vision is an important prerequisite for balance control and mobility. The role of objectively measured visual functions has been previously studied but less is known about associations of functional vision, that refers to self-perceived vision-based ability to perform daily activities. The aim of the study was to investigate the relationship between functional vision and balance and mobility performance in a community-based sample of older adults. This study is part of a Geriatric Multidisciplinary Strategy for the Good Care of the Elderly project (GeMS). Participants (576) aged 76-100 years (mean age 81 years, 70 % women) were interviewed using a seven-item functional vision questionnaire (VF-7). Balance and mobility were measured by the Berg balance scale (BBS), timed up and go (TUG), chair stand test, and maximal walking speed. In addition, self-reported fear of falling, depressive symptoms (15-item Geriatric Depression Scale), cognition (Mini-Mental State Examination) and physical activity (Grimby) were assessed. In the analysis, participants were classified into poor, moderate, or good functional vision groups. The poor functional vision group (n = 95) had more comorbidities, depressed mood, cognition decline, fear of falling, and reduced physical activity compared to participants with moderate (n = 222) or good functional vision (n = 259). Participants with poor functional vision performed worse on all balance and mobility tests. After adjusting for gender, age, chronic conditions, and cognition, the linearity remained statistically significant between functional vision and BBS (p = 0.013), TUG (p = 0.010), and maximal walking speed (p = 0.008), but not between functional vision and chair stand (p = 0.069). Poor functional vision is related to weaker balance and mobility performance in community-dwelling older adults. This highlights the importance of widespread assessment of health, including functional vision, to prevent balance impairment and maintain independent mobility among older population.
Yang, Yang; Yu, Haibo; York, Darrin; Cui, Qiang; Elstner, Marcus
2007-10-25
The standard self-consistent-charge density-functional-tight-binding (SCC-DFTB) method (Phys. Rev. B 1998, 58, 7260) is derived by a second-order expansion of the density functional theory total energy expression, followed by an approximation of the charge density fluctuations by charge monopoles and an effective damped Coulomb interaction between the atomic net charges. The central assumptions behind this effective charge-charge interaction are the inverse relation of atomic size and chemical hardness and the use of a fixed chemical hardness parameter independent of the atomic charge state. While these approximations seem to be unproblematic for many covalently bound systems, they are quantitatively insufficient for hydrogen-bonding interactions and (anionic) molecules with localized net charges. Here, we present an extension of the SCC-DFTB method to incorporate third-order terms in the charge density fluctuations, leading to chemical hardness parameters that are dependent on the atomic charge state and a modification of the Coulomb scaling to improve the electrostatic treatment within the second-order terms. These modifications lead to a significant improvement in the description of hydrogen-bonding interactions and proton affinities of biologically relevant molecules.
Hadi, Jebril; Tournassat, Christophe; Ignatiadis, Ioannis; Greneche, Jean Marc; Charlet, Laurent
2013-10-01
A model was developed to describe how the 2:1 layer excess negative charge induced by the reduction of Fe(III) to Fe(II) by sodium dithionite buffered with citrate-bicarbonate is balanced and applied to nontronites. This model is based on new experimental data and extends structural interpretation introduced by a former model [36-38]. The 2:1 layer negative charge increase due to Fe(III) to Fe(II) reduction is balanced by an excess adsorption of cations in the clay interlayers and a specific sorption of H(+) from solution. Prevalence of one compensating mechanism over the other is related to the growing lattice distortion induced by structural Fe(III) reduction. At low reduction levels, cation adsorption dominates and some of the incorporated protons react with structural OH groups, leading to a dehydroxylation of the structure. Starting from a moderate reduction level, other structural changes occur, leading to a reorganisation of the octahedral and tetrahedral lattice: migration or release of cations, intense dehydroxylation and bonding of protons to undersaturated oxygen atoms. Experimental data highlight some particular properties of ferruginous smectites regarding chemical reduction. Contrary to previous assumptions, the negative layer charge of nontronites does not only increase towards a plateau value upon reduction. A peak is observed in the reduction domain. After this peak, the negative layer charge decreases upon extended reduction (>30%). The decrease is so dramatic that the layer charge of highly reduced nontronites can fall below that of its fully oxidised counterpart. Furthermore, the presence of a large amount of tetrahedral Fe seems to promote intense clay structural changes and Fe reducibility. Our newly acquired data clearly show that models currently available in the literature cannot be applied to the whole reduction range of clay structural Fe. Moreover, changes in the model normalising procedure clearly demonstrate that the investigated low tetrahedral bearing nontronites (SWa-1, GAN and NAu-1) all exhibit the same behaviour at low reduction levels. Consequently, we restricted our model to the case of moderate reduction (<30%) in low tetrahedral Fe-bearing nontronites. Our adapted model provides the relative amounts of Na(+) (p) and H(+) (ni) cations incorporated in the structure as a function of the amount of Fe reduction. Two equations enable the investigated systems to be described: p=m/(1+Kr·ω·mrel) and ni=Kr·ω·m·mrel/(1+Kr·ω·mrel); where m is the Fe(II) content, mrel, the reduction level (m/mtot), ω, the cation exchange capacity (CEC, and Kr, an empirical constant specific to the system. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Thakur, Ujwal Kumar; Askar, Abdelrahman M.; Kisslinger, Ryan; Wiltshire, Benjamin D.; Kar, Piyush; Shankar, Karthik
2017-07-01
This is the first report of a 17.6% champion efficiency solar cell architecture comprising monocrystalline TiO2 nanorods (TNRs) coupled with perovskite, and formed using facile solution processing without non-routine surface conditioning. Vertically oriented TNR ensembles are desirable as electron transporting layers (ETLs) in halide perovskite solar cells (HPSCs) because of potential advantages such as vectorial electron percolation pathways to balance the longer hole diffusion lengths in certain halide perovskite semiconductors, ease of incorporating nanophotonic enhancements, and optimization between a high contact surface area for charge transfer (good) versus high interfacial recombination (bad). These advantages arise from the tunable morphology of hydrothermally grown rutile TNRs, which is a strong function of the growth conditions. Fluorescence lifetime imaging microscopy of the HPSCs demonstrated a stronger quenching of the perovskite PL when using TNRs as compared to mesoporous/compact TiO2 thin films. Due to increased interfacial contact area between the ETL and perovskite with easier pore filling, charge separation efficiency is dramatically enhanced. Additionally, solid-state impedance spectroscopy results strongly suggested the suppression of interfacial charge recombination between TNRs and perovskite layer, compared to other ETLs. The optimal ETL morphology in this study was found to consist of an array of TNRs ∼300 nm in length and ∼40 nm in width. This work highlights the potential of TNR ETLs to achieve high performance solution-processed HPSCs.
ERIC Educational Resources Information Center
Office of Federal Student Aid (ED), Washington, DC.
This pamphlet describes the Federal Student Aid Ombudsman, an impartial resource to help customers resolve student loan concerns when other approaches fail. The ombudsman helps resolve discrepancies in loan balances and payments, and helps customers understand interest and collection charges. The office helps resolve issues related to income tax…
Computer program analyzes and monitors electrical power systems (POSIMO)
NASA Technical Reports Server (NTRS)
Jaeger, K.
1972-01-01
Requirements to monitor and/or simulate electric power distribution, power balance, and charge budget are discussed. Computer program to analyze power system and generate set of characteristic power system data is described. Application to status indicators to denote different exclusive conditions is presented.
Techniques For Focusing In Zone Electrophoresis
NASA Technical Reports Server (NTRS)
Sharnez, Rizwan; Twitty, Garland E.; Sammons, David W.
1994-01-01
In two techniques for focusing in zone electrophoresis, force of applied electrical field in each charged particle balanced by restoring force of electro-osmosis. Two techniques: velocity-gradient focusing (VGF), suitable for rectangular electrophoresis chambers; and field-gradient focusing (FGF), suitable for step-shaped electrophoresis chambers.
MODELO PARA EVALUACION DE DERRAMES DE HIDROCARBUROS (HSSM) GUIA DEL USUARIO
The U.S. Environmental Protection Agency is charged by Congress with protecting the Nation's land, air, and water resources. Under a mandate of national environmental laws, the Agency strives to formulate and implement actions leading to a compatible balance between human acti...
NASA Astrophysics Data System (ADS)
Khan, M. A.; Xu, Wei; Wei, Fuxiang; Bai, Yu; Jiang, X. Y.; Zhang, Z. L.; Zhu, W. Q.
2007-11-01
Highly efficient organic electroluminescent devices (OLEDs) were developed based on 4,7-diphenyl-1, 10-phenanthroline (BPhen) as the electron transport layer (ETL), tris-(8-hydroxyquinoline) aluminum (Alq 3) as the emission layer (EML) and N,Ń-bis-[1-naphthy(-N,Ńdiphenyl-1,1'-biphenyl-4,4'-diamine)] (NPB) as the hole transport layer (HTL). The typical device structure was glass substrate/ ITO/ NPB/ Alq 3/ BPhen/ LiF/ Al. Since BPhen possesses a considerable high electron mobility of 5×10 -4 cm 2 V -1 s -1, devices with BPhen as ETL can realize an extremely high luminous efficiency. By optimizing the thickness of both HTL and ETL, we obtained a highly efficient OLED with a current efficiency of 6.80 cd/A and luminance of 1361 cd/m 2 at a current density of 20 mA/cm 2. This dramatic improvement in the current efficiency has been explained on the principle of charge balance.
Computer model of hydroponics nutrient solution pH control using ammonium.
Pitts, M; Stutte, G
1999-01-01
A computer simulation of a hydroponics-based plant growth chamber using ammonium to control pH was constructed to determine the feasibility of such a system. In nitrate-based recirculating hydroponics systems, the pH will increase as plants release hydroxide ions into the nutrient solution to maintain plant charge balance. Ammonium is an attractive alternative to traditional pH controls in an ALSS, but requires careful monitoring and control to avoid overdosing the plants with ammonium. The primary advantage of using NH4+ for pH control is that it exploits the existing plant nutrient uptake charge balance mechanisms to maintain solution pH. The simulation models growth, nitrogen uptake, and pH of a l-m2 stand of wheat. Simulation results indicated that ammonium-based control of nutrient solution pH is feasible using a proportional integral controller. Use of a 1 mmol/L buffer (Ka = 1.6 x 10(-6)) in the nutrient solution is required.
Criminal Charges for Child Harm from Substance Use in Pregnancy.
Angelotta, Cara; Appelbaum, Paul S
2017-06-01
Despite the opposition of medical and public health professionals, several state legislatures are considering laws that permit child abuse charges for substance use during pregnancy. We reviewed legal decisions regarding women charged with a crime against a fetus or child as a result of substance use during pregnancy. We identified 24 judicial opinions published between 1977 and 2015 in cases involving 29 women prosecuted in 19 states. Charges included child endangerment, child abuse, drug delivery, attempted aggravated child abuse, chemical endangerment of a child, child neglect, child mistreatment, homicide, manslaughter, and reckless injury to a child. The substances related to the charges included cocaine, heroin, methamphetamine, marijuana, and prescription pills. Proceedings resulted in dismissal of the charges or convictions overturned for 86.2 percent of the women. In all of the cases, the judicial decision depended on the disposition of the question of whether, for the purpose of adjudicating the criminal charges, a fetus is a child. The balance in the courts in favor of treating substance use during pregnancy as a medical problem depends on the definition of a child for the purposes of criminal statutes. Professional advocacy may best be directed at state legislatures. © 2017 American Academy of Psychiatry and the Law.
NASA Astrophysics Data System (ADS)
Carnicer-Lombarte, Alejandro; Lancashire, Henry T.; Vanhoestenberghe, Anne
2017-06-01
Objective. High-density electrode arrays are a powerful tool in both clinical neuroscience and basic research. However, current manufacturing techniques require the use of specialised techniques and equipment, which are available to few labs. We have developed a high-density electrode array with customisable design, manufactured using simple printing techniques and with commercially available materials. Approach. Electrode arrays were manufactured by thick-film printing a platinum-gold alloy (Pt/Au) and an insulating dielectric on 96% alumina ceramic plates. Arrays were conditioned in serum and serum-free conditions, with and without 1 kHz, 200 µA, charge balanced stimulation for up to 21 d. Array biocompatibility was assessed using an extract assay and a PC-12 cell contact assay. Electrode impedance, charge storage capacity and charge injection capacity were before and after array conditioning. Main results. The manufactured Pt/Au electrodes have a highly porous surface and exhibit electrical properties comparable to arrays manufactured using alternative techniques. Materials used in array manufacture were found to be non-toxic to L929 fibroblasts by extract assay, and neuronal-like PC-12 cells adhered and extended neurites on the array surfaces. Arrays remained functional after long-term delivery of electrical pulses while exposed to protein-rich environments. Charge storage capacities and charge injection capacities increased following stimulation accounted for by an increase in surface index (real surface area) observed by vertical scanning interferometry. Further, we observed accumulation of proteins at the electrode sites following conditioning in the presence of serum. Significance. This study demonstrates the in vitro biocompatibility of commercially available thick-film printing materials. The printing technique is both simple and versatile, with layouts readily modified to produce customized electrode arrays. Thick-film electrode arrays are an attractive tool that may be implemented for general tissue engineering and neuroscience research.
NASA Astrophysics Data System (ADS)
Sone, Yoshitsugu; Uno, Masatoshi; Hirose, Kazuyuki; Tajima, Michio; Ooto, Hiroki; Yamamoto, Masahiro; Eguro, Takashi; Sakai, Shigeru; Yoshida, Teiji
2005-05-01
The Japanese satellite 'HAYABUSA' is currently en route to an asteroid named ITOKAWA. The satellite is powered by a 13.2 Ah lithium-ion secondary battery. To realize maximum performance of the battery for long flight operation, the state-of-charge (SOC) of the battery is maintained at ca. 65% during storage in case it is required for contingency operations. To maintain this SOC condition, the battery is charged once a week. We further charge the battery up to 4.1 V/cell using bypass circuits to balance the cells every four months. The capacity of the battery was measured during the flight operation, which revealed the appropriate capacity for the HAYABUSA mission.
[The experience of public guarantees of free-of-charge medical care foreign countries].
Ulumbekova, G E
2010-01-01
The article deals with the analysis of the volumes of financing of public guarantees program of free-of-charge medical care and its algorithm of its elaboration in foreign countries. In the advanced countries, the higher financing of public health permit to ensure factually overall population the full free-of-charge spectrum of up-to-date medical interventions as a "public guarantees pack". It includes the pharmaceuticals supply in outpatient conditions and in most cases the long-term care services. In economically advanced countries, the general trend is the transfer from fundamental principles ("everything needed") to the more transparent approaches in case of implementation of the guarantees to achieve the balance between actual financial resources and stated population guarantees.
Gaucher, Sara P.; Morrow, Jeffrey A.; Faulon, Jean-Loup M.
2007-09-14
Observed peptide gas-phase fragmentation patterns are a complex function of many variables. In order to systematically probe this phenomenon, an array of 40 peptides was synthesized for study. The array of sequences was designed to hold certain variables (peptide length) constant and randomize or balance others (peptide amino acid distribution and position). A high-quality tandem mass spectrometry (MS/MS) data set was acquired for each peptide for all observed charge states on multiple MS instruments, quadrupole-time-of-flight and quadrupole ion trap. The data were analyzed as a function of total charge state and number of mobile protons. Previously known dissociation trends weremore » observed, validating our approach. In addition, the general influence of basic amino acids on dissociation could be determined because, in contrast to the more widely studied tryptic peptides, the amino acids H, K, and R were positionally distributed. Interestingly, our results suggest that cleavage at all basic amino acids is suppressed when a mobile proton is available. Cleavage at H becomes favored only under conditions where a partially mobile proton is present, a caveat to the previously reported trend of enhanced cleavage at H. In conclusion, all acquired data were used as a benchmark to determine how well these sequences would have been identified in a database search using a common algorithm, Mascot.« less
Nicholson, Vaughan P; McKean, Mark R; Burkett, Brendan J
2014-01-01
Purpose The purpose of the study was to evaluate the effect of BodyBalance® training on balance, functional task performance, fear of falling, and health-related quality of life in adults aged over 55 years. Participants and methods A total of 28 healthy, active adults aged 66±5 years completed the randomized controlled trial. Balance, functional task performance, fear of falling, and self-reported quality of life were assessed at baseline and after 12 weeks. Participants either undertook two sessions of BodyBalance per week for 12 weeks (n=15) or continued with their normal activities (n=13). Results Significant group-by-time interactions were found for the timed up and go (P=0.038), 30-second chair stand (P=0.037), and mediolateral center-of-pressure range in narrow stance with eyes closed (P=0.017). There were no significant effects on fear of falling or self-reported quality of life. Conclusion Twelve weeks of BodyBalance training is effective at improving certain balance and functional based tasks in healthy older adults. PMID:25395844
Anomalous transport and generalized axial charge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirilin, Vladimir P.; Sadofyev, Andrey V.
For this article, we continue studying the modification of the axial charge in chiral media by macroscopic helicities. Recently it was shown that magnetic reconnections result in a persistent current of zero mode along flux tubes. Here we argue that in general a change in the helical part of the generalized axial charge results in the same phenomenon. Thus one may say that there is a novel realization of chiral effects requiring no initial chiral asymmetry. The transfer of flow helicity to zero modes is analyzed in a toy model based on a vortex reconnection in a chiral superfluid. Then,more » we discuss the balance between the two competing processes effect of reconnections and the chiral instability on the example of magnetic helicity. We argue that in the general case there is a possibility for the distribution of the axial charge between the magnetic and fermionic forms at the end of the instability.« less
Anomalous transport and generalized axial charge
Kirilin, Vladimir P.; Sadofyev, Andrey V.
2017-07-25
For this article, we continue studying the modification of the axial charge in chiral media by macroscopic helicities. Recently it was shown that magnetic reconnections result in a persistent current of zero mode along flux tubes. Here we argue that in general a change in the helical part of the generalized axial charge results in the same phenomenon. Thus one may say that there is a novel realization of chiral effects requiring no initial chiral asymmetry. The transfer of flow helicity to zero modes is analyzed in a toy model based on a vortex reconnection in a chiral superfluid. Then,more » we discuss the balance between the two competing processes effect of reconnections and the chiral instability on the example of magnetic helicity. We argue that in the general case there is a possibility for the distribution of the axial charge between the magnetic and fermionic forms at the end of the instability.« less
Engineering charge transport by heterostructuring solution-processed semiconductors
NASA Astrophysics Data System (ADS)
Voznyy, Oleksandr; Sutherland, Brandon R.; Ip, Alexander H.; Zhitomirsky, David; Sargent, Edward H.
2017-06-01
Solution-processed semiconductor devices are increasingly exploiting heterostructuring — an approach in which two or more materials with different energy landscapes are integrated into a composite system. Heterostructured materials offer an additional degree of freedom to control charge transport and recombination for more efficient optoelectronic devices. By exploiting energetic asymmetry, rationally engineered heterostructured materials can overcome weaknesses, augment strengths and introduce emergent physical phenomena that are otherwise inaccessible to single-material systems. These systems see benefit and application in two distinct branches of charge-carrier manipulation. First, they influence the balance between excitons and free charges to enhance electron extraction in solar cells and photodetectors. Second, they promote radiative recombination by spatially confining electrons and holes, which increases the quantum efficiency of light-emitting diodes. In this Review, we discuss advances in the design and composition of heterostructured materials, consider their implementation in semiconductor devices and examine unexplored paths for future advancement in the field.
Torkia, Caryne; Best, Krista L; Miller, William C; Eng, Janice J
2016-07-01
To estimate the effect of balance confidence measured at 1 month poststroke rehabilitation on perceived physical function, mobility, and stroke recovery 12 months later. Longitudinal study (secondary analysis). Multisite, community-based. Community-dwelling individuals (N=69) with stroke living in a home setting. Not applicable. Activities-specific Balance Confidence scale; physical function and mobility subscales of the Stroke Impact Scale 3.0; and a single item from the Stroke Impact Scale for perceived recovery. Balance confidence at 1 month postdischarge from inpatient rehabilitation predicts perceived physical function (model 1), mobility (model 2), and recovery (model 3) 12 months later after adjusting for important covariates. The covariates included in model 1 were age, sex, basic mobility, and depression. The covariates selected for model 2 were age, sex, balance capacity, and anxiety, and the covariates in model 3 were age, sex, walking capacity, and social support. The amount of variance in perceived physical function, perceived mobility, and perceived recovery that balance confidence accounted for was 12%, 9%, and 10%, respectively. After discharge from inpatient rehabilitation poststroke, balance confidence predicts individuals' perceived physical function, mobility, and recovery 12 months later. There is a need to address balance confidence at discharge from inpatient stroke rehabilitation. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Gatica-Rojas, Valeska; Cartes-Velásquez, Ricardo; Méndez-Rebolledo, Guillermo; Olave-Godoy, Felipe; Villalobos-Rebolledo, David
2016-08-01
[Purpose] This study aimed to explore the possibility of improving functional balance using an exercise program with Nintendo and the Balance Board peripheral in subjects with cerebral palsy. [Subjects and Methods] This study included 4 male outpatients of a neurological center. All participants received an exercise program based on the use of Nintendo with the Balance Board peripheral. Training consisted of three 25-min sessions per week for 6 weeks. Each session was guided by a physical therapist. Timed up-and-go and one-leg standing tests were conducted before and after the intervention. [Results] All subjects showed significant improvements in the results of the timed up-and-go test. However, there were no significant changes in the results of the one-leg standing test. [Conclusion] The exercise protocol involving Nintendo with the Balance Board peripheral appears to improve functional dynamic balance in patients with cerebral palsy. However, static functional balance does not improve after 6 weeks of training.
Gatica-Rojas, Valeska; Cartes-Velásquez, Ricardo; Méndez-Rebolledo, Guillermo; Olave-Godoy, Felipe; Villalobos-Rebolledo, David
2016-01-01
[Purpose] This study aimed to explore the possibility of improving functional balance using an exercise program with Nintendo and the Balance Board peripheral in subjects with cerebral palsy. [Subjects and Methods] This study included 4 male outpatients of a neurological center. All participants received an exercise program based on the use of Nintendo with the Balance Board peripheral. Training consisted of three 25-min sessions per week for 6 weeks. Each session was guided by a physical therapist. Timed up-and-go and one-leg standing tests were conducted before and after the intervention. [Results] All subjects showed significant improvements in the results of the timed up-and-go test. However, there were no significant changes in the results of the one-leg standing test. [Conclusion] The exercise protocol involving Nintendo with the Balance Board peripheral appears to improve functional dynamic balance in patients with cerebral palsy. However, static functional balance does not improve after 6 weeks of training. PMID:27630446
ERIC Educational Resources Information Center
Kong, Pui W.; Suyama, Joe; Cham, Rakie; Hostler, David
2012-01-01
We investigated the relationship between baseline physical training and the use of firefighting thermal protective clothing (TPC) with breathing apparatus on functional balance. Twenty-three male firefighters performed a functional balance test under four gear/clothing conditions. Participants were divided into groups by physical training status,…
Accuracy of ab initio electron correlation and electron densities in vanadium dioxide
Kylänpää, Ilkka; Balachandran, Janakiraman; Ganesh, Panchapakesan; ...
2017-11-27
Here, diffusion quantum Monte Carlo results are used as a reference to analyze properties related to phase stability and magnetism in vanadium dioxide computed with various formulations of density functional theory. We introduce metrics related to energetics, electron densities and spin densities that give us insight on both local and global variations in the antiferromagnetic M1 and R phases. Importantly, these metrics can address contributions arising from the challenging description of the 3d orbital physics in this material. We observe that the best description of energetics between the structural phases does not correspond to the best accuracy in the charge density, which is consistent with observations made recently by Medvedev et~al. in the context of isolated atoms. However, we do find evidence that an accurate spin density connects to correct energetic ordering of different magnetic states in VOmore » $$_2$$, although local, semilocal, and meta-GGA functionals tend to erroneously favor demagnetization of the vanadium sites. The recently developed SCAN functional stands out as remaining nearly balanced in terms of magnetization across the M1-R transition and correctly predicting the ground state crystal structure. In addition to ranking current density functionals, our reference energies and densities serve as important benchmarks for future functional development.« less
Accuracy of ab initio electron correlation and electron densities in vanadium dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kylänpää, Ilkka; Balachandran, Janakiraman; Ganesh, Panchapakesan
Here, diffusion quantum Monte Carlo results are used as a reference to analyze properties related to phase stability and magnetism in vanadium dioxide computed with various formulations of density functional theory. We introduce metrics related to energetics, electron densities and spin densities that give us insight on both local and global variations in the antiferromagnetic M1 and R phases. Importantly, these metrics can address contributions arising from the challenging description of the 3d orbital physics in this material. We observe that the best description of energetics between the structural phases does not correspond to the best accuracy in the charge density, which is consistent with observations made recently by Medvedev et~al. in the context of isolated atoms. However, we do find evidence that an accurate spin density connects to correct energetic ordering of different magnetic states in VOmore » $$_2$$, although local, semilocal, and meta-GGA functionals tend to erroneously favor demagnetization of the vanadium sites. The recently developed SCAN functional stands out as remaining nearly balanced in terms of magnetization across the M1-R transition and correctly predicting the ground state crystal structure. In addition to ranking current density functionals, our reference energies and densities serve as important benchmarks for future functional development.« less
Lee, Kyeongbong; Cho, Ji-Eun; Hwang, Dal-Yeon; Lee, WanHee
2018-06-01
The abdominal muscles play a role in trunk balance. Abdominal muscle thickness is asymmetrical in stroke survivors, who also have decreased respiratory muscle function. We compared the thickness of the abdominal muscles between the affected and less affected sides in stroke survivors. In addition, the relationship between respiratory muscle function and trunk balance was evaluated. Chronic stroke patients (18 men, 15 women; mean age, 58.94 ± 12.30 years; Mini-Mental Status Examination score ≥ 24) who could sit without assist were enrolled. Abdominal muscle thickness during rest and contraction was measured with ultrasonography, and the thickening ratio was calculated. Respiratory muscle function assessment included maximum respiratory pressure, peak flow, and air volume. Trunk function was evaluated using the Trunk Impairment Scale, and trunk balance was estimated based on the center of pressure velocity and path length within the limit of stability in sitting posture. Abdominal muscles were significantly thinner on the affected side, and the thickening ratio was lower in the affected side (P < 0.05). In addition, the higher thickening ratio of the affected side showed significant relationship with higher trunk function. Moreover, higher respiratory muscle function was significantly correlated with higher level of trunk function and balance in stroke patients (P < 0.05). Thus, chronic stroke survivors have decreased abdominal muscle thickness on the affected side, and respiratory muscle function has positive correlation with trunk function and balance. We propose that respiratory muscle training should be included as part of trunk balance training in chronic stroke patients.
Granacher, Urs; Gollhofer, Albert; Hortobágyi, Tibor; Kressig, Reto W; Muehlbauer, Thomas
2013-07-01
The aging process results in a number of functional (e.g., deficits in balance and strength/power performance), neural (e.g., loss of sensory/motor neurons), muscular (e.g., atrophy of type-II muscle fibers in particular), and bone-related (e.g., osteoporosis) deteriorations. Traditionally, balance and/or lower extremity resistance training were used to mitigate these age-related deficits. However, the effects of resistance training are limited and poorly translate into improvements in balance, functional tasks, activities of daily living, and fall rates. Thus, it is necessary to develop and design new intervention programs that are specifically tailored to counteract age-related weaknesses. Recent studies indicate that measures of trunk muscle strength (TMS) are associated with variables of static/dynamic balance, functional performance, and falls (i.e., occurrence, fear, rate, and/or risk of falls). Further, there is preliminary evidence in the literature that core strength training (CST) and Pilates exercise training (PET) have a positive influence on measures of strength, balance, functional performance, and falls in older adults. The objectives of this systematic literature review are: (a) to report potential associations between TMS/trunk muscle composition and balance, functional performance, and falls in old adults, and (b) to describe and discuss the effects of CST/PET on measures of TMS, balance, functional performance, and falls in seniors. A systematic approach was employed to capture all articles related to TMS/trunk muscle composition, balance, functional performance, and falls in seniors that were identified using the electronic databases PubMed and Web of Science (1972 to February 2013). A systematic approach was used to evaluate the 582 articles identified for initial review. Cross-sectional (i.e., relationship) or longitudinal (i.e., intervention) studies were included if they investigated TMS and an outcome-related measure of balance, functional performance, and/or falls. In total, 20 studies met the inclusionary criteria for review. Longitudinal studies were evaluated using the Physiotherapy Evidence Database (PEDro) scale. Effect sizes (ES) were calculated whenever possible. For ease of discussion, the 20 articles were separated into three groups [i.e., cross-sectional (n = 6), CST (n = 9), PET (n = 5)]. The cross-sectional studies reported small-to-medium correlations between TMS/trunk muscle composition and balance, functional performance, and falls in older adults. Further, CST and/or PET proved to be feasible exercise programs for seniors with high-adherence rates. Age-related deficits in measures of TMS, balance, functional performance, and falls can be mitigated by CST (mean strength gain = 30 %, mean effect size = 0.99; mean balance/functional performance gain = 23 %, mean ES = 0.88) and by PET (mean strength gain = 12 %, mean ES = 0.52; mean balance/functional performance gain = 18 %, mean ES = 0.71). Given that the mean PEDro quality score did not reach the predetermined cut-off of ≥6 for the intervention studies, there is a need for more high-quality studies to explicitly identify the relevance of CST and PET to the elderly population. Core strength training and/or PET can be used as an adjunct or even alternative to traditional balance and/or resistance training programs for old adults. Further, CST and PET are easy to administer in a group setting or in individual fall preventive or rehabilitative intervention programs because little equipment and space is needed to perform such exercises.
Final Project Report for the Development of an Active Soil Gas Sampling Method
The U.S. Environmental Protection Agency (EPA) is charged by Congress with protecting the nation's natural resources. Under the mandate of national environmental laws, the EPA strives to formulate and implement actions leading to a compatible balance between human activities and ...
36 CFR 1207.23 - Period of availability of funds.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ADMINISTRATION GENERAL RULES UNIFORM ADMINISTRATIVE REQUIREMENTS FOR GRANTS AND COOPERATIVE AGREEMENTS TO STATE... availability of funds. (a) General. Where a funding period is specified, a grantee may charge to the award only costs resulting from obligations of the funding period unless carryover of unobligated balances is...
75 FR 31665 - Electronic Fund Transfers
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-04
...-In Requirement 17(b)(1), 17(b)(4)--General Rule and Scope of Opt-In; Notice and Opt-In Requirements... consumers should retain the responsibility to balance their checking accounts. For example, an institution....17(b)(1) contains a general prohibition on charging overdraft fees unless certain requirements are...
44 CFR 13.23 - Period of availability of funds.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY GENERAL UNIFORM ADMINISTRATIVE REQUIREMENTS FOR GRANTS AND COOPERATIVE... availability of funds. (a) General. Where a funding period is specified, a grantee may charge to the award only costs resulting from obligations of the funding period unless carryover of unobligated balances is...
20 CFR 345.401 - General rule.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false General rule. 345.401 Section 345.401... EMPLOYERS' CONTRIBUTIONS AND CONTRIBUTION REPORTS Benefit Charging § 345.401 General rule. Effective January... the basis of a claim for benefits to that employee's base year employer's cumulative benefit balance...
41 CFR 105-71.123 - Period of availability of funds.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Management Regulations System (Continued) GENERAL SERVICES ADMINISTRATION Regional Offices-General Services... funds. (a) General. Where a funding period is specified, a grantee may charge to the award only costs resulting from obligations of the funding period unless carryover or unobligated balances are permitted, in...
Temporal Variation of VOCs in Soils from Groundwater to the Surface/Subslab
The U.S. Environmental Protection Agency (EPA) is charged by Congress with protecting the nation’s natural resources. Under the mandate of national environmental laws, the EPA strives to formulate and implement actions leading to a compatible balance between human activities and ...
Optimizing Battery Usage and Management for Long Life
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Kandler; Shi, Ying; Wood, Eric
2016-06-16
This presentation discusses the impact of system design factors on battery aging and end of life. Topics include sizing of the state-of-charge operating window, cell balancing, and thermal management systems and their value in reducing pack degradation rates and cell imbalance growth over lifetime.
Vertical Distribution of VOCs in Soils from Groundwater to the Surface/Subslab
The U.S. Environmental Protection Agency (EPA) is charged by ongress with protecting the nation’s natural resources. Under the mandate of national environmental laws, the EPA strives to formulate and implement actions leading to a compatible balance between human activities and ...
Code of Federal Regulations, 2011 CFR
2011-10-01
... provided in paragraph (d) below, the contracting officer shall charge interest on the daily unliquidated... computed at the end of each month on the daily unliquidated balance of advance payments at the applicable daily interest rate. (c) Interest shall be required on contracts that are for acquisition, at cost, of...
Code of Federal Regulations, 2010 CFR
2010-10-01
... provided in paragraph (d) below, the contracting officer shall charge interest on the daily unliquidated... computed at the end of each month on the daily unliquidated balance of advance payments at the applicable daily interest rate. (c) Interest shall be required on contracts that are for acquisition, at cost, of...
Zissimopoulos, Angelika; Fatone, Stefania; Gard, Steven
2014-04-01
One intervention often used to address physical impairments post stroke is an ankle-foot orthosis. Ankle-foot orthoses may improve walking speed, stride length, and gait pattern. However, effects on balance, crucial for safe ambulation, are thus far inconclusive. One aspect of balance shown to contribute to functional ability is self-efficacy. Self-efficacy, defined as the belief in one's ability to succeed in particular situations, has been shown to be more strongly associated with activity and participation (as defined by the International Classification of Functioning, Disability, and Health) than physical performance measures of gait or balance. We investigated whether self-efficacy, or balance confidence when referred to in the context of balance capabilities, is improved with ankle-foot orthosis use. Repeated measures study design. Balance confidence was measured using the Activities-specific Balance Confidence Scale in 15 persons with chronic poststroke hemiplegia, with and without their regular ankle-foot orthosis. Activities-specific Balance Confidence Scale scores were significantly higher (p ≤ 0.01) for the ankle-foot orthosis condition compared to no ankle-foot orthosis. One mechanism by which ankle-foot orthosis use may influence balance is improved balance confidence. Future work should explore the specific mechanisms underlying this improvement in self-efficacy. Clinical relevance Self-efficacy may be an important factor to consider when evaluating functioning post stroke. Rehabilitative interventions that improve balance confidence may help restore participation and overall functioning in pathological populations, particularly in the fall-prone poststroke population. Study results provide evidence for improvements in balance confidence with ankle-foot orthosis use.
NASA Technical Reports Server (NTRS)
1991-01-01
Researchers at the Balance Function Laboratory and Clinic at the Minneapolis (MN) Neuroscience Institute on the Abbot Northwestern Hospital Campus are using a rotational chair (technically a "sinusoidal harmonic acceleration system") originally developed by NASA to investigate vestibular (inner ear) function in weightlessness to diagnose and treat patients with balance function disorders. Manufactured by ICS Medical Corporation, Schaumberg, IL, the chair system turns a patient and monitors his or her responses to rotational stimulation.
Balance billing under Medicare: protecting beneficiaries and preserving physician participation.
Colby, D C; Rice, T; Bernstein, J; Nelson, L
1995-01-01
Medicare's experience with balance billing provides valuable lessons for policy making for national or state health care reform. Medicare developed several policies to encourage physicians to become participating providers who accept Medicare-allowed charges as payment in full. Only nonparticipating physicians are permitted to bill for additional amounts beyond that paid by Medicare, and there are limits on the amount of balance billing per claim. As shown by the analysis of claims presented in this article, Medicare has successfully provided financial protection to beneficiaries. In 1986, more than 60 percent of expenditures for physician services were on assigned claims for which there could be no balance billing; by 1990, 80 percent of expenditures were on assigned claims. Balance billing decreased by about 30 percent during the same period. Although these policies have been successful in reducing total expenditures for balance billing, they may not provide financial protection to the most economically vulnerable beneficiaries. Using survey and claims data, we found that the poor have lower balance billing expenditures for services provided by primary care physicians, but that there is no relationship between poverty status and balance billing expenditures for services of nonprimary care physicians. In addition, most low-income beneficiaries are liable for balance bills. Under health care reform, adoption of Medicare's incentive-based approach with mandatory assignment for the poor would allow for some choice based on price and would provide financial protection for all consumers.
The effect of photoelectrons on boom-satellite potential differences during electron beam ejection
NASA Technical Reports Server (NTRS)
Lai, Shu T.; Cohen, Herbert A.; Aggson, Thomas L.; Mcneil, William J.
1987-01-01
Data taken on the SCATHA satellite at geosynchronous altitudes during periods of electron beam ejection in sunlight showed that the potential difference between an electrically isolated boom and the satellite main body was a function of beam current, energy, and boom-sun angle. The potential difference decreased as the boom area illuminated by the sun increased; the maximum and minimum potential differences were measured when minimum and maximum boom areas, respectively, were exposed to the sun. It is shown that photoelectrons, created on the boom, could be engulfed in the electrostatic field of the highly charged satellite main body. Theoretical calculations made using a simple current balance model showed that these electrons could provide a substantial discharging current to the main body and cause the observed variations in the potential difference between the main body and the booms.
Lunar dust charging by photoelectric emissions
NASA Astrophysics Data System (ADS)
Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.
2007-05-01
The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar ultraviolet (UV) radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function (WF) of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17 and Luna-24 missions as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield increasing by an order of magnitude for grains of sub-micron to several micron size radii, at which it reaches asymptotic values. The yield for large size grains is found to be more than an order of magnitude higher than the bulk measurements on lunar fines reported in the literature.
Lunar Dust Charging by Photoelectric Emissions
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.
2007-01-01
The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar ultraviolet (UV) radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function (WF) of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17 and Luna-24 missions as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield increasing by an order of magnitude for grains of sub-micron to several micron size radii, at which it reaches asymptotic values. The yield for large size grains is found to be more than an order of magnitude higher than the bulk measurements on lunar fines reported in the literature.
Lunar Dust Charging by Photoelectric Emissions
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.
2007-01-01
The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon s surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17, and Luna 24 missions, as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield increasing by an order of magnitude for grains of sub-micron to several micron size radii, at which it reaches asymptotic values. The yield for large size grains is found to be more than an order of magnitude higher than the bulk measurements on lunar fines reported in the literature.
2017-01-01
Objective To investigate the clinical feasibility of a newly developed, portable, gait assistive robot (WA-H, ‘walking assist for hemiplegia’) for improving the balance function of patients with stroke-induced hemiplegia. Methods Thirteen patients underwent 12 weeks of gait training on the treadmill while wearing WA-H for 30 minutes per day, 4 days a week. Patients' balance function was evaluated by the Berg Balance Scale (BBS), Fugl-Meyer Assessment Scale (FMAS), Timed Up and Go Test (TUGT), and Short Physical Performance Battery (SPPB) before and after 6 and 12 weeks of training. Results There were no serious complications or clinical difficulties during gait training with WA-H. In three categories of BBS, TUGT, and the balance scale of SPPB, there was a statistically significant improvement at the 6th week and 12th week of gait training with WA-H. In the subscale of balance function of FMAS, there was statistically significant improvement only at the 12th week. Conclusion Gait training using WA-H demonstrated a beneficial effect on balance function in patients with hemiplegia without a safety issue. PMID:28503449
Moon, Hyun Im; Pyun, Sung-Bom; Tae, Woo-Suk; Kwon, Hee Kyu
2016-07-01
Stroke impairs motor, balance, and gait function and influences activities of daily living. Understanding the relationship between brain lesions and deficits can help clinicians set goals during rehabilitation. We sought to elucidate the neural substrates of lower extremity motor, balance, and ambulation function using voxel-based lesion symptom mapping (VLSM) in supratentorial stroke patients. We retrospectively screened patients who met the following criteria: first-ever stroke, supratentorial lesion, and available brain magnetic resonance imaging (MRI) data. MRIs of 133 stroke patients were selected for VLSM analysis. We generated statistical maps of lesions related to lower extremity motor (lower extremity Fugl-Meyer assessment, LEFM), balance (Berg Balance Scale, BBS), and gait (Functional Ambulation Category, FAC) using VLSM. VLSM revealed that lower LEFM scores were associated with damage to the bilateral basal ganglia, insula, internal capsule, and subgyral white matter adjacent to the corona radiata. The lesions were more widely distributed in the left than in the right hemisphere, representing motor and praxis function necessary for performing tasks. However, no associations between lesion maps and balance and gait function were established. Motor impairment of the lower extremities was associated with lesions in the basal ganglia, insula, internal capsule, and white matter adjacent to the corona radiata. However, VLSM revealed no specific lesion locations with regard to balance and gait function. This might be because balance and gait are complex skills that require spatial and temporal integration of sensory input and execution of movement patterns. For more accurate prediction, factors other than lesion location need to be investigated.
Measurements of Charging of Apollo 17 Lunar Dust Grains by Electron Impact
NASA Technical Reports Server (NTRS)
Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.
2008-01-01
It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron size dust grains with unusually high adhesive characteristics. The dust grains observed to be levitated and transported on the lunar surface are believed to have a hazardous impact on the robotic and human missions to the Moon. The observed dust phenomena are attributed to the lunar dust being charged positively during the day by UV photoelectric emissions, and negatively during the night by the solar wind electrons. The current dust charging and the levitation models, however, do not fully explain the observed phenomena, with the uncertainty of dust charging processes and the equilibrium potentials of the individual dust grains. It is well recognized that the charging properties of individual dust grains are substantially different from those determined from measurements made on bulk materials that are currently available. An experimental facility has been developed in the Dusty Plasma Laboratory at MSFC for investigating the charging and optical properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present the laboratory measurements on charging of Apollo 17 individual lunar dust grains by a low energy electron beam. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission process are discussed.
de Castro, Larissa A; Ribeiro, Laís Rg; Mesquita, Rafael; de Carvalho, Débora R; Felcar, Josiane M; Merli, Myriam F; Fernandes, Karen Bp; da Silva, Rubens A; Teixeira, Denilson C; Spruit, Martijn A; Pitta, Fabio; Probst, Vanessa S
2016-11-01
Studies have shown that individuals with COPD have impaired body balance, probably caused by the disease's multisystemic manifestations plus age-related decline in balance, potentially increasing the risk of falling and its consequences. However, little is known about the profile of individuals with COPD who present balance impairments, especially related to sex and disease severity stages. The aim of this work was to compare static and functional balance between subjects with COPD and healthy controls and to check possible differences according to sex and degrees of disease severity. Forty-seven subjects with COPD and 25 healthy controls were included in this study. Their static balance was assessed in one-legged stance using a force platform and functional balance with the Timed Up and Go test. Additionally, participants performed spirometry, the 6-min walk test and isometric quadriceps maximal voluntary contraction assessment. Disease severity was classified according to the Global Initiative for Obstructive Lung Disease stages and BODE (body mass index, air-flow obstruction, dyspnea, and exercise capacity) scores. In comparison with healthy controls, subjects with COPD had worse static (center of pressure displacement area: 9.3 ± 1.9 cm 2 vs 11.6 ± 4.0 cm 2 , respectively, P = .01) and functional balance (Timed Up and Go test: 8.5 ± 1.3 s vs 10.3 ± 1.8 s, respectively, P < .001). In the COPD group, men performed better in the Timed Up and Go test than women (9.8 ± 1.2 s vs 10.9 ± 2.2 s, respectively, P = .03), whereas women presented a better static balance in comparison with men for all parameters related to center of pressure (P < .005 for all). Disease severity did not affect any balance results. Individuals with COPD had worse static and functional balance in comparison with healthy controls. Sex can mediate these results, depending on the type of balance evaluation (force platform or functional test). Balance performance was similar among the groups classified according to disease severity. Copyright © 2016 by Daedalus Enterprises.
Latham, Nancy K.; Jette, Alan M.; Wagenaar, Robert C.; Ni, Pengsheng; Slavin, Mary D.; Bean, Jonathan F.
2012-01-01
Background Impaired balance has a significant negative impact on mobility, functional independence, and fall risk in older adults. Although several, well-respected balance measures are currently in use, there is limited evidence regarding the most appropriate measure to assess change in community-dwelling older adults. Objective The aim of this study was to compare floor and ceiling effects, sensitivity to change, and responsiveness across the following balance measures in community-dwelling elderly people with functional limitations: Berg Balance Scale (BBS), Performance-Oriented Mobility Assessment total scale (POMA-T), POMA balance subscale (POMA-B), and Dynamic Gait Index (DGI). Design Retrospective data from a 16-week exercise trial were used. Secondary analyses were conducted on the total sample and by subgroups of baseline functional limitation or baseline balance scores. Methods Participants were 111 community-dwelling older adults 65 years of age or older, with functional limitations. Sensitivity to change was assessed using effect size, standardized response mean, and paired t tests. Responsiveness was assessed using minimally important difference (MID) estimates. Results No floor effects were noted. Ceiling effects were observed on all measures, including in people with moderate to severe functional limitations. The POMA-T, POMA-B, and DGI showed significantly larger ceiling effects compared with the BBS. All measures had low sensitivity to change in total sample analyses. Subgroup analyses revealed significantly better sensitivity to change in people with lower compared with higher baseline balance scores. Although both the total sample and lower baseline balance subgroups showed statistically significant improvement from baseline to 16 weeks on all measures, only the lower balance subgroup showed change scores that consistently exceeded corresponding MID estimates. Limitations This study was limited to comparing 4 measures of balance, and anchor-based methods for assessing MID could not be reported. Conclusions Important limitations, including ceiling effects and relatively low sensitivity to change and responsiveness, were noted across all balance measures, highlighting their limited utility across the full spectrum of the community-dwelling elderly population. New, more challenging measures are needed for better discrimination of balance ability in community-dwelling elderly people at higher functional levels. PMID:22114200
Artificial Neural Network with Hardware Training and Hardware Refresh
NASA Technical Reports Server (NTRS)
Duong, Tuan A. (Inventor)
2003-01-01
A neural network circuit is provided having a plurality of circuits capable of charge storage. Also provided is a plurality of circuits each coupled to at least one of the plurality of charge storage circuits and constructed to generate an output in accordance with a neuron transfer function. Each of a plurality of circuits is coupled to one of the plurality of neuron transfer function circuits and constructed to generate a derivative of the output. A weight update circuit updates the charge storage circuits based upon output from the plurality of transfer function circuits and output from the plurality of derivative circuits. In preferred embodiments, separate training and validation networks share the same set of charge storage circuits and may operate concurrently. The validation network has a separate transfer function circuits each being coupled to the charge storage circuits so as to replicate the training network s coupling of the plurality of charge storage to the plurality of transfer function circuits. The plurality of transfer function circuits may be constructed each having a transconductance amplifier providing differential currents combined to provide an output in accordance with a transfer function. The derivative circuits may have a circuit constructed to generate a biased differential currents combined so as to provide the derivative of the transfer function.
Fong, Shirley S M; Ng, Shamay S M; Liu, Karen P Y; Pang, Marco Y C; Lee, H W; Chung, Joanne W Y; Lam, Priscillia L; Guo, X
2014-01-01
Objectives. To (1) compare the bone strength, lower limb muscular strength, functional balance performance, and balance self-efficacy between Ving Tsun (VT) martial art practitioners and nonpractitioners and (2) identify the associations between lower limb muscular strength, functional balance performance, and balance self-efficacy among the VT-trained participants. Methods. Thirty-five VT practitioners (mean age ± SD = 62.7 ± 13.3 years) and 49 nonpractitioners (mean age ± SD = 65.9 ± 10.5 years) participated in the study. The bone strength of the distal radius, lower limb muscular strength, functional balance performance, and balance self-efficacy were assessed using an ultrasound bone sonometer, the five times sit-to-stand test (FTSTS), the Berg balance scale (BBS), and the Chinese version of the activities-specific balance confidence scale, respectively. A multivariate analysis of covariance was performed to compare all the outcome variables between the two groups. Results. Elderly VT practitioners had higher radial bone strength on the dominant side (P < 0.05), greater lower limb muscular strength (P = 0.001), better functional balance performance (P = 0.003), and greater balance confidence (P < 0.001) than the nonpractitioners. Additionally, only the FTSTS time revealed a significant association with the BBS score (r = -0.575, P = 0.013). Conclusions. VT may be a suitable health-maintenance exercise for the elderly. Our findings may inspire the development of VT fall-prevention exercises for the community-dwelling healthy elderly.
Fong, Shirley S. M.; Ng, Shamay S. M.; Liu, Karen P. Y.; Pang, Marco Y. C.; Lee, H. W.; Chung, Joanne W. Y.; Lam, Priscillia L.; Guo, X.
2014-01-01
Objectives. To (1) compare the bone strength, lower limb muscular strength, functional balance performance, and balance self-efficacy between Ving Tsun (VT) martial art practitioners and nonpractitioners and (2) identify the associations between lower limb muscular strength, functional balance performance, and balance self-efficacy among the VT-trained participants. Methods. Thirty-five VT practitioners (mean age ± SD = 62.7 ± 13.3 years) and 49 nonpractitioners (mean age ± SD = 65.9 ± 10.5 years) participated in the study. The bone strength of the distal radius, lower limb muscular strength, functional balance performance, and balance self-efficacy were assessed using an ultrasound bone sonometer, the five times sit-to-stand test (FTSTS), the Berg balance scale (BBS), and the Chinese version of the activities-specific balance confidence scale, respectively. A multivariate analysis of covariance was performed to compare all the outcome variables between the two groups. Results. Elderly VT practitioners had higher radial bone strength on the dominant side (P < 0.05), greater lower limb muscular strength (P = 0.001), better functional balance performance (P = 0.003), and greater balance confidence (P < 0.001) than the nonpractitioners. Additionally, only the FTSTS time revealed a significant association with the BBS score (r = −0.575, P = 0.013). Conclusions. VT may be a suitable health-maintenance exercise for the elderly. Our findings may inspire the development of VT fall-prevention exercises for the community-dwelling healthy elderly. PMID:25530782
31 CFR 317.5 - Termination of qualification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Termination of qualification. 317.5 Section 317.5 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL... accounting for the balance of savings bond stock for which it is charged, based on the records of the...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-24
... cramming and make clear the need for additional protection for consumers. DATES: Effective May 24, 2012... strike an appropriate balance between maximizing consumer protection and avoiding imposing undue burdens...), and 403, the Commission's rules are adopted. 28. The Commission's Consumer and Governmental Affairs...
The Dilemmas of Modernizing Peasant Agriculture in Nigeria.
ERIC Educational Resources Information Center
Alao, Joseph A.
In 1965, the Nigerian government charged Nigerian agriculture with the long term developmental task of providing: (1) an adequate and well balanced food supply for the increasing population; (2) agricultural raw materials for domestic industries; (3) agricultural export earnings; (4) employment for the increasing labor force; and (5) capital for…
14 CFR 374a.6 - Reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... requirements. (a) Air carriers shall make monthly reports to the Bureau of Transportation Statistics with... Bureau of Transportation Statistics not later than the 20th day following the end of the calendar month... for transportation not paid for in advance; (iv) any unpaid balance of the charges for such...
The Peer Review Process: Confidentiality and Disclosure.
ERIC Educational Resources Information Center
Weeks, Kent M.
1990-01-01
This article focuses on techniques some courts have utilized to balance the tensions between the aggrieved faculty members who allege discrimination--sex, race, national origin, handicap, age--in the promotion process and who seek disclosure of the peer review process and the colleges at which the charges are levied. (MLW)
Personal wilderness relationships: Building on a transactional approach
Robert G. Dvorak; William T. Borrie; Alan E. Watson
2013-01-01
Wilderness managers are charged with the challenging goal of balancing resource protection and experience quality across a broad, value-laden landscape. While research has provided insight into visitors' motivations and their meanings for wilderness, a struggle exists to implement experiential concepts within current management frameworks. This research posits the...
Translation Accommodations Framework for Testing English Language Learners in Mathematics
ERIC Educational Resources Information Center
Solano-Flores, Guillermo
2012-01-01
The present framework is developed under contract with the Smarter Balanced Assessment Consortium (SBAC) as a conceptual and methodological tool for guiding the reasonings and actions of contractors in charge of developing and providing test translation accommodations for English language learners. The framework addresses important challenges in…
Work Function of Oxide Ultrathin Films on the Ag(100) Surface.
Sementa, Luca; Barcaro, Giovanni; Negreiros, Fabio R; Thomas, Iorwerth O; Netzer, Falko P; Ferrari, Anna Maria; Fortunelli, Alessandro
2012-02-14
Theoretical calculations of the work function of monolayer (ML) and bilayer (BL) oxide films on the Ag(100) surface are reported and analyzed as a function of the nature of the oxide for first-row transition metals. The contributions due to charge compression, charge transfer and rumpling are singled out. It is found that the presence of empty d-orbitals in the oxide metal can entail a charge flow from the Ag(100) surface to the oxide film which counteracts the decrease in the work function due to charge compression. This flow can also depend on the thickness of the film and be reduced in passing from ML to BL systems. A regular trend is observed along first-row transition metals, exhibiting a maximum for CuO, in which the charge flow to the oxide is so strong as to reverse the direction of rumpling. A simple protocol to estimate separately the contribution due to charge compression is discussed, and the difference between the work function of the bare metal surface and a Pauling-like electronegativity of the free oxide slabs is used as a descriptor quantity to predict the direction of charge transfer.
NASA Astrophysics Data System (ADS)
Xu, Long-Kun; Bi, Ting-Jun; Ming, Mei-Jun; Wang, Jing-Bo; Li, Xiang-Yuan
2017-07-01
Based on the previous work on nonequilibrium solvation model by the authors, Intermolecular charge-transfer electronic excitation of tetracyanoethylene (TCE)/tetramethylethylene (TME) π -stacked complex in dichloromethane (DCM) has been investigated. For weak interaction correction, dispersion corrected functional DFT-D3 is adopted for geometry optimization. In order to identify the excitation metric, dipole moment components of each Cartesian direction, atomic charge, charge separation and Δr index are analyzed for TCE/TME complex. Calculation shows that the calculated excitation energy is dependent on the functional choice, when conjuncted with suitable time-dependent density functional, the modified nonequilibrium expression gives satisfied results for intermolecular charge-transfer electronic excitation.
NASA Technical Reports Server (NTRS)
Marshall, J.; Sauke, T.
1999-01-01
Electrostatic forces strongly influence the behavior of granular materials in both dispersed (cloud) systems and semi-packed systems. These forces can cause aggregation or dispersion of particles and are important in a variety of astrophysical and planetary settings. There are also many industrial and commercial settings where granular matter and electrostatics become partners for both good and bad. This partnership is important for human exploration on Mars where dust adheres to suits, machines, and habitats. Long-range Coulombic (electrostatic) forces, as opposed to contact-induced dipoles and van der Waals attractions, are generally regarded as resulting from net charge. We have proposed that in addition to net charge interactions, randomly distributed charge carriers on grains will result in a dipole moment regardless of any net charge. If grains are unconfined, or fluidized, they will rotate so that the dipole always induces attraction between grains. Aggregates are readily formed, and Coulombic polarity resulting from the dipole produces end-to-end stacking of grains to form filamentary aggregates. This has been demonstrated in USML experiments on Space Shuttle where microgravity facilitated the unmasking of static forces. It has also been demonstrated in a computer model using grains with charge carriers of both sign. Model results very closely resembled micro-g results with actual sand grains. Further computer modeling of the aggregation process has been conducted to improve our understanding of the aggregation process, and to provide a predictive tool for microgravity experiments slated for Space Station. These experiments will attempt to prove the dipole concept as outlined above. We have considerably enhanced the original computer model: refinements to the algorithm have improved the fidelity of grain behavior during grain contact, special attention has been paid to simulation time steps to enable establishment of a meaningful, quantitative time axis, and calibration of rounding accuracies have been conducted to test cumulative numerical influences in the model. The model has been run for larger grain populations, variable initial cloud densities, and we have introduced random net charging to individual grains, as well as a net charge to the cloud as a whole. The model uses 3 positive and 3 negative charges randomly distributed on each grain, with up to 160 grains contained within various size "boxes" that define the initial number densities in the clouds. Each charge represents localized charged region on a grain, but does not necessarily imply single quantized charge carriers. The Coulomb equations are then allowed to interact for each monopole: dipoles and any higher order charge coupling is a natural product of these "free" interactions over which the modeler exerts no influence. The charges are placed on surfaces of grains at random locations. A series of runs was conducted for neutral grains that had a perfect balance of negative and positive char carriers. Runs were also conducted with grains having additional fractional charges ranging between 0 and 1. By adding fractional charges of one sign, the model created grain populations in which all grains had excess charges the same sign, giving the cloud an overall net charge. This simulates clouds subjected to ionizing radiation (e. protoplanetary debris disk around a protosun), or any other process of charge biasing in a grain population (e.g., volcanic plumes). In another run series, random fractional charges of either sign were added to the grains so th some grains had a slight net positive charge while others had a slight net negative charge. This simulates triboelectrically-charged grain populations in which acquisition of an electron by one surface is at the expense creating a hole elsewhere. This dual sign charging was applied in two ways: in one case the cloud remained neutral by ensuring that all grain excess charges added to zero; in the other case, the cloud was permitted slight net char by not imposing a charge-balance condition. Additional information is contained in the original.
Nam, Seung-Min; Kim, Kyoung; Lee, Do Youn
2018-01-01
[Purpose] This study examined the effects of visual feedback balance training on the balance and ankle instability in adult men with functional ankle instability. [Subjects and Methods] Twenty eight adults with functional ankle instability, divided randomly into an experimental group, which performed visual feedback balance training for 20 minutes and ankle joint exercises for 10 minutes, and a control group, which performed ankle joint exercise for 30 minutes. Exercises were completed three times a week for 8 weeks. Bio rescue was used for balance ability. It measured limit of stability at one minute. For ankle instability was measured using Cumberland ankle instability tool (CAIT). This measure was performed before and after the experiments in each group. [Results] The experimental group had significant increase in the Limit of Stability and CAIT score. The control group had significant increase in CAIT score. While the Limit of Stability increased without significance. [Conclusion] In conclusion, visual feedback balance training can be recommended as a treatment method for patients with functional ankle instability.
Ha, Sun-Young; Han, Jun-Ho; Sung, Yun-Hee
2018-04-01
The present study was conducted to investigate the effect of ankle strengthening exercise applied on unstable supporting surfaces on the proprioceptive sense and balance in adults with functional ankle instability. As for the study method, 30 adults with functional ankle instability were randomly assigned to an ankle strengthening exercise group and a stretching group on unstable supporting surfaces, and the interventions were implemented for 40 min. Before and after the interventions, a digital dual inclinometer was used to measure the proprioceptive sense of the ankle, the Balancia program was used to measure static balance ability, and the functional reach test was used to measure dynamic balance ability. In the results, both proprioceptive sense and static dynamic balance ability were significantly different between before and after the intervention in the experimental group ( P <0.05). When such results are put together, it can be seen that ankle strengthening exercise applied on unstable supporting surfaces may be presented as an effective treatment method for enhancing the proprioceptive sense and balance ability in adults with functional ankle instability.
Jung, Dae-In; Ko, Dae-Sik; Jeong, Mi-Ae
2015-01-01
[Purpose] This study evaluated the changes in balance ability and obstacle gait after lumbar stabilization exercise and Nintendo WiiTM Sports in elderly at risk for falls. [Subjects and Methods] Twenty-four elderly women with at risk for falls were randomly divided into the control, lumbar stabilization exercise, and Nintendo Wii Sports groups. Static balance was measured by the Berg Balance Scale and functional reach test, dynamic balance by the timed up-and-go test, and obstacle negotiation function by crossing velocity and maximum vertical heel clearance. [Results] Both the lumbar stabilization exercise and Nintendo Wii Sports groups showed significant improvements in obstacle negotiation function after the exercise compared to the control group. Berg Balance Scale and functional reach test scores were greater in the lumbar stabilization exercise group, while the timed up-and-go test time was significantly better in the Nintendo Wii Sports groups. [Conclusion] Lumbar stabilization exercises and Nintendo Wii Sports improve falling related balance and obstacle negotiation function in elderly women at risk for falls. PMID:26157228
Jung, Dae-In; Ko, Dae-Sik; Jeong, Mi-Ae
2015-05-01
[Purpose] This study evaluated the changes in balance ability and obstacle gait after lumbar stabilization exercise and Nintendo Wii(TM) Sports in elderly at risk for falls. [Subjects and Methods] Twenty-four elderly women with at risk for falls were randomly divided into the control, lumbar stabilization exercise, and Nintendo Wii Sports groups. Static balance was measured by the Berg Balance Scale and functional reach test, dynamic balance by the timed up-and-go test, and obstacle negotiation function by crossing velocity and maximum vertical heel clearance. [Results] Both the lumbar stabilization exercise and Nintendo Wii Sports groups showed significant improvements in obstacle negotiation function after the exercise compared to the control group. Berg Balance Scale and functional reach test scores were greater in the lumbar stabilization exercise group, while the timed up-and-go test time was significantly better in the Nintendo Wii Sports groups. [Conclusion] Lumbar stabilization exercises and Nintendo Wii Sports improve falling related balance and obstacle negotiation function in elderly women at risk for falls.
Active model-based balancing strategy for self-reconfigurable batteries
NASA Astrophysics Data System (ADS)
Bouchhima, Nejmeddine; Schnierle, Marc; Schulte, Sascha; Birke, Kai Peter
2016-08-01
This paper describes a novel balancing strategy for self-reconfigurable batteries where the discharge and charge rates of each cell can be controlled. While much effort has been focused on improving the hardware architecture of self-reconfigurable batteries, energy equalization algorithms have not been systematically optimized in terms of maximizing the efficiency of the balancing system. Our approach includes aspects of such optimization theory. We develop a balancing strategy for optimal control of the discharge rate of battery cells. We first formulate the cell balancing as a nonlinear optimal control problem, which is modeled afterward as a network program. Using dynamic programming techniques and MATLAB's vectorization feature, we solve the optimal control problem by generating the optimal battery operation policy for a given drive cycle. The simulation results show that the proposed strategy efficiently balances the cells over the life of the battery, an obvious advantage that is absent in the other conventional approaches. Our algorithm is shown to be robust when tested against different influencing parameters varying over wide spectrum on different drive cycles. Furthermore, due to the little computation time and the proved low sensitivity to the inaccurate power predictions, our strategy can be integrated in a real-time system.
Tris[4-(dimethylamino)pyridinium] hexakis(thiocyanato-κN)ferrate(III) monohydrate
Wöhlert, Susanne; Jess, Inke; Näther, Christian
2013-01-01
In the title compound, (C7H11N2)3[Fe(NCS)6]·H2O, the FeIII cation is coordinated by six terminal N-bonded thiocyanate anions into a discrete threefold negatively charged complex. Charge balance is achieved by three protonated 4-(dimethylamino)pyridine cations. The asymmetric unit consists of one FeIII cation, six thiocyanate anions, three 4-(dimethylamino)pyridinium cations and one water molecule, all of them located in general positions. PMID:23476331
Halvarsson, Alexandra; Franzén, Erika; Ståhle, Agneta
2015-04-01
To evaluate the effects of a balance training program including dual- and multi-task exercises on fall-related self-efficacy, fear of falling, gait and balance performance, and physical function in older adults with osteoporosis with an increased risk of falling and to evaluate whether additional physical activity would further improve the effects. Randomized controlled trial, including three groups: two intervention groups (Training, or Training+Physical activity) and one Control group, with a 12-week follow-up. Stockholm County, Sweden. Ninety-six older adults, aged 66-87, with verified osteoporosis. A specific and progressive balance training program including dual- and multi-task three times/week for 12 weeks, and physical activity for 30 minutes, three times/week. Fall-related self-efficacy (Falls Efficacy Scale-International), fear of falling (single-item question - 'In general, are you afraid of falling?'), gait speed with and without a cognitive dual-task at preferred pace and fast walking (GAITRite®), balance performance tests (one-leg stance, and modified figure of eight), and physical function (Late-Life Function and Disability Instrument). Both intervention groups significantly improved their fall-related self-efficacy as compared to the controls (p ≤ 0.034, 4 points) and improved their balance performance. Significant differences over time and between groups in favour of the intervention groups were found for walking speed with a dual-task (p=0.003), at fast walking speed (p=0.008), and for advanced lower extremity physical function (p=0.034). This balance training program, including dual- and multi-task, improves fall-related self-efficacy, gait speed, balance performance, and physical function in older adults with osteoporosis. © The Author(s) 2014.
Wii-habilitation as balance therapy for children with acquired brain injury.
Tatla, Sandy K; Radomski, Anna; Cheung, Jessica; Maron, Melissa; Jarus, Tal
2014-02-01
To evaluate the effectiveness of the Nintendo Wii compared to traditional balance therapy in improving balance, motivation, and functional ability in children undergoing acute rehabilitation after brain injury. A non-concurrent, randomized multiple baseline single-subject research design was used with three participants. Data were analyzed by visual inspection of trend lines. Daily Wii balance training was equally motivating to traditional balance therapy for two participants and more motivating for one participant. While improvements in dynamic balance were observed, the results for static balance remain inconclusive. All participants demonstrated improvements in functional ability. Wii balance therapy is a safe, feasible, and motivating intervention for children undergoing acute rehabilitation after an acquired brain injury. Further research to examine the effectiveness of Wii balance therapy in this population is warranted.
Xu, Peng; Zhang, Cai-Rong; Wang, Wei; Gong, Ji-Jun; Liu, Zi-Jiang; Chen, Hong-Shan
2018-04-10
The understanding of the excited-state properties of electron donors, acceptors and their interfaces in organic optoelectronic devices is a fundamental issue for their performance optimization. In order to obtain a balanced description of the different excitation types for electron-donor-acceptor systems, including the singlet charge transfer (CT), local excitations, and triplet excited states, several ab initio and density functional theory (DFT) methods for excited-state calculations were evaluated based upon the selected model system of benzene-tetracyanoethylene (B-TCNE) complexes. On the basis of benchmark calculations of the equation-of-motion coupled-cluster with single and double excitations method, the arithmetic mean of the absolute errors and standard errors of the electronic excitation energies for the different computational methods suggest that the M11 functional in DFT is superior to the other tested DFT functionals, and time-dependent DFT (TDDFT) with the Tamm-Dancoff approximation improves the accuracy of the calculated excitation energies relative to that of the full TDDFT. The performance of the M11 functional underlines the importance of kinetic energy density, spin-density gradient, and range separation in the development of novel DFT functionals. According to the TDDFT results, the performances of the different TDDFT methods on the CT properties of the B-TCNE complexes were also analyzed.
Ishizuka, Ryosuke; Matubayasi, Nobuyuki
2016-02-09
A self-consistent scheme is developed to determine the atomic partial charges of ionic liquid. Molecular dynamics (MD) simulation was conducted to sample a set of ion configurations, and these configurations were subject to density functional theory (DFT) calculations to determine the partial charges. The charges were then averaged and used as inputs for the subsequent MD simulation, and MD and DFT calculations were repeated until the MD results are not altered any more. We applied this scheme to 1,3-dimethylimidazolium bis(trifluoromethylsulfonyl) imide ([C1mim][NTf2]) and investigated its structure and dynamics as a function of temperature. At convergence, the average ionic charges were ±0.84 e at 350 K due to charge transfer among ions, where e is the elementary charge, while the reduced ionic charges do not affect strongly the density of [C1mim][NTf2] and radial distribution function. Instead, major effects are found on the energetics and dynamics, with improvements of the overestimated heat of vaporization and the too slow motions of ions observed in MD simulations using commonly used force fields.
Dramatic pressure-sensitive ion conduction in conical nanopores.
Jubin, Laetitia; Poggioli, Anthony; Siria, Alessandro; Bocquet, Lydéric
2018-04-17
Ion transporters in Nature exhibit a wealth of complex transport properties such as voltage gating, activation, and mechanosensitive behavior. When combined, such processes result in advanced ionic machines achieving active ion transport, high selectivity, or signal processing. On the artificial side, there has been much recent progress in the design and study of transport in ionic channels, but mimicking the advanced functionalities of ion transporters remains as yet out of reach. A prerequisite is the development of ionic responses sensitive to external stimuli. In the present work, we report a counterintuitive and highly nonlinear coupling between electric and pressure-driven transport in a conical nanopore, manifesting as a strong pressure dependence of the ionic conductance. This result is at odds with standard linear response theory and is akin to a mechanical transistor functionality. We fully rationalize this behavior on the basis of the coupled electrohydrodynamics in the conical pore by extending the Poisson-Nernst-Planck-Stokes framework. The model is shown to capture the subtle mechanical balance occurring within an extended spatially charged zone in the nanopore. The pronounced sensitivity to mechanical forcing offers leads in tuning ion transport by mechanical stimuli. The results presented here provide a promising avenue for the design of tailored membrane functionalities.
Battery voltage-balancing applications of disk-type radial mode Pb(Zr • Ti)O3 ceramic resonator
NASA Astrophysics Data System (ADS)
Thenathayalan, Daniel; Lee, Chun-gu; Park, Joung-hu
2017-10-01
In this paper, we propose a novel technique to build a charge-balancing circuit for series-connected battery strings using various kinds of disk-type ceramic Pb(Zr • Ti)O3 piezoelectric resonators (PRs). The use of PRs replaces the whole external battery voltage-balancer circuit, which consists mainly of a bulky magnetic element. The proposed technique is validated using different ceramic PRs and the results are analyzed in terms of their physical properties. A series-connected battery string with a voltage rating of 61.5 V is set as a hardware prototype under test, then the power transfer efficiency of the system is measured at different imbalance voltages. The performance of the proposed battery voltage-balancer circuit employed with a PR is also validated through hardware implementation. Furthermore, the temperature distribution image of the PR is obtained to compare power transfer efficiency and thermal stress under different operating conditions. The test results show that the battery voltage-balancer circuit can be successfully implemented using PRs with the maximum power conversion efficiency of over 96% for energy storage systems.
A dynamic plug flow reactor model for a vanadium redox flow battery cell
NASA Astrophysics Data System (ADS)
Li, Yifeng; Skyllas-Kazacos, Maria; Bao, Jie
2016-04-01
A dynamic plug flow reactor model for a single cell VRB system is developed based on material balance, and the Nernst equation is employed to calculate cell voltage with consideration of activation and concentration overpotentials. Simulation studies were conducted under various conditions to investigate the effects of several key operation variables including electrolyte flow rate, upper SOC limit and input current magnitude on the cell charging performance. The results show that all three variables have a great impact on performance, particularly on the possibility of gassing during charging at high SOCs or inadequate flow rates. Simulations were also carried out to study the effects of electrolyte imbalance during long term charging and discharging cycling. The results show the minimum electrolyte flow rate needed for operation within a particular SOC range in order to avoid gassing side reactions during charging. The model also allows scheduling of partial electrolyte remixing operations to restore capacity and also avoid possible gassing side reactions during charging. Simulation results also suggest the proper placement for cell voltage monitoring and highlight potential problems associated with setting the upper charging cut-off limit based on the inlet SOC calculated from the open-circuit cell voltage measurement.
Martian Atmospheric Pressure Static Charge Elimination Tool
NASA Technical Reports Server (NTRS)
Johansen, Michael R.
2014-01-01
A Martian pressure static charge elimination tool is currently in development in the Electrostatics and Surface Physics Laboratory (ESPL) at NASA's Kennedy Space Center. In standard Earth atmosphere conditions, static charge can be neutralized from an insulating surface using air ionizers. These air ionizers generate ions through corona breakdown. The Martian atmosphere is 7 Torr of mostly carbon dioxide, which makes it inherently difficult to use similar methods as those used for standard atmosphere static elimination tools. An initial prototype has been developed to show feasibility of static charge elimination at low pressure, using corona discharge. A needle point and thin wire loop are used as the corona generating electrodes. A photo of the test apparatus is shown below. Positive and negative high voltage pulses are sent to the needle point. This creates positive and negative ions that can be used for static charge neutralization. In a preliminary test, a floating metal plate was charged to approximately 600 volts under Martian atmospheric conditions. The static elimination tool was enabled and the voltage on the metal plate dropped rapidly to -100 volts. This test data is displayed below. Optimization is necessary to improve the electrostatic balance of the static elimination tool.
NASA Astrophysics Data System (ADS)
Halpert, G.
1982-07-01
A 50-ampere hour nickel cadmium cell test pack was operated in a power profile simulating the orbit of the Earth Radiation Budget Satellite (ERBS). The objective was to determine the ability of the temperature compensated voltage limit (V sub T) charge control system to maintain energy balance in the half sine wave-type current profile expected of this mission. The four-cell pack (50 E) was tested at the Naval Weapons Support Center (NWSC) at Crane, Indiana. The ERBS evaluation test consisted of two distinct operating sequences, each having a specific purpose. The first phase was a parametric test involving the effect of V sub T level, temperature, and Beta angle on the charge/discharge (C/D) ratio, an indicator of the amount of overcharge. The second phase of testing made use of the C/D ratio limit to augment the V sub T charge limit control. When the C/D limit was reached, the current was switched from the taper mode to a C/67 (0.75 A) trickle charge. The use of an ampere hour integrator limiting the overcharge to a C/67 rate provided a fine tuning of the charge control technique which eliminated the sensitivity problems noted in the initial operating sequence.
NASA Technical Reports Server (NTRS)
Halpert, G.
1982-01-01
A 50-ampere hour nickel cadmium cell test pack was operated in a power profile simulating the orbit of the Earth Radiation Budget Satellite (ERBS). The objective was to determine the ability of the temperature compensated voltage limit (V sub T) charge control system to maintain energy balance in the half sine wave-type current profile expected of this mission. The four-cell pack (50 E) was tested at the Naval Weapons Support Center (NWSC) at Crane, Indiana. The ERBS evaluation test consisted of two distinct operating sequences, each having a specific purpose. The first phase was a parametric test involving the effect of V sub T level, temperature, and Beta angle on the charge/discharge (C/D) ratio, an indicator of the amount of overcharge. The second phase of testing made use of the C/D ratio limit to augment the V sub T charge limit control. When the C/D limit was reached, the current was switched from the taper mode to a C/67 (0.75 A) trickle charge. The use of an ampere hour integrator limiting the overcharge to a C/67 rate provided a fine tuning of the charge control technique which eliminated the sensitivity problems noted in the initial operating sequence.
Effect of pectin charge density on formation of multilayer films with chitosan.
Kamburova, Kamelia; Milkova, Viktoria; Petkanchin, Ivana; Radeva, Tsetska
2008-04-01
The effect of pectin charge density on the formation of multilayer films with chitosan (PEC/CHI) is studied by means of electro-optics. Pectins of low (21%) and high (71%) degrees of esterification, which are inversely proportional to the pectin charge density, are used to form films on colloidal beta-FeOOH particles at pH 4.0 when the CHI is fully ionized. We find that, after deposition of the first 3-4 layers, the film thickness increases linearly with the number of adsorbed layers. However, the increase in the film thickness is larger when the film is terminated with CHI. Irregular increase of the film thickness is more marked for the PEC with higher density of charge. Oscillation in the electrical polarizability of the film-coated particles with the number of deposited layers is also registered in the PEC/CHI films. The charge balance of the multilayers, calculated from electrical polarizability of the film-coated particles, is positive, with larger excess of positive charge within the film constructed from CHI and less charged PEC. This is attributed to the ability of CHI to diffuse into the film at each deposition step. Despite the CHI diffusion, the film thickness increases linearly due to the dissolution of unstable PEC/CHI complexes from the film surface.
NASA Astrophysics Data System (ADS)
Yoon, Ok Ja; Lee, Hyun Jung; Jang, Yeong Mi; Kim, Hyun Woo; Lee, Won Bok; Kim, Sung Su; Lee, Nae-Eung
2011-08-01
The O 2 and N 2/H 2 plasma treatments of single-walled carbon nanotube (SWCNT) papers as scaffolds for enhanced neuronal cell growth were conducted to functionalize their surfaces with different functional groups and to roughen their surfaces. To evaluate the effects of the surface roughness and functionalization modifications of the SWCNT papers, we investigated the neuronal morphology, mitochondrial membrane potential, and acetylcholine/acetylcholinesterase levels of human neuroblastoma during SH-SY5Y cell growth on the treated SWCNT papers. Our results demonstrated that the plasma-chemical functionalization caused changes in the surface charge states with functional groups with negative and positive charges and then the increased surface roughness enhanced neuronal cell adhesion, mitochondrial membrane potential, and the level of neurotransmitter in vitro. The cell adhesion and mitochondrial membrane potential on the negatively charged SWCNT papers were improved more than on the positively charged SWCNT papers. Also, measurements of the neurotransmitter level showed an enhanced acetylcholine level on the negatively charged SWCNT papers compared to the positively charged SWCNT papers.
Nag, Angshuman; Chung, Dae Sung; Dolzhnikov, Dmitriy S; Dimitrijevic, Nada M; Chattopadhyay, Soma; Shibata, Tomohiro; Talapin, Dmitri V
2012-08-22
Colloidal semiconductor nanocrystals (NCs) provide convenient "building blocks" for solution-processed solar cells, light-emitting devices, photocatalytic systems, etc. The use of inorganic ligands for colloidal NCs dramatically improved inter-NC charge transport, enabling fast progress in NC-based devices. Typical inorganic ligands (e.g., Sn(2)S(6)(4-), S(2-)) are represented by negatively charged ions that bind covalently to electrophilic metal surface sites. The binding of inorganic charged species to the NC surface provides electrostatic stabilization of NC colloids in polar solvents without introducing insulating barriers between NCs. In this work we show that cationic species needed for electrostatic balance of NC surface charges can also be employed for engineering almost every property of all-inorganic NCs and NC solids, including photoluminescence efficiency, electron mobility, doping, magnetic susceptibility, and electrocatalytic performance. We used a suite of experimental techniques to elucidate the impact of various metal ions on the characteristics of all-inorganic NCs and developed strategies for engineering and optimizing NC-based materials.
Simulating Electrophoresis with Discrete Charge and Drag
NASA Astrophysics Data System (ADS)
Mowitz, Aaron J.; Witten, Thomas A.
A charged asymmetric rigid cluster of colloidal particles in saline solution can respond in exotic ways to an electric field: it may spin or move transversely. These distinctive motions arise from the drag force of the neutralizing countercharge surrounding the cluster. Because of this drag, calculating the motion of arbitrary asymmetric objects with nonuniform charge is impractical by conventional methods. Here we present a new method of simulating electrophoresis, in which we replace the continuous object and the surrounding countercharge with discrete point-draggers, called Stokeslets. The balance of forces imposes a linear, self-consistent relation among the drag and Coulomb forces on the Stokeslets, which allows us to easily determine the object's motion via matrix inversion. By explicitly enforcing charge+countercharge neutrality, the simulation recovers the distinctive features of electrophoretic motion to few-percent accuracy using as few as 1000 Stokeslets. In particular, for uniformly charged objects, we observe the characteristic Smoluchowski independence of mobility on object size and shape. We then discuss electrophoretic motion of asymmetric objects, where our simulation method is particularly advantageous. This work is supported by a Grant from the US-Israel Binational Science Foundation.
Analysis of Static Spacecraft Floating Potential at Low Earth Orbit (LEO)
NASA Technical Reports Server (NTRS)
Herr, Joel L.; Hwang, K. S.; Wu, S. T.
1995-01-01
Spacecraft floating potential is the charge on the external surfaces of orbiting spacecraft relative to the space. Charging is caused by unequal negative and positive currents to spacecraft surfaces. The charging process continues until the accelerated particles can be collected rapidly enough to balance the currents at which point the spacecraft has reached its equilibrium or floating potential. In low inclination. Low Earth Orbit (LEO), the collection of positive ion and negative electrons. in a particular direction. are typically not equal. The level of charging required for equilibrium to be established is influenced by the characteristics of the ambient plasma environment. by the spacecraft motion, and by the geometry of the spacecraft. Using the kinetic theory, a statistical approach for studying the interaction is developed. The approach used to study the spacecraft floating potential depends on which phenomena are being applied. and on the properties of the plasma. especially the density and temperature. The results from kinetic theory derivation are applied to determine the charging level and the electric potential distribution at an infinite flat plate perpendicular to a streaming plasma using finite-difference scheme.
Domínguez-Navarro, Fernando; Igual-Camacho, Celedonia; Silvestre-Muñoz, Antonio; Roig-Casasús, Sergio; Blasco, José María
2018-05-01
Balance and proprioceptive deficits are frequently persistent after total joint replacement, limiting functionality and involving altered movement patterns and difficulties in walking and maintaining postural control among patients. The goal of this systematic review was to evaluate the short- and mid-term effects of proprioceptive and balance training for patients undergoing total knee and hip replacement. This is a systematic review of literature. MEDLINE, Embase, Cochrane Library, PEDro, and Scopus were the databases searched. The review included randomized clinical trials in which the experimental groups underwent a training aimed at improving balance and proprioception, in addition to conventional care. The studies had to assess at least one of the following outcomes: self-reported functionality or balance (primary outcomes), knee function, pain, falls, or quality of life. Eight trials were included, involving 567 participants. The quantitative synthesis found a moderate to high significant effect of balance and proprioceptive trainings on self-reported functionality and balance after total knee replacement. The effects were maintained at mid-term in terms of balance alone. Conversely, preoperative training did not enhance outcomes after total hip arthroplasty. The synthesis showed that, in clinical terms, balance trainings are a convenient complement to conventional physiotherapy care to produce an impact on balance and functionality after knee replacement. If outcomes such as improvement in pain, knee range of movement, or patient quality of life are to be promoted, it would be advisable to explore alternative proposals specifically targeting these goals. Further research is needed to confirm or discard the current evidence ultimately, predominantly in terms of the effects on the hips and those yielded by preoperative interventions. Copyright © 2018 Elsevier B.V. All rights reserved.
Engineering redox balance through cofactor systems.
Chen, Xiulai; Li, Shubo; Liu, Liming
2014-06-01
Redox balance plays an important role in the production of enzymes, pharmaceuticals, and chemicals. To meet the demands of industrial production, it is desirable that microbes maintain a maximal carbon flux towards target metabolites with no fluctuations in redox. This requires functional cofactor systems that support dynamic homeostasis between different redox states or functional stability in a given redox state. Redox balance can be achieved by improving the self-balance of a cofactor system, regulating the substrate balance of a cofactor system, and engineering the synthetic balance of a cofactor system. This review summarizes how cofactor systems can be manipulated to improve redox balance in microbes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Balance-Equation Approach to Nonuniform Electron Transport in Nonparabolic Semiconductors
NASA Astrophysics Data System (ADS)
Cao, Juncheng; Lei, Xiaolin
1998-10-01
On the basis of the Lei-Ting balance-equation transport theory recently developed for nonparabolic energy band, we propose a hydrodynamic approach to the spatially inhomogeneous electron transport in semiconductor devices. In the present approach, the momentum and energy collision terms are expressed by two nonlinear functions, the frictional acceleration and energy-loss rate, which give a detailed scattering-process-level description of nonstationary and nonlocal charge transport in the system. This approach allows one to calculate selfconsistently the transport parameters within the model itself based on the primary material data (band structure, deformation potential constant, etc.), thus it minimizes the uncertainty associated with the use of some empirical relations for transport coefficients. As a demonstration of the approach, we have carried out a numerical calculation for a submicrometer Si n^+nn^+ diode by assuming an isotropic Kane-type energy band. The results for electron velocity and energy, obtained at much less computing cost than the Monte-Carlo (MC) method, are in good agreement with MC prediction. The influence of heat-flow term on electron transport behaviour, especially on velocity overshoot, is also investigated. The project supported by National Natural Science Foundation of China, National and Shanghai Municipal Commission of Science and Technology, and the Shanghai Foundation for Research and Development of Applied Materials
Versatile dual organic interface layer for performance enhancement of polymer solar cells
NASA Astrophysics Data System (ADS)
Li, Zhiqi; Liu, Chunyu; Zhang, Zhihui; Li, Jinfeng; Zhang, Liu; Zhang, Xinyuan; Shen, Liang; Guo, Wenbin; Ruan, Shengping
2016-11-01
The electron transport layer plays a crucial role on determining electron injection and extraction, resulting from the effect of balancing charge transport and reducing the interfacial energy barrier. Decreasing the inherent incompatibility and enhancing electrical contact via employing appropriate buffer layer at the surface of hydrophobic organic active layer and hydrophilic inorganic electrode are also essential for charge collection. Herein, we demonstrate that an efficient dual polyelectrolytes interfacial layer composed of polyethylenimine (PEI) and conducting poly(9,9-dihexylfluorenyl-2,7-diyl) (PDHFD) is incorporated to investigate the interface energetics and electron transport in polymer solar cells (PSCs). The composited PEI/PDHFD interface layer (PPIL) overcomed the low conductivity of bare PEI polymer, which decreased series resistance and facilitated electron extraction at the ITO/PPIL-active layer interface. The introduction of the interface energy state of the PPIL reduced the work function of ITO so that it can mate the top of the valence band of the photoactive materials and promoted the formation of ohmic contact at ITO electrode interface. As a result, the composited PPIL tuned energy alignment and accelerated the electron transfer, leading to significantly increased photocurrent and power conversion efficiency (PCE) of the devices based on various representative polymer:fullerene systems.
Tramontano, Marco; Shofany, Jacob; Iemma, Antonella; Musicco, Massimo; Paolucci, Stefano; Caltagirone, Carlo
2014-01-01
The video game-based therapy emerged as a potential valid tool in improving balance in several neurological conditions with controversial results, whereas little information is available regarding the use of this therapy in subacute stroke patients. The aim of this study was to investigate the efficacy of balance training using video game-based intervention on functional balance and disability in individuals with hemiparesis due to stroke in subacute phase. Fifty adult stroke patients participated to the study: 25 subjects were randomly assigned to balance training with Wii Fit, and the other 25 subjects were assigned to usual balance therapy. Both groups were also treated with conventional physical therapy (40 min 2 times/day). The main outcome was functional balance (Berg Balance Scale-BBS), and secondary outcomes were disability (Barthel Index-BI), walking ability (Functional Ambulation Category), and walking speed (10-meters walking test). Wii Fit training was more effective than usual balance therapy in improving balance (BBS: 53 versus 48, P = 0.004) and independency in activity of daily living (BI: 98 versus 93, P = 0.021). A balance training performed with a Wii Fit as an add on to the conventional therapy was found to be more effective than conventional therapy alone in improving balance and reducing disability in patients with subacute stroke. PMID:24877116
Lazarou, Lazaros; Kofotolis, Nikolaos; Pafis, Georgios; Kellis, Eleftherios
2017-09-08
Following ankle sprain, residual symptoms are often apparent, and proprioceptive training is a treatment approach. Evidence, however, is limited and the optimal program has to be identified. To investigate the effects of two post-acute supervised proprioceptive training programs in individuals with ankle sprain. Participants were recruited from a physiotherapy center for ankle sprain rehabilitation. In a pre-post treatment, blinded-assessor design, 22 individuals were randomly allocated to a balance or a proprioceptive neuromuscular facilitation (PNF) group. Both groups received 10 rehabilitation sessions, within a six-week period. Dorsiflexion range of motion (ROM), pain, functional and balance performance were assessed at baseline, at the end of training and eight weeks after training. Follow-up data were provided for 20 individuals. Eight weeks after training, statistically significant (p< 0.017) improvements were found in dorsiflexion ROM and most functional performance measures for both balance and PNF groups. Eight weeks after training, significant (p< 0.017) improvements in the frontal plane balance test and pain were observed for the balance group. Balance and PNF programs are recommended in clinical practice for improving ankle ROM and functional performance in individuals with sprain. Balance programs are also recommended for pain relief.
Multiplicity distributions of charged hadrons in vp and charged current interactions
NASA Astrophysics Data System (ADS)
Jones, G. T.; Jones, R. W. L.; Kennedy, B. W.; Morrison, D. R. O.; Mobayyen, M. M.; Wainstein, S.; Aderholz, M.; Hantke, D.; Katz, U. F.; Kern, J.; Schmitz, N.; Wittek, W.; Borner, H. P.; Myatt, G.; Radojicic, D.; Burke, S.
1992-03-01
Using data on vp andbar vp charged current interactions from a bubble chamber experiment with BEBC at CERN, the multiplicity distributions of charged hadrons are investigated. The analysis is based on ˜20000 events with incident v and ˜10000 events with incidentbar v. The invariant mass W of the total hadronic system ranges from 3 GeV to ˜14 GeV. The experimental multiplicity distributions are fitted by the binomial function (for different intervals of W and in different intervals of the rapidity y), by the Levy function and the lognormal function. All three parametrizations give acceptable values for X 2. For fixed W, forward and backward multiplicities are found to be uncorrelated. The normalized moments of the charged multiplicity distributions are measured as a function of W. They show a violation of KNO scaling.
Lee, Min-Hye; Kim, Juhwan; Kang, Minji; Kim, Jihong; Kang, Boseok; Hwang, Hansu; Cho, Kilwon; Kim, Dong-Yu
2017-01-25
Two donor-acceptor (D-A) alternating conjugated polymers based on thienylenevinylene-benzotriazole (TV-BTz), PTV6B with a linear side chain and PTVEhB with a branched side chain, were synthesized and characterized for organic field effect transistors (OFETs) and complementary metal-oxide-semiconductor (CMOS)-like inverters. According to density functional theory (DFT), polymers based on TV-BTz exhibit a coplanar and rigid structure with no significant twists, which could cause to an increase in charge-carrier mobility in OFETs. Alternating alkyl side chains of the polymers impacted neither the band gap nor the energy level. However, it significantly affected the morphology and crystallinity when the polymer films were thermally annealed. To investigate the effect of thermal annealing on the morphology and crystallinity, we characterized the polymer films using atomic force microscopy (AFM) and 2D-grazing incidence X-ray diffraction (2D-GIWAXD). Fibrillary morphologies with larger domains and increased crystallinity were observed in the polymer films after thermal annealing. These polymers exhibited improved charge-carrier mobilities in annealed films at 200 °C and demonstrated optimal OFET device performance with p-type transport characteristics with charge-carrier mobilities of 1.51 cm 2 /(V s) (PTV6B) and 2.58 cm 2 /(V s) (PTVEhB). Furthermore, CMOS-like inorganic (ZnO)-organic (PTVEhB) hybrid bilayer inverter showed that the inverting voltage (V inv ) was positioned near the ideal switching point at half (1/2) of supplied voltage (V DD ) due to fairly balanced p- and n-channels.
Charge requirements of lipid II flippase activity in Escherichia coli.
Butler, Emily K; Tan, Wee Boon; Joseph, Hildy; Ruiz, Natividad
2014-12-01
Peptidoglycan (PG) is an extracytoplasmic glycopeptide matrix essential for the integrity of the envelope of most bacteria. The PG building block is a disaccharide-pentapeptide that is synthesized as a lipid-linked precursor called lipid II. The translocation of the amphipathic lipid II across the cytoplasmic membrane is required for subsequent incorporation of the disaccharide-pentapeptide into PG. In Escherichia coli, the essential inner membrane protein MurJ is the lipid II flippase. Previous studies showed that 8 charged residues in the central cavity region of MurJ are crucial for function. Here, we completed the functional analysis of all 57 charged residues in MurJ and demonstrated that the respective positive or negative charge of the 8 aforementioned residues is required for proper MurJ function. Loss of the negative charge in one of these residues, D39, causes a severe defect in MurJ biogenesis; by engineering an intragenic suppressor mutation that restores MurJ biogenesis, we found that this charge is also essential for MurJ function. Because of the low level of homology between MurJ and putative orthologs from Gram-positive bacteria, we explored the conservation of these 8 charged residues in YtgP, a homolog from Streptococcus pyogenes. We found that only 3 positive charges are similarly positioned and essential in YtgP; YtgP possesses additional charged residues within its predicted cavity that are essential for function and conserved among Gram-positive bacteria. From these data, we hypothesize that some charged residues in the cavity region of MurJ homologs are required for interaction with lipid II and/or energy coupling during transport. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Forbes, Thomas P; Degertekin, F Levent; Fedorov, Andrei G
2011-01-01
Distinct regimes of droplet charging, determined by the dominant charge transport process, are identified for an ultrasonic droplet ejector using electrohydrodynamic computational simulations, a fundamental scale analysis, and experimental measurements. The regimes of droplet charging are determined by the relative magnitudes of the dimensionless Strouhal and electric Reynolds numbers, which are a function of the process (pressure forcing), advection, and charge relaxation time scales for charge transport. Optimal (net maximum) droplet charging has been identified to exist for conditions in which the electric Reynolds number is of the order of the inverse Strouhal number, i.e., the charge relaxation time is on the order of the pressure forcing (droplet formation) time scale. The conditions necessary for optimal droplet charging have been identified as a function of the dimensionless Debye number (i.e., liquid conductivity), external electric field (magnitude and duration), and atomization drive signal (frequency and amplitude). The specific regime of droplet charging also determines the functional relationship between droplet charge and charging electric field strength. The commonly expected linear relationship between droplet charge and external electric field strength is only found when either the inverse of the Strouhal number is less than the electric Reynolds number, i.e., the charge relaxation is slower than both the advection and external pressure forcing, or in the electrostatic limit, i.e., when charge relaxation is much faster than all other processes. The analysis provides a basic understanding of the dominant physics of droplet charging with implications to many important applications, such as electrospray mass spectrometry, ink jet printing, and drop-on-demand manufacturing.
Forbes, Thomas P.; Degertekin, F. Levent; Fedorov, Andrei G.
2011-01-01
Distinct regimes of droplet charging, determined by the dominant charge transport process, are identified for an ultrasonic droplet ejector using electrohydrodynamic computational simulations, a fundamental scale analysis, and experimental measurements. The regimes of droplet charging are determined by the relative magnitudes of the dimensionless Strouhal and electric Reynolds numbers, which are a function of the process (pressure forcing), advection, and charge relaxation time scales for charge transport. Optimal (net maximum) droplet charging has been identified to exist for conditions in which the electric Reynolds number is of the order of the inverse Strouhal number, i.e., the charge relaxation time is on the order of the pressure forcing (droplet formation) time scale. The conditions necessary for optimal droplet charging have been identified as a function of the dimensionless Debye number (i.e., liquid conductivity), external electric field (magnitude and duration), and atomization drive signal (frequency and amplitude). The specific regime of droplet charging also determines the functional relationship between droplet charge and charging electric field strength. The commonly expected linear relationship between droplet charge and external electric field strength is only found when either the inverse of the Strouhal number is less than the electric Reynolds number, i.e., the charge relaxation is slower than both the advection and external pressure forcing, or in the electrostatic limit, i.e., when charge relaxation is much faster than all other processes. The analysis provides a basic understanding of the dominant physics of droplet charging with implications to many important applications, such as electrospray mass spectrometry, ink jet printing, and drop-on-demand manufacturing. PMID:21301636
Park, Junhyuck; Gong, Jihwan; Yim, Jongeun
2017-01-01
Boxing training including traditional stretching, muscular strength training, and duration training would be considered to be effective for improved functional stretching, dynamic balance, walking speed, and quality of life. We aimed to investigate upper limb function, balance, gait, and quality of life in stroke patients before and after a sitting boxing program. Twenty-six participants were randomly allocated to a boxing group (n = 13) and control group (n = 13) after the upper limb function, balance, gait, and quality of Life were recorded. The boxing group underwent a sitting boxing program (3 times/week) as well as conventional physical therapy (3 times/week) for 6 weeks. The control group only underwent conventional physical therapy (3 times/week) for 6 weeks. The Manual Functional Test (MFT), non-affected hand grip, Berg Balance Scale (BBS), velocity moment with eye opened, 10-m Walk Test (10 MWT), and Stroke-Specific Quality of Life questionnaire (SS-QOL) were significantly improved in the boxing group (p < 0.05) and showed significantly greater improvements in the boxing group compared to the control group (p < 0.05) after 6 weeks. The sitting boxing program group had positive effects on upper extremity function, balance, gait, and quality of life in stroke patients.
Pedroso, Renata Valle; Coelho, Flávia Gomes de Melo; Santos-Galduróz, Ruth Ferreira; Costa, José Luiz Riani; Gobbi, Sebastião; Stella, Florindo
2012-01-01
Elderly individuals with AD are more susceptible to falls, which might be associated with decrements in their executive functions and balance, among other things. We aimed to analyze the effects of a program of dual task physical activity on falls, executive functions and balance of elderly individuals with AD. We studied 21 elderly with probable AD, allocated to two groups: the training group (TG), with 10 elderly who participated in a program of dual task physical activity; and the control group (CG), with 11 elderly who were not engaged in regular practice of physical activity. The Clock Drawing Test (CDT) and the Frontal Assessment Battery (FAB) were used in the assessment of the executive functions, while the Berg Balance Scale (BBS) and the Timed Up-and-Go (TUG)-test evaluated balance. The number of falls was obtained by means of a questionnaire. We observed a better performance of the TG as regards balance and executive functions. Moreover, the lower the number of steps in the TUG scale, the higher the scores in the CDT, and in the FAB. The practice of regular physical activity with dual task seems to have contributed to the maintenance and improvement of the motor and cognitive functions of the elderly with AD. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Improving Balance Function Using Low Levels of Electrical Stimulation of the Balance Organs
NASA Technical Reports Server (NTRS)
Bloomberg, Jacob; Reschke, Millard; Mulavara, Ajitkumar; Wood, Scott; Serrador, Jorge; Fiedler, Matthew; Kofman, Igor; Peters, Brian T.; Cohen, Helen
2012-01-01
Crewmembers returning from long-duration space flight face significant challenges due to the microgravity-induced inappropriate adaptations in balance/ sensorimotor function. The Neuroscience Laboratory at JSC is developing a method based on stochastic resonance to enhance the brain s ability to detect signals from the balance organs of the inner ear and use them for rapid improvement in balance skill, especially when combined with balance training exercises. This method involves a stimulus delivery system that is wearable/portable providing imperceptible electrical stimulation to the balance organs of the human body. Stochastic resonance (SR) is a phenomenon whereby the response of a nonlinear system to a weak periodic input signal is optimized by the presence of a particular non-zero level of noise. This phenomenon of SR is based on the concept of maximizing the flow of information through a system by a non-zero level of noise. Application of imperceptible SR noise coupled with sensory input in humans has been shown to improve motor, cardiovascular, visual, hearing, and balance functions. SR increases contrast sensitivity and luminance detection; lowers the absolute threshold for tone detection in normal hearing individuals; improves homeostatic function in the human blood pressure regulatory system; improves noise-enhanced muscle spindle function; and improves detection of weak tactile stimuli using mechanical or electrical stimulation. SR noise has been shown to improve postural control when applied as mechanical noise to the soles of the feet, or when applied as electrical noise at the knee and to the back muscles.
Liu, Chuyang; Zhang, Yujing; Jia, Jingguo; Sui, Qiang; Ma, Ning; Du, Piyi
2015-01-01
Multiferroic ceramics with extraordinary susceptibilities coexisting are vitally important for the multi-functionality and integration of electronic devices. However, multiferroic composites, as the most potential candidates, will introduce inevitable interface deficiencies and thus dielectric loss from dissimilar phases. In this study, single-phased ferrite ceramics with considerable magnetic and dielectric performances appearing simultaneously were fabricated by doping target ions in higher valence than that of Fe3+, such as Ti4+, Nb5+ and Zr4+, into BaFe12O19. In terms of charge balance, Fe3+/Fe2+ pair dipoles are produced through the substitution of Fe3+ by high-valenced ions. The electron hopping between Fe3+ and Fe2+ ions results in colossal permittivity. Whilst the single-phased ceramics doped by target ions exhibit low dielectric loss naturally due to the diminishment of interfacial polarization and still maintain typical magnetic properties. This study provides a convenient method to attain practicable materials with both outstanding magnetic and dielectric properties, which may be of interest to integration and multi-functionality of electronic devices. PMID:25835175
Liu, Chuyang; Zhang, Yujing; Jia, Jingguo; Sui, Qiang; Ma, Ning; Du, Piyi
2015-04-02
Multiferroic ceramics with extraordinary susceptibilities coexisting are vitally important for the multi-functionality and integration of electronic devices. However, multiferroic composites, as the most potential candidates, will introduce inevitable interface deficiencies and thus dielectric loss from dissimilar phases. In this study, single-phased ferrite ceramics with considerable magnetic and dielectric performances appearing simultaneously were fabricated by doping target ions in higher valence than that of Fe(3+), such as Ti(4+), Nb(5+) and Zr(4+), into BaFe12O19. In terms of charge balance, Fe(3+)/Fe(2+) pair dipoles are produced through the substitution of Fe(3+) by high-valenced ions. The electron hopping between Fe(3+) and Fe(2+) ions results in colossal permittivity. Whilst the single-phased ceramics doped by target ions exhibit low dielectric loss naturally due to the diminishment of interfacial polarization and still maintain typical magnetic properties. This study provides a convenient method to attain practicable materials with both outstanding magnetic and dielectric properties, which may be of interest to integration and multi-functionality of electronic devices.
NASA Astrophysics Data System (ADS)
Liu, Chuyang; Zhang, Yujing; Jia, Jingguo; Sui, Qiang; Ma, Ning; Du, Piyi
2015-04-01
Multiferroic ceramics with extraordinary susceptibilities coexisting are vitally important for the multi-functionality and integration of electronic devices. However, multiferroic composites, as the most potential candidates, will introduce inevitable interface deficiencies and thus dielectric loss from dissimilar phases. In this study, single-phased ferrite ceramics with considerable magnetic and dielectric performances appearing simultaneously were fabricated by doping target ions in higher valence than that of Fe3+, such as Ti4+, Nb5+ and Zr4+, into BaFe12O19. In terms of charge balance, Fe3+/Fe2+ pair dipoles are produced through the substitution of Fe3+ by high-valenced ions. The electron hopping between Fe3+ and Fe2+ ions results in colossal permittivity. Whilst the single-phased ceramics doped by target ions exhibit low dielectric loss naturally due to the diminishment of interfacial polarization and still maintain typical magnetic properties. This study provides a convenient method to attain practicable materials with both outstanding magnetic and dielectric properties, which may be of interest to integration and multi-functionality of electronic devices.
Oh, Yoonbae; Park, Cheonho; Kim, Do Hyoung; Shin, Hojin; Kang, Yu Min; DeWaele, Mark; Lee, Jeyeon; Min, Hoon-Ki; Blaha, Charles D; Bennet, Kevin E; Kim, In Young; Lee, Kendall H; Jang, Dong Pyo
2016-11-15
Dopamine (DA) modulates central neuronal activity through both phasic (second to second) and tonic (minutes to hours) terminal release. Conventional fast-scan cyclic voltammetry (FSCV), in combination with carbon fiber microelectrodes, has been used to measure phasic DA release in vivo by adopting a background subtraction procedure to remove background capacitive currents. However, measuring tonic changes in DA concentrations using conventional FSCV has been difficult because background capacitive currents are inherently unstable over long recording periods. To measure tonic changes in DA concentrations over several hours, we applied a novel charge-balancing multiple waveform FSCV (CBM-FSCV), combined with a dual background subtraction technique, to minimize temporal variations in background capacitive currents. Using this method, in vitro, charge variations from a reference time point were nearly zero for 48 h, whereas with conventional background subtraction, charge variations progressively increased. CBM-FSCV also demonstrated a high selectivity against 3,4-dihydroxyphenylacetic acid and ascorbic acid, two major chemical interferents in the brain, yielding a sensitivity of 85.40 ± 14.30 nA/μM and limit of detection of 5.8 ± 0.9 nM for DA while maintaining selectivity. Recorded in vivo by CBM-FSCV, pharmacological inhibition of DA reuptake (nomifensine) resulted in a 235 ± 60 nM increase in tonic extracellular DA concentrations, while inhibition of DA synthesis (α-methyl-dl-tyrosine) resulted in a 72.5 ± 4.8 nM decrease in DA concentrations over a 2 h period. This study showed that CBM-FSCV may serve as a unique voltammetric technique to monitor relatively slow changes in tonic extracellular DA concentrations in vivo over a prolonged time period.
The effect of balance training on cervical sensorimotor function and neck pain.
Beinert, Konstantin; Taube, Wolfgang
2013-01-01
The authors' aim was to evaluate the effect of balance training on cervical joint position sense in people with subclinical neck pain. Thirty-four participants were randomly assigned to balance training or to stay active. Sensorimotor function was determined before and after 5 weeks of training by assessing the ability to reproduce the neutral head position and a predefined rotated head position. After balance training, the intervention group showed improved joint repositioning accuracy and decreased pain whereas no effects were observed in the control group. A weak correlation was identified between reduced neck pain intensity and improved joint repositioning. The present data demonstrate that balance training can effectively improve cervical sensorimotor function and decrease neck pain intensity.
Proceedings of the 1st Army Installation Energy Security and Independence Conference
2007-03-01
robustness of Transmission and Distribution system, and that pro- motes the use of demand response, CHP, and use of renewable intermit - ERDC/CERL TR...charged during low load periods. • Generation is run at optimum level during high loads. • Storage follows load and provides fast power balance during
Western hemlock seedlings were grown in nutrient solutions with ammonium, nitrate or ammonium plus nitrate as nitrogen sources. he objectives were to examine (1) possible selectivity for ammonium or nitrate as an N source, (2) the maintenance of charge balance during ammonium and...
12 CFR 1026.6 - Account-opening disclosures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... each periodic rate that may be used to compute the finance charge, the range of balances to which it is... the increase; and the effect(s) of an increase. When different periodic rates apply to different types of transactions, the types of transactions to which the periodic rates shall apply shall also be...
12 CFR 1026.6 - Account-opening disclosures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... each periodic rate that may be used to compute the finance charge, the range of balances to which it is... the increase; and the effect(s) of an increase. When different periodic rates apply to different types of transactions, the types of transactions to which the periodic rates shall apply shall also be...
12 CFR 1026.6 - Account-opening disclosures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... each periodic rate that may be used to compute the finance charge, the range of balances to which it is... the increase; and the effect(s) of an increase. When different periodic rates apply to different types of transactions, the types of transactions to which the periodic rates shall apply shall also be...
Electron Pairing, Repulsion, and Correlation: A Simplistic Approach
ERIC Educational Resources Information Center
Olsson, Lars-Fride; Kloo, Lars
2004-01-01
The interplay between a nucleus and an electron pair is explained through a basic application of an electrostatic and balanced model to determine the correlated and repulsive movements of the electron pair. The stable correlation depends on the positive charge produced by the combined force, which in turn establishes a negative potential energy.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Fees. 950.6 Section 950.6 Banks and Banking FEDERAL HOUSING FINANCE BOARD FEDERAL HOME LOAN BANK ASSETS AND OFF-BALANCE SHEET ITEMS ADVANCES Advances to Members § 950.6 Fees. (a) Fees in member products policy. All fees charged by each Bank and any...
Modeling of charged anisotropic compact stars in general relativity
NASA Astrophysics Data System (ADS)
Dayanandan, Baiju; Maurya, S. K.; T, Smitha T.
2017-06-01
A charged compact star model has been determined for anisotropic fluid distribution. We have solved the Einstein-Maxwell field equations to construct the charged compact star model by using the radial pressure, the metric function e^{λ} and the electric charge function. The generic charged anisotropic solution is verified by exploring different physical conditions like causality condition, mass-radius relation and stability of the solution (via the adiabatic index, TOV equations and the Herrera cracking concept). It is observed that the present charged anisotropic compact star model is compatible with the star PSR 1937+21. Moreover, we also presented the EOS ρ = f(p) for the present charged compact star model.
Recommendations for terminology and databases for biochemical thermodynamics.
Alberty, Robert A; Cornish-Bowden, Athel; Goldberg, Robert N; Hammes, Gordon G; Tipton, Keith; Westerhoff, Hans V
2011-05-01
Chemical equations are normally written in terms of specific ionic and elemental species and balance atoms of elements and electric charge. However, in a biochemical context it is usually better to write them with ionic reactants expressed as totals of species in equilibrium with each other. This implies that atoms of elements assumed to be at fixed concentrations, such as hydrogen at a specified pH, should not be balanced in a biochemical equation used for thermodynamic analysis. However, both kinds of equations are needed in biochemistry. The apparent equilibrium constant K' for a biochemical reaction is written in terms of such sums of species and can be used to calculate standard transformed Gibbs energies of reaction Δ(r)G'°. This property for a biochemical reaction can be calculated from the standard transformed Gibbs energies of formation Δ(f)G(i)'° of reactants, which can be calculated from the standard Gibbs energies of formation of species Δ(f)G(j)° and measured apparent equilibrium constants of enzyme-catalyzed reactions. Tables of Δ(r)G'° of reactions and Δ(f)G(i)'° of reactants as functions of pH and temperature are available on the web, as are functions for calculating these properties. Biochemical thermodynamics is also important in enzyme kinetics because apparent equilibrium constant K' can be calculated from experimentally determined kinetic parameters when initial velocities have been determined for both forward and reverse reactions. Specific recommendations are made for reporting experimental results in the literature. Copyright © 2011 Elsevier B.V. All rights reserved.
The Role of Cognitive Factors in Predicting Balance and Fall Risk in a Neuro-Rehabilitation Setting.
Saverino, A; Waller, D; Rantell, K; Parry, R; Moriarty, A; Playford, E D
2016-01-01
There is a consistent body of evidence supporting the role of cognitive functions, particularly executive function, in the elderly and in neurological conditions which become more frequent with ageing. The aim of our study was to assess the role of different domains of cognitive functions to predict balance and fall risk in a sample of adults with various neurological conditions in a rehabilitation setting. This was a prospective, cohort study conducted in a single centre in the UK. 114 participants consecutively admitted to a Neuro-Rehabilitation Unit were prospectively assessed for fall accidents. Baseline assessment included a measure of balance (Berg Balance Scale) and a battery of standard cognitive tests measuring executive function, speed of information processing, verbal and visual memory, visual perception and intellectual function. The outcomes of interest were the risk of becoming a faller, balance and fall rate. Two tests of executive function were significantly associated with fall risk, the Stroop Colour Word Test (IRR 1.01, 95% CI 1.00-1.03) and the number of errors on part B of the Trail Making Test (IRR 1.23, 95% CI 1.03-1.49). Composite scores of executive function, speed of information processing and visual memory domains resulted in 2 to 3 times increased likelihood of having better balance (OR 2.74 95% CI 1.08 to 6.94, OR 2.72 95% CI 1.16 to 6.36 and OR 2.44 95% CI 1.11 to 5.35 respectively). Our results show that specific subcomponents of executive functions are able to predict fall risk, while a more global cognitive dysfunction is associated with poorer balance.
The Role of Cognitive Factors in Predicting Balance and Fall Risk in a Neuro-Rehabilitation Setting
Saverino, A.; Waller, D.; Rantell, K.; Parry, R.; Moriarty, A.; Playford, E. D.
2016-01-01
Introduction There is a consistent body of evidence supporting the role of cognitive functions, particularly executive function, in the elderly and in neurological conditions which become more frequent with ageing. The aim of our study was to assess the role of different domains of cognitive functions to predict balance and fall risk in a sample of adults with various neurological conditions in a rehabilitation setting. Methods This was a prospective, cohort study conducted in a single centre in the UK. 114 participants consecutively admitted to a Neuro-Rehabilitation Unit were prospectively assessed for fall accidents. Baseline assessment included a measure of balance (Berg Balance Scale) and a battery of standard cognitive tests measuring executive function, speed of information processing, verbal and visual memory, visual perception and intellectual function. The outcomes of interest were the risk of becoming a faller, balance and fall rate. Results Two tests of executive function were significantly associated with fall risk, the Stroop Colour Word Test (IRR 1.01, 95% CI 1.00–1.03) and the number of errors on part B of the Trail Making Test (IRR 1.23, 95% CI 1.03–1.49). Composite scores of executive function, speed of information processing and visual memory domains resulted in 2 to 3 times increased likelihood of having better balance (OR 2.74 95% CI 1.08 to 6.94, OR 2.72 95% CI 1.16 to 6.36 and OR 2.44 95% CI 1.11 to 5.35 respectively). Conclusions Our results show that specific subcomponents of executive functions are able to predict fall risk, while a more global cognitive dysfunction is associated with poorer balance. PMID:27115880
Weis, Allison; Michalek, Jeremy J; Jaramillo, Paulina; Lueken, Roger
2015-05-05
We develop a unit commitment and economic dispatch model to estimate the operation costs and the air emissions externality costs attributable to new electric vehicle electricity demand under controlled vs uncontrolled charging schemes. We focus our analysis on the PJM Interconnection and use scenarios that characterize (1) the most recent power plant fleet for which sufficient data are available, (2) a hypothetical 2018 power plant fleet that reflects upcoming plant retirements, and (3) the 2018 fleet with increased wind capacity. We find that controlled electric vehicle charging can reduce associated generation costs by 23%-34% in part by shifting loads to lower-cost, higher-emitting coal plants. This shift results in increased externality costs of health and environmental damages from increased air pollution. On balance, we find that controlled charging of electric vehicles produces negative net social benefits in the recent PJM grid but could have positive net social benefits in a future grid with sufficient coal retirements and wind penetration.
Self-arraying of charged levitating droplets.
Kauffmann, Paul; Nussbaumer, Jérémie; Masse, Alain; Jeandey, Christian; Grateau, Henri; Pham, Pascale; Reyne, Gilbert; Haguet, Vincent
2011-06-01
Diamagnetic levitation of water droplets in air is a promising phenomenon to achieve contactless manipulation of chemical or biochemical samples. This noncontact handling technique prevents contaminations of samples as well as provides measurements of interaction forces between levitating reactors. Under a nonuniform magnetic field, diamagnetic bodies such as water droplets experience a repulsive force which may lead to diamagnetic levitation of a single or few micro-objects. The levitation of several repulsively charged picoliter droplets was successfully performed in a ~1 mm(2) adjustable flat magnetic well provided by a centimeter-sized cylindrical permanent magnet structure. Each droplet position results from the balance between the centripetal diamagnetic force and the repulsive Coulombian forces. Levitating water droplets self-organize into satellite patterns or thin clouds, according to their charge and size. Small triangular lattices of identical droplets reproduce magneto-Wigner crystals. Repulsive forces and inner charges can be measured in the piconewton and the femtocoulomb ranges, respectively. Evolution of interaction forces is accurately followed up over time during droplet evaporation.
Analytical model for the radio-frequency sheath
NASA Astrophysics Data System (ADS)
Czarnetzki, Uwe
2013-12-01
A simple analytical model for the planar radio-frequency (rf) sheath in capacitive discharges is developed that is based on the assumptions of a step profile for the electron front, charge exchange collisions with constant cross sections, negligible ionization within the sheath, and negligible ion dynamics. The continuity, momentum conservation, and Poisson equations are combined in a single integro-differential equation for the square of the ion drift velocity, the so called sheath equation. Starting from the kinetic Boltzmann equation, special attention is paid to the derivation and the validity of the approximate fluid equation for momentum balance. The integrals in the sheath equation appear in the screening function which considers the relative contribution of the temporal mean of the electron density to the space charge in the sheath. It is shown that the screening function is quite insensitive to variations of the effective sheath parameters. The two parameters defining the solution are the ratios of the maximum sheath extension to the ion mean free path and the Debye length, respectively. A simple general analytic expression for the screening function is introduced. By means of this expression approximate analytical solutions are obtained for the collisionless as well as the highly collisional case that compare well with the exact numerical solution. A simple transition formula allows application to all degrees of collisionality. In addition, the solutions are used to calculate all static and dynamic quantities of the sheath, e.g., the ion density, fields, and currents. Further, the rf Child-Langmuir laws for the collisionless as well as the collisional case are derived. An essential part of the model is the a priori knowledge of the wave form of the sheath voltage. This wave form is derived on the basis of a cubic charge-voltage relation for individual sheaths, considering both sheaths and the self-consistent self-bias in a discharge with arbitrary symmetry. The externally applied rf voltage is assumed to be sinusoidal, although the model can be extended to arbitrary wave forms, e.g., for dual-frequency discharges. The model calculates explicitly the cubic correction parameter in the charge-voltage relation for the case of highly asymmetric discharges. It is shown that the cubic correction is generally moderate but more pronounced in the collisionless case. The analytical results are compared to experimental data from the literature obtained by laser electric field measurements of the mean and dynamic fields in the capacitive sheath for various gases and pressures. Very good agreement is found throughout.
Analytical model for the radio-frequency sheath.
Czarnetzki, Uwe
2013-12-01
A simple analytical model for the planar radio-frequency (rf) sheath in capacitive discharges is developed that is based on the assumptions of a step profile for the electron front, charge exchange collisions with constant cross sections, negligible ionization within the sheath, and negligible ion dynamics. The continuity, momentum conservation, and Poisson equations are combined in a single integro-differential equation for the square of the ion drift velocity, the so called sheath equation. Starting from the kinetic Boltzmann equation, special attention is paid to the derivation and the validity of the approximate fluid equation for momentum balance. The integrals in the sheath equation appear in the screening function which considers the relative contribution of the temporal mean of the electron density to the space charge in the sheath. It is shown that the screening function is quite insensitive to variations of the effective sheath parameters. The two parameters defining the solution are the ratios of the maximum sheath extension to the ion mean free path and the Debye length, respectively. A simple general analytic expression for the screening function is introduced. By means of this expression approximate analytical solutions are obtained for the collisionless as well as the highly collisional case that compare well with the exact numerical solution. A simple transition formula allows application to all degrees of collisionality. In addition, the solutions are used to calculate all static and dynamic quantities of the sheath, e.g., the ion density, fields, and currents. Further, the rf Child-Langmuir laws for the collisionless as well as the collisional case are derived. An essential part of the model is the a priori knowledge of the wave form of the sheath voltage. This wave form is derived on the basis of a cubic charge-voltage relation for individual sheaths, considering both sheaths and the self-consistent self-bias in a discharge with arbitrary symmetry. The externally applied rf voltage is assumed to be sinusoidal, although the model can be extended to arbitrary wave forms, e.g., for dual-frequency discharges. The model calculates explicitly the cubic correction parameter in the charge-voltage relation for the case of highly asymmetric discharges. It is shown that the cubic correction is generally moderate but more pronounced in the collisionless case. The analytical results are compared to experimental data from the literature obtained by laser electric field measurements of the mean and dynamic fields in the capacitive sheath for various gases and pressures. Very good agreement is found throughout.
A note on the annual cycles of surface heat balance and temperature over a continent. [North America
NASA Technical Reports Server (NTRS)
Spar, J.; Crane, G.
1974-01-01
A surface heating function, defined as the ratio of the time derivative of the mean annual temperature curve to the surface heat balance, is computed from the annual temperature range and heat balance data for the North American continent. An annual cycle of the surface heat balance is then reconstructed from the surface heating function and the annual temperature curve, and an annual cycle of evaporative plus turbulent heat loss is recomputed from the annual cycles of radiation balance and surface heat balance for the continent. The implications of these results for long range weather forecasting are discussed.
Haruyama, Koshiro; Kawakami, Michiyuki; Otsuka, Tomoyoshi
2017-03-01
Trunk function is important for standing balance, mobility, and functional outcome after stroke, but few studies have evaluated the effects of exercises aimed at improving core stability in stroke patients. To investigate the effectiveness of core stability training on trunk function, standing balance, and mobility in stroke patients. An assessor-blinded, randomized controlled trial was undertaken in a stroke rehabilitation ward, with 32 participants randomly assigned to an experimental group or a control group (n = 16 each). The experimental group received 400 minutes of core stability training in place of conventional programs within total training time, while the control group received only conventional programs. Primary outcome measures were evaluated using the Trunk Impairment Scale (TIS), which reflects trunk function. Secondary outcome measures were evaluated by pelvic tilt active range of motion in the sagittal plane, the Balance Evaluation Systems Test-brief version (Brief-BESTest), Functional Reach test, Timed Up-and-Go test (TUG), and Functional Ambulation Categories (FAC). A general linear repeated-measures model was used to analyze the results. A treatment effect was found for the experimental group on the dynamic balance subscale and total score of the TIS ( P = .002 and P < .001, respectively), pelvic tilt active range of motion ( P < .001), Brief-BESTest ( P < .001), TUG ( P = .008), and FAC ( P = .022). Core stability training has beneficial effects on trunk function, standing balance, and mobility in stroke patients. Our findings might provide support for introducing core stability training in stroke rehabilitation.
Charged particle layers in the Debye limit.
Golden, Kenneth I; Kalman, Gabor J; Kyrkos, Stamatios
2002-09-01
We develop an equivalent of the Debye-Hückel weakly coupled equilibrium theory for layered classical charged particle systems composed of one single charged species. We consider the two most important configurations, the charged particle bilayer and the infinite superlattice. The approach is based on the link provided by the classical fluctuation-dissipation theorem between the random-phase approximation response functions and the Debye equilibrium pair correlation function. Layer-layer pair correlation functions, screened and polarization potentials, static structure functions, and static response functions are calculated. The importance of the perfect screening and compressibility sum rules in determining the overall behavior of the system, especially in the r--> infinity limit, is emphasized. The similarities and differences between the quasi-two-dimensional bilayer and the quasi-three-dimensional superlattice are highlighted. An unexpected behavior that emerges from the analysis is that the screened potential, the correlations, and the screening charges carried by the individual layers exhibit a marked nonmonotonic dependence on the layer separation.
Objectively measured physical activity and balance among U.S. adults.
Loprinzi, Paul D; Brosky, Joseph A
2014-08-01
The purpose of this study was to examine the association between objectively measured physical activity (PA) and balance in a nationally representative sample of U.S. adults 40 years of age and older. Data from the 2003-2004 National Health and Nutrition Examination Survey were used. Physical activity was measured over a 7-day period using accelerometry, and balance was assessed using the Romberg test. Participants completed a questionnaire regarding their subjective views on difficulty with falling in the past 12 months. For every 60-minute increase in light-intensity PA, participants were 10% (p = 0.04) more likely to have functional balance. Similarly, for every 1-minute increase in log-transformed moderate-to-vigorous physical activity, participants were 23% (p = 0.04) more likely to have functional balance. Regular PA, regardless of intensity, may have health benefits for older adults and is associated with functional balance.
AlGaN/GaN High Electron Mobility Transistor-Based Biosensor for the Detection of C-Reactive Protein
Lee, Hee Ho; Bae, Myunghan; Jo, Sung-Hyun; Shin, Jang-Kyoo; Son, Dong Hyeok; Won, Chul-Ho; Jeong, Hyun-Min; Lee, Jung-Hee; Kang, Shin-Won
2015-01-01
In this paper, we propose an AlGaN/GaN high electron mobility transistor (HEMT)-based biosensor for the detection of C-reactive protein (CRP) using a null-balancing circuit. A null-balancing circuit was used to measure the output voltage of the sensor directly. The output voltage of the proposed biosensor was varied by antigen-antibody interactions on the gate surface due to CRP charges. The AlGaN/GaN HFET-based biosensor with null-balancing circuit applied shows that CRP can be detected in a wide range of concentrations, varying from 10 ng/mL to 1000 ng/mL. X-ray photoelectron spectroscopy was carried out to verify the immobilization of self-assembled monolayer with Au on the gated region. PMID:26225981
Charge states of ions, and mechanisms of charge ordering transitions
NASA Astrophysics Data System (ADS)
Pickett, Warren E.; Quan, Yundi; Pardo, Victor
2014-07-01
To gain insight into the mechanism of charge ordering transitions, which conventionally are pictured as a disproportionation of an ion M as 2Mn+→M(n+1)+ + M(n-1)+, we (1) review and reconsider the charge state (or oxidation number) picture itself, (2) introduce new results for the putative charge ordering compound AgNiO2 and the dual charge state insulator AgO, and (3) analyze the cationic occupations of the actual (not formal) charge, and work to reconcile the conundrums that arise. We establish that several of the clearest cases of charge ordering transitions involve no disproportion (no charge transfer between the cations, and hence no charge ordering), and that the experimental data used to support charge ordering can be accounted for within density functional-based calculations that contain no charge transfer between cations. We propose that the charge state picture retains meaning and importance, at least in many cases, if one focuses on Wannier functions rather than atomic orbitals. The challenge of modeling charge ordering transitions with model Hamiltonians isdiscussed.
Symmetric quadratic Hamiltonians with pseudo-Hermitian matrix representation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar
2016-06-15
We prove that any symmetric Hamiltonian that is a quadratic function of the coordinates and momenta has a pseudo-Hermitian adjoint or regular matrix representation. The eigenvalues of the latter matrix are the natural frequencies of the Hamiltonian operator. When all the eigenvalues of the matrix are real, then the spectrum of the symmetric Hamiltonian is real and the operator is Hermitian. As illustrative examples we choose the quadratic Hamiltonians that model a pair of coupled resonators with balanced gain and loss, the electromagnetic self-force on an oscillating charged particle and an active LRC circuit. -- Highlights: •Symmetric quadratic operators aremore » useful models for many physical applications. •Any such operator exhibits a pseudo-Hermitian matrix representation. •Its eigenvalues are the natural frequencies of the Hamiltonian operator. •The eigenvalues may be real or complex and describe a phase transition.« less
NASA Astrophysics Data System (ADS)
Krása, J.; De Marco, M.; Cikhardt, J.; Pfeifer, M.; Velyhan, A.; Klír, D.; Řezáč, K.; Limpouch, J.; Krouský, E.; Dostál, J.; Ullschmied, J.; Dudžák, R.
2017-06-01
The current balancing the target charging and the emission of transient electromagnetic pulses (EMP) driven by the interaction of a focused 1.315 μm iodine 300 ps PALS laser with metallic and plastic targets were measured with the use of inductive probes. It is experimentally proven that the duration of return target currents and EMPs is much longer than the duration of laser-target interaction. The laser-produced plasma is active after the laser-target interaction. During this phase, the target acts as a virtual cathode and the plasma-target interface expands. A double exponential function is used in order to obtain the temporal characteristics of EMP. The rise time of EMPs fluctuates in the range up to a few tens of nanoseconds. Frequency spectra of EMP and target currents are modified by resonant frequencies of the interaction chamber.
NASA Astrophysics Data System (ADS)
Chin, Byung Doo; Duan, Lian; Kim, Moo-Hyun; Lee, Seong Taek; Chung, Ho Kyoon
2004-11-01
The interface between layered conjugated polymer and electrode is a most important factor to improve the performance and lifetime of polymeric light-emitting devices (PLEDs). In this work, a blue PLED with improved stability was achieved by the combination of optimized cathode structure as well as thermal treatment of light-emitting polymer (LEP). Experimental evidence of the initial luminance "settling in" stage was found to be dependent upon the cathode structure, while the long-term slope of luminance as a function of elapsed time is governed by the annealing conditions. Our study revealed the importance of extrinsic design of device for the improvement of PLED stability. Experimental data shows that a blue PLED annealed at 170°C and 6nm LiF at LiF /Ca/Al cathode retained the best lifetime, which can be explained by the improved polymer-metal interface and LEP's charge mobility.
Vertical-probe-induced asymmetric dust oscillation in complex plasma.
Harris, B J; Matthews, L S; Hyde, T W
2013-05-01
A complex plasma vertical oscillation experiment which modifies the bulk is presented. Spherical, micron-sized particles within a Coulomb crystal levitated in the sheath above the powered lower electrode in a GEC reference cell are perturbed using a probe attached to a Zyvex S100 Nanomanipulator. By oscillating the probe potential sinusoidally, particle motion is found to be asymmetric, exhibiting superharmonic response in one case. Using a simple electric field model for the plasma sheath, including a nonzero electric field at the sheath edge, dust particle charges are found by employing a balance of relevant forces and emission analysis. Adjusting the parameters of the electric field model allowed the change predicted in the levitation height to be compared with experiment. A discrete oscillator Green's function is applied using the derived force, which accurately predicts the particle's motion and allows the determination of the electric field at the sheath edge.
Theoretical Studies on Structures and Relative Stability for Polynitrohexaazaadamantanes
NASA Astrophysics Data System (ADS)
Xu, Xiao-juan; Xiao, He-ming; Wang, Gui-xiang; Ju, Xue-hai
2006-10-01
The density function theory at the B3LYP/6-31G* level was employed to study the structures, including the total energies (EZPE), the geometries, the oxygen balances (OB100), the dipole moments, of polynitro-hexaazaadamantanes (PNHAAs) and the potential candidates of high energy density compounds (HEDCs). The structural parameters of PNHAAs, such as the the maximum N—NO2 bond length (LBmax), the least N—N Mulliken population (BN—N), the least negative charge on the nitro group (QNO2) and OB100, were studied to predict their relative stability or sensitivity (the easiness for initiating a detonation, high sensitivity means low stability). It was found that the same conclusion was drawn from the four parameters. With the number of nitro groups increasing, the stabilities of these compounds decrease. OB100 failed in identifying the isomers, but the EZPE energy and the dipole moment were considered to give more reliable results for the isomers.
Re-evaluation of colorimetric Cl- data from natural waters with DOC
Norton, S.A.; Handlet, M.J.; Kahl, J.S.; Peters, N.E.
1996-01-01
Colorimetric Cl- data from natural solutions that contain dissolved organic carbon (DOC) may be biased high. We evaluated aquatic Cl- concentrations in ecosystem compartments at the Bear Brook Watershed, Maine, and from lakes in Maine, using ion chromatography and colorimetry. DOC imparts a positive interference on colorimetric Cl- results proportional to DOC concentrations at approximately 0.8 ??eq Cl-/L per mg DOC/L. The interference is not a function of Cl- concentration. The resulting bias in concentrations of Cl- may be 50% or more of typical environmental values for Cl- in areas remote from atmospheric deposition of marine aerosols. Such biased data in the literature appear to have led to spurious conclusions about recycling of Cl- by forests, the usefulness of Cl- as a conservative tracer in watershed studies, and calculations of elemental budgets, ion balance, charge density of DOC, and dry deposition factors.
Christaras, A; Schaper, J; Strelow, H; Laws, H-J; Göbel, U
2006-01-01
Reimbursement of inpatient treatment by daily constant charges is replaced by diagnosis- and procedure-related group system (G-DRG) in German acute care hospitals excerpt for psychiatry since 2004. Re-designs of G-DRG system were undertaken in 2005 and 2006. Parallel to implementation requirement- and resource-based self-adjustment of this new reimbursement system has been established by law. Adjustments performed in 2005 and 2006 are examined with respect to their effect on reimbursements in treatments of children with oncological, hematological, and immunological diseases. An unchanged population of 349 patients associated with 1,731 inpatient stays of a Clinic of Pediatric Oncology, Hematology, and Immunology in 2004 was analyzed by methods and means of G-DRG systems 2004, 2005, and 2006. DRGs and additional payments for drugs and procedures eligible for all and/or individual hospitals were calculated. G-DRG system 2005 resulted in overall reimbursement loss of 3.77 % compared to G-DRG 2004. G-DRG 2006 leads to slightly improved overall reimbursements compared to G-DRG 2005 by increasing DRG-based revenues. G-DRG 2006 effects 2.40 % reduction in overall reimbursement compared to G-DRG 2004. This loss includes ameliorating effects of additional payments for drugs and blood products already. Despite introduction of additional payments especially designed for children and teenagers in 2006, additional payment volume is decreased by 21.71 % from 2005 to 2006. G-DRG 2006 yields over-all reimbursement losses of 1.45 % in comparison to G-DRG 2004. Overall reimbursements include introduced additional payments for drugs and blood products. (Reimbursements resulting out of DRG payment alone drop by 14.73 % from 2004 to 2005, and increase by 3.26 % from 2005 to 2006 (2004 vs. 2006 11.95 %). Introduction of additional payments for drugs and blood products on a Germany-wide basis introduced in 2005 dampens DRG-based reimbursement losses. Despite introduction of dosage intervals specifically designed for children and adolescents in 2006, reimbursement of additional payments for drugs and blood products decrease by 21.71 % from 2005 to 2006. An important revenue-balancing function is attributed to additional charges individual for each hospital according to Par. 6 Section 2 (New diagnostic and therapeutic methods) and Section 2 a KHEntgG (German Hospital Reimbursement Law) with respect to financing tertiary care focusses. If possible to attain, those charges may partially equalize losses. Including these additional charges per individual hospital balance of summarized additional charges is -3.89 % from 2005 to 2006. However, fraction of additional payments on total reimbursements increases from 0.64 % in 2004 to 11.98 % in 2005, and 11.24 % in 2006, respectively. The G-DRG system in its versions 2005 and 2006 results in lowering overall reimbursements of a pediatric hematology, oncology, and immunology department compared to initial status in 2004. The growing chargeability of additional payments ameliorate this effect.
On the work function and the charging of small ( r ≤ 5 nm) nanoparticles in plasmas
NASA Astrophysics Data System (ADS)
Kalered, E.; Brenning, N.; Pilch, I.; Caillault, L.; Minéa, T.; Ojamäe, L.
2017-01-01
The growth of nanoparticles (NPs) in plasmas is an attractive technique where improved theoretical understanding is needed for quantitative modeling. The variation of the work function W with size for small NPs, rN P≤ 5 nm, is a key quantity for modeling of three NP charging processes that become increasingly important at a smaller size: electron field emission, thermionic electron emission, and electron impact detachment. Here we report the theoretical values of the work function in this size range. Density functional theory is used to calculate the work functions for a set of NP charge numbers, sizes, and shapes, using copper for a case study. An analytical approximation is shown to give quite accurate work functions provided that rN P > 0.4 nm, i.e., consisting of about >20 atoms, and provided also that the NPs have relaxed close to spherical shape. For smaller sizes, W deviates from the approximation, and also depends on the charge number. Some consequences of these results for nanoparticle charging are outlined. In particular, a decrease in W for NP radius below about 1 nm has fundamental consequences for their charge in a plasma environment, and thereby on the important processes of NP nucleation, early growth, and agglomeration.
NASA Astrophysics Data System (ADS)
Cortese, Dario; Eggers, Jens; Liverpool, Tanniemola B.
2018-02-01
We present a framework for the study of disclinations in two-dimensional active nematic liquid crystals and topological defects in general. The order tensor formalism is used to calculate exact multiparticle solutions of the linearized static equations inside a planar uniformly aligned state so that the total charge has to vanish. Topological charge conservation then requires that there is always an equal number of q =1 /2 and q =-1 /2 charges. Starting from a set of hydrodynamic equations, we derive a low-dimensional dynamical system for the parameters of the static solutions, which describes the motion of a half-disclination pair or of several pairs. Within this formalism, we model defect production and annihilation, as observed in experiments. Our dynamics also provide an estimate for the critical density at which production and annihilation rates are balanced.
Phase-change memory function of correlated electrons in organic conductors
NASA Astrophysics Data System (ADS)
Oike, H.; Kagawa, F.; Ogawa, N.; Ueda, A.; Mori, H.; Kawasaki, M.; Tokura, Y.
2015-01-01
Phase-change memory (PCM), a promising candidate for next-generation nonvolatile memories, exploits quenched glassy and thermodynamically stable crystalline states as reversibly switchable state variables. We demonstrate PCM functions emerging from a charge-configuration degree of freedom in strongly correlated electron systems. Nonvolatile reversible switching between a high-resistivity charge-crystalline (or charge-ordered) state and a low-resistivity quenched state, charge glass, is achieved experimentally via heat pulses supplied by optical or electrical means in organic conductors θ -(BEDT-TTF)2X . Switching that is one order of magnitude faster is observed in another isostructural material that requires faster cooling to kinetically avoid charge crystallization, indicating that the material's critical cooling rate can be useful guidelines for pursuing a faster correlated-electron PCM function.
A computer vision based candidate for functional balance test.
Nalci, Alican; Khodamoradi, Alireza; Balkan, Ozgur; Nahab, Fatta; Garudadri, Harinath
2015-08-01
Balance in humans is a motor skill based on complex multimodal sensing, processing and control. Ability to maintain balance in activities of daily living (ADL) is compromised due to aging, diseases, injuries and environmental factors. Center for Disease Control and Prevention (CDC) estimate of the costs of falls among older adults was $34 billion in 2013 and is expected to reach $54.9 billion in 2020. In this paper, we present a brief review of balance impairments followed by subjective and objective tools currently used in clinical settings for human balance assessment. We propose a novel computer vision (CV) based approach as a candidate for functional balance test. The test will take less than a minute to administer and expected to be objective, repeatable and highly discriminative in quantifying ability to maintain posture and balance. We present an informal study with preliminary data from 10 healthy volunteers, and compare performance with a balance assessment system called BTrackS Balance Assessment Board. Our results show high degree of correlation with BTrackS. The proposed system promises to be a good candidate for objective functional balance tests and warrants further investigations to assess validity in clinical settings, including acute care, long term care and assisted living care facilities. Our long term goals include non-intrusive approaches to assess balance competence during ADL in independent living environments.
Balance self-efficacy in older adults following inpatient rehabilitation.
Kuys, Suzanne S; Donovan, Jacquelin; Mattin, Sarah; Low Choy, Nancy L
2015-06-01
Older adults discharging from inpatient rehabilitation were investigated to determine change in self-efficacy at 1 month after discharge, the relationship with discharge balance performance and physical function, and the influence of diagnosis. A prospective cohort of 101 adults older than 50 years of age, 43% men, average age 75.84 (SD 9.8) years, were recruited at discharge from inpatient rehabilitation. Balance self-efficacy was assessed using Activities-specific Balance Confidence (ABC) scale at discharge and 1 month following discharge. Balance and physical function were measured at discharge using the Functional Independence Measure, Balance Outcome Measure for Elder Rehabilitation, Modified Elderly Mobility Scale and gait speed. At discharge, balance self-efficacy was moderate (ABC score 62, SD 23) and did not change at follow-up. When grouped by discharge self-efficacy (ABC scores: low<50; moderate 51-80; high>80), significant between-group differences were found for balance (P=0.005) and physical function (P=0.035). At the 1-month follow-up, those with low discharge balance self-efficacy showed improvement (mean-change ABC score 12, 95% confidence interval 2-22) and those with high discharge balance self-efficacy had lower scores (mean-change ABC score 18, 95% confidence interval -8 to -28). Differences in ABC change scores were also found between diagnostic groups (F=3.740, P=0.03), with the orthopaedic group improving (ABC mean change=8) and the general frailty group showing a decrease in confidence (ABC mean change=10). The differences in balance self-efficacy change at 1 month following discharge were related to self-efficacy level at discharge and clinical group requiring rehabilitation. Clinicians need to be aware of these changes as patients are prepared for discharge.
Yang, Weitao; Mori-Sánchez, Paula; Cohen, Aron J
2013-09-14
The exact conditions for density functionals and density matrix functionals in terms of fractional charges and fractional spins are known, and their violation in commonly used functionals has been shown to be the root of many major failures in practical applications. However, approximate functionals are designed for physical systems with integer charges and spins, not in terms of the fractional variables. Here we develop a general framework for extending approximate density functionals and many-electron theory to fractional-charge and fractional-spin systems. Our development allows for the fractional extension of any approximate theory that is a functional of G(0), the one-electron Green's function of the non-interacting reference system. The extension to fractional charge and fractional spin systems is based on the ensemble average of the basic variable, G(0). We demonstrate the fractional extension for the following theories: (1) any explicit functional of the one-electron density, such as the local density approximation and generalized gradient approximations; (2) any explicit functional of the one-electron density matrix of the non-interacting reference system, such as the exact exchange functional (or Hartree-Fock theory) and hybrid functionals; (3) many-body perturbation theory; and (4) random-phase approximations. A general rule for such an extension has also been derived through scaling the orbitals and should be useful for functionals where the link to the Green's function is not obvious. The development thus enables the examination of approximate theories against known exact conditions on the fractional variables and the analysis of their failures in chemical and physical applications in terms of violations of exact conditions of the energy functionals. The present work should facilitate the calculation of chemical potentials and fundamental bandgaps with approximate functionals and many-electron theories through the energy derivatives with respect to the fractional charge. It should play an important role in developing accurate approximate density functionals and many-body theory.
Contributions to lateral balance control in ambulatory older adults.
Sparto, Patrick J; Newman, A B; Simonsick, E M; Caserotti, P; Strotmeyer, E S; Kritchevsky, S B; Yaffe, K; Rosano, C
2018-06-01
In older adults, impaired control of standing balance in the lateral direction is associated with the increased risk of falling. Assessing the factors that contribute to impaired standing balance control may identify areas to address to reduce falls risk. To investigate the contributions of physiological factors to standing lateral balance control. Two hundred twenty-two participants from the Pittsburgh site of the Health, Aging and Body Composition Study had lateral balance control assessed using a clinical sensory integration balance test (standing on level and foam surface with eyes open and closed) and a lateral center of pressure tracking test using visual feedback. The center of pressure was recorded from a force platform. Multiple linear regression models examined contributors of lateral control of balance performance, including concurrently measured tests of lower extremity sensation, knee extensor strength, executive function, and clinical balance tests. Models were adjusted for age, body mass index, and sex. Larger lateral sway during the sensory integration test performed on foam was associated with longer repeated chair stands time. During the lateral center of pressure tracking task, the error in tracking increased at higher frequencies; greater error was associated with worse executive function. The relationship between sway performance and physical and cognitive function differed between women and men. Contributors to control of lateral balance were task-dependent. Lateral standing performance on an unstable surface may be more dependent upon general lower extremity strength, whereas visual tracking performance may be more dependent upon cognitive factors. Lateral balance control in ambulatory older adults is associated with deficits in strength and executive function.
Electrostatic field and charge distribution in small charged dielectric droplets
NASA Astrophysics Data System (ADS)
Storozhev, V. B.
2004-08-01
The charge distribution in small dielectric droplets is calculated on the basis of continuum medium approximation. There are considered charged liquid spherical droplets of methanol in the range of nanometer sizes. The problem is solved by the following way. We find the free energy of some ion in dielectric droplet, which is a function of distribution of other ions in the droplet. The probability of location of the ion in some element of volume in the droplet is a function of its free energy in this element of volume. The same approach can be applied to other ions in the droplet. The obtained charge distribution differs considerably from the surface distribution. The curve of the charge distribution in the droplet as a function of radius has maximum near the surface. Relative concentration of charges in the vicinity of the center of the droplet does not equal to zero, and it is the higher, the less is the total charge of the droplet. According to the estimates the model is applicable if the droplet radius is larger than 10 nm.
Designing heteropolymers to fold into unique structures via water-mediated interactions.
Jamadagni, Sumanth N; Bosoy, Christian; Garde, Shekhar
2010-10-28
Hydrophobic homopolymers collapse into globular structures in water driven by hydrophobic interactions. Here we employ extensive molecular dynamics simulations to study the collapse of heteropolymers containing one or two pairs of oppositely charged monomers. We show that charging a pair of monomers can dramatically alter the most stable conformations from compact globular to more open hairpin-like. We systematically explore a subset of the sequence space of one- and two-charge-pair polymers, focusing on the locations of the charge pairs. Conformational stability is governed by a balance of hydrophobic interactions, hydration and interactions of charge groups, water-mediated charged-hydrophobic monomer repulsions, and other factors. As a result, placing charge pairs in the middle, away from the hairpin ends, leads to stable hairpin-like structures. Turning off the monomer-water attractions enhances hydrophobic interactions significantly leading to a collapse into compact globular structures even for two-charge-pair heteropolymers. In contrast, the addition of salt leads to open and extended structures, suggesting that solvation of charged monomer sites by salt ions dominates the salt-induced enhancement of hydrophobic interactions. We also test the ability of a predictive scheme based on the additivity of free energy of contact formation. The success of the scheme for symmetric two-charge-pair sequences and the failure for their flipped versions highlight the complexity of the heteropolymer conformation space and of the design problem. Collectively, our results underscore the ability of tuning water-mediated interactions to design stable nonglobular structures in water and present model heteropolymers for further studies in the extended thermodynamic space and in inhomogeneous environments.
ERIC Educational Resources Information Center
Mupinga, Emily Evellyne; Garrison, M. E. Betsy; Pierce, Sarah H.
2002-01-01
A study of 151 mothers of elementary students identified relationships between parenting styles (authoritative, authoritarian, permissive) and family functioning (adaptability, cohesion). Families with balanced and moderately balanced levels of adaptability and cohesion had higher levels of authoritative parenting. Midrange balance was associated…
Lee, Myungsun; Han, Gunsoo
2016-04-01
[Purpose] This study aimed to investigate the effect of peculiar complex core balance training on the isokinetic muscle function of the knee joint and lumbus to provide fundamental data for establishing a training program that focuses on improving the performance and prevention of injury by developing the core and low extremity muscles. [Subjects and Methods] The participants in this study included a total of ten high school athletes involved in a throwing event for over five years. The subjects were randomly divided into two groups: The experimental group (N=5) and the control group (N=5). The experimental group underwent peculiar complex core balance training. [Results] According to the analysis of covariance, there was a significant effect of peculiar complex core balance training. Therefore, the isokinetic muscle function of the knee joint and lumbus in the experimental group participating in peculiar complex core balance training was significantly increased compared to the control group. [Conclusion] It is concluded that peculiar complex core balance training had a positive effect on the isokinetic muscle function of the knee and lumbus in throwing event athletes.
Smith, Patricia L; McSweeney, Jean
Understanding how an organization determines structure and function of a rapid response team (RRT), as well as cost evaluation and implications, can provide foundational knowledge to guide decisions about RRTs. The objectives were to (1) identify influencing factors in organizational development of RRT structure and function and (2) describe evaluation of RRT costs. Using a qualitative, ethnographic design, nurse executives and experts in 15 moderate-size hospitals were interviewed to explore their decision-making processes in determining RRT structure and function. Face-to-face interviews were audio recorded and transcribed verbatim and verified for accurateness. Using content analysis and constant comparison, interview data were analyzed. Demographic data were analyzed using descriptive statistics. The sample included 27 participants from 15 hospitals in 5 south-central states. They described a variety of RRT responders and functions, with the majority of hospitals having a critical care charge nurse attending all RRT calls for assistance. Others described a designated RRT nurse with primary RRT duties as responder to all RRT calls. Themes of RRT development from the data included influencers, decision processes, and thoughts about cost. It is important to understand how hospitals determine optimal structure and function to enhance support of quality nursing care. Determining the impact of an RRT on costs and benefits is vital in balancing patient safety and limited resources. Future research should focus on clarifying differences between team structure and function in outcomes as well as the most effective means to estimate costs and benefits.
Kibar, Sibel; Yıldız, Hatice Ecem; Ay, Saime; Evcik, Deniz; Ergin, Emine Süreyya
2015-09-01
To determine the effectiveness of balance exercises on the functional level and quality of life (QOL) of patients with fibromyalgia syndrome (FMS) and to investigate the circumstances associated with balance disorders in FMS. Randomized controlled trial. Physical medicine and rehabilitation clinic. Patients (N=57) (age range, 18-65y) with FMS were randomly assigned into 2 groups. Group 1 was given flexibility and balance exercises for 6 weeks, whereas group 2 received only a flexibility program as the control group. Functional balance was measured by the Berg Balance Scale (BBS), and dynamic and static balance were evaluated by a kinesthetic ability trainer (KAT) device. Fall risk was assessed with the Hendrich II fall risk model. The Nottingham Health Profile, Fibromyalgia Impact Questionnaire (FIQ), and Beck Depression Inventory (BDI) were used to determine QOL and functional and depression levels, respectively. Assessments were performed at baseline and after the 6-week program. In group 1, statistically significant improvements were observed in all parameters (P<.05), but no improvement was seen in group 2 (P>.05). When comparing the 2 groups, there were significant differences in group 1 concerning the KAT static balance test (P=.017) and FIQ measurements (P=.005). In the correlation analysis, the BDI was correlated with the BBS (r=-.434) and Hendrich II results (r=.357), whereas body mass index (BMI) was correlated with the KAT static balance measurements (r=.433), BBS (r=-.285), and fall frequency (r=.328). A 6-week balance training program had a beneficial effect on the static balance and functional levels of patients with FMS. We also observed that depression deterioration was related to balance deficit and fall risk. Higher BMI was associated with balance deficit and fall frequency. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Mueller, Amy V; Hemond, Harold F
2013-12-15
A novel artificial neural network (ANN) architecture is proposed which explicitly incorporates a priori system knowledge, i.e., relationships between output signals, while preserving the unconstrained non-linear function estimator characteristics of the traditional ANN. A method is provided for architecture layout, disabling training on a subset of neurons, and encoding system knowledge into the neuron structure. The novel architecture is applied to raw readings from a chemical sensor multi-probe (electric tongue), comprised of off-the-shelf ion selective electrodes (ISEs), to estimate individual ion concentrations in solutions at environmentally relevant concentrations and containing environmentally representative ion mixtures. Conductivity measurements and the concept of charge balance are incorporated into the ANN structure, resulting in (1) removal of estimation bias typically seen with use of ISEs in mixtures of unknown composition and (2) improvement of signal estimation by an order of magnitude or more for both major and minor constituents relative to use of ISEs as stand-alone sensors and error reduction by 30-50% relative to use of standard ANN models. This method is suggested as an alternative to parameterization of traditional models (e.g., Nikolsky-Eisenman), for which parameters are strongly dependent on both analyte concentration and temperature, and to standard ANN models which have no mechanism for incorporation of system knowledge. Network architecture and weighting are presented for the base case where the dot product can be used to relate ion concentrations to both conductivity and charge balance as well as for an extension to log-normalized data where the model can no longer be represented in this manner. While parameterization in this case study is analyte-dependent, the architecture is generalizable, allowing application of this method to other environmental problems for which mathematical constraints can be explicitly stated. © 2013 Elsevier B.V. All rights reserved.
Nayagam, David A. X.; Williams, Richard A.; Allen, Penelope J.; Shivdasani, Mohit N.; Luu, Chi D.; Salinas-LaRosa, Cesar M.; Finch, Sue; Ayton, Lauren N.; Saunders, Alexia L.; McPhedran, Michelle; McGowan, Ceara; Villalobos, Joel; Fallon, James B.; Wise, Andrew K.; Yeoh, Jonathan; Xu, Jin; Feng, Helen; Millard, Rodney; McWade, Melanie; Thien, Patrick C.; Williams, Chris E.; Shepherd, Robert K.
2014-01-01
Purpose To assess the safety and efficacy of chronic electrical stimulation of the retina with a suprachoroidal visual prosthesis. Methods Seven normally-sighted feline subjects were implanted for 96–143 days with a suprachoroidal electrode array and six were chronically stimulated for 70–105 days at levels that activated the visual cortex. Charge balanced, biphasic, current pulses were delivered to platinum electrodes in a monopolar stimulation mode. Retinal integrity/function and the mechanical stability of the implant were assessed monthly using electroretinography (ERG), optical coherence tomography (OCT) and fundus photography. Electrode impedances were measured weekly and electrically-evoked visual cortex potentials (eEVCPs) were measured monthly to verify that chronic stimuli were suprathreshold. At the end of the chronic stimulation period, thresholds were confirmed with multi-unit recordings from the visual cortex. Randomized, blinded histological assessments were performed by two pathologists to compare the stimulated and non-stimulated retina and adjacent tissue. Results All subjects tolerated the surgical and stimulation procedure with no evidence of discomfort or unexpected adverse outcomes. After an initial post-operative settling period, electrode arrays were mechanically stable. Mean electrode impedances were stable between 11–15 kΩ during the implantation period. Visually-evoked ERGs & OCT were normal, and mean eEVCP thresholds did not substantially differ over time. In 81 of 84 electrode-adjacent tissue samples examined, there were no discernible histopathological differences between stimulated and unstimulated tissue. In the remaining three tissue samples there were minor focal fibroblastic and acute inflammatory responses. Conclusions Chronic suprathreshold electrical stimulation of the retina using a suprachoroidal electrode array evoked a minimal tissue response and no adverse clinical or histological findings. Moreover, thresholds and electrode impedance remained stable for stimulation durations of up to 15 weeks. This study has demonstrated the safety and efficacy of suprachoroidal stimulation with charge balanced stimulus currents. PMID:24853376
Accurate image-charge method by the use of the residue theorem for core-shell dielectric sphere
NASA Astrophysics Data System (ADS)
Fu, Jing; Xu, Zhenli
2018-02-01
An accurate image-charge method (ICM) is developed for ionic interactions outside a core-shell structured dielectric sphere. Core-shell particles have wide applications for which the theoretical investigation requires efficient methods for the Green's function used to calculate pairwise interactions of ions. The ICM is based on an inverse Mellin transform from the coefficients of spherical harmonic series of the Green's function such that the polarization charge due to dielectric boundaries is represented by a series of image point charges and an image line charge. The residue theorem is used to accurately calculate the density of the line charge. Numerical results show that the ICM is promising in fast evaluation of the Green's function, and thus it is useful for theoretical investigations of core-shell particles. This routine can also be applicable for solving other problems with spherical dielectric interfaces such as multilayered media and Debye-Hückel equations.
A new method to calculate the beam charge for an integrating current transformer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Yuchi; Han Dan; Zhu Bin
2012-09-15
The integrating current transformer (ICT) is a magnetic sensor widely used to precisely measure the charge of an ultra-short-pulse charged particle beam generated by traditional accelerators and new laser-plasma particle accelerators. In this paper, we present a new method to calculate the beam charge in an ICT based on circuit analysis. The output transfer function shows an invariable signal profile for an ultra-short electron bunch, so the function can be used to evaluate the signal quality and calculate the beam charge through signal fitting. We obtain a set of parameters in the output function from a standard signal generated bymore » an ultra-short electron bunch (about 1 ps in duration) at a radio frequency linear electron accelerator at Tsinghua University. These parameters can be used to obtain the beam charge by signal fitting with excellent accuracy.« less
Late-stage optimization of a tercyclic class of S1P3-sparing, S1P1 receptor agonists.
Horan, Joshua C; Kuzmich, Daniel; Liu, Pingrong; DiSalvo, Darren; Lord, John; Mao, Can; Hopkins, Tamara D; Yu, Hui; Harcken, Christian; Betageri, Raj; Hill-Drzewi, Melissa; Patenaude, Lori; Patel, Monica; Fletcher, Kimberly; Terenzzio, Donna; Linehan, Brian; Xia, Heather; Patel, Mita; Studwell, Debbie; Miller, Craig; Hickey, Eugene; Levin, Jeremy I; Smith, Dustin; Kemper, Raymond A; Modis, Louise K; Bannen, Lynne C; Chan, Diva S; Mac, Morrison B; Ng, Stephanie; Wang, Yong; Xu, Wei; Lemieux, René M
2016-01-15
Poor solubility and cationic amphiphilic drug-likeness were liabilities identified for a lead series of S1P3-sparing, S1P1 agonists originally developed from a high-throughput screening campaign. This work describes the subsequent optimization of these leads by balancing potency, selectivity, solubility and overall molecular charge. Focused SAR studies revealed favorable structural modifications that, when combined, produced compounds with overall balanced profiles. The low brain exposure observed in rat suggests that these compounds would be best suited for the potential treatment of peripheral autoimmune disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.
Battery system and method for sensing and balancing the charge state of battery cells
NASA Technical Reports Server (NTRS)
Davies, Francis J. (Inventor)
2012-01-01
A battery system utilizes a plurality of transformers interconnected with the battery cells. The transformers each have at least one transformer core operable for magnetization in at least a first magnetic state with a magnetic flux in a first direction and a second magnetic state with a magnetic flux in a second direction. The transformer cores retain the first magnetic state and the second magnetic state without current flow through said plurality of transformers. Circuitry is utilized for switching a selected transformer core between the first and second magnetic states to sense voltage and/or balance particular cells or particular banks of cells.
Khurana, Meetika; Walia, Shefali
2017-01-01
Objective: To determine whether there is any difference between virtual reality game–based balance training and real-world task-specific balance training in improving sitting balance and functional performance in individuals with paraplegia. Methods: The study was a pre test–post test experimental design. There were 30 participants (28 males, 2 females) with traumatic spinal cord injury randomly assigned to 2 groups (group A and B). The levels of spinal injury of the participants were between T6 and T12. The virtual reality game–based balance training and real-world task-specific balance training were used as interventions in groups A and B, respectively. The total duration of the intervention was 4 weeks, with a frequency of 5 times a week; each training session lasted 45 minutes. The outcome measures were modified Functional Reach Test (mFRT), t-shirt test, and the self-care component of the Spinal Cord Independence Measure–III (SCIM-III). Results: There was a significant difference for time (p = .001) and Time × Group effect (p = .001) in mFRT scores, group effect (p = .05) in t-shirt test scores, and time effect (p = .001) in the self-care component of SCIM-III. Conclusions: Virtual reality game–based training is better in improving balance and functional performance in individuals with paraplegia than real-world task-specific balance training. PMID:29339902
Association between vestibular function and motor performance in hearing-impaired children.
Maes, Leen; De Kegel, Alexandra; Van Waelvelde, Hilde; Dhooge, Ingeborg
2014-12-01
The clinical balance performance of normal-hearing (NH) children was compared with the balance performance of hearing-impaired (HI) children with and without vestibular dysfunction to identify an association between vestibular function and motor performance. Prospective study. Tertiary referral center. Thirty-six children (mean age, 7 yr 5 mo; range, 3 yr 8 mo-12 yr 11 mo) divided into three groups: NH children with normal vestibular responses, HI children with normal vestibular responses, and HI children with abnormal vestibular function. A vestibular test protocol (rotatory and collic vestibular evoked myogenic potential testing) in combination with three clinical balance tests (balance beam walking, one-leg hopping, one-leg stance). Clinical balance performance. HI children with abnormal vestibular test results obtained the lowest quotients of motor performance, which were significantly lower compared with the NH group (p < 0.001 for balance beam walking and one-leg stance; p = 0.003 for one-leg hopping). The balance performance of the HI group with normal vestibular responses was better in comparison with the vestibular impaired group but still significantly lower compared with the NH group (p = 0.020 for balance beam walking; p = 0.001 for one-leg stance; not significant for one-leg hopping). These results indicate an association between vestibular function and motor performance in HI children, with a more distinct motor deterioration if a vestibular impairment is superimposed to the auditory dysfunction.
Khurana, Meetika; Walia, Shefali; Noohu, Majumi M
2017-01-01
Objective: To determine whether there is any difference between virtual reality game-based balance training and real-world task-specific balance training in improving sitting balance and functional performance in individuals with paraplegia. Methods: The study was a pre test-post test experimental design. There were 30 participants (28 males, 2 females) with traumatic spinal cord injury randomly assigned to 2 groups (group A and B). The levels of spinal injury of the participants were between T6 and T12. The virtual reality game-based balance training and real-world task-specific balance training were used as interventions in groups A and B, respectively. The total duration of the intervention was 4 weeks, with a frequency of 5 times a week; each training session lasted 45 minutes. The outcome measures were modified Functional Reach Test (mFRT), t-shirt test, and the self-care component of the Spinal Cord Independence Measure-III (SCIM-III). Results: There was a significant difference for time ( p = .001) and Time × Group effect ( p = .001) in mFRT scores, group effect ( p = .05) in t-shirt test scores, and time effect ( p = .001) in the self-care component of SCIM-III. Conclusions: Virtual reality game-based training is better in improving balance and functional performance in individuals with paraplegia than real-world task-specific balance training.
Niobate-based octahedral molecular sieves
Nenoff, Tina M.; Nyman, May D.
2006-10-17
Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.
Niobate-based octahedral molecular sieves
Nenoff, Tina M.; Nyman, May D.
2003-07-22
Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.
Robust scoring functions for protein-ligand interactions with quantum chemical charge models.
Wang, Jui-Chih; Lin, Jung-Hsin; Chen, Chung-Ming; Perryman, Alex L; Olson, Arthur J
2011-10-24
Ordinary least-squares (OLS) regression has been used widely for constructing the scoring functions for protein-ligand interactions. However, OLS is very sensitive to the existence of outliers, and models constructed using it are easily affected by the outliers or even the choice of the data set. On the other hand, determination of atomic charges is regarded as of central importance, because the electrostatic interaction is known to be a key contributing factor for biomolecular association. In the development of the AutoDock4 scoring function, only OLS was conducted, and the simple Gasteiger method was adopted. It is therefore of considerable interest to see whether more rigorous charge models could improve the statistical performance of the AutoDock4 scoring function. In this study, we have employed two well-established quantum chemical approaches, namely the restrained electrostatic potential (RESP) and the Austin-model 1-bond charge correction (AM1-BCC) methods, to obtain atomic partial charges, and we have compared how different charge models affect the performance of AutoDock4 scoring functions. In combination with robust regression analysis and outlier exclusion, our new protein-ligand free energy regression model with AM1-BCC charges for ligands and Amber99SB charges for proteins achieve lowest root-mean-squared error of 1.637 kcal/mol for the training set of 147 complexes and 2.176 kcal/mol for the external test set of 1427 complexes. The assessment for binding pose prediction with the 100 external decoy sets indicates very high success rate of 87% with the criteria of predicted root-mean-squared deviation of less than 2 Å. The success rates and statistical performance of our robust scoring functions are only weakly class-dependent (hydrophobic, hydrophilic, or mixed).
ERIC Educational Resources Information Center
White, Richard
2007-01-01
The review by Black and Wiliam of national systems makes clear the complexity of assessment, and identifies important issues. One of these is "balance": balance between local and central responsibilities, balance between the weights given to various purposes of schooling, balance between weights for various functions of assessment, and balance…
Park, Junhyuck; Yim, JongEun
2016-01-01
Aging is usually accompanied with deterioration of physical abilities, such as muscular strength, sensory sensitivity, and functional capacity. Recently, intervention methods with virtual reality have been introduced, providing an enjoyable therapy for elderly. The aim of this study was to investigate whether a 3-D virtual reality kayak program could improve the cognitive function, muscle strength, and balance of community-dwelling elderly. Importantly, kayaking involves most of the upper body musculature and needs the balance control. Seventy-two participants were randomly allocated into the kayak program group (n = 36) and the control group (n = 36). The two groups were well matched with respect to general characteristics at baseline. The participants in both groups performed a conventional exercise program for 30 min, and then the 3-D virtual reality kayak program was performed in the kayak program group for 20 min, two times a week for 6 weeks. Cognitive function was measured using the Montreal Cognitive Assessment. Muscle strength was measured using the arm curl and handgrip strength tests. Standing and sitting balance was measured using the Good Balance system. The post-test was performed in the same manner as the pre-test; the overall outcomes such as cognitive function (p < 0.05), muscle strength (p < 0.05), and balance (standing and sitting balance, p < 0.05) were significantly improved in kayak program group compared to the control group. We propose that the 3-D virtual reality kayak program is a promising intervention method for improving the cognitive function, muscle strength, and balance of elderly.
Gan, Zecheng; Xing, Xiangjun; Xu, Zhenli
2012-07-21
We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layer structures in electrolyte solutions with divalent counterions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three distinct models for interfacial charges: (1) SURF1 with uniform surface charges, (2) SURF2 with discrete point charges on the interface, and (3) SURF3 with discrete interfacial charges and finite excluded volume. By comparing the integrated charge distribution function and the zeta potential profile, we argue that the potential at the distance of one ion diameter from the macroion surface is a suitable location to define the zeta potential. In SURF2 model, we find that image charge effects strongly enhance charge inversion for monovalent interfacial charges, and strongly suppress charge inversion for multivalent interfacial charges. For SURF3, the image charge effect becomes much smaller. Finally, with image charges in action, we find that excluded volumes (in SURF3) suppress charge inversion for monovalent interfacial charges and enhance charge inversion for multivalent interfacial charges. Overall, our results demonstrate that all these aspects, i.e., image charges, interfacial charge discreteness, their excluding volumes, have significant impacts on zeta potentials of electric double layers.
Chen, Wei J; Keh, Huan J
2013-08-22
An analysis for the quasi-steady electrophoretic motion of a soft particle composed of a charged spherical rigid core and an adsorbed porous layer positioned at the center of a charged spherical cavity filled with an arbitrary electrolyte solution is presented. Within the porous layer, frictional segments with fixed charges are assumed to distribute uniformly. Through the use of the linearized Poisson-Boltzmann equation and the Laplace equation, the equilibrium double-layer potential distribution and its perturbation caused by the applied electric field are separately determined. The modified Stokes and Brinkman equations governing the fluid flow fields outside and inside the porous layer, respectively, are solved subsequently. An explicit formula for the electrokinetic migration velocity of the soft particle in terms of the fixed charge densities on the rigid core surface, in the porous layer, and on the cavity wall is obtained from a balance between its electrostatic and hydrodynamic forces. This formula is valid for arbitrary values of κa, λa, r0/a, and a/b, where κ is the Debye screening parameter, λ is the reciprocal of the length characterizing the extent of flow penetration inside the porous layer, a is the radius of the soft particle, r0 is the radius of the rigid core of the particle, and b is the radius of the cavity. In the limiting cases of r0 = a and r0 = 0, the migration velocity for the charged soft sphere reduces to that for a charged impermeable sphere and that for a charged porous sphere, respectively, in the charged cavity. The effect of the surface charge at the cavity wall on the particle migration can be significant, and the particle may reverse the direction of its migration.
NASA Astrophysics Data System (ADS)
Liu, Jian; Zhang, Jinjuan; Xu, Chang; Ren, Zhongzhou
2017-05-01
In this paper, the nuclear longitudinal form factors are systematically studied from the intrinsic charge multipoles. For axially deformed nuclei, two different types of density profiles are used to describe their charge distributions. For the same charge distributions expanded with different basis functions, the corresponding longitudinal form factors are derived and compared with each other. Results show the multipoles Cλ of longitudinal form factors are independent of the basis functions of charge distributions. Further numerical calculations of longitudinal form factors of 12C indicates that the C 0 multipole reflects the contributions of spherical components of all nonorthogonal basis functions. For deformed nuclei, their charge RMS radii can also be determined accurately by the C 0 measurement. The studies in this paper examine the model-independent properties of electron scattering, which are useful for interpreting electron scattering experiments on exotic deformed nuclei. Supported by National Natural Science Foundation of China (11505292, 11175085, 11575082, 11235001, 11275138, and 11447226), by Shandong Provincial Natural Science Foundation, China (BS2014SF007), Fundamental Research Funds for Central Universities (15CX02072A).
Long-range interaction between heterogeneously charged membranes.
Jho, Y S; Brewster, R; Safran, S A; Pincus, P A
2011-04-19
Despite their neutrality, surfaces or membranes with equal amounts of positive and negative charge can exhibit long-range electrostatic interactions if the surface charge is heterogeneous; this can happen when the surface charges form finite-size domain structures. These domains can be formed in lipid membranes where the balance of the different ranges of strong but short-ranged hydrophobic interactions and longer-ranged electrostatic repulsion result in a finite, stable domain size. If the domain size is large enough, oppositely charged domains in two opposing surfaces or membranes can be strongly correlated by the electrostatic interactions; these correlations give rise to an attractive interaction of the two membranes or surfaces over separations on the order of the domain size. We use numerical simulations to demonstrate the existence of strong attractions at separations of tens of nanometers. Large line tensions result in larger domains but also increase the charge density within the domain. This promotes correlations and, as a result, increases the intermembrane attraction. On the other hand, increasing the salt concentration increases both the domain size and degree of domain anticorrelation, but the interactions are ultimately reduced due to increased screening. The result is a decrease in the net attraction as salt concentration is increased. © 2011 American Chemical Society
Visual, Musculoskeletal, and Balance Complaints in AMD: A Follow-Up Study
Richter, Hans Olof
2016-01-01
Purpose. To investigate whether patients with age-related macular degeneration (AMD) run a potentially higher risk of developing visual, musculoskeletal, and balance complaints than age-matched controls with normal vision. Methods. Visual assessments, self-rated visual function, self-rated visual, musculoskeletal, and balance complaints, and perceived general health were obtained in 37 AMD patients and 18 controls, at baseline and after an average of 3.8 years later. Results. At follow-up both groups reported decreased visual acuity (VA) and visual function, but only AMD patients reported significantly increased visual, musculoskeletal, and balance complaints. Decreased VA, need for larger font size when reading, need for larger magnification, and decreased self-rated visual function were identified as risk markers for increased complaints in AMD patients. These complaints were also identified as risk markers for decreased health. For controls, decreased VA and self-reported visual function were associated with increased visual and balance complaints. Conclusions. Visual deterioration was a risk marker for increased visual, musculoskeletal, balance, and health complaints in AMD patients. Specifically, magnifying visual aids, such as CCTV, were a risk marker for increased complaints in AMD patients. This calls for early and coordinated actions to treat and prevent visual, musculoskeletal, balance, and health complaints in AMD patients. PMID:27830084