Science.gov

Sample records for charge high energy

  1. EXTRACTOR FOR HIGH ENERGY CHARGED PARTICLES

    DOEpatents

    Lambertson, G.R.

    1964-04-01

    A particle-extracting apparatus for use with a beam of high-energy charged particles such as travel in an evacuated chamber along a circular equilibrium axis is described. A magnetized target is impacted relatively against the beam whereby the beam particles are deflected from the beam by the magnetic induction in the target. To this end the target may be moved into the beam or the beam may coast into the target and achieve high angular particle deflection and slow extraction. A deflecting septum magnet may additionally be used for deflection at even sharper angles. (AEC)

  2. High energy cosmic ray charge and energy spectra measurements

    NASA Technical Reports Server (NTRS)

    Chappell, J. H.; Webber, W. R.

    1981-01-01

    In 1976, 1977, and 1978, a series of three balloon flights was conducted to measure the energy spectra of cosmic ray nuclei. A gas Cerenkov detector with different gas thresholds of 8.97, 13.12, and 17.94 GeV/n was employed to extend these measurements to high energies. The total collection factor for these flights is more than 20 sq m ster-hr. Individual charge resolution was achieved over the charge range Z equals 4-26, and overlapping differential spectra were obtained from the three flights up to approximately 100.0 GeV/n.

  3. Electrostatic energy analyzers for high energy charged particle beams

    NASA Astrophysics Data System (ADS)

    Ilyin, A. M.; Ilyina, I. A.

    2016-02-01

    The electrostatic energy analyzers for high energy charged particle beams emitted from extended large-size objects as well as from remote point sources are proposed. Results of the analytical trajectory solutions in ideal cylindrical field provide focusing characteristics for both configurations. The instruments possess of simple compact design, based on an ideal cylindrical field with entrance window arranged in the end-boundary between electrodes and can be used for measurements in space technologies, plasma and nuclear physics.

  4. Charge exchange and energy loss of slow highly charged ions in 1 nm thick carbon nanomembranes.

    PubMed

    Wilhelm, Richard A; Gruber, Elisabeth; Ritter, Robert; Heller, René; Facsko, Stefan; Aumayr, Friedrich

    2014-04-18

    Experimental charge exchange and energy loss data for the transmission of slow highly charged Xe ions through ultrathin polymeric carbon membranes are presented. Surprisingly, two distinct exit charge state distributions accompanied by charge exchange dependent energy losses are observed. The energy loss for ions exhibiting large charge loss shows a quadratic dependency on the incident charge state indicating that equilibrium stopping force values do not apply in this case. Additional angle resolved transmission measurements point on a significant contribution of elastic energy loss. The observations show that regimes of different impact parameters can be separated and thus a particle's energy deposition in an ultrathin solid target may not be described in terms of an averaged energy loss per unit length.

  5. High Energy Charged Particles in Space at One Astronomical Unit

    NASA Technical Reports Server (NTRS)

    Feynman, J.; Gabriel, S. B.

    1995-01-01

    Single event effects and many other spacecraft anomalies are caused by positively charged high energy particles impinging on the vehicle and its component parts. Reviewed here are the current knowledge of the interplanetary particle environment in the energy ranges that are most important for these effects. State-of-the-art engineering models are briefly described along with comments on the future work required.

  6. High Energy Charged Particles in Space at One Astronomical Unit

    NASA Technical Reports Server (NTRS)

    Feynman, J.; Gabriel, S. B.

    1995-01-01

    Single event effects and many other spacecraft anomalies are caused by positively charged high energy particles impinging on the vehicle and its component parts. Reviewed here are the current knowledge of the interplanetary particle environment in the energy ranges that are most important for these effects. State-of-the-art engineering models are briefly described along with comments on the future work required.

  7. Energy dissipation of highly charged ions on Al oxide films.

    PubMed

    Lake, R E; Pomeroy, J M; Sosolik, C E

    2010-03-03

    Slow highly charged ions (HCIs) carry a large amount of potential energy that can be dissipated within femtoseconds upon interaction with a surface. HCI-insulator collisions result in high sputter yields and surface nanofeature creation due to strong coupling between the solid's electronic system and lattice. For HCIs interacting with Al oxide, combined experiments and theory indicate that defect mediated desorption can explain reasonably well preferential O atom removal and an observed threshold for sputtering due to potential energy. These studies have relied on measuring mass loss on the target substrate or probing craters left after desorption. Our approach is to extract highly charged ions onto the Al oxide barriers of metal-insulator-metal tunnel junctions and measure the increased conductance in a finished device after the irradiated interface is buried under the top metal layer. Such transport measurements constrain dynamic surface processes and provide large sets of statistics concerning the way individual HCI projectiles dissipate their potential energy. Results for Xe(q +) for q = 32, 40, 44 extracted onto Al oxide films are discussed in terms of postirradiation electrical device characteristics. Future work will elucidate the relationship between potential energy dissipation and tunneling phenomena through HCI modified oxides.

  8. Charged-particle mutagenesis 2. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high Linear Energy Transfer (LET) charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 sq micrometer and 0.09 to 5.56 x 10(exp -3) sq micrometer respectively. The maximum values were obtained by Fe-56 with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(exp -5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  9. Charged-particle mutagenesis 2. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high Linear Energy Transfer (LET) charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 sq micrometer and 0.09 to 5.56 x 10(exp -3) sq micrometer respectively. The maximum values were obtained by Fe-56 with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(exp -5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  10. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Astrophysics Data System (ADS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-10-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/μm to 975 KeV/gmm with particle energy (on the cells) between 94 - 603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/μm. The inactivation cross-section (αi) and the action-section for mutant induction (αm) ranged from 2.2 to 92.0 μm2 and 0.09 to 5.56 × 10-3 μm2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/μm. The mutagenicity (αm/αi) ranged from 2.05 to 7.99 × 10-5 with the maximum value at 150 keV/μm. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  11. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  12. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  13. Charge-state-dependent energy loss of slow ions. I. Experimental results on the transmission of highly charged ions

    NASA Astrophysics Data System (ADS)

    Wilhelm, Richard A.; Gruber, Elisabeth; Smejkal, Valerie; Facsko, Stefan; Aumayr, Friedrich

    2016-05-01

    We report on energy loss measurements of slow (v ≪v0 ), highly charged (Q >10 ) ions upon transmission through a 1-nm-thick carbon nanomembrane. We emphasize here the scaling of the energy loss with the velocity and charge exchange or loss. We show that a weak linear velocity dependence exists, whereas charge exchange dominates the kinetic energy loss, especially in the case of a large charge capture. A universal scaling of the energy loss with the charge exchange and velocity is found and discussed in this paper. A model for charge-state-dependent energy loss for slow ions is presented in paper II in this series [R. A. Wilhelm and W. Möller, Phys. Rev. A 93, 052709 (2016), 10.1103/PhysRevA.93.052709].

  14. High-Energy Charged Particles in the Innermost Jovian Magnetosphere

    PubMed

    Fischer; Pehlke; Wibberenz; Lanzerotti; Mihalov

    1996-05-10

    The energetic particles investigation carried by the Galileo probe measured the energy and angular distributions of the high-energy particles from near the orbit of Io to probe entry into the jovian atmosphere. Jupiter's inner radiation region had extremely large fluxes of energetic electrons and protons; intensities peaked at approximately2.2RJ (where RJ is the radius of Jupiter). Absorption of the measured particles was found near the outer edge of the bright dust ring. The instrument measured intense fluxes of high-energy helium ions (approximately62 megaelectron volts per nucleon) that peaked at approximately1.5RJ inside the bright dust ring. The abundances of all particle species decreased sharply at approximately1.35RJ; this decrease defines the innermost edge of the equatorial jovian radiation.

  15. The interactions of high-energy, highly-charged ions with fullerenes

    SciTech Connect

    Ali, R.; Berry, H.G.; Cheng, S.

    1996-03-01

    In 1985, Robert Curl and Richard Smalley discovered a new form of carbon, the fullerene, C{sub 60}, which consists of 60 carbon atoms in a closed cage resembling a soccer ball. In 1990, Kritschmer et al. were able to make macroscopic quantities of fullerenes. This has generated intense activity to study the properties of fullerenes. One area of research involves collisions between fullerenes and atoms, ions or electrons. In this paper we describe experiments involving interactions between fullerenes and highly charged ions in which the center-of-mass energies exceed those used in other work by several orders of magnitude. The high values of projectile velocity and charge state result in excitation and decay processes differing significantly from those seen in studies 3 at lower energies. Our results are discussed in terms of theoretical models analogous to those used in nuclear physics and this provides an interesting demonstration of the unity of physics.

  16. Charged Particle Transport in High-Energy-Density Matter

    NASA Astrophysics Data System (ADS)

    Stanton, Liam; Murillo, Michael

    2016-10-01

    Transport coefficients for dense plasmas have been numerically computed using an effective Boltzmann approach. We have developed a simplified effective potential approach that yields accurate fits for all of the relevant cross sections and collision integrals. Our results have been validated with molecular dynamics simulations for self-diffusion, interdiffusion, viscosity, thermal conductivity and stopping power. Molecular dynamics has also been used to examine the underlying assumptions of the Boltzmann approach through a categorization of behaviors of the velocity autocorrelation function in the Yukawa phase diagram. Using a velocity-dependent screening model, we examine the role of dynamical screening in transport as well. Implications of these results for Coulomb logarithm approaches are discussed. This work is performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Charge exchange processes of high energy heavy ions channeled in crystals

    NASA Astrophysics Data System (ADS)

    Andriamonje, S.; Chevallier, M.; Cohen, C.; Dural, J.; Genre, R.; Girard, Y.; Groeneveld, K. O.; Kemmler, J.; Kirsch, R.; L'Hoir, A.; Maier, R.; Poizat, J. C.; Quéré, Y.; Remillieux, J.; Schmaus, D.; Toulemonde, M.

    The interaction of moving ions with single crystals is very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. The experiments show that high energy heavy ion channeling deeply modifies the slowing down and charge exchange processes. In this review, we describe the opportunity offered by channeling conditions to study the charge exchange processes. Some aspects of the charge exchange processes with high energy channeled heavy ions are selected from the extensive literature published over the past few years on this subject. Special attention is given to the work performed at the GANIL facility on the study of Radiative Electron Capture (REC), Electron Impact Ionisation (EII), and convoy electron emission. Finally we emphasize the interest of studying resonant charge exchange processes such as Resonant Coherent Excitation (RCE), Resonant Transfer and Excitation (RTE) or Dielectronic Recombination (DR) and the recently proposed Nuclear Excitation by Electron Capture (NEEC).

  18. Excited-state energies and fine structure of highly charged lithiumlike ions

    NASA Astrophysics Data System (ADS)

    Li, Jin-ying; Ding, Da-jun; Wang, Zhi-wen

    2013-10-01

    The full-core-plus-correlation method (FCPC) is extended to calculate the energies and fine structures of 1s2nd and 1s2nf (n≤5) states for the lithiumlike systems with high nuclear charge from Z = 41 to 50. In calculating energy, the higher-order relativistic contribution is estimated under a hydrogenic approximation. The nonrelativistic energies and wave functions are calculated by the Rayleigh-Ritz method. The mass polarization and the relativistic corrections including the kinetic energy correction, the Darwin term, the electron-electron contact term, and the orbit-orbit interaction are calculated perturbatively as the first-order correction. The quantum-electrodynamics contributions to the energy and to the fine-structure splitting are estimated by using the effective nuclear charge formula. The excited energies, the fine structures, and other relevant term energies are given and compared with the data available in the literature.

  19. Tuning the Fabrication of Nanostructures by Low-Energy Highly Charged Ions.

    PubMed

    El-Said, Ayman S; Wilhelm, Richard A; Heller, Rene; Sorokin, Michael; Facsko, Stefan; Aumayr, Friedrich

    2016-09-16

    Slow highly charged ions have been utilized recently for the creation of monotype surface nanostructures (craters, calderas, or hillocks) in different materials. In the present study, we report on the ability of slow highly charged xenon ions (^{129}Xe^{Q+}) to form three different types of nanostructures on the LiF(100) surface. By increasing the charge state from Q=15 to Q=36, the shape of the impact induced nanostructures changes from craters to hillocks crossing an intermediate stage of caldera structures. A dimensional analysis of the nanostructures reveals an increase of the height up to 1.5 nm as a function of the potential energy of the incident ions. Based on the evolution of both the geometry and size of the created nanostructures, defect-mediated desorption and the development of a thermal spike are utilized as creation mechanisms of the nanostructures at low and high charge states, respectively.

  20. Tuning the Fabrication of Nanostructures by Low-Energy Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    El-Said, Ayman S.; Wilhelm, Richard A.; Heller, Rene; Sorokin, Michael; Facsko, Stefan; Aumayr, Friedrich

    2016-09-01

    Slow highly charged ions have been utilized recently for the creation of monotype surface nanostructures (craters, calderas, or hillocks) in different materials. In the present study, we report on the ability of slow highly charged xenon ions (129Xe Q+ ) to form three different types of nanostructures on the LiF(100) surface. By increasing the charge state from Q =15 to Q =36 , the shape of the impact induced nanostructures changes from craters to hillocks crossing an intermediate stage of caldera structures. A dimensional analysis of the nanostructures reveals an increase of the height up to 1.5 nm as a function of the potential energy of the incident ions. Based on the evolution of both the geometry and size of the created nanostructures, defect-mediated desorption and the development of a thermal spike are utilized as creation mechanisms of the nanostructures at low and high charge states, respectively.

  1. Correlated energy-spread removal with space charge for high-harmonic generation.

    PubMed

    Hemsing, E; Marinelli, A; Marcus, G; Xiang, D

    2014-09-26

    We study the effect of longitudinal space charge on the correlated energy spread of a relativistic high-brightness electron beam that has been density modulated for the emission of coherent, high-harmonic radiation. We show that, in the case of electron bunching induced by a laser modulator followed by a dispersive chicane, longitudinal space charge forces can act to strongly reduce the induced energy modulation of the beam without a significant reduction in the harmonic bunching content. This effect may be optimized to enhance the output power and overall performance of free-electron lasers that produce coherent light through high-gain harmonic generation. It also increases the harmonic number achievable in these devices, which are otherwise gain-limited by the induced energy modulation from the laser.

  2. High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging

    SciTech Connect

    Luo, Wei; Shabbir, Faizan; Gong, Chao; Gulec, Cagatay; Pigeon, Jeremy; Shaw, Jessica; Greenbaum, Alon; Tochitsky, Sergei; Joshi, Chandrashekhar; Ozcan, Aydogan

    2015-04-13

    We demonstrate a high-throughput charged particle analysis platform, which is based on lensfree on-chip microscopy for rapid ion track analysis using allyl diglycol carbonate, i.e., CR-39 plastic polymer as the sensing medium. By adopting a wide-area opto-electronic image sensor together with a source-shifting based pixel super-resolution technique, a large CR-39 sample volume (i.e., 4 cm × 4 cm × 0.1 cm) can be imaged in less than 1 min using a compact lensfree on-chip microscope, which detects partially coherent in-line holograms of the ion tracks recorded within the CR-39 detector. After the image capture, using highly parallelized reconstruction and ion track analysis algorithms running on graphics processing units, we reconstruct and analyze the entire volume of a CR-39 detector within ∼1.5 min. This significant reduction in the entire imaging and ion track analysis time not only increases our throughput but also allows us to perform time-resolved analysis of the etching process to monitor and optimize the growth of ion tracks during etching. This computational lensfree imaging platform can provide a much higher throughput and more cost-effective alternative to traditional lens-based scanning optical microscopes for ion track analysis using CR-39 and other passive high energy particle detectors.

  3. High-speed MCP anodes for high time resolution low-energy charged particle spectrometers

    NASA Astrophysics Data System (ADS)

    Saito, Yoshifumi; Yokota, Shoichiro; Asamura, Kazushi; Krieger, Amanda

    2017-02-01

    The time resolution of low-energy charged particle measurements is becoming higher and higher. In order to realize high time resolution measurements, a 1-D circular delay line anode has been developed as a high-speed microchannel plate (MCP) anode. The maximum count rate of the 1-D circular delay line anode is around 1 × 107/s/360°, which is much higher than the widely used resistive anode, whose maximum count rate is around 1 × 106/s/360°. In order to achieve much higher speeds, an MCP anode with application-specific integrated circuit (ASIC) has been developed. We have decided to adopt an anode configuration in which a discrete anode is formed on a ceramic substrate, and a bare ASIC chip is installed on the back of the ceramic. It has been found that the anode can detect at a high count rate of 2 × 108/s/360°. Developments in both delay line and discrete anodes, as well as readout electronics, will be reviewed.

  4. High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Shabbir, Faizan; Gong, Chao; Gulec, Cagatay; Pigeon, Jeremy; Shaw, Jessica; Greenbaum, Alon; Tochitsky, Sergei; Joshi, Chandrashekhar; Ozcan, Aydogan

    2015-04-01

    We demonstrate a high-throughput charged particle analysis platform, which is based on lensfree on-chip microscopy for rapid ion track analysis using allyl diglycol carbonate, i.e., CR-39 plastic polymer as the sensing medium. By adopting a wide-area opto-electronic image sensor together with a source-shifting based pixel super-resolution technique, a large CR-39 sample volume (i.e., 4 cm × 4 cm × 0.1 cm) can be imaged in less than 1 min using a compact lensfree on-chip microscope, which detects partially coherent in-line holograms of the ion tracks recorded within the CR-39 detector. After the image capture, using highly parallelized reconstruction and ion track analysis algorithms running on graphics processing units, we reconstruct and analyze the entire volume of a CR-39 detector within ˜1.5 min. This significant reduction in the entire imaging and ion track analysis time not only increases our throughput but also allows us to perform time-resolved analysis of the etching process to monitor and optimize the growth of ion tracks during etching. This computational lensfree imaging platform can provide a much higher throughput and more cost-effective alternative to traditional lens-based scanning optical microscopes for ion track analysis using CR-39 and other passive high energy particle detectors.

  5. Calculation of dose, dose equivalent, and relative biological effectiveness for high charge and energy ion beams

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Chun, S. Y.; Reginatto, M.; Hajnal, F.

    1995-01-01

    The Green's function for the transport of ions of high charge and energy is utilized with a nuclear fragmentation database to evaluate dose, dose equivalent, and RBE for C3H10T1/2 cell survival and neo-plastic transformation as function of depth in soft tissue. Such evaluations are useful to estimates of biological risk for high altitude aircraft, space operations, accelerator operations, and biomedical application.

  6. Calculation of Dose, Dose Equivalent, and Relative Biological Effectiveness for High Charge and Energy Ion Beams

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Reginatto, M.; Hajnal, F.; Chun, S. Y.

    1995-01-01

    The Green's function for the transport of ions of high charge and energy is utilized with a nuclear fragmentation database to evaluate dose, dose equivalent, and RBE for C3H1OT1/2 cell survival and neoplastic transformation as a function of depth in soft tissue. Such evaluations are useful to estimates of biological risk for high altitude aircraft, space operations, accelerator operations, and biomedical applications.

  7. Laser acceleration of electrons to giga-electron-volt energies using highly charged ions.

    PubMed

    Hu, S X; Starace, Anthony F

    2006-06-01

    The recent proposal to use highly charged ions as sources of electrons for laser acceleration [S. X. Hu and A. F. Starace, Phys. Rev. Lett. 88, 245003 (2002)] is investigated here in detail by means of three-dimensional, relativistic Monte Carlo simulations for a variety of system parameters, such as laser pulse duration, ionic charge state, and laser focusing spot size. Realistic laser focusing effects--e.g., the existence of longitudinal laser field components-are taken into account. Results of spatial averaging over the laser focus are also presented. These numerical simulations show that the proposed scheme for laser acceleration of electrons from highly charged ions is feasible with current or near-future experimental conditions and that electrons with GeV energies can be obtained in such experiments.

  8. Unexpected asymmetry of the charge distribution in the fission of Th,224222 at high excitation energies

    NASA Astrophysics Data System (ADS)

    Paşca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.

    2016-12-01

    Using the improved scission-point model, the isotopic trends of the charge distribution of fission fragments are studied in induced fission of even-even Th isotopes. The calculated results are in good agreement with available experimental data. With increasing neutron number the transition from symmetric to asymmetric fission mode is shown to be related to the change of the potential energy surface. The change of the shape of mass distribution with increasing excitation energy is discussed for fissioning ATh nuclei. At high excitation energies, there are unexpected large asymmetric modes in the fission of neutron-deficient Th isotopes considered.

  9. Theory of highly charged ion energy gain spectroscopy of molecular collective excitations

    NASA Astrophysics Data System (ADS)

    Lucas, A. A.; Benedek, G.; Sunjic, M.; Echenique, P. M.

    2011-01-01

    This paper discusses the physical mechanism by which a highly charged, energetic ion partly neutralized by electron transfers from a target—a large molecule, a cluster or a solid surface—can create target collective excitations in the process. We develop an analysis for the system of a highly charged ion flying by a fullerene molecule. Our analysis offers a new explanation for the periodic oscillations observed in the high-resolution energy gain spectra of energetic Arq+ ions (q=8, 13, 14, 15) flying by C60 molecules. For the Arq+→Ar(q-s)+ spectra with q=13-15 and s=1 or 2, the observed oscillations of 6 eV periodicity are assigned to energy losses due to multiple, Poissonian excitations of C60 π-plasmons (6 eV quantum). The excitation energy quanta are subtracted from the kinetic energy gained by the ion when one or at most two electrons are transferred to increasingly deep Rydberg states of the ion. The observed 3 eV periodicity for q=8 arises from the specific Rydberg energy levels of ArVIII (Ar7+). The first few shallow levels of this ion are separated by about 3 eV, while some of the pairs of adjacent, deeper levels are also separated by 3 eV. Each deep-level pair produces two interdigitated, Poissonian series of 6 eV π-plasmon excitation peaks resulting in an apparent periodicity of 3 eV throughout the spectra. The broad σ-plasmons (25 eV quantum) are found to contribute a background continuum to the medium- and high-energy regions of the observed spectra. The physical model analyzed here indicates that electronic collective excitations in several other systems could be studied by highly charged ion energy gain spectroscopy at sufficient resolution.

  10. Apolipoprotein E expression and behavioral toxicity of high charge, high energy (HZE) particle radiation

    NASA Technical Reports Server (NTRS)

    Higuchi, Yoshinori; Nelson, Gregory A.; Vazquez, Marcelo; Laskowitz, Daniel T.; Slater, James M.; Pearlstein, Robert D.

    2002-01-01

    Apolipoprotein E (apoE) is a lipid binding protein that plays an important role in tissue repair following brain injury. In the present studies, we have investigated whether apoE affects the behavioral toxicity of high charge, high energy (HZE) particle radiation. METHODS: Sixteen male apoE knockout (KO) mice and sixteen genetically matched wild-type (WT) C57BL mice were used in this experiment. Half of the KO and half of the WT animals were irradiated with 600 MeV/amu iron particles (2 Gy whole body). The effect of irradiation on motor coordination and stamina (Rotarod test), exploratory behavior (open field test), and spatial working and reference memory (Morris water maze) was assessed. ROTAROD TEST: Performance was adversely affected by radiation exposure in both KO and WT groups at 30 d after irradiation. By 60 d after radiation, the radiation effect was lost in WT, but still apparent in irradiated KO mice. OPEN FIELD TEST: Radiation reduced open field exploratory activity 14, 28, 56, 84, and 168 d after irradiation of KO mice, but had no effect on WT mice. MORRIS WATER MAZE: Radiation adversely affected spatial working memory in the KO mice, but had no discernible effect in the WT mice as assessed 180 d after irradiation. In contrast, irradiated WT mice showed marked impairment of spatial reference memory in comparison to non-irradiated mice, while no effect of radiation was observed in KO mice. CONCLUSIONS: These studies show that apoE expression influences the behavioral toxicity of HZE particle radiation and suggest that apoE plays a role in the repair/recovery from radiation injury of the CNS. ApoE deficiency may exacerbate the previously reported effects of HZE particle radiation in accelerating the brain aging process.

  11. Apolipoprotein E expression and behavioral toxicity of high charge, high energy (HZE) particle radiation

    NASA Technical Reports Server (NTRS)

    Higuchi, Yoshinori; Nelson, Gregory A.; Vazquez, Marcelo; Laskowitz, Daniel T.; Slater, James M.; Pearlstein, Robert D.

    2002-01-01

    Apolipoprotein E (apoE) is a lipid binding protein that plays an important role in tissue repair following brain injury. In the present studies, we have investigated whether apoE affects the behavioral toxicity of high charge, high energy (HZE) particle radiation. METHODS: Sixteen male apoE knockout (KO) mice and sixteen genetically matched wild-type (WT) C57BL mice were used in this experiment. Half of the KO and half of the WT animals were irradiated with 600 MeV/amu iron particles (2 Gy whole body). The effect of irradiation on motor coordination and stamina (Rotarod test), exploratory behavior (open field test), and spatial working and reference memory (Morris water maze) was assessed. ROTAROD TEST: Performance was adversely affected by radiation exposure in both KO and WT groups at 30 d after irradiation. By 60 d after radiation, the radiation effect was lost in WT, but still apparent in irradiated KO mice. OPEN FIELD TEST: Radiation reduced open field exploratory activity 14, 28, 56, 84, and 168 d after irradiation of KO mice, but had no effect on WT mice. MORRIS WATER MAZE: Radiation adversely affected spatial working memory in the KO mice, but had no discernible effect in the WT mice as assessed 180 d after irradiation. In contrast, irradiated WT mice showed marked impairment of spatial reference memory in comparison to non-irradiated mice, while no effect of radiation was observed in KO mice. CONCLUSIONS: These studies show that apoE expression influences the behavioral toxicity of HZE particle radiation and suggest that apoE plays a role in the repair/recovery from radiation injury of the CNS. ApoE deficiency may exacerbate the previously reported effects of HZE particle radiation in accelerating the brain aging process.

  12. Studies on low energy beam transport for high intensity high charged ions at IMP

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Sun, L. T.; Hu, Q.; Cao, Y.; Lu, W.; Feng, Y. C.; Fang, X.; Zhang, X. Z.; Zhao, H. W.; Xie, D. Z.

    2014-02-01

    Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) is an advanced fully superconducting ECR ion source at IMP designed to be operational at the microwave frequency of 18-24 GHz. The existing SECRAL beam transmission line is composed of a solenoid lens and a 110° analyzing magnet. Simulations of particle tracking with 3D space charge effect and realistic 3D magnetic fields through the line were performed using particle-in-cell code. The results of the beam dynamics show that such a low energy beam is very sensitive to the space charge effect and significantly suffers from the second-order aberration of the analyzing magnet resulting in large emittance. However, the second-order aberration could be reduced by adding compensating sextupole components in the beam line. On this basis, a new 110° analyzing magnet with relatively larger acceptance and smaller aberration is designed and will be used in the design of low energy beam transport line for a new superconducting ECR ion source SECRAL-II. The features of the analyzer and the corresponding beam trajectory calculation will be detailed and discussed in this paper.

  13. Studies on low energy beam transport for high intensity high charged ions at IMP

    SciTech Connect

    Yang, Y. Lu, W.; Fang, X.; Sun, L. T.; Hu, Q.; Cao, Y.; Feng, Y. C.; Zhang, X. Z.; Zhao, H. W.; Xie, D. Z.

    2014-02-15

    Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) is an advanced fully superconducting ECR ion source at IMP designed to be operational at the microwave frequency of 18–24 GHz. The existing SECRAL beam transmission line is composed of a solenoid lens and a 110° analyzing magnet. Simulations of particle tracking with 3D space charge effect and realistic 3D magnetic fields through the line were performed using particle-in-cell code. The results of the beam dynamics show that such a low energy beam is very sensitive to the space charge effect and significantly suffers from the second-order aberration of the analyzing magnet resulting in large emittance. However, the second-order aberration could be reduced by adding compensating sextupole components in the beam line. On this basis, a new 110° analyzing magnet with relatively larger acceptance and smaller aberration is designed and will be used in the design of low energy beam transport line for a new superconducting ECR ion source SECRAL-II. The features of the analyzer and the corresponding beam trajectory calculation will be detailed and discussed in this paper.

  14. Benchmark study for charge deposition by high energy electrons in thick slabs

    NASA Technical Reports Server (NTRS)

    Jun, I.

    2002-01-01

    The charge deposition profiles created when highenergy (1, 10, and 100 MeV) electrons impinge ona thick slab of elemental aluminum, copper, andtungsten are presented in this paper. The chargedeposition profiles were computed using existing representative Monte Carlo codes: TIGER3.0 (1D module of ITS3.0) and MCNP version 4B. The results showed that TIGER3.0 and MCNP4B agree very well (within 20% of each other) in the majority of the problem geometry. The TIGER results were considered to be accurate based on previous studies. Thus, it was demonstrated that MCNP, with its powerful geometry capability and flexible source and tally options, could be used in calculations of electron charging in high energy electron-rich space radiation environments.

  15. Fragmentation and desorption in low-energy highly charged ion collisions with molecules and surfaces

    NASA Astrophysics Data System (ADS)

    Motohashi, K.

    2009-04-01

    In order to study secondary-ion emission in low-energy highly charged ion collisions with molecules and surfaces, we performed coincidence measurements of secondary ions and scattered ions, scattered neutral atoms or secondary electrons. Fragmentation and desorption processes induced by electron captures were successfully extracted by observing the scattered ions/atoms with small scattering angles. Momentum imaging of the secondary ions offers a new analysis method when combined with translational energy spectroscopy or energy-gain spectroscopy of scattered ions. This technique was successful in clarifying the reaction pathways of the electronic transitions of molecules and following the dissociation processes in collisions between Arq+ (q = 3-12) and CF4 and N2 molecules. We also successfully performed secondary ion mass spectroscopy of the topmost layers of the surfaces in glancing collisions between Ar8+ and both GaN (0001) and (000 1) surfaces.

  16. Calculation of Radiative Transition Energies and Probabilities of Highly Charged Ions: Applications to Xenon

    NASA Astrophysics Data System (ADS)

    Tanaka, Tsukiyo

    1995-01-01

    In this work, we have obtained new insight to the physical processes above and below a surface when an incident highly charged heavy ion interacts with a metal. Extensive theoretical calculations and predictions based on many body perturbation theory in conjunction with a screening theory were performed for the Xe^ {q+} (q = 44-49) ions interacting with copper surfaces and for the Bi^ {q+} (q = 71 to 50) ions interacting with gold surfaces. A detailed comparison of our theoretical results with experimental x-ray data provided by the EBIT facility at LLNL is presented. Specifically, in the theoretical calculations, many body perturbation theory is applied using a hydrogenic basis set to calculate numerous radiative transition energies and probabilities of various highly charged Bi and Xe ions for a large number of initial and final configurations. The application of perturbation theory taking the electron repulsion term, 1/Z, as the perturbation yields a series expansion in 1/Z where Z is the atomic number. In the energy formulation, approximate screening parameters are introduced for the relativistic and nonrelativistic energy parts allowing us to limit our calculation to the first order interelectron interaction. The energy values obtained are averaged over the spin and angular momentum quantum numbers, L and S as a function of the electron occupation numbers (k_{i}) for each individual electron shell. Up to seventeen different subshells have been considered i.e. each ionic state can be expressed in the form,{Q=1s^ {k_1} 2s^{k_2 } 2p^{k_3} 3s^ {k_4} 3p^{k_5 } 3d^{k_6} 4s^ {k_7} 4p^{k_8 } 4d^{k_9} 4f^ {k_{10}} 5s^{k _{11}}hfillcrquad 5p^{k_{12}} 5d ^{k_{13}}times5f ^{k_{14}} 5g^ {k_{15}} 6s^{k _{16}} 6p^{k_ {17}}.quadhfillcr} where k_{i} are different occupation numbers. This effective new computational method was applied and extended to analyze, for example the complex N and M x-ray emission spectra from the impact of highly charged Bi^{q+} (q = 71 to 54) ions on

  17. Coaxial charged particle energy analyzer

    NASA Technical Reports Server (NTRS)

    Kelly, Michael A. (Inventor); Bryson, III, Charles E. (Inventor); Wu, Warren (Inventor)

    2011-01-01

    A non-dispersive electrostatic energy analyzer for electrons and other charged particles having a generally coaxial structure of a sequentially arranged sections of an electrostatic lens to focus the beam through an iris and preferably including an ellipsoidally shaped input grid for collimating a wide acceptance beam from a charged-particle source, an electrostatic high-pass filter including a planar exit grid, and an electrostatic low-pass filter. The low-pass filter is configured to reflect low-energy particles back towards a charged particle detector located within the low-pass filter. Each section comprises multiple tubular or conical electrodes arranged about the central axis. The voltages on the lens are scanned to place a selected energy band of the accepted beam at a selected energy at the iris. Voltages on the high-pass and low-pass filters remain substantially fixed during the scan.

  18. Taming Highly Charged Radioisotopes

    NASA Astrophysics Data System (ADS)

    Chowdhury, Usman; Eberhardt, Benjamin; Jang, Fuluni; Schultz, Brad; Simon, Vanessa; Delheij, Paul; Dilling, Jens; Gwinner, Gerald

    2012-10-01

    The precise and accurate mass of short-lived radioisotopes is a very important parameter in physics. Contribution to the improvement of nuclear models, metrological standard fixing and tests of the unitarity of the Caibbibo-Kobayashi-Maskawa (CKM) matrix are a few examples where the mass value plays a major role. TRIUMF's ion trap for atomic and nuclear physics (TITAN) is a unique facility of three online ion traps that enables the mass measurement of short-lived isotopes with high precision (˜10-8). At present TITAN's electron beam ion trap (EBIT) increases the charge state to increase the precision, but there is no facility to significantly reduce the energy spread introduced by the charge breeding process. The precision of the measured mass of radioisotopes is linearly dependent on the charge state while the energy spread of the charged radioisotopes affects the precision adversely. To boost the precision level of mass measurement at TITAN without loosing too many ions, a cooler Penning trap (CPET) is being developed. CPET is designed to use either positively (proton) or negatively (electron) charged particles to reduce the energy spread via sympathetic cooling. Off-line setup of CPET is complete. Details of the working principles and updates are presented

  19. Using high energy angle resolved photoelectron spectroscopy to reveal the charge density in solids.

    PubMed

    Månsson, M; Claesson, T; Finazzi, M; Dallera, C; Brookes, N B; Tjernberg, O

    2008-11-28

    The charge density in solids is a fundamental parameter. Here we demonstrate that the charge density can be determined by the use of angle resolved photoelectron spectroscopy. The method, which involves a Fourier-like transform from momentum space to real space, is demonstrated by utilizing soft x-ray angle resolved photoelectron spectroscopy to sample the complete three-dimensional Brillouin zone of copper. It is also shown that this can be done in an energy resolved way as to extract the charge density contribution from states of a particular energy.

  20. Ensemble mean pt versus charged-hadron multiplicities in high energy nuclear collisions

    NASA Astrophysics Data System (ADS)

    Trainor, Thomas A.

    2014-08-01

    Measurements of event-ensemble mean transverse momentum vs charged-hadron multiplicity nch for pt spectra from 5-TeV p-Pb and 2.76-TeV Pb-Pb collisions and from p-p collisions for several energies have been reported recently. While in all cases increases monotonically with nch the rate of increase is very different from system to system. Comparisons with several theory Monte Carlos reveal substantial disagreements and lead to considerable uncertainty on how to interpret the data. In the present study we develop a two-component (soft +hard) model (TCM) of pt production in high energy nuclear collisions and apply it to the data. The soft component is assumed to be a universal feature of high energy collisions independent of the A-B system or energy. The hard-component model is based on the observation that dijet production in p-p collisions does not satisfy the eikonal approximation but does so in A-A collisions. Hard-component properties are determined from previous measurements of hadron spectrum hard components, jet spectra, and fragmentation functions. The TCM describes the p -p and Pb-Pb data accurately, within data uncertainties, and the p-Pb data appear to transition smoothly from p-p to A-A nch trends.

  1. Charging Graphene for Energy Storage

    SciTech Connect

    Liu, Jun

    2014-10-06

    Since 2004, graphene, including single atomic layer graphite sheet, and chemically derived graphene sheets, has captured the imagination of researchers for energy storage because of the extremely high surface area (2630 m2/g) compared to traditional activated carbon (typically below 1500 m2/g), excellent electrical conductivity, high mechanical strength, and potential for low cost manufacturing. These properties are very desirable for achieving high activity, high capacity and energy density, and fast charge and discharge. Chemically derived graphene sheets are prepared by oxidation and reduction of graphite1 and are more suitable for energy storage because they can be made in large quantities. They still contain multiply stacked graphene sheets, structural defects such as vacancies, and oxygen containing functional groups. In the literature they are also called reduced graphene oxide, or functionalized graphene sheets, but in this article they are all referred to as graphene for easy of discussion. Two important applications, batteries and electrochemical capacitors, have been widely investigated. In a battery material, the redox reaction occurs at a constant potential (voltage) and the energy is stored in the bulk. Therefore, the energy density is high (more than 100 Wh/kg), but it is difficult to rapidly charge or discharge (low power, less than 1 kW/kg)2. In an electrochemical capacitor (also called supercapacitors or ultracapacitor in the literature), the energy is stored as absorbed ionic species at the interface between the high surface area carbon and the electrolyte, and the potential is a continuous function of the state-of-charge. The charge and discharge can happen rapidly (high power, up to 10 kW/kg) but the energy density is low, less than 10 Wh/kg2. A device that can have both high energy and high power would be ideal.

  2. Charge Exchange with Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    Glick, Jeremy; Ferri, Kevin; Schmitt, Jaclyn; Hanson, Joshua; Marler, Joan

    2016-05-01

    A detailed study of the physics of highly charged ions (HCIs) is critical for a deep understanding of observed phenomena resulting from interactions of HCIs with neutral atoms in astrophysical and fusion environments. Specifically the charge transfer rates and spectroscopy of the subsequent decay fluorescence are of great interest to these communities. Results from a laboratory based investigation of these rates will be presented. The experiment takes advantage of an energy and charge state selected beam of HCIs from the recently on-line Clemson University EBIT (CUEBIT). Progress towards an experimental apparatus for retrapping HCIs towards precision spectroscopy of HCIs will also be presented.

  3. Direct electron-pair production by high energy heavy charged particles

    NASA Technical Reports Server (NTRS)

    Takahashi, Y.; Gregory, J. C.; Hayashi, T.; Dong, B. L.

    1989-01-01

    Direct electron pain production via virtual photons by moving charged particles is a unique electro-magnetic process having a substantial dependence on energy. Most electro-magnetic processes, including transition radiation, cease to be sensitive to the incident energy above 10 TeV/AMU. Thus, it is expected, that upon establishment of cross section and detection efficiency of this process, it may provide a new energy measuring technique above 10 TeV/AMU. Three accelerator exposures of emulsion chambers designed for measurements of direct electron-pains were performed. The objectives of the investigation were to provide the fundamental cross-section data in emulsion stacks to find the best-fit theoretical model, and to provide a calibration of measurements of direct electron-pairs in emulsion chamber configurations. This paper reports the design of the emulsion chambers, accelerator experiments, microscope measurements, and related considerations for future improvements of the measurements, and for possible applications to high energy cosmic ray experiments. Also discussed are the results from scanning 56m of emulsion tracks at 1200x magnification so that scanning efficiency is optimized. Measurements of the delta-ray range spectrum were also performed for much shorter track lengths, but with sufficiently large statistics in the number of measured delta-rays.

  4. Thick-lens velocity-map imaging spectrometer with high resolution for high-energy charged particles

    NASA Astrophysics Data System (ADS)

    Kling, N. G.; Paul, D.; Gura, A.; Laurent, G.; De, S.; Li, H.; Wang, Z.; Ahn, B.; Kim, C. H.; Kim, T. K.; Litvinyuk, I. V.; Cocke, C. L.; Ben-Itzhak, I.; Kim, D.; Kling, M. F.

    2014-05-01

    A novel design for a velocity-map imaging (VMI) spectrometer with high resolution over a wide energy range surpassing a standard VMI design is reported. The main difference to a standard three-electrode VMI is the spatial extension of the applied field using 11 electrodes forming a thick-lens. This permits measurements of charged particles with higher energies while achieving excellent resolving power over a wide range of energies. Using SIMION simulations, the thick-lens VMI is compared to a standard design for up to 360 eV electrons. The simulations also show that the new spectrometer design is suited for charged-particle detection with up to 1 keV using a repeller-electrode voltage of -30 kV. The experimental performance is tested by laser-induced ionization of rare gases producing electrons up to about 70 eV. The thick-lens VMI is useful for a wide variety of studies on atoms, molecules and nanoparticles in intense laser fields and high-photon-energy fields from high-harmonic-generation or free-electron lasers.

  5. Splitting of a high-energy positively-charged particle beam with a bent crystal

    NASA Astrophysics Data System (ADS)

    Bandiera, L.; Kirillin, I. V.; Bagli, E.; Berra, A.; De Salvador, D.; Guidi, V.; Lietti, D.; Mazzolari, A.; Prest, M.; Shul'ga, N. F.; Sytov, A.; Vallazza, E.

    2017-07-01

    The possibility of high-energy positively-charged particle beam splitting by means of a short bent axially oriented silicon crystal was recently reported in an experiment carried out at CERN SPS H8 extracted line with a 400 GeV/c proton beam. Here, we investigate more deeply such a possibility focusing our attention on the efficiency of beam splitting and its modulation for different crystal-to-beam orientations. New experimental results confirm the possibility of modulating the 400 GeV/c proton beam intensity in different planar channels by adjusting the orientation of the crystal. Furthermore, an analysis of the beam splitting efficiency vs. the curvature of the crystal was carried out through simulation, highlighting that there exists a bending radius for which the efficiency is maximal.

  6. Moment-Preserving Computational Approach for High Energy Charged Particle Transport

    DTIC Science & Technology

    2016-05-16

    61 Figure 35: Comparison with Lockwood data for 500-keV (left) and 1000-keV (right) electrons normally on tantalum slab...with 60 degrees off-normal incidence on tantalum slab. ...................................................... 63 Figure 39: Charge deposition... tantalum semi-infinite slabs. .............................. 57 Table 12: Total energy deposition comparison for 500-keV and 1000-keV electrons with

  7. Charge versus Energy Transfer Effects in High-Performance Perylene Diimide Photovoltaic Blend Films.

    PubMed

    Singh, Ranbir; Shivanna, Ravichandran; Iosifidis, Agathaggelos; Butt, Hans-Jürgen; Floudas, George; Narayan, K S; Keivanidis, Panagiotis E

    2015-11-11

    Perylene diimide (PDI)-based organic photovoltaic devices can potentially deliver high power conversion efficiency values provided the photon energy absorbed is utilized efficiently in charge transfer (CT) reactions instead of being consumed in nonradiative energy transfer (ET) steps. Hitherto, it remains unclear whether ET or CT primarily drives the photoluminescence (PL) quenching of the PDI excimer state in PDI-based blend films. Here, we affirm the key role of the thermally assisted PDI excimer diffusion and subsequent CT reaction in the process of PDI excimer PL deactivation. For our study we perform PL quenching experiments in the model PDI-based composite made of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene)-2-6-diyl] (PBDTTT-CT) polymeric donor mixed with the N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (PDI) acceptor. Despite the strong spectral overlap between the PDI excimer PL emission and UV-vis absorption of PBDTTT-CT, two main observations indicate that no significant ET component operates in the overall PL quenching: the PL intensity of the PDI excimer (i) increases with decreasing temperature and (ii) remains unaffected even in the presence of 10 wt % content of the PBDTTT-CT quencher. Temperature-dependent wide-angle X-ray scattering experiments further indicate that nonradiative resonance ET is highly improbable due to the large size of PDI domains. The dominance of the CT over the ET process is verified by the high performance of devices with an optimum composition of 30:70 PBDTTT-CT:PDI. By adding 0.4 vol % of 1,8-diiodooctane we verify the plasticization of the polymer side chains that balances the charge transport properties of the PBDTTT-CT:PDI composite and results in additional improvement in the device efficiency. The temperature-dependent spectral width of the PDI excimer PL band suggests the presence of energetic disorder in the

  8. Spin-charge coupling and the high-energy magnetodielectric effect in hexagonal HoMnO3

    NASA Astrophysics Data System (ADS)

    Rai, R. C.; Cao, J.; Musfeldt, J. L.; Kim, S. B.; Cheong, S.-W.; Wei, X.

    2007-05-01

    We investigate the optical and magneto-optical properties of HoMnO3 in order to elucidate the spin-charge coupling and high-energy magnetodielectric effect. We find that the Mnd to d excitations are sensitive to the cascade of low-temperature magnetic transitions involving the Mn3+ moment, direct evidence for spin-charge coupling. An applied magnetic field also modifies the on-site excitations. The high-energy magnetodielectric contrast ( ˜8% at 20T near 1.8eV ) derives from the substantial mixing in this multiferroic system.

  9. Irradiation of Neurons with High-Energy Charged Particles: An In Silico Modeling Approach

    PubMed Central

    Alp, Murat; Parihar, Vipan K.; Limoli, Charles L.; Cucinotta, Francis A.

    2015-01-01

    In this work, a stochastic computational model of microscopic energy deposition events is used to study for the first time damage to irradiated neuronal cells of the mouse hippocampus. An extensive library of radiation tracks for different particle types is created to score energy deposition in small voxels and volume segments describing a neuron’s morphology that later are sampled for given particle fluence or dose. Methods included the construction of in silico mouse hippocampal granule cells from neuromorpho.org with spine and filopodia segments stochastically distributed along the dendritic branches. The model is tested with high-energy 56Fe, 12C, and 1H particles and electrons. Results indicate that the tree-like structure of the neuronal morphology and the microscopic dose deposition of distinct particles may lead to different outcomes when cellular injury is assessed, leading to differences in structural damage for the same absorbed dose. The significance of the microscopic dose in neuron components is to introduce specific local and global modes of cellular injury that likely contribute to spine, filopodia, and dendrite pruning, impacting cognition and possibly the collapse of the neuron. Results show that the heterogeneity of heavy particle tracks at low doses, compared to the more uniform dose distribution of electrons, juxtaposed with neuron morphology make it necessary to model the spatial dose painting for specific neuronal components. Going forward, this work can directly support the development of biophysical models of the modifications of spine and dendritic morphology observed after low dose charged particle irradiation by providing accurate descriptions of the underlying physical insults to complex neuron structures at the nano-meter scale. PMID:26252394

  10. An initiation-promotion model of tumour prevalence from high-charge and energy radiations

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.

    1994-01-01

    A repair/misrepair kinetic model for multiple radiation-induced lesions (mutation inactivation) is coupled to a two-mutation model of initiation-promotion in tissue to provide a parametric description of tumour prevalence in the mouse Harderian gland from high-energy and charge radiations. Track-structure effects are considered using an action-cross section model. Dose-response curves are described for gamma rays and relativistic ions, and good agreement with experiment is found. The effects of nuclear fragmentation are also considered for high-energy proton and alpha-particle exposures. The model described provides a parametric description of age-dependent cancer induction for a wide range of radiation fields. Radiosensitivity parameters found in the model for an initiation mutation (sigma 0 = 7.6 x 10(-10) cm2 and D0 = 148.0 Gy) are somewhat different than previously observed for neoplastic transformation of C3H10T1/2 cell cultures (sigma 0 = 0.7 x 10(-10) cm2 and D0 = 117.0 Gy). We consider the two hypotheses that radiation acts solely as an initiator or as both initiator and promoter and make model calculations for fractionation exposures from gamma rays and relativistic Fe ions. For fractionated Fe exposures, an inverse-dose-rate effect is provided by a promotion hypothesis with an increase of 30% or more, dependent on the dose level and fractionation schedule, using a mutation rate for promotion similar to that of single-gene mutations.

  11. An initiation-promotion model of tumour prevalence from high-charge and energy radiations

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.

    1994-01-01

    A repair/misrepair kinetic model for multiple radiation-induced lesions (mutation inactivation) is coupled to a two-mutation model of initiation-promotion in tissue to provide a parametric description of tumour prevalence in the mouse Harderian gland from high-energy and charge radiations. Track-structure effects are considered using an action-cross section model. Dose-response curves are described for gamma rays and relativistic ions, and good agreement with experiment is found. The effects of nuclear fragmentation are also considered for high-energy proton and alpha-particle exposures. The model described provides a parametric description of age-dependent cancer induction for a wide range of radiation fields. Radiosensitivity parameters found in the model for an initiation mutation (sigma 0 = 7.6 x 10(-10) cm2 and D0 = 148.0 Gy) are somewhat different than previously observed for neoplastic transformation of C3H10T1/2 cell cultures (sigma 0 = 0.7 x 10(-10) cm2 and D0 = 117.0 Gy). We consider the two hypotheses that radiation acts solely as an initiator or as both initiator and promoter and make model calculations for fractionation exposures from gamma rays and relativistic Fe ions. For fractionated Fe exposures, an inverse-dose-rate effect is provided by a promotion hypothesis with an increase of 30% or more, dependent on the dose level and fractionation schedule, using a mutation rate for promotion similar to that of single-gene mutations.

  12. Enhancement of charge remote fragmentation in protonated peptides by high-energy CID MALDI-TOF-MS using "cold" matrices

    NASA Astrophysics Data System (ADS)

    Stimson, E.; Truong, O.; Richter, W. J.; Waterfield, M. D.; Burlingame, A. L.

    1997-12-01

    Delayed extraction matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (DE-MALDI-TOF-MS) is employed to evaluate its potential for peptide sequencing using both post-source decay (PSD) and high-energy collision-induced dissociation (CID). This work provides evidence that complete amino-acid sequences may be obtained employing a dual approach including PSD of [M + H]+ ions using a "hot" matrix ([alpha]-cyano-4-hydroxycinnamic acid, CHCA), followed by high-energy CID using "cold" matrices (2,5-dihydroxybenzoic acid, DHB; 2,6-dihydroxyacetophenone/di-ammonium hydrogen citrate, DHAP/DAHC). This strategy ensures that PSD results in a rich variety of product ions derived from charge-driven processes that provide gross structural information. High-energy CID (20 keV collision energy range) of low internal energy [M + H]+ ions is then employed to reveal complementary side-chain detail (i.e. Leu/Ile distinction) in a manner highly selective for charge remote fragmentation (CRF), because PSD is largely reduced. As expected from the known behaviour of protonated peptides at 10 keV collision energies, charge fixation at basic sites required for CRF is more pronounced in CID than in PSD. We have obtained spectra for a synthetic peptide that approximate the results and performance of MALDI high-energy CID obtained on sector-based instrumentation (EBE-oa-TOF).

  13. X-ray resonant photoexcitation: linewidths and energies of Kα transitions in highly charged Fe ions.

    PubMed

    Rudolph, J K; Bernitt, S; Epp, S W; Steinbrügge, R; Beilmann, C; Brown, G V; Eberle, S; Graf, A; Harman, Z; Hell, N; Leutenegger, M; Müller, A; Schlage, K; Wille, H-C; Yavaş, H; Ullrich, J; Crespo López-Urrutia, J R

    2013-09-06

    Photoabsorption by and fluorescence of the Kα transitions in highly charged iron ions are essential mechanisms for x-ray radiation transfer in astrophysical environments. We study photoabsorption due to the main Kα transitions in highly charged iron ions from heliumlike to fluorinelike (Fe24+ to Fe17+) using monochromatic x rays around 6.6 keV at the PETRA III synchrotron photon source. Natural linewidths were determined with hitherto unattained accuracy. The observed transitions are of particular interest for the understanding of photoexcited plasmas found in x-ray binary stars and active galactic nuclei.

  14. Key elements of space charge compensation on a low energy high intensity beam injector

    SciTech Connect

    Peng Shixiang; Lu Pengnan; Ren Haitao; Zhao Jie; Chen Jia; Xu Yuan; Guo Zhiyu; Chen Jia'er; Zhao Hongwei; Sun Liangting

    2013-03-15

    Space charge effect (SCE) along the beam line will decrease beam quality. Space charge compensation (SCC) with extra gas injection is a high-efficiency method to reduce SCE. In this paper, we will report the experimental results on the beam profile, potential distribution, beam emittance, and beam transmission efficiency of a 35 keV/90 mA H{sup +} beam and a 40 keV/10 mA He{sup +} beam compensated by Ar/Kr. The influence of gas type, gas flow, and injection location will be discussed. Emphasis is laid on the consideration of SCC when designing and commissioning a high intensity ion beam injector. Based on measured data, a new definition of space charge compensation degree is proposed.

  15. Non-equilibrium energy loss for very highly charged ions in insulators

    SciTech Connect

    Briere, M.A.; Schenkel, T.; Bauer, P.; Amau, A.

    1996-12-31

    The energy loss of 144 keV Ar{sup +16} ions on a bilayer structure of C-CaF{sub 2} has been measured. An asymmetry in the results is found depending on which layer is passed by the ion first: the energy loss is about four times larger when the CaF{sub 2} layer is traversed by the ion first. We interpret this as an indication of the existence of a nonequilibrium charge state of the Ar ions inside the solid in the case of the insulator.

  16. Adding high time resolution to charge-state-specific ion energy measurements for pulsed copper vacuum arc plasmas

    NASA Astrophysics Data System (ADS)

    Tanaka, Koichi; Han, Liang; Zhou, Xue; Anders, André

    2015-08-01

    Charge-state-resolved ion energy-time distributions of pulsed Cu arc plasma were obtained by using direct (time-dependent) acquisition of the ion detection signal from a commercial ion mass-per-charge and energy-per-charge analyzer. We find a shift of energies of Cu2+, Cu3+ and Cu4+ ions to lower values during the first few hundred microseconds after arc ignition, which is evidence for particle collisions in the plasma. The generation of Cu+ ions in the later part of the pulse, measured by the increase of Cu+ signal intensity and an associated slight reduction of the mean charge state, points to charge exchange reactions between ions and neutrals. At the very beginning of the pulse, when the plasma expands into vacuum and the plasma potential strongly fluctuates, ions with much higher energy (over 200 eV) are observed. Early in the pulse, the ion energies observed are approximately proportional to the ion charge state, and we conclude that the acceleration mechanism is primarily based on acceleration in an electric field. This field is directed away from the cathode, indicative of a potential hump. Measurements by a floating probe suggest that potential structures travel, and ions moving in the traveling field can gain high energies up to a few hundred electron-volts. Later in the pulse, the approximate proportionality is lost, which is related to increased smearing out of different energies due to collisions with neutrals, and/or to a change of the acceleration character from electrostatic to ‘gas-dynamic’, i.e. dominated by pressure gradient.

  17. Fragmentation of amino acids induced by collisions with low-energy highly charged ions

    NASA Astrophysics Data System (ADS)

    Piekarski, D. G.; Maclot, S.; Domaracka, A.; Adoui, L.; Alcamí, M.; Rousseau, P.; Díaz-Tendero, S.; Huber, B. A.; Martín, F.

    2014-04-01

    Fragmentation of amino acids NH2-(CH2)n-COOH (n=1 glycine; n=2 β-alanine and n=3 γ-aminobutyric acid GABA) following collisions with slow highly charged ions has been studied in the gas phase by a combined experimental and theoretical approach. In the experiments, a multi-coincidence detection method was used to deduce the charge state of the molecules before fragmentation. Quantum chemistry calculations have been carried out in the basis of the density functional theory and ab initio molecular dynamics. The combination of both methodologies is essential to unambiguously unravel the different fragmentation pathways.

  18. Critical validity assessment of theoretical models: charge-exchange at intermediate and high energies

    NASA Astrophysics Data System (ADS)

    Belkić, Dževad

    1999-06-01

    Exact comprehensive computations are carried out by means of four leading second-order approximations yielding differential cross sections dQ/ dΩ for the basic charge exchange process H ++H(1s)→H(1s)+H + at intermediate and high energies. The obtained extensive set of results is thoroughly tested against all the existing experimental data with the purpose of critically assessing the validity of the boundary corrected second-Born (CB2), continuum-distorted wave (CDW), impulse approximation (IA) and the reformulated impulse approximation (RIA). The conclusion which emerges from this comparative study clearly indicates that the RIA agrees most favorably with the measurements available over a large energy range 25 keV-5 MeV. Such a finding reaffirms the few-particle quantum scattering theory which imposes several strict conditions on adequate second-order methods. These requirements satisfied by the RIA are: (i) normalisations of all the scattering wave functions, (ii) correct boundary conditions in both entrance and exit channels, (iii) introduction of a mathematically justified two-center continuum state for the sum of an attractive and a repulsive Coulomb potential with the same interaction strength, (iv) inclusion of the multiple scattering effects neglected in the IA, (v) a proper description of the Thomas double scattering in good agreement with the experiments and without any unobserved peak splittings. Nevertheless, the performed comparative analysis of the above four approximations indicates that none of the methods is free from some basic shortcomings. Despite its success, the RIA remains essentially a high-energy model like the other three methods under study. More importantly, their perturbative character leaves virtually no room for further systematic improvements, since the neglected higher-order terms are prohibitively tedious for practical purposes and have never been computed exactly. To bridge this gap, we presently introduce the variational Pad

  19. Angular and charge state distributions of highly charged ions scattered during low energy surface-channeling interactions with Au(110)

    SciTech Connect

    Meyer, F.W.; Folkerts, L.; Schippers, S.

    1994-10-01

    The authors have measured scattered projectile angular and charge state distributions for 3.75 keV/amu O{sup q+} (3 {le} q {le} 8) and 1.2 keV/amu Ar{sup 1+} (3 {le} q {le} 14) ions grazingly incident along the [110] and [100] directions of a Au(110) single crystal target. Scattered projectile angular distribution characteristic of surface channeling are observed. For both incident species, the dominant scattered charge fraction is neutral, which varies only by a few percent as a function of incident charge state. Significant O{sup {minus}} formation is observed, which manifests a distinct velocity threshold. For incident Ar projectiles with open L-shells, the positive scattered charge fractions, while always less than about 10%, increase linearly with increasing number of initial L-shell vacancies.

  20. Health risks of space exploration: targeted and nontargeted oxidative injury by high-charge and high-energy particles.

    PubMed

    Li, Min; Gonon, Géraldine; Buonanno, Manuela; Autsavapromporn, Narongchai; de Toledo, Sonia M; Pain, Debkumar; Azzam, Edouard I

    2014-03-20

    During deep space travel, astronauts are often exposed to high atomic number (Z) and high-energy (E) (high charge and high energy [HZE]) particles. On interaction with cells, these particles cause severe oxidative injury and result in unique biological responses. When cell populations are exposed to low fluences of HZE particles, a significant fraction of the cells are not traversed by a primary radiation track, and yet, oxidative stress induced in the targeted cells may spread to nearby bystander cells. The long-term effects are more complex because the oxidative effects persist in progeny of the targeted and affected bystander cells, which promote genomic instability and may increase the risk of age-related cancer and degenerative diseases. Greater understanding of the spatial and temporal features of reactive oxygen species bursts along the tracks of HZE particles, and the availability of facilities that can simulate exposure to space radiations have supported the characterization of oxidative stress from targeted and nontargeted effects. The significance of secondary radiations generated from the interaction of the primary HZE particles with biological material and the mitigating effects of antioxidants on various cellular injuries are central to understanding nontargeted effects and alleviating tissue injury. Elucidation of the mechanisms underlying the cellular responses to HZE particles, particularly under reduced gravity and situations of exposure to additional radiations, such as protons, should be useful in reducing the uncertainty associated with current models for predicting long-term health risks of space radiation. These studies are also relevant to hadron therapy of cancer.

  1. Energy Gain in Collisions of Highly Charged Ions with C_60

    NASA Astrophysics Data System (ADS)

    Thumm, Uwe; Bárány, Anders; Cederquist, Henrik

    1997-04-01

    Within the dynamical classical over--barrier model for charge transfer in soft ion--cluster collisions [1], we have simulated [2] the kinetic energy gain Q of 3.3 q keV Ar^q+ ions in collisions with neutral C_60 targets. Our semi--classical theory allows for the calculation of Q in two different ways, either as difference of electronic binding energies before and after the collision or by integrating the dynamically changing force between the collision partners along the trajectory. A comparison between the two ways provides an intrinsic test of the model calculation. Comparison with recent experimental data [3] shows good agreement in the main features of the energy gain spectra and facilitates their interpretation in terms of the number and final states of transferred electrons. [1] U. Thumm, J. Phys. B27 3515 (1994); Phys. Rev. A55 (Jan.1997). [2] U. Thumm, A. Bárány and H. Cederquist, to be published. [3] N. Selberg et al., Phys. Rev. A 53, 874 (1996). description U.T. is supported by the Division of Chemical Sciences, Basis Energy Sciences, Office of Energy Research, U.S. Department of Energy.

  2. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    SciTech Connect

    Lee, S. Y.

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  3. Energy storage device with large charge separation

    SciTech Connect

    Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei

    2016-04-12

    High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.

  4. Rapid heating tensile tests of hydrogen-charged high-energy-rate-forged 316L stainless steel

    SciTech Connect

    Mosley, W.C.

    1989-05-19

    316L stainless steel is a candidate material for construction of equipment that will be exposed to tritium. Proper design of the equipment will require an understanding of how tritium and its decay product helium affect mechanical properties. This memorandum describes results of rapid heating tensile testing of hydrogen-charged specimens of high-energy-rate-forged (HERF) 316L stainless steel. These results provide a data base for comparison with uncharged and tritium-charged-and-aged specimens to distinguish the effects of hydrogen and helium. Details of the experimental equipment and procedures and results for uncharged specimens were reported previously. 3 refs., 10 figs.

  5. High-charge-state ion sources

    SciTech Connect

    Clark, D.J.

    1983-06-01

    Sources of high charge state positive ions have uses in a variety of research fields. For heavy ion particle accelerators higher charge state particles give greater acceleration per gap and greater bending strength in a magnet. Thus higher energies can be obtained from circular accelerators of a given size, and linear accelerators can be designed with higher energy gain per length using higher charge state ions. In atomic physics the many atomic transitions in highly charged ions supplies a wealth of spectroscopy data. High charge state ion beams are also used for charge exchange and crossed beam experiments. High charge state ion sources are reviewed. (WHK)

  6. Health Risks of Space Exploration: Targeted and Nontargeted Oxidative Injury by High-Charge and High-Energy Particles

    PubMed Central

    Li, Min; Gonon, Géraldine; Buonanno, Manuela; Autsavapromporn, Narongchai; de Toledo, Sonia M.; Pain, Debkumar

    2014-01-01

    Abstract Significance: During deep space travel, astronauts are often exposed to high atomic number (Z) and high-energy (E) (high charge and high energy [HZE]) particles. On interaction with cells, these particles cause severe oxidative injury and result in unique biological responses. When cell populations are exposed to low fluences of HZE particles, a significant fraction of the cells are not traversed by a primary radiation track, and yet, oxidative stress induced in the targeted cells may spread to nearby bystander cells. The long-term effects are more complex because the oxidative effects persist in progeny of the targeted and affected bystander cells, which promote genomic instability and may increase the risk of age-related cancer and degenerative diseases. Recent Advances: Greater understanding of the spatial and temporal features of reactive oxygen species bursts along the tracks of HZE particles, and the availability of facilities that can simulate exposure to space radiations have supported the characterization of oxidative stress from targeted and nontargeted effects. Critical Issues: The significance of secondary radiations generated from the interaction of the primary HZE particles with biological material and the mitigating effects of antioxidants on various cellular injuries are central to understanding nontargeted effects and alleviating tissue injury. Future Directions: Elucidation of the mechanisms underlying the cellular responses to HZE particles, particularly under reduced gravity and situations of exposure to additional radiations, such as protons, should be useful in reducing the uncertainty associated with current models for predicting long-term health risks of space radiation. These studies are also relevant to hadron therapy of cancer. Antioxid. Redox Signal. 20, 1501–1523. PMID:24111926

  7. Charged hadron composition of the final state in e + e - annihilation at high energies

    NASA Astrophysics Data System (ADS)

    Althoff, M.; Brandelik, R.; Braunschweig, W.; Gather, K.; Kirschfink, F. J.; Lübelsmeyer, K.; Martyn, H.-U.; Peise, G.; Rimkus, J.; Sander, H. G.; Schmitz, D.; Siebke, H.; Trines, D.; Wallraff, W.; Boerner, H.; Fischer, H. M.; Hartmann, H.; Hilger, E.; Hillen, W.; Knop, G.; Köpke, L.; Kolanoski, H.; Kück, H.; Wedemeyer, R.; Wermes, N.; Wollstadt, M.; Burkhardt, H.; Cooper, S.; Franzke, J.; Hultschig, H.; Joos, P.; Koch, W.; Kötz, U.; Kowalski, H.; Ladage, A.; Löhr, B.; Lüke, D.; Mättig, P.; Mess, K. H.; Notz, D.; Pyrlik, J.; Quarrie, D. R.; Riethmüller, R.; Schütte, W.; Söding, P.; Wolf, G.; Yekutieli, G.; Fohrmann, R.; Krasemann, H. L.; Leu, P.; Lohrmann, E.; Pandoulas, D.; Poelz, G.; Römer, O.; Schmüser, P.; Wiik, B. H.; Al-Agil, I.; Beuselinck, R.; Binnie, D. M.; Campbell, A. J.; Dornan, P. J.; Garbutt, D. A.; Jones, T. D.; Jones, W. G.; Lloyd, S. L.; McCardle, J.; Sedgebeer, J. K.; Bell, K. W.; Bowler, M. G.; Brock, I. C.; Cashmore, R. J.; Carnegie, R.; Clarke, P. E. L.; Devenish, R.; Grossmann, P.; Illingworth, J.; Salmon, G. L.; Thomas, J.; Wyatt, T. R.; Youngman, C.; Foster, B.; Hart, J. C.; Harvey, J.; Proudfoot, J.; Saxon, D. H.; Woodworth, P. L.; Heyland, D.; Holder, M.; Duchovni, E.; Eisenberg, Y.; Karshon, U.; Mikenberg, G.; Revel, D.; Ronat, E.; Shapira, A.; Barklow, T.; Freeman, J.; Lecomte, P.; Meyer, T.; Rudolph, G.; Venkataramania, H.; Wicklund, E.; Wu, Sau Lan; Zobernig, G.

    1983-03-01

    The inclusive production of π± and K ± mesons and of protons and antiprotons in e + e - annihilation has been measured at c.m. energies of W=14, 22 and 34GeV. Using time of flight measurements and Cerenkov counters the full momentum range has been covered. Differential cross sections and total particle yields are given. At particle momenta of 0.4 GeV/c more than 90% of the charged hadrons are pions. With increasing momentum the fraction of pions among the charged hadrons decreases. At W=34 GeV and a momentum of 5 GeV/c the particle fractions are approximately π±: K ±: p,bar p = 0.55:0.3:0.15. On average an event at W=34 GeV contains 10.3±0.4π±, 2.0±0.2 K ± and 0.8±0.1 p,bar p. In addition, we present results on baryon correlations using a sample of events where two or more protons and/or antiprotons are observed in the final state.

  8. The adenylate energy charge and specific fermentation rate of brewer's yeasts fermenting high- and very high-gravity worts.

    PubMed

    Guimarães, Pedro M R; Londesborough, John

    2008-01-01

    Intracellular and extracellular ATP, ADP and AMP (i.e. 5'-AMP) were measured during fermentations of high- (15 degrees P) and very high-gravity (VHG, 25 degrees P) worts by two lager yeasts. Little extracellular ATP and ADP but substantial amounts of extracellular AMP were found. Extracellular AMP increased during fermentation and reached higher values (3 microM) in 25 degrees P than 15 degrees P worts (1 microM). More AMP (13 microM at 25 degrees P) was released during fermentation with industrially cropped yeast than with the same strain grown in the laboratory. ATP was the dominant intracellular adenine nucleotide and the adenylate energy charge (EC = ([ATP] + 0.5*[ADP])/([ATP] + [ADP] + [AMP])) remained high (>0.8) until residual sugar concentrations were low and specific rates of ethanol production were < 5% of the maximum values in early fermentation. The high ethanol concentrations (>85 g/l) reached in VHG fermentations did not decrease the EC below values that permit synthesis of new proteins. The results suggest that, during wort fermentations, the ethanol tolerance of brewer's strains is high so long as fermentation continues. Under these conditions, maintenance of the EC seems to depend upon active transport of alpha-glucosides, which in turn depends upon maintenance of the EC. Therefore, the collapse of the EC and cell viability when residual alpha-glucoside concentrations no longer support adequate rates of fermentation can be very abrupt. This emphasizes the importance of early cropping of yeast for recycling.

  9. Energy Loss of a High Charge Bunched Electron Beam in Plasma: Nonlinear Plasma Response and Linear Scaling

    NASA Astrophysics Data System (ADS)

    Rosenzweig, J. B.; Barov, N.; Thompson, M. C.; Yoder, R.

    2002-12-01

    There has been much experimental and theoretical interest in blowout regime of plasma wakefield acceleration (PWFA), which features ultra-high accelerating fields, linear transverse focusing forces, and nonlinear plasma motion. Using an exact analysis, we examine here a fundamental limit of nonlinear PWFA excitation, by an infinitesimally short, relativistic electron beam. The beam energy loss in this case is shown to be linear in charge even for nonlinear plasma response, where a normalized, unitless charge exceeds unity, and relativistic plasma effects become important or dominant. The physical bases for this persistence of linear response are pointed out. As a byproduct of our analysis, we re-examine the issue of field divergence as the point-charge limit is approached, suggesting an important modification of commonly held views of evading unphysical energy loss. Deviations from linear behavior are investigated using simulations with finite length beams. The peak accelerating field in the plasma wave excited behind a finite-length beam is also examined, with the artifact of wave spiking adding to the apparent persistence of linear scaling of the peak field amplitude well into the nonlinear regime. On the other hand, at large enough normalized charge, linear scaling of fields collapses, with serious consequences for plasma wave excitation efficiency. The dramatic implications of these results for observing the collapse of linear scaling in planned experiments are discussed.

  10. Low energy highly charged ion beam facility at Inter University Accelerator Centre: Measurement of the plasma potential and ion energy distributions

    SciTech Connect

    Sairam, T. Bhatt, Pragya; Safvan, C. P.; Kumar, Ajit; Kumar, Herendra

    2015-11-15

    A deceleration lens coupled to one of the beam lines of the electron cyclotron resonance based low energy beam facility at Inter University Accelerator Centre is reported. This system is capable of delivering low energy (2.5 eV/q–1 keV/q) highly charged ion beams. The presence of plasma potential hinders the measurements of low energies (<50 eV), therefore, plasma potential measurements have been undertaken using a retarding plate analyzer in unison with the deceleration assembly. The distributions of the ion energies have been obtained and the effect of different source parameters on these distributions is studied.

  11. Sandwich-structured polymer nanocomposites with high energy density and great charge-discharge efficiency at elevated temperatures.

    PubMed

    Li, Qi; Liu, Feihua; Yang, Tiannan; Gadinski, Matthew R; Zhang, Guangzu; Chen, Long-Qing; Wang, Qing

    2016-09-06

    The demand for a new generation of high-temperature dielectric materials toward capacitive energy storage has been driven by the rise of high-power applications such as electric vehicles, aircraft, and pulsed power systems where the power electronics are exposed to elevated temperatures. Polymer dielectrics are characterized by being lightweight, and their scalability, mechanical flexibility, high dielectric strength, and great reliability, but they are limited to relatively low operating temperatures. The existing polymer nanocomposite-based dielectrics with a limited energy density at high temperatures also present a major barrier to achieving significant reductions in size and weight of energy devices. Here we report the sandwich structures as an efficient route to high-temperature dielectric polymer nanocomposites that simultaneously possess high dielectric constant and low dielectric loss. In contrast to the conventional single-layer configuration, the rationally designed sandwich-structured polymer nanocomposites are capable of integrating the complementary properties of spatially organized multicomponents in a synergistic fashion to raise dielectric constant, and subsequently greatly improve discharged energy densities while retaining low loss and high charge-discharge efficiency at elevated temperatures. At 150 °C and 200 MV m(-1), an operating condition toward electric vehicle applications, the sandwich-structured polymer nanocomposites outperform the state-of-the-art polymer-based dielectrics in terms of energy density, power density, charge-discharge efficiency, and cyclability. The excellent dielectric and capacitive properties of the polymer nanocomposites may pave a way for widespread applications in modern electronics and power modules where harsh operating conditions are present.

  12. Verification of charge sign for high-energy particles measured by magnetic tracking system of PAMELA spectrometer

    NASA Astrophysics Data System (ADS)

    Lukyanov, A. D.; Alekseev, V. V.; Bogomolov, Yu V.; Dunaeva, O. A.; Malakhov, V. V.; Mayorov, A. G.; Rodenko, S. A.

    2017-01-01

    Analysis of experimental data of primary positrons and antiprotons fluxes obtained by PAMELA spectrometer, recently confirmed by AMS-02 spectrometer, for some reasons is of big interest for scientific community, especially for energies higher than 100 GV, where appearance of signal coming from dark matter particles is possible. In this work we present a method for verification of charge sign for high-energy antiprotons, measured by magnetic tracking system of PAMELA spectrometer, which can be immitated by protons due to scattering or finite instrumental resolution at high energies (so-called “spillover”). We base our approach on developing2 a set of distinctive features represented by differently computed rigidities and training AdaBoost classifier, which shows good classification accuracy on Monte-Carlo simulation data of 98% for rigidity up to 600 GV.

  13. Determination of the charge radii of several light nuclei from precision, high-energy electron elastic scattering

    SciTech Connect

    Kabir, Al Amin

    2015-12-01

    Analysis of high-energy electron scattering has been used to determine the charge radii of nuclei for several decades. Recent analysis of the Lamb shift in muonic hydrogen found an r.m.s. radius significantly different than the electron scattering result. To understand this puzzle we have analyzed the "LEDEX" data for the (e, e'p) reaction. This experiment includes measurements on several light nuclei, hydrogen, deuterium, lithium, boron, and carbon. To test our ability to measure absolute cross sections, as well as our ability to extract the charge radius, we tested our technique against the extremely well-measured carbon case and found excellent agreement using the Fourier-Bessel parametrization. We then extended the procedure to boron and lithium, which show nice agreement with the latest theoretical calculations. For hydrogen, we see clearly the limits of this technique and therefore, the charge radius is determined from the traditional extrapolation to q2 = 0. We will show that there is a model dependence in extracting the charge radius of hydrogen and its unambiguous determination is very difficult with available electron-scattering measurements.

  14. Effect of dense plasmas on exchange-energy shifts in highly charged ions: An alternative approach for arbitrary perturbation potentials

    SciTech Connect

    Rosmej, F.; Bennadji, K.; Lisitsa, V. S.

    2011-09-15

    An alternative method of calculation of dense plasma effects on exchange-energy shifts {Delta}E{sub x} of highly charged ions is proposed which results in closed expressions for any plasma or perturbation potential. The method is based on a perturbation theory expansion for the inner atomic potential produced by charged plasma particles employing the Coulomb Green function method. This approach allows us to obtain analytic expressions and scaling laws with respect to the electron temperature T, density n{sub e}, and nuclear charge Z. To demonstrate the power of the present method, two specific models were considered in detail: the ion sphere model (ISM) and the Debye screening model (DSM). We demonstrate that analytical expressions can be obtained even for the finite temperature ISM. Calculations have been carried out for the singlet 1s2p{sup 1} P{sub 1} and triplet 1s2p{sup 3} P{sub 1} configurations of He-like ions with charge Z that can be observed in dense plasmas via the He-like resonance and intercombination lines. Finally we discuss recently available purely numerical calculations and experimental data.

  15. The joint NASA/Goddard-University of Maryland research program in charged particle and high energy photon detector technology

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The first measurements of Fe charge states in two coronal hole-association high speed streams, using the sensor on ISEE-3, are presented. Eight event intervals from the January to June 1983 timeframe were chosen for the study of magnetotail dynamics and its relationship to substorm activity and the possible formation of plasmoids. Techniques are being explored for measurement of secondary electrons which are characteristically emitted when ions hit a target material. Efforts are continuing to understand kilometer wavelength shock associated radio events. An all-sky survey of fast X-ray transients of duration of 5 to 10,000 s was completed. Research using high resolution gamma-ray spectroscopy of celestial sources in the 20 keV to 20 MeV range to search for and study narrow lines in low-energy gamma-ray spectrum continues. Research in high energy radiation from pulsars is being conducted.

  16. High-energy Electron Scattering and the Charge Distributions of Selected Nuclei

    DOE R&D Accomplishments Database

    Hahn, B.; Ravenhall, D. G.; Hofstadter, R.

    1955-10-01

    Experimental results are presented of electron scattering by Ca, V, Co, In, Sb, Hf, Ta, W, Au, Bi, Th, and U, at 183 Mev and (for some of the elements) at 153 Mev. For those nuclei for which asphericity and inelastic scattering are absent or unimportant, i.e., Ca, V, Co, In, Sb, Au, and Bi, a partial wave analysis of the Dirac equation has been performed in which the nuclei are represented by static, spherically symmetric charge distributions. Smoothed uniform charge distributions have been assumed; these are characterized by a constant charge density in the central region of the nucleus, with a smoothed-our surface. Essentially two parameters can be determined, related to the radium and to the surface thickness. An examination of the Au experiments show that the functional forms of the surface are not important, and that the charge density in the central regions is probably fairly flat, although it cannot be determined very accurately.

  17. Measurement of Absolute Excitation Cross Sections in Highly-Charged Ions Using Electron Energy Loss and Merged Beams

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Smith, Steven J.; Lozano, J.

    2002-01-01

    There is increasing emphasis during this decade on understanding energy balance and phenomena observed in high electron temperature plasmas. The UV spectral return from FUSE, the X-ray spectral return from the HETG on Chandra and the LETGS 011 XMM-Newton are just beginning. Line emissions are almost entirely from highly-charged ions (HCIs) of C, N, 0, Ne, Mg, S, Si, Ca, and Fe. The Constellation-X mission will provide X-ray spectroscopy up to photon energies of 0.12 nm (10 keV) where primary line emitters will be HCIs. A variety of atomic parameters are required to model the stellar and solar plasma. These include cross sections for excitation, ionization, charge-exchange, X-ray emission, direct and indirect recombination, lifetimes and branching ratios, and dependences on l, m mixing by external E and B fields. In almost all cases the atomic quantities are calculated, and few comparisons to experiment have been carried out. Collision strengths and Einstein A-values are required to convert the observed spectral intensities to electron temperatures and densities in the stellar plasma. The JPL electron energy-loss and merged beam approach has been used to measure absolute collision strengths in a number of ions, with critical comparison made to the best available theories.

  18. Timing capabilities of garnet crystals for detection of high energy charged particles

    NASA Astrophysics Data System (ADS)

    Lucchini, M. T.; Gundacker, S.; Lecoq, P.; Benaglia, A.; Nikl, M.; Kamada, K.; Yoshikawa, A.; Auffray, E.

    2017-04-01

    Particle detectors at future collider experiments will operate at high collision rates and thus will have to face high pile up and a harsh radiation environment. Precision timing capabilities can help in the reconstruction of physics events by mitigating pile up effects. In this context, radiation tolerant, scintillating crystals coupled to silicon photomultipliers (SiPMs) can provide a flexible and compact option for the implementation of a precision timing layer inside large particle detectors. In this paper, we compare the timing performance of aluminum garnet crystals (YAG: Ce, LuAG: Ce, GAGG: Ce) and the improvements of their time resolution by means of codoping with Mg2+ ions. The crystals were read out using SiPMs from Hamamatsu glued to the rear end of the scintillator and their timing performance was evaluated by measuring the coincidence time resolution (CTR) of 150 GeV charged pions traversing a pair of crystals. The influence of crystal properties, such as density, light yield and decay kinetics on the timing performance is discussed. The best single detector time resolutions are in the range of 23-30 ps (sigma) and only achieved by codoping the garnet crystals with divalent ions, such as Mg2+. The much faster scintillation decay in the co-doped samples as compared to non co-doped garnets explains the higher timing performance. Samples of LSO: Ce, Ca and LYSO:Ce crystals have also been used as reference time device and showed a time resolution at the level of 17 ps, in agreement with previous results.

  19. Charge composition of high energy heavy primary cosmic ray nuclei. Ph.D. Thesis - Catholic Univ. of Am.

    NASA Technical Reports Server (NTRS)

    Price, R. D.

    1974-01-01

    A detailed study of the charge composition of primary cosmic radiation for about 5000 charged nuclei from neon to iron with energies greater than 1.16 GeV/nucleon is presented. Values are obtained after corrections were made for detector dependences, atmospheric attenuation, and solar modulation. New values of 38.5, 32.4, 23.7, and 16.8 g/sq cm for the attenuation mean free paths in air for the same charge groups are presented.

  20. The origin of high PCE in PTB7 based photovoltaics: proper charge neutrality level and free energy of charge separation at PTB7/PC71BM interface

    NASA Astrophysics Data System (ADS)

    Park, Soohyung; Jeong, Junkyeong; Hyun, Gyeongho; Kim, Minju; Lee, Hyunbok; Yi, Yeonjin

    2016-10-01

    The energy level alignments at donor/acceptor interfaces in organic photovoltaics (OPVs) play a decisive role in device performance. However, little is known about the interfacial energetics in polymer OPVs due to technical issues of the solution process. Here, the frontier ortbial line-ups at the donor/acceptor interface in high performance polymer OPVs, PTB7/PC71BM, were investigated using in situ UPS, XPS and IPES. The evolution of energy levels during PTB7/PC71BM interface formation was investigated using vacuum electrospray deposition, and was compared with that of P3HT/PC61BM. At the PTB7/PC71BM interface, the interface dipole and the band bending were absent due to their identical charge neutrality levels. In contrast, a large interfacial dipole was observed at the P3HT/PC61BM interface. The measured photovoltaic energy gap (EPVG) was 1.10 eV for PTB7/PC71BM and 0.90 eV for P3HT/PC61BM. This difference in the EPVG leads to a larger open-circuit voltage of PTB7/PC71BM than that of P3HT/PC61BM.

  1. The origin of high PCE in PTB7 based photovoltaics: proper charge neutrality level and free energy of charge separation at PTB7/PC71BM interface.

    PubMed

    Park, Soohyung; Jeong, Junkyeong; Hyun, Gyeongho; Kim, Minju; Lee, Hyunbok; Yi, Yeonjin

    2016-10-13

    The energy level alignments at donor/acceptor interfaces in organic photovoltaics (OPVs) play a decisive role in device performance. However, little is known about the interfacial energetics in polymer OPVs due to technical issues of the solution process. Here, the frontier ortbial line-ups at the donor/acceptor interface in high performance polymer OPVs, PTB7/PC71BM, were investigated using in situ UPS, XPS and IPES. The evolution of energy levels during PTB7/PC71BM interface formation was investigated using vacuum electrospray deposition, and was compared with that of P3HT/PC61BM. At the PTB7/PC71BM interface, the interface dipole and the band bending were absent due to their identical charge neutrality levels. In contrast, a large interfacial dipole was observed at the P3HT/PC61BM interface. The measured photovoltaic energy gap (EPVG) was 1.10 eV for PTB7/PC71BM and 0.90 eV for P3HT/PC61BM. This difference in the EPVG leads to a larger open-circuit voltage of PTB7/PC71BM than that of P3HT/PC61BM.

  2. The origin of high PCE in PTB7 based photovoltaics: proper charge neutrality level and free energy of charge separation at PTB7/PC71BM interface

    PubMed Central

    Park, Soohyung; Jeong, Junkyeong; Hyun, Gyeongho; Kim, Minju; Lee, Hyunbok; Yi, Yeonjin

    2016-01-01

    The energy level alignments at donor/acceptor interfaces in organic photovoltaics (OPVs) play a decisive role in device performance. However, little is known about the interfacial energetics in polymer OPVs due to technical issues of the solution process. Here, the frontier ortbial line-ups at the donor/acceptor interface in high performance polymer OPVs, PTB7/PC71BM, were investigated using in situ UPS, XPS and IPES. The evolution of energy levels during PTB7/PC71BM interface formation was investigated using vacuum electrospray deposition, and was compared with that of P3HT/PC61BM. At the PTB7/PC71BM interface, the interface dipole and the band bending were absent due to their identical charge neutrality levels. In contrast, a large interfacial dipole was observed at the P3HT/PC61BM interface. The measured photovoltaic energy gap (EPVG) was 1.10 eV for PTB7/PC71BM and 0.90 eV for P3HT/PC61BM. This difference in the EPVG leads to a larger open-circuit voltage of PTB7/PC71BM than that of P3HT/PC61BM. PMID:27734957

  3. Bent silicon strip crystals for high-energy charged particle beam collimation

    NASA Astrophysics Data System (ADS)

    Germogli, G.; Mazzolari, A.; Guidi, V.; Romagnoni, M.

    2017-07-01

    For applications in high energy particles accelerators, such as the crystal-assisted beam collimation, several strip crystals exploiting anticlastic curvature were produced in the last decade at the Sensor and Semiconductor Laboratory (SSL) of Ferrara by means of revisited techniques for silicon micromachining, such as photolitography and wet etching. Those techniques were recently enhanced by introducing a further treatment called Magnetorheological Finishing (MRF), which allowed to fabricate crystals with ultraflat surface and miscut very close to zero. The technology of the mechanical devices used to hold and bend crystals has been also improved by employing a titanium alloy to realize the holders. Characterization method were also improved: the usage of a high resolution X-rays diffractometer was introduced to directly measure crystal bending and torsion. Accuracy of the diffractometer was furtherly enhanced with an autocollimator, which found an important application in miscut characterization. A new infrared light interferometer was used to map the thickness of the starting swafers with sub-micrometric precision, as well as to measure the length along the beam of the strips. Crystals were characterized at the H8 external lines of CERN-SPS with various hundreds-GeV ion beams, which gave results in agreement with the precharacterization performed at SSL. One strip was selected among the crystals to be installed in the LHC beam pipe during the Long Shutdown 1 in 2014. These crystals were very recently tested in a crystal-assisted collimation experiment with a 6.5 TeV proton beam, resulting in the first observation of channeling at this record energy, being also the first observation of channeling of the beam circulating in the LHC.

  4. High-Energy Collision-Induced Dissociation by MALDI TOF/TOF Causes Charge-Remote Fragmentation of Steroid Sulfates

    NASA Astrophysics Data System (ADS)

    Yan, Yuetian; Ubukata, Masaaki; Cody, Robert B.; Holy, Timothy E.; Gross, Michael L.

    2014-08-01

    A method for structural elucidation of biomolecules dating to the 1980s utilized high-energy collisions (~10 keV, laboratory frame) that induced charge-remote fragmentations (CRF), a class of fragmentations particularly informative for lipids, steroids, surfactants, and peptides. Unfortunately, the capability for high-energy activation has largely disappeared with the demise of magnetic sector instruments. With the latest designs of tandem time-of-flight mass spectrometers (TOF/TOF), however, this capability is now being restored to coincide with the renewed interest in metabolites and lipids, including steroid-sulfates and other steroid metabolites. For these metabolites, structure determinations are required at concentration levels below that appropriate for NMR. To meet this need, we explored CRF with TOF/TOF mass spectrometry for two groups of steroid sulfates, 3-sulfates and 21-sulfates. We demonstrated that the current generation of MALDI TOF/TOF instruments can generate charge-remote fragmentations for these materials. The resulting collision-induced dissociation (CID) spectra are useful for positional isomer differentiation and very often allow the complete structure determination of the steroid. We also propose a new nomenclature that directly indicates the cleavage sites on the steroid ring with carbon numbers.

  5. High-energy collision-induced dissociation by MALDI TOF/TOF causes charge-remote fragmentation of steroid sulfates.

    PubMed

    Yan, Yuetian; Ubukata, Masaaki; Cody, Robert B; Holy, Timothy E; Gross, Michael L

    2014-08-01

    A method for structural elucidation of biomolecules dating to the 1980s utilized high-energy collisions (~10 keV, laboratory frame) that induced charge-remote fragmentations (CRF), a class of fragmentations particularly informative for lipids, steroids, surfactants, and peptides. Unfortunately, the capability for high-energy activation has largely disappeared with the demise of magnetic sector instruments. With the latest designs of tandem time-of-flight mass spectrometers (TOF/TOF), however, this capability is now being restored to coincide with the renewed interest in metabolites and lipids, including steroid-sulfates and other steroid metabolites. For these metabolites, structure determinations are required at concentration levels below that appropriate for NMR. To meet this need, we explored CRF with TOF/TOF mass spectrometry for two groups of steroid sulfates, 3-sulfates and 21-sulfates. We demonstrated that the current generation of MALDI TOF/TOF instruments can generate charge-remote fragmentations for these materials. The resulting collision-induced dissociation (CID) spectra are useful for positional isomer differentiation and very often allow the complete structure determination of the steroid. We also propose a new nomenclature that directly indicates the cleavage sites on the steroid ring with carbon numbers.

  6. Electroactive and High Dielectric Folic Acid/PVDF Composite Film Rooted Simplistic Organic Photovoltaic Self-Charging Energy Storage Cell with Superior Energy Density and Storage Capability.

    PubMed

    Roy, Swagata; Thakur, Pradip; Hoque, Nur Amin; Bagchi, Biswajoy; Sepay, Nayim; Khatun, Farha; Kool, Arpan; Das, Sukhen

    2017-07-19

    Herein we report a simplistic prototype approach to develop an organic photovoltaic self-charging energy storage cell (OPSESC) rooted with biopolymer folic acid (FA) modified high dielectric and electroactive β crystal enriched poly(vinylidene fluoride) (PVDF) composite (PFA) thin film. Comprehensive and exhaustive characterizations of the synthesized PFA composite films validate the proper formation of β-polymorphs in PVDF. Significant improvements of both β-phase crystallization (F(β) ≈ 71.4%) and dielectric constant (ε ≈ 218 at 20 Hz for PFA of 7.5 mass %) are the twosome realizations of our current study. Enhancement of β-phase nucleation in the composites can be thought as a contribution of the strong interaction of the FA particles with the PVDF chains. Maxwell-Wagner-Sillars (MWS) interfacial polarization approves the establishment of thermally stable high dielectric values measured over a wide temperature spectrum. The optimized high dielectric and electroactive films are further employed as an active energy storage material in designing our device named as OPSESC. Self-charging under visible light irradiation without an external biasing electrical field and simultaneous remarkable self-storage of photogenerated electrical energy are the two foremost aptitudes and the spotlight of our present investigation. Our as fabricated device delivers an impressively high energy density of 7.84 mWh/g and an excellent specific capacitance of 61 F/g which is superior relative to the other photon induced two electrode organic self-charging energy storage devices reported so far. Our device also proves the realistic utility with good recycling capability by facilitating commercially available light emitting diode.

  7. A Molecular Tetrad That Generates a High-Energy Charge-Separated State by Mimicking the Photosynthetic Z-Scheme.

    PubMed

    Favereau, Ludovic; Makhal, Abhinandan; Pellegrin, Yann; Blart, Errol; Petersson, Jonas; Göransson, Erik; Hammarström, Leif; Odobel, Fabrice

    2016-03-23

    The oxygenic photosynthesis of green plants, green algae, and cyanobacteria is the major provider of energy-rich compounds in the biosphere. The so-called "Z-scheme" is at the heart of this "engine of life". Two photosystems (photosystem I and II) work in series to build up a higher redox ability than each photosystem alone can provide, which is necessary to drive water oxidation into oxygen and NADP(+) reduction into NADPH with visible light. Here we show a mimic of the Z-scheme with a molecular tetrad. The tetrad Bodipy-NDI-TAPD-Ru is composed of two different dyes-4,4-difluoro-1,3,5,7-tetramethyl-2,6-diethyl-4-bora-3a,4a-diaza-s-indacene (Bodipy) and a Ru(II)(bipyridine)3 (Ru) derivative-which are connected to a naphthalene diimide (NDI) electron acceptor and tetraalkylphenyldiamine (TAPD) playing the role of electron donor. A strong laser pulse excitation of visible light where the two dye molecules (Ru and Bodipy) absorb with equal probability leads to the cooperative formation of a highly energetic charge-separated state composed of an oxidized Bodipy and a reduced Ru. The latter state cannot be reached by one single-photon absorption. The energy of the final charge-separated state (oxidized Bodipy/reduced Ru) in the tetrad lies higher than that in the reference dyads (Bodipy-NDI and TAPD-Ru), leading to the energy efficiency of the tetrad being 47% of the sum of the photon threshold energies. Its lifetime was increased by several orders of magnitude compared to that in the reference dyads Bodipy-NDI and TAPD-Ru, as it passes from about 3 ns in each dyad to 850 ns in the tetrad. The overall quantum yield formation of this extended charge-separated state is estimated to be 24%. Our proof-of-concept result demonstrates the capability to translate a crucial photosynthetic energy conversion principle into man-made molecular systems for solar fuel formation, to obtain products of higher energy content than those produced by a single photon absorption.

  8. Measurement of Absolute Excitation Cross Sections in Highly-Charged Ions Using Electron Energy Loss and Merged Beams

    NASA Astrophysics Data System (ADS)

    Chutjian, A.; Smith, Steven J.; Lozano, J. A.

    2002-11-01

    There is increasing emphasis within this decade on understanding energy balance and new phenomena observed in high electron temperature plasmas. The UV spectral return from FUSE, and the X-ray spectral return from the HETG on Chandra and the LETGS on XMM-Newton are just beginning. The line emissions are almost entirely from highly-charged ions (HCIs) of C, N, O, Ne, Mg, S, Si, Ca, and Fe. In addition, the Constellation-X mission, currently in the planning stages, will provide high-throughput X-ray spectroscopy up to photon energies of 0.12 nm (10 keV), where the primary line emitters will again be the HCIs. This array of space instruments is providing an overwhelming return of HCI spectral data from a variety of astrophysical objects. Collision strengths and Einstein A-values are required to convert the observed spectral intensities to electron temperatures and densities in the stellar plasma [1]. The JPL electron energy-loss and merged-beams approach [2] has been used to measure absolute collision strengths in a number of ions, with critical comparisons to the best available theories. Experimental methods will be reviewed, and results presented on experimental comparisons to R-Matrix and Breit-Pauli theoretical results in C3+[3], O2+[4], O5+[5], S2+[6], and Fe9+ [7]. Work is planned for comparisons in Mgq+, and higher charge states Fe(10-15)+. J. Lozano thanks the National Research Council for a fellowship though the NASA- NRC program. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and was supported under contract with the National Aeronautics and Space Administration.

  9. High-potential perfluorinated phthalocyanine-fullerene dyads for generation of high-energy charge-separated states: formation and photoinduced electron-transfer studies.

    PubMed

    Das, Sushanta K; Mahler, Andrew; Wilson, Angela K; D'Souza, Francis

    2014-08-25

    High oxidation potential perfluorinated zinc phthalocyanines (ZnF(n)Pcs) are synthesised and their spectroscopic, redox, and light-induced electron-transfer properties investigated systematically by forming donor-acceptor dyads through metal-ligand axial coordination of fullerene (C60) derivatives. Absorption and fluorescence spectral studies reveal efficient binding of the pyridine- (Py) and phenylimidazole-functionalised fullerene (C60Im) derivatives to the zinc centre of the F(n)Pcs. The determined binding constants, K, in o-dichlorobenzene for the 1:1 complexes are in the order of 10(4) to 10(5) M(-1); nearly an order of magnitude higher than that observed for the dyad formed from zinc phthalocyanine (ZnPc) lacking fluorine substituents. The geometry and electronic structure of the dyads are determined by using the B3LYP/6-31G* method. The HOMO and LUMO levels are located on the Pc and C60 entities, respectively; this suggests the formation of ZnF(n)Pc(.+)-C60Im(.-) and ZnF(n)Pc(.+)-C60Py(.-) (n=0, 8 or 16) intra-supramolecular charge-separated states during electron transfer. Electrochemical studies on the ZnPc-C60 dyads enable accurate determination of their oxidation and reduction potentials and the energy of the charge-separated states. The energy of the charge-separated state for dyads composed of ZnF(n)Pc is higher than that of normal ZnPc-C60 dyads and reveals their significance in harvesting higher amounts of light energy. Evidence for charge separation in the dyads is secured from femtosecond transient absorption studies in nonpolar toluene. Kinetic evaluation of the cation and anion radical ion peaks reveals ultrafast charge separation and charge recombination in dyads composed of perfluorinated phthalocyanine and fullerene; this implies their significance in solar-energy harvesting and optoelectronic device building applications.

  10. Adenylate energy pool and energy charge in maturing rape seeds.

    PubMed

    Ching, T M; Crane, J M

    1974-11-01

    A study of energy state and chemical composition of pod walls and seeds of maturing rape (Brassica napus L.) was conducted on two varieties, Victor and Gorczanski. Total adenosine phosphates, ATP, and adenylate energy charge increased with increasing cell number and cellular synthesis during the early stages, remained high at maximum dry weight accumulation and maximum substrate influx time, and decreased with ripening. A temporal control of energy supply and ATP concentration is evident in developing tissues with determined functions; whereas the association of a high energy charge and active cellular biosynthesis occurs only in tissues with a stabilized cell number.

  11. Contribution of High Charge and Energy (HZE) Ions During Solar-Particle Event of September 29, 1989

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Wilson, John W.; Cucinotta, Francis A.; Simonsen, Lisa C.; Atwell, William; Badavi, Francis F.; Miller, Jack

    1999-01-01

    The solar-particle event (SPE) of September 29, 1989, produced an iron-rich spectrum with energies approaching 1 A GeV with an approximate spectral slope parameter of 2.5. These high charge and energy (HZE) ions challenge conventional methods of shield design and assessment of astronaut risks. In the past, shield design and risk assessment have relied on proton shielding codes and biological response models derived from X-ray and neutron exposure data. Because the HZE spectra decline rapidly with energy and HZE attenuation in materials is limited by their penetration power, details of the mass distributions about the sensitive tissues (shielding materials and the astronaut's body) are important determining factors of the exposure levels and distributions of linear energy transfer. Local tissue environments during the SPE of September 29, 1989, with its f= components are examined to analyze the importance of these ions to human SPE exposure. Typical space suit and lightly shielded structures leave significant contributions from HZE components to certain critical body tissues and have important implications on the models for risk assessment. A heavily shielded equipment room of a space vehicle or habitat requires knowledge of the breakup of these ions into lighter components, including neutrons, for shield design specifications.

  12. High performance charge-state resolving ion energy analyzer optimized for intense laser studies on low-density cluster targets.

    PubMed

    Komar, D; Meiwes-Broer, K-H; Tiggesbäumker, J

    2016-10-01

    We report on a versatile ion analyzer which is capable to resolve ion charge states and energies with a resolution of E/ΔE = 100 at 75 keV/nucleon. Charge states are identified by their characteristic deflection in a magnetic field, whereas the ion energies are independently determined by a time-of-flight measurement. To monitor the signals a delay-line detector is used which records ion impact positions and times in each laser shot. Compared to conventional Thomson parabola spectrometers our instrument provides a low background measurement, hence a superior dynamic range. Further features are an improved energy resolution and a significantly increased transmission. We demonstrate the performance by showing charge-state resolved ion energy spectra from the Coulomb explosion of a low-density target, i.e., silver clusters exposed to intense femtosecond laser pulses.

  13. The time-like electromagnetic form factors of proton and charged kaon at high energies

    NASA Astrophysics Data System (ADS)

    Anulli, Fabio

    2016-05-01

    The Initial State Radiation method in the BABAR experiment has been used to measure the time-like electromagnetic form factors at the momentum transfer from 9 to 42 (GeV/c)2 for proton and from 7 to 56 (GeV/c)2 for charged kaon. The obtained data show the tendency to approach the QCD asymptotic prediction for kaons and space-like form factor values for proton. The BABAR data have been used together with data from other experiments, to perform a model-independent determination of the relative phases between the single-photon and the three-gluon amplitudes in ψ → KK ¯ decays. The values of the branching fractions measured in the reaction e+e- → K+ K- are shifted due to interference of resonant and nonresonant amplitudes. We have determined the absolute values of the shifts to be 5% for J/ψ and 15% for ψ(2S) decays.

  14. A Green's function method for high charge and energy ion transport

    NASA Technical Reports Server (NTRS)

    Chun, S. Y.; Khandelwal, G. S.; Wilson, J. W.

    1996-01-01

    A heavy-ion transport code using Green's function methods is developed. The low-order perturbation terms exhibiting the greatest energy variation are used as dominant energy-dependent terms, and the higher order collision terms are evaluated using nonperturbative methods. The recently revised NUCFRG database is used to evaluate the solution for comparison with experimental data for 625A MeV 20Ne and 517A MeV 40Ar ion beams. Improved agreements with the attenuation characteristics for neon ions are found, and reasonable agreement is obtained for the transport of argon ions in water.

  15. Coulomb effects in high-energy e+e- electroproduction by a heavy charged particles in an atomic field

    NASA Astrophysics Data System (ADS)

    Krachkov, P. A.; Milstein, A. I.

    2017-08-01

    The cross section of high-energy e+e- pair production by a heavy charged particle in the atomic field is investigated in detail. We take into account the interaction with the atomic field of e+e- pair and a heavy particle as well. The calculation is performed exactly in the parameters of the atomic field. It is shown that, in contrast to the commonly accepted point of view, the cross section differential with respect to the final momentum of a heavy particle is strongly affected by the interaction of a heavy particle with the atomic field. However, the cross section integrated over the final momentum of a heavy particle is independent of this interaction.

  16. Flexible high-energy Li-ion batteries with fast-charging capability.

    PubMed

    Park, Mi-Hee; Noh, Mijung; Lee, Sanghan; Ko, Minseong; Chae, Sujong; Sim, Soojin; Choi, Sinho; Kim, Hyejung; Nam, Haisol; Park, Soojin; Cho, Jaephil

    2014-07-09

    With the development of flexible mobile devices, flexible Li-ion batteries have naturally received much attention. Previously, all reported flexible components have had shortcomings related to power and energy performance. In this research, in order to overcome these problems while maintaining the flexibility, honeycomb-patterned Cu and Al materials were used as current collectors to achieve maximum adhesion in the electrodes. In addition, to increase the energy and power multishelled LiNi0.75Co0.11Mn0.14O2 particles consisting of nanoscale V2O5 and LixV2O5 coating layers and a LiδNi0.75-zCo0.11Mn0.14VzO2 doping layer were used as the cathode-anode composite (denoted as PNG-AES) consisting of amorphous Si nanoparticles (<20 nm) loaded on expanded graphite (10 wt %) and natural graphite (85 wt %). Li-ion cells with these three elements (cathode, anode, and current collector) exhibited excellent power and energy performance along with stable cycling stability up to 200 cycles in an in situ bending test.

  17. Charge transfer and ionization in collisions of Si{sup 3+} with H from low to high energy

    SciTech Connect

    Wang, J. G.; He, B.; Ning, Y.; Liu, C. L.; Yan, J.; Stancil, P. C.; Schultz, D. R.

    2006-11-15

    Charge transfer processes due to collisions of ground state Si{sup 3+}(3s {sup 1}S) ions with atomic hydrogen are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) and classical-trajectory Monte Carlo (CTMC) methods. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained from Herrero et al. [J. Phys. B 29, 5583 (1996)] which were calculated with a full configuration-interaction method. Total and state-selective single-electron capture cross sections are obtained for collision energies from 0.01 eV/u to 1 MeV/u. Total and state-selective rate coefficients are also presented for temperatures from 2x10{sup 3} K to 10{sup 7} K. Comparison with existing data reveals that the total CTMC cross sections are in good agreement with the experimental measurements at the higher considered energies and that previous Landau-Zener calculations underestimate the total rate coefficients by a factor of up to two. The CTMC calculations of target ionization are presented for high energies.

  18. Verification and Validation: High Charge and Energy (HZE) Transport Codes and Future Development

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Tripathi, Ram K.; Mertens, Christopher J.; Blattnig, Steve R.; Clowdsley, Martha S.; Cucinotta, Francis A.; Tweed, John; Heinbockel, John H.; Walker, Steven A.; Nealy, John E.

    2005-01-01

    In the present paper, we give the formalism for further developing a fully three-dimensional HZETRN code using marching procedures but also development of a new Green's function code is discussed. The final Green's function code is capable of not only validation in the space environment but also in ground based laboratories with directed beams of ions of specific energy and characterized with detailed diagnostic particle spectrometer devices. Special emphasis is given to verification of the computational procedures and validation of the resultant computational model using laboratory and spaceflight measurements. Due to historical requirements, two parallel development paths for computational model implementation using marching procedures and Green s function techniques are followed. A new version of the HZETRN code capable of simulating HZE ions with either laboratory or space boundary conditions is under development. Validation of computational models at this time is particularly important for President Bush s Initiative to develop infrastructure for human exploration with first target demonstration of the Crew Exploration Vehicle (CEV) in low Earth orbit in 2008.

  19. A High-Energy Charge-Separated State of 1.70 eV from a High-Potential Donor-Acceptor Dyad: A Catalyst for Energy-Demanding Photochemical Reactions.

    PubMed

    Lim, Gary N; Obondi, Christopher O; D'Souza, Francis

    2016-09-12

    A high potential donor-acceptor dyad composed of zinc porphyrin bearing three meso-pentafluorophenyl substituents covalently linked to C60 , as a novel dyad capable of generating charge-separated states of high energy (potential) has been developed. The calculated energy of the charge-separated state was found to be 1.70 eV, the highest reported for a covalently linked porphyrin-fullerene dyad. Intramolecular photoinduced electron transfer leading to charge-separated states of appreciable lifetimes in polar and nonpolar solvents has been established from studies involving femto- to nanosecond transient absorption techniques. The high energy stored in the form of charge-separated states along with its persistence of about 50-60 ns makes this dyad a potential electron-transporting catalyst to carry out energy-demanding photochemical reactions. This type of high-energy harvesting dyad is expected to open new research in the areas of artificial photosynthesis especially producing energy (potential) demanding light-to-fuel products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Optically stimulated luminescence and thermoluminescence efficiencies for high-energy heavy charged particle irradiation in Al2O3:C

    NASA Technical Reports Server (NTRS)

    Yukihara, E. G.; Gaza, R.; McKeever, S. W. S.; Soares, C. G.

    2004-01-01

    The thermally and optically stimulated luminescence (TL and OSL) response to high energy heavy-charged particles (HCPs) was investigated for two types of Al2O3:C luminescence dosimeters. The OSL signal was measured in both continuous-wave (CW) and pulsed mode. The efficiencies of the HCPs at producing TL or OSL, relative to gamma radiation, were obtained using four different HCPs beams (150 MeV/u 4He, 400 MeV/u 12C, 490 MeV/u 28Si, and 500 MeV/u 56Fe). The efficiencies were determined as a function of the HCP linear energy transfer (LET). It was observed that the efficiency depends on the type of detector, measurement technique, and the choice of signal. Additionally, it is shown that the shape of the CW-OSL decay curve from Al2O3:C depends on the type of radiation, and, in principle, this can be used to extract information concerning the LET of an unknown radiation field. The response of the dosimeters to low-LET radiation was also investigated for doses in the range from about 1-1000 Gy. These data were used to explain the different efficiency values obtained for the different materials and techniques, as well as the LET dependence of the CW-OSL decay curve shape. c2003 Elsevier Ltd. All rights reserved.

  1. Optically stimulated luminescence and thermoluminescence efficiencies for high-energy heavy charged particle irradiation in Al2O3:C

    NASA Technical Reports Server (NTRS)

    Yukihara, E. G.; Gaza, R.; McKeever, S. W. S.; Soares, C. G.

    2004-01-01

    The thermally and optically stimulated luminescence (TL and OSL) response to high energy heavy-charged particles (HCPs) was investigated for two types of Al2O3:C luminescence dosimeters. The OSL signal was measured in both continuous-wave (CW) and pulsed mode. The efficiencies of the HCPs at producing TL or OSL, relative to gamma radiation, were obtained using four different HCPs beams (150 MeV/u 4He, 400 MeV/u 12C, 490 MeV/u 28Si, and 500 MeV/u 56Fe). The efficiencies were determined as a function of the HCP linear energy transfer (LET). It was observed that the efficiency depends on the type of detector, measurement technique, and the choice of signal. Additionally, it is shown that the shape of the CW-OSL decay curve from Al2O3:C depends on the type of radiation, and, in principle, this can be used to extract information concerning the LET of an unknown radiation field. The response of the dosimeters to low-LET radiation was also investigated for doses in the range from about 1-1000 Gy. These data were used to explain the different efficiency values obtained for the different materials and techniques, as well as the LET dependence of the CW-OSL decay curve shape. c2003 Elsevier Ltd. All rights reserved.

  2. Spin-polarized high-energy scattering of charged leptons on nucleons

    SciTech Connect

    Burkardt, Matthias; Nowak, Wolf-Dieter; MILLER, A.

    2009-01-01

    The proton is a composite object with spin one-half, understood to contain highly relativistic spin one-half quarks exchanging spin-one gluons, each possibly with significant orbital angular momenta. While their fundamental interactions are well described by Quantum ChromoDynamics (QCD), our standard theory of the strong interaction, nonperturbative calculations of the internal structure of the proton based directly on QCD are beginning to provide reliable results. Most of our present knowledge of the structure of the proton is based on experimental measurements interpreted within the rich framework of QCD. An area presently attracting intense interest, both experimental and theoretical, is the relationship between the spin of the proton and the spins and orbital angular momenta of its constituents. While remarkable progress has been made, especially in the last decade, the discovery and investigation of new concepts have revealed that much more remains to be learned. This progress i

  3. Measurement of Space Charges in Dielectric Materials by Pulse Electro-acoustic Method after Irradiation by High-energy Electron Beam

    NASA Astrophysics Data System (ADS)

    Xiaogang, Qin; Kai, Li; Mayali; Xiaoquan, Zheng; Xiaodong, Liu

    2009-01-01

    Dielectric materials are widely used in space environment. When they are irradiated, charges will accumulate in the bulk and on the surface of the material, leading to pulse discharge events that can cause permanent changes in their physical and chemical structure. In this paper, a special method called PEA (pulse electro-acoustic) was used to measure and analyze the space charging of several dielectric materials after they have been irradiated by different high-energy electron beams.

  4. Experimental study of interactions of highly charged ions with atoms at keV energies. Progress report, February 16, 1993--April 15, 1994

    SciTech Connect

    Kostroun, V.O.

    1994-04-27

    Experimental study of low energy, highly charged ions with other atomic species requires an advanced ion source such as an electron beam ion source, EBIS or an electron cyclotron ion source, ECRIS. Five years ago we finished the design and construction of the Cornell superconducting solenoid, cryogenic EBIS (CEBIS). Since then, this source has been in continuous operation in a program whose main purpose is the experimental study of interactions of highly charged ions with atoms at keV energies. This progress report for the period February 16, 1993 to April 15, 1994 describes the work accomplished during this time in the form of short abstracts.

  5. Surface nanostructures by single highly charged ions.

    PubMed

    Facsko, S; Heller, R; El-Said, A S; Meissl, W; Aumayr, F

    2009-06-03

    It has recently been demonstrated that the impact of individual, slow but highly charged ions on various surfaces can induce surface modifications with nanometer dimensions. Generally, the size of these surface modifications (blisters, hillocks, craters or pits) increases dramatically with the potential energy of the highly charged ion, while the kinetic energy of the projectile ions seems to be of little importance. This paper presents the currently available experimental evidence and theoretical models and discusses the circumstances and conditions under which nanosized features on different surfaces due to the impact of slow highly charged ions can be produced.

  6. K-shell ionization cross section of aluminium induced by low-energy highly charged argon ions

    NASA Astrophysics Data System (ADS)

    Chen, X. M.; Shao, J. X.; Yang, Z. H.; Zhang, H. Q.; Cui, Y.; Xu, X.; Xiao, G. Q.; Zhao, Y. T.; Zhang, X. A.; Zhang, Y. P.

    2007-02-01

    Al K-shell X-ray yields are measured with highly charged Arq+ ions (q=12 16) bombarding against aluminium. The energy range of the Ar ions is from 180 to 380 keV. K-shell ionization cross sections of aluminium are also obtained from the yields data. The experimental data is explained within the framework of 2pπ -2pσ rotational coupling. When Ar ions with 2p-shell vacancies are incident on aluminium, the vacancies begin to reduce. Meanwhile, collisions against Al atoms lead to the production of new 2p-shell vacancies of Ar ions. These Ar 2p-shell vacancies will transfer to the 1s orbit of an Al atom via 2pπ-2pσ rotational coupling leading to the emission of a K-shell X-ray of aluminiun. A model is constructed based on the base of the above physical scenario. The calculation results of the model are in agreement with the experimental results.

  7. Review of the Microdosimetric Studies for High-Energy Charged Particle Beams Using a Tissue-Equivalent Proportional Counter

    NASA Astrophysics Data System (ADS)

    Tsuda, Shuichi; Sato, Tatsuhiko; Ogawa, Tatsuhiko; Sasaki, Shinichi

    Lineal energy (y) distributions were measured for various types of charged particles such as protons and iron, with kinetic energies of up to 500 MeV/u, via the use of a wall-less tissue-equivalent proportional counter (TEPC). Radial dependencies of y distributions were also experimentally evaluated to investigate the track structures of protons, carbon, and iron beams. This paper reviews a series of measured data using the aforementioned TEPC as well as assesses the systematic verification of a microdosimetric calculation model of a y distribution incorporated into the particle and heavy ion transport code system (PHITS) and associated track structure models.

  8. The joint NASA/Goddard-University of Maryland research program in charged particle and high energy photon detector technology

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Progress made in the following areas is discussed: low energy ion and electron experiments; instrument design for current experiments; magnetospheric measurement of particles; ion measurement in the earth plasma sheet; abundance measurement; X-ray data acquisition; high energy physics; extragalactic astronomy; compact object astrophysics; planetology; and high energy photon detector technology.

  9. Solving the problem of shock wave attenuation in an obstacle during a contact explosion of a high-energy material charge

    NASA Astrophysics Data System (ADS)

    Kuzin, E. N.; Zagarskih, V. I.; Efanov, V. V.

    2016-12-01

    A problem of estimation of shock wave attenuation in an obstacle under an explosion of a high-energy material (explosive) charge on its surface is considered. An algorithm for its solution is proposed using the analytical and semiempirical dependences generally recognized in explosion physics.

  10. Neutralization of space charge on high-current low-energy ion beam by low-energy electrons supplied from silicon based field emitter arrays

    SciTech Connect

    Gotoh, Yasuhito; Tsuji, Hiroshi; Taguchi, Shuhei; Ikeda, Keita; Kitagawa, Takayuki; Ishikawa, Junzo; Sakai, Shigeki

    2012-11-06

    Neutralization of space charge on a high-current and low-energy ion beam was attempted to reduce the divergence with an aid of low-energy electrons supplied from silicon based field emitter arrays (Si-FEAs). An argon ion beam with the energy of 500 eV and the current of 0.25 mA was produced by a microwave ion source. The initial beam divergence and the emittance were measured at the entrance of the analysis chamber in order to estimate the intrinsic factors for beam divergence. The current density distribution of the beam after transport of 730 mm was measured by a movable Faraday cup, with and without electron supply from Si-FEAs. A similar experiment was performed with tungsten filaments as an electron source. The results indicated that the electron supply from FEA had almost the same effect as the thermionic filament, and it was confirmed that both electron sources can neutralize the ion beam.

  11. Charge transfer between fullerenes and highly charged noble gas ions

    NASA Astrophysics Data System (ADS)

    Narits, A. A.

    2008-07-01

    A semiclassical model for the description of charge-exchange processes in collisions between fullerenes and multiply charged ions is developed. It is based on the decay model combined with the impact-parameter representation for the heavy particles' relative motion. The charge-transfer process in our model is treated as a transition of the active electron over and under the quasistatic potential barrier formed by the electric fields of the target and projectile. Due to the high electron delocalization on the surface of fullerene we represent it as a perfectly conducting hard sphere, whose radius is determined by the dipole polarizability of C60. The energies of the active electrons are assumed to be equal to the corresponding ionization potentials including the Stark-shift effect. We have developed an efficient technique for the evaluation of the electron transmission coefficient through the asymmetric potential barrier. It is shown that our model provides a good agreement with the available experimental data on single-electron charge-exchange processes. Moreover, it allows us to get an adequate description of multi-electron transfer processes. The first theoretical results on charge exchange between the fullerene ions and highly charged ions have been obtained.

  12. Charge, energy and LET spectra of high LET primary and secondary particles in CR-39 plastic nuclear track detectors of the P0006 experiment

    NASA Technical Reports Server (NTRS)

    Csige, I.; Frigo, L. A.; Benton, E. V.; Oda, K.

    1995-01-01

    We have measured the charge, energy and linear energy transfer (LET) spectra of about 800 high LET (LET(sub infinity) H2O greater than 50 keV/micron) particles in CR-39 plastic nuclear track detectors in the P0006 experiment of LDEF. Primary particles with residual range at the reference surface greater than about 2 microns and secondary particles produced in the detector material with total range greater than about 4 microns were measured. We have used a multi-etch technique and an internal calibration to identify and measure the energy of the particles at the reference surface. The LET spectrum was obtained from the charge and energy distribution of the particles.

  13. Capacitive charging system for high power battery charging

    SciTech Connect

    1998-12-31

    This document describes a project to design, build, demonstrate, and document a Level 3 capacitive charging system, and it will be based on the existing PEZIC prototype capacitive coupler. The capacitive coupler will be designed to transfer power at a maximum of 600 kW, and it will transfer power by electric fields. The power electronics will transfer power at 100 kW. The coupler will be designed to function with future increases in the power electronics output power and increases in the amp/hours capacity of sealed batteries. Battery charging algorithms will be programmed into the control electronics. The finished product will be a programmable battery charging system capable of transferring 100 kW via a capacitive coupler. The coupler will have a low power loss of less than 25 watts when transferring 240 kW (400 amps). This system will increase the energy efficiency of high power battery charging, and it will enhance mobility by reducing coupler failures. The system will be completely documented. An important deliverable of this project is information. The information will be distributed to the Army`s TACOM-TARDEC`s Advanced Concept Group, and it will be distributed to commercial organizations by the Society of Automotive Engineers. The information will be valuable for product research, development, and specification. The capacitive charging system produced in this project will be of commercial value for future electric vehicles. The coupler will be designed to rapid charge batteries that have a capacity of several thousand amp/hours at hundreds of volts. The charging system built here will rapid charge batteries with several hundred amp/hours capacity, depending on the charging voltage.

  14. Charge Dynamics in Low Dimensional Prototype Correlated Systems: A View with High-Energy X-rays

    SciTech Connect

    Hasan, Md-Zahid

    2002-03-20

    The electronic structure of Mott systems continues to be an unsolved problem in physics despite more than half-century of intense research efforts. Well-developed momentum-resolved spectroscopies such as photoemission and neutron scattering cannot directly address problems associated with the full Mott gap as angle-resolved photoemission probes the occupied states and neutrons do not couple to the electron's charge directly. Our observation of dispersive particle- hole pair excitations across the charge gap (effective Mott gap) in several low dimensional prototype Mott insulators using high resolution resonant inelastic x-ray scattering suggests that the excitations across the gap are highly anisotropic and momentum dependent. The results indirectly provide some information about the momentum dependence of unoccupied states in these correlated systems. The x-ray scattering results are complementary to the electron scattering results by the possibility of studying the excitations in the high momentum transfer regimes (near the zone boundaries and comers). This is also demonstrated in case of studying plasmons near the wave vector regime where Landau damping starts to dominate. X-ray scattering also allows one to probe the symmetry characters of localized electrons and the excitations through the strong polarization dependence of scattering near a core resonance. The study of charge-orbital localization is demonstrated in case of manganese oxides. Given its deeply bulk-sensitive and weak-coupling nature and the ability to probe dispersive behavior of charge fluctuations over several Brillouin zones, inelastic x-ray scattering shows the promise to become an important experimental tool to study the electronic structure of complex quantum systems.

  15. Long-term biochemical and histological changes in the central nervous system of rats exposed to low fluences of high charge and high energy particles

    NASA Astrophysics Data System (ADS)

    Azzam, Edouard; Rabin, Bernard

    Accumulating evidence indicates that exposure of rodents to even low fluences of high charge (Z) and high energy (E) ions (HZE particles) can disrupt their cognitive and behavioral per-formance. Understanding the mechanisms underlying these effects has been considered critical for adequately estimating the risks to astronauts during and subsequent to prolonged space flights. To gain a greater understanding of the biochemical and molecular changes underlying radiation effects in the central nervous system, we targeted the head of male Sprague-Dawley rats with mean doses ranging from 0.1 to 50 cGy from titanium or oxygen ions of different energies. Molecular, biochemical and histological analyses in the different compartment of the central nervous system of rats sacrificed 20 months after irradiation will be reported. The effect of radiation dose, energy and quality will be highlighted. Particular focus will be on changes in protein level, protein oxidation, lipid peroxidation, mitochondrial function, the antioxidative network and apoptosis. The changes in brain tissues will be contrasted with biochemical and molecular changes in non-targeted tissues of the irradiated rats. Supported by grants from the US National Aeronautics and Space Administration

  16. Energy loss and electron and x-ray emission of slow highly charged Arq+ ions in grazing incidence on an Al(111) surface

    NASA Astrophysics Data System (ADS)

    Luo, Xianwen; Hu, Bitao; Zhang, Chengjun; Wang, Jijin; Chen, Chunhua

    2010-05-01

    Within the framework of the classical over-barrier model, energy loss, electron emission, and x-ray emission of slow highly charged ion Arq+ grazing on the Al(111) single-crystal surface under various azimuthal angles have been studied. The enhancement of energy loss, potential electron emission yields, intensity of KL1 satellite lines, or x-ray yields for the Ar17+ ion grazing along low-index crystallographic directions was observed. The calculated energy-loss spectra of atomic projectiles Ar0 interacting with metallic surface agree reasonably well with experiment. The inner-shell filling contributions through the side feeding mechanism, Auger transitions, and the radiative decay process are discussed by analyzing the final charge-state distributions of the reflected ions, potential electron emission yields, and x-ray yields under different azimuthal angles.

  17. Backscatter towards the monitor ion chamber in high-energy photon and electron beams: charge integration versus Monte Carlo simulation.

    PubMed

    Verhaegen, F; Symonds-Tayler, R; Liu, H H; Nahum, A E

    2000-11-01

    In some linear accelerators, the charge collected by the monitor ion chamber is partly caused by backscattered particles from accelerator components downstream from the chamber. This influences the output of the accelerator and also has to be taken into account when output factors are derived from Monte Carlo simulations. In this work, the contribution of backscattered particles to the monitor ion chamber response of a Varian 2100C linac was determined for photon beams (6, 10 MV) and for electron beams (6, 12, 20 MeV). The experimental procedure consisted of charge integration from the target in a photon beam or from the monitor ion chamber in electron beams. The Monte Carlo code EGS4/BEAM was used to study the contribution of backscattered particles to the dose deposited in the monitor ion chamber. Both measurements and simulations showed a linear increase in backscatter fraction with decreasing field size for photon and electron beams. For 6 MV and 10 MV photon beams, a 2-3% increase in backscatter was obtained for a 0.5 x 0.5 cm2 field compared to a 40 x 40 cm2 field. The results for the 6 MV beam were slightly higher than for the 10 MV beam. For electron beams (6, 12, 20 MeV), an increase of similar magnitude was obtained from measurements and simulations for 6 MeV electrons. For higher energy electron beams a smaller increase in backscatter fraction was found. The problem is of less importance for electron beams since large variations of field size for a single electron energy usually do not occur.

  18. Charge and Energy Stored in a Capacitor

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2012-01-01

    Using a data-acquisition system, the charge and energy stored in a capacitor are measured and displayed during the charging/discharging process. The experiment is usable as a laboratory work and/or a lecture demonstration. (Contains 3 figures.)

  19. Charge and Energy Stored in a Capacitor

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2012-01-01

    Using a data-acquisition system, the charge and energy stored in a capacitor are measured and displayed during the charging/discharging process. The experiment is usable as a laboratory work and/or a lecture demonstration. (Contains 3 figures.)

  20. Characteristics of the Shanghai high-temperature superconducting electron-beam ion trap and studies of the space-charge effect under ultralow-energy operating conditions

    NASA Astrophysics Data System (ADS)

    Tu, B.; Lu, Q. F.; Cheng, T.; Li, M. C.; Yang, Y.; Yao, K.; Shen, Y.; Lu, D.; Xiao, J.; Hutton, R.; Zou, Y.

    2017-10-01

    A high-temperature superconducting electron-beam ion trap (EBIT) has been set up at the Shanghai EBIT Laboratory for spectroscopic studies of low-charge-state ions. In the study reported here, beam trajectory simulations are implemented in order to provide guidance for the operation of this EBIT under ultralow-energy conditions, which has been successfully achieved with a full-transmission electron-beam current of 1-8.7 mA at a nominal electron energy of 30-120 eV. The space-charge effect is studied through both simulations and experiments. A modified iterative formula is proposed to estimate the space-charge potential of the electrons and shows very good agreement with the simulation results. In addition, space-charge compensation by trapped ions is found in extreme ultraviolet spectroscopic measurements of carbon ions and is studied through simulation of ion behavior in the EBIT. Based on the simulation results, the ion-cloud radius, ion density, and electron-ion overlap are obtained.

  1. Low-Energy Charged Particle Instrument Assembly

    NASA Image and Video Library

    2012-12-03

    This image shows the low-energy charged particle instrument before it was installed on one of NASA Voyager spacecraft in 1977. The instrument includes a stepper motor that turns the platform on which the sensors are mounted.

  2. Coupling of a high-energy excitation to superconducting quasiparticles in a cuprate from coherent charge fluctuation spectroscopy

    PubMed Central

    Mansart, Barbara; Lorenzana, José; Mann, Andreas; Odeh, Ahmad; Scarongella, Mariateresa; Chergui, Majed; Carbone, Fabrizio

    2013-01-01

    Dynamical information on spin degrees of freedom of proteins or solids can be obtained by NMR and electron spin resonance. A technique with similar versatility for charge degrees of freedom and their ultrafast correlations could move the understanding of systems like unconventional superconductors forward. By perturbing the superconducting state in a high-Tc cuprate, using a femtosecond laser pulse, we generate coherent oscillations of the Cooper pair condensate that can be described by an NMR/electron spin resonance formalism. The oscillations are detected by transient broad-band reflectivity and are found to resonate at the typical scale of Mott physics (2.6 eV), suggesting the existence of a nonretarded contribution to the pairing interaction, as in unconventional (non-Migdal–Eliashberg) theories.

  3. Suppression of high transverse momentum charged hadrons in Au+Au collisions at 200 GeV nucleon-nucleon center of mass energy

    NASA Astrophysics Data System (ADS)

    Bryslawskyj, Jason

    The dynamical properties of quark gluon plasma are studied in heavy ion collisions. Gold ions are accelerated with the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory and collided at energies up to 200 GeV per nucleon. Collision products and their properties are detected and measured with the PHENIX detector. At these energies the colliding ions may form a thermalized distribution of quarks and gluons called the Quark-Gluon Plasma. The suppression of single hadrons still provides one of the strongest constraints on energy loss mechanisms in the Quark-Gluon Plasma. Presently, neutral pions provide the best measurement at RHIC of single particle suppression. Charged hadrons have independent sources of systematic uncertainty and can thus provide additional constraints. Background from off-vertex sources such as photon conversions and weak decays, which mimic high pT particles, have limited the measurement of charged hadrons to pT < 10 GeV/c at PHENIX. The newly installed silicon vertex tracker upgrade (VTX) can reject this background allowing the measurement of the charged hadron spectrum out to a significantly higher momentum, up to 26 GeV/c. The VTX is capable of performing precision measurements of the distance of closest approach of a track to the primary vertex (DCA). Off-vertex photon conversions and weak decays are vetoed with the VTX by rejecting tracks with large DCA.

  4. Pacemakers charging using body energy

    PubMed Central

    Bhatia, Dinesh; Bairagi, Sweeti; Goel, Sanat; Jangra, Manoj

    2010-01-01

    Life-saving medical implants like pacemakers and defibrillators face a big drawback that their batteries eventually run out and patients require frequent surgery to have these batteries replaced. With the advent of technology, alternatives can be provided for such surgeries. To power these devices, body energy harvesting techniques may be employed. Some of the power sources are patient's heartbeat, blood flow inside the vessels, movement of the body parts, and the body temperature (heat). Different types of sensors are employed, such as for sensing the energy from the heartbeat the piezoelectric and semiconducting coupled nanowires are used that convert the mechanical energy into electricity. Similarly, for sensing the blood flow energy, nanogenerators driven by ultrasonic waves are used that have the ability to directly convert the hydraulic energy in human body to electrical energy. Another consideration is to use body heat employing biothermal battery to generate electricity using multiple arrays of thermoelectric generators built into an implantable chip. These generators exploit the well-known thermocouple effect. For the biothermal device to work, it needs a 2°C temperature difference across it. But there are many parts of the body where a temperature difference of 5°C exists – typically in the few millimeters just below the skin, where it is planned to place this device. This study focuses on using body heat as an alternative energy source to recharge pacemaker batteries and other medical devices and prevent the possibility of life-risk during repeated surgery. PMID:21814432

  5. Pacemakers charging using body energy.

    PubMed

    Bhatia, Dinesh; Bairagi, Sweeti; Goel, Sanat; Jangra, Manoj

    2010-01-01

    Life-saving medical implants like pacemakers and defibrillators face a big drawback that their batteries eventually run out and patients require frequent surgery to have these batteries replaced. With the advent of technology, alternatives can be provided for such surgeries. To power these devices, body energy harvesting techniques may be employed. Some of the power sources are patient's heartbeat, blood flow inside the vessels, movement of the body parts, and the body temperature (heat). Different types of sensors are employed, such as for sensing the energy from the heartbeat the piezoelectric and semiconducting coupled nanowires are used that convert the mechanical energy into electricity. Similarly, for sensing the blood flow energy, nanogenerators driven by ultrasonic waves are used that have the ability to directly convert the hydraulic energy in human body to electrical energy. Another consideration is to use body heat employing biothermal battery to generate electricity using multiple arrays of thermoelectric generators built into an implantable chip. These generators exploit the well-known thermocouple effect. For the biothermal device to work, it needs a 2°C temperature difference across it. But there are many parts of the body where a temperature difference of 5°C exists - typically in the few millimeters just below the skin, where it is planned to place this device. This study focuses on using body heat as an alternative energy source to recharge pacemaker batteries and other medical devices and prevent the possibility of life-risk during repeated surgery.

  6. The Joint NASA/Goddard-University of Maryland Research Program in Charged Particle and High Energy Photon Detector Technology

    NASA Technical Reports Server (NTRS)

    Ipavich, F. M.

    1990-01-01

    The Univ. of Maryland portion investigated the following areas. The Space Physics Group performed studies of data from the AMPTE/CCE spacecraft CHEM experiment and found that the ratio of solar wind to photospheric abundances decreased rather smoothly with the first ionization potential (FIP) of the ion with the low FIP ion being about a factor of two overabundant. Carbon and hydrogen fit this trend particularly well. Several occurrences were analyzed of field aligned beams observed when CCE was upstream of the Earth's bow shock. Also using CHEM data, ring current intensity and composition changes during the main and recovery phases of the great geomagnetic storm that occurred in February 1986 was examined in detail. Still using CHEM data, ring current characteristics were examined in a survey of 20 magnetic storms ranging in size from -50 nT to -312 nT. A study was done of energetic ion anisotropy characteristics in the Earth's magnetosheath region using data from the UMD/MPE experiment on ISEE-1. The properties were analyzed of approx. 30 to 130 keV/e protons and alpha particles upstream of six quasi-parallel interplanetary shocks that passed by the ISEE-3 spacecraft during 1978 to 1979. Work from NASA-Goddard include studies from the High Energy Cosmic Ray Group, Low Energy Cosmic Ray Group, Low Energy Gamma Ray Group, High Energy Astrophysics Theory Group, and the X ray Astronomy Group.

  7. Tunable resonant sensing means to sense a particular frequency in a high energy charged particle beam and generate a frequency-domain signal in response

    DOEpatents

    Nakamura, Michiyuki; Nolan, Marvin L.

    1988-01-01

    A frequency domain sensing system is disclosed for sensing the position of a high energy beam of charged particles traveling within a housing which comprises a plurality of sensors positioned in the wall of the housing radially around the axis of the beam. Each of the sensors further comprises a first electrode of predetermined shape received in a bore in the housing to define a fixed capacitance and an inductance structure attached to the electrode to provide an inductance for the sensing means which will provide an LC circuit which will resonate at a predetermined frequency known to exist in the beam of charged particles. The sensors are further provided with tuning apparatus associated with the inductance structure to vary the amount of the inductance to thereby tune the sensors to the predetermined frequency prior to transmission of the signal to signal detection circuitry.

  8. Using FLUKA Monte Carlo transport code to develop parameterizations for fluence and energy deposition data for high-energy heavy charged particles

    NASA Astrophysics Data System (ADS)

    Brittingham, John; Townsend, Lawrence; Barzilla, Janet; Lee, Kerry

    2012-03-01

    Monte Carlo codes provide an effective means of modeling three dimensional radiation transport; however, their use is both time- and resource-intensive. The creation of a lookup table or parameterization from Monte Carlo simulation allows users to perform calculations with Monte Carlo results without replicating lengthy calculations. FLUKA Monte Carlo transport code was used to develop lookup tables and parameterizations for data resulting from the penetration of layers of aluminum, polyethylene, and water with areal densities ranging from 0 to 100 g/cm2. Heavy charged ion radiation including ions from Z=1 to Z=26 and from 0.1 to 10 GeV/nucleon were simulated. Dose, dose equivalent, and fluence as a function of particle identity, energy, and scattering angle were examined at various depths. Calculations were compared to well-known data and the calculations of other deterministic and Monte Carlo codes. Results will be presented.

  9. High energy particle astronomy.

    NASA Technical Reports Server (NTRS)

    Buffington, A.; Muller, R. A.; Smith, L. H.; Smoot, G. F.

    1972-01-01

    Discussion of techniques currently used in high energy particle astronomy for measuring charged and neutral cosmic rays and their isotope and momentum distribution. Derived from methods developed for accelerator experiments in particle physics, these techniques help perform important particle astronomy experiments pertaining to nuclear cosmic ray and gamma ray research, electron and position probes, and antimatter searches.

  10. High energy particle astronomy.

    NASA Technical Reports Server (NTRS)

    Buffington, A.; Muller, R. A.; Smith, L. H.; Smoot, G. F.

    1972-01-01

    Discussion of techniques currently used in high energy particle astronomy for measuring charged and neutral cosmic rays and their isotope and momentum distribution. Derived from methods developed for accelerator experiments in particle physics, these techniques help perform important particle astronomy experiments pertaining to nuclear cosmic ray and gamma ray research, electron and position probes, and antimatter searches.

  11. Nontargeted Stressful Effects in Normal Human Fibroblast Cultures Exposed to Low Fluences of High Charge, High Energy (HZE) Particles: Kinetics of Biologic Responses and Significance of Secondary Radiations

    PubMed Central

    Gonon, Géraldine; Groetz, Jean-Emmanuel; de Toledo, Sonia M.; Howell, Roger W.; Fromm, Michel; Azzam, Edouard I.

    2014-01-01

    The induction of nontargeted stressful effects in cell populations exposed to low fluences of high charge (Z) and high energy (E) particles is relevant to estimates of the health risks of space radiation. We investigated the up-regulation of stress markers in confluent normal human fibroblast cultures exposed to 1,000 MeV/u iron ions [linear energy transfer (LET) ~151 keV/μm] or 600 MeV/u silicon ions (LET ~50 keV/μm) at mean absorbed doses as low as 0.2 cGy, wherein 1–3% of the cells were targeted through the nucleus by a primary particle. Within 24 h postirradiation, significant increases in the levels of phospho-TP53 (serine 15), p21Waf1 (CDKN1A), HDM2, phospho-ERK1/2, protein carbonylation and lipid peroxidation were detected, which suggested participation in the stress response of cells not targeted by primary particles. This was supported by in situ studies that indicated greater increases in 53BP1 foci formation, a marker of DNA damage. than expected from the number of primary particle traversals. The effect was expressed as early as 15 min after exposure, peaked at 1 h and decreased by 24 h. A similar tendency occurred after exposure of the cell cultures to 0.2 cGy of 3.7 MeV α particles (LET ~109 keV/μm) that targets ~1.6% of nuclei, but not after 0.2 cGy from 290 MeV/u carbon ions (LET ~13 keV/μm) by which, on average, ~13% of the nuclei were hit, which highlights the importance of radiation quality in the induced effect. Simulations with the FLUKA multi-particle transport code revealed that fragmentation products, other than electrons, in cell cultures exposed to HZE particles comprise <1% of the absorbed dose. Further, the radial spread of dose due to secondary heavy ion fragments is confined to approximately 10–20 μm. Thus, the latter are unlikely to significantly contribute to stressful effects in cells not targeted by primary HZE particles. PMID:23465079

  12. Highly charged Arq+ ions interacting with metals

    NASA Astrophysics Data System (ADS)

    Wang, Jijin; Zhang, Jian; Gu, Jiangang; Luo, Xianwen; Hu, Bitao

    2009-12-01

    Using computer simulation, alternative methods of the interaction of highly charged ions Arq+ with metals (Au, Ag) are used and verified in the present work. Based on the classical over-barrier model, we discussed the promotion loss and peeling off processes. The simulated total potential electron yields agree well with the experiment data in incident energy ranging from 100 eV to 5 keV and all charge states of Arq+ . Based on the TRIM code, we obtain the side-feeding rate as well as the motion and charge transfer of HCI below the surface. Some results, including the array of KLx x-ray satellite lines, the respective contribution of autoionization, and side-feeding to inner shells, and the filling rates and lifetime of inner shells for Ar agree well with experiment or theory.

  13. Charged polymers in high dimensions

    NASA Technical Reports Server (NTRS)

    Kantor, Yacov

    1990-01-01

    A Monte Carlo study of charged polymers with either homogeneously distributed frozen charges or with mobile charges has been performed in four and five space dimensions. The results are consistent with the renormalization-group predictions and contradict the predictions of Flory-type theory. Introduction of charge mobility does not modify the behavior of the polymers.

  14. Revised and extended calculations of level energies, M1 and E2 radiative rates for highly charged tungsten ions from W57+ to W60+

    NASA Astrophysics Data System (ADS)

    Singh, Gajendra; Puri, Nitin K.

    2016-10-01

    We have applied systematically enlarged multiconfiguration Dirac-Fock wavefunctions using Grasp2K to calculate the transition energies, oscillator strengths and transition probabilities for fine structure M1 and E2 transitions between the low-lying levels of the 3s23p5, 3s23p4, 3s23p3 and 3s23p2 configurations of highly charged tungsten ions from {{{W}}}57+ to {{{W}}}60+. Large wavefunction expansions are applied to calculate the transition probabilities, which are indispensable for calculating various plasma parameters accurately. In the present calculations, our theoretical data agrees well with that obtained in precise electron beam ion trap measurements, and is therefore important for the identification of weak forbidden lines for plasma diagnostic applications.

  15. High resolution printing of charge

    SciTech Connect

    Rogers, John; Park, Jang-Ung

    2015-06-16

    Provided are methods of printing a pattern of charge on a substrate surface, such as by electrohydrodynamic (e-jet) printing. The methods relate to providing a nozzle containing a printable fluid, providing a substrate having a substrate surface and generating from the nozzle an ejected printable fluid containing net charge. The ejected printable fluid containing net charge is directed to the substrate surface, wherein the net charge does not substantially degrade and the net charge retained on the substrate surface. Also provided are functional devices made by any of the disclosed methods.

  16. Relativistic configuration-interaction calculations of the n=3-3 transition energies in highly charged tungsten ions

    SciTech Connect

    Chen, M. H.; Cheng, K. T.

    2011-07-15

    A large-scale relativistic configuration-interaction calculation of the n=3-3 transition energies for Ne- to Ar-like tungsten is carried out. The calculation is based on the relativistic no-pair Hamiltonian and uses finite B-spline orbitals in a cavity as basis functions. Quantum electrodynamic and mass polarization corrections are also included. Results are compared with other theories and with experiment, and are generally found to be more reliable than previous theoretical predictions.

  17. Formation of High Charge State Heavy Ion Beams with intense Space Charge

    SciTech Connect

    Seidl, P.A.; Vay, J-L.

    2011-03-01

    High charge-state heavy-ion beams are of interest and used for a number of accelerator applications. Some accelerators produce the beams downstream of the ion source by stripping bound electrons from the ions as they pass through a foil or gas. Heavy-ion inertial fusion (HIF) would benefit from low-emittance, high current ion beams with charge state >1. For these accelerators, the desired dimensionless perveance upon extraction from the emitter is {approx}10{sup -3}, and the electrical current of the beam pulse is {approx}1 A. For accelerator applications where high charge state and very high current are desired, space charge effects present unique challenges. For example, in a stripper, the separation of charge states creates significant nonlinear space-charge forces that impact the beam brightness. We will report on the particle-in-cell simulation of the formation of such beams for HIF, using a thin stripper at low energy.

  18. Constructed uninterrupted charge-transfer pathways in three-dimensional micro/nanointerconnected carbon-based electrodes for high energy-density ultralight flexible supercapacitors.

    PubMed

    He, Yongmin; Chen, Wanjun; Zhou, Jinyuan; Li, Xiaodong; Tang, Pengyi; Zhang, Zhenxing; Fu, Jiecai; Xie, Erqing

    2014-01-08

    A type of freestanding three-dimensional (3D) micro/nanointerconnected structure, with a conjunction of microsized 3D graphene networks, nanosized 3D carbon nanofiber (CNF) forests, and consequently loaded MnO2 nanosheets, has been designed as the electrodes of an ultralight flexible supercapacitor. The resulting 3D graphene/CNFs/MnO2 composite networks exhibit remarkable flexibility and highly mechanical properties due to good and intimate contacts among them, without current collectors and binders. Simultaneously, this designed 3D micro/nanointerconnected structure can provide an uninterrupted double charges freeway network for both electron and electrolyte ion to minimize electron accumulation and ion-diffusing resistance, leading to an excellent electrochemical performance. The ultrahigh specific capacitance of 946 F/g from cyclic voltammetry (CV) (or 920 F/g from galvanostatic charging/discharging (GCD)) were obtained, which is superior to that of the present electrode materials based on 3D graphene/MnO2 hybrid structure (482 F/g). Furthermore, we have also investigated the superior electrochemical performances of an asymmetric supercapacitor device (weight of less than 12 mg/cm(2) and thickness of ~0.8 mm), showing a total capacitance of 0.33 F/cm(2) at a window voltage of 1.8 V and a maximum energy density of 53.4 W h/kg for driving a digital clock for 42 min. These inspiring performances would make our designed supercapacitors become one of the most promising candidates for the future flexible and lightweight energy storage systems.

  19. High dynamic range charge measurements

    DOEpatents

    De Geronimo, Gianluigi

    2012-09-04

    A charge amplifier for use in radiation sensing includes an amplifier, at least one switch, and at least one capacitor. The switch selectively couples the input of the switch to one of at least two voltages. The capacitor is electrically coupled in series between the input of the amplifier and the input of the switch. The capacitor is electrically coupled to the input of the amplifier without a switch coupled therebetween. A method of measuring charge in radiation sensing includes selectively diverting charge from an input of an amplifier to an input of at least one capacitor by selectively coupling an output of the at least one capacitor to one of at least two voltages. The input of the at least one capacitor is operatively coupled to the input of the amplifier without a switch coupled therebetween. The method also includes calculating a total charge based on a sum of the amplified charge and the diverted charge.

  20. Location of Low-Energy Charged Particle Instrument

    NASA Image and Video Library

    2012-12-03

    This graphic shows the NASA Voyager 1 spacecraft and the location of its low-energy charged particle instrument. A labeled close-up of the low-energy charged particle instrument appears as the inset image.

  1. Thermoluminescence of 7LiF in therapeutic high linear energy transfer (LET) charged-particle beams.

    PubMed

    Chu, C L; Hogstrom, K R; Chen, G C; Hilko, R L

    1986-02-01

    The thermoluminescence of the 200 and 260 degrees C peaks of 7LiF has been measured and compared with off-axis dose and depth-dose distributions for three therapeutic high-LET beams: negative pions, helium ions and neon ions. The methods of analysis consisted of both a single-peak analysis and the dual-peak analysis methods of Hogstrom and Irifune and Hoffmann et al. The results indicate that 7LiF, analysed by the dual-peak analysis methods, is potentially useful for extracting total dose, high-LET dose, and beam quality of helium-ion and negative-pion beams. For the higher-LET neon beam, differences in sensitivity between the 200 and 260 degrees C peaks of 7LiF were found to be independent of variations in LET within the beam; consequently, only the single-peak analysis method is applicable in which case the dosemeter at best can only estimate total dose.

  2. Quantifying the energy-storage benefits of controlled plug-in electric vehicle charging

    DOE PAGES

    Xi, Xiaomin; Sioshansi, Ramteen

    2016-01-01

    Flexibility in plug-in electric vehicle (PEV) charging can reduce PEV charging costs. Moreover, controlled PEV charging can be viewed as a limited form of energy storage, insomuch as charging loads are shifted from high-cost periods to lower-cost ones. Energy storage that is used for generation shifting is used in much the same manner. In this paper, we study these benefits of PEV charging, demonstrating that controlled PEV charging can reduce generation costs. As a result, we also determine how much energy storage would be needed to provide the same cost-reduction benefits that the PEV fleet does.

  3. The response of thermally and optically stimulated luminescence from Al2O3:C to high-energy heavy charged particles.

    PubMed

    Gaza, R; Yukihara, E G; McKeever, S W S

    2004-01-01

    The thermoluminescence (TL) and optically stimulated luminescence (OSL) response of Al2O3 dosimeters to high-energy heavy charged particles (HCP) has been studied using the heavy ion medical accelerator at Chiba, Japan. The samples were Al2O3 single-crystal chips, of the type usually known as TLD-500, and Luxel(TM) dosimeters (Al2O3:C powder in plastic) from Landauer Inc. The samples were exposed to 4He (150 MeV/u), 12C (400 MeV/u), 28Si (490 MeV/us) and 56Fe (500 MeV/u) ions, with linear energy transfer values covering the range from 2.26 to 189 keV/micrometers in water and doses from 1 to 100 mGy (to water). A 90Sr/90Y beta source, calibrated against a 60Co secondary standard, was used for calibration purposes. For OSL, we used both continuous-wave OSL measurements (CW-OSL, using green light stimulation at 525 nm) and pulsed OSL measurements (POSL, using 532 nm stimulation from a Nd:YAG Q-switched laser). The efficiencies (eta HCP, gamma) of the different HCPs at producing OSL or TL were observed to depend not only upon the linear energy transfer (LET) of the HCP, but also upon the sample type (single crystal chip or Luxel(TM)) and the luminescence method used to define the signal--i.e. TL, CW-OSL initial intensity, CW-OSL total area, or POSL. Observed changes in shape of the decay curve lead to potential methods for extracting LET information of unknown radiation fields. A discussion of the results is given, including the potential use of OSL from Al2O3 in the areas of space radiation dosimetry and radiation oncology.

  4. The response of thermally and optically stimulated luminescence from Al2O3:C to high-energy heavy charged particles

    NASA Technical Reports Server (NTRS)

    Gaza, R.; Yukihara, E. G.; McKeever, S. W. S.

    2004-01-01

    The thermoluminescence (TL) and optically stimulated luminescence (OSL) response of Al2O3 dosimeters to high-energy heavy charged particles (HCP) has been studied using the heavy ion medical accelerator at Chiba, Japan. The samples were Al2O3 single-crystal chips, of the type usually known as TLD-500, and Luxel(TM) dosimeters (Al2O3:C powder in plastic) from Landauer Inc. The samples were exposed to 4He (150 MeV/u), 12C (400 MeV/u), 28Si (490 MeV/us) and 56Fe (500 MeV/u) ions, with linear energy transfer values covering the range from 2.26 to 189 keV/micrometers in water and doses from 1 to 100 mGy (to water). A 90Sr/90Y beta source, calibrated against a 60Co secondary standard, was used for calibration purposes. For OSL, we used both continuous-wave OSL measurements (CW-OSL, using green light stimulation at 525 nm) and pulsed OSL measurements (POSL, using 532 nm stimulation from a Nd:YAG Q-switched laser). The efficiencies (eta HCP, gamma) of the different HCPs at producing OSL or TL were observed to depend not only upon the linear energy transfer (LET) of the HCP, but also upon the sample type (single crystal chip or Luxel(TM)) and the luminescence method used to define the signal--i.e. TL, CW-OSL initial intensity, CW-OSL total area, or POSL. Observed changes in shape of the decay curve lead to potential methods for extracting LET information of unknown radiation fields. A discussion of the results is given, including the potential use of OSL from Al2O3 in the areas of space radiation dosimetry and radiation oncology. c2004 Elsevier Ltd. All rights reserved.

  5. The response of thermally and optically stimulated luminescence from Al2O3:C to high-energy heavy charged particles

    NASA Technical Reports Server (NTRS)

    Gaza, R.; Yukihara, E. G.; McKeever, S. W. S.

    2004-01-01

    The thermoluminescence (TL) and optically stimulated luminescence (OSL) response of Al2O3 dosimeters to high-energy heavy charged particles (HCP) has been studied using the heavy ion medical accelerator at Chiba, Japan. The samples were Al2O3 single-crystal chips, of the type usually known as TLD-500, and Luxel(TM) dosimeters (Al2O3:C powder in plastic) from Landauer Inc. The samples were exposed to 4He (150 MeV/u), 12C (400 MeV/u), 28Si (490 MeV/us) and 56Fe (500 MeV/u) ions, with linear energy transfer values covering the range from 2.26 to 189 keV/micrometers in water and doses from 1 to 100 mGy (to water). A 90Sr/90Y beta source, calibrated against a 60Co secondary standard, was used for calibration purposes. For OSL, we used both continuous-wave OSL measurements (CW-OSL, using green light stimulation at 525 nm) and pulsed OSL measurements (POSL, using 532 nm stimulation from a Nd:YAG Q-switched laser). The efficiencies (eta HCP, gamma) of the different HCPs at producing OSL or TL were observed to depend not only upon the linear energy transfer (LET) of the HCP, but also upon the sample type (single crystal chip or Luxel(TM)) and the luminescence method used to define the signal--i.e. TL, CW-OSL initial intensity, CW-OSL total area, or POSL. Observed changes in shape of the decay curve lead to potential methods for extracting LET information of unknown radiation fields. A discussion of the results is given, including the potential use of OSL from Al2O3 in the areas of space radiation dosimetry and radiation oncology. c2004 Elsevier Ltd. All rights reserved.

  6. Hydration of highly charged ions.

    PubMed

    Hofer, Thomas S; Weiss, Alexander K H; Randolf, Bernhard R; Rode, Bernd M

    2011-08-01

    Based on a series of ab initio quantum mechanical charge field molecular dynamics (QMCF MD) simulations, the broad spectrum of structural and dynamical properties of hydrates of trivalent and tetravalent ions is presented, ranging from extreme inertness to immediate hydrolysis. Main group and transition metal ions representative for different parts of the periodic system are treated, as are 2 threefold negatively charged anions. The results show that simple predictions of the properties of the hydrates appear impossible and that an accurate quantum mechanical simulation in cooperation with sophisticated experimental investigations seems the only way to obtain conclusive results.

  7. Achieving ultrahigh triboelectric charge density for efficient energy harvesting.

    PubMed

    Wang, Jie; Wu, Changsheng; Dai, Yejing; Zhao, Zhihao; Wang, Aurelia; Zhang, Tiejun; Wang, Zhong Lin

    2017-07-20

    With its light weight, low cost and high efficiency even at low operation frequency, the triboelectric nanogenerator is considered a potential solution for self-powered sensor networks and large-scale renewable blue energy. As an energy harvester, its output power density and efficiency are dictated by the triboelectric charge density. Here we report a method for increasing the triboelectric charge density by coupling surface polarization from triboelectrification and hysteretic dielectric polarization from ferroelectric material in vacuum (P ~ 10(-6) torr). Without the constraint of air breakdown, a triboelectric charge density of 1003 µC m(-2), which is close to the limit of dielectric breakdown, is attained. Our findings establish an optimization methodology for triboelectric nanogenerators and enable their more promising usage in applications ranging from powering electronic devices to harvesting large-scale blue energy.Triboelectric nanogenerators (TENGs) harvest ambient mechanical energy and convert it into electrical energy. Here, the authors couple surface polarization from contact electrification with dielectric polarization from a ferroelectric material in vacuum to dramatically enhance the TENG output power.

  8. Confined energy distribution for charged particle beams

    DOEpatents

    Jason, Andrew J.; Blind, Barbara

    1990-01-01

    A charged particle beam is formed to a relatively larger area beam which is well-contained and has a beam area which relatively uniformly deposits energy over a beam target. Linear optics receive an accelerator beam and output a first beam with a first waist defined by a relatively small size in a first dimension normal to a second dimension. Nonlinear optics, such as an octupole magnet, are located about the first waist and output a second beam having a phase-space distribution which folds the beam edges along the second dimension toward the beam core to develop a well-contained beam and a relatively uniform particle intensity across the beam core. The beam may then be expanded along the second dimension to form the uniform ribbon beam at a selected distance from the nonlinear optics. Alternately, the beam may be passed through a second set of nonlinear optics to fold the beam edges in the first dimension. The beam may then be uniformly expanded along the first and second dimensions to form a well-contained, two-dimensional beam for illuminating a two-dimensional target with a relatively uniform energy deposition.

  9. High-speed imaging at high x-ray energy: CdTe sensors coupled to charge-integrating pixel array detectors

    SciTech Connect

    Becker, Julian; Tate, Mark W.; Shanks, Katherine S.; Philipp, Hugh T.; Weiss, Joel T.; Purohit, Prafull; Chamberlain, Darol; Gruner, Sol M.

    2016-07-27

    Pixel Array Detectors (PADs) consist of an x-ray sensor layer bonded pixel-by-pixel to an underlying readout chip. This approach allows both the sensor and the custom pixel electronics to be tailored independently to best match the x-ray imaging requirements. Here we describe the hybridization of CdTe sensors to two different charge-integrating readout chips, the Keck PAD and the Mixed-Mode PAD (MM-PAD), both developed previously in our laboratory. The charge-integrating architecture of each of these PADs extends the instantaneous counting rate by many orders of magnitude beyond that obtainable with photon counting architectures. The Keck PAD chip consists of rapid, 8-frame, in-pixel storage elements with framing periods <150 ns. The second detector, the MM-PAD, has an extended dynamic range by utilizing an in-pixel overflow counter coupled with charge removal circuitry activated at each overflow. This allows the recording of signals from the single-photon level to tens of millions of x-rays/pixel/frame while framing at 1 kHz. Both detector chips consist of a 128×128 pixel array with (150 µm){sup 2} pixels.

  10. Modeling, hybridization, and optimal charging of electrical energy storage systems

    NASA Astrophysics Data System (ADS)

    Parvini, Yasha

    analytically. Efficiency analysis for constant power (CP) and optimal charging strategies under different charging times (slow and fast) was performed. In case of the lithium ion battery, the model included the electronic as well as polarization resistance. Furthermore, in order to investigate the influence of temperature on the internal resistance of the lithium ion battery, the optimal charging problem for a three state electro-thermal model was solved using dynamic programming (DP). The ability to charge electric vehicles is a pace equivalent to fueling a gasoline car will be a game changer in the widespread acceptability and feasibility of the electric vehicles. Motivated by the knowledge gained from the optimal charging study, the challenges facing the fast charging of lithium ion batteries are investigated. In this context, the suitable models for the study of fast charging, high rate anode materials, and different charging strategies are studied. The side effects of fast charging such as lithium plating and mechanical failure are also discussed. This dissertation has targeted some of the most challenging questions in the field of electrical energy storage systems and the reported results are applicable to a wide range of applications such as in electronic gadgets, medical devices, electricity grid, and electric vehicles.

  11. Stabilization of weakly charged microparticles using highly charged nanoparticles.

    PubMed

    Herman, David; Walz, John Y

    2013-05-21

    An experimental study was performed to understand the ability of highly charged nanoparticles to stabilize a dispersion of weakly charged microspheres. The experiments involved adding either anionic (sulfate) or cationic (amidine) latex nanoparticles to dispersions of micrometer-sized silica particles near the silica isoelectric point (IEP). Although both types of nanoparticles increased the zeta potential of the silica microspheres above the value at which dispersions containing only silica spheres remained stable, only with the amidine nanoparticles was stability obtained. Adsorption tests with flat silica slides showed that the amidine nanoparticles deposited in much greater numbers onto the silica, producing multilayer coverage with adsorbed particle densities that were roughly three times that obtained with the sulfate nanoparticles. A model calculating the DLVO interaction between the silica spheres in which the adsorbed nanoparticle layers were treated as a continuous film with dielectric properties between those of polystyrene and water predicted stability for both systems. It is hypothesized that the relatively low adsorption of the sulfate nanoparticles (fractional surface coverages ≤ 25%) led to patches of bare silica on the microspheres that could align during interaction due to Brownian motion. These results indicate that highly charged nanoparticles can be effective stabilizers provided the level of adsorption is sufficiently high. It was also found that the zeta potential alone is not a sufficient parameter for predicting stability of these binary systems.

  12. Mechanisms of charge transfer and redistribution in LaAlO3/SrTiO3 revealed by high-energy optical conductivity

    NASA Astrophysics Data System (ADS)

    Asmara, T. C.; Annadi, A.; Santoso, I.; Gogoi, P. K.; Kotlov, A.; Omer, H. M.; Motapothula, M.; Breese, M. B. H.; Rübhausen, M.; Venkatesan, T.; Ariando; Rusydi, A.

    2014-04-01

    In condensed matter physics the quasi two-dimensional electron gas at the interface of two different insulators, polar LaAlO3 on nonpolar SrTiO3 (LaAlO3/SrTiO3) is a spectacular and surprising observation. This phenomenon is LaAlO3 film thickness dependent and may be explained by the polarization catastrophe model, in which a charge transfer of 0.5e- from the LaAlO3 film into the LaAlO3/SrTiO3 interface is expected. Here we show that in conducting samples (≥4 unit cells of LaAlO3) there is indeed a ~0.5e- transfer from LaAlO3 into the LaAlO3/SrTiO3 interface by studying the optical conductivity in a broad energy range (0.5-35 eV). Surprisingly, in insulating samples (≤3 unit cells of LaAlO3) a redistribution of charges within the polar LaAlO3 sublayers (from AlO2 to LaO) as large as ~0.5e- is observed, with no charge transfer into the interface. Hence, our results reveal the different mechanisms for the polarization catastrophe compensation in insulating and conducting LaAlO3/SrTiO3 interfaces.

  13. Charge and energy spectra of heavy cosmic rays at intermediate energies

    NASA Technical Reports Server (NTRS)

    Garcia-Munoz, M.; Mason, G. M.; Simpson, J. A.; Wefel, J. P.

    1978-01-01

    The energy spectra and the charge composition of the primary elements C, O, Ne, Mg, and Si have been measured in both the low-energy and high-energy modes of the University of Chicago telescope on board the IMP 8 spacecraft. Combining both modes of analysis yields differential energy spectra for each element from about 50 MeV/nucleon to about 1 GeV/nucleon. The charge ratios with respect to oxygen are found to be energy independent over this interval and are consistent with the results of cosmic-ray propagation and solar-modulation calculations. The relative abundances obtained are in substantial agreement with previous investigations in this energy regime.

  14. Laboratory Studies of Thermal Energy Charge Transfer of Multiply Charged Ions in Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Kwong, Victor H. S.

    2003-01-01

    The laser ablation/ion storage facility at the UNLV Physics Department has been dedicated to the study of atomic and molecular processes in low temperature plasmas. Our program focuses on the charge transfer (electron capture) of multiply charged ions and neutrals important in astrophysics. The electron transfer reactions with atoms and molecules is crucial to the ionization condition of neutral rich photoionized plasmas. With the successful deployment of the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Chandra X-ray Observatory by NASA high resolution VUV and X-ray emission spectra fiom various astrophysical objects have been collected. These spectra will be analyzed to determine the source of the emission and the chemical and physical environment of the source. The proper interpretation of these spectra will require complete knowledge of all the atomic processes in these plasmas. In a neutral rich environment, charge transfer can be the dominant process. The rate coefficients need to be known accurately. We have also extended our charge transfer measurements to KeV region with a pulsed ion beam. The inclusion of this facility into our current program provides flexibility in extending the measurement to higher energies (KeV) if needed. This flexibility enables us to address issues of immediate interest to the astrophysical community as new observations are made by high resolution space based observatories.

  15. Estimating and modeling charge transfer from the SAPT induction energy.

    PubMed

    Deng, Shi; Wang, Qiantao; Ren, Pengyu

    2017-10-05

    Recent studies using quantum mechanics energy decomposition methods, for example, SAPT and ALMO, have revealed that the charge transfer energy may play an important role in short ranged inter-molecular interactions, and have a different distance dependence comparing with the polarization energy. However, the charge transfer energy component has been ignored in most current polarizable or non-polarizable force fields. In this work, first, we proposed an empirical decomposition of SAPT induction energy into charge transfer and polarization energy that mimics the regularized SAPT method (ED-SAPT). This empirical decomposition is free of the divergence issue, hence providing a good reference for force field development. Then, we further extended this concept in the context of AMOEBA polarizable force field, proposed a consistent approach to treat the charge transfer phenomenon. Current results show a promising application of this charge transfer model in future force field development. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. SCATHA (Spacecraft Charging AT High Altitudes) Plasma Interaction Experiment: SC-3 High Energy Particle Spectrometer; SC-8 Energetic Ion Composition Experiment.

    DTIC Science & Technology

    1984-11-30

    Professor at the University of Bern. I am indebted to Professor J. Geisa and Dr. R. Balsiger for making the visit possible and wish to thank then and...dispersion by the local time at which the low-energy (< 100 eV) part of events [ Balsiger et al.. 1982; Johnson et at.. 19821. In this the dispersing plasma

  17. Ion momentum and energy transfer rates for charge exchange collisions

    NASA Technical Reports Server (NTRS)

    Horwitz, J.; Banks, P. M.

    1973-01-01

    The rates of momentum and energy transfer have been obtained for charge exchange collisions between ion and neutral gases having arbitrary Maxwellian temperatures and bulk transport velocities. The results are directly applicable to the F-region of the ionosphere where 0+ - 0 charge is the dominant mechanism affecting ion momentum and energy transfer.

  18. Charged-Particle Acceleration and Energy Loss Measurements on OMEGA

    NASA Astrophysics Data System (ADS)

    Hicks, D. G.; Li, C. K.; Séguin, F. H.; Ram, A. K.; Frenje, J. A.; Petrasso, R. D.; Soures, J. M.; Glebov, V. Yu.; Meyerhofer, D. D.; Roberts, S.; Sorce, C.; Stoeckl, C.; Sangster, T. C.; Phillips, T. W.

    2000-10-01

    Measurements have been made of charged fusion products produced in D ^3He-filled targets irradiated on OMEGA. Comparing the energy shifts of four particle types has probed two distinct physical processes: electrostatic acceleration in the low-density corona and energy loss in the high-density target. When the burn occurred during the laser pulse, particle energy shifts were dominated by acceleration effects. Using a simple mode, the time history of the target's electrostatic potential was found and shown to decay to zero soon after laser irradiation was complete. When the burn occurred after the pulse, particle energy shifts were dominated by energy losses in the target, allowing charged-particle stopping-power predictions to be tested. The results provide the first verification of the general form of stopping power theories over a wide velocity range. This work was supported by the U.S. DOE Office of ICF under Coop. Agreem. No. DE-FC03-92SF19460.

  19. Energy Transfer of a Shaped Charge.

    SciTech Connect

    Milinazzo, Jared Joseph

    2016-11-01

    A cylinder of explosive with a hollow cavity on one and a detonator at the other is considered a hollow charge. When the explosive is detonated the detonation products form a localized intense force. If the hollow charge is placed near or in contact with a steel plate then the damage to the plate is greater than a solid cylinder of explosive even though there is a greater amount of explosive in the latter charge. The hollow cavity can take almost any geometrical shape with differing amounts of damage associated with each shape. This phenomenon is known in the United States as the Munroe effect.

  20. Highly-Charged Ions in Traps - Progress and Opportunities

    NASA Astrophysics Data System (ADS)

    Church, D. A.; Schneider, D.; Steiger, J.; Beck, B. R.; Holder, J. P.; Weinberg, G.; Gruber, L.; Moehs, D. P.; McDonald, J.

    Penning and Kingdon ion traps have been used to study low-energy multiply-charged ions with charge states up to 80+ during the last few years. The ions have been captured into the traps from beams of external multiply-charged ion sources, or have been produced inside the trap. Measurements of cross sections for electron capture from neutrals to ions and studies of relative double electron capture rates have been completed. The lifetimes of metastable levels of ions, precision spectroscopy on multiply-charged ions in traps, and cooling of trapped ions using lasers, ion-ion elastic collisions, and parallel-tuned circuits, are briefly reviewed. Prospects for the future of highly-charged ions in traps are also discussed.

  1. Energy spectra of high energy atmospheric neutrinos

    NASA Technical Reports Server (NTRS)

    Mitsui, K.; Minorikawa, Y.

    1985-01-01

    Focusing on high energy neutrinos ( or = 1 TeV), a new calculation of atmospheric neutrino intensities was carried out taking into account EMC effects observed in P-A collisions by accelerator, recent measurement of primary cosmic ray spectrum and results of cosmic ray muon spectrum and charge ratio. Other features of the present calculation are (1) taking into account kinematics of three body decays of kaons and charm particles in diffusion equations and (2) taking into account energy dependence of kaon production.

  2. Multiplicities in high energy interactions

    SciTech Connect

    Derrick, M.

    1985-05-13

    This paper reviews the data on multiplicities in high energy interactions. Results from e/sup +/e/sup -/ annihilation, from neutrino interactions, and from hadronic collisions, both diffractive and nondiffractive, are compared and contrasted. The energy dependence of the mean charged multiplicity, , as well as the rapidity density at Y = 0 are presented. For hadronic collisions, the data on neutral pion production shows a strong correlation with . The heavy particle fractions increase with ..sqrt..s up to the highest energies. The charged particle multiplicity distributions for each type of reaction show a scaling behavior when expressed in terms of the mean. Attempts to understand this behavior, which was first predicted by Koba, Nielsen, and Olesen, are discussed. The multiplicity correlations and the energy variation of the shape of the KNO scaling distribution provide important constraints on models. Some extrapolations to the energies of the Superconducting Super Collider are made. 51 refs., 27 figs.

  3. Highly charged ion secondary ion mass spectroscopy

    DOEpatents

    Hamza, Alex V.; Schenkel, Thomas; Barnes, Alan V.; Schneider, Dieter H.

    2001-01-01

    A secondary ion mass spectrometer using slow, highly charged ions produced in an electron beam ion trap permits ultra-sensitive surface analysis and high spatial resolution simultaneously. The spectrometer comprises an ion source producing a primary ion beam of highly charged ions that are directed at a target surface, a mass analyzer, and a microchannel plate detector of secondary ions that are sputtered from the target surface after interaction with the primary beam. The unusually high secondary ion yield permits the use of coincidence counting, in which the secondary ion stops are detected in coincidence with a particular secondary ion. The association of specific molecular species can be correlated. The unique multiple secondary nature of the highly charged ion interaction enables this new analytical technique.

  4. Solar Wind Charge Exchange Studies of Highly Charged Ions on Atomic Hydrogen

    SciTech Connect

    Draganic, Ilija N; Seely, D. G.; McCammon, D; Havener, Charles C

    2011-01-01

    Accurate studies of low energy charge exchange (CX) are critical to understanding underlying soft X ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H like, and He like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H like ions of C, N, O and fully stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV u 20 keV u) and compared to previous H oven measurements. The present measurements are performed using a merged beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV u 3.3 keV u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.

  5. Solar Wind Charge Exchange Studies Of Highly Charged Ions On Atomic Hydrogen

    SciTech Connect

    Draganic, I. N.; Havener, C. C.; Seely, D. G.; McCammon, D.

    2011-06-01

    Accurate studies of low-energy charge exchange (CX) are critical to understanding underlying soft X-ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H-like, and He-like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H-like ions of C, N, O and fully-stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV/u-20 keV/u) and compared to previous H-oven measurements. The present measurements are performed using a merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV/u-3.3 keV/u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H-oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.

  6. An electrostatic deceleration lens for highly charged ions.

    PubMed

    Rajput, J; Roy, A; Kanjilal, D; Ahuja, R; Safvan, C P

    2010-04-01

    The design and implementation of a purely electrostatic deceleration lens used to obtain beams of highly charged ions at very low energies is presented. The design of the lens is such that it can be used with parallel as well as diverging incoming beams and delivers a well focused low energy beam at the target. In addition, tuning of the final energy of the beam over a wide range (1 eV/q to several hundred eV/q, where q is the beam charge state) is possible without any change in hardware configuration. The deceleration lens was tested with Ar(8+), extracted from an electron cyclotron resonance ion source, having an initial energy of 30 keV/q and final energies as low as 70 eV/q have been achieved.

  7. HITRAP: A Facility for Experiments with Trapped Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    Quint, W.; Dilling, J.; Djekic, S.; Häffner, H.; Hermanspahn, N.; Kluge, H.-J.; Marx, G.; Moore, R.; Rodriguez, D.; Schönfelder, J.; Sikler, G.; Valenzuela, T.; Verdú, J.; Weber, C.; Werth, G.

    2001-01-01

    HITRAP is a planned ion trap facility for capturing and cooling of highly charged ions produced at GSI in the heavy-ion complex of the UNILAC-SIS accelerators and the ESR storage ring. In this facility heavy highly charged ions up to uranium will be available as bare nuclei, hydrogen-like ions or few-electron systems at low temperatures. The trap for receiving and studying these ions is designed for operation at extremely high vacuum by cooling to cryogenic temperatures. The stored highly charged ions can be investigated in the trap itself or can be extracted from the trap at energies up to about 10 keV/q. The proposed physics experiments are collision studies with highly charged ions at well-defined low energies (eV/u), high-accuracy measurements to determine the g-factor of the electron bound in a hydrogen-like heavy ion and the atomic binding energies of few-electron systems, laser spectroscopy of HFS transitions and X-ray spectroscopy.

  8. Equilibrium charge states of uranium at relativistic energies

    SciTech Connect

    Crawford, H.; Gould, H.; Greiner, D.; Lindstrom, P.; Symons, J.

    1983-06-01

    We have measured the charge fractions of uranium ions at energies of 962 MeV/amu and 430 MeV/amu passing through various thickness targets of mylar (Z approx. = 6.6), Cu (Z = 29) and Ta (Z = 73). From these we determine the equilibrium charge state distributions.

  9. Energy and Charge Localization in Irradiated DNA

    DTIC Science & Technology

    1994-01-01

    suggested that fast heavy ions with lar stopping power result in Eawy god ap Loadhnou in DNXA (00)19 transient localized hewaid relion around the io tracks...isolated pair of oppositely charged geminae particles can be considered as an isolated system, was developed in the late 1930’s by Onsager /49,W0 and...refinement of replacing the original Onsager assumption of a point sink at the origin by a recombination sphere of finite radius and recombination velocity

  10. Mutation induction by charged particles of defined linear energy transfer.

    PubMed

    Hei, T K; Chen, D J; Brenner, D J; Hall, E J

    1988-07-01

    The mutagenic potential of charged particles of defined linear energy transfer (LET) was assessed using the hypoxanthine-guanine phosphoribosyl transferase locus (HGPRT) in primary human fibroblasts. Exponentially growing cultures of early passaged fibroblasts were grown as monolayers on thin mylar sheets and were irradiated with accelerated protons, deuterons or helium-3 ions. The mutation rates were compared with those generated by 137Cs gamma-rays. LET values for charged particles accelerated at the Radiological Research Accelerator Facility, using the track segment mode, ranged from 10 to 150 keV/micron. After irradiation, cells were trypsinized, subcultured and assayed for both cytotoxicity and 6-thioguanine resistance. For gamma-rays, and for the charged particles of lower LET, the dose-response curves for cell survival were characterized by a marked initial shoulder, but approximated to an exponential function of dose for higher LETs. Mutation frequencies, likewise, showed a direct correlation to LET over the dose range examined. Relative biological effectiveness (RBE) for mutagenesis, based on the initial slopes of the dose-response curves, ranged from 1.30 for 10 keV/micron protons to 9.40 for 150 keV/micron helium-3 ions. Results of the present studies indicate that high-LET radiations, apart from being efficient inducers of cell lethality, are even more efficient in mutation induction as compared to low-LET ionizing radiation. These data are consistent with results previously obtained with both rodent and human fibroblast cell lines.

  11. Charge retention in quantized energy levels of nanocrystals

    NASA Astrophysics Data System (ADS)

    Dâna, Aykutlu; Akça, İmran; Ergun, Orçun; Aydınlı, Atilla; Turan, Raşit; Finstad, Terje G.

    2007-04-01

    Understanding charging mechanisms and charge retention dynamics of nanocrystal (NC) memory devices is important in optimization of device design. Capacitance spectroscopy on PECVD grown germanium NCs embedded in a silicon oxide matrix was performed. Dynamic measurements of discharge dynamics are carried out. Charge decay is modelled by assuming storage of carriers in the ground states of NCs and that the decay is dominated by direct tunnelling. Discharge rates are calculated using the theoretical model for different NC sizes and densities and are compared with experimental data. Experimental results agree well with the proposed model and suggest that charge is indeed stored in the quantized energy levels of the NCs.

  12. High-sensitivity bunch charge monitor

    NASA Astrophysics Data System (ADS)

    Lebedev, N. I.; Fateev, A. A.

    2008-12-01

    The conceptual design for a high-sensitivity bunch charge monitor is presented. The device operates with short, spaced bunches. For optimal performance, the bunch duration should be less than 10 ns and bunch spacing should be more than 100 ns. Sensitivity of the monitor is close to 10 V per nanocoulomb. The equivalent scheme and the output signal shape are also presented. Such a monitor seems to be promising for the bunch charge measurements of beams like those in TESLA or ILC projects.

  13. Probing the vacuum with highly charged ions

    SciTech Connect

    Bottcher, C.; Strayer, M.R.

    1987-01-01

    The physics of the Fermion vacuum is briefly described, and applied to pair production in heavy ion collisions. We consider in turn low energies (<50 MeV/nucleon), intermediate energies (<5 GeV/nucleon), and ultrahigh energies such as would be produced in a ring collider. At high energies, interesting questions of Lorentz and gauge invariance arise. Finally, some applications to the structure of high Z atoms are examined. 14 refs., 11 figs.

  14. On the retention of high-energy protons and nuclei with charges Z or equal to 2 in large solar flares after the process of their acceleration

    NASA Technical Reports Server (NTRS)

    Volodichev, N. N.; Kuzhevsky, B. M.; Nechaev, O. Y.; Savenko, I. A.

    1985-01-01

    Data which suggest that the protons with energies of up to several GeV should be retained on the Sun after the process of their acceleration are presented. The protons are on the average retained for 15 min, irrespectively of the solar flare heliolatitude and of the accelerated particle energy ranging from 100 MeV to several GeV. It is suggested that the particles are retained in a magnetic trap formed in a solar active region. No Z or = 2 nuclei of solar origin during large solar flares. The absence of the 500 MeV/nucleon nuclei with Z or = 2 may be due to their retention in the magnetic trap which also retains the high-energy protons. During the trapping time the approx. 500 MeV/nucleon nuclei with Z or = 2 may escape due to nuclear interactions and ionization loss.

  15. Adenylate Energy Charge in Escherichia coli During Growth and Starvation

    PubMed Central

    Chapman, Astrid G.; Fall, Lana; Atkinson, Daniel E.

    1971-01-01

    The value of the adenylate energy charge, [(adenosine triphosphate) + ½ (adenosine diphosphate)]/[(adenosine triphosphate) + (adenosine diphosphate) + (adenosine monophosphate)], in Escherichia coli cells during growth is about 0.8. During the stationary phase after cessation of growth, or during starvation in carbon-limited cultures, the energy charge declines slowly to a value of about 0.5, and then falls more rapidly. During the slow decline in energy charge, all the cells are capable of forming colonies, but a rapid fall in viability coincides with the steep drop in energy charge. These results suggest that growth can occur only at energy charge values above about 0.8, that viability is maintained at values between 0.8 and 0.5, and that cells die at values below 0.5. Tabulation of adenylate concentrations previously reported for various organisms and tissues supports the prediction, based on enzyme kinetic observations in vitro, that the energy charge is stabilized near 0.85 in intact metabolizing cells of a wide variety of types. PMID:4333317

  16. Product distributions for some thermal energy charge transfer reactions of rare gas ions

    NASA Technical Reports Server (NTRS)

    Anicich, V. G.; Laudenslager, J. B.; Huntress, W. T., Jr.; Futrell, J. H.

    1977-01-01

    Ion cyclotron resonance methods were used to measure the product distributions for thermal-energy charge-transfer reactions of He(+), Ne(+), and Ar(+) ions with N2, O2, CO, NO, CO2, and N2O. Except for the He(+)-N2 reaction, no molecular ions were formed by thermal-energy charge transfer from He(+) and Ne(+) with these target molecules. The propensity for dissociative ionization channels in these highly exothermic charge-transfer reactions at thermal energies contrasts with the propensity for formation of parent molecular ions observed in photoionization experiments and in high-energy charge-transfer processes. This difference is explained in terms of more stringent requirements for energy resonance and favorable Franck-Condon factors at thermal ion velocities.

  17. Product distributions for some thermal energy charge transfer reactions of rare gas ions

    NASA Technical Reports Server (NTRS)

    Anicich, V. G.; Laudenslager, J. B.; Huntress, W. T., Jr.; Futrell, J. H.

    1977-01-01

    Ion cyclotron resonance methods were used to measure the product distributions for thermal-energy charge-transfer reactions of He(+), Ne(+), and Ar(+) ions with N2, O2, CO, NO, CO2, and N2O. Except for the He(+)-N2 reaction, no molecular ions were formed by thermal-energy charge transfer from He(+) and Ne(+) with these target molecules. The propensity for dissociative ionization channels in these highly exothermic charge-transfer reactions at thermal energies contrasts with the propensity for formation of parent molecular ions observed in photoionization experiments and in high-energy charge-transfer processes. This difference is explained in terms of more stringent requirements for energy resonance and favorable Franck-Condon factors at thermal ion velocities.

  18. Genesis of charge orders in high temperature superconductors

    PubMed Central

    Tu, Wei-Lin; Lee, Ting-Kuo

    2016-01-01

    One of the most puzzling facts about cuprate high-temperature superconductors in the lightly doped regime is the coexistence of uniform superconductivity and/or antiferromagnetism with many low-energy charge-ordered states in a unidirectional charge density wave or a bidirectional checkerboard structure. Recent experiments have discovered that these charge density waves exhibit different symmetries in their intra-unit-cell form factors for different cuprate families. Using a renormalized mean-field theory for a well-known, strongly correlated model of cuprates, we obtain a number of charge-ordered states with nearly degenerate energies without invoking special features of the Fermi surface. All of these self-consistent solutions have a pair density wave intertwined with a charge density wave and sometimes a spin density wave. Most of these states vanish in the underdoped regime, except for one with a large d-form factor that vanishes at approximately 19% doping of the holes, as reported by experiments. Furthermore, these states could be modified to have a global superconducting order, with a nodal-like density of states at low energy. PMID:26732076

  19. Distributed Sensor Nodes Charged by Mobile Charger with Directional Antenna and by Energy Trading for Balancing.

    PubMed

    Moraes, Celso; Myung, Sunghee; Lee, Sangkeum; Har, Dongsoo

    2017-01-10

    Provision of energy to wireless sensor networks is crucial for their sustainable operation. Sensor nodes are typically equipped with batteries as their operating energy sources. However, when the sensor nodes are sited in almost inaccessible locations, replacing their batteries incurs high maintenance cost. Under such conditions, wireless charging of sensor nodes by a mobile charger with an antenna can be an efficient solution. When charging distributed sensor nodes, a directional antenna, rather than an omnidirectional antenna, is more energy-efficient because of smaller proportion of off-target radiation. In addition, for densely distributed sensor nodes, it can be more effective for some undercharged sensor nodes to harvest energy from neighboring overcharged sensor nodes than from the remote mobile charger, because this reduces the pathloss of charging signal due to smaller distances. In this paper, we propose a hybrid charging scheme that combines charging by a mobile charger with a directional antenna, and energy trading, e.g., transferring and harvesting, between neighboring sensor nodes. The proposed scheme is compared with other charging scheme. Simulations demonstrate that the hybrid charging scheme with a directional antenna achieves a significant reduction in the total charging time required for all sensor nodes to reach a target energy level.

  20. Distributed Sensor Nodes Charged by Mobile Charger with Directional Antenna and by Energy Trading for Balancing

    PubMed Central

    Moraes, Celso; Myung, Sunghee; Lee, Sangkeum; Har, Dongsoo

    2017-01-01

    Provision of energy to wireless sensor networks is crucial for their sustainable operation. Sensor nodes are typically equipped with batteries as their operating energy sources. However, when the sensor nodes are sited in almost inaccessible locations, replacing their batteries incurs high maintenance cost. Under such conditions, wireless charging of sensor nodes by a mobile charger with an antenna can be an efficient solution. When charging distributed sensor nodes, a directional antenna, rather than an omnidirectional antenna, is more energy-efficient because of smaller proportion of off-target radiation. In addition, for densely distributed sensor nodes, it can be more effective for some undercharged sensor nodes to harvest energy from neighboring overcharged sensor nodes than from the remote mobile charger, because this reduces the pathloss of charging signal due to smaller distances. In this paper, we propose a hybrid charging scheme that combines charging by a mobile charger with a directional antenna, and energy trading, e.g., transferring and harvesting, between neighboring sensor nodes. The proposed scheme is compared with other charging scheme. Simulations demonstrate that the hybrid charging scheme with a directional antenna achieves a significant reduction in the total charging time required for all sensor nodes to reach a target energy level. PMID:28075372

  1. Energy-loss cross sections for inclusive charge-exchange reactions at intermediate energies

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Dubey, Rajendra R.

    1993-01-01

    Charge-exchange reactions for scattering to the continuum are considered in a high-energy multiple scattering model. Calculations for (p,n) and (He-3,H-3) reactions are made and compared with experimental results for C-12, O-16, and Al-27 targets. Coherent effects are shown to lead to an important role for inelastic multiple scattering terms when light projectiles are considered.

  2. High energy density aluminum battery

    DOEpatents

    Brown, Gilbert M.; Paranthaman, Mariappan Parans; Dai, Sheng; Dudney, Nancy J.; Manthiram, Arumugan; McIntyre, Timothy J.; Sun, Xiao-Guang; Liu, Hansan

    2016-10-11

    Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery further comprises a cathode comprising a material capable of intercalating aluminum or lithium ions during a discharge cycle and deintercalating the aluminum or lithium ions during a charge cycle. The battery further comprises an electrolyte capable of supporting reversible deposition and stripping of aluminum at the anode, and reversible intercalation and deintercalation of aluminum or lithium at the cathode.

  3. Charge collection and charge pulse formation in highly irradiated silicon planar detectors

    SciTech Connect

    Dezillie, B.; Li, Z.; Eremin, V.

    1998-06-01

    The interpretation of experimental data and predictions for future experiments for high-energy physics have been based on conventional methods like capacitance versus voltage (C-V) measurements. Experiments carried out on highly irradiated detectors show that the kinetics of the charge collection and the dependence of the charge pulse amplitude on the applied bias are deviated too far from those predicted by the conventional methods. The described results show that in highly irradiated detectors, at a bias lower than the real full depletion voltage (V{sub fd}), the kinetics of the charge collection (Q) contains a fast and a slow component. At V = V{sub fd}*, which is the full depletion voltage traditionally determined by the extrapolation of the fast comopnent amplitude of q versus bias to the maximum value or from the standard C-V measurements, the pulse has a slow component with significant amplitude. This slow component can only be eliminated by applying additional bias that amounts to the real full depletion voltage (V{sub fd}) or more. The above mentioned regularities are explained in this paper in terms of a model of an irradiated detector with multiple regions. This model allows one to use C-V, in a modified way, as well as TChT (transient charge technique) measurements to determine the V{sub fd} for highly irradiated detectors.

  4. Ternary cadmium zinc sulphide films with high charge mobilities

    NASA Astrophysics Data System (ADS)

    Ampong, Francis K.; Awudza, Johannes A. M.; Nkum, R. K.; Boakye, F.; Thomas, P. John; O'Brien, Paul

    2015-02-01

    Cadmium zinc sulphide thin films with high charge mobilities are obtained from acidic chemical baths employing the corresponding metal chlorides, urea and thioacetamide. The films are characterized by powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, inductively coupled plasma mass spectrometry, absorption spectroscopy and charge transport measurements. The compositional control afforded by the technique and the resultant changes in the structural, optical and electronic properties of the films are critically examined. We find good correlation between structure and properties at extremes of the composition range.

  5. Measurement of Metastable Lifetimes of Highly-Charged Ions

    NASA Technical Reports Server (NTRS)

    Smith, Steven J.; Chutjian, A.; Lozano, J.

    2002-01-01

    The present work is part of a series of measurements of metastable lifetimes of highly-charged ions (HCIs) which contribute to optical absorption, emission and energy balance in the Interstellar Medium (ISM), stellar atmospheres, etc. Measurements were carried out using the 14-GHz electron cyclotron resonance ion source (ECRIS) at the JPL HCI facility. The ECR provides useful currents of charge states such as C(sup(1-6)+), Mg(sup(1-6)+) and Fe(sup(1-17)+). In this work the HCI beam is focused into a Kingdon electrostatic ion trap for measuring lifetimes via optical decays.

  6. Ultra-low current beams in UMER to model space-charge effects in high-energy proton and ion machines

    NASA Astrophysics Data System (ADS)

    Bernal, S.; Beaudoin, B.; Baumgartner, H.; Ehrenstein, S.; Haber, I.; Koeth, T.; Montgomery, E.; Ruisard, K.; Sutter, D.; Yun, D.; Kishek, R. A.

    2017-03-01

    The University of Maryland Electron Ring (UMER) has operated traditionally in the regime of strong space-charge dominated beam transport, but small-current beams are desirable to significantly reduce the direct (incoherent) space-charge tune shift as well as the tune depression. This regime is of interest to model space-charge effects in large proton and ion rings similar to those used in nuclear physics and spallation neutron sources, and also for nonlinear dynamics studies of lattices inspired on the Integrable Optics Test Accelerator (IOTA). We review the definitions of beam vs. space-charge intensities and discuss three methods for producing very small beam currents in UMER. We aim at generating 60µA - 1.0mA, 100 ns, 10 keV beams with normalized rms emittances of the order of 0.1 - 1.0µm.

  7. Photoionizing Trapped Highly Charged Ions with Synchrotron Radiation

    SciTech Connect

    Crespo, J R; Simon, M; Beilmann, C; Rudolph, J; Steinbruegge, R; Eberle, S; Schwarz, M; Baumann, T; Schmitt, B; Brunner, F; Ginzel, R; Klawitter, R; Kubicek, K; Epp, S; Mokler, P; Maeckel, V; Ullrich, J; Brown, G V; Graf, A; Leutenegger, M; Beiersdorfer, P; Behar, E; Follath, R; Reichardt, G; Schwarzkopf, O

    2011-09-12

    Photoabsorption by highly charged ions plays an essential role in astrophysical plasmas. Diagnostics of photoionized plasmas surrounding binary systems rely heavily on precise identification of absorption lines and on the knowledge of their cross sections and widths. Novel experiments using an electron beam ion trap, FLASH EBIT, in combination with monochromatic synchrotron radiation allow us to investigate ions in charge states hitherto out of reach. Trapped ions can be prepared in any charge state at target densities sufficient to measure absorption cross sections below 0.1 Mb. The results benchmark state-of-the-art predictions of the transitions wavelengths, widths, and absolute cross sections. Recent high resolution results on Fe{sup 14+}, Fe{sup 15+}, and Ar{sup 12+} at photon energies up to 1 keV are presented.

  8. High-LET charged particle radiotherapy

    SciTech Connect

    Castro, J.R. . Research Medicine and Radiation Biophysics Div. California Univ., San Francisco, CA . Dept. of Radiation Oncology)

    1991-07-01

    The Department of Radiation Oncology at UCSF Medical Center and the Radiation Oncology Department at UC Lawrence Berkeley Laboratory have been evaluating the use of high LET charged particle radiotherapy in a Phase 1--2 research trial ongoing since 1979. In this clinical trail, 239 patients have received at least 10 Gy (physical) minimum tumor dose with neon ions, meaning that at least one-half of their total treatment was given with high-LET charged particle therapy. Ninety-one patients received all of their therapy with neon ions. Of the 239 patients irradiated, target sites included lesions in the skin, subcutaneous tissues, head and neck such as paranasal sinuses, nasopharynx and salivary glands (major and minor), skull base and juxtaspinal area, GI tract including esophagus, pancreas and biliary tract, prostate, lung, soft tissue and bone. Analysis of these patients has been carried out with a minimum followup period of 2 years.

  9. High-LET charged particle radiotherapy

    SciTech Connect

    Castro, J.R. |

    1991-07-01

    The Department of Radiation Oncology at UCSF Medical Center and the Radiation Oncology Department at UC Lawrence Berkeley Laboratory have been evaluating the use of high LET charged particle radiotherapy in a Phase 1--2 research trial ongoing since 1979. In this clinical trail, 239 patients have received at least 10 Gy (physical) minimum tumor dose with neon ions, meaning that at least one-half of their total treatment was given with high-LET charged particle therapy. Ninety-one patients received all of their therapy with neon ions. Of the 239 patients irradiated, target sites included lesions in the skin, subcutaneous tissues, head and neck such as paranasal sinuses, nasopharynx and salivary glands (major and minor), skull base and juxtaspinal area, GI tract including esophagus, pancreas and biliary tract, prostate, lung, soft tissue and bone. Analysis of these patients has been carried out with a minimum followup period of 2 years.

  10. Thermal energy and charge currents in multi-terminal nanorings

    SciTech Connect

    Kramer, Tobias; Kreisbeck, Christoph; Riha, Christian Chiatti, Olivio; Buchholz, Sven S.; Fischer, Saskia F.; Wieck, Andreas D.; Reuter, Dirk

    2016-06-15

    We study in experiment and theory thermal energy and charge transfer close to the quantum limit in a ballistic nanodevice, consisting of multiply connected one-dimensional electron waveguides. The fabricated device is based on an AlGaAs/GaAs heterostructure and is covered by a global top-gate to steer the thermal energy and charge transfer in the presence of a temperature gradient, which is established by a heating current. The estimate of the heat transfer by means of thermal noise measurements shows the device acting as a switch for charge and thermal energy transfer. The wave-packet simulations are based on the multi-terminal Landauer-Büttiker approach and confirm the experimental finding of a mode-dependent redistribution of the thermal energy current, if a scatterer breaks the device symmetry.

  11. Energy Gap of Neutral Excitations Implies Vanishing Charge Susceptibility

    NASA Astrophysics Data System (ADS)

    Watanabe, Haruki

    2017-03-01

    In quantum many-body systems with a U(1) symmetry, such as particle number conservation and axial spin conservation, there are two distinct types of excitations: charge-neutral excitations and charged excitations. The energy gaps of these excitations may be independent from each other in strongly correlated systems. The static susceptibility of the U(1) charge vanishes when the charged excitations are all gapped, but its relation to the neutral excitations is not obvious. Here we show that a finite excitation gap of the neutral excitations is, in fact, sufficient to prove that the charge susceptibility vanishes (i.e., the system is incompressible). This result gives a partial explanation for why the celebrated quantization condition n (S -mz)∈Z at magnetization plateaus works even in spatial dimensions greater than one.

  12. Status of Charge Exchange Cross Section Measurements for Highly Charged Ions on Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Draganic, I. N.; Havener, C. C.; Schultz, D. R.; Seely, D. G.; Schultz, P. C.

    2011-05-01

    Total cross sections of charge exchange (CX) for C5+, N6+, and O7+ ions on ground state atomic hydrogen are measured in an extended collision energy range of 1 - 20,000 eV/u. Absolute CX measurements are performed using an improved merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source mounted on a high voltage platform. In order to improve the problematic H+ signal collection for these exoergic CX collisions at low relative energies, a new double focusing electrostatic analyzer was installed. Experimental CX data are in good agreement with all previous H-oven relative measurements at higher collision energies. We compare our results with the most recent molecular orbital close-coupling (MOCC) and atomic orbital close-coupling (AOCC) theoretical calculations. Work supported by the NASA Solar & Heliospheric Physics Program NNH07ZDA001N, the Office of Fusion Energy Sciences and the Division of Chemical Sciences, Geosciences, and Biosciences, and the Office of Basic Energy Sciences of the U.S. DoE.

  13. Hydrogen-transfer and charge transfer in photochemical and high energy radiation induced reactions: effects of thiols. Final report, February 1, 1960-january 31, 1979

    SciTech Connect

    Cohen, S G

    1980-03-01

    Absorption of ultraviolet or visible light, or high energy radiation, may lead to highly reactive free radicals. Thiols affect the reactions of these radicals in the following ways: (1) transfer of hydrogen from sulfur of the thiol to a substrate radical, converting the radical to a stable molecule, and the thiol to a reactive thiyl radical; and (2) transfer of hydrogen from a substrate radical or molecule to thiyl, regenerating thiol. The thiol is thus used repeatedly and a single molecule may affect the consequences of many quanta. Three effects may ensue, depending upon the system irradiated: (1) the substrate radicals may be converted by thiol-thiyl to the original molecules, and protection against radiation damage is afforded. (2) The radicals may be converted to molecules not identical with the starting materials, and in both cases damage caused by radical combination processes is prevented. (3) Product yields may be increased where the initial radicals might otherwise regenerate starting materials. It was shown that rates of reaction of excited species can be correlated with triplet energies and reduction potentials, and with ionization potentials, that amines are very reactive toward excited carbonyl compounds of all types, and that yields of products from these reactions can be increased by thiols, leading to increased efficiency in utilization of light.

  14. 10 CFR 904.6 - Charge for capacity and firm energy.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Charge for capacity and firm energy. 904.6 Section 904.6 Energy DEPARTMENT OF ENERGY GENERAL REGULATIONS FOR THE CHARGES FOR THE SALE OF POWER FROM THE BOULDER CANYON PROJECT Power Marketing § 904.6 Charge for capacity and firm energy. The charge for Capacity...

  15. 10 CFR 904.6 - Charge for capacity and firm energy.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Charge for capacity and firm energy. 904.6 Section 904.6 Energy DEPARTMENT OF ENERGY GENERAL REGULATIONS FOR THE CHARGES FOR THE SALE OF POWER FROM THE BOULDER CANYON PROJECT Power Marketing § 904.6 Charge for capacity and firm energy. The charge for Capacity...

  16. 10 CFR 904.6 - Charge for capacity and firm energy.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Charge for capacity and firm energy. 904.6 Section 904.6 Energy DEPARTMENT OF ENERGY GENERAL REGULATIONS FOR THE CHARGES FOR THE SALE OF POWER FROM THE BOULDER CANYON PROJECT Power Marketing § 904.6 Charge for capacity and firm energy. The charge for Capacity...

  17. 10 CFR 904.6 - Charge for capacity and firm energy.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Charge for capacity and firm energy. 904.6 Section 904.6 Energy DEPARTMENT OF ENERGY GENERAL REGULATIONS FOR THE CHARGES FOR THE SALE OF POWER FROM THE BOULDER CANYON PROJECT Power Marketing § 904.6 Charge for capacity and firm energy. The charge for Capacity...

  18. 10 CFR 904.6 - Charge for capacity and firm energy.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Charge for capacity and firm energy. 904.6 Section 904.6 Energy DEPARTMENT OF ENERGY GENERAL REGULATIONS FOR THE CHARGES FOR THE SALE OF POWER FROM THE BOULDER CANYON PROJECT Power Marketing § 904.6 Charge for capacity and firm energy. The charge for Capacity...

  19. High energy neutron radiography

    SciTech Connect

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-06-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos.

  20. Low energy charged particles interacting with amorphous solid water layers

    SciTech Connect

    Horowitz, Yonatan; Asscher, Micha

    2012-04-07

    The interaction of charged particles with condensed water films has been studied extensively in recent years due to its importance in biological systems, ecology as well as interstellar processes. We have studied low energy electrons (3-25 eV) and positive argon ions (55 eV) charging effects on amorphous solid water (ASW) and ice films, 120-1080 ML thick, deposited on ruthenium single crystal under ultrahigh vacuum conditions. Charging the ASW films by both electrons and positive argon ions has been measured using a Kelvin probe for contact potential difference (CPD) detection and found to obey plate capacitor physics. The incoming electrons kinetic energy has defined the maximum measurable CPD values by retarding further impinging electrons. L-defects (shallow traps) are suggested to be populated by the penetrating electrons and stabilize them. Low energy electron transmission measurements (currents of 0.4-1.5 {mu}A) have shown that the maximal and stable CPD values were obtained only after a relatively slow change has been completed within the ASW structure. Once the film has been stabilized, the spontaneous discharge was measured over a period of several hours at 103 {+-} 2 K. Finally, UV laser photo-emission study of the charged films has suggested that the negative charges tend to reside primarily at the ASW-vacuum interface, in good agreement with the known behavior of charged water clusters.

  1. Charged-particle multiplicity at LHC energies

    ScienceCinema

    None

    2016-07-12

    The talk presents the measurement of the pseudorapidity density and the multiplicity distribution with ALICE at the achieved LHC energies of 0.9 and 2.36 TeV.An overview about multiplicity measurements prior to LHC is given and the related theoretical concepts are briefly discussed.The analysis procedure is presented and the systematic uncertainties are detailed. The applied acceptance corrections and the treatment of diffraction are discussed.The results are compared with model predictions. The validity of KNO scaling in restricted phase space regions is revisited. 

  2. Spectroscopy with trapped highly charged ions

    SciTech Connect

    Beiersdorfer, P

    2008-01-23

    We give an overview of atomic spectroscopy performed on electron beam ion traps at various locations throughout the world. Spectroscopy at these facilities contributes to various areas of science and engineering, including but not limited to basic atomic physics, astrophysics, extreme ultraviolet lithography, and the development of density and temperature diagnostics of fusion plasmas. These contributions are accomplished by generating, for example, spectral surveys, making precise radiative lifetime measurements, accounting for radiative power emitted in a given wavelength band, illucidating isotopic effects, and testing collisional-radiative models. While spectroscopy with electron beam ion traps had originally focused on the x-ray emission from highly charged ions interacting with the electron beam, the operating modes of such devices have expanded to study radiation in almost all wavelength bands from the visible to the hard x-ray region; and at several facilities the ions can be studied even in the absence of an electron beam. Photon emission after charge exchange or laser excitation has been observed, and the work is no longer restricted to highly charged ions. Much of the experimental capabilities are unique to electron beam ion traps, and the work performed with these devices cannot be undertaken elsewhere. However, in other areas the work on electron beam ion traps rivals the spectroscopy performed with conventional ion traps or heavy-ion storage rings. The examples we present highlight many of the capabilities of the existing electron beam ion traps and their contributions to physics.

  3. High gradient lens for charged particle beam

    SciTech Connect

    Chen, Yu-Jiuan

    2014-04-29

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  4. Use of incomplete energy recovery for the energy compression of large energy spread charged particle beams

    DOEpatents

    Douglas, David R.; Benson, Stephen V.

    2007-01-23

    A method of energy recovery for RF-base linear charged particle accelerators that allows energy recovery without large relative momentum spread of the particle beam involving first accelerating a waveform particle beam having a crest and a centroid with an injection energy E.sub.o with the centroid of the particle beam at a phase offset f.sub.o from the crest of the accelerating waveform to an energy E.sub.full and then recovering the beam energy centroid a phase f.sub.o+Df relative to the crest of the waveform particle beam such that (E.sub.full-E.sub.o)(1+cos(f.sub.o+Df))>dE/2 wherein dE=the full energy spread, dE/2=the full energy half spread and Df=the wave form phase distance.

  5. Highly charged Ar{sup q+} ions interacting with metals

    SciTech Connect

    Wang Jijin; Zhang Jian; Gu Jiangang; Luo Xianwen; Hu Bitao

    2009-12-15

    Using computer simulation, alternative methods of the interaction of highly charged ions Ar{sup q+} with metals (Au, Ag) are used and verified in the present work. Based on the classical over-barrier model, we discussed the promotion loss and peeling off processes. The simulated total potential electron yields agree well with the experiment data in incident energy ranging from 100 eV to 5 keV and all charge states of Ar{sup q+}. Based on the TRIM code, we obtain the side-feeding rate as well as the motion and charge transfer of HCI below the surface. Some results, including the array of KL{sup x} x-ray satellite lines, the respective contribution of autoionization, and side-feeding to inner shells, and the filling rates and lifetime of inner shells for Ar agree well with experiment or theory.

  6. SCATHA survey of high-level spacecraft charging in sunlight

    NASA Technical Reports Server (NTRS)

    Mullen, E. G.; Gussenhoven, M. S.; Hardy, D. A.; Aggson, T. A.; Ledley, B. G.

    1986-01-01

    The statistical occurrence of spacecraft charging at near-geosynchronous orbit in daylight is studied with reference to results of an experiment conducted on the SCATHA satellite. In particular, it is found that: (1) the external current that creates high negative satellite frame potentials is the high-energy electron current from the electron population with energies greater than about 30 keV; (2) the electron current to the satellite from particles with energies less than about 30 keV neither drives the frame potential nor provides the current to balance the high-energy populations; and (3) the ion current provided from the entire range of measured ions is also not the primary source of the balancing current.

  7. Atomic physics with highly charged ions

    SciTech Connect

    Richard, P.

    1991-08-01

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations.

  8. Measurement of charge multiplicity asymmetry correlations in high-energy nucleus-nucleus collisions at √sNN =200 GeV

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Alekseev, I.; Alford, J.; Anson, C. D.; Arkhipkin, D.; Aschenauer, E.; Averichev, G. S.; Balewski, J.; Banerjee, A.; Barnovska, Z.; Beavis, D. R.; Bellwied, R.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bruna, E.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Cai, X. Z.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chung, P.; Chwastowski, J.; Codrington, M. J. M.; Corliss, R.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derradi de Souza, R.; Dhamija, S.; Didenko, L.; Ding, F.; Dion, A.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elnimr, M.; Engelage, J.; Eppley, G.; Eun, L.; Evdokimov, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Fersch, R. G.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Gliske, S.; Gorbunov, Y. N.; Grebenyuk, O. G.; Grosnick, D.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hajkova, O.; Hamed, A.; Han, L.-X.; Harris, J. W.; Hays-Wehle, J. P.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jena, C.; Judd, E. G.; Kabana, S.; Kang, K.; Kapitan, J.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Kikola, D. P.; Kiryluk, J.; Kisel, I.; Kisiel, A.; Kizka, V.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Koroleva, L.; Korsch, W.; Kotchenda, L.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Leight, W.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lima, L. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Lu, Y.; Luo, X.; Luszczak, A.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Mioduszewski, S.; Mitrovski, M. K.; Mohammed, Y.; Mohanty, B.; Mondal, M. M.; Morozov, B.; Munhoz, M. G.; Mustafa, M. K.; Naglis, M.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nogach, L. V.; Novak, J.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Oliveira, R. A. N.; Olson, D.; Ostrowski, P.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Porter, J.; Powell, C. B.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Redwine, R.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Ruan, L.; Rusnak, J.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, B.; Schmitz, N.; Schuster, T. R.; Seele, J.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shao, M.; Sharma, B.; Sharma, M.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; deSouza, U. G.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Steadman, S. G.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szanto de Toledo, A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Vossen, A.; Wada, M.; Wang, F.; Wang, H.; Wang, J. S.; Wang, Q.; Wang, X. L.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Whitten, C.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, N.; Xu, Q. H.; Xu, W.; Xu, Y.; Xu, Z.; Xue, L.; Yang, Y.; Yang, Y.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Zawisza, M.; Zbroszczyk, H.; Zhang, J. B.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2014-04-01

    A study is reported of the same- and opposite-sign charge-dependent azimuthal correlations with respect to the event plane in Au + Au collisions at √sNN =200 GeV. The charge multiplicity asymmetries between the up/down and left/right hemispheres relative to the event plane are utilized. The contributions from statistical fluctuations and detector effects were subtracted from the (co-)variance of the observed charge multiplicity asymmetries. In the mid- to most-central collisions, the same- (opposite-) sign pairs are preferentially emitted in back-to-back (aligned on the same-side) directions. The charge separation across the event plane, measured by the difference, Δ, between the like- and unlike-sign up/down-left/right correlations, is largest near the event plane. The difference is found to be proportional to the event-by-event final-state particle ellipticity (via the observed second-order harmonic v2obs), where Δ =[1.3±1.4(stat)-1.0+4.0(syst)]×10-5+[3.2±0.2(stat)-0.3+0.4(syst)]×10-3v2obs for 20-40% Au + Au collisions. The implications for the proposed chiral magnetic effect are discussed.

  9. Modulation of folding energy landscape by charge-charge interactions: linking experiments with computational modeling.

    PubMed

    Tzul, Franco O; Schweiker, Katrina L; Makhatadze, George I

    2015-01-20

    The kinetics of folding-unfolding of a structurally diverse set of four proteins optimized for thermodynamic stability by rational redesign of surface charge-charge interactions is characterized experimentally. The folding rates are faster for designed variants compared with their wild-type proteins, whereas the unfolding rates are largely unaffected. A simple structure-based computational model, which incorporates the Debye-Hückel formalism for the electrostatics, was used and found to qualitatively recapitulate the experimental results. Analysis of the energy landscapes of the designed versus wild-type proteins indicates the differences in refolding rates may be correlated with the degree of frustration of their respective energy landscapes. Our simulations indicate that naturally occurring wild-type proteins have frustrated folding landscapes due to the surface electrostatics. Optimization of the surface electrostatics seems to remove some of that frustration, leading to enhanced formation of native-like contacts in the transition-state ensembles (TSE) and providing a less frustrated energy landscape between the unfolded and TS ensembles. Macroscopically, this results in faster folding rates. Furthermore, analyses of pairwise distances and radii of gyration suggest that the less frustrated energy landscapes for optimized variants are a result of more compact unfolded and TS ensembles. These findings from our modeling demonstrates that this simple model may be used to: (i) gain a detailed understanding of charge-charge interactions and their effects on modulating the energy landscape of protein folding and (ii) qualitatively predict the kinetic behavior of protein surface electrostatic interactions.

  10. Electron impact ionization of highly charged lithiumlike ions

    SciTech Connect

    Wong, K L

    1992-10-01

    Electron impact ionization cross sections can provide valuable information about the charge-state and power balance of highly charged ions in laboratory and astrophysical plasmas. In the present work, a novel technique based on x-ray measurements has been used to infer the ionization cross section of highly charged lithiumlike ions on the Livermore electron beam ion trap. In particular, a correspondence is established between an observed x ray and an ionization event. The measurements are made at one energy corresponding to approximately 2.3 times the threshold energy for ionization of lithiumlike ions. The technique is applied to the transition metals between Z=22 (titanium, Ti[sup 19+]) and Z=26 (iron, Fe[sup 23+]) and to Z=56 (barium, Ba[sup 53+]). The results for the transition metals, which have an estimated 17-33% uncertainty, are in good overall agreement with a relativistic distorted-wave calculation. However, less good agreement is found for barium, which has a larger uncertainty. Methods for properly accounting for the polarization in the x-ray intensities and for inferring the charge-state abundances from x-ray observations, which were developed for the ionization measurements, as well as an x-ray model that assists in the proper interpretation of the data are also presented.

  11. FSU High Energy Physics

    SciTech Connect

    Prosper, Harrison B.; Adams, Todd; Askew, Andrew; Berg, Bernd; Blessing, Susan K.; Okui, Takemichi; Owens, Joseph F.; Reina, Laura; Wahl, Horst D.

    2014-12-01

    non-zero neutrino masses or the overwhelming astrophysical evidence for an invisible form of matter, called dark matter, that has had a marked effect on the evolution of structure in the universe. The report highlights the main, recent, experimental achievements of the experimental group, which include the investigation of properties of the W and Z bosons; the search for new heavy stable charged particles and the search for a proposed property of nature called supersymmetry in proton-proton collisions that yield high energy photons. In addition, we report a few results from a more general search for supersymmetry at the LHC, initiated by the group. The report also highlights the group's significant contributions, both theoretical and experimental, to the 2012 discovery of the Higgs boson and the measurement of its properties.

  12. Imaging the potential distribution of individual charged impurities on graphene by low-energy electron holography.

    PubMed

    Latychevskaia, Tatiana; Wicki, Flavio; Escher, Conrad; Fink, Hans-Werner

    2017-07-29

    While imaging individual atoms can routinely be achieved in high resolution transmission electron microscopy, visualizing the potential distribution of individually charged adsorbates leading to a phase shift of the probing electron wave is still a challenging task. Low-energy electrons (30 - 250 eV) are sensitive to localized potential gradients. We employed low-energy electron holography to acquire in-line holograms of individual charged impurities on free-standing graphene. By applying an iterative phase retrieval reconstruction routine we recover the potential distribution of the localized charged impurities present on free-standing graphene. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The g-factor of highly charged ions

    NASA Astrophysics Data System (ADS)

    Sturm, Sven; Köhler, Florian; Werth, Günter

    2015-04-01

    Highly charged ions provide a unique opportunity to test our understanding of atomic properties under extreme conditions: The electric field strength seen by an electron bound to a nucleus at the distance of the Bohr radius ranges from 1010 V/cm in hydrogen to1016 V/cm in hydrogenlike uranium. The theory of quantum electrodynamics (QED) allows for calculation e.g. of binding energies, transition probabilities or magnetic moments. While at low fields QED is tested to very high precision, new, hypothetical nonlinear effects like photon- photon interaction or a violation of Lorentz symmetry may occur in strong fields which then would lead to an extension of the Standard Model. The ultra-high precision determination of the magnetic moment of a bound electron in a highly charged ion provides a unique possibility to probe the validity of the current Standard Model in extreme conditions.

  14. Finite-size effect on the charging free energy of protein in explicit solvent.

    PubMed

    Ekimoto, Toru; Matubayasi, Nobuyuki; Ikeguchi, Mitsunori

    2015-01-13

    The finite-size effect in periodic system is examined for the charging free energy of protein in explicit solvent over a variety of charged states. The key to the finite-size correction is the self-energy, which is defined as the interaction energy of the solute with its own periodic images and the neutralizing background. By employing the thermodynamic-integration method with systematically varied sizes of the unit cell of molecular dynamics (MD) simulations, we show for ubiquitin that the self-energy corrects the finite-size effect on the charging free energy within 1 kcal/mol at total charges of -5e, -1e, neutral, and +1e and within 5 kcal/mol even for a highly charged state with +8e. We then sought the additional correction from the solvation effect using the numerical solution to the Poisson equation of the protein with implicit solvent. This correction reduces the cell-size dependence of the charging free energy at +8e to 3 kcal/mol and is well expressed as the self-energy divided by the dielectric constant of solvent water.

  15. Soft X-ray Charged Piezoelectret for Kinetic Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Lu, J.; Cho, HJ; Suzuki, Y.

    2016-11-01

    Piezoelectret polymer attracts much attention for its high piezoelectric coefficient. Multilayered piezoelectret structures are often charged with corona discharge, but it is difficult to get high surface charge density. To address this issue, a multilayered piezoelectret structure with embedded electrode is proposed, which can be efficiently poled with soft X-ray charging. With the aid of embedded electrodes, the bias voltage is directly applied to each unit cell, rather than divided and distributed to multiple layers. With an early PTFE-based prototype, output power of 0.5 μJ has been obtained for 0.3 mm displacement in 0.2 s.

  16. The interaction energy between two parallel plates with constant surface charge density.

    PubMed

    Wang, Haoping; Hou, Chuangye; Jin, Jun

    2003-07-15

    On the basis of Langmuir's suggestion we simplify the Poisson-Boltzmann equation and derive the relation of surface potential, potential midway, and the plate distance. Thus we obtain the interaction force and energy equations between two dissimilar plates in the case of constant surface charge density. Agreement with the exact numerical values of the interaction of dissimilar plates is good. This method may not only apply to the cases of high constant potential but to the case of high constant charge density.

  17. Formation of organo-highly charged mica.

    PubMed

    Alba, María D; Castro, Miguel A; Orta, M Mar; Pavón, Esperanza; Pazos, M Carolina; Valencia Rios, Jesús S

    2011-08-16

    The interlayer space of the highly charged synthetic Na-Mica-4 can be modified by ion-exchange reactions involving the exchange of inorganic Na(+) cations by surfactant molecules, which results in the formation of an organophilic interlayer space. The swelling and structural properties of this highly charged mica upon intercalation with n-alkylammonium (RNH(3))(+) cations with varying alkyl chain lengths (R = C12, C14, C16, and C18) have been reported. The stability, fine structure, and evolution of gaseous species from alkylammonium Mica-4 are investigated in detail by conventional thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), in situ X-ray diffraction (XRD), and solid-state nuclear magnetic resonance (MAS NMR) techniques. The results clearly show the total adsorption of n-alkylammonium cations in the interlayer space which expands as needed to accommodate intercalated surfactants. The surfactant packing is quite ordered at room temperature, mainly involving a paraffin-type bilayer with an all-trans conformation, in agreement with the high density of the organic compounds in the interlayer space. At temperatures above 160 °C, the surfactant molecules undergo a transformation that leads to a liquid-like conformation, which results in a more disordered phase and expansion of the interlayer space.

  18. Modelling surface restructuring by slow highly charged ions

    NASA Astrophysics Data System (ADS)

    Wachter, G.; Tőkési, K.; Betz, G.; Lemell, C.; Burgdörfer, J.

    2013-12-01

    We theoretically investigate surface modifications on alkaline earth halides due to highly charged ion impact, focusing on recent experimental evidence for both etch pit and nano-hillock formation on CaF2 (A.S. El-Said et al., Phys. Rev. Lett. 109, (2012) 117602 [1]). We discuss mechanisms for converting the projectile potential and kinetic energies into thermal energy capable of changing the surface structure. A proof-of-principle classical molecular dynamics simulation suggests the existence of two thresholds which we associate with etch pit and nano-hillock formation in qualitative agreement with experiment.

  19. Fragmentation of multiply charged hydrocarbon molecules C{sub n}H{sup q+} (n{<=} 4, q{<=} 9) produced in high-velocity collisions: Branching ratios and kinetic energy release of the H{sup +} fragment

    SciTech Connect

    Beroff, K.; Pino, T.; Carpentier, Y.; Van-Oanh, N. T.; Chabot, M.; Tuna, T.; Martinet, G.; Le Padellec, A.; Lavergne, L.

    2011-09-15

    Fragmentation branching ratios for channels involving H{sup +} emission and associated kinetic energy release of the H{sup +} fragment [KER(H{sup +})] have been measured for multicharged C{sub n}H{sup q+} molecules produced in high velocity (3.6 a.u.) collisions between C{sub n}H{sup +} projectiles and helium atoms. For CH{sup q+} (q{<=} 4) molecules, measured KER(H{sup +}) were found well below predictions of the simple point charge Coulomb model (PCCM) for all q values. Multireference configuration interaction (MRCI) calculations for ground as well as electronic excited states were performed which allowed a perfect interpretation of the CH{sup q+} experimental results for low charges (q = 2-3) as well as for the highest charge (q = 4). In this last case we could show, on the basis of ionization cross sections calculations and experimental measurements performed on the same systems at slightly higher velocity (4.5 a.u.), the prominent role played by inner-shell ionization followed by Auger relaxation and could extract the lifetime of this Auger relaxation giving rise to the best agreement between the experiment and the calculations. For dissociation of C{sub 2}H{sup q+} and C{sub 3}H{sup q+} with the highest charges (q{>=} 5), inner-shell ionization contributed in a prominent way to the ion production. In these two cases it was shown that measured KER(H{sup +}) were in good agreement with PCCM predictions when those were corrected for Auger relaxation with the same Auger lifetime value as in CH{sup 3+}.

  20. High Energy Missile Project

    DTIC Science & Technology

    2004-12-01

    hypervelocity missile concept has been investigated. This research and development project called High Energy Missile (HEMi) technology...currently valid OMB control number. 1. REPORT DATE 00 DEC 2004 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE High Energy

  1. INTRAMOLECULAR CHARGE AND ENERGY TRANSFER IN MULTICHROMOPHORIC AROMATIC SYSTEMS

    SciTech Connect

    Edward C. Lim

    2008-09-09

    A concerted experimental and computational study of energy transfer in nucleic acid bases and charge transfer in dialkylaminobenzonitriles, and related electron donor-acceptor molecules, indicate that the ultrafast photoprocesses occur through three-state conical interactions involving an intermediate state of biradical character.

  2. Ultrathin Nanoribbons of in Situ Carbon-Coated V3O7·H2O for High-Energy and Long-Life Li-Ion Batteries: Synthesis, Electrochemical Performance, and Charge-Discharge Behavior.

    PubMed

    Liu, Pengcheng; Bian, Kan; Zhu, Kongjun; Xu, Yuan; Gao, Yanfeng; Luo, Hongjie; Lu, Li; Wang, Jing; Liu, Jinsong; Tai, Guòan

    2017-05-24

    The ever-growing demands of Li-ion batteries (LIBs) for high-energy and long-life applications, such as electrical vehicles, have prompted great research interest. Herein, by applying an interesting one-step high-temperature mixing method under hydrothermal conditions, ultrathin V3O7·H2O@C nanoribbons with good crystallinity and robust configuration are in situ synthesized as promising cathode materials of high-energy, high-power, and long-life LIBs. Their capacity is up to 319 mA h/g at a current density of 100 mA/g. Moreover, the capacity of 262 mA h/g can be delivered at 500 mA/g, and 94% of capacity can be retained after 100 cycles. Even at a large current density of 3000 mA/g, they can still deliver a high capacity of 165 mA h/g, and 119% of the initial capacity can be kept after 600 cycles. Importantly, their energy density is up to 800 Wh/kg, which is 48-60% higher than those of conventional cathode materials (such as LiCoO2, LiMn2O4, and LiFePO4), and they can maintain an energy density of 355 Wh/kg at a high power density of 8000 W/kg. Furthermore, based on ex situ X-ray diffraction and X-ray photoelectron spectroscopy technology, their exact charge-discharge behavior is reasonably described for the first time. Excitingly, it is found for the first time that the as-synthesized V3O7·H2O@C nanoribbons are also great promising cathode materials for Na-ion batteries.

  3. Coulomb crystallization of highly charged ions.

    PubMed

    Schmöger, L; Versolato, O O; Schwarz, M; Kohnen, M; Windberger, A; Piest, B; Feuchtenbeiner, S; Pedregosa-Gutierrez, J; Leopold, T; Micke, P; Hansen, A K; Baumann, T M; Drewsen, M; Ullrich, J; Schmidt, P O; López-Urrutia, J R Crespo

    2015-03-13

    Control over the motional degrees of freedom of atoms, ions, and molecules in a field-free environment enables unrivalled measurement accuracies but has yet to be applied to highly charged ions (HCIs), which are of particular interest to future atomic clock designs and searches for physics beyond the Standard Model. Here, we report on the Coulomb crystallization of HCIs (specifically (40)Ar(13+)) produced in an electron beam ion trap and retrapped in a cryogenic linear radiofrequency trap by means of sympathetic motional cooling through Coulomb interaction with a directly laser-cooled ensemble of Be(+) ions. We also demonstrate cooling of a single Ar(13+) ion by a single Be(+) ion-the prerequisite for quantum logic spectroscopy with a potential 10(-19) accuracy level. Achieving a seven-orders-of-magnitude decrease in HCI temperature starting at megakelvin down to the millikelvin range removes the major obstacle for HCI investigation with high-precision laser spectroscopy.

  4. Precision mass measurements of highly charged ions

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, A. A.; Bale, J. C.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Ettenauer, S.; Frekers, D.; Gallant, A. T.; Grossheim, A.; Lennarz, A.; Mane, E.; MacDonald, T. D.; Schultz, B. E.; Simon, M. C.; Simon, V. V.; Dilling, J.

    2012-10-01

    The reputation of Penning trap mass spectrometry for accuracy and precision was established with singly charged ions (SCI); however, the achievable precision and resolving power can be extended by using highly charged ions (HCI). The TITAN facility has demonstrated these enhancements for long-lived (T1/2>=50 ms) isobars and low-lying isomers, including ^71Ge^21+, ^74Rb^8+, ^78Rb^8+, and ^98Rb^15+. The Q-value of ^71Ge enters into the neutrino cross section, and the use of HCI reduced the resolving power required to distinguish the isobars from 3 x 10^5 to 20. The precision achieved in the measurement of ^74Rb^8+, a superallowed β-emitter and candidate to test the CVC hypothesis, rivaled earlier measurements with SCI in a fraction of the time. The 111.19(22) keV isomeric state in ^78Rb was resolved from the ground state. Mass measurements of neutron-rich Rb and Sr isotopes near A = 100 aid in determining the r-process pathway. Advanced ion manipulation techniques and recent results will be presented.

  5. Charge state dependent energy deposition by ion impact.

    PubMed

    Lake, R E; Pomeroy, J M; Grube, H; Sosolik, C E

    2011-08-05

    We report on a measurement of craters in thin dielectric films formed by Xe(Q+) (26 ≤ Q ≤ 44) projectiles. Tunnel junction devices with ion-irradiated barriers were used to amplify the effect of charge-dependent cratering through the exponential dependence of tunneling conductance on barrier thickness. Electrical conductance of a crater σ(c)(Q) increased by 4 orders of magnitude (7.9 × 10(-4) μS to 6.1 μS) as Q increased, corresponding to crater depths ranging from 2 to 11 Å. By employing a heated spike model, we determine that the energy required to produce the craters spans from 8 to 25 keV over the investigated charge states. Considering energy from preequilibrium nuclear and electronic stopping as well as neutralization, we find that at least (27 ± 2)% of available projectile neutralization energy is deposited into the thin film during impact.

  6. Why are the Interaction Energies of Charge-Transfer Complexes Challenging for DFT?

    PubMed

    Steinmann, Stephan N; Piemontesi, Cyril; Delachat, Aurore; Corminboeuf, Clemence

    2012-05-08

    The description of ground state charge-transfer complexes is highly challenging. Illustrative examples include large overestimations of charge-transfer by local and semilocal density functional approximations as well as inaccurate binding energies. It is demonstrated here that standard density functionals fail to accurately describe interaction energies of charge-transfer complexes not only because of the missing long-range exchange as generally assumed but also as a result of the neglect of weak interactions. Thus, accounting for the missing van der Waals interactions is of key importance. These assertions, based on the evaluation of the extent of stabilization due to dispersion using both DFT coupled with our recent density-dependent dispersion correction (dDsC) and high-level ab initio computations, reflect the imperfect error-cancellation between the overestimation of charge-transfer and the missing long-range interactions. An in-depth energy decomposition analysis of an illustrative series of four small ambidentate molecules (HCN, HNC, HF, and ClF) bound together with NF3 provides the main conclusions, which are validated on a prototypical organic charge-transfer complex (i.e., tetrathiafulvalene-tetracyanoquinodimethane, TTF-TCNQ). We establish that the interaction energies for charge-transfer complexes can only be properly described when using well-balanced functionals such as PBE0-dDsC, M06-2X, and LC-BOP-LRD.

  7. Hadronic energy flow in charged-current neutrino scattering

    NASA Astrophysics Data System (ADS)

    Kinnel, Timothy Scott

    1998-11-01

    We investigate hadronic energy flow in charged-current deep-inelastic scattering, using neutrinos of 30-600 GeV incident on a steel target with a fiducial mass of 625 tonnes. The target was instrumented with flash ADC- readout drift chambers which enabled us to measure the characteristic transverse energy depositions of the shower. In a data sample containing both neutrinos and antineutrinos, we observe /langle pT2/rangle and the transverse energy of the shower to increase with W2 and log Q2. Our observations, which are in a heretofore untested kinematic region for neutrino scattering, are consistent with QCD predictions.

  8. High energy colliders

    SciTech Connect

    Palmer, R.B.; Gallardo, J.C.

    1997-02-01

    The authors consider the high energy physics advantages, disadvantages and luminosity requirements of hadron (pp, p{anti p}), lepton (e{sup +}e{sup {minus}}, {mu}{sup +}{mu}{sup {minus}}) and photon-photon colliders. Technical problems in obtaining increased energy in each type of machine are presented. The machines relative size are also discussed.

  9. Inorganic High Energy Oxidisers,

    DTIC Science & Technology

    properties may contribute significantly to the energy of the whole system. A book entitled ’Inorganic High - Energy Oxidisers’ by E.W. Lawless and I.C. Smith is the subject of this Essay Review by W.E. Batty.

  10. HIGH-INTENSITY, HIGH CHARGE-STATE HEAVY ION SOURCES

    SciTech Connect

    ALESSI,J.G.

    2004-08-16

    There are many accelerator applications for high intensity heavy ion sources, with recent needs including dc beams for RIA, and pulsed beams for injection into synchrotrons such as RHIC and LHC. The present status of sources producing high currents of high charge state heavy ions is reviewed. These sources include ECR, EBIS, and Laser ion sources. Benefits and limitations for these type sources are described. Possible future improvements in these sources are also mentioned.

  11. Charge, energy, and LET spectra measurements of charged particles in P0006 experiment of LDEF

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Csige, I.; Oda, K.; Henke, R. P.; Frank, A. L.; Benton, E. R.; Frigo, L. A.; Parnell, T. A.; Watts, J. W., Jr.; Derrickson, J. H.

    1992-01-01

    Measurements are under way of the charged particle radiation environment of the LDEF satellite using stacks of plastic nuclear track detectors (PNTDs) placed in different locations of the satellite. In the initial work, the charge, energy, and linear energy transfer (LET) spectra of charged particles were measured with CR-39 double layer PNTDs located on the west end of the satellite. Primary and secondary stopping heavy ions as well as relativistic galactic cosmic rays (mostly iron particles) were measured separately. The results will be compared with similar measurements in other locations on LDEF with different orientation and shielding conditions. The remarkably detailed study of the charged particle radiation environment of the LDEF satellite will lead to a better understanding of the radiation environment of the Space Station Freedom. It will enable more accurate prediction of single event upsets (SEUs) in microelectronics and, especially, more accurate assessment of the risk, contributed by the different components of the radiation field to the health and safety of crew members.

  12. Space charge effects in the SSC Low Energy Booster

    SciTech Connect

    Machida, S.; Bourianoff, G.; Mahale, N.K.; Mehta, N.; Pilat, F.; Talman, R.; York, R.C.

    1991-05-01

    By means of multi-particle tracking, we explore space charge effects in the Low Energy Booster (LEB) which has a strong requirement for small transverse emittance. Macro-particles are tracked in a self-consistent manner in six dimensional phase space with transverse space charge kicks so that the emittance evolution as well as the particle distribution are simulated as a function of time. Among recent improvements of the code, the longitudinal motion, i.e. synchrotron oscillations as well as acceleration, makes it possible to simulate the capture process of linac microbunches. The code was calibrated by comparing with the experimental results at the Fermilab Booster. Preliminary results of the LEB show slow emittance growth due to the space charge. 5 refs., 5 figs., 1 tab.

  13. Instrument to measure energy and charge of low energy interplanetary particles

    NASA Technical Reports Server (NTRS)

    Tums, E.; Gloeckler, G.; Cain, J.; Sciambi, R.; Fan, C. Y.

    1974-01-01

    An experiment to measure the charge composition and energy spectra of ultra low energy charged particles in interplanetary space has been developed and launched on the IMP 8 (Explorer 50) satellite on Oct. 26, 1973. The instrument consists of two separate sensors sharing common electronics. One of these sensors uses a thin window gas proportional counter to measure the rate of energy loss and a totally depleted silicon surface barrier detector to measure total energy of incoming particles. The energy range for two dimensional analysis extends from 300 KeV to 2.5 MeV for protons and 60 KeV/nucleon to 25 MeV/nucleon for iron with excellent resolution of individual chemical elements. The other sensor combines electrostatic deflection with total energy measurements in silicon surface barrier detectors to give the ionic charge and kinetic energy of the particle.

  14. Roles of the major, small, acid-soluble spore proteins and spore-specific and universal DNA repair mechanisms in resistance of Bacillus subtilis spores to ionizing radiation from X rays and high-energy charged-particle bombardment.

    PubMed

    Moeller, Ralf; Setlow, Peter; Horneck, Gerda; Berger, Thomas; Reitz, Günther; Rettberg, Petra; Doherty, Aidan J; Okayasu, Ryuichi; Nicholson, Wayne L

    2008-02-01

    The role of DNA repair by nonhomologous end joining (NHEJ), homologous recombination, spore photoproduct lyase, and DNA polymerase I and genome protection via alpha/beta-type small, acid-soluble spore proteins (SASP) in Bacillus subtilis spore resistance to accelerated heavy ions (high-energy charged [HZE] particles) and X rays has been studied. Spores deficient in NHEJ and alpha/beta-type SASP were significantly more sensitive to HZE particle bombardment and X-ray irradiation than were the recA, polA, and splB mutant and wild-type spores, indicating that NHEJ provides an efficient DNA double-strand break repair pathway during spore germination and that the loss of the alpha/beta-type SASP leads to a significant radiosensitivity to ionizing radiation, suggesting the essential function of these spore proteins as protectants of spore DNA against ionizing radiation.

  15. Energy at high altitude.

    PubMed

    Hill, N E; Stacey, M J; Woods, D R

    2011-03-01

    For the military doctor, an understanding of the metabolic effects of high altitude (HA) exposure is highly relevant. This review examines the acute metabolic challenge and subsequent changes in nutritional homeostasis that occur when troops deploy rapidly to HA. Key factors that impact on metabolism include the hypoxic-hypobaric environment, physical exercise and diet. Expected metabolic changes include augmentation of basal metabolic rate (BMR), decreased availability of oxygen in peripheral metabolic tissues, reduction in VO2 max, increased glucose dependency and lactate accumulation during exercise. The metabolic demands of exercise at HA are crucial. Equivalent activity requires greater effort and more energy than it does at sea level. Soldiers working at HA show high energy expenditure and this may exceed energy intake significantly. Energy intake at HA is affected adversely by reduced availability, reduced appetite and changes in endocrine parameters. Energy imbalance and loss of body water result in weight loss, which is extremely common at HA. Loss of fat predominates over loss of fat-free mass. This state resembles starvation and the preferential primary fuel source shifts from carbohydrate towards fat, reducing performance efficiency. However, these adverse effects can be mitigated by increasing energy intake in association with a high carbohydrate ration. Commanders must ensure that individuals are motivated, educated, strongly encouraged and empowered to meet their energy needs in order to maximise mission-effectiveness.

  16. The role of effective charges in the electrophoresis of highly charged colloids.

    PubMed

    Chatterji, Apratim; Horbach, Jürgen

    2010-12-15

    We study the variation of electrophoretic mobility μ of highly charged spherical colloidal macroions for varying surface charge density σ on the colloid using computer simulations of the primitive model for charged colloids. Hydrodynamic interactions between ions are incorporated by coupling the primitive model of charged colloids to the lattice Boltzmann model (LB) of the fluid. In the highly charged regime, the mobility μ of the colloid is known to decrease with the increase of bare charge Q of the colloid; the aim of this paper is to investigate the cause of this. We have identified that the two main factors contributing to the decrease of μ are counterion charge condensation on the highly charged colloid and an increase in effective friction of the macroion-counterion complex due to the condensed counterions. Thus the established O'Brien and White theory, which identified the dipolar force originating from distortion of the electric double layer as the cause of decreasing μ, seems to break down for the case of highly charged colloids with σ in the range of 30-400 µC cm (- 2). To arrive at our conclusions, we counted the number of counterions q0 moving along with the spherical macroion. We observe in our simulations that q0 increases with the increase of bare charge Q, such that the effective charge Qeff = Q - q0 remains approximately constant. Interestingly for our nanometer-sized charged colloid, we observe that, if surface charge density σ of the colloid is increased by decreasing the radius RM of the colloid but fixed bare charge Q, the effective charge Q - q0 decreases with the increase of σ. This behavior is qualitatively different when σ is increased by increasing Q keeping RM fixed. Our observations address a controversy about the effective charge of a strongly charged macroion: some studies claim that effective charge is independent of the bare charge (Alexander et al 1984 J. Chem. Phys. 80 5776; Trizac et al 2003 Langmuir 19 4027) whereas

  17. High-energy detector

    DOEpatents

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  18. X-ray Measurements of Highly Charged Europium

    NASA Astrophysics Data System (ADS)

    Widmann, K.; Beiersdorfer, P.; Brown, G. V.; Hell, N.; Magee, E. W.; Träbert, E.

    2015-01-01

    We present spectroscopic measurements of the M-shell emission of highly charged europium performed at the Livermore SuperEBIT electron beam ion trap facility using the EBIT Calorimeter Spectrometer (ECS). There is significant blending among the emission lines from the different charge states but despite the complexity of the observed spectra we have successfully identified the ten brightest n = 4 → 3 transitions from sodium-like Eu52+ utilizing the Flexible Atomic Code (FAC). We find that the difference between the calculated and measured transition energies for these ten Eu52+ lines does not exceed 3 eV. In fact, for four of the identified lines we find agreement within the measured uncertainties. Additional comparison with semi-empirical transition-energy predictions for sodium-like ions from laser-generated plasmas is included and shows that overall the semi-empirical predicted values for the transition energies are slightly higher than the measured values, while the FAC values that didnt agree with the measured transition energies are almost 1 eV lower than the measured values.

  19. Energy and charge transfer in ionized argon coated water clusters.

    PubMed

    Kočišek, J; Lengyel, J; Fárník, M; Slavíček, P

    2013-12-07

    We investigate the electron ionization of clusters generated in mixed Ar-water expansions. The electron energy dependent ion yields reveal the neutral cluster composition and structure: water clusters fully covered with the Ar solvation shell are formed under certain expansion conditions. The argon atoms shield the embedded (H2O)n clusters resulting in the ionization threshold above ≈15 eV for all fragments. The argon atoms also mediate more complex reactions in the clusters: e.g., the charge transfer between Ar(+) and water occurs above the threshold; at higher electron energies above ~28 eV, an excitonic transfer process between Ar(+)* and water opens leading to new products Ar(n)H(+) and (H2O)(n)H(+). On the other hand, the excitonic transfer from the neutral Ar* state at lower energies is not observed although this resonant process was demonstrated previously in a photoionization experiment. Doubly charged fragments (H2O)(n)H2(2+) and (H2O)(n)(2+) ions are observed and Intermolecular Coulomb decay (ICD) processes are invoked to explain their thresholds. The Coulomb explosion of the doubly charged cluster formed within the ICD process is prevented by the stabilization effect of the argon solvent.

  20. Energy and charge transfer in nanoscale hybrid materials.

    PubMed

    Basché, Thomas; Bottin, Anne; Li, Chen; Müllen, Klaus; Kim, Jeong-Hee; Sohn, Byeong-Hyeok; Prabhakaran, Prem; Lee, Kwang-Sup

    2015-06-01

    Hybrid materials composed of colloidal semiconductor quantum dots and π-conjugated organic molecules and polymers have attracted continuous interest in recent years, because they may find applications in bio-sensing, photodetection, and photovoltaics. Fundamental processes occurring in these nanohybrids are light absorption and emission as well as energy and/or charge transfer between the components. For future applications it is mandatory to understand, control, and optimize the wide parameter space with respect to chemical assembly and the desired photophysical properties. Accordingly, different approaches to tackle this issue are described here. Simple organic dye molecules (Dye)/quantum dot (QD) conjugates are studied with stationary and time-resolved spectroscopy to address the dynamics of energy and ultra-fast charge transfer. Micellar as well as lamellar nanostructures derived from diblock copolymers are employed to fine-tune the energy transfer efficiency of QD donor/dye acceptor couples. Finally, the transport of charges through organic components coupled to the quantum dot surface is discussed with an emphasis on functional devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Energy and charge transfer in ionized argon coated water clusters

    SciTech Connect

    Kočišek, J. E-mail: michal.farnik@jh-inst.cas.cz Lengyel, J.; Fárník, M. E-mail: michal.farnik@jh-inst.cas.cz; Slavíček, P. E-mail: michal.farnik@jh-inst.cas.cz

    2013-12-07

    We investigate the electron ionization of clusters generated in mixed Ar-water expansions. The electron energy dependent ion yields reveal the neutral cluster composition and structure: water clusters fully covered with the Ar solvation shell are formed under certain expansion conditions. The argon atoms shield the embedded (H{sub 2}O){sub n} clusters resulting in the ionization threshold above ≈15 eV for all fragments. The argon atoms also mediate more complex reactions in the clusters: e.g., the charge transfer between Ar{sup +} and water occurs above the threshold; at higher electron energies above ∼28 eV, an excitonic transfer process between Ar{sup +}* and water opens leading to new products Ar{sub n}H{sup +} and (H{sub 2}O){sub n}H{sup +}. On the other hand, the excitonic transfer from the neutral Ar* state at lower energies is not observed although this resonant process was demonstrated previously in a photoionization experiment. Doubly charged fragments (H{sub 2}O){sub n}H{sub 2}{sup 2+} and (H{sub 2}O){sub n}{sup 2+} ions are observed and Intermolecular Coulomb decay (ICD) processes are invoked to explain their thresholds. The Coulomb explosion of the doubly charged cluster formed within the ICD process is prevented by the stabilization effect of the argon solvent.

  2. High energy beam lines

    NASA Astrophysics Data System (ADS)

    Marchetto, M.; Laxdal, R. E.

    2014-01-01

    The ISAC post accelerator comprises an RFQ, DTL and SC-linac. The high energy beam lines connect the linear accelerators as well as deliver the accelerated beams to two different experimental areas. The medium energy beam transport (MEBT) line connects the RFQ to the DTL. The high energy beam transport (HEBT) line connects the DTL to the ISAC-I experimental stations (DRAGON, TUDA-I, GPS). The DTL to superconducting beam (DSB) transport line connects the ISAC-I and ISAC-II linacs. The superconducting energy beam transport (SEBT) line connects the SC linac to the ISAC-II experimental station (TUDA-II, HERACLES, TIGRESS, EMMA and GPS). All these lines have the function of transporting and matching the beams to the downstream sections by manipulating the transverse and longitudinal phase space. They also contain diagnostic devices to measure the beam properties.

  3. Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster)

    SciTech Connect

    Neubauer, J.; Simpson, M.

    2013-10-01

    Commercial facility utility bills are often a strong function of demand charges -- a fee proportional to peak power demand rather than total energy consumed. In some instances, demand charges can constitute more than 50% of a commercial customer's monthly electricity cost. While installation of behind-the-meter solar power generation decreases energy costs, its variability makes it likely to leave the peak load -- and thereby demand charges -- unaffected. This then makes demand charges an even larger fraction of remaining electricity costs. Adding controllable behind-the-meter energy storage can more predictably affect building peak demand, thus reducing electricity costs. Due to the high cost of energy storage technology, the size and operation of an energy storage system providing demand charge management (DCM) service must be optimized to yield a positive return on investment (ROI). The peak demand reduction achievable with an energy storage system depends heavily on a facility's load profile, so the optimal configuration will be specific to both the customer and the amount of installed solar power capacity. We explore the sensitivity of DCM value to the power and energy levels of installed solar power and energy storage systems. An optimal peak load reduction control algorithm for energy storage systems will be introduced and applied to historic solar power data and meter load data from multiple facilities for a broad range of energy storage system configurations. For each scenario, the peak load reduction and electricity cost savings will be computed. From this, we will identify a favorable energy storage system configuration that maximizes ROI.

  4. (The physics of highly charged ions)

    SciTech Connect

    Phaneuf, R.A.

    1990-10-12

    The Fifth International Conference on the Physics of Highly Charged Ions drew more than 200 participants, providing an excellent overview of this growing field. Important technical developments and experimental results in electron-ion collisions were reported. The merging of fast ion beams from accelerators or storage rings with advanced high-intensity electron-beam targets has yielded data of unprecedented quality on radiative and dielectronic recombination, providing stringent tests of theory. Long-awaited technical innovations in electron-impact excitation measurements were also reported. The level of activity in multicharged ion-surface interactions has increased. More sophisticated experimental studies of the neutralization process have shown the inadequacy of previously accepted mechanisms, and theoretical activity in this area is just being initiated. The IAEA meetings addressed atomic and molecular data needs for fusion research, with ITER providing a key focus. Such data are especially critical to modeling and diagnostics of the edge plasma. The ALADDIN data base system has been universally accepted and has streamlined the exchange of numerical data among data centers and the fusion community. The IAEA continues to play a pivotal role in the identification of data needs, and in the coordination of data compilation and research activities for fusion applications.

  5. Gravitational energy and radiation of a charged black hole

    NASA Astrophysics Data System (ADS)

    Combi, Luciano; Romero, Gustavo E.

    2017-10-01

    We investigate the energy configuration of a charged black hole in the teleparallel framework of general relativity. We obtain the energy–momentum tensor of the gravitational field in a stationary frame, and we calculate its contribution to the total energy of the system. We study the same gravitational field measured by an accelerated frame and we analyze how the energy–momentum tensor is transformed. We found that in the accelerated frame, a Poynting-like flux appears for the gravitational field but not for the electromagnetic field.

  6. Charge and energy fractionalization mechanism in one-dimensional channels

    NASA Astrophysics Data System (ADS)

    Acciai, Matteo; Calzona, Alessio; Dolcetto, Giacomo; Schmidt, Thomas L.; Sassetti, Maura

    2017-08-01

    We study the problem of injecting single electrons into interacting one-dimensional quantum systems, a fundamental building block for electron quantum optics. It is well known that such injection leads to charge and energy fractionalization. We elucidate this concept by calculating the nonequilibrium electron distribution function in the momentum and energy domains after the injection of an energy-resolved electron. Our results shed light on how fractionalization occurs via the creation of particle-hole pairs by the injected electron. In particular, we focus on systems with a pair of counterpropagating channels, and we fully analyze the properties of each chiral fractional excitation which is created by the injection. We suggest possible routes to access their energy and momentum distribution functions in topological quantum Hall or quantum spin-Hall edge states.

  7. High Energy Astrophysics Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report reviews activities performed by members of the USRA (Universities Space Research Association) contract team during the six months during the reporting period (10/95 - 3/96) and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science, Archive Research Center (HEASARC), and others.

  8. High Energy Astrophysics Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report reviews activities performed-by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, visiting the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA); X-ray Timing Experiment (XTE); X-ray Spectrometer (XRS); Astro-E; High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  9. Energy loss of a heavy particle near 3D charged rotating hairy black hole

    NASA Astrophysics Data System (ADS)

    Naji, Jalil

    2014-01-01

    In this paper we consider a charged rotating black hole in three dimensions with a scalar charge and discuss the energy loss of a heavy particle moving near the black-hole horizon. We also study quasi-normal modes and find the dispersion relations. We find that the effect of scalar charge and electric charge increases the energy loss.

  10. Charge Identification of Highly Ionizing Particles in Desensitized Nuclear Emulsion Using High Speed Read-Out System

    SciTech Connect

    Toshito, T.; Kodama, K.; Yusa, K.; Ozaki, M.; Amako, K.; Kameoka, S.; Murakami, K.; Sasaki, T.; Aoki, S.; Ban, T.; Fukuda, T.; Naganawa, N.; Nakamura, T.; Natsume, M.; Niwa, K.; Takahashi, S.; Kanazawa, M.; Kanematsu, N.; Komori, M.; Sato, S.; Asai, M.; /Nagoya U. /Aichi U. of Education /Gunma U., Maebashi /JAXA, Sagamihara /KEK, Tsukuba /Kobe U. /Chiba, Natl. Inst. Rad. Sci. /SLAC /Toho U.

    2006-05-10

    We performed an experimental study of charge identification of heavy ions from helium to carbon having energy of about 290 MeV/u using an emulsion chamber. Emulsion was desensitized by means of forced fading (refreshing) to expand a dynamic range of response to highly charged particles. For the track reconstruction and charge identification, the fully automated high speed emulsion read-out system, which was originally developed for identifying minimum ionizing particles, was used without any modification. Clear track by track charge identification up to Z=6 was demonstrated. The refreshing technique has proved to be a powerful technique to expand response of emulsion film to highly ionizing particles.

  11. High temperature charge amplifier for geothermal applications

    DOEpatents

    Lindblom, Scott C.; Maldonado, Frank J.; Henfling, Joseph A.

    2015-12-08

    An amplifier circuit in a multi-chip module includes a charge to voltage converter circuit, a voltage amplifier a low pass filter and a voltage to current converter. The charge to voltage converter receives a signal representing an electrical charge and generates a voltage signal proportional to the input signal. The voltage amplifier receives the voltage signal from the charge to voltage converter, then amplifies the voltage signal by the gain factor to output an amplified voltage signal. The lowpass filter passes low frequency components of the amplified voltage signal and attenuates frequency components greater than a cutoff frequency. The voltage to current converter receives the output signal of the lowpass filter and converts the output signal to a current output signal; wherein an amplifier circuit output is selectable between the output signal of the lowpass filter and the current output signal.

  12. Temporal evolution of ion energy distribution functions and ion charge states of Cr and Cr-Al pulsed arc plasmas

    SciTech Connect

    Tanaka, Koichi; Anders, André

    2015-11-15

    To study the temporal evolution of ion energy distribution functions, charge-state-resolved ion energy distribution functions of pulsed arc plasmas from Cr and Cr-Al cathodes were recorded with high time resolution by using direct data acquisition from a combined energy and mass analyzer. The authors find increases in intensities of singly charged ions, which is evidence that charge exchange reactions took place in both Cr and Cr-Al systems. In Cr-Al plasmas, the distributions of high-charge-state ions exhibit high energy tails 50 μs after discharge ignition, but no such tails were observed at 500 μs. The energy ratios of ions of different charge states at the beginning of the pulse, when less neutral atoms were in the space in front of the cathode, suggest that ions are accelerated by an electric field. The situation is not so clear after 50 μs due to particle collisions. The initial mean ion charge state of Cr was about the same in Cr and in Cr-Al plasmas, but it decreased more rapidly in Cr-Al plasmas compared to the decay in Cr plasma. The faster decay of the mean ion charge state and ion energy caused by the addition of Al into a pure Cr cathode suggests that the mean ion charge state is determined not only by ionization processes at the cathode spot but also by inelastic collision between different elements.

  13. Final report: Department of Energy grant to Kansas State University - J. R. Macdonald Laboratory. Atomic physics with highly charged ions: Supplementary request for Accelerator Improvement Project

    SciTech Connect

    Richard, Patrick

    2001-12-11

    The following tasks for previous funding periods are sketched: LHe compressor relocation, LINAC RF electronics upgrade, tandem Van de Graaff foil changer; tandem Van de Graaff terminal pump installation; replace power transistors in magnet power supplies; new EBIS beam line vacuum system, EBIS beam optics upgrade, tandem Van de Graaff cryopumps, tandem upcharge system, PIG source for ion-ion system, LINAC beam line, EBIS beam optics and safety upgrade, EBIS beam power upgrade, ion-ion facility upgrade, ion-ion upgrade, new LINAC beamline, LINAC cryostat upgrade, LHe plant equipment, EBIS beamline upgrade. The task for this period, high voltage platform and ion-beam handling peripherals, is gone into in greater detail.

  14. High-speed electret charging using vacuum UV photoionization

    SciTech Connect

    Honzumi, Makoto; Suzuki, Yuji; Hagiwara, Kei; Iguchi, Yoshinori

    2011-01-31

    We propose a high-speed charging method of electrets using vacuum ultraviolet irradiation. Due to a large amount of the ionization current at reduced pressure, it takes only a few seconds to charge 15-{mu}m-thick polymer electret film to the surface potential of -900 V. This charging rate is two orders of magnitudes larger than corona/soft-x-ray charging methods. The purity of N{sub 2} gas depends on the charging rate since the O{sub 2} quenching mechanisms of exited N{sub 2} molecule would exist. No charge decay is observed for 3000 h, which indicates charged electrets are as stable as those by other charging methods.

  15. High Energy Exoplanet Transits

    NASA Astrophysics Data System (ADS)

    Llama, Joe; Shkolnik, Evgenya L.

    2017-10-01

    X-ray and ultraviolet transits of exoplanets allow us to probe the atmospheres of these worlds. High energy transits have been shown to be deeper but also more variable than in the optical. By simulating exoplanet transits using high-energy observations of the Sun, we can test the limits of our ability to accurately measure the properties of these planets in the presence of stellar activity. We use both disk-resolved images of the Solar disk spanning soft X-rays, the ultraviolet, and the optical and also disk-integrated Sun-as-a-star observations of the Lyα irradiance to simulate transits over a wide wavelength range. We find that for stars with activity levels similar to the Sun, the planet-to-star radius ratio can be overestimated by up to 50% if the planet occults an active region at high energies. We also compare our simulations to high energy transits of WASP-12b, HD 189733, 55 Cnc b, and GJ 436b.

  16. High Energy Astronomy Observatory

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An overview of the High Energy Astronomy Observatory 2 contributions to X-ray astronomy is presented along with a brief description of the satellite and onboard telescope. Observations relating to galaxies and galactic clusters, black holes, supernova remnants, quasars, and cosmology are discussed.

  17. Rapid charging of thermal energy storage materials through plasmonic heating.

    PubMed

    Wang, Zhongyong; Tao, Peng; Liu, Yang; Xu, Hao; Ye, Qinxian; Hu, Hang; Song, Chengyi; Chen, Zhaoping; Shang, Wen; Deng, Tao

    2014-09-01

    Direct collection, conversion and storage of solar radiation as thermal energy are crucial to the efficient utilization of renewable solar energy and the reduction of global carbon footprint. This work reports a facile approach for rapid and efficient charging of thermal energy storage materials by the instant and intense photothermal effect of uniformly distributed plasmonic nanoparticles. Upon illumination with both green laser light and sunlight, the prepared plasmonic nanocomposites with volumetric ppm level of filler concentration demonstrated a faster heating rate, a higher heating temperature and a larger heating area than the conventional thermal diffusion based approach. With controlled dispersion, we further demonstrated that the light-to-heat conversion and thermal storage properties of the plasmonic nanocomposites can be fine-tuned by engineering the composition of the nanocomposites.

  18. Rapid Charging of Thermal Energy Storage Materials through Plasmonic Heating

    PubMed Central

    Wang, Zhongyong; Tao, Peng; Liu, Yang; Xu, Hao; Ye, Qinxian; Hu, Hang; Song, Chengyi; Chen, Zhaoping; Shang, Wen; Deng, Tao

    2014-01-01

    Direct collection, conversion and storage of solar radiation as thermal energy are crucial to the efficient utilization of renewable solar energy and the reduction of global carbon footprint. This work reports a facile approach for rapid and efficient charging of thermal energy storage materials by the instant and intense photothermal effect of uniformly distributed plasmonic nanoparticles. Upon illumination with both green laser light and sunlight, the prepared plasmonic nanocomposites with volumetric ppm level of filler concentration demonstrated a faster heating rate, a higher heating temperature and a larger heating area than the conventional thermal diffusion based approach. With controlled dispersion, we further demonstrated that the light-to-heat conversion and thermal storage properties of the plasmonic nanocomposites can be fine-tuned by engineering the composition of the nanocomposites. PMID:25175717

  19. Electrostatics in ionic solution : work and energy, charge regulation, and in homogeneous surfaces

    NASA Astrophysics Data System (ADS)

    Boon, N. J. H.

    2012-01-01

    This thesis concerns the electrostatic properties of charged objects that are immersed into an ionic solvent, for example water with dissolved salt. Typically, the ions inside such a solvent form layers of countercharge close to the charged objects, causing `screening' of the charges. By employing Density Functional Theory (DFT) one is able integrate out the degrees of freedom of the ions and find relations that describe the effective electrostatic properties of the charged objects. One finds that for a large parameter regime the electrostatic potential everywhere in the solvent should satisfy the well established Poisson-Boltzmann equation. We study the electrostatic capacity of porous electrodes in salt water, and derive a method to reversibly extract electric energy from salinity gradients that occur for example at an estuary where sea- and river water meet. However, in the main part of this thesis we consider charged colloidal particles, and study the effect of internal porosity as well as heterogeneities in the surface-charge density (patchy particles) on colloid-colloid interactions. In a far-field analysis we derive equations that describe these interactions for particles with nonvanishing multipole moments, for example `Janus' colloids with a strong dipole component. If such particles locally have a high surface charge density, then the nonlinear dependence of the counterion density on the local charge density leads to a generalisation of charge renormalisation from purely monopolar to dipolar, quadrupolar, etc., including `mode couplings'. In a more detailed approach, which turns out to be important for colloidal particles at smaller distances from each other, we consider the chemical processes that lead to surface charge, and specify a parameter regime in which charging can be described by a single `chargeability' parameter. As we show in this thesis, the phase diagrams we obtain within this regime have many similarities with a `constant surface potential

  20. Research Update: Hybrid energy devices combining nanogenerators and energy storage systems for self-charging capability

    NASA Astrophysics Data System (ADS)

    Kim, Jeonghun; Lee, Ju-Hyuck; Lee, Jaewoo; Yamauchi, Yusuke; Choi, Chang Ho; Kim, Jung Ho

    2017-07-01

    The past decade has been especially creative for nanogenerators as energy harvesting devices utilizing both piezoelectric and triboelectric properties. Most recently, self-charging power units using both nanogenerators and energy storage systems have begun to be investigated for portable and wearable electronics to be used in our daily lives. This review focuses on these hybrid devices with self-charging combined with energy harvesting storage systems based on the most recent reports. In this research update, we will describe the materials, device structures, integration, applications, and research progress up to the present on hybrid devices.

  1. Theoretical High Energy Physics

    SciTech Connect

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  2. Charge Breeding Techniques in an Electron Beam Ion Trap for High Precision Mass Spectrometry at TITAN

    NASA Astrophysics Data System (ADS)

    MacDonald, T. D.; Simon, M. C.; Bale, J. C.; Chowdhury, U.; Eibach, M.; Gallant, A. T.; Lennarz, A.; Simon, V. V.; Chaudhuri, A.; Grossheim, A.; Kwiatkowski, A. A.; Schultz, B. E.; Dilling, J.

    2012-10-01

    Penning trap mass spectrometry is the most accurate and precise method available for performing atomic mass measurements. TRIUMF's Ion Trap for Atomic and Nuclear science is currently the only facility to couple its Penning trap to a rare isotope facility and an electron beam ion trap (EBIT). The EBIT is a valuable tool for beam preparation: since the precision scales linearly with the charge state, it takes advantage of the precision gained by using highly charged ions. However, this precision gain is contingent on fast and efficient charge breeding. An optimization algorithm has been developed to identify the optimal conditions for running the EBIT. Taking only the mass number and half-life of the isotope of interest as inputs, the electron beam current density, charge breeding time, charge state, and electron beam energy are all specified to maximize this precision. An overview of the TITAN charge breeding program, and the results of charge breeding simulations will be presented.

  3. Effect of Anoxia on Energy Charge and Protein Synthesis in Rice Embryo

    PubMed Central

    Mocquot, Bernard; Prat, Christiane; Mouches, Claude; Pradet, Alain

    1981-01-01

    Energy charge, adenine nucleotide levels, and protein synthesis were studied during the transfer of rice seedlings from air to anoxia. Within minutes, the energy charge value dropped from 0.90 in air to 0.50 in the seed and 0.60 in the coleoptile after the transfer to a nitrogen atmosphere, and then increased to a value of 0.80 during the subsequent hours. The sum of nucleotides also dropped to 60% of the value in air in the seeds and to 30% in the coleoptiles. However, during the anaerobic growth of coleoptiles, a considerable increase in the nucleotide pool occurred. The incorporation of amino acids into proteins was measured at different stages in anoxic treatment. In rice embryo, we observed a considerable protein synthesis correlated with a high value of energy charge under anoxia. The analysis of labeled proteins by two-dimensional polyacrylamide gel electrophoresis showed a modified pattern of polypeptides synthesized during anoxic treatment. Some of these proteins were intensively labeled and appeared to be induced by anaerobic treatment. Our data indicate that high metabolic activity occurs in rice embryo under anoxia, which can be correlated with a high energy charge value. These phenomena may be part of the mechanisms which permit the adaptation of rice embryos to anaerobiosis. Images PMID:16661971

  4. Beam charge and current neutralization of high-charge-state heavy ions

    SciTech Connect

    Logan, B.G.; Callahan, D.A.

    1997-10-29

    High-charge-state heavy-ions may reduce the accelerator voltage and cost of heavy-ion inertial fusion drivers, if ways can be found to neutralize the space charge of the highly charged beam ions as they are focused to a target in a fusion chamber. Using 2-D Particle-In- Cell simulations, we have evaluated the effectiveness of two different methods of beam neutralization: (1) by redistribution of beam charge in a larger diameter, preformed plasma in the chamber, and (2), by introducing a cold-electron-emitting source within the beam channel at the beam entrance into the chamber. We find the latter method to be much more effective for high-charge-state ions.

  5. Solar photovoltaic charging of high voltage nickel metal hydride batteries using DC power conversion

    NASA Astrophysics Data System (ADS)

    Kelly, Nelson A.; Gibson, Thomas L.

    There are an increasing number of vehicle choices available that utilize batteries and electric motors to reduce tailpipe emissions and increase fuel economy. The eventual production of electricity and hydrogen in a renewable fashion, such as using solar energy, can achieve the long-term vision of having no tailpipe environmental impact, as well as eliminating the dependence of the transportation sector on dwindling supplies of petroleum for its energy. In this report we will demonstrate the solar-powered charging of the high-voltage nickel-metal hydride (NiMH) battery used in the GM 2-mode hybrid system. In previous studies we have used low-voltage solar modules to produce hydrogen via the electrolysis of water and to directly charge lithium-ion battery modules. Our strategy in the present work was to boost low-voltage PV voltage to over 300 V using DC-DC converters in order to charge the high-voltage NiMH battery, and to regulate the battery charging using software to program the electronic control unit supplied with the battery pack. A protocol for high-voltage battery charging was developed, and the solar to battery charging efficiency was measured under a variety of conditions. We believe this is the first time such high-voltage batteries have been charged using solar energy in order to prove the concept of efficient, solar-powered charging for battery-electric vehicles.

  6. High energy reactor neutrinos

    NASA Astrophysics Data System (ADS)

    Raper, Neill

    We present the first measurement of a nonzero reactor neutrino flux with energies above 8 MeV. Measurements are taken with the Daya Bay Reactor Neutrino Experiments detectors, using the Guangdong Nuclear Power Station as a source. Disagreement between data and theory regarding rate and shape of reactor neutrino spectra have made the need for direct measurement clear. Data are especially useful at high energies, where far fewer isotopes contribute. Neutrino candidates are correlated to reactor power and reactor power is extrapolated to zero in order to separate neutrino events from background. We find evidence of reactor neutrinos up to ˜12.5 MeV at 1.92 sigma above 0 and include a survey of isotopes likely to be contributing neutrinos in this energy range.

  7. High Energy Physics Research at Louisiana Tech

    SciTech Connect

    Sawyer, Lee; Greenwood, Zeno; Wobisch, Marcus

    2013-06-28

    The goal of this project was to create, maintain, and strengthen a world-class, nationally and internationally recognized experimental high energy physics group at Louisiana Tech University, focusing on research at the energy frontier of collider-based particle physics, first on the DØ experiment and then with the ATLAS experiment, and providing leadership within the US high energy physics community in the areas of jet physics, top quark and charged Higgs decays involving tau leptons, as well as developing leadership in high performance computing.

  8. High energy charged particle optics computer programs

    SciTech Connect

    Carey, D.C.

    1980-09-01

    The computer programs TRANSPORT and TURTLE are described, with special emphasis on recent developments. TRANSPORT is a general matrix evaluation and fitting program. First and second-order transfer matrix elements, including those contributing to time-of-flight differences can be evaluated. Matrix elements of both orders can be fit, separately or simultaneously. Floor coordinates of the beam line may be calculated and included in any fits. Tables of results of misalignments, including effects of bilinear terms can be produced. Fringe fields and pole face rotation angles of bending magnets may be included and also adjusted automatically during the fitting process to produce rectangular magnets. A great variety of output options are available. TURTLE is a Monte Carlo program used to simulate beam line performance. It includes second-order terms and aperture constraints. Replacable subroutines allow an unliminated variety of input beam distributions, scattering algorithms, variables which can be histogrammed, and aperture shapes. Histograms of beam loss can also be produced. Rectangular zero-gradient bending magnets with proper circular trajectories, sagitta offsets, pole face rotation angles, and aperture constraints can be included. The effect of multiple components of quadrupoles up to 40 poles can be evaluated.

  9. Ab initio Determination of Formation Energies and Charge Transfer Levels of Charged Ions in Water

    NASA Astrophysics Data System (ADS)

    Vatti, Anoop Kishore; Todorova, Mira; Neugebauer, Joerg

    The ability to describe the complex atomic and electronic structure of liquid water and hydrated ions on a microscopic level is a key requirement to understand and simulate electro-chemical and biological processes. Identifying theoretical concepts which enable us to achieve an accurate description in a computationally efficient way is thereby of central importance. Aiming to unravel the importance and influence of different contributions on the hydration energy of ions we perform extensive ab-initio molecular dynamics simulations for charged and neutral cations (Zn, Mg) and anions (Cl, Br, I) in water. The structural correlations and electronic properties of the studied ions are analysed and compared to experimental observations. Following an approach inspired by the defect chemistry in semiconductors and aligning the water band edges on an absolute scale allows us to benchmark the calculated formation energies, identify transition states and compare the results to experiment. Based on these results we discuss the performance of various DFT xc-functionals to predict charge transfer levels and photo-emission experiments.

  10. High energy transients

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.

    1984-01-01

    A meeting was convened on the campus of the University of California at Santa Cruz during the two-week interval July 11 through July 22, 1983. Roughly 100 participants were chosen so as to give broad representation to all aspects of high energy transients. Ten morning review sessions were held in which invited speakers discussed the current status of observations and theory of the above subjects. Afternoon workshops were also held, usually more than one per day, to informally review various technical aspects of transients, confront shortcomings in theoretical models, and to propose productive courses for future research. Special attention was also given to the instrumentation used to study high energy transient and the characteristics and goals of a dedicated space mission to study transients in the next decade were determined. A listing of articles written by various members of the workshop is included.

  11. High energy from space

    NASA Technical Reports Server (NTRS)

    Margon, Bruce; Canizares, Claude; Catura, Richard C.; Clark, George W.; Fichtel, Carl E.; Friedman, Herbert; Giacconi, Riccardo; Grindlay, Jonathan E.; Helfand, David J.; Holt, Stephen S.

    1991-01-01

    The following subject areas are covered: (1) important scientific problems for high energy astrophysics (stellar activity, the interstellar medium in galaxies, supernovae and endpoints of stellar evolution, nucleosynthesis, relativistic plasmas and matter under extreme conditions, nature of gamma-bursts, identification of black holes, active nuclei, accretion physics, large-scale structures, intracluster medium, nature of dark matter, and the X- and gamma-ray background); (2) the existing experimental programs (Advanced X-Ray Astrophysics Facility (AXAF), Gamma Ray Observatory (GRO), X-Ray Timing Explorer (XTE), High Energy Transient Experiment (HETE), U.S. participation in foreign missions, and attached Shuttle and Space Station Freedom payloads); (3) major missions for the 1990's; (4) a new program of moderate missions; (5) new opportunities for small missions; (6) technology development issues; and (7) policy issues.

  12. Energy recovery linacs in high-energy and nuclear physics

    SciTech Connect

    I. Ben-Zvi; Ya. Derbenev; V. Litvinenko; L. Merminga

    2005-03-01

    Energy Recovery Linacs (ERL) have significant potential uses in High Energy Physics and Nuclear Physics. We describe some of the potential applications which are under development by our laboratories in this area and the technology issues that are associated with these applications. The applications that we discuss are electron cooling of high-energy hadron beams and electron-nucleon colliders. The common issues for some of these applications are high currents of polarized electrons, high-charge and high-current electron beams and the associated issues of High-Order Modes. The advantages of ERLs for these applications are numerous and will be outlined in the text. It is worth noting that some of these advantages are the high-brightness of the ERL beams and their relative immunity to beam-beam disturbances.

  13. Charge and energy transferred from a plasma jet to liquid and dielectric surfaces

    NASA Astrophysics Data System (ADS)

    Mussard, M. Dang Van Sung; Foucher, E.; Rousseau, A.

    2015-10-01

    A key parameter in using plasma jets for biomedical applications is the transferred energy to the living tissues. The objective of this paper is to understand which parameters control the energy transfer from the plasma jet to a liquid or a dielectric surface. The plasma jet is flown with helium and ignited by a 600 Hz ac high voltage (up to 15 kV). Capacitors are connected to two measurement electrodes placed in the plasma source region, and under the sample. Charge and energy transferred are estimated by plotting Lissajous cycles; the number of bullets and the charge probability density function are also calculated. It is shown that the applied voltage and the gap (distance between the end of the tube and the sample) have a dramatic influence on the energy deposition on the sample as well as on the charge probability density function. Surprisingly, both gap distance and voltage have very little influence on the number of bullets reaching the sample per cycle. It is also shown that the conductivity of the liquid sample has almost no influence on the energy deposition and charge probability density function.

  14. On the nature of high field charge transport in reinforced silicone dielectrics: Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Huang, Yanhui; Schadler, Linda S.

    2016-08-01

    The high field charge injection and transport properties in reinforced silicone dielectrics were investigated by measuring the time-dependent space charge distribution and the current under dc conditions up to the breakdown field and were compared with the properties of other dielectric polymers. It is argued that the energy and spatial distribution of localized electronic states are crucial in determining these properties for polymer dielectrics. Tunneling to localized states likely dominates the charge injection process. A transient transport regime arises due to the relaxation of charge carriers into deep traps at the energy band tails and is successfully verified by a Monte Carlo simulation using the multiple-hopping model. The charge carrier mobility is found to be highly heterogeneous due to the non-uniform trapping. The slow moving electron packet exhibits a negative field dependent drift velocity possibly due to the spatial disorder of traps.

  15. On the nature of high field charge transport in reinforced silicone dielectrics: Experiment and simulation

    SciTech Connect

    Huang, Yanhui Schadler, Linda S.

    2016-08-07

    The high field charge injection and transport properties in reinforced silicone dielectrics were investigated by measuring the time-dependent space charge distribution and the current under dc conditions up to the breakdown field and were compared with the properties of other dielectric polymers. It is argued that the energy and spatial distribution of localized electronic states are crucial in determining these properties for polymer dielectrics. Tunneling to localized states likely dominates the charge injection process. A transient transport regime arises due to the relaxation of charge carriers into deep traps at the energy band tails and is successfully verified by a Monte Carlo simulation using the multiple-hopping model. The charge carrier mobility is found to be highly heterogeneous due to the non-uniform trapping. The slow moving electron packet exhibits a negative field dependent drift velocity possibly due to the spatial disorder of traps.

  16. Charge, quantum state, and energy distributions of impurities released in plasma-wall interaction processes

    SciTech Connect

    Gruen, D.M.

    1981-01-01

    Conventional wisdom has it that total sputtering yields correlate with high Z-impurity levels found in fusion plasmas. The charge, quantum states and energy distributions of sputtered atoms have been virtually ignored in these considerations. Impurity transport from the wall or limiter to the plasma is, however, strongly influenced by these factors which may play a crucial role in determining impurity levels in the deeper plasma regions. Preliminary calculations have shown that positively charged impurities would most likely be redeposited on their surfaces of origin. The conditions leading to charged or excited state atoms emission and the energy distributions of such species are reviewed. Techniques for measuring these quantities are discussed and the need for a wider data base in this field is pointed out.

  17. Modeling energy and charge transports in pi-conjugated systems

    NASA Astrophysics Data System (ADS)

    Shin, Yongwoo

    Carbon based pi-conjugated materials, such as conducting polymers, fullerene, carbon nanotubes, graphene, and conjugated dendrimers have attracted wide scientific attentions in the past three decades. This work presents the first unified model Hamiltonian that can accurately capture the low-energy excitations among all these pi-conjugated systems, even with the presence of defects and heterogeneous sites. Two transferable physical parameters are incorporated into the Su-Schrieffer-Heeger Hamiltonian to model conducting polymers beyond polyacetylene: the parameter gamma scales the electronphonon coupling strength in aromatic rings and the other parameter epsilon specifies the heterogeneous core charges. This generic Hamiltonian predicts the fundamental band gaps of polythiophene, polypyrrole, polyfuran, poly-(p-phenylene), poly-(p-phenylene vinylene), polyacenes, fullerene, carbon nanotubes, graphene, and graphene nanoribbons with an accuracy exceeding time-dependent density functional theory. Its computational costs for moderate-length polymer chains are more than eight orders of magnitude lower than first-principles approaches. The charge and energy transports along -conjugated backbones can be modeled on the adiabatic potential energy surface. The adiabatic minimum-energy path of a self-trapped topological soliton is computed for trans-polyacetylene. The frequently cited activation barrier via a ridge shift of the hyper-tangent order parameter overestimates its true value by 14 orders of magnitude. Self-trapped solitons migrate along the Goldstone mode direction with continuously adjusted amplitudes so that a small-width soliton expands and a large-width soliton shrinks when they move uphill. A soliton with the critical width may migrate without any amplitude modifications. In an open chain as solitons move from the chain center toward a chain edge, the minimum-energy path first follows a tilted washboard. Such a generic constrained Goldstone mode relaxation

  18. Fundamentals of charged devices: Energy changes in a capacitor medium

    NASA Astrophysics Data System (ADS)

    Young, J. S.; Baudry, L.

    2013-03-01

    Capacitors and derivative devices continue to be as relevant as ever, both at the frontiers of scientific and technological research and in the development of commercial products. Central to such pursuits is the essential requirement that all aspects of the work done in charging or discharging capacitors are clearly understood. Surprisingly, there is a very significant disagreement among standard texts and journal publications regarding this topic. The present work elaborates a thorough analysis of energy changes in a capacitor medium in terms of thermodynamic work and its extension to the more general, electrostatic energy change. Our conclusions agree, for example, with those of Volker Heine, but not with texts by Pippard or Callen. We also note that electric and magnetic analogues are not equivalent.

  19. Atomic physics with highly charged ions. Progress report

    SciTech Connect

    Richard, P.

    1994-08-01

    The study of inelastic collision phenomena with highly charged projectile ions and the interpretation of spectral features resulting from these collisions remain as the major focal points in the atomic physics research at the J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas. The title of the research project, ``Atomic Physics with Highly Charged Ions,`` speaks to these points. The experimental work in the past few years has divided into collisions at high velocity using the primary beams from the tandem and LINAC accelerators and collisions at low velocity using the CRYEBIS facility. Theoretical calculations have been performed to accurately describe inelastic scattering processes of the one-electron and many-electron type, and to accurately predict atomic transition energies and intensities for x rays and Auger electrons. Brief research summaries are given for the following: (1) electron production in ion-atom collisions; (2) role of electron-electron interactions in two-electron processes; (3) multi-electron processes; (4) collisions with excited, aligned, Rydberg targets; (5) ion-ion collisions; (6) ion-molecule collisions; (7) ion-atom collision theory; and (8) ion-surface interactions.

  20. Ab initio study of charge transfer in low energy collisions of B4+ with H

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Hua; Wang, Jian-Guo

    2017-06-01

    The charge transfer processes in collisions of B4+(1 s) ions with H(1 s) atoms are investigated by using the quantum-mechanical molecular orbital close-coupling method with electron translational effects included in the impact energy region of 10-5 - 20 keV/u. Molecular data with high accuracy are calculated using ab initio method. Our calculations clarified the controversy in the total and state-selective cross sections at low energies. The treatment of the core electron will influence the accuracy of the calculated molecular structure and then sensitively influence the charge transfer cross sections in the low energy region. The rotational couplings play an important role in the state-selective cross sections at energies above 50 eV/u, but weakly influence the total cross sections for this collision system.

  1. Photoinduced Charge and Energy Transfer Processes in Molecular Aggregates

    SciTech Connect

    John F. Endicott

    2009-10-20

    This project involved the experimental probing of the electronic excited states generated by photoinduced (center-to-center) electron and energy transfer processes in several classes of transition metal donor/acceptor (D/A) complexes. Some of the general properties inferred from these studies should be useful in the design of new systems for energy conversion applications. Pursuit of the project goals has involved the determination of electron transfer efficiencies and the detailed study of variations in the electronic spectra of D/A complexes. This has resulted in the study of some very fundamental issues of photoinduced charge transfer and the identification of some of the constraints on its efficiency. The experimental studies of the competition between the degradative non-radiative unimolecular relaxation of transition metal excited states and their transfer of charge from these excited states to external acceptors have involved a range of techniques such as transient decay kinetics, photoacoustic calorimetry and transient or stationary state spectroscopy. The substrates synthesized for these studies were selected to provide model systems, or series of model systems to probe the validity of models of electronic excited states and their reactivity. The work during the last few years has focused largely, but not exclusively, on the use of emission spectral band shapes to probe the properties of charge transfer (CT) excited states. Bandshape variations are one of the very few approaches for systematically probing electronic excited states and good band shape resolution is necessary in order to gain information about the structural variations that correlate with excited state reactivity. Differences in molecular structure correlate with differences in chemical reactivity, and the variations in emission bandshapes are well known to relate to variations in the molecular structural differences between the excited and ground electronic states. However, it is has been

  2. Threshold and efficiency for perforation of 1 nm thick carbon nanomembranes with slow highly charged ions

    NASA Astrophysics Data System (ADS)

    Wilhelm, Richard A.; Gruber, Elisabeth; Ritter, Robert; Heller, René; Beyer, André; Turchanin, Andrey; Klingner, Nico; Hübner, René; Stöger-Pollach, Michael; Vieker, Henning; Hlawacek, Gregor; Gölzhäuser, Armin; Facsko, Stefan; Aumayr, Friedrich

    2015-09-01

    Cross-linking of a self-assembled monolayer of 1,1‧-biphenyl-4-thiol by low energy electron irradiation leads to the formation of a carbon nanomembrane, that is only 1 nm thick. Here we study the perforation of these freestanding membranes by slow highly charged ion irradiation with respect to the pore formation yield. It is found that a threshold in potential energy of the highly charged ions of about 10 keV must be exceeded in order to form round pores with tunable diameters in the range of 5-15 nm. Above this energy threshold, the efficiency for a single ion to form a pore increases from 70% to nearly 100% with increasing charge. These findings are verified by two independent methods, namely the analysis of individual membranes stacked together during irradiation and the detailed analysis of exit charge state spectra utilizing an electrostatic analyzer.

  3. Results on the energy dependence of cosmic ray charge composition

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Ormes, J. F.

    1973-01-01

    Measurements using a balloon-borne ionization spectrometer on the differential energy spectra of the heavy nuclei of the galactic cosmic radiation are reported. The spectra of individual elements up to oxygen and groups of nuclei up through iron were measured up to almost 100 GeV/nucleon. The energy spectrum of the secondary nuclei, B+N, is steeper than that of the primary nuclei, C+O, by gamma = 0.21 + or - .09 in agreement with other authors. The spectral shapes found are reasonably well represented by single power laws between 2 and 60 GeV/nucleon. Data are consistent with the decrease in the secondary to primary ratio found by others above 20 GeV/nucleon, but it shows no evidence for any sudden change in this ratio within counting statistics. The most dramatic finding is that the spectrum of the iron nuclei is flatter than that of the carbon and oxygen nuclei by 0.57 + or - 0.14 of a power. The experimental techniques for charge and energy determination are presented and corrections due to nuclear disintegration and losses of energy out the bottom of the spectrometer are discussed.

  4. High energy electron cooling

    SciTech Connect

    Parkhomchuk, V.

    1997-09-01

    High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very close to theoretical prediction for a usual two component plasma heat exchange.

  5. High voltage space plasma interactions. [charging the solar power satellites

    NASA Technical Reports Server (NTRS)

    Mccoy, J. E.

    1980-01-01

    Two primary problems resulted from plasma interactions; one of concern to operations in geosynchronous orbit (GEO), the other in low orbits (LEO). The two problems are not the same. Spacecraft charging has become widely recognized as a problem, particularly for communications satellites operating in GEO. The very thin thermal plasmas at GEO are insufficient to bleed off voltage buildups due to higher energy charged particle radiation collected on outer surfaces. Resulting differential charging/discharging causes electrical transients, spurious command signals and possible direct overload damage. An extensive NASA/Air Force program has been underway for several years to address this problem. At lower altitudes, the denser plasmas of the plasmasphere/ionosphere provide sufficient thermal current to limit such charging to a few volts or less. Unfortunately, these thermal plasma currents which solve the GEO spacecraft charging problem can become large enough to cause just the opposite problem in LEO.

  6. Charge and spin correlations in high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Hayden, Stephen

    2013-03-01

    The cuprate high temperatures superconductors are characterised by numerous competing, and in some cases, co-existing broken symmetries. A important question is to what extent such additional ordered states exist for compositions with high superconducting transition temperatures. I will discuss high-energy X-ray diffraction measurements which show that a charge density wave state (CDW) develops at zero field in the normal state of superconducting YBa2Cu3O6.67 (Tc = 67 K). This material has a hole doping of 0.12 per copper and a well-ordered oxygen chain superstructure. Below Tc, the application of a magnetic field suppresses superconductivity and enhances the CDW. We find that the CDW and superconductivity are competing orders with similar energy scales, and the high-Tc superconductivity forms from a pre-existing CDW environment. Our results provide a mechanism for the formation of small Fermi surface pockets which can explain the negative Hall and Seebeck effects and the Tc plateau in this material. Work performed in collaboration with J. Chang, E. Blackburn, A. T. Holmes, N. B. Christensen, J. Larsen, J. Mesot, Ruixing Liang, D. A. Bonn, W. N. Hardy, A. Watenphul, M. v. Zimmermann and E. M. Forgan.

  7. Energy harvesting through charged nanochannels using external flows of different salt concentrations

    NASA Astrophysics Data System (ADS)

    Chanda, Sourayon; Tsai, Peichun Amy

    2016-11-01

    Renewable electricity may be generated by mixing of two solutions of different salt concentrations through charged nanochannels or pores, by leveraging ion-selective effect of the nano-confinements. We numerically investigate such a continuous power generation system using reverse electrodialysis (RED) with external flows. In the simulation model, two reservoirs are connected using a nanochannel of constant surface charge density. Solutions of high and low concentrations flow through the two reservoirs at a constant velocity. We examine the effects of (salt) concentration gradients and nanochannel dimensions on the power generation. Moreover, the effect of external flow velocity on the process is analyzed. Our results show that the maximum surface charge density, open circuit voltage, channel resistance, and energy conversion efficiency of the process are significantly affected by the difference of the high and low concentrations and the nanochannel dimension ratio.

  8. Development of compact rapid charging power supply for capacitive energy storage in pulsed power drivers.

    PubMed

    Sharma, Surender Kumar; Shyam, Anurag

    2015-02-01

    High energy capacitor bank is used for primary electrical energy storage in pulsed power drivers. The capacitors used in these pulsed power drivers have low inductance, low internal resistance, and less dc life, so it has to be charged rapidly and immediately discharged into the load. A series resonant converter based 45 kV compact power supply is designed and developed for rapid charging of the capacitor bank with constant charging current up to 150 mA. It is short circuit proof, and zero current switching technique is used to commute the semiconductor switch. A high frequency resonant inverter switching at 10 kHz makes the overall size small and reduces the switching losses. The output current of the power supply is limited by constant on-time and variable frequency switching control technique. The power supply is tested by charging the 45 kV/1.67 μF and 15 kV/356 μF capacitor banks. It has charged the capacitor bank up to rated voltage with maximum charging current of 150 mA and the average charging rate of 3.4 kJ/s. The output current of the power supply is limited by reducing the switching frequency at 5 kHz, 3.3 kHz, and 1.7 kHz and tested with 45 kV/1.67 μF capacitor bank. The protection circuit is included in the power supply for over current, under voltage, and over temperature. The design details and the experimental testing results of the power supply for resonant current, output current, and voltage traces of the power supply with capacitive, resistive, and short circuited load are presented and discussed.

  9. Development of compact rapid charging power supply for capacitive energy storage in pulsed power drivers

    NASA Astrophysics Data System (ADS)

    Sharma, Surender Kumar; Shyam, Anurag

    2015-02-01

    High energy capacitor bank is used for primary electrical energy storage in pulsed power drivers. The capacitors used in these pulsed power drivers have low inductance, low internal resistance, and less dc life, so it has to be charged rapidly and immediately discharged into the load. A series resonant converter based 45 kV compact power supply is designed and developed for rapid charging of the capacitor bank with constant charging current up to 150 mA. It is short circuit proof, and zero current switching technique is used to commute the semiconductor switch. A high frequency resonant inverter switching at 10 kHz makes the overall size small and reduces the switching losses. The output current of the power supply is limited by constant on-time and variable frequency switching control technique. The power supply is tested by charging the 45 kV/1.67 μF and 15 kV/356 μF capacitor banks. It has charged the capacitor bank up to rated voltage with maximum charging current of 150 mA and the average charging rate of 3.4 kJ/s. The output current of the power supply is limited by reducing the switching frequency at 5 kHz, 3.3 kHz, and 1.7 kHz and tested with 45 kV/1.67 μF capacitor bank. The protection circuit is included in the power supply for over current, under voltage, and over temperature. The design details and the experimental testing results of the power supply for resonant current, output current, and voltage traces of the power supply with capacitive, resistive, and short circuited load are presented and discussed.

  10. Influence of gravitation on the self-energy of charged particles

    SciTech Connect

    Zel'nikov, A.; Frolov, V.

    1982-02-01

    The influence of the gravitational field of a charged black hole on the self-energy of an electric and scalar charge at rest in this field is investigated. An exact expression is obtained for the energy of the charged particle, and the transition to the limit of a homogeneous gravitational field is investigated.

  11. Extraction of potential energy in charge asymmetry coordinate from experimental fission data

    NASA Astrophysics Data System (ADS)

    Paşca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.

    2016-12-01

    For fissioning isotopes of Ra, Ac, Th, Pa, and U, the potential energies as a function of the charge asymmetry coordinate are extracted from the experimental charge distributions of the fission fragment and compared with the calculated scission-point driving potentials. The role of the potential energy surfaces in the description of the fission charge distribution is discussed.

  12. Cooling of highly charged ions in a Penning trap

    SciTech Connect

    Gruber, Lukas

    2000-03-31

    Highly charged ions are extracted from an electron beam ion trap and guided to Retrap, a cryogenic Penning trap, where they are merged with laser cooled Be+ ions. The Be+ ions act as a coolant for the hot highly charged ions and their temperature is dropped by about 8 orders of magnitude in a few seconds. Such cold highly charged ions form a strongly coupled nonneutral plasma exhibiting, under such conditions, the aggregation of clusters and crystals. Given the right mixture, these plasmas can be studied as analogues of high density plasmas like white dwarf interiors, and potentially can lead to the development of cold highly charged ion beams for applications in nanotechnology. Due to the virtually non existent Doppler broadening, spectroscopy on highly charged ions can be performed to an unprecedented precision. The density and the temperature of the Be+ plasma were measured and highly charged ions were sympathetically cooled to similar temperatures. Molecular dynamics simulations confirmed the shape, temperature and density of the highly charged ions. Ordered structures were observed in the simulations.

  13. Prospects at high energies

    SciTech Connect

    Quigg, C.

    1988-11-01

    I discuss some possibilities for neutrino experiments in the fixed-target environment of the SPS, Tevatron, and UNK, with their primary proton beams of 0.4, 0.9, and 3.0 TeV. The emphasis is on unfinished business: issues that have been recognized for some time, but not yet resolved. Then I turn to prospects for proton-proton colliders to explore the 1-TeV scale. I review the motivation for new physics in the neighborhood of 1 TeV and mention some discovery possibilities for high-energy, high-luminosity hadron colliders and the implications they would have for neutrino physics. I raise the possibility of the direct study of neutrino interactions in hadron colliders. I close with a report on the status of the SSC project. 38 refs., 17 figs.

  14. Charged particle detectors with active detector surface for partial energy deposition of the charged particles and related methods

    DOEpatents

    Gerts, David W; Bean, Robert S; Metcalf, Richard R

    2013-02-19

    A radiation detector is disclosed. The radiation detector comprises an active detector surface configured to generate charge carriers in response to charged particles associated with incident radiation. The active detector surface is further configured with a sufficient thickness for a partial energy deposition of the charged particles to occur and permit the charged particles to pass through the active detector surface. The radiation detector further comprises a plurality of voltage leads coupled to the active detector surface. The plurality of voltage leads is configured to couple to a voltage source to generate a voltage drop across the active detector surface and to separate the charge carriers into a plurality of electrons and holes for detection. The active detector surface may comprise one or more graphene layers. Timing data between active detector surfaces may be used to determine energy of the incident radiation. Other apparatuses and methods are disclosed herein.

  15. Charging energy spectrum of black phosphorus quantum dots

    NASA Astrophysics Data System (ADS)

    Lino, M. A.; de Sousa, J. S.; da Costa, D. R.; Chaves, A.; Pereira, J. M.; Farias, G. A.

    2017-08-01

    We present a theoretical study of the charging effects in single and double layer black phosphorus quantum dots (BPQDs) with lateral sizes of 2 nm and 3 nm. We demonstrate that the charging of BPQDs are able to store up to an N max electron (that depends on the lateral size and number of layers in the QD), after which structural instabilities arises. For example, 3 nm wide hydrogen-passivated single layer BPQDs can hold a maximum of 16 electrons, and an additional electron causes the expelling of hydrogen atoms from the QD borders. We also calculated the addition energy (E A ) spectrum. For single-layer QDs with 2 and 3 nm lateral sizes, the average E A is around 0.4 eV and 0.3 eV, respectively. For double layer QDs with the same sizes, the average E A is around 0.25 eV and 0.2 eV, respectively.

  16. Structures, energies and bonding in neutral and charged Li microclusters.

    PubMed

    Yepes, Diana; Kirk, Steven Robert; Jenkins, Samantha; Restrepo, Albeiro

    2012-09-01

    Structural and chemical properties of charged and neutral Lithium microclusters are investigated for [Formula: see text]. A total of 18 quantum conformational spaces are randomly walked to produce candidate structures for local minima. Very rich potential energy surfaces are produced, with the largest structural complexity predicted for anionic clusters. Analysis of the electron charge distributions using the quantum theory of atoms in molecules (QTAIM) predicts major stabilizing roles of Non-nuclear attractors (NNAs) via NNA···Li interactions with virtually no direct Li···Li interactions, except in the least stable configurations. A transition in behavior for clusters containing more than seven nuclei is observed by using the recently introduced quantum topology to determine in a quantum mechanically consistent fashion the number of spatial dimensions each cluster has. We experiment with a novel scheme for extracting persistent structural motifs with increase in cluster size. The new structural motifs correlate well with the energetic stability, particularly in highlighting the least stable structures. Quantifying the degree of covalent character in Lithium bonding independently agrees with the observation in the transition in cluster behavior for lithium clusters containing more than seven nuclei. Good correlation with available experimental data is obtained for all properties reported in this work.

  17. Charge exchange processes involving highly charged ions and targets of interest in astrophysics and fusion plasmas

    NASA Astrophysics Data System (ADS)

    Otranto, S.

    2012-11-01

    Renewed interest in charge exchange processes involving highly charged ions arises because of their crucial role in the planned ITER reactor as well as to recent X-ray observations in the astrophysical context. In this work, the classical trajectory Monte Carlo method (CTMC) is used to calculate state selective single charge exchange n-level cross sections and line emission cross sections pertinent to both fields. These are contrasted to recent laboratory data from KVI for the Xe18+ + Na(3s) collision system and NIST/BERLIN-EBIT data for the Ar18+ +Ar system.

  18. Collision phenomena involving highly-charged ions in astronomical objects

    NASA Technical Reports Server (NTRS)

    Chutjian, A.

    2001-01-01

    A description of the role of highly charged ions in various astronomical objects; includes the use of critical quantities such as cross sections for excitation, charge-exchange, X-ray emission, radiative recombination (RR) and dielectronic recombination (DR); and lifetimes, branching ratios, and A-values.

  19. Charge transport in columnar stacked triphenylenes: Effects of conformational fluctuations on charge transfer integrals and site energies

    NASA Astrophysics Data System (ADS)

    Senthilkumar, K.; Grozema, F. C.; Bickelhaupt, F. M.; Siebbeles, L. D. A.

    2003-11-01

    Values of charge transfer integrals, spatial overlap integrals and site energies involved in transport of positive charges along columnar stacked triphenylene derivatives are provided. These parameters were calculated directly as the matrix elements of the Kohn-Sham Hamiltonian, defined in terms of the molecular orbitals on individual triphenylene molecules. This was realized by exploiting the unique feature of the Amsterdam density functional theory program that allows one to use molecular orbitals on individual molecules as a basis set in calculations on a system composed of two or more molecules. The charge transfer integrals obtained in this way differ significantly from values estimated from the energy splitting between the highest occupied molecular orbitals in a dimer. The difference is due to the nonzero spatial overlap between the molecular orbitals on adjacent molecules. Calculations were performed on unsubstituted and methoxy- or methylthio-substituted triphenylenes. Charge transfer integrals and site energies were computed as a function of the twist angle, stacking distance and lateral slide distance between adjacent molecules. The variation of the charge transfer integrals and site energies with these conformational degrees of freedom provide a qualitative explanation of the similarities and differences between the experimental charge carrier mobilities in different phases of alkoxy- and alkylthio-substituted triphenylenes. The data obtained from the present work can be used as input in quantitative studies of charge transport in columnar stacked triphenylene derivatives.

  20. Nonequilibrium phenomena in charge recombination of excited donor-acceptor complexes and free energy gap law.

    PubMed

    Yudanov, Vladislav V; Mikhailova, Valentina A; Ivanov, Anatoly I

    2010-12-23

    The charge recombination dynamics of excited donor-acceptor complexes in polar solvents has been investigated within the framework of the stochastic approach. The model involves the excited state formation by the pump pulse and accounts for the reorganization of a number of intramolecular high-frequency vibrational modes, for their relaxation as well as for the solvent reorganization following nonexponential relaxation. The hot transitions accelerate the charge recombination in the low exergonic region and suppress it in the region of moderate exothermicity. This straightens the dependence of the logarithm of the charge recombination rate constant on the free energy gap to the form that can be fitted to the experimental data. The free energy dependence of the charge recombination rate constant can be well fitted to the multichannel stochastic model if the donor-acceptor complexes are separated into a few groups with different values of the electronic coupling. The model provides correct description of the nonexponential charge recombination dynamics in excited donor-acceptor complexes, in particular, nearly exponential recombination in perylene-tetracyanoethylene complex in acetonitrile. It appears that majority of the initially excited donor-acceptor complexes recombines in a nonthermal (hot) stage when the nonequilibrium wave packet passes through a number of term crossings corresponding to transitions toward vibrational excited states of the electronic ground state in the area of the low and moderate exothermicity.

  1. The low energy dynamics of charge two dyonic instantons

    NASA Astrophysics Data System (ADS)

    Allen, James P.; Smith, Douglas J.

    2013-02-01

    We explore the low energy dynamics of charge two instantons and dyonic instantons in SU(2) 5-dimensional Yang-Mills. We make use of the moduli space approximation and first calculate the moduli space metric for two instantons. For dyonic instantons the effective action of the moduli space approximation also includes a potential term which we calculate. Using the ADHM construction we are able to understand some aspects of the topology and structure of the moduli space. We find that instantons undergo right angled scattering after a head on collision and we are able to give an analytic description of this in terms of a quotient of the moduli space by symmetries of the ADHM data. We also explore the scattering of instantons and dyonic instantons numerically in a constrained region of the moduli space. Finally we exhibit some examples of closed geodesics on the moduli space, and geodesics which hit the moduli space singularities in finite time.

  2. Charged dust in planetary magnetospheres: Hamiltonian dynamics and numerical simulations for highly charged grains

    NASA Astrophysics Data System (ADS)

    Schaffer, L.; Burns, J. A.

    1994-09-01

    We use a combination of analytical and numerical methods to investigate the dynamics of charged dust grains in planetary magnetospheres. Our emphasis is on obtaining results valid for particles that are not necessarily dominated either by gravitational or electromagnetic forces. A Hamiltonian formulation of the problem yields exact results, for all values of charge-to-mass ratio, when we introduce two constraints: particles remain in the equatorial plane and the magnetic field is taken as axially symmetric. In particular, we obtain locations of equilibrium points, the frequencies of stable periodic orbits, the topology of separatrices in phase space, and the rate of longitudinal drift. These results are significant for specific applications: motion in the nearly aligned dipolar field of Saturn, and the trajectories of arbitrarily charged particles in complex magnetic fields for limited periods of time after ejection from parent bodies. Since the model is restrictive, we also use numerical integrations of the full three-dimensional equations of motion and illustrate under what conditions the constrained problem yields reasonable results. We show that a large fraction of the intermediately charged and highly charged (gyrating) particles will always be lost to a planet's atmosphere within a few hundred hours, for motion through tilted-dipole magnetic fields. We find that grains must have a very high charge-to-mass ratio in order to be mirrored back to the ring plane. Thus, except perhaps at Saturn where the dipole tilt is very small, the likely inhabitants of the dusty ring systems are those particles that are either nearly Keplerian (weakly charged) grains or grains whose charges place them in the lower end of the intermediate charge zone. Finally, we demonstrate the effect of plasma drag on the orbits of gyrating particles to be a rapid decrease in gyroradius followed by a slow radial evolution of the guiding center.

  3. Charging a renewable future: The impact of electric vehicle charging intelligence on energy storage requirements to meet renewable portfolio standards

    NASA Astrophysics Data System (ADS)

    Forrest, Kate E.; Tarroja, Brian; Zhang, Li; Shaffer, Brendan; Samuelsen, Scott

    2016-12-01

    Increased usage of renewable energy resources is key for energy system evolution to address environmental concerns. Capturing variable renewable power requires the use of energy storage to shift generation and load demand. The integration of plug-in electric vehicles, however, impacts the load demand profile and therefore the capacity of energy storage required to meet renewable utilization targets. This study examines how the intelligence of plug-in electric vehicle (PEV) integration impacts the required capacity of energy storage systems to meet renewable utilization targets for a large-scale energy system, using California as an example for meeting a 50% and 80% renewable portfolio standard (RPS) in 2030 and 2050. For an 80% RPS in 2050, immediate charging of PEVs requires the installation of an aggregate energy storage system with a power capacity of 60% of the installed renewable capacity and an energy capacity of 2.3% of annual renewable generation. With smart charging of PEVs, required power capacity drops to 16% and required energy capacity drops to 0.6%, and with vehicle-to-grid (V2G) charging, non-vehicle energy storage systems are no longer required. Overall, this study highlights the importance of intelligent PEV charging for minimizing the scale of infrastructure required to meet renewable utilization targets.

  4. Photoionization of Highly Charged Argon Ions and Their Diagnostic Lines

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2012-06-01

    %TEXT OF YOUR ABSTRACT Lines of highly charged He-like and Li-like ions in the ultraviolet and X-ray regions provide useful diagnostics for the physical and chemical conditions of the astrophysical as well as fusion plasmas. For example, Ar XVII lines in a Syfert galaxy have been measured by the X-ray space observatory Chandra. Results on photoionization of Ar XVI and Ar XVII obtained from relativistic Breit-Pauli R-matrix method and close-coupling approximation will be presented. Important features for level-specific photoionization for the diagnostic w, x, y, z lines of He-like Ar XVII in the ultraviolet region will be illustrated. Although monotonous decay dominates the low energy photoionization for these ions, strong resonances appear in the high energy region indicating higher recombination, inverse process of photoionization, at high temperature. The spectra of the well known 22 diagnostics dielectronic satellite lines of Li-like Ar XVI will be shown produced from the the KLL resonances in photoionization. Acknowledgement: Partially supported by DOE, NSF; Computational work was carried out at the Ohio Supercomputer Center

  5. High Energy Astrophysics Mission

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Ormes, Jonathan F. (Technical Monitor)

    2000-01-01

    The nature of gravity and its relationship to the other three forces and to quantum theory is one of the major challenges facing us as we begin the new century. In order to make progress we must challenge the current theories by observing the effects of gravity under the most extreme conditions possible. Black holes represent one extreme, where the laws of physics as we understand them break down. The Universe as whole is another extreme, where its evolution and fate is dominated by the gravitational influence of dark matter and the nature of the Cosmological constant. The early universe represents a third extreme, where it is thought that gravity may somehow be unified with the other forces. NASA's "Cosmic Journeys" program is part of a NASA/NSF/DoE tri-agency initiative designed to observe the extremes of gravity throughout the universe. This program will probe the nature of black holes, ultimately obtaining a direct image of the event horizon. It will investigate the large scale structure of the Universe to constrain the location and nature of dark matter and the nature of the cosmological constant. Finally it will search for and study the highest energy processes, that approach those found in the early universe. I will outline the High Energy Astrophysics part of this program.

  6. High Energy Astrophysics Mission

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Ormes, Jonathan F. (Technical Monitor)

    2000-01-01

    The nature of gravity and its relationship to the other three forces and to quantum theory is one of the major challenges facing us as we begin the new century. In order to make progress we must challenge the current theories by observing the effects of gravity under the most extreme conditions possible. Black holes represent one extreme, where the laws of physics as we understand them break down. The Universe as whole is another extreme, where its evolution and fate is dominated by the gravitational influence of dark matter and the nature of the Cosmological constant. The early universe represents a third extreme, where it is thought that gravity may somehow be unified with the other forces. NASA's "Cosmic Journeys" program is part of a NASA/NSF/DoE tri-agency initiative designed to observe the extremes of gravity throughout the universe. This program will probe the nature of black holes, ultimately obtaining a direct image of the event horizon. It will investigate the large scale structure of the Universe to constrain the location and nature of dark matter and the nature of the cosmological constant. Finally it will search for and study the highest energy processes, that approach those found in the early universe. I will outline the High Energy Astrophysics part of this program.

  7. Energy losses of positive and negative charged particles in electron gas

    NASA Astrophysics Data System (ADS)

    Diachenko, M. M.; Kholodov, R. I.

    2017-02-01

    A heavy charged particle propagation through electron gas has been studied using combination of non-relativistic quantum mechanics and the Green’s functions method. The energy loss of a charged particle has been found in the case of large transferred momentum taking into account the interference term in the expression for the rate. The dependence of the energy loss of a charged particles in electron gas with nonzero temperature on the sign of the charge has been obtained.

  8. High energy physics

    SciTech Connect

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb{sup {minus}}1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989.

  9. Heavy Inertial Confinement Energy: Interactions Involoving Low charge State Heavy Ion Injection Beams

    SciTech Connect

    DuBois, Robert D

    2006-04-14

    During the contract period, absolute cross sections for projectile ionization, and in some cases for target ionization, were measured for energetic (MeV/u) low-charge-state heavy ions interacting with gases typically found in high and ultra-high vacuum environments. This information is of interest to high-energy-density research projects as inelastic interactions with background gases can lead to serious detrimental effects when intense ion beams are accelerated to high energies, transported and possibly confined in storage rings. Thus this research impacts research and design parameters associated with projects such as the Heavy Ion Fusion Project, the High Current and Integrated Beam Experiments in the USA and the accelerator upgrade at GSI-Darmstadt, Germany. Via collaborative studies performed at GSI-Darmstadt, at the University of East Carolina, and Texas A&M University, absolute cross sections were measured for a series of collision systems using MeV/u heavy ions possessing most, or nearly all, of their bound electrons, e.g., 1.4 MeV/u Ar{sup +}, Xe{sup 3+}, and U{sup 4,6,10+}. Interactions involving such low-charge-state heavy ions at such high energies had never been previously explored. Using these, and data taken from the literature, an empirical model was developed for extrapolation to much higher energies. In order to extend our measurements to much higher energies, the gas target at the Experimental Storage Ring in GSI-Darmstadt was used. Cross sections were measured between 20 and 50 MeV/u for U{sup 28+}- H{sub 2} and - N{sub 2}, the primary components found in high and ultra-high vacuum systems. Storage lifetime measurements, information inversely proportional to the cross section, were performed up to 180 MeV/u. The lifetime and cross section data test various theoretical approaches used to calculate cross sections for many-electron systems. Various high energy density research projects directly benefit by this information. As a result, the general

  10. Energy transfer through a multi-layer liner for shaped charges

    DOEpatents

    Skolnick, Saul; Goodman, Albert

    1985-01-01

    This invention relates to the determination of parameters for selecting materials for use as liners in shaped charges to transfer the greatest amount of energy to the explosive jet. Multi-layer liners constructed of metal in shaped charges for oil well perforators or other applications are selected in accordance with the invention to maximize the penetrating effect of the explosive jet by reference to four parameters: (1) Adjusting the explosive charge to liner mass ratio to achieve a balance between the amount of explosive used in a shaped charge and the areal density of the liner material; (2) Adjusting the ductility of each layer of a multi-layer liner to enhance the formation of a longer energy jet; (3) Buffering the intermediate layers of a multi-layer liner by varying the properties of each layer, e.g., composition, thickness, ductility, acoustic impedance and areal density, to protect the final inside layer of high density material from shattering upon impact of the explosive force and, instead, flow smoothly into a jet; and (4) Adjusting the impedance of the layers in a liner to enhance the transmission and reduce the reflection of explosive energy across the interface between layers.

  11. Results on the energy dependence of cosmic-ray charge composition

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Ormes, J. F.

    1973-01-01

    Results of measurements by a balloon-borne ionization spectrometer of the energy dependence of high-energy cosmic-ray charge composition. The results presented are greatly improved over those obtained earlier by Ormes et al. (1971) by the use of a multidimensional charge analysis with more efficient background rejection, and a more accurate energy determination. Complex couplings between the charge, energy, and trajectory information were taken into account and are discussed. The spectra of individual elements up to oxygen and of groups of nuclei up through iron were measured up to almost 100 GeV per nucleon. The energy spectrum of the secondary nuclei, B + N, is found to be steeper than that of the primary nuclei, C + O, in agreement with Smith et al. (1973). The most dramatic finding is that the spectrum of the iron nuclei is flatter than that of the carbon and oxygen nuclei by 0.57 plus or minus 0.14 of a power.

  12. Space-charge compensation in high-intensity proton rings

    SciTech Connect

    A. Burov, G.W. Foster and V.D. Shiltsev

    2000-09-21

    Recently, it was proposed to use negatively charged electron beams for compensation of beam-beam effects due to protons in the Tevatron collider. The authors show that a similar compensation is possible in space-charge dominated low energy proton beams. The idea has a potential of several-fold increase of the FNAL Booster beam brightness. Best results will be obtained using three electron lenses around the machine circumference, using co-moving electron beam with time structure and profile approximately matched to the proton beam. This technique, if feasible, will be more cost effective than the straightforward alternative of increasing the energy of the injection linac.

  13. Synergistic Effect of High Charge and Energy Particle Radiation and Chronological Age on Biomarkers of Oxidative Stress and Tissue Degeneration: A Ground-Based Study Using the Vertebrate Laboratory Model Organism Oryzias latipes

    DOE PAGES

    Zheng, Xuan; Zhang, Xinyan; Ding, Lingling; ...

    2014-11-06

    High charge and energy (HZE) particles are a main hazard of the space radiation environment. Uncertainty regarding their health effects is a limiting factor in the design of human exploration-class space missions, that is, missions beyond low earth orbit. Previous work has shown that HZE exposure increases cancer risk and elicits other aging-like phenomena in animal models. Here, we investigate how a single exposure to HZE particle radiation, early in life, influences the subsequent age-dependent evolution of oxidative stress and appearance of degenerative tissue changes. Embryos of the laboratory model organism, Oryzias latipes (Japanese medaka fish), were exposed to HZEmore » particle radiation at doses overlapping the range of anticipated human exposure. A separate cohort was exposed to reference γ-radiation. Survival was monitored for 750 days, well beyond the median lifespan. The population was also sampled at intervals and liver tissue was subjected to histological and molecular analysis. HZE particle radiation dose and aging contributed synergistically to accumulation of lipid peroxidation products, which are a marker of chronic oxidative stress. This was mirrored by a decline in PPARGC1A mRNA, which encodes a transcriptional co-activator required for expression of oxidative stress defense genes and for mitochondrial maintenance. Consistent with chronic oxidative stress, mitochondria had an elongated and enlarged ultrastructure. Livers also had distinctive, cystic lesions. Depending on the endpoint, effects of γ-rays in the same dose range were either lesser or not detected. Results provide a quantitative and qualitative framework for understanding relative contributions of HZE particle radiation exposure and aging to chronic oxidative stress and tissue degeneration.« less

  14. Synergistic Effect of High Charge and Energy Particle Radiation and Chronological Age on Biomarkers of Oxidative Stress and Tissue Degeneration: A Ground-Based Study Using the Vertebrate Laboratory Model Organism Oryzias latipes

    SciTech Connect

    Zheng, Xuan; Zhang, Xinyan; Ding, Lingling; Lee, Jeffrey R.; Weinberger, Paul M.; Dynan, William S.

    2014-11-06

    High charge and energy (HZE) particles are a main hazard of the space radiation environment. Uncertainty regarding their health effects is a limiting factor in the design of human exploration-class space missions, that is, missions beyond low earth orbit. Previous work has shown that HZE exposure increases cancer risk and elicits other aging-like phenomena in animal models. Here, we investigate how a single exposure to HZE particle radiation, early in life, influences the subsequent age-dependent evolution of oxidative stress and appearance of degenerative tissue changes. Embryos of the laboratory model organism, Oryzias latipes (Japanese medaka fish), were exposed to HZE particle radiation at doses overlapping the range of anticipated human exposure. A separate cohort was exposed to reference γ-radiation. Survival was monitored for 750 days, well beyond the median lifespan. The population was also sampled at intervals and liver tissue was subjected to histological and molecular analysis. HZE particle radiation dose and aging contributed synergistically to accumulation of lipid peroxidation products, which are a marker of chronic oxidative stress. This was mirrored by a decline in PPARGC1A mRNA, which encodes a transcriptional co-activator required for expression of oxidative stress defense genes and for mitochondrial maintenance. Consistent with chronic oxidative stress, mitochondria had an elongated and enlarged ultrastructure. Livers also had distinctive, cystic lesions. Depending on the endpoint, effects of γ-rays in the same dose range were either lesser or not detected. Results provide a quantitative and qualitative framework for understanding relative contributions of HZE particle radiation exposure and aging to chronic oxidative stress and tissue degeneration.

  15. Synergistic effect of high charge and energy particle radiation and chronological age on biomarkers of oxidative stress and tissue degeneration: a ground-based study using the vertebrate laboratory model organism Oryzias latipes.

    PubMed

    Zheng, Xuan; Zhang, Xinyan; Ding, Lingling; Lee, Jeffrey R; Weinberger, Paul M; Dynan, William S

    2014-01-01

    High charge and energy (HZE) particles are a main hazard of the space radiation environment. Uncertainty regarding their health effects is a limiting factor in the design of human exploration-class space missions, that is, missions beyond low earth orbit. Previous work has shown that HZE exposure increases cancer risk and elicits other aging-like phenomena in animal models. Here, we investigate how a single exposure to HZE particle radiation, early in life, influences the subsequent age-dependent evolution of oxidative stress and appearance of degenerative tissue changes. Embryos of the laboratory model organism, Oryzias latipes (Japanese medaka fish), were exposed to HZE particle radiation at doses overlapping the range of anticipated human exposure. A separate cohort was exposed to reference γ-radiation. Survival was monitored for 750 days, well beyond the median lifespan. The population was also sampled at intervals and liver tissue was subjected to histological and molecular analysis. HZE particle radiation dose and aging contributed synergistically to accumulation of lipid peroxidation products, which are a marker of chronic oxidative stress. This was mirrored by a decline in PPARGC1A mRNA, which encodes a transcriptional co-activator required for expression of oxidative stress defense genes and for mitochondrial maintenance. Consistent with chronic oxidative stress, mitochondria had an elongated and enlarged ultrastructure. Livers also had distinctive, cystic lesions. Depending on the endpoint, effects of γ-rays in the same dose range were either lesser or not detected. Results provide a quantitative and qualitative framework for understanding relative contributions of HZE particle radiation exposure and aging to chronic oxidative stress and tissue degeneration.

  16. Synergistic Effect of High Charge and Energy Particle Radiation and Chronological Age on Biomarkers of Oxidative Stress and Tissue Degeneration: A Ground-Based Study Using the Vertebrate Laboratory Model Organism Oryzias latipes

    PubMed Central

    Zheng, Xuan; Zhang, Xinyan; Ding, Lingling; Lee, Jeffrey R.; Weinberger, Paul M.; Dynan, William S.

    2014-01-01

    High charge and energy (HZE) particles are a main hazard of the space radiation environment. Uncertainty regarding their health effects is a limiting factor in the design of human exploration-class space missions, that is, missions beyond low earth orbit. Previous work has shown that HZE exposure increases cancer risk and elicits other aging-like phenomena in animal models. Here, we investigate how a single exposure to HZE particle radiation, early in life, influences the subsequent age-dependent evolution of oxidative stress and appearance of degenerative tissue changes. Embryos of the laboratory model organism, Oryzias latipes (Japanese medaka fish), were exposed to HZE particle radiation at doses overlapping the range of anticipated human exposure. A separate cohort was exposed to reference γ-radiation. Survival was monitored for 750 days, well beyond the median lifespan. The population was also sampled at intervals and liver tissue was subjected to histological and molecular analysis. HZE particle radiation dose and aging contributed synergistically to accumulation of lipid peroxidation products, which are a marker of chronic oxidative stress. This was mirrored by a decline in PPARGC1A mRNA, which encodes a transcriptional co-activator required for expression of oxidative stress defense genes and for mitochondrial maintenance. Consistent with chronic oxidative stress, mitochondria had an elongated and enlarged ultrastructure. Livers also had distinctive, cystic lesions. Depending on the endpoint, effects of γ-rays in the same dose range were either lesser or not detected. Results provide a quantitative and qualitative framework for understanding relative contributions of HZE particle radiation exposure and aging to chronic oxidative stress and tissue degeneration. PMID:25375139

  17. Design of the low energy beam transport line between CARIBU and the EBIS charge breeder

    SciTech Connect

    Perry, A.; Ostroumov, P. N.; Barcikowski, A.; Dickerson, C.; Kondrashev, S. A.; Mustapha, B.; Savard, G.

    2015-01-09

    An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed to breed radioactive beams from the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) facility at ATLAS. The EBIS-CB will replace the existing ECR charge breeder to increase the intensity and improve the purity of reaccelerated radioactive ion beams. The EBIS-CB is in the final stage of off-line commissioning. Currently, we are developing a low energy beam transport (LEBT) system to transfer CARIBU beams to the EBIS-CB. As was originally planned, an RFQ cooler-buncher will precede the EBIS-CB. Recently, it was decided to include a multi-reflection time-of-flight (MR-TOF) mass-spectrometer following the RFQ. MR-TOF is a relatively new technology used to purify beams with a mass-resolving power up to 3×10{sup 5} as was demonstrated in experiments at CERN/ISOLDE. Very high purity singly-charged radioactive ion beams will be injected into the EBIS for charge breeding and due to its inherent properties, the EBIS-CB will maintain the purity of the charge bred beams. Possible contamination of residual gas ions will be greatly suppressed by achieving ultra-high vacuum in the EBIS trap. This paper will present and discuss the design of the LEBT and the overall integration of the EBIS-CB into ATLAS.

  18. Design of the low energy beam transport line between CARIBU and the EBIS charge breeder

    NASA Astrophysics Data System (ADS)

    Perry, A.; Ostroumov, P. N.; Barcikowski, A.; Dickerson, C.; Kondrashev, S. A.; Mustapha, B.; Savard, G.

    2015-01-01

    An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed to breed radioactive beams from the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) facility at ATLAS. The EBIS-CB will replace the existing ECR charge breeder to increase the intensity and improve the purity of reaccelerated radioactive ion beams. The EBIS-CB is in the final stage of off-line commissioning. Currently, we are developing a low energy beam transport (LEBT) system to transfer CARIBU beams to the EBIS-CB. As was originally planned, an RFQ cooler-buncher will precede the EBIS-CB. Recently, it was decided to include a multi-reflection time-of-flight (MR-TOF) mass-spectrometer following the RFQ. MR-TOF is a relatively new technology used to purify beams with a mass-resolving power up to 3×105 as was demonstrated in experiments at CERN/ISOLDE. Very high purity singly-charged radioactive ion beams will be injected into the EBIS for charge breeding and due to its inherent properties, the EBIS-CB will maintain the purity of the charge bred beams. Possible contamination of residual gas ions will be greatly suppressed by achieving ultra-high vacuum in the EBIS trap. This paper will present and discuss the design of the LEBT and the overall integration of the EBIS-CB into ATLAS.

  19. Transport of intense ion beams and space charge compensation issues in low energy beam lines (invited).

    PubMed

    Chauvin, N; Delferrière, O; Duperrier, R; Gobin, R; Nghiem, P A P; Uriot, D

    2012-02-01

    Over the last few years, the interest of the international scientific community for high power accelerators in the megawatt range has been increasing. For such machines, the ion source has to deliver a beam intensity that ranges from several tens up to a hundred of mA. One of the major challenges is to extract and transport the beam while minimizing the emittance growth and optimizing its injection into the radio frequency quadrupole. Consequently, it is crucial to perform precise simulations and cautious design of the low energy beam transport (LEBT) line. In particular, the beam dynamics calculations have to take into account not only the space charge effects but also the space charge compensation of the beam induced by ionization of the residual gas. The physical phenomena occurring in a high intensity LEBT and their possible effects on the beam are presented, with a particular emphasis on space charge compensation. Then, beam transport issues in different kind of LEBTs are briefly reviewed. The SOLMAXP particle-in-cell code dedicated to the modeling of the transport of charge particles under a space charge compensation regime is described. Finally, beam dynamics simulations results obtained with SOLMAXP are presented in the case of international fusion materials irradiation facility injector.

  20. Slow highly charged ion induced nanopit formation on the KCl(001) surface

    NASA Astrophysics Data System (ADS)

    Wilhelm, R. A.; Heller, R.; Facsko, S.

    2016-08-01

    We report on nanostructuring of the KCl(001) surface induced by the individual impact of slow highly charged ions. Samples were irradiated with Xe ions with charge states of Q = 15 to 40 at kinetic energies from 1.7 to 160 keV. The formation of nanopits at the virgin surface is observed and attributed to a defect-mediated desorption process involving the removal of up to 2000 surface atoms per incident ion. The depth of the produced pits is shallow, but not limited to the first monolayer. From the variation of the ion parameters (charge state and kinetic energy) we derive a phase diagram for the structuring of the KCl(001) surface with highly charged ions.

  1. Studying and applying channeling at extremely high bunch charges

    SciTech Connect

    Carrigan, R.A.; /Fermilab

    2005-01-01

    The potentially high plasma densities possible in solids might produce extremely high acceleration gradients. However solid-state plasmas could pose daunting challenges. Crystal channeling has been suggested as a mechanism to ameliorate these problems. A high-density plasma in a crystal lattice could quench the channeling process. There is no experimental or theoretical guidance on channeling for intense charged particle beams. An experiment has been carried out at the Fermilab A0 photoinjector to observe electron channeling radiation at high bunch charges. An electron beam with up to 8 nC per electron bunch was used to investigate the electron-crystal interaction. No evidence was found of quenching of channeling at charge densities two orders of magnitude larger than in earlier experiments. Possible new channeling experiments are discussed for the much higher bunch charge densities and shorter times required to probe channeling breakdown and plasma behavior.

  2. Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC.

    PubMed

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; Derradi de Souza, R; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Madagodagettige Don, D M M D; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-08-01

    Local parity-odd domains are theorized to form inside a quark-gluon plasma which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect. The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this Letter, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39, and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy and tends to vanish by 7.7 GeV. This implies the dominance of hadronic interactions over partonic ones at lower collision energies.

  3. Beam-Energy Dependence of Charge Separation along the Magnetic Field in Au +Au Collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Contin, G.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Olvitt, D. L.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2014-08-01

    Local parity-odd domains are theorized to form inside a quark-gluon plasma which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect. The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this Letter, we present the results of the beam-energy dependence of the charge correlations in Au +Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39, and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy and tends to vanish by 7.7 GeV. This implies the dominance of hadronic interactions over partonic ones at lower collision energies.

  4. Charging-free electrochemical system for harvesting low-grade thermal energy

    PubMed Central

    Yang, Yuan; Lee, Seok Woo; Ghasemi, Hadi; Loomis, James; Li, Xiaobo; Kraemer, Daniel; Zheng, Guangyuan; Cui, Yi; Chen, Gang

    2014-01-01

    Efficient and low-cost systems are needed to harvest the tremendous amount of energy stored in low-grade heat sources (<100 °C). Thermally regenerative electrochemical cycle (TREC) is an attractive approach which uses the temperature dependence of electrochemical cell voltage to construct a thermodynamic cycle for direct heat-to-electricity conversion. By varying temperature, an electrochemical cell is charged at a lower voltage than discharge, converting thermal energy to electricity. Most TREC systems still require external electricity for charging, which complicates system designs and limits their applications. Here, we demonstrate a charging-free TREC consisting of an inexpensive soluble Fe(CN)63−/4− redox pair and solid Prussian blue particles as active materials for the two electrodes. In this system, the spontaneous directions of the full-cell reaction are opposite at low and high temperatures. Therefore, the two electrochemical processes at both low and high temperatures in a cycle are discharge. Heat-to-electricity conversion efficiency of 2.0% can be reached for the TREC operating between 20 and 60 °C. This charging-free TREC system may have potential application for harvesting low-grade heat from the environment, especially in remote areas. PMID:25404325

  5. Charging-free electrochemical system for harvesting low-grade thermal energy.

    PubMed

    Yang, Yuan; Lee, Seok Woo; Ghasemi, Hadi; Loomis, James; Li, Xiaobo; Kraemer, Daniel; Zheng, Guangyuan; Cui, Yi; Chen, Gang

    2014-12-02

    Efficient and low-cost systems are needed to harvest the tremendous amount of energy stored in low-grade heat sources (<100 °C). Thermally regenerative electrochemical cycle (TREC) is an attractive approach which uses the temperature dependence of electrochemical cell voltage to construct a thermodynamic cycle for direct heat-to-electricity conversion. By varying temperature, an electrochemical cell is charged at a lower voltage than discharge, converting thermal energy to electricity. Most TREC systems still require external electricity for charging, which complicates system designs and limits their applications. Here, we demonstrate a charging-free TREC consisting of an inexpensive soluble Fe(CN)6(3-/4-) redox pair and solid Prussian blue particles as active materials for the two electrodes. In this system, the spontaneous directions of the full-cell reaction are opposite at low and high temperatures. Therefore, the two electrochemical processes at both low and high temperatures in a cycle are discharge. Heat-to-electricity conversion efficiency of 2.0% can be reached for the TREC operating between 20 and 60 °C. This charging-free TREC system may have potential application for harvesting low-grade heat from the environment, especially in remote areas.

  6. Transport of intense beams of highly charged ions

    NASA Astrophysics Data System (ADS)

    Winkler, M.; Gammino, S.; Ciavola, G.; Celona, L.; Spadtke, P.; Tinschert, K.

    2005-10-01

    The new generation of ion sources delivers beams with intensities of several mA. This requires a careful design of the analysing system and the low-energy beam transport (LEBT) from the source to the subsequent systems. At INFN-LNS, high intensity proton sources (TRIPS [L. Celona, G. Ciavola, S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1423 (2004)], PM-TRIPS [G. Ciavola, L. Celona, S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1453 (2004)]) as well as ECR ion sources for the production of highly charged high-intensity heavy ion beams are developed (SERSE [S. Gammino, G. Ciavola, L. Celona et al ., Rev. Sci. Instrum. 72(11) 4090 (2001), and references therein], GyroSERSE [S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1637 (2004)], MS-ECRIS [G. Ciavola et al ., (2005), 11th Int. Conf. on Ion Sources, Caen, (in press)]). In this paper, we present ion-optical design studies of various LEBT systems for ion-sources devoted to the production of intense beams. Calculations were performed using the computer codes GIOS [H. Wollnik, J. Brezina and M. Berz, NIM A 258 (1987)], GICO [M. Berz, H.C. Hoffmann, and H. Wollnik, NIM A 258 (1987)], and TRANSPORT [K.L. Brown, F. Rothacker and D.C. Carey, SLAC-R-95-462, Fermilab-Pub-95/069, UC-414 (1995)]. Simulations take into account the expected phase space growth of the beam emittance due to space-charge effects and image aberrations introduced by the magnetic elements.

  7. Ion-Ion Reactions with Fixed-Charge Modified Proteins to Produce Ions in a Single, Very High Charge State

    PubMed Central

    Frey, Brian L.; Krusemark, Casey J.; Ledvina, Aaron R.; Coon, Joshua J.; Belshaw, Peter J.

    2008-01-01

    Electrospray ionization (ESI) of denatured proteins produces a mass spectrum with a broad distribution of multiply charged ions. Attaching fixed positive charges, specifically quaternary ammonium groups, to proteins at their carboxylic acid groups generates substantially higher charge states compared to the corresponding unmodified proteins in positive-mode ESI. Ion-ion reactions of these modified proteins with reagent anions leads to charge reduction by proton transfer. These proton transfer reactions cannot remove charge from the quaternary ammonium groups, which do not have a proton to transfer to the anion. Thus, one might expect charge reduction to stop at a single charge state equal to the number of fixed charges on the modified protein. However, ion-ion reactions yield charge states lower than this number of fixed charges due to anion attachment (adduction) to the proteins. Charge reduction via ion-molecule reactions involving gas-phase bases also give adducts on the modified protein ions in low charge states. Such adducts are avoided by keeping the ions in charge states well above the number of fixed charges. In the present work protein ions were selectively “parked” within an ion trap mass spectrometer in a high charge state by mild radiofrequency excitation that dramatically slows their ion-ion reaction rate—a technique termed “ion parking”. The combination of ion parking with the fixed-charge modified proteins permits generation of a large population of ions in a single, very high charge state. PMID:19802328

  8. Ion-Ion Reactions with Fixed-Charge Modified Proteins to Produce Ions in a Single, Very High Charge State.

    PubMed

    Frey, Brian L; Krusemark, Casey J; Ledvina, Aaron R; Coon, Joshua J; Belshaw, Peter J; Smith, Lloyd M

    2008-10-01

    Electrospray ionization (ESI) of denatured proteins produces a mass spectrum with a broad distribution of multiply charged ions. Attaching fixed positive charges, specifically quaternary ammonium groups, to proteins at their carboxylic acid groups generates substantially higher charge states compared to the corresponding unmodified proteins in positive-mode ESI. Ion-ion reactions of these modified proteins with reagent anions leads to charge reduction by proton transfer. These proton transfer reactions cannot remove charge from the quaternary ammonium groups, which do not have a proton to transfer to the anion. Thus, one might expect charge reduction to stop at a single charge state equal to the number of fixed charges on the modified protein. However, ion-ion reactions yield charge states lower than this number of fixed charges due to anion attachment (adduction) to the proteins. Charge reduction via ion-molecule reactions involving gas-phase bases also give adducts on the modified protein ions in low charge states. Such adducts are avoided by keeping the ions in charge states well above the number of fixed charges. In the present work protein ions were selectively "parked" within an ion trap mass spectrometer in a high charge state by mild radiofrequency excitation that dramatically slows their ion-ion reaction rate-a technique termed "ion parking". The combination of ion parking with the fixed-charge modified proteins permits generation of a large population of ions in a single, very high charge state.

  9. HIGH ENERGY PARTICLE ACCELERATOR

    DOEpatents

    Courant, E.D.; Livingston, M.S.; Snyder, H.S.

    1959-04-14

    An improved apparatus is presented for focusing charged particles in an accelerator. In essence, the invention includes means for establishing a magnetic field in discrete sectors along the path of moving charged particles, the magnetic field varying in each sector in accordance with the relation. B = B/ sub 0/ STAln (r-r/sub 0/)/r/sub 0/!, where B/sub 0/ is the value of the magnetic field at the equilibrium orbit of radius r/sub 0/ of the path of the particles, B equals the magnetic field at the radius r of the chamber and n equals the magnetic field gradient index, the polarity of n being abruptly reversed a plurality of times as the particles travel along their arcuate path. With this arrangement, the particles are alternately converged towards the axis of their equillbrium orbit and diverged therefrom in successive sectors with a resultant focusing effect.

  10. On the Energy and Momentum of an Accelerated Charged Particle and the Sources of Radiation

    ERIC Educational Resources Information Center

    Eriksen, Erik; Gron, Oyvind

    2007-01-01

    We give a systematic development of the theory of the radiation field of an accelerated charged particle with reference to an inertial reference frame in flat spacetime. Special emphasis is given to the role of the Schott energy and momentum in the energy-momentum balance of the charge and its field. It is shown that the energy of the radiation…

  11. On the Energy and Momentum of an Accelerated Charged Particle and the Sources of Radiation

    ERIC Educational Resources Information Center

    Eriksen, Erik; Gron, Oyvind

    2007-01-01

    We give a systematic development of the theory of the radiation field of an accelerated charged particle with reference to an inertial reference frame in flat spacetime. Special emphasis is given to the role of the Schott energy and momentum in the energy-momentum balance of the charge and its field. It is shown that the energy of the radiation…

  12. 18 CFR 11.15 - Procedures for determining charges by energy gains investigation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Procedures for determining charges by energy gains investigation. 11.15 Section 11.15 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL CHARGES UNDER PART I OF THE...

  13. 18 CFR 11.14 - Procedures for establishing charges without an energy gains investigation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Procedures for establishing charges without an energy gains investigation. 11.14 Section 11.14 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL CHARGES UNDER PART I OF...

  14. 18 CFR 11.11 - Energy gains method of determining headwater benefits charges.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Energy gains method of determining headwater benefits charges. 11.11 Section 11.11 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL CHARGES UNDER PART I OF THE FEDERAL...

  15. A theoretical description of charge reorganization energies in molecular organic P-type semiconductors.

    PubMed

    Brückner, Charlotte; Engels, Bernd

    2016-06-05

    Charge transport properties of materials composed of small organic molecules are important for numerous optoelectronic applications. A material's ability to transport charges is considerably influenced by the charge reorganization energies of the composing molecules. Hence, predictions about charge-transport properties of organic materials deserve reliable statements about these charge reorganization energies. However, using density functional theory which is mostly used for the predictions, the computed reorganization energies depend strongly on the chosen functional. To gain insight, a benchmark of various density functionals for the accurate calculation of charge reorganization energies is presented. A correlation between the charge reorganization energies and the ionization potentials is found which suggests applying IP-tuning to obtain reliable values for charge reorganization energies. According to benchmark investigations with IP-EOM-CCSD single-point calculations, the tuned functionals provide indeed more reliable charge reorganization energies. Among the standard functionals, ωB97X-D and SOGGA11X yield accurate charge reorganization energies in comparison with IP-EOM-CCSD values. © 2016 Wiley Periodicals, Inc.

  16. High Energy Efficiency Air Conditioning

    SciTech Connect

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  17. Fragmentation of biomolecules using slow highly charged ions

    NASA Astrophysics Data System (ADS)

    Ruehlicke, Christiane; Schneider, Dieter; DuBois, Robert; Balhorn, Rodney

    1997-02-01

    We present first results of biomolecular fragmentation studies with slow highly charged ions (HCI). A thin layer of the tripeptide RVA was deposited on gold targets and irradiated with slow (few 100 keV) ions, e.g. Xe50+ and Xe15+, extracted from the LLNL EBIT (electron beam ion trap). The secondary ions released upon ion impact were mass analyzed via Time-Of-Flight Secondary-Ion-Mass-Spectrometry (TOF-SIMS). The results show a strong dependence of the positive and negative ion yields on the charge state of the incident ion. We also found that incident ions with high charge states cause the ejection of fragments with a wide mass range as well as the intact molecule (345 amu). The underlying mechanisms are not yet understood but electron depletion of the target due to the high incident charge is likely to cause a variety of fragmentation processes.

  18. MASS SEPARATION OF HIGH ENERGY PARTICLES

    DOEpatents

    Marshall, L.

    1962-09-25

    An apparatus and method are described for separating charged, high energy particles of equal momentum forming a beam where the particles differ slightly in masses. Magnetic lenses are utilized to focus the beam and maintain that condition while electrostatic fields located between magnetic lenses are utilized to cause transverse separation of the particles into two beams separated by a sufficient amount to permit an aperture to block one beam. (AEC)

  19. Capture and isolation of highly charged ions in a unitary Penning trap

    NASA Astrophysics Data System (ADS)

    Brewer, Samuel M.; Guise, Nicholas D.; Tan, Joseph N.

    2013-12-01

    We recently used a compact Penning trap to capture and isolate highly charged ions extracted from an electron beam ion trap (EBIT) at the National Institute of Standards and Technology. Isolated charge states of highly stripped argon and neon ions with total charge Q≥10, extracted at energies of up to 4×103Q eV, are captured in a trap with well depths of ≈(4-12)Q eV. Here we discuss in detail the process to optimize velocity tuning, capture, and storage of highly charged ions in a unitary Penning trap designed to provide easy radial access for atomic or laser beams in charge exchange or spectroscopic experiments, such as those of interest for proposed studies of one-electron ions in Rydberg states or optical transitions of metastable states in multiply charged ions. Under near-optimal conditions, ions captured and isolated in such rare-earth Penning traps can be characterized by an initial energy distribution that is ≈60 times narrower than typically found in an EBIT. This reduction in thermal energy is obtained passively, without the application of any active cooling scheme in the ion-capture trap.

  20. High energy physics

    SciTech Connect

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    This proposal is for the continuation of the High Energy Physics Program at the University of California, Riverside. In 1990, we will concentrate on analysis of LEP data from the OPAL detector. We expect to record 10{sup 5} Z`s by the end of 1989 and 10{sup 6} in 1990. This data will be used to measure the number of quark-lepton families in the universe. In the second half of 1990 we will also be occupied with the installation of the D-Zero detector in the Tevatron Collider and the preparation of software for the 1991 run. A new initiative made possible by generous university support is a laboratory for detector development at UCR. The focus will be on silicon strip tracking detectors both for the D-Zero upgrade and for SSC physics. The theory program will pursue further various mass-generating radiative mechanisms for understanding small quark and lepton masses as well as some novel phenomenological aspects of supersymmetry.

  1. Highly charged ion based time of flight emission microscope

    DOEpatents

    Barnes, Alan V.; Schenkel, Thomas; Hamza, Alex V.; Schneider, Dieter H.; Doyle, Barney

    2001-01-01

    A highly charged ion based time-of-flight emission microscope has been designed, which improves the surface sensitivity of static SIMS measurements because of the higher ionization probability of highly charged ions. Slow, highly charged ions are produced in an electron beam ion trap and are directed to the sample surface. The sputtered secondary ions and electrons pass through a specially designed objective lens to a microchannel plate detector. This new instrument permits high surface sensitivity (10.sup.10 atoms/cm.sup.2), high spatial resolution (100 nm), and chemical structural information due to the high molecular ion yields. The high secondary ion yield permits coincidence counting, which can be used to enhance determination of chemical and topological structure and to correlate specific molecular species.

  2. High Energy Density Capacitors

    SciTech Connect

    2010-07-01

    BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of today’s best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.

  3. Special issue on the spectroscopy of highly-charged ions

    NASA Astrophysics Data System (ADS)

    Nakamura, Nobuyuki; Ralchenko, Yuri; Stöhlker, Thomas

    2014-07-01

    Journal of Physics B: Atomic, Molecular and Optical Physics is delighted to announce a forthcoming special issue on the spectroscopy of highly-charged ions, to appear in the early summer of 2015, and invites you to submit a paper. From fusion to astrophysics to EUV lithography, highly-charged ions (HCI) are used to diagnose plasma properties, create new powerful sources of light and even verify the most fundamental theories. Since the mere creation of such multiply-stripped atoms requires extreme temperature or energies, their radiation is frequently the only physical data available to researchers. Even so, the HCI spectra provide a variety of rich and detailed information on ion properties and environment conditions. Over the last couple of decades, spectroscopy of HCI has been given a strong impetus through the development of both compact (e.g. electron beam ion traps) and large-scale (e.g. tokamaks, stellarators, storage rings) machines capable of efficiently producing atoms that are ionized fifty, sixty, or even ninety times. This, in turn, triggered the development of new experimental and theoretical techniques to measure and analyze HCI spectra and to use this radiation for plasma diagnostics. The purpose of this special issue will be to provide an extensive account of the state of the art in this thriving area of atomic physics. The covered topics, in particular, will include (but not be limited to): New experimental methods for the production and recording of HCI spectra Identification of HCI spectra Measurement of transition lifetimes Relativistic, QED and nuclear effects in HCI spectra Polarization and angular distribution of radiation Effects of external fields on HCI spectra Tests of fundamental theories Plasma spectroscopy and spectra modeling with HCI Please submit your article by 1 December 2014 using our website http://mc04.manuscriptcentral.com/jphysb-iop. Submissions received after this date will be considered for the journal, but may not be

  4. Defect mediated desorption of the KBr(001) surface induced by single highly charged ion impact.

    PubMed

    Heller, R; Facsko, S; Wilhelm, R A; Möller, W

    2008-08-29

    The individual impacts of slow (300 eV/amu) highly charged Xe ions induce nanometer sized pitlike structures on the KBr (001) surface. The volume of these structures shows a strong dependence on the ions potential energy. Total potential sputter yields from atomically flat (001) terraces are determined by imaging single ion impact sites. The dependence of the sputter yield on the ions initial charge state combined with structure formation at low and high-fluence irradiations indicates that agglomeration of defects into complex centers plays a major role in the desorption process induced by the potential energy.

  5. Spectroscopic Measurements of Photo Pumped Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    Graf, A.; Beiersdorfer, P.; Brown, G. V.; Crespo Lopez Urrutia, J. R.

    2011-11-01

    We report on recent x-ray laser spectroscopic measurements of line emission from photo-excited highly charged ions. The ion cloud of the HI-LIGHT portable electron beam ion trap (EBIT) was used as a target for the Linac Coherent Light Source (LCLS) free electron laser in the Soft X-Ray (SXR) end station. The SXR monochromator allowed a precision investigation of transition energies and oscillator strength ratios of emission lines from Na-like Fe^15+ and Ne-like Fe^16+ important for astrophysical diagnostics. We have demonstrated a technique for calibration of the SXR monochromator photon energy scale using photo-excited resonant fluorescence spectra of very well known lines from H-like and He-like F and O. Numerous instruments were used to diagnose the fluorescent and autoionizing decay channels of the trapped plasma including an Iglet-X broadband germanium detector, a variable line spacing reflection grating soft x-ray/VUV spectrometer and a Wien filter based ion extraction system. An overview of the experiment as well as preliminary results will be presented.

  6. Design study of low-energy beam transport for multi-charge beams at RAON

    NASA Astrophysics Data System (ADS)

    Bahng, Jungbae; Qiang, Ji; Kim, Eun-San

    2015-12-01

    The Rare isotope Accelerator Of Newness (RAON) at the Rare Isotope Science Project (RISP) is being designed to simultaneously accelerate beams with multiple charge states. It includes a driver superconducting (SC) linac for producing 200 MeV/u and 400 kW continuous wave (CW) heavy ion beams from protons to uranium. The RAON consists of a few electron cyclotron resonance ion sources, a low-energy beam transport (LEBT) system, a CW 81.25 MHz, 500 keV/u radio frequency quadrupole (RFQ) accelerator, a medium-energy beam transport system, the SC linac, and a charge-stripper system. The LEBT system for the RISP accelerator facility consists of a high-voltage platform, two 90° dipoles, a multi-harmonic buncher (MHB), solenoids, electrostatic quadrupoles, a velocity equalizer, and a diagnostic system. The ECR ion sources are located on a high-voltage platform to reach an initial beam energy of 10 keV/u. After extraction, the ion beam is transported through the LEBT system to the RFQ accelerator. The generated charge states are selected by an achromatic bending system and then bunched by the MHB in the LEBT system. The MHB is used to achieve a small longitudinal emittance in the RFQ by generating a sawtooth wave with three harmonics. In this paper, we present the results and issues of the beam dynamics of the LEBT system.

  7. Measurement of C-12, O-16, and Fe-56 charge changing cross sections in helium at high energy, comparison with cross sections in hydrogen, and application to cosmic-ray propagation

    NASA Technical Reports Server (NTRS)

    Ferrando, P.; Webber, W. R.; Goret, P.; Kish, J. C.; Schrier, D. A.; Soutoul, A.; Testard, O.

    1988-01-01

    We present measurements of the spallation cross sections of carbon, oxygen, and iron in helium and hydrogen, at beam energies from 540 to 1600 MeV/nucleon, performed by exposing liquid helium, CH2, and C targets. Charge changing cross sections are reported for fragments down to Ne for Fe + alpha and Fe + p reactions, and down to B for O + alpha, O + p, C + alpha, and C + p reactions. Alpha- to p-induced cross section ratios (sigma(sub alpha)/sigma(sub p)) are determined at the same energy per nucleon. From these measurements an empirical formula for the (sigma(sub alpha)/sigma(sub p)) ratios is derived and is found in good agreement with available isotopic cross sections data from radioactivity and radiochemical techniques. These results are applied to the propagation of heavy charged cosmic rays in an interstellar medium with a helium to hydrogen abundance ratio of 0.10. It is shown that the Sc-Mn/Fe ratio prediction is decreased relative to the B/C ratio when compared to propagation calculations in a pure hydrogen interstellar medium.

  8. Gridless retarding potential analyzer for use in very-low-energy charged particle detection

    NASA Technical Reports Server (NTRS)

    Shyn, T. W.; Sharp, W. E.; Hays, P. B.

    1976-01-01

    The theory of the hyperbolic retarding potential analyzer in the electrostatic mode is developed in detail and verified in the laboratory. A monoenergetic electron beam is used for the laboratory investigation. The analyzer (acronym HARP) has advantages over other conventional electrostatic analyzers; among them are less contact potential influence and high throughput because of the symmetry shape of the analyzer. The most useful application of the HARP is in detecting low-energy charged particles. A sample of low-energy particle data obtained in the earth's ionosphere is given.

  9. Gridless retarding potential analyzer for use in very-low-energy charged particle detection

    NASA Technical Reports Server (NTRS)

    Shyn, T. W.; Sharp, W. E.; Hays, P. B.

    1976-01-01

    The theory of the hyperbolic retarding potential analyzer in the electrostatic mode is developed in detail and verified in the laboratory. A monoenergetic electron beam is used for the laboratory investigation. The analyzer (acronym HARP) has advantages over other conventional electrostatic analyzers; among them are less contact potential influence and high throughput because of the symmetry shape of the analyzer. The most useful application of the HARP is in detecting low-energy charged particles. A sample of low-energy particle data obtained in the earth's ionosphere is given.

  10. Melatonin Supplementation Ameliorates Energy Charge and Oxidative Stress Induced by Acute Exercise in Rat Heart Tissue.

    PubMed

    Cimen, Behzat; Uz, Ali; Cetin, Ihsan; Cimen, Leyla; Cetin, Aysun

    2017-09-01

    Regular physical exercises may help people to be more resistant to everyday problems; however, how acute and intense exercises affect the heart tissues functioning with maximum capacity and how melatonin changes the effect of acute and intense exercises are still not obvious. We aimed to comprehend whether melatonin intravenous injection supports the oxidative/antioxidative conditions and energy charge in heart tissues of rats exposed to acute swimming exercise. Thirty Wistar-albino male rats were categorized into 3 groups with equal number of subjects. Control group performed no application, and acute intensive swimming exercise group were subjected to acute intensive swimming exercise for 30 minutes, and melatonin group were applied 25 mg/kg single dose melatonin administration prior to 30 minutes acute intensive swimming exercise. The levels of malondialdehyde (MDA), and superoxide dismutase, catalase and glutathione peroxidase activities were measured by spectrophotometric method; and the levels of 3-nitrotyrosine (3-NT) and energy charge were determined by a high performance liquid chromatography. Tissue MDA and 3-NT levels of the acute intensive exercise group were found to be higher than the control group. It was also found that the melatonin administration increased the energy charge and antioxidant activities, while decreased tissue MDA and 3-NT levels in heart tissues. Our results provide evidence for melatonin that can exert potent protective effects on oxidative stress and energy charge for heart tissues in acute swimming exercise. These findings suggest that the direct beneficial effects of melatonin could be potentially applied on prevention of oxidative stress and energy deficit.

  11. Charging studies of heat packs using parabolic dish solar energy concentrator for extreme conditions

    NASA Astrophysics Data System (ADS)

    Kumar, Rohitash; Vyas, Sumita; Kumar, Ravindra; Dixit, Ambesh

    2016-05-01

    Parabolic dish solar energy concentrator with aperture diameter 1.4 m and focal length 0.32 m is designed and fabricated to charge and store solar thermal energy in phase change material (PCM) based heat packs. Overall heat loss factor, heat duty, over all thermal efficiency, and optical efficiency factor are calculated using water sensible heating and cooling tests and values are 16.11 W m-2 K-1, 546.9 W, 49.2% and 0.62 respectively. The performance characteristic curve is generated using these parameters to understand its performance at different ambient temperatures and solar insolation. The fabricated concentrator has been used to charge 16 PCM heat packs with 150 g PCM in each heat pack, which took about 35 minutes for complete charging of PCM heat packs at average ambient temperature 39 °C and solar radiation flux density 715 W m-2 K-1. The charged heat packs are subjected to discharge studies at average ambient temperature about - 7 °C and observed heat release in the temperature range of 48 to 40 °C for 50 minutes, suggesting its applications for comfort and therapeutic applications in high altitude areas.

  12. A high-charge-state plasma neutralizer for an energetic H/sup -/ beam

    SciTech Connect

    Schlachter, A.S.; Leung, K.N.; Stearns, J.W.; Olson, R.E.

    1986-10-01

    A high-charge-state plasma neutralizer for a beam of energetic H/sup -/ ions offers the potential of high optimum neutralization efficiency (approx.85%) relative to a gas target (50 to 60%), and considerably reduced target thickness. We have calculated cross sections for charge-changing interactions of fast H/sup -/ and H/sup 0/ in collision with highly charged ions using a semiclassical model for H/sup -/, and the Classical-Trajectory Monte Carlo method plus Born calculations, to obtain correct asymptotic cross sections in the high-energy limit. Charge-state fractions as a function of plasma line density, and f/sub 0//sup max/, the maximum H/sup 0/ fraction, are calculated using these cross sections; we find that f/sub 0//sup mx/ approx. = 85% for ion charge states in the range 1+ to 10+, and that target ion line density for f/sub 0//sup max/ decreases approximately as the square of the plasma ion charge state. The maximum neutral fraction is also high for a partially ionized plasma. We have built a small multicusp plasma generator to use a a plasma neutralizer; preliminary results show that the plasma contains argon ions with an average charge state between 2+ and 3+ for a steady-state discharge.

  13. Charge composition and energy spectral of cosmic ray primary particles for energies higher than 1 TeV

    NASA Technical Reports Server (NTRS)

    Vernov, S. N.; Ivanenko, I. P.; Grigorov, N. L.; Basina, Y. V.; Vakulov, P. V.; Vasilyev, Y. Y.; Golinskaya, R. M.; Grigoryeva, L. B.; Zhuravlev, D. A.; Zatsepin, V. I.

    1985-01-01

    Onboard the Cosmos-I543 satellite an experiment was performed to investigate the charge composition and primary cosmic ray energy spectrum for energies higher than I TeV. Preliminary experimental data are reported.

  14. Anomalous mobility of highly charged particles in pores

    DOE PAGES

    Qiu, Yinghua; Yang, Crystal; Hinkle, Preston; ...

    2015-07-16

    Single micropores in resistive-pulse technique were used to understand a complex dependence of particle mobility on its surface charge density. We show that the mobility of highly charged carboxylated particles decreases with the increase of the solution pH due to an interplay of three effects: (i) ion condensation, (ii) formation of an asymmetric electrical double layer around the particle, and (iii) electroosmotic flow induced by the charges on the pore walls and the particle surfaces. The results are important for applying resistive-pulse technique to determine surface charge density and zeta potential of the particles. As a result, the experiments alsomore » indicate the presence of condensed ions, which contribute to the measured current if a sufficiently high electric field is applied across the pore.« less

  15. Anomalous mobility of highly charged particles in pores

    SciTech Connect

    Qiu, Yinghua; Yang, Crystal; Hinkle, Preston; Vlassiouk, Ivan V.; Siwy, Zuzanna S.

    2015-07-16

    Single micropores in resistive-pulse technique were used to understand a complex dependence of particle mobility on its surface charge density. We show that the mobility of highly charged carboxylated particles decreases with the increase of the solution pH due to an interplay of three effects: (i) ion condensation, (ii) formation of an asymmetric electrical double layer around the particle, and (iii) electroosmotic flow induced by the charges on the pore walls and the particle surfaces. The results are important for applying resistive-pulse technique to determine surface charge density and zeta potential of the particles. As a result, the experiments also indicate the presence of condensed ions, which contribute to the measured current if a sufficiently high electric field is applied across the pore.

  16. Oscillatory behavior of charge transfer cross sections as a function of the charge of projectiles in low-energy collisions

    NASA Astrophysics Data System (ADS)

    Ryufuku, Hiroshi; Sasaki, Ken; Watanabe, Tsutomu

    1980-03-01

    To examine experimental cross sections for charge transfer in collisions of partially stripped heavy ions with atomic hydrogen at low collision energies, unitarized-distorted-wave-approximation calculations are performed using a model in which the projectiles are replaced by bare nuclei of a given effective charge. The results show the presence of a strong oscillatory dependence of the cross sections on effective charge due to the crossings of diabatic potential curves in the low-energy region below 10 keV/amu. The considerable differences in the measured cross sections for impacts of ions of different elements (B, C, N, and O) observed by Bayfield et al. and Crandall et al. at low impact energies are attributed to this oscillatory behavior.

  17. Charged Polymer Membranes for Environmental/Energy Applications.

    PubMed

    Kamcev, Jovan; Freeman, Benny D

    2016-06-07

    Ion exchange membranes are used in various membrane-based processes (e.g., electrodialysis, fuel cells). Charged solute transport is largely governed by the charged groups on the polymer backbone. In this review, fundamental relationships describing salt permeability and ionic conductivity, as well as water permeability, in charged polymers are developed within the framework of the Nernst-Planck and solution-diffusion models. The influence of fixed charge groups and polymer structure on water sorption and diffusion is discussed. Current understanding of ion partitioning in charged polymers, focusing on the use of thermodynamic models (i.e., Donnan theory) to describe such phenomena, is summarized. Ion diffusivity data from the literature are interpreted using a model developed by Mackie and Meares to assess relative and absolute effects of the polymer and fixed charge groups on ion diffusivity. Furthermore, membrane requirements for several important technologies are listed. Knowledge gaps and opportunities for fundamental research are also discussed.

  18. Multiplicities in high energy interactions

    SciTech Connect

    Derrick, M.

    1984-01-01

    Charged particle multiplicities in hadronic collision have been measured for all energies up to ..sqrt..s = 540 GeV in the center of mass. Similar measurements in e/sup +/e/sup -/ annihilation cover the much smaller range - up to ..sqrt..s = 40 GeV. Data are also available from deep inelastic neutrino scattering up to ..sqrt..s approx. 10 GeV. The experiments measure the mean charged multiplicity , the rapidity density at y = O, and the distributions in prong number. The mean number of photons associated with the events can be used to measure the ..pi../sup 0/ and eta/sup 0/ multiplicities. Some information is also available on the charged pion, kaon, and nucleon fractions as well as the K/sup 0/ and ..lambda../sup 0/ rates and for the higher energy data, the identically equal fraction. We review this data and consider the implications of extrapolations to SSC energies. 13 references.

  19. The spectral lines of highly charged gold ions

    NASA Astrophysics Data System (ADS)

    Hu, Feng; Yang, Jiamin; Zhang, Jiyan; Jiang, Gang

    2015-02-01

    Extreme ultraviolet spectra of highly charged gold were produced with an electron beam ion trap at the University of Electro-Communications, Tokyo. The X-ray spectra (3240-3360 eV) of Au with well-defined maximum charge states ranging from Cu- to Se-like ions were recorded. Guided by configuration interaction calculations, the strongest 3d-5f transitions have been well defined.

  20. Thermal response of a series- and parallel-connected solar energy storage to multi-day charge sequences

    SciTech Connect

    Cruickshank, Cynthia A.; Harrison, Stephen J.

    2011-01-15

    The thermal response of a multi-tank thermal storage was studied under variable charge conditions. Tests were conducted on an experimental apparatus that simulated the thermal charging of the storage system by a solar collector over predetermined (prescribed) daylong periods. The storage was assembled from three standard 270 L hot-water storage tanks each charged through coupled, side-arm, natural convection heat exchangers which were connected in either a series- or parallel-flow configuration. Both energy storage rates and tank temperature profiles were experimentally measured during charge periods representative of two consecutive clear days or combinations of a clear and overcast day. During this time, no draw-offs were conducted. Of particular interest was the effect of rising and falling charge-loop temperatures and collector-loop flow rate on storage tank stratification levels. Results of this study show that the series-connected thermal storage reached high levels of temperature stratification in the storage tanks during periods of rising charge temperatures and also limited destratification during periods of falling charge temperature. This feature is a consequence of the series-connected configuration that allowed sequential stratification to occur in the component tanks and energy to be distributed according to temperature level. This effect was not observed in the parallel charge configuration. A further aspect of the study investigated the effect of increasing charge-loop flow rate on the temperature distribution within the series-connected storage and showed that, at high flow rates, the temperature distributions were found to be similar to those obtained during parallel charging. A disadvantage of both the high-flow series-connected and parallel-connected multi-tank storage is that falling charge-loop temperatures, which normally occur in the afternoon, tend to mix and destratify the storage tanks. (author)

  1. Optical transitions in highly charged californium ions with high sensitivity to variation of the fine-structure constant.

    PubMed

    Berengut, J C; Dzuba, V A; Flambaum, V V; Ong, A

    2012-08-17

    We study electronic transitions in highly charged Cf ions that are within the frequency range of optical lasers and have very high sensitivity to potential variations in the fine-structure constant, α. The transitions are in the optical range despite the large ionization energies because they lie on the level crossing of the 5f and 6p valence orbitals in the thallium isoelectronic sequence. Cf(16+) is a particularly rich ion, having several narrow lines with properties that minimize certain systematic effects. Cf(16+) has very large nuclear charge and large ionization energy, resulting in the largest α sensitivity seen in atomic systems. The lines include positive and negative shifters.

  2. Optical Transitions in Highly Charged Californium Ions with High Sensitivity to Variation of the Fine-Structure Constant

    NASA Astrophysics Data System (ADS)

    Berengut, J. C.; Dzuba, V. A.; Flambaum, V. V.; Ong, A.

    2012-08-01

    We study electronic transitions in highly charged Cf ions that are within the frequency range of optical lasers and have very high sensitivity to potential variations in the fine-structure constant, α. The transitions are in the optical range despite the large ionization energies because they lie on the level crossing of the 5f and 6p valence orbitals in the thallium isoelectronic sequence. Cf16+ is a particularly rich ion, having several narrow lines with properties that minimize certain systematic effects. Cf16+ has very large nuclear charge and large ionization energy, resulting in the largest α sensitivity seen in atomic systems. The lines include positive and negative shifters.

  3. Effect of positive pulse charge waveforms on the energy efficiency of lead-acid traction cells

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.

    1981-01-01

    The effects of four different charge methods on the energy conversion efficiency of 300 ampere hour lead acid traction cells were investigated. Three of the methods were positive pulse charge waveforms; the fourth, a constant current method, was used as a baseline of comparison. The positive pulse charge waveforms were: 120 Hz full wave rectified sinusoidal; 120 Hz silicon controlled rectified; and 1 kHz square wave. The constant current charger was set at the time average pulse current of each pulse waveform, which was 150 amps. The energy efficiency does not include charger losses. The lead acid traction cells were charged to 70 percent of rated ampere hour capacity in each case. The results of charging the cells using the three different pulse charge waveforms indicate there was no significant difference in energy conversion efficiency when compared to constant current charging at the time average pulse current value.

  4. High Energy Colliders

    NASA Astrophysics Data System (ADS)

    Palmer, R. B.; Gallardo, J. C.

    INTRODUCTION PHYSICS CONSIDERATIONS GENERAL REQUIRED LUMINOSITY FOR LEPTON COLLIDERS THE EFFECTIVE PHYSICS ENERGIES OF HADRON COLLIDERS HADRON-HADRON MACHINES LUMINOSITY SIZE AND COST CIRCULAR e^{+}e^- MACHINES LUMINOSITY SIZE AND COST e^{+}e^- LINEAR COLLIDERS LUMINOSITY CONVENTIONAL RF SUPERCONDUCTING RF AT HIGHER ENERGIES γ - γ COLLIDERS μ ^{+} μ^- COLLIDERS ADVANTAGES AND DISADVANTAGES DESIGN STUDIES STATUS AND REQUIRED R AND D COMPARISION OF MACHINES CONCLUSIONS DISCUSSION

  5. High to ultra-high power electrical energy storage.

    PubMed

    Sherrill, Stefanie A; Banerjee, Parag; Rubloff, Gary W; Lee, Sang Bok

    2011-12-14

    High power electrical energy storage systems are becoming critical devices for advanced energy storage technology. This is true in part due to their high rate capabilities and moderate energy densities which allow them to capture power efficiently from evanescent, renewable energy sources. High power systems include both electrochemical capacitors and electrostatic capacitors. These devices have fast charging and discharging rates, supplying energy within seconds or less. Recent research has focused on increasing power and energy density of the devices using advanced materials and novel architectural design. An increase in understanding of structure-property relationships in nanomaterials and interfaces and the ability to control nanostructures precisely has led to an immense improvement in the performance characteristics of these devices. In this review, we discuss the recent advances for both electrochemical and electrostatic capacitors as high power electrical energy storage systems, and propose directions and challenges for the future. We asses the opportunities in nanostructure-based high power electrical energy storage devices and include electrochemical and electrostatic capacitors for their potential to open the door to a new regime of power energy.

  6. Diffuse fluxes of cosmic high energy neutrinos

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    Production spectra of high-energy neutrinos from galactic cosmic ray interactions with interstellar gas and extragalactic ultrahigh energy cosmic-ray interactions with microwave black-body photons are presented and discussed. These production processes involve the decay of charged pions and are thus related to the production of cosmic gamma-rays from the decay of neutral pions. Estimates of the neutrino fluxes from various diffuse cosmic sources are then made and the reasons fro significant differences with previous estimates are discussed. Predicted event rates for a DUMAND type detection system are significantly lower than early estimates indicated.

  7. Measurement of charge exchange cross sections for highly charged xenon and thorium ions with molecular hydrogen in a Penning Ion Trap

    SciTech Connect

    Weinberg, G.M.

    1995-12-01

    Highly charged xenon (35+ to 46+) and thorium (72+ to 79+) ions were produced in an Electron Beam Ion Trap (EBIT). The ions were extracted from EBIT in a short pulse. Ions of one charge state were selected using an electromagnet. The ions were recaptured at low energy in a cryogenic Penning trap (RETRAP). As the ions captured electrons from molecular hydrogen, populations of the various charge states were obtained by measuring the image currents induced by the ions on the electrodes of the trap. Data on the number of ions in each charge state vs. time were compared to theoretical rate equations in order to determine the average charge exchange rates. These rates were compared to charge exchange rates of an ion with a known charge exchange cross section (Ar{sup 11+}) measured in a similar manner in order to determine the average charge exchange cross sections for the highly charged ions. The energy of interaction between the highly charged ions and hydrogen was estimated to be 4 eV in the center of mass frame. The mean charge exchange cross sections were 9 {times} 10{sup {minus}14} cm{sup 2} for Xe{sup 43+} to Xe{sup 46+} and 2 {times} 10{sup {minus}13} cm{sup 2} for Th{sup 73+} to Th{sup 79+}. Double capture was approximately 20--25% of the total for both xenon and thorium. A fit indicated that the cross sections were approximately proportional to q. This is consistent with a linear dependence of cross section on q within the measurement uncertainties.

  8. Calibration system for satellite and rocket-borne ion mass spectrometers in the energy range from 5 eV/charge to 100 keV/charge

    NASA Astrophysics Data System (ADS)

    Ghielmetti, A. G.; Balsiger, H.; Baenninger, R.; Eberhardt, P.; Geiss, J.; Young, D. T.

    1983-04-01

    A system has been designed for testing and calibrating satellite-borne ion mass spectrometers which provides a large-area (250 sq cm), highly parallel, and spatially uniform beam of ions over the range from 5 eV/charge to 100 keV/charge. The system features variable energy spread from 1 eV/charge to 3 keV/charge and multiple charge state ions such as He(2+) or Xe(9+). The system incorporates a high-efficiency electron bombardment ion source capable of delivering about 10 to the -8th A, a 90-deg crossed electric and magnetic field mass spectrometer designed to produce either a mixed or mass-selected beam, and a beam expansion system which produces the uniform large-area beam. The system includes automatic beam monitoring and control via a feedback loop, as well as provisions for semiautomatic control of angle and energy analysis. Calibration results for a GEOS satellite are presented.

  9. Multi-frequency inversion-charge pumping for charge separation and mobility analysis in high-k/InGaAs metal-oxide-semiconductor field-effect transistors

    SciTech Connect

    Djara, V.; Cherkaoui, K.; Negara, M. A.; Hurley, P. K.

    2015-11-28

    An alternative multi-frequency inversion-charge pumping (MFICP) technique was developed to directly separate the inversion charge density (N{sub inv}) from the trapped charge density in high-k/InGaAs metal-oxide-semiconductor field-effect transistors (MOSFETs). This approach relies on the fitting of the frequency response of border traps, obtained from inversion-charge pumping measurements performed over a wide range of frequencies at room temperature on a single MOSFET, using a modified charge trapping model. The obtained model yielded the capture time constant and density of border traps located at energy levels aligned with the InGaAs conduction band. Moreover, the combination of MFICP and pulsed I{sub d}-V{sub g} measurements enabled an accurate effective mobility vs N{sub inv} extraction and analysis. The data obtained using the MFICP approach are consistent with the most recent reports on high-k/InGaAs.

  10. Charged particle beam scanning using deformed high gradient insulator

    SciTech Connect

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  11. Low Energy Charged Particle Measurement by Japanese Lunar Orbiter SELENE

    NASA Astrophysics Data System (ADS)

    Saito, Y.; Yokota, S.; Asamura, K.; Mukai, T.

    2004-12-01

    SELENE (SELenological and Engineering satellite) is a Japanese lunar orbiter that will be launched in 2006. The main purpose of this satellite is to study the origin and evolution of the moon by means of global mapping of element abundances, mineralogical composition, and surface geographical mapping from 100km altitude. PACE (Plasma energy Angle and Composition Experiment) is one of the scientific instruments onboard the SELENE satellite. PACE consists of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). ESA-S1 and S2 measure three-dimensional distribution function of low energy electrons below 17keV. ESA basically employs a method of a top hat electrostatic analyzer with angular scanning deflectors at the entrance and toroidal electrodes inside. IMA and IEA measure the three-dimensional distribution function of low energy ions below 28keV/q. IMA has an ability to discriminate the ion mass with high mass resolution. IMA consists of an energy analyzer that is basically the same as ESA and an LEF (Linear Electric Field) TOF (Time Of Flight) ion mass analyzer. IEA consists of only an energy analyzer that is the same as the energy analyzer of IMA. Each sensor has hemi-spherical field of view (FOV). With two pairs of sensors ESA-S1 & IMA, and ESA-S2 & IEA, which are installed on the +Z and -Z surface of the spacecraft, three-dimensional distribution function of low energy electrons and ions are observed. The scientific objectives of PACE are 1) to measure the ions sputtered from the lunar surface and the lunar atmosphere, 2) to measure the magnetic anomaly on the lunar surface using two ESAs and a magnetometer onboard SELENE simultaneously as an electron reflectometer, 3) to resolve the moon - solar wind interaction, 4) to resolve the moon - Earth's magnetosphere interaction, and 5) to observe the Earth's magnetotail. Sputtered ions from the lunar surface will be measured for the first time. Recently, ground

  12. High-charge energetic ions generated by intersecting laser pulses

    SciTech Connect

    Yang, L.; Deng, Z. G.; Yu, M. Y.; Wang, X. G.

    2016-08-15

    Ion acceleration from the interaction of two intersecting intense laser pulses with an overdense plasma is investigated using a three-dimensional particle-in-cell simulation. It is found that, comparing with the single-pulse case, the charge of the resulting energetic ion bunch can be increased by more than an order of magnitude without much loss of quality. Dependence of the ion charge on the interaction parameters, including separation distance and incidence angles of the lasers, is considered. It is shown that the charge of the accelerated ion bunch can be optimized by controlling the degree of laser overlapping. The improved performance can be attributed to the enhanced laser intensity as well as stochastic heating of the accelerated electrons. Since at present the intensity of readily available lasers is limited, the two pulse scheme should be useful for realizing higher laser intensity in order to achieve higher-energy target normal sheath acceleration ions.

  13. Structural and isospin effects on balance energy and transition energy via different nuclear charge radii parameterizations

    NASA Astrophysics Data System (ADS)

    Sangeeta; Kaur, Varinderjit

    2017-10-01

    The structural and isospin effects have been studied through isospin dependent and independent nuclear charge radii parameterizations on the collective flow within the framework of Isospin-dependent Quantum Molecular Dynamics (IQMD) model. The calculations have been carried out by using two approaches: (i) for the reaction series having fixed N / Z ratio and (ii) for the isobaric reaction series with different N / Z ratio. Our results indicate that there is a considerable effect of radii parameterizations on the excitation function of reduced flow (∂v1/∂Yred) and elliptical flow (v2). Both balance energy (Ebal) and transition energy (Etrans) are enhanced with increase in radii of reacting nuclei and found to follow a power law with nuclear charge radii. The exponent τ values show that the elliptical flow is more sensitive towards different nuclear charge radii as compared to reduced flow. Moreover, we observe that our theoretical calculation of Ebal and Etrans are in agreement with the experimental data provided by GSI, INDRA and FOPI collaborations.

  14. Engineering interfacial photo-induced charge transfer based on nanobamboo array architecture for efficient solar-to-chemical energy conversion.

    PubMed

    Wang, Xiaotian; Liow, Chihao; Bisht, Ankit; Liu, Xinfeng; Sum, Tze Chien; Chen, Xiaodong; Li, Shuzhou

    2015-04-01

    Engineering interfacial photo-induced charge transfer for highly synergistic photocatalysis is successfully realized based on nanobamboo array architecture. Programmable assemblies of various components and heterogeneous interfaces, and, in turn, engineering of the energy band structure along the charge transport pathways, play a critical role in generating excellent synergistic effects of multiple components for promoting photocatalytic efficiency. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Modulation of Adenylate Energy Charge During the Swarmer Cycle of Hyphomicrobium neptunium

    PubMed Central

    Emala, Mary A.; Weiner, Ronald M.

    1983-01-01

    Adenylate energy charge was measured in the budding bacterium Hyphomicrobium neptunium through the course of the swarmer cycle. The energy charge was modulated, being low in swarm cells (0.64) and in cells initiating bud formation (0.57), an event which coincides with a round of DNA replication. PMID:6826528

  16. Potential and kinetic sputtering of alkanethiol self-assembled monolayers by impact of highly charged ions

    NASA Astrophysics Data System (ADS)

    Flores, M.; O'Rourke, B. E.; Yamazaki, Y.; Esaulov, V. A.

    2009-02-01

    Highly charged ions have been used to study the sputtering of positive molecular fragments from mercaptoundecanoic acid and dodecanethiol self-assembled monolayers on gold surfaces. The samples were bombarded with Arq+ (4⩽q⩽10) ions with kinetic energies from 2to18keV . The main fragments detected were H+ , CnH2n+ , and Cn+1O2H2n+1+ from mercaptoundecanoic and H+ , CnH2n+ , and Cn+1H2n+3+ from dodecanethiol. The proton yields were increased with larger charge state q of the highly charged ion (HCI) in both samples, scaling as qγ , with γ˜5 . The charge state dependence is discussed in terms of electron transfer to the HCI. The final yield of protons depends on molecular functional group characteristics, orientation on the surface, and reneutralization phenomena.

  17. Energy-resolving superconducting x-ray detectors with charge amplification due to multiple quasiparticle tunneling

    SciTech Connect

    Mears, C.A.; Labov, S.E. ); Barfknecht, A.T. )

    1993-11-22

    Superconducting tunnel junctions coupled to superconducting absorbers may be used as high-resolution, high-efficiency x-ray spectrometers. We have tested devices with niobium x-ray absorbing layers coupled to aluminum layers that serve as quasiparticle traps. The energy resolution at 6 keV was 49 eV full width at half-maximum. We estimate that each quasiparticle tunnels an average of 19 times before recombining, increasing the total charge transferred and therefore decreasing the effects of electronic noise.

  18. Tracking the radiation reaction energy when charged bodies accelerate

    NASA Astrophysics Data System (ADS)

    Steane, Andrew M.

    2015-08-01

    We consider radiation reaction and energy conservation in classical electromagnetism. We first treat the well-known problem of energy accounting during radiation from a uniformly accelerating particle. This gives rise to the following paradox: when the self-force vanishes, the system providing the applied force does only enough work to give the particle its kinetic energy—so where does the energy that is eventually radiated away come from? We answer this question using a modern treatment of radiation reaction and self-force, as it appears in the expression due to Eliezer and Ford and O'Connell. We clarify the influence of the Schott force, and we find that the radiated power is 2 q 2 a 0 . f 0 / ( 3 m c 3 ) , which differs from Larmor's formula. Finally, we present a simple and highly visual argument that enables one to track the radiated energy without the need to appeal to the far field in the distant future (the "wave zone").

  19. Space-charge perturbation effects in photonic tubes under high irradiation

    SciTech Connect

    Kalibjian, R.; Peterson, G.G.

    1982-06-01

    Potential perturbation effects at the cathode region of a photonic tube can occur at high intensity due to space-charge. Using appropriate photoelectron energy distribution functions, the electric field at the cathode is calculated and its effect upon the spatial/temporal resolution is examined.

  20. Molecular Dynamics Simulations of Highly Charged Green Fluorescent Proteins

    SciTech Connect

    Lau, E Y; Phillips, J L; Colvin, M E

    2009-03-26

    A recent experimental study showed that green fluorescent protein (GFP) that has been mutated to have ultra-high positive or negative net charges, retain their native structure and fluorescent properties while gaining resistance to aggregation under denaturing conditions. These proteins also provide an ideal test case for studying the effects of surface charge on protein structure and dynamics. They have performed classical molecular dynamics (MD) simulations on the near-neutral wildtype GFP and mutants with net charges of -29 and +35. They analyzed the resulting trajectories to quantify differences in structure and dynamics between the three GFPs. This analyses shows that all three proteins are stable over the MD trajectory, with the near-neutral wild type GFP exhibiting somewhat more flexibility than the positive or negative GFP mutants, as measured by the order parameter and changes in phi-psi angles. There are more dramatic differences in the properties of the water and counter ions surrounding the proteins. The water diffusion constant near the protein surface is closer to the value for bulk water in the positively charged GFP than in the other two proteins. Additionally, the positively charged GFP shows a much greater clustering of the counter ions (CL-) near its surface than corresponding counter ions (Na+) near the negatively charged mutant.

  1. Temperature dependence of Vortex Charges in High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Ting, C. S.; Chen, Yan; Wang, Z. D.

    2003-03-01

    By considering of competition between antiferromagnetic (AF) and d-wave superconductivity orders, the temperature dependence of the vortex charge in high Tc superconductors is investigated by solving self-consistently the Bogoliubov-de Gennes equations. The magnitude of induced antiferromagnetic order inside the vortex core is temperature dependent. The vortex charge is always negative when a sufficient strength of AF order presents at low temperature while the AF order may be suppressed at higher temperature and there the vortex charge becomes positive. A first order like transition from negative to the positive vortex charges occurs at certain temperature TN which is very close to the temperature for the disappearence of the local AF order. The vortex charges at various doping levels will also going to be examined. We show that the temperature dependence of the vortex core radius with induced AF order exhibits a weak Kramer-Pesch effect. The local density of states spectrum has a broad peak pattern at higher temperature while it exhibits two splitting peak at lower temperature. This temperature evolution may be detected by the future scanning-tunnel-microscope experiment. In addition, the effect of the vortex charge on the mixed state Hall effect will be discussed.

  2. BNL high energy heavy ion experiments

    SciTech Connect

    Miake, Yasuo.

    1989-01-01

    This paper discusses the measurement of particle spectra and correlations with good particle identification and with various triggers, such as selection of charged multiplicity, neutral energy and forward energy.

  3. Flare physics at high energies

    NASA Technical Reports Server (NTRS)

    Ramaty, R.

    1990-01-01

    High-energy processes, involving a rich variety of accelerated particle phenomena, lie at the core of the solar flare problem. The most direct manifestation of these processes are high-energy radiations, gamma rays, hard X-rays and neutrons, as well as the accelerated particles themselves, which can be detected in interplanetary space. In the study of astrophysics from the moon, the understanding of these processes should have great importance. The inner solar system environment is strongly influenced by activity on the sun; the physics of solar flares is of great intrinsic interest; and much high-energy astrophysics can be learned from investigations of flare physics at high energies.

  4. Conversion of high explosive chemical energy into energy of powerful nanosecond high-current pulses

    NASA Astrophysics Data System (ADS)

    Gorbachev, K. V.; Mikhaylov, V. M.; Nesterov, E. V.; Stroganov, V. A.; Chernykh, E. V.

    2015-01-01

    This study is a contribution into the development of physicotechnical foundations for generation of powerful nanosecond high-current pulses on the basis of explosively driven magnetic flux compression generators. This problem is solved by using inductive storage of energy for matching comparatively low-voltage explosively driven magnetic flux compression generators and high-impedance loads; short forming lines and vacuum diodes. Experimental data of charging of forming lines are given.

  5. An acoustic charge transport imager for high definition television applications

    NASA Technical Reports Server (NTRS)

    Hunt, W. D.; Brennan, Kevin F.

    1994-01-01

    The primary goal of this research is to develop a solid-state high definition television (HDTV) imager chip operating at a frame rate of about 170 frames/sec at 2 Megapixels per frame. This imager offers an order of magnitude improvement in speed over CCD designs and will allow for monolithic imagers operating from the IR to the UV. The technical approach of the project focuses on the development of the three basic components of the imager and their integration. The imager chip can be divided into three distinct components: (1) image capture via an array of avalanche photodiodes (APD's), (2) charge collection, storage and overflow control via a charge transfer transistor device (CTD), and (3) charge readout via an array of acoustic charge transport (ACT) channels. The use of APD's allows for front end gain at low noise and low operating voltages while the ACT readout enables concomitant high speed and high charge transfer efficiency. Currently work is progressing towards the development of manufacturable designs for each of these component devices. In addition to the development of each of the three distinct components, work towards their integration is also progressing. The component designs are considered not only to meet individual specifications but to provide overall system level performance suitable for HDTV operation upon integration. The ultimate manufacturability and reliability of the chip constrains the design as well. The progress made during this period is described in detail in Sections 2-4.

  6. High Mass Ion Detection with Charge Detector Coupled to Rectilinear Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Patil, Avinash A.; Chou, Szu-Wei; Chang, Pei-Yu; Lee, Chen-Wei; Cheng, Chun-Yen; Chu, Ming-Lee; Peng, Wen-Ping

    2016-12-01

    Conventional linear ion trap mass analyzers (LIT-MS) provide high ion capacity and show their MS n ability; however, the detection of high mass ions is still challenging because LIT-MS with secondary electron detectors (SED) cannot detect high mass ions. To detect high mass ions, we coupled a charge detector (CD) to a rectilinear ion trap mass spectrometer (RIT-MS). Immunoglobulin G ions (m/z 150,000) are measured successfully with controlled ion kinetic energy. In addition, when mass-to-charge (m/z) ratios of singly charged ions exceed 10 kTh, the detection efficiency of CD is found to be greater than that of SED. The CD can be coupled to LIT-MS to extend the detection mass range and provide the potential to perform MS n of high mass ions inside the ion trap.

  7. High Mass Ion Detection with Charge Detector Coupled to Rectilinear Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Patil, Avinash A.; Chou, Szu-Wei; Chang, Pei-Yu; Lee, Chen-Wei; Cheng, Chun-Yen; Chu, Ming-Lee; Peng, Wen-Ping

    2017-06-01

    Conventional linear ion trap mass analyzers (LIT-MS) provide high ion capacity and show their MS n ability; however, the detection of high mass ions is still challenging because LIT-MS with secondary electron detectors (SED) cannot detect high mass ions. To detect high mass ions, we coupled a charge detector (CD) to a rectilinear ion trap mass spectrometer (RIT-MS). Immunoglobulin G ions ( m/ z 150,000) are measured successfully with controlled ion kinetic energy. In addition, when mass-to-charge ( m/ z) ratios of singly charged ions exceed 10 kTh, the detection efficiency of CD is found to be greater than that of SED. The CD can be coupled to LIT-MS to extend the detection mass range and provide the potential to perform MS n of high mass ions inside the ion trap. [Figure not available: see fulltext.

  8. Laser ion sources for highly charged ions (invited)

    NASA Astrophysics Data System (ADS)

    Sherwood, T. R.

    1992-04-01

    The development of laser ion sources is reviewed in the light of possible future requirement for highly charged ions at CERN. After the advent of high power Q-switched pulsed lasers in the 1960's, there were a number of proposals to use the laser produced plasma as sources of ions. Such ion sources have been constructed for a number of uses, and in particular, for injection of ions into particle accelerators. At CERN, a new test facility has recently started operation. Initial results indicate ion currents in excess of 5 mA for lead ions with charge state about 20.

  9. Charge delocalization characteristics of regioregular high mobility polymers

    SciTech Connect

    Coughlin, J. E.; Zhugayevych, A.; Wang, M.; Bazan, G. C.; Tretiak, S.

    2017-01-01

    Controlling the regioregularity among the structural units of narrow bandgap conjugated polymer backbones has led to improvements in optoelectronic properties, for example in the mobilities observed in field effect transistor devices. To investigate how the regioregularity affects quantities relevant to hole transport, regioregular and regiorandom oligomers representative of polymeric structures were studied using density functional theory. Several structural and electronic characteristics of the oligomers were compared, including chain planarity, cation spin density, excess charges on molecular units and internal reorganizational energy. The main difference between the regioregular and regiorandom oligomers is found to be the conjugated backbone planarity, while the reorganizational energies calculated are quite similar across the molecular family. Lastly, this work constitutes the first step on understanding the complex interplay of atomistic changes and an oligomer backbone structure toward modeling the charge transport properties.

  10. Charge delocalization characteristics of regioregular high mobility polymers

    DOE PAGES

    Coughlin, J. E.; Zhugayevych, A.; Wang, M.; ...

    2017-01-01

    Controlling the regioregularity among the structural units of narrow bandgap conjugated polymer backbones has led to improvements in optoelectronic properties, for example in the mobilities observed in field effect transistor devices. To investigate how the regioregularity affects quantities relevant to hole transport, regioregular and regiorandom oligomers representative of polymeric structures were studied using density functional theory. Several structural and electronic characteristics of the oligomers were compared, including chain planarity, cation spin density, excess charges on molecular units and internal reorganizational energy. The main difference between the regioregular and regiorandom oligomers is found to be the conjugated backbone planarity, while themore » reorganizational energies calculated are quite similar across the molecular family. Lastly, this work constitutes the first step on understanding the complex interplay of atomistic changes and an oligomer backbone structure toward modeling the charge transport properties.« less

  11. Kinetic energy release distributions for C+2 emission from multiply charged C60 and C70 fullerenes

    NASA Astrophysics Data System (ADS)

    Cederquist, H.; Haag, N.; Berényi, Z.; Reinhed, P.; Fischer, D.; Gudmundsson, M.; Johansson, H. A. B.; Schmidt, H. T.; Zettergren, H.

    2009-04-01

    We present a systematic study of experimental kinetic energy release distributions for the asymmetric fission processes Cq+60 → C(iq-1<)+70+ C+2 and Cq+70 → C(q-1)+60+ C+2 for mother ions in charge states q = 4-8 produced in collisions with slow highly charged ions. Somewhat to our surprise, we find that the KERD for asymmetric fission from Cq+60 are considerably wider and have larger most likely values than the Cq+70 distributions in the corresponding charge states when q > 4.

  12. HIGH ENERGY RATE EXTRUSION.

    DTIC Science & Technology

    Thin structural shapes can now be produced by high velocity extrusion equipment. Tooling, dies, die coatings, lubricants and general processing...degrees was important in reducing the initial peak stresses to a controllable level and tooling failures were reduced by using high strength (Rc 55-60...the high inertial forces present) can be lessened and eliminated in many cases by the selection of low reduction ratios (15:1 or below) and low impact speeds. (Author)

  13. Peltier effect in multilayered nanopillars under high density charge current

    NASA Astrophysics Data System (ADS)

    Gravier, L.; Fukushima, A.; Kubota, H.; Yamamoto, A.; Yuasa, S.

    2006-12-01

    From the basic equations of thermoelectricity, we model the thermal regimes that develop in multilayered nanopillar elements experiencing continuous charge currents. The energy conservation principle was applied to all layer-layer and layer-electrode junctions. The obtained set of equations was solved to derive the temperature of each junction. The contribution of the Peltier effect is included in an effective resistance. This model gives satisfactory fits to experimental data obtained on a series of reference nanopillar elements.

  14. High energy forming facility

    NASA Technical Reports Server (NTRS)

    Ciurlionis, B.

    1967-01-01

    Watertight, high-explosive forming facility, 25 feet in diameter and 15 feet deep, withstands repeated explosions of 10 pounds of TNT equivalent. The shell is fabricated of high strength steel and allows various structural elements to deform or move elastically and independently while retaining structural integrity.

  15. Low Energy Electron Capture by Multi-Charged Ions from H(D).

    NASA Astrophysics Data System (ADS)

    Rejoub, R.; Krstic, P. S.; Schultz, D. R.; Havener, C. C.; Lee, T. G.

    2004-05-01

    Low energy electron capture cross sections are measured at the ORNL Multi-charged Ion Research Facility (MIRF) using the ion-atom merged-beams technique. Absolute measurements are performed for the fundamental one-electron He^2+ + H system and when combined with previous measurements establish an experimental benchmark for comparison with recent theory. New measurements for N^2+ + H in the collision energy range 0.015-100 eV/u show a typical 1/v increasing cross section below 10 eV/u with the possibility of structures below 1 eV/u. An investigation is underway to explore the origin of the structures observed at both low and high energies. The ion-atom merged-beams apparatus is being upgraded to take advantage of the high velocity and higher quality beams that will be produced by the ORNL HV platform upgrade project. Expected improvements include access to lower energies with better energy resolution for measurements with both H and D. Research supported by the Office of Fusion Energy Sciences and Office of Basic Energy Sciences, U.S. DoE, Contract No. DE-AC05-00OR22725 and by the NASA SARA program under Work Order No. 10,060 with UT-Batelle, LLC.

  16. More than charged base loss--revisiting the fragmentation of highly charged oligonucleotides.

    PubMed

    Nyakas, Adrien; Eberle, Rahel P; Stucki, Silvan R; Schürch, Stefan

    2014-07-01

    Tandem mass spectrometry is a well-established analytical tool for rapid and reliable characterization of oligonucleotides (ONs) and their gas-phase dissociation channels. The fragmentation mechanisms of native and modified nucleic acids upon different mass spectrometric activation techniques have been studied extensively, resulting in a comprehensive catalogue of backbone fragments. In this study, the fragmentation behavior of highly charged oligodeoxynucleotides (ODNs) comprising up to 15 nucleobases was investigated. It was found that ODNs exhibiting a charge level (ratio of the actual to the total possible charge) of 100% follow significantly altered dissociation pathways compared with low or medium charge levels if a terminal pyrimidine base (3' or 5') is present. The corresponding product ion spectra gave evidence for the extensive loss of a cyanate anion (NCO(-)), which frequently coincided with the abstraction of water from the 3'- and 5'-end in the presence of a 3'- and 5'-terminal pyrimidine nucleobase, respectively. Subsequent fragmentation of the M-NCO(-) ion by MS(3) revealed a so far unreported consecutive excision of a metaphosphate (PO3 (-))-ion for the investigated sequences. Introduction of a phosphorothioate group allowed pinpointing of PO3 (-) loss to the ultimate phosphate group. Several dissociation mechanisms for the release of NCO(-) and a metaphosphate ion were proposed and the validity of each mechanism was evaluated by the analysis of backbone- or sugar-modified ONs.

  17. High Resolution Diagnostics of a Linear Shaped Charge Jet

    SciTech Connect

    Chase, J.B.; Kuklo, R.M.; Shaw, L.L.; Carter, D.L.; Baum, D.W.

    1999-08-10

    The linear shaped charge is designed to produce a knife blade-like flat jet, which will perforate and sever one side of a modestly hard target from the other. This charge is approximately plane wave initiated and used a water pipe quality circular copper liner. To establish the quality of this jet we report about an experiment using several of the Lawrence Livermore National Laboratory high-resolution diagnostics previously published in this meeting [1]. Image converter tube camera stereo image pairs were obtained early in the jet formation process. Individual IC images were taken just after the perforation of a thin steel plate. These pictures are augmented with 70 mm format rotating mirror framing images, orthogonal 450 KeV flash radiograph pairs, and arrival time switches (velocity traps) positioned along the length of the jet edge. We have confirmed that linear shaped charges are subject to the same need for high quality copper as any other metal jetting device.

  18. Coulomb crystallization of sympathetically cooled highly charged ions

    NASA Astrophysics Data System (ADS)

    Crespo López-Urrutia, José R.

    2015-05-01

    Wave functions of inner-shell electrons significantly overlap with the nucleus, whereby enormously magnified relativistic, quantum electrodynamic (QED) and nuclear size effects emerge. In highly charged ions (HCI), the relative reduction of electronic correlations contributions improves the visibility of these effects. This well known facts have driven research efforts with HCI, yet the typically high temperatures at which these can be prepared in the laboratory constitutes a serious hindrance for application of laser spectroscopic methods. The solution for this, cooling HCI down to crystallization has remained an elusive target for more than two decades. By applying laser cooling to an ensemble of Be+ ions, we build Coulomb crystals that we use for stopping the motion of HCI and for cooling them. HCI, in this case Ar13+ ions are extracted from an electron beam ion trap with an energy spread of a few 100's of eV, due to the ion temperature within the trap. Carefully timed electric pulses in a potential-gradient decelerate and bunch the HCI. We achieve Coulomb crystallization of these HCI by re-trapping them in a cryogenic linear radiofrequency trap where they are sympathetically cooled through Coulomb interaction with the directly laser-cooled ensemble. Furthermore, we also demonstrate cooling of a single Ar13+ ion by a single Be+ ion, prerequisite for quantum logic spectroscopy with potentially 10-19 relative accuracy. The strongly suppressed thermal motion of the embedded HCI offers novel possibilities for investigation of questions related to the time variation of fundamental constants, parity non-conservation effects, Lorentz invariance and quantum electrodynamics. Achieving a seven orders-of-magnitude decrease in HCI temperature, from the starting point at MK values in the ion source down to the mK range within the Coulomb crystal eliminates the major obstacle for HCI investigation with high precision laser spectroscopy and quantum computation schemes.

  19. An acoustic charge transport imager for high definition television applications

    NASA Technical Reports Server (NTRS)

    Hunt, W. D.; Brennan, K. F.; Summers, C. J.

    1994-01-01

    The primary goal of this research is to develop a solid-state television (HDTV) imager chip operating at a frame rate of about 170 frames/sec at 2 Megapixels/frame. This imager will offer an order of magnitude improvements in speed over CCD designs and will allow for monolithic imagers operating from the IR to UV. The technical approach of the project focuses on the development of the three basic components of the imager and their subsequent integration. The camera chip can be divided into three distinct functions: (1) image capture via an array of avalanche photodiodes (APD's); (2) charge collection, storage, and overflow control via a charge transfer transistor device (CTD); and (3) charge readout via an array of acoustic charge transport (ACT) channels. The use of APD's allows for front end gain at low noise and low operating voltages while the ACT readout enables concomitant high speed and high charge transfer efficiency. Currently work is progressing towards the optimization of each of these component devices. In addition to the development of each of the three distinct components, work towards their integration and manufacturability is also progressing. The component designs are considered not only to meet individual specifications but to provide overall system level performance suitable for HDTV operation upon integration. The ultimate manufacturability and reliability of the chip constrains the design as well. The progress made during this period is described in detail.

  20. Transverse energy distribution, charged particle multiplicities and spectra in /sup 16/O-nucleus collisions

    SciTech Connect

    Sunier, J.W.

    1987-01-01

    The HELIOS (High Energy Lepton and Ion Spectrometer) experiment, installed at the CERN Super Proton Synchrotron, proposes to examine in details the physical properties of a state of high energy created in nuclei by ultra-relativistic nucleus-nucleus collisions. It is generally believed that, at high densities or temperatures, a phase transition to a plasma of quark and gluons will occur. The dynamic of the expansion of such a plasma and its subsequent condensation into a hadron gas should markedly affect the composition and momentum distribution of the emerging particles and photons. The HELIOS experimental setup therefore combines 4..pi.. calorimetric coverage with measurements of inclusive particle spectra, two particle correlations, low and high mass lepton pairs and photons. The emphasis is placed on transverse energy flow (E/sub T/) measurements with good energy resolution, and the ability to trigger the acquisition of data in a variety of E/sub T/ ranges, thereby selecting the impact parameter or the violence of the collisions. This short note presents HELIOS results, for the most part still preliminary, on /sup 16/O-nucleus collisions at the incident energies of 60 and 200 GeV per nucleon. The E/sub T/ distributions from Al, Ag and W targets are discussed and compared to the associated charged particle multiplicities from W. Charged particle and (converted) photon spectra measured with the external magnetic spectrometer are compared for /sup 16/O + W and p + W collisions at 200 GeV per nucleon. 5 refs., 7 figs.

  1. Integrated circuit failure analysis by low-energy charge-induced voltage alteration

    DOEpatents

    Cole, Jr., Edward I.

    1996-01-01

    A scanning electron microscope apparatus and method are described for detecting and imaging open-circuit defects in an integrated circuit (IC). The invention uses a low-energy high-current focused electron beam that is scanned over a device surface of the IC to generate a charge-induced voltage alteration (CIVA) signal at the location of any open-circuit defects. The low-energy CIVA signal may be used to generate an image of the IC showing the location of any open-circuit defects. A low electron beam energy is used to prevent electrical breakdown in any passivation layers in the IC and to minimize radiation damage to the IC. The invention has uses for IC failure analysis, for production-line inspection of ICs, and for qualification of ICs.

  2. Integrated development facility for the calibration of low-energy charged particle flight instrumentation

    NASA Technical Reports Server (NTRS)

    Biddle, A. P.; Reynolds, J. M.

    1986-01-01

    The design of a low-energy ion facility for development and calibration of thermal ion instrumentation is examined. A directly heated cathode provides the electrons used to produce ions by impact ionization and an applied magnetic field increases the path length followed by the electrons. The electrostatic and variable geometry magnetic mirror configuration in the ion source is studied. The procedures for the charge neutralization of the beam and the configuration and function of the 1.4-m drift tube are analyzed. A microcomputer is utilized to control and monitor the beam energy and composition, and the mass- and angle-dependent response of the instrument under testing. The facility produces a high-quality ion beam with an adjustable range of energies up to 150 eV; the angular divergence and uniformity of the beam is obtained from two independent retarding potential analyzers. The procedures for calibrating the instrument being developed are described.

  3. Integrated circuit failure analysis by low-energy charge-induced voltage alteration

    DOEpatents

    Cole, E.I. Jr.

    1996-06-04

    A scanning electron microscope apparatus and method are described for detecting and imaging open-circuit defects in an integrated circuit (IC). The invention uses a low-energy high-current focused electron beam that is scanned over a device surface of the IC to generate a charge-induced voltage alteration (CIVA) signal at the location of any open-circuit defects. The low-energy CIVA signal may be used to generate an image of the IC showing the location of any open-circuit defects. A low electron beam energy is used to prevent electrical breakdown in any passivation layers in the IC and to minimize radiation damage to the IC. The invention has uses for IC failure analysis, for production-line inspection of ICs, and for qualification of ICs. 5 figs.

  4. Charge scheduling of an energy storage system under time-of-use pricing and a demand charge.

    PubMed

    Yoon, Yourim; Kim, Yong-Hyuk

    2014-01-01

    A real-coded genetic algorithm is used to schedule the charging of an energy storage system (ESS), operated in tandem with renewable power by an electricity consumer who is subject to time-of-use pricing and a demand charge. Simulations based on load and generation profiles of typical residential customers show that an ESS scheduled by our algorithm can reduce electricity costs by approximately 17%, compared to a system without an ESS and by 8% compared to a scheduling algorithm based on net power.

  5. Charge Scheduling of an Energy Storage System under Time-of-Use Pricing and a Demand Charge

    PubMed Central

    Yoon, Yourim

    2014-01-01

    A real-coded genetic algorithm is used to schedule the charging of an energy storage system (ESS), operated in tandem with renewable power by an electricity consumer who is subject to time-of-use pricing and a demand charge. Simulations based on load and generation profiles of typical residential customers show that an ESS scheduled by our algorithm can reduce electricity costs by approximately 17%, compared to a system without an ESS and by 8% compared to a scheduling algorithm based on net power. PMID:25197720

  6. Charge Trapping Flash Memory With High-k Dielectrics

    NASA Astrophysics Data System (ADS)

    Eun, Dong Seog

    2011-12-01

    High capacity and affordable price of flash memory make portable electronic devices popular, which in turn stimulates the further scaling down effort of the flash memory cells. Indeed the flash memory cells have been scaling down aggressively and face several crucial challenges. As a result, the technology trend is shifting from the floating-gate cell to the charge-trap cell in order to overcome fatal interference problems between cells. There are critical problems in the charge-trap memory cell which will become main-stream in the near future. The first potential problem is related to the memory retention which is degraded by the charge leakage through thin tunnel dielectrics. The second is the reduction of charge-storage capacity in the scaled down SiN trapping layer. The third is the low operation-efficiency resulting from the methods used to solve the first two problems. Using high-k tunnel dielectrics can solve the first problem. The second problem can be overcome by adopting a high-k trapping dielectric. The dielectric constant of the blocking layer must be higher than those of the tunnel dielectric and the trapping dielectric in order to maintain operation efficiency. This dissertation study is focused on adopting high-k dielectrics in all three of the aforementioned layers for figure generations of flash memory technology. For the high-k tunnel dielectric, the MAD Si3N4 and the MAD Al2O3 are used to fabricate the MANNS structure and the MANAS structure. The MANNS structure has the advantage of reducing the erase voltage due to its low barrier height for holes. In addition, the retention characteristic of the MANAS structure is not sensitive to temperature. The reason is that the carrier transport in MAD Al2O3 is dominated by F-N tunneling, which is nearly independent of temperature. Adopting TiOx as the trapping dielectric forms the MATAS structure. Although the charge capacity of TiOx is not very high, the operating voltage can be reduced to less than 10V

  7. Creation of nanohillocks on CaF2 surfaces by single slow highly charged ions.

    PubMed

    El-Said, A S; Heller, R; Meissl, W; Ritter, R; Facsko, S; Lemell, C; Solleder, B; Gebeshuber, I C; Betz, G; Toulemonde, M; Möller, W; Burgdörfer, J; Aumayr, F

    2008-06-13

    Upon impact on a solid surface, the potential energy stored in slow highly charged ions is primarily deposited into the electronic system of the target. By decelerating the projectile ions to kinetic energies as low as 150 x q eV, we find first unambiguous experimental evidence that potential energy alone is sufficient to cause permanent nanosized hillocks on the (111) surface of a CaF(2) single crystal. Our investigations reveal a surprisingly sharp and well-defined threshold of potential energy for hillock formation which can be linked to a solid-liquid phase transition.

  8. Charge transfer during low energy metal/semiconductor ion-surface interactions

    NASA Astrophysics Data System (ADS)

    Chen, Xiaojian

    Ion-surface charge exchange is a central process in many surface analysis techniques and technical processes. Previous ion scattering studies have extensively investigated the interactions between alkali/noble gas ions and surfaces. Investigations of the interactions between metal/semiconductor ions and metal surfaces have seldom been reported, although they are of central importance in understanding processes involving the removal material from metal/semiconductor surfaces. This dissertation uses low energy ion scattering and direct recoil to reveal charge transfer mechanisms between metal/semiconductor atomic particles and clean and adsorb ate-covered Al and Si surfaces. All involved experiments were performed in ultra-high vacuum. Charge transfer between an Al atom and an Al surface is studied by producing energetic recoiled Al from a Al(100) surface via Xe+ bombardment. The measured neutral fractions of the recoils show that resonant charge transfer (RCT) is a key mechanism. The ion formation of recoiled and sputtered atoms can be both described by RCT. The characteristic difference between recoiled and sputtered atoms is interpreted as due to different surface conditions at the time of ion emission. 1˜5 keV Si+ ions were incident on atomically clean Al(100) surface. All scattered Si was neutralized, while Al ions were found in multi-charged states. In contrast to the traditional sputtering studies, there is an abnormally high yield of Al2+ and Al3+. The multiply charged ions are attributed to the charge promotion of Al 2p level during the electronically nearly-symmetric Si-Al collision, and subsequent shake-off processes. This mechanism is supported by the energy dependence of Al ions as well as ion induced Auger electrons. Si+ ions were scattered from submonolayers of Cs deposited onto Al(100). Because of the high ionization energy of Si, resonant charge transfer would be expected to completely neutralize the scattered projectiles. In contrast, a

  9. High-energy X-ray powder diffraction and atomic-pair distribution-function studies of charged/discharged structures in carbon-hybridized Li2MnSiO4 nanoparticles as a cathode material for lithiumion batteries

    SciTech Connect

    Moriya, Maki; Miyahara, Masahiko; Hokazono, Mana; Sasaki, Hirokazu; Nemoto, Atsushi; Katayama, Shingo; Akimoto, Yuji; Hirano, Shin-ichi; Ren, Yang

    2014-10-01

    The stable cycling performance with a high discharge capacity of similar to 190 mAh g(-1) in a carbon-hybridized Li2MnSiO4 nanostructured powder has prompted an experimental investigation of the charged/discharged structures using synchrotron-based and laboratory-based X-rays and atomic-pair distributionfunction (PDF) analyses. A novel method of in-situ spray pyrolysis of a precursor solution with glucose as a carbon source enabled the successful synthesis of the carbon-hybridized Li2(M)nSiO(4) nanoparticles. The XRD patters of the discharged (lithiated) samples exhibit a long-range ordered structure characteristic of the (beta) Li2MnSiO4 crystalline phase (space group Pmn2(1)) which dissipates in the charged (delithiated) samples. However, upon discharging the long-range ordered structure recovers in each cycle. The disordered structure, according to the PDF analysis, is mainly due to local distortions of the MnO4 tetrahedra which show a mean Mn-O nearest neighbor distance shorter than that of the long-range ordered phase. These results corroborate the notion of the smaller Mn3+/Mn4+ ionic radii in the Li extracted phase versus the larger Mn2+ ionic radius in Li inserted phase. Thus Li extraction/insertion drives the fluctuation between the disordered and the long-range ordered structures. (C) 2014 Elsevier B.V. All rights reserved.

  10. X-Ray Diagnostics of CUEBIT Highly Charged Ion Plasma

    NASA Astrophysics Data System (ADS)

    Silwal, Roshani; Gall, Amy; Sosolik, Chad; Harriss, James; Takacs, Endre

    2015-05-01

    Clemson University Electron Beam Ion Trap (CUEBIT) is one of the few EBIT facilities around the globe that produces highly charged ions by successive electron impact ionization. Ions are confined in the machine by the space-charge of the electron beam, a 6 T magnetic field generated by a superconducting magnet, and the voltages applied to axial electrodes. The device is a small laboratory scale instrument for the study of the structure and emission of highly charged ions and the collisions of these ions with external targets. Along with the introduction of the facility including its structure and capabilities, we present an overview of various spectroscopic and imaging tools that allow the diagnosis of the high temperature ion cloud of the CUEBIT. Instruments include a crystal spectrometer, solid-state detectors, and pin-hole imaging setup equipped with an x-ray CCD camera. Measurements of x-ray radiation from CUEBIT are used to investigate the fundamental properties of the highly charged ions and their interaction with the energetic electron beam.

  11. Production of highly charged ion beams with SECRAL.

    PubMed

    Sun, L T; Zhao, H W; Lu, W; Zhang, X Z; Feng, Y C; Li, J Y; Cao, Y; Guo, X H; Ma, H Y; Zhao, H Y; Shang, Y; Ma, B H; Wang, H; Li, X X; Jin, T; Xie, D Z

    2010-02-01

    Superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is an all-superconducting-magnet electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged ion beams to meet the requirements of the Heavy Ion Research Facility in Lanzhou (HIRFL). To further enhance the performance of SECRAL, an aluminum chamber has been installed inside a 1.5 mm thick Ta liner used for the reduction of x-ray irradiation at the high voltage insulator. With double-frequency (18+14.5 GHz) heating and at maximum total microwave power of 2.0 kW, SECRAL has successfully produced quite a few very highly charged Xe ion beams, such as 10 e microA of Xe(37+), 1 e microA of Xe(43+), and 0.16 e microA of Ne-like Xe(44+). To further explore the capability of the SECRAL in the production of highly charged heavy metal ion beams, a first test run on bismuth has been carried out recently. The main goal is to produce an intense Bi(31+) beam for HIRFL accelerator and to have a feel how well the SECRAL can do in the production of very highly charged Bi beams. During the test, though at microwave power less than 3 kW, more than 150 e microA of Bi(31+), 22 e microA of Bi(41+), and 1.5 e microA of Bi(50+) have been produced. All of these results have again demonstrated the great capability of the SECRAL source. This article will present the detailed results and brief discussions to the production of highly charged ion beams with SECRAL.

  12. Production of highly charged ion beams with SECRAL

    SciTech Connect

    Sun, L. T.; Zhao, H. W.; Zhang, X. Z.; Feng, Y. C.; Li, J. Y.; Guo, X. H.; Ma, H. Y.; Zhao, H. Y.; Ma, B. H.; Wang, H.; Li, X. X.; Jin, T.; Xie, D. Z.; Lu, W.; Cao, Y.; Shang, Y.

    2010-02-15

    Superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is an all-superconducting-magnet electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged ion beams to meet the requirements of the Heavy Ion Research Facility in Lanzhou (HIRFL). To further enhance the performance of SECRAL, an aluminum chamber has been installed inside a 1.5 mm thick Ta liner used for the reduction of x-ray irradiation at the high voltage insulator. With double-frequency (18+14.5 GHz) heating and at maximum total microwave power of 2.0 kW, SECRAL has successfully produced quite a few very highly charged Xe ion beams, such as 10 e {mu}A of Xe{sup 37+}, 1 e {mu}A of Xe{sup 43+}, and 0.16 e {mu}A of Ne-like Xe{sup 44+}. To further explore the capability of the SECRAL in the production of highly charged heavy metal ion beams, a first test run on bismuth has been carried out recently. The main goal is to produce an intense Bi{sup 31+} beam for HIRFL accelerator and to have a feel how well the SECRAL can do in the production of very highly charged Bi beams. During the test, though at microwave power less than 3 kW, more than 150 e {mu}A of Bi{sup 31+}, 22 e {mu}A of Bi{sup 41+}, and 1.5 e {mu}A of Bi{sup 50+} have been produced. All of these results have again demonstrated the great capability of the SECRAL source. This article will present the detailed results and brief discussions to the production of highly charged ion beams with SECRAL.

  13. Electron channeling radiation experiments at very high electron bunch charges

    SciTech Connect

    Carrigan, R.A. Jr.; Freudenberger, J.; Fritzler, S.; Genz, H.; Richter, A.; Ushakov, A.; Zilges, A.; Sellschop, J.P.F.

    2003-12-01

    Plasmas offer the possibility of high acceleration gradients. An intriguing suggestion is to use the higher plasma densities possible in solids to get extremely high gradients. Although solid-state plasmas might produce high gradients they would pose daunting problems. Crystal channeling has been suggested as one mechanism to address these challenges. There is no experimental or theoretical guidance on channeling for intense electron beams. A high-density plasma in a crystal lattice could quench the channeling process. An experiment has been carried out at the Fermilab NICADD Photoinjector Laboratory to observe electron channeling radiation at high bunch charges. An electron beam with up to 8 nC per electron bunch was used to investigate the electron-crystal interaction. No evidence was found of quenching of channeling at charge densities two orders of magnitude larger than that in earlier experiments.

  14. Transfer ionization in collisions with a fast highly charged ion.

    PubMed

    Voitkiv, A B

    2013-07-26

    Transfer ionization in fast collisions between a bare ion and an atom, in which one of the atomic electrons is captured by the ion whereas another one is emitted, crucially depends on dynamic electron-electron correlations. We show that in collisions with a highly charged ion a strong field of the ion has a very profound effect on the correlated channels of transfer ionization. In particular, this field weakens (strongly suppresses) electron emission into the direction opposite (perpendicular) to the motion of the ion. Instead, electron emission is redirected into those parts of the momentum space which are very weakly populated in fast collisions with low charged ions.

  15. High sensitivity charge amplifier for ion beam uniformity monitor

    DOEpatents

    Johnson, Gary W.

    2001-01-01

    An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.

  16. Roles of Energy/Charge Cascades and Intermixed Layers at Donor/Acceptor Interfaces in Organic Solar Cells

    PubMed Central

    Nakano, Kyohei; Suzuki, Kaori; Chen, Yujiao; Tajima, Keisuke

    2016-01-01

    The secret to the success of mixed bulk heterojunctions (BHJs) in yielding highly efficient organic solar cells (OSCs) could reside in the molecular structures at their donor/acceptor (D/A) interfaces. In this study, we aimed to determine the effects of energy and charge cascade structures at the interfaces by using well-defined planar heterojunctions (PHJs) as a model system. The results showed that (1) the charge cascade structure enhanced VOC because it shuts down the recombination pathway through charge transfer (CT) state with a low energy, (2) the charge cascade layer having a wider energy gap than the bulk material decreased JSC because the diffusion of the excitons from the bulk to D/A interface was blocked; the energy of the cascade layers must be appropriately arranged for both the charges and the excitons, and (3) molecular intermixing in the cascade layer opened the recombination path through the low-energy CT state and decreased VOC. Based on these findings, we propose improved structures for D/A interfaces in BHJs. PMID:27404948

  17. Roles of Energy/Charge Cascades and Intermixed Layers at Donor/Acceptor Interfaces in Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Nakano, Kyohei; Suzuki, Kaori; Chen, Yujiao; Tajima, Keisuke

    2016-07-01

    The secret to the success of mixed bulk heterojunctions (BHJs) in yielding highly efficient organic solar cells (OSCs) could reside in the molecular structures at their donor/acceptor (D/A) interfaces. In this study, we aimed to determine the effects of energy and charge cascade structures at the interfaces by using well-defined planar heterojunctions (PHJs) as a model system. The results showed that (1) the charge cascade structure enhanced VOC because it shuts down the recombination pathway through charge transfer (CT) state with a low energy, (2) the charge cascade layer having a wider energy gap than the bulk material decreased JSC because the diffusion of the excitons from the bulk to D/A interface was blocked; the energy of the cascade layers must be appropriately arranged for both the charges and the excitons, and (3) molecular intermixing in the cascade layer opened the recombination path through the low-energy CT state and decreased VOC. Based on these findings, we propose improved structures for D/A interfaces in BHJs.

  18. Pulse switching for high energy lasers

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.; Pacala, T. J. (Inventor)

    1981-01-01

    A saturable inductor switch for compressing the width and sharpening the rise time of high voltage pulses from a relatively slow rise time, high voltage generator to an electric discharge gas laser (EDGL) also provides a capability for efficient energy transfer from a high impedance primary source to an intermediate low impedance laser discharge network. The switch is positioned with respect to a capacitive storage device, such as a coaxial cable, so that when a charge build-up in the storage device reaches a predetermined level, saturation of the switch inductor releases or switches energy stored in the capactive storage device to the EDGL. Cascaded saturable inductor switches for providing output pulses having rise times of less than ten nanoseconds and a technique for magnetically biasing the saturable inductor switch are disclosed.

  19. Metabolic Activity and Energy Charge of Excised Maize Root Tips under Anoxia

    PubMed Central

    Saglio, Pierre H.; Raymond, Philippe; Pradet, Alain

    1980-01-01

    Energy charge and fermentative metabolism under anoxia were monitored in excised maize root tips after various times of aging in air and were related to their soluble sugar content. The energy charge value, which was 0.9 in air irrespective of the time of aging, dropped to a lower value within minutes of transfer to a nitrogen atmosphere. This value was dependent upon sugar content of the tissues which was itself a function of aging. The energy charge value after transfer to nitrogen was 0.6 in freshly excised tissue but only 0.2 in tissue aged for 4 hours. When aged tissues supplied with 0.2 molar glucose were transferred to nitrogen, the energy charge was 0.6, irrespective of the time of aging. When 0.2 molar glucose was added under nitrogen, energy charge rose to 0.6. This rise was faster in root tips aged for 8 hours than those aged for 24 hours. The rate of ethanol plus lactate production (representing 60 and 10%, respectively, of the total sugar consumption in anoxia) was closely correlated to the level of energy charge. It is concluded that, in anoxia, there is a quantitative relationship between the energy charge value and the level of metabolic activity via fermentative pathways. PMID:16661575

  20. Monolithic pixel detectors for high energy physics

    NASA Astrophysics Data System (ADS)

    Snoeys, W.

    2013-12-01

    Monolithic pixel detectors integrating sensor matrix and readout in one piece of silicon have revolutionized imaging for consumer applications, but despite years of research they have not yet been widely adopted for high energy physics. Two major requirements for this application, radiation tolerance and low power consumption, require charge collection by drift for the most extreme radiation levels and an optimization of the collected signal charge over input capacitance ratio (Q/C). It is shown that monolithic detectors can achieve Q/C for low analog power consumption and even carryout the promise to practically eliminate analog power consumption, but combining sufficient Q/C, collection by drift, and integration of readout circuitry within the pixel remains a challenge. An overview is given of different approaches to address this challenge, with possible advantages and disadvantages.

  1. High energy fuel compositions

    SciTech Connect

    Fisher, D.H.

    1983-07-19

    A high density liquid hydrocarbon fuel composition is disclosed, singularly suited for propelling turbojet limited volume missile systems designed for shipborne deployment. The contemplated fuels are basically composed of the saturated analogues of dimers of methyl cyclopentadiene and of dicyclopentadiene and optionally include the saturated analogues of the co-trimers of said dienes or the trimers of cyclopentadiene. The various dimers and trimers are combined in a relative relationship to provide optimal performing fuels for the indicated purpose.

  2. Charge separation pathways in a highly efficient polymer: fullerene solar cell material.

    PubMed

    Paraecattil, Arun Aby; Banerji, Natalie

    2014-01-29

    PBDTTPD is one of the best conjugated polymers for solar cell applications (up to 8.5% efficiency). We have investigated the dynamics of charge generation in the blend with fullerene (PCBM) and addressed highly relevant topics such as the role of bulk heterojunction structure, fullerene excitation, and excess energy. We show that there are multiple charge separation pathways. These include electron transfer from photoexcited polymer, hole transfer from photoexcited PCBM, prompt (<100 fs) charge generation in intimately mixed polymer:fullerene regions (which can occur from hot states), as well as slower electron and hole transfer from excitons formed in pure PBDTTPD or PCBM domains (diffusion to an interface is necessary). Very interestingly, all the charge separation pathways are highly efficient. For example, the yield of long-lived carriers is not significantly affected by the excitation wavelength, although this changes the fraction of photons absorbed by PCBM and the amount of excess energy brought to the system. Overall, the favorable properties of the PBDTTPD:PCBM blend in terms of morphology and exciton delocalization allow excellent charge generation in all circumstances and strongly contribute to the high photovoltaic performance of the blend.

  3. Space charge templates for high-current beam modeling

    SciTech Connect

    Vorobiev, Leonid G.; /Fermilab

    2008-07-01

    A computational method to evaluate space charge potential and gradients of charged particle beam in the presence of conducting boundaries, has been introduced. The three-dimensional (3D) field of the beam can be derived as a convolution of macro Green's functions (template fields), satisfying the same boundary conditions, as the original beam. Numerical experiments gave a confidence that space charge effects can be modeled by templates with enough accuracy and generality within dramatically faster computational times than standard combination: a grid density + Poisson solvers, realized in the most of Particle in Cell codes. The achieved rapidity may significantly broaden the high-current beam design space, making the optimization in automatic mode possible, which so far was only feasible for simplest self-field formulations such as rms envelope equations. The template technique may be used as a standalone program, or as an optional field solver in existing beam dynamics codes both in one-passage structures and in rings.

  4. High Energy Density Utracapacitors: Low-Cost, High Energy and Power Density, Nanotube-Enhanced Ultracapacitors

    SciTech Connect

    2010-04-01

    Broad Funding Opportunity Announcement Project: FastCAP is improving the performance of an ultracapacitor—a battery-like electronic device that can complement, and possibly even replace, an HEV or EV battery pack. Ultracapacitors have many advantages over conventional batteries, including long lifespans (over 1 million cycles, as compared to 10,000 for conventional batteries) and better durability. Ultracapacitors also charge more quickly than conventional batteries, and they release energy more quickly. However, ultracapacitors have fallen short of batteries in one key metric: energy density—high energy density means more energy storage. FastCAP is redesigning the ultracapacitor’s internal structure to increase its energy density. Ultracapacitors traditionally use electrodes made of irregularly shaped, porous carbon. FastCAP’s ultracapacitors are made of tiny, aligned carbon nanotubes. The nanotubes provide a regular path for ions moving in and out of the ultracapacitor’s electrode, increasing the overall efficiency and energy density of the device.

  5. Demonstration of cathode emittance dominated high bunch charge beams in a DC gun-based photoinjector

    SciTech Connect

    Gulliford, Colwyn Bartnik, Adam Bazarov, Ivan; Dunham, Bruce; Cultrera, Luca

    2015-03-02

    We present the results of transverse emittance and longitudinal current profile measurements of high bunch charge (≥100 pC) beams produced in the DC gun-based Cornell energy recovery linac photoinjector. In particular, we show that the cathode thermal and core beam emittances dominate the final 95% and core emittances measured at 9–9.5 MeV. Additionally, we demonstrate excellent agreement between optimized 3D space charge simulations and measurement, and show that the quality of the transverse laser distribution limits the optimal simulated and measured emittances. These results, previously thought achievable only with RF guns, demonstrate that DC gun based photoinjectors are capable of delivering beams with sufficient single bunch charge and beam quality suitable for many current and next generation accelerator projects such as Energy Recovery Linacs and Free Electron Lasers.

  6. High energy cosmic ray composition

    NASA Astrophysics Data System (ADS)

    Seo, E. S.

    Cosmic rays are understood to result from energetic processes in the galaxy, probably from supernova explosions. However, cosmic ray energies extend several orders of magnitude beyond the limit thought possible for supernova blast waves. Over the past decade several ground-based and space-based investigations were initiated to look for evidence of a limit to supernova acceleration in the cosmic-ray chemical composition at high energies. These high-energy measurements are difficult because of the very low particle fluxes in the most interesting regions. The space-based detectors must be large enough to collect adequate statistics, yet stay within the weight limit for space flight. Innovative approaches now promise high quality measurements over an energy range that was not previously possible. The current status of high energy cosmic-ray composition measurements and planned future missions are discussed in this paper.

  7. Laboratory Studies of Thermal Energy Charge Transfer of Silicon and Iron Ions in Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Kwong, Victor H. S.

    1996-01-01

    Charge transfer at electron-volt energies between multiply charged atomic ions and neutral atoms and molecules is of considerable importance in astrophysics, plasma physics, and in particular, fusion plasmas. In the year covered by this report, several major tasks were completed. These include: (1) the re-calibration of the ion gauge to measure the absolute particle densities of H2, He, N2, and CO for our current measurements; (2) the analysis of data for charge transfer reactions of N(exp 2 plus) ion and He, H2, N2, and CO; (3) measurement and data analysis of the charge transfer reaction of (Fe(exp 2 plus) ion and H2; (4) charge transfer measurement of Fe(exp 2 plus) ion and H2; and (5) redesign and modification of the ion detection and data acquisition system for the low energy beam facility (reflection time of flight mass spectrometer) dedicated to the study of state select charge transfer.

  8. EBIT spectroscopy of highly charged heavy ions relevant to hot plasmas

    NASA Astrophysics Data System (ADS)

    Nakamura, Nobuyuki

    2013-05-01

    An electron beam ion trap (EBIT) is a versatile device for studying highly charged ions. We have been using two types of EBITs for the spectroscopic studies of highly charged ions. One is a high-energy device called the Tokyo-EBIT, and another is a compact low-energy device called CoBIT. Complementary use of them enables us to obtain spectroscopic data for ions over a wide charge-state range interacting with electrons over a wide energy range. In this talk, we present EBIT spectra of highly charged ions for tungsten, iron, bismuth, etc., which are relevant to hot plasmas. Tungsten is considered to be the main impurity in the ITER (the next generation nuclear fusion reactor) plasma, and thus its emission lines are important for diagnosing and controlling the ITER plasma. We have observed many previously unreported lines to supply the lack of spectroscopic data of tungsten ions. Iron is one of the main components of the solar corona, and its spectra are used to diagnose temperature, density, etc. The diagnostics is usually done by comparing observed spectra with model calculations. An EBIT can provide spectra under a well-defined condition; they are thus useful to test the model calculations. Laser-produced bismuth plasma is one of the candidates for a soft x-ray source in the water window region. An EBIT has a narrow charge state distribution; it is thus useful to disentangle the spectra of laser-produced plasma containing ions with a wide charge-state range. Performed with the support and under the auspices of the NIFS Collaboration Research program (NIFS09KOAJ003) and JSPS KAKENHI Number 23246165, and partly supported by the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics.

  9. Real gas effects on charging and discharging processes of high pressure pneumatics

    NASA Astrophysics Data System (ADS)

    Luo, Yuxi; Wang, Xuanyin; Ge, Yaozheng

    2013-01-01

    The high pressure pneumatic system has been applied to special industries. It may cause errors when we analyze high pressure pneumatics under ideal gas assumption. However, the real gas effect on the performances of high pressure pneumatics is seldom investigated. In this paper, the real gas effects on air enthalpy and internal energy are estimated firstly to study the real gas effect on the energy conversion. Under ideal gas assumption, enthalpy and internal energy are solely related to air temperature. The estimation result indicates that the pressure enthalpy and pressure internal energy of real pneumatic air obviously decrease the values of enthalpy and internal energy for high pressure pneumatics, and the values of pressure enthalpy and pressure internal energy are close. Based on the relationship among pressure, enthalpy and internal energy, the real gas effects on charging and discharging processes of high pressure pneumatics are estimated, which indicates that the real gas effect accelerates the temperature and pressure decreasing rates during discharging process, and decelerates their increasing rates during charging process. According to the above analysis, and for the inconvenience in building the simulation model for real gas and the difficulty of measuring the detail thermal capacities of pneumatics, a method to compensate the real gas effect under ideal gas assumption is proposed by modulating the thermal capacity of the pneumatic container in simulation. The experiments of switching expansion reduction (SER) for high pressure pneumatics are used to verify this compensating method. SER includes the discharging process of supply tanks and the charging process of expansion tank. The simulated and experimental results of SER are highly consistent. The proposed compensation method provides a convenient way to obtain more realistic simulation results for high pressure pneumatics.

  10. High energy physics

    SciTech Connect

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    Hadron collider studies will focus on: (i) the search for the top quark with the newly installed D0 detector at the Fermilab Tevatron collider, (ii) the upgrade of the D0 detector to match the new main injector luminosity and (iii) R&D on silicon microstrip tracking devices for the SSC. High statistics studies of Z{sup 0} decay will continue with the OPAL detector at LEP. These studies will include a direct measurement of Z decay to neutrinos, the search for Higgs and heavy quark decays of Z. Preparations for the Large Scintillation Neutrino Detector (LSND) to measure neutrino oscillations at LAMPF will focus on data acquisition and testing of photomultiplier tubes. In the theoretical area E. Ma will concentrate on mass-generating radiative mechanisms for light quarks and leptons in renormalizable gauge field theories. J. Wudka`s program includes a detailed investigation of the magnetic-flip approach to the solar neutrino.

  11. Ionization of highly charged iodine ions near the Bohr velocity

    NASA Astrophysics Data System (ADS)

    Zhou, Xianming; Cheng, Rui; Lei, Yu; Sun, Yuanbo; Ren, Jieru; Liu, Shidong; Deng, Jiachuan; Zhao, Yongtao; Xiao, Guoqing

    2015-01-01

    We have measured the L-shell X-rays of iodine from the collisions of 3 MeV Iq+(q=15,20,22,25,26) ions with an iron target. It is found that the X-ray yield decreases with the increasing initial charge state. The energy of the subshell X-ray has a blue shift, which is independent of the projectile charge state. In addition, the relative intensity ratios of Lβ1,3,4 and Lβ2,15 to Lα1,2 X-ray are obtained and compared with the theoretical calculations. That they are larger than for a singly ionized atom can be understood by the multiple ionization effect of the outer-shell electrons.

  12. GEM Applications Outside High Energy Physics

    NASA Astrophysics Data System (ADS)

    Pinto, Serge Duarte

    2013-04-01

    From its invention in 1997, the Gas Electron Multiplier (GEM) has been applied in nuclear and high energy physics experiments. Over time however, other applications have also exploited the favorable properties of GEMs. The use of GEMs in these applications will be explained in principle and practice. This paper reviews applications in research, beam instrumentation and homeland security. The detectors described measure neutral radiations such as photons, x-rays, gamma rays and neutrons, as well as all kinds of charged radiation. This paper provides an overview of the still expanding range of possibilities of this versatile detector concept.

  13. High energy physics

    SciTech Connect

    Not Available

    1992-04-10

    The Counter Group continues to work on data analysis for Fermilab Experiment E653. Altogether, they expect several thousand reconstructed charm events and approximately 25 B pair events of which 12 have been observed thus far. Preparation continue for Fermilab Experiment E781, a high statistics study of charm baryon production. In the Theory Group, Cutkosky and collaborators study hadron phenomenology and non-perturbative QCD calculations. Levine has a long standing program in computational QED to obtain improved theoretical values for g-2 of the electron. Wolfenstein, Li, and their collaborators have worked on areas of weak interaction phenomenology that may yield insights beyond the standard model, e.g. CP violation and non-zero neutrino masses. Holman has been concerned with phase transitions in gauge theories relevant to cosmological problems. During 1991 most of the group effort was concentrated on the L3 experiment at CERN. Highlights of the results from the analysis of the Z[degrees] resonance include (a) a measurement of the strong coupling constant [alpha][sub s] for b quarks (b) a precision measurement of the average time of B hadrons and (c) a direct determination of the number of light neutrino faculties from the reaction e[sup +]e[sup [minus

  14. High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines

    SciTech Connect

    Gravel, Roland; Maronde, Carl; Gehrke, Chris; Fiveland, Scott

    2010-10-30

    This is the final report of the High Efficiency Clean Combustion (HECC) Research Program for the U.S. Department of Energy. Work under this co-funded program began in August 2005 and finished in July 2010. The objective of this program was to develop and demonstrate a low emission, high thermal efficiency engine system that met 2010 EPA heavy-duty on-highway truck emissions requirements (0.2g/bhp-hr NOx, 0.14g/bhp-hr HC and 0.01g/bhp-hr PM) with a thermal efficiency of 46%. To achieve this goal, development of diesel homogenous charge compression ignition (HCCI) combustion was the chosen approach. This report summarizes the development of diesel HCCI combustion and associated enabling technologies that occurred during the HECC program between August 2005 and July 2010. This program showed that although diesel HCCI with conventional US diesel fuel was not a feasible means to achieve the program objectives, the HCCI load range could be increased with a higher volatility, lower cetane number fuel, such as gasoline, if the combustion rate could be moderated to avoid excessive cylinder pressure rise rates. Given the potential efficiency and emissions benefits, continued research of combustion with low cetane number fuels and the effects of fuel distillation are recommended. The operation of diesel HCCI was only feasible at part-load due to a limited fuel injection window. A 4% fuel consumption benefit versus conventional, low-temperature combustion was realized over the achievable operating range. Several enabling technologies were developed under this program that also benefited non-HCCI combustion. The development of a 300MPa fuel injector enabled the development of extended lifted flame combustion. A design methodology for minimizing the heat transfer to jacket water, known as precision cooling, will benefit conventional combustion engines, as well as HCCI engines. An advanced combustion control system based on cylinder pressure measurements was developed. A Well

  15. High-energy spectroscopic astrophysics

    NASA Astrophysics Data System (ADS)

    Güdel, Manuel; Walter, Roland

    After three decades of intense research in X-ray and gamma-ray astronomy, the time was ripe to summarize basic knowledge on X-ray and gamma-ray spectroscopy for interested students and researchers ready to become involved in new high-energy missions. This volume exposes both the scientific basics and modern methods of high-energy spectroscopic astrophysics. The emphasis is on physical principles and observing methods rather than a discussion of particular classes of high-energy objects, but many examples and new results are included in the three chapters as well.

  16. Experimental High Energy Neutrino Astrophysics

    SciTech Connect

    Distefano, Carla

    2005-10-12

    Neutrinos are considered promising probes for high energy astrophysics. More than four decades after deep water Cerenkov technique was proposed to detect high energy neutrinos. Two detectors of this type are successfully taking data: BAIKAL and AMANDA. They have demonstrated the feasibility of the high energy neutrino detection and have set first constraints on TeV neutrino production astrophysical models. The quest for the construction of km3 size detectors have already started: in the South Pole, the IceCube neutrino telescope is under construction; the ANTARES, NEMO and NESTOR Collaborations are working towards the installation of a neutrino telescope in the Mediterranean Sea.

  17. High energy physics

    SciTech Connect

    Not Available

    1992-04-10

    The Counter Group continues to work on data analysis for Fermilab Experiment E653. Altogether, they expect several thousand reconstructed charm events and approximately 25 B pair events of which 12 have been observed thus far. Preparation continue for Fermilab Experiment E781, a high statistics study of charm baryon production. In the Theory Group, Cutkosky and collaborators study hadron phenomenology and non-perturbative QCD calculations. Levine has a long standing program in computational QED to obtain improved theoretical values for g-2 of the electron. Wolfenstein, Li, and their collaborators have worked on areas of weak interaction phenomenology that may yield insights beyond the standard model, e.g. CP violation and non-zero neutrino masses. Holman has been concerned with phase transitions in gauge theories relevant to cosmological problems. During 1991 most of the group effort was concentrated on the L3 experiment at CERN. Highlights of the results from the analysis of the Z{degrees} resonance include (a) a measurement of the strong coupling constant {alpha}{sub s} for b quarks (b) a precision measurement of the average time of B hadrons and (c) a direct determination of the number of light neutrino faculties from the reaction e{sup +}e{sup {minus}} {yields} {nu}{bar {nu}}{gamma}. We also began a major upgrade of the L3 luminosity monitor by replacing PWC chamber by a Si strip system in front of the BGO calorimeters. Finally we have continued our SSC R&D work on BaF{sub 2} by joining the GEM collaboration.

  18. Highly Charged Protein Ions: The Strongest Organic Acids to Date.

    PubMed

    Zenaidee, Muhammad A; Leeming, Michael G; Zhang, Fangtong; Funston, Toby T; Donald, William A

    2017-07-10

    The basicity of highly protonated cytochrome c (cyt c) and myoglobin (myo) ions were investigated using tandem mass spectrometry, ion-molecule reactions (IMRs), and theoretical calculations as a function of charge state. Surprisingly, highly charged protein ions (HCPI) can readily protonate non-polar molecules and inert gases, including Ar, O2 , and N2 in thermal IMRs. The most HCPIs that can be observed are over 130 kJ mol(-1) less basic than the least basic neutral organic molecules known (tetrafluoromethane and methane). Based on theoretical calculations, it is predicted that protonated cyt c and myo ions should spontaneously lose a proton to vacuum for charge states in which every third residue is protonated. In this study, HCPIs are formed where every fourth residue on average is protonated. These results indicate that protein ions in higher charge states can be formed using a low-pressure ion source to reduce proton-transfer reactions between protein ions and gases from the atmosphere. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Charge transport in highly aligned conjugated polymers (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    O'Connor, Brendan; Xue, Xiao; Sun, Tianlei

    2015-10-01

    Charge transport in conjugated polymers has a complex dependence on film morphology. Aligning the polymer chains in the plane of the film simplifies the morphology of the system allowing for insight into the morphological dependence of charge transport. Highly aligned conjugated polymers have also been shown to lead to among the highest reported field effect mobilities in these materials to date. In this talk, a comparison will be made between aligned polymer films processed using two primary methods, nanostructured substrate assisted growth and mechanical strain. A number of polymer systems including P3HT, pBTTT, N2200, and PCDTPT are considered, and the processed films are analyzed in detail with optical spectroscopy, AFM, TEM, and X-ray scattering providing insight into the molecular features that allow for effective alignment. By contrasting the morphology of these films, several insights into underlying charge transport limitations can be made. A number of key morphological features that lead to high field effect mobility and charge transport anisotropy in these films will be discussed. In addition, several unique features of organic thin film transistor device behavior in these systems will be examined including the commonly observed gate voltage dependence of saturated field effect mobility.

  20. Future of high energy physics

    SciTech Connect

    Panofsky, W.K.H.

    1984-06-01

    A rough overview is given of the expectations for the extension of high energy colliders and accelerators into the xtremely high energy range. It appears likely that the SSC or something like it will be the last gasp of the conventional method of producing high energy proton-proton collisions using synchrotron rings with superconducting magnets. It is likely that LEP will be the highest energy e+e/sup -/ colliding beam storage ring built. The future beyond that depends on the successful demonstrations of new technologies. The linear collider offers hope in this respect for some extension in energy for electrons, and maybe even for protons, but is too early to judge whether, by how much, or when such an extension will indeed take place.

  1. Damage in graphene due to electronic excitation induced by highly charged ions

    NASA Astrophysics Data System (ADS)

    Hopster, J.; Kozubek, R.; Ban-d'Etat, B.; Guillous, S.; Lebius, H.; Schleberger, M.

    2014-06-01

    Graphene is expected to be rather insensitive to ion irradiation. We demonstrate that single layers of exfoliated graphene sustain significant damage from irradiation with slow highly charged ions. We have investigated the ion induced changes of graphene after irradiation with highly charged ions of different charge states (q = 28-42) and kinetic energies ({{E}_{\\text{kin}}} = 150-450 keV). Atomic force microscopy images reveal that the ion induced defects are not topographic in nature but are related to a significant change in friction. To create these defects, a minimum charge state is needed. In addition to this threshold behaviour, the required minimum charge state as well as the defect diameter show a strong dependency on the kinetic energy of the projectiles. From the linear dependency of the defect diameter on the projectile velocity we infer that electronic excitations triggered by the incoming ion in the above-surface phase play a dominant role for this unexpected defect creation in graphene.

  2. Multiple electron capture from isolated protein poly-anions in collision with slow highly charged ions.

    PubMed

    Milosavljević, A R; Rousseau, P; Domaracka, A; Huber, B A; Giuliani, A

    2017-08-02

    Collisions of 375 keV Xe(25+) ions with trapped mass/charge selected poly-anions of the cytochrome C protein (∼12.5 kDa) were studied by coupling a linear quadrupole ion trap with low-energy ion beam facility. Tandem mass spectra were recorded for the protein precursor charge states ranging from -9 to -17. The present work reports the first study of slow highly charged ion collisions with poly-anions. A high signal to noise ratio allowed the study of the intensity of single and multiple electron removal by a projectile, as well as associated neutral losses, as a function of the target charge state. Relative single and double electron detachment cross sections were found to increase with increasing charge state of the precursor anion. The experimental findings are supported by the calculations of the total electron capture cross sections, based on the classical over-the-barrier model, restricted to a simple uniformly charged linear protein structure and a near-end electron capture.

  3. Energy spread and time structure of ion beams extracted from the ReA-EBIT rare isotope charge breeder

    SciTech Connect

    Baumann, Thomas M.; Lapierre, Alain; Schwarz, Stefan; Kittimanapun, Kritsada; Bollen, Georg

    2015-01-09

    The ReA re-accelerator of the National Superconducting Cyclotron Laboratory at Michigan State University utilizes an Electron Beam Ion Trap (EBIT) for charge breeding thermalized rare isotope beams. Recent commissioning measurements have been performed to characterize the performance of this EBIT. The energy spread of extracted highly charged ion beams was measured to be about 0.3% of the total beam energy. From this, the temperature of the ion ensemble in the trap is calculated to be kT{sub q}/q = 31eV for O{sup 7+}, while it is kT{sub q}/q = 25eV for K{sup 15+}. In addition initial results are presented for two extraction schemes developed to spread highly charged ion pulses in time.

  4. Chemical Interaction, Space-charge Layer and Molecule Charging Energy for a TiO2/TCNQ Interface.

    PubMed

    Martínez, José I; Flores, Fernando; Ortega, José; Rangan, Sylvie; Ruggieri, Charles; Bartynski, Robert

    2015-09-24

    Three driving forces control the energy level alignment between transition-metal oxides and organic materials: the chemical interaction between the two materials, the organic electronegativity and the possible space charge layer formed in the oxide. This is illustrated in this study by analyzing experimentally and theoretically a paradigmatic case, the TiO2(110) / TCNQ interface: due to the chemical interaction between the two materials, the organic electron affinity level is located below the Fermi energy of the n-doped TiO2. Then, one electron is transferred from the oxide to this level and a space charge layer is developed in the oxide inducing an important increase in the interface dipole and in the oxide work-function.

  5. Chemical Interaction, Space-charge Layer and Molecule Charging Energy for a TiO2/TCNQ Interface

    PubMed Central

    Martínez, José I.; Flores, Fernando; Ortega, José; Rangan, Sylvie; Ruggieri, Charles; Bartynski, Robert

    2015-01-01

    Three driving forces control the energy level alignment between transition-metal oxides and organic materials: the chemical interaction between the two materials, the organic electronegativity and the possible space charge layer formed in the oxide. This is illustrated in this study by analyzing experimentally and theoretically a paradigmatic case, the TiO2(110) / TCNQ interface: due to the chemical interaction between the two materials, the organic electron affinity level is located below the Fermi energy of the n-doped TiO2. Then, one electron is transferred from the oxide to this level and a space charge layer is developed in the oxide inducing an important increase in the interface dipole and in the oxide work-function. PMID:26877826

  6. Dynamics of charged current sheets at high-latitude magnetopause

    NASA Astrophysics Data System (ADS)

    Savin, S.; Amata, E.; Zelenyi, L.; Dunlop, M.; Andre, M.; Song, P.; Blecki, J.; Buechner, J.; Rauch, J. L.; Skalsky, A.

    E. Amata (2), L. Zelenyi (1), M. Dunlop (3), M. Andre (4), P. Song (5), J. Blecki (6), J. Buechner (7), J.L Rauch, J.G. Trotignon (8), G. Consolini, F. Marcucci (2), B. Nikutowski (7), A. Skalsky, S. Romanov, E. Panov (1) (2) IFSI, Roma, Italy, (3) RAL, UK, (4) IRFU, Uppsala, Sweden, (5) U. Mass. Lowell, USA, (6) SRC, Warsaw, Poland, (7) MPAe, Germany, (8) LPCE, Orleans, France; We study dynamics of thin current sheets over polar cusps from data of Interball-1 and Cluster. At the high-beta magnetopause current sheet width often reaches ion gyroradius scales, that leads to their Hall dynamics in the presence of local surface charges. Respective perpendicular electric fields provide the means for momentum coupling through the current sheets and are able to accelerate ions with gyroradius of the order or larger than the sheet width. At borders of large diamagnetic cavities this mechanism is able to support mass exchange and accelerate/ heat incoming magnetosheath particles. At larger scales the inhomogeneous electric fields at the current sheet borders can accelerate incident plasma downtail along magnetopause via inertial drift. It serves to move external plasma away for dynamic equilibrium supporting. Farther away from magnetopause similar nonlinear electric field wave trains, selfconsistently produced by interaction of reflected from the obstacle waves with magnetosheath fluctuations, destroy the incident flux into accelerated magnetosonic jets and decelerated Alfvenic flows and generate small-scale current sheets due to different sign of electron and ion inertial drift in the nonlinear electric field bursts. We suggest that this direct kinetic energy transformation creates current sheets with anomalous statistics of field rotation angles in the turbulent boundary layer in front of magnetopause, which have been attributed earlier to an intermittent turbulence. We compare measured spectra with a model of nonlinear system with intermittent chaotic behavior. Work was

  7. Cryogenic linear Paul trap for cold highly charged ion experiments.

    PubMed

    Schwarz, M; Versolato, O O; Windberger, A; Brunner, F R; Ballance, T; Eberle, S N; Ullrich, J; Schmidt, P O; Hansen, A K; Gingell, A D; Drewsen, M; López-Urrutia, J R Crespo

    2012-08-01

    Storage and cooling of highly charged ions require ultra-high vacuum levels obtainable by means of cryogenic methods. We have developed a linear Paul trap operating at 4 K capable of very long ion storage times of about 30 h. A conservative upper bound of the H(2) partial pressure of about 10(-15) mbar (at 4 K) is obtained from this. External ion injection is possible and optimized optical access for lasers is provided, while exposure to black body radiation is minimized. First results of its operation with atomic and molecular ions are presented. An all-solid state laser system at 313 nm has been set up to provide cold Be(+) ions for sympathetic cooling of highly charged ions.

  8. HIGH ENERGY CRYSTALLINE LASER MATERIALS.

    DTIC Science & Technology

    The object of this research is to obtain improved laser materials for high energy lasers. During the third quarter of this contract, the study of... energy transfer from Cr to Nd in GdAlO3 and YAlG continued. In order to study the Nd fluorescence arising via transfer from Cr, the material was excited

  9. Neutron energy determination with a high-purity germanium detector

    NASA Technical Reports Server (NTRS)

    Beck, Gene A.

    1992-01-01

    Two areas that are related to planetary gamma-ray spectrometry are investigated. The first task was the investigation of gamma rays produced by high-energy charged particles and their secondaries in planetary surfaces by means of thick target bombardments. The second task was the investigation of the effects of high-energy neutrons on gamma-ray spectral features obtained with high-purity Ge-detectors. For both tasks, as a function of the funding level, the experimental work was predominantly tied to that of other researchers, whenever there was an opportunity to participate in bombardment experiments at large or small accelerators for charged particles.

  10. Adenylate nucleotide levels and energy charge in Arthrobacter crystallopoietes during growth and starvation.

    PubMed

    Leps, W T; Ensign, J C

    1979-07-01

    The adenylate nucleotide concentrations, based on internal water space, were determined in cells of Arthrobacter crystallopoietes during growth and starvation and the energy charge of the cells was calculated. The energy charge of spherical cells rose during the first 10 h of growth, then remained nearly constant for as long as 20 h into the stationary phase. The energy charge of rod-shaped cells rose during the first 4 h of growth, then remained constant during subsequent growth and decreased in the stationary growth phase. Both spherical and rod-shaped cells excreted adenosine monophosphate but not adenosine triphosphate or adenosine diphosphate during starvation. The intracellular energy charge of spherical cells declined during the initial 10 h and then remained constant for 1 week of starvation at a value of 0.78. The intracellular energy charge of rod-shaped cells declined during the first 24 h of starvation, remained constant for the next 80 h, then decreased to a value of 0.73 after a total of 168 h starvation. Both cell forms remained more than 90% viable during this time. Addition of a carbon and energy source to starving cells resulted in an increase in the ATP concentration and as a result the energy charge increased to the smae levels as found during growth.

  11. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1979-01-01

    Managed by the Marshall Space Flight Center and built by TRW, the third High Energy Astronomy Observatory was launched September 20, 1979. HEAO-3 was designed to study gamma-rays and cosmic ray particles.

  12. Charge and energy transport in one-dimensional nanomaterials

    NASA Astrophysics Data System (ADS)

    Blaustein, Gail S.

    This dissertation is comprised of two parts: Charge transport in DNA hair-pins and light transport in linear arrays of dielectric spherical particles. Experimental results suggest specific charge (hole) migration kinetics for stilbene-capped DNA hair-pins of the form Sa(AT)nSd, where Sa and Sd denote the acceptor and donor stilbene respectively and (AT) n a bridge of adenine-thymine base pairs of length n = 1 -- 7. Kinetics equations are derived from experimental data for both charge separation and recombination. Counterion binding to the radicalized stilbene ions is considered a significant contributor to charge migration kinetics. In the second part, bound modes infinite linear chains of dielectric particles of various lengths and particle materials are investigated. Through a unique application of the multisphere Mie scattering formalism, numerical methods are developed to calculate eigen-optical modes for various arrays of particles. Eigenmodes with the highest quality factor are identified by the application of a modified version of the Newton-Raphson algorithm. Convergence is strong using this algorithm for linear chains of up to several hundred particles. By comparing the dipolar approach with the more complex approach utilizing a combination of both dipolar and quadrupolar approaches, the dipolar approach is shown to have an accuracy of approximately 99%. The quality factor increases with the cubed value of the number of particles in agreement with previously developed theory. The effects of disordering of particle sizes and inter-particle distances as well as interference of guiding modes in "traffic circle" waveguide configurations will be discussed.

  13. High-frequency acoustic charge transport in GaAs nanowires.

    PubMed

    Büyükköse, S; Hernández-Mínguez, A; Vratzov, B; Somaschini, C; Geelhaar, L; Riechert, H; van der Wiel, W G; Santos, P V

    2014-04-04

    The oscillating piezoelectric fields accompanying surface acoustic waves are able to transport charge carriers in semiconductor heterostructures. Here, we demonstrate high-frequency (above 1 GHz) acoustic charge transport in GaAs-based nanowires deposited on a piezoelectric substrate. The short wavelength of the acoustic modulation, smaller than the length of the nanowire, allows the trapping of photo-generated electrons and holes at the spatially separated energy minima and maxima of conduction and valence bands, respectively, and their transport along the nanowire with a well defined acoustic velocity towards indium-doped recombination centers.

  14. 18 CFR 11.11 - Energy gains method of determining headwater benefits charges.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... most likely alternative source during the period for which the charge is assessed. ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Energy gains method of... ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL...

  15. 18 CFR 11.11 - Energy gains method of determining headwater benefits charges.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... most likely alternative source during the period for which the charge is assessed. ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Energy gains method of... ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT ANNUAL...

  16. Variation in adenylate energy charge and phosphoadenylate pool size in estuarine organisms after an oil spill

    SciTech Connect

    Shafer, T.H.; Hackney, C.T.

    1987-05-01

    Adenylate energy charge (AEC) is the proportion of the total phosphoadenylate pool charged with high-energy bonds. AEC values vary between zero and one by definition. Since AEC can be measured in any organism, decreases might be a universal measure of sublethal environmental stress. In some organisms which maintain high AEC while withstanding natural or anthropogenic stress, the absolute concentration of ATP and the total phosphoadenylate pool (TPP) decrease proportionally. However, in certain organisms the TPP shows dramatic natural fluctuations unrelated to pollution or stress. On 28 June 1983, a tanker spilled approximately 42,000 gallons of number6 diesel oil in the Cape Fear River, North Carolina, USA. Oil covered the tidal marshes on the east side of the river and provided an opportunity to determine if either the AEC or TPP in a variety of organisms would respond to this stress. Five test species were examined as long as one year after the spill. AEC and TPP values of the organisms were compared between contaminated and uncontaminated sites at all seasons. This is the first investigation to monitor AEC in a number of taxonomically distinct estuarine species during an extended period after an oil spill.

  17. Kinetic energy distribution of multiply charged ions in Coulomb explosion of Xe clusters.

    PubMed

    Heidenreich, Andreas; Jortner, Joshua

    2011-02-21

    We report on the calculations of kinetic energy distribution (KED) functions of multiply charged, high-energy ions in Coulomb explosion (CE) of an assembly of elemental Xe(n) clusters (average size (n) = 200-2171) driven by ultra-intense, near-infrared, Gaussian laser fields (peak intensities 10(15) - 4 × 10(16) W cm(-2), pulse lengths 65-230 fs). In this cluster size and pulse parameter domain, outer ionization is incomplete∕vertical, incomplete∕nonvertical, or complete∕nonvertical, with CE occurring in the presence of nanoplasma electrons. The KEDs were obtained from double averaging of single-trajectory molecular dynamics simulation ion kinetic energies. The KEDs were doubly averaged over a log-normal cluster size distribution and over the laser intensity distribution of a spatial Gaussian beam, which constitutes either a two-dimensional (2D) or a three-dimensional (3D) profile, with the 3D profile (when the cluster beam radius is larger than the Rayleigh length) usually being experimentally realized. The general features of the doubly averaged KEDs manifest the smearing out of the structure corresponding to the distribution of ion charges, a marked increase of the KEDs at very low energies due to the contribution from the persistent nanoplasma, a distortion of the KEDs and of the average energies toward lower energy values, and the appearance of long low-intensity high-energy tails caused by the admixture of contributions from large clusters by size averaging. The doubly averaged simulation results account reasonably well (within 30%) for the experimental data for the cluster-size dependence of the CE energetics and for its dependence on the laser pulse parameters, as well as for the anisotropy in the angular distribution of the energies of the Xe(q+) ions. Possible applications of this computational study include a control of the ion kinetic energies by the choice of the laser intensity profile (2D∕3D) in the laser-cluster interaction volume.

  18. Penning traps with unitary architecture for storage of highly charged ions.

    PubMed

    Tan, Joseph N; Brewer, Samuel M; Guise, Nicholas D

    2012-02-01

    Penning traps are made extremely compact by embedding rare-earth permanent magnets in the electrode structure. Axially-oriented NdFeB magnets are used in unitary architectures that couple the electric and magnetic components into an integrated structure. We have constructed a two-magnet Penning trap with radial access to enable the use of laser or atomic beams, as well as the collection of light. An experimental apparatus equipped with ion optics is installed at the NIST electron beam ion trap (EBIT) facility, constrained to fit within 1 meter at the end of a horizontal beamline for transporting highly charged ions. Highly charged ions of neon and argon, extracted with initial energies up to 4000 eV per unit charge, are captured and stored to study the confinement properties of a one-magnet trap and a two-magnet trap. Design considerations and some test results are discussed.

  19. Study on High Efficient Electric Vehicle Wireless Charging System

    NASA Astrophysics Data System (ADS)

    Chen, H. X.; Liu, Z. Z.; Zeng, H.; Qu, X. D.; Hou, Y. J.

    2016-08-01

    Electric and unmanned is a new trend in the development of automobile, cable charging pile can not meet the demand of unmanned electric vehicle. Wireless charging system for electric vehicle has a high level of automation, which can be realized by unmanned operation, and the wireless charging technology has been paid more and more attention. This paper first analyses the differences in S-S (series-series) and S-P (series-parallel) type resonant wireless power supply system, combined with the load characteristics of electric vehicle, S-S type resonant structure was used in this system. This paper analyses the coupling coefficient of several common coil structure changes with the moving distance of Maxwell Ansys software, the performance of disc type coil structure is better. Then the simulation model is established by Simulink toolbox in Matlab, to analyse the power and efficiency characteristics of the whole system. Finally, the experiment platform is set up to verify the feasibility of the whole system and optimize the system. Based on the theoretical and simulation analysis, the higher charging efficiency is obtained by optimizing the magnetic coupling mechanism.

  20. Array of micro-machined mass energy micro-filters for charged particles

    NASA Technical Reports Server (NTRS)

    Stalder, Roland E. (Inventor); Van Zandt, Thomas R. (Inventor); Hecht, Michael H. (Inventor); Grunthaner, Frank J. (Inventor)

    1996-01-01

    An energy filter for charged particles includes a stack of micro-machined wafers including plural apertures passing through the stack of wafers, focusing electrodes bounding charged particle paths through the apertures, an entrance orifice to each of the plural apertures and an exit orifice from each of the plural apertures and apparatus for biasing the focusing electrodes with an electrostatic potential corresponding to an energy pass band of the filter.

  1. Design of a charge sensitive preamplifier on high resistivity silicon

    SciTech Connect

    Radeka, V.; Rehak, P.; Rescia, S.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Strueder, L.; Kemmer, J.

    1987-01-01

    A low noise, fast charge sensitive preamplifier was designed on high resistivity, detector grade silicon. It is built at the surface of a fully depleted region of n-type silicon. This allows the preamplifier to be placed very close to a detector anode. The preamplifier uses the classical input cascode configuration with a capacitor and a high value resistor in the feedback loop. The output stage of the preamplifier can drive a load up to 20pF. The power dissipation of the preamplifier is 13mW. The amplifying elements are ''Single Sided Gate JFETs'' developed especially for this application. Preamplifiers connected to a low capacitance anode of a drift type detector should achieve a rise time of 20ns and have an equivalent noise charge (ENC), after a suitable shaping, of less than 50 electrons. This performance translates to a position resolution better than 3..mu..m for silicon drift detectors. 6 refs., 9 figs.

  2. Optimization of accelerated charged particle beam for ADS energy production

    NASA Astrophysics Data System (ADS)

    Baldin, A. A.; Berlev, A. I.; Paraipan, M.; Tyutyunnikov, S. I.

    2017-01-01

    A comparative analysis and optimization of energy efficiency for proton and ion beams in ADS systems is performed via simulation using a GEANT4 code with account for energy consumption for different accelerator types. It is demonstrated that for light nuclei, beginning from 7Li, with energies above 1 GeV/nucleon, ion beams are considerably (several times) more efficient than the 1-3 GeV proton beam. The possibility of achieving energy deposition equivalent to 1 GeV protons in a quasi-infinite uranium target with higher efficiency (and twice as small accelerator size) in the case of acceleration of light ions is substantiated.

  3. Investigation of charged-hadron production in proton–nucleus interactions at the energy of 50 GeV

    SciTech Connect

    Bordanovskii, A. Yu.; Volkov, A. A.; Elumahov, D. K.; Efremov, V. P.; Kalinin, A. Yu.; Korablev, A. V.; Krinitsyn, A. N.; Kryshkin, V. I.; Kulagin, N. V.; Skvortsov, V. V.; Talov, V. V.; Turchanovich, L. K.

    2016-07-15

    Cross sections for the production of high-transverse-momentum charged hadrons in proton–nucleus interactions at the incident-proton energy of 50 GeV were measured with the aid of the FODS double-arm spectrometer. Single hadrons (charged pions and protons) emitted at a c.m. angle of about 90° and high-effective-mass pairs of hadrons flying apart at a c.m. angle of 180° were detected simultaneously. Results on the production of single hadrons are presented.

  4. New High-Energy Nanofiber Anode Materials

    SciTech Connect

    Zhang, Xiangwu; Fedkiw, Peter; Khan, Saad; Huang, Alex; Fan, Jiang

    2013-11-15

    The overall goal of the proposed work was to use electrospinning technology to integrate dissimilar materials (lithium alloy and carbon) into novel composite nanofiber anodes, which simultaneously had high energy density, reduced cost, and improved abuse tolerance. The nanofiber structure allowed the anodes to withstand repeated cycles of expansion and contraction. These composite nanofibers were electrospun into nonwoven fabrics with thickness of 50 μm or more, and then directly used as anodes in a lithium-ion battery. This eliminated the presence of non-active materials (e.g., conducting carbon black and polymer binder) and resulted in high energy and power densities. The nonwoven anode structure also provided a large electrode-electrolyte interface and, hence, high rate capacity and good lowtemperature performance capability. Following are detailed objectives for three proposed project periods. • During the first six months: Obtain anodes capable of initial specific capacities of 650 mAh/g and achieve ~50 full charge/discharge cycles in small laboratory scale cells (50 to 100 mAh) at the 1C rate with less than 20 percent capacity fade; • In the middle of project period: Assemble, cycle, and evaluate 18650 cells using proposed anode materials, and demonstrate practical and useful cycle life (750 cycles of ~70% state of charge swing with less than 20% capacity fade) in 18650 cells with at least twice improvement in the specific capacity than that of conventional graphite electrodes; • At the end of project period: Deliver 18650 cells containing proposed anode materials, and achieve specific capacities greater than 1200 mAh/g and cycle life longer than 5000 cycles of ~70% state of charge swing with less than 20% capacity fade.

  5. Electrostatic solvation free energies of charged hard spheres using molecular dynamics with density functional theory interactions

    NASA Astrophysics Data System (ADS)

    Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.; Mundy, Chistopher J.

    2017-10-01

    Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. Here, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation and isolate the effects of charge and cavitation, comparing to the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. This suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.

  6. Charge and energy minimization in electrical/magnetic stimulation of nervous tissue.

    PubMed

    Jezernik, Saso; Sinkjaer, Thomas; Morari, Manfred

    2010-08-01

    In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.

  7. Solar cell with charged quantum dots: optimization for high efficiency

    NASA Astrophysics Data System (ADS)

    Sablon, K.; Mitin, V.; Vagidov, N.; Sergeev, A.

    2013-05-01

    Most of investigations of quantum dot photovoltaic devices are aimed at the development of the intermediate band solar cell. To form the intermediate band by quantum dot electron levels, the dots should be placed close to one to another. This leads to strain accumulation and defects, which increase the photocarrier recombination, and recombination losses. To avoid the nanostructuring-induced recombination, we proposed and studied an alternative approach, which is based on the separation of quantum dots (QDs) or QD clusters from the conducting channels by potential barriers created by quantum dots with built-in charge (Q-BIC). Charging of QDs improves the performance of QD solar cells due to the following factors: Negative dot charging increases electron coupling to sub-bandgap photons and provides effective harvesting of IR energy. Because of the strong difference in effective masses of electrons and holes, an electron level spacing in QDs substantially exceeds a level spacing for holes. Therefore, QDs act as deep traps for electrons, but they are shallow traps for holes. Thus, the holes trapped in QDs may be excited by thermal phonons, while excitation of localized QDs electrons requires IR radiation or the interaction with hot electrons. Therefore, n-doping of QD structures is strongly preferable for photovoltaic applications. Charging of QDs is also an effective tool for managing the potential profile at micro- and nanoscales. Filling QDs predominantly from dopants in the QD medium allows one to maintain the macroscale profile analogous to that in the best conventional single-junction solar cells.

  8. Charge-state-dependent energy loss of slow ions. II. Statistical atom model

    NASA Astrophysics Data System (ADS)

    Wilhelm, Richard A.; Möller, Wolfhard

    2016-05-01

    A model for charge-dependent energy loss of slow ions is developed based on the Thomas-Fermi statistical model of atoms. Using a modified electrostatic potential which takes the ionic charge into account, nuclear and electronic energy transfers are calculated, the latter by an extension of the Firsov model. To evaluate the importance of multiple collisions even in nanometer-thick target materials we use the charge-state-dependent potentials in a Monte Carlo simulation in the binary collision approximation and compare the results to experiment. The Monte Carlo results reproduce the incident charge-state dependence of measured data well [see R. A. Wilhelm et al., Phys. Rev. A 93, 052708 (2016), 10.1103/PhysRevA.93.052708], even though the experimentally observed charge exchange dependence is not included in the model.

  9. Transferred Charge and Specific Energy Associated with Lightning Hitting Wind Turbines in Japan

    NASA Astrophysics Data System (ADS)

    Ishii, Masaru; Saito, Mikihisa; Chihara, Masaaki; Natsuno, Daisuke

    Cumulative distributions of charge amount and specific energy of upward winter lightning flashes, observed by Rogowski coils instrumented on wind turbines in the coastal area of the Sea of Japan, were analyzed. Among 284 current data recorded at 16 measuring sites, the transferred charge of 13 lightning flashes exceeded 300C, and the specific energy of 2 flashes exceeded 10MJ/Ω. The medians of transferred charge are about 60% higher than those observed at Nikaho wind farm in winter for the three types of current, negative, positive and bipolar. Importance of observation at multiple sites is manifest.

  10. Nuclear charge symmetry breaking and the 3H-3He binding energy difference

    NASA Astrophysics Data System (ADS)

    Brandenburg, R. A.; Chulick, G. S.; Kim, Y. E.; Klepacki, D. J.; Machleidt, R.; Picklesimer, A.; Thaler, R. M.

    1988-02-01

    We study the 3H- 3He binding energy difference, taking into account the Coulomb interaction and charge symmetry breaking of the nuclear force consistent with recent NN experimental data. Realistic interactions are generated which describe the charge symmetry violations reflected in the different nucleon-nucleon scattering lengths. The influence of nuclear charge symmetry breaking on the perturbative Coulomb contribution to the 3He binding energy is discussed. It is shown that the experimental mass difference can be explained by these and theoretical estimates of other known effects.

  11. An electron energy-loss study of picene and chrysene based charge transfer salts

    SciTech Connect

    Müller, Eric; Mahns, Benjamin; Büchner, Bernd; Knupfer, Martin

    2015-05-14

    The electronic excitation spectra of charge transfer compounds built from the hydrocarbons picene and chrysene, and the strong electron acceptors F{sub 4}TCNQ (2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane) and TCNQ (7,7,8,8-tetracyanoquinodimethan) have been investigated using electron energy-loss spectroscopy. The corresponding charge transfer compounds have been prepared by co-evaporation of the pristine constituents. We demonstrate that all investigated combinations support charge transfer, which results in new electronic excitation features at low energy. This might represent a way to synthesize low band gap organic semiconductors.

  12. A vacuum spark ion source: High charge state metal ion beams

    NASA Astrophysics Data System (ADS)

    Yushkov, G. Yu.; Nikolaev, A. G.; Oks, E. M.; Frolova, V. P.

    2016-02-01

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  13. A vacuum spark ion source: High charge state metal ion beams

    SciTech Connect

    Yushkov, G. Yu. Nikolaev, A. G.; Frolova, V. P.; Oks, E. M.

    2016-02-15

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  14. Electron energy and charge albedos - calorimetric measurement vs Monte Carlo theory

    SciTech Connect

    Lockwood, G.J.; Ruggles, L.E.; Miller, G.H.; Halbleib, J.A.

    1981-11-01

    A new calorimetric method has been employed to obtain saturated electron energy albedos for Be, C, Al, Ti, Mo, Ta, U, and UO/sub 2/ over the range of incident energies from 0.1 to 1.0 MeV. The technique was so designed to permit the simultaneous measurement of saturated charge albedos. In the cases of C, Al, Ta, and U the measurements were extended down to about 0.025 MeV. The angle of incidence was varied from 0/sup 0/ (normal) to 75/sup 0/ in steps of 15/sup 0/, with selected measurements at 82.5/sup 0/ in Be and C. In each case, state-of-the-art predictions were obtained from a Monte Carlo model. The generally good agreement between theory and experiment over this extensive parameter space represents a strong validation of both the theoretical model and the new experimental method. Nevertheless, certain discrepancies at low incident energies, especially in high-atomic-number materials, and at all energies in the case of the U energy albedos are not completely understood.

  15. Photosynthesis Revisited: Optimization of Charge and Energy Transfer in Quantum Materials

    NASA Astrophysics Data System (ADS)

    Gabor, Nathaniel

    2014-03-01

    The integration of new nano- and molecular-scale quantum materials into ultra-efficient energy harvesting devices presents significant scientific challenges. Of the many challenges, the most difficult is achieving high photon-to-electron conversion efficiency while maintaining broadband absorption. Due to exciton effects, devices composed of quantum materials may allow near-unity optical absorption efficiency yet require the choice of precisely one fundamental energy (HOMO-LUMO gap). To maximize absorption, the simplest device would absorb at the peak of the solar spectrum, which spans the visible wavelengths. If the peak of the solar spectrum spans the visible wavelengths, then why are terrestrial plants green? Here, I discuss a physical model of photosynthetic absorption and photoprotection in which the cell utilizes active feedback to optimize charge and energy transfer, thus maximizing stored energy rather than absorption. This model, which addresses the question of terrestrial greenness, is supported by several recent results that have begun to unravel the details of photoprotection in higher plants. More importantly, this model indicates a novel route for the design of next-generation energy harvesting systems based on nano- and molecular-scale quantum materials.

  16. Charge-transfer energy in closed-shell ion-atom interactions. [for H and Li ions in He

    NASA Technical Reports Server (NTRS)

    Alvarez-Rizzatti, M.; Mason, E. A.

    1975-01-01

    The importance of charge-transfer energy in the interactions between closed-shell ions and atoms is investigated. Ab initio calculations on H(plus)-He and Li(plus)-He are used as a guide for the construction of approximate methods for the estimation of the charge-transfer energy for more complicated systems. For many alkali ion-rate gas systems the charge-transfer energy is comparable to the induction energy in the region of the potential minimum, although for doubly charged alkaline-earth ions in rare gases the induction energy always dominates. Surprisingly, an empirical combination of repulsion energy plus asymptotic induction energy plus asymptotic dispersion energy seems to give a fair representation of the total interaction, especially if the repulsion energy is parameterized, despite the omission of any explicit charge-transfer contribution. More refined interaction models should consider the charge-transfer energy contribution.

  17. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.

    PubMed

    Ten Cate, Sybren; Sandeep, C S Suchand; Liu, Yao; Law, Matt; Kinge, Sachin; Houtepen, Arjan J; Schins, Juleon M; Siebbeles, Laurens D A

    2015-02-17

    CONSPECTUS: In a conventional photovoltaic device (solar cell or photodiode) photons are absorbed in a bulk semiconductor layer, leading to excitation of an electron from a valence band to a conduction band. Directly after photoexcitation, the hole in the valence band and the electron in the conduction band have excess energy given by the difference between the photon energy and the semiconductor band gap. In a bulk semiconductor, the initially hot charges rapidly lose their excess energy as heat. This heat loss is the main reason that the theoretical efficiency of a conventional solar cell is limited to the Shockley-Queisser limit of ∼33%. The efficiency of a photovoltaic device can be increased if the excess energy is utilized to excite additional electrons across the band gap. A sufficiently hot charge can produce an electron-hole pair by Coulomb scattering on a valence electron. This process of carrier multiplication (CM) leads to formation of two or more electron-hole pairs for the absorption of one photon. In bulk semiconductors such as silicon, the energetic threshold for CM is too high to be of practical use. However, CM in nanometer sized semiconductor quantum dots (QDs) offers prospects for exploitation in photovoltaics. CM leads to formation of two or more electron-hole pairs that are initially in close proximity. For photovoltaic applications, these charges must escape from recombination. This Account outlines our recent progress in the generation of free mobile charges that result from CM in QDs. Studies of charge carrier photogeneration and mobility were carried out using (ultrafast) time-resolved laser techniques with optical or ac conductivity detection. We found that charges can be extracted from photoexcited PbS QDs by bringing them into contact with organic electron and hole accepting materials. However, charge localization on the QD produces a strong Coulomb attraction to its counter charge in the organic material. This limits the production

  18. Lead-carbon electrode designed for renewable energy storage with superior performance in partial state of charge operation

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Li; Yin, Jian; Lin, Zhe-Qi; Shi, Jun; Wang, Can; Liu, De-Bo; Wang, Yue; Bao, Jin-Peng; Lin, Hai-Bo

    2017-02-01

    Renewable energy storage is a key issue in our modern electricity-powered society. Lead acid batteries (LABs) are operated at partial state of charge in renewable energy storage system, which causes the sulfation and capacity fading of Pb electrode. Lead-carbon composite electrode is a good solution to the sulfation problem of LAB. In this paper, a rice-husk-derived hierarchically porous carbon with micrometer-sized large pores (denoted as RHC) has been used as the component of lead-carbon composite electrode. Scanning electron microscopy was used to characterize the morphology of lead-carbon composite electrode. Electrochemical impedance spectroscopy was used to determine the charge transfer capability of lead-carbon composite electrode. Both full charge-discharge method and charge-discharge method operating at harsh partial state of charge condition have been used to prove the superior energy storage capability of lead-carbon composite electrode. Experiment results prove that the micrometer-sized pores of RHC are beneficial to the construction and stability of lead-carbon composite electrode. Microporous carbon material with high surface area is not suitable for the construction of lead-carbon electrode due to the ruin of lead-carbon structure caused by severe electrochemical hydrogen evolution.

  19. UNIVERSAL BEHAVIOR OF CHARGED PARTICLE PRODUCTION IN HEAVY ION COLLISIONS AT RHIC ENERGIES.

    SciTech Connect

    STEINBERG,P.A.; FOR THE PHOBOS COLLABORATION

    2002-07-18

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at {radical}(s{sub NN}) = 19.6, 130 and 200 GeV. Two observations indicate universal behavior of charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/{bar p}p and e{sup +}e{sup -} data. / in nuclear collisions at high energy scales with {radical}s in a similar way as N{sub ch} in e{sup +}e{sup -} collisions and has a very weak centrality dependence. These features may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  20. UNIVERSAL BEHAVIOR OF CHARGED PARTICLE PRODUCTION IN HEAVY ION COLLISIONS AT RHIC ENERGIES.

    SciTech Connect

    STEINBERG,P.A.; FOR THE PHOBOS COLLABORATION

    2002-07-24

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at {radical}(s{sub NN}) = 19.6, 130 and 200 GeV. Two observations indicate universal behavior of charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/{bar p}p and e{sup +}e{sup -} data. / in nuclear collisions at high energy scales with {radical}s in a similar way as N{sub ch} in e{sup +}e{sup -} collisions and has a very weak centrality dependence. These features may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  1. UNIVERSAL BEHAVIOR OF CHARGED PARTICLE PRODUCTION IN HEAVY ION COLLISIONS AT RHIC ENERGIES.

    SciTech Connect

    STEINBERG,P.A.FOR THE PHOBOS COLLABORATION

    2002-07-18

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at {radical}(s{sub NN}) = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/{bar p}p and e{sup +}e{sup -} data. / in nuclear collisions at high energy scales with {radical}s in a similar way as N{sub ch} in e{sup +}e{sup -} collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  2. Method to select gamma rays with energy above 50 GeV against a charge-particle background in the GAMMA-400 space telescope

    NASA Astrophysics Data System (ADS)

    Kheymits, M. D.; Leonov, A. A.; Galper, A. M.; Kadilin, V.; Arkhangelskaya, I. V.; Arkhangelskiy, A. I.; Gusakov, Yu V.; Zverev, V. G.; Kaplin, V.; Naumov, P. Yu; Runtso, M. F.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Yu T.; Bakaldin, A.; Dalkarov, O.

    2016-02-01

    Studying high-energy (>50GeV) cosmic gamma radiation raises a problem of selection of neutral gamma rays from a background of charged particles. The problem is embarrassed by the backsplash effect. The backsplash consists, in the main, of low-energy (1 MeV) secondary photons moving backwards and is produced by any high-energy gamma quantum. A charged-particle rejection method using the anticoincidence and time-of-flight systems is proposed. Charged-particle events are distinguished from those being triggered by high-energy gamma-rays producing backsplash. The method is based on the time separation of signals. It allows us to keep the gamma-ray detection efficiency high up to high energies.

  3. Energy dependence of mass, charge, isotopic, and energy distributions in neutron-induced fission of 235U and 239Pu

    NASA Astrophysics Data System (ADS)

    Pasca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.; Kim, Y.

    2016-05-01

    The mass, charge, isotopic, and kinetic-energy distributions of fission fragments are studied within an improved scission-point statistical model in the reactions 235U+n and 239Pu+n at different energies of the incident neutron. The charge and mass distributions of the electromagnetic- and neutron-induced fission of 214,218Ra, 230,232,238U are also shown. The available experimental data are well reproduced and the energy-dependencies of the observable characteristics of fission are predicted for future experiments.

  4. Measurement of the atmospheric muon charge ratio at TeV energies with MINOS

    SciTech Connect

    Adamson, P.; Andreopoulos, C.; Arms, K.E.; Armstrong, R.; Auty, D.J.; Avvakumov, S.; Ayres, D.S.; Baller, B.; Barish, B.; Barnes, P.D., Jr.; Barr, G.; /Fermilab /University Coll. London /Rutherford /Minnesota U. /Indiana U. /Sussex U. /Stanford U., Phys. Dept. /Argonne /Caltech /LLNL, Livermore /Oxford U.

    2007-05-01

    The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray muon data since the beginning of August, 2003 at a depth of 2070 m.w.e. in the Soudan Underground Laboratory, Minnesota, USA. The data with both forward and reversed magnetic field running configurations were combined to minimize systematic errors in the determination of the underground muon charge ratio. When averaged, two independent analyses find the charge ratio underground to be N{sub {mu}}+/N{sub {mu}}-=1.374{+-}0.004(stat)-0.010{sup +0.012}(sys). Using the map of the Soudan rock overburden, the muon momenta as measured underground were projected to the corresponding values at the surface in the energy range 1-7 TeV. Within this range of energies at the surface, the MINOS data are consistent with the charge ratio being energy independent at the 2 standard deviation level. When the MINOS results are compared with measurements at lower energies, a clear rise in the charge ratio in the energy range 0.3-1.0 TeV is apparent. A qualitative model shows that the rise is consistent with an increasing contribution of kaon decays to the muon charge ratio.

  5. Extended Energy Divide-and-Conquer Method Based on Charge Conservation.

    PubMed

    Song, Guo-Liang; Li, Zhen Hua; Fan, Kang-Nian

    2013-04-09

    The divide-and-conquer (DC) scheme, the most popular linear-scaling method, is very important in the quantum mechanics computation of large systems. However, when a chemical system is divided into subsystems, its covalent bonds are often broken and then capped by complementary atoms/groups. In this paper, we show that the charge transfer between subsystems and the complementary atoms/groups causes the nonconservation of the total charge of the whole system, and this is the main source of error for the computed total energy. On the basis of this finding, an extension of the many-body expansion method (energy-based divide-and-conquer, EDC) utilizing charge conservation (E-EDC) is proposed. In the E-EDC method, initially the total energies of the whole system at different many-body correction levels are computed according to the EDC scheme. The total charges of the whole system, that is, the sum of the charges of the subsystems without cap atoms/groups at different many-body correction levels, are also computed. Then the total energy is extrapolated to the value at which the net charge of the whole system equals to the real value. Other properties such as atomic forces can also be extrapolated in a similar way. In the test of 24 and 32 glycine oligomers, this scheme reduces the error of the total energy by about 40-70%, but the computational cost is almost the same as that of the EDC scheme.

  6. Potential energy curves crossing and low-energy charge transfer dynamics in (BeH2O)2+ complex

    NASA Astrophysics Data System (ADS)

    Sun, QiXiang; Yan, Bing

    2012-07-01

    The singlet rigid Be—O dissociation potential energy curves correlating to the first four molecular limits of (BeH2O)2+ complex were calculated using the multi-reference single and double excitation configuration interaction theory. The radial couplings of three low-lying 1A1 states were calculated and combined with adiabatic potential energy curves to investigate and charge-transfer collision dynamics by using quantum-mechanical molecular orbital close-coupling methods. It is found that the total charge-transfer cross sections are dominated by the Be+(2S)+H2O+(Ã2A1) channel. The rate coefficients in the range of 10-17-10-12 cm3/s are very sensitive to temperature below 1000 K. The complexation energy without charge-transfer was determined to be 143.6 kcal/mol, including zero-point vibration energy corrections. This is in good agreement with the previous results.

  7. High capacity WO3 film as efficient charge collection electrode for solar rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Wenjie; Wang, Xiao-Feng; Zheng, Enqiang; Wei, Yingjin; Sanehira, Yoshitaka; Chen, Gang

    2017-05-01

    In this work, we demonstrated the dye-sensitized solar rechargeable batteries devices sharing a structure of Dye-TiO2/electrolyte/Ni/WO3. The WO3 film was prepared by a simple sol-gel process exhibit high cavities and large surface area allowing efficient chemical/electrical reactions. The WO3 films with 2 ± 0.5 μm in thickness as charge collection electrodes exhibited a high energy density over other materials reported thus far. Under irradiation energy of 7.5 mWcm-2 in the photo-charging, the discharging time sustained 1758 s at the current density of 0.05 mA cm-2 in dark, the first specific discharge capacities of WO3 nano-film reach 40.6 mAh g-1 (0.0244 mAh cm-2). This work substantially pushes forward the easy processing solar rechargeable batteries for future potential applications.

  8. High flux solar energy transformation

    DOEpatents

    Winston, Roland; Gleckman, Philip L.; O'Gallagher, Joseph J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

  9. High flux solar energy transformation

    DOEpatents

    Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

  10. High-energy neutrino astrophysics

    NASA Astrophysics Data System (ADS)

    Halzen, Francis

    2017-03-01

    The chargeless, weakly interacting neutrinos are ideal astronomical messengers as they travel through space without scattering, absorption or deflection. But this weak interaction also makes them notoriously di cult to detect, leading to neutrino observatories requiring large-scale detectors. A few years ago, the IceCube experiment discovered neutrinos originating beyond the Sun with energies bracketed by those of the highest energy gamma rays and cosmic rays. I discuss how these high-energy neutrinos can be detected and what they can tell us about the origins of cosmic rays and about dark matter.

  11. Substituent and Solvent Effects on Excited State Charge Transfer Behavior of Highly Fluorescent Dyes Containing Thiophenylimidazole-Based Aldehydes

    NASA Technical Reports Server (NTRS)

    Santos, Javier; Bu, Xiu R.; Mintz, Eric A.

    2001-01-01

    The excited state charge transfer for a series of highly fluorescent dyes containing thiophenylimidazole moiety was investigated. These systems follow the Twisted Intramolecular Charge Transfer (TICT) model. Dual fluorescence was observed for each substituted dye. X-ray structures analysis reveals a twisted ground state geometry for the donor substituted aryl on the 4 and 5 position at the imidazole ring. The excited state charge transfer was modeled by a linear solvation energy relationship using Taft's pi and Dimroth's E(sub T)(30) as solvent parameters. There is linear relation between the energy of the fluorescence transition and solvent polarity. The degree of stabilization of the excited state charge transfer was found to be consistent with the intramolecular molecular charge transfer. Excited dipole moment was studied by utilizing the solvatochromic shift method.

  12. Charge exchange between low energy Si ions and Cs adatoms

    NASA Astrophysics Data System (ADS)

    Chen, X.; Sroubek, Z.; Yarmoff, J. A.

    Unexpectedly large yields of positive and negative ions are produced when 2 and 5 keV Si + is singly scattered from Cs adatoms on Al(1 0 0) and Si(1 1 1). This is in contrast with Li +, in which case the ions are almost completely neutralized. The Si + ions likely result from valence electron resonant charge transfer (RCT) enhanced by promotion of the ionization level as it interacts with the Cs 5p level, but incomplete resonance neutralization of the incoming Si + cannot be absolutely excluded. The experimental data are quantitatively compared to the model and values of the microscopic parameters are estimated. Negative Si - ions are produced when the surface work function is very small, presumably by direct RCT to the projectile affinity level as it is bent downward by the image potential and by the dipole formed by the adsorbed Cs.

  13. Decoupling Charge Transport and Electroluminescence in a High Mobility Polymer Semiconductor.

    PubMed

    Harkin, David J; Broch, Katharina; Schreck, Maximilian; Ceymann, Harald; Stoy, Andreas; Yong, Chaw-Keong; Nikolka, Mark; McCulloch, Iain; Stingelin, Natalie; Lambert, Christoph; Sirringhaus, Henning

    2016-08-01

    Fluorescence enhancement of a high-mobility polymer semiconductor is achieved via energy transfer to a higher fluorescence quantum yield squaraine dye molecule on 50 ps timescales. In organic light-emitting diodes, an order of magnitude enhancement of the external quantum efficiency is observed without reduction in the charge-carrier mobility resulting in radiances of up to 5 W str(-1) m(-2) at 800 nm.

  14. Laboratory Measurements of Charging of Apollo 17 Lunar Dust Grains by Low Energy Electrons

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.; Gaskin, Jessica

    2007-01-01

    It is well recognized that the charging properties of individual micron/sub-micron size dust grains by various processes are expected to be substantially different from the currently available measurements made on bulk materials. Solar UV radiation and the solar wind plasma charge micron size dust grains on the lunar surface with virtually no atmosphere. The electrostatically charged dust grains are believed to be levitated and transported long distances over the lunar terminator from the day to the night side. The current models do not fully explain the lunar dust phenomena and laboratory measurements are needed to experimentally determine the charging properties of lunar dust grains. An experimental facility has been developed in the Dusty Plasma Laboratory at NASA Marshall Space Flight Center MSFC for investigating the charging properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present laboratory measurements on charging of Apollo 17 individual lunar dust grains by low energy electron beams in the 5-100 eV energy range. The measurements are made by levitating Apollo 17 dust grains of 0.2 to 10 micrometer diameters, in an electrodynamic balance and exposing them to mono-energetic electron beams. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission processes are discussed.

  15. Laboratory Measurements of Charging of Apollo 17 Lunar Dust Grains by Low Energy Electrons

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.; Gaskin, Jessica

    2007-01-01

    It is well recognized that the charging properties of individual micron/sub-micron size dust grains by various processes are expected to be substantially different from the currently available measurements made on bulk materials. Solar UV radiation and the solar wind plasma charge micron size dust grains on the lunar surface with virtually no atmosphere. The electrostatically charged dust grains are believed to be levitated and transported long distances over the lunar terminator from the day to the night side. The current models do not fully explain the lunar dust phenomena and laboratory measurements are needed to experimentally determine the charging properties of lunar dust grains. An experimental facility has been developed in the Dusty Plasma Laboratory at NASA Marshall Space Flight Center MSFC for investigating the charging properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present laboratory measurements on charging of Apollo 17 individual lunar dust grains by low energy electron beams in the 5-100 eV energy range. The measurements are made by levitating Apollo 17 dust grains of 0.2 to 10 micrometer diameters, in an electrodynamic balance and exposing them to mono-energetic electron beams. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission processes are discussed.

  16. PASOTRON high-energy microwave source

    NASA Astrophysics Data System (ADS)

    Goebel, Dan M.; Schumacher, Robert W.; Butler, Jennifer M.; Hyman, Jay, Jr.; Santoru, Joseph; Watkins, Ron M.; Harvey, Robin J.; Dolezal, Franklin A.; Eisenhart, Robert L.; Schneider, Authur J.

    1992-04-01

    A unique, high-energy microwave source, called PASOTRON (Plasma-Assisted Slow-wave Oscillator), has been developed. The PASOTRON utilizes a long-pulse E-gun and plasma- filled slow-wave structure (SWS) to produce high-energy pulses from a simple, lightweight device that utilizes no externally produced magnetic fields. Long pulses are obtained from a novel E-gun that employs a low-pressure glow discharge to provide a stable, high current- density electron source. The electron accelerator consists of a high-perveance, multi-aperture array. The E-beam is operated in the ion-focused regime where the plasma filling the SWS space-charge neutralizes the beam, and the self-pinch force compresses the beamlets and increases the beam current density. A scale-model PASOTRON, operating as a backward- wave oscillator in C-band with a 100-kV E-beam, has produced output powers in the 3 to 5 MW range and pulse lengths of over 100 microsecond(s) ec, corresponding to an integrated energy per pulse of up to 500 J. The E-beam to microwave-radiation power conversion efficiency is about 20%.

  17. Extraterrestrial high energy neutrino fluxes

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1979-01-01

    Using the most recent cosmic ray spectra up to 2x10 to the 20th power eV, production spectra of high energy neutrinos from cosmic ray interactions with interstellar gas and extragalactic interactions of ultrahigh energy cosmic rays with 3K universal background photons are presented and discussed. Estimates of the fluxes from cosmic diffuse sources and the nearby quasar 3C273 are made using the generic relationship between secondary neutrinos and gammas and using recent gamma ray satellite data. These gamma ray data provide important upper limits on cosmological neutrinos. Quantitative estimates of the observability of high energy neutrinos from the inner galaxy and 3C273 above atmospheric background for a DUMAND type detector are discussed in the context of the Weinberg-Salam model with sq sin theta omega = 0.2 and including the atmospheric background from the decay of charmed mesons. Constraints on cosmological high energy neutrino production models are also discussed. It appears that important high energy neutrino astronomy may be possible with DUMAND, but very long observing times are required.

  18. Ultra-high-mass mass spectrometry with charge discrimination using cryogenic detectors

    DOEpatents

    Frank, Matthias; Mears, Carl A.; Labov, Simon E.; Benner, W. Henry

    1999-01-01

    An ultra-high-mass time-of-flight mass spectrometer using a cryogenic particle detector as an ion detector with charge discriminating capabilities. Cryogenic detectors have the potential for significantly improving the performance and sensitivity of time-of-flight mass spectrometers, and compared to ion multipliers they exhibit superior sensitivity for high-mass, slow-moving macromolecular ions and can be used as "stop" detectors in time-of-flight applications. In addition, their energy resolving capability can be used to measure the charge state of the ions. Charge discrimination is very valuable in all time-of-flight mass spectrometers. Using a cryogenically-cooled Nb-Al.sub.2 O.sub.3 -Nb superconductor-insulator-superconductor (SIS) tunnel junction (STJ) detector operating at 1.3 K as an ion detector in a time-of-flight mass spectrometer for large biomolecules it was found that the STJ detector has charge discrimination capabilities. Since the cryogenic STJ detector responds to ion energy and does not rely on secondary electron production, as in the conventionally used microchannel plate (MCP) detectors, the cryogenic detector therefore detects large molecular ions with a velocity-independent efficiency approaching 100%.

  19. Energy Master dealers mull class action: overpricing, bad support charged

    SciTech Connect

    Schwartz, R.

    1982-04-19

    Thirteen disgruntled Energy Master Inc. (EMI) dealers may take out a class-action suit against the firm and World Wide Energy Systems Inc., both based in Atlanta, because of alleged overpricing, poor service practices, and misrepresentations. EMI was organized in 1977 by persons who have since served prison terms for unrelated mail fraud, but the new management blames dealer unhappiness on poor selling efforts. The company has increased dealer training, but cannot make up for all the problems dating from past management. World Wide Energy Systems denies any connection with economic prices, and some dealers see no cause to join in the suit. Dealers complain, however, that their background is inadequate for the technical requirements of handling the systems. (DCK)

  20. High Energy Astrophysics Program (HEAP)

    NASA Technical Reports Server (NTRS)

    Angelini, Lorella; Corcoran, Michael; Drake, Stephen; McGlynn, Thomas A.; Snowden, Stephen; Mukai, Koji; Cannizzo, John; Lochner, James; Rots, Arnold; Christian, Eric; hide

    1998-01-01

    This report reviews activities performed by the members of the USRA contract team during the 6 months of the reporting period and projected activities during the coming 6 months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in astrophysics. Supported missions include advanced Satellite for Cosmology and Astrophysics (ASCA), X-Ray Timing Experiment (XTE), X-Ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC) and others.