Sample records for charge movement component

  1. Charge immobilization of the voltage sensor in domain IV is independent of sodium current inactivation.

    PubMed

    Sheets, Michael F; Hanck, Dorothy A

    2005-02-15

    Recovery from fast inactivation in voltage-dependent Na+ channels is associated with a slow component in the time course of gating charge during repolarization (i.e. charge immobilization), which results from the slow movement of the S4 segments in domains III and IV (S4-DIII and S4-DIV). Previous studies have shown that the non-specific removal of fast inactivation by the proteolytic enzyme pronase eliminated charge immobilization, while the specific removal of fast inactivation (by intracellular MTSET modification of a cysteine substituted for the phenylalanine in the IFM motif, ICMMTSET, in the inactivation particle formed by the linker between domains III and IV) only reduced the amount of charge immobilization by nearly one-half. To investigate the molecular origin of the remaining slow component of charge immobilization we studied the human cardiac Na+ channel (hH1a) in which the outermost arginine in the S4-DIV, which contributes approximately 20% to total gating charge (Qmax), was mutated to a cysteine (R1C-DIV). Gating charge could be fully restored in R1C-DIV by exposure to extracellular MTSEA, a positively charged methanethiosulphonate reagent. The RIC-DIV mutation was combined with ICMMTSET to remove fast inactivation, and the gating currents of R1C-DIV-ICM(MTSET) were recorded before and after modification with MTSEAo. Prior to MTSEAo, the time course of the gating charge during repolarization (off-charge) was best described by a single fast time constant. After MTSEA, the off-charge had both fast and slow components, with the slow component accounting for nearly 35% of Qmax. These results demonstrate that the slow movement of the S4-DIV during repolarization is not dependent upon the normal binding of the inactivation particle.

  2. Calcium currents, charge movement and dihydropyridine binding in fast- and slow-twitch muscles of rat and rabbit.

    PubMed Central

    Lamb, G D; Walsh, T

    1987-01-01

    1. The Vaseline-gap technique was used to record slow calcium currents and asymmetric charge movement in single fibres of fast-twitch muscles (extensor digitorum longus (e.d.l.) and sternomastoid) and slow-twitch muscles (soleus) from rat and rabbit, at a holding potential of -90 mV. 2. The slow calcium current in soleus fibres was about one-third of the size of the current in e.d.l. fibres, but was very similar otherwise. In both e.d.l. and soleus fibres, the dihydropyridine (DHP), nifedipine, suppressed the calcium current entirely. 3. In these normally polarized fibres, nifedipine suppressed only part (qns) of the asymmetric charge movement. The proportion of qns suppressed by various concentrations of nifedipine was linearly related to the associated reduction of the calcium current. Half-maximal suppression of both parameters was obtained with about 0.5 microM-nifedipine. The calcium current and the qns component of the charge movement also were suppressed over the same time course by nifedipine. Another DHP calcium antagonist, (+)PN200/110, was indistinguishable from nifedipine in its effects of suppressing calcium currents and qns. 4. In all muscle types, the total amount of qns in each fibre was linearly related to the size of the calcium current (in the absence of DHP). On average, qns was 3.3 times larger in e.d.l. fibres than in soleus fibres. 5. In contrast to the other dihydropyridines, (-)bay K8644, a calcium channel agonist, did not suppress any asymmetric charge movement. 6. The potential dependence of the slow calcium current implied a minimum gating charge of about five or six electronic charges. The movement of qns occurred over a more negative potential range than the change in calcium conductance. 7. Experiments on the binding of (+)PN200/110 indicated that e.d.l. muscles had between about 2 and 3 times more specific DHP binding sites than did soleus muscle. 8. These results point to a close relationship between slow calcium channels, the qns component of the charge movement and DHP binding sites, in both fast- and slow-twitch mammalian muscle. qns appears to be part of the gating current of the T-system calcium channels. PMID:2451745

  3. Balance and Self-Efficacy of Balance in Children with CHARGE Syndrome

    ERIC Educational Resources Information Center

    Haibach, Pamela S.; Lieberman, Lauren J.

    2013-01-01

    Introduction: Balance is a critical component of daily living, because it affects all movements and the ability to function independently. Children with CHARGE syndrome have sensory and motor impairments that could negatively affect their balance and postural control. The purpose of the study presented in this article was to assess the balance and…

  4. A slow calcium-dependent component of charge movement in Rana temporaria cut twitch fibres.

    PubMed

    Hui, C S

    1998-06-15

    1. Charge movement was studied in highly stretched frog cut twitch fibres in a double Vaseline-gap voltage-clamp chamber, with the internal solution containing either 0.1 mM EGTA or 20 mM EGTA plus 1. 8 mM total Ca2+. 2. Fibres were stimulated with TEST pulses lasting 100-400 ms. Replacement of the external Cl- with an 'impermeant' anion, such as SO42-, CH3SO3-, gluconate or glutamate, greatly reduced the calcium-dependent Cl- current in the ON segment and generated a slowly decaying inward OFF current in charge movement traces. 3. Application of 20 mM EGTA to the internal solution abolished the slow inward OFF current, implying that the activation of the current depended on the presence of Ca2+ in the myoplasm. The possibility that the slow inward OFF current was carried by cations flowing inwards or anions flowing outwards was studied and determined to be unlikely. 4. During a long (2000 ms) TEST pulse, a slowly decaying ON current was also observed. When the slow ON and OFF currents were included as parts of the total charge movement, ON-OFF charge equality was preserved. This slow capacitive current is named Idelta. 5. When Cl- was the major anion in the external solution, the OFF Idelta was mostly cancelled by a slow outward current carried by the inflow of Cl-. 6. The OFF Idelta component showed a rising phase. The average values of the rising time constants in CH3SO3- and SO42- were similar and about half of that in gluconate. 7. The OFF Idelta component in CH3SO3- had a larger magnitude and longer time course than that in SO42-. The maximum amount of Qdelta in CH3SO3- was about three times as much as that in SO42-, whereas the voltage dependence of Qdelta was similar in the two solutions. 8. Since the existence of Qdelta depends on the presence of Ca2+ in the myoplasm, it is speculated that Qdelta could be a function of intracellular calcium release.

  5. The effects of tetracaine on charge movement in fast twitch rat skeletal muscle fibres.

    PubMed

    Hollingworth, S; Marshall, M W; Robson, E

    1990-02-01

    1. The effects of tetracaine, a local anaesthetic that inhibits muscle contraction, on membrane potential and intramembrane charge movements were investigated in fast twitch rat muscle fibres (extensor digitorum longus). 2. The resting membrane potentials of surface fibres from muscles bathed in isotonic Ringer solution containing 2 mM-tetracaine were well maintained, but higher concentrations of tetracaine caused a time-dependent fall of potential. Muscle fibres bathed in hypertonic solutions containing 2 mM-tetracaine were rapidly depolarized. In both isotonic and hypertonic solutions, the depolarizing effect of tetracaine could not be reversed. 3. Charge movement measurements were made using the middle-of-the-fibre voltage clamp technique. The voltage dependence of charge movements measured in cold isotonic solutions was well fitted by a Boltzmann distribution (Q(V) = Qmax/(1 + exp(-(V-V)/k] where Qmax = 37.3 +/- 2.8 nC muF-1, V = -17.9 +/- 1.2 mV and k = 12.6 +/- 0.8 mV (n = 6, 2 degrees C; means +/- S.E. of means). Similar values were obtained when 2 mM-tetracaine was added to the isotonic bathing fluid (Qmax = 40.6 +/- 2.3 nC microF-1, V = -14.1 +/- 1.3 mV, k = 15.3 +/- 0.8 mV; n = 8, 2 degrees C). 4. Charge movements measured around mechanical threshold in muscle fibres bathed in hypertonic solutions were reduced when 2 mM-tetracaine was added to the bathing fluid. The tetracaine-sensitive component of charge was well fitted with an unconstrained Boltzmann distribution which gave: Qmax = 7.5 nC microF-1, V = -46.5 mV, k = 5.5 mV. The e-fold rise of the foot of the curve was 9.3 mV.

  6. The effects of tetracaine on charge movement in fast twitch rat skeletal muscle fibres.

    PubMed Central

    Hollingworth, S; Marshall, M W; Robson, E

    1990-01-01

    1. The effects of tetracaine, a local anaesthetic that inhibits muscle contraction, on membrane potential and intramembrane charge movements were investigated in fast twitch rat muscle fibres (extensor digitorum longus). 2. The resting membrane potentials of surface fibres from muscles bathed in isotonic Ringer solution containing 2 mM-tetracaine were well maintained, but higher concentrations of tetracaine caused a time-dependent fall of potential. Muscle fibres bathed in hypertonic solutions containing 2 mM-tetracaine were rapidly depolarized. In both isotonic and hypertonic solutions, the depolarizing effect of tetracaine could not be reversed. 3. Charge movement measurements were made using the middle-of-the-fibre voltage clamp technique. The voltage dependence of charge movements measured in cold isotonic solutions was well fitted by a Boltzmann distribution (Q(V) = Qmax/(1 + exp(-(V-V)/k] where Qmax = 37.3 +/- 2.8 nC muF-1, V = -17.9 +/- 1.2 mV and k = 12.6 +/- 0.8 mV (n = 6, 2 degrees C; means +/- S.E. of means). Similar values were obtained when 2 mM-tetracaine was added to the isotonic bathing fluid (Qmax = 40.6 +/- 2.3 nC microF-1, V = -14.1 +/- 1.3 mV, k = 15.3 +/- 0.8 mV; n = 8, 2 degrees C). 4. Charge movements measured around mechanical threshold in muscle fibres bathed in hypertonic solutions were reduced when 2 mM-tetracaine was added to the bathing fluid. The tetracaine-sensitive component of charge was well fitted with an unconstrained Boltzmann distribution which gave: Qmax = 7.5 nC microF-1, V = -46.5 mV, k = 5.5 mV. The e-fold rise of the foot of the curve was 9.3 mV. PMID:2348406

  7. The relationship between Q gamma and Ca release from the sarcoplasmic reticulum in skeletal muscle

    PubMed Central

    1991-01-01

    Asymmetric membrane currents and fluxes of Ca2+ release were determined in skeletal muscle fibers voltage clamped in a Vaseline-gap chamber. The conditioning pulse protocol 1 for suppressing Ca2+ release and the "hump" component of charge movement current (I gamma), described in the first paper of this series, was applied at different test pulse voltages. The amplitude of the current suppressed during the ON transient reached a maximum at slightly suprathreshold test voltages (- 50 to -40 mV) and decayed at higher voltages. The component of charge movement current suppressed by 20 microM tetracaine also went through a maximum at low pulse voltages. This anomalous voltage dependence is thus a property of I gamma, defined by either the conditioning protocol or the tetracaine effect. A negative (inward-going) phase was often observed in the asymmetric current during the ON of depolarizing pulses. This inward phase was shown to be an intramembranous charge movement based on (a) its presence in the records of total membrane current, (b) its voltage dependence, with a maximum at slightly suprathreshold voltages, (c) its association with a "hump" in the asymmetric current, (d) its inhibition by interventions that reduce the "hump", (e) equality of ON and OFF areas in the records of asymmetric current presenting this inward phase, and (f) its kinetic relationship with the time derivative of Ca release flux. The nonmonotonic voltage dependence of the amplitude of the hump and the possibility of an inward phase of intramembranous charge movement are used as the main criteria in the quantitative testing of a specific model. According to this model, released Ca2+ binds to negatively charged sites on the myoplasmic face of the voltage sensor and increases the local transmembrane potential, thus driving additional charge movement (the hump). This model successfully predicts the anomalous voltage dependence and all the kinetic properties of I gamma described in the previous papers. It also accounts for the inward phase in total asymmetric current and in the current suppressed by protocol 1. According to this model, I gamma accompanies activating transitions at the same set of voltage sensors as I beta. Therefore it should open additional release channels, which in turn should cause more I gamma, providing a positive feedback mechanism in the regulation of calcium release. PMID:1650812

  8. Voltage and frequency dependence of prestin-associated charge transfer

    PubMed Central

    Sun, Sean X.; Farrell, Brenda; Chana, Matthew S.; Oster, George; Brownell, William E.; Spector, Alexander A.

    2009-01-01

    Membrane protein prestin is a critical component of the motor complex that generates forces and dimensional changes in cells in response to changes in the cell membrane potential. In its native cochlear outer hair cell, prestin is crucial to the amplification and frequency selectivity of the mammalian ear up to frequencies of tens of kHz. Other cells transfected with prestin acquire voltage-dependent properties similar to those of the native cell. The protein performance is critically dependent on chloride ions, and intrinsic protein charges also play a role. We propose an electro-diffusion model to reveal the frequency and voltage dependence of electric charge transfer by prestin. The movement of the combined charge (i.e., anion and protein charges) across the membrane is described with a Fokker-Planck equation coupled to a kinetic equation that describes the binding of chloride ions to prestin. We found a voltage-and frequency-dependent phase shift between the transferred charge and the applied electric field that determines capacitive and resistive components of the transferred charge. The phase shift monotonically decreases from zero to -90 degree as a function of frequency. The capacitive component as a function of voltage is bell-shaped, and decreases with frequency. The resistive component is bell-shaped for both voltage and frequency. The capacitive and resistive components are similar to experimental measurements of charge transfer at high frequencies. The revealed nature of the transferred charge can help reconcile the high-frequency electrical and mechanical observations associated with prestin, and it is important for further analysis of the structure and function of this protein. PMID:19490917

  9. Components of gating charge movement and S4 voltage-sensor exposure during activation of hERG channels.

    PubMed

    Wang, Zhuren; Dou, Ying; Goodchild, Samuel J; Es-Salah-Lamoureux, Zeineb; Fedida, David

    2013-04-01

    The human ether-á-go-go-related gene (hERG) K(+) channel encodes the pore-forming α subunit of the rapid delayed rectifier current, IKr, and has unique activation gating kinetics, in that the α subunit of the channel activates and deactivates very slowly, which focuses the role of IKr current to a critical period during action potential repolarization in the heart. Despite its physiological importance, fundamental mechanistic properties of hERG channel activation gating remain unclear, including how voltage-sensor movement rate limits pore opening. Here, we study this directly by recording voltage-sensor domain currents in mammalian cells for the first time and measuring the rates of voltage-sensor modification by [2-(trimethylammonium)ethyl] methanethiosulfonate chloride (MTSET). Gating currents recorded from hERG channels expressed in mammalian tsA201 cells using low resistance pipettes show two charge systems, defined as Q(1) and Q(2), with V(1/2)'s of -55.7 (equivalent charge, z = 1.60) and -54.2 mV (z = 1.30), respectively, with the Q(2) charge system carrying approximately two thirds of the overall gating charge. The time constants for charge movement at 0 mV were 2.5 and 36.2 ms for Q(1) and Q(2), decreasing to 4.3 ms for Q(2) at +60 mV, an order of magnitude faster than the time constants of ionic current appearance at these potentials. The voltage and time dependence of Q2 movement closely correlated with the rate of MTSET modification of I521C in the outermost region of the S4 segment, which had a V(1/2) of -64 mV and time constants of 36 ± 8.5 ms and 11.6 ± 6.3 ms at 0 and +60 mV, respectively. Modeling of Q(1) and Q(2) charge systems showed that a minimal scheme of three transitions is sufficient to account for the experimental findings. These data point to activation steps further downstream of voltage-sensor movement that provide the major delays to pore opening in hERG channels.

  10. Effects of benzocaine on the kinetics of normal and batrachotoxin-modified Na channels in frog node of Ranvier.

    PubMed Central

    Schneider, M F; Dubois, J M

    1986-01-01

    The effects of benzocaine (0.5-1 mM) on normal Na currents, and on Na current and gating charge movement (Q) of batrachotoxin (BTX)-modified Na channels were analyzed in voltage-clamped frog node of Ranvier. Without BTX treatment the decay of Na current during pulses to between -40 and 0 mV could be decomposed into two exponential components both in the absence and in the presence of benzocaine. Benzocaine did not significantly alter the inactivation time constant of either component, but reduced both their amplitudes. The amplitude of the slow inactivating component was more decreased by benzocaine than the amplitude of the fast one, leading to an apparently faster decline of the overall Na current. After removal of Na inactivation and charge movement immobilization by BTX, benzocaine decreased the amplitude of INa with no change in time course. INa, QON, and QOFF were all reduced by the same factor. The results suggest that the rate of reaction of benzocaine with its receptor is slow compared to the rates of channel activation and inactivation. The differential effects of benzocaine on the two components of Na current inactivation in normal channels can be explained assuming two types of channel with different rates of inactivation and different affinities for the drug. PMID:2428413

  11. Charge movement in gating-locked HCN channels reveals weak coupling of voltage sensors and gate.

    PubMed

    Ryu, Sujung; Yellen, Gary

    2012-11-01

    HCN (hyperpolarization-activated cyclic nucleotide gated) pacemaker channels have an architecture similar to that of voltage-gated K(+) channels, but they open with the opposite voltage dependence. HCN channels use essentially the same positively charged voltage sensors and intracellular activation gates as K(+) channels, but apparently these two components are coupled differently. In this study, we examine the energetics of coupling between the voltage sensor and the pore by using cysteine mutant channels for which low concentrations of Cd(2+) ions freeze the open-closed gating machinery but still allow the sensors to move. We were able to lock mutant channels either into open or into closed states by the application of Cd(2+) and measure the effect on voltage sensor movement. Cd(2+) did not immobilize the gating charge, as expected for strict coupling, but rather it produced shifts in the voltage dependence of voltage sensor charge movement, consistent with its effect of confining transitions to either closed or open states. From the magnitude of the Cd(2+)-induced shifts, we estimate that each voltage sensor produces a roughly three- to sevenfold effect on the open-closed equilibrium, corresponding to a coupling energy of ∼1.3-2 kT per sensor. Such coupling is not only opposite in sign to the coupling in K(+) channels, but also much weaker.

  12. Charge movement in a fast twitch skeletal muscle from rat.

    PubMed

    Simon, B J; Beam, K G

    1983-02-01

    Voltage-dependent charge movement in the rat omohyoid muscle was investigated using the three microelectrode voltage clamp technique. The charge that moved during a depolarization from the holding potential (-90 mV) to the test potential, V, increased with increasing V, saturating around 0 mV. The charge vs. voltage relationship was well fitted by Q = Q(max)/{1 + exp[-(V - V)/k]}, with Q(max) = 28.5 nC/muF, V = -34.2 mV, and k = 8.7 mV. Repolarization of the fiber from the test potential back to the holding potential caused an equal but opposite amount of charge to move. The kinetics of ON charge movement could be well described by a model developed for frog muscle by Horowicz and Schneider (1981b), which suggests that rat and frog charge movements are similar. This model failed to describe the kinetics of OFF charge movement for steps in potential from 0 mV to test potentials of -10 to -90 mV. OFF-charge movement rose to a peak more slowly and decayed more slowly than predicted by the theory.

  13. Differential effects of tetracaine on two kinetic components of calcium release in frog skeletal muscle fibres.

    PubMed Central

    Pizarro, G; Csernoch, L; Uribe, I; Ríos, E

    1992-01-01

    1. Intramembrane charge movements and changes in intracellular calcium concentration were recorded simultaneously in voltage clamped cut skeletal muscle fibres of the frog in the presence and absence of tetracaine. 2. Extracellular application of 20 microM tetracaine reduced the increase in myoplasmic [Ca2+]. The effect on the underlying calcium release flux from the sarcoplasmic reticulum was to suppress the peak of the release while sparing the steady level attained at the end of 100 ms clamp depolarizations. 3. While the peak of the release flux at corresponding voltages was reduced by 62% after the addition of tetracaine, the rate of inactivation was the same when the pulses elicited release fluxes of similar amplitude. 4. Higher concentrations of tetracaine, 0.2 mM, abolished the calcium signal in stretched fibres whereas in slack fibres this concentration left a non-inactivating calcium release flux. 5. Lowering the extracellular pH antagonized the effect of the drug both on charge movements and on calcium signals. The permanently charged analogue tetracaine methobromide lacked effects on excitation-contraction coupling. 6. These results imply that the two kinetic components of calcium release flux have very different tetracaine sensitivities. They are also consistent with an intracellular site of action of the drug at low concentration. Taken together they strongly suggest that the inactivating and non-inactivating components of calcium release correspond to different pathways: one that inactivates, is sensitive to tetracaine and is controlled by calcium, and another that does not inactivate, is much less sensitive to tetracaine and is directly controlled by voltage. PMID:1297844

  14. Direct Imaging Mass Spectrometry of Plant Leaves Using Surface-assisted Laser Desorption/Ionization with Sputter-deposited Platinum Film.

    PubMed

    Ozawa, Tomoyuki; Osaka, Issey; Hamada, Satoshi; Murakami, Tatsuya; Miyazato, Akio; Kawasaki, Hideya; Arakawa, Ryuichi

    2016-01-01

    Plant leaves administered with systemic insecticides as agricultural chemicals were analyzed using imaging mass spectrometry (IMS). Matrix-assisted laser desorption/ionization (MALDI) is inadequate for the detection of insecticides on leaves because of the charge-up effect that occurs on the non-conductive surface of the leaves. In this study, surface-assisted laser desorption/ionization with a sputter-deposited platinum film (Pt-SALDI) was used for direct analysis of chemicals in plant leaves. Sputter-deposited platinum (Pt) films were prepared on leaves administered with the insecticides. A sputter-deposited Pt film with porous structure was used as the matrix for Pt-SALDI. Acephate and acetamiprid contained in the insecticides on the leaves could be detected using Pt-SALDI-MS, but these chemical components could not be adequately detected using MALDI-MS because of the charge-up effect. Enhancement of ion yields for the insecticides was achieved using Pt-SALDI, accompanied by prevention of the charge-up effect by the conductive Pt film. The movement of systemic insecticides in plants could be observed clearly using Pt-SALDI-IMS. The distribution and movement of components of systemic insecticides on leaves could be analyzed directly using Pt-SALDI-IMS. Additionally, changes in the properties of the chemicals with time, as an indicator of the permeability of the insecticides, could be evaluated.

  15. Reception and learning of electric fields in bees

    PubMed Central

    Greggers, Uwe; Koch, Gesche; Schmidt, Viola; Dürr, Aron; Floriou-Servou, Amalia; Piepenbrock, David; Göpfert, Martin C.; Menzel, Randolf

    2013-01-01

    Honeybees, like other insects, accumulate electric charge in flight, and when their body parts are moved or rubbed together. We report that bees emit constant and modulated electric fields when flying, landing, walking and during the waggle dance. The electric fields emitted by dancing bees consist of low- and high-frequency components. Both components induce passive antennal movements in stationary bees according to Coulomb's law. Bees learn both the constant and the modulated electric field components in the context of appetitive proboscis extension response conditioning. Using this paradigm, we identify mechanoreceptors in both joints of the antennae as sensors. Other mechanoreceptors on the bee body are potentially involved but are less sensitive. Using laser vibrometry, we show that the electrically charged flagellum is moved by constant and modulated electric fields and more strongly so if sound and electric fields interact. Recordings from axons of the Johnston organ document its sensitivity to electric field stimuli. Our analyses identify electric fields emanating from the surface charge of bees as stimuli for mechanoreceptors, and as biologically relevant stimuli, which may play a role in social communication. PMID:23536603

  16. Reception and learning of electric fields in bees.

    PubMed

    Greggers, Uwe; Koch, Gesche; Schmidt, Viola; Dürr, Aron; Floriou-Servou, Amalia; Piepenbrock, David; Göpfert, Martin C; Menzel, Randolf

    2013-05-22

    Honeybees, like other insects, accumulate electric charge in flight, and when their body parts are moved or rubbed together. We report that bees emit constant and modulated electric fields when flying, landing, walking and during the waggle dance. The electric fields emitted by dancing bees consist of low- and high-frequency components. Both components induce passive antennal movements in stationary bees according to Coulomb's law. Bees learn both the constant and the modulated electric field components in the context of appetitive proboscis extension response conditioning. Using this paradigm, we identify mechanoreceptors in both joints of the antennae as sensors. Other mechanoreceptors on the bee body are potentially involved but are less sensitive. Using laser vibrometry, we show that the electrically charged flagellum is moved by constant and modulated electric fields and more strongly so if sound and electric fields interact. Recordings from axons of the Johnston organ document its sensitivity to electric field stimuli. Our analyses identify electric fields emanating from the surface charge of bees as stimuli for mechanoreceptors, and as biologically relevant stimuli, which may play a role in social communication.

  17. Retrieval of charge mobility from apparent charge packet movements in LDPE thin films

    NASA Astrophysics Data System (ADS)

    Meng, Jia; Zhang, Yewen; Holé, Stéphane; Zheng, Feihu; An, Zhenlian

    2017-03-01

    The charge packet phenomenon observed in polyethylene materials has been reported extensively during the last decades. To explain its movement, Negative Differential Mobility (NDM) theory is a competitive model among several proposed mechanisms. However, as a key concept of this theory, a sufficiently acute relationship between charge mobility and electric field has never been reported until now, which makes it hard to precisely describe the migration of charge packets with this theory. Based on the substantial negative-charge packet observations with a sufficiently by wide electric field range from 15 kV/mm to 50 kV/mm, the present contribution successfully retrieved the negative-charge mobility from the apparent charge packet movements, which reveals a much closer relationship between the NDM theory and charge packet migrations. Back simulations of charge packets with the retrieved charge mobility offer a good agreement with the experimental data.

  18. Ontology aided modeling of organic reaction mechanisms with flexible and fragment based XML markup procedures.

    PubMed

    Sankar, Punnaivanam; Aghila, Gnanasekaran

    2007-01-01

    The mechanism models for primary organic reactions encoding the structural fragments undergoing substitution, addition, elimination, and rearrangements are developed. In the proposed models, each and every structural component of mechanistic pathways is represented with flexible and fragment based markup technique in XML syntax. A significant feature of the system is the encoding of the electron movements along with the other components like charges, partial charges, half bonded species, lone pair electrons, free radicals, reaction arrows, etc. needed for a complete representation of reaction mechanism. The rendering of reaction schemes described with the proposed methodology is achieved with a concise XML extension language interoperating with the structure markup. The reaction scheme is visualized as 2D graphics in a browser by converting them into SVG documents enabling the desired layouts normally perceived by the chemists conventionally. An automatic representation of the complex patterns of the reaction mechanism is achieved by reusing the knowledge in chemical ontologies and developing artificial intelligence components in terms of axioms.

  19. Internal Electrostatic Discharge Monitor - IESDM

    NASA Technical Reports Server (NTRS)

    Kim, Wousik; Goebel, Dan M.; Jun, Insoo; Garrett, Henry B.

    2011-01-01

    A document discusses an innovation designed to effectively monitor dielectric charging in spacecraft components to measure the potential for discharge in order to prevent damage from internal electrostatic discharge (IESD). High-energy electrons penetrate the structural materials and shielding of a spacecraft and then stop inside dielectrics and keep accumulating. Those deposited charges generate an electric field. If the electric field becomes higher than the breakdown threshold (approx. =2 x 10(exp 5) V/cm), discharge occurs. This monitor measures potentials as a function of dielectric depth. Differentiation of potential with respect to the depth yields electric field. Direct measurement of the depth profile of the potential in a dielectric makes real-time electronic field evaluation possible without simulations. The IESDM has been designed to emulate a multi-layer circuit board, to insert very thin metallic layers between the dielectric layers. The conductors serve as diagnostic monitoring locations to measure the deposited electron-charge and the charge dynamics. Measurement of the time-dependent potential of the metal layers provides information on the amount of charge deposited in the dielectrics and the movement of that charge with time (dynamics).

  20. Deionization and desalination using electrostatic ion pumping

    DOEpatents

    Bourcier, William L.; Aines, Roger D.; Haslam, Jeffery J.; Schaldach, Charlene M.; O& #x27; Brien, Kevin C.; Cussler, Edward

    2013-06-11

    The present invention provides a new method and apparatus/system for purifying ionic solutions, such as, for example, desalinating water, using engineered charged surfaces to sorb ions from such solutions. Surface charge is applied externally, and is synchronized with oscillatory fluid movements between substantially parallel charged plates. Ions are held in place during fluid movement in one direction (because they are held in the electrical double layer), and released for transport during fluid movement in the opposite direction by removing the applied electric field. In this way the ions, such as salt, are "ratcheted" across the charged surface from the feed side to the concentrate side. The process itself is very simple and involves only pumps, charged surfaces, and manifolds for fluid collection.

  1. Deionization and desalination using electrostatic ion pumping

    DOEpatents

    Bourcier, William L [Livermore, CA; Aines, Roger D [Livermore, CA; Haslam, Jeffery J [Livermore, CA; Schaldach, Charlene M [Pleasanton, CA; O'Brien, Kevin C [San Ramon, CA; Cussler, Edward [Edina, MN

    2011-07-19

    The present invention provides a new method and apparatus/system for purifying ionic solutions, such as, for example, desalinating water, using engineered charged surfaces to sorb ions from such solutions. Surface charge is applied externally, and is synchronized with oscillatory fluid movements between substantially parallel charged plates. Ions are held in place during fluid movement in one direction (because they are held in the electrical double layer), and released for transport during fluid movement in the opposite direction by removing the applied electric field. In this way the ions, such as salt, are "ratcheted" across the charged surface from the feed side to the concentrate side. The process itself is very simple and involves only pumps, charged surfaces, and manifolds for fluid collection.

  2. Charge movements and transverse tubular ultrastructure in organ cultured skeletal muscle.

    PubMed

    Cullen, M J; Hollingworth, S; Marshall, M W; Robson, E

    1990-04-01

    A study was made of charge movements and the transverse tubular systems in rat EDL and soleus muscle fibres maintained for up to five days in organ culture. In the cultured EDL muscle the maximum amount of charge moved was about one third of that in innervated muscle. Charge movements in innervated soleus fibres are small, less than 10 nC/microF, and difficult to resolve. They remain small following organ culturing. The ultrastructural study examined the concentration of junctional feet because of their proposed key role in excitation-contraction coupling. The general architecture of the triads and the spacing of the feet in both muscle types was largely unchanged by culturing. In cultured EDL muscles the small changes in feet concentration did not parallel the large fall in charge movement. The results reported here support a previous conclusion that, in mammalian muscle, there is not a simple relation between charge and feet. The stimulation of cultured soleus muscles with a fast twitch pattern of electrical activity produced no observable changes in morphology.

  3. Charge mobility retrieval approach from apparent charge packet movements based on the negative differential resistance theory.

    PubMed

    Meng, Jia; Zhang, Yewen; Holé, Stéphane; Zheng, Feihu; An, Zhenlian

    2018-04-12

    Space charge migration characteristics play an important role in the evaluation of polymer insulation performance. However, an accurate description of charge carrier mobility in several typical insulating polymers such as polyethylene, polypropylene is currently not available. Recently, with the observation of a series of negative charge packet movements associated with the negative differential resistance characteristic of charge mobility in LDPE films, the extraction of charge mobility from the apparent charge packet movement has been attempted using appropriate methods. Based on the previous report of the successful derivation of charge mobility from experimental results using numerical methods, the present research improves the derivation accuracy and describes the details of the charge mobility derivation procedure. Back simulation results under several typical polarizing fields using the derived charge mobility are exhibited. The results indicate that both the NDR theory and the simulation models for the polyethylene materials are reasonable. A significant migration velocity difference between the charge carrier and the charge packet is observed. Back simulations of the charge packet under several typical polarizing fields using the obtained E-v curve show good agreement with the experimental results. The charge packet shapes during the migrations were also found to vary with the polarizing field.

  4. A comparative study of charge movement in rat and frog skeletal muscle fibres.

    PubMed

    Hollingworth, S; Marshall, M W

    1981-12-01

    1. The middle of the fibre voltage--clamp technique (Adrian & Marshall, 1977), modified where necessary for electrically short muscle fibres, has been used to measure non-linear charge movements in mammalian fast twitch (rat extensor digitorum longus), mammalian slow twitch (rat soleus) and frog (sartorius) muscles. 2. The maximum amount of charge moved in mammalian fast twitch muscle at 2 degrees C in hypertonic solution, was 3--5 times greater than in slow twitch muscle. The voltage distribution of fast twitch charge was 10--15 mV more positive when compared to slow twitch. 3. In both mammalian muscle types hypertonic Ringer solution negatively shifted the voltage distribution of charge some 6 mV. The steepness of charge moved around mechanical threshold was unaffected by hypertonicity. 4. The amount of charge in frog sartorius fibres at 2 degrees C in hypertonic solution was about half of that in rat fast twitch muscle; the voltage distribution of the frog charge was similar to rat soleus muscle. 5. Warming between 2 and 15 degrees C had no effect on either the amount of steady-state distribution of charge in mammalian or frog muscles. 6. At 2 degrees C, the kinetics of charge movement in fast and slow twitch mammalian muscles were similar and 2--3 times faster than frog muscle at the same temperature. In fast and slow mammalian fibres at 2 degrees C similar times were taken to shift the same fractions of the total amount of charge. The Q10 of charge movement kinetics was between 1.2 and 2.0 in the three muscles studied.

  5. Intracellular Electric Field and pH Optimize Protein Localization and Movement

    PubMed Central

    Cunningham, Jessica; Estrella, Veronica; Lloyd, Mark; Gillies, Robert; Frieden, B. Roy; Gatenby, Robert

    2012-01-01

    Mammalian cell function requires timely and accurate transmission of information from the cell membrane (CM) to the nucleus (N). These pathways have been intensively investigated and many critical components and interactions have been identified. However, the physical forces that control movement of these proteins have received scant attention. Thus, transduction pathways are typically presented schematically with little regard to spatial constraints that might affect the underlying dynamics necessary for protein-protein interactions and molecular movement from the CM to the N. We propose messenger protein localization and movements are highly regulated and governed by Coulomb interactions between: 1. A recently discovered, radially directed E-field from the NM into the CM and 2. Net protein charge determined by its isoelectric point, phosphorylation state, and the cytosolic pH. These interactions, which are widely applied in elecrophoresis, provide a previously unknown mechanism for localization of messenger proteins within the cytoplasm as well as rapid shuttling between the CM and N. Here we show these dynamics optimize the speed, accuracy and efficiency of transduction pathways even allowing measurement of the location and timing of ligand binding at the CM –previously unknown components of intracellular information flow that are, nevertheless, likely necessary for detecting spatial gradients and temporal fluctuations in ligand concentrations within the environment. The model has been applied to the RAF-MEK-ERK pathway and scaffolding protein KSR1 using computer simulations and in-vitro experiments. The computer simulations predicted distinct distributions of phosphorylated and unphosphorylated components of this transduction pathway which were experimentally confirmed in normal breast epithelial cells (HMEC). PMID:22623963

  6. Movement Integration and the One-Target Advantage.

    PubMed

    Hoffmann, Errol R

    2017-01-01

    The 1-target advantage (OTA) has been found to occur in many circumstances and the current best explanation for this phenomenon is that of the movement integration hypothesis. The author's purpose is twofold: (a) to model the conditions under which there is integration of the movement components in a 2-component movement and (b) to study the factors that determine the magnitude of the OTA for both the first and second component of a 2-component movement. Results indicate that integration of movement components, where times for one component are affected by the geometry of the other component, occurs when 1 of the movement components is made ballistically. Movement components that require ongoing visual control show only weak interaction with the second component, whereas components made ballistically always show movement time dependence on first and second component amplitude, independent of location within the sequence. The OTA is present on both the first and second components of the movement, with a magnitude that is dependent on whether the components are performed ballistically or with ongoing visual control and also on the amplitudes and indexes of difficulty of the component movements.

  7. Enhanced supercapacitive behaviour of Fe3O4/fMWCNT nanoassemblies synthesized by PEG-600 assisted solvothermal method

    NASA Astrophysics Data System (ADS)

    Aparna, M. L.; Sathyanarayanan, P.; Sahu, Niroj Kumar

    2018-04-01

    We report a simple PEG-600 assisted solvothermal method for the synthesis iron ferrite with functionalized multi-walled carbon nanotube (Fe3O4/fMWCNT) composite nanoassemblies. The results show that the composite deliver excellent electrochemical activity because of the synergistic effect of each component. The fMWCNT act as a conductive network with high surface area promoting fast movement of electrons which enhances the charge storing nature and stability of Fe3O4 nanoassemblies.

  8. Dynamic MTF measurement

    NASA Astrophysics Data System (ADS)

    Bardoux, Alain; Gimenez, Thierry; Jamin, Nicolas; Seve, Frederic

    2017-11-01

    MTF (Modulation Transfer Frequency) of a detector is a key parameter for imagers. When image is not moving on the detector, MTF can be measured by some methods (knife edge, slanted slit,…). But with LEO satellites, image is moving on the surface of the detector, and MTF has to be measured in the same way: that is what we call "dynamic MTF". CNES (French Space Agency) has built a specific bench in order to measure dynamic MTF of detectors (CCD and CMOS), especially with component working in TDI (Time delay and integration) mode. The method is based on a moving edge, synchronized with the movement of charges inside the TDI detector. The moving part is a rotating cube, allowing a very stable movement of the image on the surface of the detector The main difficulties were: - stability of the rotating speed - synchronization between cube speed and charge transfer inside the detectors - synchronization between cube position and data acquisition. Different methods have been tested for the displacement of the knife edge: - geometrical displacement - electrical shift of the charge transfer clocks. Static MTF has been performed before dynamic measurements, in order to fix a reference measurement, Then dynamic MTF bench has been set up. The results, for a TDI CCD show a very good precision. So this bench is validated, and the dynamic MTF value of the TDI CCD is confirmed.

  9. A few positively charged residues slow movement of a polypeptide chain across the endoplasmic reticulum membrane.

    PubMed

    Yamagishi, Marifu; Onishi, Yukiko; Yoshimura, Shotaro; Fujita, Hidenobu; Imai, Kenta; Kida, Yuichiro; Sakaguchi, Masao

    2014-08-26

    Many polypeptide chains are translocated across and integrated into the endoplasmic reticulum membrane through protein-conducting channels. During the process, amino acid sequences of translocating polypeptide chains are scanned by the channels and classified to be retained in the membrane or translocated into the lumen. We established an experimental system with which the kinetic effect of each amino acid residue on the polypeptide chain movement can be analyzed with a time resolution of tens of seconds. Positive charges greatly slow movement; only two lysine residues caused a remarkable slow down, and their effects were additive. The lysine residue was more effective than arginine. In contrast, clusters comprising three residues of each of the other 18 amino acids had little effect on chain movement. We also demonstrated that a four lysine cluster can exert the effect after being fully exposed from the ribosome. We concluded that as few as two to three residues of positively charged amino acids can slow the movement of the nascent polypeptide chain across the endoplasmic reticulum membrane. This effect provides a fundamental basis of the topogenic function of positively charged amino acids.

  10. 75 FR 32911 - Preliminary Results of Antidumping Duty Administrative Review: Circular Welded Carbon Steel Pipes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-10

    ... for convenience and customs purposes, the written description of the merchandise subject to this order... and unaffiliated customers, net of all movement charges, direct selling expenses, and packing. Where... market prices, less any applicable movement charges, discounts, rebates, and direct and indirect selling...

  11. Perchlorate enhances transmission in skeletal muscle excitation- contraction coupling

    PubMed Central

    1993-01-01

    The effects of the anion perchlorate (present extracellularly at 8 mM) were studied on functional skeletal muscle fibers from Rana pipiens, voltage-clamped in a Vaseline gap chamber. Established methods were used to monitor intramembranous charge movement and flux of Ca release from the sarcoplasmic reticulum (SR) during pulse depolarization. Saponin permeabilization of the end portions of the fiber segment (Irving, M., J. Maylie, N. L. Sizto, and W. K. Chandler. 1987. Journal of General Physiology. 89:1-41) substantially reduced the amount of charge moving during conventional control pulses, thus minimizing a technical error that plagued our previous studies. Perchlorate prolonged the ON time course of charge movement, especially at low and intermediate voltages. The OFFs were also made slower, the time constant increasing twofold. The hump kinetic component was exaggerated by ClO4- or was made to appear in fibers that did not have it in reference conditions. ClO4- had essentially no kinetic ON effects at high voltages (> or = 10 mV). ClO4- changed the voltage distribution of mobile charge. In single Boltzmann fits, the midpoint potential V was shifted -20 mV and the steepness parameter K was reduced by 4.7 mV (or 1.78-fold), but the maximum charge was unchanged (n = 9). Total Ca content in the SR, estimated using the method of Schneider et al. (Schneider, M. F., B. J. Simon, and G. Szucs. 1987. Journal of Physiology. 392:167-192) for correcting for depletion, stayed constant over tens of minutes in reference conditions but decayed in ClO4- at an average rate of 0.3 mumol/liter myoplasmic water per s. ClO4- changed the kinetics of release flux, reducing the fractional inactivation of release after the peak. ClO4- shifted the voltage dependence of Ca release flux. In particular, the threshold voltage for Ca release was shifted by about -20 mV, and the activation of the steady component of release flux was shifted by > 20 mV in the negative direction. The shift of release activation was greater than that of mobile charge. Thus the threshold charge, defined as the minimum charge moved for eliciting a detectable Ca transient, was reduced from 6 nC/microF (0.55, n = 7) to 3.4 (0.53). The average of the paired differences was 2.8 (0.33, P < 0.01). The effects of ClO4- were then studied in fibers in modified functional situations. Depletion of Ca in the SR, achieved by high frequency pulsing in the presence of intracellular BAPTA and EGTA, simplified but did not eliminate the effects of ClO4-.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:8245817

  12. Mimosa pudica: Electrical and mechanical stimulation of plant movements.

    PubMed

    Volkov, Alexander G; Foster, Justin C; Ashby, Talitha A; Walker, Ronald K; Johnson, Jon A; Markin, Vladislav S

    2010-02-01

    Thigmonastic movements in the sensitive plant Mimosa pudica L., associated with fast responses to environmental stimuli, appear to be regulated through electrical and chemical signal transductions. The thigmonastic responses of M. pudica can be considered in three stages: stimulus perception, electrical signal transmission and induction of mechanical, hydrodynamical and biochemical responses. We investigated the mechanical movements of the pinnae and petioles in M. pudica induced by the electrical stimulation of a pulvinus, petiole, secondary pulvinus or pinna by a low electrical voltage and charge. The threshold value was 1.3-1.5 V of applied voltage and 2 to 10 microC of charge for the closing of the pinnules. Both voltage and electrical charge are responsible for the electro-stimulated closing of a leaf. The mechanism behind closing the leaf in M. pudica is discussed. The hydroelastic curvature mechanism closely describes the kinetics of M. pudica leaf movements.

  13. 49 CFR 229.9 - Movement of non-complying locomotives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Movement of non-complying locomotives. 229.9... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS General § 229.9 Movement of non... restrictions necessary for safely conducting the movement; (2)(i) The engineer in charge of the movement of the...

  14. Quantitative measurements and modeling of cargo–motor interactions during fast transport in the living axon

    PubMed Central

    Seamster, Pamela E; Loewenberg, Michael; Pascal, Jennifer; Chauviere, Arnaud; Gonzales, Aaron; Cristini, Vittorio; Bearer, Elaine L

    2013-01-01

    The kinesins have long been known to drive microtubule-based transport of sub-cellular components, yet the mechanisms of their attachment to cargo remain a mystery. Several different cargo-receptors have been proposed based on their in vitro binding affinities to kinesin-1. Only two of these—phosphatidyl inositol, a negatively charged lipid, and the carboxyl terminus of the amyloid precursor protein (APP-C), a trans-membrane protein—have been reported to mediate motility in living systems. A major question is how these many different cargo, receptors and motors interact to produce the complex choreography of vesicular transport within living cells. Here we describe an experimental assay that identifies cargo–motor receptors by their ability to recruit active motors and drive transport of exogenous cargo towards the synapse in living axons. Cargo is engineered by derivatizing the surface of polystyrene fluorescent nanospheres (100 nm diameter) with charged residues or with synthetic peptides derived from candidate motor receptor proteins, all designed to display a terminal COOH group. After injection into the squid giant axon, particle movements are imaged by laser-scanning confocal time-lapse microscopy. In this report we compare the motility of negatively charged beads with APP-C beads in the presence of glycine-conjugated non-motile beads using new strategies to measure bead movements. The ensuing quantitative analysis of time-lapse digital sequences reveals detailed information about bead movements: instantaneous and maximum velocities, run lengths, pause frequencies and pause durations. These measurements provide parameters for a mathematical model that predicts the spatiotemporal evolution of distribution of the two different types of bead cargo in the axon. The results reveal that negatively charged beads differ from APP-C beads in velocity and dispersion, and predict that at long time points APP-C will achieve greater progress towards the presynaptic terminal. The significance of this data and accompanying model pertains to the role transport plays in neuronal function, connectivity, and survival, and has implications in the pathogenesis of neurological disorders, such as Alzheimer’s, Huntington and Parkinson’s diseases. PMID:23011729

  15. Quantitative measurements and modeling of cargo-motor interactions during fast transport in the living axon

    NASA Astrophysics Data System (ADS)

    Seamster, Pamela E.; Loewenberg, Michael; Pascal, Jennifer; Chauviere, Arnaud; Gonzales, Aaron; Cristini, Vittorio; Bearer, Elaine L.

    2012-10-01

    The kinesins have long been known to drive microtubule-based transport of sub-cellular components, yet the mechanisms of their attachment to cargo remain a mystery. Several different cargo-receptors have been proposed based on their in vitro binding affinities to kinesin-1. Only two of these—phosphatidyl inositol, a negatively charged lipid, and the carboxyl terminus of the amyloid precursor protein (APP-C), a trans-membrane protein—have been reported to mediate motility in living systems. A major question is how these many different cargo, receptors and motors interact to produce the complex choreography of vesicular transport within living cells. Here we describe an experimental assay that identifies cargo-motor receptors by their ability to recruit active motors and drive transport of exogenous cargo towards the synapse in living axons. Cargo is engineered by derivatizing the surface of polystyrene fluorescent nanospheres (100 nm diameter) with charged residues or with synthetic peptides derived from candidate motor receptor proteins, all designed to display a terminal COOH group. After injection into the squid giant axon, particle movements are imaged by laser-scanning confocal time-lapse microscopy. In this report we compare the motility of negatively charged beads with APP-C beads in the presence of glycine-conjugated non-motile beads using new strategies to measure bead movements. The ensuing quantitative analysis of time-lapse digital sequences reveals detailed information about bead movements: instantaneous and maximum velocities, run lengths, pause frequencies and pause durations. These measurements provide parameters for a mathematical model that predicts the spatiotemporal evolution of distribution of the two different types of bead cargo in the axon. The results reveal that negatively charged beads differ from APP-C beads in velocity and dispersion, and predict that at long time points APP-C will achieve greater progress towards the presynaptic terminal. The significance of this data and accompanying model pertains to the role transport plays in neuronal function, connectivity, and survival, and has implications in the pathogenesis of neurological disorders, such as Alzheimer’s, Huntington and Parkinson's diseases.

  16. Controlling exhaust gas recirculation

    DOEpatents

    Zurlo, James Richard [Madison, WI; Konkle, Kevin Paul [West Bend, WI; May, Andrew [Milwaukee, WI

    2012-01-31

    In controlling an engine, an amount of an intake charge provided, during operation of the engine, to a combustion chamber of the engine is determined. The intake charge includes an air component, a fuel component and a diluent component. An amount of the air component of the intake charge is determined. An amount of the diluent component of the intake charge is determined utilizing the amount of the intake charge, the amount of the air component and, in some instances, the amount of the fuel component. An amount of a diluent supplied to the intake charge is adjusted based at least in part on the determined amount of diluent component of the intake charge.

  17. Ionic currents and charge movements in organ-cultured rat skeletal muscle.

    PubMed

    Hollingworth, S; Marshall, M W; Robson, E

    1984-12-01

    The middle of the fibre voltage-clamp technique was used to measure ionic currents and non-linear charge movements in intact, organ-cultured (in vitro denervated) mammalian fast-twitch (rat extensor digitorum longus) muscle fibres. Muscle fibres organ cultured for 4 days can be used as electrophysiological and morphological models for muscles in vivo denervated for the same length of time. Sodium currents in organ-cultured muscle fibres are similar to innervated fibres except that in the temperature range 0-20 degrees C (a) in the steady state, the voltage distribution of inactivation in cultured fibres is shifted negatively some 20 mV; (b) at the same temperature and membrane potential, the time constant of inactivation in cultured fibres is about twice that of innervated fibres. Potassium currents in innervated and cultured fibres at 15 degrees C can be fitted with the Hodgkin-Huxley n variable raised to the second power. Despite the large range we would estimate that the maximum value of the steady-state potassium conductance of cultured fibres is about one-half that of innervated fibres. The estimated maximum amount of charge moved in cultured fibre is about one-third that in innervated fibres. Compared to innervated fibres, culturing doubles the kinetics of the decay phase of charge movement. The possibility of a negative shift of the voltage distribution of charge movements in cultured fibres is discussed.

  18. Differential sensitivity to perchlorate and caffeine of tetracaine-resistant Ca2+ release in frog skeletal muscle.

    PubMed

    Píriz, Nazira; Brum, Gustavo; Pizarro, Gonzalo

    2006-01-01

    In voltage clamped frog skeletal muscle fibres 0.2 mM tetracaine strongly suppresses Ca(2+) release. After this treatment Ca(2+) release flux lacks its characteristic initial peak and the remaining steady component is strongly reduced when compared with the control condition. We studied the effect of two agonists of Ca(2+) release on these tetracaine treated fibres. 8 mM ClO(4)(-) added after tetracaine potentiated release flux from 0.11 +/- 0.03 mM s(-1) to 0.34 +/- 0.07 mM s(-1) (n = 6) although without recovery of the peak at any test voltage. The voltage dependence of the increased release was shifted towards more negative potentials (approximately -10 mV). The effects of ClO(4)(-) on charge movement under these conditions showed the previously described characteristic changes consisting in a left shift of its voltage dependence (approximately -9 mV) together with a slower kinetics, both at the ON and OFF transients. Caffeine at 0.5 mM in the presence of the same concentration of tetracaine failed to potentiate release flux independently of the test voltage applied. When the cut ends of the fibre were exposed to a 10 mM BAPTA intracellular solution, in the absence of tetracaine, the peak was progressively abolished. Under these conditions caffeine potentiated release restoring the peak (from 0.63 +/- 0.12 mM s(-1) to 1.82 +/- 0.23 mM s(-1)) with no effect on charge movement. Taken together the present results suggest that tetracaine is blocking a Ca(2+) sensitive component of release flux. It is speculated that the suppressed release includes a component that is dependent on Ca(2+) and mainly mediated by the activation of the beta ryanodine receptors (the RyR3 equivalent isoform). These receptors are located parajunctionally in the frog and are not interacting with the dihydropyridine receptor.

  19. One-Dimensional Brownian Motion of Charged Nanoparticles along Microtubules: A Model System for Weak Binding Interactions

    PubMed Central

    Minoura, Itsushi; Katayama, Eisaku; Sekimoto, Ken; Muto, Etsuko

    2010-01-01

    Abstract Various proteins are known to exhibit one-dimensional Brownian motion along charged rodlike polymers, such as microtubules (MTs), actin, and DNA. The electrostatic interaction between the proteins and the rodlike polymers appears to be crucial for one-dimensional Brownian motion, although the underlying mechanism has not been fully clarified. We examined the interactions of positively-charged nanoparticles composed of polyacrylamide gels with MTs. These hydrophilic nanoparticles bound to MTs and displayed one-dimensional Brownian motion in a charge-dependent manner, which indicates that nonspecific electrostatic interaction is sufficient for one-dimensional Brownian motion. The diffusion coefficient decreased exponentially with an increasing particle charge (with the exponent being 0.10 kBT per charge), whereas the duration of the interaction increased exponentially (exponent of 0.22 kBT per charge). These results can be explained semiquantitatively if one assumes that a particle repeats a cycle of binding to and movement along an MT until it finally dissociates from the MT. During the movement, a particle is still electrostatically constrained in the potential valley surrounding the MT. This entire process can be described by a three-state model analogous to the Michaelis-Menten scheme, in which the two parameters of the equilibrium constant between binding and movement, and the rate of dissociation from the MT, are derived as a function of the particle charge density. This study highlights the possibility that the weak binding interactions between proteins and rodlike polymers, e.g., MTs, are mediated by a similar, nonspecific charge-dependent mechanism. PMID:20409479

  20. One-dimensional Brownian motion of charged nanoparticles along microtubules: a model system for weak binding interactions.

    PubMed

    Minoura, Itsushi; Katayama, Eisaku; Sekimoto, Ken; Muto, Etsuko

    2010-04-21

    Various proteins are known to exhibit one-dimensional Brownian motion along charged rodlike polymers, such as microtubules (MTs), actin, and DNA. The electrostatic interaction between the proteins and the rodlike polymers appears to be crucial for one-dimensional Brownian motion, although the underlying mechanism has not been fully clarified. We examined the interactions of positively-charged nanoparticles composed of polyacrylamide gels with MTs. These hydrophilic nanoparticles bound to MTs and displayed one-dimensional Brownian motion in a charge-dependent manner, which indicates that nonspecific electrostatic interaction is sufficient for one-dimensional Brownian motion. The diffusion coefficient decreased exponentially with an increasing particle charge (with the exponent being 0.10 kBT per charge), whereas the duration of the interaction increased exponentially (exponent of 0.22 kBT per charge). These results can be explained semiquantitatively if one assumes that a particle repeats a cycle of binding to and movement along an MT until it finally dissociates from the MT. During the movement, a particle is still electrostatically constrained in the potential valley surrounding the MT. This entire process can be described by a three-state model analogous to the Michaelis-Menten scheme, in which the two parameters of the equilibrium constant between binding and movement, and the rate of dissociation from the MT, are derived as a function of the particle charge density. This study highlights the possibility that the weak binding interactions between proteins and rodlike polymers, e.g., MTs, are mediated by a similar, nonspecific charge-dependent mechanism. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Effect of pH buffer molecules on the light-induced currents from oriented purple membrane.

    PubMed Central

    Liu, S Y; Kono, M; Ebrey, T G

    1991-01-01

    The effect of pH buffers on the microsecond photocurrent component, B2, of oriented purple membranes has been studied. We found that under low salt conditions (less than 10 mM monovalent cationic salt) pH buffers can dramatically alter the waveform of the B2 component. The effect is induced by the protonation process of the buffer molecules by protons expelled from the membrane. These effects can be classified according to the charge transition upon protonation of the buffer. Buffers that carry two positive charges in their protonated form add a negative current component (N component) to B2. Almost all of the other buffers add a positive current component (P component) to B2, which is essentially a mirror image of the N component. Buffers with a pK less than 5.5 have only a small positive buffer component. The pH dependence of the buffer effect is closely related to the pK of the buffer; it requires that the buffer be in its unprotonated form. The rise time of the buffer component increases with the concentration of the buffer molecules. All the buffer effects can be inhibited by the addition of 5 mM of a divalent cation such as Ca2+. Reducing the surface potential slows down the N component but accelerates the P component without affecting the amplitude of the buffer effect significantly. Many of the buffer effects can be explained if we assume that upon protonation of the buffer by a proton expelled from the membrane by light, the buffer molecules move toward the membrane. This backward movement of buffer molecules forms a counter current very similar to that due to cations discussed in Liu, S. Y., R. Govindjee, and T. G. Ebrey. (1990. Biophys. J. 57:951-963). PMID:1883939

  2. Brain-controlled body movement assistance devices and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leuthardt, Eric C.; Love, Lonnie J.; Coker, Rob

    Methods, devices, systems, and apparatus, including computer programs encoded on a computer storage medium, for brain-controlled body movement assistance devices. In one aspect, a device includes a brain-controlled body movement assistance device with a brain-computer interface (BCI) component adapted to be mounted to a user, a body movement assistance component operably connected to the BCI component and adapted to be worn by the user, and a feedback mechanism provided in connection with at least one of the BCI component and the body movement assistance component, the feedback mechanism being configured to output information relating to a usage session of themore » brain-controlled body movement assistance device.« less

  3. Automatic thermocouple positioner for use in vacuum furnaces

    DOEpatents

    Mee, D.K.; Stephens, A.E.

    1980-06-06

    The invention is a simple and reliable mechanical arrangement for automatically positioning a thermocouple-carrying rod in a vacuum-furnace assembly of the kind including a casing, a furnace mounted in the casing, and a charge-containing crucible mounted in the furnace for vertical movement between a lower (loading) position and a raised (charge-melting) position. In a preferred embodiment, a welded-diaphragm metal bellows is mounted above the furnace, the upper end of the bellows being fixed against movement and the lower end of the bellows being affixed to support means for a thermocouple-carrying rod which is vertically oriented and extends freely through the furnace lid toward the mouth of the crucible. The support means and rod are mounted for relative vertical movement. Before pumpdown of the furnace, the differential pressure acting on the bellows causes it to contract and lift the thermocouple rod to a position where it will not be contacted by the crucible charge when the crucible is elevated to its raised position. During pumpdown, the bellows expands downward, lowering the thermocouple rod and its support. The bellows expands downward beyond a point where downward movement of the thermocouple rod is arrested by contact with the crucible charge and to a point where the upper end of the thermocouple extends well above the thermocouple support. During subsequent melting of the charge, the thermocouple sinks into the melt to provide an accurate measurement of melt temperatures.

  4. Automatic thermocouple positioner for use in vacuum furnaces

    DOEpatents

    Mee, David K.; Stephens, Albert E.

    1981-01-01

    The invention is a simple and reliable mechanical arrangement for automatically positioning a thermocouple-carrying rod in a vacuum-furnace assembly of the kind including a casing, a furnace mounted in the casing, and a charge-containing crucible mounted in the furnace for vertical movement between a lower (loading) position and a raised (charge-melting) position. In a preferred embodiment, a welded-diaphragm metal bellows is mounted above the furnace, the upper end of the bellows being fixed against movement and the lower end of the bellows being affixed to support means for a thermocouple-carrying rod which is vertically oriented and extends freely through the furnace lid toward the mouth of the crucible. The support means and rod are mounted for relative vertical movement. Before pumpdown of the furnace, the differential pressure acting on the bellows causes it to contract and lift the thermocouple rod to a position where it will not be contacted by the crucible charge when the crucible is elevated to its raised position. During pumpdown, the bellows expands downward, lowering the thermocouple rod and its support. The bellows expands downward beyond a point where downward movement of the thermocouple rod is arrested by contact with the crucible charge and to a point where the upper end of the thermocouple extends well above the thermocouple support. During subsequent melting of the charge, the thermocouple sinks into the melt to provide an accurate measurement of melt temperatures.

  5. Energy output of a single outer hair cell: Effect of resonance

    NASA Astrophysics Data System (ADS)

    Iwasa, Kuni H.

    2018-05-01

    The ability of the mammalian ear in processing high frequency sounds, up to ˜100 kHz, is based on the capability of outer hair cells (OHCs) in responding to stimulation at high frequencies. These cells show a unique motility in their cell body coupled with charge movement. With this motile element, voltage changes generated by stimuli at their hair bundles drive the cell body and that, in turn, amplifies the signal. In vitro experiments show that the movement of these charges significantly increases the membrane capacitance, limiting the motile activity by an additional attenuation of voltage changes. It was found, however, that such an effect is due to the absence of mechanical load. In the presence of mechanical load, particularly inertial load, such as under in vivo conditions, the movement of motile charges should reduce the membrane capacitance, enhancing the mechanical power output.

  6. Static Electricity-Responsive Supramolecular Assembly.

    PubMed

    Jintoku, Hirokuni; Ihara, Hirotaka; Matsuzawa, Yoko; Kihara, Hideyuki

    2017-12-01

    Stimuli-responsive materials can convert between molecular scale and macroscopic scale phenomena. Two macroscopic static electricity-responsive phenomena based on nanoscale supramolecular assemblies of a zinc porphyrin derivative are presented. One example involves the movement of supramolecular assemblies in response to static electricity. The assembly of a pyridine (Py) complex of the above-mentioned derivative in cyclohexane is drawn to a positively charged material, whereas the assembly of a 3,5-dimethylpyridine complex is drawn to a negatively charged material. The second phenomenon involves the movement of a non-polar solvent in response to static electrical stimulation. A cyclohexane solution containing a small quantity of the Py-complexed assembly exhibited a strong movement response towards negatively charged materials. Based on spectroscopic measurements and electron microscope observations, it was revealed that the assembled formation generates the observed response to static electricity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Charged Residues at the First Transmembrane Region Contribute to the Voltage Dependence of the Slow Gate of Connexins.

    PubMed

    Pinto, Bernardo I; García, Isaac E; Pupo, Amaury; Retamal, Mauricio A; Martínez, Agustín D; Latorre, Ramón; González, Carlos

    2016-07-22

    Connexins (Cxs) are a family of membrane-spanning proteins that form gap junction channels and hemichannels. Connexin-based channels exhibit two distinct voltage-dependent gating mechanisms termed slow and fast gating. Residues located at the C terminus of the first transmembrane segment (TM-1) are important structural components of the slow gate. Here, we determined the role of the charged residues at the end of TM-1 in voltage sensing in Cx26, Cx46, and Cx50. Conductance/voltage curves obtained from tail currents together with kinetics analysis reveal that the fast and slow gates of Cx26 involves the movement of two and four charges across the electric field, respectively. Primary sequence alignment of different Cxs shows the presence of well conserved glutamate residues in the C terminus of TM-1; only Cx26 contains a lysine in that position (lysine 41). Neutralization of lysine 41 in Cx26 increases the voltage dependence of the slow gate. Swapping of lysine 41 with glutamate 42 maintains the voltage dependence. In Cx46, neutralization of negative charges or addition of a positive charge in the Cx26 equivalent region reduced the slow gate voltage dependence. In Cx50, the addition of a glutamate in the same region decreased the voltage dependence, and the neutralization of a negative charge increased it. These results indicate that the charges at the end of TM-1 are part of the slow gate voltage sensor in Cxs. The fact that Cx42, which has no charge in this region, still presents voltage-dependent slow gating suggests that charges still unidentified also contribute to the slow gate voltage sensitivity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Charged Residues at the First Transmembrane Region Contribute to the Voltage Dependence of the Slow Gate of Connexins*

    PubMed Central

    Pinto, Bernardo I.; García, Isaac E.; Pupo, Amaury; Retamal, Mauricio A.; Martínez, Agustín D.; Latorre, Ramón; González, Carlos

    2016-01-01

    Connexins (Cxs) are a family of membrane-spanning proteins that form gap junction channels and hemichannels. Connexin-based channels exhibit two distinct voltage-dependent gating mechanisms termed slow and fast gating. Residues located at the C terminus of the first transmembrane segment (TM-1) are important structural components of the slow gate. Here, we determined the role of the charged residues at the end of TM-1 in voltage sensing in Cx26, Cx46, and Cx50. Conductance/voltage curves obtained from tail currents together with kinetics analysis reveal that the fast and slow gates of Cx26 involves the movement of two and four charges across the electric field, respectively. Primary sequence alignment of different Cxs shows the presence of well conserved glutamate residues in the C terminus of TM-1; only Cx26 contains a lysine in that position (lysine 41). Neutralization of lysine 41 in Cx26 increases the voltage dependence of the slow gate. Swapping of lysine 41 with glutamate 42 maintains the voltage dependence. In Cx46, neutralization of negative charges or addition of a positive charge in the Cx26 equivalent region reduced the slow gate voltage dependence. In Cx50, the addition of a glutamate in the same region decreased the voltage dependence, and the neutralization of a negative charge increased it. These results indicate that the charges at the end of TM-1 are part of the slow gate voltage sensor in Cxs. The fact that Cx42, which has no charge in this region, still presents voltage-dependent slow gating suggests that charges still unidentified also contribute to the slow gate voltage sensitivity. PMID:27143357

  9. Self-Optimized Biological Channels in Facilitating the Transmembrane Movement of Charged Molecules

    PubMed Central

    Huyen, V. T. N.; Lap, Vu Cong; Nguyen, V. Lien

    2016-01-01

    We consider an anisotropically two-dimensional diffusion of a charged molecule (particle) through a large biological channel under an external voltage. The channel is modeled as a cylinder of three structure parameters: radius, length, and surface density of negative charges located at the channel interior-lining. These charges induce inside the channel a potential that plays a key role in controlling the particle current through the channel. It was shown that to facilitate the transmembrane particle movement the channel should be reasonably self-optimized so that its potential coincides with the resonant one, resulting in a large particle current across the channel. Observed facilitation appears to be an intrinsic property of biological channels, regardless of the external voltage or the particle concentration gradient. This facilitation is very selective in the sense that a channel of definite structure parameters can facilitate the transmembrane movement of only particles of proper valence at corresponding temperatures. Calculations also show that the modeled channel is nonohmic with the ion conductance which exhibits a resonance at the same channel potential as that identified in the current. PMID:27022394

  10. Rapid Substrate-Induced Charge Movements of the GABA Transporter GAT1

    PubMed Central

    Bicho, Ana; Grewer, Christof

    2005-01-01

    The GABA transporter GAT1 removes the neurotransmitter GABA from the synaptic cleft by coupling of GABA uptake to the co-transport of two sodium ions and one chloride ion. The aim of this work was to investigate the individual reaction steps of GAT1 after a GABA concentration jump. GAT1 was transiently expressed in HEK293 cells and its pre-steady-state kinetics were studied by combining the patch-clamp technique with the laser-pulse photolysis of caged GABA, which allowed us to generate GABA concentration jumps within <100 μs. Recordings of transport currents generated by GAT1, both in forward and exchange transport modes, showed multiple charge movements that can be separated along the time axis. The individual reactions associated with these charge movements differ from the well-characterized electrogenic “sodium-occlusion” reaction by GAT1. One of the observed electrogenic reactions is shown to be associated with the GABA-translocating half-cycle of the transporter, in contradiction to previous studies that showed no charge movements associated with these reactions. Interestingly, reactions of the GABA-bound transporter were not affected by the absence of extracellular chloride, suggesting that Cl− may not be co-translocated with GABA. Based on the results, a new alternating access sequential-binding model is proposed for GAT1's transport cycle that describes the results presented here and those by others. PMID:15849242

  11. How multi segmental patterns deviate in spastic diplegia from typical developed.

    PubMed

    Zago, Matteo; Sforza, Chiarella; Bona, Alessia; Cimolin, Veronica; Costici, Pier Francesco; Condoluci, Claudia; Galli, Manuela

    2017-10-01

    The relationship between gait features and coordination in children with Cerebral Palsy is not sufficiently analyzed yet. Principal Component Analysis can help in understanding motion patterns decomposing movement into its fundamental components (Principal Movements). This study aims at quantitatively characterizing the functional connections between multi-joint gait patterns in Cerebral Palsy. 65 children with spastic diplegia aged 10.6 (SD 3.7) years participated in standardized gait analysis trials; 31 typically developing adolescents aged 13.6 (4.4) years were also tested. To determine if posture affects gait patterns, patients were split into Crouch and knee Hyperextension group according to knee flexion angle at standing. 3D coordinates of hips, knees, ankles, metatarsal joints, pelvis and shoulders were submitted to Principal Component Analysis. Four Principal Movements accounted for 99% of global variance; components 1-3 explained major sagittal patterns, components 4-5 referred to movements on frontal plane and component 6 to additional movement refinements. Dimensionality was higher in patients than in controls (p<0.01), and the Crouch group significantly differed from controls in the application of components 1 and 4-6 (p<0.05), while the knee Hyperextension group in components 1-2 and 5 (p<0.05). Compensatory strategies of children with Cerebral Palsy (interactions between main and secondary movement patterns), were objectively determined. Principal Movements can reduce the effort in interpreting gait reports, providing an immediate and quantitative picture of the connections between movement components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. 7 CFR 319.74-4 - Costs and charges.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Cut Flowers § 319.74-4 Costs and charges... cut flowers is responsible for all additional costs of inspection, treatment, movement, storage, or...

  13. 7 CFR 319.74-4 - Costs and charges.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Cut Flowers § 319.74-4 Costs and charges... cut flowers is responsible for all additional costs of inspection, treatment, movement, storage, or...

  14. 7 CFR 319.74-4 - Costs and charges.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Cut Flowers § 319.74-4 Costs and charges... cut flowers is responsible for all additional costs of inspection, treatment, movement, storage, or...

  15. 7 CFR 319.74-4 - Costs and charges.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Cut Flowers § 319.74-4 Costs and charges... cut flowers is responsible for all additional costs of inspection, treatment, movement, storage, or...

  16. 7 CFR 319.74-4 - Costs and charges.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Cut Flowers § 319.74-4 Costs and charges... cut flowers is responsible for all additional costs of inspection, treatment, movement, storage, or...

  17. Mapping the membrane-aqueous border for the voltage-sensing domain of a potassium channel.

    PubMed

    Neale, Edward J; Rong, Honglin; Cockcroft, Christopher J; Sivaprasadarao, Asipu

    2007-12-28

    Voltage-sensing domains (VSDs) play diverse roles in biology. As integral components, they can detect changes in the membrane potential of a cell and couple these changes to activity of ion channels and enzymes. As independent proteins, homologues of the VSD can function as voltage-dependent proton channels. To sense voltage changes, the positively charged fourth transmembrane segment, S4, must move across the energetically unfavorable hydrophobic core of the bilayer, which presents a barrier to movement of both charged species and protons. To reduce the barrier to S4 movement, it has been suggested that aqueous crevices may penetrate the protein, reducing the extent of total movement. To investigate this hypothesis in a system containing fully functional channels in a native environment with an intact membrane potential, we have determined the contour of the membrane-aqueous border of the VSD of KvAP in Escherichia coli by examining the chemical accessibility of introduced cysteines. The results revealed the contour of the membrane-aqueous border of the VSD in its activated conformation. The water-inaccessible regions of S1 and S2 correspond to the standard width of the membrane bilayer (~28 A), but those of S3 and S4 are considerably shorter (> or = 40%), consistent with aqueous crevices pervading both the extracellular and intracellular ends. One face of S3b and the entire S3a were water-accessible, reducing the water-inaccessible region of S3 to just 10 residues, significantly shorter than for S4. The results suggest a key role for S3 in reducing the distance S4 needs to move to elicit gating.

  18. Domain cooperativity in the β1a subunit is essential for dihydropyridine receptor voltage sensing in skeletal muscle.

    PubMed

    Dayal, Anamika; Bhat, Vinayakumar; Franzini-Armstrong, Clara; Grabner, Manfred

    2013-04-30

    The dihydropyridine receptor (DHPR) β1a subunit is crucial for enhancement of DHPR triad expression, assembly of DHPRs in tetrads, and elicitation of DHPRα1S charge movement--the three prerequisites of skeletal muscle excitation-contraction coupling. Despite the ability to fully target α1S into triadic junctions and tetradic arrays, the neuronal isoform β3 was unable to restore considerable charge movement (measure of α1S voltage sensing) upon expression in β1-null zebrafish relaxed myotubes, unlike the other three vertebrate β-isoforms (β1a, β2a, and β4). Thus, we used β3 for chimerization with β1a to investigate whether any of the five distinct molecular regions of β1a is dominantly involved in inducing the voltage-sensing function of α1S. Surprisingly, systematic domain swapping between β1a and β3 revealed a pivotal role of the src homology 3 (SH3) domain and C terminus of β1a in charge movement restoration. More interestingly, β1a SH3 domain and C terminus, when simultaneously engineered into β3 sequence background, were able to fully restore charge movement together with proper intracellular Ca(2+) release, suggesting cooperativity of these two domains in induction of the α1S voltage-sensing function in skeletal muscle excitation-contraction coupling. Furthermore, substitution of a proline by alanine in the putative SH3-binding polyproline motif in the proximal C terminus of β1a (also of β2a and β4) fully obstructed α1S charge movement. Consequently, we postulate a model according to which β subunits, probably via the SH3-C-terminal polyproline interaction, adapt a discrete conformation required to modify the α1S conformation apt for voltage sensing in skeletal muscle.

  19. Exceptionally Slow Movement of Gold Nanoparticles at a Solid/Liquid Interface Investigated by Scanning Transmission Electron Microscopy.

    PubMed

    Verch, Andreas; Pfaff, Marina; de Jonge, Niels

    2015-06-30

    Gold nanoparticles were observed to move at a liquid/solid interface 3 orders of magnitude slower than expected for the movement in a bulk liquid by Brownian motion. The nanoscale movement was studied with scanning transmission electron microscopy (STEM) using a liquid enclosure consisting of microchips with silicon nitride windows. The experiments involved a variation of the electron dose, the coating of the nanoparticles, the surface charge of the enclosing membrane, the viscosity, and the liquid thickness. The observed slow movement was not a result of hydrodynamic hindrance near a wall but instead explained by the presence of a layer of ordered liquid exhibiting a viscosity 5 orders of magnitude larger than a bulk liquid. The increased viscosity presumably led to a dramatic slowdown of the movement. The layer was formed as a result of the surface charge of the silicon nitride windows. The exceptionally slow motion is a crucial aspect of electron microscopy of specimens in liquid, enabling a direct observation of the movement and agglomeration of nanoscale objects in liquid.

  20. Computer analysis of the leaf movements of pinto beans.

    PubMed

    Hoshizaki, T; Hamner, K C

    1969-07-01

    Computer analysis was used for the detection of rhythmic components and the estimation of period length in leaf movement records. The results of this study indicated that spectral analysis can be profitably used to determine rhythmic components in leaf movements.In Pinto bean plants (Phaseolus vulgaris L.) grown for 28 days under continuous light of 750 ft-c and at a constant temperature of 28 degrees , there was only 1 highly significant rhythmic component in the leaf movements. The period of this rhythm was 27.3 hr. In plants grown at 20 degrees , there were 2 highly significant rhythmic components: 1 of 13.8 hr and a much stronger 1 of 27.3 hr. At 15 degrees , the highly significant rhythmic components were also 27.3 and 13.8 hr in length but were of equal intensity. Random movements less than 9 hr in length became very pronounced at this temperature. At 10 degrees , no significant rhythm was found in the leaf movements. At 5 degrees , the leaf movements ceased within 1 day.

  1. Charging of multiple interacting particles by contact electrification.

    PubMed

    Soh, Siowling; Liu, Helena; Cademartiri, Rebecca; Yoon, Hyo Jae; Whitesides, George M

    2014-09-24

    Many processes involve the movement of a disordered collection of small particles (e.g., powders, grain, dust, and granular foods). These particles move chaotically, interact randomly among themselves, and gain electrical charge by contact electrification. Understanding the mechanisms of contact electrification of multiple interacting particles has been challenging, in part due to the complex movement and interactions of the particles. To examine the processes contributing to contact electrification at the level of single particles, a system was constructed in which an array of millimeter-sized polymeric beads of different materials were agitated on a dish. The dish was filled almost completely with beads, such that beads did not exchange positions. At the same time, during agitation, there was sufficient space for collisions with neighboring beads. The charge of the beads was measured individually after agitation. Results of systematic variations in the organization and composition of the interacting beads showed that three mechanisms determined the steady-state charge of the beads: (i) contact electrification (charging of beads of different materials), (ii) contact de-electrification (discharging of beads of the same charge polarity to the atmosphere), and (iii) a long-range influence across beads not in contact with one another (occurring, plausibly, by diffusion of charge from a bead with a higher charge to a bead with a lower charge of the same polarity).

  2. Method and apparatus for non-contact charge measurement

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Lin, Kuan-Chan (Inventor); Hightower, James C. (Inventor)

    1994-01-01

    A method and apparatus for the accurate non-contact detection and measurement of static electric charge on an object using a reciprocating sensing probe that moves relative to the object. A monitor measures the signal generated as a result of this cyclical movement so as to detect the electrostatic charge on the object.

  3. The inside-out supercapacitor: induced charge storage in reduced graphene oxide.

    PubMed

    Martin, Samuel T; Akbari, Abozar; Chakraborty Banerjee, Parama; Neild, Adrian; Majumder, Mainak

    2016-11-30

    Iontronic circuits are built using components which are analogous to those used in electronic circuits, however they involve the movement of ions in an electrolyte rather than electrons in a metal or semiconductor. Developments in these circuits' performance have led to applications in biological sensing, interfacing and drug delivery. While transistors, diodes and elementary logic circuits have been demonstrated for ionic circuits if more complex circuits are to be realized, the precident set by electrical circuits suggests that a component which is analogous to an electrical capacitor is required. Herein, an ionic supercapacitor is reported, our experiments show that charge may be stored in a conductive porous reduced graphene oxide film that is contacted by two isolated aqueous solutions and that this concept extends to an arbitrary polarizable sample. Parametric studies indicate that the conductivity and porosity of this film play important roles in the resultant device's performance. This ionic capacitor has a specific capacitance of 8.6 F cm -3 at 1 mV s -1 and demonstrates the ability to filter and smooth signals in an electrolyte at a variety of low frequencies. The device has the same interfaces as a supercapacitor but their arrangement is changed, hence the name inside-out supercapacitor.

  4. Subjective Estimation of Task Time and Task Difficulty of Simple Movement Tasks.

    PubMed

    Chan, Alan H S; Hoffmann, Errol R

    2017-01-01

    It has been demonstrated in previous work that the same neural structures are used for both imagined and real movements. To provide a strong test of the similarity of imagined and actual movement times, 4 simple movement tasks were used to determine the relationship between estimated task time and actual movement time. The tasks were single-component visually controlled movements, 2-component visually controlled, low index of difficulty (ID) moves and pin-to-hole transfer movements. For each task there was good correspondence between the mean estimated times and actual movement times. In all cases, the same factors determined the actual and estimated movement times: the amplitudes of movement and the IDs of the component movements, however the contribution of each of these variables differed for the imagined and real tasks. Generally, the standard deviations of the estimated times were linearly related to the estimated time values. Overall, the data provide strong evidence for the same neural structures being used for both imagined and actual movements.

  5. Factors affecting the appearance of the hump charge movement component in frog cut twitch fibers.

    PubMed

    Hui, C S

    1991-08-01

    Charge movement was measured in frog cut twitch fibers with the double Vaseline gap technique. Five manipulations listed below were applied to investigate their effects on the hump component (I gamma) in the ON segments of TEST minus CONTROL current traces. When external Cl-1 was replaced by MeSO3- to eliminate Cl current, I gamma peaked earlier due to a few millivolts shift of the voltage dependence of I gamma kinetics in the negative direction. The Q-V plots in the TEA.Cl and TEA.MeSO3 solutions were well fitted by a sum of two Boltzmann distribution functions. The more steeply voltage-dependent component (Q gamma) had a V approximately 6 mV more negative in the TEA.MeSO3 solution than in the TEA.Cl solution. These voltage shifts were partially reversible. When creatine phosphate in the end pool solution was removed, the I gamma hump disappeared slowly over the course of 20-30 min, partly due to a suppression of Q gamma. The hump reappeared when creatine phosphate was restored. When 0.2-1.0 mM Cd2+ was added to the center pool solution to block inward Ca current, the I gamma hump became less prominent due to a prolongation in the time course of I gamma but not to a suppression of Q gamma. When the holding potential was changed from -90 to -120 mV, the amplitude of I beta was increased, thereby obscuring the I gamma hump. Finally, when a cut fiber was stimulated repetitively, I gamma lost its hump appearance because its time course was prolonged. In an extreme case, a 5-min resting interval was insufficient for a complete recovery of the waveform. In general, a stimulation rate of once per minute had a negligible effect on the shape of I gamma. Of the five manipulations, MeSO3- has the least perturbation on the appearance of I gamma and is potentially a better substitute for Cl- than SO2-(4) in eliminating Cl current if the appearance of the I gamma hump is to be preserved.

  6. Laser pulse detection method and apparatus

    NASA Technical Reports Server (NTRS)

    Goss, W.; Janesick, J. R. (Inventor)

    1984-01-01

    A sensor is described for detecting the difference in phase of a pair of returned light pulse components, such as two components of a light pulse of an optical gyro. In an optic gyro, the two light components have passed in opposite directions through a coil of optical fiber, with the difference in phase of the returned light components determining the intensity of light shining on the sensor. The sensor includes a CCD (charge coupled device) that receives the pair of returned light components to generate a charge proportional to the number of photons in the received light. The amount of the charge represents the phase difference between the two light components. At a time after the transmission of the light pulse and before the expected time of arrival of the interfering light components, charge accumulating in the CCD as a result of reflections from components in the system, are repeatedly removed from the CCD, by transferring out charges in the CCD and dumping these charges.

  7. Initial component control in disparity vergence: a model-based study.

    PubMed

    Horng, J L; Semmlow, J L; Hung, G K; Ciuffreda, K J

    1998-02-01

    The dual-mode theory for the control of disparity-vergence eye movements states that two components control the response to a step change in disparity. The initial component uses a motor preprogram to drive the eyes to an approximate final position. This initial component is followed by activation of a late component operating under visual feedback control that reduces residual disparity to within fusional limits. A quantitative model based on a pulse-step controller, similar to that postulated for saccadic eye movements, has been developed to represent the initial component. This model, an adaptation of one developed by Zee et al. [1], provides accurate simulations of isolated initial component movements and is compatible with the known underlying neurophysiology and existing neurophysiological data. The model has been employed to investigate the difference in dynamics between convergent and divergent movements. Results indicate that the pulse-control component active in convergence is reduced or absent from the control signals of divergence movements. This suggests somewhat different control structures of convergence versus divergence, and is consistent with other directional asymmetries seen in horizontal vergence.

  8. Spherical accretion of matter by charged black holes on f(T) Gravity

    NASA Astrophysics Data System (ADS)

    Rodrigues, M. E.; Junior, E. L. B.

    2018-03-01

    We studied the spherical accretion of matter by charged black holes on f(T) Gravity. Considering the accretion model of a isentropic perfect fluid we obtain the general form of the Hamiltonian and the dynamic system for the fluid. We have analysed the movements of an isothermal fluid model with p=ω e and where p is the pressure and e the total energy density. The analysis of the cases shows the possibility of spherical accretion of fluid by black holes, revealing new phenomena as cyclical movement inside the event horizon.

  9. Translational head movements of pigeons in response to a rotating pattern: characteristics and tool to analyse mechanisms underlying detection of rotational and translational optical flow.

    PubMed

    Nalbach, H O

    1992-01-01

    Pigeons freely standing in the centre of a two-dimensionally textured cylinder not only rotate but also laterally translate their head in response to the pattern sinusoidally oscillating or unidirectionally rotating around their vertical axis. The translational head movement dominates the response at high oscillation frequencies, whereas in a unidirectionally rotating drum head translation declines at about the same rate as the rotational response increases. It is suggested that this is a consequence of charging the 'velocity storage' in the vestibulo-ocular system. Similar to the rotational head movement (opto-collic reflex), the translational head movement is elicited via a wide-field motion sensitive system. The underlying mechanism can be described as vector integration of movement vectors tangential to the pattern rotation. Stimulation of the frontal visual field elicits largest translational responses while rotational responses can be elicited equally well from any azimuthal position of a moving pattern. Experiments where most of the pattern is occluded by a screen and the pigeon is allowed to view the stimulus through one or two windows demonstrate a short-range inhibition and long-range excitation between movement detectors that feed into the rotational system. Furthermore, the results obtained from such types of experiments suggest that the rotational system inhibits the translational system. These mechanisms may help the pigeon to decompose image flow into its translational and rotational components. Because of their translational response to a rotational stimulus, it is concluded, however, that pigeons either generally cannot perfectly perform the task or they need further visual information, like differential image motion, that was not available to them in the paradigms.

  10. Potential energy barriers to ion transport within lipid bilayers. Studies with tetraphenylborate.

    PubMed Central

    Andersen, P S; Fuchs, M

    1975-01-01

    Tetraphenylborate-induced current transients were studied in lipid bilayers formed from bacterial phosphatidylethanolamine in decane. This ion movement was essentially confined to the membrane in terior during the current transients. Charge movement through the interior of the membrane during the current transients was studied as a function of the applied potential. The transferred charge approached an upper limit with increasing potential, which is interpreted to be the amount of charge due to tetraphenylborate ions absorbed into the boundary regions of the bilayer. A further analysis of the charge transfer as a function of potential indicates that the movement of tetraphenylborate ions is only influenced by a certain farction of the applied potential. For bacterial phosphatidylethanolamine bilayers the effective potential is 77 +/- 4% of the applied potential. The initial conductance and the time constant of the current transients were studied as a function of the applied potential using a Nernst-Planck electrodiffusion regime. It was found that an image-force potential energy barrier gave a good prediction of the observed behavior, provided that the effective potential was used in the calculations. We could not get a satisfactory prediction of the observed behavior with an Eyring rate theory model or a trapezoidal potential energy barrier. PMID:1148364

  11. The Structural Basis of IKs Ion-Channel Activation: Mechanistic Insights from Molecular Simulations.

    PubMed

    Ramasubramanian, Smiruthi; Rudy, Yoram

    2018-06-05

    Relating ion channel (iCh) structural dynamics to physiological function remains a challenge. Current experimental and computational techniques have limited ability to explore this relationship in atomistic detail over physiological timescales. A framework associating iCh structure to function is necessary for elucidating normal and disease mechanisms. We formulated a modeling schema that overcomes the limitations of current methods through applications of artificial intelligence machine learning. Using this approach, we studied molecular processes that underlie human IKs voltage-mediated gating. IKs malfunction underlies many debilitating and life-threatening diseases. Molecular components of IKs that underlie its electrophysiological function include KCNQ1 (a pore-forming tetramer) and KCNE1 (an auxiliary subunit). Simulations, using the IKs structure-function model, reproduced experimentally recorded saturation of gating-charge displacement at positive membrane voltages, two-step voltage sensor (VS) movement shown by fluorescence, iCh gating statistics, and current-voltage relationship. Mechanistic insights include the following: 1) pore energy profile determines iCh subconductance; 2) the entire protein structure, not limited to the pore, contributes to pore energy and channel subconductance; 3) interactions with KCNE1 result in two distinct VS movements, causing gating-charge saturation at positive membrane voltages and current activation delay; and 4) flexible coupling between VS and pore permits pore opening at lower VS positions, resulting in sequential gating. The new modeling approach is applicable to atomistic scale studies of other proteins on timescales of physiological function. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Quantum Theory of Atoms in Molecules Charge-Charge Transfer-Dipolar Polarization Classification of Infrared Intensities.

    PubMed

    Duarte, Leonardo J; Richter, Wagner E; Silva, Arnaldo F; Bruns, Roy E

    2017-10-26

    Fundamental infrared vibrational transition intensities of gas-phase molecules are sensitive probes of changes in electronic structure accompanying small molecular distortions. Models containing charge, charge transfer, and dipolar polarization effects are necessary for a successful classification of the C-H, C-F, and C-Cl stretching and bending intensities. C-H stretching and in-plane bending vibrations involving sp 3 carbon atoms have small equilibrium charge contributions and are accurately modeled by the charge transfer-counterpolarization contribution and its interaction with equilibrium charge movement. Large C-F and C═O stretching intensities have dominant equilibrium charge movement contributions compared to their charge transfer-dipolar polarization ones and are accurately estimated by equilibrium charge and the interaction contribution. The C-F and C-Cl bending modes have charge and charge transfer-dipolar polarization contribution sums that are of similar size but opposite sign to their interaction values resulting in small intensities. Experimental in-plane C-H bends have small average intensities of 12.6 ± 10.4 km mol -1 owing to negligible charge contributions and charge transfer-counterpolarization cancellations, whereas their average out-of-plane experimental intensities are much larger, 65.7 ± 20.0 km mol -1 , as charge transfer is zero and only dipolar polarization takes place. The C-F bending intensities have large charge contributions but very small intensities. Their average experimental out-of-plane intensity of 9.9 ± 12.6 km mol -1 arises from the cancellation of large charge contributions by dipolar polarization contributions. The experimental average in-plane C-F bending intensity, 5.8 ± 7.3 km mol -1 , is also small owing to charge and charge transfer-counterpolarization sums being canceled by their interaction contributions. Models containing only atomic charges and their fluxes are incapable of describing electronic structure changes for simple molecular distortions that are of interest in classifying infrared intensities. One can expect dipolar polarization effects to also be important for larger distortions of chemical interest.

  13. Novel use of positively charged nylon transfer membranes for trapping indoleacetic acid or other small anions during efflux from plant tissues

    NASA Technical Reports Server (NTRS)

    Evans, M. L.; Hangarter, R. P.

    1993-01-01

    Positively charged nylon blotting membranes were used as an anion binding medium to trap [14C]indoleactic acid (IAA) as it exited cells at the basal ends of Coleus blumei L. stem and Zea mays L. coleoptile segments. Autoradiography was used to visualize where the [14C] that moved out of the cut ends was localized on the nylon membrane. Diffusion of [14C]IAA from the initial point of contact with the nylon membrane was minimal. Comparison of the autoradiograms with anatomical tissue prints of the cut ends of the segments was used to determine what tissues participate in IAA movement. The results of these initial studies were consistent with other reports suggesting that [14C]IAA movement was primarily associated with vascular tissues in both C. blumei stems and corn coleoptiles, but the resolution was not sufficient to identify which vascular tissues were involved in IAA transport. With further refinements, this technique could also be used for studying the movement of other small charged molecules through plant tissues.

  14. Novel use of positively charged nylon transfer membranes for trapping indoleacetic acid or other small anions during efflux from plant tissues.

    PubMed

    Cha M-R; Evans, M L; Hangarter, R P

    1993-01-01

    Positively charged nylon blotting membranes were used as an anion binding medium to trap [14C]indoleactic acid (IAA) as it exited cells at the basal ends of Coleus blumei L. stem and Zea mays L. coleoptile segments. Autoradiography was used to visualize where the [14C] that moved out of the cut ends was localized on the nylon membrane. Diffusion of [14C]IAA from the initial point of contact with the nylon membrane was minimal. Comparison of the autoradiograms with anatomical tissue prints of the cut ends of the segments was used to determine what tissues participate in IAA movement. The results of these initial studies were consistent with other reports suggesting that [14C]IAA movement was primarily associated with vascular tissues in both C. blumei stems and corn coleoptiles, but the resolution was not sufficient to identify which vascular tissues were involved in IAA transport. With further refinements, this technique could also be used for studying the movement of other small charged molecules through plant tissues.

  15. Open- and closed-state fast inactivation in sodium channels

    PubMed Central

    Lehmann-Horn, Frank; Holzherr, Boris D

    2011-01-01

    The role of sodium channel closed-state fast inactivation in membrane excitability is not well understood. We compared open- and closed-state fast inactivation, and the gating charge immobilized during these transitions, in skeletal muscle channel hNaV1.4. A significant fraction of total charge movement and its immobilization occurred in the absence of channel opening. Simulated action potentials in skeletal muscle fibers were attenuated when pre-conditioned by subthreshold depolarization. Anthopleurin A, a site-3 toxin that inhibits gating charge associated with the movement of DIVS4, was used to assess the role of this voltage sensor in closed-state fast inactivation. Anthopleurin elicited opposing effects on the gating mode, kinetics and charge immobilized during open- versus closed-state fast inactivation. This same toxin produced identical effects on recovery of channel availability and remobilization of gating charge, irrespective of route of entry into fast inactivation. Our findings suggest that depolarization promoting entry into fast inactivation from open versus closed states provides access to the IFMT receptor via different rate-limiting conformational translocations of DIVS4. PMID:21099342

  16. Dissociation of eye and head components of gaze shifts by stimulation of the omnipause neuron region.

    PubMed

    Gandhi, Neeraj J; Sparks, David L

    2007-07-01

    Natural movements often include actions integrated across multiple effectors. Coordinated eye-head movements are driven by a command to shift the line of sight by a desired displacement vector. Yet because extraocular and neck motoneurons are separate entities, the gaze shift command must be separated into independent signals for eye and head movement control. We report that this separation occurs, at least partially, at or before the level of pontine omnipause neurons (OPNs). Stimulation of the OPNs prior to and during gaze shifts temporally decoupled the eye and head components by inhibiting gaze and eye saccades. In contrast, head movements were consistently initiated before gaze onset, and ongoing head movements continued along their trajectories, albeit with some characteristic modulations. After stimulation offset, a gaze shift composed of an eye saccade, and a reaccelerated head movement was produced to preserve gaze accuracy. We conclude that signals subject to OPN inhibition produce the eye-movement component of a coordinated eye-head gaze shift and are not the only signals involved in the generation of the head component of the gaze shift.

  17. Domain cooperativity in the β1a subunit is essential for dihydropyridine receptor voltage sensing in skeletal muscle

    PubMed Central

    Dayal, Anamika; Bhat, Vinayakumar; Franzini-Armstrong, Clara; Grabner, Manfred

    2013-01-01

    The dihydropyridine receptor (DHPR) β1a subunit is crucial for enhancement of DHPR triad expression, assembly of DHPRs in tetrads, and elicitation of DHPRα1S charge movement—the three prerequisites of skeletal muscle excitation–contraction coupling. Despite the ability to fully target α1S into triadic junctions and tetradic arrays, the neuronal isoform β3 was unable to restore considerable charge movement (measure of α1S voltage sensing) upon expression in β1-null zebrafish relaxed myotubes, unlike the other three vertebrate β-isoforms (β1a, β2a, and β4). Thus, we used β3 for chimerization with β1a to investigate whether any of the five distinct molecular regions of β1a is dominantly involved in inducing the voltage-sensing function of α1S. Surprisingly, systematic domain swapping between β1a and β3 revealed a pivotal role of the src homology 3 (SH3) domain and C terminus of β1a in charge movement restoration. More interestingly, β1a SH3 domain and C terminus, when simultaneously engineered into β3 sequence background, were able to fully restore charge movement together with proper intracellular Ca2+ release, suggesting cooperativity of these two domains in induction of the α1S voltage-sensing function in skeletal muscle excitation–contraction coupling. Furthermore, substitution of a proline by alanine in the putative SH3-binding polyproline motif in the proximal C terminus of β1a (also of β2a and β4) fully obstructed α1S charge movement. Consequently, we postulate a model according to which β subunits, probably via the SH3–C-terminal polyproline interaction, adapt a discrete conformation required to modify the α1S conformation apt for voltage sensing in skeletal muscle. PMID:23589859

  18. A Molecular Dynamics-Quantum Mechanics Theoretical Study of DNA-Mediated Charge Transport in Hydrated Ionic Liquids.

    PubMed

    Meng, Zhenyu; Kubar, Tomas; Mu, Yuguang; Shao, Fangwei

    2018-05-08

    Charge transport (CT) through biomolecules is of high significance in the research fields of biology, nanotechnology, and molecular devices. Inspired by our previous work that showed the binding of ionic liquid (IL) facilitated charge transport in duplex DNA, in silico simulation is a useful means to understand the microscopic mechanism of the facilitation phenomenon. Here molecular dynamics simulations (MD) of duplex DNA in water and hydrated ionic liquids were employed to explore the helical parameters. Principal component analysis was further applied to capture the subtle conformational changes of helical DNA upon different environmental impacts. Sequentially, CT rates were calculated by a QM/MM simulation of the flickering resonance model based upon MD trajectories. Herein, MD simulation illustrated that the binding of ionic liquids can restrain dynamic conformation and lower the on-site energy of the DNA base. Confined movement among the adjacent base pairs was highly related to the increase of electronic coupling among base pairs, which may lead DNA to a CT facilitated state. Sequentially combining MD and QM/MM analysis, the rational correlations among the binding modes, the conformational changes, and CT rates illustrated the facilitation effects from hydrated IL on DNA CT and supported a conformational-gating mechanism.

  19. Total Charge Movement per Channel

    PubMed Central

    Sigg, Daniel; Bezanilla, Francisco

    1997-01-01

    One measure of the voltage dependence of ion channel conductance is the amount of gating charge that moves during activation and vice versa. The limiting slope method, introduced by Almers (Almers, W. 1978. Rev. Physiol. Biochem. Pharmacol. 82:96–190), exploits the relationship of charge movement and voltage sensitivity, yielding a lower limit to the range of single channel gating charge displacement. In practice, the technique is plagued by low experimental resolution due to the requirement that the logarithmic voltage sensitivity of activation be measured at very low probabilities of opening. In addition, the linear sequential models to which the original theory was restricted needed to be expanded to accommodate the complexity of mechanisms available for the activation of channels. In this communication, we refine the theory by developing a relationship between the mean activation charge displacement (a measure of the voltage sensitivity of activation) and the gating charge displacement (the integral of gating current). We demonstrate that recording the equilibrium gating charge displacement as an adjunct to the limiting slope technique greatly improves accuracy under conditions where the plots of mean activation charge displacement and gross gating charge displacement versus voltage can be superimposed. We explore this relationship for a wide variety of channel models, which include those having a continuous density of states, nonsequential activation pathways, and subconductance states. We introduce new criteria for the appropriate use of the limiting slope procedure and provide a practical example of the theory applied to low resolution simulation data. PMID:8997663

  20. High frequency measures of OHC nonlinear capacitance (NLC) and their significance: Why measures stray away from predictions

    NASA Astrophysics Data System (ADS)

    Santos-Sacchi, Joseph

    2018-05-01

    Measures of membrane capacitance (Cm) can be used to assess important characteristics of voltage-dependent membrane proteins (e.g., channels and transporters). In particular, a protein's time-dependent voltage-sensor charge movement is equivalently represented as a frequency-dependent component of Cm, telling much about the kinetics of the protein's conformational behavior. Recently, we have explored the frequency dependence of OHC voltage-dependent capacitance (aka nonlinear capacitance, NLC) to query rates of conformational switching within prestin (SLC26a5), the cell's lateral membrane molecular motor 1. Following removal of confounding stray capacitance effects, high frequency Cm measures using wide-band stimuli accurately reveal unexpected low pass behavior in prestin's molecular motions.

  1. Insulin-like growth factor-1 enhances rat skeletal muscle charge movement and L-type Ca2+ channel gene expression

    PubMed Central

    Wang, Zhong-Min; Laura Messi, María; Renganathan, Muthukrishnan; Delbono, Osvaldo

    1999-01-01

    We investigated whether insulin-like growth factor-1 (IGF-1), an endogenous potent activator of skeletal muscle proliferation and differentiation, enhances L-type Ca2+ channel gene expression resulting in increased functional voltage sensors in single skeletal muscle cells. Charge movement and inward Ca2+ current were recorded in primary cultured rat myoballs using the whole-cell configuration of the patch-clamp technique. Ca2+ current and maximum charge movement (Qmax) were potentiated in cells treated with IGF-1 without significant changes in their voltage dependence. Peak Ca2+ current in control and IGF-1-treated cells was -7·8 ± 0·44 and -10·5 ± 0·37 pA pF−1, respectively (P < 0·01), whilst Qmax was 12·9 ± 0·4 and 22·0 ± 0·3 nC μF−1, respectively (P < 0·01). The number of L-type Ca2+ channels was found to increase in the same preparation. The maximum binding capacity (Bmax) of the high-affinity radioligand [3H]PN200-110 in control and IGF-1-treated cells was 1·21 ± 0·25 and 3·15 ± 0·5 pmol (mg protein)−1, respectively (P < 0·01). No significant change in the dissociation constant for [3H]PN200-110 was found. Antisense RNA amplification showed a significant increase in the level of mRNA encoding the L-type Ca2+ channel α1-subunit in IGF-1-treated cells. This study demonstrates that IGF-1 regulates charge movement and the level of L-type Ca2+ channel α1-subunits through activation of gene expression in skeletal muscle cells. PMID:10087334

  2. A new method for assessing relative dynamic motion of vertebral bodies during cyclic loading in vitro.

    PubMed

    Dean, J C; Wilcox, C H; Daniels, A U; Goodwin, R R; Van Wagoner, E; Dunn, H K

    1991-01-01

    A new experimental technique for measuring generalized three-dimensional motion of vertebral bodies during cyclic loading in vitro is presented. The system consists of an orthogonal array of three lasers mounted rigidly to one vertebra, and a set of three mutually orthogonal charge-coupled devices mounted rigidly to an adjacent vertebra. Each laser strikes a corresponding charge-coupled device screen. The mathematical model of the system is reduced to a linear set of equations with consequent matrix algebra allowing fast real-time data reduction during cyclic movements of the spine. The range and accuracy of the system is well suited for studying thoracolumbar motion segments. Distinct advantages of the system include miniaturization of the components, the elimination of the need for mechanical linkages between the bodies, and a high degree of accuracy which is not dependent on viewing volume as found in photogrammetric systems. More generally, the spectrum of potential applications of systems of this type to the real-time measurement of the relative motion of two bodies is extremely broad.

  3. THE CONTRIBUTIONS OF NORMAL AND ANOMALOUS OSMOSIS TO THE OSMOTIC EFFECTS ARISING ACROSS CHARGED MEMBRANES WITH SOLUTIONS OF ELECTROLYTES

    PubMed Central

    Grim, Eugene; Sollner, Karl

    1957-01-01

    The osmotic effect arising across a porous membrane separating the solution of an electrolyte from water (or a more dilute solution) is ordinarily due to both normal osmosis, as it occurs also with non-electrolytes, and to "anomalous" osmosis. It is shown that the normal osmotic component cannot be measured quantitatively by the conventional comparison with a non-electrolytic reference solute. Anomalous osmosis does not occur with electroneutral membranes. Accordingly, with membranes which can be charged and discharged reversibly (without changes in geometrical structure), such as many proteinized membranes, the osmotic effects caused by an electrolyte can be measured both when only normal osmosis arises (with the membrane in the electroneutral state) and when normal as well as anomalous osmosis occurs (with the membrane in a charged state). The difference between these two effects is the true anomalous osmosis. Data are presented on the osmotic effects across an oxyhemoglobin membrane in the uncharged state at pH 6.75 and in two charged states, positive at pH 4.0 and negative at pH 10.0, with solutions of a variety of electrolytes using a concentration ratio of 2:1 over a wide range of concentrations. The rates of the movement of liquid across the membrane against an inconsequentially small hydrostatic head are recorded instead of, as conventional, the physiologically less significant pressure rises after a standard time. PMID:13439166

  4. Eye Movement as an Indicator of Sensory Components in Thought.

    ERIC Educational Resources Information Center

    Buckner, Michael; And Others

    1987-01-01

    Investigated Neuro-Linguistic Programming eye movement model's claim that specific eye movements are indicative of specific sensory components in thought. Agreement between students' (N=48) self-reports and trained observers' records support visual and auditory portions of model; do not support kinesthetic portion. Interrater agreement supports…

  5. The sliding-helix voltage sensor

    PubMed Central

    Peyser, Alexander; Nonner, Wolfgang

    2012-01-01

    The voltage sensor (VS) domain of voltage-gated ion channels underlies electrical excitability of living cells. We simulate a mesoscale model of the VS domain to determine the functional consequences of some of its physical elements. Our mesoscale model is based on VS charges, linear dielectrics and whole-body motion, applied to an S4 ‘sliding helix’. The electrostatics under voltage-clamped boundary conditions are solved consistently using a boundary element method. Based on electrostatic configurational energy, statistical-mechanical expectations of the experimentally observable relation between displaced charge and membrane voltage are predicted. Consequences of the model are investigated for variations of: S4 configuration (α- and 310-helical), countercharge alignment with S4 charges, protein polarizability, geometry of the gating canal, screening of S4 charges by the baths, and fixed charges located at the bath interfaces. The sliding helix VS domain has an inherent electrostatic stability in the explored parameter space: countercharges present in the region of weak dielectric always retain an equivalent S4 charge in that region but allow sliding movements displacing 3 to 4 e0. That movement is sensitive to small energy variations (< 2kT) along the path dependent on a number of electrostatic parameters tested in our simulations. These simulations show how the slope of the relation between displaced charge and voltage could be tuned in a channel. PMID:22907204

  6. Physiological modules for generating discrete and rhythmic movements: component analysis of EMG signals.

    PubMed

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana Maria; Dan, Bernard; Cheron, Guy; McIntyre, Joseph

    2014-01-01

    A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90°. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMG) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each shoulder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figure eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activation. From these results, we surmise that both "discrete-rhythmic movements" such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the vertical and the other aligned with the horizontal.

  7. Coulomb interactions between cytoplasmic electric fields and phosphorylated messenger proteins optimize information flow in cells.

    PubMed

    Gatenby, Robert A; Frieden, B Roy

    2010-08-11

    Normal cell function requires timely and accurate transmission of information from receptors on the cell membrane (CM) to the nucleus. Movement of messenger proteins in the cytoplasm is thought to be dependent on random walk. However, Brownian motion will disperse messenger proteins throughout the cytosol resulting in slow and highly variable transit times. We propose that a critical component of information transfer is an intracellular electric field generated by distribution of charge on the nuclear membrane (NM). While the latter has been demonstrated experimentally for decades, the role of the consequent electric field has been assumed to be minimal due to a Debye length of about 1 nanometer that results from screening by intracellular Cl- and K+. We propose inclusion of these inorganic ions in the Debye-Huckel equation is incorrect because nuclear pores allow transit through the membrane at a rate far faster than the time to thermodynamic equilibrium. In our model, only the charged, mobile messenger proteins contribute to the Debye length. Using this revised model and published data, we estimate the NM possesses a Debye-Huckel length of a few microns and find this is consistent with recent measurement using intracellular nano-voltmeters. We demonstrate the field will accelerate isolated messenger proteins toward the nucleus through Coulomb interactions with negative charges added by phosphorylation. We calculate transit times as short as 0.01 sec. When large numbers of phosphorylated messenger proteins are generated by increasing concentrations of extracellular ligands, we demonstrate they generate a self-screening environment that regionally attenuates the cytoplasmic field, slowing movement but permitting greater cross talk among pathways. Preliminary experimental results with phosphorylated RAF are consistent with model predictions. This work demonstrates that previously unrecognized Coulomb interactions between phosphorylated messenger proteins and intracellular electric fields will optimize information transfer from the CM to the NM in cells.

  8. Physiological modules for generating discrete and rhythmic movements: component analysis of EMG signals

    PubMed Central

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana Maria; Dan, Bernard; Cheron, Guy; McIntyre, Joseph

    2015-01-01

    A central question in Neuroscience is that of how the nervous system generates the spatiotemporal commands needed to realize complex gestures, such as handwriting. A key postulate is that the central nervous system (CNS) builds up complex movements from a set of simpler motor primitives or control modules. In this study we examined the control modules underlying the generation of muscle activations when performing different types of movement: discrete, point-to-point movements in eight different directions and continuous figure-eight movements in both the normal, upright orientation and rotated 90°. To test for the effects of biomechanical constraints, movements were performed in the frontal-parallel or sagittal planes, corresponding to two different nominal flexion/abduction postures of the shoulder. In all cases we measured limb kinematics and surface electromyographic activity (EMG) signals for seven different muscles acting around the shoulder. We first performed principal component analysis (PCA) of the EMG signals on a movement-by-movement basis. We found a surprisingly consistent pattern of muscle groupings across movement types and movement planes, although we could detect systematic differences between the PCs derived from movements performed in each shoulder posture and between the principal components associated with the different orientations of the figure. Unexpectedly we found no systematic differences between the figure eights and the point-to-point movements. The first three principal components could be associated with a general co-contraction of all seven muscles plus two patterns of reciprocal activation. From these results, we surmise that both “discrete-rhythmic movements” such as the figure eight, and discrete point-to-point movement may be constructed from three different fundamental modules, one regulating the impedance of the limb over the time span of the movement and two others operating to generate movement, one aligned with the vertical and the other aligned with the horizontal. PMID:25620928

  9. Characterization of nitride hole lateral transport in a charge trap flash memory by using a random telegraph signal method

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Heng; Jiang, Cheng-Min; Lin, Hsiao-Yi; Wang, Tahui; Tsai, Wen-Jer; Lu, Tao-Cheng; Chen, Kuang-Chao; Lu, Chih-Yuan

    2017-07-01

    We use a random telegraph signal method to investigate nitride trapped hole lateral transport in a charge trap flash memory. The concept of this method is to utilize an interface oxide trap and its associated random telegraph signal as an internal probe to detect a local channel potential change resulting from nitride charge lateral movement. We apply different voltages to the drain of a memory cell and vary a bake temperature in retention to study the electric field and temperature dependence of hole lateral movement in a nitride. Thermal energy absorption by trapped holes in lateral transport is characterized. Mechanisms of hole lateral transport in retention are investigated. From the measured and modeled results, we find that thermally assisted trap-to-band tunneling is a major trapped hole emission mechanism in nitride hole lateral transport.

  10. Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain.

    PubMed

    Li, Qufei; Wanderling, Sherry; Paduch, Marcin; Medovoy, David; Singharoy, Abhishek; McGreevy, Ryan; Villalba-Galea, Carlos A; Hulse, Raymond E; Roux, Benoît; Schulten, Klaus; Kossiakoff, Anthony; Perozo, Eduardo

    2014-03-01

    The transduction of transmembrane electric fields into protein motion has an essential role in the generation and propagation of cellular signals. Voltage-sensing domains (VSDs) carry out these functions through reorientations of positive charges in the S4 helix. Here, we determined crystal structures of the Ciona intestinalis VSD (Ci-VSD) in putatively active and resting conformations. S4 undergoes an ~5-Å displacement along its main axis, accompanied by an ~60° rotation. This movement is stabilized by an exchange in countercharge partners in helices S1 and S3 that generates an estimated net charge transfer of ~1 eo. Gating charges move relative to a ''hydrophobic gasket' that electrically divides intra- and extracellular compartments. EPR spectroscopy confirms the limited nature of S4 movement in a membrane environment. These results provide an explicit mechanism for voltage sensing and set the basis for electromechanical coupling in voltage-dependent enzymes and ion channels.

  11. Charge gradient microscopy

    DOEpatents

    Roelofs, Andreas; Hong, Seungbum

    2018-02-06

    A method for rapid imaging of a material specimen includes positioning a tip to contact the material specimen, and applying a force to a surface of the material specimen via the tip. In addition, the method includes moving the tip across the surface of the material specimen while removing electrical charge therefrom, generating a signal produced by contact between the tip and the surface, and detecting, based on the data, the removed electrical charge induced through the tip during movement of the tip across the surface. The method further includes measuring the detected electrical charge.

  12. Post-translational Modifications of Chicken Myelin Basic Protein Charge Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeongkwon; Zhang, Rui; Strittmatter, Eric F.

    Purified myelin basic protein (MBP) from various species contains several post-translationally modified forms termed charge components or charge isomers. Chicken MBP contains four charge components denoted as C1, C2, C3 and C8. (The C8 isomer is a complex mixture and was not investigated in this study.) These findings are in contrast to those found for human, bovine and other mammalian MBP’s. Mammalian MBP’s, each of which contain seven or eight charge components depending on the analysis of the CM-52 chromatographic curves and the PAGE gels obtained under basic pH conditions. Chicken MBP components C1, C2 and C3 were treated withmore » trypsin and endoproteinase Glu-C. The resulting digests were analyzed by capillary liquid chromatography combined with either an ion trap tandem mass spectrometer or with a Fourier transform ion cyclotron resonance mass spectrometer. This instrumentation permitted establishing the amino acid composition and the determination of the posttranslational modifications for each of the three charge components C1-C3. With the exception of N-terminal acetylation, the post-translational modifications were partial.« less

  13. 46 CFR 154.503 - Piping and piping system components: Protection from movement.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: Protection from movement. Where thermal movement and movements of the cargo tank and the hull structure may... must be protected from movement by: (a) Offsets; (b) Loops; (c) Bends; (d) Mechanical expansion joints...

  14. 46 CFR 154.503 - Piping and piping system components: Protection from movement.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: Protection from movement. Where thermal movement and movements of the cargo tank and the hull structure may... must be protected from movement by: (a) Offsets; (b) Loops; (c) Bends; (d) Mechanical expansion joints...

  15. 46 CFR 154.503 - Piping and piping system components: Protection from movement.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: Protection from movement. Where thermal movement and movements of the cargo tank and the hull structure may... must be protected from movement by: (a) Offsets; (b) Loops; (c) Bends; (d) Mechanical expansion joints...

  16. 46 CFR 154.503 - Piping and piping system components: Protection from movement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: Protection from movement. Where thermal movement and movements of the cargo tank and the hull structure may... must be protected from movement by: (a) Offsets; (b) Loops; (c) Bends; (d) Mechanical expansion joints...

  17. 46 CFR 154.503 - Piping and piping system components: Protection from movement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: Protection from movement. Where thermal movement and movements of the cargo tank and the hull structure may... must be protected from movement by: (a) Offsets; (b) Loops; (c) Bends; (d) Mechanical expansion joints...

  18. Development and use of an observation tool for active gaming and movement (OTAGM) to measure children's movement skill components during active video game play.

    PubMed

    Rosa, Rita L; Ridgers, Nicola D; Barnett, Lisa M

    2013-12-01

    This article presents a direct observational tool for assessing children's body movements and movement skills during active video games. The Observation Tool of Active Gaming and Movement (OTGAM) was informed by the Test of Gross Motor Development-2. 18 elementary school children (12 boys, 6 girls; M age = 6.1 yr., SD = 0.9) were observed during Nintendo Wii game play. Using the OTAGM, researchers were able to capture and quantify the children's body movements and movement skills during active play of video games. Furthermore, the OTAGM captured specific components of object control skills: strike, throw, and roll. Game designers, health promotion practitioners, and researchers could use this information to enhance children's physical activity and movement skills.

  19. Movement-related and steady-state electromyographic activity of human elbow flexors in slow transition movements between two equilibrium states.

    PubMed

    Tal'nov, A N; Cherkassky, V L; Kostyukov, A I

    1997-08-01

    The electromyograms were recorded in healthy human subjects by surface electrodes from the mm. biceps brachii (caput longum et. brevis), brachioradialis, and triceps brachii (caput longum) during slow transition movements in elbow joint against a weak extending torque. The test movements (flexion transitions between two steady-states) were fulfilled under visual control through combining on a monitor screen a signal from a joint angle sensor with a corresponding command generated by a computer. Movement velocities ranged between 5 and 80 degrees/s, subjects were asked to move forearm without activation of elbow extensors. Surface electromyograms were full-wave rectified, filtered and averaged within sets of 10 identical tests. Amplitudes of dynamic and steady-state components of the electromyograms were determined in dependence on a final value of joint angle, slow and fast movements were compared. An exponential-like increase of dynamic component was observed in electromyograms recorded from m. biceps brachii, the component had been increased with movement velocity and with load increment. In many experiments a statistically significant decrease of static component could be noticed within middle range of joint angles (40-60 degrees) followed by a well expressed increment for larger movements. This pattern of the static component in electromyograms could vary in different experiments even in the same subjects. A steady discharge in m. brachioradialis at ramp phase has usually been recorded only under a notable load. Variable and quite often unpredictable character of the static components of the electromyograms recorded from elbow flexors in the transition movements makes it difficult to use the equilibrium point hypothesis to describe the central processes of movement. It has been assumed that during active muscle shortening the dynamic components in arriving efferent activity should play a predominant role. A simple scheme could be proposed for transition to a steady-state after shortening. Decrease of the efferent inflow can evoke internal lengthening of the contractile elements in muscle and, as a result, hysteresis increase in the muscle contraction efficiency. Effectiveness in maintenance of the steady position seems to also be enhanced due to muscle thixotropy and friction processes in the joint. Hysteresis after-effects in elbow flexors were demonstrated as a difference in steady-state levels of electromyograms with oppositely directed approaches to the same joint position.

  20. Charge rearrangement deduced from nearby electric field measurements of an intracloud flash with K‒changes

    NASA Astrophysics Data System (ADS)

    Hager, William W.; Feng, Wei

    2013-09-01

    An intracloud flash near Langmuir Laboratory is analyzed to determine the net rearrangement of charge. The analysis employed data from a balloon borne electric field sensor, or Esonde, that was within a few hundred meters of the lightning channel, data from a similar Esonde on a mountain about 6.4 km from the balloon, and data from the New Mexico Institute of Mining and Technology Lightning Mapping Array (LMA). The recovery of the charge transport required the solution of Poisson's equation over the mountainous terrain surrounding Langmuir Laboratory and the solution of a vastly under‒determined system of equations. The charge movement is analyzed using a new smooth charge transport model that incorporates constraints in the least squares fitting process through the use of penalty terms to smooth the charge movement and prevent data overfitting. The electric field measurements were consistent with about 26% of the negative charge being transported to the end of the channel, 36% deposited along the channel in the positive region, 8% deposited near the start of the channel in the positive region, and 30% deposited in another positive region several kilometers beneath the main channel. The transport of negative charge to a lower positive region occurred during the K‒processes when some negative charge was also deposited along the main channel in the upper positive region. Hence, the charge transport process during the K‒processes amounted to a tripolar charge rearrangement where the charge from the negative region was transported to two distinct positive regions, the positive region along the main channel and a lower positive region beneath the main channel. High altitude, widely scattered LMA sources beyond the end of the main channel could indicate the existence of streamers which transported the end‒of‒channel charge into the surrounding volume. Although the LMA showed the development of two upper channels, the charge transport analysis showed that measurable charge transport only occurred on one of the channels. The channel that did not transport charge was missing the high altitude, widely scattered LMA sources seen at the end of the channel that carried charge.

  1. Age Effects in Postural Control Analyzed via a Principal Component Analysis of Kinematic Data and Interpreted in Relation to Predictions of the Optimal Feedback Control Theory

    PubMed Central

    Haid, Thomas H.; Doix, Aude-Clémence M.; Nigg, Benno M.; Federolf, Peter A.

    2018-01-01

    Optimal feedback control theory suggests that control of movement is focused on movement dimensions that are important for the task's success. The current study tested the hypotheses that age effects would emerge in the control of only specific movement components and that these components would be linked to the task relevance. Fifty healthy volunteers, 25 young and 25 older adults, performed a 80s-tandem stance while their postural movements were recorded using a standard motion capture system. The postural movements were decomposed by a principal component analysis into one-dimensional movement components, PMk, whose control was assessed through two variables, Nk and σk, which characterized the tightness and the regularity of the neuro-muscular control, respectively. The older volunteers showed less tight and more irregular control in PM2 (N2: −9.2%, p = 0.007; σ2: +14.3.0%, p = 0.017) but tighter control in PM8 and PM9 (N8: +4.7%, p = 0.020; N9: +2.5%, p = 0.043; σ9: −8.8%, p = 0.025). These results suggest that aging effects alter the postural control system not as a whole, but emerge in specific, task relevant components. The findings of the current study thus support the hypothesis that the minimal intervention principle, as described in the context of optimal feedback control (OFC), may be relevant when assessing aging effects on postural control. PMID:29459826

  2. Cl(-) concentration dependence of photovoltage generation by halorhodopsin from Halobacterium salinarum.

    PubMed Central

    Muneyuki, Eiro; Shibazaki, Chie; Wada, Yoichiro; Yakushizin, Manabu; Ohtani, Hiroyuki

    2002-01-01

    The photovoltage generation by halorhodopsin from Halobacterium salinarum (shR) was examined by adsorbing shR-containing membranes onto a thin polymer film. The photovoltage consisted of two major components: one with a sub-millisecond range time constant and the other with a millisecond range time constant with different amplitudes, as previously reported. These components exhibited different Cl(-) concentration dependencies (0.1-9 M). We found that the time constant for the fast component was relatively independent of the Cl(-) concentration, whereas the time constant for the slow component increased sigmoidally at higher Cl(-) concentrations. The fast and the slow processes were attributed to charge (Cl(-)) movements within the protein and related to Cl(-) ejection, respectively. The laser photolysis studies of shR-membrane suspensions revealed that they corresponded to the formation and the decay of the N intermediate. The photovoltage amplitude of the slow component exhibited a distorted bell-shaped Cl(-) concentration dependence, and the Cl(-) concentration dependence of its time constant suggested a weak and highly cooperative Cl(-)-binding site(s) on the cytoplasmic side (apparent K(D) of approximately 5 M and Hill coefficient > or =5). The Cl(-) concentration dependence of the photovoltage amplitude and the time constant for the slow process suggested a competition between spontaneous relaxation and ion translocation. The time constant for the relaxation was estimated to be >100 ms. PMID:12324398

  3. Self-assembled morphologies of an amphiphilic Y-shaped weak polyelectrolyte in a thin film.

    PubMed

    Mu, Dan; Li, Jian-Quan; Feng, Sheng-Yu

    2017-11-29

    Different from the self-assembly of neutral polymers, polyelectrolytes self-assemble into smaller aggregates with a more loosely assembled structure, which results from the repulsive forces acting between similar electrical compositions with the introduction of ions. The Y-shaped weak polyelectrolytes self-assemble into a core-shell type cylindrical structure with a hexagonal arrangement in a thin film, whose thickness is smaller than the gyration radius of the polymer chain. The corresponding formation mechanism consists of enrichment of the same components, adjustment of the shape of the aggregate, and the subsequent separation into individual aggregates. With the increase in the thickness of the thin film until it exceeds the gyration radius of the polymer chain, combined with the greater freedom of movement along the direction of thin film thickness, the self-assembled structure changes into a micellar structure. Under confinement, the repulsive force to the polymeric components is weakened by the repulsive forces among polyelectrolyte components with like charges, and this helps in generating aggregates with more uniform size and density distribution. In particular, when the repulsive force between the walls and the core forming components is greater than that between the walls and the shell forming components, such asymmetric confinement produces a crossed-cylindrical structure with nearly perpendicular arrangement of two cylinder arrays. Similarly, a novel three-crossed cylinder morphology is self-assembled upon removal of confinement.

  4. Two-phase strategy of neural control for planar reaching movements: II--relation to spatiotemporal characteristics of movement trajectory.

    PubMed

    Rand, Miya K; Shimansky, Yury P

    2013-09-01

    In the companion paper utilizing a quantitative model of optimal motor coordination (Part I, Rand and Shimansky, in Exp Brain Res 225:55-73, 2013), we examined coordination between X and Y movement directions (XYC) during reaching movements performed under three prescribed speeds, two movement amplitudes, and two target sizes. The obtained results indicated that the central nervous system (CNS) utilizes a two-phase strategy, where the initial and the final phases correspond to lower and higher precision of information processing, respectively, for controlling goal-directed reach-type movements to optimize the total cost of task performance including the cost of neural computations. The present study investigates how two different well-known concepts used for describing movement performance relate to the concepts of optimal XYC and two-phase control strategy. First, it is examined to what extent XYC is equivalent to movement trajectory straightness. The data analysis results show that the variability, the movement trajectory's deviation from the straight line, increases with an increase in prescribed movement speed. In contrast, the dependence of XYC strength on movement speed is opposite (in total agreement with an assumption of task performance optimality), suggesting that XYC is a feature of much higher level of generality than trajectory straightness. Second, it is tested how well the ballistic and the corrective components described in the traditional concept of two-component model of movement performance match with the initial and the final phase of the two-phase control strategy, respectively. In fast reaching movements, the percentage of trials with secondary corrective submovement was smaller under larger-target shorter-distance conditions. In slower reaching movements, meaningful parsing was impossible due to massive fluctuations in the kinematic profile throughout the movement. Thus, the parsing points determined by the conventional submovement analysis did not consistently reflect separation between the ballistic and error-corrective components. In contrast to the traditional concept of two-component movement performance, the concept of two-phase control strategy is applicable to a wide variety of experimental conditions.

  5. Contribution of Topology Determinants of a Viral Movement Protein to Its Membrane Association, Intracellular Traffic, and Viral Cell-to-Cell Movement▿†

    PubMed Central

    Genovés, A.; Pallás, V.; Navarro, J. A.

    2011-01-01

    The p7B movement protein (MP) of Melon necrotic spot virus (MNSV) is a single-pass membrane protein associated with the endoplasmic reticulum (ER), the Golgi apparatus (GA), and plasmodesmata (Pd). Experimental data presented here revealed that the p7B transmembrane domain (TMD) was sufficient to target the green fluorescent protein (GFP) to ER membranes. In addition, the short extramembrane regions of p7B were essential for subsequent ER export and transport to the GA and Pd. Microsomal partitioning and bimolecular fluorescence assays supported a type II topology of p7B in planta. Mutations affecting conventional determinants of p7B membrane topology, such as the TMD secondary structure, the overall hydrophobicity profile, the so-called “aromatic belt,” and the net charge distribution on either side of the TMD, were engineered into infectious RNAs to investigate the relationship between the MP structure and MNSV cell-to-cell movement. The results revealed that (i) the overall hydrophobic profile and the α-helix integrity of the TMD were relevant for virus movement, (ii) modification of the net charge balance of the regions flanking both TMD sides drastically reduced cell-to-cell movement, (iii) localization of p7B to the GA was necessary but not sufficient for virus movement, and (iv) membrane insertion was essential for p7B function in virus movement. Our results therefore indicate that MNSV cell-to-cell movement requires sequential transport of p7B from the ER via the GA to Pd, which is modulated by a combination of several signals with different strengths in the extramembrane regions and TMD of the MP. PMID:21593169

  6. High precision dual-axis tracking solar wireless charging system based on the four quadrant photoelectric sensor

    NASA Astrophysics Data System (ADS)

    Liu, Zhilong; Wang, Biao; Tong, Weichao

    2015-08-01

    This paper designs a solar automatic tracking wireless charging system based on the four quadrant photoelectric sensor. The system track the sun's rays automatically in real time to received the maximum energy and wireless charging to the load through electromagnetic coupling. Four quadrant photoelectric sensor responsive to the solar spectrum, the system could get the current azimuth and elevation angle of the light by calculating the solar energy incident on the sensor profile. System driver the solar panels by the biaxial movement mechanism to rotate and tilt movement until the battery plate and light perpendicular to each other. Maximize the use of solar energy, and does not require external power supply to achieve energy self-sufficiency. Solar energy can be collected for portable devices and load wireless charging by close electromagnetic field coupling. Experimental data show that: Four quadrant photoelectric sensor more sensitive to light angle measurement. when track positioning solar light, Azimuth deviation is less than 0.8°, Elevation angle deviation is less than 0.6°. Use efficiency of a conventional solar cell is only 10% -20%.The system uses a Four quadrant dual-axis tracking to raise the utilization rate of 25% -35%.Wireless charging electromagnetic coupling efficiency reached 60%.

  7. Discrimination of gender-, speed-, and shoe-dependent movement patterns in runners using full-body kinematics.

    PubMed

    Maurer, Christian; Federolf, Peter; von Tscharner, Vinzenz; Stirling, Lisa; Nigg, Benno M

    2012-05-01

    Changes in gait kinematics have often been analyzed using pattern recognition methods such as principal component analysis (PCA). It is usually just the first few principal components that are analyzed, because they describe the main variability within a dataset and thus represent the main movement patterns. However, while subtle changes in gait pattern (for instance, due to different footwear) may not change main movement patterns, they may affect movements represented by higher principal components. This study was designed to test two hypotheses: (1) speed and gender differences can be observed in the first principal components, and (2) small interventions such as changing footwear change the gait characteristics of higher principal components. Kinematic changes due to different running conditions (speed - 3.1m/s and 4.9 m/s, gender, and footwear - control shoe and adidas MicroBounce shoe) were investigated by applying PCA and support vector machine (SVM) to a full-body reflective marker setup. Differences in speed changed the basic movement pattern, as was reflected by a change in the time-dependent coefficient derived from the first principal. Gender was differentiated by using the time-dependent coefficient derived from intermediate principal components. (Intermediate principal components are characterized by limb rotations of the thigh and shank.) Different shoe conditions were identified in higher principal components. This study showed that different interventions can be analyzed using a full-body kinematic approach. Within the well-defined vector space spanned by the data of all subjects, higher principal components should also be considered because these components show the differences that result from small interventions such as footwear changes. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  8. Neutron Detection Utilizing Gadolinium Doped Hafnium Oxide Films

    DTIC Science & Technology

    2008-03-01

    2.2. Charge Carriers ................................................................................................ 2-2 2.3. Dopants and Impurities...the movement of the charge carries can be assumed to be at this drift velocity and in the direction of the electric field. 2.3. Dopants and...present even with the best purification processes. However, a material, or dopant , can be intentionally added to vary the electrical

  9. Multi-segmental movement patterns reflect juggling complexity and skill level.

    PubMed

    Zago, Matteo; Pacifici, Ilaria; Lovecchio, Nicola; Galli, Manuela; Federolf, Peter Andreas; Sforza, Chiarella

    2017-08-01

    The juggling action of six experts and six intermediates jugglers was recorded with a motion capture system and decomposed into its fundamental components through Principal Component Analysis. The aim was to quantify trends in movement dimensionality, multi-segmental patterns and rhythmicity as a function of proficiency level and task complexity. Dimensionality was quantified in terms of Residual Variance, while the Relative Amplitude was introduced to account for individual differences in movement components. We observed that: experience-related modifications in multi-segmental actions exist, such as the progressive reduction of error-correction movements, especially in complex task condition. The systematic identification of motor patterns sensitive to the acquisition of specific experience could accelerate the learning process. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Removing the Interdependency between Horizontal and Vertical Eye-Movement Components in Electrooculograms

    PubMed Central

    Chang, Won-Du; Cha, Ho-Seung; Im, Chang-Hwan

    2016-01-01

    This paper introduces a method to remove the unwanted interdependency between vertical and horizontal eye-movement components in electrooculograms (EOGs). EOGs have been widely used to estimate eye movements without a camera in a variety of human-computer interaction (HCI) applications using pairs of electrodes generally attached either above and below the eye (vertical EOG) or to the left and right of the eyes (horizontal EOG). It has been well documented that the vertical EOG component has less stability than the horizontal EOG one, making accurate estimation of the vertical location of the eyes difficult. To address this issue, an experiment was designed in which ten subjects participated. Visual inspection of the recorded EOG signals showed that the vertical EOG component is highly influenced by horizontal eye movements, whereas the horizontal EOG is rarely affected by vertical eye movements. Moreover, the results showed that this interdependency could be effectively removed by introducing an individual constant value. It is therefore expected that the proposed method can enhance the overall performance of practical EOG-based eye-tracking systems. PMID:26907271

  11. Pelvic position and movement during hip replacement.

    PubMed

    Grammatopoulos, G; Pandit, H G; da Assunção, R; Taylor, A; McLardy-Smith, P; De Smet, K A; Murray, D W; Gill, H S

    2014-07-01

    The orientation of the acetabular component is influenced not only by the orientation at which the surgeon implants the component, but also the orientation of the pelvis at the time of implantation. Hence, the orientation of the pelvis at set-up and its movement during the operation, are important. During 67 hip replacements, using a validated photogrammetric technique, we measured how three surgeons orientated the patient's pelvis, how much the pelvis moved during surgery, and what effect these had on the final orientation of the acetabular component. Pelvic orientation at set-up, varied widely (mean (± 2, standard deviation (sd))): tilt 8° (2sd ± 32), obliquity -4° (2sd ± 12), rotation -8° (2sd ± 14). Significant differences in pelvic positioning were detected between surgeons (p < 0.001). The mean angular movement of the pelvis between set-up and component implantation was 9° (sd 6). Factors influencing pelvic movement included surgeon, approach (posterior > lateral), procedure (hip resurfacing > total hip replacement) and type of support (p < 0.001). Although, on average, surgeons achieved their desired acetabular component orientation, there was considerable variability (2sd ± 16) in component orientation. We conclude that inconsistency in positioning the patient at set-up and movement of the pelvis during the operation account for much of the variation in acetabular component orientation. Improved methods of positioning and holding the pelvis are required. ©2014 The British Editorial Society of Bone & Joint Surgery.

  12. A mathematical model for an integrated self priming dielectric elastomer generator

    NASA Astrophysics Data System (ADS)

    Illenberger, Patrin K.; Wilson, Katherine E.; Henke, E.-F. Markus; Madawala, Udaya K.; Anderson, Iain A.

    2017-04-01

    Dielectric Elastomer Generators (DEG) can capture energy from natural movement sources such as wind, the tides and human locomotion. The harvested energy can be used for low power devices such as wireless sensor nodes and wearable electronics. A challenge for low power DEG is overcoming the losses associated with charge management. A circuit which can do this exists: the Self Priming Circuit (SPC) which consists of diodes and capacitors. The SPC is connected in parallel to the DEG where it transfers charge onto/o_ the DEG based on changes in the DEG capacitance. Modelling and experimental validation of the SPC have been performed in the past, allowing design and implementation of effective SPCs which match a particular DEG. While the SPC is effective, it is still an external circuit which adds additional mass and cost to the DEG. By splitting the DEG into separate capacitors and using them to build an SPC, the Integrated SPC (I-SPC) can be realized. This reduces the components required to build a SPC/DEG and improves the performance. This paper presents a mathematical model with experimental data of a first order I-SPC. Additionally, comparisons between the SPC and I-SPC are drawn.

  13. 46 CFR 50.25-1 - General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... boilers, pressure vessels, pressure piping systems, and related components are accepted by review of... or the cognizant Officer in Charge, Marine Inspection. (e) Components designed for hydraulic service... tested hydraulic components is granted by the Marine Safety Center or the cognizant Officer in Charge...

  14. 46 CFR 50.25-1 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... boilers, pressure vessels, pressure piping systems, and related components are accepted by review of... or the cognizant Officer in Charge, Marine Inspection. (e) Components designed for hydraulic service... tested hydraulic components is granted by the Marine Safety Center or the cognizant Officer in Charge...

  15. 46 CFR 50.25-1 - General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... boilers, pressure vessels, pressure piping systems, and related components are accepted by review of... or the cognizant Officer in Charge, Marine Inspection. (e) Components designed for hydraulic service... tested hydraulic components is granted by the Marine Safety Center or the cognizant Officer in Charge...

  16. 46 CFR 50.25-1 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... boilers, pressure vessels, pressure piping systems, and related components are accepted by review of... or the cognizant Officer in Charge, Marine Inspection. (e) Components designed for hydraulic service... tested hydraulic components is granted by the Marine Safety Center or the cognizant Officer in Charge...

  17. Clinical importance of voluntary and induced Bennett movement.

    PubMed

    Tupac, R G

    1978-07-01

    A total of 136 dentulous patients were divided into three groups for purposes of quantitative pantographic comparison of voluntary and induced Bennett movement. The effects of patient age and operator experience on recording the Bennett movement were also studied. The results indicates that for patients studied with Bennett movement iduced in the manner described: 1. Experienced operators can obtain more induced Bennett movement that inexperienced operators. 2. Inducing Bennett movement has a greater effect on the immediate side shift component than it has on the progressive side shift component. 3. For older individuals the amount and direction of induced immediate side shift is greater than for younger patients, statistically highly significant, and therefore clinically important. In conclusion, if the objective of a pantographic survey is to record the complete capacity of the joint to move, *lateral jaw movements must be induced.

  18. Structural Mechanism of Voltage-Dependent Gating in an Isolated Voltage-Sensing Domain

    PubMed Central

    Li, Qufei; Wanderling, Sherry; Paduch, Marcin; Medovoy, David; Singharoy, Abhishek; McGreevy, Ryan; Villalba-Galea, Carlos; Hulse, Raymond E.; Roux, Benoit; Schulten, Klaus; Kossiakoff, Anthony; Perozo, Eduardo

    2014-01-01

    SUMMARY The transduction of transmembrane electric fields into protein motion plays an essential role in the generation and propagation of cellular signals. Voltage-sensing domains (VSD) carry out these functions through reorientations of S4 helix with discrete gating charges. Here, crystal structures of the VSD from Ci-VSP were determined in both, active (Up) and resting (Down) conformations. The S4 undergoes a ~5 Å displacement along its main axis accompanied by a ~60o rotation, consistent with the helix-screw gating mechanism. This movement is stabilized by a change in countercharge partners in helices S1 and S3, generating an estimated net charge transfer of ~1 eo. Gating charges move relative to a “hydrophobic gasket” that electrically divides intra and extracellular compartments. EPR spectroscopy confirms the limited nature of S4 movement in a membrane environment. These results provide an explicit mechanism for voltage sensing and set the basis for electromechanical coupling in voltage-dependent cellular activities. PMID:24487958

  19. A Comprehensive Mixture of Tobacco Smoke Components Retards Orthodontic Tooth Movement via the Inhibition of Osteoclastogenesis in a Rat Model

    PubMed Central

    Nagaie, Maya; Nishiura, Aki; Honda, Yoshitomo; Fujiwara, Shin-Ichi; Matsumoto, Naoyuki

    2014-01-01

    Tobacco smoke is a complex mixture of numerous components. Nevertheless, most experiments have examined the effects of individual chemicals in tobacco smoke. The comprehensive effects of components on tooth movement and bone resorption remain unexplored. Here, we have shown that a comprehensive mixture of tobacco smoke components (TSCs) attenuated bone resorption through osteoclastogenesis inhibition, thereby retarding experimental tooth movement in a rat model. An elastic power chain (PC) inserted between the first and second maxillary molars robustly yielded experimental tooth movement within 10 days. TSC administration effectively retarded tooth movement since day 4. Histological evaluation disclosed that tooth movement induced bone resorption at two sites: in the bone marrow and the peripheral bone near the root. TSC administration significantly reduced the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclastic cells in the bone marrow cavity of the PC-treated dentition. An in vitro study indicated that the inhibitory effects of TSCs on osteoclastogenesis seemed directed more toward preosteoclasts than osteoblasts. These results indicate that the comprehensive mixture of TSCs might be a useful tool for detailed verification of the adverse effects of tobacco smoke, possibly contributing to the development of reliable treatments in various fields associated with bone resorption. PMID:25322153

  20. Conductive Fabric-Based Stretchable Hybridized Nanogenerator for Scavenging Biomechanical Energy.

    PubMed

    Zhang, Kewei; Wang, Zhong Lin; Yang, Ya

    2016-04-26

    We demonstrate a stretchable hybridized nanogenerator based on a highly conductive fabric of glass fibers/silver nanowires/polydimethylsiloxane. Including a triboelectric nanogenerator and an electromagnetic generator, the hybridized nanogenerator can deliver output voltage/current signals from stretchable movements by both triboelectrification and electromagnetic induction, maximizing the efficiency of energy scavenging from one motion. Compared to the individual energy-harvesting units, the hybridized nanogenerator has a better charging performance, where a 47 μF capacitor can be charged to 2.8 V in only 16 s. The hybridized nanogenerator can be integrated with a bus grip for scavenging wasted biomechanical energy from human body movements to solve the power source issue of some electric devices in the pure electric bus.

  1. The "I Am Learning" Curriculum: Developing a Movement Awareness in Young Children.

    ERIC Educational Resources Information Center

    Carson, Linda M.

    2001-01-01

    Discusses the importance of developing young children's movement awareness, focusing on the components of movement awareness; comprehensive movement awareness categories (traveling, stabilizing, and manipulating actions); and movement concepts as the modifiers of the actions. The paper explains how to implement the "I Am Learning" movement…

  2. Eye movements reflect and shape strategies in fraction comparison.

    PubMed

    Ischebeck, Anja; Weilharter, Marina; Körner, Christof

    2016-01-01

    The comparison of fractions is a difficult task that can often be facilitated by separately comparing components (numerators and denominators) of the fractions--that is, by applying so-called component-based strategies. The usefulness of such strategies depends on the type of fraction pair to be compared. We investigated the temporal organization and the flexibility of strategy deployment in fraction comparison by evaluating sequences of eye movements in 20 young adults. We found that component-based strategies could account for the response times and the overall number of fixations observed for the different fraction pairs. The analysis of eye movement sequences showed that the initial eye movements in a trial were characterized by stereotypical scanning patterns indicative of an exploratory phase that served to establish the kind of fraction pair presented. Eye movements that followed this phase adapted to the particular type of fraction pair and indicated the deployment of specific comparison strategies. These results demonstrate that participants employ eye movements systematically to support strategy use in fraction comparison. Participants showed a remarkable flexibility to adapt to the most efficient strategy on a trial-by-trial basis. Our results confirm the value of eye movement measurements in the exploration of strategic adaptation in complex tasks.

  3. A model for combined targeting and tracking tasks in computer applications.

    PubMed

    Senanayake, Ransalu; Hoffmann, Errol R; Goonetilleke, Ravindra S

    2013-11-01

    Current models for targeted-tracking are discussed and shown to be inadequate as a means of understanding the combined task of tracking, as in the Drury's paradigm, and having a final target to be aimed at, as in the Fitts' paradigm. It is shown that the task has to be split into components that are, in general, performed sequentially and have a movement time component dependent on the difficulty of the individual component of the task. In some cases, the task time may be controlled by the Fitts' task difficulty, and in others, it may be dominated by the Drury's task difficulty. Based on an experiment carried out that captured movement time in combinations of visually controlled and ballistic movements, a model for movement time in targeted-tracking was developed.

  4. Real-space measurement of potential distribution in PECVD ONO electrets by Kelvin probe force microscopy.

    PubMed

    Emmerich, F; Thielemann, C

    2016-05-20

    Multilayers of silicon oxide/silicon nitride/silicon oxide (ONO) are known for their good electret properties due to deep energy traps near the material interfaces, facilitating charge storage. However, measurement of the space charge distribution in such multilayers is a challenge for conventional methods if layer thickness dimensions shrink below 1 μm. In this paper, we propose an atomic force microscope based method to determine charge distributions in ONO layers with spatial resolution below 100 nm. By applying Kelvin probe force microscopy (KPFM) on freshly cleaved, corona-charged multilayers, the surface potential is measured directly along the z-axis and across the interfaces. This new method gives insights into charge distribution and charge movement in inorganic electrets with a high spatial resolution.

  5. Army Logistician. Volume 40, Issue 1, January-February 2008

    DTIC Science & Technology

    2008-02-01

    Colonel Mark Asbury 24 Combat Escort Team Validation—Staff Sergeant Joshua Salmons 28 Lessons Learned From a Reception , Staging, Onward Movement...the capitalized TPT manages the inventories from reception to delivery to a DESC- registered customer, who then is charged for the fuel. Detachment...available to Soldiers in Iraq, during their gunnery tables. JANUARY–FEBRUARY 200828 Reception , staging, onward movement, and inte-gration (RSOI) is the

  6. Automatic removal of eye-movement and blink artifacts from EEG signals.

    PubMed

    Gao, Jun Feng; Yang, Yong; Lin, Pan; Wang, Pei; Zheng, Chong Xun

    2010-03-01

    Frequent occurrence of electrooculography (EOG) artifacts leads to serious problems in interpreting and analyzing the electroencephalogram (EEG). In this paper, a robust method is presented to automatically eliminate eye-movement and eye-blink artifacts from EEG signals. Independent Component Analysis (ICA) is used to decompose EEG signals into independent components. Moreover, the features of topographies and power spectral densities of those components are extracted to identify eye-movement artifact components, and a support vector machine (SVM) classifier is adopted because it has higher performance than several other classifiers. The classification results show that feature-extraction methods are unsuitable for identifying eye-blink artifact components, and then a novel peak detection algorithm of independent component (PDAIC) is proposed to identify eye-blink artifact components. Finally, the artifact removal method proposed here is evaluated by the comparisons of EEG data before and after artifact removal. The results indicate that the method proposed could remove EOG artifacts effectively from EEG signals with little distortion of the underlying brain signals.

  7. Inactivation of Gating Currents of L-Type Calcium Channels

    PubMed Central

    Shirokov, Roman; Ferreira, Gonzalo; Yi, Jianxun; Ríos, Eduardo

    1998-01-01

    In studies of gating currents of rabbit cardiac Ca channels expressed as α1C/β2a or α1C/β2a/α2δ subunit combinations in tsA201 cells, we found that long-lasting depolarization shifted the distribution of mobile charge to very negative potentials. The phenomenon has been termed charge interconversion in native skeletal muscle (Brum, G., and E. Ríos. 1987. J. Physiol. (Camb.). 387:489–517) and cardiac Ca channels (Shirokov, R., R. Levis, N. Shirokova, and E. Ríos. 1992. J. Gen. Physiol. 99:863–895). Charge 1 (voltage of half-maximal transfer, V1/2 ≃ 0 mV) gates noninactivated channels, while charge 2 (V1/2 ≃ −90 mV) is generated in inactivated channels. In α1C/β2a cells, the available charge 1 decreased upon inactivating depolarization with a time constant τ ≃ 8, while the available charge 2 decreased upon recovery from inactivation (at −200 mV) with τ ≃ 0.3 s. These processes therefore are much slower than charge movement, which takes <50 ms. This separation between the time scale of measurable charge movement and that of changes in their availability, which was even wider in the presence of α2δ, implies that charges 1 and 2 originate from separate channel modes. Because clear modal separation characterizes slow (C-type) inactivation of Na and K channels, this observation establishes the nature of voltage-dependent inactivation of L-type Ca channels as slow or C-type. The presence of the α2δ subunit did not change the V1/2 of charge 2, but sped up the reduction of charge 1 upon inactivation at 40 mV (to τ ≃ 2 s), while slowing the reduction of charge 2 upon recovery (τ ≃ 2 s). The observations were well simulated with a model that describes activation as continuous electrodiffusion (Levitt, D. 1989. Biophys. J. 55:489–498) and inactivation as discrete modal change. The effects of α2δ are reproduced assuming that the subunit lowers the free energy of the inactivated mode. PMID:9607938

  8. Fixed charge in the cell membrane

    PubMed Central

    Elul, R.

    1967-01-01

    1. Focal electric field was generated by passing a current of 5 × 10-7 to 1 × 10-5 A from a micropipette into the culture medium. Movement of cells at a distance of 5-50 μ from the electrode tip was observed. In case of cells embedded in the culture only local deformation of the membrane was observed. 2. The cell species explored included neurones, glia, muscle fibres, connective cells, malignant cells and erythrocytes. All cells responded in a similar manner to the electric field, and the current required was in the same range. 3. Cells were attracted to a positive micropipette and repelled from a negative one: the only exception was observed in certain malignant cells which moved in the opposite direction. 4. Movement and membrane deformation could be obtained with electrodes filled with various concentrated and isotonic solutions. The composition of the culture medium also had no qualitative influence on these effects. 5. Metabolic poisons or rupture of the cell membrane had no effect on the movement. Isolated membrane fragments showed movement similar to that of intact cells. 6. The possibility of artifacts due to proximity of the focal electrode is considered. It is shown that electro-osmosis cannot account for the present observations. Some other artifacts are also excluded. 7. It is proposed that the most satisfactory way to account for the present observations is by a membrane carrying negative fixed charge of the order of 2·5 × 103 e.s.u./cm2. Some physiological consequences of presence of negative charge in the membrane are briefly discussed. ImagesFig. 1Fig. 2Fig. 3 PMID:6040152

  9. Biology's built-in Faraday cages

    NASA Astrophysics Data System (ADS)

    Klee, Maurice M.

    2014-05-01

    Biological fluids are water-based, ionic conductors. As such, they have both high relative dielectric constants and substantial conductivities, meaning they are lossy dielectrics. These fluids contain charged molecules (free charges), whose movements play roles in essentially all cellular processes from metabolism to communication with other cells. Using the problem of a point source in air above a biological fluid of semi-infinite extent, the bound charges in the fluid are shown to perform the function of a fast-acting Faraday cage, which protects the interior of the fluid from external electric fields. Free charges replace bound charges in accordance with the fluid's relaxation time, thereby providing a smooth transition between the initial protection provided by the bound charges and the steady state protection provided by the free charges. The electric fields within the biological fluid are thus small for all times just as they would be inside a classical Faraday cage.

  10. Reaching while standing in microgravity: a new postural solution to oversimplify movement control.

    PubMed

    Casellato, Claudia; Tagliabue, Michele; Pedrocchi, Alessandra; Papaxanthis, Charalambos; Ferrigno, Giancarlo; Pozzo, Thierry

    2012-01-01

    Many studies showed that both arm movements and postural control are characterized by strong invariants. Besides, when a movement requires simultaneous control of the hand trajectory and balance maintenance, these two movement components are highly coordinated. It is well known that the focal and postural invariants are individually tightly linked to gravity, much less is known about the role of gravity in their coordination. It is not clear whether the effect of gravity on different movement components is such as to keep a strong movement-posture coordination even in different gravitational conditions or whether gravitational information is necessary for maintaining motor synergism. We thus set out to analyze the movements of eleven standing subjects reaching for a target in front of them beyond arm's length in normal conditions and in microgravity. The results showed that subjects quickly adapted to microgravity and were able to successfully accomplish the task. In contrast to the hand trajectory, the postural strategy was strongly affected by microgravity, so to become incompatible with normo-gravity balance constraints. The distinct effects of gravity on the focal and postural components determined a significant decrease in their reciprocal coordination. This finding suggests that movement-posture coupling is affected by gravity, and thus, it does not represent a unique hardwired and invariant mode of control. Additional kinematic and dynamic analyses suggest that the new motor strategy corresponds to a global oversimplification of movement control, fulfilling the mechanical and sensory constraints of the microgravity environment.

  11. Low-frequency electrical properties.

    USGS Publications Warehouse

    Olhoeft, G.R.

    1985-01-01

    In the interpretation of induced polarization data, it is commonly assumed that metallic mineral polarization dominantly or solely causes the observed response. However, at low frequencies, there is a variety of active chemical processes which involve the movement or transfer of electrical charge. Measurements of electrical properties at low frequencies (such as induced polarization) observe such movement of charge and thus monitor many geochemical processes at a distance. Examples in which this has been done include oxidation-reduction of metallic minerals such as sulfides, cation exchange on clays, and a variety of clay-organic reactions relevant to problems in toxic waste disposal and petroleum exploration. By using both the frequency dependence and nonlinear character of the complex resistivity spectrum, these reactions may be distinguished from each other and from barren or reactionless materials.-Author

  12. Eye movements reflect and shape strategies in fraction comparison

    PubMed Central

    Ischebeck, Anja; Weilharter, Marina; Körner, Christof

    2016-01-01

    The comparison of fractions is a difficult task that can often be facilitated by separately comparing components (numerators and denominators) of the fractions—that is, by applying so-called component-based strategies. The usefulness of such strategies depends on the type of fraction pair to be compared. We investigated the temporal organization and the flexibility of strategy deployment in fraction comparison by evaluating sequences of eye movements in 20 young adults. We found that component-based strategies could account for the response times and the overall number of fixations observed for the different fraction pairs. The analysis of eye movement sequences showed that the initial eye movements in a trial were characterized by stereotypical scanning patterns indicative of an exploratory phase that served to establish the kind of fraction pair presented. Eye movements that followed this phase adapted to the particular type of fraction pair and indicated the deployment of specific comparison strategies. These results demonstrate that participants employ eye movements systematically to support strategy use in fraction comparison. Participants showed a remarkable flexibility to adapt to the most efficient strategy on a trial-by-trial basis. Our results confirm the value of eye movement measurements in the exploration of strategic adaptation in complex tasks. PMID:26039819

  13. Similarities between GCS and human motor cortex: complex movement coordination

    NASA Astrophysics Data System (ADS)

    Rodríguez, Jose A.; Macias, Rosa; Molgo, Jordi; Guerra, Dailos

    2014-07-01

    The "Gran Telescopio de Canarias" (GTC1) is an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). The GTC control system (GCS), the brain of the telescope, is is a distributed object & component oriented system based on RT-CORBA and it is responsible for the management and operation of the telescope, including its instrumentation. On the other hand, the Human motor cortex (HMC) is a region of the cerebrum responsible for the coordination of planning, control, and executing voluntary movements. If we analyze both systems, as far as the movement control of their mechanisms and body parts is concerned, we can find extraordinary similarities in their architectures. Both are structured in layers, and their functionalities are comparable from the movement conception until the movement action itself: In the GCS we can enumerate the Sequencer high level components, the Coordination libraries, the Control Kit library and the Device Driver library as the subsystems involved in the telescope movement control. If we look at the motor cortex, we can also enumerate the primary motor cortex, the secondary motor cortices, which include the posterior parietal cortex, the premotor cortex, and the supplementary motor area (SMA), the motor units, the sensory organs and the basal ganglia. From all these components/areas we will analyze in depth the several subcortical regions, of the the motor cortex, that are involved in organizing motor programs for complex movements and the GCS coordination framework, which is composed by a set of classes that allow to the high level components to transparently control a group of mechanisms simultaneously.

  14. Understanding the free energy barrier and multiple timescale dynamics of charge separation in organic photovoltaic cells.

    PubMed

    Yan, Yaming; Song, Linze; Shi, Qiang

    2018-02-28

    By employing several lattice model systems, we investigate the free energy barrier and real-time dynamics of charge separation in organic photovoltaic (OPV) cells. It is found that the combined effects of the external electric field, entropy, and charge delocalization reduce the free energy barrier significantly. The dynamic disorder reduces charge carrier delocalization and results in the increased charge separation barrier, while the effect of static disorder is more complicated. Simulation of the real-time dynamics indicates that the free charge generation process involves multiple time scales, including an ultrafast component within hundreds of femtoseconds, an intermediate component related to the relaxation of the hot charge transfer (CT) state, and a slow component on the time scale of tens of picoseconds from the thermally equilibrated CT state. Effects of hot exciton dissociation as well as its dependence on the energy offset between the Frenkel exciton and the CT state are also analyzed. The current results indicate that only a small energy offset between the band gap and the lowest energy CT state is needed to achieve efficient free charge generation in OPV devices, which agrees with recent experimental findings.

  15. Understanding the free energy barrier and multiple timescale dynamics of charge separation in organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Yan, Yaming; Song, Linze; Shi, Qiang

    2018-02-01

    By employing several lattice model systems, we investigate the free energy barrier and real-time dynamics of charge separation in organic photovoltaic (OPV) cells. It is found that the combined effects of the external electric field, entropy, and charge delocalization reduce the free energy barrier significantly. The dynamic disorder reduces charge carrier delocalization and results in the increased charge separation barrier, while the effect of static disorder is more complicated. Simulation of the real-time dynamics indicates that the free charge generation process involves multiple time scales, including an ultrafast component within hundreds of femtoseconds, an intermediate component related to the relaxation of the hot charge transfer (CT) state, and a slow component on the time scale of tens of picoseconds from the thermally equilibrated CT state. Effects of hot exciton dissociation as well as its dependence on the energy offset between the Frenkel exciton and the CT state are also analyzed. The current results indicate that only a small energy offset between the band gap and the lowest energy CT state is needed to achieve efficient free charge generation in OPV devices, which agrees with recent experimental findings.

  16. Modulating the line shape of magnetoconductance by varying the charge injection in polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Chitraningrum, Nidya; Chu, Ting-Yi; Huang, Ping-Tsung; Wen, Ten-Chin; Guo, Tzung-Fang

    2018-02-01

    We fabricate the phenyl-substituted poly(p-phenylene vinylene) copolymer (super yellow, SY-PPV)-based polymer light-emitting diodes (PLEDs) with different device architectures to modulate the injection of opposite charge carriers and investigate the corresponding magnetoconductance (MC) responses. At the first glance, we find that all PLEDs exhibit the positive MC responses. By applying the mathematical analysis to fit the curves with two empirical equations of a non-Lorentzian and a Lorentzian function, we are able to extract the hidden negative MC component from the positive MC curve. We attribute the growth of the negative MC component to the reduced interaction of the triplet excitons with charges to generate the free charge carriers as modulated by the applied magnetic field, known as the triplet exciton-charge reaction, by analyzing MC responses for PLEDs of the charge-unbalanced and hole-blocking device configurations. The negative MC component causes the broadening of the line shape in MC curves.

  17. An allosteric model of the molecular interactions of excitation- contraction coupling in skeletal muscle

    PubMed Central

    1993-01-01

    A contact interaction is proposed to exist between the voltage sensor of the transverse tubular membrane of skeletal muscle and the calcium release channel of the sarcoplasmic reticulum. This interaction is given a quantitative formulation inspired in the Monod, Wyman, and Changeux model of allosteric transitions in hemoglobin (Monod, J., J. Wyman, and J.-P. Changeux. 1965. Journal of Molecular Biology. 12:88- 118), and analogous to one proposed by Marks and Jones for voltage- dependent Ca channels (Marks, T. N., and S. W. Jones. 1992. Journal of General Physiology. 99:367-390). The allosteric protein is the calcium release channel, a homotetramer, with two accessible states, closed and open. The kinetics and equilibrium of this transition are modulated by voltage sensors (dihydropyridine receptors) pictured as four units per release channel, each undergoing independent voltage-driven transitions between two states (resting and activating). For each voltage sensor that moves to the activating state, the tendency of the channel to open increases by an equal (large) factor. The equilibrium and kinetic equations of the model are solved and shown to reproduce well a number of experimentally measured relationships including: charge movement (Q) vs. voltage, open probability of the release channel (Po) vs. voltage, the transfer function relationship Po vs. Q, and the kinetics of charge movement, release activation, and deactivation. The main consequence of the assumption of allosteric coupling is that primary effects on the release channel are transmitted backward to the voltage sensor and give secondary effects. Thus, the model reproduces well the effects of perchlorate, described in the two previous articles, under the assumption that the primary effect is to increase the intrinsic tendency of the release channel to open, with no direct effects on the voltage sensor. This modification of the open-closed equilibrium of the release channel causes a shift in the equilibrium dependency of charge movement with voltage. The paradoxical slowing of charge movement by perchlorate also results from reciprocal effects of the channel on the allosterically coupled voltage sensors. The observations of the previous articles plus the simulations in this article constitute functional evidence of allosteric transmission. PMID:8245819

  18. Transport and Reactivity of Engineered Nanoparticles in Partially Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Dror, I.; Yecheskel, Y.; Berkowitz, B.

    2015-12-01

    Engineered nanoparticles (ENPs) are being produced in increasing amounts and have numerous applications in a variety of products and industrial processes. The same properties that make these substances so appealing may also cause them to act as persistent and toxic pollutants. The post-use release of ENPs to the environment is inevitable and soil appears to be one of the largest sinks of these potential contaminants. To date, despite the significant attention that ENP behavior in the environment has received, only a few studies have considered the fate and transport of ENPs in partially saturated systems. Here, we report measurements on the transport and fate of three commonly used ENPs - silver (Ag), gold (Au) and zinc oxide (ZnO) - in partially saturated porous media. The results show that ENP interactions with the solid matrix and solution components affect the fate of the ENPs and their transport. The negatively charged ENPs (AgNPs and AuNPs) are shown to be mobile in sand (which is also negatively charged) under various conditions, including water saturation levels and inlet concentration, with transport behavior resembling conservative tracer movement. Various aging scenarios were considered and the interaction of AgNPs with sulfides, chlorides, and calcium ions, all of which are known to interact and change AgNP properties, are shown to affect AgNP fate; however, in some cases, the changed particles remained suspended in solution and mobile. The positively charged ZnO showed very low mobility, but when humic acid was present in the inlet solution, interactions leading to enhanced mobility were observed. The presence of humic acid also changes ENP size and surface charge, transforming them to negatively charged larger aggregates that can be transported through the sand. Finally, remobilization of particles that were retained in the porous media was also demonstrated for ZnO ENPs, indicating possible release of entrapped ENPs upon changes in solution chemistry.

  19. Study of talcum charging status in parallel plate electrostatic separator based on particle trajectory analysis

    NASA Astrophysics Data System (ADS)

    Yunxiao, CAO; Zhiqiang, WANG; Jinjun, WANG; Guofeng, LI

    2018-05-01

    Electrostatic separation has been extensively used in mineral processing, and has the potential to separate gangue minerals from raw talcum ore. As for electrostatic separation, the particle charging status is one of important influence factors. To describe the talcum particle charging status in a parallel plate electrostatic separator accurately, this paper proposes a modern images processing method. Based on the actual trajectories obtained from sequence images of particle movement and the analysis of physical forces applied on a charged particle, a numerical model is built, which could calculate the charge-to-mass ratios represented as the charging status of particle and simulate the particle trajectories. The simulated trajectories agree well with the experimental results obtained by images processing. In addition, chemical composition analysis is employed to reveal the relationship between ferrum gangue mineral content and charge-to-mass ratios. Research results show that the proposed method is effective for describing the particle charging status in electrostatic separation.

  20. Charged particle beam scanning using deformed high gradient insulator

    DOEpatents

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  1. 46 CFR 28.65 - Termination of unsafe operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... freeboard; (6) Inoperable bilge system; (7) Intoxication of the master or individual in charge of a..., disposition, speech, muscular movement, general appearance or behavior is apparent by observation; (8) A lack...

  2. 46 CFR 28.65 - Termination of unsafe operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... freeboard; (6) Inoperable bilge system; (7) Intoxication of the master or individual in charge of a..., disposition, speech, muscular movement, general appearance or behavior is apparent by observation; (8) A lack...

  3. Anatomical and spatial matching in imitation: Evidence from left and right brain-damaged patients.

    PubMed

    Mengotti, Paola; Ripamonti, Enrico; Pesavento, Valentina; Rumiati, Raffaella Ida

    2015-12-01

    Imitation is a sensorimotor process whereby the visual information present in the model's movement has to be coupled with the activation of the motor system in the observer. This also implies that greater the similarity between the seen and the produced movement, the easier it will be to execute the movement, a process also known as ideomotor compatibility. Two components can influence the degree of similarity between two movements: the anatomical and the spatial component. The anatomical component is present when the model and imitator move the same body part (e.g., the right hand) while the spatial component is present when the movement of the model and that of the imitator occur at the same spatial position. Imitation can be achieved by relying on both components, but typically the model's and imitator's movements are matched either anatomically or spatially. The aim of this study was to ascertain the contribution of the left and right hemisphere to the imitation accomplished either with anatomical or spatial matching (or with both). Patients with unilateral left and right brain damage performed an ideomotor task and a gesture imitation task. Lesions in the left and right hemispheres gave rise to different performance deficits. Patients with lesions in the left hemisphere showed impaired imitation when anatomical matching was required, and patients with lesions in the right hemisphere showed impaired imitation when spatial matching was required. Lesion analysis further revealed a differential involvement of left and right hemispheric regions, such as the parietal opercula, in supporting imitation in the ideomotor task. Similarly, gesture imitation seemed to rely on different regions in the left and right hemisphere, such as parietal regions in the left hemisphere and premotor, somatosensory and subcortical regions in the right hemisphere. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H.

    1994-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  5. Gamma radiation field intensity meter

    DOEpatents

    Thacker, Louis H.

    1995-01-01

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode.

  6. Lightning

    ERIC Educational Resources Information Center

    Pampe, William R.

    1970-01-01

    Presents basic physical theory for movement of electric charges in clouds, earth, and air during production of lightning and thunder. Amount of electrical energy produced and heating effects during typical thunderstorms is described. Generalized safety practices are given. (JM)

  7. Proximity charge sensing for semiconductor detectors

    DOEpatents

    Luke, Paul N; Tindall, Craig S; Amman, Mark

    2013-10-08

    A non-contact charge sensor includes a semiconductor detector having a first surface and an opposing second surface. The detector includes a high resistivity electrode layer on the first surface and a low resistivity electrode on the high resistivity electrode layer. A portion of the low resistivity first surface electrode is deleted to expose the high resistivity electrode layer in a portion of the area. A low resistivity electrode layer is disposed on the second surface of the semiconductor detector. A voltage applied between the first surface low resistivity electrode and the second surface low resistivity electrode causes a free charge to drift toward the first or second surface according to a polarity of the free charge and the voltage. A charge sensitive preamplifier coupled to a non-contact electrode disposed at a distance from the exposed high resistivity electrode layer outputs a signal in response to movement of free charge within the detector.

  8. Prestin modulates mechanics and electromechanical force of the plasma membrane.

    PubMed

    Zhang, Rui; Qian, Feng; Rajagopalan, Lavanya; Pereira, Fred A; Brownell, William E; Anvari, Bahman

    2007-07-01

    The voltage-dependent movement, or electromotility, of cochlear outer hair cells contributes to cochlear amplification in mammalian hearing. Outer hair-cell electromotility involves a membrane-based motor in which the membrane protein prestin plays a central role. We have investigated the contribution of prestin to the mechanics and electromechanical force (EMF) generation of the membrane using membrane tethers formed from human embryonic kidney (HEK) cells. Several measures of membrane tether mechanics are greater in tethers pulled from HEK cells transfected with prestin when compared to control untransfected HEK cells. A single point mutation of alanine to tryptophan (A100W) in prestin eliminates prestin-associated charge movement and diminishes EMF but does not alter passive membrane mechanics. These results suggest that prestin-associated charge transfer is necessary for maximal EMF generation by the membrane.

  9. Prestin Modulates Mechanics and Electromechanical Force of the Plasma Membrane

    PubMed Central

    Zhang, Rui; Qian, Feng; Rajagopalan, Lavanya; Pereira, Fred A.; Brownell, William E.; Anvari, Bahman

    2007-01-01

    The voltage-dependent movement, or electromotility, of cochlear outer hair cells contributes to cochlear amplification in mammalian hearing. Outer hair-cell electromotility involves a membrane-based motor in which the membrane protein prestin plays a central role. We have investigated the contribution of prestin to the mechanics and electromechanical force (EMF) generation of the membrane using membrane tethers formed from human embryonic kidney (HEK) cells. Several measures of membrane tether mechanics are greater in tethers pulled from HEK cells transfected with prestin when compared to control untransfected HEK cells. A single point mutation of alanine to tryptophan (A100W) in prestin eliminates prestin-associated charge movement and diminishes EMF but does not alter passive membrane mechanics. These results suggest that prestin-associated charge transfer is necessary for maximal EMF generation by the membrane. PMID:17468166

  10. Characteristics of M-component in rocket-triggered lightning and a discussion on its mechanism

    NASA Astrophysics Data System (ADS)

    Jiang, Rubin; Qie, Xiushu; Yang, Jing; Wang, Caixia; Zhao, Yang

    2013-09-01

    The current and electric field pulses associated with M-component following dart leader-return stroke sequences in negative rocket-triggered lightning flashes were analyzed in detail by using the data from Shandong Artificially Triggering Lightning Experiment, conducted from 2005 to 2010. For 63 M-components with current waveforms superimposed on the relatively steady continuing current, the geometric mean values of the peak current, duration, and charge transfer were 276 A, 1.21 ms, and 101 mC, respectively. The behaviors of the channel base current versus close electric field changes and the observation facts by different authors were carefully examined for investigation on mechanism of the M-component. A modified model based on Rakov's "two-wave" theory is proposed and confirms that the evolution of M-component through the lightning channel involves a downward wave transferring negative charge from the upper to the lower channel and an upward wave draining the charge transported by the downward wave. The upward wave serves to deplete the negative charge by the downward wave at its interface and makes the charge density of the channel beneath the interface layer to be roughly zero. Such modified concept is recognized to be reasonable by the simulated results showing a good agreement between the calculated and the measured E-field waveforms.

  11. COMPUTATIONAL ANALYSIS OF SWALLOWING MECHANICS UNDERLYING IMPAIRED EPIGLOTTIC INVERSION

    PubMed Central

    Pearson, William G.; Taylor, Brandon K; Blair, Julie; Martin-Harris, Bonnie

    2015-01-01

    Objective Determine swallowing mechanics associated with the first and second epiglottic movements, that is, movement to horizontal and full inversion respectively, in order to provide a clinical interpretation of impaired epiglottic function. Study Design Retrospective cohort study. Methods A heterogeneous cohort of patients with swallowing difficulties was identified (n=92). Two speech-language pathologists reviewed 5ml thin and 5ml pudding videofluoroscopic swallow studies per subject, and assigned epiglottic component scores of 0=complete inversion, 1=partial inversion, and 2=no inversion forming three groups of videos for comparison. Coordinates mapping minimum and maximum excursion of the hyoid, pharynx, larynx, and tongue base during pharyngeal swallowing were recorded using ImageJ software. A canonical variate analysis with post-hoc discriminant function analysis of coordinates was performed using MorphoJ software to evaluate mechanical differences between groups. Eigenvectors characterizing swallowing mechanics underlying impaired epiglottic movements were visualized. Results Nineteen of 184 video-swallows were rejected for poor quality (n=165). A Goodman-Kruskal index of predictive association showed no correlation between epiglottic component scores and etiologies of dysphagia (λ=.04). A two-way analysis of variance by epiglottic component scores showed no significant interaction effects between sex and age (f=1.4, p=.25). Discriminant function analysis demonstrated statistically significant mechanical differences between epiglottic component scores: 1&2, representing the first epiglottic movement (Mahalanobis distance=1.13, p=.0007); and, 0&1, representing the second epiglottic movement (Mahalanobis distance=0.83, p=.003). Eigenvectors indicate that laryngeal elevation and tongue base retraction underlie both epiglottic movements. Conclusion Results suggest that reduced tongue base retraction and laryngeal elevation underlie impaired first and second epiglottic movements. The styloglossus, hyoglossus and long pharyngeal muscles are implicated as targets for rehabilitation in dysphagic patients with impaired epiglottic inversion. PMID:27426940

  12. An acoustic charge transport imager for high definition television applications

    NASA Technical Reports Server (NTRS)

    Hunt, W. D.; Brennan, Kevin F.

    1994-01-01

    The primary goal of this research is to develop a solid-state high definition television (HDTV) imager chip operating at a frame rate of about 170 frames/sec at 2 Megapixels per frame. This imager offers an order of magnitude improvement in speed over CCD designs and will allow for monolithic imagers operating from the IR to the UV. The technical approach of the project focuses on the development of the three basic components of the imager and their integration. The imager chip can be divided into three distinct components: (1) image capture via an array of avalanche photodiodes (APD's), (2) charge collection, storage and overflow control via a charge transfer transistor device (CTD), and (3) charge readout via an array of acoustic charge transport (ACT) channels. The use of APD's allows for front end gain at low noise and low operating voltages while the ACT readout enables concomitant high speed and high charge transfer efficiency. Currently work is progressing towards the development of manufacturable designs for each of these component devices. In addition to the development of each of the three distinct components, work towards their integration is also progressing. The component designs are considered not only to meet individual specifications but to provide overall system level performance suitable for HDTV operation upon integration. The ultimate manufacturability and reliability of the chip constrains the design as well. The progress made during this period is described in detail in Sections 2-4.

  13. A simple rule of thumb for elegant prehension.

    PubMed

    Mon-Williams, M; Tresilian, J R

    2001-07-10

    Reaching out to grasp an object (prehension) is a deceptively elegant and skilled behavior. The movement prior to object contact can be described as having two components, the movement of the hand to an appropriate location for gripping the object, the "transport" component, and the opening and closing of the aperture between the fingers as they prepare to grip the target, the "grasp" component. The grasp component is sensitive to the size of the object, so that a larger grasp aperture is formed for wider objects; the maximum grasp aperture (MGA) is a little wider than the width of the target object and occurs later in the movement for larger objects. We present a simple model that can account for the temporal relationship between the transport and grasp components. We report the results of an experiment providing empirical support for our "rule of thumb." The model provides a simple, but plausible, account of a neural control strategy that has been the center of debate over the last two decades.

  14. Readers in Adult Basic Education: Component Skills, Eye Movements, and Fluency

    ERIC Educational Resources Information Center

    Barnes, Adrienne E.; Kim, Young-Suk; Tighe, Elizabeth L.; Vorstius, Christian

    2017-01-01

    The present study explored the reading skills of a sample of 48 adults enrolled in a basic education program in northern Florida, United States. Previous research has reported on reading component skills for students in adult education settings, but little is known about eye movement patterns or their relation to reading skills for this…

  15. Functional anatomy of the temporomandibular joint (I).

    PubMed

    Sava, Anca; Scutariu, Mihaela Monica

    2012-01-01

    Jaw movement is analyzed as the action between two rigid components jointed together in a particular way, the movable mandible against the stabilized cranium. Jaw articulation distinguishes form most other synovial joints of the body by the coincidence of certain characteristic features. Its articular surfaces are not covered by hyaline cartilage as elsewhere. The two jointed components carry teeth the shape, position and occlusion of which having a unique influence on specific positions and movements within the joint. A fibrocartilaginous disc is interposed between upper and lower articular surfaces; this disc compensates for the incongruities in opposing parts and allows sliding, pivoting, and rotating movements between the bony components. These are the reasons for our review of the functional anatomy of the temporomandibular joint.

  16. Is Beauty in the Eyes of the Beholder? Aesthetic Quality versus Technical Skill in Movement Evaluation of Tai Chi.

    PubMed

    Zamparo, Paola; Zorzi, Elena; Marcantoni, Sara; Cesari, Paola

    2015-01-01

    The aim of this study was to compare experts to naïve practitioners in rating the beauty and the technical quality of a Tai Chi sequence observed in video-clips (of high and middle level performances). Our hypothesis are: i) movement evaluation will correlate with the level of skill expressed in the kinematics of the observed action but ii) only experts will be able to unravel the technical component from the aesthetic component of the observed action. The judgments delivered indicate that both expert and non-expert observers are able to discern a good from a mediocre performance; however, as expected, only experts discriminate the technical from the aesthetic component of the action evaluated and do this independently of the level of skill shown by the model (high or middle level performances). Furthermore, the judgments delivered were strongly related to the kinematic variables measured in the observed model, indicating that observers rely on specific movement kinematics (e.g. movement amplitude, jerk and duration) for action evaluation. These results provide evidence of the complementary functional role of visual and motor action representation in movement evaluation and underline the role of expertise in judging the aesthetic quality of movements.

  17. Is Beauty in the Eyes of the Beholder? Aesthetic Quality versus Technical Skill in Movement Evaluation of Tai Chi

    PubMed Central

    2015-01-01

    The aim of this study was to compare experts to naïve practitioners in rating the beauty and the technical quality of a Tai Chi sequence observed in video-clips (of high and middle level performances). Our hypothesis are: i) movement evaluation will correlate with the level of skill expressed in the kinematics of the observed action but ii) only experts will be able to unravel the technical component from the aesthetic component of the observed action. The judgments delivered indicate that both expert and non-expert observers are able to discern a good from a mediocre performance; however, as expected, only experts discriminate the technical from the aesthetic component of the action evaluated and do this independently of the level of skill shown by the model (high or middle level performances). Furthermore, the judgments delivered were strongly related to the kinematic variables measured in the observed model, indicating that observers rely on specific movement kinematics (e.g. movement amplitude, jerk and duration) for action evaluation. These results provide evidence of the complementary functional role of visual and motor action representation in movement evaluation and underline the role of expertise in judging the aesthetic quality of movements. PMID:26047473

  18. 46 CFR 50.25-1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... subchapter. (b) Plate, bar stock, pipe, tube, pipe joining fittings (tees, elbows, reducers, etc.), bolting... or the cognizant Officer in Charge, Marine Inspection. (e) Components designed for hydraulic service... tested hydraulic components is granted by the Marine Safety Center or the cognizant Officer in Charge...

  19. Means and method of detection in chemical separation procedures

    DOEpatents

    Yeung, Edward S.; Koutny, Lance B.; Hogan, Barry L.; Cheung, Chan K.; Ma, Yinfa

    1993-03-09

    A means and method for indirect detection of constituent components of a mixture separated in a chemical separation process. Fluorescing ions are distributed across the area in which separation of the mixture will occur to provide a generally uniform background fluorescence intensity. For example, the mixture is comprised of one or more charged analytes which displace fluorescing ions where its constituent components separate to. Fluorescing ions of the same charge as the charged analyte components cause a displacement. The displacement results in the location of the separated components having a reduced fluorescence intensity to the remainder of the background. Detection of the lower fluorescence intensity areas can be visually, by photographic means and methods, or by automated laser scanning.

  20. Means and method of detection in chemical separation procedures

    DOEpatents

    Yeung, E.S.; Koutny, L.B.; Hogan, B.L.; Cheung, C.K.; Yinfa Ma.

    1993-03-09

    A means and method are described for indirect detection of constituent components of a mixture separated in a chemical separation process. Fluorescing ions are distributed across the area in which separation of the mixture will occur to provide a generally uniform background fluorescence intensity. For example, the mixture is comprised of one or more charged analytes which displace fluorescing ions where its constituent components separate to. Fluorescing ions of the same charge as the charged analyte components cause a displacement. The displacement results in the location of the separated components having a reduced fluorescence intensity to the remainder of the background. Detection of the lower fluorescence intensity areas can be visually, by photographic means and methods, or by automated laser scanning.

  1. Gamma radiation field intensity meter

    DOEpatents

    Thacker, L.H.

    1995-10-17

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  2. Gamma radiation field intensity meter

    DOEpatents

    Thacker, L.H.

    1994-08-16

    A gamma radiation intensity meter measures dose rate of a radiation field. The gamma radiation intensity meter includes a tritium battery emitting beta rays generating a current which is essentially constant. Dose rate is correlated to an amount of movement of an electroscope element charged by the tritium battery. Ionizing radiation decreases the voltage at the element and causes movement. A bleed resistor is coupled between the electroscope support element or electrode and the ionization chamber wall electrode. 4 figs.

  3. Animal Rights Groups Target High School Dissection.

    ERIC Educational Resources Information Center

    Trotter, Andrew

    1992-01-01

    Two groups leading the charge against dissection are People for the Ethical Treatment of Animals (PETA) and the Student Action Corps for Animals (SACA). Protests by student and community members remain the movement's strongest weapon. (MLF)

  4. A common pathway for charge transport through voltage-sensing domains.

    PubMed

    Chanda, Baron; Bezanilla, Francisco

    2008-02-07

    Voltage-gated ion channels derive their voltage sensitivity from the movement of specific charged residues in response to a change in transmembrane potential. Several studies on mechanisms of voltage sensing in ion channels support the idea that these gating charges move through a well-defined permeation pathway. This gating pathway in a voltage-gated ion channel can also be mutated to transport free cations, including protons. The recent discovery of proton channels with sequence homology to the voltage-sensing domains suggests that evolution has perhaps exploited the same gating pathway to generate a bona fide voltage-dependent proton transporter. Here we will discuss implications of these findings on the mechanisms underlying charge (and ion) transport by voltage-sensing domains.

  5. A model and simulation of fast space charge pulses in polymers

    NASA Astrophysics Data System (ADS)

    Lv, Zepeng; Rowland, Simon M.; Wu, Kai

    2017-11-01

    The transport of space charge packets across polyethylene and epoxy resin in high electric fields has been characterized as fast or slow depending on packet mobility. Several explanations for the formation and transport of slow space charge packets have been proposed, but the origins of fast space charge pulses, with mobilities above 10-11 m2 V-1 s-1, are unclear. In one suggested model, it is assumed that the formation of fast charge pulses is due to discontinuous electromechanical compression and charge injection at the electrode-insulation interface, and their transport is related to corresponding relaxation processes. In that model, charges travel as a pulse because of group polarization. This paper provides an alternative model based on the reduction of charge carrier activation energy due to charge density triggered polymer chain movement and subsequent chain relaxation times. The generation and transport of fast charge pulses are readily simulated by a bipolar charge transport model with three additional parameters: reduced activation energy, charge density threshold, and chain relaxation time. Such a model is shown to reproduce key features of fast space charge pulses including speed, duration, repetition rate and pulse size. This model provides the basis for a deep understanding of the physical origins of fast space charge pulses in polymers.

  6. Portable battery-free charger for radiation dosimeters

    DOEpatents

    Manning, Frank W.

    1984-01-01

    This invention is a novel portable charger for dosimeters of the electrometer type. The charger does not require batteries or piezoelectric crystals and is of rugged construction. In a preferred embodiment, the charge includes a housing which carries means for mounting a dosimeter to be charged. The housing also includes contact means for impressing a charging voltage across the mounted dosimeter. Also, the housing carries a trigger for operating a charging system mounted in the housing. The charging system includes a magnetic loop including a permanent magnet for establishing a magnetic field through the loop. A segment of the loop is coupled to the trigger for movement thereby to positions opening and closing the loop. A coil inductively coupled with the loop generates coil-generated voltage pulses when the trigger is operated to open and close the loop. The charging system includes an electrical circuit for impressing voltage pulses from the coil across a capacitor for integrating the pulses and applying the resulting integrated voltage across the above-mentioned contact means for charging the dosimeter.

  7. A Comparison of Independent Event-Related Desynchronization Responses in Motor-Related Brain Areas to Movement Execution, Movement Imagery, and Movement Observation.

    PubMed

    Duann, Jeng-Ren; Chiou, Jin-Chern

    2016-01-01

    Electroencephalographic (EEG) event-related desynchronization (ERD) induced by movement imagery or by observing biological movements performed by someone else has recently been used extensively for brain-computer interface-based applications, such as applications used in stroke rehabilitation training and motor skill learning. However, the ERD responses induced by the movement imagery and observation might not be as reliable as the ERD responses induced by movement execution. Given that studies on the reliability of the EEG ERD responses induced by these activities are still lacking, here we conducted an EEG experiment with movement imagery, movement observation, and movement execution, performed multiple times each in a pseudorandomized order in the same experimental runs. Then, independent component analysis (ICA) was applied to the EEG data to find the common motor-related EEG source activity shared by the three motor tasks. Finally, conditional EEG ERD responses associated with the three movement conditions were computed and compared. Among the three motor conditions, the EEG ERD responses induced by motor execution revealed the alpha power suppression with highest strengths and longest durations. The ERD responses of the movement imagery and movement observation only partially resembled the ERD pattern of the movement execution condition, with slightly better detectability for the ERD responses associated with the movement imagery and faster ERD responses for movement observation. This may indicate different levels of involvement in the same motor-related brain circuits during different movement conditions. In addition, because the resulting conditional EEG ERD responses from the ICA preprocessing came with minimal contamination from the non-related and/or artifactual noisy components, this result can play a role of the reference for devising a brain-computer interface using the EEG ERD features of movement imagery or observation.

  8. High Power Klystrons for Efficient Reliable High Power Amplifiers.

    DTIC Science & Technology

    1980-11-01

    techniques to obtain high overall efficiency. One is second harmonic space charge bunching. This is a process whereby the fundamental and second harmonic...components of the space charge waves in the electron beam of a microwave tube are combined to produce more highly concentrated electron bunches raising the...the drift lengths to enhance the 2nd harmonic component in the space charge waves. The latter method was utilized in the VKC-7790. Computer

  9. The components of shoulder and elbow movements as goals of primary reconstructive operation in obstetric brachial plexus lesions.

    PubMed

    Luszawski, Jerzy; Marcol, Wiesław; Mandera, Marek

    Most of the cases of obstetric brachial plexus lesions (OBPL) show satisfactory improvement with conservative management, but in about 25% some surgical treatment is indicated. The present paper analyzes the effects of primary reconstructive surgeries in aspect of achieving delineated intraoperatively goals. Children operated before the age of 18 months with follow-up period longer than 1 year were selected. Therapeutic goals established during the operation were identified by analysis of initial clinical status and operative protocols. The elementary movement components in shoulder and elbow joints were classified by assessing range of motion, score in Active Movement Scale and modified British Medical Research Council scale of muscle strength. The effect was considered satisfactory when some antigravity movement was possible, and good when strength exceeded M3 or antigravity movement exceeded half of range of passive movement. In 13 of 19 patients most of established goals were achieved at good level, in 2 at satisfactory level. Remaining 4 patients showed improvement only in some aspects of extremity function. In 2 patients improvement in some movements was accompanied by worsening of other movements. The analysis of results separated into individual components of movements showed that goals were achieved in most of the cases, simultaneously clearly indicating which damaged structures failed to provide satisfactory function despite being addressed intraoperatively. The good results were obtained mainly by regeneration through grafts implanted after resection of neuroma in continuity, which proves that this technique is safe in spite of unavoidable temporary regression of function postoperatively. Copyright © 2017 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  10. A model for nematode locomotion in soil

    USGS Publications Warehouse

    Hunt, H. William; Wall, Diana H.; DeCrappeo, Nicole; Brenner, John S.

    2001-01-01

    Locomotion of nematodes in soil is important for both practical and theoretical reasons. We constructed a model for rate of locomotion. The first model component is a simple simulation of nematode movement among finite cells by both random and directed behaviours. Optimisation procedures were used to fit the simulation output to data from published experiments on movement along columns of soil or washed sand, and thus to estimate the values of the model's movement coefficients. The coefficients then provided an objective means to compare rates of locomotion among studies done under different experimental conditions. The second component of the model is an equation to predict the movement coefficients as a function of controlling factors that have been addressed experimentally: soil texture, bulk density, water potential, temperature, trophic group of nematode, presence of an attractant or physical gradient and the duration of the experiment. Parameters of the equation were estimated by optimisation to achieve a good fit to the estimated movement coefficients. Bulk density, which has been reported in a minority of published studies, is predicted to have an important effect on rate of locomotion, at least in fine-textured soils. Soil sieving, which appears to be a universal practice in laboratory studies of nematode movement, is predicted to negatively affect locomotion. Slower movement in finer textured soils would be expected to increase isolation among local populations, and thus to promote species richness. Future additions to the model that might improve its utility include representing heterogeneity within populations in rate of movement, development of gradients of chemical attractants, trade-offs between random and directed components of movement, species differences in optimal temperature and water potential, and interactions among factors controlling locomotion.

  11. Observation of multicellular spinning behavior of Proteus mirabilis by atomic force microscopy and multifunctional microscopy.

    PubMed

    Liu, Yanxia; Deng, Yuanxin; Luo, Shuxiu; Deng, Yu; Guo, Linming; Xu, Weiwei; Liu, Lei; Liu, Junkang

    2014-01-01

    This study aimed to observe the multicellular spinning behavior of Proteus mirabilis by atomic force microscopy (AFM) and multifunctional microscopy in order to understand the mechanism underlying this spinning movement and its biological significance. Multifunctional microscopy with charge-coupled device (CCD) and real-time AFM showed changes in cell structure and shape of P. mirabilis during multicellular spinning movement. Specifically, the morphological characteristics of P. mirabilis, multicellular spinning dynamics, and unique movement were observed. Our findings indicate that the multicellular spinning behavior of P. mirabilis may be used to collect nutrients, perform colonization, and squeeze out competitors. The movement characteristics of P. mirabilis are vital to the organism's biological adaptability to the surrounding environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Flame Movement and Pressure Development in an Engine Cylinder

    NASA Technical Reports Server (NTRS)

    Marvin, Charles F , Jr; Best, Robert D

    1932-01-01

    This investigation describes a visual method for making stroboscopic observations, through a large number of small windows, of the spread of flame throughout the combustion chamber of a gasoline engine. Data, secured by this method on a small engine burning gaseous fuels, are given to show the effects of mixture ratio, spark advance, engine speed, charge density, degree of dilution, compression ratio, and fuel composition on flame movement in the cylinder. Partial indicator diagrams showing pressure development during the combustion period are included. Although present knowledge is not sufficient to permit qualitative evaluation of the separate effects on flame movement of chemical reaction velocity, thermal expansion of burned gases, resonance, turbulence, and piston movement, the qualitative influence of certain of these factors on some of the diagrams is indicated.

  13. Methodological Aspects of Cognitive Rehabilitation with Eye Movement Desensitization and Reprocessing (EMDR)

    PubMed Central

    Zarghi, Afsaneh; Zali, Alireza; Tehranidost, Mehdi

    2013-01-01

    A variety of nervous system components such as medulla, pons, midbrain, cerebellum, basal ganglia, parietal, frontal and occipital lobes have role in Eye Movement Desensitization and Reprocessing (EMDR) processes. The eye movement is done simultaneously for attracting client's attention to an external stimulus while concentrating on a certain internal subject. Eye movement guided by therapist is the most common attention stimulus. The role of eye movement has been documented previously in relation with cognitive processing mechanisms. A series of systemic experiments have shown that the eyes’ spontaneous movement is associated with emotional and cognitive changes and results in decreased excitement, flexibility in attention, memory processing, and enhanced semantic recalling. Eye movement also decreases the memory's image clarity and the accompanying excitement. By using EMDR, we can reach some parts of memory which were inaccessible before and also emotionally intolerable. Various researches emphasize on the effectiveness of EMDR in treating and curing phobias, pains, and dependent personality disorders. Consequently, due to the involvement of multiple neural system components, this palliative method of treatment can also help to rehabilitate the neuro-cognitive system. PMID:25337334

  14. Component-Level Tuning of Kinematic Features from Composite Therapist Impressions of Movement Quality

    PubMed Central

    Venkataraman, Vinay; Turaga, Pavan; Baran, Michael; Lehrer, Nicole; Du, Tingfang; Cheng, Long; Rikakis, Thanassis; Wolf, Steven L.

    2016-01-01

    In this paper, we propose a general framework for tuning component-level kinematic features using therapists’ overall impressions of movement quality, in the context of a Home-based Adaptive Mixed Reality Rehabilitation (HAMRR) system. We propose a linear combination of non-linear kinematic features to model wrist movement, and propose an approach to learn feature thresholds and weights using high-level labels of overall movement quality provided by a therapist. The kinematic features are chosen such that they correlate with the quality of wrist movements to clinical assessment scores. Further, the proposed features are designed to be reliably extracted from an inexpensive and portable motion capture system using a single reflective marker on the wrist. Using a dataset collected from ten stroke survivors, we demonstrate that the framework can be reliably used for movement quality assessment in HAMRR systems. The system is currently being deployed for large-scale evaluations, and will represent an increasingly important application area of motion capture and activity analysis. PMID:25438331

  15. Generation of multicomponent ion beams by a vacuum arc ion source with compound cathode.

    PubMed

    Savkin, K P; Yushkov, Yu G; Nikolaev, A G; Oks, E M; Yushkov, G Yu

    2010-02-01

    This paper presents the results of time-of-flight mass spectrometry studies of the elemental and mass-to-charge state compositions of metal ion beams produced by a vacuum arc ion source with compound cathode (WC-Co(0.5), Cu-Cr(0.25), Ti-Cu(0.1)). We found that the ion beam composition agrees well with the stoichiometric composition of the cathode material from which the beam is derived, and the maximum ion charge state of the different plasma components is determined by the ionization capability of electrons within the cathode spot plasma, which is common to all components. The beam mass-to-charge state spectrum from a compound cathode features a greater fraction of multiply charged ions for those materials with lower electron temperature in the vacuum arc cathode spot, and a smaller fraction for those with higher electron temperature within the spot. We propose a potential diagram method for determination of attainable ion charge states for all components of the compound cathodes.

  16. Periodic perturbations in Shaker K+ channel gating kinetics by deletions in the S3–S4 linker

    PubMed Central

    Gonzalez, Carlos; Rosenman, Eduardo; Bezanilla, Francisco; Alvarez, Osvaldo; Latorre, Ramon

    2001-01-01

    Upon depolarization positive charges contained in the transmembrane segment S4 of voltage-dependent channels are displaced from the cytoplasmic to the external milieu. This charge movement leads to channel opening. In Shaker K+ channels four positively charged arginines in the S4 domain are transferred from the internal to the external side of the channel during activation. The distance traveled by the S4 segment during activation is unknown, but large movements should be constrained by the S3–S4 linker. Constructing deletion mutants, we show that the activation time constant and the midpoint of the voltage activation curve of the Shaker K+ channel macroscopic currents becomes a periodic function of the S3–S4 linker length for linkers shorter than 7 aa residues. The periodicity is that typical of α-helices. Moreover, a linker containing only 3 aa is enough to recover the wild-type phenotype. The deletion method revealed the importance of the S3–S4 linker in determining the channel gating kinetics and indicated that the α-helical nature of S4 extends toward its N terminus. These results support the notion that a small displacement of the S4 segment suffices to displace the four gating charges involved in channel opening. PMID:11493701

  17. Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmen Herranz, Ma; Sanchez-Navarro, Jesus-Angel; Sauri, Ana

    2005-08-15

    The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for cell-to-cell movement. MP subcellular localization studies using a GFP fusion protein revealed highly punctate structures between neighboring cells, believed to represent plasmodesmata. Deletion of the RNA-binding domain (RBD) of PNRSV MP abolishes the cell-to-cell movement. A mutational analysis on this RBD was performed in order to identify in vivo the features that govern viral transport. Loss of positive charges prevented the cell-to-cell movement even though all mutants showed a similar accumulation level in protoplasts to those observed with the wild-type (wt) MP. Synthetic peptides representing the mutantsmore » and wild-type RBDs were used to study RNA-binding affinities by EMSA assays being approximately 20-fold lower in the mutants. Circular dichroism analyses revealed that the secondary structure of the peptides was not significantly affected by mutations. The involvement of the affinity changes between the viral RNA and the MP in the viral cell-to-cell movement is discussed.« less

  18. Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement.

    PubMed

    Carmen Herranz, Ma; Sanchez-Navarro, Jesús-Angel; Saurí, Ana; Mingarro, Ismael; Pallás, Vicente

    2005-08-15

    The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for cell-to-cell movement. MP subcellular localization studies using a GFP fusion protein revealed highly punctate structures between neighboring cells, believed to represent plasmodesmata. Deletion of the RNA-binding domain (RBD) of PNRSV MP abolishes the cell-to-cell movement. A mutational analysis on this RBD was performed in order to identify in vivo the features that govern viral transport. Loss of positive charges prevented the cell-to-cell movement even though all mutants showed a similar accumulation level in protoplasts to those observed with the wild-type (wt) MP. Synthetic peptides representing the mutants and wild-type RBDs were used to study RNA-binding affinities by EMSA assays being approximately 20-fold lower in the mutants. Circular dichroism analyses revealed that the secondary structure of the peptides was not significantly affected by mutations. The involvement of the affinity changes between the viral RNA and the MP in the viral cell-to-cell movement is discussed.

  19. On the barn owl's visual pre-attack behavior: I. Structure of head movements and motion patterns.

    PubMed

    Ohayon, Shay; van der Willigen, Robert F; Wagner, Hermann; Katsman, Igor; Rivlin, Ehud

    2006-09-01

    Barn owls exhibit a rich repertoire of head movements before taking off for prey capture. These movements occur mainly at light levels that allow for the visual detection of prey. To investigate these movements and their functional relevance, we filmed the pre-attack behavior of barn owls. Off-line image analysis enabled reconstruction of all six degrees of freedom of head movements. Three categories of head movements were observed: fixations, head translations and head rotations. The observed rotations contained a translational component. Head rotations did not follow Listing's law, but could be well described by a second-order surface, which indicated that they are in close agreement with Donder's law. Head translations did not contain any significant rotational components. Translations were further segmented into straight-line and curved paths. Translations along an axis perpendicular to the line of sight were similar to peering movements observed in other animals. We suggest that these basic motion elements (fixations, head rotations, translations along a straight line, and translation along a curved trajectory) may be combined to form longer and more complex behavior. We speculate that these head movements mainly underlie estimation of distance during prey capture.

  20. Online kinematic regulation by visual feedback for grasp versus transport during reach-to-pinch

    PubMed Central

    Nataraj, Raviraj; Pasluosta, Cristian; Li, Zong-Ming

    2014-01-01

    Purpose This study investigated novel kinematic performance parameters to understand regulation by visual feedback (VF) of the reaching hand on the grasp and transport components during the reach-to-pinch maneuver. Conventional metrics often signify discrete movement features to postulate sensory-based control effects (e.g., time for maximum velocity to signify feedback delay). The presented metrics of this study were devised to characterize relative vision-based control of the sub-movements across the entire maneuver. Methods Movement performance was assessed according to reduced variability and increased efficiency of kinematic trajectories. Variability was calculated as the standard deviation about the observed mean trajectory for a given subject and VF condition across kinematic derivatives for sub-movements of inter-pad grasp (distance between thumb and index finger-pads; relative orientation of finger-pads) and transport (distance traversed by wrist). A Markov analysis then examined the probabilistic effect of VF on which movement component exhibited higher variability over phases of the complete maneuver. Jerk-based metrics of smoothness (minimal jerk) and energy (integrated jerk-squared) were applied to indicate total movement efficiency with VF. Results/Discussion The reductions in grasp variability metrics with VF were significantly greater (p<0.05) compared to transport for velocity, acceleration, and jerk, suggesting separate control pathways for each component. The Markov analysis indicated that VF preferentially regulates grasp over transport when continuous control is modeled probabilistically during the movement. Efficiency measures demonstrated VF to be more integral for early motor planning of grasp than transport in producing greater increases in smoothness and trajectory adjustments (i.e., jerk-energy) early compared to late in the movement cycle. Conclusions These findings demonstrate the greater regulation by VF on kinematic performance of grasp compared to transport and how particular features of this relativistic control occur continually over the maneuver. Utilizing the advanced performance metrics presented in this study facilitated characterization of VF effects continuously across the entire movement in corroborating the notion of separate control pathways for each component. PMID:24968371

  1. NANOSILVER MOVEMENT THROUGH BIOLOGICAL BARRIERS RELATES TO PHYSICOCHEMICAL PROPERTIES

    EPA Science Inventory

    Linking the physicochemical (PC) properties of engineered nanomaterials (NM) to their biological activity is critical for identifying their (toxic) mode of action, and developing appropriate and effective risk assessment guidelines. Particle surface charge (zeta potential), surfa...

  2. High-resolution dual-trap optical tweezers with differential detection: alignment of instrument components.

    PubMed

    Bustamante, Carlos; Chemla, Yann R; Moffitt, Jeffrey R

    2009-10-01

    Optical traps or "optical tweezers" have become an indispensable tool in understanding fundamental biological processes. Using our design, a dual-trap optical tweezers with differential detection, we can detect length changes to a DNA molecule tethering the trapped beads of 1 bp. By forming two traps from the same laser and maximizing the common optical paths of the two trapping beams, we decouple the instrument from many sources of environmental and instrumental noise that typically limit spatial resolution. The performance of a high-resolution instrument--the formation of strong traps, the minimization of background signals from trap movements, or the mitigation of the axial coupling, for example--can be greatly improved through careful alignment. This procedure, which is described in this article, starts from the laser and advances through the instrument, component by component. Alignment is complicated by the fact that the trapping light is in the near infrared (NIR) spectrum. Standard infrared viewing cards are commonly used to locate the beam, but unfortunately, bleach quickly. As an alternative, we use an IR-viewing charge-coupled device (CCD) camera equipped with a C-mount telephoto lens and display its image on a monitor. By visualizing the scattered light on a pair of irises of identical height separated by >12 in., the beam direction can be set very accurately along a fixed axis.

  3. Long-term recording and automatic analysis of cough using filtered acoustic signals and movements on static charge sensitive bed.

    PubMed

    Salmi, T; Sovijärvi, A R; Brander, P; Piirilä, P

    1988-11-01

    Reliable long-term assessment of cough is necessary in many clinical and scientific settings. A new method for long-term recording and automatic analysis of cough is presented. The method is based on simultaneous recording of two independent signals: high-pass filtered cough sounds and cough-induced fast movements of the body. The acoustic signals are recorded with a dynamic microphone in the acoustic focus of a glass fiber paraboloid mirror. Body movements are recorded with a static charge-sensitive bed located under an ordinary plastic foam mattress. The patient can be studied lying or sitting with no transducers or electrodes attached. A microcomputer is used for sampling of signals, detection of cough, statistical analyses, and on-line printing of results. The method was validated in seven adult patients with a total of 809 spontaneous cough events, using clinical observation as a reference. The sensitivity of the method to detect cough was 99.0 percent, and the positive predictivity was 98.1 percent. The system ignored speaking and snoring. The method provides a convenient means of reliable long-term follow-up of cough in clinical work and research.

  4. Engineering interfacial photo-induced charge transfer based on nanobamboo array architecture for efficient solar-to-chemical energy conversion.

    PubMed

    Wang, Xiaotian; Liow, Chihao; Bisht, Ankit; Liu, Xinfeng; Sum, Tze Chien; Chen, Xiaodong; Li, Shuzhou

    2015-04-01

    Engineering interfacial photo-induced charge transfer for highly synergistic photocatalysis is successfully realized based on nanobamboo array architecture. Programmable assemblies of various components and heterogeneous interfaces, and, in turn, engineering of the energy band structure along the charge transport pathways, play a critical role in generating excellent synergistic effects of multiple components for promoting photocatalytic efficiency. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Charge movement in a GaN-based hetero-structure field effect transistor structure with carbon doped buffer under applied substrate bias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pooth, Alexander, E-mail: a.pooth@bristol.ac.uk; IQE; Uren, Michael J.

    2015-12-07

    Charge trapping and transport in the carbon doped GaN buffer of a GaN-based hetero-structure field effect transistor (HFET) has been investigated under both positive and negative substrate bias. Clear evidence of redistribution of charges in the carbon doped region by thermally generated holes is seen, with electron injection and capture observed during positive bias. Excellent agreement is found with simulations. It is shown that these effects are intrinsic to the carbon doped GaN and need to be controlled to provide reliable and efficient GaN-based power HFETs.

  6. Stepped electrophoresis for movement and concentration of DNA

    DOEpatents

    Miles, Robin R.; Wang, Amy Wei-Yun; Mariella, Jr., Raymond P.

    2005-03-15

    A fluidic channel patterned with a series of thin-film electrodes makes it possible to move and concentrate DNA in a fluid passing through the fluidic channel. The DNA has an inherent negative charge and by applying a voltage between adjacent electrodes the DNA is caused to move. By using a series of electrodes, when one electrode voltage or charge is made negative with respect to adjacent electrodes, the DNA is repelled away from this electrode and attached to a positive charged electrode of the series. By sequentially making the next electrode of the series negative, the DNA can be moved to and concentrated over the remaining positive electrodes.

  7. An acoustic charge transport imager for high definition television applications

    NASA Technical Reports Server (NTRS)

    Hunt, W. D.; Brennan, K. F.; Summers, C. J.

    1994-01-01

    The primary goal of this research is to develop a solid-state television (HDTV) imager chip operating at a frame rate of about 170 frames/sec at 2 Megapixels/frame. This imager will offer an order of magnitude improvements in speed over CCD designs and will allow for monolithic imagers operating from the IR to UV. The technical approach of the project focuses on the development of the three basic components of the imager and their subsequent integration. The camera chip can be divided into three distinct functions: (1) image capture via an array of avalanche photodiodes (APD's); (2) charge collection, storage, and overflow control via a charge transfer transistor device (CTD); and (3) charge readout via an array of acoustic charge transport (ACT) channels. The use of APD's allows for front end gain at low noise and low operating voltages while the ACT readout enables concomitant high speed and high charge transfer efficiency. Currently work is progressing towards the optimization of each of these component devices. In addition to the development of each of the three distinct components, work towards their integration and manufacturability is also progressing. The component designs are considered not only to meet individual specifications but to provide overall system level performance suitable for HDTV operation upon integration. The ultimate manufacturability and reliability of the chip constrains the design as well. The progress made during this period is described in detail.

  8. Laban Movement Analysis towards Behavior Patterns

    NASA Astrophysics Data System (ADS)

    Santos, Luís; Dias, Jorge

    This work presents a study about the use of Laban Movement Analysis (LMA) as a robust tool to describe human basic behavior patterns, to be applied in human-machine interaction. LMA is a language used to describe and annotate dancing movements and is divided in components [1]: Body, Space, Shape and Effort. Despite its general framework is widely used in physical and mental therapy [2], it has found little application in the engineering domain. Rett J. [3] proposed to implement LMA using Bayesian Networks. However LMA component models have not yet been fully implemented. A study on how to approach behavior using LMA is presented. Behavior is a complex feature and movement chain, but we believe that most basic behavior primitives can be discretized in simple features. Correctly identifying Laban parameters and the movements the authors feel that good patterns can be found within a specific set of basic behavior semantics.

  9. Microscope collision protection apparatus

    DOEpatents

    DeNure, Charles R.

    2001-10-23

    A microscope collision protection apparatus for a remote control microscope which protects the optical and associated components from damage in the event of an uncontrolled collision with a specimen, regardless of the specimen size or shape. In a preferred embodiment, the apparatus includes a counterbalanced slide for mounting the microscope's optical components. This slide replaces the rigid mounts on conventional upright microscopes with a precision ball bearing slide. As the specimen contacts an optical component, the contacting force will move the slide and the optical components mounted thereon. This movement will protect the optical and associated components from damage as the movement causes a limit switch to be actuated, thereby stopping all motors responsible for the collision.

  10. Active for Life: Developmentally Appropriate Movement Programs for Young Children.

    ERIC Educational Resources Information Center

    Sanders, Stephen W.

    This book provides guidance on what high-quality movement programs for young children should include, offering a curricular foundation, strategies for teaching, and assessment ideas. It defines and illustrates specific interrelated components of developmentally appropriate practice in providing movement education for young children. There are…

  11. Portable refrigerant charge meter and method for determining the actual refrigerant charge in HVAC systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiming; Abdelaziz, Omar; LaClair, Tim L.

    A refrigerant charge meter and a method for determining the actual refrigerant charge in HVAC systems are described. The meter includes means for determining an optimum refrigerant charge from system subcooling and system component parameters. The meter also includes means for determining the ratio of the actual refrigerant charge to the optimum refrigerant charge. Finally, the meter includes means for determining the actual refrigerant charge from the optimum refrigerant charge and the ratio of the actual refrigerant charge to the optimum refrigerant charge.

  12. Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements.

    PubMed

    Lundby, Alicia; Mutoh, Hiroki; Dimitrov, Dimitar; Akemann, Walther; Knöpfel, Thomas

    2008-06-25

    Ci-VSP contains a voltage-sensing domain (VSD) homologous to that of voltage-gated potassium channels. Using charge displacement ('gating' current) measurements we show that voltage-sensing movements of this VSD can occur within 1 ms in mammalian membranes. Our analysis lead to development of a genetically encodable fluorescent protein voltage sensor (VSFP) in which the fast, voltage-dependent conformational changes of the Ci-VSP voltage sensor are transduced to similarly fast fluorescence read-outs.

  13. Chloride Anions Regulate Kinetics but Not Voltage-Sensor Qmax of the Solute Carrier SLC26a5.

    PubMed

    Santos-Sacchi, Joseph; Song, Lei

    2016-06-07

    In general, SLC26 solute carriers serve to transport a variety of anions across biological membranes. However, prestin (SLC26a5) has evolved, now serving as a motor protein in outer hair cells (OHCs) of the mammalian inner ear and is required for cochlear amplification, a mechanical feedback mechanism to boost auditory performance. The mechanical activity of the OHC imparted by prestin is driven by voltage and controlled by anions, chiefly intracellular chloride. Current opinion is that chloride anions control the Boltzmann characteristics of the voltage sensor responsible for prestin activity, including Qmax, the total sensor charge moved within the membrane, and Vh, a measure of prestin's operating voltage range. Here, we show that standard narrow-band, high-frequency admittance measures of nonlinear capacitance (NLC), an alternate representation of the sensor's charge-voltage (Q-V) relationship, is inadequate for assessment of Qmax, an estimate of the sum of unitary charges contributed by all voltage sensors within the membrane. Prestin's slow transition rates and chloride-binding kinetics adversely influence these estimates, contributing to the prevalent concept that intracellular chloride level controls the quantity of sensor charge moved. By monitoring charge movement across frequency, using measures of multifrequency admittance, expanded displacement current integration, and OHC electromotility, we find that chloride influences prestin kinetics, thereby controlling charge magnitude at any particular frequency of interrogation. Importantly, however, this chloride dependence vanishes as frequency decreases, with Qmax asymptoting at a level irrespective of the chloride level. These data indicate that prestin activity is significantly low-pass in the frequency domain, with important implications for cochlear amplification. We also note that the occurrence of voltage-dependent charge movements in other SLC26 family members may be hidden by inadequate interrogation timescales, and that revelation of such activity could highlight an evolutionary means for kinetic modifications within the family to address hearing requirements in mammals. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. X-ray tomography as a powerful method for zinc-air battery research

    NASA Astrophysics Data System (ADS)

    Franke-Lang, Robert; Arlt, Tobias; Manke, Ingo; Kowal, Julia

    2017-12-01

    X-ray tomography is used to investigate material redistribution and effects of electrochemical reactions in a zinc-air battery in-situ. For this, a special battery set-up is developed which meets tomographic and electrochemical requirements. The prepared batteries are discharged and some of them have partially been charged. To analyse the three-dimensional structure of the zinc and air electrode a tomographic measurement is made in charge and discharge condition without disassembling the battery. X-ray tomography gives the opportunity to detect and analyse three different effects within the cell operation: tracking the morphology and transformation of zinc and air electrode, monitoring electrolyte decomposition and movement, finding electrical misbehaviour by parasitic reactions. Therefore, it is possible to identify the loss of capacity and major problems of cyclability. The electrolyte strongly reacts with the pure zinc that leads to gassing and a loss of electrolyte. The loss prevents a charge carrier exchange between the anode and the cathode and reduces the theoretical capacity. One of the chemical reaction produces hydroxylated zinc, namely zincate. The most crucial problems with cyclability are affected by zincate movement into the catalyst layer. This assumption is confirmed by finding pure zinc areas within the catalyst layer.

  15. 21 CFR 211.101 - Charge-in of components.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Charge-in of components. 211.101 Section 211.101 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Production and Process Controls...

  16. 21 CFR 211.101 - Charge-in of components.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Charge-in of components. 211.101 Section 211.101 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Production and Process Controls...

  17. 21 CFR 211.101 - Charge-in of components.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Charge-in of components. 211.101 Section 211.101 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Production and Process Controls...

  18. 21 CFR 211.101 - Charge-in of components.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Charge-in of components. 211.101 Section 211.101 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Production and Process Controls...

  19. 21 CFR 211.101 - Charge-in of components.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Charge-in of components. 211.101 Section 211.101 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Production and Process Controls...

  20. Programming and execution of movement in Parkinson's disease.

    PubMed

    Sheridan, M R; Flowers, K A; Hurrell, J

    1987-10-01

    Programming and execution of arm movements in Parkinson's disease were investigated in choice and simple reaction time (RT) situations in which subjects made aimed movements at a target. A no-aiming condition was also studied. Reaction time was fractionated using surface EMG recording into premotor (central) and motor (peripheral) components. Premotor RT was found to be greater for parkinsonian patients than normal age-matched controls in the simple RT condition, but not in the choice condition. This effect did not depend on the parameters of the impending movement. Thus, paradoxically, parkinsonian patients were not inherently slower at initiating aiming movements from the starting position, but seemed unable to use advance information concerning motor task demands to speed up movement initiation. For both groups, low velocity movements took longer to initiate than high velocity ones. In the no-aiming condition parkinsonian RTs were markedly shorter than when aiming, but were still significantly longer than control RTs. Motor RT was constant across all conditions and was not different for patient and control subjects. In all conditions, parkinsonian movements were around 37% slower than control movements, and their movement times were more variable, the differences showing up early on in the movement, that is, during the initial ballistic phase. The within-subject variability of movement endpoints was also greater in patients. The motor dysfunction displayed in Parkinson's disease involves a number of components: (1) a basic central problem with simply initiating movements, even when minimal programming is required (no-aiming condition); (2) difficulty in maintaining computed forces for motor programs over time (simple RT condition); (3) a basic slowness of movement (bradykinesia) in all conditions; and (4) increased variability of movement in both time and space, presumably caused by inherent variability in force production.

  1. REMOVAL OF RADIONUCLIDES BY ELECTROKINETIC SOIL PROCESSING

    EPA Science Inventory

    Electrokinetics promises to be an innovative treatment process for in-situ treatment of soils and groundwater contaminated with heavy metals and radionuclides. Electrokinetics refers to the movement of ionic liquids and charged particles relative to one another under the action ...

  2. Movement or Goal: Goal Salience and Verbal Cues Affect Preschoolers' Imitation of Action Components

    ERIC Educational Resources Information Center

    Elsner, Birgit; Pfeifer, Caroline

    2012-01-01

    The impact of goal salience and verbal cues given by the model on 3- to 5-year-olds' reproduction of action components (movement or goal) was investigated in an imitation choice task. Preschoolers watched an experimenter moving a puppet up or down a ramp, terminating at one of two target objects. The target objects were either differently colored…

  3. Properties of M components from currents measured at triggered lightning channel base

    NASA Astrophysics Data System (ADS)

    Thottappillil, Rajeev; Goldberg, Jon D.; Rakov, Vladimir A.; Uman, Martin A.; Fisher, Richard J.; Schnetzer, George H.

    1995-12-01

    Channel base currents from triggered lightning were measured at the NASA Kennedy Space Center, Florida, during summer 1990 and at Fort McClellan, Alabama, during summer 1991. An analysis of the return stroke data and overall continuing current data has been published by Fisher et al. [1993]. Here an analysis is given of the impulsive processes, called M components, that occur during the continuing current following return strokes. The 14 flashes analyzed contain 37 leader-return stroke sequences and 158 M components, both processes lowering negative charge from cloud to ground. Statistics are presented for the following M current pulse parameters: magnitude, rise time, duration, half-peak width, preceding continuing current level, M interval, elapsed time since the return stroke, and charge transferred by the M current pulse. A typical M component in triggered lightning is characterized by a more or less symmetrical current pulse having an amplitude of 100-200 A (2 orders of magnitude lower than that for a typical return stroke [Fisher et al., 1993]), a 10-90% rise time of 300-500 μs (3 orders of magnitude larger than that for a typical return stroke [Fisher et al., 1993]), and a charge transfer to ground of the order of 0.1 to 0.2 C (1 order of magnitude smaller than that for a typical subsequent return stroke pulse [Berger et al., 1975]). About one third of M components transferred charge greater than the minimum charge reported by Berger et al. [1975] for subsequent leader-return stroke sequences. No correlation was found between either the M charge or the magnitude of the M component current (the two are moderately correlated) and any other parameter considered. M current pulses occurring soon after the return stroke tend to have shorter rise times, shorter durations, and shorter M intervals than those which occur later. M current pulses were observed to be superimposed on continuing currents greater than 30 A or so, with one exception out of 140 cases, wherein the continuing current level was measured to be about 20 A. The first M component virtually always (one exception out of 34 cases) occurred within 4 ms of the return stroke. This relatively short separation time between return stroke and the first M component, coupled with the observation of Fisher et al. [1993] that continuing currents lasting longer than 10 ms never occur without M current pulses, implies that the M component is a necessary feature of the continuing current mode of charge transfer to ground.

  4. Numerical modelling of needle-grid electrodes for negative surface corona charging system

    NASA Astrophysics Data System (ADS)

    Zhuang, Y.; Chen, G.; Rotaru, M.

    2011-08-01

    Surface potential decay measurement is a simple and low cost tool to examine electrical properties of insulation materials. During the corona charging stage, a needle-grid electrodes system is often used to achieve uniform charge distribution on the surface of the sample. In this paper, a model using COMSOL Multiphysics has been developed to simulate the gas discharge. A well-known hydrodynamic drift-diffusion model was used. The model consists of a set of continuity equations accounting for the movement, generation and loss of charge carriers (electrons, positive and negative ions) coupled with Poisson's equation to take into account the effect of space and surface charges on the electric field. Four models with the grid electrode in different positions and several mesh sizes are compared with a model that only has the needle electrode. The results for impulse current and surface charge density on the sample clearly show the effect of the extra grid electrode with various positions.

  5. The forces generated at the human elbow joint in response to imposed sinusoidal movements of the forearm

    PubMed Central

    Joyce, G. C.; Rack, Peter M. H.; Ross, H. F.

    1974-01-01

    1. The mechanical resistance of the human forearm has been measured during imposed sinusoidal flexion-extension movements of the elbow joint. 2. The force required to move the limb can be divided into components required to move the mass, and components required to overcome the resistance offered by elastic and frictional properties of the muscles and other soft tissues. 3. When during a vigorous flexing effort the limb was subjected to a small amplitude sinusoidal movement each extension was followed by a considerable reflex contraction of the flexor muscles. At low frequencies of movement this reflex provided an added resistance to extension, but at 8-12 Hz the delay in the reflex pathway was such that the reflex response to extension occurred after the extension phase of the movement was over and during the subsequent flexion movement. The reflex activity then assisted the movement whereas at other frequencies it impeded it. 4. The reflex response to movement increased as the subject exerted a greater flexing force. 5. Small movements generated a relatively larger reflex response than big ones. 6. Even with large amplitudes of movement when the reflex activity was relatively small, the limb resisted extension with a high level of stiffness; this was comparable with the short range stiffness of muscles in experimental animals. 7. The fact that at some frequencies the reflex response assisted the movement implies that with appropriate loading the limb could undergo a self-sustaining oscillation at those frequencies. PMID:4420490

  6. Gender Differences in Motor Skills of the Overarm Throw

    PubMed Central

    Gromeier, Michael; Koester, Dirk; Schack, Thomas

    2017-01-01

    In this cross-sectional study, the qualitative and quantitative throwing performance of male and female athletes (6 to 16 years of age) was analyzed. The goal of this study was to assess whether there were gender based qualitative and quantitative differences in throwing performance of young athletes, throughout three different age bands (childhood, pubescence, and adolescence). Furthermore, we explored whether all components of the throwing movement are equally affected by gender differences. Focus was placed on five essential components of action: trunk, forearm, humerus, stepping, and backswing. Therefore, children and adolescents (N = 96) were invited to throw three times from three different distances, while aiming at a target placed at shoulder height. The participants were aspiring athletes, competitive in the sport handball. For analyzing the quality of movement the component approach of Halverson and Roberton (1984) was used. The throwing accuracy was noted and used to evaluate the quantitative performance of the throwing movement. Throughout three different age bands, no statistically significant difference was found between genders in throwing accuracy, i.e., quantitative performance. Regarding the qualitative evaluation of the throwing movement, male and female athletes differed significantly. The component approach yielded higher scores for male than for female participants. As expected, with increasing age qualitative and quantitative performance of male and female athletes improved. These results suggest that there are gender-specific differences in qualitative throwing performance, but not necessarily in quantitative throwing performance. Exploration shows that differences in the qualitative throwing performance were seen in specific components of action. Male and female athletes demonstrated similar movement patterns in humerus and forearm actions, but differed in trunk, stepping, and backswing actions. PMID:28261142

  7. Effect of component compression on the initial performance of an IPV nickel-hydrogen cell

    NASA Technical Reports Server (NTRS)

    Gahn, Randall F.

    1987-01-01

    An experimental method was developed for evaluating the effect of component compression on the charge and discharge voltage characteristics of a 3 1/2 in. diameter boiler plate cell. A standard boiler plate pressure vessel was modified by the addition of a mechanical feedthrough on the bottom of the vessel which permitted different compressions to be applied to the components without disturbing the integrity of the stack. Compression loadings from 0.94 to 27.4 psi were applied by suspending weights from the feedthrough rod. Cell voltages were measured for 0.96-C, 55-min charge and for 1.37-C, 35-min and 2-C, 24-min discharges. An initial change in voltage performance on both charge and discharge as the loading increased was attributed to seating of the components. Subsequent variation of the compression from 2.97 to 27.4 psi caused only minor changes in either the charge or the discharge voltages. Several one month open-circuit voltage stands and 1100 cycles under LEO conditions at the maximum loading have produced no change in performance.

  8. Effect of component compression on the initial performance of an IPV nickel-hydrogen cell. [Individual Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Gahn, Randall F.

    1987-01-01

    An experimental method was developed for evaluating the effect of component compression on the charge and discharge voltage characteristics of a 3 1/2 in. diameter boiler plate cell. A standard boiler plate pressure vessel was modified by the addition of a mechanical feedthrough on the bottom of the vessel which permitted different compressions to be applied to the components without disturbing the integrity of the stack. Compression loadings from 0.94 to 27.4 psi were applied by suspending weights from the feedthrough rod. Cell voltages were measured for 0.96-C, 55-min charge and for 1.37-C, 35-min and 2-C, 24-min discharges. An initial change in voltage performance on both charge and discharge as the loading increased was attributed to seating of the components. Subsequent variation of the compression from 2.97 to 27.4 psi caused only minor changes in either the charge or the discharge voltages. Several one month open-circuit voltage stands and 1100 cycles under LEO conditions at the maximum loading have produced no change in performance.

  9. Effects of uncertainty, transmission type, driver age and gender on brake reaction and movement time.

    PubMed

    Warshawsky-Livne, Lora; Shinar, David

    2002-01-01

    Braking time (BT) is a critical component in safe driving, and various approaches have been applied to minimize it. This study analyzed the components of BT in order to assess the effects of age, gender, vehicle transmission type, and event uncertainty, on its two primary components, perception-reaction time and brake-movement time. Perception-reaction time and brake-movement time were measured at the onset of lights for 72 subjects in a simulator. The six experimental conditions were three levels of uncertainty conditions (none, some, and some + false alarms) and two types of transmission (manual and automatic). The 72 subjects, half male and half female, were further divided into three age groups (mean of 23, 30, and 62 years). Each subject had 10 trials in each of the three levels of uncertainty conditions. Transmission type did not significantly affect either perception-reaction time or brake-movement time. Perception-reaction time increased significantly from 0.32 to 0.42 s (P < .05) as uncertainty increased but brake-movement time did not change. Perception-reaction time increased (from 0.35 to 0.43 s) with age but brake-movement time did not change with age. Gender did not affect perception-reaction time but did affect brake-movement time (males 0.19 s vs. females 0.16 s). At 90 km/h, a car travels 0.25 m in 0.01 s. Consequently, even such small effects multiplied by millions of vehicle-kilometers can contribute to significant savings in lives and damages.

  10. Makification: Towards a Framework for Leveraging the Maker Movement in Formal Education

    ERIC Educational Resources Information Center

    Cohen, Jonathan; Jones, W. Monty; Smith, Shaunna; Calandra, Brendan

    2017-01-01

    Maker culture is part of a burgeoning movement in which individuals leverage modern digital technologies to produce and share physical artifacts with a broader community. Certain components of the maker movement, if properly leveraged, hold promise for transforming formal education in a variety of contexts. The authors here work towards a…

  11. The Dependency Axiom and the Relation between Agreement and Movement

    ERIC Educational Resources Information Center

    Linares Scarcerieau, Carlo Andrei

    2012-01-01

    Agreement and movement go hand in hand in a number of constructions across languages, and this correlation has played an important role in syntactic theory. The current standard approach to this "movement-agreement connection" is the Agree+EPP model, whose EPP component has often been questioned on conceptual grounds. The goal of this…

  12. 49 CFR 215.9 - Movement of defective cars for repair.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Movement of defective cars for repair. 215.9... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS General § 215.9 Movement of defective cars for repair. (a) A railroad freight car which has any component described as defective in this...

  13. 49 CFR 215.9 - Movement of defective cars for repair.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Movement of defective cars for repair. 215.9... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS General § 215.9 Movement of defective cars for repair. (a) A railroad freight car which has any component described as defective in this...

  14. 49 CFR 215.9 - Movement of defective cars for repair.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Movement of defective cars for repair. 215.9... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS General § 215.9 Movement of defective cars for repair. (a) A railroad freight car which has any component described as defective in this...

  15. 49 CFR 215.9 - Movement of defective cars for repair.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Movement of defective cars for repair. 215.9... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS General § 215.9 Movement of defective cars for repair. (a) A railroad freight car which has any component described as defective in this...

  16. 49 CFR 215.9 - Movement of defective cars for repair.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Movement of defective cars for repair. 215.9... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS General § 215.9 Movement of defective cars for repair. (a) A railroad freight car which has any component described as defective in this...

  17. The 2011 Chilean Student Movement against Neoliberal Educational Policies

    ERIC Educational Resources Information Center

    Bellei, Cristián; Cabalin, Cristian; Orellana, Víctor

    2014-01-01

    This paper analyses the 2011 Chilean student movement, the most relevant social mobilisation in Chile since the restoration of democracy in 1990. Based on available material and secondary sources, it describes the main features of this student movement, analyses the key components of the students' discourse and its relationship with the Chilean…

  18. Impairment Severity Selectively Affects the Control of Proximal and Distal Components of Reaching Movements in Children with Hemiplegic Cerebral Palsy

    ERIC Educational Resources Information Center

    Domellof, Erik; Rosblad, Birgit; Ronnqvist, Louise

    2009-01-01

    This study explored proximal-to-distal components during goal-directed reaching movements in children with mild or moderate hemiplegic cerebral palsy (HCP); [seven females, four males; mean age 8y 6mo; SD 27mo], compared with age-matched, typically developing children (seven females, five males; mean age 8y 3mo [SD 25mo]. Severity of HCP was…

  19. When Optimal Feedback Control Is Not Enough: Feedforward Strategies Are Required for Optimal Control with Active Sensing.

    PubMed

    Yeo, Sang-Hoon; Franklin, David W; Wolpert, Daniel M

    2016-12-01

    Movement planning is thought to be primarily determined by motor costs such as inaccuracy and effort. Solving for the optimal plan that minimizes these costs typically leads to specifying a time-varying feedback controller which both generates the movement and can optimally correct for errors that arise within a movement. However, the quality of the sensory feedback during a movement can depend substantially on the generated movement. We show that by incorporating such state-dependent sensory feedback, the optimal solution incorporates active sensing and is no longer a pure feedback process but includes a significant feedforward component. To examine whether people take into account such state-dependency in sensory feedback we asked people to make movements in which we controlled the reliability of sensory feedback. We made the visibility of the hand state-dependent, such that the visibility was proportional to the component of hand velocity in a particular direction. Subjects gradually adapted to such a sensory perturbation by making curved hand movements. In particular, they appeared to control the late visibility of the movement matching predictions of the optimal controller with state-dependent sensory noise. Our results show that trajectory planning is not only sensitive to motor costs but takes sensory costs into account and argues for optimal control of movement in which feedforward commands can play a significant role.

  20. Readers in Adult Basic Education.

    PubMed

    Barnes, Adrienne E; Kim, Young-Suk; Tighe, Elizabeth L; Vorstius, Christian

    The present study explored the reading skills of a sample of 48 adults enrolled in a basic education program in northern Florida, United States. Previous research has reported on reading component skills for students in adult education settings, but little is known about eye movement patterns or their relation to reading skills for this population. In this study, reading component skills including decoding, language comprehension, and reading fluency are reported, as are eye movement variables for connected-text oral reading. Eye movement comparisons between individuals with higher and lower oral reading fluency revealed within- and between-subject effects for word frequency and word length as well as group and word frequency interactions. Bivariate correlations indicated strong relations between component skills of reading, eye movement measures, and both the Test of Adult Basic Education ( Reading subtest) and the Woodcock-Johnson III Diagnostic Reading Battery Passage Comprehension assessments. Regression analyses revealed the utility of decoding, language comprehension, and lexical activation time for predicting achievement on both the Woodcock Johnson III Passage Comprehension and the Test of Adult Basic Education Reading Comprehension.

  1. Assessing the Value of Moving More-The Integral Role of Qualified Health Professionals.

    PubMed

    Arena, Ross; McNeil, Amy; Lavie, Carl J; Ozemek, Cemal; Forman, Daniel; Myers, Jonathan; Laddu, Deepika R; Popovic, Dejana; Rouleau, Codie R; Campbell, Tavis S; Hills, Andrew P

    2018-04-01

    Being physically active or, in a broader sense, simply moving more throughout each day is one of the most important components of an individual's health plan. In conjunction with regular exercise training, taking more steps in a day and sitting less are also important components of one's movement portfolio. Given this priority, health care professionals must develop enhanced skills for prescribing and guiding individualized movement programs for all their patients. An important component of a health care professional's ability to prescribe movement as medicine is competency in assessing an individual's risk for untoward events if physical exertion was increased. The ability to appropriately assess one's risk before advising an individual to move more is integral to clinical decision-making related to subsequent testing if needed, exercise prescription, and level of supervision with exercise training. At present, there is a lack of clarity pertaining to how a health care professional should go about assessing an individual's readiness to move more on a daily basis in a safe manner. Therefore, this perspectives article clarifies key issues related to prescribing movement as medicine and presents a new process for clinical assessment before prescribing an individualized movement program. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Use of a genetic algorithm for the analysis of eye movements from the linear vestibulo-ocular reflex

    NASA Technical Reports Server (NTRS)

    Shelhamer, M.

    2001-01-01

    It is common in vestibular and oculomotor testing to use a single-frequency (sine) or combination of frequencies [sum-of-sines (SOS)] stimulus for head or target motion. The resulting eye movements typically contain a smooth tracking component, which follows the stimulus, in which are interspersed rapid eye movements (saccades or fast phases). The parameters of the smooth tracking--the amplitude and phase of each component frequency--are of interest; many methods have been devised that attempt to identify and remove the fast eye movements from the smooth. We describe a new approach to this problem, tailored to both single-frequency and sum-of-sines stimulation of the human linear vestibulo-ocular reflex. An approximate derivative is used to identify fast movements, which are then omitted from further analysis. The remaining points form a series of smooth tracking segments. A genetic algorithm is used to fit these segments together to form a smooth (but disconnected) wave form, by iteratively removing biases due to the missing fast phases. A genetic algorithm is an iterative optimization procedure; it provides a basis for extending this approach to more complex stimulus-response situations. In the SOS case, the genetic algorithm estimates the amplitude and phase values of the component frequencies as well as removing biases.

  3. Molecular Dynamics Studies of Proton Transport in Hydrogenase and Hydrogenase Mimics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginovska-Pangovska, Bojana; Raugei, Simone; Shaw, Wendy J.

    2016-08-02

    Protons are used throughout the biological world for a number of functions, from charge balance to energy carriers. Metalloenzymes use protons as energy carriers and control proton movement both temporally and spatially. Despite the interest and need for controlled proton movement in other systems, the scientific community has not been able to develop extensive general rules for developing synthetic proton pathways. In part this is due to the challenging nature of studying these large and complex molecules experimentally, although experiments have gleaned extensive critical insight. While computational methods are also challenging because of the large size of the molecules, theymore » have been critical in advancing our knowledge of proton movement through pathways, but even further, they have advanced our knowledge in how protonation and proton movement is correlated with large and small scale molecular motions and electron movement. These studies often complement experimental studies but provide insight and depth simply not possible in many cases in the absence of theory. In this chapter, we will discuss advances and methods used in understanding proton movement in hydrogenases.« less

  4. State of charge indicators for a battery

    DOEpatents

    Rouhani, S. Zia

    1999-01-01

    The present invention relates to state of charge indicators for a battery. One aspect of the present invention utilizes expansion and contraction displacements of an electrode plate of a battery to gauge the state of charge in the battery. One embodiment of a battery of the present invention includes an anodic plate; a cathodic plate; an electrolyte in contact with the anodic and cathodic plates; plural terminals individually coupled with one of the anodic and cathodic plates; a separator intermediate the anodic and cathodic plates; an indicator configured to indicate an energy level of the battery responsive to movement of the separator; and a casing configured to house the anodic and cathodic plates, electrolyte, and separator.

  5. Investigating Premature Ignition of Thruster Pressure Cartridges by Vibration-Induced Electrostatic Discharge

    NASA Technical Reports Server (NTRS)

    Woods, Stephen S.; Saulsberry, Regor

    2010-01-01

    Pyrotechnic thruster pressure cartridges (TPCs) are used for aeroshell separation on a new NASA crew launch vehicle. Nondestructive evaluation (NDE) during TPC acceptance testing indicated that internal assemblies moved during shock and vibration testing due to an internal bond anomaly. This caused concerns that the launch environment might produce the same movement and release propellant grains that might be prematurely ignited through impact or through electrostatic discharge (ESD) as grains vibrated against internal surfaces. Since a new lot could not be fabricated in time, a determination had to be made as to whether the lot was acceptable to fly. This paper discusses the ESD evaluation and a separate paper addresses the impact problem. A challenge to straight forward assessment existed due to the unavailability of triboelectric data characterizing the static charging characteristics of the propellants within the TPC. The approach examined the physical limitations for charge buildup within the TPC system geometry and evaluated it for discharge under simulated vibrations used to qualify components for launch. A facsimile TPC was fabricated using SS 301 for the case and surrogate worst case materials for the propellants based on triboelectric data. System discharge behavior was evaluated by applying high voltage to the point of discharge in air and by placing worst case charge accumulations within the facsimile TPC and forcing discharge. The facsimile TPC contained simulated propellant grains and lycopodium, a well characterized indicator for static discharge in dust explosions, and was subjected to accelerations equivalent to the maximum accelerations possible during launch. The magnitude of charge generated within the facsimile TPC system was demonstrated to lie in a range of 100 to 10,000 times smaller than the spark energies measured to ignite propellant grains in industry standard discharge tests. The test apparatus, methodology, and results are described in this paper.

  6. EEG correlates of finger movements with different inertial load conditions as revealed by averaging techniques.

    PubMed

    Slobounov, S; Tutwiler, R; Rearick, M; Challis, J H

    1999-10-01

    The present study was aimed to further address the general empirical question regarding the sensitivity of EEG correlates toward specific kinematic and/or kinetic movement parameters. In particular, we examined whether adding different inertial loads to the index finger, while a subject produced various amplitudes of discrete finger movements, influenced the movement-related potentials (MRP). Our experimental design systematically controlled the angular displacement, velocity and acceleration (kinematic) profiles of finger movement while torque (kinetics) was varied by adding different external loads opposing finger flexion movement. We applied time-domain averaging of EEG single trials in order to extract three movement-related potentials (BP-600 to -500 BP-100 to 0 and N0 to 100) preceding and accompanying 25, 50 and 75 degrees unilateral finger movements with no inertial load, small (100 g) and large (200 g) loading. It was shown that both inertial load and the degree of angular displacement of index finger flexion increased the amplitude of late components of MRP (BP-100 to 0 and N0 to 100) over frontal and precentral areas. In contrast, the external load and movement amplitude manipulations did not influence the earlier component of the MRP (BP- 600 to -500). Overall, the data demonstrate that adding inertial load to the finger with larger angular displacements involves systematic increase in activation across frontal and precentral areas that are related to movement initiation as reflected in BP-100 to 0 and N0 to 100.

  7. Reuse of waste beer yeast sludge for biosorptive decolorization of reactive blue 49 from aqueous solution.

    PubMed

    Wang, Baoe; Guo, Xiu

    2011-06-01

    Reactive blue 49 was removed from aqueous solution by biosorption using powder waste sludge composed of Saccharomyces cerevisiae from the beer-brewing industry. The effect of initial pH, temperature and the biosorption thermodynamics, equilibrium, kinetics was investigated in this study. It was found that the biosorption capacity was at maximum at initial pH 3, that the effect of temperature on biosorption of reactive blue 49 was only slight in relation to the large biosorption capacity (25°C, 361 mg g(-1)) according as the biosorption capacity decreased only 43 mg g(-1) at the temperature increased from 25 to 50°C. The biosorption was spontaneous, exothermic in nature and the dye molecules movements decreased slightly in random at the solid/liquid interface during the biosorption of dye on biosorbents. The biosorption equilibrium data could be described by Freundich isotherm model. The biosorption rates were found to be consistent with a pseudo-second-order kinetics model. The functional group interaction analysis between waste beer yeast sludge and reactive blue 49 by the aid of Fourier transform infrared (abbr. FTIR) spectroscopy indicated that amino components involved in protein participated in the biosorption process, which may be achieved by the mutual electrostatic adsorption process between the positively charged amino groups in waste beer yeast sludge with negatively charged sulfonic groups in reactive blue 49.

  8. Like a rolling stone: naturalistic visual kinematics facilitate tracking eye movements.

    PubMed

    Souto, David; Kerzel, Dirk

    2013-02-06

    Newtonian physics constrains object kinematics in the real world. We asked whether eye movements towards tracked objects depend on their compliance with those constraints. In particular, the force of gravity constrains round objects to roll on the ground with a particular rotational and translational motion. We measured tracking eye movements towards rolling objects. We found that objects with rotational and translational motion that was congruent with an object rolling on the ground elicited faster tracking eye movements during pursuit initiation than incongruent stimuli. Relative to a condition without rotational component, we compared objects with this motion with a condition in which there was no rotational component, we essentially obtained benefits of congruence, and, to a lesser extent, costs from incongruence. Anticipatory pursuit responses showed no congruence effect, suggesting that the effect is based on visually-driven predictions, not on velocity storage. We suggest that the eye movement system incorporates information about object kinematics acquired by a lifetime of experience with visual stimuli obeying the laws of Newtonian physics.

  9. Authentication System for Electrical Charging of Electrical Vehicles in the Housing Development

    NASA Astrophysics Data System (ADS)

    Song, Wang-Cheol

    Recently the smart grid has been a hot issue in the research area. The Electric Vehicle (EV) is the most important component in the Smart Grid, having a role of the battery component with high capacity. We have thought how to introduce the EV in the housing development, and for proper operation of the smart grid systems in the housing area the authentication system is essential for the individual houses. We propose an authentication system to discriminate an individual houses, so that the account management component can appropriately operate the electrical charging and billing in the housing estate. The proposed system has an architecture to integrate the charging system outside a house and the monitoring system inside a house.

  10. Plug-in hybrid electric vehicles as a source of distributed frequency regulation

    NASA Astrophysics Data System (ADS)

    Mullen, Sara Kathryn

    The movement to transform the North American power grid into a smart grid may be accomplished by expanding integrated sensing, communications, and control technologies to include every part of the grid to the point of end-use. Plug-in hybrid electric vehicles (PHEV) provide an opportunity for small-scale distributed storage while they are plugged-in. With large numbers of PHEV and the communications and sensing associated with the smart grid, PHEV could provide ancillary services for the grid. Frequency regulation is an ideal service for PHEV because the duration of supply is short (order of minutes) and it is the highest priced ancillary service on the market offering greater financial returns for vehicle owners. Using Simulink a power system simulator modeling the IEEE 14 Bus System was combined with a model of PHEV charging and the controllers which facilitate vehicle-to-grid (V2G) regulation supply. The system includes a V2G controller for each vehicle which makes regulation supply decisions based on battery state, user preferences, and the recommended level of supply. A PHEV coordinator controller located higher in the system has access to reliable frequency measurements and can determine a suitable local automatic generation control (AGC) raise/lower signal for participating vehicles. A first step implementation of the V2G supply system where battery charging is modulated to provide regulation was developed. The system was simulated following a step change in loading using three scenarios: (1) Central generating units provide frequency regulation, (2) PHEV contribute to primary regulation analogous to generator speed governor control, and (3) PHEV contribute to primary and secondary regulation using an additional integral term in the PHEV control signal. In both cases the additional regulation provided by PHEV reduced the area control error (ACE) compared to the base case. Unique contributions resulting from this work include: (1) Studied PHEV energy systems and limitations on battery charging/discharging, (2) Reviewed standards for interconnection of distributed resources and electric vehicle charging [1], [2], (3) Explored strategies for distributed control of PHEV charging, (4) Developed controllers to accommodate PHEV regulation, and (5) Developed a simulator combining a power system model and PHEV/V2G components.

  11. Advancements in Chinese Geomagnetism and Aeronomy during the Last Thirty Years,

    DTIC Science & Technology

    1981-02-09

    movements of charged particles in geomagnetic fields and neutral line magnetic fields and they vigorously initiated simulated tests. References (120-121... telluric prospecting and related probems; (6) Magnetic prospecting and interpretation of data; (7) Some research on geomagnetic instruments; (8

  12. Farmers’ Intentions to Implement Foot and Mouth Disease Control Measures in Ethiopia

    PubMed Central

    Jemberu, Wudu T.; Mourits, M. C. M.; Hogeveen, H.

    2015-01-01

    The objectives of this study were to explore farmers’ intentions to implement foot and mouth disease (FMD) control in Ethiopia, and to identify perceptions about the disease and its control measures that influence these intentions using the Health Belief Model (HBM) framework. Data were collected using questionnaires from 293 farmers in three different production systems. The influence of perceptions on the intentions to implement control measures were analyzed using binary logistic regression. The effect of socio-demographic and husbandry variables on perceptions that were found to significantly influence the intentions were analyzed using ordinal logistic regression. Almost all farmers (99%) intended to implement FMD vaccination free of charge. The majority of farmers in the pastoral (94%) and market oriented (92%) systems also had the intention to implement vaccination with charge but only 42% of the crop-livestock mixed farmers had the intention to do so. Only 2% of pastoral and 18% of crop-livestock mixed farmers had the intention to implement herd isolation and animal movement restriction continuously. These proportions increased to 11% for pastoral and 50% for crop-livestock mixed farmers when the measure is applied only during an outbreak. The majority of farmers in the market oriented system (>80%) had the intention to implement herd isolation and animal movement restriction measure, both continuously and during an outbreak. Among the HBM perception constructs, perceived barrier was found to be the only significant predictor of the intention to implement vaccination. Perceived susceptibility, perceived benefit and perceived barrier were the significant predictors of the intention for herd isolation and animal movement restriction measure. In turn, the predicting perceived barrier on vaccination control varied significantly with the production system and the age of farmers. The significant HBM perception predictors on herd isolation and animal movement restriction control were significantly influenced only by the type of production system. The results of this study indicate that farmers’ intentions to apply FMD control measures are variable among production systems, an insight which is relevant in the development of future control programs. Promotion programs aimed at increasing farmers’ motivation to participate in FMD control by charged vaccination or animal movement restriction should give attention to the perceived barriers influencing the intentions to apply these measures. PMID:26375391

  13. Farmers' Intentions to Implement Foot and Mouth Disease Control Measures in Ethiopia.

    PubMed

    Jemberu, Wudu T; Mourits, M C M; Hogeveen, H

    2015-01-01

    The objectives of this study were to explore farmers' intentions to implement foot and mouth disease (FMD) control in Ethiopia, and to identify perceptions about the disease and its control measures that influence these intentions using the Health Belief Model (HBM) framework. Data were collected using questionnaires from 293 farmers in three different production systems. The influence of perceptions on the intentions to implement control measures were analyzed using binary logistic regression. The effect of socio-demographic and husbandry variables on perceptions that were found to significantly influence the intentions were analyzed using ordinal logistic regression. Almost all farmers (99%) intended to implement FMD vaccination free of charge. The majority of farmers in the pastoral (94%) and market oriented (92%) systems also had the intention to implement vaccination with charge but only 42% of the crop-livestock mixed farmers had the intention to do so. Only 2% of pastoral and 18% of crop-livestock mixed farmers had the intention to implement herd isolation and animal movement restriction continuously. These proportions increased to 11% for pastoral and 50% for crop-livestock mixed farmers when the measure is applied only during an outbreak. The majority of farmers in the market oriented system (>80%) had the intention to implement herd isolation and animal movement restriction measure, both continuously and during an outbreak. Among the HBM perception constructs, perceived barrier was found to be the only significant predictor of the intention to implement vaccination. Perceived susceptibility, perceived benefit and perceived barrier were the significant predictors of the intention for herd isolation and animal movement restriction measure. In turn, the predicting perceived barrier on vaccination control varied significantly with the production system and the age of farmers. The significant HBM perception predictors on herd isolation and animal movement restriction control were significantly influenced only by the type of production system. The results of this study indicate that farmers' intentions to apply FMD control measures are variable among production systems, an insight which is relevant in the development of future control programs. Promotion programs aimed at increasing farmers' motivation to participate in FMD control by charged vaccination or animal movement restriction should give attention to the perceived barriers influencing the intentions to apply these measures.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panait, A.; Serban, V.

    The paper presents SERB -- SITON method to control, limit and damp the shocks, vibration, impact load and seismic movements with applications in buildings, equipment and pipe networks (herein called: 'components'). The elimination or reduction of shocks, vibration, impact load and seismic movements is a difficult problem, still improperly handled theoretically and practically because many times the phenomena are random in character and the behavior of components is non-linear with variations of the properties in time, variations that lead to the increase or decrease of the energy and impulse transfer from the dynamic excitation to the components. Moreover, the existingmore » supports and dampers applied today, are not efficient enough in the reduction of the dynamic movement for all the frequency ranges met with in the technical application field. The stiffness and damping of classic supports do not allow a good isolation of components against shocks and vibrations so to eliminate their propagation to the environment and neither do they provide a satisfactory protection of the components sensitive to shocks and vibrations and seismic movements coming from the environment. In order to reduce the effects of shocks, vibrations impact and seismic movements on the components, this paper presents the results obtained by SITON on the concept, design, construction, experimental testing and application of new types of supports, devices and thin lattice structure, called 'SERB', capable to overtake large static loads, to allow displacements from impact, thermal expansions or yielding of supports and which, in any work position, can elastically overtake large dynamic loads or impact loads which they damp. The new supports and devices and thin lattice structure allow their adjustment without the occurrence of over-stressing in the components due to their non -- linear geometric behavior, and the contact pressure among the elements is limited to pre-set values to avoid blocking phenomena that generates great stresses induced by thermal expansion for example. Due to their characteristics of adjustment to the actual position and level of stress, SERB supports, devices and thin lattice structure show minimal effects on the components stress condition whenever the installation and computation errors. Herein below it is a presentation of the actual results obtained by SITON in the isolation of heavy equipment and pipe networks and others in process of application for buildings. Due to the very good results obtained in the isolation against shocks, vibrations and seismic movements at components in the conventional industry, there is the proposal to implement SERB-SITON method to the increase of the safety level at new or existing Nuclear Power Plants or to protect nuclear building against missiles and airplane crush impact. (authors)« less

  15. Calculation of the electric field resulting from human body rotation in a magnetic field

    NASA Astrophysics Data System (ADS)

    Cobos Sánchez, Clemente; Glover, Paul; Power, Henry; Bowtell, Richard

    2012-08-01

    A number of recent studies have shown that the electric field and current density induced in the human body by movement in and around magnetic resonance imaging installations can exceed regulatory levels. Although it is possible to measure the induced electric fields at the surface of the body, it is usually more convenient to use numerical models to predict likely exposure under well-defined movement conditions. Whilst the accuracy of these models is not in doubt, this paper shows that modelling of particular rotational movements should be treated with care. In particular, we show that v  ×  B rather than -(v  ·  ∇)A should be used as the driving term in potential-based modelling of induced fields. Although for translational motion the two driving terms are equivalent, specific examples of rotational rigid-body motion are given where incorrect results are obtained when -(v  ·  ∇)A is employed. In addition, we show that it is important to take into account the space charge which can be generated by rotations and we also consider particular cases where neglecting the space charge generates erroneous results. Along with analytic calculations based on simple models, boundary-element-based numerical calculations are used to illustrate these findings.

  16. A new design to evaluate erosion and sediment control

    Treesearch

    Johnny M. Grace

    2006-01-01

    Water quality issues surrounding sediment movement related to forest operations are a focus in forest management. The forest road system is a primary area of concern related to sediment movement because roads are a component of most forest operations. Controlling sediment movement is a common objective in most forestry best management practices (BMPs). However, there...

  17. Practice Changes the Usage of Moment Components in Executing a Multijoint Task

    ERIC Educational Resources Information Center

    Kadota, Koji; Matsuo, Tomoyuki; Hashizume, Ken; Tezuka, Kazushi

    2004-01-01

    In this article, the authors examined changes in the usage of muscular and motion-dependent moments during the long-term practice of a complex, multijoint movement. Seven participants practiced a cyclic movement of the upper limbs until their joint angular movements conformed to those of an expert. The motions of the participants were digitally…

  18. Environmental Literacy of Youth Movement Members--Is Environmentalism a Component of Their Social Activism?

    ERIC Educational Resources Information Center

    Goldman, Daphne; Pe'er, Sara; Yavetz, Bela

    2017-01-01

    Youth-movements in Israel are non-formal organizations that educate for social and political involvement and provide a broad platform for youth involvement in the community. This study explored the question: does the social activism of adolescents who both elect for membership in youth movements and a leadership role of instructing younger members…

  19. High temperature charge amplifier for geothermal applications

    DOEpatents

    Lindblom, Scott C.; Maldonado, Frank J.; Henfling, Joseph A.

    2015-12-08

    An amplifier circuit in a multi-chip module includes a charge to voltage converter circuit, a voltage amplifier a low pass filter and a voltage to current converter. The charge to voltage converter receives a signal representing an electrical charge and generates a voltage signal proportional to the input signal. The voltage amplifier receives the voltage signal from the charge to voltage converter, then amplifies the voltage signal by the gain factor to output an amplified voltage signal. The lowpass filter passes low frequency components of the amplified voltage signal and attenuates frequency components greater than a cutoff frequency. The voltage to current converter receives the output signal of the lowpass filter and converts the output signal to a current output signal; wherein an amplifier circuit output is selectable between the output signal of the lowpass filter and the current output signal.

  20. Multiple functions of a multi-component mating pheromone in sea lamprey Petromyzon marinus

    USGS Publications Warehouse

    Johnson, N.S.; Yun, S.-S.; Buchinger, T.J.; Li, W.

    2012-01-01

    The role of the C24 sulphate in the mating pheromone component, 7α,12α,24-trihydroxy-5α-cholan-3-one 24-sulphate (3kPZS), to specifically induce upstream movement in ovulated female sea lampreys Petromyzon marinus was investigated. 7α,12α-dihydroxy-5α-cholan-3-one 24-oic acid (3kACA), a structurally similar bile acid released by spermiated males, but lacking the C24 sulphate ester, was tested in bioassays at concentrations between 10−11 and 10−14 molar (M). 3kACA did not induce upstream movement in females or additional reproductive behaviours. In contrast, spermiated male washings induced upstream movement, prolonged retention on a nest and induced an array of nesting behaviours. Differential extraction and elution by solid-phase extraction resins showed that components other than 3kPZS + 3kACA are necessary to retain females on nests and induce nest cleaning behaviours. All pheromone components, including components in addition to 3kPZS + 3kACA that retain females and induce nest cleaning behaviours were released from the anterior region of the males, as had been reported for 3kPZS. It is concluded that the sea lamprey male mating pheromone has multiple functions and is composed of multiple components.

  1. Triethylene glycol, an active component of Ashwagandha (Withania somnifera) leaves, is responsible for sleep induction.

    PubMed

    Kaushik, Mahesh K; Kaul, Sunil C; Wadhwa, Renu; Yanagisawa, Masashi; Urade, Yoshihiro

    2017-01-01

    Insomnia is the most common sleep complaint which occurs due to difficulty in falling asleep or maintaining it. Most of currently available drugs for insomnia develop dependency and/or adverse effects. Hence natural therapies could be an alternative choice of treatment for insomnia. The root or whole plant extract of Ashwagandha (Withania somnifera) has been used to induce sleep in Indian system of traditional home medicine, Ayurveda. However, its active somnogenic components remain unidentified. We investigated the effect of various components of Ashwagandha leaf on sleep regulation by oral administration in mice. We found that the alcoholic extract that contained high amount of active withanolides was ineffective to induce sleep in mice. However, the water extract which contain triethylene glycol as a major component induced significant amount of non-rapid eye movement sleep with slight change in rapid eye movement sleep. Commercially available triethylene glycol also increased non-rapid eye movement sleep in mice in a dose-dependent (10-30 mg/mouse) manner. These results clearly demonstrated that triethylene glycol is an active sleep-inducing component of Ashwagandha leaves and could potentially be useful for insomnia therapy.

  2. Novel determinants of the neuronal Cl− concentration

    PubMed Central

    Delpire, Eric; Staley, Kevin J

    2014-01-01

    It is now a well-accepted view that cation-driven Cl− transporters in neurons are involved in determining the intracellular Cl− concentration. In the present review, we propose that additional factors, which are often overlooked, contribute substantially to the Cl− gradient across neuronal membranes. After briefly discussing the data supporting and opposing the role of cation–chloride cotransporters in regulating Cl−, we examine the participation of the following factors in the formation of the transmembrane Cl− gradient: (i) fixed ‘Donnan’ charges inside and outside the cell; (ii) the properties of water (free vs. bound); and (iii) water transport through the cotransporters. We demonstrate a steep relationship between intracellular Cl− and the concentration of fixed negative charges on macromolecules. We show that in the absence of water transport through the K+–Cl− cotransporter, a large osmotic gradient builds at concentrations below or above a set value of ‘Donnan’ charges, and show that at any value of these fixed charges, the reversal potential for Cl− equates that of K+. When the movement of water across the membrane is a source of free energy, it is sufficient to modify the movement of Cl− through the cotransporter. In this scenario, the reversal potential for Cl− does not closely follow that of K+. Furthermore, our simulations demonstrate that small differences in the availability of freely diffusible water between inside and outside the cell greatly affect the Cl− reversal potential, particularly when osmolar transmembrane gradients are minimized, for example by idiogenic osmoles. We also establish that the presence of extracellular charges has little effect on the chloride reversal potential, but greatly affects the effective inhibitory conductance for Cl−. In conclusion, our theoretical analysis of the presence of fixed anionic charges and water bound on macromolecules inside and outside the cell greatly impacts both Cl− gradient and Cl− conductance across neuronal membranes. PMID:25107928

  3. The Process and Reason of the Change of Oil-Water Contact of Shahejie Formation in BZ25-1 Oilfield

    NASA Astrophysics Data System (ADS)

    Cong, F.; Liu, J.

    2015-12-01

    Due to the influence of Neo-tectonic movement, the Shahejie reservoirs in Bohai Bay Basin has undergone late-stage transformation and adjustment, causing the oil-water contact to change. Through studying the changing history of oil-water contact, we can better restore petroleum accumulation process and analyze oil distribution pattern. Based on reservoir geochemistry theory and drilling and logging data, grains with oil inclusion was analyzed, and oil-bearing property, organic extracts and biomarkers was used to determine the present and paleo-oil water contact of Shahejie formation in BZ25-1 oilfield. It suggested that the paleo and present oil-water contact in Shahejie formation locates in different depth, and that Shahejie formation has gone through three petroleum charging stages and has also undergone reservoir adjustment. The POWC(paleo-oil-water contact) of E2S2 reservoirs in BZ25-1-5 well and E2S2 reservoirs in BZ25-1-3 well is lower than OWC(present oil-water contact) at least for 9m and at most for 400m, but the POWC of E2S3 reservoirs in BZ25-1-5 well is higher than OWC at least for 20m and at most for 27.5m. The petroleum accumulation process and the reason for oil-water contact adjustment were studied based on burial history, petroleum generation history, fault re-activation rate and petroleum charging history. It suggested that the three petroleum charging stages are Mid-Miocene(11.5Ma), Late Miocene-Pliocene(6.5-3.5Ma) and Quaternary(2.5Ma-present), among which the second~third charging episode is seen as the major petroleum accumulation stage. The re-activeted faults in several different periods not only served as preferential path for petroleum vertical migration, but also caused petroleum leakage through faults. The petroleum leakage mainly occurred in Neo-tectonic movement period(after 3.5Ma), during which petroleum vertically leaked through re-activated faults and migrated to shallow reservoirs or spilled over surface, meanwhile due to constant petroleum charging from active source rock, the present oil-water contact was formed. The re-activeted faults during Neo-tectonic movement period and active source rock are seen as main reason for oil-water contact adjustment in Shahejie formation.

  4. Fully redundant mechanical release actuator

    NASA Technical Reports Server (NTRS)

    Lucy, Melvin H. (Inventor)

    1987-01-01

    A system is described for performing a mechanical release function exhibiting low shock. This system includes two pyrotechnic detents fixed mounted in opposing axial alignment within a cylindrical housing having two mechanical bellows. Two mechanical bellow assemblies, each having one end hermetically bonded to the housing and the other to the respective actuator pin extending from either end of the housing, ensure that all outgassing and contamination from the operation of the pyrotechnic devices will be contained within the housing and bellows. The pin on one end of the assembly is fixed mounted and supported, via a bolt or ball-and-socket joint so that when the charge corresponding to that pin ignites, the entire assembly will exhibit rectilinear movement, including the opposing pin providing the unlatching motion. The release detent pin is supported by a linear bearing and when its corresponding pyrotechnic charge ignites the pin is retracted within the housing producing the same unlatching motion without movement of the entire assembly, thus providing complete mechanical, electrical and pyrotechnic redundancy for the unlatching pin.

  5. R1 in the Shaker S4 occupies the gating charge transfer center in the resting state

    PubMed Central

    Lin, Meng-chin A.; Hsieh, Jui-Yi; Mock, Allan F.

    2011-01-01

    During voltage-dependent activation in Shaker channels, four arginine residues in the S4 segment (R1–R4) cross the transmembrane electric field. It has been proposed that R1–R4 movement is facilitated by a “gating charge transfer center” comprising a phenylalanine (F290) in S2 plus two acidic residues, one each in S2 and S3. According to this proposal, R1 occupies the charge transfer center in the resting state, defined as the conformation in which S4 is maximally retracted toward the cytoplasm. However, other evidence suggests that R1 is located extracellular to the charge transfer center, near I287 in S2, in the resting state. To investigate the resting position of R1, we mutated I287 to histidine (I287H), paired it with histidine mutations of key voltage sensor residues, and determined the effect of extracellular Zn2+ on channel activity. In I287H+R1H, Zn2+ generated a slow component of activation with a maximum amplitude (Aslow,max) of ∼56%, indicating that only a fraction of voltage sensors can bind Zn2+ at a holding potential of −80 mV. Aslow,max decreased after applying either depolarizing or hyperpolarizing prepulses from −80 mV. The decline of Aslow,max after negative prepulses indicates that R1 moves inward to abolish ion binding, going beyond the point where reorientation of the I287H and R1H side chains would reestablish a binding site. These data support the proposal that R1 occupies the charge transfer center upon hyperpolarization. Consistent with this, pairing I287H with A359H in the S3–S4 loop generated a Zn2+-binding site. At saturating concentrations, Aslow,max reached 100%, indicating that Zn2+ traps the I287H+A359H voltage sensor in an absorbing conformation. Transferring I287H+A359H into a mutant background that stabilizes the resting state significantly enhanced Zn2+ binding at −80 mV. Our results strongly support the conclusion that R1 occupies the gating charge transfer center in the resting conformation. PMID:21788609

  6. Seismic explosive charge loader and anchor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcreynolds, O.B.

    1981-07-14

    An improved seismic explosive charge loader and anchor for loading and anchoring explosives in cylindrical containers in bore holes is disclosed, which includes a snap in spring band shaped anchor which effectively anchors the loader in the well bore against upward movement, one aspect of the invention includes a snap lock threaded connection for securing an explosive container having interrupted threads to the loader and anchor, and the loader and anchor is constructed and arranged to maintain a detonator in place in the explosive container thereby assuring detonation of the explosive.

  7. QUARTZ FIBER ELECTROSCOPES

    DOEpatents

    Henderson, R.P.

    1957-09-17

    An instrument carried unobtrusively about the person such as in a finger ring to indicate when that person has been exposed to an unusual radiation hazard is described. A metallized quartz fiber is electrically charged to indicate a full scale reading on an etched glass background. The quartz fiber and the scale may be viewed through a magnifying lens for ease of reading. Incident radiation will ionize gaseous particles in the sealed structure thereby allowing the charge to leak off the quartz fiber with its resulting movement across the scale proportionally indicating the radiation exposure.

  8. Versatile organic (fullerene)-inorganic (CdTe nanoparticle) nanoensembles.

    PubMed

    Guldi, Dirk M; Zilbermann, Israel; Anderson, Greg; Kotov, Nicholas A; Tagmatarchis, Nikos; Prato, Maurizio

    2004-11-10

    Novel organic (positively charged fullerene)-inorganic (negatively charged CdTe nanoparticle) nanoensembles were devised through electrostatic interactions and probed as versatile donor-acceptor hybrids. Photoirradiation of their homogeneous solutions, containing the electrostatically packed components, let to very long-lived (1.3 ms) charge separated states.

  9. FUNDAMENTAL MOVEMENT SKILLS OF PRESCHOOL CHILDREN IN NORTHWEST ENGLAND.

    PubMed

    Foulkes, J D; Knowles, Z; Fairclough, S J; Stratton, G; O'Dwyer, M; Ridgers, N D; Foweather, L

    2015-08-01

    This cross-sectional study examined fundamental movement skill competency among deprived preschool children in Northwest England and explored sex differences. A total of 168 preschool children (ages 3-5 yr.) were included in the study. Twelve skills were assessed using the Children's Activity and Movement in Preschool Motor Skills Protocol and video analysis. Sex differences were explored at the subtest, skill, and component levels. Overall competence was found to be low among both sexes, although it was higher for locomotor skills than for object-control skills. Similar patterns were observed at the component level. Boys had significantly better object-control skills than girls, with greater competence observed for the kick and overarm throw, while girls were more competent at the run, hop, and gallop. The findings of low competency suggest that developmentally appropriate interventions should be implemented in preschool settings to promote movement skills, with targeted activities for boys and girls.

  10. Startle stimuli reduce the internal model control in discrete movements.

    PubMed

    Wright, Zachary A; Rogers, Mark W; MacKinnon, Colum D; Patton, James L

    2009-01-01

    A well known and major component of movement control is the feedforward component, also known as the internal model. This model predicts and compensates for expected forces seen during a movement, based on recent experience, so that a well-learned task such as reaching to a target can be executed in a smooth straight manner. It has recently been shown that the state of preparation of planned movements can be tested using a startling acoustic stimulus (SAS). SAS, presented 500, 250 or 0 ms before the expected "go" cue resulted in the early release of the movement trajectory associated with the after-effects of the force field training (i.e. the internal model). In a typical motor adaptation experiment with a robot-applied force field, we tested if a SAS stimulus influences the size of after-effects that are typically seen. We found that in all subjects the after-effect magnitudes were significantly reduced when movements were released by SAS, although this effect was not further modulated by the timing of SAS. Reduced after-effects reveal at least partial existence of learned preparatory control, and identify startle effects that could influence performance in tasks such as piloting, teleoperation, and sports.

  11. Gravitational and Dynamic Components of Muscle Torque Underlie Tonic and Phasic Muscle Activity during Goal-Directed Reaching.

    PubMed

    Olesh, Erienne V; Pollard, Bradley S; Gritsenko, Valeriya

    2017-01-01

    Human reaching movements require complex muscle activations to produce the forces necessary to move the limb in a controlled manner. How gravity and the complex kinetic properties of the limb contribute to the generation of the muscle activation pattern by the central nervous system (CNS) is a long-standing and controversial question in neuroscience. To tackle this issue, muscle activity is often subdivided into static and phasic components. The former corresponds to posture maintenance and transitions between postures. The latter corresponds to active movement production and the compensation for the kinetic properties of the limb. In the present study, we improved the methodology for this subdivision of muscle activity into static and phasic components by relating them to joint torques. Ten healthy subjects pointed in virtual reality to visual targets arranged to create a standard center-out reaching task in three dimensions. Muscle activity and motion capture data were synchronously collected during the movements. The motion capture data were used to calculate postural and dynamic components of active muscle torques using a dynamic model of the arm with 5 degrees of freedom. Principal Component Analysis (PCA) was then applied to muscle activity and the torque components, separately, to reduce the dimensionality of the data. Muscle activity was also reconstructed from gravitational and dynamic torque components. Results show that the postural and dynamic components of muscle torque represent a significant amount of variance in muscle activity. This method could be used to define static and phasic components of muscle activity using muscle torques.

  12. Gravitational and Dynamic Components of Muscle Torque Underlie Tonic and Phasic Muscle Activity during Goal-Directed Reaching

    PubMed Central

    Olesh, Erienne V.; Pollard, Bradley S.; Gritsenko, Valeriya

    2017-01-01

    Human reaching movements require complex muscle activations to produce the forces necessary to move the limb in a controlled manner. How gravity and the complex kinetic properties of the limb contribute to the generation of the muscle activation pattern by the central nervous system (CNS) is a long-standing and controversial question in neuroscience. To tackle this issue, muscle activity is often subdivided into static and phasic components. The former corresponds to posture maintenance and transitions between postures. The latter corresponds to active movement production and the compensation for the kinetic properties of the limb. In the present study, we improved the methodology for this subdivision of muscle activity into static and phasic components by relating them to joint torques. Ten healthy subjects pointed in virtual reality to visual targets arranged to create a standard center-out reaching task in three dimensions. Muscle activity and motion capture data were synchronously collected during the movements. The motion capture data were used to calculate postural and dynamic components of active muscle torques using a dynamic model of the arm with 5 degrees of freedom. Principal Component Analysis (PCA) was then applied to muscle activity and the torque components, separately, to reduce the dimensionality of the data. Muscle activity was also reconstructed from gravitational and dynamic torque components. Results show that the postural and dynamic components of muscle torque represent a significant amount of variance in muscle activity. This method could be used to define static and phasic components of muscle activity using muscle torques. PMID:29018339

  13. Cross-axis adaptation of torsional components in the yaw-axis vestibulo-ocular reflex

    NASA Technical Reports Server (NTRS)

    Trillenberg, P.; Shelhamer, M.; Roberts, D. C.; Zee, D. S.

    2003-01-01

    The three pairs of semicircular canals within the labyrinth are not perfectly aligned with the pulling directions of the six extraocular muscles. Therefore, for a given head movement, the vestibulo-ocular reflex (VOR) depends upon central neural mechanisms that couple the canals to the muscles with the appropriate functional gains in order to generate a response that rotates the eye the correct amount and around the correct axis. A consequence of these neural connections is a cross-axis adaptive capability, which can be stimulated experimentally when head rotation is around one axis and visual motion about another. From this visual-vestibular conflict the brain infers that the slow-phase eye movement is rotating around the wrong axis. We explored the capability of human cross-axis adaptation, using a short-term training paradigm, to determine if torsional eye movements could be elicited by yaw (horizontal) head rotation (where torsion is normally inappropriate). We applied yaw sinusoidal head rotation (+/-10 degrees, 0.33 Hz) and measured eye movement responses in the dark, and before and after adaptation. The adaptation paradigm lasted 45-60 min, and consisted of the identical head motion, coupled with a moving visual scene that required one of several types of eye movements: (1) torsion alone (-Roll); (2) horizontal/torsional, head right/CW torsion (Yaw-Roll); (3) horizontal/torsional, head right/CCW torsion (Yaw+Roll); (4) horizontal, vertical, torsional combined (Yaw+Pitch-Roll); and (5) horizontal and vertical together (Yaw+Pitch). The largest and most significant changes in torsional amplitude occurred in the Yaw-Roll and Yaw+Roll conditions. We conclude that short-term, cross-axis adaptation of torsion is possible but constrained by the complexity of the adaptation task: smaller torsional components are produced if more than one cross-coupling component is required. In contrast, vertical cross-axis components can be easily trained to occur with yaw head movements.

  14. Polaris Instrument Development and PARI Experience

    NASA Astrophysics Data System (ADS)

    Stewart, Nathan

    2011-01-01

    At the Pisgah Astronomical Research Institute (PARI) in Rosman, NC I spent 8 weeks as the NC Space Grant/J. Donald Cline Astronomy Scholar. I developed multiple projects and assisted as a mentor to PARI Space Science Lab and Duke TIP high school gifted student program which both took place during my stay. My main focus was the development of the Polaris imaging telescope. This telescope is used to take images of the pulsating variable star Polaris. These readings are used to make seeing estimates for the air column above PARI. The system stores and archives images and analyzes them for magnitude change and movement of the stellar image. In addition to the Polaris project I developed a solar panel voltage and charge monitoring system which involved me working with charge controllers and photovoltaic technology. I developed a charging scheme using Flexmax 60 charge controller. Data is recorded and transmitted via optical fiber for analysis and correlation with solar zenith angle.

  15. Protein separation using an electrically tunable membrane

    NASA Astrophysics Data System (ADS)

    Jou, Ining; Melnikov, Dmitriy; Gracheva, Maria

    Separation of small proteins by charge with a solid-state porous membrane requires control over the protein's movement. Semiconductor membrane has this ability due to the electrically tunable electric potential profile inside the nanopore. In this work we investigate the possibility to separate the solution of two similar sized proteins by charge. As an example, we consider two small globular proteins abundant in humans: insulin (negatively charged) and ubiquitin (neutral). We find that the localized electric field inside the pore either attracts or repels the charged protein to or from the pore wall which affects the delay time before a successful translocation of the protein through the nanopore. However, the motion of the uncharged ubiquitin is unaffected. The difference in the delay time (and hence the separation) can be further increased by the application of the electrolyte bias which induces an electroosmotic flow in the pore. NSF DMR and CBET Grant No. 1352218.

  16. Characterization of Intercalated Graphite Fibers for Microelectromechanical Systems (MEMS) Applications

    DTIC Science & Technology

    2007-03-01

    electric charge to drive movement, eg. a micromirror . These two actuator types have different characteristics and apply dif- ferent forces. The thermal...actuators include micromirrors , comb drives, cantilevers and scratch drives. A scratch drive actuator uses an applied square wave voltage to operate, as

  17. Experiments in Ice Physics.

    ERIC Educational Resources Information Center

    Martin, P. F.; And Others

    1978-01-01

    Describes experiments in ice physics that demonstrate the behavior and properties of ice. Show that ice behaves as an ionic conductor in which charge is transferred by the movement of protons, its electrical conductivity is highly temperature-dependent, and its dielectric properties show dramatic variation in the kilohertz range. (Author/GA)

  18. The FBI Takes Aim at AIM

    ERIC Educational Resources Information Center

    Kanter, Elliot

    1977-01-01

    The events and revelations before and since the arrest of Paul Skyhorse and Richard Mohawk (two American Indian Movement organizers charged with the 1974 murder of a taxi driver at AIM Camp 13) lead to the inevitable conclusion that these men are victims of a frame-up. (Author/JC)

  19. "Preserving Intellectual Capital"

    ERIC Educational Resources Information Center

    Stewart, Pearl

    2008-01-01

    In 2005, living in his native Democratic Republic of the Congo, Dr. Felix Kaputu was arrested and accused of participating in a separatist movement outlawed by the government--charges he denied. He and other political detainees were incarcerated for several months, enduring beatings and torture. Amnesty International and other human rights groups…

  20. Open apex shaped charge-type explosive device having special disc means with slide surface thereon to influence movement of open apex shaped charge liner during collapse of same during detonation

    DOEpatents

    Murphy, Michael J.

    1993-01-01

    An open apex shape charge explosive device is disclosed having an inner liner defining a truncated cone, an explosive charge surrounding the truncated inner liner, a primer charge, and a disc located between the inner liner and the primer charge for directing the detonation of the primer charge around the end edge of the disc means to the explosive materials surrounding the inner liner. The disc comprises a material having one or more of: a higher compressive strength, a higher hardness, and/or a higher density than the material comprising the inner liner, thereby enabling the disc to resist deformation until the liner collapses. The disc has a slide surface thereon on which the end edge of the inner liner slides inwardly toward the vertical axis of the device during detonation of the main explosive surrounding the inner liner, to thereby facilitate the inward collapse of the inner liner. In a preferred embodiment, the geometry of the slide surface is adjusted to further control the collapse or .beta. angle of the inner liner.

  1. Open apex shaped charge-type explosive device having special disc means with slide surface thereon to influence movement of open apex shaped charge liner during collapse of same during detonation

    DOEpatents

    Murphy, M.J.

    1993-10-12

    An open apex shape charge explosive device is disclosed having an inner liner defining a truncated cone, an explosive charge surrounding the truncated inner liner, a primer charge, and a disc located between the inner liner and the primer charge for directing the detonation of the primer charge around the end edge of the disc means to the explosive materials surrounding the inner liner. The disc comprises a material having one or more of: a higher compressive strength, a higher hardness, and/or a higher density than the material comprising the inner liner, thereby enabling the disc to resist deformation until the liner collapses. The disc has a slide surface thereon on which the end edge of the inner liner slides inwardly toward the vertical axis of the device during detonation of the main explosive surrounding the inner liner, to thereby facilitate the inward collapse of the inner liner. In a preferred embodiment, the geometry of the slide surface is adjusted to further control the collapse or [beta] angle of the inner liner. 12 figures.

  2. A technological review on electric vehicle DC charging stations using photovoltaic sources

    NASA Astrophysics Data System (ADS)

    Youssef, Cheddadi; Fatima, Errahimi; najia, Es-sbai; Chakib, Alaoui

    2018-05-01

    Within the next few years, Electrified vehicles are destined to become the essential component of the transport field. Consequently, the charging infrastructure should be developed in the same time. Among this substructure, Charging stations photovoltaic-assisted are attracting a substantial interest due to increased environmental awareness, cost reduction and rise in efficiency of the PV modules. The intention of this paper is to review the technological status of Photovoltaic–Electric vehicle (PV-EV) charging stations during the last decade. The PV-EV charging station is divided into two categories, which are PV-grid and PV-standalone charging systems. From a practical point view, the distinction between the two architectures is the bidirectional inverter, which is added to link the station to the smart grid. The technological infrastructure includes the common hardware components of every station, namely: PV array, dc-dc converter provided with MPPT control, energy storage unit, bidirectional dc charger and inverter. We investigate, compare and evaluate many valuable researches that contain the design and control of PV-EV charging system. Additionally, this concise overview reports the studies that include charging standards, the power converters topologies that focus on the adoption of Vehicle-to grid technology and the control for both PV–grid and PV standalone DC charging systems.

  3. Spatiotopic coding during dynamic head tilt

    PubMed Central

    Turi, Marco; Burr, David C.

    2016-01-01

    Humans maintain a stable representation of the visual world effortlessly, despite constant movements of the eyes, head, and body, across multiple planes. Whereas visual stability in the face of saccadic eye movements has been intensely researched, fewer studies have investigated retinal image transformations induced by head movements, especially in the frontal plane. Unlike head rotations in the horizontal and sagittal planes, tilting the head in the frontal plane is only partially counteracted by torsional eye movements and consequently induces a distortion of the retinal image to which we seem to be completely oblivious. One possible mechanism aiding perceptual stability is an active reconstruction of a spatiotopic map of the visual world, anchored in allocentric coordinates. To explore this possibility, we measured the positional motion aftereffect (PMAE; the apparent change in position after adaptation to motion) with head tilts of ∼42° between adaptation and test (to dissociate retinal from allocentric coordinates). The aftereffect was shown to have both a retinotopic and spatiotopic component. When tested with unpatterned Gaussian blobs rather than sinusoidal grating stimuli, the retinotopic component was greatly reduced, whereas the spatiotopic component remained. The results suggest that perceptual stability may be maintained at least partially through mechanisms involving spatiotopic coding. NEW & NOTEWORTHY Given that spatiotopic coding could play a key role in maintaining visual stability, we look for evidence of spatiotopic coding after retinal image transformations caused by head tilt. To this end, we measure the strength of the positional motion aftereffect (PMAE; previously shown to be largely spatiotopic after saccades) after large head tilts. We find that, as with eye movements, the spatial selectivity of the PMAE has a large spatiotopic component after head rotation. PMID:27903636

  4. Adaptive Variability in Skilled Human Movements

    NASA Astrophysics Data System (ADS)

    Kudo, Kazutoshi; Ohtsuki, Tatsuyuki

    Human movements are produced in variable external/internal environments. Because of this variability, the same motor command can result in quite different movement patterns. Therefore, to produce skilled movements humans must coordinate the variability, not try to exclude it. In addition, because human movements are produced in redundant and complex systems, a combination of variability should be observed in different anatomical/physiological levels. In this paper, we introduce our research about human movement variability that shows remarkable coordination among components, and between organism and environment. We also introduce nonlinear dynamical models that can describe a variety of movements as a self-organization of a dynamical system, because the dynamical systems approach is a major candidate to understand the principle underlying organization of varying systems with huge degrees-of-freedom.

  5. Possible effects of organelle charge and density on cell metabolism. [chemical response to gravitational stimulus

    NASA Technical Reports Server (NTRS)

    Bandurski, Robert S.; Schulze, Aga; Domagalski, W.

    1986-01-01

    A system of perception and transduction involving the gravity-induced asymmetric distribution of a plant growth hormone is studied. A theory is constructed which assumes that the perception of the gravitational stimulus involved a perturbation of the plant's bioelectric field and that the transduction of the stimulus involved voltage-gating of hormone movement from the plant's vascular tissue into the hormone responsive growing tissue. Particular attention is focused on the barriers to indole-3-acetic acid (IAA) transport from the seed to the mesocotyl cortex, the protoinhibition of IAA movement from the endosperm to the shoot, the effects of the gravitational stimulus on the movement of IAA from the kernel to the shoot, electrochemical gating as a target for the gravity stimulus, and the gravity sensing mechanism.

  6. Reach-to-grasp movement as a minimization process.

    PubMed

    Yang, Fang; Feldman, Anatol G

    2010-02-01

    It is known that hand transport and grasping are functionally different but spatially coordinated components of reach-to-grasp (RTG) movements. As an extension of this notion, we suggested that body segments involved in RTG movements are controlled as a coherent ensemble by a global minimization process associated with the necessity for the hand to reach the motor goal. Different RTG components emerge following this process without pre-programming. Specifically, the minimization process may result from the tendency of neuromuscular elements to diminish the spatial gap between the actual arm-hand configuration and its virtual (referent) configuration specified by the brain. The referent configuration is specified depending on the object shape, localization, and orientation. Since the minimization process is gradual, it can be interrupted and resumed following mechanical perturbations, at any phase during RTG movements, including hand closure. To test this prediction of the minimization hypothesis, we asked subjects to reach and grasp a cube placed within the reach of the arm. Vision was prevented during movement until the hand returned to its initial position. As predicted, by arresting wrist motion at different points of hand transport in randomly selected trials, it was possible to halt changes in hand aperture at any phase, not only during hand opening but also during hand closure. Aperture changes resumed soon after the wrist was released. Another test of the minimization hypothesis was made in RTG movements to an object placed beyond the reach of the arm. It has previously been shown (Rossi et al. in J Physiol 538:659-671, 2002) that in such movements, the trunk motion begins to contribute to hand transport only after a critical phase when the shifts in the referent arm configuration have finished (at about the time when hand velocity is maximal). The minimization rule suggests that when the virtual contribution of the arm to hand transport is completed, guidance of hand aperture switches from the arm to the trunk control system. As a consequence, hand aperture changes can be halted by trunk arrests but only if they are prolonged beyond a critical phase. As predicted, hand transport and hand aperture in RTG movements beyond the reach of the arm were halted by trunk arrests only if they were prolonged beyond the time of peak hand velocity. Hand motion and aperture changes resumed only when the trunk was released. While supporting the minimization hypothesis, our findings imply that not only spatial but also temporal characteristics of each component, including the shortest, hand closure component of RTG movements, are controlled in a flexible, task-specific way.

  7. Combining EEG and eye tracking: identification, characterization, and correction of eye movement artifacts in electroencephalographic data

    PubMed Central

    Plöchl, Michael; Ossandón, José P.; König, Peter

    2012-01-01

    Eye movements introduce large artifacts to electroencephalographic recordings (EEG) and thus render data analysis difficult or even impossible. Trials contaminated by eye movement and blink artifacts have to be discarded, hence in standard EEG-paradigms subjects are required to fixate on the screen. To overcome this restriction, several correction methods including regression and blind source separation have been proposed. Yet, there is no automated standard procedure established. By simultaneously recording eye movements and 64-channel-EEG during a guided eye movement paradigm, we investigate and review the properties of eye movement artifacts, including corneo-retinal dipole changes, saccadic spike potentials and eyelid artifacts, and study their interrelations during different types of eye- and eyelid movements. In concordance with earlier studies our results confirm that these artifacts arise from different independent sources and that depending on electrode site, gaze direction, and choice of reference these sources contribute differently to the measured signal. We assess the respective implications for artifact correction methods and therefore compare the performance of two prominent approaches, namely linear regression and independent component analysis (ICA). We show and discuss that due to the independence of eye artifact sources, regression-based correction methods inevitably over- or under-correct individual artifact components, while ICA is in principle suited to address such mixtures of different types of artifacts. Finally, we propose an algorithm, which uses eye tracker information to objectively identify eye-artifact related ICA-components (ICs) in an automated manner. In the data presented here, the algorithm performed very similar to human experts when those were given both, the topographies of the ICs and their respective activations in a large amount of trials. Moreover it performed more reliable and almost twice as effective than human experts when those had to base their decision on IC topographies only. Furthermore, a receiver operating characteristic (ROC) analysis demonstrated an optimal balance of false positive and false negative at an area under curve (AUC) of more than 0.99. Removing the automatically detected ICs from the data resulted in removal or substantial suppression of ocular artifacts including microsaccadic spike potentials, while the relevant neural signal remained unaffected. In conclusion the present work aims at a better understanding of individual eye movement artifacts, their interrelations and the respective implications for eye artifact correction. Additionally, the proposed ICA-procedure provides a tool for optimized detection and correction of eye movement-related artifact components. PMID:23087632

  8. Charge recombination in organic photovoltaic devices with high open-circuit voltages.

    PubMed

    Westenhoff, Sebastian; Howard, Ian A; Hodgkiss, Justin M; Kirov, Kiril R; Bronstein, Hugo A; Williams, Charlotte K; Greenham, Neil C; Friend, Richard H

    2008-10-15

    A detailed charge recombination mechanism is presented for organic photovoltaic devices with a high open-circuit voltage. In a binary blend comprised of polyfluorene copolymers, the performance-limiting process is found to be the efficient recombination of tightly bound charge pairs into neutral triplet excitons. We arrive at this conclusion using optical transient absorption (TA) spectroscopy with visible and IR probes and over seven decades of time resolution. By resolving the polarization of the TA signal, we track the movement of polaronic states generated at the heterojunction not only in time but also in space. It is found that the photogenerated charge pairs are remarkably immobile at the heterojunction during their lifetime. The charge pairs are shown to be subject to efficient intersystem crossing and terminally recombine into F8BT triplet excitons within approximately 40 ns. Long-range charge separation competes rather unfavorably with intersystem crossing--75% of all charge pairs decay into triplet excitons. Triplet exciton states are thermodynamically accessible in polymer solar cells with high open circuit voltage, and we therefore suggest this loss mechanism to be general. We discuss guidelines for the design of the next generation of organic photovoltaic materials where separating the metastable interfacial charge pairs within approximately 40 ns is paramount.

  9. Contribution of the frontal eye field to gaze shifts in the head-unrestrained rhesus monkey: neuronal activity.

    PubMed

    Knight, T A

    2012-12-06

    The frontal eye field (FEF) has a strong influence on saccadic eye movements with the head restrained. With the head unrestrained, eye saccades combine with head movements to produce large gaze shifts, and microstimulation of the FEF evokes both eye and head movements. To test whether the dorsomedial FEF provides commands for the entire gaze shift or its separate eye and head components, we recorded extracellular single-unit activity in monkeys trained to make large head-unrestrained gaze shifts. We recorded 80 units active during gaze shifts, and closely examined 26 of these that discharged a burst of action potentials that preceded horizontal gaze movements. These units were movement or visuomovement related and most exhibited open movement fields with respect to amplitude. To reveal the relations of burst parameters to gaze, eye, and/or head movement metrics, we used behavioral dissociations of gaze, eye, and head movements and linear regression analyses. The burst number of spikes (NOS) was strongly correlated with movement amplitude and burst temporal parameters were strongly correlated with movement temporal metrics for eight gaze-related burst neurons and five saccade-related burst neurons. For the remaining 13 neurons, the NOS was strongly correlated with the head movement amplitude, but burst temporal parameters were most strongly correlated with eye movement temporal metrics (head-eye-related burst neurons, HEBNs). These results suggest that FEF units do not encode a command for the unified gaze shift only; instead, different units may carry signals related to the overall gaze shift or its eye and/or head components. Moreover, the HEBNs exhibit bursts whose magnitude and timing may encode a head displacement signal and a signal that influences the timing of the eye saccade, thereby serving as a mechanism for coordinating the eye and head movements of a gaze shift. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Electrostatic, elastic and hydration-dependent interactions in dermis influencing volume exclusion and macromolecular transport.

    PubMed

    Øien, Alf H; Wiig, Helge

    2016-07-07

    Interstitial exclusion refers to the limitation of space available for plasma proteins and other macromolecules based on collagen and negatively charged glycosaminoglycans (GAGs) in the interstitial space. It is of particular importance to interstitial fluid and plasma volume regulation. Here we present a novel mechanical and mathematical model of the dynamic interactions of structural elements within the interstitium of the dermis at the microscopic level that may explain volume exclusion of charged and neutral macroparticles. At this level, the interstitium is considered to consist of elements called extracellular matrix (ECM) cells, again containing two main interacting structural components on a fluid background including anions and cations setting up osmotic forces: one smaller GAG component, having an intrinsic expansive electric force, and one bigger collagen component, having an intrinsic elastic force. Because of size differences, the GAG component interacts with a fraction of the collagen component only at normal hydration. This fraction, however, increases with rising hydration as a consequence of the modeled form of the interaction force between the GAGs and collagen. Collagen is locally displaced at variable degrees as hydration changes. Two models of GAGs are considered, having largely different geometries which demands different, but related, forms of GAG-collagen interaction forces. The effects of variable fixed charges on GAGs and of GAG density in tissue are evaluated taking into account observed volume exclusion properties of charged macromolecules as a function of tissue hydration. The presented models may improve our biophysical understanding of acting forces influencing tissue fluid dynamics. Such knowledge is significant when evaluating the transport of electrically charged and neutral macromolecules into and through the interstitium, and therefore to drug uptake and the therapeutic effects of macromolecular agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Three-dimensional organization of vestibular related eye movements to rotational motion in pigeons

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.; Beyer, M.; Hess, B. J.

    2000-01-01

    During rotational motions, compensatory eye movement adjustments must continually occur in order to maintain objects of visual interest as stable images on the retina. In the present study, the three-dimensional organization of the vestibulo-ocular reflex in pigeons was quantitatively examined. Rotations about different head axes produced horizontal, vertical, and torsional eye movements, whose component magnitude was dependent upon the cosine of the stimulus axis relative to the animal's visual axis. Thus, the three-dimensional organization of the VOR in pigeons appears to be compensatory for any direction of head rotation. Frequency responses of the horizontal, vertical, and torsional slow phase components exhibited high pass filter properties with dominant time constants of approximately 3 s.

  12. Effectiveness of wildlife crossing structures to minimize traffic collisions with mule deer and other wildlife in Nevada.

    DOT National Transportation Integrated Search

    2015-04-15

    Maintenance of movement corridors is a fundamental component of conservation of biological diversity, and is especially important for terrestrial species that migrate extended distances. Movement corridors for largebodied species present unusual c...

  13. Electrochemical characterization and control of triple-layer muscles

    NASA Astrophysics Data System (ADS)

    Otero, Toribio F.; Cortes, Maria T.

    2000-06-01

    The electrochemical characterization of triple-layers formed by a EPA (Electroactive Polymer)/double-sided tape/EPA, like artificial muscles is described. Those muscles were characterized working under constant potential or under constant current. Due to the electrochemical nature of the electrochemomechanical property, muscles working under constant current produce constant movements, consuming increasing energies at decreasing temperatures, decreasing concentrations of electrolytes or trailing increasing masses. Muscles working at constant potential response with a faster movement if the temperature or the concentration of the electrolyte increase, or if the trailed weight decreases. Specific charges and specific energies were determined for every experimental condition.

  14. THE SIZE AND SURFACE COATING OF NANOSILVER DIFFERENTIALLY AFFECTS BIOLOGICAL ACTIVITY IN BLOOD BRAIN BARRIER (RBEC4) CELLS.

    EPA Science Inventory

    Linking the physical properties of nanoparticles with differences in their biological activity is critical for understanding their potential toxicity and mode of action. The influence of aggregate size, surface coating, and surface charge on nanosilver's (nanoAg) movement through...

  15. What Is Self-Advocacy? NRC Fact Sheet

    ERIC Educational Resources Information Center

    Hall, Mair

    2010-01-01

    Self-advocacy is about independent groups of people with disabilities working together for justice by helping each other take charge of their lives and fight discrimination. The seeds of the self-advocacy movement go back to 1968 when a Swedish parent's organization held a meeting for people with developmental disabilities. Today, the…

  16. The Dark Side of "Postmodern Moonshine"

    ERIC Educational Resources Information Center

    Kogan, Steve

    2007-01-01

    In our summer 2006 issue, we ran a comprehensive overview of how postmodernism has degraded composition on our campuses. Steve Kogan enlarges that indictment and charges that the movement has deliberately corrupted every area of English instruction--from the acquisition of skills and knowledge to the more fundamental mission of developing in…

  17. Stability and Control of Human Trunk Movement During Walking.

    PubMed

    Wu, Q.; Sepehri, N.; Thornton-Trump, A. B.; Alexander, M.

    1998-01-01

    A mathematical model has been developed to study the control mechanisms of human trunk movement during walking. The trunk is modeled as a base-excited inverted pendulum with two-degrees of rotational freedom. The base point, corresponding to the bony landmark of the sacrum, can move in three-dimensional space in a general way. Since the stability of upright posture is essential for human walking, a controller has been designed such that the stability of the pendulum about the upright position is guaranteed. The control laws are developed based on Lyapunov's stability theory and include feedforward and linear feedback components. It is found that the feedforward component plays a critical role in keeping postural stability, and the linear feedback component, (resulting from viscoelastic function of the musculoskeletal system) can effectively duplicate the pattern of trunk movement. The mathematical model is validated by comparing the simulation results with those based on gait measurements performed in the Biomechanics Laboratory at the University of Manitoba.

  18. Classification of Hand Grasp Kinetics and Types Using Movement-Related Cortical Potentials and EEG Rhythms.

    PubMed

    Jochumsen, Mads; Rovsing, Cecilie; Rovsing, Helene; Niazi, Imran Khan; Dremstrup, Kim; Kamavuako, Ernest Nlandu

    2017-01-01

    Detection of single-trial movement intentions from EEG is paramount for brain-computer interfacing in neurorehabilitation. These movement intentions contain task-related information and if this is decoded, the neurorehabilitation could potentially be optimized. The aim of this study was to classify single-trial movement intentions associated with two levels of force and speed and three different grasp types using EEG rhythms and components of the movement-related cortical potential (MRCP) as features. The feature importance was used to estimate encoding of discriminative information. Two data sets were used. 29 healthy subjects executed and imagined different hand movements, while EEG was recorded over the contralateral sensorimotor cortex. The following features were extracted: delta, theta, mu/alpha, beta, and gamma rhythms, readiness potential, negative slope, and motor potential of the MRCP. Sequential forward selection was performed, and classification was performed using linear discriminant analysis and support vector machines. Limited classification accuracies were obtained from the EEG rhythms and MRCP-components: 0.48 ± 0.05 (grasp types), 0.41 ± 0.07 (kinetic profiles, motor execution), and 0.39 ± 0.08 (kinetic profiles, motor imagination). Delta activity contributed the most but all features provided discriminative information. These findings suggest that information from the entire EEG spectrum is needed to discriminate between task-related parameters from single-trial movement intentions.

  19. Create your own stimulus: Manipulating movements according to social categories

    PubMed Central

    Koppensteiner, Markus; Primes, Georg; Stephan, Pia

    2017-01-01

    People ascribe purposeful behaviour to the movements of artificial objects and social qualities to human body motion. We investigated how people associate simple motion cues with social categories. For a first rating-experiment we converted the body movements of speakers into stick-figure animations; for a second rating-experiment we used animations of one single dot. Rating-experiments were “reversed” because we asked participants to alter the movements (i.e., vertical amplitude, horizontal amplitude, and velocity) of the stimuli according to different instructions (e.g., create a stimulus of high dominance). Participants equipped stick figures and dot animations with expansive movements to represent high dominance. Expansive and fast movements (i.e., high velocity) were mainly associated with high aggressiveness. Fast movements were also associated with low friendliness, low trustworthiness, and low competence. Overall, patterns found for stick figure and dot animations were similar indicating that certain motion cues convey social information even when only a dot and no body form is visible. The “reverse approach” we propose here makes the impact of different components directly observable. The data generated by this method offers better insights into the interplay of these components and the ways in which they form meaningful patterns. The proposed method can be extended to other types of nonverbal cues and a variety of social categories. PMID:28339490

  20. Move-tecture: A Conceptual Framework for Designing Movement in Architecture

    NASA Astrophysics Data System (ADS)

    Yilmaz, Irem

    2017-10-01

    Along with the technological improvements in our age, it is now possible for the movement to become one of the basic components of the architectural space. Accordingly, architectural construction of movement changes both our architectural production practices and our understanding of architectural space. However, existing design concepts and approaches are insufficient to discuss and understand this change. In this respect, this study aims to form a conceptual framework on the relationship of architecture and movement. In this sense, the conceptualization of move-tecture is developed to research on the architectural construction of movement and the potentials of spatial creation through architecturally constructed movement. Move-tecture, is a conceptualization that treats movement as a basic component of spatial creation. It presents the framework of a qualitative categorization on the design of moving architectural structures. However, this categorization is a flexible one that can evolve in the direction of the expanding possibilities of the architectural design and the changing living conditions. With this understanding, six categories have been defined within the context of the article: Topological Organization, Choreographic Formation, Kinetic Structuring, Corporeal Constitution, Technological Configuration and Interactional Patterning. In line with these categories, a multifaceted perspective on the moving architectural structures is promoted. It is aimed that such an understanding constitutes a new initiative in the design practices carried out in this area and provides a conceptual basis for the discussions to be developed.

  1. Neural correlates of mirth and laughter: a direct electrical cortical stimulation study.

    PubMed

    Yamao, Yukihiro; Matsumoto, Riki; Kunieda, Takeharu; Shibata, Sumiya; Shimotake, Akihiro; Kikuchi, Takayuki; Satow, Takeshi; Mikuni, Nobuhiro; Fukuyama, Hidenao; Ikeda, Akio; Miyamoto, Susumu

    2015-05-01

    Laughter consists of both motor and emotional aspects. The emotional component, known as mirth, is usually associated with the motor component, namely, bilateral facial movements. Previous electrical cortical stimulation (ES) studies revealed that mirth was associated with the basal temporal cortex, inferior frontal cortex, and medial frontal cortex. Functional neuroimaging implicated a role for the left inferior frontal and bilateral temporal cortices in humor processing. However, the neural origins and pathways linking mirth with facial movements are still unclear. We hereby report two cases with temporal lobe epilepsy undergoing subdural electrode implantation in whom ES of the left basal temporal cortex elicited both mirth and laughter-related facial muscle movements. In one case with normal hippocampus, high-frequency ES consistently caused contralateral facial movement, followed by bilateral facial movements with mirth. In contrast, in another case with hippocampal sclerosis (HS), ES elicited only mirth at low intensity and short duration, and eventually laughter at higher intensity and longer duration. In both cases, the basal temporal language area (BTLA) was located within or adjacent to the cortex where ES produced mirth. In conclusion, the present direct ES study demonstrated that 1) mirth had a close relationship with language function, 2) intact mesial temporal structures were actively engaged in the beginning of facial movements associated with mirth, and 3) these emotion-related facial movements had contralateral dominance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Grasp-Based Functional Coupling Between Reach- and Grasp-Related Components of Forelimb Muscle Activity

    PubMed Central

    Geed, Shashwati; van Kan, Peter L. E.

    2017-01-01

    How are appropriate combinations of forelimb muscles selected during reach-to-grasp movements in the presence of neuromotor redundancy and important task-related constraints? The authors tested whether grasp type or target location preferentially influence the selection and synergistic coupling between forelimb muscles during reach-to-grasp movements. Factor analysis applied to 14–20 forelimb electromyograms recorded from monkeys performing reach-to-grasp tasks revealed 4–6 muscle components that showed transport/preshape- or grasp-related features. Weighting coefficients of transport/preshape-related components demonstrated strongest similarities for reaches that shared the same grasp type rather than the same target location. Scaling coefficients of transport/preshape- and grasp-related components showed invariant temporal coupling. Thus, grasp type influenced strongly both transport/preshape- and grasp-related muscle components, giving rise to grasp-based functional coupling between forelimb muscles. PMID:27589010

  3. Probing interfacial energetics and charge transfer kinetics in semiconductor nanocomposites: New insights into heterostructured TiO 2/BiVO 4 photoanodes

    DOE PAGES

    Hess, Lucas H.; Cooper, Jason K.; Loiudice, Anna; ...

    2017-02-28

    Heterostructured nanocomposites offer promise for creating systems exhibiting functional properties that exceed those of the isolated components. For solar energy conversion, such combinations of semiconducting nanomaterials can be used to direct charge transfer along pathways that reduce recombination and promote efficient charge extraction. However, interfacial energetics and associated kinetic pathways often differ significantly from predictions derived from the characteristics of pure component materials, particularly at the nanoscale. Here, the emergent properties of TiO 2/BiVO 4 nanocomposite photoanodes are explored using a combination of X-ray and optical spectroscopies, together with photoelectrochemical (PEC) characterization. Application of these methods to both the puremore » components and the fully assembled nanocomposites reveals unpredicted interfacial energetic alignment, which promotes ultrafast injection of electrons from BiVO 4 into TiO 2. Physical charge separation yields extremely long-lived photoexcited states and correspondingly enhanced photoelectrochemical functionality. This work highlights the importance of probing emergent interfacial energetic alignment and kinetic processes for understanding mechanisms of solar energy conversion in complex nanocomposites.« less

  4. Contribution of Charges in Polyvinyl Alcohol Networks to Marine Antifouling.

    PubMed

    Yang, Wufang; Lin, Peng; Cheng, Daocang; Zhang, Longzhou; Wu, Yang; Liu, Yupeng; Pei, Xiaowei; Zhou, Feng

    2017-05-31

    Semi-interpenetrated polyvinyl alcohol polymer networks (SIPNs) were prepared by integrating various charged components into polyvinyl alcohol polymer. Contact angle measurement, attenuated total reflection Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and tensile tests were used to characterize the physicochemical properties of the prepared SIPNs. To investigate the contribution of charges to marine antifouling, the adhesion behaviors of green algae Dunaliella tertiolecta and diatoms Navicula sp. in the laboratory and of the actual marine animals in field test were studied for biofouling assays. The results suggest that less algae accumulation densities are observed for neutral-, anionic-, and zwitterionic-component-integrated SIPNs. However, for the cationic SIPNs, despite the hydration shell induced by the ion-dipole interaction, the resistance to biofouling largely depends on the amount of cationic component because of the possible favorable electrostatic attraction between the cationic groups in SIPNs and the negatively charged algae. Considering that the preparation of novel nontoxic antifouling coating is a long-standing and cosmopolitan industrial challenge, the SIPNs may provide a useful reference for marine antifouling and some other relevant fields.

  5. Comparison of multilayer formation between different cellulose nanofibrils and cationic polymers.

    PubMed

    Eronen, Paula; Laine, Janne; Ruokolainen, Janne; Osterberg, Monika

    2012-05-01

    The multilayer formation between polyelectrolytes of opposite charge offers possibility for creating new tailored materials. Exchanging one or both components for charged nanofibrillated cellulose (NFC) further increases the variety of achievable properties. We explored this by introducing unmodified, low charged NFC and high charged TEMPO-oxidized NFC. Systematic evaluation of the effect of both NFC charge and properties of cationic polyelectrolytes on the structure of the multilayers was performed. As the cationic component cationic NFC was compared with two different cationic polyelectrolytes, poly(dimethyldiallylammoniumchloride) and cationic starch. Quartz crystal microbalance with dissipation (QCM-D) was used to monitor the multilayer formation and AFM colloidal probe microscopy (CPM) was further applied to probe surface interactions in order to gain information about fundamental interactions and layer properties. Generally, the results verified the characteristic multilayer formation between NFC of different charge and how the properties of formed multilayers can be tuned. However, the strong nonelectrostatic affinity between cellulosic fibrils was observed. CPM measurements revealed monotonically repulsive forces, which were in good correspondence with the QCM-D observations. Significant increase in adhesive forces was detected between the swollen high charged NFC. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

    NASA Astrophysics Data System (ADS)

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-03-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.

  7. Sleep and Arousal Mechanisms in Experimental Epilepsy: Epileptic Components of NREM and Antiepileptic Components of REM Sleep

    ERIC Educational Resources Information Center

    Shouse, M. N.; Scordato, J. C.; Farber, P. R.

    2004-01-01

    Neural generators related to different sleep components have different effects on seizure discharge. These sleep-related systems can provoke seizure discharge propagation during nonrapid eye movement (NREM) sleep and can suppress propagation during REM sleep. Experimental manipulations of discrete physiological components were conducted in feline…

  8. Charged Particle Distribution near the Shock Front in a Glow Discharge

    NASA Astrophysics Data System (ADS)

    Baryshnikov, A. S.; Basargin, I. V.; Bezverkhnii, N. O.; Bobashev, S. V.; Monakhov, N. A.; Popov, P. A.; Sakharov, V. A.; Chistyakova, M. V.

    2018-02-01

    The charged particle distribution near the front of a shock wave propagating in the glow discharge plasma has been investigated. It has been found that the ion concentration before the front varies nonmonotonically. Behind the shock front, the charged particle concentration varies smoothly in contrast to the neutral component density.

  9. Restricted transfer of learning between unimanual and bimanual finger sequences

    PubMed Central

    Bai, Wenjun

    2016-01-01

    When training bimanual skills, such as playing piano, people sometimes practice each hand separately and at a later stage combine the movements of the two hands. This poses the critical question of whether motor skills can be acquired by separately practicing each subcomponent or should be trained as a whole. In the present study, we addressed this question by training human subjects for 4 days in a unimanual or bimanual version of the discrete sequence production task. Both groups were then tested on trained and untrained sequences on both unimanual and bimanual versions of the task. Surprisingly, we found no evidence of transfer from trained unimanual to bimanual or from trained bimanual to unimanual sequences. In half the participants, we also investigated whether cuing the sequences on the left and right hand with unique letters would change transfer. With these cues, untrained sequences that shared some components with the trained sequences were performed more quickly than sequences that did not. However, the amount of this transfer was limited to ∼10% of the overall sequence-specific learning gains. These results suggest that unimanual and bimanual sequences are learned in separate representations. Making participants aware of the interrelationship between sequences can induce some transferrable component, although the main component of the skill remains unique to unimanual or bimanual execution. NEW & NOTEWORTHY Studies in reaching movement demonstrated that approximately half of motor learning can transfer across unimanual and bimanual contexts, suggesting that neural representations for unimanual and bimanual movements are fairly overlapping at the level of elementary movement. In this study, we show that little or no transfer occurred across unimanual and bimanual sequential finger movements. This result suggests that bimanual sequences are represented at a level of the motor hierarchy that integrates movements of both hands. PMID:27974447

  10. Experiment study of mud to the moving process influent about viscous debris flow along slope

    NASA Astrophysics Data System (ADS)

    Jun, JiXian; Ying, Liang; Li, Pan Hua; Qiang, OuGuo

    2018-01-01

    Mud is the main component of viscous debris flow. The physical model experiments of viscous debris flow were carried out through the mixing mud with different density and fixed components of coarse particles. The width, longitudinal movement distance and motion velocity were recorded by video cameras during experiment. Through viscous debris flow physical model experiments, the influence of mud to transverse width, longitudinal movement distance and motion velocity was discussed. The physical model experiment results show that the motion forms change from inviscid particle flow to viscous debris flow and to the whole mass sliding with the increase of mud density; the width and the length along the slope decrease with mud density increasing; the movement process has classified phenomena about viscous debris flow composed by different mud densities: the velocity increases rapidly with time and the change gradient is steady when the density of mud is lower than 1.413g/cm3; the movement process can be divided into two stages when the density of mud is higher than 1.413g/cm3: the movement velocity is lower and the gradient change is small in the initial stage; but in the second stage, the movement velocity increases quickly, and the gradient is higher than the first stage, and with steady value.

  11. Morphological, motor and situation-motor characteristics of elite female handball players according to playing performance and position.

    PubMed

    Cavala, Marijana; Katić, Ratko

    2010-12-01

    The aim of the study was to define biomotor characteristics that determine playing performance and position in female handball. A battery of 13 variables consisting of somatotype components (3 variables), basic motor abilities (5 variables) and specific motor abilities (5 variables) were applied in a sample of 52 elite female handball players. Differences in biomotor characteristics according to playing performance and position of female handball players were determined by use of the analysis of variance (ANOVA) and discriminative analysis. Study results showed the high-quality female handball players to predominantly differ from the less successful ones in the specific factor of throw strength and basic dash factor, followed by the specific abilities of movement without and with ball, basic coordination/agility and specific ability of ball manipulation, and a more pronounced mesomorphic component. Results also revealed the wing players to be superior in the speed of movement frequency (psychomotor speed), run (explosive strength) and speed of movement with ball as compared with players at other playing positions. Also, endomorphic component was less pronounced in players at the wing and back player positions as compared with goalkeeper and pivot positions, where endomorphic component was considerably more pronounced.

  12. System for inspecting large size structural components

    DOEpatents

    Birks, Albert S.; Skorpik, James R.

    1990-01-01

    The present invention relates to a system for inspecting large scale structural components such as concrete walls or the like. The system includes a mobile gamma radiation source and a mobile gamma radiation detector. The source and detector are constructed and arranged for simultaneous movement along parallel paths in alignment with one another on opposite sides of a structural component being inspected. A control system provides signals which coordinate the movements of the source and detector and receives and records the radiation level data developed by the detector as a function of source and detector positions. The radiation level data is then analyzed to identify areas containing defects corresponding to unexpected variations in the radiation levels detected.

  13. Analysis of Human Swing Movement and Transferring into Robot

    NASA Astrophysics Data System (ADS)

    Shimodaira, Jun; Amaoka, Yuki; Hamatani, Shinsuke; Takeuchi, Masahiro; Hirai, Hiroaki; Miyazaki, Fumio

    Based on Generalized Motor Program, we analyzed the skill of human's table-tennis movement We hypothesized that it can be divided into arm swing and translational movements by upper and lower body movements, respectively. We expressed 3D position of the racket by only one parameter resulted from the analysis using Principal Component Analysis. Body trunk position measurement attested the lower body plays the role of keeping fixed relative-position between the ball and the body trunk at any hitting time. By applying human skills in upper and lower body movements, we could make the robot properly play table-tennis with a human.

  14. Thylakoid membrane model of the Chl a fluorescence transient and P700 induction kinetics in plant leaves.

    PubMed

    Belyaeva, N E; Bulychev, A A; Riznichenko, G Yu; Rubin, A B

    2016-12-01

    A new Thylakoid model is presented, which describes in detail the electron/proton transfer reactions between membrane protein complexes including photosystems II and I (PSII, PSI), cytochrome (Cyt) b 6 f, mobile plastoquinone PQ pool in the thylakoid membrane, plastocyanin in lumen and ferredoxin in stroma, reduction of NADP via FNR and cyclic electron transfer. The Thylakoid model parameters were fitted both to Chl fluorescence induction data (FI) and oxido-reductions of P700 (ΔA 810 ) measured from 20 μs up to 20 s in pea leaves. The two-wave kinetics of FI and ΔA 810 (O(JI)PSM and OABCDE) were described quantitatively, provided that the values of membrane electrochemical potential components ΔΨ(t), pH L (t)/pH S (t) are in physiologically relevant ranges. The time courses on the time scale from nanoseconds to tens of seconds of oxido-reduction changes of ET components as well as concentrations of proton/ions (K + , Cl - ) were calculated. We assume a low constant FNR activity over this period. Charge movements across the thylakoid membrane by passive leakage and active ATPase transport and proton buffer reactions are simulated. The dynamics of charge fluxes during photosynthetic induction under low light (PFD 200 μmol photons m -2  s -1 ) were analyzed. The initial wave of P700 oxidation within 20 ms during independent operation of PSI and PSII was followed after 50 ms by PSI donor-side reduction from reduced PQ pool via Cyt b 6 f site. The Cyt b 6 f reactions contribute to the stabilization of fluxes in the time range 1 s < t < 10 s. The detailed analysis of Chl a fluorescence at the PSM stage (t > 10 s) would need the investigation of FNR activation effect in order to explain the transitions between cyclic and linear electron transport.

  15. Photo ion spectrometer

    DOEpatents

    Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.

    1989-01-01

    A charged particle spectrometer for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode.

  16. Connectivity Among Salt Marsh Subhabitats: Residency and Movements of the Mummichog (Fundulus heteroclitus)

    EPA Science Inventory

    We examined connectivity among marsh subhabitats to determine the structural limits and important components of a polyhaline salt marsh by studying the patterns of abundance, residency, and movement of a numerically and ecologically dominant nektonic fish (mummichog, Fundulus het...

  17. fMRI evidence for sensorimotor transformations in human cortex during smooth pursuit eye movements.

    PubMed

    Kimmig, H; Ohlendorf, S; Speck, O; Sprenger, A; Rutschmann, R M; Haller, S; Greenlee, M W

    2008-01-01

    Smooth pursuit eye movements (SP) are driven by moving objects. The pursuit system processes the visual input signals and transforms this information into an oculomotor output signal. Despite the object's movement on the retina and the eyes' movement in the head, we are able to locate the object in space implying coordinate transformations from retinal to head and space coordinates. To test for the visual and oculomotor components of SP and the possible transformation sites, we investigated three experimental conditions: (I) fixation of a stationary target with a second target moving across the retina (visual), (II) pursuit of the moving target with the second target moving in phase (oculomotor), (III) pursuit of the moving target with the second target remaining stationary (visuo-oculomotor). Precise eye movement data were simultaneously measured with the fMRI data. Visual components of activation during SP were located in the motion-sensitive, temporo-parieto-occipital region MT+ and the right posterior parietal cortex (PPC). Motor components comprised more widespread activation in these regions and additional activations in the frontal and supplementary eye fields (FEF, SEF), the cingulate gyrus and precuneus. The combined visuo-oculomotor stimulus revealed additional activation in the putamen. Possible transformation sites were found in MT+ and PPC. The MT+ activation evoked by the motion of a single visual dot was very localized, while the activation of the same single dot motion driving the eye was rather extended across MT+. The eye movement information appeared to be dispersed across the visual map of MT+. This could be interpreted as a transfer of the one-dimensional eye movement information into the two-dimensional visual map. Potentially, the dispersed information could be used to remap MT+ to space coordinates rather than retinal coordinates and to provide the basis for a motor output control. A similar interpretation holds for our results in the PPC region.

  18. Reconstitution of a nanomachine driving the assembly of proteins into bacterial outer membranes

    NASA Astrophysics Data System (ADS)

    Shen, Hsin-Hui; Leyton, Denisse L.; Shiota, Takuya; Belousoff, Matthew J.; Noinaj, Nicholas; Lu, Jingxiong; Holt, Stephen A.; Tan, Khershing; Selkrig, Joel; Webb, Chaille T.; Buchanan, Susan K.; Martin, Lisandra L.; Lithgow, Trevor

    2014-10-01

    In biological membranes, various protein secretion devices function as nanomachines, and measuring the internal movements of their component parts is a major technological challenge. The translocation and assembly module (TAM) is a nanomachine required for virulence of bacterial pathogens. We have reconstituted a membrane containing the TAM onto a gold surface for characterization by quartz crystal microbalance with dissipation (QCM-D) and magnetic contrast neutron reflectrometry (MCNR). The MCNR studies provided structural resolution down to 1 Å, enabling accurate measurement of protein domains projecting from the membrane layer. Here we show that dynamic movements within the TamA component of the TAM are initiated in the presence of a substrate protein, Ag43, and that these movements recapitulate an initial stage in membrane protein assembly. The reconstituted system provides a powerful new means to study molecular movements in biological membranes, and the technology is widely applicable to studying the dynamics of diverse cellular nanomachines.

  19. International trade in services: a growing trend among highly skilled migrants with special reference to Asia.

    PubMed

    Garnier, P

    1996-01-01

    "An essential component of trade in services is cross-border movements of service providers.... On the one hand, there are international movements of skilled transients who emigrate for individual reasons in a long term perspective. On the other hand, there are skilled temporary migrants who perform services abroad without the intention or right to settle or seek employment in the host country. This study aims to clarify these differences using the example provided by the Asian Pacific region. Moreover, this study shows that the dynamics of skilled international migration is largely determined by the circulatory movement of skills of international service providers and has emerged as an essential component of economic development strategy of the countries in the region." excerpt

  20. Expansion of a multicomponent current-carrying plasma jet into vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasov, V. I.; Paperny, V. L., E-mail: paperny@math.isu.runnet.ru

    An expression for the ion−ion coupling in a multicomponent plasma jet is derived for an arbitrary ratio between the thermal and relative velocities of the components. The obtained expression is used to solve the problem on the expansion of a current-carrying plasma microjet emitted from the cathode surface into vacuum. Two types of plasmas with two ion components are analyzed: (i) plasma in which the ion components of equal masses are in the charge states Z{sub 1}= +1 and Z{sub 2}= +2 and (ii) plasma with ions in equal charge states but with the mass ratio m{sub 1}/m{sub 2} =more » 2. It is shown that, for such plasmas, the difference between the velocities of the plasma components remains substantial (about 10% of the average jet velocity in case (i) and 15% in case (ii)) at distances of several centimeters from the emission center, where it can be measured experimentally, provided that its initial value at the emitting cathode surface exceeds a certain threshold. This effect is investigated as a function of the mass ratio and charge states of the ion components.« less

  1. Visualization of the evolution of charged droplet formation and jet transition in electrostatic atomization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huo, Yuanping, E-mail: huoyuanping@gmail.com; Wang, Junfeng, E-mail: wangjunfeng@ujs.edu.cn; Zuo, Ziwen

    2015-11-15

    A detailed experimental study on the evolution of charged droplet formation and jet transition from a capillary is reported. By means of high-speed microscopy, special attention has been paid to the dynamics of the liquid thread and satellite droplets in the dripping mode, and a method for calculating the surface charge on the satellite droplet is proposed. Jet transition behavior based on the electric Bond number has been visualized, droplet sizes and velocities are measured to obtain the ejection characteristic of the spray plume, and the charge and hydrodynamic relaxation are linked to give explanations for ejection dynamics with differentmore » properties. The results show that the relative length is very sensitive to the hydrodynamic relaxation time. The magnitude of the electric field strength dominates the behavior of coalescence and noncoalescence, with the charge relationship between the satellite droplet and the main droplet being clear for every noncoalescence movement. Ejection mode transitions mainly depend on the magnitude of the electric Bond number, and the meniscus dynamics is determined by the ratio of the charge relaxation time to the hydrodynamic relaxation time.« less

  2. A numerical study on charging mechanism in leaky dielectric liquids inside the electrostatic atomizers

    NASA Astrophysics Data System (ADS)

    Kashir, Babak; Perri, Anthony; Yarin, Alexander L.; Mashayek, Farzad

    2017-11-01

    The charging of leaky dielectric liquids inside an electrostatic atomizer is studied numerically by developed codes based on OpenFOAM platform. Faradaic reactions are taken into account as the electrification mechanism. The impact of ionic finite size (steric terms) in high voltages is also investigated. The fundamental electrohydrodynamic understanding of the charging mechanism is aimed in the present work where the creation of polarized near-electrode layer and the movement of charges due to hydrodynamic flow are studied in conjunction with the solution of the Navier-Stokes equations. The case of a micro channel electrohydrodynamic flow subjected to two electrodes of the opposite polarity is considered as an example, with the goal to predict the resulting net charge at the exit. Even though the electrodes constitute a small portion of the channel wall, otherwise insulated, it is indicated that the channel length plays a dominant role in the discharging net charge. The ionic fluxes at the electrode surfaces are accounted through the Frumkin-Butler-Volmer relation found from the concurrent in-house experimental investigations. This projects was supported by National science Foundation (NSF) GOALI Grant CBET-1505276.

  3. One-dimension modeling on the parallel-plate ion extraction process based on a non-electron-equilibrium fluid model

    NASA Astrophysics Data System (ADS)

    Li, He-Ping; Chen, Jian; Guo, Heng; Jiang, Dong-Jun; Zhou, Ming-Sheng; Department of Engineering Physics Team

    2017-10-01

    Ion extraction from a plasma under an externally applied electric field involve multi-particle and multi-field interactions, and has wide applications in the fields of materials processing, etching, chemical analysis, etc. In order to develop the high-efficiency ion extraction methods, it is indispensable to establish a feasible model to understand the non-equilibrium transportation processes of the charged particles and the evolutions of the space charge sheath during the extraction process. Most of the previous studies on the ion extraction process are mainly based on the electron-equilibrium fluid model, which assumed that the electrons are in the thermodynamic equilibrium state. However, it may lead to some confusions with neglecting the electron movement during the sheath formation process. In this study, a non-electron-equilibrium model is established to describe the transportation of the charged particles in a parallel-plate ion extraction process. The numerical results show that the formation of the Child-Langmuir sheath is mainly caused by the charge separation. And thus, the sheath shielding effect will be significantly weakened if the charge separation is suppressed during the extraction process of the charged particles.

  4. Molecular mechanism of voltage sensing in voltage-gated proton channels

    PubMed Central

    Rebolledo, Santiago; Perez, Marta E.

    2013-01-01

    Voltage-gated proton (Hv) channels play an essential role in phagocytic cells by generating a hyperpolarizing proton current that electrically compensates for the depolarizing current generated by the NADPH oxidase during the respiratory burst, thereby ensuring a sustained production of reactive oxygen species by the NADPH oxidase in phagocytes to neutralize engulfed bacteria. Despite the importance of the voltage-dependent Hv current, it is at present unclear which residues in Hv channels are responsible for the voltage activation. Here we show that individual neutralizations of three charged residues in the fourth transmembrane domain, S4, all reduce the voltage dependence of activation. In addition, we show that the middle S4 charged residue moves from a position accessible from the cytosolic solution to a position accessible from the extracellular solution, suggesting that this residue moves across most of the membrane electric field during voltage activation of Hv channels. Our results show for the first time that the charge movement of these three S4 charges accounts for almost all of the measured gating charge in Hv channels. PMID:23401575

  5. 9 CFR 93.509 - Movement from conveyances to quarantine station.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... quarantine station. 93.509 Section 93.509 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... conveyances to quarantine station. Platforms and chutes used for handling imported swine shall be cleaned and... conveyance to the quarantine grounds in boats, cars, or vehicles approved by the inspector in charge at the...

  6. 9 CFR 93.509 - Movement from conveyances to quarantine station.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... quarantine station. 93.509 Section 93.509 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... conveyances to quarantine station. Platforms and chutes used for handling imported swine shall be cleaned and... conveyance to the quarantine grounds in boats, cars, or vehicles approved by the inspector in charge at the...

  7. 9 CFR 93.509 - Movement from conveyances to quarantine station.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... quarantine station. 93.509 Section 93.509 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... conveyances to quarantine station. Platforms and chutes used for handling imported swine shall be cleaned and... conveyance to the quarantine grounds in boats, cars, or vehicles approved by the inspector in charge at the...

  8. 9 CFR 93.509 - Movement from conveyances to quarantine station.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... quarantine station. 93.509 Section 93.509 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... conveyances to quarantine station. Platforms and chutes used for handling imported swine shall be cleaned and... conveyance to the quarantine grounds in boats, cars, or vehicles approved by the inspector in charge at the...

  9. Navigating the Closure Process. Authorizing Matters. Issue Brief

    ERIC Educational Resources Information Center

    Shaw, Matthew

    2011-01-01

    Charter school closure, though sometimes challenging and emotionally charged, is an essential aspect of the charter school movement. The purpose of this Issue Brief is to provide a practice-oriented resource for authorizers and other charter school stakeholders to navigate the closure process after the decision to close a school has been made. In…

  10. The Rise of Alternative Schools. Implications for Social Studies Education.

    ERIC Educational Resources Information Center

    Fox, Tom

    This paper reviews what some leading critics of public schools say about social studies curriculum and suggests implications of the growing "free schools" movement. The social studies have been charged with the socialization of children into the existing majority culture, and with teaching the knowledge and skills required for effective…

  11. Ten Qualities of a Strong Community College Leader

    ERIC Educational Resources Information Center

    Wheelan, Belle

    2012-01-01

    There are thousands of articles, books, essays, dissertations, and more devoted to leadership in higher education. All of them highlight the importance of a person "out front" who is charged with moving the organization forward and people who follow to ensure that movement takes place. The author's favorite definition of leadership is not found in…

  12. Electron Pairing, Repulsion, and Correlation: A Simplistic Approach

    ERIC Educational Resources Information Center

    Olsson, Lars-Fride; Kloo, Lars

    2004-01-01

    The interplay between a nucleus and an electron pair is explained through a basic application of an electrostatic and balanced model to determine the correlated and repulsive movements of the electron pair. The stable correlation depends on the positive charge produced by the combined force, which in turn establishes a negative potential energy.

  13. Political Ideology and Taiwanese School Curricula

    ERIC Educational Resources Information Center

    Su, Ya-Chen

    2006-01-01

    Taiwanese textbooks play a central role in Taiwanese education. In the wake of the political reform and social protest movements of the 1970s and 1980s that prompted Taiwanese educational reform, critics have charged that traditional curricula tend to reinforce the dominant national Chinese cultural identity. The purpose of this article is to…

  14. The Case for Natality in Pastoral Care and Why It Matters

    ERIC Educational Resources Information Center

    Barrow, Giles

    2017-01-01

    The author presents the concept of natality for consideration in terms of pastoral care and educational purpose. The discussion identifies significant threats to the future for pastoral care in schools, including the Global Educational Reform Movement and the increasing emphasis on teachers taking charge of discipline in the classroom, at the…

  15. Beyond reward prediction errors: the role of dopamine in movement kinematics

    PubMed Central

    Barter, Joseph W.; Li, Suellen; Lu, Dongye; Bartholomew, Ryan A.; Rossi, Mark A.; Shoemaker, Charles T.; Salas-Meza, Daniel; Gaidis, Erin; Yin, Henry H.

    2015-01-01

    We recorded activity of dopamine (DA) neurons in the substantia nigra pars compacta in unrestrained mice while monitoring their movements with video tracking. Our approach allows an unbiased examination of the continuous relationship between single unit activity and behavior. Although DA neurons show characteristic burst firing following cue or reward presentation, as previously reported, their activity can be explained by the representation of actual movement kinematics. Unlike neighboring pars reticulata GABAergic output neurons, which can represent vector components of position, DA neurons represent vector components of velocity or acceleration. We found neurons related to movements in four directions—up, down, left, right. For horizontal movements, there is significant lateralization of neurons: the left nigra contains more rightward neurons, whereas the right nigra contains more leftward neurons. The relationship between DA activity and movement kinematics was found on both appetitive trials using sucrose and aversive trials using air puff, showing that these neurons belong to a velocity control circuit that can be used for any number of purposes, whether to seek reward or to avoid harm. In support of this conclusion, mimicry of the phasic activation of DA neurons with selective optogenetic stimulation could also generate movements. Contrary to the popular hypothesis that DA neurons encode reward prediction errors, our results suggest that nigrostriatal DA plays an essential role in controlling the kinematics of voluntary movements. We hypothesize that DA signaling implements gain adjustment for adaptive transition control, and describe a new model of the basal ganglia (BG) in which DA functions to adjust the gain of the transition controller. This model has significant implications for our understanding of movement disorders implicating DA and the BG. PMID:26074791

  16. Composite body movements modulate numerical cognition: evidence from the motion-numerical compatibility effect

    PubMed Central

    Cheng, Xiaorong; Ge, Hui; Andoni, Deljfina; Ding, Xianfeng; Fan, Zhao

    2015-01-01

    A recent hierarchical model of numerical processing, initiated by Fischer and Brugger (2011) and Fischer (2012), suggested that situated factors, such as different body postures and body movements, can influence the magnitude representation and bias numerical processing. Indeed, Loetscher et al. (2008) found that participants’ behavior in a random number generation task was biased by head rotations. More small numbers were reported after leftward than rightward head turns, i.e., a motion-numerical compatibility effect. Here, by carrying out two experiments, we explored whether similar motion-numerical compatibility effects exist for movements of other important body components, e.g., arms, and for composite body movements as well, which are basis for complex human activities in many ecologically meaningful situations. In Experiment 1, a motion-numerical compatibility effect was observed for lateral rotations of two body components, i.e., the head and arms. Relatively large numbers were reported after making rightward compared to leftward movements for both lateral head and arm turns. The motion-numerical compatibility effect was observed again in Experiment 2 when participants were asked to perform composite body movements of congruent movement directions, e.g., simultaneous head left turns and arm left turns. However, it disappeared when the movement directions were incongruent, e.g., simultaneous head left turns and arm right turns. Taken together, our results extended Loetscher et al.’s (2008) finding by demonstrating that their effect is effector-general and exists for arm movements. Moreover, our study reveals for the first time that the impact of spatial information on numerical processing induced by each of the two sensorimotor-based situated factors, e.g., a lateral head turn and a lateral arm turn, can cancel each other out. PMID:26594188

  17. Peripheral Visual Cues Contribute to the Perception of Object Movement During Self-Movement

    PubMed Central

    Rogers, Cassandra; Warren, Paul A.

    2017-01-01

    Safe movement through the environment requires us to monitor our surroundings for moving objects or people. However, identification of moving objects in the scene is complicated by self-movement, which adds motion across the retina. To identify world-relative object movement, the brain thus has to ‘compensate for’ or ‘parse out’ the components of retinal motion that are due to self-movement. We have previously demonstrated that retinal cues arising from central vision contribute to solving this problem. Here, we investigate the contribution of peripheral vision, commonly thought to provide strong cues to self-movement. Stationary participants viewed a large field of view display, with radial flow patterns presented in the periphery, and judged the trajectory of a centrally presented probe. Across two experiments, we demonstrate and quantify the contribution of peripheral optic flow to flow parsing during forward and backward movement. PMID:29201335

  18. COSMO-SkyMed vs RADARSAT-2 for Monitoring Natural and Anthropogenic Components of the Land Movement in Venice

    NASA Astrophysics Data System (ADS)

    Tosi, Luigi; Da Lio, Cristina; Strozzi, Tazio; Teatini, Pietro

    2016-08-01

    We present the result of a test aimed at evaluating the capability of RADARSAT-2 and COSMO-SkyMed to map the natural subsidence and ground movements induced by anthropogenic activities in the historical center of Venice. Firstly, ground movements have been retrieved at quite long- and short-term by the Persistent Scattered Interferometry (PSI) on 2008-2015 RADARSA T-2 and 2013-2015 COSMO-SkyMed image stacks, respectively. Secondly, PSI has been calibrated at regional scale using the records of permanent GPS stations. Thirdly, considering that over the last two decades "in the historical center of Venice" natural land movements are primarily ascribed to long- term processes, and those induced by human activities act at short-term, we have properly resampled 83-month RADARSA T-2 C-band and 27-month COSMO- SkyMed X-band interferometric products by a common grid and processed the outcome to estimate the two components of the displacements. Results show that the average natural subsidence is generally in the range of 0.9 - 1.1 mm/yr and the anthropogenic ground movements are up to 2 mm/yr.

  19. Nonsomatotopic organization of the higher motor centers in octopus.

    PubMed

    Zullo, Letizia; Sumbre, German; Agnisola, Claudio; Flash, Tamar; Hochner, Binyamin

    2009-10-13

    Hyperredundant limbs with a virtually unlimited number of degrees of freedom (DOFs) pose a challenge for both biological and computational systems of motor control. In the flexible arms of the octopus, simplification strategies have evolved to reduce the number of controlled DOFs. Motor control in the octopus nervous system is hierarchically organized. A relatively small central brain integrates a huge amount of visual and tactile information from the large optic lobes and the peripheral nervous system of the arms and issues commands to lower motor centers controlling the elaborated neuromuscular system of the arms. This unique organization raises new questions on the organization of the octopus brain and whether and how it represents the rich movement repertoire. We developed a method of brain microstimulation in freely behaving animals and stimulated the higher motor centers-the basal lobes-thus inducing discrete and complex sets of movements. As stimulation strength increased, complex movements were recruited from basic components shared by different types of movement. We found no stimulation site where movements of a single arm or body part could be elicited. Discrete and complex components have no central topographical organization but are distributed over wide regions.

  20. Alternative Fuels Data Center: How Do All-Electric Cars Work?

    Science.gov Websites

    charge while charging the pack. Power electronics controller: This unit manages the flow of electrical of the engine, electric motor, power electronics, and other components. Traction battery pack: Stores

  1. Adaptability and Prediction of Anticipatory Muscular Activity Parameters to Different Movements in the Sitting Position.

    PubMed

    Chikh, Soufien; Watelain, Eric; Faupin, Arnaud; Pinti, Antonio; Jarraya, Mohamed; Garnier, Cyril

    2016-08-01

    Voluntary movement often causes postural perturbation that requires an anticipatory postural adjustment to minimize perturbation and increase the efficiency and coordination during execution. This systematic review focuses specifically on the relationship between the parameters of anticipatory muscular activities and movement finality in sitting position among adults, to study the adaptability and predictability of anticipatory muscular activities parameters to different movements and conditions in sitting position in adults. A systematic literature search was performed using PubMed, Science Direct, Web of Science, Springer-Link, Engineering Village, and EbscoHost. Inclusion and exclusion criteria were applied to retain the most rigorous and specific studies, yielding 76 articles, Seventeen articles were excluded at first reading, and after the application of inclusion and exclusion criteria, 23 were retained. In a sitting position, central nervous system activity precedes movement by diverse anticipatory muscular activities and shows the ability to adapt anticipatory muscular activity parameters to the movement direction, postural stability, or charge weight. In addition, these parameters could be adapted to the speed of execution, as found for the standing position. Parameters of anticipatory muscular activities (duration, order, and amplitude of muscle contractions constituting the anticipatory muscular activity) could be used as a predictive indicator of forthcoming movement. In addition, this systematic review may improve methodology in empirical studies and assistive technology for people with disabilities. © The Author(s) 2016.

  2. Modeling Lithium Movement over Multiple Cycles in a Lithium-Metal Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrese, A; Newman, J

    This paper builds on the work by Ferrese et al. [J. Electrochem., 159, A1615 (2012)], where a model of a lithium-metal battery with a LiyCoO2 positive electrode was created in order to predict the movement of lithium in the negative electrode along the negative electrode/separator interface during cell cycling. In this paper, the model is expanded to study the movement of lithium along the lithium-metal anode over multiple cycles. From this model, it is found that when a low percentage of lithium at the negative electrode is utilized, the movement of lithium along the negative electrode/separator interface reaches a quasimore » steady state after multiple cycles. This steady state is affected by the slope of the open-circuit-potential function in the positive electrode, the rate of charge and discharge, the depth of discharge, and the length of the rest periods. However, when a high percent of the lithium at the negative electrode is utilized during cycling, the movement does not reach a steady state and pinching can occur, where the lithium nearest the negative tab becomes progressively thinner after cycling. This is another nonlinearity that leads to a progression of the movement of lithium over multiple cycles. (C) 2014 The Electrochemical Society.« less

  3. Maintenance of coat protein N-terminal net charge and not primary sequence is essential for zucchini yellow mosaic virus systemic infectivity.

    PubMed

    Kimalov, Boaz; Gal-On, Amit; Stav, Ran; Belausov, Eduard; Arazi, Tzahi

    2004-11-01

    Zucchini yellow mosaic virus (ZYMV) surface exposed coat protein (CP) N-terminal domain (Nt) is 43 aa long and contains an equal number of positively and negatively charged amino acid residues (CP-Nt net charge = 0). A ZYMV-AGII truncation mutant lacking the first 20 aa of its CP-Nt (AGII-CP Delta 20; CP-Nt net charge = +2) was found to be systemically non-infectious even though AGII mutants harbouring larger CP-Nt deletions were previously demonstrated to be fully infectious. Nevertheless, AGII-CP Delta 20 infectivity was restored by fusion to its CP-Nt two Asp residues or a negatively charged Myc peptide, both predicted to neutralize CP-Nt net positive charge. To evaluate further the significance of CP-Nt net charge for AGII infectivity, a series of CP-Nt net charge mutants was generated and analysed for systemic infectivity of squash plants. AGII-CP(KKK) harbouring a CP-Nt amino fusion of three Lys residues (CP-Nt net charge = +3) was not systemically infectious. Addition of up to four Asp residues to CP-Nt did not abolish virus infectivity, although certain mutants were genetically unstable and had delayed infectivity. Addition of five negatively charged residues abolished infectivity (AGII-CP(DDDDD); CP-Nt net charge = -5) even though a recombinant CP(DDDDD) could assemble into potyviral-like particle in bacteria. Neutralization of CP-Nt net charge by fusing Asp or Lys residues recovered infectivity of AGII-CP(KKK) and AGII-CP(DDDDD). GFP-tagging of these mutants has demonstrated that both viruses have defective cell-to-cell movement. Together, these findings suggest that maintenance of CP-Nt net charge and not primary sequence is essential for ZYMV infectivity.

  4. Korteweg-deVries-Burgers (KdVB) equation in a five component cometary plasma with kappa described electrons and ions

    NASA Astrophysics Data System (ADS)

    Michael, Manesh; Willington, Neethu T.; Jayakumar, Neethu; Sebastian, Sijo; Sreekala, G.; Venugopal, Chandu

    2016-12-01

    We investigate the existence of ion-acoustic shock waves in a five component cometary plasma consisting of positively and negatively charged oxygen ions, kappa described hydrogen ions, hot solar electrons, and slightly colder cometary electrons. The KdVB equation has been derived for the system, and its solution plotted for different kappa values, oxygen ion densities, as well as the temperature ratios for the ions. It is found that the amplitude of the shock wave decreases with increasing kappa values. The strength of the shock profile decreases with increasing temperatures of the positively charged oxygen ions and densities of negatively charged oxygen ions.

  5. The Role of the Isospin 3/2 Component in Elastic Neutron-Deuteron Scattering and in the Deuteron Breakup Reaction

    NASA Astrophysics Data System (ADS)

    Witała, H.; Golak, J.; Skibiński, R.; Topolnicki, K.; Kamada, H.

    We discuss the importance of the three-nucleon isospin T = 3/2 component in elastic neutron-deuteron scattering and in the deuteron breakup reaction. The contribution of this amplitude originates from charge-independence breaking of the nucleon-nucleon potential. We study the magnitude of that contribution to the elastic scattering and breakup observables, taking the Av18 nucleon-nucleon potential alone or combined with the Urbana IX three-nucleon force as well as the locally regularized chiral N4LO nucleon-nucleon potential alone or supplemented by the chiral N2LO three-nucleon force. We find that the isospin T = 3/2 component is important for the breakup reaction and the proper treatment of charge-independence breaking in this case requires the inclusion of the 1S 0 state with isospin T = 3/2. For neutron-deuteron elastic scattering the T = 3/2 contributions are insignificant and charge-independence breaking can be accounted for by neglecting T = 3/2 component and using the effective t-matrix generated with the so-called “2/3 ‑ 1/3″ rule.

  6. Sleep staging with movement-related signals.

    PubMed

    Jansen, B H; Shankar, K

    1993-05-01

    Body movement related signals (i.e., activity due to postural changes and the ballistocardiac effort) were recorded from six normal volunteers using the static-charge-sensitive bed (SCSB). Visual sleep staging was performed on the basis of simultaneously recorded EEG, EMG and EOG signals. A statistical classification technique was used to determine if reliable sleep staging could be performed using only the SCSB signal. A classification rate of between 52% and 75% was obtained for sleep staging in the five conventional sleep stages and the awake state. These rates improved from 78% to 89% for classification between awake, REM and non-REM sleep and from 86% to 98% for awake versus asleep classification.

  7. Photo ion spectrometer

    DOEpatents

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1989-12-26

    A charged particle spectrometer is described for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode. 12 figs.

  8. Color Breakup In Sequentially-Scanned LC Displays

    NASA Technical Reports Server (NTRS)

    Arend, L.; Lubin, J.; Gille, J.; Larimer, J.; Statler, Irving C. (Technical Monitor)

    1994-01-01

    In sequentially-scanned liquid-crystal displays the chromatic components of color pixels are distributed in time. For such displays eye, head, display, and image-object movements can cause the individual color elements to be visible. We analyze conditions (scan designs, types of eye movement) likely to produce color breakup.

  9. Hot Spots and Hot Moments in Scientific Collaborations and Social Movements

    ERIC Educational Resources Information Center

    Parker, John N.; Hackett, Edward J.

    2012-01-01

    Emotions are essential but little understood components of research; they catalyze and sustain creative scientific work and fuel the scientific and intellectual social movements (SIMs) that propel scientific change. Adopting a micro-sociological focus, we examine how emotions shape two intellectual processes central to all scientific work:…

  10. A Gender at Risk.

    ERIC Educational Resources Information Center

    Shakeshaft, Charol

    1986-01-01

    Argues for the educational reform movement to include equity as an equal and serious component in the excellence movement. Describes the prevailing atmosphere of schools and school research and shows its male preference. Outlines the ways females as students, teachers, and administrators, are a gender at risk in American schools today. Includes 12…

  11. The Time Course of Incremental Word Processing during Chinese Reading

    ERIC Educational Resources Information Center

    Zhou, Junyi; Ma, Guojie; Li, Xingshan; Taft, Marcus

    2018-01-01

    In the current study, we report two eye movement experiments investigating how Chinese readers process incremental words during reading. These are words where some of the component characters constitute another word (an embedded word). In two experiments, eye movements were monitored while the participants read sentences with incremental words…

  12. Ca2+ Overload and Sarcoplasmic Reticulum Instability in tric-a Null Skeletal Muscle*

    PubMed Central

    Zhao, Xiaoli; Yamazaki, Daiju; Park, Ki Ho; Komazaki, Shinji; Tjondrokoesoemo, Andoria; Nishi, Miyuki; Lin, Peihui; Hirata, Yutaka; Brotto, Marco; Takeshima, Hiroshi; Ma, Jianjie

    2010-01-01

    The sarcoplasmic reticulum (SR) of skeletal muscle contains K+, Cl−, and H+ channels may facilitate charge neutralization during Ca2+ release. Our recent studies have identified trimeric intracellular cation (TRIC) channels on SR as an essential counter-ion permeability pathway associated with rapid Ca2+ release from intracellular stores. Skeletal muscle contains TRIC-A and TRIC-B isoforms as predominant and minor components, respectively. Here we test the physiological function of TRIC-A in skeletal muscle. Biochemical assay revealed abundant expression of TRIC-A relative to the skeletal muscle ryanodine receptor with a molar ratio of TRIC-A/ryanodine receptor ∼5:1. Electron microscopy with the tric-a−/− skeletal muscle showed Ca2+ overload inside the SR with frequent formation of Ca2+ deposits compared with the wild type muscle. This elevated SR Ca2+ pool in the tric-a−/− muscle could be released by caffeine, whereas the elemental Ca2+ release events, e.g. osmotic stress-induced Ca2+ spark activities, were significantly reduced likely reflecting compromised counter-ion movement across the SR. Ex vivo physiological test identified the appearance of “alternan” behavior with isolated tric-a−/− skeletal muscle, i.e. transient and drastic increase in contractile force appeared within the decreasing force profile during repetitive fatigue stimulation. Inhibition of SR/endoplasmic reticulum Ca2+ ATPase function could lead to aggravation of the stress-induced alternans in the tric-a−/− muscle. Our data suggests that absence of TRIC-A may lead to Ca2+ overload in SR, which in combination with the reduced counter-ion movement may lead to instability of Ca2+ movement across the SR membrane. The observed alternan behavior with the tric-a−/− muscle may reflect a skeletal muscle version of store overload-induced Ca2+ release that has been reported in the cardiac muscle under stress conditions. PMID:20858894

  13. The surface charge of trypanosomatids.

    PubMed

    Souto-Padrón, Thaïs

    2002-12-01

    The surface charge of trypanosomatids was evaluated by means of the binding of cationic particles, as visualized by electron microscopy and by direct measurements of the electrophoretic mobility of cells. The results obtained indicate that most of the trypanosomatids exhibit a negatively charged surface whose value is species specific and varies according to the developmental stages. Sialic acids associated with glycoproteins, glycolipids and phosphate groups are the major components responsible for the net negative surface charge of the trypanosomatids.

  14. Expected charge states of energetic ions in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Spjeldvik, W. N.

    1979-01-01

    Major developments in magnetospheric heavy ion physics during the period 1974-1977 are reviewed with emphasis on charge state aspects. Particular attention is given to the high energy component at energies above tens of keV per ion. Also considered are charge exchange processes with application to the inner magnetosphere, a comparison between theory and measurements, and a survey of heavy ion and charge state observations in the outer magnetosphere, magnetosheath and the surrounding space.

  15. A method to map errors in the deformable registration of 4DCT images1

    PubMed Central

    Vaman, Constantin; Staub, David; Williamson, Jeffrey; Murphy, Martin J.

    2010-01-01

    Purpose: To present a new approach to the problem of estimating errors in deformable image registration (DIR) applied to sequential phases of a 4DCT data set. Methods: A set of displacement vector fields (DVFs) are made by registering a sequence of 4DCT phases. The DVFs are assumed to display anatomical movement, with the addition of errors due to the imaging and registration processes. The positions of physical landmarks in each CT phase are measured as ground truth for the physical movement in the DVF. Principal component analysis of the DVFs and the landmarks is used to identify and separate the eigenmodes of physical movement from the error eigenmodes. By subtracting the physical modes from the principal components of the DVFs, the registration errors are exposed and reconstructed as DIR error maps. The method is demonstrated via a simple numerical model of 4DCT DVFs that combines breathing movement with simulated maps of spatially correlated DIR errors. Results: The principal components of the simulated DVFs were observed to share the basic properties of principal components for actual 4DCT data. The simulated error maps were accurately recovered by the estimation method. Conclusions: Deformable image registration errors can have complex spatial distributions. Consequently, point-by-point landmark validation can give unrepresentative results that do not accurately reflect the registration uncertainties away from the landmarks. The authors are developing a method for mapping the complete spatial distribution of DIR errors using only a small number of ground truth validation landmarks. PMID:21158288

  16. Eye movement training is most effective when it involves a task-relevant sensorimotor decision.

    PubMed

    Fooken, Jolande; Lalonde, Kathryn M; Mann, Gurkiran K; Spering, Miriam

    2018-04-01

    Eye and hand movements are closely linked when performing everyday actions. We conducted a perceptual-motor training study to investigate mutually beneficial effects of eye and hand movements, asking whether training in one modality benefits performance in the other. Observers had to predict the future trajectory of a briefly presented moving object, and intercept it at its assumed location as accurately as possible with their finger. Eye and hand movements were recorded simultaneously. Different training protocols either included eye movements or a combination of eye and hand movements with or without external performance feedback. Eye movement training did not transfer across modalities: Irrespective of feedback, finger interception accuracy and precision improved after training that involved the hand, but not after isolated eye movement training. Conversely, eye movements benefited from hand movement training or when external performance feedback was given, thus improving only when an active interceptive task component was involved. These findings indicate only limited transfer across modalities. However, they reveal the importance of creating a training task with an active sensorimotor decision to improve the accuracy and precision of eye and hand movements.

  17. What can be Learned from X-Ray Spectroscopy Concerning Hot Gas in the Local Bubble and Charge Exchange Processes

    NASA Technical Reports Server (NTRS)

    Snowden, Steven L.

    2007-01-01

    Solar wind charge exchange produces diffuse X-ray emission with a variable surface brightness comparable to that of the cosmic background. While the temporal variation of the charge exchange emission allows some separation of the components, there remains a great deal of uncertainty as to the zero level of both. Because the production mechanisms of the two components are considerably different, their spectra would provide critical diagnostics to the understanding of both. However, current X-ray observatories are very limited in both spectral resolution and sensitivity in the critical soft X-ray (less than 1.0 keV) energy range. Non-dispersive high-resolution spectrometers, such as the calorimeter proposed for the Spectrum Roentgen Gamma mission, will be extremely useful in distinguishing the cascade emission of charge exchange from the spectra of thermal bremsstrahlung cosmic plasmas.

  18. Behaviour of one-step spray-coated carbon nanotube supercapacitor in ambient light harvester circuit with printed organic solar cell and electrochromic display.

    PubMed

    Tuukkanen, Sampo; Välimäki, Marja; Lehtimäki, Suvi; Vuorinen, Tiina; Lupo, Donald

    2016-03-09

    A printed energy harvesting and storage circuit powered by ambient office lighting and its use to power a printed display is reported. The autonomous device is composed of three printed electronic components: an organic photovoltaic module, a carbon-nanotubes-only supercapacitor and an electrochromic display element. Components are fabricated from safe and environmentally friendly materials, and have been fabricated using solution processing methods, which translate into low-cost and high-throughput manufacturing. A supercapacitor made of spray-coated carbon nanotube based ink and aqueous NaCl electrolyte was charged using a printed organic photovoltaic module exposed to office lighting conditions. The supercapacitor charging rate, self-discharge rate and display operation were studied in detail. The supercapacitor self-discharge rate was found to depend on the charging rate. The fully charged supercapacitor was used as a power source to run the electrochromic display over 50 times.

  19. Post-arc current simulation based on measurement in vacuum circuit breaker with a one-dimensional particle-in-cell model

    NASA Astrophysics Data System (ADS)

    Jia, Shenli; Mo, Yongpeng; Shi, Zongqian; Li, Junliang; Wang, Lijun

    2017-10-01

    The post-arc dielectric recovery process has a decisive effect on the current interruption performance in a vacuum circuit breaker. The dissipation of residual plasma at the moment of current zero under the transient recovery voltage, which is the first stage of the post-arc dielectric recovery process and forms the post-arc current, has attracted many concerns. A one-dimensional particle-in-cell model is developed to simulate the measured post-arc current in the vacuum circuit breaker in this paper. At first, the parameters of the residual plasma are estimated roughly by the waveform of the post-arc current which is taken from measurements. After that, different components of the post-arc current, which are formed by the movement of charged particles in the residual plasma, are discussed. Then, the residual plasma density is adjusted according to the proportion of electrons and ions absorbed by the post-arc anode derived from the particle-in-cell simulation. After this adjustment, the post-arc current waveform obtained from the simulation is closer to that obtained from measurements.

  20. How to Estimate Demand Charge Savings from PV on Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagnon, Pieter J; Bird, Lori A

    Rooftop photovoltaic (PV) systems are compensated through retail electricity tariffs - and for commercial and industrial customers, these are typically comprised of three components: a fixed monthly charge, energy charges, and demand charges. Of these, PV's ability to reduce demand charges has traditionally been the most difficult to estimate. In this fact sheet we explain the basics of demand charges, and provide a new method that a potential customer or PV developer can use to estimate a range of potential demand charge savings for a proposed PV system. These savings can then be added to other project cash flows, inmore » assessing the project's financial performance.« less

  1. Rapidly transported organelles containing membrane and cytoskeletal components: their relation to axonal growth

    PubMed Central

    1987-01-01

    We have examined the movements, composition, and cellular origin of phase-dense varicosities in cultures of chick sympathetic and sensory neurons. These organelles are variable in diameter (typically between 0.2 and 2 microns) and undergo saltatory movements both towards and away from the neuronal cell body. Their mean velocities vary inversely with the size of the organelle and are greater in the retrograde than the anterograde direction. Organelles stain with the lipophilic dye 1, 1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine and with antibodies to cytoskeletal components. In cultures double-stained with antibodies to alpha-tubulin and 70-kD neurofilament protein (NF-L), approximately 40% of the organelles stain for tubulin, 30% stain for NF- L, 10% stain for both tubulin and NF-L, and 40% show no staining with either antibody. The association of cytoskeletal proteins with the organelles shows that these proteins are able to move by a form of rapid axonal transport. Under most culture conditions the predominant direction of movement is towards the cell body, suggesting that the organelles are produced at or near the growth cone. Retrograde movements continue in culture medium lacking protein or high molecular mass components and increase under conditions in which the advance of the growth cone is arrested. There is a fourfold increase in the number of organelles moving retrogradely in neurites that encounter a substratum-associated barrier to elongation; retrograde movements increase similarly in cultures exposed to cytochalasin at levels known to block growth cone advance. No previously described organelle shows behavior coordinated with axonal growth in this way. We propose that the organelles contain membrane and cytoskeletal components that have been delivered to the growth cone, by slow or fast anterograde transport, in excess of the amounts required to synthesize more axon. In view of their rapid mobility and variable contents, we suggest that they be called "neuronal parcels." PMID:3693400

  2. Ultrafast photoinduced charge separation in metal-semiconductor nanohybrids.

    PubMed

    Mongin, Denis; Shaviv, Ehud; Maioli, Paolo; Crut, Aurélien; Banin, Uri; Del Fatti, Natalia; Vallée, Fabrice

    2012-08-28

    Hybrid nano-objects formed by two or more disparate materials are among the most promising and versatile nanosystems. A key parameter in their properties is interaction between their components. In this context we have investigated ultrafast charge separation in semiconductor-metal nanohybrids using a model system of gold-tipped CdS nanorods in a matchstick architecture. Experiments are performed using an optical time-resolved pump-probe technique, exciting either the semiconductor or the metal component of the particles, and probing the light-induced change of their optical response. Electron-hole pairs photoexcited in the semiconductor part of the nanohybrids are shown to undergo rapid charge separation with the electron transferred to the metal part on a sub-20 fs time scale. This ultrafast gold charging leads to a transient red-shift and broadening of the metal surface plasmon resonance, in agreement with results for free clusters but in contrast to observation for static charging of gold nanoparticles in liquid environments. Quantitative comparison with a theoretical model is in excellent agreement with the experimental results, confirming photoexcitation of one electron-hole pair per nanohybrid followed by ultrafast charge separation. The results also point to the utilization of such metal-semiconductor nanohybrids in light-harvesting applications and in photocatalysis.

  3. Extremely large nonsaturating magnetoresistance and ultrahigh mobility due to topological surface states in the metallic Bi2Te3 topological insulator

    NASA Astrophysics Data System (ADS)

    Shrestha, K.; Chou, M.; Graf, D.; Yang, H. D.; Lorenz, B.; Chu, C. W.

    2017-05-01

    Weak antilocalization (WAL) effects in Bi2Te3 single crystals have been investigated at high and low bulk charge-carrier concentrations. At low charge-carrier density the WAL curves scale with the normal component of the magnetic field, demonstrating the dominance of topological surface states in magnetoconductivity. At high charge-carrier density the WAL curves scale with neither the applied field nor its normal component, implying a mixture of bulk and surface conduction. WAL due to topological surface states shows no dependence on the nature (electrons or holes) of the bulk charge carriers. The observations of an extremely large nonsaturating magnetoresistance and ultrahigh mobility in the samples with lower carrier density further support the presence of surface states. The physical parameters characterizing the WAL effects are calculated using the Hikami-Larkin-Nagaoka formula. At high charge-carrier concentrations, there is a greater number of conduction channels and a decrease in the phase coherence length compared to low charge-carrier concentrations. The extremely large magnetoresistance and high mobility of topological insulators have great technological value and can be exploited in magnetoelectric sensors and memory devices.

  4. Constraints on voltage sensor movement in the shaker K+ channel.

    PubMed

    Darman, Rachel B; Ivy, Allison A; Ketty, Vina; Blaustein, Robert O

    2006-12-01

    In nerve and muscle cells, the voltage-gated opening and closing of cation-selective ion channels is accompanied by the translocation of 12-14 elementary charges across the membrane's electric field. Although most of these charges are carried by residues in the S4 helix of the gating module of these channels, the precise nature of their physical movement is currently the topic of spirited debate. Broadly speaking, two classes of models have emerged: those that suggest that small-scale motions can account for the extensive charge displacement, and those that invoke a much larger physical movement. In the most recent incarnation of the latter type of model, which is based on structural and functional data from the archaebacterial K(+) channel KvAP, a "voltage-sensor paddle" comprising a helix-turn-helix of S3-S4 translocates approximately 20 A through the bilayer during the gating cycle (Jiang, Y., A. Lee, J. Chen, V. Ruta, M. Cadene, B.T. Chait, and R. MacKinnon. 2003. Nature. 423:33-41; Jiang, Y., V. Ruta, J. Chen, A. Lee, and R. MacKinnon. 2003. Nature. 423:42-48.; Ruta, V., J. Chen, and R. MacKinnon. 2005. Cell. 123:463-475). We used two methods to test for analogous motions in the Shaker K(+) channel, each examining the aqueous exposure of residues near S3. In the first, we employed a pore-blocking maleimide reagent (Blaustein, R.O., P.A. Cole, C. Williams, and C. Miller. 2000. Nat. Struct. Biol. 7:309-311) to probe for state-dependent changes in the chemical reactivity of substituted cysteines; in the second, we tested the state-dependent accessibility of a tethered biotin to external streptavidin (Qiu, X.Q., K.S. Jakes, A. Finkelstein, and S.L. Slatin. 1994. J. Biol. Chem. 269:7483-7488; Slatin, S.L., X.Q. Qiu, K.S. Jakes, and A. Finkelstein. 1994. Nature. 371:158-161). In both types of experiments, residues predicted to lie near the top of S3 did not exhibit any change in aqueous exposure during the gating cycle. This lack of state dependence argues against large-scale movements, either axially or radially, of Shaker's S3-S4 voltage-sensor paddle.

  5. Constraints on Voltage Sensor Movement in the Shaker K+ Channel

    PubMed Central

    Darman, Rachel B.; Ivy, Allison A.; Ketty, Vina; Blaustein, Robert O.

    2006-01-01

    In nerve and muscle cells, the voltage-gated opening and closing of cation-selective ion channels is accompanied by the translocation of 12–14 elementary charges across the membrane's electric field. Although most of these charges are carried by residues in the S4 helix of the gating module of these channels, the precise nature of their physical movement is currently the topic of spirited debate. Broadly speaking, two classes of models have emerged: those that suggest that small-scale motions can account for the extensive charge displacement, and those that invoke a much larger physical movement. In the most recent incarnation of the latter type of model, which is based on structural and functional data from the archaebacterial K+ channel KvAP, a “voltage-sensor paddle” comprising a helix-turn-helix of S3–S4 translocates ∼20 Å through the bilayer during the gating cycle (Jiang, Y., A. Lee, J. Chen, V. Ruta, M. Cadene, B.T. Chait, and R. MacKinnon. 2003. Nature. 423:33–41; Jiang, Y., V. Ruta, J. Chen, A. Lee, and R. MacKinnon. 2003. Nature. 423:42–48.; Ruta, V., J. Chen, and R. MacKinnon. 2005. Cell. 123:463–475). We used two methods to test for analogous motions in the Shaker K+ channel, each examining the aqueous exposure of residues near S3. In the first, we employed a pore-blocking maleimide reagent (Blaustein, R.O., P.A. Cole, C. Williams, and C. Miller. 2000. Nat. Struct. Biol. 7:309–311) to probe for state-dependent changes in the chemical reactivity of substituted cysteines; in the second, we tested the state-dependent accessibility of a tethered biotin to external streptavidin (Qiu, X.Q., K.S. Jakes, A. Finkelstein, and S.L. Slatin. 1994. J. Biol. Chem. 269:7483–7488; Slatin, S.L., X.Q. Qiu, K.S. Jakes, and A. Finkelstein. 1994. Nature. 371:158–161). In both types of experiments, residues predicted to lie near the top of S3 did not exhibit any change in aqueous exposure during the gating cycle. This lack of state dependence argues against large-scale movements, either axially or radially, of Shaker's S3–S4 voltage-sensor paddle. PMID:17101817

  6. Charge-exchange plasma environment for an ion drive spacecraft. [a model for describing mercury ion engines and its effect on spacecraft subsystems

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Carruth, M. R., Jr.

    1979-01-01

    The charge exchange plasma environment around a spacecraft that uses mercury ion thrusters for propulsion is described. The interactions between the plasma environment and the spacecraft are determined and a model which describes the propagation of the mercury charge exchange plasma is discussed. The model is extended to describe the flow of the molybdenum component of the charge exchange plasma. The uncertainties in the models for various conditions are discussed and current drain to the solar array, charge exchange plasma material deposition, and the effects of space plasma on the charge exchange plasma propagation are addressed.

  7. Scientific Computation Application Partnerships in Materials and Chemical Sciences, Charge Transfer and Charge Transport in Photoactivated Systems, Developing Electron-Correlated Methods for Excited State Structure and Dynamics in the NWChem Software Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cramer, Christopher J.

    Charge transfer and charge transport in photoactivated systems are fundamental processes that underlie solar energy capture, solar energy conversion, and photoactivated catalysis, both organometallic and enzymatic. We developed methods, algorithms, and software tools needed for reliable treatment of the underlying physics for charge transfer and charge transport, an undertaking with broad applicability to the goals of the fundamental-interaction component of the Department of Energy Office of Basic Energy Sciences and the exascale initiative of the Office of Advanced Scientific Computing Research.

  8. Coupling of the phosphatase activity of Ci-VSP to its voltage sensor activity over the entire range of voltage sensitivity

    PubMed Central

    Sakata, Souhei; Hossain, Md. Israil; Okamura, Yasushi

    2011-01-01

    Abstract The voltage sensing phosphatase Ci-VSP is composed of a voltage sensor domain (VSD) and a cytoplasmic phosphatase domain. Upon membrane depolarization, movement of the VSD triggers the enzyme's phosphatase activity. To gain further insight into its operating mechanism, we studied the PI(4,5)P2 phosphatase activity of Ci-VSP expressed in Xenopus oocytes over the entire range of VSD motion by assessing the activity of coexpressed Kir2.1 channels or the fluorescence signal from a pleckstrin homology domain fused with green fluorescent protein (GFP) (PHPLC-GFP). Both assays showed greater phosphatase activity at 125 mV than at 75 mV, which corresponds to ‘sensing’ charges that were 90% and 75% of maximum, respectively. On the other hand, the activity at 160 mV (corresponding to 98% of the maximum ‘sensing’ charge) was indistinguishable from that at 125 mV. Modelling the kinetics of the PHPLC-GFP fluorescence revealed that its time course was dependent on both the level of Ci-VSP expression and the diffusion of PHPLC-GFP beneath the plasma membrane. Enzyme activity was calculated by fitting the time course of PHPLC-GFP fluorescence into the model. The voltage dependence of the enzyme activity was superimposable on the Q–V curve, which is consistent with the idea that the enzyme activity is tightly coupled to VSD movement over the entire range of membrane potentials that elicit VSD movement. PMID:21486809

  9. Effects of emotionally charged sounds in schizophrenia patients using exploratory eye movements: comparison with healthy subjects.

    PubMed

    Ishii, Youhei; Morita, Kiichiro; Shouji, Yoshihisa; Nakashima, Youko; Uchimura, Naohisa

    2010-02-01

    Emotion-associated sounds have been suggested to exert important effects upon human personal relationships. The present study was aimed to characterize the effects of the sounds of crying or laughing on visual cognitive function in schizophrenia patients. We recorded exploratory eye movements in 24 schizophrenia patients (mean age, 27.0 +/- 6.1 years; 14 male, 10 female) and age-matched controls. The total eye scanning length (TESL) and total number of gaze points in the left (left TNGP) and right (right TNGP) visual fields of the screen and the number of researching areas (NRA) were determined using eye-mark recording in the presence/absence of emotionally charged sounds. Controls' TESL for smiling pictures was longer than that for crying pictures irrespective of sounds. Patients' TESL for smiling pictures, however, was shorter than for crying pictures irrespective of the sounds. The left TNGP for smiling pictures was lower in patients than controls independent of sound. Importantly, the right TNGP was significantly larger with laughing sounds than in the absence of sound. In controls, the NRA for smiling pictures was significantly greater than for crying pictures irrespective of sound. Patient NRA did not significantly differ between smiling and crying pictures irrespective of sound. Eye movements in schizophrenia patients' left field for smiling pictures associated with laughing sounds particularly differed from those in controls, suggesting impaired visual cognitive function associated with positive emotion, also involving pleasure-related sounds, in schizophrenia.

  10. Human vertical eye movement responses to earth horizontal pitch

    NASA Technical Reports Server (NTRS)

    Wall, C. 3rd; Petropoulos, A. E.

    1993-01-01

    The vertical eye movements in humans produced in response to head-over-heels constant velocity pitch rotation about a horizontal axis resemble those from other species. At 60 degrees/s these are persistent and tend to have non-reversing slow components that are compensatory to the direction of rotation. In most, but not all subjects, the slow component velocity was well characterized by a rapid build-up followed by an exponential decay to a non-zero baseline. Super-imposed was a cyclic or modulation component whose frequency corresponded to the time for one revolution and whose maximum amplitude occurred during a specific head orientation. All response components (exponential decay, baseline and modulation) were larger during pitch backward compared to pitch forward runs. Decay time constants were shorter during the backward runs, thus, unlike left to right yaw axis rotation, pitch responses display significant asymmetries between paired forward and backward runs.

  11. Multispecies diffusion models: A study of uranyl species diffusion

    NASA Astrophysics Data System (ADS)

    Liu, Chongxuan; Shang, Jianying; Zachara, John M.

    2011-12-01

    Rigorous numerical description of multispecies diffusion requires coupling of species, charge, and aqueous and surface complexation reactions that collectively affect diffusive fluxes. The applicability of a fully coupled diffusion model is, however, often constrained by the availability of species self-diffusion coefficients, as well as by computational complication in imposing charge conservation. In this study, several diffusion models with variable complexity in charge and species coupling were formulated and compared to describe reactive multispecies diffusion in groundwater. Diffusion of uranyl [U(VI)] species was used as an example in demonstrating the effectiveness of the models in describing multispecies diffusion. Numerical simulations found that a diffusion model with a single, common diffusion coefficient for all species was sufficient to describe multispecies U(VI) diffusion under a steady state condition of major chemical composition, but not under transient chemical conditions. Simulations revealed that for multispecies U(VI) diffusion under transient chemical conditions, a fully coupled diffusion model could be well approximated by a component-based diffusion model when the diffusion coefficient for each chemical component was properly selected. The component-based diffusion model considers the difference in diffusion coefficients between chemical components, but not between the species within each chemical component. This treatment significantly enhanced computational efficiency at the expense of minor charge conservation. The charge balance in the component-based diffusion model can be enforced, if necessary, by adding a secondary migration term resulting from model simplification. The effect of ion activity coefficient gradients on multispecies diffusion is also discussed. The diffusion models were applied to describe U(VI) diffusive mass transfer in intragranular domains in two sediments collected from U.S. Department of Energy's Hanford 300A, where intragranular diffusion is a rate-limiting process controlling U(VI) adsorption and desorption. The grain-scale reactive diffusion model was able to describe U(VI) adsorption/desorption kinetics that had been previously described using a semiempirical, multirate model. Compared with the multirate model, the diffusion models have the advantage to provide spatiotemporal speciation evolution within the diffusion domains.

  12. High-Speed Video-Oculography for Measuring Three-Dimensional Rotation Vectors of Eye Movements in Mice

    PubMed Central

    Takeda, Noriaki; Uno, Atsuhiko; Inohara, Hidenori; Shimada, Shoichi

    2016-01-01

    Background The mouse is the most commonly used animal model in biomedical research because of recent advances in molecular genetic techniques. Studies related to eye movement in mice are common in fields such as ophthalmology relating to vision, neuro-otology relating to the vestibulo-ocular reflex (VOR), neurology relating to the cerebellum’s role in movement, and psychology relating to attention. Recording eye movements in mice, however, is technically difficult. Methods We developed a new algorithm for analyzing the three-dimensional (3D) rotation vector of eye movement in mice using high-speed video-oculography (VOG). The algorithm made it possible to analyze the gain and phase of VOR using the eye’s angular velocity around the axis of eye rotation. Results When mice were rotated at 0.5 Hz and 2.5 Hz around the earth’s vertical axis with their heads in a 30° nose-down position, the vertical components of their left eye movements were in phase with the horizontal components. The VOR gain was 0.42 at 0.5 Hz and 0.74 at 2.5 Hz, and the phase lead of the eye movement against the turntable was 16.1° at 0.5 Hz and 4.88° at 2.5 Hz. Conclusions To the best of our knowledge, this is the first report of this algorithm being used to calculate a 3D rotation vector of eye movement in mice using high-speed VOG. We developed a technique for analyzing the 3D rotation vector of eye movements in mice with a high-speed infrared CCD camera. We concluded that the technique is suitable for analyzing eye movements in mice. We also include a C++ source code that can calculate the 3D rotation vectors of the eye position from two-dimensional coordinates of the pupil and the iris freckle in the image to this article. PMID:27023859

  13. Effect of Position- and Velocity-Dependent Forces on Reaching Movements at Different Speeds

    PubMed Central

    Summa, Susanna; Casadio, Maura; Sanguineti, Vittorio

    2016-01-01

    The speed of voluntary movements is determined by the conflicting needs of maximizing accuracy and minimizing mechanical effort. Dynamic perturbations, e.g., force fields, may be used to manipulate movements in order to investigate these mechanisms. Here, we focus on how the presence of position- and velocity-dependent force fields affects the relation between speed and accuracy during hand reaching movements. Participants were instructed to perform reaching movements under visual control in two directions, corresponding to either low or high arm inertia. The subjects were required to maintain four different movement durations (very slow, slow, fast, very fast). The experimental protocol included three phases: (i) familiarization—the robot generated no force; (ii) force field—the robot generated a force; and (iii) after-effect—again, no force. Participants were randomly assigned to four groups, depending on the type of force that was applied during the “force field” phase. The robot was programmed to generate position-dependent forces—with positive (K+) or negative stiffness (K−)—or velocity-dependent forces, with either positive (B+) or negative viscosity (B−). We focused on path curvature, smoothness, and endpoint error; in the latter we distinguished between bias and variability components. Movements in the high-inertia direction are smoother and less curved; smoothness also increases with movement speed. Endpoint bias and variability are greater in, respectively, the high and low inertia directions. A robust dependence on movement speed was only observed in the longitudinal components of both bias and variability. The strongest and more consistent effects of perturbation were observed with negative viscosity (B−), which resulted in increased variability during force field adaptation and in a reduction of the endpoint bias, which was retained in the subsequent after-effect phase. These findings confirm that training with negative viscosity produces lasting effects in movement accuracy at all speeds. PMID:27965559

  14. C-terminal modulatory domain controls coupling of voltage-sensing to pore opening in Cav1.3 L-type Ca(2+) channels.

    PubMed

    Lieb, Andreas; Ortner, Nadine; Striessnig, Jörg

    2014-04-01

    Activity of voltage-gated Cav1.3 L-type Ca(2+) channels is required for proper hearing as well as sinoatrial node and brain function. This critically depends on their negative activation voltage range, which is further fine-tuned by alternative splicing. Shorter variants miss a C-terminal regulatory domain (CTM), which allows them to activate at even more negative potentials than C-terminally long-splice variants. It is at present unclear whether this is due to an increased voltage sensitivity of the Cav1.3 voltage-sensing domain, or an enhanced coupling of voltage-sensor conformational changes to the subsequent opening of the activation gate. We studied the voltage-dependence of voltage-sensor charge movement (QON-V) and of current activation (ICa-V) of the long (Cav1.3L) and a short Cav1.3 splice variant (Cav1.342A) expressed in tsA-201 cells using whole cell patch-clamp. Charge movement (QON) of Cav1.3L displayed a much steeper voltage-dependence and a more negative half-maximal activation voltage than Cav1.2 and Cav3.1. However, a significantly higher fraction of the total charge had to move for activation of Cav1.3 half-maximal conductance (Cav1.3: 68%; Cav1.2: 52%; Cav3.1: 22%). This indicated a weaker coupling of Cav1.3 voltage-sensor charge movement to pore opening. However, the coupling efficiency was strengthened in the absence of the CTM in Cav1.342A, thereby shifting ICa-V by 7.2 mV to potentials that were more negative without changing QON-V. We independently show that the presence of intracellular organic cations (such as n-methyl-D-glucamine) induces a pronounced negative shift of QON-V and a more negative activation of ICa-V of all three channels. These findings illustrate that the voltage sensors of Cav1.3 channels respond more sensitively to depolarization than those of Cav1.2 or Cav3.1. Weak coupling of voltage sensing to pore opening is enhanced in the absence of the CTM, allowing short Cav1.342A splice variants to activate at lower voltages without affecting QON-V. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Magnetic influence on the unidentified luminous phenomena in Hessdalen, Norway

    NASA Astrophysics Data System (ADS)

    Gitle Hauge, Bjørn; Kjøniksen, Anna-Lena; Petter Strand, Erling; Zlotnicki, Jaques; Vargemezis, George

    2016-04-01

    Unidentified luminous phenomena have been observed in the low atmosphere over the Hessdalen valley for decades. First scientific investigation was done by E.Strand in 1984, where spiral movements of lights was recorded. The Science Camp program has conducted yearly field investigations since 2002 and has confirmed the existence of this spiral-behavior. (http://sciencecamp.no) Such behavior has also been documented in Alabama, USA. In September 2015 spiral like movement of lights was observed together with the more common spherical lights. This spiral movement indicates the presence of low atmospheric charged matter, moving in a magnetic field. A geological survey in 2014 reviled the presence of strong magnetic anomalies. The valley contains several abandoned copper mines containing Chalcopyrite and Magnetite. The Magnetite was not useful in the copper production, and left in heaps around the valley unused. This may contribute to the magnetic anomalies in the valley.

  16. The OpenCourseWare Story: New England Roots, Global Reach

    ERIC Educational Resources Information Center

    Carson, Stephen

    2008-01-01

    The OpenCourseWare movement has its roots in New England. The concept emerged in 2000 at Massachusetts Institute of Technology (MIT) where then-President Charles Vest charged a faculty committee with answering two questions: "How is the Internet going to change education?" and "What should MIT do about it?" MIT moved quickly to…

  17. The Fine-Beam Cathode-Ray Tube and the Observant and Enquiring Student, Part 5.

    ERIC Educational Resources Information Center

    Webb, John le P.

    1984-01-01

    Discusses the physics of electromagnetic focussing using an imaginary dialogue between teacher and student. It is assumed that students have been introduced to the underlying theory concerning movement of a charged particle traveling with uniform speed in a magnetic field before seeing a demonstration with the fine-beam cathode-ray tube. (JN)

  18. System and method for cooling a combustion gas charge

    DOEpatents

    Massey, Mary Cecelia; Boberg, Thomas Earl

    2010-05-25

    The present invention relates to a system and method for cooling a combustion gas charge prior. The combustion gas charge may include compressed intake air, exhaust gas, or a mixture thereof. An evaporator is provided that may then receive a relatively high temperature combustion gas charge and discharge at a relatively lower temperature. The evaporator may be configured to operate with refrigeration cycle components and/or to receive a fluid below atmospheric pressure as the phase-change cooling medium.

  19. Electrification of particulate entrained fluid flows-Mechanisms, applications, and numerical methodology

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Gu, Zhaolin

    2015-10-01

    Particulates in natural and industrial flows have two basic forms: liquid (droplet) and solid (particle). Droplets would be charged in the presence of the applied electric field (e.g. electrospray). Similar to the droplet charging, particles can also be charged under the external electric field (e.g. electrostatic precipitator), while in the absence of external electric field, tribo-electrostatic charging is almost unavoidable in gas-solid two-phase flows due to the consecutive particle contacts (e.g. electrostatic in fluidized bed or wind-blown sand). The particle charging may be beneficial, or detrimental. Although electrostatics in particulate entrained fluid flow systems have been so widely used and concerned, the mechanisms of particulate charging are still lack of a thorough understanding. The motivation of this review is to explore a clear understanding of particulate charging and movement of charged particulate in two-phase flows, by summarizing the electrification mechanisms, physical models of particulate charging, and methods of charging/charged particulate entrained fluid flow simulations. Two effective methods can make droplets charged in industrial applications: corona charging and induction charging. The droplet charge to mass ratio by corona charging is more than induction discharge. The particle charging through collisions could be attributed to electron transfer, ion transfer, material transfer, and/or aqueous ion shift on particle surfaces. The charges on charged particulate surface can be measured, nevertheless, the charging process in nature or industry is difficult to monitor. The simulation method might build a bridge of investigating from the charging process to finally charged state on particulate surface in particulate entrained fluid flows. The methodology combining the interface tracking under the action of the applied electric with the fluid flow governing equations is applicable to the study of electrohydrodynamics problems. The charge distribution and mechanical behaviors of liquid surface can be predicted by using this method. The methodology combining particle charging model with Computational Fluid Dynamics (CFD) and Discrete element method (DEM) is applicable to study the particle charging/charged processes in gas-solid two phase flows, the influence factors of particle charging, such as gas-particle interaction, contact force, contact area, and various velocities, are described systematically. This review would explore a clear understanding of the particulate charging and provide theoretical references to control and utilize the charging/charged particulate entrained fluid system.

  20. Neuromodulation and Synaptic Plasticity for the Control of Fast Periodic Movement: Energy Efficiency in Coupled Compliant Joints via PCA.

    PubMed

    Stratmann, Philipp; Lakatos, Dominic; Albu-Schäffer, Alin

    2016-01-01

    There are multiple indications that the nervous system of animals tunes muscle output to exploit natural dynamics of the elastic locomotor system and the environment. This is an advantageous strategy especially in fast periodic movements, since the elastic elements store energy and increase energy efficiency and movement speed. Experimental evidence suggests that coordination among joints involves proprioceptive input and neuromodulatory influence originating in the brain stem. However, the neural strategies underlying the coordination of fast periodic movements remain poorly understood. Based on robotics control theory, we suggest that the nervous system implements a mechanism to accomplish coordination between joints by a linear coordinate transformation from the multi-dimensional space representing proprioceptive input at the joint level into a one-dimensional controller space. In this one-dimensional subspace, the movements of a whole limb can be driven by a single oscillating unit as simple as a reflex interneuron. The output of the oscillating unit is transformed back to joint space via the same transformation. The transformation weights correspond to the dominant principal component of the movement. In this study, we propose a biologically plausible neural network to exemplify that the central nervous system (CNS) may encode our controller design. Using theoretical considerations and computer simulations, we demonstrate that spike-timing-dependent plasticity (STDP) for the input mapping and serotonergic neuromodulation for the output mapping can extract the dominant principal component of sensory signals. Our simulations show that our network can reliably control mechanical systems of different complexity and increase the energy efficiency of ongoing cyclic movements. The proposed network is simple and consistent with previous biologic experiments. Thus, our controller could serve as a candidate to describe the neural control of fast, energy-efficient, periodic movements involving multiple coupled joints.

  1. Neuromodulation and Synaptic Plasticity for the Control of Fast Periodic Movement: Energy Efficiency in Coupled Compliant Joints via PCA

    PubMed Central

    Stratmann, Philipp; Lakatos, Dominic; Albu-Schäffer, Alin

    2016-01-01

    There are multiple indications that the nervous system of animals tunes muscle output to exploit natural dynamics of the elastic locomotor system and the environment. This is an advantageous strategy especially in fast periodic movements, since the elastic elements store energy and increase energy efficiency and movement speed. Experimental evidence suggests that coordination among joints involves proprioceptive input and neuromodulatory influence originating in the brain stem. However, the neural strategies underlying the coordination of fast periodic movements remain poorly understood. Based on robotics control theory, we suggest that the nervous system implements a mechanism to accomplish coordination between joints by a linear coordinate transformation from the multi-dimensional space representing proprioceptive input at the joint level into a one-dimensional controller space. In this one-dimensional subspace, the movements of a whole limb can be driven by a single oscillating unit as simple as a reflex interneuron. The output of the oscillating unit is transformed back to joint space via the same transformation. The transformation weights correspond to the dominant principal component of the movement. In this study, we propose a biologically plausible neural network to exemplify that the central nervous system (CNS) may encode our controller design. Using theoretical considerations and computer simulations, we demonstrate that spike-timing-dependent plasticity (STDP) for the input mapping and serotonergic neuromodulation for the output mapping can extract the dominant principal component of sensory signals. Our simulations show that our network can reliably control mechanical systems of different complexity and increase the energy efficiency of ongoing cyclic movements. The proposed network is simple and consistent with previous biologic experiments. Thus, our controller could serve as a candidate to describe the neural control of fast, energy-efficient, periodic movements involving multiple coupled joints. PMID:27014051

  2. Reversed Hall effect and plasma conductivity in the presence of charged impurities

    NASA Astrophysics Data System (ADS)

    Yaroshenko, V. V.; Lühr, H.

    2018-01-01

    The Hall conductivity of magnetized plasma can be strongly suppressed by the contribution of negatively charged particulates (referred further as "dust"). Once the charge density accumulated by the dust exceeds a certain threshold, the Hall component becomes negative, providing a reversal in the Hall current. Such an effect is unique for dust-loaded plasmas, and it can hardly be achieved in electronegative plasmas. Further growth of the dust density leads to an increase in both the absolute value of the Hall and Pedersen conductivities, while the field-aligned component is decreased. These modifications enhance the role of transverse electric currents and reduce the anisotropy of a magnetized plasma when loaded with charged impurities. The findings provide an important basis for studying the generation of electric currents and transport phenomena in magnetized plasma systems containing small charged particulates. They can be relevant for a wide range of applications from naturally occurring space plasmas in planetary magnetospheres and astrophysical objects to laboratory dusty plasmas (Magnetized Dusty Plasma Experiment) and to technological and fusion plasmas.

  3. A simulated lightning effects test facility for testing live and inert missiles and components

    NASA Technical Reports Server (NTRS)

    Craven, Jeffery D.; Knaur, James A.; Moore, Truman W., Jr.; Shumpert, Thomas H.

    1991-01-01

    Details of a simulated lightning effects test facility for testing live and inert missiles, motors, and explosive components are described. The test facility is designed to simulate the high current, continuing current, and high rate-of-rise current components of an idealized direct strike lightning waveform. The Lightning Test Facility was in operation since May, 1988, and consists of: 3 separate capacitor banks used to produce the lightning test components; a permanently fixed large steel safety cage for retaining the item under test (should it be ignited during testing); an earth covered bunker housing the control/equipment room; a charge/discharge building containing the charging/discharging switching; a remotely located blockhouse from which the test personnel control hazardous testing; and interconnecting cables.

  4. Fragmentation cross sections of O-16 between 0.9 and 200 GeV/nucleon

    NASA Technical Reports Server (NTRS)

    Hirzebruch, S. E.; Heinrich, W.; Tolstov, K. D.; Kovalenko, A. D.; Benton, E. V.

    1995-01-01

    Inclusive cross sections for high energy interactions at 0.9, 2.3, 3.6, and 13.5 GeV/nucleon of O-16 with C, CR-39 (C12H18O7), CH2, Al, Cu, Ag, and Pb targets were measured. The total charge-changing cross sections and partial charge-changing cross sections for the production of fragments with charge Z = 6 and Z = 7 are compared to previous experiments at 60 and 200 GeV/nucleon. The contributions of Coulomb dissociation to the total cross sections are calculated. Using factorization rules the partial electromagnetic cross sections are separated from the nuclear components. Energy dependence of both components are investigated and discussed.

  5. Effects of Handedness and Saccadic Bilateral Eye Movements on Components of Autobiographical Recollection

    ERIC Educational Resources Information Center

    Parker, Andrew; Dagnall, Neil

    2010-01-01

    The effects of handedness and saccadic bilateral eye movements on autobiographical recollection were investigated. Recall of autobiographical memories was cued by the use of neutral and emotional words. Autobiographical recollection was assessed by the autobiographical memory questionnaire. Experiment 1 found that mixed-handed (vs. right handed)…

  6. Stability and Patterning of Speech Movement Sequences in Children and Adults.

    ERIC Educational Resources Information Center

    Smith, Anne; Goffman, Lisa

    1998-01-01

    A study of 16 children (ages 4 and 7 years) and 8 young adults used an "Optotrak" system to study patterning and stability of speech movements in developing speech motor systems. Results indicate that nonlinear and nonuniform changes occur in components of the speech motor system during development. (Author/CR)

  7. Vergence Deficits in Patients with Cerebellar Lesions

    ERIC Educational Resources Information Center

    Sander, T.; Sprenger, A.; Neumann, G.; Machner, B.; Gottschalk, S.; Rambold, H.; Helmchen, C.

    2009-01-01

    The cerebellum is part of the cortico-ponto-cerebellar circuit for conjugate eye movements. Recent animal data suggest an additional role of the cerebellum for the control of binocular alignment and disconjugate, i.e. vergence eye movements. The latter is separated into two different components: fast vergence (to step targets) and slow vergence…

  8. Analyzing Masculinist Movements: Responding to Antifeminism through Critical Communication Pedagogy

    ERIC Educational Resources Information Center

    Kahl, David H.

    2015-01-01

    Students of gender communication often explore feminist ideologies and the marginalization of women. Thus, one common component of gender communication courses is the examination of women's (feminist) movements and how they counter hegemony that women have historically faced. Namely, these groups speak out against hegemony and work toward…

  9. Single event mass spectrometry

    DOEpatents

    Conzemius, Robert J.

    1990-01-16

    A means and method for single event time of flight mass spectrometry for analysis of specimen materials. The method of the invention includes pulsing an ion source imposing at least one pulsed ion onto the specimen to produce a corresponding emission of at least one electrically charged particle. The emitted particle is then dissociated into a charged ion component and an uncharged neutral component. The ion and neutral components are then detected. The time of flight of the components are recorded and can be used to analyze the predecessor of the components, and therefore the specimen material. When more than one ion particle is emitted from the specimen per single ion impact, the single event time of flight mass spectrometer described here furnis This invention was made with Government support under Contract No. W-7405-ENG82 awarded by the Department of Energy. The Government has certain rights in the invention.

  10. Ignitor with stable low-energy thermite igniting system

    DOEpatents

    Kelly, Michael D.; Munger, Alan C.

    1991-02-05

    A stable compact low-energy igniting system in an ignitor utilizes two components, an initiating charge and an output charge. The initiating charge is a thermite in ultra-fine powder form compacted to 50-70% of theoretical maximum density and disposed in a cavity of a header of the ignitor adjacent to an electrical ignition device, or bridgewire, mounted in the header cavity. The initiating charge is ignitable by operation of the ignition device in a hot-wire mode. The output charge is a thermite in high-density consoladated form compacted to 90-99% of theoretical maximum density and disposed adjacent to the initiating charge on an opposite end thereof from the electrical ignition device and ignitable by the initiating charge. A sleeve is provided for mounting the output charge to the ignitor header with the initiating charge confined therebetween in the cavity.

  11. Metamaterials for Miniaturization of Optical Components

    DTIC Science & Technology

    2014-09-24

    elementary EM fields are exactly the Maxwell equations with proper conserved currents; (iii) a free charge moves uniformly preserving up to the...Disordered Systems -- A Conference in Honor of Leonid Pastur , Hagen, Germany, Some Mathematical Problems in a Neoclassical Theory of Electric Charges

  12. The Development Of New Space Charge Compensation Methods For Multi-Components Ion Beam Extracted From ECR Ion Source at IMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, L.; Zhao, H.W.; Cao, Y.

    2005-03-15

    Two new space charge compensation methods developed in IMP are discussed in this paper. There are negative high voltage electrode method (NHVEM) and electronegative charge gas method (EGM). Some valuable experimental data have been achieved, especially using electronegative gas method in O6+ and O7+ dramatic and stable increasing of ion current was observed.

  13. Functional anatomy of the temporo-mandibular joint (II).

    PubMed

    Sava, Anca; Scutariu, Monica

    2012-01-01

    Jaw movement is analyzed as an action between two rigid components jointed together in a particular way, the movable mandible against the stabilized cranium. Opening and closing movements are symmetrical; that is, both sides of the cranio-mandibular articulation are making the same movements. Protrusive and retrusive movements may also be symmetrical. The mandibular muscles determine all the complicated postures and-movements of the jaw. Their behavior can be greatly clarified by restating certain fundamentals crucial to purposive muscular activity. The joint derives its arterial supply from the superficial temporal artery and the maxillary artery. Branches of the auriculo-temporal and masseteric nerves and postganglionic sympathetic nerves supply the tissues associated with the capsular ligament and the looser posterior bilaminar extension of the disc.

  14. KCNE1 divides the voltage sensor movement in KCNQ1/KCNE1 channels into two steps

    NASA Astrophysics Data System (ADS)

    Barro-Soria, Rene; Rebolledo, Santiago; Liin, Sara I.; Perez, Marta E.; Sampson, Kevin J.; Kass, Robert S.; Larsson, H. Peter

    2014-04-01

    The functional properties of KCNQ1 channels are highly dependent on associated KCNE-β subunits. Mutations in KCNQ1 or KCNE subunits can cause congenital channelopathies, such as deafness, cardiac arrhythmias and epilepsy. The mechanism by which KCNE1-β subunits slow the kinetics of KCNQ1 channels is a matter of current controversy. Here we show that KCNQ1/KCNE1 channel activation occurs in two steps: first, mutually independent voltage sensor movements in the four KCNQ1 subunits generate the main gating charge movement and underlie the initial delay in the activation time course of KCNQ1/KCNE1 currents. Second, a slower and concerted conformational change of all four voltage sensors and the gate, which opens the KCNQ1/KCNE1 channel. Our data show that KCNE1 divides the voltage sensor movement into two steps with widely different voltage dependences and kinetics. The two voltage sensor steps in KCNQ1/KCNE1 channels can be pharmacologically isolated and further separated by a disease-causing mutation.

  15. Charging system and method for multicell storage batteries

    DOEpatents

    Cox, Jay A.

    1978-01-01

    A battery-charging system includes a first charging circuit connected in series with a plurality of battery cells for controlled current charging. A second charging circuit applies a controlled voltage across each individual cell for equalization of the cells to the fully charged condition. This controlled voltage is determined at a level above the fully charged open-circuit voltage but at a sufficiently low level to prevent corrosion of cell components by electrochemical reaction. In this second circuit for cell equalization, a transformer primary receives closely regulated, square-wave voltage which is coupled to a plurality of equal secondary coil windings. Each secondary winding is connected in parallel to each cell of a series-connected pair of cells through half-wave rectifiers and a shared, intermediate conductor.

  16. Control and prediction components of movement planning in stuttering vs. nonstuttering adults

    PubMed Central

    Daliri, Ayoub; Prokopenko, Roman A.; Flanagan, J. Randall; Max, Ludo

    2014-01-01

    Purpose Stuttering individuals show speech and nonspeech sensorimotor deficiencies. To perform accurate movements, the sensorimotor system needs to generate appropriate control signals and correctly predict their sensory consequences. Using a reaching task, we examined the integrity of these control and prediction components, separately, for movements unrelated to the speech motor system. Method Nine stuttering and nine nonstuttering adults made fast reaching movements to visual targets while sliding an object under the index finger. To quantify control, we determined initial direction error and end-point error. To quantify prediction, we calculated the correlation between vertical and horizontal forces applied to the object—an index of how well vertical force (preventing slip) anticipated direction-dependent variations in horizontal force (moving the object). Results Directional and end-point error were significantly larger for the stuttering group. Both groups performed similarly in scaling vertical force with horizontal force. Conclusions The stuttering group's reduced reaching accuracy suggests limitations in generating control signals for voluntary movements, even for non-orofacial effectors. Typical scaling of vertical force with horizontal force suggests an intact ability to predict the consequences of planned control signals. Stuttering may be associated with generalized deficiencies in planning control signals rather than predicting the consequences of those signals. PMID:25203459

  17. Analyzing non-respiratory movements of the chest: methods and devices

    NASA Astrophysics Data System (ADS)

    Pariaszewska, Katarzyna; Młyńczak, Marcel; Cybulski, Gerard

    2015-09-01

    Respiration is the main reason of the chest movements. However, there are also non-respiratory ones, resulting from e.g. snoring, wheezing, stridor, throat clearing or coughing. They may exist sporadically, however should be examined in case when their incidences increase. Detecting non-respiratory movements is very important, because many of them are symptoms of respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD) or lung cancer. Assessment of the presence of non-respiratory movements could be important element of effective diagnosis. It is also necessary to provide quantitative and objective results for intra-subject studies. Most of these events generate vibroacoustic signals that contain components of sound and vibrations. This work provides the review of the solutions and devices for monitoring of the non-respiratory movements, primarily considering the accuracy of the chest movements' detection and distinguishing.

  18. Restricted transfer of learning between unimanual and bimanual finger sequences.

    PubMed

    Yokoi, Atsushi; Bai, Wenjun; Diedrichsen, Jörn

    2017-03-01

    When training bimanual skills, such as playing piano, people sometimes practice each hand separately and at a later stage combine the movements of the two hands. This poses the critical question of whether motor skills can be acquired by separately practicing each subcomponent or should be trained as a whole. In the present study, we addressed this question by training human subjects for 4 days in a unimanual or bimanual version of the discrete sequence production task. Both groups were then tested on trained and untrained sequences on both unimanual and bimanual versions of the task. Surprisingly, we found no evidence of transfer from trained unimanual to bimanual or from trained bimanual to unimanual sequences. In half the participants, we also investigated whether cuing the sequences on the left and right hand with unique letters would change transfer. With these cues, untrained sequences that shared some components with the trained sequences were performed more quickly than sequences that did not. However, the amount of this transfer was limited to ∼10% of the overall sequence-specific learning gains. These results suggest that unimanual and bimanual sequences are learned in separate representations. Making participants aware of the interrelationship between sequences can induce some transferrable component, although the main component of the skill remains unique to unimanual or bimanual execution. NEW & NOTEWORTHY Studies in reaching movement demonstrated that approximately half of motor learning can transfer across unimanual and bimanual contexts, suggesting that neural representations for unimanual and bimanual movements are fairly overlapping at the level of elementary movement. In this study, we show that little or no transfer occurred across unimanual and bimanual sequential finger movements. This result suggests that bimanual sequences are represented at a level of the motor hierarchy that integrates movements of both hands. Copyright © 2017 the American Physiological Society.

  19. [Kim Pil Soon, a great doctor].

    PubMed

    Park, H W

    1998-01-01

    Kim Pil Soon was born at Sorae Village of Hwang Hye Province, the birth place of the Protestantism in Korea. He was brought up under the strong influence of Christianity and received modern education at Pae Chae School according to the recommendation of Rev. Underwood. In 1899, Kim Pil Soon, who had been working at Je Joon Won as an assistant and interpreter of Dr. Sharrocks, was employed by Dr. Avison to help prepare medical textbooks and was asked to participate in the medical education. He acquired medical knowledge through his work of translating various medical texts, which enabled him to teach other medical students. He participated in the administration of the Hospital, taking charge of the provision of meals for in-patients as well as directing the construction of Severance Hospital buildings. His experience of treating soldiers wounded during the turmoil of the forced dismission of the Korean Army by the Japanese led him to reflect seriously on Korea's fate in peril. In addition, he became a member of Sinmin Society, a secret political association, to engage in the independence movement. In 1908, Kim Pil Soon graduated from Severance Hospital Medical School as one of the first seven graduates. On graduation, he was appointed as a professor and took the charge of school affairs in 1910. At first, he worked as an assistant physician of ward and surgery, then he took the responsibility of the outpatient clinic in 1911. But suddenly, in December 1911, he exiled to China to escape from the Japanese police who was in pursuit of him on account of his involvement in the so-called 105-Person Affair, a fabricated affair served as a pretext for the persecution of the independence movement. He continued the independence movement in the form of an ideal village movement and in the training of the Independence Army. In 1919, however, he was poisoned to death in a mysterious way. Kim Pil Soon dedicated himself to the independence movement that demanded personal sacrifice: giving up his prospective career as a doctor, professor, and hospital administrator. He no longer remained as an ordinary clinician who treats only diseased persons, but transformed himself to the Great Doctor, a time-old ideal type of doctor in the East Asian countries who treats and cures the diseased nation, by dedicating himself to the independence movement.

  20. Detecting intention to execute the next movement while performing current movement from EEG using global optimal constrained ICA.

    PubMed

    Eilbeigi, Elnaz; Setarehdan, Seyed Kamaledin

    2018-05-26

    Brain-computer interfaces (BCIs) are a promising tool in neurorehabilitation. The intention to perform a motor action can be detected from brain signals and used to control robotic devices. Most previous studies have focused on the starting of movements from a resting state, while in daily life activities, motions occur continuously and the neural activities correlated to the evolving movements are yet to be investigated. First we investigate the existence of neural correlates of intention to replace an object on the table during a holding phase. Next, we present a new method to extract the movement-related cortical potentials (MRCP) from a single-trial EEG. A novel method called Global optimal constrained ICA (GocICA) is proposed to overcome the limitations of cICA which is implemented based on Particle Swarm Optimization (PSO) and Charged System Search (CSS) techniques. GocICA is then utilized for decoding the intention to grasp and lift and intention to replace movements where the results were compared. It was found that GocICA significantly improves the intention detection performance. Best results in offline detection were obtained with CSS-cICA for both kinds of intentions. Furthermore, pseudo-online decoding showed that GocICA was able to predict both intentions before the onset of related movements with the highest probability. Decoding of the next movement intention during current movement is possible, which can be used to create more natural neuroprostheses. The results demonstrate that GocICA is a promising new algorithm for single-trial MRCP detection which can be used for detecting other types of ERPs such as P300. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Effect of bilateral eye movements on frontal interhemispheric gamma EEG coherence: implications for EMDR therapy.

    PubMed

    Propper, Ruth E; Pierce, Jenna; Geisler, Mark W; Christman, Stephen D; Bellorado, Nathan

    2007-09-01

    The use of bilateral eye movements (EMs) is an important component of Eye Movement Desensitization and Reprocessing (EMDR) therapy for posttraumatic stress disorder. The neural mechanisms underlying EMDR remain unclear. However, prior behavioral work looking at the effects of bilateral EMs on the retrieval of episodic memories suggests that the EMs enhance interhemispheric interaction. The present study examined the effects of the EMs used in EMDR on interhemispheric electroencephalogram coherence. Relative to noneye-movement controls, engaging in bilateral EMs led to decreased interhemispheric gamma electroencephalogram coherence. Implications for future work on EMDR and episodic memory are discussed.

  2. A geochemical transport model for redox-controlled movement of mineral fronts in groundwater flow systems: A case of nitrate removal by oxidation of pyrite

    USGS Publications Warehouse

    Engesgaard, Peter; Kipp, Kenneth L.

    1992-01-01

    A one-dimensional prototype geochemical transport model was developed in order to handle simultaneous precipitation-dissolution and oxidation-reduction reactions governed by chemical equilibria. Total aqueous component concentrations are the primary dependent variables, and a sequential iterative approach is used for the calculation. The model was verified by analytical and numerical comparisons and is able to simulate sharp mineral fronts. At a site in Denmark, denitrification has been observed by oxidation of pyrite. Simulation of nitrate movement at this site showed a redox front movement rate of 0.58 m yr−1, which agreed with calculations of others. It appears that the sequential iterative approach is the most practical for extension to multidimensional simulation and for handling large numbers of components and reactions. However, slow convergence may limit the size of redox systems that can be handled.

  3. Integrated Science: Florida Manatees and Everglades Hydrology

    USGS Publications Warehouse

    Langtimm, Catherine A.; Swain, Eric D.; Stith, Bradley M.; Reid, James P.; Slone, Daniel H.; Decker, Jeremy; Butler, Susan M.; Doyle, Terry; Snow, R.W.

    2009-01-01

    Predicting and monitoring restoration effects on Florida manatees, which are known to make extended movements, will be incomplete if modeling and monitoring are limited to the smaller areas defined by the various res-toration components. U.S. Geological Survey (USGS) efforts, thus far, have focused on (1) collecting manatee movement data throughout the Ten Thousand Islands (TTI) region, and (2) developing an individual-based model for manatees to illustrate manatee responses to changes in hydrology related to the Picayune Strand Restoration Project (PSRP). In 2006, new regional research was begun to extend an Everglades hydrology model into the TTI region; extend the manatee movement model into the southern estuaries of Everglades National Park (ENP); and integrate hydrology and manatee data, models, and monitoring across the TTI region and ENP. Currently (2008), three research tasks are underway to develop the necessary modeling components to assess restoration efforts across the Greater Everglades Ecosystem.

  4. Gating Charge Calculations by Computational Electrophysiology Simulations.

    PubMed

    Machtens, Jan-Philipp; Briones, Rodolfo; Alleva, Claudia; de Groot, Bert L; Fahlke, Christoph

    2017-04-11

    Electrical cell signaling requires adjustment of ion channel, receptor, or transporter function in response to changes in membrane potential. For the majority of such membrane proteins, the molecular details of voltage sensing remain insufficiently understood. Here, we present a molecular dynamics simulation-based method to determine the underlying charge movement across the membrane-the gating charge-by measuring electrical capacitor properties of membrane-embedded proteins. We illustrate the approach by calculating the charge transfer upon membrane insertion of the HIV gp41 fusion peptide, and validate the method on two prototypical voltage-dependent proteins, the Kv1.2 K + channel and the voltage sensor of the Ciona intestinalis voltage-sensitive phosphatase, against experimental data. We then use the gating charge analysis to study how the T1 domain modifies voltage sensing in Kv1.2 channels and to investigate the voltage dependence of the initial binding of two Na + ions in Na + -coupled glutamate transporters. Our simulation approach quantifies various mechanisms of voltage sensing, enables direct comparison with experiments, and supports mechanistic interpretation of voltage sensitivity by fractional amino acid contributions. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Particle orbits in model current sheet with a nonzero B(y) component

    NASA Technical Reports Server (NTRS)

    Zhu, Zhongwei; Parks, George

    1993-01-01

    The problem of charged particle motions in magnetotaillike model current sheets is revisited with the inclusion of a nonzero dawn-dusk magnetic field component. Three cases are examined considering both trapped and escaped orbits. The results show that a nonzero B(y) component disturbs the particle orbits by destroying orbit symmetry in the phase space about the z = 0 plane. It also changes the bounce frequency of particle orbits. The presence of B(y) thus modifies the Speiser orbits, particularly near the ejection phase. The process of ejected particle such as ejection direction, ejection velocity, and pitch angles are shown to depend on the sign of the charge.

  6. Augmenting Photoinduced Charge Transport in a Single-Component Gel System: Controlled In Situ Gel-Crystal Transformation at Room Temperature.

    PubMed

    Satapathy, Sitakanta; Prabakaran, Palani; Prasad, Edamana

    2018-04-20

    Smart single-component materials with versatile functions require pre-programming of a higher order molecular assembly. An electroactive supergelator (c=0.07 wt %) triphenylamine core-appended poly(aryl ether) dendron (TPAPAE) is described, where substantial dendritic effects improve the order and crystallinity by switching the local minima from self-assembled molecular wires to thermodynamically favorable global minima of ordered crystals, ripened within the fibers. Controlled in situ phase change at room temperature ultimately stabilized the mixed valence states in the single-component supramolecular assembly with photoluminescence and photoinduced charge transport amplified by two orders of magnitude. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The effect of the charge exchange source on the velocity and 'temperature' distributions and their anisotropies in the earth's exosphere

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.; Rohrbaugh, R. P.; Tinsley, B. A.

    1981-01-01

    The velocity distribution of atomic hydrogen in the earth's exosphere is calculated as a function of altitude and direction taking into account both the classic exobase source and the higher-altitude plasmaspheric charge exchange source. Calculations are performed on the basis of a Monte Carlo technique in which random ballistic trajectories of individual atoms are traced through a three-dimensional grid of audit zones, at which relative concentrations and momentum or energy fluxes are obtained. In the case of the classical exobase source alone, the slope of the velocity distribution is constant only for the upward radial velocity component and increases dramatically with altitude for the incoming radial and transverse velocity components, resulting in a temperature decrease. The charge exchange source, which produces the satellite hydrogen component and the hot ballistic and escape components of the exosphere, is found to enhance the wings of the velocity distributions, however this effect is not sufficient to overcome the temperature decreases at altitudes above one earth radius. The resulting global model of the hydrogen exosphere may be used as a realistic basis for radiative transfer calculations.

  8. Polarization-induced surface charges in hydroxyapatite ceramics

    NASA Astrophysics Data System (ADS)

    Horiuchi, N.; Nakaguki, S.; Wada, N.; Nozaki, K.; Nakamura, M.; Nagai, A.; Katayama, K.; Yamashita, K.

    2014-07-01

    Calcium hydroxyapatite (HAp; Ca10(PO4)6(OH)2) is a well-known biomaterial that is the main inorganic component of bones and teeth. Control over the surface charge on HAp would be a key advance in the development of the material for tissue engineering. We demonstrate here that surface charge can be induced by an electrical poling process using the Kelvin method. Positive and negative charges were induced on the HAp surface in response to the applied electric field in the poling process. The surface charging is attributed to dipole polarization that is homogeneously distributed in HAp. Additionally, the surface charging is considered to originate from the organization of OH- ions into a polar phase in the structure.

  9. Proficiency deficiency: mastery of fundamental movement skills and skill components in overweight and obese children.

    PubMed

    Cliff, Dylan P; Okely, Anthony D; Morgan, Philip J; Jones, Rachel A; Steele, Julie R; Baur, Louise A

    2012-05-01

    The purpose of this observational study was to compare the mastery of 12 fundamental movement skills (FMS) and skill components between a treatment-seeking sample of overweight/obese children and a reference sample from the United States. Mastery of six locomotor and six object-control skills (24 components in each subdomain) were video-assessed by one assessor using the test of gross motor development-2 (TGMD-2). The 153 overweight/obese children (mean ± s.d. age = 8.3 ± 1.1 years, BMI z-score = 2.78 ± 0.69, 58% girls, 77% obese) were categorized into age groups (for the underhand roll and strike: 7-8 years and 9-10 years; all other FMS: 6-7 years and 8-10 years) and mastery prevalence rates were compared with representative US data (N = 876) using χ(2) analysis. For all 12 skills in all age groups, the prevalence of mastery was lower among overweight/obese children compared with the reference sample (all P < 0.05). This was consistent for 18 locomotor and upto 21 object-control skill components (all P < 0.05). Differences were largest for the run, slide, hop, dribble, and kick. Specific movement patterns that could be targeted for improvement include positioning of the body and feet, the control or release of an object at an optimal position, and better use of the arms to maintain effective force production during the performance of FMS. Physical activity programs designed for overweight and obese children may need to address deficiencies in FMS proficiency to foster the movement capabilities required for participation in health-enhancing physical activity.

  10. Semireal Time Monitoring Of The Functional Movements Of The Mandible

    NASA Astrophysics Data System (ADS)

    Isaacson, Robert J.; Baumrind, Sheldon; Curry, Sean; Molthen, Robert A.

    1983-07-01

    Many branches of dental practice would benefit from the availability of a relatively accurate, precise, and efficient method for monitoring the movements of the human mandible during function. Mechanical analog systems have been utilized in the past but these are difficult to quantify, have limited accuracy due to frictional resistance of the components, and contain information only on the borders of the envelopes of possible movement of the landmarks measured (rather than on the functional paths of the landmarks which lie within their envelopes). Those electronic solutions which have been attempted thus far have been prohibitively expensive and time consuming for clinical use, have had lag times between data acquisition and display, or have involved such restrictions of freedom of motion as to render ambiguous the meaning of the data obtained. We report work aimed at developing a relatively non-restrictive semi-real time acoustical system for monitoring the functional movement of the mandible relative to the rest of the head. A set of three sparking devices is mounted to the mandibular component of a light, relatively non-constraining extra-oral harness and another set of three sparkers is attached to the harness' cranial or skull component. The sparkers are fired sequentially by a multiplexer and the sound associated with each firing is recorded by an array of three or more microphones. Computations based on the known speed of sound are used to evaluate the distances between the sparkers and the microphones. These data can then be transformed by computer to provide numeric or graphic information on the movement of selected mandibular landmarks with respect to the skull. Total elapsed time between the firing of the sparkers and the display of graphic information need not exceed 30-60 seconds using even a relatively modest modern computer.

  11. New methods for the assessment of accommodative convergence.

    PubMed

    Asakawa, Ken; Ishikawa, Hitoshi; Shoji, Nobuyuki

    2009-01-01

    The authors introduced a new objective method for measuring horizontal eye movements based on the first Purkinje image with the use of infrared charge-coupled device (CCD) cameras and compared stimulus accommodative convergence to accommodation (AC/A) ratios as determined by a standard gradient method. The study included 20 patients, 5 to 9 years old, who had intermittent exotropia (10 eyes) and accommodative esotropia (10 eyes). Measurement of horizontal eye movements in millimeters (mm), based on the first Purkinje image, was obtained with a TriIRIS C9000 instrument (Hamamatsu Photonics K.K., Hamamatsu, Japan). The stimulus AC/A ratio was determined with the far gradient method. The average values of horizontal eye movements (mm) and eye deviation (Delta) (a) before and (b) after an accommodative stimulus of 3.00 diopters (D) were calculated with the following formula: horizontal eye movements (mm/D) and stimulus AC/A ratio (Delta/D) = (b - a)/3. The average values of the horizontal eye movements and the stimulus AC/A ratio were 0.5 mm/D and 3.8 Delta/D, respectively. Correlation analysis showed a strong positive correlation between these two parameters (r = 0.92). Moreover, horizontal eye movements are directly proportional to the AC/A ratio measured with the gradient method. The methods used in this study allow objective recordings of accommodative convergence to be obtained in many clinical situations. Copyright 2009, SLACK Incorporated.

  12. Mapping of Residues Forming the Voltage Sensor of the Voltage-Dependent Anion-Selective Channel

    NASA Astrophysics Data System (ADS)

    Thomas, Lorie; Blachly-Dyson, Elizabeth; Colombini, Marco; Forte, Michael

    1993-06-01

    Voltage-gated ion-channel proteins contain "voltage-sensing" domains that drive the conformational transitions between open and closed states in response to changes in transmembrane voltage. We have used site-directed mutagenesis to identify residues affecting the voltage sensitivity of a mitochondrial channel, the voltage-dependent anion-selective channel (VDAC). Although charge changes at many sites had no effect, at other sites substitutions that increased positive charge also increased the steepness of voltage dependance and substitutions that decreased positive charge decreased voltage dependance by an appropriate amount. In contrast to the plasma membrane K^+ and Na^+ channels, these residues are distributed over large parts of the VDAC protein. These results have been used to define the conformational transitions that accompany voltage gating of an ion channel. This gating mechanism requires the movement of large portions of the VDAC protein through the membrane.

  13. An electrostatic potassium channel opener targeting the final voltage sensor transition

    PubMed Central

    Börjesson, Sara I.

    2011-01-01

    Free polyunsaturated fatty acids (PUFAs) modulate the voltage dependence of voltage-gated ion channels. As an important consequence thereof, PUFAs can suppress epileptic seizures and cardiac arrhythmia. However, molecular details for the interaction between PUFA and ion channels are not well understood. In this study, we have localized the site of action for PUFAs on the voltage-gated Shaker K channel by introducing positive charges on the channel surface, which potentiated the PUFA effect. Furthermore, we found that PUFA mainly affects the final voltage sensor movement, which is closely linked to channel opening, and that specific charges at the extracellular end of the voltage sensor are critical for the PUFA effect. Because different voltage-gated K channels have different charge profiles, this implies channel-specific PUFA effects. The identified site and the pharmacological mechanism will potentially be very useful in future drug design of small-molecule compounds specifically targeting neuronal and cardiac excitability. PMID:21624947

  14. Charge dependence of the plasma travel length in atmospheric-pressure plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yambe, Kiyoyuki; Konda, Kohmei; Masuda, Seiya

    Plasma plume is generated using a quartz tube, helium gas, and foil electrode by applying AC high voltage under the atmosphere. The plasma plume is released into the atmosphere from inside of the quartz tube and is seen as the continuous movement of the plasma bullet. The travel length of plasma bullet is defined from plasma energy and force due to electric field. The drift velocity of plasma bullet has the upper limit under atmospheric-pressure because the drift velocity is determined from the balance between electric field and resistive force due to collisions between plasma and air. The plasma plumemore » charge depends on the drift velocity. Consequently, in the laminar flow of helium gas flow state, the travel length of the plasma plume logarithmically depends on the plasma plume charge which changes with both the electric field and the resistive force.« less

  15. Human whole-body reaching in normal gravity and microgravity reveals a strong temporal coordination between postural and focal task components.

    PubMed

    Patron, Jerome; Stapley, Paul; Pozzo, Thierry

    2005-08-01

    Previous experiments by our group in normal gravity (1 G) have revealed spatial relationships between postural and focal components of whole-body reaching and pointing movements. We suggested that these relationships could be explained partly through the use of gravity to displace the CoM and attain the object or target position. In this study we compared human whole-body reaching in 1 G and microgravity (0 G) in order to more fully investigate how gravity contributes to strategies adopted for task execution and to determine possible invariant temporal relationships between multiple segments. Whole-body reaching movements made from the standing position in two experimental conditions of execution speed (naturally paced and as fast as possible) were recorded during periods of 1 G and 0 G in parabolic flight. Overall, at each speed of reaching, movement times were significantly slower when performed in 0 G than in 1 G for two of the three subjects, but all subjects were able to produce significantly faster movements in 0 G than in 1 G. Despite similar general trends across subjects observed in 1 G, angular displacements of reaching movements performed in 0 G differed greatly between subjects. There were changes at all joints, but above all at the shoulder and the ankle. However, despite a high intersubject and intratrial variability in 0 G, in both gravity conditions all subjects demonstrated times to peak curvilinear velocity for the finger (end effector) and the whole-body centre of mass (CoM) that coincided, regardless of the speed of execution. Moreover, cross-correlations between multiple segment curvilinear velocities and those of the CoM revealed tight, highly correlated temporal relationships between segments proximal to the CoM (which was expected). However, for more distal segments, the correlations were weaker, and the movements lagged behind movements of the CoM. The major and most interesting finding of this study was that although the finger was the most distal within the segment chain, with respect to the CoM, it was highly correlated with the CoM (0.99--0.98, all conditions) and with no time lag. Despite the large intersubject and inter-environmental variability recorded in this study, temporal relationships between postural task components (CoM displacements) and those of the focal movement (end-effector trajectory) were consistently conserved.

  16. Temporal guidance of musicians' performance movement is an acquired skill.

    PubMed

    Rodger, M W M; O'Modhrain, S; Craig, C M

    2013-04-01

    The ancillary (non-sounding) body movements made by expert musicians during performance have been shown to indicate expressive, emotional, and structural features of the music to observers, even if the sound of the performance is absent. If such ancillary body movements are a component of skilled musical performance, then it should follow that acquiring the temporal control of such movements is a feature of musical skill acquisition. This proposition is tested using measures derived from a theory of temporal guidance of movement, "General Tau Theory" (Lee in Ecol Psychol 10:221-250, 1998; Lee et al. in Exp Brain Res 139:151-159, 2001), to compare movements made during performances of intermediate-level clarinetists before and after learning a new piece of music. Results indicate that the temporal control of ancillary body movements made by participants was stronger in performances after the music had been learned and was closer to the measures of temporal control found for an expert musician's movements. These findings provide evidence that the temporal control of musicians' ancillary body movements develops with musical learning. These results have implications for other skillful behaviors and nonverbal communication.

  17. Cation Exchange in the Presence of Oil in Porous Media

    PubMed Central

    2017-01-01

    Cation exchange is an interfacial process during which cations on a clay surface are replaced by other cations. This study investigates the effect of oil type and composition on cation exchange on rock surfaces, relevant for a variety of oil-recovery processes. We perform experiments in which brine with a different composition than that of the in situ brine is injected into cores with and without remaining oil saturation. The cation-exchange capacity (CEC) of the rocks was calculated using PHREEQC software (coupled to a multipurpose transport simulator) with the ionic composition of the effluent histories as input parameters. We observe that in the presence of crude oil, ion exchange is a kinetically controlled process and its rate depends on residence time of the oil in the pore, the temperature, and kinetic rate of adsorption of the polar groups on the rock surface. The cation-exchange process occurs in two stages during two phase flow in porous media. Initially, the charged sites of the internal surface of the clays establish a new equilibrium by exchanging cations with the aqueous phase. At later stages, the components of the aqueous and oleic phases compete for the charged sites on the external surface or edges of the clays. When there is sufficient time for crude oil to interact with the rock (i.e., when the core is aged with crude oil), a fraction of the charged sites are neutralized by the charged components stemming from crude oil. Moreover, the positively charged calcite and dolomite surfaces (at the prevailing pH environment of our experiments) are covered with the negatively charged components of the crude oil and therefore less mineral dissolution takes place when oil is present in porous media. PMID:28580442

  18. Discriminating Talent Identified Junior Australian Footballers Using a Fundamental Gross Athletic Movement Assessment.

    PubMed

    Woods, Carl T; Banyard, Harry G; McKeown, Ian; Fransen, Job; Robertson, Sam

    2016-09-01

    Talent identification (TID) is a pertinent component of the sports sciences, affording practitioners the opportunity to target developmental interventions to a select few; optimising financial investments. However, TID is multi-componential, requiring the recognition of immediate and prospective performance. The measurement of athletic movement skill may afford practitioners insight into the latter component given its augmented relationship with functional sport specific qualities. It is currently unknown whether athletic movement skill is a discriminant quality in junior Australian football (AF). This study aimed to discriminate talent identified junior AF players from their non-talent identified counterparts using a fundamental gross athletic movement assessment. From a total of 50 under 18 (U18) AF players; two groups were classified a priori based on selection level; talent identified (n = 25; state academy representatives) and non-talent identified (n = 25; state-based competition representatives). Players performed a fundamental gross athletic movement assessment based on the Athletic Ability Assessment (AAA), consisting of an overhead squat, double lunge (left and right legs), single leg Romanian deadlift (left and right legs), and a push up (six movement criterions). Movements were scored across three assessment points using a three-point scale (resulting in a possible score of nine for each movement). A multivariate analysis of variance revealed significant between group effects on four of the six movement criterions (d = 0.56 - 0.87; p = 0.01 - 0.02). Binary logistic regression models and a receiver operating characteristic curve inspection revealed that the overhead squat score provided the greatest group discrimination (β(SE) = -0.89(0.44); p < 0.05), with a score of 4.5 classifying 64% and 88% of the talent identified and non-talent identified groups, respectively. Results support the integration of this assessment into contemporary talent identification approaches in junior AF, as it may provide coaches with insight into a juniors developmental potential.

  19. Cross-slope Movement Patterns in Landslides

    NASA Astrophysics Data System (ADS)

    Petley, D.; Murphy, W.; Bulmer, M. H.; Keefer, D.

    2002-12-01

    There is growing evidence that there is a significant element of cross-slope movement in many large landslide systems. These movements may result in changing states of stress between landslide blocks that can establish complex displacement patterns. Such motions, which are not considered in traditional two-dimensional limit-equilibrium analyses, are important in the investigation of a variety of landslide types, such as those triggered by earthquakes. In addition, these movements may introduce considerable errors into the interpretation of strain patterns as derived from InSAR studies. Finally, even traditional interpretation techniques may lead to the amount of total displacement being underestimated. These observations suggest that a three dimensional form of analysis may be more appropriate for large landslide complexes. The significance of such cross-slope movements are being investigated using a detailed investigation of the Lishan landslide complex in Central Taiwan. This landslide system, which was reactivated in 1990 related to the construction of a hotel. The total recorded movements have been approximately 1.5 m over an area of sliding that is estimated to be 450 m wide and 200 m long. Extensive damage has been caused to roads and buildings within the town. Remediation work has resulted largely in the stabilization of the landslide complex. Detailed geomorphological mapping has revealed that the landslide complex is composed of two main components. The first, immediately upslope of the hotel construction site, is a relatively shallow earthflow. The second, which has formed a large headscarp upslope from the main road in the centre of the town, is a deeper translational slide. Both appear to have been reactivations of previous failures. While the displacement patterns of the earthflow indicate a relatively simple downslope movement, the vectors derived from kinematic analysis of surface features have indicated that the movement of the deeper-seated landslide was more complex. Though the dominant movement vector is downslope, there is evidence to suggest that there has been a cross-slope component of motion that corresponds to the bedding orientation.

  20. Exploration of computational methods for classification of movement intention during human voluntary movement from single trial EEG.

    PubMed

    Bai, Ou; Lin, Peter; Vorbach, Sherry; Li, Jiang; Furlani, Steve; Hallett, Mark

    2007-12-01

    To explore effective combinations of computational methods for the prediction of movement intention preceding the production of self-paced right and left hand movements from single trial scalp electroencephalogram (EEG). Twelve naïve subjects performed self-paced movements consisting of three key strokes with either hand. EEG was recorded from 128 channels. The exploration was performed offline on single trial EEG data. We proposed that a successful computational procedure for classification would consist of spatial filtering, temporal filtering, feature selection, and pattern classification. A systematic investigation was performed with combinations of spatial filtering using principal component analysis (PCA), independent component analysis (ICA), common spatial patterns analysis (CSP), and surface Laplacian derivation (SLD); temporal filtering using power spectral density estimation (PSD) and discrete wavelet transform (DWT); pattern classification using linear Mahalanobis distance classifier (LMD), quadratic Mahalanobis distance classifier (QMD), Bayesian classifier (BSC), multi-layer perceptron neural network (MLP), probabilistic neural network (PNN), and support vector machine (SVM). A robust multivariate feature selection strategy using a genetic algorithm was employed. The combinations of spatial filtering using ICA and SLD, temporal filtering using PSD and DWT, and classification methods using LMD, QMD, BSC and SVM provided higher performance than those of other combinations. Utilizing one of the better combinations of ICA, PSD and SVM, the discrimination accuracy was as high as 75%. Further feature analysis showed that beta band EEG activity of the channels over right sensorimotor cortex was most appropriate for discrimination of right and left hand movement intention. Effective combinations of computational methods provide possible classification of human movement intention from single trial EEG. Such a method could be the basis for a potential brain-computer interface based on human natural movement, which might reduce the requirement of long-term training. Effective combinations of computational methods can classify human movement intention from single trial EEG with reasonable accuracy.

  1. Evaluation by University Students of the Use of Applets for Learning Physics

    ERIC Educational Resources Information Center

    Bohigas, Xavier; Periago, Christina; Jaen, Xavier; Pejuan, Arcadi

    2011-01-01

    We present the results of a study carried out with students in their second year of Industrial Engineering to find out students' levels of satisfaction concerning the use of simulation tools (in this case an applet was used) as a tool for helping students learn the topic of movement by charged particles within electrical and magnetic fields. The…

  2. The Defense Committees of Sleepy Lagoon: A Convergent Struggle against Fascism, 1942-1944

    ERIC Educational Resources Information Center

    Barajas, Frank P.

    2006-01-01

    The Sleepy Lagoon Defense Committee originated as an ad hoc committee and evolved to a broad-based movement for legal justice on behalf of seventeen youth convicted of murder and assault charges in connection with the Sleepy Lagoon case in Los Angeles in January 1943. This essay chronicles the multidimensional organizing to shift public opinion in…

  3. Medical Tourism: The Trend toward Outsourcing Medical Procedures to Foreign Countries

    ERIC Educational Resources Information Center

    York, Diane

    2008-01-01

    The rising costs of medical treatment in the United States are fueling a movement to outsource medical treatment. Estimates of the number of Americans traveling overseas for treatment range from 50,000 to 500,000. Charges for common procedures such as heart bypass can be $11,000 in Thailand compared to $130,000 in the United States. Knee…

  4. Deployment of Shaped Charges by a Semi-Autonomous Ground Vehicle

    DTIC Science & Technology

    2007-06-01

    lives on a daily basis. BigFoot seeks to replace the local human component by deploying and remotely detonating shaped charges to destroy IEDs...robotic arm to deploy and remotely detonate shaped charges. BigFoot incorporates improved communication range over previous Autonomous Ground Vehicles...and an updated user interface that includes controls for the arm and camera by interfacing multiple microprocessors. BigFoot is capable of avoiding

  5. 32 CFR 37.830 - May I let a recipient charge pre-award costs to the agreement?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false May I let a recipient charge pre-award costs to... Administrative Matters Revision of Budget and Program Plans § 37.830 May I let a recipient charge pre-award costs... pre-award costs are incurred at the recipient's risk (i.e., no DoD Component is obligated to reimburse...

  6. 32 CFR 37.830 - May I let a recipient charge pre-award costs to the agreement?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false May I let a recipient charge pre-award costs to... Administrative Matters Revision of Budget and Program Plans § 37.830 May I let a recipient charge pre-award costs... pre-award costs are incurred at the recipient's risk (i.e., no DoD Component is obligated to reimburse...

  7. 32 CFR 37.830 - May I let a recipient charge pre-award costs to the agreement?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false May I let a recipient charge pre-award costs to... Administrative Matters Revision of Budget and Program Plans § 37.830 May I let a recipient charge pre-award costs... pre-award costs are incurred at the recipient's risk (i.e., no DoD Component is obligated to reimburse...

  8. 32 CFR 37.830 - May I let a recipient charge pre-award costs to the agreement?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false May I let a recipient charge pre-award costs to... Administrative Matters Revision of Budget and Program Plans § 37.830 May I let a recipient charge pre-award costs... pre-award costs are incurred at the recipient's risk (i.e., no DoD Component is obligated to reimburse...

  9. 32 CFR 37.830 - May I let a recipient charge pre-award costs to the agreement?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false May I let a recipient charge pre-award costs to... Administrative Matters Revision of Budget and Program Plans § 37.830 May I let a recipient charge pre-award costs... pre-award costs are incurred at the recipient's risk (i.e., no DoD Component is obligated to reimburse...

  10. Heat loss distribution: Impedance and thermal loss analyses in LiFePO4/graphite 18650 electrochemical cell

    NASA Astrophysics Data System (ADS)

    Balasundaram, Manikandan; Ramar, Vishwanathan; Yap, Christopher; Lu, Li; Tay, Andrew A. O.; Palani, Balaya

    2016-10-01

    We report here thermal behaviour and various components of heat loss of 18650-type LiFePO4/graphite cell at different testing conditions. In this regard, the total heat generated during charging and discharging processes at various current rates (C) has been quantified in an Accelerating Rate Calorimeter experiment. Irreversible heat generation, which depends on applied current and internal cell resistance, is measured under corresponding charge/discharge conditions using intermittent pulse techniques. On the other hand, reversible heat generation which depends on entropy changes of the electrode materials during the cell reaction is measured from the determination of entropic coefficient at various states of charge/discharge. The contributions of irreversible and reversible heat generation to the total heat generation at both high and low current rates are evaluated. At every state of charge/discharge, the nature of the cell reaction is found to be either exothermic or endothermic which is especially evident at low C rates. In addition, electrochemical impedance spectroscopy measurements are performed on above 18650 cells at various states of charge to determine the components of internal resistance. The findings from the impedance and thermal loss analysis are helpful for understanding the favourable states of charge/discharge for battery operation, and designing better thermal management systems.

  11. Forward-backward multiplicity correlations in pp, p+Pb and Pb+Pb collisions with the ATLAS detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Jiangyong

    2016-12-01

    Two-particle pseudorapidity correlations are measured in √s NN = 2.76 TeV Pb+Pb, √s NN = 5.02 TeV p +Pb and √s = 13 TeV pp collisions [ATLAS Collaboration, ATLAS-CONF-2015-051; ATLAS-CONF-2015-020]. Correlation function is measured using charged particles in the pseudorapidity range |η|<2.4 with transverse momentum p T>0.2 GeV, and it is measured as a function of event multiplicity, defined by number of charged particles with |η|<2.5 and p T>0.4 GeV. The correlation function is decomposed into a short-range component (SRC) and a long-range component (LRC). The SRC differs significantly between the opposite-charge pairs and same-charge pairs, and between the threemore » collision systems at similar multiplicity. The LRC is described approximately by 1 + n1n2 in all collision systems over the full multiplicity range. The values of are consistent between the opposite-charge and same-charge pairs, and are similar for the three collision systems at similar multiplicity. The values of and the magnitude of the SRC both follow a power-law dependence on the event multiplicity.« less

  12. Magnetic adatoms in two and four terminal graphene nanoribbons: A comparison between their spin polarized transport

    NASA Astrophysics Data System (ADS)

    Ganguly, Sudin; Basu, Saurabh

    2018-04-01

    We study the charge and spin transport in two and four terminal graphene nanoribbons (GNR) decorated with random distribution of magnetic adatoms. The inclusion of the magnetic adatoms generates only the z-component of the spin polarized conductance via an exchange bias in the absence of Rashba spin-orbit interaction (SOI), while in presence of Rashba SOI, one is able to create all the three (x, y and z) components. This has important consequences for possible spintronic applications. The charge conductance shows interesting behaviour near the zero of the Fermi energy. Where in presence of magnetic adatoms the familiar plateau at 2e2 / h vanishes, thereby transforming a quantum spin Hall insulating phase to an ordinary insulator. The local charge current and the local spin current provide an intuitive idea on the conductance features of the system. We found that, the local charge current is independent of Rashba SOI, while the three components of the local spin currents are sensitive to Rashba SOI. Moreover the fluctuations of the spin polarized conductance are found to be useful quantities as they show specific trends, that is, they enhance with increasing adatom densities. A two terminal GNR device seems to be better suited for possible spintronic applications.

  13. Propagation optical quarks after an uniaxial crystal: the experiment

    NASA Astrophysics Data System (ADS)

    Egorov, Yu. A.; Konovalenko, V. L.; Zinovev, A. O.; Anischenko, P. M.; Glumova, M. V.

    2013-12-01

    There is a lots of different papers reporting about the propagation of the different types of an optical beams in a uniaxial crystals are known by that time. This beams are: Lager-Gaussian and Bessel- Gaussian beams. It is common for all this types of beams, that if propagation axis and crystal axis coincides, and accident beam had a circular polarization, are can get type spiral type degenerated umbilici, which corresponds to the charge 2 optical vortex in the orthogonal polarized beam component, generated by crystal [1] (Fig 1). This generation accurse due to total angular momentum conservation law symmetry axis of the crystal. One to the changing of the spin momentum which is associated with the beam polarization, this leads to the orbital momentum changes that associated with topological charge of formed orthogonal circular component. Double charged optical vortex could be easily perturbed by tilting beam axis with respect to the crystal axis. If the tilt angles are small (<0.1°) central umbilici splits on two lemons and the surrounding ring umbilici splits on two pairs of monster-star. The further increasing of the tilt angle leads to the topological charge of circular components becomes, equal, and additional orbital moment correspond to the beam mass center displacement.

  14. Factor Structure, Stability, and Congruence in the Functional Movement Screen

    ERIC Educational Resources Information Center

    Kelleher, Leila K.; Beach, Tyson A. C.; Frost, David M.; Johnson, Andrew M.; Dickey, James P.

    2018-01-01

    The scoring scheme for the functional movement screen implicitly assumes that the factor structure is consistent, stable, and congruent across different populations. To determine if this is the case, we compared principal components analyses of three samples: a healthy, general population (n = 100), a group of varsity athletes (n = 101), and a…

  15. Target Selection by the Frontal Cortex during Coordinated Saccadic and Smooth Pursuit Eye Movements

    ERIC Educational Resources Information Center

    Srihasam, Krishna; Bullock, Daniel; Grossberg, Stephen

    2009-01-01

    Oculomotor tracking of moving objects is an important component of visually based cognition and planning. Such tracking is achieved by a combination of saccades and smooth-pursuit eye movements. In particular, the saccadic and smooth-pursuit systems interact to often choose the same target, and to maximize its visibility through time. How do…

  16. Physical Activity into Socialization: A Movement-Based Social Skills Program for Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Lee, Jihyun; Vargo, Kristina K.

    2017-01-01

    Children with autism spectrum disorder (ASD) often exhibit deficits in social-communicative behaviors. Given the increased prevalence of children with ASD, programs designed to teach social-communicative behaviors are necessary. This article introduces a movement-based program that embeds social-skill components to improve the motor skills and…

  17. Running Wheel for Earthworms

    PubMed Central

    Wilson, W. Jeffrey; Johnson, Brandon A.

    2016-01-01

    We describe the construction and use of a running wheel responsive to the movement of the earthworm. The wheel employs readily available, inexpensive components and is easily constructed. Movement of the wheel can be monitored visually or via standard behavioral laboratory computer interfaces. Examples of data are presented, and possibilities for use in the teaching classroom are discussed. PMID:27385934

  18. Understanding electrostatic charge behaviour in aircraft fuel systems

    NASA Astrophysics Data System (ADS)

    Ogilvy, Jill A.; Hooker, Phil; Bennett, Darrell

    2015-10-01

    This paper presents work on the simulation of electrostatic charge build-up and decay in aircraft fuel systems. A model (EC-Flow) has been developed by BAE Systems under contract to Airbus, to allow the user to assess the effects of changes in design or in refuel conditions. Some of the principles behind the model are outlined. The model allows for a range of system components, including metallic and non-metallic pipes, valves, filters, junctions, bends and orifices. A purpose-built experimental rig was built at the Health and Safety Laboratory in Buxton, UK, to provide comparison data. The rig comprises a fuel delivery system, a test section where different components may be introduced into the system, and a Faraday Pail for measuring generated charge. Diagnostics include wall currents, charge densities and pressure losses. This paper shows sample results from the fitting of model predictions to measurement data and shows how analysis may be used to explain some of the observed trends.

  19. Behaviour of one-step spray-coated carbon nanotube supercapacitor in ambient light harvester circuit with printed organic solar cell and electrochromic display

    PubMed Central

    Tuukkanen, Sampo; Välimäki, Marja; Lehtimäki, Suvi; Vuorinen, Tiina; Lupo, Donald

    2016-01-01

    A printed energy harvesting and storage circuit powered by ambient office lighting and its use to power a printed display is reported. The autonomous device is composed of three printed electronic components: an organic photovoltaic module, a carbon-nanotubes-only supercapacitor and an electrochromic display element. Components are fabricated from safe and environmentally friendly materials, and have been fabricated using solution processing methods, which translate into low-cost and high-throughput manufacturing. A supercapacitor made of spray-coated carbon nanotube based ink and aqueous NaCl electrolyte was charged using a printed organic photovoltaic module exposed to office lighting conditions. The supercapacitor charging rate, self-discharge rate and display operation were studied in detail. The supercapacitor self-discharge rate was found to depend on the charging rate. The fully charged supercapacitor was used as a power source to run the electrochromic display over 50 times. PMID:26957019

  20. A comprehensive model of ion diffusion and charge exchange in the cold Io torus

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.; Moreno, M. A.

    1988-01-01

    A comprehensive analytic model of radial diffusion in the cold Io torus is developed. The model involves a generalized molecular cloud theory of SO2 and its dissociation fragments SO, O2, S, and O, which are formed at a relatively large rate by solar UV photodissociation of SO2. The key component of the new theory is SO, which can react with S(+) through a near-resonant charge exchange process that is exothermic. This provides a mechanism for the rapid depletion of singly ionized sulfur in the cold torus and can account for the large decrease in the total flux tube content inward of Io's orbit. The model is used to demonstrate quantitatively the effects of radial diffusion in a charge exchange environment that acts as a combined source and sink for ions in various charge states. A detailed quantitative explanation for the O(2+) component of the cold torus is given, and insight is derived into the workings of the so-called plasma 'ribbon'.

  1. Charge-induced fluctuation forces in graphitic nanostructures

    DOE PAGES

    Drosdoff, D.; Bondarev, Igor V.; Widom, Allan; ...

    2016-01-21

    Charge fluctuations in nanocircuits with capacitor components are shown to give rise to a novel type of long-ranged interaction, which coexist with the regular Casimir–van derWaals force. The developed theory distinguishes between thermal and quantum mechanical effects, and it is applied to capacitors involving graphene nanostructures. The charge fluctuations mechanism is captured via the capacitance of the system with geometrical and quantum mechanical components. The dependence on the distance separation, temperature, size, and response properties of the system shows that this type of force can have a comparable and even dominant effect to the Casimir interaction. Lastly, our results stronglymore » indicate that fluctuation-induced interactions due to various thermodynamic quantities can have important thermal and quantum mechanical contributions at the microscale and the nanoscale.« less

  2. Initial test results from a prototype, 20 kW helium charged Stirling engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarke, M.A.; Taylor, D.R.

    An alpha-configuration, helium charged Stirling engine with a predicted output of 20 kW indicated power has been developed by a British consortium of universities and industrial companies. The work performed by the Royal Naval Engineering College has been in computer assisted design and component testing, with future plans for full engine trials during 1984/85. The scope of this paper is to outline the data obtained during motoring trials of the engine block and crankcase assembly, together with details of modifications incorporated in the various components.

  3. Pondermotive acceleration of charged particles along the relativistic jets of an accreting blackhole

    NASA Astrophysics Data System (ADS)

    Ebisuzaki, T.; Tajima, T.

    2014-05-01

    Accreting blackholes such as miniquasars and active galactic nuclei can contribute to the highest energy components of intra- (˜1015 eV) galactic and extra-galactic components (˜1020 eV) of cosmic rays. Alfven wave pulses which are excited in the accretion disk around blackholes propagate in relativistic jets. Because of their highly non-linear nature of the waves, charged particles (protons, ions, and electrons) can be accelerated to high energies in relativistic jets in accreting blackhole systems, the central engine of miniquasars and active galactic nuclei.

  4. Exciting baryon resonances in isobar charge-exchange reactions

    NASA Astrophysics Data System (ADS)

    Benlliure, J.; Rodriguez-Sanchez, J. L.; Vargas, J.; Alavarez-Pol, H.; Aumann, T.; Atkinson, J.; Ayyad, Y.; Beceiro, S.; Boretzky, K.; Chatillon, A.; Cortina, D.; Diaz, P.; Estrade, A.; Geissel, H.; Lenske, H.; Litvinov, Y.; Mostazo, M.; Paradela, C.; Pietri, S.; Prochazka, A.; Takechi, M.; Vidaña, I.; Weick, H.; Winfield, J.

    2017-11-01

    Isobaric charge-exchange reactions induced by different tin isotopes have been investigated at GSI. The high-resolving power of the FRS spectrometer made it possible to separate elastic and inelastic components in the missing-energy spectra of the ejectiles. The inelastic component was associated to the in-medium excitation of nucleon resonances such as the Delta and Roper resonances. These data are expected to contribute to better understand the in-medium properties of baryon resonances but also to investigate the abundance of protons and neutrons at the nuclear periphery.

  5. Photoinduced charge-transfer electronic excitation of tetracyanoethylene/tetramethylethylene complex in dichloromethane

    NASA Astrophysics Data System (ADS)

    Xu, Long-Kun; Bi, Ting-Jun; Ming, Mei-Jun; Wang, Jing-Bo; Li, Xiang-Yuan

    2017-07-01

    Based on the previous work on nonequilibrium solvation model by the authors, Intermolecular charge-transfer electronic excitation of tetracyanoethylene (TCE)/tetramethylethylene (TME) π -stacked complex in dichloromethane (DCM) has been investigated. For weak interaction correction, dispersion corrected functional DFT-D3 is adopted for geometry optimization. In order to identify the excitation metric, dipole moment components of each Cartesian direction, atomic charge, charge separation and Δr index are analyzed for TCE/TME complex. Calculation shows that the calculated excitation energy is dependent on the functional choice, when conjuncted with suitable time-dependent density functional, the modified nonequilibrium expression gives satisfied results for intermolecular charge-transfer electronic excitation.

  6. Automated nystagmus analysis. [on-line computer technique for eye data processing

    NASA Technical Reports Server (NTRS)

    Oman, C. M.; Allum, J. H. J.; Tole, J. R.; Young, L. R.

    1973-01-01

    Several methods have recently been used for on-line analysis of nystagmus: A digital computer program has been developed to accept sampled records of eye position, detect fast phase components, and output cumulative slow phase position, continuous slow phase velocity, instantaneous fast phase frequency, and other parameters. The slow phase velocity is obtained by differentiation of the calculated cumulative position rather than the original eye movement record. Also, a prototype analog device has been devised which calculates the velocity of the slow phase component during caloric testing. Examples of clinical and research eye movement records analyzed with these devices are shown.

  7. Role of ultrafast dissociation in the fragmentation of chlorinated methanes

    NASA Astrophysics Data System (ADS)

    Kokkonen, E.; Jänkälä, K.; Patanen, M.; Cao, W.; Hrast, M.; Bučar, K.; Žitnik, M.; Huttula, M.

    2018-05-01

    Photon-induced fragmentation of a full set of chlorinated methanes (CH3Cl, CH2Cl2, CHCl3, CCl4) has been investigated both experimentally and computationally. Using synchrotron radiation and electron-ion coincidence measurements, the dissociation processes were studied after chlorine 2p electron excitation. Experimental evidence for CH3Cl and CH2Cl2 contains unique features suggesting that fast dissociation processes take place. By contrast, CHCl3 and CCl4 molecules do not contain the same features, hinting that they experience alternative mechanisms for dissociation and charge migration. Computational work indicates differing rates of charge movement after the core-excitation, which can be used to explain the differences observed experimentally.

  8. Role of ultrafast dissociation in the fragmentation of chlorinated methanes.

    PubMed

    Kokkonen, E; Jänkälä, K; Patanen, M; Cao, W; Hrast, M; Bučar, K; Žitnik, M; Huttula, M

    2018-05-07

    Photon-induced fragmentation of a full set of chlorinated methanes (CH 3 Cl, CH 2 Cl 2 , CHCl 3 , CCl 4 ) has been investigated both experimentally and computationally. Using synchrotron radiation and electron-ion coincidence measurements, the dissociation processes were studied after chlorine 2p electron excitation. Experimental evidence for CH 3 Cl and CH 2 Cl 2 contains unique features suggesting that fast dissociation processes take place. By contrast, CHCl 3 and CCl 4 molecules do not contain the same features, hinting that they experience alternative mechanisms for dissociation and charge migration. Computational work indicates differing rates of charge movement after the core-excitation, which can be used to explain the differences observed experimentally.

  9. Effect of Range and Angular Velocity of Passive Movement on Somatosensory Evoked Magnetic Fields.

    PubMed

    Sugawara, Kazuhiro; Onishi, Hideaki; Yamashiro, Koya; Kojima, Sho; Miyaguchi, Shota; Kotan, Shinichi; Tsubaki, Atsuhiro; Kirimoto, Hikari; Tamaki, Hiroyuki; Shirozu, Hiroshi; Kameyama, Shigeki

    2016-09-01

    To clarify characteristics of each human somatosensory evoked field (SEF) component following passive movement (PM), PM1, PM2, and PM3, using high spatiotemporal resolution 306-channel magnetoencephalography and varying PM range and angular velocity. We recorded SEFs following PM under three conditions [normal range-normal velocity (NN), small range-normal velocity (SN), and small range-slow velocity (SS)] with changing movement range and angular velocity in 12 participants and calculated the amplitude, equivalent current dipole (ECD) location, and the ECD strength for each component. All components were observed in six participants, whereas only PM1 and PM3 in the other six. Clear response deflections at the ipsilateral hemisphere to PM side were observed in seven participants. PM1 amplitude was larger under NN and SN conditions, and mean ECD location for PM1 was at primary motor area. PM3 amplitude was larger under SN condition and mean ECD location for PM3 under SS condition was at primary somatosensory area. PM1 amplitude was dependent on the angular velocity of PM, suggesting that PM1 reflects afferent input from muscle spindle, whereas PM3 amplitude was dependent on the duration. The ECD for PM3 was located in the primary somatosensory cortex, suggesting that PM3 reflects cutaneous input. We confirmed the hypothesis for locally distinct generators and characteristics of each SEF component.

  10. [Observation of oral actions using digital image processing system].

    PubMed

    Ichikawa, T; Komoda, J; Horiuchi, M; Ichiba, H; Hada, M; Matsumoto, N

    1990-04-01

    A new digital image processing system to observe oral actions is proposed. The system provides analyses of motion pictures along with other physiological signals. The major components are a video tape recorder, a digital image processor, a percept scope, a CCD camera, an A/D converter and a personal computer. Five reference points were marked on the lip and eyeglasses of 9 adult subjects. Lip movements were recorded and analyzed using the system when uttering five vowels and [ka, sa, ta, ha, ra, ma, pa, ba[. 1. Positions of the lip when uttering five vowels were clearly classified. 2. Active articulatory movements of the lip were not recognized when uttering consonants [k, s, t, h, r[. It seemed lip movements were dependent on tongue and mandibular movements. Downward and rearward movements of the upper lip, and upward and forward movements of the lower lip were observed when uttering consonants [m, p, b[.

  11. Neurology of Volition

    PubMed Central

    Kranick, Sarah M.; Hallett, Mark

    2016-01-01

    Neurological disorders of volition may be characterized by deficits in willing and/or agency. When we move our bodies through space, it is the sense that we intended to move (willing) and that our actions were a consequence of this intention (self-agency) that gives us the sense of voluntariness and a general feeling of being “in control.” While it is possible to have movements that share executive machinery ordinarily used for voluntary movement but lack a sense of voluntariness, such as psychogenic movement disorders, it is also possible to claim volition for presumed involuntary movements (early chorea) or even when no movement is produced (anosognosia). The study of such patients should enlighten traditional models of how the percepts of volition are generated in the brain with regards to movement. We discuss volition and its components as multi-leveled processes with feedforward and feedback information flow, and dependence on prior expectations as well as external and internal cues. PMID:23329204

  12. HDR {sup 192}Ir source speed measurements using a high speed video camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonseca, Gabriel P.; Viana, Rodrigo S. S.; Yoriyaz, Hélio

    Purpose: The dose delivered with a HDR {sup 192}Ir afterloader can be separated into a dwell component, and a transit component resulting from the source movement. The transit component is directly dependent on the source speed profile and it is the goal of this study to measure accurate source speed profiles. Methods: A high speed video camera was used to record the movement of a {sup 192}Ir source (Nucletron, an Elekta company, Stockholm, Sweden) for interdwell distances of 0.25–5 cm with dwell times of 0.1, 1, and 2 s. Transit dose distributions were calculated using a Monte Carlo code simulatingmore » the source movement. Results: The source stops at each dwell position oscillating around the desired position for a duration up to (0.026 ± 0.005) s. The source speed profile shows variations between 0 and 81 cm/s with average speed of ∼33 cm/s for most of the interdwell distances. The source stops for up to (0.005 ± 0.001) s at nonprogrammed positions in between two programmed dwell positions. The dwell time correction applied by the manufacturer compensates the transit dose between the dwell positions leading to a maximum overdose of 41 mGy for the considered cases and assuming an air-kerma strength of 48 000 U. The transit dose component is not uniformly distributed leading to over and underdoses, which is within 1.4% for commonly prescribed doses (3–10 Gy). Conclusions: The source maintains its speed even for the short interdwell distances. Dose variations due to the transit dose component are much lower than the prescribed treatment doses for brachytherapy, although transit dose component should be evaluated individually for clinical cases.« less

  13. Ultralight Cut-Paper-Based Self-Charging Power Unit for Self-Powered Portable Electronic and Medical Systems.

    PubMed

    Guo, Hengyu; Yeh, Min-Hsin; Zi, Yunlong; Wen, Zhen; Chen, Jie; Liu, Guanlin; Hu, Chenguo; Wang, Zhong Lin

    2017-05-23

    The development of lightweight, superportable, and sustainable power sources has become an urgent need for most modern personal electronics. Here, we report a cut-paper-based self-charging power unit (PC-SCPU) that is capable of simultaneously harvesting and storing energy from body movement by combining a paper-based triboelectric nanogenerator (TENG) and a supercapacitor (SC), respectively. Utilizing the paper as the substrate with an assembled cut-paper architecture, an ultralight rhombic-shaped TENG is achieved with highly specific mass/volume charge output (82 nC g -1 /75 nC cm -3 ) compared with the traditional acrylic-based TENG (5.7 nC g -1 /5.8 nC cm -3 ), which can effectively charge the SC (∼1 mF) to ∼1 V in minutes. This wallet-contained PC-SCPU is then demonstrated as a sustainable power source for driving wearable and portable electronic devices such as a wireless remote control, electric watch, or temperature sensor. This study presents a potential paper-based portable SCPU for practical and medical applications.

  14. Preparation of forefinger's sequence on keyboard orients ocular fixations on computer screen.

    PubMed

    Coutté, Alexandre; Olivier, Gérard; Faure, Sylvane; Baccino, Thierry

    2014-08-01

    This study examined the links between attention, hand movements and eye movements when performed in different spatial areas. Participants performed a visual search task on a computer screen while preparing to press two keyboard keys sequentially with their index. Results showed that the planning of the manual sequence influenced the latency of the first saccade and the placement of the first fixation. In particular, even if the first fixation placement was influenced by the combination of both components of the prepared manual sequence in some trials, it was affected principally by the first component of the prepared manual sequence. Moreover, the probability that the first fixation placement did reflect a combination of both components of the manual sequence was correlated with the speed of the second component. This finding suggests that the preparation of the second component of the sequence influence simultaneous oculomotor behavior when motor control of the manual sequence relied on proactive motor planning. These results are discussed taking into account the current debate on the eye/hand coordination research.

  15. The anatomy and physiology of the ocular motor system.

    PubMed

    Horn, Anja K E; Leigh, R John

    2011-01-01

    Accurate diagnosis of abnormal eye movements depends upon knowledge of the purpose, properties, and neural substrate of distinct functional classes of eye movement. Here, we summarize current concepts of the anatomy of eye movement control. Our approach is bottom-up, starting with the extraocular muscles and their innervation by the cranial nerves. Second, we summarize the neural circuits in the pons underlying horizontal gaze control, and the midbrain connections that coordinate vertical and torsional movements. Third, the role of the cerebellum in governing and optimizing eye movements is presented. Fourth, each area of cerebral cortex contributing to eye movements is discussed. Last, descending projections from cerebral cortex, including basal ganglionic circuits that govern different components of gaze, and the superior colliculus, are summarized. At each stage of this review, the anatomical scheme is used to predict the effects of lesions on the control of eye movements, providing clinical-anatomical correlation. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Moving the eye of the beholder. Motor components in vision determine aesthetic preference.

    PubMed

    Topolinski, Sascha

    2010-09-01

    Perception entails not only sensory input (e.g., merely seeing), but also subsidiary motor processes (e.g., moving the eyes); such processes have been neglected in research on aesthetic preferences. To fill this gap, the present research manipulated the fluency of perceptual motor processes independently from sensory input and predicted that this increased fluency would result in increased aesthetic preference for stimulus movements that elicited the same motor movements as had been previously trained. Specifically, addressing the muscles that move the eyes, I trained participants to follow a stimulus movement without actually seeing it. Experiment 1 demonstrated that ocular-muscle training resulted in the predicted increase in preference for trained stimulus movements compared with untrained stimulus movements, although participants had not previously seen any of the movements. Experiments 2 and 3 showed that actual motor matching and not perceptual similarity drove this effect. Thus, beauty may be not only in the eye of the beholder, but also in the eyes' movements.

  17. A movement ecology paradigm for unifying organismal movement research

    PubMed Central

    Nathan, Ran; Getz, Wayne M.; Revilla, Eloy; Holyoak, Marcel; Kadmon, Ronen; Saltz, David; Smouse, Peter E.

    2008-01-01

    Movement of individual organisms is fundamental to life, quilting our planet in a rich tapestry of phenomena with diverse implications for ecosystems and humans. Movement research is both plentiful and insightful, and recent methodological advances facilitate obtaining a detailed view of individual movement. Yet, we lack a general unifying paradigm, derived from first principles, which can place movement studies within a common context and advance the development of a mature scientific discipline. This introductory article to the Movement Ecology Special Feature proposes a paradigm that integrates conceptual, theoretical, methodological, and empirical frameworks for studying movement of all organisms, from microbes to trees to elephants. We introduce a conceptual framework depicting the interplay among four basic mechanistic components of organismal movement: the internal state (why move?), motion (how to move?), and navigation (when and where to move?) capacities of the individual and the external factors affecting movement. We demonstrate how the proposed framework aids the study of various taxa and movement types; promotes the formulation of hypotheses about movement; and complements existing biomechanical, cognitive, random, and optimality paradigms of movement. The proposed framework integrates eclectic research on movement into a structured paradigm and aims at providing a basis for hypothesis generation and a vehicle facilitating the understanding of the causes, mechanisms, and spatiotemporal patterns of movement and their role in various ecological and evolutionary processes. ”Now we must consider in general the common reason for moving with any movement whatever.“ (Aristotle, De Motu Animalium, 4th century B.C.) PMID:19060196

  18. Violation of expectations about movement and goal achievement leads to Sense of Agency reduction.

    PubMed

    Villa, Riccardo; Tidoni, Emmanuele; Porciello, Giuseppina; Aglioti, Salvatore Maria

    2018-05-16

    The control of one's own movements and of their impact on the external world generates a feeling of control referred to as Sense of Agency (SoA). SoA is experienced when actions match predictions and is reduced by unpredicted events. The present study investigated the contribution of monitoring two fundamental components of action-movement execution and goal achievement-that have been most often explored separately in previous research. We have devised a new paradigm in which participants performed goal-directed actions while viewing an avatar's hand in a mixed-reality scenario. The hand performed either the same action or a different one, simultaneously or after various delays. Movement of the virtual finger and goal attainment were manipulated, so that they could match or conflict with the participants' expectations. We collected judgments of correspondence (an explicit index of SoA that overcomes the tendency to over-attribute actions to oneself) by asking participants if the observed action was synchronous or not with their action. In keeping with previous studies, we found that monitoring both movement execution and goal attainment is relevant for SoA. Moreover, we expanded previous findings by showing that movement information may be a more constant source of SoA modulation than goal information. Indeed, an incongruent movement impaired SoA irrespective of delay duration, while a missed goal did so only when delays were short. Our novel paradigm allowed us to simultaneously manipulate multiple action features, a characteristic that makes it suitable for investigating the contribution of different sub-components of action in modulating SoA in healthy and clinical populations.

  19. Increased task-uncorrelated muscle activity in childhood dystonia.

    PubMed

    Lunardini, Francesca; Maggioni, Serena; Casellato, Claudia; Bertucco, Matteo; Pedrocchi, Alessandra L G; Sanger, Terence D

    2015-06-12

    Even if movement abnormalities in dystonia are obvious on observation-based examinations, objective measures to characterize dystonia and to gain insights into its pathophysiology are still strongly needed. We hypothesize that motor abnormalities in childhood dystonia are partially due to the inability to suppress involuntary variable muscle activity irrelevant to the achievement of the desired motor task, resulting in the superposition of unwanted motion components on the desired movement. However, it is difficult to separate and quantify appropriate and inappropriate motor signals combined in the same muscle, especially during movement. We devise an innovative and practical method to objectively measure movement abnormalities during the performance of a continuous figure-eight writing task in 7 children with dystonia and 9 age-matched healthy controls. During the execution of a continuous writing task, muscle contractions should occur at frequencies that match the frequencies of the writing outcome. We compare the power spectra of kinematic trajectories and electromyographic signals of 8 upper limb muscles to separate muscle activity with the same frequency content of the figure-eight movement (task-correlated) from activity occurring at frequencies extraneous to the task (task-uncorrelated). Children with dystonia present a greater magnitude of task-uncorrelated muscle components. The motor performance achieved by children with dystonia is characterized by an overall lower quality, with high spatial and temporal variability and an altered trade-off between speed and accuracy. Findings are consistent with the hypothesis that, in childhood dystonia, the ability to appropriately suppress variable and uncorrelated elements of movement is impaired. Here we present a proof-of-concept of a promising tool to characterize the phenomenology of movement disorders and to inform the design of neurorehabilitation therapies.

  20. Pupil movements to light and accommodative stimulation - A comparative study.

    NASA Technical Reports Server (NTRS)

    Semmlow, J.; Stark, L.

    1973-01-01

    Isolation and definition of specific response components in pupil reflexes through comparison of the dynamic features of light-induced and accommodation-induced pupil movements. A quantitative analysis of the behavior of the complex nonlinear pupil responses reveals the presence of two independent nonlinear characteristics: a range-dependent gain and a direction dependence or movement asymmetry. These nonlinear properties are attributed to motor processes because they are observable in pupil responses to both light and accommodation stimuli. The possible mechanisms and consequences of these pupil response characteristics are quantitatively defined and discussed.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, Jason; Dobrzynski, Daniel S.

    A smart charging system for charging a plug-in electric vehicle (PEV) includes an electric vehicle supply equipment (EVSE) configured to supply electrical power to the PEV through a smart charging module coupled to the EVSE. The smart charging module comprises an electronic circuitry which includes a processor. The electronic circuitry includes electronic components structured to receive electrical power from the EVSE, and supply the electrical power to the PEV. The electronic circuitry is configured to measure a charging parameter of the PEV. The electronic circuitry is further structured to emulate a pulse width modulated signal generated by the EVSE. Themore » smart charging module can also include a first coupler structured to be removably couple to the EVSE and a second coupler structured to be removably coupled to the PEV.« less

  2. Testing Protocol Proposal to Identify and Evaluate Candidate Materials to Substitute for Silverized Teflon in Thermal Control Applications

    NASA Technical Reports Server (NTRS)

    Losure, Nancy S.

    1996-01-01

    Electrostatic discharge (ESD) has been shown to be the primary cause of several glitches in spacecraft operations. It appears that charged particles encountered in the natural environment in certain orbits can collect on the outer surfaces of a spacecraft, building up a charge of several thousand volts. If the potential exceeds the breakdown voltage of the charged material, then an ESD will occur. ESD events involving relatively low voltages, on the order of 100 V, have been shown to damage electronic components. When ESD occurs, electronic and electrical components can be damaged, computer instructions can be garbled, and ablation of material from the spacecraft may occur; degrading both the performance of the thermal control blankets, and the cleanliness of any surfaces on which the detritus becomes deposited. There appear to be six ways to prevent or mitigate the effects of ESD: (1) Choose an orbit where charging is not a problem; (2) Carry extra electromagnetic shielding; (3) Provide redundancy in components and programming; (4) Provide for active dissipation of the charge, by generating a plasma with which to bathe susceptible surfaces; (5) Provide for passive dissipation from a plasma contactors on the susceptible surfaces; and (6) Provide thermal control blankets that do not hold a charge, i.e., that are conductive enough to bleed a charge off harmlessly. These six options are discussed in detail in Losure (1996). Of these six options, number 1 is not always practical, given other requirements of the mission; 2, 3, 4 and 5 will require that extra mass in the form of shielding, etc., be carried by the spacecraft. The most attractive option from a mass and energy point of view seems to be that of finding a material which matches the other performance characteristics of the current thermal control blankets without their tendency to build up an electrostatic charge. The goal of this paper is to describe and justify a testing program which will lead to the approval of materials of this kind.

  3. LET spectra measurements of charged particles in the P0006 experiment on LDEF

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Csige, I.; Oda, K.; Henke, R. P.; Frank, A. L.; Benton, E. R.; Frigo, L. A.; Parnell, T. A.; Watts, J. W., Jr.; Derrickson, J. H.

    1993-01-01

    Measurements are under way of the charged particle radiation environment of the Long Duration Exposure Facility (LDEF) satellite using stacks of plastic nuclear track detectors (PNTD's) placed in different locations of the satellite. In the initial work the charge, energy, and linear energy transfer (LET) spectra of charged particles were measured with CR-39 double layer PNTD's located on the west side of the satellite (Experiment P0006). Primary and secondary stopping heavy ions were measured separately from the more energetic particles. Both trapped and galactic cosmic ray (GCR) particles are included, with the latter component being dominated by relativistic iron particles. The results from the P0006 experiment will be compared with similar measurements in other locations on LDEF with different orientation and shielding conditions. The remarkably detailed investigation of the charged particle radiation environment of the LDEF satellite will lead to a better understanding of the radiation environment of the Space Station Freedom. It will enable more accurate prediction of single event upsets (SEU's) in microelectronics and, especially, more accurate assessment of the risk - contributed by different components of the radiation field (GCR's, trapped protons, secondaries and heavy recoils, etc.) - to the health and safety of crew members.

  4. Optimal charges in lead progression: a structure-based neuraminidase case study.

    PubMed

    Armstrong, Kathryn A; Tidor, Bruce; Cheng, Alan C

    2006-04-20

    Collective experience in structure-based lead progression has found electrostatic interactions to be more difficult to optimize than shape-based ones. A major reason for this is that the net electrostatic contribution observed includes a significant nonintuitive desolvation component in addition to the more intuitive intermolecular interaction component. To investigate whether knowledge of the ligand optimal charge distribution can facilitate more intuitive design of electrostatic interactions, we took a series of small-molecule influenza neuraminidase inhibitors with known protein cocrystal structures and calculated the difference between the optimal and actual charge distributions. This difference from the electrostatic optimum correlates with the calculated electrostatic contribution to binding (r(2) = 0.94) despite small changes in binding modes caused by chemical substitutions, suggesting that the optimal charge distribution is a useful design goal. Furthermore, detailed suggestions for chemical modification generated by this approach are in many cases consistent with observed improvements in binding affinity, and the method appears to be useful despite discrete chemical constraints. Taken together, these results suggest that charge optimization is useful in facilitating generation of compound ideas in lead optimization. Our results also provide insight into design of neuraminidase inhibitors.

  5. A measurement of the energy spectra of cosmic rays from 20 to 1000 GeV per amu

    NASA Technical Reports Server (NTRS)

    Gregory, John C.; Takahashi, Y.; Hayashi, T.; Thoburn, C.; Parnell, T. A.; Watts, John W., Jr.; Fowler, P. H.; Masheder, M. R. W.; Derrickson, James H.

    1991-01-01

    A group collaboration was made in the development of the Bristol University Gas Spectrometer number 4 (BUGS 4). The BUGS 4 detector is designed to measure the charge spectrum for species between oxygen and the iron peak as a function of energy per nucleon, between 20 and 1000 GeV/amu. It is particularly concerned with energies above 50 GeV/amu. The high energy component is considerably less affected by propagation through the interstellar medium than the lower energy component and is expected to approach the original charge spectrum of the source more closely. This information allows one to unravel the effects of cosmic ray production, acceleration, and propagation. The detector is described in total detail. The method of estimating the charge and energy of a cosmic ray depends on the energy of the particle. Calculations and experiments lead to the expectation of a nearly constant charge resolution of about 0.2 charge units over the whole energy range except 4.5 less than gamma less than 20. In this band, the experiment is insensitive to energy. A balloon flight is planned in 1993.

  6. Selected accounts receivable performance statistics for radiology practices: an analysis of the adjusted collection percentage and days charges in accounts receivable.

    PubMed

    Cergnul, John J; Russell, Philip J; Sunshine, Jonathan H

    2005-12-01

    To provide comparative data and analysis with respect to accounts receivable management performance criteria. Data from 3 sources were analyzed: the Radiology Business Management Association's (RBMA) 2003 Accounts Receivable Performance Survey; the RBMA's 2003 Accounts Receivable Survey; and Hogan and Sunshine's 2004 Radiology article "Financial Ratios in Diagnostic Radiology Practices: Variability and Trends," the data for which were drawn primarily from the ACR's 1999 Survey of Practices. The RBMA surveyed (via e-mail and postal mail) only its members, with response rates of 15% and 9%, respectively. The ACR's survey response rate was 66%, via postal mail, and was distributed without regard to the RBMA membership status of the practice manager or even whether the practice employed a practice manager. Comparison among the survey results provided information on trends. Median practice professional component adjusted collection percentage (ACP) deteriorated from 87.3% to 85.1% between the RBMA surveys. Practices limited to global fee billing faired much better when performing their billing in house, as opposed to using a billing service, with mean ACPs of 91.2% and 79.4%, respectively. Days charges in accounts receivable 2004 mean results for professional component billing and global fee billing were nearly identical at 56.11 and 55.54 days, respectively. The 2003 RBMA survey reported 63.74 days for professional component billing and 77.33 days for global fee billing. The improvement from 2003 to 2004 was highly significant for both professional component billing and global fee billing. The 2004 RBMA survey also reflected a rather dramatic improvement in days charges in accounts receivable compared with Hogan and Sunshine's results, which showed a mean of 69 days charges in accounts receivable. The conflicting trends between ACP performance and days charges in accounts receivable performance may be explained by the increasing sophistication of accounts receivable management processes (improving days charges in accounts receivable) and the deterioration in the general economy between survey periods (decreasing ACPs). Additionally, generally better accounts receivable management performance was experienced by practices employing RBMA members (RBMA survey participants) compared with those that may or may not have employed RBMA members (ACR survey participants).

  7. Absence of Proton Channels in COS-7 Cells Expressing Functional NADPH Oxidase Components

    PubMed Central

    Morgan, Deri; Cherny, Vladimir V.; Price, Marianne O.; Dinauer, Mary C.; DeCoursey, Thomas E.

    2002-01-01

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is an enzyme of phagocytes that produces bactericidal superoxide anion (O2 −) via an electrogenic process. Proton efflux compensates for the charge movement across the cell membrane. The proton channel responsible for the H+ efflux was thought to be contained within the gp91phox subunit of NADPH oxidase, but recent data do not support this idea (DeCoursey, T.E., V.V. Cherny, D. Morgan, B.Z. Katz, and M.C. Dinauer. 2001. J. Biol. Chem. 276:36063–36066). In this study, we investigated electrophysiological properties and superoxide production of COS-7 cells transfected with all NADPH oxidase components required for enzyme function (COSphox). The 7D5 antibody, which detects an extracellular epitope of the gp91phox protein, labeled 96–98% of COSphox cells. NADPH oxidase was functional because COSphox (but not COSWT) cells stimulated by phorbol myristate acetate (PMA) or arachidonic acid (AA) produced superoxide anion. No proton currents were detected in either wild-type COS-7 cells (COSWT) or COSphox cells studied at pHo 7.0 and pHi 5.5 or 7.0. Anion currents that decayed at voltages positive to 40 mV were the only currents observed. PMA or AA did not elicit detectable H+ current in COSWT or COSphox cells. Therefore, gp91phox does not function as a proton channel in unstimulated cells or in activated cells with a demonstrably functional oxidase. PMID:12034764

  8. Absence of proton channels in COS-7 cells expressing functional NADPH oxidase components.

    PubMed

    Morgan, Deri; Cherny, Vladimir V; Price, Marianne O; Dinauer, Mary C; DeCoursey, Thomas E

    2002-06-01

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is an enzyme of phagocytes that produces bactericidal superoxide anion (O(2)(-)) via an electrogenic process. Proton efflux compensates for the charge movement across the cell membrane. The proton channel responsible for the H(+) efflux was thought to be contained within the gp91(phox) subunit of NADPH oxidase, but recent data do not support this idea (DeCoursey, T.E., V.V. Cherny, D. Morgan, B.Z. Katz, and M.C. Dinauer. 2001. J. Biol. Chem. 276:36063-36066). In this study, we investigated electrophysiological properties and superoxide production of COS-7 cells transfected with all NADPH oxidase components required for enzyme function (COS(phox)). The 7D5 antibody, which detects an extracellular epitope of the gp91(phox) protein, labeled 96-98% of COS(phox) cells. NADPH oxidase was functional because COS(phox) (but not COS(WT)) cells stimulated by phorbol myristate acetate (PMA) or arachidonic acid (AA) produced superoxide anion. No proton currents were detected in either wild-type COS-7 cells (COS(WT)) or COS(phox) cells studied at pH(o) 7.0 and pH(i) 5.5 or 7.0. Anion currents that decayed at voltages positive to 40 mV were the only currents observed. PMA or AA did not elicit detectable H(+) current in COS(WT) or COS(phox) cells. Therefore, gp91(phox) does not function as a proton channel in unstimulated cells or in activated cells with a demonstrably functional oxidase.

  9. Selected Cognitive Abilities in Elite Youth Soccer Players

    PubMed Central

    Baláková, Veronika; Boschek, Petr; Skalíková, Lucie

    2015-01-01

    The identification of talent in soccer is critical to various programs. Although many research findings have been presented, there have been only a few attempts to assess their validity. The aim of this study was to determine the relationship between talent and achievement variables in the Vienna Test System. The participants were 91 Czech soccer players, representing four youth soccer teams, who were born in the year 2000. These boys were divided into two groups according to their coaches’ assessments using a TALENT questionnaire. A two-factor model (component 1: “kinetic finesse”; component 2: “mental strength”) was designed to interpret the responses of the coaches on the questionnaire. The Vienna Test System was used to determine the level of players’ cognitive abilities. In total, the subjects performed seven tests in the following order: Raven’s Standard Progressive Matrices (SPM), a reaction test (RT), a determination test (DT), a visual pursuit test (LVT), a Corsi Block-Tapping Test (CORSI), a time/movement anticipation test (ZBA), and a peripheral perception test (PP). To analyze the relationship between talent and achievement variables within the Vienna Test System, correlation analyses were performed. The results revealed that the talented group attained significantly better results on only 1 of the 16 variables, which was ZBA2: movement anticipation - deviation of movement median (r = .217, p = .019). A comparison of the two talent components showed that component 1 (“kinetic finesse”) was a more significant factor than component 2 (“mental strength”). Although we observed statistically significant correlations, their actual significance remains questionable; thus, further research is required. PMID:26839627

  10. Rainfall-ground movement modelling for natural gas pipelines through landslide terrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Neil, G.D.; Simmonds, G.R.; Grivas, D.A.

    1996-12-31

    Perhaps the greatest challenge to geotechnical engineers is to maintain the integrity of pipelines at river crossings where landslide terrain dominates the approach slopes. The current design process at NOVA Gas Transmission Ltd. (NGTL) has developed to the point where this impact can be reasonably estimated using in-house models of pipeline-soil interaction. To date, there has been no method to estimate ground movements within unexplored slopes at the outset of the design process. To address this problem, rainfall and slope instrumentation data have been processed to derive rainfall-ground movement relationships. Early results indicate that the ground movements exhibit two components:more » a steady, small rate of movement independent of the rainfall, and, increased rates over short periods of time following heavy amounts of rainfall. Evidence exists of a definite threshold value of rainfall which has to be exceeded before any incremental movement is induced. Additional evidence indicates a one-month lag between rainfall and ground movement. While these models are in the preliminary stage, results indicate a potential to estimate ground movements for both initial design and planned maintenance actions.« less

  11. The role of water content in triboelectric charging of wind-blown sand.

    PubMed

    Gu, Zhaolin; Wei, Wei; Su, Junwei; Yu, Chuck Wah

    2013-01-01

    Triboelectric charging is common in desert sandstorms and dust devils on Earth; however, it remains poorly understood. Here we show a charging mechanism of sands with the adsorbed water on micro-porous surface in wind-blown sand based on the fact that water content is universal but usually a minor component in most particle systems. The triboelectric charging could be resulted due to the different mobility of H(+)/OH(-) between the contacting sands with a temperature difference. Computational fluid dynamics (CFD) and discrete element method (DEM) were used to demonstrate the dynamics of the sand charging. The numerically simulated charge-to-mass ratios of sands and electric field strength established in wind tunnel agreed well with the experimental data. The charging mechanism could provide an explanation for the charging process of all identical granular systems with water content, including Martian dust devils, wind-blown snow, even powder electrification in industrial processes.

  12. The role of water content in triboelectric charging of wind-blown sand

    PubMed Central

    Gu, Zhaolin; Wei, Wei; Su, Junwei; Yu, Chuck Wah

    2013-01-01

    Triboelectric charging is common in desert sandstorms and dust devils on Earth; however, it remains poorly understood. Here we show a charging mechanism of sands with the adsorbed water on micro-porous surface in wind-blown sand based on the fact that water content is universal but usually a minor component in most particle systems. The triboelectric charging could be resulted due to the different mobility of H+/OH− between the contacting sands with a temperature difference. Computational fluid dynamics (CFD) and discrete element method (DEM) were used to demonstrate the dynamics of the sand charging. The numerically simulated charge-to-mass ratios of sands and electric field strength established in wind tunnel agreed well with the experimental data. The charging mechanism could provide an explanation for the charging process of all identical granular systems with water content, including Martian dust devils, wind-blown snow, even powder electrification in industrial processes. PMID:23434920

  13. An Investigation of Upper Limb Motor Function in High Functioning Autism and Asperger's Disorder Using a Repetitive Fitts' Aiming Task

    ERIC Educational Resources Information Center

    Papadopoulos, Nicole; McGinley, Jennifer; Tonge, Bruce J.; Bradshaw, John L.; Saunders, Kerryn; Rinehart, Nicole J.

    2012-01-01

    There is now a growing body of research examining movement difficulties in children diagnosed with high functioning autism (HFA) and Asperger's disorder (AD). Despite this, few studies have investigated the kinematic components of movement that may be disrupted in children diagnosed with these disorders. The current study investigated rapid aiming…

  14. Eye Movements Reveal Components of Flexible Reading Strategies.

    ERIC Educational Resources Information Center

    Shebilske, Wayne L.; Fisher, Dennis F.

    The eye movements of two college graduates were monitored in a study of flexible reading, which is defined as the ability to adjust one's rate and approach to reading according to the purpose of reading, the difficulty of the material, and one's knowledge of the subject matter. The subjects were told to read an excerpt from a tenth grade biology…

  15. Perceptual/Psychomotor Requirements Basic to performance in 35 Air Force Specialties.

    DTIC Science & Technology

    1980-12-01

    Supra-segmental Reflexes c 26. Locomotor Movements¢ 27. Non- Locomotor Movementac 28. Manipulative Movements c 29. Kinesthetic Discrimination 30...auxiliary equipment components for installation (6.10, Ground Radio Equipment Repair) Control Operate standard gasoline or electric powered forklifts...Precision (6.23, Munitions Maintenance) Operate munitions transport trucks or truck-tractors (6.19, Munitions Maintenance) Rate operate standard gasoline or

  16. Impact of Charge Degradation on the Life Cycle Climate Performance of a Residential Air-Conditioning System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar

    2014-01-01

    Vapor compression systems continuously leak a small fraction of their refrigerant charge to the environment, whether during operation or servicing. As a result of the slow leak rate occurring during operation, the refrigerant charge decreases until the system is serviced and recharged. This charge degradation, after a certain limit, begins to have a detrimental effect on system capacity, energy consumption, and coefficient of performance (COP). This paper presents a literature review and a summary of previous experimental work on the effect of undercharging or charge degradation of different vapor compression systems, especially those without a receiver. These systems include residentialmore » air conditioning and heat pump systems utilizing different components and refrigerants, and water chiller systems. Most of these studies show similar trends for the effect of charge degradation on system performance. However, it is found that although much experimental work exists on the effect of charge degradation on system performance, no correlation or comparison between charge degradation and system performance yet exists. Thus, based on the literature review, three different correlations that characterize the effect of charge on system capacity and energy consumption are developed for different systems as follows: one for air-conditioning systems, one for vapor compression water-to-water chiller systems, and one for heat pumps. These correlations can be implemented in vapor compression cycle simulation tools to obtain a better prediction of the system performance throughout its lifetime. In this paper, these correlations are implemented in an open source tool for life cycle climate performance (LCCP) based design of vapor compression systems. The LCCP of a residential air-source heat pump is evaluated using the tool and the effect of charge degradation on the results is studied. The heat pump is simulated using a validated component-based vapor compression system model and the LCCP results obtained using the three charge degradation correlations are compared.« less

  17. Improved non-invasive method for aerosol particle charge measurement employing in-line digital holography

    NASA Astrophysics Data System (ADS)

    Tripathi, Anjan Kumar

    Electrically charged particles are found in a wide range of applications ranging from electrostatic powder coating, mineral processing, and powder handling to rain-producing cloud formation in atmospheric turbulent flows. In turbulent flows, particle dynamics is influenced by the electric force due to particle charge generation. Quantifying particle charges in such systems will help in better predicting and controlling particle clustering, relative motion, collision, and growth. However, there is a lack of noninvasive techniques to measure particle charges. Recently, a non-invasive method for particle charge measurement using in-line Digital Holographic Particle Tracking Velocimetry (DHPTV) technique was developed in our lab, where charged particles to be measured were introduced to a uniform electric field, and their movement towards the oppositely charged electrode was deemed proportional to the amount of charge on the particles (Fan Yang, 2014 [1]). However, inherent speckle noise associated with reconstructed images was not adequately removed and therefore particle tracking data was contaminated. Furthermore, particle charge calculation based on particle deflection velocity neglected the particle drag force and rebound effect of the highly charged particles from the electrodes. We improved upon the existing particle charge measurement method by: 1) hologram post processing, 2) taking drag force into account in charge calculation, 3) considering rebound effect. The improved method was first fine-tuned through a calibration experiment. The complete method was then applied to two different experiments, namely conduction charging and enclosed fan-driven turbulence chamber, to measure particle charges. In all three experiments conducted, the particle charge was found to obey non-central t-location scale family of distribution. It was also noted that the charge distribution was insensitive to the change in voltage applied between the electrodes. The range of voltage applied where reliable particle charges can be measured was also quantified by taking into account the rebound effect of highly charged particles. Finally, in the enclosed chamber experiment, it was found that using carbon conductive coating on the inner walls of the chamber minimized the charge generation inside the chamber when glass bubble particles were used. The value of electric charges obtained in calibration experiment through the improved method was found to have the same order as reported in the existing work (Y.C Ahn et al. 2004 [2]), indicating that the method is indeed effective.

  18. Discriminating Talent Identified Junior Australian Footballers Using a Fundamental Gross Athletic Movement Assessment

    PubMed Central

    Woods, Carl T.; Banyard, Harry G.; McKeown, Ian; Fransen, Job; Robertson, Sam

    2016-01-01

    Talent identification (TID) is a pertinent component of the sports sciences, affording practitioners the opportunity to target developmental interventions to a select few; optimising financial investments. However, TID is multi-componential, requiring the recognition of immediate and prospective performance. The measurement of athletic movement skill may afford practitioners insight into the latter component given its augmented relationship with functional sport specific qualities. It is currently unknown whether athletic movement skill is a discriminant quality in junior Australian football (AF). This study aimed to discriminate talent identified junior AF players from their non-talent identified counterparts using a fundamental gross athletic movement assessment. From a total of 50 under 18 (U18) AF players; two groups were classified a priori based on selection level; talent identified (n = 25; state academy representatives) and non-talent identified (n = 25; state-based competition representatives). Players performed a fundamental gross athletic movement assessment based on the Athletic Ability Assessment (AAA), consisting of an overhead squat, double lunge (left and right legs), single leg Romanian deadlift (left and right legs), and a push up (six movement criterions). Movements were scored across three assessment points using a three-point scale (resulting in a possible score of nine for each movement). A multivariate analysis of variance revealed significant between group effects on four of the six movement criterions (d = 0.56 – 0.87; p = 0.01 – 0.02). Binary logistic regression models and a receiver operating characteristic curve inspection revealed that the overhead squat score provided the greatest group discrimination (β(SE) = -0.89(0.44); p < 0.05), with a score of 4.5 classifying 64% and 88% of the talent identified and non-talent identified groups, respectively. Results support the integration of this assessment into contemporary talent identification approaches in junior AF, as it may provide coaches with insight into a juniors developmental potential. Key points On average, talent identified junior AF players possess superior athletic movement qualities relative to their non-talent identified counterparts. The integration of this gross athletic movement assessment into contemporary multidimensional approaches to talent identification may enable insight into a juniors developmental potential. The athletic qualities underpinning the production of the overhead squat movement could augment functional physical qualities in junior Australian footballers. Assessing movement competency in junior contexts may afford practitioners with the opportunity to rectify inefficient fundamental movement patterns prior to entrance into elite senior ranks. PMID:27803635

  19. Detecting rapid mass movements using electrical self-potential measurements

    NASA Astrophysics Data System (ADS)

    Heinze, Thomas; Limbrock, Jonas; Pudasaini, Shiva P.; Kemna, Andreas

    2017-04-01

    Rapid mass movements are a latent danger for lives and infrastructure in almost any part of the world. Often such mass movements are caused by increasing pore pressure, for example, landslides after heavy rainfall or dam breaking after intrusion of water in the dam. Among several other geophysical methods used to observe water movement, the electrical self-potential method has been applied to a broad range of monitoring studies, especially focusing on volcanism and dam leakage but also during hydraulic fracturing and for earthquake prediction. Electrical self-potential signals may be caused by various mechanisms. Though, the most relevant source of the self-potential field in the given context is the streaming potential, caused by a flowing electrolyte through porous media with electrically charged internal surfaces. So far, existing models focus on monitoring water flow in non-deformable porous media. However, as the self-potential is sensitive to hydraulic parameters of the soil, any change in these parameters will cause an alteration of the electric signal. Mass movement will significantly influence the hydraulic parameters of the solid as well as the pressure field, assuming that fluid movement is faster than the pressure diffusion. We will present results of laboratory experiments under drained and undrained conditions with fluid triggered as well as manually triggered mass movements, monitored with self-potential measurements. For the undrained scenarios, we observe a clear correlation between the mass movements and signals in the electric potential, which clearly differ from the underlying potential variations due to increased saturation and fluid flow. In the drained experiments, we do not observe any measurable change in the electric potential. We therefore assume that change in fluid properties and release of the load causes disturbances in flow and streaming potential. We will discuss results of numerical simulations reproducing the observed effect. Our results indicate that electrical self-potential measurements can observe rapid mass movements when the movement is large and fast enough to disturb the fluid pressure field significantly.

  20. 30 CFR 7.69 - Approval marking.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that the unit's components must not be disassembled or removed. (d) The replacement battery types if the unit has replaceable batteries. (e) A warning placed next to the charging connector that the battery only be charged in a fresh air location if rechargeable batteries are used. (f) A warning that the...

  1. 30 CFR 7.69 - Approval marking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that the unit's components must not be disassembled or removed. (d) The replacement battery types if the unit has replaceable batteries. (e) A warning placed next to the charging connector that the battery only be charged in a fresh air location if rechargeable batteries are used. (f) A warning that the...

  2. 30 CFR 7.69 - Approval marking.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that the unit's components must not be disassembled or removed. (d) The replacement battery types if the unit has replaceable batteries. (e) A warning placed next to the charging connector that the battery only be charged in a fresh air location if rechargeable batteries are used. (f) A warning that the...

  3. 30 CFR 7.69 - Approval marking.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that the unit's components must not be disassembled or removed. (d) The replacement battery types if the unit has replaceable batteries. (e) A warning placed next to the charging connector that the battery only be charged in a fresh air location if rechargeable batteries are used. (f) A warning that the...

  4. 30 CFR 7.69 - Approval marking.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that the unit's components must not be disassembled or removed. (d) The replacement battery types if the unit has replaceable batteries. (e) A warning placed next to the charging connector that the battery only be charged in a fresh air location if rechargeable batteries are used. (f) A warning that the...

  5. Identification of Key Interactions in the Initial Self-Assembly of Amylin in a Membrane Environment.

    PubMed

    Christensen, Mikkel; Skeby, Katrine K; Schiøtt, Birgit

    2017-09-12

    Islet amyloid polypeptide, also known as amylin, forms aggregates that reduce the amount of insulin-producing cells in patients with type II diabetes mellitus. Much remains unknown about the process of aggregation and cytotoxicity, but it is known that certain cell membrane components can alter the rate of aggregation. Using atomistic molecular dynamics simulations combined with the highly mobile membrane mimetic model incorporating enhanced sampling of lipid diffusion, we investigate interaction of amylin peptides with the membrane components as well as the self-assembly of amylin. Consistent with experimental evidence, we find that an initial membrane-bound α-helical state folds into stable β-sheet structures upon self-assembly. Our results suggest the following mechanism for the initial phase of amylin self-assembly. The peptides move around on the membrane with the positively charged N-terminus interacting with the negatively charged lipid headgroups. When the peptides start to interact, they partly unfold and break some of the contacts with the membrane. The initial interactions between the peptides are dominated by aromatic and hydrophobic interactions. Oligomers are formed showing both intra- and interpeptide β-sheets, initially with interactions mainly in the C-terminal domain of the peptides. Decreasing the pH to 5.5 is known to inhibit amyloid formation. At low pH, His18 is protonated, adding a fourth positive charge at the peptide. With His18 protonated, no oligomerization is observed in the simulations. The additional charge gives a strong midpoint anchoring of the peptides to negatively charged membrane components, and the peptides experience additional interpeptide repulsion, thereby preventing interactions.

  6. The role of the extracellular matrix in tissue distribution of macromolecules in normal and pathological tissues: potential therapeutic consequences.

    PubMed

    Wiig, Helge; Gyenge, Christina; Iversen, Per Ole; Gullberg, Donald; Tenstad, Olav

    2008-05-01

    The interstitial space is a dynamic microenvironment that consists of interstitial fluid and structural molecules of the extracellular matrix, such as glycosaminoglycans (hyaluronan and proteoglycans) and collagen. Macromolecules can distribute in the interstitium only in those spaces unoccupied by structural components, a phenomenon called interstitial exclusion. The exclusion phenomenon has direct consequences for plasma volume regulation. Early studies have assigned a major role to collagen as an excluding agent that accounts for the sterical (geometrical) exclusion. More recently, it has been shown that the contribution of negatively charged glycosaminoglycans might also be significant, resulting in an additional electrostatical exclusion effect. This charge effect may be of importance for drug uptake and suggests that either the glycosaminoglycans or the net charge of macromolecular substances to be delivered may be targeted to increase the available volume and uptake of macromolecular therapeutic agents in tumor tissue. Here, we provide an overview of the structural components of the interstitium and discuss the importance the sterical and electrostatical components have on the dynamics of transcapillary fluid exchange.

  7. The effects of the geosynchronous energetic particle radiation environment on spacecraft charging phenomena

    NASA Technical Reports Server (NTRS)

    Reagan, J. B.; Imhof, W. L.; Gaines, E. E.

    1977-01-01

    The energetic electron environment at the geosynchronous orbit is responsible for a variety of adverse charging effects on spacecraft components. The most serious of these is the degradation and failure of a complementary-metal-oxide-semiconductor (CMOS) electronic components as a result of internal charge-buildup induced by the energetic electrons. Efforts to accurately determine the expected lifetime of these components in this orbit are hampered by the lack of detailed knowledge of the electron spectrum and intensity, particularly of the more penetrating energies greater than 1.5 MeV. This problem is illustrated through the calculation of the dose received by a CMOS device from the energetic electrons and associated bremsstrahlung as a function of aluminum shielding thickness using the NASA AE-6 and the Aerospace measured electron environments. Two computational codes which were found to be in good agreement were used to perform the calculations. For a given shielding thickness the dose received with the two radiation environments differ by as much as a factor of seven with a corresponding variation in lifetime of the CMOS.

  8. Electrostatic twisted modes in multi-component dusty plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayub, M. K.; National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000; Pohang University of Sciences and Technology, Pohang, Gyeongbuk 790-784

    Various electrostatic twisted modes are re-investigated with finite orbital angular momentum in an unmagnetized collisionless multi-component dusty plasma, consisting of positive/negative charged dust particles, ions, and electrons. For this purpose, hydrodynamical equations are employed to obtain paraxial equations in terms of density perturbations, while assuming the Gaussian and Laguerre-Gaussian (LG) beam solutions. Specifically, approximated solutions for potential problem are studied by using the paraxial approximation and expressed the electric field components in terms of LG functions. The energy fluxes associated with these modes are computed and corresponding expressions for orbital angular momenta are derived. Numerical analyses reveal that radial/angular modemore » numbers as well as dust number density and dust charging states strongly modify the LG potential profiles attributed to different electrostatic modes. Our results are important for understanding particle transport and energy transfer due to wave excitations in multi-component dusty plasmas.« less

  9. OER as Online Edutainment Resources: A Critical Look at Open Content, Branded Content, and How Both Affect the OER Movement

    ERIC Educational Resources Information Center

    Moe, Rolin

    2015-01-01

    Despite a rise in awareness and production of open education resources (OER) over the past decade, mainstream media outlets continue to define open in economic terms of consumer cost and not in theoretical terms of remix or appropriation. This period in the "open access" debate has coincided with a proliferation of free-of-charge video…

  10. Scientific Understanding, Control of the Environment and Science Education

    NASA Astrophysics Data System (ADS)

    Piew Loo, Seng

    The concerns of this paper are two-fold. First, the paper addresses the allegation made by the indigenous science movement that violence is evident in the control of nature because science is inherently violent. This charge, if not refuted, undermines the claim that science is neutral. Next, the article considers the shortcomings of a school science curriculum based on traditional social values of control.

  11. Coincidence of features of emitted THz electromagnetic wave power form a single Josephson junction and different current components

    NASA Astrophysics Data System (ADS)

    Hamdipour, Mohammad

    2017-12-01

    By applying a voltage to a Josephson junction, the charge in superconducting layers (S-layers) will oscillate. Wavelength of the charge oscillations in S-layers is related to external current in junction, by increasing the external current, the wavelength will decrease which cause in some currents the wavelength be incommensurate with width of junction, so the CVC shows Fiske like steps. External current throwing along junction has some components, resistive, capacitive and superconducting current, beside these currents there is a current in lateral direction of junction, (x direction). On the other hand, the emitted electromagnetic wave power in THz region is related to AC component of electric field in junction, which itself is related to charge density in S-layers, which is related to currents in the system. So we expect that features of variation of current components reflect the features of emitted THz power form junction. Here we study in detail the superconductive current in a long Josephson junction (JJ), the current voltage characteristics (CVC) of junction and emitted THz power from the system. Then we compare the results. Comparing the results we see that there is a good qualitative coincidence in features of emitted THz power and supercurrent in junction.

  12. S1-S3 counter charges in the voltage sensor module of a mammalian sodium channel regulate fast inactivation.

    PubMed

    Groome, James R; Winston, Vern

    2013-05-01

    The movement of positively charged S4 segments through the electric field drives the voltage-dependent gating of ion channels. Studies of prokaryotic sodium channels provide a mechanistic view of activation facilitated by electrostatic interactions of negatively charged residues in S1 and S2 segments, with positive counterparts in the S4 segment. In mammalian sodium channels, S4 segments promote domain-specific functions that include activation and several forms of inactivation. We tested the idea that S1-S3 countercharges regulate eukaryotic sodium channel functions, including fast inactivation. Using structural data provided by bacterial channels, we constructed homology models of the S1-S4 voltage sensor module (VSM) for each domain of the mammalian skeletal muscle sodium channel hNaV1.4. These show that side chains of putative countercharges in hNaV1.4 are oriented toward the positive charge complement of S4. We used mutagenesis to define the roles of conserved residues in the extracellular negative charge cluster (ENC), hydrophobic charge region (HCR), and intracellular negative charge cluster (INC). Activation was inhibited with charge-reversing VSM mutations in domains I-III. Charge reversal of ENC residues in domains III (E1051R, D1069K) and IV (E1373K, N1389K) destabilized fast inactivation by decreasing its probability, slowing entry, and accelerating recovery. Several INC mutations increased inactivation from closed states and slowed recovery. Our results extend the functional characterization of VSM countercharges to fast inactivation, and support the premise that these residues play a critical role in domain-specific gating transitions for a mammalian sodium channel.

  13. Transient photocurrent in molecular junctions: singlet switching on and triplet blocking.

    PubMed

    Petrov, E G; Leonov, V O; Snitsarev, V

    2013-05-14

    The kinetic approach adapted to describe charge transmission in molecular junctions, is used for the analysis of the photocurrent under conditions of moderate light intensity of the photochromic molecule. In the framework of the HOMO-LUMO model for the single electron molecular states, the analytic expressions describing the temporary behavior of the transient and steady state sequential (hopping) as well as direct (tunnel) current components have been derived. The conditions at which the current components achieve their maximal values are indicated. It is shown that if the rates of charge transmission in the unbiased molecular diode are much lower than the intramolecular singlet-singlet excitation/de-excitation rate, and the threefold degenerated triplet excited state of the molecule behaves like a trap blocking the charge transmission, a possibility of a large peak-like transient switch-on photocurrent arises.

  14. Amping it up on a small budget: Transforming inexpensive, commercial audio and video components into a useful charged particle spectrometer

    NASA Astrophysics Data System (ADS)

    Pallone, Arthur

    Necessity often leads to inspiration. Such was the case when a traditional amplifier quit working during the collection of an alpha particle spectrum. I had a 15 battery-powered audio amplifier in my box of project electronics so I connected it between the preamplifier and the multichannel analyzer. The alpha particle spectrum that appeared on the computer screen matched expectations even without correcting for impedance mismatches. Encouraged by this outcome, I have begun to systematically replace each of the parts in a traditional charged particle spectrometer with audio and video components available through consumer electronics stores with the goal of producing an inexpensive charged particle spectrometer for use in education and research. Hopefully my successes, setbacks, and results to date described in this presentation will inform and inspire others.

  15. Solar wind/local interstellar medium interaction including charge exchange with neural hydrogen

    NASA Technical Reports Server (NTRS)

    Pauls, H. Louis; Zank, Gary P.

    1995-01-01

    We present results from a hydrodynamic model of the interaction of the solar wind with the local interstellar medium (LISM), self-consistently taking into account the effects of charge exchange between the plasma component and the interstellar neutrals. The simulation is fully time dependent, and is carried out in two or three dimensions, depending on whether the helio-latitudinal dependence of the solar wind speed and number density (both giving rise to three dimensional effects) are included. As a first approximation it is assumed that the neutral component of the flow can be described by a single, isotropic fluid. Clearly, this is not the actual situation, since charge exchange with the supersonic solar wind plasma in the region of the nose results in a 'second' neutral fluid propagating in the opposite direction as that of the LISM neutrals.

  16. Laser desorption vs. electrospray of polyyne-threaded rotaxanes: Preventing covalent cross-linking and promoting noncovalent aggregation

    NASA Astrophysics Data System (ADS)

    Neugebauer, Thomas S.; Franz, Michael; Frankenberger, Stephanie; Tykwinski, Rik R.; Drewello, Thomas

    2018-02-01

    Laser-induced cross-linking of polyynes is successfully hindered when the polyyne is encapsulated as part of a rotaxane and therefore protected by a surrounding macrocycle. When the rotaxane is electrosprayed, however, noncovalent aggregate ions are efficiently formed. Aggregates of considerable size (including more than 50 rotaxane molecules with masses beyond 100k Da) and charge states (up to 13 charges and beyond) have been observed. Either protons or sodium cations act as the charge carriers. These aggregates are not formed when the individual components of the rotaxane, i.e., the macrocycle or the polyyne, are separately electrosprayed. This underlines the structural importance of the rotaxane for the aggregate formation. Straightforward force field calculations indicate that the polyyne thread hinders the folding of the macrocycles, which facilitates the bonding interaction between the two components.

  17. Sequence specific motor performance gains after memory consolidation in children and adolescents.

    PubMed

    Dorfberger, Shoshi; Adi-Japha, Esther; Karni, Avi

    2012-01-01

    Memory consolidation for a trained sequence of finger opposition movements, in 9- and 12-year-old children, was recently found to be significantly less susceptible to interference by a subsequent training experience, compared to that of 17-year-olds. It was suggested that, in children, the experience of training on any sequence of finger movements may affect the performance of the sequence elements, component movements, rather than the sequence as a unit; the latter has been implicated in the learning of the task by adults. This hypothesis implied a possible childhood advantage in the ability to transfer the gains from a trained to the reversed, untrained, sequence of movements. Here we report the results of transfer tests undertaken to test this proposal in 9-, 12-, and 17-year-olds after training in the finger-to-thumb opposition sequence (FOS) learning task. Our results show that the performance gains in the trained sequence partially transferred from the left, trained hand, to the untrained hand at 48-hours after a single training session in the three age-groups tested. However, there was very little transfer of the gains from the trained to the untrained, reversed, sequence performed by either hand. The results indicate sequence specific post-training gains in FOS performance, as opposed to a general improvement in performance of the individual, component, movements that comprised both the trained and untrained sequences. These results do not support the proposal that the reduced susceptibility to interference, in children before adolescence, reflects a difference in movement syntax representation after training.

  18. An Emotion-Enriched Context Influences the Effect of Action Observation on Cortical Excitability.

    PubMed

    Lagravinese, Giovanna; Bisio, Ambra; De Ferrari, Alessia Raffo; Pelosin, Elisa; Ruggeri, Piero; Bove, Marco; Avanzino, Laura

    2017-01-01

    Observing other people in action activates the "mirror neuron system" that serves for action comprehension and prediction. Recent evidence suggests that this function requires a high level codification triggered not only by components of motor behavior, but also by the environment where the action is embedded. An overlooked component of action perceiving is the one related to the emotional information provided by the context where the observed action takes place. Indeed, whether valence and arousal associated to an emotion might exert an influence on motor system activation during action observation has not been assessed so far. Here, cortico-spinal excitability of the left motor cortex was recorded in three groups of subjects. In the first condition, motor-evoked potential (MEPs) were recorded from a muscle involved in the grasping movement (i.e., abductor pollicis brevis, APB) while participants were watching the same reach-to-grasp movement embedded in contexts with negative emotional valence, but different levels of arousal: sadness (low arousal), and disgust (high arousal) ("Context plus Movement-APB" condition). In the second condition, MEPs were recorded from APB muscle while participants were observing static images representing the contexts in which the movement observed by participants in "Context plus Movement-APB" condition took place ("Context Only-APB" condition). Finally, in the third condition, MEPS were recorded from a muscle not involved in the grasping action, i.e., abductor digiti minimi, ADM, while participants were watching the same videos shown during the "Context plus Movement-APB" condition ("Context plus Movement-ADM" condition). Results showed a greater increase of cortical excitability only during the observation of the hand moving in the context eliciting disgust, and these changes were specific for the muscle involved in the observed action. Our findings show that the emotional context in which a movement occurs modulates motor resonance and that the combination of negative valence/high arousal drives the greater response in the observer's mirror neuron system in a strictly muscle specific fashion.

  19. On Born's Conjecture about Optimal Distribution of Charges for an Infinite Ionic Crystal

    NASA Astrophysics Data System (ADS)

    Bétermin, Laurent; Knüpfer, Hans

    2018-04-01

    We study the problem for the optimal charge distribution on the sites of a fixed Bravais lattice. In particular, we prove Born's conjecture about the optimality of the rock salt alternate distribution of charges on a cubic lattice (and more generally on a d-dimensional orthorhombic lattice). Furthermore, we study this problem on the two-dimensional triangular lattice and we prove the optimality of a two-component honeycomb distribution of charges. The results hold for a class of completely monotone interaction potentials which includes Coulomb-type interactions for d≥3 . In a more general setting, we derive a connection between the optimal charge problem and a minimization problem for the translated lattice theta function.

  20. [Life and activities of Chu Hyun Chik].

    PubMed

    Hong, Jeong Wan; Park, Hyoung Woo

    2008-06-01

    Chu Hyun Chik was one of those who graduated first from Jejungwon Medical School in 1908, and had carried on an independence movement as well as religious, educational, and social movement both as a doctor and a Christian. He opened the Inje Hospital in Sunch'on, North Pyeongan Province in 1909, and was put in prison on charges of being involved in Incident of '105 People' as he joined in Sinminhoe in which christians (Christians) frrom Gwanseo showed their initiative with 3.1 Movement as a momentum, he started to raise funds for an independence movement mainly in North Pyongan Province, as a councilor of the Ministry of Finance of Shanghai Provisional Government of Korea. After he moved into Andong, Manchuria, he continued to support the spread of an independence movement by connecting Shanghai Provisional Government of Korea with the country. In October, 1919, he came to Sanghai as an exile and lead diverse activities as a member of Shin Han young man party and one of the leading men of Korean Christendom, especially related to An Chang Ho and christians around him and joining in Hungsadan. In 1925 when he returned home, he opened the Dongje Hospital and devoted himself to the developments of religious, educational, and social movement as a president of YMCA, Sunch'on and an executive of a branch of Suyang Donguhoe in Sunch'on. By Incident of Suyang Donguhoe he was put in prison, resisting Japanese Imperialism and died in 1942.

  1. Carbon charge exchange analysis in the ITER-like wall environment.

    PubMed

    Menmuir, S; Giroud, C; Biewer, T M; Coffey, I H; Delabie, E; Hawkes, N C; Sertoli, M

    2014-11-01

    Charge exchange spectroscopy has long been a key diagnostic tool for fusion plasmas and is well developed in devices with Carbon Plasma-Facing Components. Operation with the ITER-like wall at JET has resulted in changes to the spectrum in the region of the Carbon charge exchange line at 529.06 nm and demonstrates the need to revise the core charge exchange analysis for this line. An investigation has been made of this spectral region in different plasma conditions and the revised description of the spectral lines to be included in the analysis is presented.

  2. Classical molecular dynamics simulations for non-equilibrium correlated plasmas

    NASA Astrophysics Data System (ADS)

    Ferri, S.; Calisti, A.; Talin, B.

    2017-03-01

    A classical molecular dynamics model was recently extended to simulate neutral multi-component plasmas where various charge states of the same atom and electrons coexist. It is used to investigate the plasma effects on the ion charge and on the ionization potential in dense plasmas. Different simulated statistical properties will show that the concept of isolated particles is lost in such correlated plasmas. The charge equilibration is discussed for a carbon plasma at solid density and investigation on the charge distribution and on the ionization potential depression (IPD) for aluminum plasmas is discussed with reference to existing experiments.

  3. ULF Waves and Diffusive Radial Transport of Charged Particles

    NASA Astrophysics Data System (ADS)

    Ali, Ashar Fawad

    The Van Allen radiation belts contain highly energetic particles which interact with a variety of plasma and magnetohydrodynamic (MHD) waves. Waves in the ultra low-frequency (ULF) range play an important role in the loss and acceleration of energetic particles. Considering the geometry of the geomagnetic field, charged particles trapped in the inner magnetosphere undergo three distinct types of periodic motions; an adiabatic invariant is associated with each type of motion. The evolution of the phase space density of charged particles in the magnetosphere in the coordinate space of the three adiabatic invariants is modeled by the Fokker-Planck equation. If we assume that the first two adiabatic invariants are conserved while the third invariant is violated, then the general Fokker-Planck equation reduces to a radial diffusion equation with the radial diffusion coefficient quantifying the rate of the radial diffusion of charged particles, including contributions from perturbations in both the magnetic and the electric fields. This thesis investigates two unanswered questions about ULF wave-driven radial transport of charged particles. First, how important are the ULF fluctuations in the magnetic field compared with the ULF fluctuations in the electric field in driving the radial diffusion of charged particles in the Earth's inner magnetosphere? It has generally been accepted that magnetic field perturbations dominate over electric field perturbations, but several recently published studies suggest otherwise. Second, what is the distribution of ULF wave power in azimuth, and how does ULF wave power depend upon radial distance and the level of geomagnetic activity? Analytic treatments of the diffusion coefficients generally assume uniform distribution of power in azimuth, but in situ measurements suggest that this may not be the case. We used the magnetic field data from the Combined Release and Radiation Effects Satellite (CRRES) and the electric and the magnetic field data from the Radiation Belt Storm Probes (RBSP) to compute the electric and the magnetic component of the radial diffusion coefficient using the Fei et al. [2006] formulation. We conclude that contrary to prior notions, the electric component is dominant in driving radial diffusion of charged particles in the Earth's inner magnetosphere instead of the magnetic component. The electric component can be up to two orders of magnitude larger than the magnetic component. In addition, we see that ULF wave power in both the electric and the magnetic fields has a clear dependence on Kp with wave power decreasing as radial distance decreases. For both fields, the noon sectors generally contain more ULF wave power than the dawn, dusk, and the midnight magnetic local time (MLT) sectors. There is no significant difference between ULF wave power in the dawn, dusk, and the midnight sectors.

  4. Spray Formation from a Charged Liquid Jet of a Dielectric Fluid

    NASA Astrophysics Data System (ADS)

    Doak, William; de Bellis, Victor; Chiarot, Paul; Microfluidics; Multiphase Flow Laboratory Team

    2017-11-01

    Atomization of a dielectric micro-jet is achieved via an electrohydrodynamic charge injection process. The atomizer is comprised of a grounded nozzle housing (ground electrode) and an internal probe (high voltage electrode) that is concentric with the emitting orifice. The internal probe is held at electric potentials ranging from 1-10 kV. A pressurized reservoir drives a dielectric fluid at a desired flow rate through the 100-micrometer diameter orifice. The fluid fills the cavity between the electrodes as it passes through the atomizer, impeding the transport of electrons. This process injects charge into the flowing fluid. Upon exiting the orifice, the emitted jet is highly charged and it deforms via a bending instability that is qualitatively similar to the behavior observed in the electrospinning of fibers. We observed bulging regions, or nodes, of highly charged fluid forming along the bent, rotating jet. These nodes separate into highly charged droplets that emit satellite droplets. The remaining ligaments break up due to capillarity in a process that produces additional satellites. All of the droplets possess a normal (inertial) and radial (electrically-driven) momentum component. The radial component is responsible for the formation of a conical spray envelope. Our research focuses on the jet, its break up, and the droplet dynamics of this system. This research supported by the American Chemical Society.

  5. A rational approach towards enhancing solar water splitting: a case study of Au-RGO/N-RGO-TiO2.

    PubMed

    Bharad, Pradnya A; Sivaranjani, Kumarsrinivasan; Gopinath, Chinnakonda S

    2015-07-07

    A rational approach was employed to enhance the solar water splitting (SWS) efficiency by systematically combining various important factors that helps to increase the photocatalytic activity. The rational approach includes four important parameters, namely, charge generation through simulated sunlight absorption, charge separation and diffusion, charge utilization through redox reaction, and the electronic integration of all of the above three factors. The complexity of the TiO2 based catalyst and its SWS activity was increased systematically by adding reduced graphene oxide (RGO) or N-doped RGO and/or nanogold. Au-N-RGO-TiO2 shows the maximum apparent quantum yield (AQY) of 2.46% with a H2 yield (525 μmol g(-1) h(-1)) from aqueous methanol, and overall water splitting activity (22 μmol g(-1) h(-1); AQY = 0.1%) without any sacrificial agent under one sun conditions. This exercise helps to understand the factors which help to enhance the SWS activity. Activity enhancement was observed when there is synergy among the components, especially the simulated sunlight absorption (or one sun conditions), charge separation/conduction and charge utilization. Electronic integration among the components provides the synergy for efficient solar light harvesting. In our opinion, the above synergy helps to increase the overall utilization of charge carriers towards the higher activity.

  6. Interdisciplinary collaboration in the use of a music-with-movement intervention to promote the wellbeing of people with dementia and their families: Development of an evidence-based intervention protocol.

    PubMed

    Lai, Claudia K Y; Lai, Daniel L L; Ho, Jacqueline S C; Wong, Kitty K Y; Cheung, Daphne S K

    2016-03-01

    The music-with-movement intervention is particularly suitable for people with dementia because their gross motor ability is preserved until the later stage of dementia. This study examines the effect of music-with-movement on reducing anxiety, sleep disturbances, and improving the wellbeing of people with dementia. This paper reports the first stage of the study - developing the intervention protocol that staff can use to teach family caregivers. A registered music therapist developed a music-with-movement protocol and taught staff of two social service centers over five weekly 1.5 h sessions, with center-in-charges (social workers and occupational therapists) and our research team joining these sessions to provide comments from their professional perspective. Each discipline had different expectations about the content; therefore, numerous meetings and discussions were held to bridge these differences and fine-tune the protocol. Few healthcare professionals doubt the merits of interdisciplinary collaboration at all levels of health promotion. In practice, interdisciplinary collaboration is complex and requires commitment. Openness and persistence is required from all stakeholders to achieve a successful intervention for consumers. © 2015 Wiley Publishing Asia Pty Ltd.

  7. Clean Plate Movement and Empowerment of Civil Leadership for Developing Sustainable Life Style

    NASA Astrophysics Data System (ADS)

    Choi, Kwang Soo; Kim, Seung Woo; Jung, Sin Yeong; Choi, Byeong Dae; Mun, Sung Joo; Lee, Dong Ho

    This paper describes the backgrounds, process, outcomes, and characteristics of "Clean plate" movement carried out in Korea. That was aimed at the reduction of food waste production as well as developing and disseminating a sustainable life style. Excessive foods are wasted every year in Korea and it reaches to 270 g/day/capita. Clean plate movement was started 2004 and over 1.5 million peoples, which is 3% of the population, did pledge for 15 months. Over one million students participated in the pledge campaign and they became conscious about the importance of food and get sustainable eating habit in which they don't leave any food behind. While the campaign carried out successfully, civil volunteers of a Buddhist NGO EcoBuddha, who were the housewives mainly, were in charge of the whole processes and were trained as civil leaders for sustainable development. They awakened to the interrelationship between human being and the nature, based on a series of Buddhist lectures and self practicing asceticism. Clean plate movement as an educational program for sustainable development has various factors in three pillars of environmental, economical and socio-cultural aspects for EfSD.

  8. Reconstruction of shifting elbow joint compliant characteristics during fast and slow movements.

    PubMed

    Latash, M L; Gottlieb, G L

    1991-01-01

    The purpose of this study was to experimentally investigate the applicability of the equilibrium-point hypothesis to the dynamics of single-joint movements. Subjects were trained to perform relatively slow (movement time 600-1000 ms) or fast (movement time 200-300 ms) single-joint elbow flexion movements against a constant extending torque bias. They were instructed to reproduce the same time pattern of central motor command for a series of movements when the external torque could slowly and unpredictably increase, decrease, or remain constant. For fast movements, the total muscle torque was calculated as a sum of external and inertial components. Analysis of the data allowed reconstruction of the elbow joint compliant characteristics at different times during execution of the learned motor command. "Virtual" trajectories of the movements, representing time-varying changes in a central control parameter, were reconstructed and compared with the "actual" trajectories. For slow movements, the actual trajectories lagged behind the virtual ones. There were no consistent changes in the joint stiffness during slow movements. Similar analysis of experiments without voluntary movements demonstrated a lack of changes in the central parameters, supporting the assumption that the subjects were able to keep the same central motor command in spite of externally imposed unexpected torque perturbations. For the fast movements, the virtual trajectories were N-shaped, and the joint stiffness demonstrated a considerable increase near the middle of the movement. These findings contradict an hypothesis of monotonic joint compliant characteristic translation at a nearly constant rate during such movements.

  9. Structures for attaching or sealing a space between components having different coefficients or rates of thermal expansion

    DOEpatents

    Corman, Gregory Scot; Dean, Anthony John; Tognarelli, Leonardo; Pecchioli, Mario

    2005-06-28

    A structure for attaching together or sealing a space between a first component and a second component that have different rates or amounts of dimensional change upon being exposed to temperatures other than ambient temperature. The structure comprises a first attachment structure associated with the first component that slidably engages a second attachment structure associated with the second component, thereby allowing for an independent floating movement of the second component relative to the first component. The structure can comprise split rings, laminar rings, or multiple split rings.

  10. Finite-Size Effects in Non-neutral Two-Dimensional Coulomb Fluids

    NASA Astrophysics Data System (ADS)

    Šamaj, Ladislav

    2017-07-01

    Thermodynamic potential of a neutral two-dimensional (2D) Coulomb fluid, confined to a large domain with a smooth boundary, exhibits at any (inverse) temperature β a logarithmic finite-size correction term whose universal prefactor depends only on the Euler number of the domain and the conformal anomaly number c=-1. A minimal free boson conformal field theory, which is equivalent to the 2D symmetric two-component plasma of elementary ± e charges at coupling constant Γ =β e^2, was studied in the past. It was shown that creating a non-neutrality by spreading out a charge Qe at infinity modifies the anomaly number to c(Q,Γ ) = - 1 + 3Γ Q^2. Here, we study the effect of non-neutrality on the finite-size expansion of the free energy for another Coulomb fluid, namely the 2D one-component plasma (jellium) composed of identical pointlike e-charges in a homogeneous background surface charge density. For the disk geometry of the confining domain we find that the non-neutrality induces the same change of the anomaly number in the finite-size expansion. We derive this result first at the free-fermion coupling Γ ≡ β e^2=2 and then, by using a mapping of the 2D one-component plasma onto an anticommuting field theory formulated on a chain, for an arbitrary even coupling constant.

  11. CHARGED DUST GRAIN DYNAMICS SUBJECT TO SOLAR WIND, POYNTING–ROBERTSON DRAG, AND THE INTERPLANETARY MAGNETIC FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lhotka, Christoph; Bourdin, Philippe; Narita, Yasuhito, E-mail: christoph.lhotka@oeaw.ac.at, E-mail: philippe.bourdin@oeaw.ac.at, E-mail: yasuhito.narita@oeaw.ac.at

    We investigate the combined effect of solar wind, Poynting–Robertson drag, and the frozen-in interplanetary magnetic field on the motion of charged dust grains in our solar system. For this reason, we derive a secular theory of motion by the means of an averaging method and validate it with numerical simulations of the unaveraged equations of motions. The theory predicts that the secular motion of charged particles is mainly affected by the z -component of the solar magnetic axis, or the normal component of the interplanetary magnetic field. The normal component of the interplanetary magnetic field leads to an increase ormore » decrease of semimajor axis depending on its functional form and sign of charge of the dust grain. It is generally accepted that the combined effects of solar wind and photon absorption and re-emmision (Poynting–Robertson drag) lead to a decrease in semimajor axis on secular timescales. On the contrary, we demonstrate that the interplanetary magnetic field may counteract these drag forces under certain circumstances. We derive a simple relation between the parameters of the magnetic field, the physical properties of the dust grain, as well as the shape and orientation of the orbital ellipse of the particle, which is a necessary conditions for the stabilization in semimajor axis.« less

  12. Resonance Raman and excitation energy dependent charge transfer mechanism in halide-substituted hybrid perovskite solar cells.

    PubMed

    Park, Byung-wook; Jain, Sagar M; Zhang, Xiaoliang; Hagfeldt, Anders; Boschloo, Gerrit; Edvinsson, Tomas

    2015-02-24

    Organo-metal halide perovskites (OMHPs) are materials with attractive properties for optoelectronics. They made a recent introduction in the photovoltaics world by methylammonium (MA) lead triiodide and show remarkably improved charge separation capabilities when chloride and bromide are added. Here we show how halide substitution in OMHPs with the nominal composition CH3NH3PbI2X, where X is I, Br, or Cl, influences the morphology, charge quantum yield, and local interaction with the organic MA cation. X-ray diffraction and photoluminescence data demonstrate that halide substitution affects the local structure in the OMHPs with separate MAPbI3 and MAPbCl3 phases. Raman spectroscopies as well as theoretical vibration calculations reveal that this at the same time delocalizes the charge to the MA cation, which can liberate the vibrational movement of the MA cation, leading to a more adaptive organic phase. The resonance Raman effect together with quantum chemical calculations is utilized to analyze the change in charge transfer mechanism upon electronic excitation and gives important clues for the mechanism of the much improved photovoltage and photocurrent also seen in the solar cell performance for the materials when chloride compounds are included in the preparation.

  13. Electrostatic attraction of charged drops of water inside dropwise cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shavlov, A. V.; Tyumen State Oil and Gas University, 38, Volodarskogo Str., Tyumen 625000; Dzhumandzhi, V. A.

    2013-08-15

    Based on the analytical solution of the Poisson-Boltzmann equation, we demonstrate that inside the electrically neutral system of charges an electrostatic attraction can occur between the like-charged particles, where charge Z ≫ 1 (in terms of elementary charge) and radius R > 0, whereas according to the literature, only repulsion is possible inside non-electrically neutral systems. We calculate the free energy of the charged particles of water inside a cluster and demonstrate that its minimum is when the interdroplet distance equals several Debye radii defined based on the light plasma component. The deepest minimum depth is in a cluster withmore » close spatial packing of drops by type, in a face-centered cubic lattice, if almost all the electric charge of one sign is concentrated on the drops and that of the other sign is concentrated on the light compensation carriers of charge, where the charge moved by equilibrium carriers is rather small.« less

  14. Virtual trajectories of single-joint movements performed under two basic strategies.

    PubMed

    Latash, M L; Gottlieb, G L

    1992-01-01

    The framework of the equilibrium point hypothesis has been used to analyse motor control processes for single-joint movements. Virtual trajectories and joint stiffness were reconstructed for different movement speeds and distances when subjects were instructed either to move "as fast as possible" or to intentionally vary movement speed. These instructions are assumed to be associated with similar or different rates of change of hypothetical central control variables (corresponding to the speed-sensitive and speed-insensitive strategies). The subjects were trained to perform relatively slow, moderately fast and very fast (nominal movement times 800, 400 and 250 ms) single-joint elbow flexion movements against a constant extending torque bias. They were instructed to reproduce the motor command for a series of movements while ignoring possible changes in the external torque which could slowly and unpredictably increase, decrease, or remain constant. The total muscle torque was calculated as a sum of external and inertial components. Fast movements over different distances were made with the speed-insensitive strategy. They were characterized by an increase in joint stiffness near the midpoint of the movements which was relatively independent of movement amplitude. Their virtual trajectories had a non-monotonic N-shape. All three arms of the N-shape scaled with movement amplitude. Movements over one distance at different speeds were made with a speed-sensitive strategy. They demonstrated different patterns of virtual trajectories and joint stiffness that depended on movement speed. The N-shape became less apparent for moderately fast movements and virtually disappeared for the slow movements. Slow movements showed no visible increase in joint stiffness.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. How do octopuses use their arms?

    PubMed

    Mather, J A

    1998-09-01

    A taxonomy of the movement patterns of the 8 flexible arms of octopuses is constructed. Components consist of movements of the arm itself, the ventral suckers and their stalks, as well as the relative position of arms and the skin web between them. Within 1 arm, combinations of components result in a variety of behaviors. At the level of all arms, 1 group of behaviors is described as postures, on the basis of the spread of all arms and the web to make a 2-dimensional surface whose position differs in the 3rd dimension. Another group of arm behaviors is actions, more or less coordinated and involving several to all arms. Arm control appears to be based on radial symmetry, relative equipotentiality of all arms, relative independence of each arm, and separability of components within the arm. The types and coordination of arm behaviors are discussed with relationship to biomechanical limits, muscle structures, and neuronal programming.

  16. Day-Ahead Crude Oil Price Forecasting Using a Novel Morphological Component Analysis Based Model

    PubMed Central

    Zhu, Qing; Zou, Yingchao; Lai, Kin Keung

    2014-01-01

    As a typical nonlinear and dynamic system, the crude oil price movement is difficult to predict and its accurate forecasting remains the subject of intense research activity. Recent empirical evidence suggests that the multiscale data characteristics in the price movement are another important stylized fact. The incorporation of mixture of data characteristics in the time scale domain during the modelling process can lead to significant performance improvement. This paper proposes a novel morphological component analysis based hybrid methodology for modeling the multiscale heterogeneous characteristics of the price movement in the crude oil markets. Empirical studies in two representative benchmark crude oil markets reveal the existence of multiscale heterogeneous microdata structure. The significant performance improvement of the proposed algorithm incorporating the heterogeneous data characteristics, against benchmark random walk, ARMA, and SVR models, is also attributed to the innovative methodology proposed to incorporate this important stylized fact during the modelling process. Meanwhile, work in this paper offers additional insights into the heterogeneous market microstructure with economic viable interpretations. PMID:25061614

  17. Modeling the Scheduling of Eye Movements and Manual Responses in Performing a Sequence of Discrete Tasks

    NASA Technical Reports Server (NTRS)

    Wu, Shu-Chieh; Remington, Roger W.; Lewis, Richard

    2006-01-01

    Common tasks in daily life are often accomplished by a sequence of actions that interleave information acquisition through the eyes and action execution by the hands. How are eye movements coordinated with the release of manual responses and how may their coordination be represented at the level of component mental operations? We have previously presented data from a typing-like task requiring separate choice responses to a series of five stimuli. We found a consistent pattern of results in both motor and ocular timing, and hypothesized possible relationships among underlying components. Here we report a model of that task, which demonstrates how the observed timing of eye movements to successive stimuli could be accounted for by assuming systems: an open-loop system generating saccades at a periodic rate, and a closed-loop system commanding a saccade based on stimulus processing. We relate this model to models of reading and discuss the motivation for dual control.

  18. Natural versus anthropogenic subsidence of Venice.

    PubMed

    Tosi, Luigi; Teatini, Pietro; Strozzi, Tazio

    2013-09-26

    We detected land displacements of Venice by Persistent Scatterer Interferometry using ERS and ENVISAT C-band and TerraSAR-X and COSMO-SkyMed X-band acquisitions over the periods 1992-2010 and 2008-2011, respectively. By reason of the larger observation period, the C-band sensors was used to quantify the long-term movements, i.e. the subsidence component primarily ascribed to natural processes. The high resolution X-band satellites reveal a high effectiveness to monitor short-time movements as those induced by human activities. Interpolation of the two datasets and removal of the C-band from the X-band map allows discriminating between the natural and anthropogenic components of the subsidence. A certain variability characterizes the natural subsidence (0.9 ± 0.7 mm/yr), mainly because of the heterogeneous nature and age of the lagoon subsoil. The 2008 displacements show that man interventions are responsible for movements ranging from -10 to 2 mm/yr. These displacements are generally local and distributed along the margins of the city islands.

  19. Day-ahead crude oil price forecasting using a novel morphological component analysis based model.

    PubMed

    Zhu, Qing; He, Kaijian; Zou, Yingchao; Lai, Kin Keung

    2014-01-01

    As a typical nonlinear and dynamic system, the crude oil price movement is difficult to predict and its accurate forecasting remains the subject of intense research activity. Recent empirical evidence suggests that the multiscale data characteristics in the price movement are another important stylized fact. The incorporation of mixture of data characteristics in the time scale domain during the modelling process can lead to significant performance improvement. This paper proposes a novel morphological component analysis based hybrid methodology for modeling the multiscale heterogeneous characteristics of the price movement in the crude oil markets. Empirical studies in two representative benchmark crude oil markets reveal the existence of multiscale heterogeneous microdata structure. The significant performance improvement of the proposed algorithm incorporating the heterogeneous data characteristics, against benchmark random walk, ARMA, and SVR models, is also attributed to the innovative methodology proposed to incorporate this important stylized fact during the modelling process. Meanwhile, work in this paper offers additional insights into the heterogeneous market microstructure with economic viable interpretations.

  20. The effect of spin in swing bowling in cricket: model trajectories for spin alone

    NASA Astrophysics Data System (ADS)

    Robinson, Garry; Robinson, Ian

    2015-02-01

    In ‘swing’ bowling, as employed by fast and fast-medium bowlers in cricket, back-spin along the line of the seam is normally applied in order to keep the seam vertical and to provide stability against ‘wobble’ of the seam. Whilst spin is normally thought of as primarily being the slow bowler's domain, the spin applied by the swing bowler has the side-effect of generating a lift or Magnus force. This force, depending on the orientation of the seam and hence that of the back-spin, can have a side-ways component as well as the expected vertical ‘lift’ component. The effect of the spin itself, in influencing the trajectory of the fast bowler's delivery, is normally not considered, presumably being thought of as negligible. The purpose of this paper is to investigate, using calculated model trajectories, the amount of side-ways movement due to the spin and to see how this predicted movement compares with the total observed side-ways movement. The size of the vertical lift component is also estimated. It is found that, although the spin is an essential part of the successful swing bowler's delivery, the amount of side-ways movement due to the spin itself amounts to a few centimetres or so, and is therefore small, but perhaps not negligible, compared to the total amount of side-ways movement observed. The spin does, however, provide a considerable amount of lift compared to the equivalent delivery bowled without spin, altering the point of pitching by up to 3 m, a very large amount indeed. Thus, for example, bowling a ball with the seam pointing directly down the pitch and not designed to swing side-ways at all, but with the amount of back-spin varied, could provide a very powerful additional weapon in the fast bowler's arsenal. So-called ‘sling bowlers’, who use a very low arm action, can take advantage of spin since effectively they can apply side-spin to the ball, giving rise to a large side-ways movement, ˜ 20{}^\\circ cm or more, which certainly is significant. For a given amount of spin the amount of side-ways movement increases as the bowler's delivery arm becomes more horizontal. This technique could also be exploited by normal spin bowlers as well as swing bowlers.

Top