Unconventional charge order in a co-doped high-Tc superconductor
Pelc, D.; Vučković, M.; Grafe, H. -J.; Baek, S. -H.; Požek, M.
2016-01-01
Charge-stripe order has recently been established as an important aspect of cuprate high-Tc superconductors. However, owing to the complex interplay between competing phases and the influence of disorder, it is unclear how it emerges from the parent high-temperature state. Here we report on the discovery of an unconventional ordered phase between charge-stripe order and (pseudogapped) metal in the cuprate La1.8−xEu0.2SrxCuO4. We use three complementary experiments—nuclear quadrupole resonance, nonlinear conductivity and specific heat—to demonstrate that the order appears through a sharp phase transition and exists in a dome-shaped region of the phase diagram. Our results imply that the new phase is a state, which preserves translational symmetry: a charge nematic. We thus resolve the process of charge-stripe development in cuprates, show that this nematic phase is distinct from high-temperature pseudogap and establish a link with other strongly correlated electronic materials with prominent nematic order. PMID:27605152
Cu nuclear magnetic resonance study of charge and spin stripe order in La 1.875 Ba 0.125 CuO 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelc, D.; Grafe, H. -J.; Gu, G. D.
In this paper, we present a Cu nuclear magnetic/quadrupole resonance study of the charge stripe ordered phase of LBCO, with detection of previously unobserved (“wiped-out”) signal. We show that spin-spin and spin-lattice relaxation rates are strongly enhanced in the charge ordered phase, explaining the apparent signal decrease in earlier investigations. The enhancement is caused by magnetic, rather than charge fluctuations, conclusively confirming the long-suspected assumption that spin fluctuations are responsible for the wipeout effect. Observation of the full Cu signal enables insight into the spin and charge dynamics of the stripe-ordered phase, and measurements in external magnetic fields provide informationmore » on the nature and suppression of spin fluctuations associated with charge order. Lastly, we find glassy spin dynamics, in agreement with previous work, and incommensurate static charge order with charge modulation amplitude similar to other cuprate compounds, suggesting that the amplitude of charge stripes is universal in the cuprates.« less
Cu nuclear magnetic resonance study of charge and spin stripe order in La 1.875 Ba 0.125 CuO 4
Pelc, D.; Grafe, H. -J.; Gu, G. D.; ...
2017-02-15
In this paper, we present a Cu nuclear magnetic/quadrupole resonance study of the charge stripe ordered phase of LBCO, with detection of previously unobserved (“wiped-out”) signal. We show that spin-spin and spin-lattice relaxation rates are strongly enhanced in the charge ordered phase, explaining the apparent signal decrease in earlier investigations. The enhancement is caused by magnetic, rather than charge fluctuations, conclusively confirming the long-suspected assumption that spin fluctuations are responsible for the wipeout effect. Observation of the full Cu signal enables insight into the spin and charge dynamics of the stripe-ordered phase, and measurements in external magnetic fields provide informationmore » on the nature and suppression of spin fluctuations associated with charge order. Lastly, we find glassy spin dynamics, in agreement with previous work, and incommensurate static charge order with charge modulation amplitude similar to other cuprate compounds, suggesting that the amplitude of charge stripes is universal in the cuprates.« less
Phase diagram of the underdoped cuprates at high magnetic field
NASA Astrophysics Data System (ADS)
Chakraborty, Debmalya; Morice, Corentin; Pépin, Catherine
2018-06-01
The experimentally measured phase diagram of cuprate superconductors in the temperature-applied magnetic field plane illuminates key issues in understanding the physics of these materials. At low temperature, the superconducting state gives way to a long-range charge order with increasing magnetic field; both the orders coexist in a small intermediate region. The charge order transition is strikingly insensitive to temperature and quickly reaches a transition temperature close to the zero-field superconducting Tc. We argue that such a transition along with the presence of the coexisting phase is difficult to obtain in a weak coupling competing orders formalism. We demonstrate that for some range of parameters there is an enlarged symmetry of the strongly coupled charge and superconducting orders in the system depending on their relative masses and the coupling strength of the two orders. We establish that this sharp switch from the superconducting phase to the charge order phase can be understood in the framework of a composite SU(2) order parameter comprising the charge and superconducting orders. Finally, we illustrate that there is a possibility of the coexisting phase of the competing charge and superconducting orders only when the SU(2) symmetry between them is weakly broken due to biquadratic terms in the free energy. The relation of this sharp transition to the proximity to the pseudogap quantum critical doping is also discussed.
High field charge order across the phase diagram of YBa2Cu3Oy
NASA Astrophysics Data System (ADS)
Laliberté, Francis; Frachet, Mehdi; Benhabib, Siham; Borgnic, Benjamin; Loew, Toshinao; Porras, Juan; Le Tacon, Mathieu; Keimer, Bernhard; Wiedmann, Steffen; Proust, Cyril; LeBoeuf, David
2018-03-01
In hole-doped cuprates there is now compelling evidence that inside the pseudogap phase, charge order breaks translational symmetry. In YBa2Cu3Oy charge order emerges in two steps: a 2D order found at zero field and at high temperature inside the pseudogap phase, and a 3D order that is superimposed below the superconducting transition Tc when superconductivity is weakened by a magnetic field. Several issues still need to be addressed such as the effect of disorder, the relationship between those charge orders and their respective impact on the Fermi surface. Here, we report high magnetic field sound velocity measurements of the 3D charge order in underdoped YBa2Cu3Oy in a large doping range. We found that the 3D charge order exists over the same doping range as its 2D counterpart, indicating an intimate connection between the two distinct orders. Moreover, our data suggest that 3D charge order has only a limited impact on low-lying electronic states of YBa2Cu3Oy.
Charge ordered ferromagnetic phase in La_0.5Ca_0.5MnO_3
NASA Astrophysics Data System (ADS)
Mathur, Neil
2003-03-01
Charge order and ferromagnetism should be mutually exclusive in the manganites, because ferromagnetism in these materials is normally promoted by delocalised electrons. Surprisingly, a phase that is both strongly charge ordered and fully ferromagnetic is observed [1] at 90 K in La_0.5Ca_0.5MnO_3, using Fresnel imaging, dark-field TEM and electron holography. This new phase coexists with the two low temperature phases that were already known to coexist in La_0.5Ca_0.5MnO_3. (One of these expected phases is ferromagnetic but not charge-ordered, the other is charge-ordered but not ferromagnetic.) Strain fields could be responsible for the novel microscopic texture presented here - perhaps creating conditions in which nearest neighbour hopping is sufficient to promote ferromagnetism. Similarly, strain fields are believed to cause sub-micron phase separation in the manganites. It therefore seems that the manganites can adapt to their environments over a wide range of length scales [2]. [1] http://xxx.lanl.gov/abs/cond-mat/0209436 [2] Neil Mathur and Peter Littlewood, Physics Today, early 2003.
NASA Astrophysics Data System (ADS)
Nonoyama, Yoshito; Maekawa, Yukiko; Kobayashi, Akito; Suzumura, Yoshikazu; Yamada, Jun-ichi
2008-10-01
Mechanisms of superconductivity in quasi-two-dimensional organic conductors have been investigated using an extended Hubbard model by using the transfer energies between BDA-TTP molecules for β-(BDA-TTP)2I3 based on the X-ray experiment data and the extended Hückel calculation. We obtain several mean-field solutions with charge orderings which may represent short-range orderings or low-energy fluctuations in the low-dimensional electronic system. In the pressure-temperature phase diagram, a charge ordered metal state almost degenerates with a normal metal state between an insulating phase with charge ordering and the normal metal phase. Using the random phase approximation (RPA) and the linearized gap equation, the transition temperature of the superconducting state is estimated for the charge-ordered metal state and the normal metal state. It is found that transition temperature of the superconductivity induced by spin fluctuations in the charge-ordered metal state is much higher than that of the normal metal state and that the superconductivity in the charge-ordered metal state is the gapless d-wave. This suggests that the short range charge ordering may also contribute to an enhancement of spin-fluctuation-mediated superconductivity. The difference in the superconducting states between β-(BDA-TTP)2I3 and β-(BDA-TTP)2SbF6 are briefly discussed.
El Baggari, Ismail; Savitzky, Benjamin H; Admasu, Alemayehu S; Kim, Jaewook; Cheong, Sang-Wook; Hovden, Robert; Kourkoutis, Lena F
2018-02-13
Incommensurate charge order in hole-doped oxides is intertwined with exotic phenomena such as colossal magnetoresistance, high-temperature superconductivity, and electronic nematicity. Here, we map, at atomic resolution, the nature of incommensurate charge-lattice order in a manganite using scanning transmission electron microscopy at room temperature and cryogenic temperature ([Formula: see text]93 K). In diffraction, the ordering wave vector changes upon cooling, a behavior typically associated with incommensurate order. However, using real space measurements, we discover that the ordered state forms lattice-locked regions over a few wavelengths interspersed with phase defects and changing periodicity. The cations undergo picometer-scale ([Formula: see text]6 pm to 11 pm) transverse displacements, suggesting that charge-lattice coupling is strong. We further unearth phase inhomogeneity in the periodic lattice displacements at room temperature, and emergent phase coherence at 93 K. Such local phase variations govern the long-range correlations of the charge-ordered state and locally change the periodicity of the modulations, resulting in wave vector shifts in reciprocal space. These atomically resolved observations underscore the importance of lattice coupling and phase inhomogeneity, and provide a microscopic explanation for putative "incommensurate" order in hole-doped oxides. Copyright © 2018 the Author(s). Published by PNAS.
NASA Astrophysics Data System (ADS)
Montorsi, Arianna; Dolcini, Fabrizio; Iotti, Rita C.; Rossi, Fausto
2017-06-01
The low energy behavior of a huge variety of one-dimensional interacting spinful fermionic systems exhibits spin-charge separation, described in the continuum limit by two sine-Gordon models decoupled in the charge and spin channels. Interaction is known to induce, besides the gapless Luttinger liquid phase, eight possible gapped phases, among which are the Mott, Haldane, charge-/spin-density, and bond-ordered wave insulators, and the Luther Emery liquid. Here we prove that some of these physically distinct phases have nontrivial topological properties, notably the presence of degenerate protected edge modes with fractionalized charge/spin. Moreover, we show that the eight gapped phases are in one-to-one correspondence with the symmetry-protected topological (SPT) phases classified by group cohomology theory in the presence of particle-hole symmetry P. The latter result is also exploited to characterize SPT phases by measurable nonlocal order parameters which follow the system evolution to the quantum phase transition. The implications on the appearance of exotic orders in the class of microscopic Hubbard Hamiltonians, possibly without P symmetry at higher energies, are discussed.
Impurity Induced Phase Competition and Supersolidity
NASA Astrophysics Data System (ADS)
Karmakar, Madhuparna; Ganesh, R.
2017-12-01
Several material families show competition between superconductivity and other orders. When such competition is driven by doping, it invariably involves spatial inhomogeneities which can seed competing orders. We study impurity-induced charge order in the attractive Hubbard model, a prototypical model for competition between superconductivity and charge density wave order. We show that a single impurity induces a charge-ordered texture over a length scale set by the energy cost of the competing phase. Our results are consistent with a strong-coupling field theory proposed earlier in which superconducting and charge order parameters form components of an SO(3) vector field. To discuss the effects of multiple impurities, we focus on two cases: correlated and random distributions. In the correlated case, the CDW puddles around each impurity overlap coherently leading to a "supersolid" phase with coexisting pairing and charge order. In contrast, a random distribution of impurities does not lead to coherent CDW formation. We argue that the energy lowering from coherent ordering can have a feedback effect, driving correlations between impurities. This can be understood as arising from an RKKY-like interaction, mediated by impurity textures. We discuss implications for charge order in the cuprates and doped CDW materials such as NbSe2.
NASA Astrophysics Data System (ADS)
Li, Hui-Ling; Feng, Zhong-Wen; Zu, Xiao-Tao
2018-01-01
With motivation by holography, employing black hole entropy, two-point connection function and entanglement entropy, we show that, for the higher-dimensional Anti-de Sitter charged hairy black hole in the fixed charged ensemble, a Van der Waals-like phase transition can be observed. Furthermore, based on the Maxwell equal-area construction, we check numerically the equal-area law for a first order phase transition in order to further characterize the Van der Waals-like phase transition.
NASA Astrophysics Data System (ADS)
Pillay, Jason C.; McCulloch, Ian P.
2018-05-01
The effect of a local Kondo coupling and Hubbard interaction on the topological phase of the one-dimensional topological Kondo insulator (TKI) is numerically investigated using the infinite matrix-product state density-matrix renormalization group algorithm. The ground state of the TKI is a symmetry-protected topological (SPT) phase protected by inversion symmetry. It is found that on its own, the Hubbard interaction that tends to force fermions into a one-charge per site order is insufficient to destroy the SPT phase. However, when the local Kondo Hamiltonian term that favors a topologically trivial ground state with a one-charge per site order is introduced, the Hubbard interaction assists in the destruction of the SPT phase. This topological phase transition occurs in the charge sector where the correlation length of the charge excitation diverges while the correlation length of the spin excitation remains finite. The critical exponents, central charge, and the phase diagram separating the SPT phase from the topologically trivial phase are presented.
Bending and breaking of stripes in a charge ordered manganite.
Savitzky, Benjamin H; El Baggari, Ismail; Admasu, Alemayehu S; Kim, Jaewook; Cheong, Sang-Wook; Hovden, Robert; Kourkoutis, Lena F
2017-12-01
In charge-ordered phases, broken translational symmetry emerges from couplings between charge, spin, lattice, or orbital degrees of freedom, giving rise to remarkable phenomena such as colossal magnetoresistance and metal-insulator transitions. The role of the lattice in charge-ordered states remains particularly enigmatic, soliciting characterization of the microscopic lattice behavior. Here we directly map picometer scale periodic lattice displacements at individual atomic columns in the room temperature charge-ordered manganite Bi 0.35 Sr 0.18 Ca 0.47 MnO 3 using aberration-corrected scanning transmission electron microscopy. We measure transverse, displacive lattice modulations of the cations, distinct from existing manganite charge-order models. We reveal locally unidirectional striped domains as small as ~5 nm, despite apparent bidirectionality over larger length scales. Further, we observe a direct link between disorder in one lattice modulation, in the form of dislocations and shear deformations, and nascent order in the perpendicular modulation. By examining the defects and symmetries of periodic lattice displacements near the charge ordering phase transition, we directly visualize the local competition underpinning spatial heterogeneity in a complex oxide.
Unconventional slowing down of electronic recovery in photoexcited charge-ordered La 1/3Sr 2/3FeO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yi; Hoffman, Jason; Rowland, Clare E.
Ordered electronic phases are intimately related to emerging phenomena such as high Tc superconductivity and colossal magnetoresistance. The coupling of electronic charge with other degrees of freedom such as lattice and spin are of central interest in correlated systems. Their correlations have been intensively studied from femtosecond to picosecond time scales, while the dynamics of ordered electronic phases beyond nanoseconds are usually assumed to follow a trivia thermally driven recovery. Here, we report an unusual slowing down of electronic phases across a first-order phase transition, far beyond thermal relaxation time. Following optical excitation, the recovery time of both transient opticalmore » reflectivity and x-ray diffraction intensity from a charge-ordered superstructure in a La 1/3Sr 2/3FeO 3 thin film increases by orders of magnitude longer than the independently measured lattice cooling time when the sample temperature approaches the phase transition temperature. The combined experimental and theoretical investigations show that the slowing down of electronic recovery corresponds to the pseudo-critical dynamics that originates from magnetic interactions close to a weakly first-order phase transition. As a result, this extraordinary long electronic recovery time exemplifies an interplay of ordered electronic phases with magnetism beyond thermal processes in correlated systems.« less
Unconventional slowing down of electronic recovery in photoexcited charge-ordered La 1/3Sr 2/3FeO 3
Zhu, Yi; Hoffman, Jason; Rowland, Clare E.; ...
2018-05-04
Ordered electronic phases are intimately related to emerging phenomena such as high Tc superconductivity and colossal magnetoresistance. The coupling of electronic charge with other degrees of freedom such as lattice and spin are of central interest in correlated systems. Their correlations have been intensively studied from femtosecond to picosecond time scales, while the dynamics of ordered electronic phases beyond nanoseconds are usually assumed to follow a trivia thermally driven recovery. Here, we report an unusual slowing down of electronic phases across a first-order phase transition, far beyond thermal relaxation time. Following optical excitation, the recovery time of both transient opticalmore » reflectivity and x-ray diffraction intensity from a charge-ordered superstructure in a La 1/3Sr 2/3FeO 3 thin film increases by orders of magnitude longer than the independently measured lattice cooling time when the sample temperature approaches the phase transition temperature. The combined experimental and theoretical investigations show that the slowing down of electronic recovery corresponds to the pseudo-critical dynamics that originates from magnetic interactions close to a weakly first-order phase transition. As a result, this extraordinary long electronic recovery time exemplifies an interplay of ordered electronic phases with magnetism beyond thermal processes in correlated systems.« less
Pressure-induced amorphization of charge ordered spinel AlV{sub 2}O{sub 4} at low temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malavi, Pallavi S., E-mail: malavips@barc.gov.in; Karmakar, S., E-mail: malavips@barc.gov.in; Sharma, S. M.
2014-04-24
Structural properties of charge ordered spinel AlV{sub 2}O{sub 4} have been investigated under high pressure at low temperature (80K) by synchrotron based x-ray diffraction measurements. It is observed that upon increasing pressure the structure becomes progressively disordered due to the distortion of the AlO{sub 4} tetrahedral unit and undergoes amorphization above ∼12 GPa. While releasing pressure, the rhombohedral phase is only partially recovered at a much lower pressure (below 5 GPa). Within the stability of the rhombohedral phase, the distortion in the vanadium heptamer increases monotonically with pressure, suggesting enhanced charge ordering. This result is in sharp contrast with themore » recent observation of pressure-induced frustration in the charge ordered state leading to structural transition to the cubic phase at room temperature [JPCM 25, 292201, 2013].« less
NASA Astrophysics Data System (ADS)
Gao, Ji-Ming; Tang, Rong-An; Zhang, Zheng-Mei; Xue, Ju-Kui
2016-11-01
Using a mean-field theory based upon Hartree—Fock approximation, we theoretically investigate the competition between the metallic conductivity, spin order and charge order phases in a two-dimensional half-filled extended Hubbard model on anisotropic triangular lattice. Bond order, double occupancy, spin and charge structure factor are calculated, and the phase diagram of the extended Hubbard model is presented. It is found that the interplay of strong interaction and geometric frustration leads to exotic phases, the charge fluctuation is enhanced and three kinds of charge orders appear with the introduction of the nearest-neighbor interaction. Moreover, for different frustrations, it is also found that the antiferromagnetic insulating phase and nonmagnetic insulating phase are rapidly suppressed, and eventually disappeared as the ratio between the nearest-neighbor interaction and on-site interaction increases. This indicates that spin order is also sensitive to the nearest-neighbor interaction. Finally, the single-site entanglement is calculated and it is found that a clear discontinuous of the single-site entanglement appears at the critical points of the phase transition. Supported by National Natural Science Foundation of China under Grant Nos.11274255, 11475027 and 11305132, Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20136203110001, and Technology of Northwest Normal University, China under Grants No. NWNU-LKQN-11-26
Savitzky, Benjamin H.; Admasu, Alemayehu S.; Kim, Jaewook; Cheong, Sang-Wook; Hovden, Robert; Kourkoutis, Lena F.
2018-01-01
Incommensurate charge order in hole-doped oxides is intertwined with exotic phenomena such as colossal magnetoresistance, high-temperature superconductivity, and electronic nematicity. Here, we map, at atomic resolution, the nature of incommensurate charge–lattice order in a manganite using scanning transmission electron microscopy at room temperature and cryogenic temperature (∼93 K). In diffraction, the ordering wave vector changes upon cooling, a behavior typically associated with incommensurate order. However, using real space measurements, we discover that the ordered state forms lattice-locked regions over a few wavelengths interspersed with phase defects and changing periodicity. The cations undergo picometer-scale (∼6 pm to 11 pm) transverse displacements, suggesting that charge–lattice coupling is strong. We further unearth phase inhomogeneity in the periodic lattice displacements at room temperature, and emergent phase coherence at 93 K. Such local phase variations govern the long-range correlations of the charge-ordered state and locally change the periodicity of the modulations, resulting in wave vector shifts in reciprocal space. These atomically resolved observations underscore the importance of lattice coupling and phase inhomogeneity, and provide a microscopic explanation for putative “incommensurate” order in hole-doped oxides. PMID:29382750
NASA Astrophysics Data System (ADS)
Mamin, R. F.; Shaposhnikova, T. S.; Kabanov, V. V.
2018-03-01
We have considered the model of the phase transition of the second order for the Coulomb frustrated 2D charged system. The coupling of the order parameter with the charge was considered as the local temperature. We have found that in such a system, an appearance of the phase-separated state is possible. By numerical simulation, we have obtained different types ("stripes," "rings," "snakes") of phase-separated states and determined the parameter ranges for these states. Thus the system undergoes a series of phase transitions when the temperature decreases. First, the system moves from the homogeneous state with a zero order parameter to the phase-separated state with two phases in one of which the order parameter is zero and, in the other, it is nonzero (τ >0 ). Then a first-order transition occurs to another phase-separated state, in which both phases have different and nonzero values of the order parameter (for τ <0 ). Only a further decrease of temperature leads to a transition to a homogeneous ordered state.
Tamashiro, M N; Barbetta, C; Germano, R; Henriques, V B
2011-09-01
We propose a statistical model to account for the gel-fluid anomalous phase transitions in charged bilayer- or lamellae-forming ionic lipids. The model Hamiltonian comprises effective attractive interactions to describe neutral-lipid membranes as well as the effect of electrostatic repulsions of the discrete ionic charges on the lipid headgroups. The latter can be counterion dissociated (charged) or counterion associated (neutral), while the lipid acyl chains may be in gel (low-temperature or high-lateral-pressure) or fluid (high-temperature or low-lateral-pressure) states. The system is modeled as a lattice gas with two distinct particle types--each one associated, respectively, with the polar-headgroup and the acyl-chain states--which can be mapped onto an Ashkin-Teller model with the inclusion of cubic terms. The model displays a rich thermodynamic behavior in terms of the chemical potential of counterions (related to added salt concentration) and lateral pressure. In particular, we show the existence of semidissociated thermodynamic phases related to the onset of charge order in the system. This type of order stems from spatially ordered counterion association to the lipid headgroups, in which charged and neutral lipids alternate in a checkerboard-like order. Within the mean-field approximation, we predict that the acyl-chain order-disorder transition is discontinuous, with the first-order line ending at a critical point, as in the neutral case. Moreover, the charge order gives rise to continuous transitions, with the associated second-order lines joining the aforementioned first-order line at critical end points. We explore the thermodynamic behavior of some physical quantities, like the specific heat at constant lateral pressure and the degree of ionization, associated with the fraction of charged lipid headgroups.
NASA Astrophysics Data System (ADS)
Yamauchi, Touru; Ueda, Hiroaki; Ohwada, Kenji; Nakao, Hironori; Ueda, Yutaka
2018-03-01
A common characteristic of quasi-one-dimensional (q1D) conductors β -A0.33V2O5 (A = Li, Na, and Ag) is that the charge ordering (CO), the ground state (GS) at ambient pressure, and the superconducting (SC) phases, the GS under high pressure, are competing with each other. We have explored high-pressure properties of divalent β -vanadium bronzes, β -A0.33V2O5 (A = Ca, Sr, and Pb), which are A -cation stoichiometry finely controlled single-crystal/powder samples, and found the absence of the SC phase. In these observations, however, we observed enormous and novel phase transitions, a kind of "devil's staircase"-type phase transitions in the charge ordering (CO) phases. The most surprising discovery in this devil's staircase, which was found mainly in β -Sr0.33V2O5 , is that all the charge modulation vectors of many kinds of CO phases can be represented as a primitive lattice translation vector along the b axis multiplied by several odd numbers. This discovery surely demonstrates interplay between the charge degree freedom and the crystallographic symmetry. We propose two possible mechanisms to explain this phenomenon: "self-charge transfer (carrier redistribution)" between the two subsystems in these compounds and "sequential symmetry reduction" that was discussed in Landau theory of phase transitions. In β -Ca0.33V2O5 we also found a P -T phase diagram similar in outlook but different in detail. The devil's staircase was also observed but it is an incomplete one. Furthermore, the charge modulation vectors in it are shorter than those in β -Sr0.33V2O5 . In β -Pb0.33V2O5 , which has no CO phase at ambient pressure, the pressure-induced antiferromagnetic ordering was observed at around 50 K above 0.5 GPa. Using these two kinds of mechanisms, we also explain the global high-pressure properties in all the stoichiometric divalent β -vanadium bronzes, which were observed as a wide variety of electromagnetic states. In addition, we also discuss a possible key for the presence/absence of the SC phase under pressure.
Phase transitions of a water overlayer on charged graphene: from electromelting to electrofreezing.
Zhu, Xueyan; Yuan, Quanzi; Zhao, Ya-Pu
2014-05-21
We show by using molecular dynamics simulations that a water overlayer on charged graphene experiences first-order ice-to-liquid (electromelting), and then liquid-to-ice (electrofreezing) phase transitions with the increase of the charge value. Corresponding to the ice-liquid-ice transition, the variations of the order parameters indicate an order-disorder-order transition. The key to this novel phenomenon is the surface charge induced change of the orientations of water dipoles, which leads to the change of the water-water interactions from being attractive to repulsive at a critical charge value qc. To further uncover how the orientations of water dipoles influence the interaction strength between water molecules, a theoretical model considering both the Coulomb and van der Waals interactions is established. The results show that with the increase of the charge value, the interaction strength between water molecules decreases below qc, then increases above qc. These two inverse processes lead to electromelting and electrofreezing, respectively. Combining this model with the Eyring equation, the diffusion coefficient is obtained, the variation of which is in qualitative agreement with the simulation results. Our findings not only expand our knowledge of the graphene-water interface, but related analyses could also help recognize the controversial role of the surface charge or electric field in promoting phase transitions of water.
Gravity dual of spin and charge density waves
NASA Astrophysics Data System (ADS)
Jokela, Niko; Järvinen, Matti; Lippert, Matthew
2014-12-01
At high enough charge density, the homogeneous state of the D3-D7' model is unstable to fluctuations at nonzero momentum. We investigate the end point of this instability, finding a spatially modulated ground state, which is a charge and spin density wave. We analyze the phase structure of the model as a function of chemical potential and magnetic field and find the phase transition from the homogeneous state to be first order, with a second-order critical point at zero magnetic field.
La 139 and Cu 63 NMR investigation of charge order in La 2 CuO 4 + y ( T c = 42 K)
Imai, T.; Lee, Y. S.
2018-03-14
Here, we report 139La and 63Cu NMR investigation of the successive charge order, spin order, and superconducting transitions in superoxygenated La 2CuO 4+y single crystal with stage-4 excess oxygen order at T stage≃290 K. We show that the stage-4 order induces tilting of CuO 6 octahedra below T stage, which in turn causes 139La NMR line broadening. The structural distortion continues to develop far below Tstage, and completes at T charge≃60 K, where charge order sets in. This sequence is reminiscent of the the charge-order transition in Nd codoped La 1.88Sr 0.12CuO 4 that sets in once the low-temperature tetragonalmore » phase is established. We also show that the paramagnetic 63Cu NMR signals are progressively wiped out below T charge due to enhanced low-frequency spin fluctuations in charge-ordered domains, but the residual 63Cu NMR signals continue to exhibit the characteristics expected for optimally doped superconducting CuO 2 planes. This indicates that charge order in La 2CuO 4+y does not take place uniformly in space. In addition, unlike the typical second-order magnetic phase transitions, low-frequency Cu spin fluctuations as probed by 139La nuclear spin-lattice relaxation rate do not exhibit critical divergence at T spin(≃T c) =42 K. These findings, including the spatially inhomogeneous nature of the charge-ordered state, are qualitatively similar to the case of La 1.885Sr 0.115CuO 4, but both charge and spin order take place more sharply in the present case.« less
La 139 and Cu 63 NMR investigation of charge order in La 2 CuO 4 + y ( T c = 42 K)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imai, T.; Lee, Y. S.
Here, we report 139La and 63Cu NMR investigation of the successive charge order, spin order, and superconducting transitions in superoxygenated La 2CuO 4+y single crystal with stage-4 excess oxygen order at T stage≃290 K. We show that the stage-4 order induces tilting of CuO 6 octahedra below T stage, which in turn causes 139La NMR line broadening. The structural distortion continues to develop far below Tstage, and completes at T charge≃60 K, where charge order sets in. This sequence is reminiscent of the the charge-order transition in Nd codoped La 1.88Sr 0.12CuO 4 that sets in once the low-temperature tetragonalmore » phase is established. We also show that the paramagnetic 63Cu NMR signals are progressively wiped out below T charge due to enhanced low-frequency spin fluctuations in charge-ordered domains, but the residual 63Cu NMR signals continue to exhibit the characteristics expected for optimally doped superconducting CuO 2 planes. This indicates that charge order in La 2CuO 4+y does not take place uniformly in space. In addition, unlike the typical second-order magnetic phase transitions, low-frequency Cu spin fluctuations as probed by 139La nuclear spin-lattice relaxation rate do not exhibit critical divergence at T spin(≃T c) =42 K. These findings, including the spatially inhomogeneous nature of the charge-ordered state, are qualitatively similar to the case of La 1.885Sr 0.115CuO 4, but both charge and spin order take place more sharply in the present case.« less
Melting of Domain Wall in Charge Ordered Dirac Electron of Organic Conductor α-(BEDT-TTF)2I3
NASA Astrophysics Data System (ADS)
Ohki, Daigo; Matsuno, Genki; Omori, Yukiko; Kobayashi, Akito
2018-05-01
The origin of charge order melting is identified by using the real space dependent mean-field theory in the extended Hubbard model describing an organic Dirac electron system α-(BEDT-TTF)2I3. In this model, the width of a domain wall which arises between different types of the charge ordered phase exhibits a divergent increase with decreasing the strength of electron-electron correlations. By analyzing the finite-size effect carefully, it is shown that the divergence coincides with a topological transition where a pair of Dirac cones merges in keeping with a finite gap. It is also clarified that the gap opening point and the topological transition point are different, which leads to the existence of an exotic massive Dirac electron phase with melted-type domain wall and gapless edge states. The present result also indicated that multiple metastable states are emerged in massive Dirac Electron phase. In the trivial charge ordered phase, the gapless domain-wall bound state takes place instead of the gapless edge states, accompanying with a form change of the domain wall from melted-type into hyperbolic-tangent-type.
Stress Induced Charge-Ordering Process in LiMn 2O 4
Chen, Yan; Yu, Dunji; An, Ke
2016-07-25
In this letter we report the stress-induced Mn charge-ordering process in the LiMn 2O 4 spinel, evidenced by the lattice strain evolutions due to the Jahn–Teller effects. In situ neutron diffraction reveals the initial stage of this process at low stress, indicating the eg electron localization at the preferential Mn sites during the early phase transition as an underlying charge-ordering mechanism in the charge-frustrated LiMn 2O 4. The initial stage of this transition exhibits as a progressive lattice and charge evolution, without showing a first-order behavior.
NASA Astrophysics Data System (ADS)
Hamilton, David; Weis, Adam; Gu, Genda; van Harlingen, Dale
La2-xBaxCuO4 (LBCO) exhibits a sharp drop in the transition temperature near x = 1 / 8 doping. In this regime, charge, spin and superconducting orders are intertwined and superconductivity is believed to exist in a pair-density wave (PDW) state, an ordered stripe phase characterized by sign changes in the superconducting order parameter between adjacent stripes. We present direct measurements of the current-phase relation (CPR) of Josephson junctions patterned onto crystals of LBCO at x = 1 / 8 and x = 0 . 155 (optimal doping) using a phase-sensitive Josephson interferometry technique. In contrast to the approximately sinusoidal CPR observed at optimal doping, we find the proportion of higher harmonics in the CPR increases at x = 1 / 8 doping, consistent with the formation of a PDW state. In parallel, we are carrying out measurements of the resistance noise in thin films of LBCO of various doping levels to identify features that signify the onset of charge order and changes in the dynamics of charge stripes.
NASA Astrophysics Data System (ADS)
Pinterić, M.; Ivek, T.; Čulo, M.; Milat, O.; Basletić, M.; Korin-Hamzić, B.; Tafra, E.; Hamzić, A.; Dressel, M.; Tomić, S.
2015-03-01
Novel forms of the low-temperature phases in the two-dimensional molecular solids with competing interactions between charges, spins and lattice, in particular those featuring anomalous dielectric relaxation, have been the focus of intense activity in recent years. Open issues concern the nature of collective charge excitations as well as their coupling to applied ac and dc electric fields. The charge response is reasonably well understood by now in the charge-ordered phase with the formation of ferroelectric-like domains below the metal-to-insulator phase transition. Conversely, the dielectric response observed in dimer Mott insulator phases with no complete evidence for charge ordering is rather intriguing. We overview our recent results of anisotropic complex conductivity (dc - MHz) in the magnetic phase of κ-(BEDT - TTF) 2 Cu [ N(CN)2 ] Cl and in the spin-liquid phase of κ-(BEDT - TTF) 2Cu2(CN)3. We discuss possible explanations for the observed dynamics within current theoretical models and compare them with the well-known fingerprints of the spin density wave response to ac electric fields.
Irrational Charge from Topological Order
NASA Astrophysics Data System (ADS)
Moessner, R.; Sondhi, S. L.
2010-10-01
Topological or deconfined phases of matter exhibit emergent gauge fields and quasiparticles that carry a corresponding gauge charge. In systems with an intrinsic conserved U(1) charge, such as all electronic systems where the Coulombic charge plays this role, these quasiparticles are also characterized by their intrinsic charge. We show that one can take advantage of the topological order fairly generally to produce periodic Hamiltonians which endow the quasiparticles with continuously variable, generically irrational, intrinsic charges. Examples include various topologically ordered lattice models, the three-dimensional resonating valence bond liquid on bipartite lattices as well as water and spin ice. By contrast, the gauge charges of the quasiparticles retain their quantized values.
NASA Astrophysics Data System (ADS)
Oya, Koudai; Takahashi, Akira
2018-03-01
From theory, we investigate charge localization induced by higher-frequency off-resonance light-pulse excitation in the metallic phase of α -(BEDT-TTF) 2I3 by numerically solving the time-dependent Schrödinger equation in the quarter-filled extended Hubbard model for the material. Around e a A(max )=1 , where e a A(max ) is the maximum amplitude of the dimensionless vector potential of the pump pulse, the charge distribution is significantly changed by photoexcitation, and the light-pulse-induced collective charge oscillations continue after photoexcitation. Furthermore, the charge dynamics depend strongly on the polarization direction of the pump pulse. These results are consistent with experiment. The magnitudes of the effective transfer integrals are reduced by strong photoexcitation, and this precursory phenomenon for dynamical localization is mainly driven by a photoinduced change in the ratio of the effective transfer integrals between the two strongest bonds. For e a A(max )≳2 , the photoinduced transition to the charge-ordered state, which can be regarded as a light-dressed state, occurs because of dynamical localization. Furthermore, the type of photogenerated charge-ordered state can be controlled by choosing e a A(max ) and the polarization direction.
Evidence for a Peierls phase-transition in a three-dimensional multiple charge-density waves solid
Mansart, Barbara; Cottet, Mathieu J. G.; Penfold, Thomas J.; Dugdale, Stephen B.; Tediosi, Riccardo; Chergui, Majed; Carbone, Fabrizio
2012-01-01
The effect of dimensionality on materials properties has become strikingly evident with the recent discovery of graphene. Charge ordering phenomena can be induced in one dimension by periodic distortions of a material’s crystal structure, termed Peierls ordering transition. Charge-density waves can also be induced in solids by strong coulomb repulsion between carriers, and at the extreme limit, Wigner predicted that crystallization itself can be induced in an electrons gas in free space close to the absolute zero of temperature. Similar phenomena are observed also in higher dimensions, but the microscopic description of the corresponding phase transition is often controversial, and remains an open field of research for fundamental physics. Here, we photoinduce the melting of the charge ordering in a complex three-dimensional solid and monitor the consequent charge redistribution by probing the optical response over a broad spectral range with ultrashort laser pulses. Although the photoinduced electronic temperature far exceeds the critical value, the charge-density wave is preserved until the lattice is sufficiently distorted to induce the phase transition. Combining this result with ab initio electronic structure calculations, we identified the Peierls origin of multiple charge-density waves in a three-dimensional system for the first time. PMID:22451898
Charge ordering in two-dimensional ionic liquids
NASA Astrophysics Data System (ADS)
Perera, Aurélien; Urbic, Tomaz
2018-04-01
The structural properties of model two-dimensional (2D) ionic liquids are examined, with a particular focus on the charge ordering process, with the use of computer simulation and integral equation theories. The influence of the logarithmic form of the Coulomb interaction, versus that of a 3D screened interaction form, is analysed. Charge order is found to hold and to be analogous for both interaction models, despite their very different form. The influence of charge ordering in the low density regime is discussed in relation to well known properties of 2D Coulomb fluids, such as the Kosterlitz-Thouless transition and criticality. The present study suggests the existence of a stable thermodynamic labile cluster phase, implying the existence of a liquid-liquid "transition" above the liquid-gas binodal. The liquid-gas and Kosterlitz-Thouless transitions would then take place inside the predicted cluster phase.
High-temperature charge density wave correlations in La1.875Ba0.125CuO4 without spin–charge locking
Lorenzana, J.; Seibold, G.; Peng, Y. Y.; Amorese, A.; Yakhou-Harris, F.; Kummer, K.; Brookes, N. B.; Konik, R. M.; Thampy, V.; Gu, G. D.; Ghiringhelli, G.; Braicovich, L.
2017-01-01
Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La1.875Ba0.125CuO4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. This indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates. PMID:29114049
Phase-change memory function of correlated electrons in organic conductors
NASA Astrophysics Data System (ADS)
Oike, H.; Kagawa, F.; Ogawa, N.; Ueda, A.; Mori, H.; Kawasaki, M.; Tokura, Y.
2015-01-01
Phase-change memory (PCM), a promising candidate for next-generation nonvolatile memories, exploits quenched glassy and thermodynamically stable crystalline states as reversibly switchable state variables. We demonstrate PCM functions emerging from a charge-configuration degree of freedom in strongly correlated electron systems. Nonvolatile reversible switching between a high-resistivity charge-crystalline (or charge-ordered) state and a low-resistivity quenched state, charge glass, is achieved experimentally via heat pulses supplied by optical or electrical means in organic conductors θ -(BEDT-TTF)2X . Switching that is one order of magnitude faster is observed in another isostructural material that requires faster cooling to kinetically avoid charge crystallization, indicating that the material's critical cooling rate can be useful guidelines for pursuing a faster correlated-electron PCM function.
Interlayer Communication in Aurivillius Vanadate to Enable Defect Structures and Charge Ordering.
Zhang, Yaoqing; Yamamoto, Takafumi; Green, Mark A; Kageyama, Hiroshi; Ueda, Yutaka
2015-11-16
The fluorite-like [Bi2O2](2+) layer is a fundamental building unit in a great variety of layered compounds. Here in this contribution, we presented a comprehensive study on an unusual Aurivillius phase Bi3.6V2O10 with respect to its defect chemistry and polymorphism control as well as implications for fast oxide ion transport at lower temperatures. The bismuth oxide layer in Bi4V2O11 is found to tolerate a large number of Bi vacancies without breaking the high temperature prototype I4/mmm structure (γ-phase). On cooling, an orthorhombic distortion occurs to the γ-phase, giving rise to a different type of phase (B-phase) in the intermediate temperature region. Cooling to room temperature causes a further transition to an oxygen-vacancy ordered A-phase, which is accompanied by the charge ordering of V(4+) and V(5+) cations, providing magnetic (d(1)) and nonmagnetic (d(0)) chains along the a axis. This is a novel charge ordering transition in terms of the concomitant change of oxygen coordination. Interestingly, upon quenching, both the γ- and B-phase can be kinetically trapped, enabling the structural probing of the two phases at ambient temperature. Driven by the thermodynamic forces, the oxide anion in the γ-phase undergoes an interlayer diffusion process to reshuffle the compositions of both Bi-O and V-O layers.
Ferroelectric ferrimagnetic LiFe2F6 : Charge-ordering-mediated magnetoelectricity
NASA Astrophysics Data System (ADS)
Lin, Ling-Fang; Xu, Qiao-Ru; Zhang, Yang; Zhang, Jun-Jie; Liang, Yan-Ping; Dong, Shuai
2017-12-01
Trirutile-type LiFe2F6 is a charge-ordered material with an Fe2 +/Fe3 + configuration. Here, its physical properties, including magnetism, electronic structure, phase transition, and charge ordering, are studied theoretically. On one hand, the charge ordering leads to improper ferroelectricity with a large polarization. On the other hand, its magnetic ground state can be tuned from the antiferromagnetic to ferrimagnetic by moderate compressive strain. Thus, LiFe2F6 can be a rare multiferroic with both large magnetization and polarization. Most importantly, since the charge ordering is the common ingredient for both ferroelectricity and magnetization, the net magnetization may be fully switched by flipping the polarization, rendering intrinsically strong magnetoelectric effects and desirable functions.
Phonon Dispersion and the Competition between Pairing and Charge Order
NASA Astrophysics Data System (ADS)
Costa, N. C.; Blommel, T.; Chiu, W.-T.; Batrouni, G.; Scalettar, R. T.
2018-05-01
The Holstein model describes the interaction between fermions and a collection of local (dispersionless) phonon modes. In the dilute limit, the phonon degrees of freedom dress the fermions, giving rise to polaron and bipolaron formation. At higher densities, the phonons mediate collective superconducting (SC) and charge-density wave (CDW) phases. Quantum Monte Carlo (QMC) simulations have considered both these limits but have not yet focused on the physics of more general phonon spectra. Here we report QMC studies of the role of phonon dispersion on SC and CDW order in such models. We quantify the effect of finite phonon bandwidth and curvature on the critical temperature Tcdw for CDW order and also uncover several novel features of diagonal long-range order in the phase diagram, including a competition between charge patterns at momenta q =(π ,π ) and q =(0 ,π ) which lends insight into the relationship between Fermi surface nesting and the wave vector at which charge order occurs. We also demonstrate SC order at half filling in situations where a nonzero bandwidth sufficiently suppresses Tcdw.
Spin ordering and electronic texture in the bilayer iridate Sr3Ir2O7
NASA Astrophysics Data System (ADS)
Dhital, Chetan; Khadka, Sovit; Yamani, Z.; de la Cruz, Clarina; Hogan, T. C.; Disseler, S. M.; Pokharel, Mani; Lukas, K. C.; Tian, Wei; Opeil, C. P.; Wang, Ziqiang; Wilson, Stephen D.
2012-09-01
Through a neutron scattering, charge transport, and magnetization study, the correlated ground state in the bilayer iridium oxide Sr3Ir2O7 is explored. Our combined results resolve scattering consistent with a high temperature magnetic phase that persists above 600 K, reorients at the previously defined TAF=280 K, and coexists with an electronic ground state whose phase behavior suggests the formation of a fluctuating charge or orbital phase that freezes below T*≈70 K. Our study provides a window into the emergence of multiple electronic order parameters near the boundary of the metal to insulator phase transition of the 5d Jeff=1/2 Mott phase.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Matsushita, Yoshitaka; Katsuya, Yoshio; Tanaka, Masahiko; Yamaura, Kazunari; Belik, Alexei A.
2018-02-01
We prepared a quadruple perovskite CeCuMn6O12 under high-pressure and high-temperature conditions at 6 GPa and about 1670 K and investigated its structural, magnetic and transport properties. CeCuMn6O12 crystallizes in space group Im-3 above T CO = 297 K below this temperature, it adopts space group R-3 with the 1:3 (Mn4+:Mn3+) charge and orbital orders. Unusual compressed Mn3+O6 octahedra are realized in CeCuMn6O12 similar to CaMn7O12 with the -Q 3 Jahn-Teller distortion mode. Below about 90 K, structural instability takes place with phase separation and the appearance of competing phases; and below 70 K, two R-3 phases coexist. CeCuMn6O12 exhibits a ferromagnetic-like transition below T C = 140 K, and it is a semiconductor with the magnetoresistance reaching about -40% at 140 K and 70 kOe. We argued that the valence of Ce is +3 in CeCuMn6O12 with the Ce3+(C{{u}2+}Mn23+ )(Mn33+M{{n}4+} )O12 charge distribution in the charge-ordered R-3 phase and Ce3+(C{{u}2+}Mn23+ )(Mn43.25+ )O12 in the charge-disordered Im-3 phase.
Miao, H.; Lorenzana, J.; Seibold, G.; ...
2017-11-07
Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La 1.875Ba 0.125CuO 4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. Thismore » indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, H.; Lorenzana, J.; Seibold, G.
Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La 1.875Ba 0.125CuO 4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. Thismore » indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates.« less
Liquid crystalline ordering and charge transport in semiconducting materials.
Pisula, Wojciech; Zorn, Matthias; Chang, Ji Young; Müllen, Klaus; Zentel, Rudolf
2009-07-16
Organic semiconducting materials offer the advantage of solution processability into flexible films. In most cases, their drawback is based on their low charge carrier mobility, which is directly related to the packing of the molecules both on local (amorphous versus crystalline) and on macroscopic (grain boundaries) length scales. Liquid crystalline ordering offers the possibility of circumventing this problem. An advanced concept comprises: i) the application of materials with different liquid crystalline phases, ii) the orientation of a low viscosity high temperature phase, and, iii) the transfer of the macroscopic orientation during cooling to a highly ordered (at best, crystalline-like) phase at room temperature. At the same time, the desired orientation for the application (OLED or field-effect transistor) can be obtained. This review presents the use of molecules with discotic, calamitic and sanidic phases and discusses the sensitivity of the phases with regard to defects depending on the dimensionality of the ordered structure (columns: 1D, smectic layers and sanidic phases: 2D). It presents ways to systematically improve charge carrier mobility by proper variation of the electronic and steric (packing) structure of the constituting molecules and to reach charge carrier mobilities that are close to and comparable to amorphous silicon, with values of 0.1 to 0.7 cm(2) · V(-1) · s(-1) . In this context, the significance of cross-linking to stabilize the orientation and liquid crystalline behavior of inorganic/organic hybrids is also discussed. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Pradhan, Kalpataru; Yunoki, Seiji
2017-12-01
Using a two-band double-exchange model with Jahn-Teller lattice distortions and superexchange interactions, supplemented by quenched disorder, at an electron density n =0.65 , we explicitly demonstrate the coexistence of the n =1 /2 -type (π ,π ) charge-ordered and the ferromagnetic nanoclusters above the ferromagnetic transition temperature Tc in colossal magnetoresistive (CMR) manganites. The resistivity increases due to the enhancement of the volume fraction of the charge-ordered and the ferromagnetic nanoclusters upon decreasing the temperature down to Tc. The ferromagnetic nanoclusters start to grow and merge, and the volume fraction of the charge-ordered nanoclusters decreases below Tc, leading to the sharp drop in the resistivity. By applying a small external magnetic field h , we show that the resistivity above Tc increases, as compared with the case when h =0 , a fact that further confirms the coexistence of the charge-ordered and the ferromagnetic nanoclusters. In addition, we show that the volume fraction of the charge-ordered nanoclusters decreases upon increasing the bandwidth, and consequently the resistivity hump diminishes for large bandwidth manganites, in good qualitative agreement with experiments. The obtained insights from our calculations provide a complete pathway to understand the phase competition in CMR manganites.
Light-Enhanced Spin Fluctuations and d -Wave Superconductivity at a Phase Boundary
NASA Astrophysics Data System (ADS)
Wang, Yao; Chen, Cheng-Chien; Moritz, B.; Devereaux, T. P.
2018-06-01
Time-domain techniques have shown the potential of photomanipulating existing orders and inducing new states of matter in strongly correlated materials. Using time-resolved exact diagonalization, we perform numerical studies of pump dynamics in a Mott-Peierls system with competing charge and spin density waves. A light-enhanced d -wave superconductivity is observed when the system resides near a quantum phase boundary. By examining the evolution of spin, charge, and superconducting susceptibilities, we show that a subdominant state in equilibrium can be stabilized by photomanipulating the charge order to allow superconductivity to appear and dominate. This work provides an interpretation of light-induced superconductivity from the perspective of order competition and offers a promising approach for designing novel emergent states out of equilibrium.
139La and 63Cu NMR investigation of charge order in La2CuO4 +y (Tc=42 K)
NASA Astrophysics Data System (ADS)
Imai, T.; Lee, Y. S.
2018-03-01
We report 139La and 63Cu NMR investigation of the successive charge order, spin order, and superconducting transitions in superoxygenated La2CuO4 +y single crystal with stage-4 excess oxygen order at Tstage≃290 K. We show that the stage-4 order induces tilting of CuO6 octahedra below Tstage, which in turn causes 139La NMR line broadening. The structural distortion continues to develop far below Tstage, and completes at Tcharge≃60 K, where charge order sets in. This sequence is reminiscent of the the charge-order transition in Nd codoped La1.88Sr0.12CuO4 that sets in once the low-temperature tetragonal phase is established. We also show that the paramagnetic 63Cu NMR signals are progressively wiped out below Tcharge due to enhanced low-frequency spin fluctuations in charge-ordered domains, but the residual 63Cu NMR signals continue to exhibit the characteristics expected for optimally doped superconducting CuO2 planes. This indicates that charge order in La2CuO4 +y does not take place uniformly in space. In addition, unlike the typical second-order magnetic phase transitions, low-frequency Cu spin fluctuations as probed by 139La nuclear spin-lattice relaxation rate do not exhibit critical divergence at Tspin(≃Tc ) =42 K. These findings, including the spatially inhomogeneous nature of the charge-ordered state, are qualitatively similar to the case of La1.885Sr0.115CuO4 [Imai et al., Phys. Rev. B 96, 224508 (2017), 10.1103/PhysRevB.96.224508 and Arsenault et al., Phys. Rev. B 97, 064511 (2018), 10.1103/PhysRevB.97.064511], but both charge and spin order take place more sharply in the present case.
Frequency effects on charge ordering in Y0.5Ca0.5MnO3 by impedance spectroscopy
NASA Astrophysics Data System (ADS)
Sarwar, Tuba; Qamar, Afzaal; Nadeem, Muhammad
2015-02-01
In this work, structural and electrical properties of Y0.5Ca0.5MnO3 are investigated by employing X-ray diffraction and impedance spectroscopy, respectively. Applied ac electric field showed the charge ordering transition temperature around 265 K and below this temperature the heteromorphic behavior of the sample is discussed in the proximity of TCO. With frequency effects the volume of robust charge orbital ordering (COO) domains diminishes due to different competing phases along with Jahn Teller distortions. Comprehensive melting and collapse of charge orbital ordering occurs below TN(125 K), where a colossal drop in the value of impedance is observed. The change in profile of modulus plane plots determines the spreading of relaxation time of intermingled phases. Hopping mechanism is elaborated in terms of strong electron phonon coupling. Variable range hopping model and Arrhenius model are used to discuss the short and long range hopping between Mn3+ and Mn4+ channels assessing the activation energy Ea.
Alternative route to charge density wave formation in multiband systems
Eiter, Hans-Martin; Lavagnini, Michela; Hackl, Rudi; Nowadnick, Elizabeth A.; Kemper, Alexander F.; Devereaux, Thomas P.; Chu, Jiun-Haw; Analytis, James G.; Fisher, Ian R.; Degiorgi, Leonardo
2013-01-01
Charge and spin density waves, periodic modulations of the electron, and magnetization densities, respectively, are among the most abundant and nontrivial low-temperature ordered phases in condensed matter. The ordering direction is widely believed to result from the Fermi surface topology. However, several recent studies indicate that this common view needs to be supplemented. Here, we show how an enhanced electron–lattice interaction can contribute to or even determine the selection of the ordering vector in the model charge density wave system ErTe3. Our joint experimental and theoretical study allows us to establish a relation between the selection rules of the electronic light scattering spectra and the enhanced electron–phonon coupling in the vicinity of band degeneracy points. This alternative proposal for charge density wave formation may be of general relevance for driving phase transitions into other broken-symmetry ground states, particularly in multiband systems, such as the iron-based superconductors. PMID:23248317
Alternative route to charge density wave formation in multiband systems.
Eiter, Hans-Martin; Lavagnini, Michela; Hackl, Rudi; Nowadnick, Elizabeth A; Kemper, Alexander F; Devereaux, Thomas P; Chu, Jiun-Haw; Analytis, James G; Fisher, Ian R; Degiorgi, Leonardo
2013-01-02
Charge and spin density waves, periodic modulations of the electron, and magnetization densities, respectively, are among the most abundant and nontrivial low-temperature ordered phases in condensed matter. The ordering direction is widely believed to result from the Fermi surface topology. However, several recent studies indicate that this common view needs to be supplemented. Here, we show how an enhanced electron-lattice interaction can contribute to or even determine the selection of the ordering vector in the model charge density wave system ErTe(3). Our joint experimental and theoretical study allows us to establish a relation between the selection rules of the electronic light scattering spectra and the enhanced electron-phonon coupling in the vicinity of band degeneracy points. This alternative proposal for charge density wave formation may be of general relevance for driving phase transitions into other broken-symmetry ground states, particularly in multiband systems, such as the iron-based superconductors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Först, M.; Frano, A.; Kaiser, S.
2014-11-17
In this study, we use femtosecond resonant soft x-ray diffraction to measure the optically stimulated ultrafast changes of charge density wave correlations in underdoped YBa₂Cu₃O₆.₆. We find that when coherent interlayer transport is enhanced by optical excitation of the apical oxygen distortions, at least 50% of the in-plane charge density wave order is melted. These results indicate that charge ordering and superconductivity may be competing up to the charge ordering transition temperature, with the latter becoming a hidden phase that is accessible only by nonlinear phonon excitation.
NASA Astrophysics Data System (ADS)
Moskvin, A. S.; Panov, Yu. D.; Rybakov, F. N.; Borisov, A. B.
2017-11-01
We have used high-performance parallel computations by NVIDIA graphics cards applying the method of nonlinear conjugate gradients and Monte Carlo method to observe directly the developing ground state configuration of a two-dimensional hard-core boson system with decrease in temperature, and its evolution with deviation from a half-filling. This has allowed us to explore unconventional features of a charge order—superfluidity phase transition, specifically, formation of an irregular domain structure, emergence of a filamentary superfluid structure that condenses within of the charge-ordered phase domain antiphase boundaries, and formation and evolution of various topological structures.
Thermal algebraic-decay charge liquid driven by competing short-range Coulomb repulsion
NASA Astrophysics Data System (ADS)
Kaneko, Ryui; Nonomura, Yoshihiko; Kohno, Masanori
2018-05-01
We explore the possibility of a Berezinskii-Kosterlitz-Thouless-like critical phase for the charge degrees of freedom in the intermediate-temperature regime between the charge-ordered and disordered phases in two-dimensional systems with competing short-range Coulomb repulsion. As the simplest example, we investigate the extended Hubbard model with on-site and nearest-neighbor Coulomb interactions on a triangular lattice at half filling in the atomic limit by using a classical Monte Carlo method, and find a critical phase, characterized by algebraic decay of the charge correlation function, belonging to the universality class of the two-dimensional XY model with a Z6 anisotropy. Based on the results, we discuss possible conditions for the critical phase in materials.
Revealing hidden antiferromagnetic correlations in doped Hubbard chains via string correlators
NASA Astrophysics Data System (ADS)
Hilker, Timon A.; Salomon, Guillaume; Grusdt, Fabian; Omran, Ahmed; Boll, Martin; Demler, Eugene; Bloch, Immanuel; Gross, Christian
2017-08-01
Topological phases, like the Haldane phase in spin-1 chains, defy characterization through local order parameters. Instead, nonlocal string order parameters can be employed to reveal their hidden order. Similar diluted magnetic correlations appear in doped one-dimensional lattice systems owing to the phenomenon of spin-charge separation. Here we report on the direct observation of such hidden magnetic correlations via quantum gas microscopy of hole-doped ultracold Fermi-Hubbard chains. The measurement of nonlocal spin-density correlation functions reveals a hidden finite-range antiferromagnetic order, a direct consequence of spin-charge separation. Our technique, which measures nonlocal order directly, can be readily extended to higher dimensions to study the complex interplay between magnetic order and density fluctuations.
S. -H. Baek; Gu, G. D.; Utz, Y.; ...
2015-10-26
We report 139La nuclear magnetic resonance studies performed on a La 1.875Ba 0.125CuO 4 single crystal. The data show that the structural phase transitions (high-temperature tetragonal → low-temperature orthorhombic → low-temperature tetragonal phase) are of the displacive type in this material. The 139La spin-lattice relaxation rate T –1 1 sharply upturns at the charge-ordering temperature T CO = 54 K, indicating that charge order triggers the slowing down of spin fluctuations. Detailed temperature and field dependencies of the T –1 1 below the spin-ordering temperature T SO=40 K reveal the development of enhanced spin fluctuations in the spin-ordered state formore » H ∥ [001], which are completely suppressed for large fields along the CuO 2 planes. Lastly, our results shed light on the unusual spin fluctuations in the charge and spin stripe ordered lanthanum cuprates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. -H. Baek; Gu, G. D.; Utz, Y.
We report 139La nuclear magnetic resonance studies performed on a La 1.875Ba 0.125CuO 4 single crystal. The data show that the structural phase transitions (high-temperature tetragonal → low-temperature orthorhombic → low-temperature tetragonal phase) are of the displacive type in this material. The 139La spin-lattice relaxation rate T –1 1 sharply upturns at the charge-ordering temperature T CO = 54 K, indicating that charge order triggers the slowing down of spin fluctuations. Detailed temperature and field dependencies of the T –1 1 below the spin-ordering temperature T SO=40 K reveal the development of enhanced spin fluctuations in the spin-ordered state formore » H ∥ [001], which are completely suppressed for large fields along the CuO 2 planes. Lastly, our results shed light on the unusual spin fluctuations in the charge and spin stripe ordered lanthanum cuprates.« less
Phased charging and discharging in capacitive desalinatio
Stadermann, Michael; Qu, Yatian; Santiago, Juan G.; Hemmatifar, Ali
2017-09-12
A system combines complete, ultra-thin cells into a monolithic and robust framework necessary for desalination applications which yields orders of magnitude faster desalination. The electrode pairs are located so that a flow of feed water flows through or around the electrode pairs with the flow perpendicular to sequentially applied electric potentials. The system is controlled to charge the series of electrode pairs sequentially or phased. That means the charging of the second electrode pair is delayed with regard to the charging of the first electrode pair and the charging of a third electrode pair is delayed with respect to the charging of the second electrode pair.
Inverse correlation between quasiparticle mass and T c in a cuprate high-T c superconductor.
Putzke, Carsten; Malone, Liam; Badoux, Sven; Vignolle, Baptiste; Vignolles, David; Tabis, Wojciech; Walmsley, Philip; Bird, Matthew; Hussey, Nigel E; Proust, Cyril; Carrington, Antony
2016-03-01
Close to a zero-temperature transition between ordered and disordered electronic phases, quantum fluctuations can lead to a strong enhancement of electron mass and to the emergence of competing phases such as superconductivity. A correlation between the existence of such a quantum phase transition and superconductivity is quite well established in some heavy fermion and iron-based superconductors, and there have been suggestions that high-temperature superconductivity in copper-oxide materials (cuprates) may also be driven by the same mechanism. Close to optimal doping, where the superconducting transition temperature T c is maximal in cuprates, two different phases are known to compete with superconductivity: a poorly understood pseudogap phase and a charge-ordered phase. Recent experiments have shown a strong increase in quasiparticle mass m* in the cuprate YBa2Cu3O7-δ as optimal doping is approached, suggesting that quantum fluctuations of the charge-ordered phase may be responsible for the high-T c superconductivity. We have tested the robustness of this correlation between m* and T c by performing quantum oscillation studies on the stoichiometric compound YBa2Cu4O8 under hydrostatic pressure. In contrast to the results for YBa2Cu3O7-δ, we find that in YBa2Cu4O8, the mass decreases as T c increases under pressure. This inverse correlation between m* and T c suggests that quantum fluctuations of the charge order enhance m* but do not enhance T c.
Inverse correlation between quasiparticle mass and Tc in a cuprate high-Tc superconductor
Putzke, Carsten; Malone, Liam; Badoux, Sven; Vignolle, Baptiste; Vignolles, David; Tabis, Wojciech; Walmsley, Philip; Bird, Matthew; Hussey, Nigel E.; Proust, Cyril; Carrington, Antony
2016-01-01
Close to a zero-temperature transition between ordered and disordered electronic phases, quantum fluctuations can lead to a strong enhancement of electron mass and to the emergence of competing phases such as superconductivity. A correlation between the existence of such a quantum phase transition and superconductivity is quite well established in some heavy fermion and iron-based superconductors, and there have been suggestions that high-temperature superconductivity in copper-oxide materials (cuprates) may also be driven by the same mechanism. Close to optimal doping, where the superconducting transition temperature Tc is maximal in cuprates, two different phases are known to compete with superconductivity: a poorly understood pseudogap phase and a charge-ordered phase. Recent experiments have shown a strong increase in quasiparticle mass m* in the cuprate YBa2Cu3O7-δ as optimal doping is approached, suggesting that quantum fluctuations of the charge-ordered phase may be responsible for the high-Tc superconductivity. We have tested the robustness of this correlation between m* and Tc by performing quantum oscillation studies on the stoichiometric compound YBa2Cu4O8 under hydrostatic pressure. In contrast to the results for YBa2Cu3O7-δ, we find that in YBa2Cu4O8, the mass decreases as Tc increases under pressure. This inverse correlation between m* and Tc suggests that quantum fluctuations of the charge order enhance m* but do not enhance Tc. PMID:27034989
Disentangled Cooperative Orderings in Artificial Rare-Earth Nickelates.
Middey, S; Meyers, D; Kareev, M; Cao, Yanwei; Liu, X; Shafer, P; Freeland, J W; Kim, J-W; Ryan, P J; Chakhalian, J
2018-04-13
Coupled transitions between distinct ordered phases are important aspects behind the rich phase complexity of correlated oxides that hinder our understanding of the underlying phenomena. For this reason, fundamental control over complex transitions has become a leading motivation of the designer approach to materials. We have devised a series of new superlattices by combining a Mott insulator and a correlated metal to form ultrashort period superlattices, which allow one to disentangle the simultaneous orderings in RENiO_{3}. Tailoring an incommensurate heterostructure period relative to the bulk charge ordering pattern suppresses the charge order transition while preserving metal-insulator and antiferromagnetic transitions. Such selective decoupling of the entangled phases resolves the long-standing puzzle about the driving force behind the metal-insulator transition and points to the site-selective Mott transition as the operative mechanism. This designer approach emphasizes the potential of heterointerfaces for selective control of simultaneous transitions in complex materials with entwined broken symmetries.
Disentangled Cooperative Orderings in Artificial Rare-Earth Nickelates
NASA Astrophysics Data System (ADS)
Middey, S.; Meyers, D.; Kareev, M.; Cao, Yanwei; Liu, X.; Shafer, P.; Freeland, J. W.; Kim, J.-W.; Ryan, P. J.; Chakhalian, J.
2018-04-01
Coupled transitions between distinct ordered phases are important aspects behind the rich phase complexity of correlated oxides that hinder our understanding of the underlying phenomena. For this reason, fundamental control over complex transitions has become a leading motivation of the designer approach to materials. We have devised a series of new superlattices by combining a Mott insulator and a correlated metal to form ultrashort period superlattices, which allow one to disentangle the simultaneous orderings in RENiO3 . Tailoring an incommensurate heterostructure period relative to the bulk charge ordering pattern suppresses the charge order transition while preserving metal-insulator and antiferromagnetic transitions. Such selective decoupling of the entangled phases resolves the long-standing puzzle about the driving force behind the metal-insulator transition and points to the site-selective Mott transition as the operative mechanism. This designer approach emphasizes the potential of heterointerfaces for selective control of simultaneous transitions in complex materials with entwined broken symmetries.
Charge ordering in stoichiometric FeTe: Scanning tunneling microscopy and spectroscopy
Li, Wei; Yin, Wei -Guo; Wang, Lili; ...
2016-01-04
In this study, we use scanning tunneling microscopy and spectroscopy to reveal a unique stripy charge order in a parent phase of iron-based superconductors in stoichiometric FeTe epitaxy films. The charge order has unusually the same—usually half—period as the spin order. We also found highly anisotropic electron band dispersions being large and little along the ferromagnetic (crystallographic b) and antiferromagnetic (a) directions, respectively. Our data suggest that the microscopic mechanism is likely of the Stoner type driven by interatomic Coulomb repulsion V ij, and that V ij and charge fluctuations, so far much neglected, are important to the understanding ofmore » iron-based superconductors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yuelin; Walko, Donald A.; Li, Qing'an
2015-12-16
We show evidence that the competition between the antiferromagetic metallic phase and the charge- and orbital-ordered insulating phase at the reentrant phase boundary of a layered manganite, LaSr2Mn2O7, can be manipulated using ultrafast optical excitation. The time- dependent evolution of the Jahn-Teller superlattice reflection, which indicates the formation of the charge and orbital order, was measured at different laser fluences. The laser-induced enhancement and reduction the Jahn-Teller reflection intensity shows a reversal of sign between earlier (~10 ns) and later (~150 ns) time delays during the relaxation after photo excitation. This effect is consistent with a scenario whereby the lasermore » excitation modulates the local competition between the metallic and the insulating phases.« less
Phase diagram, correlation gap, and critical properties of the coulomb glass.
Goethe, Martin; Palassini, Matteo
2009-07-24
We investigate the lattice Coulomb glass model in three dimensions via Monte Carlo simulations. No evidence for an equilibrium glass phase is found down to very low temperatures, although the correlation length increases rapidly near T = 0. A charge-ordered phase exists at low disorder. The transition to this phase is consistent with the random field Ising universality class, which shows that the interaction is effectively screened at moderate temperature. For large disorder, the single-particle density of states near the Coulomb gap satisfies the scaling relation g(epsilon, T) = T;{delta}f(|epsilon|/T) with delta = 2.01 +/- 0.05 in agreement with the prediction of Efros and Shklovskii. For decreasing disorder, a crossover to a larger effective exponent occurs due to the proximity of the charge-ordered phase.
Phase diagram, correlation gap, and critical properties of the Coulomb glass
NASA Astrophysics Data System (ADS)
Palassini, Matteo; Goethe, Martin
2009-03-01
We investigate the lattice Coulomb glass model in three dimensions via extensive Monte Carlo simulations. 1. No evidence for an equilibrium glass phase is found down to very low temperatures, contrary to mean-field predictions, although the correlation length increases rapidly near T=0. 2. The single-particle density of states near the Coulomb gap satisfies the scaling law g(e,T)=T^λf(e/T) with λ 2.2. 3. A charge-ordered phase exists at low disorder. The phase transition from the fluid to the charge ordered phase is consistent with the Random Field Ising universality class, which shows that the interaction is effectively screened at moderate temperature. Results from nonequilibrium simulations will also be briefly discussed. Reference: M.Goethe and M.Palassini, arXiv:0810.1047
Li, Yuelin; Walko, Daonld A.; Li, Qing'an; ...
2015-11-17
We show evidence that the competition between the antiferromagetic metallic phase and the charge- and orbital-ordered insulating phase at the reentrant phase boundary of a layered manganite, LaSr 2Mn 2O 7, can be manipulated using ultrafast optical excitation. The time-dependent evolution of the Jahn-Teller superlattice reflection, which indicates the formation of the charge and orbital order, was measured at different laser fluences. The laser-induced enhancement and reduction the Jahn-Teller reflection intensity shows a reversal of sign between earlier (~10 ns) and later (~150 ns) time delays during the relaxation after photo excitation. This effect is consistent with a scenario wherebymore » the laser excitation modulates the local competition between the metallic and the insulating phases.« less
Dimensional Crossover of Charge-Density Wave Correlations in the Cuprates
NASA Astrophysics Data System (ADS)
Caplan, Yosef; Orgad, Dror
2017-09-01
Short-range charge-density wave correlations are ubiquitous in underdoped cuprates. They are largely confined to the copper-oxygen planes and typically oscillate out of phase from one unit cell to the next in the c direction. Recently, it was found that a considerably longer-range charge-density wave order develops in YBa2 Cu3 O6 +x above a sharply defined crossover magnetic field. This order is more three-dimensional and is in-phase along the c axis. Here, we show that such behavior is a consequence of the conflicting ordering tendencies induced by the disorder potential and the Coulomb interaction, where the magnetic field acts to tip the scales from the former to the latter. We base our conclusion on analytic large-N analysis and Monte Carlo simulations of a nonlinear sigma model of competing superconducting and charge-density wave orders. Our results are in agreement with the observed phenomenology in the cuprates, and we discuss their implications to other members of this family, which have not been measured yet at high magnetic fields.
Transformers: the changing phases of low-dimensional vanadium oxide bronzes.
Marley, Peter M; Horrocks, Gregory A; Pelcher, Kate E; Banerjee, Sarbajit
2015-03-28
In this feature article, we explore the electronic and structural phase transformations of ternary vanadium oxides with the composition MxV2O5 where M is an intercalated cation. The periodic arrays of intercalated cations ordered along quasi-1D tunnels or layered between 2D sheets of the V2O5 framework induce partial reduction of the framework vanadium atoms giving rise to charge ordering patterns that are specific to the metal M and stoichiometry x. This periodic charge ordering makes these materials remarkably versatile platforms for studying electron correlation and underpins the manifestation of phenomena such as colossal metal-insulator transitions, quantized charge corrals, and superconductivity. We describe current mechanistic understanding of these emergent phenomena with a particular emphasis on the benefits derived from scaling these materials to nanostructured dimensions wherein precise ordering of cations can be obtained and phase relationships can be derived that are entirely inaccessible in the bulk. In particular, structural transformations induced by intercalation are dramatically accelerated due to the shorter diffusion path lengths at nanometer-sized dimensions, which cause a dramatic reduction of kinetic barriers to phase transformations and facilitate interconversion between the different frameworks. We conclude by summarizing numerous technological applications that have become feasible due to recent advances in controlling the structural chemistry and both electronic and structural phase transitions in these versatile frameworks.
NASA Astrophysics Data System (ADS)
Wang, Dongniu; Wang, Huixin; Yang, Jinli; Zhou, Jigang; Hu, Yongfeng; Xiao, Qunfeng; Fang, Haitao; Sham, Tsun-Kong
2016-01-01
Olivine-type phosphates (LiMPO4, M = Fe, Mn, Co) are promising cathode materials for lithium-ion batteries that are generally accepted to follow first order equilibrium phase transformations. Herein, the phase transformation dynamics of sub-micro sized LiFePO4 particles with limited rate capability at a low current density of 0.14 C was investigated. An in-situ X-ray Absorption Near Edge Structure (XANES) measurement was conducted at the Fe and P K-edge for the dynamic studies upon lithiation and delithiation. Fe K-edge XANES spectra demonstrate that not only lithium-rich intermediate phase LixFePO4 (x = 0.6-0.75), but also lithium-poor intermediate phase LiyFePO4 (y = 0.1-0.25) exist during the charge and discharge, respectively. Furthermore, during charge and discharge, a fluctuation of the FePO4 and LiFePO4 fractions obtained by liner combination fitting around the imaginary phase fractions followed Faraday's law and the equilibrium first-order two-phase transformation versus reaction time is present, respectively. The charging and discharging process has a reversible phase transformation dynamics with symmetric structural evolution routes. P K-edge XANES spectra reveal an enrichment of PF6-1 anions at the surface of the electrode during charging.
Photoinduced discommensuration of the commensurate charge-density wave phase in 1 T -Ta S2
NASA Astrophysics Data System (ADS)
Tanimura, Katsumi
2018-06-01
The dynamics induced by femtosecond-laser excitation of the commensurate phase of the charge-density wave (CDW) in 1 T -Ta S2 have been studied using both time-resolved electron diffraction and the time-resolved spectroscopy of coherent-phonon dynamics. Electron diffraction results show that the commensurate CDW phase is transformed into a new phase with CDW order that is similar to the nearly commensurate phase with threshold-type transition rates; the threshold excitation density of 0.2 per 13 Ta atoms is evaluated. Coherent-phonon spectroscopy results show that, together with the amplitude mode of CDW with a frequency of 2.41 THz, two other modes with frequencies of 2.34 and 2.07 THz are excited in the photoexcited commensurate CDW phase over a timescale of several tens of picoseconds after excitation. Spectroscopic, temporal, and excitation-intensity dependent characteristics of the three coherent phonons reveal that a photoinduced decomposition of the commensurate CDW order into an ensemble of domains with different CDW orders is induced before the CDW-phase transition occurs. The physics underlying the photoinduced decomposition and evolution into discommensurations responsible for the CDW-order transformation are discussed.
NASA Astrophysics Data System (ADS)
Chinotti, M.; Ethiraj, J.; Mirri, C.; Zhu, Xiangde; Li, Lijun; Petrovic, C.; Degiorgi, L.
2018-01-01
The emergence of superconductivity upon progressively suppressing the long-range, charge-density-wave (CDW) order characterizes the phase diagram of several materials of interest in the on-going solid-state physics research. Se-doped ZrTe3 compounds provide the most recent, suitable arena in order to investigate the interplay of otherwise competing orders in layeredlike two-dimensional systems. We present an optical study of the CDW state in ZrTe3 -xSex at selected Se dopings, based on the measurement of the reflectivity from the far-infrared up to the ultraviolet, as a function of temperature. We particularly focus our attention to the redistribution of the spectral weight, which images the impact of the CDW state within the optical conductivity across the phase diagram of the title compounds. The electrodynamic response is consistent with a scenario based on a long-range CDW condensate at low Se doping. Upon increasing the Se content, this then gives way to local, short-range order CDW segments. Our spectral weight analysis reveals the presence of a pseudogap phase, as fingerprint of the CDW precursor effects and thus shaping the charge dynamics of the title compounds in their normal state, preceding the onset of superconductivity.
Gutzwiller charge phase diagram of cuprates, including electron–phonon coupling effects
Markiewicz, R. S.; Seibold, G.; Lorenzana, J.; ...
2015-02-01
Besides significant electronic correlations, high-temperature superconductors also show a strong coupling of electrons to a number of lattice modes. Combined with the experimental detection of electronic inhomogeneities and ordering phenomena in many high-T c compounds, these features raise the question as to what extent phonons are involved in the associated instabilities. Here we address this problem based on the Hubbard model including a coupling to phonons in order to capture several salient features of the phase diagram of hole-doped cuprates. Charge degrees of freedom, which are suppressed by the large Hubbard U near half-filling, are found to become active atmore » a fairly low doping level. We find that possible charge order is mainly driven by Fermi surface nesting, with competition between a near-(π, π) order at low doping and antinodal nesting at higher doping, very similar to the momentum structure of magnetic fluctuations. The resulting nesting vectors are generally consistent with photoemission and tunneling observations, evidence for charge density wave order in YBa₂Cu₃O 7-δ including Kohn anomalies, and suggestions of competition between one- and two-q-vector nesting.« less
Charge modulation as fingerprints of phase-string triggered interference
NASA Astrophysics Data System (ADS)
Zhu, Zheng; Tian, Chushun; Jiang, Hong-Chen; Qi, Yang; Weng, Zheng-Yu; Zaanen, Jan
2015-07-01
Charge order appears to be an ubiquitous phenomenon in doped Mott insulators, which is currently under intense experimental and theoretical investigations particularly in the high Tc cuprates. This phenomenon is conventionally understood in terms of Hartree-Fock-type mean-field theory. Here we demonstrate a mechanism for charge modulation which is rooted in the many-particle quantum physics arising in the strong coupling limit. Specifically, we consider the problem of a single hole in a bipartite t -J ladder. As a remnant of the fermion signs, the hopping hole picks up subtle phases pending the fluctuating spins, the so-called phase-string effect. We demonstrate the presence of charge modulations in the density matrix renormalization group solutions which disappear when the phase strings are switched off. This form of charge modulation can be understood analytically in a path-integral language with a mean-field-like approximation adopted, showing that the phase strings give rise to constructive interferences leading to self-localization. When the latter occurs, left- and right-moving propagating modes emerge inside the localization volume and their interference is responsible for the real space charge modulation.
Suppression of the Hall number due to charge density wave order in high-Tc cuprates
NASA Astrophysics Data System (ADS)
Sharma, Girish; Nandy, S.; Taraphder, A.; Tewari, Sumanta
2018-05-01
Understanding the pseudogap phase in hole-doped high-temperature cuprate superconductors remains a central challenge in condensed-matter physics. From a host of recent experiments there is now compelling evidence of translational-symmetry-breaking charge density wave (CDW) order in a wide range of doping inside this phase. Two distinct types of incommensurate charge order, bidirectional at zero or low magnetic fields and unidirectional at high magnetic fields close to the upper critical field Hc 2, have been reported so far in approximately the same doping range between p ≃0.08 and p ≃0.16 . In concurrent developments, recent high-field Hall experiments have also revealed two indirect but striking signatures of Fermi surface reconstruction in the pseudogap phase, namely, a sign change of the Hall coefficient to negative values at low temperatures in the intermediate range of hole doping and a rapid suppression of the positive Hall number without a change in sign near optimal doping p ˜0.19 . We show that the assumption of a unidirectional incommensurate CDW (with or without a coexisting weak bidirectional order) at high magnetic fields near optimal doping and the coexistence of both types of orders of approximately equal magnitude at high magnetic fields in the intermediate range of doping may help explain the striking behavior of the low-temperature Hall effect in the entire pseudogap phase.
Quantum phase transition with dissipative frustration
NASA Astrophysics Data System (ADS)
Maile, D.; Andergassen, S.; Belzig, W.; Rastelli, G.
2018-04-01
We study the quantum phase transition of the one-dimensional phase model in the presence of dissipative frustration, provided by an interaction of the system with the environment through two noncommuting operators. Such a model can be realized in Josephson junction chains with shunt resistances and resistances between the chain and the ground. Using a self-consistent harmonic approximation, we determine the phase diagram at zero temperature which exhibits a quantum phase transition between an ordered phase, corresponding to the superconducting state, and a disordered phase, corresponding to the insulating state with localized superconducting charge. Interestingly, we find that the critical line separating the two phases has a nonmonotonic behavior as a function of the dissipative coupling strength. This result is a consequence of the frustration between (i) one dissipative coupling that quenches the quantum phase fluctuations favoring the ordered phase and (ii) one that quenches the quantum momentum (charge) fluctuations leading to a vanishing phase coherence. Moreover, within the self-consistent harmonic approximation, we analyze the dissipation induced crossover between a first and second order phase transition, showing that quantum frustration increases the range in which the phase transition is second order. The nonmonotonic behavior is reflected also in the purity of the system that quantifies the degree of correlation between the system and the environment, and in the logarithmic negativity as an entanglement measure that encodes the internal quantum correlations in the chain.
Universal phase diagrams with superconducting domes for electronic flat bands
NASA Astrophysics Data System (ADS)
Löthman, Tomas; Black-Schaffer, Annica M.
2017-08-01
Condensed matter systems with flat bands close to the Fermi level generally exhibit, due to their very large density of states, extraordinarily high critical ordering temperatures of symmetry-breaking orders, such as superconductivity and magnetism. Here we show that the critical temperatures follow one of two universal curves with doping away from a flat band depending on the ordering channel, which completely dictates both the general order competition and the phase diagram. Notably, we find that orders in the particle-particle channel (superconducting orders) survive decisively farther than orders in the particle-hole channel (magnetic or charge orders) because the channels have fundamentally different polarizabilities. Thus, even if a magnetic or charge order initially dominates, superconducting domes are still likely to exist on the flanks of flat bands. We apply these general results to both the topological surface flat bands of rhombohedral ABC-stacked graphite and to the Van Hove singularity of graphene.
Khanna, V.; Mankowsky, R.; Petrich, M.; ...
2016-06-30
Here, we show that disruption of charge-density-wave (stripe) order by charge transfer excitation, enhances the superconducting phase rigidity in La 1.885Ba 0.115CuO 4. Time-resolved resonant soft x-ray diffraction demonstrates that charge order melting is prompt following near-infrared photoexcitation whereas the crystal structure remains intact for moderate fluences. THz time-domain spectroscopy reveals that, for the first 2 ps following photoexcitation, a new Josephson plasma resonance edge, at higher frequency with respect to the equilibrium edge, is induced indicating enhanced superconducting interlayer coupling. Furthermore, the fluence dependence of the charge-order melting and the enhanced superconducting interlayer coupling are correlated with a saturationmore » limit of ~0.5mJ/cm 2. When using a combination of x-ray and optical spectroscopies we establish a hierarchy of timescales between enhanced superconductivity, melting of charge order, and rearrangement of the crystal structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khanna, V.; Mankowsky, R.; Petrich, M.
Here, we show that disruption of charge-density-wave (stripe) order by charge transfer excitation, enhances the superconducting phase rigidity in La 1.885Ba 0.115CuO 4. Time-resolved resonant soft x-ray diffraction demonstrates that charge order melting is prompt following near-infrared photoexcitation whereas the crystal structure remains intact for moderate fluences. THz time-domain spectroscopy reveals that, for the first 2 ps following photoexcitation, a new Josephson plasma resonance edge, at higher frequency with respect to the equilibrium edge, is induced indicating enhanced superconducting interlayer coupling. Furthermore, the fluence dependence of the charge-order melting and the enhanced superconducting interlayer coupling are correlated with a saturationmore » limit of ~0.5mJ/cm 2. When using a combination of x-ray and optical spectroscopies we establish a hierarchy of timescales between enhanced superconductivity, melting of charge order, and rearrangement of the crystal structure.« less
Fractional Fourier transform of Lorentz-Gauss vortex beams
NASA Astrophysics Data System (ADS)
Zhou, GuoQuan; Wang, XiaoGang; Chu, XiuXiang
2013-08-01
An analytical expression for a Lorentz-Gauss vortex beam passing through a fractional Fourier transform (FRFT) system is derived. The influences of the order of the FRFT and the topological charge on the normalized intensity distribution, the phase distribution, and the orbital angular momentum density of a Lorentz-Gauss vortex beam in the FRFT plane are examined. The order of the FRFT controls the beam spot size, the orientation of the beam spot, the spiral direction of the phase distribution, the spatial orientation of the two peaks in the orbital angular momentum density distribution, and the magnitude of the orbital angular momentum density. The increase of the topological charge not only results in the dark-hollow region becoming large, but also brings about detail changes in the beam profile. The spatial orientation of the two peaks in the orbital angular momentum density distribution and the phase distribution also depend on the topological charge.
Phase transition detection by surface photo charge effect in liquid crystals
NASA Astrophysics Data System (ADS)
Ivanov, O.; Petrov, M.; Naradikian, H.; Perez-Diaz, J. L.
2018-05-01
The surface photo charge effect (SPCE) was applied for the first time at structure and phase transitions study of hydrogen bonded in dimer liquid crystals (HBDLCs). Due to the high sensitivity of this method, besides first-order phase transitions, characteristic for the p,n-octyloxibenzoic acids (8OBA), an order transition was definitely detected within the nematic range. We state that the SPCE, arising at the solid-HBDLCs interface due to the double electrical layer, is invariably concomitant with solid surface-liquid interfaces, and indicates that the changes of the characteristics of this layer, under incident optical irradiation, induce surface charge rearrangement and alternating potential difference. A mechanism of induction of the SPCE at the interface of solid surface-anisotropic liquids is proposed. We also indicate that this mechanism can be adapted for solid surface-isotropic liquid interface, including colloids (milk) and fog (aerosols)-condensed medium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grilli, M.; Raimondi, R.; Castellani, C.
1991-07-08
The {ital U}={infinity} limit of the three-band Hubbard model with nearest-neighbor repulsion {ital V} is studied using the slave-boson approach and the large-{ital N} expansion technique to order 1/{ital N}. A charge-transfer instability is found as in weak-coupling theory. The charge-transfer instability is always associated with a diverging compressibility leading to a phase separation. Near the phase-separation, charge-transfer-instability region we find superconducting instabilities in the {ital s}- and {ital d}-wave channel. The requirement for superconductivity is that {ital V} be on the scale of the Cu-O hopping as suggested by Varma, Schmitt-Rink, and Abrahams.
Optical spectroscopic study of multiferroic BiFeO3 and LuFe2O4
NASA Astrophysics Data System (ADS)
Xu, Xiaoshan
2010-03-01
Iron-based multiferroics such as BiFeO3 and LuFe2O4 exhibit the highest magnetic and ferroelectric ordering temperatures among known multiferroics. LuFe2O4 is a frustrated system with several phase transitions that result in electronically driven multiferroicity. To understand how this peculiar multiferroic mechanism correlates with magnetism, we studied electronic excitations by optical spectroscopy and other complementary techniques. We show that the charge order, which determines the dielectric properties, is due to the ``order by fluctuation'' mechanism, evidenced by the onset of charge fluctuation well below the charge ordering transition. We also find a low temperature monoclinic distortion driven by both temperature and magnetic field, indicating strong coupling between structure, magnetism and charge order. BiFeO3 is the only known single phase multiferroics with room temperature magnetism and ferroelectricity. To investigate the spin-charge coupling, we measured the optical properties of BiFeO3. We find that the absorption onset occurs due to on-site Fe^3+ excitations at 1.41 and 1.90 eV. Temperature and magnetic-field-induced spectral changes reveal complex interactions between on-site crystal-field and magnetic excitations in the form of magnon sidebands. The sensitivity of the magnon sidebands allows us to map out the magnetic-field temperature phase diagram which demonstrates optical evidence for spin spiral quenching above 20 T and suggests a spin domain reorientation near 10 T. Work done in collaboration with T.V. Brinzari, R.C. Rai, M. Angst, R.P. Hermann, A.D. Christianson, J.-W. Kim, Z. Islam, B.C. Sales, D. Mandrus, S. Lee, Y.H. Chu, L. W. Martin, A. Kumar, R. Ramesh, S.W. Cheong, S. McGill, and J.L. Musfeldt.
NASA Astrophysics Data System (ADS)
Panov, Yu. D.; Moskvin, A. S.; Rybakov, F. N.; Borisov, A. B.
2016-12-01
We made use of a special algorithm for compute unified device architecture for NVIDIA graphics cards, a nonlinear conjugate-gradient method to minimize energy functional, and Monte-Carlo technique to directly observe the forming of the ground state configuration for the 2D hard-core bosons by lowering the temperature and its evolution with deviation away from half-filling. The novel technique allowed us to examine earlier implications and uncover novel features of the phase transitions, in particular, look upon the nucleation of the odd domain structure, emergence of filamentary superfluidity nucleated at the antiphase domain walls of the charge-ordered phase, and nucleation and evolution of different topological structures.
Disentangled Cooperative Orderings in Artificial Rare-Earth Nickelates
Middey, S.; Meyers, D.; Kareev, M.; ...
2018-04-09
Coupled transitions between distinct ordered phases are important aspects behind the rich phase complexity of correlated oxides that hinder our understanding of the underlying phenomena. For this reason, fundamental control over complex transitions has become a leading motivation of the designer approach to materials. We have devised a series of new superlattices by combining a Mott insulator and a correlated metal to form ultrashort period superlattices, which allow one to disentangle the simultaneous orderings in RENiO 3. Tailoring an incommensurate heterostructure period relative to the bulk charge ordering pattern suppresses the charge order transition while preserving metal-insulator and antiferromagnetic transitions.more » Such selective decoupling of the entangled phases resolves the long-standing puzzle about the driving force behind the metal-insulator transition and points to the site-selective Mott transition as the operative mechanism. In conclusion, this designer approach emphasizes the potential of heterointerfaces for selective control of simultaneous transitions in complex materials with entwined broken symmetries.« less
Disentangled Cooperative Orderings in Artificial Rare-Earth Nickelates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middey, S.; Meyers, D.; Kareev, M.
Coupled transitions between distinct ordered phases are important aspects behind the rich phase complexity of correlated oxides that hinder our understanding of the underlying phenomena. For this reason, fundamental control over complex transitions has become a leading motivation of the designer approach to materials. We have devised a series of new superlattices by combining a Mott insulator and a correlated metal to form ultrashort period superlattices, which allow one to disentangle the simultaneous orderings in RENiO 3. Tailoring an incommensurate heterostructure period relative to the bulk charge ordering pattern suppresses the charge order transition while preserving metal-insulator and antiferromagnetic transitions.more » Such selective decoupling of the entangled phases resolves the long-standing puzzle about the driving force behind the metal-insulator transition and points to the site-selective Mott transition as the operative mechanism. In conclusion, this designer approach emphasizes the potential of heterointerfaces for selective control of simultaneous transitions in complex materials with entwined broken symmetries.« less
Conserved charge fluctuations at vanishing and non-vanishing chemical potential
NASA Astrophysics Data System (ADS)
Karsch, Frithjof
2017-11-01
Up to 6th order cumulants of fluctuations of net baryon-number, net electric charge and net strangeness as well as correlations among these conserved charge fluctuations are now being calculated in lattice QCD. These cumulants provide a wealth of information on the properties of strong-interaction matter in the transition region from the low temperature hadronic phase to the quark-gluon plasma phase. They can be used to quantify deviations from hadron resonance gas (HRG) model calculations which frequently are used to determine thermal conditions realized in heavy ion collision experiments. Already some second order cumulants like the correlations between net baryon-number and net strangeness or net electric charge differ significantly at temperatures above 155 MeV in QCD and HRG model calculations. We show that these differences increase at non-zero baryon chemical potential constraining the applicability range of HRG model calculations to even smaller values of the temperature.
NASA Astrophysics Data System (ADS)
Bid, Aveek; Guha, Ayan; Raychaudhuri, A. K.
2003-05-01
We have studied low-frequency resistance fluctuations (noise) in a single crystal of the rare-earth perovskite manganite Pr0.63Ca0.37MnO3, which shows a charge-ordering transition at a temperature TCO≈245 K. The measurements were made across the charge-ordering transition covering the temperature range 200 K
Gapped boundary phases of topological insulators via weak coupling
Seiberg, Nathan; Witten, Edward
2016-11-04
The standard boundary state of a topological insulator in 3 + 1 dimensions has gapless charged fermions. We present model systems that reproduce this standard gapless boundary state in one phase, but also have gapped phases with topological order. Our models are weakly coupled and all the dynamics is explicit. We rederive some known boundary states of topological insulators and construct new ones. Consistency with the standard spin/charge relation of condensed matter physics places a nontrivial constraint on models
Higgs mechanism in higher-rank symmetric U(1) gauge theories
NASA Astrophysics Data System (ADS)
Bulmash, Daniel; Barkeshli, Maissam
2018-06-01
We use the Higgs mechanism to investigate connections between higher-rank symmetric U(1 ) gauge theories and gapped fracton phases. We define two classes of rank-2 symmetric U(1 ) gauge theories: the (m ,n ) scalar and vector charge theories, for integer m and n , which respect the symmetry of the square (cubic) lattice in two (three) spatial dimensions. We further provide local lattice rotor models whose low-energy dynamics are described by these theories. We then describe in detail the Higgs phases obtained when the U(1 ) gauge symmetry is spontaneously broken to a discrete subgroup. A subset of the scalar charge theories indeed have X-cube fracton order as their Higgs phase, although we find that this can only occur if the continuum higher-rank gauge theory breaks continuous spatial rotational symmetry. However, not all higher-rank gauge theories have fractonic Higgs phases; other Higgs phases possess conventional topological order. Nevertheless, they yield interesting novel exactly solvable models of conventional topological order, somewhat reminiscent of the color code models in both two and three spatial dimensions. We also investigate phase transitions in these models and find a possible direct phase transition between four copies of Z2 gauge theory in three spatial dimensions and X-cube fracton order.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chinotti, M.; Ethiraj, J.; Mirri, C.
The emergence of superconductivity upon progressively suppressing the long-range, charge-density-wave (CDW) order characterizes the phase diagram of several materials of interest in the on-going solid-state physics research. Se-doped ZrTe 3 compounds provide the most recent, suitable arena in order to investigate the interplay of otherwise competing orders in layeredlike two-dimensional systems. We present an optical study of the CDW state in ZrTe 3-xSe x at selected Se dopings, based on the measurement of the reflectivity from the far-infrared up to the ultraviolet, as a function of temperature. We particularly focus our attention to the redistribution of the spectral weight, whichmore » images the impact of the CDW state within the optical conductivity across the phase diagram of the title compounds. The electrodynamic response is consistent with a scenario based on a long-range CDW condensate at low Se doping. Upon increasing the Se content, this then gives way to local, short-range order CDW segments. Thus, our spectral weight analysis reveals the presence of a pseudogap phase, as fingerprint of the CDW precursor effects and thus shaping the charge dynamics of the title compounds in their normal state, preceding the onset of superconductivity.« less
Chinotti, M.; Ethiraj, J.; Mirri, C.; ...
2018-01-12
The emergence of superconductivity upon progressively suppressing the long-range, charge-density-wave (CDW) order characterizes the phase diagram of several materials of interest in the on-going solid-state physics research. Se-doped ZrTe 3 compounds provide the most recent, suitable arena in order to investigate the interplay of otherwise competing orders in layeredlike two-dimensional systems. We present an optical study of the CDW state in ZrTe 3-xSe x at selected Se dopings, based on the measurement of the reflectivity from the far-infrared up to the ultraviolet, as a function of temperature. We particularly focus our attention to the redistribution of the spectral weight, whichmore » images the impact of the CDW state within the optical conductivity across the phase diagram of the title compounds. The electrodynamic response is consistent with a scenario based on a long-range CDW condensate at low Se doping. Upon increasing the Se content, this then gives way to local, short-range order CDW segments. Thus, our spectral weight analysis reveals the presence of a pseudogap phase, as fingerprint of the CDW precursor effects and thus shaping the charge dynamics of the title compounds in their normal state, preceding the onset of superconductivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X. Q.; Sun, X.; Lee, S. J.
In Situ x-ray diffraction studies on Li{sub x}Mn{sub 2}O{sub 4} spinel cathode materials during charge-discharge cycles were carried out by using a synchrotron as x-ray source. Lithium rich (x = 1.03-1.06) spinel materials obtained from two different sources were studied. Three cubic phases with different lattice constants were observed during charge-discharge cycles in all the samples when a Sufficiently low charge-discharge rate (C/10) was used. There are two regions of two-phase coexistence between these three phases, indicating that both phase transitions are first order. The separation of the Bragg peaks representing these three phases varies from sample to sample andmore » also depends on the charge-discharge rate. These results show that the de-intercalation of lithium in lithium-rich spinel cathode materials proceeds through a series of phase transitions from a lithium-rich phase to a lithium-poor phase and finally to a {lambda}-MnO{sub 2} like cubic phase, rather than through a continuous lattice constant contraction in a single phase.« less
Two-leg ladder systems with dipole–dipole Fermion interactions
NASA Astrophysics Data System (ADS)
Mosadeq, Hamid; Asgari, Reza
2018-05-01
The ground-state phase diagram of a two-leg fermionic dipolar ladder with inter-site interactions is studied using density matrix renormalization group (DMRG) techniques. We use a state-of-the-art implementation of the DMRG algorithm and finite size scaling to simulate large system sizes with high accuracy. We also consider two different model systems and explore stable phases in half and quarter filling factors. We find that in the half filling, the charge and spin gaps emerge in a finite value of the dipole–dipole and on-site interactions. In the quarter filling case, s-wave superconducting state, charge density wave, homogenous insulating and phase separation phases occur depend on the interaction values. Moreover, in the dipole–dipole interaction, the D-Mott phase emerges when the hopping terms along the chain and rung are the same, whereas, this phase has been only proposed for the anisotropic Hubbard model. In the half filling case, on the other hand, there is either charge-density wave or charged Mott order phase depends on the orientation of the dipole moments of the particles with respect to the ladder geometry.
Matt, C. E.; Fatuzzo, C. G.; Sassa, Y.; ...
2015-10-27
We report an angle-resolved photoemission study of the charge stripe ordered La 1.6–xNd 0.4Sr xCuO 4 (Nd-LSCO) system. A comparative and quantitative line-shape analysis is presented as the system evolves from the overdoped regime into the charge ordered phase. On the overdoped side (x = 0.20), a normal-state antinodal spectral gap opens upon cooling below 80 K. In this process, spectral weight is preserved but redistributed to larger energies. A correlation between this spectral gap and electron scattering is found. A different line shape is observed in the antinodal region of charge ordered Nd-LSCO x = 1/8. Significant low-energy spectralmore » weight appears to be lost. As a result, these observations are discussed in terms of spectral-weight redistribution and gapping originating from charge stripe ordering.« less
Equation of State of Structured Matter at Finite Temperature
NASA Astrophysics Data System (ADS)
Maruyama, T.; Yasutake, N.; Tatsumi, T.
We investigate the properties of nuclear matter at the first-order phase transitions such as liquid-gas phase transition and hadron-quark phase transition. As a general feature of the first-order phase transitions of matter consisting of many species of charged particles, there appears a mixed phases with geometrical structures called ``pasta'' due to the balance of the Coulomb repulsion and the surface tension between two phases [G.~D.~Ravenhall, C.~J.~Pethick and J.~R.~Wilson, Phys. Rev. Lett. 50 (1983), 2066. M.~Hashimoto, H.~Seki and M.~Yamada, Prog. Theor. Phys. 71 (1984), 320.] The equation of state (EOS) of mixed phase is different from the one obtained by a bulk application of the Gibbs conditions or by the Maxwell construction due to the effects of the non-uniform structure. We show that the charge screening and strong surface tension make the EOS close to that of the Maxwell construction. The thermal effects are elucidated as well as the above finite-size effects.
NASA Astrophysics Data System (ADS)
Kitazawa, Masakiyo; Asakawa, Masayuki; Ono, Hirosato
2014-01-01
We investigate the time evolution of higher order cumulants of conserved charges in a volume with the diffusion master equation. Applying the result to the diffusion of non-Gaussian fluctuations in the hadronic stage of relativistic heavy ion collisions, we show that the fourth-order cumulant of net-electric charge at LHC energy is suppressed compared with the recently observed second-order cumulant at ALICE, if the higher order cumulants at hadronization are suppressed compared with their values in the hadron phase in equilibrium. The significance of the experimental information on the rapidity window dependence of various cumulants in investigating the history of the dynamical evolution of the hot medium created in relativistic heavy ion collisions is emphasized.
Employee-in-charge portable remote terminal phases 3 and 4 summary report.
DOT National Transportation Integrated Search
2016-05-01
Under Federal Railroad Administration Task Order 257, Transportation Technology Center, Inc. partnered with BNSF Railway : Company to complete Builds 1 and 2 of the Employee-In-Charge (EIC) portable remote control (PRT) application software and to : ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadeem, M., E-mail: mnadeemsb@gmail.com; Iqbal, M. Javid; Farhan, M. Arshad
2016-08-15
Highlights: • Concept of normalized magnetization is introduced to explain relative magnetic transitions. • Coexistence of two magnetic modes is correlated with the magnetic transitions and MIT. • Field induced melting and collapse of charge ordered antiferromagnetic (CO-AFM) state into ferromagnetic (FM) state is conferred. - Abstract: The magnetic properties of polycrystalline La{sub 0.5-x}Pr{sub x}Ca{sub 0.5}MnO{sub 3} material are investigated at different temperatures. The existence of magnetically diverse phases associated with various relaxation modes and their modulation with temperature and doping is analyzed. La{sub 0.5}Ca{sub 0.5}MnO{sub 3} exhibited field induced melting and collapse of charge ordered antiferromagnetic (CO-AFM) phase intomore » ferromagnetic (FM) state. This phenomenon results in lowering of Neel’s temperature (T{sub N}) along with changes in the slope of magnetic moment with temperature. Using normalized M(T) curves, the variation and interplay of charge ordered temperature (T{sub CO}), Curie temperature (T{sub C}) and T{sub N} is conferred. The coexistence of two magnetic modes is explained as major ingredient for the magnetic transitions as well as metal to insulator transition (MIT); where melting and collapse of charge ordering is conversed as basic feature in these Praseodymium (Pr) doped La{sub 0.5}Ca{sub 0.5}MnO{sub 3} materials.« less
Charge and spin correlations in the monopole liquid
NASA Astrophysics Data System (ADS)
Slobinsky, D.; Baglietto, G.; Borzi, R. A.
2018-05-01
A monopole liquid is a spin system with a high density of magnetic charges but no magnetic-charge order. We study such a liquid over an Ising pyrochlore lattice, where a single topological charge or monopole sits in each tetrahedron. Restricting the study to the case with no magnetic field applied we show that, in spite of the liquidlike correlations between charges imposed by construction constraints, the spins are uncorrelated like in a perfect paramagnet. We calculate a massive residual entropy for this phase (ln(2 )/2 , a result which is exact in the thermodynamic limit), implying a free Ising-like variable per tetrahedron. After defining a simple model Hamiltonian for this system (the balanced monopole liquid) we study its thermodynamics. Surprisingly, this monopole liquid remains a perfect paramagnet at all temperatures. Thermal disorder can then be simply and quantitatively interpreted as single charge dilution, by the excitation of neutral sites and double monopoles. The addition of the usual nearest neighbors interactions favoring neutral `2in-2out' excitations as a perturbation maintains the same ground state but induces short-range (topological) order by thermal disorder. While it decreases charge-charge correlations, pair spin correlations—resembling those in spin ice—appear on increasing temperature. This helps us to see in another light the dipolarlike correlations present in spin ices at unexpectedly high temperatures. On the other side, favoring double excitations strengthens the charges short range order and its associated spin correlations. Finally, we discuss how the monopole liquid can be related to other systems and materials where different phases of monopole matter have been observed.
Delocalization Drives Free Charge Generation in Conjugated Polymer Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pace, Natalie A.; Reid, Obadiah G.; Rumbles, Garry
We demonstrate that the product of photoinduced electron transfer between a conjugated polymer host and a dilute molecular sensitizer is controlled by the structural state of the polymer. Ordered semicrystalline solids exhibit free charge generation, while disordered polymers in the melt phase do not. We use photoluminescence (PL) and time-resolved microwave conductivity (TRMC) measurements to sweep through polymer melt transitions in situ. Free charge generation measured by TRMC turns off upon melting, whereas PL quenching of the molecular sensitizers remains constant, implying unchanged electron transfer efficiency. The key difference is the intermolecular order of the polymer host in the solidmore » state compared to the melt. We propose that this order-disorder transition modulates the localization length of the initial charge-transfer state, which controls the probability of free charge formation.« less
Delocalization Drives Free Charge Generation in Conjugated Polymer Films
Pace, Natalie A.; Reid, Obadiah G.; Rumbles, Garry
2018-02-19
We demonstrate that the product of photoinduced electron transfer between a conjugated polymer host and a dilute molecular sensitizer is controlled by the structural state of the polymer. Ordered semicrystalline solids exhibit free charge generation, while disordered polymers in the melt phase do not. We use photoluminescence (PL) and time-resolved microwave conductivity (TRMC) measurements to sweep through polymer melt transitions in situ. Free charge generation measured by TRMC turns off upon melting, whereas PL quenching of the molecular sensitizers remains constant, implying unchanged electron transfer efficiency. The key difference is the intermolecular order of the polymer host in the solidmore » state compared to the melt. We propose that this order-disorder transition modulates the localization length of the initial charge-transfer state, which controls the probability of free charge formation.« less
NASA Astrophysics Data System (ADS)
McClarty, P. A.; O'Brien, A.; Pollmann, F.
2014-05-01
We consider a classical model of charges ±q on a pyrochlore lattice in the presence of long-range Coulomb interactions. This model first appeared in the early literature on charge order in magnetite [P. W. Anderson, Phys. Rev. 102, 1008 (1956), 10.1103/PhysRev.102.1008]. In the limit where the interactions become short ranged, the model has a ground state with an extensive entropy and dipolar charge-charge correlations. When long-range interactions are introduced, the exact degeneracy is broken. We study the thermodynamics of the model and show the presence of a correlated charge liquid within a temperature window in which the physics is well described as a liquid of screened charged defects. The structure factor in this phase, which has smeared pinch points at the reciprocal lattice points, may be used to detect charge ice experimentally. In addition, the model exhibits fractionally charged excitations ±q/2 which are shown to interact via a 1/r potential. At lower temperatures, the model exhibits a transition to a long-range ordered phase. We are able to treat the Coulombic charge ice model and the dipolar spin ice model on an equal footing by mapping both to a constrained charge model on the diamond lattice. We find that states of the two ice models are related by a staggering field which is reflected in the energetics of these two models. From this perspective, we can understand the origin of the spin ice and charge ice ground states as coming from a dipolar model on a diamond lattice. We study the properties of charge ice in an external electric field, finding that the correlated liquid is robust to the presence of a field in contrast to the case of spin ice in a magnetic field. Finally, we comment on the transport properties of Coulombic charge ice in the correlated liquid phase.
Origins of the anomalous stress behavior in charged colloidal suspensions under shear.
Kumar, Amit; Higdon, Jonathan J L
2010-11-01
Numerical simulations are conducted to determine microstructure and rheology of sheared suspensions of charged colloidal particles at a volume fraction of ϕ=0.33. Over broad ranges of repulsive force strength F0 and Péclet number Pe, dynamic simulations show coexistence of ordered and disordered stable states with the state dependent on the initial condition. In contrast to the common view, at low shear rates, the disordered phase exhibits a lower viscosity (μ(r)) than the ordered phase, while this behavior is reversed at higher shear rates. Analysis shows the stress reversal is associated with different shear induced microstructural distortions in the ordered and disordered systems. Viscosity vs shear rate data over a wide range of F0 and Pe collapses well upon rescaling with the long-time self-diffusivity. Shear thinning viscosity in the ordered phase scaled as μ(r)∼Pe(-0.81) at low shear rates. The microstructural dynamics revealed in these studies explains the anomalous behavior and hysteresis loops in stress data reported in the literature.
Patsahan, O; Ciach, A
2012-09-01
Effects of size and charge asymmetry between oppositely charged ions or particles on spatial inhomogeneities are studied for a large range of charge and size ratios. We perform a stability analysis of the primitive model of ionic systems with respect to periodic ordering using the collective variables-based theory. We extend previous studies [Ciach et al., Phys. Rev. E 75, 051505 (2007)] in several ways. First, we employ a nonlocal approximation for the reference hard-sphere fluid which leads to the Percus-Yevick pair direct correlation functions for the uniform case. Second, we use the Weeks-Chandler-Anderson regularization scheme for the Coulomb potential inside the hard core. We determine the relevant order parameter connected with the periodic ordering and analyze the character of the dominant fluctuations along the λ lines. We show that the above-mentioned modifications produce large quantitative and partly qualitative changes in the phase diagrams obtained previously. We discuss possible scenarios of the periodic ordering for the whole range of size and charge ratios of the two ionic species, covering electrolytes, ionic liquids, charged globular proteins or nanoparticles in aqueous solutions, and charge-stabilized colloids.
Abram, M; Zegrodnik, M; Spałek, J
2017-09-13
In the first part of the paper, we study the stability of antiferromagnetic (AF), charge density wave (CDW), and superconducting (SC) states within the t-J-U-V model of strongly correlated electrons by using the statistically consistent Gutzwiller approximation (SGA). We concentrate on the role of the intersite Coulomb interaction term V in stabilizing the CDW phase. In particular, we show that the charge ordering appears only above a critical value of V in a limited hole-doping range δ. The effect of the V term on SC and AF phases is that a strong interaction suppresses SC, whereas the AF order is not significantly influenced by its presence. In the second part, separate calculations for the case of a pure SC phase have been carried out within an extended approach (the diagrammatic expansion for the Gutzwiller wave function, DE-GWF) in order to analyze the influence of the intersite Coulomb repulsion on the SC phase with the higher-order corrections included beyond the SGA method. The upper concentration for the SC disappearance decreases with increasing V, bringing the results closer to experiment. In appendices A and B we discuss the ambiguity connected with the choice of the Gutzwiller renormalization factors within the renormalized mean filed theory when either AF or CDW orders are considered. At the end, we overview briefly the possible extensions of the current models to put descriptions of the SC, AF, and CDW states on equal footing.
Davies Critical Point and Tunneling
NASA Astrophysics Data System (ADS)
La, Hoseong
2012-04-01
From the point of view of tunneling, the physical meaning of the Davies critical point of a second-order phase transition in the black hole thermodynamics is clarified. At the critical point, the nonthermal contribution vanishes so that the black hole radiation is entirely thermal. It separates two phases: one with radiation enhanced by the nonthermal contribution, the other suppressed by the nonthermal contribution. We show this in both charged and rotating black holes. The phase transition is also analyzed in the cases in which emissions of charges and angular momenta are incorporated.
Magnetic properties of confined holographic QCD
NASA Astrophysics Data System (ADS)
Bergman, Oren; Lifschytz, Gilad; Lippert, Matthew
2013-12-01
We investigate the Sakai-Sugimoto model at nonzero baryon chemical potential in a background magnetic field in the confined phase where chiral symmetry is broken. The D8-brane Chern-Simons term holographically encodes the axial anomaly and generates a gradient of the η' meson, which carries a non-vanishing baryon charge. Above a critical value of the chemical potential, there is a second-order phase transition to a mixed phase which includes also ordinary baryonic matter. However, at fixed baryon charge density, the matter is purely η'-gradient above a critical magnetic field.
Charge and current orders in the spin-fermion model with overlapping hot spots
NASA Astrophysics Data System (ADS)
Volkov, Pavel A.; Efetov, Konstantin B.
2018-04-01
Experiments carried over the last years on the underdoped cuprates have revealed a variety of symmetry-breaking phenomena in the pseudogap state. Charge-density waves, breaking of C4 rotational symmetry as well as time-reversal symmetry breaking have all been observed in several cuprate families. In this regard, theoretical models where multiple nonsuperconducting orders emerge are of particular interest. We consider the recently introduced [Volkov and Efetov, Phys. Rev. B 93, 085131 (2016), 10.1103/PhysRevB.93.085131] spin-fermion model with overlapping `hot spots' on the Fermi surface. Focusing on the particle-hole instabilities we obtain a rich phase diagram with the chemical potential relative to the dispersion at (0 ,π );(π ,0 ) and the Fermi surface curvature in the antinodal regions being the control parameters. We find evidence for d-wave Pomeranchuk instability, d-form factor charge density waves, as well as commensurate and incommensurate staggered bond current phases similar to the d-density wave state. The current orders are found to be promoted by the curvature. Considering the appropriate parameter range for the hole-doped cuprates, we discuss the relation of our results to the pseudogap state and incommensurate magnetic phases of the cuprates.
Pressure-temperature phase diagram of a charge-ordered organic conductor studied by C13 NMR
NASA Astrophysics Data System (ADS)
Itou, T.; Miyagawa, K.; Nakamura, J.; Kanoda, K.; Hiraki, K.; Takahashi, T.
2014-07-01
We performed C13 NMR measurements on the quasi-one-dimensional (Q1D) charge-ordered system (DI-DCNQI)2Ag under ambient and applied pressure to clarify the pressure-temperature phase diagram. For pressures up to 15 kbar, the NMR spectra exhibit complicated splitting at low temperatures, indicating a "generalized 3D Wigner crystal" state. In this pressure region, we find that increased pressure causes a decrease in the charge disproportionation ratio, along with a decrease in the transition temperature of the generalized 3D Wigner crystal. In the high-pressure region, near 20 kbar, where a 1D confined liquid crosses over to a 3D Fermi liquid at high temperatures, the ground state is replaced by a nonmagnetic insulating state that is qualitatively different from the generalized 3D Wigner crystal.
NASA Astrophysics Data System (ADS)
Moriya, Maki; Miyahara, Masahiko; Hokazono, Mana; Sasaki, Hirokazu; Nemoto, Atsushi; Katayama, Shingo; Akimoto, Yuji; Hirano, Shin-ichi; Ren, Yang
2014-10-01
The stable cycling performance with a high discharge capacity of ∼190 mAh g-1 in a carbon-hybridized Li2MnSiO4 nanostructured powder has prompted an experimental investigation of the charged/discharged structures using synchrotron-based and laboratory-based X-rays and atomic-pair distribution-function (PDF) analyses. A novel method of in-situ spray pyrolysis of a precursor solution with glucose as a carbon source enabled the successful synthesis of the carbon-hybridized Li2MnSiO4 nanoparticles. The XRD patters of the discharged (lithiated) samples exhibit a long-range ordered structure characteristic of the (β) Li2MnSiO4 crystalline phase (space group Pmn21) which dissipates in the charged (delithiated) samples. However, upon discharging the long-range ordered structure recovers in each cycle. The disordered structure, according to the PDF analysis, is mainly due to local distortions of the MnO4 tetrahedra which show a mean Mn-O nearest neighbor distance shorter than that of the long-range ordered phase. These results corroborate the notion of the smaller Mn3+/Mn4+ ionic radii in the Li extracted phase versus the larger Mn2+ ionic radius in Li inserted phase. Thus Li extraction/insertion drives the fluctuation between the disordered and the long-range ordered structures.
NASA Astrophysics Data System (ADS)
Jhingree, Jacquelyn R.; Bellina, Bruno; Pacholarz, Kamila J.; Barran, Perdita E.
2017-07-01
Charge reduction in the gas phase provides a direct means of manipulating protein charge state, and when coupled to ion mobility mass spectrometry (IM-MS), it is possible to monitor the effect of charge on protein conformation in the absence of solution. Use of the electron transfer reagent 1,3-dicyanobenzene, coupled with IM-MS, allows us to monitor the effect of charge reduction on the conformation of two proteins deliberately chosen from opposite sides of the order to disorder continuum: bovine pancreatic trypsin inhibitor (BPTI) and beta casein. The ordered BPTI presents compact conformers for each of three charge states accompanied by narrow collision cross-section distributions (TWCCSDN2→He). Upon reduction of BPTI, irrespective of precursor charge state, the TWCCSN2→He decreases to a similar distribution as found for the nESI generated ion of identical charge. The behavior of beta casein upon charge reduction is more complex. It presents over a wide charge state range (9-28), and intermediate charge states (13-18) have broad TWCCSDN2→He with multiple conformations, where both compaction and rearrangement are seen. Further, we see that the TWCCSDN2→He of the latter charge states are even affected by the presence of radical anions. Overall, we conclude that the flexible nature of some proteins result in broad conformational distributions comprised of many families, even for single charge states, and the barrier between different states can be easily overcome by an alteration of the net charge.
Hard X-ray photoemission study of the Fabre salts (TMTTF)2X (X = SbF6 and PF6)
NASA Astrophysics Data System (ADS)
Medjanik, Katerina; de Souza, Mariano; Kutnyakhov, Dmytro; Gloskovskii, Andrei; Müller, Jens; Lang, Michael; Pouget, Jean-Paul; Foury-Leylekian, Pascale; Moradpour, Alec; Elmers, Hans-Joachim; Schönhense, Gerd
2014-11-01
Core-level photoemission spectra of the Fabre salts with X = SbF6 and PF6 were taken using hard X-rays from PETRA III, Hamburg. In these salts TMTTF layers show a significant stack dimerization with a charge transfer of 1 e per dimer to the anion SbF6 or PF6. At room temperature and slightly below the core-level spectra exhibit single lines, characteristic for a well-screened metallic state. At reduced temperatures progressive charge localization sets in, followed by a 2nd order phase transition into a charge-ordered ground state. In both salts groups of new core-level signals occur, shifted towards lower kinetic energies. This is indicative of a reduced transverse-conductivity across the anion layers, visible as layer-dependent charge depletion for both samples. The surface potential was traced via shifts of core-level signals of an adsorbate. A well-defined potential could be established by a conducting cap layer of 5 nm aluminum which appears "transparent" due to the large probing depth of HAXPES (8-10 nm). At the transition into the charge-ordered phase the fluorine 1 s line of (TMTTF)2SbF6 shifts by 2.8 eV to higher binding energy. This is a spectroscopic fingerprint of the loss of inversion symmetry accompanied by a cooperative shift of the SbF6 anions towards the more positively charged TMTTF donors. This shift does not occur for the X = PF6 compound, most likely due to smaller charge disproportion or due to the presence of charge disorder.
NASA Astrophysics Data System (ADS)
Thérien-Aubin, Héloïse; Lukach, Ariella; Pitch, Natalie; Kumacheva, Eugenia
2015-04-01
We report the structural and optical properties of composite films formed from mixed suspensions of cellulose nanocrystals (CNCs) and fluorescent latex nanoparticles (NPs). We explored the effect of NP concentration, size, surface charge, glass transition temperature and film processing conditions on film structure and properties. The chiral nematic order, typical of CNC films, was preserved in films with up to 50 wt% of negatively-charged latex NPs. Composite films were characterized by macroscopically close-to-uniform fluorescence, birefringence, and circular dichroism properties. In contrast, addition of positively charged latex NPs led to gelation of CNC-latex suspensions and disruption of the chiral nematic order in the composite films. Large latex NPs disrupted the chiral nematic order to a larger extend than small NPs. Furthermore, the glass transition of latex NPs had a dramatic effect on the structure of CNC-latex films. Latex particles in the rubbery state were easily incorporated in the ordered CNC matrix and improved the structural integrity of its chiral nematic phase.We report the structural and optical properties of composite films formed from mixed suspensions of cellulose nanocrystals (CNCs) and fluorescent latex nanoparticles (NPs). We explored the effect of NP concentration, size, surface charge, glass transition temperature and film processing conditions on film structure and properties. The chiral nematic order, typical of CNC films, was preserved in films with up to 50 wt% of negatively-charged latex NPs. Composite films were characterized by macroscopically close-to-uniform fluorescence, birefringence, and circular dichroism properties. In contrast, addition of positively charged latex NPs led to gelation of CNC-latex suspensions and disruption of the chiral nematic order in the composite films. Large latex NPs disrupted the chiral nematic order to a larger extend than small NPs. Furthermore, the glass transition of latex NPs had a dramatic effect on the structure of CNC-latex films. Latex particles in the rubbery state were easily incorporated in the ordered CNC matrix and improved the structural integrity of its chiral nematic phase. Electronic supplementary information (ESI) available: Detailed latex synthesis. Additional characterization of the nanoparticles and films. See DOI: 10.1039/c5nr00660k
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Zheng; Tian, Chushun; Jiang, Hong-Chen
Charge order appears to be an ubiquitous phenomenon in doped Mott insulators, which is currently under intense experimental and theoretical investigations particularly in the high T c cuprates. This phenomenon is conventionally understood in terms of Hartree-Fock-type mean-field theory. Here we demonstrate a mechanism for charge modulation which is rooted in the many-particle quantum physics arising in the strong coupling limit. Specifically, we consider the problem of a single hole in a bipartite t - J ladder. As a remnant of the fermion signs, the hopping hole picks up subtle phases pending the fluctuating spins, the so-called phase-string effect. Wemore » demonstrate the presence of charge modulations in the density matrix renormalization group solutions which disappear when the phase strings are switched off. This form of charge modulation can be understood analytically in a path-integral language with a mean-field-like approximation adopted, showing that the phase strings give rise to constructive interferences leading to self-localization. When the latter occurs, left- and right-moving propagating modes emerge inside the localization volume and their interference is responsible for the real space charge modulation.« less
AC Resonant charger with charge rate unrelated to primary power frequency
Watson, Harold
1982-01-01
An AC resonant charger for a capacitive load, such as a PFN, is provided with a variable repetition rate unrelated to the frequency of a multi-phase AC power source by using a control unit to select and couple the phase of the power source to the resonant charger in order to charge the capacitive load with a phase that is the next to begin a half cycle. For optimum range in repetition rate and increased charging voltage, the resonant charger includes a step-up transformer and full-wave rectifier. The next phase selected may then be of either polarity, but is always selected to be of a polarity opposite the polarity of the last phase selected so that the transformer core does not saturate. Thyristors are used to select and couple the correct phase just after its zero crossover in response to a sharp pulse generated by a zero-crossover detector. The thyristor that is turned on then automatically turns off after a full half cycle of its associated phase input. A full-wave rectifier couples the secondary winding of the transformer to the load so that the load capacitance is always charged with the same polarity.
Ac resonant charger with charge rate unrelated to preimary power requency
Not Available
1979-12-07
An ac resonant charger for a capacitive load, such as a pulse forming network (PFN), is provided with a variable repetition rate unrelated to the frequency of a multi-phase ac power source by using a control unit to select and couple the phase of the power source to the resonant charger in order to charge the capacitive load with a phase that is the next to begin a half cycle. For optimum range in repetition rate and increased charging voltage, the resonant charger includes a step-up transformer and full-wave rectifier. The next phase selected may then be of either polarity, but is always selected to be of a polarity opposite the polarity of the last phase selected so that the transformer core does not saturate. Thyristors are used to select and couple the correct phase just after its zero crossover in response to a sharp pulse generated by a zero-crossover detector. The thyristor that is turned on then automatically turns off after a full half cycle of its associated phase input. A full-wave rectifier couples the secondary winding of the transformer to the load so that the load capacitance is always charged with the same polarity.
Collective Dynamics and Strong Pinning near the Onset of Charge Order in La1.48Nd0.4Sr0.12CuO4
NASA Astrophysics Data System (ADS)
Baity, P. G.; Sasagawa, T.; Popović, Dragana
2018-04-01
The dynamics of charge-ordered states is one of the key issues in underdoped cuprate high-temperature superconductors, but static short-range charge-order (CO) domains have been detected in almost all cuprates. We probe the dynamics across the CO (and structural) transition in La1.48Nd0.4Sr0.12CuO4 by measuring nonequilibrium charge transport, or resistance R as the system responds to a change in temperature and to an applied magnetic field. We find evidence for metastable states, collective behavior, and criticality. The collective dynamics in the critical regime indicates strong pinning by disorder. Surprisingly, nonequilibrium effects, such as avalanches in R , are revealed only when the critical region is approached from the charge-ordered phase. Our results on La1.48Nd0.4Sr0.12CuO4 provide the long-sought evidence for the fluctuating order across the CO transition, and also set important constraints on theories of dynamic stripes.
Critical phenomena and chemical potential of a charged AdS black hole
NASA Astrophysics Data System (ADS)
Wei, Shao-Wen; Liang, Bin; Liu, Yu-Xiao
2017-12-01
Inspired by the interpretation of the cosmological constant from the boundary gauge theory, we here treat it as the number of colors N and its conjugate quantity as the associated chemical potential μ in the black hole side. Then the thermodynamics and the chemical potential for a five-dimensional charged AdS black hole are studied. It is found that there exists a small-large black hole phase transition of van der Waals type. The critical phenomena are investigated in the N2-μ chart. The result implies that the phase transition can occur for large number of colors N , while is forbidden for small number. This to some extent implies that the interaction of the system increases with the number. In particular, in the reduced parameter space, all the thermodynamic quantities can be rescaled with the black hole charge such that these reduced quantities are charge-independent. Then we obtain the coexistence curve and the phase diagram. The latent heat is also numerically calculated. Moreover, the heat capacity and the thermodynamic scalar are studied. The result indicates that the information of the first-order black hole phase transition is encoded in the heat capacity and scalar. However, the phase transition point cannot be directly calculated with them. Nevertheless, the critical point linked to a second-order phase transition can be determined by either the heat capacity or the scalar. In addition, we calculate the critical exponents of the heat capacity and the scalar for the saturated small and large black holes near the critical point.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Shivani; Shahee, Aga; Singh, Kiran
2016-05-23
The temperature (T) dependent x-ray diffraction (XRD) and resistivity measurements of La{sub 0.175}Pr{sub 0.45}Ca{sub 0.375}MnO{sub 3-δ} (LPCMO) have been performed down to 2 K to understand the structural and transport properties. From room temperature down to 220 K, LPCMO exists in orthorhombic phase with Pnma structure and at T~220 K, it transforms to charge ordered (CO) monoclinic phase with P2{sub 1}/m structure and remains as it is down to 2 K. The CO phase is evident from the occurrence of weak but well defined superlattice peaks in the XRD pattern. This structural transformation is of first order in nature asmore » evident from the phase coexistence across the transition region. These results thus clearly illustrate that LPCMO undergoes a first order structural phase transition from charge disordered orthorhombic phase to CO monoclinic phase at ~220 K, consistent with temperature dependent resistivity results. Our structural analysis of T dependent XRD data using Rietveld refinement infers that below 220 K, LPCMO forms commensurate CO monoclinic P2{sub 1}/m structure with four times structural modulation.« less
Thermally coupled moving boundary model for charge-discharge of LiFePO4/C cells
NASA Astrophysics Data System (ADS)
Khandelwal, Ashish; Hariharan, Krishnan S.; Gambhire, Priya; Kolake, Subramanya Mayya; Yeo, Taejung; Doo, Seokgwang
2015-04-01
Optimal thermal management is a key requirement in commercial utilization of lithium ion battery comprising of phase change electrodes. In order to facilitate design of battery packs, thermal management systems and fast charging profiles, a thermally coupled electrochemical model that takes into account the phase change phenomenon is required. In the present work, an electrochemical thermal model is proposed which includes the biphasic nature of phase change electrodes, such as lithium iron phosphate (LFP), via a generalized moving boundary model. The contribution of phase change to the heat released during the cell operation is modeled using an equivalent enthalpy approach. The heat released due to phase transformation is analyzed in comparison with other sources of heat such as reversible, irreversible and ohmic. Detailed study of the thermal behavior of the individual cell components with changing ambient temperature, rate of operation and heat transfer coefficient is carried out. Analysis of heat generation in the various regimes is used to develop cell design and operating guidelines. Further, different charging protocols are analyzed and a model based methodology is suggested to design an efficient quick charging protocol.
Liu, Gui-Geng; Wang, Ke; Lee, Yun-Han; Wang, Dan; Li, Ping-Ping; Gou, Fangwang; Li, Yongnan; Tu, Chenghou; Wu, Shin-Tson; Wang, Hui-Tian
2018-02-15
Vortex vector optical fields (VVOFs) refer to a kind of vector optical field with an azimuth-variant polarization and a helical phase, simultaneously. Such a VVOF is defined by the topological index of the polarization singularity and the topological charge of the phase vortex. We present a simple method to measure the topological charge and index of VVOFs by using a space-variant half-wave plate (SV-HWP). The geometric phase grating of the SV-HWP diffracts a VVOF into ±1 orders with orthogonally left- and right-handed circular polarizations. By inserting a polarizer behind the SV-HWP, the two circular polarization states project into the linear polarization and then interfere with each other to form the interference pattern, which enables the direct measurement of the topological charge and index of VVOFs.
Ultrafast gigantic photo-response in charge-ordered organic salt (EDO-TTF)2PF6 on 10-fs time scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Itatani, J.; Rini, M.; Cavalleri, A.
2008-08-01
The initial dynamics of photo-induced phase transition in charge-ordered organic salt (EDO-TTF){sub 2}PF{sub 6} was investigated using 10-fs near-infrared laser pulses. We observed sub-20-fs gigantic photo-responses (|{Delta}R/R|>100%) due to intra-molecular vibration and a clear signature of a structural bottleneck ({approx}50 fs) for the first time.
Effect of chemical pressure on the electronic phase transition in Ca 1-x Sr x Mn 7 O 12 films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huon, A.; Lee, D.; Herklotz, A.
Here, we demonstrate how chemical pressure affects the structural and electronic phase transitions of the quadruple perovskite CaMn 7O 12 by Sr doping, a compound that exhibits a charge-ordering transition above room temperature making it a candidate for oxide electronics. We also have synthesized Ca 1-xSr xMn 7O 12 (0 ≤ x ≤ 0.6) thin films by oxide molecular beam epitaxy on (LaAlO 3) 0.3(SrAl 0.5Ta 0.5O 3) 0.7 (LSAT) substrates. The substitution of Sr for Ca results in a linear expansion of the lattice, as revealed by X-ray diffraction. Temperature-dependent resistivity and X-ray diffraction measurements are used to demonstratemore » that the coupled charge-ordering and structural phase transitions can be tuned with Sr doping. An increase in Sr concentration acts to decrease the phase transition temperature (T*) from 426 K at x = 0 to 385 K at x = 0.6. Furthemore, the presence of a tunable electronic phase transition, above room temperature, points to the potential applicability of Ca 1-xSr xMn 7O 12 in sensors or oxide electronics, for example, via charge doping.« less
Effect of chemical pressure on the electronic phase transition in Ca 1-x Sr x Mn 7 O 12 films
Huon, A.; Lee, D.; Herklotz, A.; ...
2017-09-18
Here, we demonstrate how chemical pressure affects the structural and electronic phase transitions of the quadruple perovskite CaMn 7O 12 by Sr doping, a compound that exhibits a charge-ordering transition above room temperature making it a candidate for oxide electronics. We also have synthesized Ca 1-xSr xMn 7O 12 (0 ≤ x ≤ 0.6) thin films by oxide molecular beam epitaxy on (LaAlO 3) 0.3(SrAl 0.5Ta 0.5O 3) 0.7 (LSAT) substrates. The substitution of Sr for Ca results in a linear expansion of the lattice, as revealed by X-ray diffraction. Temperature-dependent resistivity and X-ray diffraction measurements are used to demonstratemore » that the coupled charge-ordering and structural phase transitions can be tuned with Sr doping. An increase in Sr concentration acts to decrease the phase transition temperature (T*) from 426 K at x = 0 to 385 K at x = 0.6. Furthemore, the presence of a tunable electronic phase transition, above room temperature, points to the potential applicability of Ca 1-xSr xMn 7O 12 in sensors or oxide electronics, for example, via charge doping.« less
Self-association and cyclodextrin solubilization of drugs.
Loftsson, Thorsteinn; Magnúsdóttir, Auethur; Másson, Már; Sigurjónsdóttir, Jóhanna F
2002-11-01
Phase-solubility diagrams are frequently used to calculate stoichiometry of drug/cyclodextrin complexes. Linear diagrams (A(L)-type systems) are thought to indicate that the complexes are first order with respect to cyclodextrin and first or higher order with respect to the drug. Positive deviation from linearity (A(P)-type systems) are thought to indicate formation of complexes that are first order with respect to the drug but second or higher order with respect to cyclodextrin. The phase solubility of several different compounds, i.e., cholesterol, ibuprofen, diflunisal, alprazolam, 17beta-estradiol and diethylstilbestrol, and various charged and uncharged cyclodextrins was investigated. Phase-solubility diagrams of cholesterol in aqueous cyclodextrin solutions were all of A(P) type. However, the phase-solubility diagrams obtained with charged cyclodextrins could not be fitted to complexes of second or higher order with respect to cyclodextrin. The phase-solubility diagrams of ibuprofen and diflunisal were of A(L) type with slope greater than unity indicating formation of 2:1 drug/cyclodextrin complexes. However, Job's plots and space filling docking studies indicated that 1:1 complexes were formed. These and other observations show that stoichiometry of drug/cyclodextrin complexes cannot be derived from simple phase-solubility studies. Furthermore, the results indicate that drug/cyclodextrin complexes can self-associate to form water-soluble aggregates, which then can further solubilize the drug through non-inclusion complexation. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91:2307-2316, 2002
Temperature evolution of polar states in GdMn2O5 and Gd0.8Ce0.2Mn2O5
NASA Astrophysics Data System (ADS)
Sanina, V. A.; Golovenchits, E. I.; Khannanov, B. Kh.; Scheglov, M. P.; Zalesskii, V. G.
2014-11-01
The polar order along the c axis is revealed in GdMn2O5 and Gd0.8Ce0.2Mn2O5 at T ≤ T C1 ≈ 160 K for the first time. This polar order is induced by the charge disproportion in the 2D superstructures emerged due to phase separation. The dynamic state with restricted polar domains of different sizes is found at T > T C1 which is typical of the diffuse ferroelectric phase transition. At the lowest temperatures ( T < 40 K) two polar orders of different origins with perpendicular orientations (along the b and c axes) coexist. The 1D superlattices studied by us earlier in the set of RMn2O5 multiferroics are the charged domain walls which separate of these polar order domains.
Massless spinning particle and null-string on AdS d : projective-space approach
NASA Astrophysics Data System (ADS)
Uvarov, D. V.
2018-07-01
The massless spinning particle and the tensionless string models on an AdS d background in the projective-space realization are proposed as constrained Hamiltonian systems. Various forms of particle and string Lagrangians are derived and classical mechanics is studied including the Lax-type representation of the equations of motion. After that, the transition to the quantum theory is discussed. The analysis of potential anomalies in the tensionless string model necessitates the introduction of ghosts and BRST charge. It is shown that a quantum BRST charge is nilpotent for any d if coordinate-momentum ordering for the phase-space bosonic variables, Weyl ordering for the fermions and cb () ordering for the ghosts is chosen, while conformal reparametrizations and space-time dilatations turn out to be anomalous for ordering in terms of positive and negative Fourier modes of the phase-space variables and ghosts.
Vestigial nematicity from spin and/or charge order in the cuprates
Nie, Laimei; Maharaj, Akash V.; Fradkin, Eduardo; ...
2017-08-01
Nematic order has manifested itself in a variety of materials in the cuprate family. We propose an effective field theory of a layered system with incommensurate, intertwined spin- and charge-density wave (SDW and CDW) orders, each of which consists of two components related by C4 rotations. Using a variational method (which is exact in a large N limit), we study the development of nematicity from partially melting those density waves by either increasing temperature or adding quenched disorder. As temperature decreases we first find a transition to a nematic phase, but depending on the range of parameters (e.g. doping concentration)more » the strongest fluctuations associated with this phase reflect either proximate SDW or CDW order. We also discuss the changes in parameters that can account for the differences in the SDW-CDW interplay between the (214) family and the other hole-doped cuprates.« less
NASA Astrophysics Data System (ADS)
Bünemann, Jörg; Seibold, Götz
2017-12-01
Pump-probe experiments have turned out as a powerful tool in order to study the dynamics of competing orders in a large variety of materials. The corresponding analysis of the data often relies on standard linear-response theory generalized to nonequilibrium situations. Here we examine the validity of such an approach for the charge and pairing response of systems with charge-density wave and (or) superconducting (SC) order. Our investigations are based on the attractive Hubbard model which we study within the time-dependent Hartree-Fock approximation. In particular, we calculate the quench and pump-probe dynamics for SC and charge order parameters in order to analyze the frequency spectra and the coupling of the probe field to the specific excitations. Our calculations reveal that the "linear-response assumption" is justified for small to moderate nonequilibrium situations (i.e., pump pulses) in the case of a purely charge-ordered ground state. However, the pump-probe dynamics on top of a superconducting ground state is determined by phase and amplitude modes which get coupled far from the equilibrium state indicating the failure of the linear-response assumption.
NASA Astrophysics Data System (ADS)
Matveev, O. P.; Shvaika, A. M.; Devereaux, T. P.; Freericks, J. K.
2016-01-01
Using the Kadanoff-Baym-Keldysh formalism, we employ nonequilibrium dynamical mean-field theory to exactly solve for the nonlinear response of an electron-mediated charge-density-wave-ordered material. We examine both the dc current and the order parameter of the conduction electrons as the ordered system is driven by the electric field. Although the formalism we develop applies to all models, for concreteness, we examine the charge-density-wave phase of the Falicov-Kimball model, which displays a number of anomalous behaviors including the appearance of subgap density of states as the temperature increases. These subgap states should have a significant impact on transport properties, particularly the nonlinear response of the system to a large dc electric field.
Pair density waves in superconducting vortex halos
NASA Astrophysics Data System (ADS)
Wang, Yuxuan; Edkins, Stephen D.; Hamidian, Mohammad H.; Davis, J. C. Séamus; Fradkin, Eduardo; Kivelson, Steven A.
2018-05-01
We analyze the interplay between a d -wave uniform superconducting and a pair-density-wave (PDW) order parameter in the neighborhood of a vortex. We develop a phenomenological nonlinear sigma model, solve the saddle-point equation for the order-parameter configuration, and compute the resulting local density of states in the vortex halo. The intertwining of the two superconducting orders leads to a charge density modulation with the same periodicity as the PDW, which is twice the period of the charge density wave that arises as a second harmonic of the PDW itself. We discuss key features of the charge density modulation that can be directly compared with recent results from scanning tunneling microscopy and speculate on the role PDW order may play in the global phase diagram of the hole-doped cuprates.
Symmetry-Breaking Phase Transition without a Peierls Instability in Conducting Monoatomic Chains
NASA Astrophysics Data System (ADS)
Blumenstein, C.; Schäfer, J.; Morresi, M.; Mietke, S.; Matzdorf, R.; Claessen, R.
2011-10-01
The one-dimensional (1D) model system Au/Ge(001), consisting of linear chains of single atoms on a surface, is scrutinized for lattice instabilities predicted in the Peierls paradigm. By scanning tunneling microscopy and electron diffraction we reveal a second-order phase transition at 585 K. It leads to charge ordering with transversal and vertical displacements and complex interchain correlations. However, the structural phase transition is not accompanied by the electronic signatures of a charge density wave, thus precluding a Peierls instability as origin. Instead, this symmetry-breaking transition exhibits three-dimensional critical behavior. This reflects a dichotomy between the decoupled 1D electron system and the structural elements that interact via the substrate. Such substrate-mediated coupling between the wires thus appears to have been underestimated also in related chain systems.
R-charge conservation and more in factorizable and non-factorizable orbifolds
NASA Astrophysics Data System (ADS)
Bizet, Nana G. Cabo; Kobayashi, Tatsuo; Peña, Damián K. Mayorga; Parameswaran, Susha L.; Schmitz, Matthias; Zavala, Ivonne
2013-05-01
We consider the string theory origin of R-charge conservation laws in heterotic orbifold compactifications, deriving the corresponding string coupling selection rule for factorizable and non-factorizable orbifolds, with prime ordered and non-prime ordered point groups. R-charge conservation arises due to symmetries among the worldsheet instantons that can mediate the couplings. Among our results is a previously missed non-trivial contribution to the conserved R-charges from the γ-phases in non-prime orbifolds, which weakens the R-charge selection rule. Symmetries among the worldsheet instantons can also lead to additional selection rules for some couplings. We make a similar analysis for Rule 4 or the "torus lattice selection rule". Moreover, we identify a new string selection rule, that we call Rule 6 or the "coset vector selection rule".
Global phase diagram of the spinless Falicov-Kimball model in d = 3 : renormalization-group theory
NASA Astrophysics Data System (ADS)
Sariyer, Ozan S.; Hinczewski, Michael; Berker, A. Nihat
2011-03-01
The global phase diagram of the spinless Falicov-Kimball model in d = 3 spatial dimensions is obtained by renormalization-group theory. This global phase diagram exhibits five distinct phases. Four of these phases are charge-ordered (CO) phases, in which the system forms two sublattices with different electron densities. The phase boundaries are second order, except for an intermediate interaction regime, where a first-order phase boundary between two CO phases occurs. The first-order phase boundary is delimited by special bicritical points. The cross-sections of the global phase diagram with respect to the chemical potentials of the localized and mobile electrons, at all representative interaction and hopping strengths, are calculated and exhibit three distinct topologies. The phase diagrams with respect to electron densities are also calculated. This research was supported by the Alexander von Humboldt Foundation, the Scientific and Technological Research Council of Turkey (TÜBITAK), and the Academy of Sciences of Turkey.
Charge ordering transition in GdBaCo2O5: Evidence of reentrant behavior
NASA Astrophysics Data System (ADS)
Allieta, M.; Scavini, M.; Lo Presti, L.; Coduri, M.; Loconte, L.; Cappelli, S.; Oliva, C.; Ghigna, P.; Pattison, P.; Scagnoli, V.
2013-12-01
We present a detailed study on the charge ordering transition in a GdBaCo2O5.0 system by combining high-resolution synchrotron powder/single-crystal diffraction with electron paramagnetic resonance experiments as a function of temperature. We found a second-order structural phase transition at TCO = 247 K (Pmmm to Pmma) associated with the onset of long-range charge ordering. At Tmin ≈ 1.2TCO, the electron paramagnetic resonance linewidth rapidly broadens, providing evidence of antiferromagnetic spin fluctuations. This likely indicates that, analogously to manganites, the long-range antiferromagnetic order in GdBaCo2O5.0 sets in at ≈TCO. Pair distribution function analysis of diffraction data revealed signatures of structural inhomogeneities at low temperature. By comparing the average and local bond valences, we found that above TCO the local structure is consistent with a fully random occupation of Co2+ and Co3+ in a 1:1 ratio and with a complete charge ordering below TCO. Below T ≈ 100 K the charge localization is partially melted at the local scale, suggesting a reentrant behavior of charge ordering. This result is supported by the weakening of superstructure reflections and the temperature evolution of electron paramagnetic resonance linewidth that is consistent with paramagnetic reentrant behavior reported in the GdBaCo2O5.5 parent compound.
QCD phase diagram using PNJL model with eight-quark interactions
NASA Astrophysics Data System (ADS)
Deb, Paramita; Bhattacharyya, Abhijit; Ghosh, Sanjay K.; Ray, Rajarshi; Lahiri, Anirban
2011-07-01
We present the phase diagram and the fluctuations of different conserved charges like quark number, charge and strangeness at vanishing chemical potential for the 2+1 flavor Polyakov Loop extended Nambu-Jona-Lasinio model with eight-quark interaction terms using three-momentum cutoff regularisation. The main effect of the higher order interaction term is to shift the critical end point to the lower value of the chemical potential and higher value of the temperature. The fluctuations show good qualitative agreement with the lattice data.
Universality of the Berezinskii-Kosterlitz-Thouless type of phase transition in the dipolar XY-model
NASA Astrophysics Data System (ADS)
Vasiliev, A. Yu; Tarkhov, A. E.; Menshikov, L. I.; Fedichev, P. O.; Fischer, Uwe R.
2014-05-01
We investigate the nature of the phase transition occurring in a planar XY-model spin system with dipole-dipole interactions. It is demonstrated that a Berezinskii-Kosterlitz-Thouless (BKT) type of phase transition always takes place at a finite temperature separating the ordered (ferro) and the disordered (para) phases. The low-temperature phase corresponds to an ordered state with thermal fluctuations, composed of a ‘gas’ of bound vortex-antivortex pairs, which would, when considered isolated, be characterized by a constant vortex-antivortex attraction force which is due to the dipolar interaction term in the Hamiltonian. Using a topological charge model, we show that small bound pairs are easily polarized, and screen the vortex-antivortex interaction in sufficiently large pairs. Screening changes the linear attraction potential of vortices to a logarithmic one, and leads to the familiar pair dissociation mechanism of the BKT type phase transition. The topological charge model is confirmed by numerical simulations, in which we demonstrate that the transition temperature slightly increases when compared with the BKT result for short-range interactions.
One-dimensional Kondo lattice model at quarter filling
NASA Astrophysics Data System (ADS)
Xavier, J. C.; Miranda, E.
2008-10-01
We revisit the problem of the quarter-filled one-dimensional Kondo lattice model, for which the existence of a dimerized phase and a nonzero charge gap had been reported by Xavier [Phys. Rev. Lett. 90, 247204 (2003)]. Recently, some objections were raised claiming that the system is neither dimerized nor has a charge gap. In the interest of clarifying this important issue, we show that these objections are based on results obtained under conditions in which the dimer order is artificially suppressed. We use the incontrovertible dimerized phase of the Majumdar-Ghosh point of the J1-J2 Heisenberg model as a paradigm with which to illustrate this artificial suppression. Finally, by means of extremely accurate density-matrix renormalization-group calculations, we show that the charge gap is indeed nonzero in the dimerized phase.
A time-dependent order parameter for ultrafast photoinduced phase transitions.
Beaud, P; Caviezel, A; Mariager, S O; Rettig, L; Ingold, G; Dornes, C; Huang, S-W; Johnson, J A; Radovic, M; Huber, T; Kubacka, T; Ferrer, A; Lemke, H T; Chollet, M; Zhu, D; Glownia, J M; Sikorski, M; Robert, A; Wadati, H; Nakamura, M; Kawasaki, M; Tokura, Y; Johnson, S L; Staub, U
2014-10-01
Strongly correlated electron systems often exhibit very strong interactions between structural and electronic degrees of freedom that lead to complex and interesting phase diagrams. For technological applications of these materials it is important to learn how to drive transitions from one phase to another. A key question here is the ultimate speed of such phase transitions, and to understand how a phase transition evolves in the time domain. Here we apply time-resolved X-ray diffraction to directly measure the changes in long-range order during ultrafast melting of the charge and orbitally ordered phase in a perovskite manganite. We find that although the actual change in crystal symmetry associated with this transition occurs over different timescales characteristic of the many electronic and vibrational coordinates of the system, the dynamics of the phase transformation can be well described using a single time-dependent 'order parameter' that depends exclusively on the electronic excitation.
NASA Astrophysics Data System (ADS)
Etter, Martin; Isobe, Masahiko; Sakurai, Hiroya; Yaresko, Alexander; Dinnebier, Robert E.; Takagi, Hidenori
2018-05-01
A new A -site-ordered perovskite BiC u3C r4O12 is synthesized under a high pressure of 7.7 GPa. A phase transition from a paramagnetic metal to a ferrimagnetic metal is observed at Tc=190 K accompanied with a structural change from cubic to monoclinic. Structural analysis of the low-temperature monoclinic phase reveals that this transition represents a charge disproportionation of C r3.75 + into C r4 + and C r3.5 + . We argue that the asymmetric displacement of Bi caused by a lone-pair effect triggers the formation of a dimeric Cr4+2O5 unit and leads to an ordering of C r4 + and C r3.5 + below the transition.
High-charge and multiple-star vortex coronagraphy from stacked vector vortex phase masks.
Aleksanyan, Artur; Brasselet, Etienne
2018-02-01
Optical vortex phase masks are now installed at many ground-based large telescopes for high-contrast astronomical imaging. To date, such instrumental advances have been restricted to the use of helical phase masks of the lowest even order, while future giant telescopes will require high-order masks. Here we propose a single-stage on-axis scheme to create high-order vortex coronagraphs based on second-order vortex phase masks. By extending our approach to an off-axis design, we also explore the implementation of multiple-star vortex coronagraphy. An experimental laboratory demonstration is reported and supported by numerical simulations. These results offer a practical roadmap to the development of future coronagraphic tools with enhanced performances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaltak, Merzuk; Fernandez-Serra, Marivi; Hybertsen, Mark S.
The phases of A 2Mn 8O 16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3d electrons are more explicitly considered with the DFT + Umore » approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn 3+ centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Lastly, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.« less
Kaltak, Merzuk; Fernandez-Serra, Marivi; Hybertsen, Mark S.
2017-12-01
The phases of A 2Mn 8O 16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3d electrons are more explicitly considered with the DFT + Umore » approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn 3+ centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Lastly, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.« less
NASA Astrophysics Data System (ADS)
Kaltak, Merzuk; Fernández-Serra, Marivi; Hybertsen, Mark S.
2017-12-01
The phases of A2Mn8O16 hollandite group oxides emerge from the competition between ionic interactions, Jahn-Teller effects, charge ordering, and magnetic interactions. Their balanced treatment with feasible computational approaches can be challenging for commonly used approximations in density functional theory. Three examples (A = Ag, Li, and K) are studied with a sequence of different approximate exchange-correlation functionals. Starting from a generalized gradient approximation (GGA), an extension to include van der Waals interactions and a recently proposed meta-GGA are considered. Then local Coulomb interactions for the Mn 3 d electrons are more explicitly considered with the DFT + U approach. Finally, selected results from a hybrid functional approach provide a reference. Results for the binding energy of the A species in the parent oxide highlight the role of van der Waals interactions. Relatively accurate results for insertion energies can be achieved with a low-U and a high-U approach. In the low-U case, the materials are described as band metals with a high-symmetry, tetragonal crystal structure. In the high-U case, the electrons donated by A result in formation of local Mn3 + centers and corresponding Jahn-Teller distortions characterized by a local order parameter. The resulting degree of monoclinic distortion depends on charge ordering and magnetic interactions in the phase formed. The reference hybrid functional results show charge localization and ordering. Comparison to low-temperature experiments of related compounds suggests that charge localization is the physically correct result for the hollandite group oxides studied here. Finally, while competing effects in the local magnetic coupling are subtle, the fully anisotropic implementation of DFT + U gives the best overall agreement with results from the hybrid functional.
NASA Astrophysics Data System (ADS)
Ravy, S.; Foury-Leylekian, P.; Le Bolloc'h, D.; Pouget, J.-P.; Fabre, J. M.; Prado, R. J.; Lagarde, P.
2004-04-01
The charge ordering observed in the (TMTTF){2}X family has been studied by X-ray absorption spectroscopy. XANES measurements at the Sulfur K-edge show no evidence of charge disproportionation larger than 0.5 e, and EXAFS at the Phosphorus K-edge indicate no displacements of the PF{6} anion larger than 0.05 Å. The difficulty to observe a structural signature of this charge ordering is due to the triclinic symmetry of these salts. By contrast, in the monoclinic charge transfer salt (DMtTTF){2}ClO{4}, a screw axis symmetry constrains the molecular stacks to be uniform. In this real 1/4-filled system, charge localization is observed at about 150 K. We show that around this temperature an incommensurate modulation of reduced wave vector (0.58,0,-0.275) is stabilized. The transition is strongly hysteretic, but no long range order is established. We suggest that this modulation, which has the 4k{F} periodicity in the chain direction, stabilizes a local antiferroelectric state similar to the one previously observed in (TMTTF){2}SCN. Key words. Charge ordering, Structural phase transition.
NASA Astrophysics Data System (ADS)
Miller, Mitchell
Ions dissolved in solution are known to interact in remarkable ways with charged Langmuir monolayers. The organic monolayer can be used as a molecular template for ordered nucleation of inorganic crystals (biomineralization) and functional nanoparticles. However, the clear majority of experiments demonstrating these behaviors have been performed with divalent ions. Trivalent ions are present in several important processes that are unique from previously studied divalent systems. We will demonstrate that trivalent ions under floating monolayers can model two important systems: charge inversion and liquid-liquid solvent extraction. Using in situ synchrotron x-ray scattering and emission methods, we can make direct, nanoscale observations of the interactions between ion and monolayer. Charge inversion is a fascinating phenomenon in which small ions of an opposite charge to some large object (colloidal particle, DNA molecule, etc.) will attach to and reverse the object's charge, rather than simply neutralizing it. There are many experimental systems demonstrating this behavior and an enormous body of theoretical work to explain it. Two classes of explanation exist for how charge inversion may occur, "chemical" and "physical" mechanism. Using grazing incidence diffraction (GID), we have found that ions can form an ordered lattice which is incommensurate to a floating, charged monolayer. Because the ions are incommensurate, they cannot be specifically attached to molecules in the monolayer and must be, therefore, held in place by "physical" means. Solvent extraction can be an extremely complex procedure, so our approach to studying it is to simplify the system into a basic model. Ordinarily, two immiscible liquids--an aqueous phase containing some desired species and other impurities and an organic phase, which sometimes contains extractant molecules that improve efficiency--are mixed together and allowed to separate again. While the liquids are being mixed together, the target species from the aqueous phase is pulled across the interface into the organic phase. The mechanism by which the transfer occurs is very poorly understood and very difficult to study directly since it is a very dynamic process and obscured by the bulk of the liquids. Here we propose that the air-water interface is a model of the liquid-liquid interface; in our model, the hydrophobic "organic" phase is the air above the water. This lets us make direct observations of the interactions between ions dissolved in the aqueous phase and the extractant molecules in the organic phase with x-rays, something which would be impossible in an ordinary solvent extraction experiment. We observed a sharp transition in ordering as the atomic weight of the ion dissolved in solution is increased. One would expect a continuous variation, since the size of the ions varies continuously. Second, using x-ray fluorescence, we find that heavier lanthanides are much more strongly attracted to the monolayer than light ones. The unexpected nature of our results emphasizes the need for bottom-up approaches to understanding these systems rather than the top-down method used for the last century. In addition, our results demonstrate that it is, indeed, possible to overcome the experimental difficulties and make the types of measurements necessary for this approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manohara, G.V.; Vishnu Kamath, P., E-mail: vishnukamath8@hotmail.com; Milius, Wolfgang
2012-12-15
Acetate-intercalated layered double hydroxides (LDHs) of Ni and Al undergo reversible hydration in the solid state in response to the ambient humidity. The LDH with a high layer charge (0.33/formula unit) undergoes facile hydration in a single step, whereas the LDH with a lower layer charge (0.24/formula unit) exhibits an ordered interstratified intermediate, comprising the hydrated and dehydrated layers stacked alternatively. This phase, also known as the staged S-2 phase, coexists with the end members suggesting the existence of a solution-type equilibrium between the S-2 phase and the end members of the hydration cycle. These LDHs also undergo facile aqueousmore » exfoliation into 2-5 nm-thick tactoids with a radial dimension of 0.2-0.5 {mu}m. - Graphical abstract: Schematic of the hydrated, dehydrated and interstratified phases observed during the hydration-dehydration of Ni/Al-CH{sub 3}COO LDH. Highlights: Black-Right-Pointing-Pointer Ni/Al-acetate LDHs were synthesized by HPFS method by hydrolysis of acetamide. Black-Right-Pointing-Pointer Intercalated acetate ion shows reversible hydration with variation in humidity. Black-Right-Pointing-Pointer An ordered interstratified phase was observed during hydration/dehydration cycle. Black-Right-Pointing-Pointer A solution type equilibrium is observed between hydration-dehydration phases. Black-Right-Pointing-Pointer These LDHs undergo facile aqueous exfoliation.« less
Diversity of charge orderings in correlated systems
NASA Astrophysics Data System (ADS)
Kapcia, Konrad Jerzy; Barański, Jan; Ptok, Andrzej
2017-10-01
The phenomenon associated with inhomogeneous distribution of electron density is known as a charge ordering. In this work, we study the zero-bandwidth limit of the extended Hubbard model, which can be considered as a simple effective model of charge ordered insulators. It consists of the on-site interaction U and the intersite density-density interactions W1 and W2 between nearest neighbors and next-nearest neighbors, respectively. We derived the exact ground state diagrams for different lattice dimensionalities and discuss effects of small finite temperatures in the limit of high dimensions. In particular, we estimated the critical interactions for which new ordered phases emerge (laminar or stripe and four-sublattice-type). Our analysis show that the ground state of the model is highly degenerated. One of the most intriguing finding is that the nonzero temperature removes these degenerations.
Current Flow in the Bubble and Stripe Phases
NASA Astrophysics Data System (ADS)
Friess, B.; Umansky, V.; von Klitzing, K.; Smet, J. H.
2018-03-01
The spontaneous ordering of spins and charges in geometric patterns is currently under scrutiny in a number of different material systems. A topic of particular interest is the interaction of such ordered phases with itinerant electrons driven by an externally imposed current. It not only provides important information on the charge ordering itself but potentially also allows manipulating the shape and symmetry of the underlying pattern if current flow is strong enough. Unfortunately, conventional transport methods probing the macroscopic resistance suffer from the fact that the voltage drop along the sample edges provides only indirect information on the bulk properties because a complex current distribution is elicited by the inhomogeneous ground state. Here, we promote the use of surface acoustic waves to study these broken-symmetry phases and specifically address the bubble and stripe phases emerging in high-quality two-dimensional electron systems in GaAs /AlGaAs heterostructures as prototypical examples. When driving a unidirectional current, we find a surprising discrepancy between the sound propagation probing the bulk of the sample and the voltage drop along the sample edges. Our results prove that the current-induced modifications observed in resistive transport measurements are in fact a local phenomenon only, leaving the majority of the sample unaltered. More generally, our findings shed new light on the extent to which these ordered electron phases are impacted by an external current and underline the intrinsic advantages of acoustic measurements for the study of such inhomogeneous phases.
NASA Astrophysics Data System (ADS)
Shore, Joel; Thurston, George
We discuss a model for a charge-patterning phase transition on a two-dimensional square lattice of titratable sites, here regarded as protonation sites, placed on a square lattice in a dielectric medium just below the planar interface between this medium and an aqueous salt solution. Within Debye-Huckel theory, the analytical form of the electrostatic repulsion between protonated sites exhibits an approximate inverse cubic power-law decrease beyond short distances. The problem can thus be mapped onto the two-dimensional antiferromagnetic Ising model with this longer-range interaction, which we study with Monte Carlo simulations. As we increase pH, the occupation probability of a site decreases from 1 at low pH to 0 at high pH. For sufficiently-strong interaction strengths, a phase transition occurs as the occupation probability of 1/2 is approached: the charges arrange themselves into a checkerboard pattern. This ordered phase persists over a range of pH until a transition occurs back to a disordered state. This state is the analogue of the Neel state in the antiferromagnetic Ising spin model. More complicated ordered phases are expected for sufficiently strong interactions (with occupation probabilities of 1/4 and 3/4) and if the lattice is triangular rather than square. This work was supported by NIH EY018249 (GMT).
NASA Astrophysics Data System (ADS)
Minami, Kazuhiko
2017-12-01
An infinite number of spin chains are solved and it is derived that the ground-state phase transitions belong to the universality classes with central charge c = m / 2, where m is an integer. The models are diagonalized by automatically obtained transformations, many of which are different from the Jordan-Wigner transformation. The free energies, correlation functions, string order parameters, exponents, central charges, and the phase diagram are obtained. Most of the examples consist of the stabilizers of the cluster state. A unified structure of the one-dimensional XY and cluster-type spin chains is revealed, and other series of solvable models can be obtained through this formula.
High-order optical vortex position detection using a Shack-Hartmann wavefront sensor.
Luo, Jia; Huang, Hongxin; Matsui, Yoshinori; Toyoda, Haruyoshi; Inoue, Takashi; Bai, Jian
2015-04-06
Optical vortex (OV) beams have null-intensity singular points, and the intensities in the region surrounding the singular point are quite low. This low intensity region influences the position detection accuracy of phase singular point, especially for high-order OV beam. In this paper, we propose a new method for solving this problem, called the phase-slope-combining correlation matching method. A Shack-Hartmann wavefront sensor (SH-WFS) is used to measure phase slope vectors at lenslet positions of the SH-WFS. Several phase slope vectors are combined into one to reduce the influence of low-intensity regions around the singular point, and the combined phase slope vectors are used to determine the OV position with the aid of correlation matching with a pre-calculated database. Experimental results showed that the proposed method works with high accuracy, even when detecting an OV beam with a topological charge larger than six. The estimated precision was about 0.15 in units of lenslet size when detecting an OV beam with a topological charge of up to 20.
Broken Time-Reversal Symmetry in Strongly Correlated Ladder Structures
NASA Astrophysics Data System (ADS)
Troyer, Matthias
2004-03-01
A decade after the first detailed numerical investigations of strongly correlated ladder models, exotic and interesting phases are still being discovered. Besides charge and spin density wave states with broken translational symmetry, and resonating valence bond (RVB) type superconductivity, a time reversal symmetry borken phase was recently found at half filling [J.B. Marston et al., Phys. Rev. Lett 89, 056404 (2002)]. In this talk I will present our recent results of density matrix renormalization group (DMRG) calculations [Phys. Rev. Lett. 90, 186401 (2003)], where we provide, for the first time, in a doped strongly correlated system (two-leg ladder), a controlled theoretical demonstration of the existence of this state in which long-range ordered orbital currents are arranged in a staggered pattern. This phase, which we found to coexist with a charge density wave, is known in the literature under the names ``staggered flux phase'', ``orbital antiferromagnetism'' or ``d-density wave (DDW)''. This brings us closer to recent proposals that this order might be realized in the enigmatic pseudogap phase of the cuprate high temperature superconductors.
NASA Astrophysics Data System (ADS)
Kjeldsen, Frank; Savitski, Mikhail M.; Adams, Christopher M.; Zubarev, Roman A.
2006-06-01
Location of protonated sites in electrospray-ionized gas-phase peptides and proteins was performed with tandem mass spectrometry using ion activation by both electron capture dissociation (ECD) and collisional activation dissociation (CAD). Charge-carrying sites were assigned based on the increment in the charge state of fragment ions compared to that of the previous fragment in the same series. The property of ECD to neutralize preferentially the least basic site was confirmed by the analysis of three thousand ECD mass spectra of doubly charged tryptic peptides. Multiply charged cations of bradykinin, neurotensin and melittin were studied in detail. For n+ precursors, ECD revealed the positions of (n - 1) most basic sites, while CAD could in principle locate alln charges. However, ECD introduced minimal proton mobilization and produced more conclusive data than CAD, for which N- and C-terminal data often disagreed. Consistent with the dominance of one charge conformer and its preservation in ECD, the average charge states of complementary fragments of n+ ions almost always added up to (n - 1)+, while the similar figure in CAD often deviated from n+, indicating extensive charge isomerization under collisional excitation. For bradykinin and neurotensin, the charge assignments were largely in agreement with the intrinsic gas-phase basicity of the respective amino acid residues. For melittin ions in higher charge states, ECD revealed the charging at both intrinsically basic as well as at less basic residues, which was attributed to charge sharing with other groups due to the presence of secondary and higher order structures in this larger polypeptide.
Critical behaviour in charging of electric vehicles
NASA Astrophysics Data System (ADS)
Carvalho, Rui; Buzna, Lubos; Gibbens, Richard; Kelly, Frank
2015-09-01
The increasing penetration of electric vehicles over the coming decades, taken together with the high cost to upgrade local distribution networks and consumer demand for home charging, suggest that managing congestion on low voltage networks will be a crucial component of the electric vehicle revolution and the move away from fossil fuels in transportation. Here, we model the max-flow and proportional fairness protocols for the control of congestion caused by a fleet of vehicles charging on two real-world distribution networks. We show that the system undergoes a continuous phase transition to a congested state as a function of the rate of vehicles plugging to the network to charge. We focus on the order parameter and its fluctuations close to the phase transition, and show that the critical point depends on the choice of congestion protocol. Finally, we analyse the inequality in the charging times as the vehicle arrival rate increases, and show that charging times are considerably more equitable in proportional fairness than in max-flow.
Cooperative photoinduced metastable phase control in strained manganite films
NASA Astrophysics Data System (ADS)
Zhang, Jingdi; Tan, Xuelian; Liu, Mengkun; Teitelbaum, S. W.; Post, K. W.; Jin, Feng; Nelson, K. A.; Basov, D. N.; Wu, Wenbin; Averitt, R. D.
2016-09-01
A major challenge in condensed-matter physics is active control of quantum phases. Dynamic control with pulsed electromagnetic fields can overcome energetic barriers, enabling access to transient or metastable states that are not thermally accessible. Here we demonstrate strain-engineered tuning of La2/3Ca1/3MnO3 into an emergent charge-ordered insulating phase with extreme photo-susceptibility, where even a single optical pulse can initiate a transition to a long-lived metastable hidden metallic phase. Comprehensive single-shot pulsed excitation measurements demonstrate that the transition is cooperative and ultrafast, requiring a critical absorbed photon density to activate local charge excitations that mediate magnetic-lattice coupling that, in turn, stabilize the metallic phase. These results reveal that strain engineering can tune emergent functionality towards proximal macroscopic states to enable dynamic ultrafast optical phase switching and control.
Phase behavior of charged colloids at a fluid interface
NASA Astrophysics Data System (ADS)
Kelleher, Colm P.; Guerra, Rodrigo E.; Hollingsworth, Andrew D.; Chaikin, Paul M.
2017-02-01
We study the phase behavior of a system of charged colloidal particles that are electrostatically bound to an almost flat interface between two fluids. We show that, despite the fact that our experimental system consists of only 103-104 particles, the phase behavior is consistent with the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson, and Young. Using spatial and temporal correlations of the bond-orientational order parameter, we classify our samples into solid, isotropic fluid, and hexatic phases. We demonstrate that the topological defect structure we observe in each phase corresponds to the predictions of Kosterlitz-Thouless-Halperin-Nelson-Young theory. By measuring the dynamic Lindemann parameter γL(τ ) and the non-Gaussian parameter α2(τ ) of the displacements of the particles relative to their neighbors, we show that each of the phases displays distinctive dynamical behavior.
Evidence for a Nematic Phase in La 1.75 Sr 0.25 NiO 4
Zhong, Ruidan; Winn, Barry L.; Gu, Genda; ...
2017-04-28
Determining the nature of electronic states in doped Mott insulators remains a challenging task. In the case of tetragonal La 2 - xSr xNiO 4, the occurrence of diagonal charge and spin stripe order in the ground state is now well established. In contrast, the nature of the high-temperature “disordered” state from which the stripe order develops has long been a subject of controversy, with considerable speculation regarding a polaronic liquid. Following the recent detection of dynamic charge stripes, in this paper we use neutron scattering measurements on an x = 0.25 crystal to demonstrate that the dispersion of themore » charge-stripe excitations is anisotropic. Finally, this observation provides compelling evidence for the presence of electronic nematic order.« less
Evidence for a Nematic Phase in La 1.75 Sr 0.25 NiO 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Ruidan; Winn, Barry L.; Gu, Genda
Determining the nature of electronic states in doped Mott insulators remains a challenging task. In the case of tetragonal La 2 - xSr xNiO 4, the occurrence of diagonal charge and spin stripe order in the ground state is now well established. In contrast, the nature of the high-temperature “disordered” state from which the stripe order develops has long been a subject of controversy, with considerable speculation regarding a polaronic liquid. Following the recent detection of dynamic charge stripes, in this paper we use neutron scattering measurements on an x = 0.25 crystal to demonstrate that the dispersion of themore » charge-stripe excitations is anisotropic. Finally, this observation provides compelling evidence for the presence of electronic nematic order.« less
Phase transitions in dense matter
NASA Astrophysics Data System (ADS)
Dexheimer, Veronica; Hempel, Matthias; Iosilevskiy, Igor; Schramm, Stefan
2017-11-01
As the density of matter increases, atomic nuclei disintegrate into nucleons and, eventually, the nucleons themselves disintegrate into quarks. The phase transitions (PT's) between these phases can vary from steep first order to smooth crossovers, depending on certain conditions. First-order PT's with more than one globally conserved charge, so-called non-congruent PT's, have characteristic differences compared to congruent PT's. In this conference proceeding we discuss the non-congruence of the quark deconfinement PT at high densities and/or temperatures relevant for heavy-ion collisions, neutron stars, proto-neutron stars, supernova explosions, and compact-star mergers.
Simulation studies of nucleation of ferroelectric polarization reversal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennecka, Geoffrey L.; Winchester, Benjamin Michael
2014-08-01
Electric field-induced reversal of spontaneous polarization is the defining characteristic of a ferroelectric material, but the process(es) and mechanism(s) associated with the initial nucleation of reverse-polarity domains are poorly understood. This report describes studies carried out using phase field modeling of LiTaO 3, a relatively simple prototype ferroelectric material, in order to explore the effects of either mechanical deformation or optically-induced free charges on nucleation and resulting domain configuration during field-induced polarization reversal. Conditions were selected to approximate as closely as feasible those of accompanying experimental work in order to provide not only support for the experimental work but alsomore » ensure that additional experimental validation of the simulations could be carried out in the future. Phase field simulations strongly support surface mechanical damage/deformation as effective for dramatically reducing the overall coercive field (Ec) via local field enhancements. Further, optically-nucleated polarization reversal appears to occur via stabilization of latent nuclei via the charge screening effects of free charges.« less
Evolution and control of the phase competition morphology in a manganite film
NASA Astrophysics Data System (ADS)
Zhou, Haibiao; Wang, Lingfei; Hou, Yubin; Huang, Zhen; Lu, Qingyou; Wu, Wenbin
2015-11-01
The competition among different phases in perovskite manganites is pronounced since their energies are very close under the interplay of charge, spin, orbital and lattice degrees of freedom. To reveal the roles of underlying interactions, many efforts have been devoted towards directly imaging phase transitions at microscopic scales. Here we show images of the charge-ordered insulator (COI) phase transition from a pure ferromagnetic metal with reducing field or increasing temperature in a strained phase-separated manganite film, using a home-built magnetic force microscope. Compared with the COI melting transition, this reverse transition is sharp, cooperative and martensitic-like with astonishingly unique yet diverse morphologies. The COI domains show variable-dimensional growth at different temperatures and their distribution can illustrate the delicate balance of the underlying interactions in manganites. Our findings also display how phase domain engineering is possible and how the phase competition can be tuned in a controllable manner.
Evolution and control of the phase competition morphology in a manganite film.
Zhou, Haibiao; Wang, Lingfei; Hou, Yubin; Huang, Zhen; Lu, Qingyou; Wu, Wenbin
2015-11-25
The competition among different phases in perovskite manganites is pronounced since their energies are very close under the interplay of charge, spin, orbital and lattice degrees of freedom. To reveal the roles of underlying interactions, many efforts have been devoted towards directly imaging phase transitions at microscopic scales. Here we show images of the charge-ordered insulator (COI) phase transition from a pure ferromagnetic metal with reducing field or increasing temperature in a strained phase-separated manganite film, using a home-built magnetic force microscope. Compared with the COI melting transition, this reverse transition is sharp, cooperative and martensitic-like with astonishingly unique yet diverse morphologies. The COI domains show variable-dimensional growth at different temperatures and their distribution can illustrate the delicate balance of the underlying interactions in manganites. Our findings also display how phase domain engineering is possible and how the phase competition can be tuned in a controllable manner.
Mass-imbalanced ionic Hubbard chain
NASA Astrophysics Data System (ADS)
Sekania, Michael; Baeriswyl, Dionys; Jibuti, Luka; Japaridze, George I.
2017-07-01
A repulsive Hubbard model with both spin-asymmetric hopping (t↑≠t↓ ) and a staggered potential (of strength Δ ) is studied in one dimension. The model is a compound of the mass-imbalanced (t↑≠t↓ ,Δ =0 ) and ionic (t↑=t↓ ,Δ >0 ) Hubbard models, and may be realized by cold atoms in engineered optical lattices. We use mostly mean-field theory to determine the phases and phase transitions in the ground state for a half-filled band (one particle per site). We find that a period-two modulation of the particle (or charge) density and an alternating spin density coexist for arbitrary Hubbard interaction strength, U ≥0 . The amplitude of the charge modulation is largest at U =0 , decreases with increasing U and tends to zero for U →∞ . The amplitude for spin alternation increases with U and tends to saturation for U →∞ . Charge order dominates below a value Uc, whereas magnetic order dominates above. The mean-field Hamiltonian has two gap parameters, Δ↑ and Δ↓, which have to be determined self-consistently. For U
Ising tricriticality in the extended Hubbard model with bond dimerization
NASA Astrophysics Data System (ADS)
Fehske, Holger; Ejima, Satoshi; Lange, Florian; Essler, Fabian H. L.
We explore the quantum phase transition between Peierls and charge-density-wave insulating states in the one-dimensional, half-filled, extended Hubbard model with explicit bond dimerization. We show that the critical line of the continuous Ising transition terminates at a tricritical point, belonging to the universality class of the tricritical Ising model with central charge c=7/10. Above this point, the quantum phase transition becomes first order. Employing a numerical matrix-product-state based (infinite) density-matrix renormalization group method we determine the ground-state phase diagram, the spin and two-particle charge excitations gaps, and the entanglement properties of the model with high precision. Performing a bosonization analysis we can derive a field description of the transition region in terms of a triple sine-Gordon model. This allows us to derive field theory predictions for the power-law (exponential) decay of the density-density (spin-spin) and bond-order-wave correlation functions, which are found to be in excellent agreement with our numerical results. This work was supported by Deutsche Forschungsgemeinschaft (Germany), SFB 652, project B5, and by the EPSRC under Grant No. EP/N01930X/1 (FHLE).
Ultrafast large-amplitude relocation of electronic charge in ionic crystals
Zamponi, Flavio; Rothhardt, Philip; Stingl, Johannes; Woerner, Michael; Elsaesser, Thomas
2012-01-01
The interplay of vibrational motion and electronic charge relocation in an ionic hydrogen-bonded crystal is mapped by X-ray powder diffraction with a 100 fs time resolution. Photoexcitation of the prototype material KH2PO4 induces coherent low-frequency motions of the PO4 tetrahedra in the electronically excited state of the crystal while the average atomic positions remain unchanged. Time-dependent maps of electron density derived from the diffraction data demonstrate an oscillatory relocation of electronic charge with a spatial amplitude two orders of magnitude larger than the underlying vibrational lattice motions. Coherent longitudinal optical and tranverse optical phonon motions that dephase on a time scale of several picoseconds, drive the charge relocation, similar to a soft (transverse optical) mode driven phase transition between the ferro- and paraelectric phase of KH2PO4. PMID:22431621
Space charge effects on the third order coupled resonance
NASA Astrophysics Data System (ADS)
Franchetti, Giuliano; Gilardoni, Simone; Huschauer, Alexander; Schmidt, Frank; Wasef, Raymond
2017-08-01
The effect of space charge on bunched beams has been the subject of numerous numerical and experimental studies in the first decade of 2000. Experimental campaigns performed at the CERN Proton Synchrotron in 2002 and at the GSI SIS18 in 2008 confirmed the existence of an underlying mechanism in the beam dynamics of periodic resonance crossing induced by the synchrotron motion and space charge. In this article we present an extension of the previous studies to describe the effect of space charge on a controlled coupled (2D) third order resonance. The experimental and simulation results of this latest campaign shed a new light on the difficulties of the 2D particle dynamics. We find striking experimental evidence that space charge and the coupled resonance create an unusual coupling in the phase space, leading to the formation of an asymmetric halo. Moreover, this study demonstrates a clear link between halo formation and fixed-lines.
Satapathy, Sitakanta; Prabakaran, Palani; Prasad, Edamana
2018-04-20
Smart single-component materials with versatile functions require pre-programming of a higher order molecular assembly. An electroactive supergelator (c=0.07 wt %) triphenylamine core-appended poly(aryl ether) dendron (TPAPAE) is described, where substantial dendritic effects improve the order and crystallinity by switching the local minima from self-assembled molecular wires to thermodynamically favorable global minima of ordered crystals, ripened within the fibers. Controlled in situ phase change at room temperature ultimately stabilized the mixed valence states in the single-component supramolecular assembly with photoluminescence and photoinduced charge transport amplified by two orders of magnitude. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jiang, Ping; Lucy, Charles A
2016-03-11
Charge-transfer and hypercrosslinked polystyrene phases offer retention and separation for polycyclic aromatic hydrocarbons (PAHs) and thus have potential for petroleum analysis. The size, shape and planarity selectivity for PAH standards on charge-transfer (DNAP column) and hypercrosslinked polystyrene (HC-Tol and 5HGN columns) phases are different under normal phase liquid chromatography (NPLC). The HC-Tol column behaves like a conventional NPLC column with low retention of PAHs. Retention of PAHs on the DNAP and 5HGN are strong and increases with the number of aromatic rings. The main retention mechanism is through π-π interactions and dipole-induced dipole interaction. Thermodynamics indicates that the retention mechanism of PAHs remains unchanged over the temperature range 20-60°C. In addition, on either DNAP or 5HGN column, both linear and bent PAHs are retained through the same mechanism. But DNAP possesses smaller π-π interaction and higher planarity selectivity than 5HGN for PAHs. This is suggestive that DNAP interacts with PAHs through a disordered phase arrangement, while 5HGN behaves as an ordered adsorption phase. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sugioka, Hideyuki
2016-08-01
The standard theory of induced-charge electro-osmosis (ICEO) often overpredicts experimental values of ICEO velocities. Using a nonsteady direct multiphysics simulation technique based on the coupled Poisson-Nernst-Planck and Stokes equations for an electrolyte around a conductive cylinder subject to an ac electric field, we find that a phase delay effect concerning an ion response provides a fundamental mechanism for electrokinetic suppression. A surprising aspect of our findings is that the phase delay effect occurs even at much lower frequencies (e.g., 50 Hz) than the generally believed charging frequency of an electric double layer (typically, 1 kHz) and it can decrease the electrokinetic velocities in one to several orders. In addition, we find that the phase delay effect may also cause a change in the electrokinetic flow directions (i.e., flow reversal) depending on the geometrical conditions. We believe that our findings move toward a more complete understanding of complex experimental nonlinear electrokinetic phenomena.
Structural insight of the charge-ordering phenomena in manganites
NASA Astrophysics Data System (ADS)
Garcia, Joaquin
2005-03-01
Recent experiments using x-ray absorption spectroscopy (XAS) and x-ray resonant scattering (XRS) techniques show that the conventional description of the so-called charge ordering phases of manganites in terms of Mn^3+/Mn^4+ ionic ordering is far from reality. I present here the XRS study of the low temperature phase of Nd0.5Sr0.5MnO3 manganite. Strong resonances are observed in the energy dependent spectra of (300), (030) and (05/20) reflections. Their azimuthal and polarization dependencies are well explained by the anisotropy of the local geometrical structure. Two different Mn sites were found. One of them is surrounded by a tetragonal distorted oxygen octahedron, whereas the other site has a nearly regular octahedral environment. The charge separation between the intermediate valence states is less than 0.2 e-. The analysis performed resolves some of the apparent contradictions with previous XRS and XAS experiments in manganites. These results joined to those recently obtained on the Verwey transition in magnetite indicate that the electronic states in transition-metal oxides need to be described in terms of band states instead of localized ones. Colaborators: G. Sub'ias, J. Blasco, M. G. Proietti, M. S'anchez and J. Herrero-Martin
Electronic state and optical response in a hydrogen-bonded molecular conductor
NASA Astrophysics Data System (ADS)
Naka, Makoto; Ishihara, Sumio
2018-06-01
Motivated by recent experimental studies of hydrogen-bonded molecular conductors κ -X 3(Cat-EDT-TTF) 2[X =H , D], interplays of protons and correlated electrons, and their effects on magnetic, dielectric, and optical properties, are studied theoretically. We introduce a model Hamiltonian for κ -X 3(Cat-EDT-TTF) 2, in which molecular dimers are connected by hydrogen bonds. Ground-state phase diagram and optical conductivity spectra are examined by using the mean-field approximation and the exact diagonalization method in finite-size cluster. Three types of the competing electronic and protonic phases, charge density wave phase, polar charge-ordered phase, and antiferromagnetic dimer-Mott insulating phase are found. Observed softening of the interdimer excitation due to the electron-proton coupling implies reduction of the effective electron-electron repulsion, i.e., "Hubbard U ," due to the quantum proton motion. Contrastingly, the intradimer charge excitation is hardened due to the proton-electron coupling. Implications of the theoretical calculations to the recent experimental results in κ -X 3(Cat-EDT-TTF) 2 are discussed.
Rate-induced solubility and suppression of the first-order phase transition in olivine LiFePO4.
Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P; Brownrigg, Alex; Wright, Jonathan P; van Dijk, Niels H; Wagemaker, Marnix
2014-05-14
The impact of ultrahigh (dis)charge rates on the phase transition mechanism in LiFePO4 Li-ion electrodes is revealed by in situ synchrotron diffraction. At high rates the solubility limits in both phases increase dramatically, causing a fraction of the electrode to bypass the first-order phase transition. The small transforming fraction demonstrates that nucleation rates are consequently not limiting the transformation rate. In combination with the small fraction of the electrode that transforms at high rates, this indicates that higher performances may be achieved by further optimizing the ionic/electronic transport in LiFePO4 electrodes.
NASA Astrophysics Data System (ADS)
Amin, Ruhul; Belharouak, Ilias
2017-04-01
Additive-free pellets of Li1-xNi0.5Mn1.5O4 have been prepared for the purpose of performing ionic diffusivity and exchange current density studies. Here we report on the characterization of interfacial charge transfer kinetics and ionic diffusivity of ordered (P4332) and disordered (Fd 3 bar m) Li1-xNi0.5Mn1.5O4 as a function of lithium content at ambient temperature. The exchange current density at the electrode/electrolyte interface is found to be continuously increased with increasing the degree of delithiation for ordered phase (∼0.21-6.5 mA/cm2) at (x = 0.01-0.60), in contrast the disordered phase exhibits gradually decrease of exchange current density in the initial delithiation at the 4 V plateau regime (x = 0.01-0.04) and again monotonously increases (0.65-6.8 mA/cm2) with further delithiation at (x = 0.04-0.60). The ionic diffusivity of ordered and disordered phase is found to be ∼5 × 10-10cm2s-1 and ∼10-9cm2s-1, respectively, and does not vary much with the degree of delithiation. From the obtained results it appears that the chemical diffusivity during electrochemical use is limited by lithium transport, but is fast enough over the entire state-of-charge range to allow charge/discharge of micron-scale particles at practical C-rates.
Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings
Zheng, Shuang; Wang, Jian
2017-01-01
Measuring orbital angular momentum (OAM) states of vortex beams is of great importance in diverse applications employing OAM-carrying vortex beams. We present a simple and efficient scheme to measure OAM states (i.e. topological charge values) of vortex beams with annular gratings. The magnitude of the topological charge value is determined by the number of dark fringes after diffraction, and the sign of the topological charge value is distinguished by the orientation of the diffraction pattern. We first theoretically study the diffraction patterns using both annular amplitude and phase gratings. The annular phase grating shows almost 10-dB better diffraction efficiency compared to the annular amplitude grating. We then experimentally demonstrate the OAM states measurement of vortex beams using annular phase grating. The scheme works well even for high-order vortex beams with topological charge value as high as ± 25. We also experimentally show the evolution of diffraction patterns when slightly changing the fractional topological charge value of vortex beam from 0.1 to 1.0. In addition, the proposed scheme shows potential large tolerance of beam alignment during the OAM states measurement of vortex beams. PMID:28094325
Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings.
Zheng, Shuang; Wang, Jian
2017-01-17
Measuring orbital angular momentum (OAM) states of vortex beams is of great importance in diverse applications employing OAM-carrying vortex beams. We present a simple and efficient scheme to measure OAM states (i.e. topological charge values) of vortex beams with annular gratings. The magnitude of the topological charge value is determined by the number of dark fringes after diffraction, and the sign of the topological charge value is distinguished by the orientation of the diffraction pattern. We first theoretically study the diffraction patterns using both annular amplitude and phase gratings. The annular phase grating shows almost 10-dB better diffraction efficiency compared to the annular amplitude grating. We then experimentally demonstrate the OAM states measurement of vortex beams using annular phase grating. The scheme works well even for high-order vortex beams with topological charge value as high as ± 25. We also experimentally show the evolution of diffraction patterns when slightly changing the fractional topological charge value of vortex beam from 0.1 to 1.0. In addition, the proposed scheme shows potential large tolerance of beam alignment during the OAM states measurement of vortex beams.
Minimum energy control for in vitro neurons.
Nabi, Ali; Stigen, Tyler; Moehlis, Jeff; Netoff, Theoden
2013-06-01
To demonstrate the applicability of optimal control theory for designing minimum energy charge-balanced input waveforms for single periodically-firing in vitro neurons from brain slices of Long-Evans rats. The method of control uses the phase model of a neuron and does not require prior knowledge of the neuron's biological details. The phase model of a neuron is a one-dimensional model that is characterized by the neuron's phase response curve (PRC), a sensitivity measure of the neuron to a stimulus applied at different points in its firing cycle. The PRC for each neuron is experimentally obtained by measuring the shift in phase due to a short-duration pulse injected into the periodically-firing neuron at various phase values. Based on the measured PRC, continuous-time, charge-balanced, minimum energy control waveforms have been designed to regulate the next firing time of the neuron upon application at the onset of an action potential. The designed waveforms can achieve the inter-spike-interval regulation for in vitro neurons with energy levels that are lower than those of conventional monophasic pulsatile inputs of past studies by at least an order of magnitude. They also provide the advantage of being charge-balanced. The energy efficiency of these waveforms is also shown by performing several supporting simulations that compare the performance of the designed waveforms against that of phase shuffled surrogate inputs, variants of the minimum energy waveforms obtained from suboptimal PRCs, as well as pulsatile stimuli that are applied at the point of maximum PRC. It was found that the minimum energy waveforms perform better than all other stimuli both in terms of control and in the amount of energy used. Specifically, it was seen that these charge-balanced waveforms use at least an order of magnitude less energy than conventional monophasic pulsatile stimuli. The significance of this work is that it uses concepts from the theory of optimal control and introduces a novel approach in designing minimum energy charge-balanced input waveforms for neurons that are robust to noise and implementable in electrophysiological experiments.
Minimum energy control for in vitro neurons
NASA Astrophysics Data System (ADS)
Nabi, Ali; Stigen, Tyler; Moehlis, Jeff; Netoff, Theoden
2013-06-01
Objective. To demonstrate the applicability of optimal control theory for designing minimum energy charge-balanced input waveforms for single periodically-firing in vitro neurons from brain slices of Long-Evans rats. Approach. The method of control uses the phase model of a neuron and does not require prior knowledge of the neuron’s biological details. The phase model of a neuron is a one-dimensional model that is characterized by the neuron’s phase response curve (PRC), a sensitivity measure of the neuron to a stimulus applied at different points in its firing cycle. The PRC for each neuron is experimentally obtained by measuring the shift in phase due to a short-duration pulse injected into the periodically-firing neuron at various phase values. Based on the measured PRC, continuous-time, charge-balanced, minimum energy control waveforms have been designed to regulate the next firing time of the neuron upon application at the onset of an action potential. Main result. The designed waveforms can achieve the inter-spike-interval regulation for in vitro neurons with energy levels that are lower than those of conventional monophasic pulsatile inputs of past studies by at least an order of magnitude. They also provide the advantage of being charge-balanced. The energy efficiency of these waveforms is also shown by performing several supporting simulations that compare the performance of the designed waveforms against that of phase shuffled surrogate inputs, variants of the minimum energy waveforms obtained from suboptimal PRCs, as well as pulsatile stimuli that are applied at the point of maximum PRC. It was found that the minimum energy waveforms perform better than all other stimuli both in terms of control and in the amount of energy used. Specifically, it was seen that these charge-balanced waveforms use at least an order of magnitude less energy than conventional monophasic pulsatile stimuli. Significance. The significance of this work is that it uses concepts from the theory of optimal control and introduces a novel approach in designing minimum energy charge-balanced input waveforms for neurons that are robust to noise and implementable in electrophysiological experiments.
Acyl chain length and charge effect on Tamoxifen-lipid model membrane interactions
NASA Astrophysics Data System (ADS)
Bilge, Duygu; Kazanci, Nadide; Severcan, Feride
2013-05-01
Tamoxifen (TAM), which is an antiestrogenic agent, is widely used during chemotherapy of breast, pancreas, brain and liver cancers. In this study, TAM and model membrane interactions in the form of multilamellar vesicles (MLVs) were studied for lipids containing different acyl chain length and different charge status as a function of different TAM (1, 6, 9 and 15 mol%) concentrations. Zwitterionic lipids namely dipalmitoyl phosphatidylcholine (DPPC), and dimyristoylphosphatidylcholine (DMPC) lipids were used to see the acyl chain length effect and anionic dipalmitoyl phosphtidylglycerol (DPPG) lipid was used to see the charge effect. For this purpose Fourier transform-infrared (FTIR) spectroscopic and differential scanning calorimetric (DSC) techniques have been conducted. For zwitterionic lipid, concentration dependent different action of TAM was observed both in the gel and liquid crystalline phases by significantly increasing the lipid order and decreasing the dynamics for 1 mol% TAM, while decreasing the lipid order and increasing the dynamics of the lipids for higher concentrations (6, 9 and 15 mol%). However, different than neutral lipids, the dynamics and disorder of DPPG liposome increased for all TAM concentrations. The interactions between TAM and head group of multilamellar liposomes was monitored by analyzing the Cdbnd O stretching and PO2- antisymmetric double bond stretching bands. Increasing Tamoxifen concentrations led to a dehydration around these functional groups in the polar part of the lipids. DSC studies showed that for all types of lipids, TAM eliminates the pre-transition, shifts the main phase transition to lower temperatures and broadened the phase transition curve. The results indicate that not the acyl chain length but the charge status of the polar head group induces different effects on lipid membranes order and dynamics.
Poisson-Boltzmann theory of the charge-induced adsorption of semi-flexible polyelectrolytes.
Ubbink, Job; Khokhlov, Alexei R
2004-03-15
A model is suggested for the structure of an adsorbed layer of a highly charged semi-flexible polyelectrolyte on a weakly charged surface of opposite charge sign. The adsorbed phase is thin, owing to the effective reversal of the charge sign of the surface upon adsorption, and ordered, owing to the high surface density of polyelectrolyte strands caused by the generally strong binding between polyelectrolyte and surface. The Poisson-Boltzmann equation for the electrostatic interaction between the array of adsorbed polyelectrolytes and the charged surface is solved for a cylindrical geometry, both numerically, using a finite element method, and analytically within the weak curvature limit under the assumption of excess monovalent salt. For small separations, repulsive surface polarization and counterion osmotic pressure effects dominate over the electrostatic attraction and the resulting electrostatic interaction curve shows a minimum at nonzero separations on the Angstrom scale. The equilibrium density of the adsorbed phase is obtained by minimizing the total free energy under the condition of equality of chemical potential and osmotic pressure of the polyelectrolyte in solution and in the adsorbed phase. For a wide range of ionic conditions and charge densities of the charged surface, the interstrand separation as predicted by the Poisson-Boltzmann model and the analytical theory closely agree. For low to moderate charge densities of the adsorbing surface, the interstrand spacing decreases as a function of the charge density of the charged surface. Above about 0.1 M excess monovalent salt, it is only weakly dependent on the ionic strength. At high charge densities of the adsorbing surface, the interstrand spacing increases with increasing ionic strength, in line with the experiments by Fang and Yang [J. Phys. Chem. B 101, 441 (1997)]. (c) 2004 American Institute of Physics.
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Gang; Abe, Tomohiro; Moriyoshi, Chikako; Tanaka, Hiroshi; Kuroiwa, Yoshihiro
2018-07-01
Synchrotron-radiation X-ray diffraction studies as a function of temperature reveal the structural origin of the spontaneous polarization and related lattice strains in stoichiometric LiTaO3. Electron charge density distribution maps visualized by the maximum entropy method clearly demonstrate that ordering of the disordered Li ion in the polar direction accompanied by deformation of the oxygen octahedra lead to the ferroelectric phase transition. The ionic polarization attributed to the ionic displacements is dominant in the polar structure. The structural change occurs continuously at the phase transition temperature, which suggests a second-order phase transition.
Entanglement entropy for the long-range Ising chain in a transverse field.
Koffel, Thomas; Lewenstein, M; Tagliacozzo, Luca
2012-12-28
We consider the Ising model in a transverse field with long-range antiferromagnetic interactions that decay as a power law with their distance. We study both the phase diagram and the entanglement properties as a function of the exponent of the interaction. The phase diagram can be used as a guide for future experiments with trapped ions. We find two gapped phases, one dominated by the transverse field, exhibiting quasi-long-range order, and one dominated by the long-range interaction, with long-range Néel ordered ground states. We determine the location of the quantum critical points separating those two phases. We determine their critical exponents and central charges. In the phase with quasi-long-range order the ground states exhibit exotic corrections to the area law for the entanglement entropy coexisting with gapped entanglement spectra.
Superrotation charge and supertranslation hair on black holes
Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew
2017-05-31
It is shown that black hole spacetimes in classical Einstein gravity are characterized by, in addition to their ADM mass M, momentummore » $$\\vec{P}$$, angular momentum $$\\vec{J}$$ and boost charge $$\\vec{/k}$$ , an infinite head of supertranslation hair. Furthermore, the distinct black holes are distinguished by classical superrotation charges measured at infinity. Solutions with supertranslation hair are diffeomorphic to the Schwarzschild spacetime, but the diffeomorphisms are part of the BMS subgroup and act nontrivially on the physical phase space. It is shown that a black hole can be supertranslated by throwing in an asymmetric shock wave. We derive a leading-order Bondi-gauge expression for the linearized horizon supertranslation charge and shown to generate, via the Dirac bracket, supertranslations on the linearized phase space of gravitational excitations of the horizon. The considerations of this paper are largely classical augmented by comments on their implications for the quantum theory.« less
Superrotation charge and supertranslation hair on black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew
It is shown that black hole spacetimes in classical Einstein gravity are characterized by, in addition to their ADM mass M, momentummore » $$\\vec{P}$$, angular momentum $$\\vec{J}$$ and boost charge $$\\vec{/k}$$ , an infinite head of supertranslation hair. Furthermore, the distinct black holes are distinguished by classical superrotation charges measured at infinity. Solutions with supertranslation hair are diffeomorphic to the Schwarzschild spacetime, but the diffeomorphisms are part of the BMS subgroup and act nontrivially on the physical phase space. It is shown that a black hole can be supertranslated by throwing in an asymmetric shock wave. We derive a leading-order Bondi-gauge expression for the linearized horizon supertranslation charge and shown to generate, via the Dirac bracket, supertranslations on the linearized phase space of gravitational excitations of the horizon. The considerations of this paper are largely classical augmented by comments on their implications for the quantum theory.« less
Superrotation charge and supertranslation hair on black holes
NASA Astrophysics Data System (ADS)
Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew
2017-05-01
It is shown that black hole spacetimes in classical Einstein gravity are characterized by, in addition to their ADM mass M, momentum \\overrightarrow{P} , angular momentum \\overrightarrow{J} and boost charge \\overrightarrow{K} , an infinite head of supertranslation hair. The distinct black holes are distinguished by classical superrotation charges measured at infinity. Solutions with super-translation hair are diffeomorphic to the Schwarzschild spacetime, but the diffeomorphisms are part of the BMS subgroup and act nontrivially on the physical phase space. It is shown that a black hole can be supertranslated by throwing in an asymmetric shock wave. A leading-order Bondi-gauge expression is derived for the linearized horizon supertranslation charge and shown to generate, via the Dirac bracket, supertranslations on the linearized phase space of gravitational excitations of the horizon. The considerations of this paper are largely classical augmented by comments on their implications for the quantum theory.
NASA Astrophysics Data System (ADS)
Tan, J. K.; Abas, N.
2017-07-01
Complaints on issues and matters related to connection charges have been very common for electricity supply utility companies around the world including Sarawak Energy Berhad. In order to identify the areas that can be improved, a mixed method of exploratory research involving qualitative and quantitative methods have been designed and undertaken rather than a single method of survey. This will ensure a more comprehensive and detailed understanding of the issues from various target groups. The method is designed under three phases, employing Modified Delphi Technique for phase 1 through a series of stake holder engagements, online and offline survey questionnaires to be filled by internal wiring contractors for phase 2 whilst under phase 3, case studies shall be carried out on the issues identified from phase 1 and phase 2 of the study. This paper presented the findings from the Modified Delphi Technique. The findings revealed that there are areas of improvement for Sarawak Energy Berhad connection guidelines in term of differentiation of dedicated and shared assets which leads to unfairness to the connecting customers, inconsistency and non-transparent in charging. The findings of Modified Delphi Technique shall be used for implementation of phase 2 and phase 3 of the study.
Magnetism and charge density wave in GdNiC2 and NdNiC2
NASA Astrophysics Data System (ADS)
Klimczuk, Tom; Kolincio, Kamil; Wianiarski, Michal; Strychalska-Nowak, Judyta; Górnicka, Karolina
The RNiC2 compounds form in an orthorhombic Amm2 crystal structure with Ni and the rare-earth (R) metal chains along the crystallographic a-axis. This system is of particular interest because both a CDW and a long range magnetic ordering phases have been observed together. We report the specific heat, magnetic, magnetotransport and galvanomagnetic properties of GdNiC2 and NdNiC2 antiferromagnets. Complex B-T phase diagrams were built based on the specific heat data. Large negative magnetoresistance due to Zeeman splitting of the electronic bands and partial destruction of a charge density wave ground state is observed above TN. The magnetoresistance and Hall measurements show that at low temperatures a magnetic field induced transformation from antiferromagnetic order to a metamagnetic phase results in the partial suppression of the CDW. This project is financially supported by National Science Centre (Poland), Grant Number: UMO-2015/19/B/ST3/03127.
Thermodynamics of charged Lovelock: AdS black holes
NASA Astrophysics Data System (ADS)
Prasobh, C. B.; Suresh, Jishnu; Kuriakose, V. C.
2016-04-01
We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime.
NASA Astrophysics Data System (ADS)
Isaac, Rohan; Goetz, Katelyn P.; Roberts, Drew; Jurchescu, Oana D.; McNeil, L. E.
2018-02-01
Charge-transfer (CT) complexes are a promising class of materials for the semiconductor industry because of their versatile properties. This class of compounds shows a variety of phase transitions, which are of interest because of their potential impact on the electronic characteristics. Here temperature-dependent vibrational spectroscopy is used to study structural phase transitions in a set of organic CT complexes. Splitting and broadening of infrared-active phonons in the complex formed between pyrene and pyromellitic dianhydride (PMDA) confirm the structural transition is of the order-disorder type and complement previous x-ray diffraction (XRD) results. We show that this technique is a powerful tool to characterize transitions, and apply it to a range of binary CT complexes composed of polyaromatic hyrdocarbons (anthracene, perylene, phenanthrene, pyrene, and stilbene) and PMDA. We extend the understanding of transitions in perylene-PMDA and pyrene-PMDA, and show that there are no order-disorder transitions present in anthracene-PMDA, stilbene-PMDA and phenanthrene-PMDA in the temperature range investigated here.
Fluids Density Functional Theory of Salt-Doped Block Copolymers
NASA Astrophysics Data System (ADS)
Brown, Jonathan R.; Hall, Lisa M.
Block copolymers have attracted a great deal of recent interest as potential non-flammable, solid-state, electrolyte materials for batteries or other charge carrying applications. The microphase separation in block copolymers combines the properties of a conductive (though mechanically soft) polymer with a mechanically robust (though non-conductive) polymer. We use fluids density functional theory (fDFT) to study the phase behavior of salt-doped block copolymers. Because the salt prefers to preferentially solvate into the conductive phase, salt doping effectively enhances the segregation strength between the two polymer types. We consider the effects of this preferential solvation and of charge correlations by separately modeling the ion-rich phase, without bonding, using the Ornstein-Zernike equation and the hypernetted-chain closure. We use the correlations from this subsystem in the inhomogeneous fDFT calculations. Initial addition of salt increases the domain spacing and sharpens the interfacial region, but for high salt loadings the interface can broaden. Addition of salt can also drive a system with a low copolymer segregation strength to order by first passing through a two phase regime with a salt-rich ordered phase and a salt-poor disordered phase. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0014209.
Morphology effects on spin-dependent transport and recombination in polyfluorene thin films
NASA Astrophysics Data System (ADS)
Miller, Richards; van Schooten, K. J.; Malissa, H.; Joshi, G.; Jamali, S.; Lupton, J. M.; Boehme, C.
2016-12-01
We have studied the role of spin-dependent processes on conductivity in polyfluorene (PFO) thin films by preforming continuous wave (cw) electrically detected magnetic resonance (EDMR) spectroscopy at temperatures between 10 K and room temperature using microwave frequencies between about 1 GHz and 20 GHz, as well as pulsed EDMR at the X band (10 GHz). Variable frequency EDMR allows us to establish the role of spin-orbit coupling in spin-dependent processes whereas pulsed EDMR allows for the observation of coherent spin motion effects. We used PFO for this study in order to allow for the investigation of the effects of microscopic morphological ordering since this material can adopt two distinct intrachain morphologies: an amorphous (glassy) phase, in which monomer units are twisted with respect to each other, and an ordered (β) phase, where all monomers lie within one plane. In thin films of organic light-emitting diodes, the appearance of a particular phase can be controlled by deposition parameters and solvent vapor annealing, and is verified by electroluminescence spectroscopy. Under bipolar charge-carrier injection conditions, we conducted multifrequency cw EDMR, electrically detected Rabi spin-beat experiments, and Hahn echo and inversion-recovery measurements. Coherent echo spectroscopy reveals electrically detected electron-spin-echo envelope modulation due to the coupling of the carrier spins to nearby nuclear spins. Our results demonstrate that, while conformational disorder can influence the observed EDMR signals, including the sign of the current changes on resonance as well as the magnitudes of local hyperfine fields and charge-carrier spin-orbit interactions, it does not qualitatively affect the nature of spin-dependent transitions in this material. In both morphologies, we observe the presence of at least two different spin-dependent recombination processes. At room temperature and 10 K, polaron-pair recombination through weakly spin-spin coupled intermediate charge-carrier pair states is dominant, while at low temperatures, additional signatures of spin-dependent charge transport through the interaction of polarons with triplet excitons are seen in the half-field resonance of a triplet spin-1 species. This additional contribution arises since triplet lifetimes are increased at lower temperatures. We tentatively conclude that spectral broadening induced by hyperfine coupling is slightly weaker in the more ordered β-phase than in the glassy phase since protons are more evenly spaced, whereas broadening effects due to spin-orbit coupling, which impacts the distribution of g -factors, appear to be somewhat more significant in the β-phase.
Photon orbits and thermodynamic phase transition of d -dimensional charged AdS black holes
NASA Astrophysics Data System (ADS)
Wei, Shao-Wen; Liu, Yu-Xiao
2018-05-01
We study the relationship between the null geodesics and thermodynamic phase transition for the charged AdS black hole. In the reduced parameter space, we find that there exist nonmonotonic behaviors of the photon sphere radius and the minimum impact parameter for the pressure below its critical value. The study also shows that the changes of the photon sphere radius and the minimum impact parameter can serve as order parameters for the small-large black hole phase transition. In particular, these changes have an universal exponent of 1/2 near the critical point for any dimension d of spacetime. These results imply that there may exist universal critical behavior of gravity near the thermodynamic critical point of the black hole system.
Itinerant density wave instabilities at classical and quantum critical points
Feng, Yejun; van Wezel, Jasper; Wang, Jiyang; ...
2015-07-27
Charge ordering in metals is a fundamental instability of the electron sea, occurring in a host of materials and often linked to other collective ground states such as superconductivity. What is difficult to parse, however, is whether the charge order originates among the itinerant electrons or whether it arises from the ionic lattice. Here in this study we employ high-resolution X-ray diffraction, combined with high-pressure and low-temperature techniques and theoretical modelling, to trace the evolution of the ordering wavevector Q in charge and spin density wave systems at the approach to both thermal and quantum phase transitions. The non-monotonic behaviourmore » of Q with pressure and the limiting sinusoidal form of the density wave point to the dominant role of the itinerant instability in the vicinity of the critical points, with little influence from the lattice. Fluctuations rather than disorder seem to disrupt coherence.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feier, Hilary M.; Reid, Obadiah G.; Pace, Natalie A.
2016-03-23
How free charge is generated at organic donor-acceptor interfaces is an important question, as the binding energy of the lowest energy (localized) charge transfer states should be too high for the electron and hole to escape each other. Recently, it has been proposed that delocalization of the electronic states participating in charge transfer is crucial, and aggregated or otherwise locally ordered structures of the donor or the acceptor are the precondition for this electronic characteristic. The effect of intermolecular aggregation of both the polymer donor and fullerene acceptor on charge separation is studied. In the first case, the dilute electronmore » acceptor triethylsilylhydroxy-1,4,8,11,15,18,22,25-octabutoxyphthalocyaninatosilicon(IV) (SiPc) is used to eliminate the influence of acceptor aggregation, and control polymer order through side-chain regioregularity, comparing charge generation in 96% regioregular (RR-) poly(3-hexylthiophene) (P3HT) with its regiorandom (RRa-) counterpart. In the second case, ordered phases in the polymer are eliminated by using RRa-P3HT, and phenyl-C61-butyric acid methyl ester (PC61BM) is used as the acceptor, varying its concentration to control aggregation. Time-resolved microwave conductivity, time-resolved photoluminescence, and transient absorption spectroscopy measurements show that while ultrafast charge transfer occurs in all samples, long-lived charge carriers are only produced in films with intermolecular aggregates of either RR-P3HT or PC61BM, and that polymer aggregates are just as effective in this regard as those of fullerenes.« less
NASA Astrophysics Data System (ADS)
Zhang, Mingyang
2018-06-01
To further study the bidirectional flow problem of V2G (Vehicle to Grid) charge and discharge motor, the mathematical model of AC/DC converter and bi-directional DC/DC converter was established. Then, lithium battery was chosen as the battery of electric vehicle and its mathematical model was established. In order to improve the service life of lithium battery, bidirectional DC/DC converter adopted constant current and constant voltage control strategy. In the initial stage of charging, constant current charging was adopted with current single closed loop control. After reaching a certain value, voltage was switched to constant voltage charging controlled by voltage and current. Subsequently, the V2G system simulation model was built in MATLAB/Simulink. The simulation results verified the correctness of the control strategy and showed that when charging, constant current and constant voltage charging was achieved, the grid side voltage and current were in the same phase, and the power factor was about 1. When discharging, the constant current discharge was applied, and the grid voltage and current phase difference was r. To sum up, the simulation results are correct and helpful.
Emergent order in the kagome Ising magnet Dy3Mg2Sb3O14
Paddison, Joseph A. M.; Ong, Harapan S.; Hamp, James O.; Mukherjee, Paromita; Bai, Xiaojian; Tucker, Matthew G.; Butch, Nicholas P.; Castelnovo, Claudio; Mourigal, Martin; Dutton, S. E.
2016-01-01
The Ising model—in which degrees of freedom (spins) are binary valued (up/down)—is a cornerstone of statistical physics that shows rich behaviour when spins occupy a highly frustrated lattice such as kagome. Here we show that the layered Ising magnet Dy3Mg2Sb3O14 hosts an emergent order predicted theoretically for individual kagome layers of in-plane Ising spins. Neutron-scattering and bulk thermomagnetic measurements reveal a phase transition at ∼0.3 K from a disordered spin-ice-like regime to an emergent charge ordered state, in which emergent magnetic charge degrees of freedom exhibit three-dimensional order while spins remain partially disordered. Monte Carlo simulations show that an interplay of inter-layer interactions, spin canting and chemical disorder stabilizes this state. Our results establish Dy3Mg2Sb3O14 as a tuneable system to study interacting emergent charges arising from kagome Ising frustration. PMID:27996012
Optical properties of two-dimensional charge density wave materials
NASA Astrophysics Data System (ADS)
Sayers, Charles; Karbassi, Sara; Friedemann, Sven; da Como, Enrico
Titanium diselenide (TiSe2) is a member of the layered transition metal dichalcogenide (TMD) materials. It exhibits unusual chiral charge ordering below 190 K after undergoing an initial phase transition to a commensurate (2 x 2 x 2) charge density wave (CDW) at 200 K which is enhanced further in the monolayer. Recently, the first evidence of chirality in a CDW system was discovered in this material by scanning tunneling microscopy and time-resolved reflectivity experiments, where separate left and right handed charge-ordered domains were found to exist within a single sample. We have prepared single crystals of 1T-TiSe2 using iodine vapour transport, and confirmed their quality by x-ray analysis and charge transport measurements. Using a combination of polarised optical spectroscopy techniques in the mid to far infrared (4 to 700 meV photon energy), we have measured an anisotropy relating to the CDW gap. We discuss the results on the basis of chiral domains with different handedness and the nature of the CDW transition.
Pressure dependence of the optical phonon frequencies and the transverse effective charge in AlSb
NASA Astrophysics Data System (ADS)
Ves, S.; Strössner, K.; Cardona, M.
1986-02-01
The first order Raman scattering by TO and LO phonons has been measured in AlSb under hydrostatic' pressures up to its phase transition. The Raman frequencies increase nearly linear while the transverse effective charge e ∗T are compared with estimates based on pseudopotential and on LCAO calculation. In order to obtain from the measured pressure dependence the corresponding volume coefficients the bulk modulus B O and its pressure derivative BOˌ = {dBO}/{dP} was measured by energy-dispersive X-ray diffraction (B O = 55.1 GPa and BOˌ = 4.55 ).
Moorhead-Rosenberg, Zach; Huq, Ashfia; Goodenough, John B.; ...
2015-10-05
The electronic and electrochemical properties of the high-voltage spinel LiMn 1.5Ni 0.5O 4 as a function of cation ordering and lithium content have been investigated. Conductivity and activation energy measurements confirm that charge transfer occurs by small polaron hopping and the charge carrier conduction is easier in the Ni:3d band than in the in Mn:3d band. Seebeck coefficient data reveal that the Ni 2+/ 3+. and Ni 3+/ 4+ redox couples are combined in a single,3d band, and that maximum charge carrier concentration occurs where the average Ni oxidation state is close to 3+, corresponding to x = 0.5 inmore » Li Li 1-xMn 1.5Ni 0.5O 4. Furthermore, maximum electronic conductivity is found at x = 0.5, regardless of cation ordering. The thermodynamically stable phases formed during cycling were investigated by recording the X-ray diffraction (XRD) of chemically delithiated powders. The more ordered spinels maintained two separate two-phase regions upon lithium extraction, while the more disordered samples exhibited a solid-solubility region from LiMn 1.5Ni 0.5O 4 to Li 0.5Mn 1.5Ni 0.5O 4. The conductivity and phase-transformation data of four samples with varying degrees of cation ordering were compared to the electrochemical data collected with lithium cells. Only the most ordered spinel showed inferior rate performance, while the sample annealed for a shorter time performed comparable to the unannealed or disordered samples. Our results challenge the most common beliefs about high-voltage spinel: (i) low Mn 3+ content is responsible for poor rate performance and (ii) thermodynamically stable solid-solubility is critical for fast kinetics.« less
Amphipathic peptide affects the lateral domain organization of lipid bilayers.
Polozov, I V; Polozova, A I; Molotkovsky, J G; Epand, R M
1997-09-04
Using lipid-specific fluorescent probes, we studied the effects of amphipathic helical, membrane active peptides of the A- and L-type on membrane domain organization. In zwitterionic binary systems composed of mixtures of phosphatidylcholine and phosphatidylethanolamine, both types of peptides associated with the fluid phase. While binding with high affinity to fluid membranes, peptides were unable to penetrate into the lipid membrane in the gel state. If trapped kinetically by cooling from the fluid phase, peptides dissociated from the gel membrane on the time scale of several hours. While the geometrical shape of the alpha-helical peptides determines their interactions with membranes with non-bilayer phase propensity, the shape complementarity mechanism by itself is unable to induce lateral phase separation in a fluid membrane. Charge-charge interactions are capable of inducing lateral domain formation in fluid membranes. Both peptides had affinity for anionic lipids which resulted in about 30% enrichment of acidic lipids within several nanometers of the peptide's tryptophan, but there was no long-range order in peptide-induced lipid demixing. Peptide insertion in fluid acidic membranes was accompanied by only a small increase in bilayer surface and a decrease in polarity in the membrane core. Peptide-lipid charge-charge interactions were also capable of modulating existing domain composition in the course of the main phase transition in mixtures of anionic phosphatidylglycerol with zwitterionic phosphatidylcholine.
NASA Astrophysics Data System (ADS)
Zheng, R. K.; Zhu, C. F.; Xie, J. Q.; Li, X. G.
2001-01-01
Ultrasonic sound velocity and attenuation have been measured in polycrystalline manganese oxide La1-xCaxMnO3 (x=0.5,0.83,1.0) at a frequency of 10 MHz. For x=0.5, on cooling down from high temperature, a slight softening of the sound velocity above the charge ordering transition temperature TCO and dramatic stiffening below TCO coincided with big attenuation peaks for both longitudinal and transverse waves were observed. It was found that these ultrasonic anomalies near TCO are correlated with the fine structure (i.e., the lattice parameters) change caused by the Jahn-Teller effect. For x=0.83, the sound velocity starts to soften dramatically with decreasing temperature from higher temperature to TS (180 K), and stiffens dramatically below TS. The large softening and stiffening of the sound velocity accompanied by a big attenuation peak are strongly correlated with a cubic-to-tetragonal structural phase transition at TS, which is confirmed by the low-temperature powder x-ray diffraction measurements. It is suggested that this structural phase transition be due to the Jahn-Teller distortion of the Mn3+O6 octahedra and related to the charge ordering transition. For CaMnO3, the anomaly in sound velocity is small.
NASA Astrophysics Data System (ADS)
Jeon, Seokmin; Maksymovych, Petro
In contrast to the vast effort on bulk crystal phases of the prototypical organic charge-transfer complex, TTF-TCNQ, study of low-dimensional phases has been limited to monolayer phases on substrates. In this state, however, none of the physics of the bulk phase is observed owing to the overwhelming effect of the substrate. We investigate the molecular structure and electronic properties of a few layers of TTF-TCNQ grown on Au(111) and Ag(111) using STM/STS at 4.3 K. By decoupling the molecular electronic state from the metal surface, we have made the first observation of the effect of confinement on the electronic properties of TTF-TCNQ. STS reveals a plethora of sharp features due to molecular orbitals, each influenced by charge-transfer between the molecules. We hypothesize the existence of a Mott-insulator state in 3-layer islands, with a Coulomb gap of ~1 eV. In contrast, the corresponding bulk phase is a Peierls insulator with a gap of ~20 meV. The root cause of the nanoscale phase is traced to simultaneous electron confinement and structural frustration, which dramatically modify the energy balance of self-ionization allowing for integer charge transfer. These studies open broad opportunities to explore correlated electron physics in molecular systems. This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.
Composition dependence of charge and magnetic length scales in mixed valence manganite thin films
Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; Jeen, H.; Biswas, A.
2016-01-01
Mixed-valence manganese oxides present striking properties like the colossal magnetoresistance, metal-insulator transition (MIT) that may result from coexistence of ferromagnetic, metallic and insulating phases. Percolation of such phase coexistence in the vicinity of MIT leads to first-order transition in these manganites. However the length scales over which the electronic and magnetic phases are separated across MIT which appears compelling for bulk systems has been elusive in (La1−yPry)1−xCaxMnO3 films. Here we show the in-plane length scale over which charge and magnetism are correlated in (La0.4Pr0.6)1−xCaxMnO3 films with x = 0.33 and 0.375, across the MIT temperature. We combine electrical transport (resistance) measurements, x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD), and specular/off-specular x-ray resonant magnetic scattering (XRMS) measurements as a function of temperature to elucidate relationships between electronic, magnetic and morphological structure of the thin films. Using off-specular XRMS we obtained the charge-charge and charge-magnetic correlation length of these LPCMO films across the MIT. We observed different charge-magnetic correlation length for two films which increases below the MIT. The different correlation length shown by two films may be responsible for different macroscopic (transport and magnetic) properties. PMID:27461993
Li, Yan; Sun, Zhao; Cai, Jia -Wei; ...
2017-07-01
Here, the mixed-valent Pbmore » $${}_{3}$$Rh $${}_{7}$$O$${}_{15}$$ undergoes a Verwey-type transition at $${T}_{{\\rm{v}}}\\approx 180$$ K, below which the development of Rh$${}^{3+}$$ /Rh$${}^{4+}$$ charge order induces an abrupt conductor-to-insulator transition in resistivity. Here we investigate the effect of pressure on the Verwey-type transition of Pb$${}_{3}$$Rh$${}_{7}$$O$${}_{15}$$ by measuring its electrical resistivity under hydrostatic pressures up to 8 GPa with a cubic anvil cell apparatus. We find that the application of high pressure can suppress the Verwey-type transition around 3 GPa, above which a metallic state is realized at temperatures below ~70 K, suggesting the melting of charge order by pressure. Interestingly, the low-temperature metallic region shrinks gradually upon further increasing pressure and disappears completely at P > 7 GPa, which indicates that the charge carriers in Pb$${}_{3}$$Rh$${}_{7}$$O$${}_{15}$$ undergo a reentrant localization under higher pressures. We have constructed a temperature-pressure phase diagram for Pb$${}_{3}$$Rh$${}_{7}$$O$${}_{15}$$ and compared to that of Fe$${}_{3}$$O$${}_{4}$$, showing an archetype Verwey transition.« less
NASA Astrophysics Data System (ADS)
Nuruzzaman, Md.; Yokogawa, Keiichi; Yoshino, Harukazu; Yoshimoto, Haruo; Kikuchi, Koichi; Kaihatsu, Takayuki; Yamada, Jun-ichi; Murata, Keizo
2012-12-01
We studied the electronic transport properties of the charge transfer salt β-(BDA-TTP)2I3 [BDA-TTP: 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene] by applying uniaxial strains along the three crystallographic axes, and obtained three corresponding temperature-pressure phase diagrams. Three phase diagrams were quite dependent on the direction of compression. Following the preceding paper by Kikuchi et al., we speculate that the insulating states are of 1/2-filled Mott insulators for the a- and b-axes compressions, and of 1/4-filled charge ordered states for the c-axis compression as well as hydrostatic pressure. The superconducting phase under uniaxial strain was realized with Tc = 5 K at 1.9 GPa along the a-axis and with Tc = 5.6 K at 1.75 GPa along the b-axis. Superconductivity was also reproduced with a Tc of 9.5 K at 1.0 GPa for the c-axis compressions in the range of 0.85 to 1.53 GPa as previously reported. We studied tentative measurement on upper critical fields, Bc2's of these superconductivities and found that the extrapolated values, Bc2(0)'s, exceeded Pauli-limit by about 2--3 times. However, at least in terms of Bc2, the difference in superconductivity associated with two different insulating states was not clear.
NASA Astrophysics Data System (ADS)
Das, Kalipada
2017-10-01
In our present study, we address in detail the magnetic and magneto-transport properties of ferromagnetic-charge ordered core-shell nanostructures. In these core-shell nanostructures, well-known half metallic La0.67Sr0.33MnO3 nanoparticles (average particle size, ˜20 nm) are wrapped by the charge ordered antiferromagnetic Pr0.67Ca0.33MnO3 (PCMO) matrix. The intrinsic properties of PCMO markedly modify it into such a core-shell form. The robustness of the PCMO matrix becomes fragile and melts at an external magnetic field (H) of ˜20 kOe. The analysis of magneto-transport data indicates the systematic reduction of the electron-electron and electron-magnon interactions in the presence of an external magnetic field in these nanostructures. The pronounced training effect appears in this phase separated compound, which was analyzed by considering the second order tunneling through the grain boundaries of the nanostructures. Additionally, the analysis of low field magnetoconductance data supports the second order tunneling and shows the close value of the universal limit (˜1.33).
Fluctuations and QCD phase structure
NASA Astrophysics Data System (ADS)
Kitazawa, Masakiyo
2014-11-01
Fluctuation observables are invaluable tools in relativistic heavy ion collisions to investigate primordial thermodynamics of fireballs. Active experimental measurements have been performed at RHIC and LHC. In particular, interesting experimental results were recently reported on the electric charge fluctuation at ALICE and on the higher order cumulants at STAR, which show nontrivial behaviors reflecting non-hadronic and/or non-thermal physics. We argue that more detailed understanding on these observables are needed to use them effectively in the analysis of QCD phase structure. We suggest that the measurement of various cumulants of conserved charges including baryon number and their rapidity window dependence will provide important information needed for making progress in this subject.
Coexistence of charge order and antiferromagnetism in (TMTTF)2SbF6: NMR study
NASA Astrophysics Data System (ADS)
Nomura, K.; Yamamoto, M.; Matsunaga, N.; Hirose, S.; Shimohara, N.; Satoh, T.; Isome, T.; Liu, Y.; Kawamoto, A.
2015-03-01
The electronic state of (TMTTF)2SbF6 was investigated by the 1H and 13C NMR measurements. The temperature dependence of T1-1 in 1H NMR shows a sharp peak associated with the antiferromagnetic transition at TAF=6 K. The temperature dependence of T1-1 is described by the power law T2.4 below TAF. This suggests the nodal gapless spin wave excitation in antiferromagnetic phase. In 13C NMR, two sharp peaks at high temperature region, associated with the inner and the outer carbon sites in TMTTF dimer, split into four peaks below 150 K. It indicates that the charge disproportionation occurs. The degree of charge disproportionation Δρ is estimated as (0.25±0.09)e from the chemical shift difference. This value of Δρ is consistent with that obtained from the infrared spectroscopy. In the antiferromagnetic state (AFI), the observed line shape is well fitted by eight Lorentzian peaks. This suggests that the charge order with the same degree still remains in the AF state. From the line assignment, the AF staggered spin amplitude is obtained as 0.70 μB and 0.24 μB at the charge rich and the poor sites, respectively. These values corresponding to almost 1 μB per dimer are quite different from 0.11 μB of another AF (AFII) state in (TMTTF)2Br with effective higher pressure. As a result, it is understood that the antiferromagnetic staggered spin order is stabilized on the CO state in the AFI phase of (TMTTF)2SbF6.
NASA Astrophysics Data System (ADS)
He, Yang; Sun, Yajuan; Zhang, Ruili; Wang, Yulei; Liu, Jian; Qin, Hong
2016-09-01
We construct high order symmetric volume-preserving methods for the relativistic dynamics of a charged particle by the splitting technique with processing. By expanding the phase space to include the time t, we give a more general construction of volume-preserving methods that can be applied to systems with time-dependent electromagnetic fields. The newly derived methods provide numerical solutions with good accuracy and conservative properties over long time of simulation. Furthermore, because of the use of an accuracy-enhancing processing technique, the explicit methods obtain high-order accuracy and are more efficient than the methods derived from standard compositions. The results are verified by the numerical experiments. Linear stability analysis of the methods shows that the high order processed method allows larger time step size in numerical integrations.
Static charge-density-wave order in the superconducting state of La 2 - x Ba x CuO 4
Thampy, V.; Chen, X. M.; Cao, Y.; ...
2017-06-15
Charge-density-wave (CDW) correlations feature prominently in the phase diagram of the cuprates, motivating competing theories of whether fluctuating CDW correlations aid superconductivity or whether static CDW order coexists with superconductivity in inhomogeneous or spatially modulated states. Here we report Cu L-edge resonant x-ray photon correlation spectroscopy measurements of CDW correlations in superconducting La 2–xBa xCuO 4, x = 0.11. Static CDW order is shown to exist in the superconducting state at low temperatures and to persist up to at least 85% of the CDW transition temperature. As a result, we discuss the implications of our observations for how nominally competingmore » order parameters can coexist in the cuprates.« less
Competing order parameters in Fermi systems with engineered band dispersion
NASA Astrophysics Data System (ADS)
Wu, Chien-Te; Boyack, Rufus; Anderson, Brandon; Levin, K.
We explore a variety of competing phases in 2D and 3D Fermi gases in the presence of novel dispersion relations resulting from a shaken optical lattice. We incorporate spin imbalance along with attractive interactions. In 3D, at the mean field level we present phase diagrams reflecting the stability of alternative order parameters in the pairing (including LOFF) and charge density wave channels. We perform analogous studies in 2D, where we focus on the competition between different paired phases. Important in this regard is that our 2D studies are consistent with the Mermin Wagner theorem, so that, while there is competition, conventional superfluidity cannot occur
Critical behavior of the extended Hubbard model with bond dimerization
NASA Astrophysics Data System (ADS)
Ejima, Satoshi; Lange, Florian; Essler, Fabian H. L.; Fehske, Holger
2018-05-01
Exploiting the matrix-product-state based density-matrix renormalization group (DMRG) technique we study the one-dimensional extended (U-V) Hubbard model with explicit bond dimerization in the half-filled band sector. In particular we investigate the nature of the quantum phase transition, taking place with growing ratio V / U between the symmetry-protected-topological and charge-density-wave insulating states. The (weak-coupling) critical line of continuous Ising transitions with central charge c = 1 / 2 terminates at a tricritical point belonging to the universality class of the dilute Ising model with c = 7 / 10 . We demonstrate that our DMRG data perfectly match with (tricritical) Ising exponents, e.g., for the order parameter β = 1 / 8 (1/24) and correlation length ν = 1 (5/9). Beyond the tricritical Ising point, in the strong-coupling regime, the quantum phase transition becomes first order.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, D.; Liu, Jian; Freeland, J. W.
We observed complex materials in electronic phases and transitions between them often involve coupling between many degrees of freedom whose entanglement convolutes understanding of the instigating mechanism. Metal-insulator transitions are one such problem where coupling to the structural, orbital, charge, and magnetic order parameters frequently obscures the underlying physics. We demonstrate a way to unravel this conundrum by heterostructuring a prototypical multi-ordered complex oxide NdNiO3 in ultra thin geometry, which preserves the metal-to-insulator transition and bulk-like magnetic order parameter, but entirely suppresses the symmetry lowering and long-range charge order parameter. Furthermore, these findings illustrate the utility of heterointerfaces as amore » powerful method for removing competing order parameters to gain greater insight into the nature of the transition, here revealing that the magnetic order generates the transition independently, leading to an exceptionally rare purely electronic metal-insulator transition with no symmetry change.« less
Pure electronic metal-insulator transition at the interface of complex oxides
Meyers, D.; Liu, Jian; Freeland, J. W.; ...
2016-06-21
We observed complex materials in electronic phases and transitions between them often involve coupling between many degrees of freedom whose entanglement convolutes understanding of the instigating mechanism. Metal-insulator transitions are one such problem where coupling to the structural, orbital, charge, and magnetic order parameters frequently obscures the underlying physics. We demonstrate a way to unravel this conundrum by heterostructuring a prototypical multi-ordered complex oxide NdNiO3 in ultra thin geometry, which preserves the metal-to-insulator transition and bulk-like magnetic order parameter, but entirely suppresses the symmetry lowering and long-range charge order parameter. Furthermore, these findings illustrate the utility of heterointerfaces as amore » powerful method for removing competing order parameters to gain greater insight into the nature of the transition, here revealing that the magnetic order generates the transition independently, leading to an exceptionally rare purely electronic metal-insulator transition with no symmetry change.« less
Z3 topological order in the face-centered-cubic quantum plaquette model
NASA Astrophysics Data System (ADS)
Devakul, Trithep
2018-04-01
We examine the topological order in the resonating singlet valence plaquette (RSVP) phase of the hard-core quantum plaquette model (QPM) on the face centered cubic (FCC) lattice. To do this, we construct a Rohksar-Kivelson type Hamiltonian of local plaquette resonances. This model is shown to exhibit a Z3 topological order, which we show by identifying a Z3 topological constant (which leads to a 33-fold topological ground state degeneracy on the 3-torus) and topological pointlike charge and looplike magnetic excitations which obey Z3 statistics. We also consider an exactly solvable generalization of this model, which makes the geometrical origin of the Z3 order explicitly clear. For other models and lattices, such generalizations produce a wide variety of topological phases, some of which are novel fracton phases.
NASA Astrophysics Data System (ADS)
Sato, Shintaro; Takahashi, Masayuki; Ohnishi, Naofumi
2017-05-01
An approach for electrohydrodynamic (EHD) force production is proposed with a focus on a charge cycle on a dielectric surface. The cycle, consisting of positive-charging and neutralizing strokes, is completely different from the conventional methodology, which involves a negative-charging stroke, in that the dielectric surface charge is constantly positive. The two-stroke charge cycle is realized by applying a DC voltage combined with repetitive pulses. Simulation results indicate that the negative pulse eliminates the surface charge accumulated during constant voltage phase, resulting in repetitive EHD force generation. The time-averaged EHD force increases almost linearly with increasing repetitive pulse frequency and becomes one order of magnitude larger than that driven by the sinusoidal voltage, which has the same peak-to-peak voltage.
NASA Astrophysics Data System (ADS)
Mu, Cheng-Fu; Sun, Gao-Feng; Zhuang, Peng-Fei
2009-03-01
Electric charge neutrality provides a relationship between chiral dynamics and neutrino propagation in compact stars. Due to the sudden drop of the electron density at thefirst-order chiral phase transition, the oscillation for low energy neutrinos is significant and can be regarded as a signature of chiral symmetry restoration in the core of compact stars.
NASA Astrophysics Data System (ADS)
Lytvtnenko, D. M.; Slyusarenko, Yu. V.; Kirdin, A. I.
2012-10-01
A consistent theory of equilibrium states of same sign charges above the surface of liquid dielectric film located on solid substrate in the presence of external attracting constant electric field is proposed. The approach to the development of the theory is based on the Thomas-Fermi model generalized to the systems under consideration and on the variational principle. The using of self-consistent field model allows formulating a theory containing no adjustable constants. In the framework of the variational principle we obtain the self-consistency equations for the parameters describing the system: the distribution function of charges above the liquid dielectric surface, the electrostatic field potentials in all regions of the system and the surface profile of the liquid dielectric. The self-consistency equations are used to describe the phase transition associated with the formation of spatially periodic structures in the system of charges on liquid dielectric surface. Assuming the non-degeneracy of the gas of charges above the surface of liquid dielectric film the solutions of the self-consistency equations near the critical point are obtained. In the case of the symmetric phase we obtain the expressions for the potentials and electric fields in all regions of the studied system. The distribution of the charges above the surface of liquid dielectric film for the symmetric phase is derived. The system parameters of the phase transition to nonsymmetric phase - the states with a spatially periodic ordering are obtained. We derive the expression determining the period of two-dimensional lattice as a function of physical parameters of the problem - the temperature, the external attractive electric field, the number of electrons per unit of the flat surface area of the liquid dielectric, the density of the dielectric, its surface tension and permittivity, and the permittivity of the solid substrate. The possibility of generalizing the developed theory in the case of degenerate gas of like-charged particles above the liquid dielectric surface is discussed.
NASA Astrophysics Data System (ADS)
Morales-Cifuentes, Josue; Wang, Yilin; Reutt-Robey, Janice; Einstein, T. L.
2014-03-01
An effective pseudopotential mechanism for breaking the inherent sub-lattice symmetry of graphene has been studied using DFT calculations on hexagonal boron nitride. Electrical detection of CF3Cl phase transitions on graphene shows the existence of a commensurate ordered phase in which this can be tested. We study the electronic properties of this phase using VASP ver 5.3.3, with ab initio van der Waals density functionals (vdW-DF1 and vdW-DF2). Consistent with a physisorbed phase, binding energies and charge transfer per CF3Cl molecule are calculated to be on the order of 280meV and 0.01e, respectively. By exploring different coverages and orientations of this ordered phase we are able to open a band gap in some configurations; said gap is in the range of 8 to 80meV depending on the strength of the effective pseudopotential. Furthermore, we calculate the screening of these effects in bi-layer and tri-layer graphene. Work supported by NSF-MRSEC at UMD, grant DMR 05-20471 and NSF-CHE 13-05892.
Two types of nematicity in the phase diagram of the cuprate superconductor YBa2Cu3Oy
NASA Astrophysics Data System (ADS)
Cyr-Choinière, O.; Grissonnanche, G.; Badoux, S.; Day, J.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Doiron-Leyraud, N.; Taillefer, Louis
2015-12-01
Nematicity has emerged as a key feature of cuprate superconductors, but its link to other fundamental properties such as superconductivity, charge order, and the pseudogap remains unclear. Here we use measurements of transport anisotropy in YBa2Cu3Oy to distinguish two types of nematicity. The first is associated with short-range charge-density-wave modulations in a doping region near p =0.12 . It is detected in the Nernst coefficient, but not in the resistivity. The second type prevails at lower doping, where there are spin modulations but no charge modulations. In this case, the onset of in-plane anisotropy—detected in both the Nernst coefficient and the resistivity—follows a line in the temperature-doping phase diagram that tracks the pseudogap energy. We discuss two possible scenarios for the latter nematicity.
NASA Technical Reports Server (NTRS)
Marshall, J. R.
1999-01-01
There is empirical evidence that freely-suspended triboelectrostatically charged particulate clouds of dielectric materials undergo rapid conversion from (nominally) monodispersed "aerosols" to a system of well-defined grain aggregates after grain motion or fluid turbulence ceases within the cloud. In United States Microgravity Laboratory Space Shuttle experiments USML-1 and USML-2, it was found that ballistically-energized grain dispersions would rapidly convert into populations of filamentary aggregates after natural fluid (air) damping of grain motion. Unless continuously disrupted mechanically, it was impossible to maintain a non-aggregated state for the grain clouds of sand-size materials. Similarly, ground- based experiments with very fine dust-size material produced the same results: rapid, impulsive "collapse" of the dispersed grains into well-defined filamentary structures. In both ground-based and microgravity experiments, the chains or filaments were created by long-range dipole electrostatic forces and dipole-induced dielectric interactions, not by monopole interactions. Maintenance of the structures was assisted by short-range static boundary adhesion forces and van der Waals interactions. When the aggregate containers in the USML experiments were disturbed after aggregate formation, the quiescently disposed filaments would rearrange themselves into fractal bundles and tighter clusters as a result of enforced encounters with one another. The long-range dipole interactions that bring the grains together into aggregates are a product of randomly-distributed monopole charges on the grain surfaces. In computer simulations, it has been shown that when the force vectors of all the random charges (of both sign) on a grain are resolved mathematically by assuming Coulombic interaction between them, the net result is a dipole moment on individual grains, even though the grains are electrically neutral insofar as there is no predominance, on their surface, of one charge sign over another. The random charges of both sign derive from natural grain-to-grain interactions that produce triboelectrification via charge exchange every time grain surfaces make contact with one another. The conversion from a random distribution of grains (upon which there are randomly distributed charges) into an organization of electrostatically-ordered aggregates, can be regarded (within the framework of granular-material science) as an "electrical or Coulombic phase change" of the particulate cloud. It is not totally dissimilar from the more normal phase-change concept in which, for example, a gas with long free-path-molecules suddenly becomes a solid as a result of structural ordering of the molecules (notably, also the result of electronic forces, albeit at a different scale). In both the gas-to-solid case, and the aerosol-to-aggregate case, the same materials and charges are present before and after the phase change, but their arrangement now has a higher degree of order and a lower-energy configuration. An input of energy into the system is required to reverse the situation. The aggregates in the USML experiments were observed to undergo at least two phase changes as noted above. The point about phase changes, and by implication, the "electrostructural" reorganizations in particulate clouds, is the following: (a) they can occur very rapidly, almost spontaneously, above a critical cloud density, (b) in going from a higher energy state to a lower energy state, they convert to a denser system, (c) energy must be required to reverse the situation, implying that energy is released during the high-to-low energy phase change. In applying this information to natural particulate clouds, some inferences can be made (it is stressed that reference is still to dielectric materials attracted by dipole forces). There are several natural settings to which the USML observations apply, and to which the phase-change implications likewise apply. Dense clouds of triboelectrically-charged, kinetically-energized grains are to be found in volcanic eruptions (particularly on earth), aeolian dust storms (particularly on Mars), meteorite impact ejecta curtains (on all planets), in "immature" debris rings around planets (e.g., that from which our own Moon may have condensed), and in gravitationally collapsing protoplanetary dust/planetesimal debris disks where dielectric granules are being increasingly brought into collisional relationships with one another (increasing both charge exchange and physical proximity). It is noted that in many of these cases, the degree of electrical charging on the grains is likely to be much higher than that in the USML experiments where charging was not enhanced above the "normal", naturally encountered level for the particular materials (quartz, glass, and various silicate minerals). Application of the phase-change concept suggests that volcanic, aeolian, and impact debris clouds may, under certain circumstances, undergo rapid, impulsive, or even catastrophic collapse into a denser state that will lead to rapid precipitation or fall-out of suspended particulates. Although this idea has been suggested previously by the author , the phase change concept possibly permits some new insights into cloud-system behavior. For example, in a protoplanetary debris disk, the work of gravity may suddenly be enhanced by electrostatically driven collapse of the system when materials reach a critical intergranular spacing or grain number density. This might reduce the rate of planet formation by orders of magnitude (considering the ratio of g-forces to electrostatic ones for very small grains in close proximity), and indeed, it might drive the collapse into a system configuration that would perhaps not be created by gravity alone. Additional information is contained in the original.
Shore, Joel D.; Thurston, George M.
2018-01-01
We report a charge-patterning phase transition on two-dimensional square lattices of titratable sites, here regarded as protonation sites, placed in a low-dielectric medium just below the planar interface between this medium and a salt solution. We calculate the work-of-charging matrix of the lattice with use of a linear Debye-Hückel model, as input to a grand-canonical partition function for the distribution of occupancy patterns. For a large range of parameter values, this model exhibits an approximate inverse cubic power-law decrease of the voltage produced by an individual charge, as a function of its in-lattice separation from neighboring titratable sites. Thus, the charge coupling voltage biases the local probabilities of proton binding as a function of the occupancy of sites for many neighbors beyond the nearest ones. We find that even in the presence of these longer-range interactions, the site couplings give rise to a phase transition in which the site occupancies exhibit an alternating, checkerboard pattern that is an analog of antiferromagnetic ordering. The overall strength W of this canonical charge coupling voltage, per unit charge, is a function of the Debye length, the charge depth, the Bjerrum length, and the dielectric coefficients of the medium and the solvent. The alternating occupancy transition occurs above a curve of thermodynamic critical points in the (pH-pK,W) plane, the curve representing a charge-regulation analog of variation of the Néel temperature of an Ising antiferromagnet as a function of an applied, uniform magnetic field. The analog of a uniform magnetic field in the antiferromagnet problem is a combination of pH-pK and W, and 1/W is the analog of the temperature in the antiferromagnet problem. We use Monte Carlo simulations to study the occupancy patterns of the titratable sites, including interactions out to the 37th nearest-neighbor category (a distance of 74 lattice constants), first validating simulations through comparison with exact and approximate results for the nearest-neighbor case. We then use the simulations to map the charge-patterning phase boundary in the (pH-pK,W) plane. The physical parameters that determine W provide a framework for identifying and designing real surfaces that could exhibit charge-patterning phase transitions. PMID:26764648
Shore, Joel D; Thurston, George M
2015-12-01
We report a charge-patterning phase transition on two-dimensional square lattices of titratable sites, here regarded as protonation sites, placed in a low-dielectric medium just below the planar interface between this medium and a salt solution. We calculate the work-of-charging matrix of the lattice with use of a linear Debye-Hückel model, as input to a grand-canonical partition function for the distribution of occupancy patterns. For a large range of parameter values, this model exhibits an approximate inverse cubic power-law decrease of the voltage produced by an individual charge, as a function of its in-lattice separation from neighboring titratable sites. Thus, the charge coupling voltage biases the local probabilities of proton binding as a function of the occupancy of sites for many neighbors beyond the nearest ones. We find that even in the presence of these longer-range interactions, the site couplings give rise to a phase transition in which the site occupancies exhibit an alternating, checkerboard pattern that is an analog of antiferromagnetic ordering. The overall strength W of this canonical charge coupling voltage, per unit charge, is a function of the Debye length, the charge depth, the Bjerrum length, and the dielectric coefficients of the medium and the solvent. The alternating occupancy transition occurs above a curve of thermodynamic critical points in the (pH-pK,W) plane, the curve representing a charge-regulation analog of variation of the Néel temperature of an Ising antiferromagnet as a function of an applied, uniform magnetic field. The analog of a uniform magnetic field in the antiferromagnet problem is a combination of pH-pK and W, and 1/W is the analog of the temperature in the antiferromagnet problem. We use Monte Carlo simulations to study the occupancy patterns of the titratable sites, including interactions out to the 37th nearest-neighbor category (a distance of √74 lattice constants), first validating simulations through comparison with exact and approximate results for the nearest-neighbor case. We then use the simulations to map the charge-patterning phase boundary in the (pH-pK,W) plane. The physical parameters that determine W provide a framework for identifying and designing real surfaces that could exhibit charge-patterning phase transitions.
NASA Astrophysics Data System (ADS)
Shore, Joel D.; Thurston, George M.
2015-12-01
We report a charge-patterning phase transition on two-dimensional square lattices of titratable sites, here regarded as protonation sites, placed in a low-dielectric medium just below the planar interface between this medium and a salt solution. We calculate the work-of-charging matrix of the lattice with use of a linear Debye-Hückel model, as input to a grand-canonical partition function for the distribution of occupancy patterns. For a large range of parameter values, this model exhibits an approximate inverse cubic power-law decrease of the voltage produced by an individual charge, as a function of its in-lattice separation from neighboring titratable sites. Thus, the charge coupling voltage biases the local probabilities of proton binding as a function of the occupancy of sites for many neighbors beyond the nearest ones. We find that even in the presence of these longer-range interactions, the site couplings give rise to a phase transition in which the site occupancies exhibit an alternating, checkerboard pattern that is an analog of antiferromagnetic ordering. The overall strength W of this canonical charge coupling voltage, per unit charge, is a function of the Debye length, the charge depth, the Bjerrum length, and the dielectric coefficients of the medium and the solvent. The alternating occupancy transition occurs above a curve of thermodynamic critical points in the (p H-p K ,W ) plane, the curve representing a charge-regulation analog of variation of the Néel temperature of an Ising antiferromagnet as a function of an applied, uniform magnetic field. The analog of a uniform magnetic field in the antiferromagnet problem is a combination of p H-p K and W , and 1 /W is the analog of the temperature in the antiferromagnet problem. We use Monte Carlo simulations to study the occupancy patterns of the titratable sites, including interactions out to the 37th nearest-neighbor category (a distance of √{74 } lattice constants), first validating simulations through comparison with exact and approximate results for the nearest-neighbor case. We then use the simulations to map the charge-patterning phase boundary in the (p H-p K ,W ) plane. The physical parameters that determine W provide a framework for identifying and designing real surfaces that could exhibit charge-patterning phase transitions.
Magnetic and dielectric properties of Fe3BO6 nanoplates prepared through self-combustion method
NASA Astrophysics Data System (ADS)
Kumari, Kalpana
In the present investigation, a facile synthesis method is explored involving a self-combustion of a solid precursor mixture of iron oxide Fe2O3 and boric acid (H3BO3) using camphor (C10H16O) as fuel in ambient air in order to form a single phase Fe3BO6 crystallites. X-ray diffraction (XRD), Field emission electron microscopy (FESEM), magnetic, and dielectric properties of as prepared sample are studied. From XRD pattern, a single phase compound is observed with an orthorhombic crystal structure (Pnma space group), with average crystallite size of 42nm. A reasonably uniform size distribution of the plates and self-assemblies is retained in the sample. A magnetic transition is observed in dielectric permittivity (at ˜445K) and power loss (at ˜435K) when plotted against temperature. A weak peak occurs near 330K due to the charge reordering in the sample. For temperatures above the transition temperature, a sharp increase of the dielectric loss is observed which occurs due to the presence of thermally activated charge carriers. A canted antiferromagnetic Fe3+ ordering in a Fe3BO6 lattice with a localized charge surface layer is an apparent source of exhibiting a ferroelectric feature in this unique example of a centrosymmetric compound. An induced spin current over the Fe sites thus could give rise to a polarization hysteresis loop. Due to the presence of both ferromagnetic as well as polarization ordering, Fe3BO6 behaves like a single phase multiferroic ceramics.
Chen, Xiaojie; Tieleman, D Peter; Liang, Qing
2018-02-01
The interactions between nanoparticles and lipid bilayers are critical in applications of nanoparticles in nanomedicine, cell imaging, toxicology, and elsewhere. Here, we investigate the interactions between nanoparticles coated with neutral and/or charged ligands and phase-separated lipid bilayers using coarse-grained molecular dynamics simulation. Both penetration and adsorption processes as well as the final distribution of the nanoparticles can be readily modulated by varying the ligand density and the surface charge of the nanoparticles. Completely hydrophobic (neutral) nanoparticles with larger size initially preferentially penetrate into the liquid-disordered region of the lipid bilayer and finally transfer into the liquid-ordered region; partially hydrophilic nanoparticles with low or moderate surface charge tend to either distribute in the liquid-disordered region or be adsorbed on the surface of the lipid bilayer, while strongly hydrophilic nanoparticles with high surface charge always reside on the surface of the lipid bilayer. Interactions of the nanoparticles with the lipid bilayers are affected by the surface charge of nanoparticles, hydrophobic mismatch, bending of the ligands, and the packing state of the lipids. Insight in these factors can be used to improve the efficiency of designing nanoparticles for specific applications.
Layer Splitting in a Complex Plasma
NASA Astrophysics Data System (ADS)
Smith, Bernard; Hyde, Truell; Matthews, Lorin; Johnson, Megan; Cook, Mike; Schmoke, Jimmy
2009-11-01
Dust particle clouds are found in most plasma processing environments and many astrophysical environments. Dust particles suspended within such plasmas often acquire an electric charge from collisions with free electrons in the plasma. Depending upon the ratio of interparticle potential energy to average kinetic energy, charged dust particles can form a gaseous, liquid or crystalline structure with short to longer range ordering. An interesting facet of complex plasma behavior is that particle layers appear to split as the DC bias is increased. This splitting of layers points to a phase transition differing from the normal phase transitions found in two-dimensional solids. In 1993, Dubin noted that as the charged particle density of an initially two-dimensional Coulomb crystal increases the system's layers split at specific charge densities. This work modeled ions in a Paul or Penning trap, but may be applicable to dusty plasma systems as well. This work will discuss this possibility along with splitting observed in the CASPER GEC rf Reference Cell at specific pressures and powers.
Gapless bosonic excitation without symmetry breaking: An algebraic spin liquid with soft gravitons
NASA Astrophysics Data System (ADS)
Xu, Cenke
2006-12-01
A quantum ground state of matter is realized in a bosonic model on a three-dimensional fcc lattice with emergent low energy excitations. The phase obtained is a stable gapless boson liquid phase, with algebraic boson density correlations. The stability of this phase is protected against the instanton effect and superfluidity by self-duality and large gauge symmetries on both sides of the duality. The gapless collective excitations of this phase closely resemble the graviton, although they have a soft ω˜k2 dispersion relation. There are three branches of gapless excitations in this phase, one of which is gapless scalar trace mode, the other two have the same polarization and gauge symmetries as the gravitons. The dynamics of this phase is described by a set of Maxwell’s equations. The defects carrying gauge charges can drive the system into the superfluid order when the defects are condensed; also the topological defects are coupled to the dual gauge field in the same manner as the charge defects couple to the original gauge field, after the condensation of the topological defects, the system is driven into the Mott insulator phase. In the two-dimensional case, the gapless soft graviton as well as the algebraic liquid phase are destroyed by the vertex operators in the dual theory, and the stripe order is most likely to take place close to the two-dimensional quantum critical point at which the vertex operators are tuned to zero.
Phase separation and long-wavelength charge instabilities in spin-orbit coupled systems
NASA Astrophysics Data System (ADS)
Seibold, G.; Bucheli, D.; Caprara, S.; Grilli, M.
2015-01-01
We investigate a two-dimensional electron model with Rashba spin-orbit interaction where the coupling constant g=g(n) depends on the electronic density. It is shown that this dependence may drive the system unstable towards a long-wavelength charge density wave (CDW) where the associated second-order instability occurs in close vicinity to global phase separation. For very low electron densities the CDW instability is nesting-induced and the modulation follows the Fermi momentum kF. At higher density the instability criterion becomes independent of kF and the system may become unstable in a broad momentum range. Finally, upon filling the upper spin-orbit split band, finite momentum instabilities disappear in favor of phase separation alone. We discuss our results with regard to the inhomogeneous phases observed at the LaAlO3/SrTiO3 or LaTiO3/SrTiO3 interfaces.
Go, Dennis; Rommel, Dirk; Chen, Lisa; Shi, Feng; Sprakel, Joris; Kuehne, Alexander J C
2017-02-28
Soft amphoteric microgel systems exhibit a rich phase behavior. Crystalline phases of these material systems are of interest because they exhibit photonic stop-gaps, giving rise to iridescent color. Such microgel systems are promising for applications in soft, switchable, and programmable photonic filters and devices. We here report a composite microgel system consisting of a hard and fluorescently labeled core and a soft, amphoteric microgel shell. At pH above the isoelectric point (IEP), these colloids easily crystallize into three-dimensional colloidal assemblies. By adding a cyclic lactone to the system, the temporal pH profile can be controlled, and the microgels can be programmed to melt, while they lose charge. When the microgels gain the opposite charge, they recrystallize into assemblies of even higher order. We provide a model system to study the dynamic phase behavior of soft particles and their switchable and programmable photonic effects.
Ultrafast studies of coexisting electronic order in cuprate superconductors
NASA Astrophysics Data System (ADS)
Hinton, James; Thewalt, Eric; Alpichshev, Zhanybek; Sternbach, Aaron; McLeod, Alex; Ji, L.; Veit, Mike; Dorrow, Chelsey; Koralek, Jake; Xhao, Xudong; Barisic, Neven; Kemper, Alexander; Gedik, Nuh; Greven, Martin; Basov, Dimitri; Orenstein, Joe
The cuprate family of high temperature superconductors displays a variety of electronic phases which emerge when charge carriers are added to the antiferromagnetic parent compound. These electronic phases are characterized by subtle differences in the low energy electronic excitations. Ultrafast time-resolved reflectivity (TRR) provides an ideal tool for investigating the cuprate phase diagram, as small changes in the electronic structure can produce significant contrast in the non-equilibrium reflectivity. Here we present TRR measurements of cuprate superconductors, focusing on the model single-layer cuprate HgBa2CuO4+δ. We observe a cusp-like feature in the quasiparticle lifetime near the superconducting transition temperature Tc. This feature can be understood using a model of coherently-mixed charge-density wave and superconducting pairing. We propose extending this technique to the nanoscale using ultrafast scattering scanning near-field microscopy (u-SNOM). This will allow us to explore how these electronic phases coexist and compete in real-space.
Fine mist versus large droplets in phase separated manganites
NASA Astrophysics Data System (ADS)
Khomskii, D.; Khomskii, L.
2003-02-01
The properties of phase-separated systems, e.g., manganites close to a first-order phase transition between charge-ordered insulator and ferromagnetic metal, are usually described by percolation picture. We argue that the correlated occupation of metallic sites leads to the preferential formation of larger metallic clusters, and their size distribution depends on the thermal history. This can explain several puzzling effects in manganites, such as the often observed inverse, or “overshot” hysteresis, and the recently discovered thermal cycling effect. Thus in treating this and similar systems in percolation picture, not only the total concentration of metallic phase, but also the distribution of metallic clusters by shape and size may significantly influence the properties of the system and has to be taken into account.
Phase behavior of charged hydrophobic colloids on flat and spherical surfaces
NASA Astrophysics Data System (ADS)
Kelleher, Colm P.
For a broad class of two-dimensional (2D) materials, the transition from isotropic fluid to crystalline solid is described by the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson and Young (KTHNY). According to this theory, long-range order is achieved via elimination of the topological defects which proliferate in the fluid phase. However, many natural and man-made 2D systems posses spatial curvature and/or non-trivial topology, which require the presence of topological defects, even at T=0. In principle, the presence of these defects could profoundly affect the phase behavior of such a system. In this thesis, we develop and characterize an experimental system of charged colloidal particles that bind electrostatically to the interface between an oil and an aqueous phase. Depending on how we prepare the sample, this fluid interface may be flat, spherical, or have a more complicated geometry. Focusing on the cases where the interface is flat or spherical, we measure the interactions between the particles, and probe various aspects of their phase behavior. On flat interfaces, this phase behavior is well-described by KTHNY theory. In spherical geometries, however, we observe spatial structures and inhomogeneous dynamics that cannot be captured by the measures traditionally used to describe flat-space phase behavior. We show that, in the spherical system, ordering is achieved by a novel mechanism: sequestration of topological defects into freely-terminating grain boundaries ("scars"), and simultaneous spatial organization of the scars themselves on the vertices of an icosahedron. The emergence of icosahedral order coincides with the localization of mobility into isolated "lakes" of fluid or glassy particles, situated at the icosahedron vertices. These lakes are embedded in a rigid, connected "continent" of locally crystalline particles.
NASA Astrophysics Data System (ADS)
Singh, Janpreet; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.
2018-04-01
Using first principle calculations, we study the atomic arrangement and bonding mechanism in the crystalline phase of Ge2Sb2Te5 (GST). It is found that the stability of GST depends on the gradual ordering of Ge/Sb atoms. The configurations with different concentration of Ge/Sb in layers have been analyzed by the partial density of state, electron localization function and Bader charge distribution. The s and p-states of Ge atom alter with different stacking configurations but there is no change in Sb and Te atom states. Our findings show that the bonding between Ge-Te is not only responsible for the stability of GST alloy but can also predict which composition can show generic features of phase change material. As the number of Ge atoms near to vacancy layer decreases, Ge donates more charge. A growth model has been proposed for the formation of crystalline phase which justifies the structure models proposed in the literature.
NASA Astrophysics Data System (ADS)
Krichene, A.; Boujelben, W.; Mukherjee, S.; Shah, N. A.; Solanki, P. S.
2018-03-01
We have investigated the effect of charge ordering and phase separation on the electrical and magnetotransport properties of La0.4Eu0.1Ca0.5MnO3 polycrystalline sample. Temperature dependence of resistivity shows a metal-insulator transition at transition temperature Tρ. A hysteretic behavior is observed for zero field resistivity curves with Tρ = 128 K on cooling process and Tρ = 136 K on warming process. Zero field resistivity curves follow Zener polynomial law in the metallic phase with unusual n exponent value ∼9. Presence of resistivity minimum at low temperatures has been ascribed to the coulombic electron-electron scattering process. Resistivity modification due to the magnetic field cycling testifies the presence of the training effect. Magnetization and resistivity appear to be highly correlated. Magnetoresistive study reveals colossal values of negative magnetoresistance reaching about 75% at 132 K under only 2T applied field. Colossal values of magnetoresistance suggest the possibility of using this sample for magnetic field sensing and spintronic applications.
Freeze-out conditions from net-proton and net-charge fluctuations at RHIC
Alba, Paolo; Alberico, Wanda; Bellwied, Rene; ...
2014-09-26
We calculate ratios of higher-order susceptibilities quantifying fluctuations in the number of net-protons and in the net-electric charge using the Hadron Resonance Gas (HRG) model. We take into account the effect of resonance decays, the kinematic acceptance cuts in rapidity, pseudo-rapidity and transverse momentum used in the experimental analysis, as well as a randomization of the isospin of nucleons in the hadronic phase. By comparing these results to the latest experimental data from the STAR Collaboration, we determine the freeze-out conditions from net-electric charge and net-proton distributions and discuss their consistency.
NASA Astrophysics Data System (ADS)
Classen, Laura; Herbut, Igor F.; Janssen, Lukas; Scherer, Michael M.
2016-03-01
We study the competition of spin- and charge-density waves and their quantum multicritical behavior for the semimetal-insulator transitions of low-dimensional Dirac fermions. Employing the effective Gross-Neveu-Yukawa theory with two order parameters as a model for graphene and a growing number of other two-dimensional Dirac materials allows us to describe the physics near the multicritical point at which the semimetallic and the spin- and charge-density-wave phases meet. With the help of a functional renormalization group approach, we are able to reveal a complex structure of fixed points, the stability properties of which decisively depend on the number of Dirac fermions Nf. We give estimates for the critical exponents and observe crucial quantitative corrections as compared to the previous first-order ɛ expansion. For small Nf, the universal behavior near the multicritical point is determined by the chiral Heisenberg universality class supplemented by a decoupled, purely bosonic, Ising sector. At large Nf, a novel fixed point with nontrivial couplings between all sectors becomes stable. At intermediate Nf, including the graphene case (Nf=2 ), no stable and physically admissible fixed point exists. Graphene's phase diagram in the vicinity of the intersection between the semimetal, antiferromagnetic, and staggered density phases should consequently be governed by a triple point exhibiting first-order transitions.
Influence of disorder on the photoinduced excitations in phenyl substituted polythiophenes
NASA Astrophysics Data System (ADS)
Brabec, Christoph J.; Winder, Christoph; Scharber, Markus C.; Sariciftci, N. Serdar; Hummelen, Jan C.; Svensson, Mattias; Andersson, Mats R.
2001-10-01
Regioregular poly(3-(4'-(1″,4″,7″-trioxaoctyl)phenyl)thiophenes) (PEOPTs) exhibit interesting properties for the use in polymer electronics. Exposing thin films of the amorphous, disordered phase (orange phase) of the "as prepared" polymer to chloroform vapor or annealing them by heat treatment results in a redshift of the absorption maximum due to the formation of nanocrystals in an ordered phase (blue phase). As such, PEOPT thus is a very interesting conjugated polymeric material, which exhibits two different phases with well-defined order/disorder characters on one-and-the-same material. This property opens up the unique possibility to investigate the role of order/disorder on the photoexcited pattern without being obscured by the differences in chemical structure by using different materials with different crystallinity. The fact, that blue phase PEOPT exhibits absorption edges at relatively low energies around 1.8 eV, thereby demonstrating an enhanced spectral absorption range as compared to the orange phase, makes them attractive for use in photodiodes and solar cells as well. The photoinduced charge generation efficiency in both phases of PEOPT is significantly enhanced by the addition of a strong electron acceptor such as fullerene C60, as observed by quenching of the luminescence and by photoinduced absorption measurements in the infrared and uv-visible regime. The average number and the lifetime of photoinduced carriers in composites of PEOPT with a methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM) are found to depend on the crystallinity of PEOPT in thin films, which gives rise to charged photoexcitations delocalized between polymer chains. Stronger bimolecular recombination in composites of the blue phase PEOPT with PCBM is observed as compared to the orange phase PEOPT/PCBM films. The origin of this enhanced recombination is found to be related to the hole mobility of the polymer.
Model of melting (crystallization) process of the condensed disperse phase in the smoky plasmas
NASA Astrophysics Data System (ADS)
Dragan, G. S.; Kolesnikov, K. V.; Kutarov, V. V.
2018-01-01
The paper presents an analysis of the causes of a formation of spatial ordered grain structures in a smoky plasma. We are modeling the process of melting (crystallization) of a condensed phase in this environment taking into account the screened electrostatic interaction and the diffusion-drift force. We discuss an influence of the charge on the melting temperatures.
Heterogeneity in magnetic complex oxides
NASA Astrophysics Data System (ADS)
Arenholz, Elke
Heterogeneity of quantum materials on the nanoscale can result from the spontaneous formation of regions with distinct atomic, electronic and/or magnetic order, and indicates coexistence of competing quantum phases. In complex oxides, the subtle interplay of lattice, charge, orbital, and spin degrees of freedom gives rise to especially rich phase diagrams. For example, coexisting conducting and insulating phases can occur near metal-insulator transitions, colossal magnetoresistance can emerge where ferromagnetic and antiferromagnetic domains compete, and charge-ordered and superconducting regions are present simultaneously in materials exhibiting high-temperature superconductivity. Additionally, externally applied fields (electric, magnetic, or strain) or other external excitations (light or heat) can tip the energy balance towards one phase, or support heterogeneity and phase coexistence and provide the means to perturb and tailor quantum heterogeneity at the nanoscale. Engineering nanomaterials, with structural, electronic and magnetic characteristics beyond what is found in bulk materials, is possible today through the technique of thin film epitaxy, effectively a method of `spray painting' atoms on single crystalline substrates to create precisely customized layered structures with atomic arrangements defined by the underlying substrate. Charge transfer and spin polarization across interfaces as well as imprinting nanoscale heterogeneity between adjacent layers lead to intriguing and important new phenomena testing our understanding of basic physics and creating new functionalities. Moreover, the abrupt change of orientation of an order parameter between nanoscale domains can lead to unique phases that are localized at domain walls, including conducting domain walls in insulating ferroelectrics, and ferromagnetic domain walls in antiferromagnets. Here we present our recent results on tailoring the electronic anisotropy of multiferroic heterostructures by imprinting the BiFeO3 domain pattern in an adjacent La0.7Sr0.3MnO3 layer, understanding the metal-insulator transition in strained VO2 thin films and identifying a three-dimensional quasi-long-range electronic supermodulation in YBa2Cu3O7-x/La0.7Ca0.3MnO3 heterostructures. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Finite-size effects in Luther-Emery phases of Holstein and Hubbard models
NASA Astrophysics Data System (ADS)
Greitemann, J.; Hesselmann, S.; Wessel, S.; Assaad, F. F.; Hohenadler, M.
2015-12-01
The one-dimensional Holstein model and its generalizations have been studied extensively to understand the effects of electron-phonon interaction. The half-filled case is of particular interest, as it describes a transition from a metallic phase with a spin gap due to attractive backscattering to a Peierls insulator with charge-density-wave order. Our quantum Monte Carlo results support the existence of a metallic phase with dominant power-law charge correlations, as described by the Luther-Emery fixed point. We demonstrate that for Holstein and also for purely fermionic models the spin gap significantly complicates finite-size numerical studies, and explains inconsistent previous results for Luttinger parameters and phase boundaries. On the other hand, no such complications arise in spinless models. The correct low-energy theory of the spinful Holstein model is argued to be that of singlet bipolarons with a repulsive, mutual interaction. This picture naturally explains the existence of a metallic phase, but also implies that gapless Luttinger liquid theory is not applicable.
Structural comparison of nickel electrodes and precursor phases
NASA Technical Reports Server (NTRS)
Cornilsen, Bahne C.; Shan, Xiaoyin; Loyselle, Patricia
1989-01-01
Researchers summarize previous Raman spectroscopic results and discuss important structural differences in the various phases of active mass and active mass precursors. Raman spectra provide unique signatures for these phases, and allow one to distinguish each phase, even when the compound is amorphous to x rays (i.e., does not scatter x rays because of a lack of order and/or small particle size). The structural changes incurred during formation, charge and discharge, cobalt addition, and aging are discussed. The oxidation states and dopant contents are explained in terms of the nonstoichiometric structures.
Simulating the thermodynamics of charging in weak polyelectrolytes: the Debye-Hückel limit
NASA Astrophysics Data System (ADS)
Rathee, Vikramjit S.; Sikora, Benjamin J.; Sidky, Hythem; Whitmer, Jonathan K.
2018-01-01
The coil-globule transition in weak (annealed) polyelectrolytes involves a subtle balance of pH, charge strength, and solvation forces. In this work, we utilize a coarse-grained hybrid grand-canonical Monte Carlo and molecular dynamics approach to explore the swelling behavior of weak linear and star polyelectrolytes under different ionic screening conditions and pH. Importantly, we are able to quantify topology-dependent effects in charging which arise at the core of star polymers. Our results are suggestive of suppression of charging in star weak polyelectrolytes in comparison to linear weak polyelectrolytes. Furthermore, we characterize the coil-globule transition in linear and star weak polyelectrolyte through expanded ensemble density-of-states simulations which suggest a change from a first order to second order phase transition moving from linear to star polyelectrolytes. Lastly, we characterize the inhomogeneous charging across the weak star polyelectrolyte through observed shifts in {{Δ }}{{{pK}}}{{o}}, and compare with experimental work. We discuss these results in relation to surfaces functionalized by weak polyelectrolyte brushes and weak polyelectrolyte-based drug delivery applications.
Q ‑ Φ criticality and microstructure of charged AdS black holes in f(R) gravity
NASA Astrophysics Data System (ADS)
Deng, Gao-Ming; Huang, Yong-Chang
2017-12-01
The phase transition and critical behaviors of charged AdS black holes in f(R) gravity with a conformally invariant Maxwell (CIM) source and constant curvature are further investigated. As a highlight, this research is carried out by employing new state parameters (T,Q, Φ) and contributes to deeper understanding of the thermodynamics and phase structure of black holes. Our analyses manifest that the charged f(R)-CIM AdS black hole undergoes a first-order small-large black hole phase transition, and the critical behaviors qualitatively behave like a Van der Waals liquid-vapor system. However, differing from the case in Einstein’s gravity, phase structures of the black holes in f(R) theory exhibit an interesting dependence on gravity modification parameters. Moreover, we adopt the thermodynamic geometry to probe the black hole microscopic properties. The results show that, on the one hand, both the Ruppeiner curvature and heat capacity diverge exactly at the critical point, on the other hand, the f(R)-CIM AdS black hole possesses the property as ideal Fermi gases. Of special interest, we discover a microscopic similarity between the black holes and a Van der Waals liquid-vapor system.
High-order space charge effects using automatic differentiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reusch, Michael F.; Bruhwiler, David L.; Computer Accelerator Physics Conference Williamsburg, Virginia 1996
1997-02-01
The Northrop Grumman Topkark code has been upgraded to Fortran 90, making use of operator overloading, so the same code can be used to either track an array of particles or construct a Taylor map representation of the accelerator lattice. We review beam optics and beam dynamics simulations conducted with TOPKARK in the past and we present a new method for modeling space charge forces to high-order with automatic differentiation. This method generates an accurate, high-order, 6-D Taylor map of the phase space variable trajectories for a bunched, high-current beam. The spatial distribution is modeled as the product of amore » Taylor Series times a Gaussian. The variables in the argument of the Gaussian are normalized to the respective second moments of the distribution. This form allows for accurate representation of a wide range of realistic distributions, including any asymmetries, and allows for rapid calculation of the space charge fields with free space boundary conditions. An example problem is presented to illustrate our approach.« less
Higgs-mode radiance and charge-density-wave order in 2 H -NbSe2
NASA Astrophysics Data System (ADS)
Grasset, Romain; Cea, Tommaso; Gallais, Yann; Cazayous, Maximilien; Sacuto, Alain; Cario, Laurent; Benfatto, Lara; Méasson, Marie-Aude
2018-03-01
Despite being usually considered two competing phenomena, charge-density wave and superconductivity coexist in few systems, the most emblematic one being the transition-metal dichalcogenide 2 H -NbSe2 . This unusual condition is responsible for specific Raman signatures across the two phase transitions in this compound. While the appearance of a soft phonon mode is a well-established fingerprint of the charge-density-wave order, the nature of the sharp subgap mode emerging below the superconducting temperature is still under debate. In this work we use external pressure as a knob to unveil the delicate interplay between the two orders, and consequently the nature of the superconducting mode. Thanks to an advanced extreme-conditions Raman technique, we are able to follow the pressure evolution and the simultaneous collapse of the two intertwined charge-density-wave and superconducting modes. The comparison with microscopic calculations in a model system supports the Higgs-type nature of the superconducting mode and suggests that charge-density wave and superconductivity in 2 H -NbSe2 involve mutual electronic degrees of freedom. These findings fill the knowledge gap on the electronic mechanisms at play in transition-metal dichalcogenides, a crucial step to fully exploit their properties in few-layer systems optimized for device applications.
Sonne, Jacob; Jensen, Morten Ø.; Hansen, Flemming Y.; Hemmingsen, Lars; Peters, Günther H.
2007-01-01
Molecular dynamics simulations of dipalmitoylphosphatidylcholine (DPPC) lipid bilayers using the CHARMM27 force field in the tensionless isothermal-isobaric (NPT) ensemble give highly ordered, gel-like bilayers with an area per lipid of ∼48 Å2. To obtain fluid (Lα) phase properties of DPPC bilayers represented by the CHARMM energy function in this ensemble, we reparameterized the atomic partial charges in the lipid headgroup and upper parts of the acyl chains. The new charges were determined from the electron structure using both the Mulliken method and the restricted electrostatic potential fitting method. We tested the derived charges in molecular dynamics simulations of a fully hydrated DPPC bilayer. Only the simulation with the new restricted electrostatic potential charges shows significant improvements compared with simulations using the original CHARMM27 force field resulting in an area per lipid of 60.4 ± 0.1 Å2. Compared to the 48 Å2, the new value of 60.4 Å2 is in fair agreement with the experimental value of 64 Å2. In addition, the simulated order parameter profile and electron density profile are in satisfactory agreement with experimental data. Thus, the biologically more interesting fluid phase of DPPC bilayers can now be simulated in all-atom simulations in the NPT ensemble by employing our modified CHARMM27 force field. PMID:17400696
Singh, Surendra; Freeland, J. W.; Fitzsimmons, Michael R.; ...
2016-07-27
Mixed-valence manganese oxides present striking properties like the colossal magnetoresistance, metal-insulator transition (MIT) that may result from coexistence of ferromagnetic, metallic and insulating phases. Percolation of such phase coexistence in the vicinity of MIT leads to first-order transition in these manganites. However the length scales over which the electronic and magnetic phases are separated across MIT which appears compelling for bulk systems has been elusive in (La 1-yPr y) 1-xCaxMnO 3 films. Here we show the in-plane length scale over which charge and magnetism are correlated in (La 0.4Pr 0.6) 1-xCaxMnO3 films with x = 0.33 and 0.375, across themore » MIT temperature. We combine electrical transport (resistance) measurements, x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD), and specular/off-specular x-ray resonant magnetic scattering (XRMS) measurements as a function of temperature to elucidate relationships between electronic, magnetic and morphological structure of the thin films. Using off-specular XRMS we obtained the charge-charge and charge-magnetic correlation length of these LPCMO films across the MIT. We observed different charge-magnetic correlation length for two films which increases below the MIT. The different correlation length shown by two films may be responsible for different macroscopic (transport and magnetic) properties.« less
Fluorescence probe of polypeptide conformational dynamics in gas phase and in solution
NASA Astrophysics Data System (ADS)
Iavarone, Anthony T.; Meinen, Jan; Schulze, Susanne; Parks, Joel H.
2006-07-01
Fluorescence measurements of polypeptides derivatized with the fluorescent dye BODIPY TMR have been used to probe the polypeptide conformational dynamics as a function of temperature and charge state. Measurements of (BODIPY TMR)-[Pro]n-Arg-Trp and (BODIPY TMR)-[Gly-Ser]m-Arg-Trp have been performed for charge states 1+ and 2+ of n = 4 and 10 and m = 2 and 5. The 2+ charge states of both of these polypeptides exhibit similar temperature dependences for equal chain lengths (n = 4, m = 2 and n = 10, m = 5) and suggest conformations dominated by Coulomb repulsion. In the absence of such Coulomb repulsion, the 1+ charge state conformations appear to be characterized by the flexibility of the polypeptide chain for which [Gly-Ser]m > [Pro]n. Comparisons of these gas phase polypeptide measurements with corresponding measurements in solution provide a direct measure of the effects of solvent on the conformational dynamics. The change in fluorescence as a function of temperature in the gas phase is two orders of magnitude greater than that in solution, a dramatic result we attribute to the restrictions on intramolecular dynamics imposed by diffusion-limited kinetics and the lack of shielding by solvent. Measurements were also made of unsolvated Pron peptides without the tryptophan (Trp) residue to isolate the interaction of the fluorescent dye with charges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, G.; McCall, S.; Crow, J.
1997-03-01
Single crystal Ca{sub 3}Ru{sub 2}O{sub 7} shows a metallic antiferromagnetic phase intermediate between a first-order metal to nonmetal transition at T{sub M}=48K and the antiferromagnetic ordering (N{acute e}el) temperature, T{sub N}=56K. The metallic antiferromagnetic phase is predicted within various Mott-Hubbard models. Magnetization and electrical resistivity reveal strongly anisotropic metamagnetism in the nonmetallic antiferromagnetic phase. The charge and spin excitations are strongly coupled: The H-T phase diagrams determined by magnetization and magnetoresistivity are indistinguishable and reveal a multicritical point. The heat capacity of Ca{sub 3}Ru{sub 2}O{sub 7} suggests it is a highly correlated electron system. {copyright} {ital 1997} {ital The Americanmore » Physical Society}« less
NASA Astrophysics Data System (ADS)
Wu, Wei
2015-05-01
The electronic structures of cubic and tetragonal MnV2O4 have been studied using hybrid-exchange density-functional theory. The computed electronic structure of the tetragonal phase shows an antiferro-orbital ordering on V sites and a ferrimagnetic ground state (the spins on V and Mn are antialigned). These results are in good agreement with the previous theoretical result obtained from the local-density approximation + U methods [S. Sarkar et al., Phys. Rev. Lett. 102, 216405 (2009), 10.1103/PhysRevLett.102.216405]. Moreover, the electronic structure, especially the projected density of states of the cubic phase, has been predicted with good agreement with the recent soft x-ray spectroscopy experiment. Similar to the tetragonal phase, the spins on V and Mn in the cubic structure favor a ferrimagnetic configuration. Most interesting is that the computed charge densities of the spin-carrying orbitals on V in the cubic phase show an exotic orbital ordering, i.e., a ferro-orbital ordering along [110] but an antiferro-orbital ordering along [1 ¯10 ] .
Generation of singular optical beams from fundamental Gaussian beam using Sagnac interferometer
NASA Astrophysics Data System (ADS)
Naik, Dinesh N.; Viswanathan, Nirmal K.
2016-09-01
We propose a simple free-space optics recipe for the controlled generation of optical vortex beams with a vortex dipole or a single charge vortex, using an inherently stable Sagnac interferometer. We investigate the role played by the amplitude and phase differences in generating higher-order Gaussian beams from the fundamental Gaussian mode. Our simulation results reveal how important the control of both the amplitude and the phase difference between superposing beams is to achieving optical vortex beams. The creation of a vortex dipole from null interference is unveiled through the introduction of a lateral shear and a radial phase difference between two out-of-phase Gaussian beams. A stable and high quality optical vortex beam, equivalent to the first-order Laguerre-Gaussian beam, is synthesized by coupling lateral shear with linear phase difference, introduced orthogonal to the shear between two out-of-phase Gaussian beams.
Thermodynamics and glassy phase transition of regular black holes
NASA Astrophysics Data System (ADS)
Javed, Wajiha; Yousaf, Z.; Akhtar, Zunaira
2018-05-01
This paper is aimed to study thermodynamical properties of phase transition for regular charged black holes (BHs). In this context, we have considered two different forms of BH metrics supplemented with exponential and logistic distribution functions and investigated the recent expansion of phase transition through grand canonical ensemble. After exploring the corresponding Ehrenfest’s equation, we found the second-order background of phase transition at critical points. In order to check the critical behavior of regular BHs, we have evaluated some corresponding explicit relations for the critical temperature, pressure and volume and draw certain graphs with constant values of Smarr’s mass. We found that for the BH metric with exponential configuration function, the phase transition curves are divergent near the critical points, while glassy phase transition has been observed for the Ayón-Beato-García-Bronnikov (ABGB) BH in n = 5 dimensions.
Magnetic, electronic, dielectric and optical properties of Pr(Ca:Sr)MnO 3
NASA Astrophysics Data System (ADS)
Sichelschmidt, J.; Paraskevopoulos, M.; Brando, M.; Wehn, R.; Ivannikov, D.; Mayr, F.; Pucher, K.; Hemberger, J.; Pimenov, A.; Krug von Nidda, H.-A.; Lunkenheimer, P.; Ivanov, V. Yu.; Mukhin, A. A.; Balbashov, A. M.; Loidl, A.
2001-03-01
The charge-ordered perovskite Pr0.65Ca0.28Sr0.07MnO3 was investigated by means of magnetic susceptibility, specific heat, dielectric and optical spectroscopy and electron-spin resonance techniques. Under moderate magnetic fields, the charge order melts yielding colossal magnetoresistance effects with changes of the resistivity over eleven orders of magnitude. The optical conductivity is studied from audio frequencies far into the visible spectral regime. Below the phonon modes hopping conductivity is detected. Beyond the phonon modes the optical conductivity is explained by polaronic excitations out of a bound state. ESR techniques yield detailed informations on the (H,T ) phase diagram and reveal a broadening of the linewidth which can be modeled in terms of activated polaron hopping.
Multiple reentrant phase transitions and triple points in Lovelock thermodynamics
NASA Astrophysics Data System (ADS)
Frassino, Antonia M.; Kubizňák, David; Mann, Robert B.; Simovic, Fil
2014-09-01
We investigate the effects of higher curvature corrections from Lovelock gravity on the phase structure of asymptotically AdS black holes, treating the cosmological constant as a thermodynamic pressure. We examine how various thermodynamic phenomena, such as Van der Waals behaviour, reentrant phase transitions (RPT), and tricritical points are manifest for U(1) charged black holes in Gauss-Bonnet and 3rd-order Lovelock gravities. We furthermore observe a new phenomenon of `multiple RPT' behaviour, in which for fixed pressure the small/large/small/large black hole phase transition occurs as the temperature of the system increases. We also find that when the higher-order Lovelock couplings are related in a particular way, a peculiar isolated critical point emerges for hyperbolic black holes and is characterized by non-standard critical exponents.
NASA Astrophysics Data System (ADS)
Perakis, Ilias; Kapetanakis, Myron; Lingos, Panagiotis; Barmparis, George; Patz, A.; Li, T.; Wang, Jigang
We study the role of spin quantum fluctuations driven by photoelectrons during 100fs photo-excitation of colossal magneto-resistive manganites in anti-ferromagnetic (AFM) charge-ordered insulating states with Jahn-Teller distortions. Our mean-field calculation of composite fermion excitations demonstrates that spin fluctuations reduce the energy gap by quasi-instantaneously deforming the AFM background, thus opening a conductive electronic pathway via FM correlation. We obtain two quasi-particle bands with distinct spin-charge dynamics and dependence on lattice distortions. To connect with fs-resolved spectroscopy experiments, we note the emergence of fs magnetization in the low-temperature magneto-optical signal, with threshold dependence on laser intensity characteristic of a photo-induced phase transition. Simultaneously, the differential reflectivity shows bi-exponential relaxation, with fs component, small at low intensity, exceeding ps component above threshold for fs AFM-to-FM switching. This suggests the emergence of a non-equilibrium metallic FM phase prior to establishment of a new lattice structure, linked with quantum magnetism via spin/charge/lattice couplings for weak magnetic fields.
Antiferroelectric Materials, Applications and Recent Progress on Multiferroic Heterostructures
NASA Astrophysics Data System (ADS)
Zhou, Ziyao; Yang, Qu; Liu, Ming; Zhang, Zhiguo; Zhang, Xinyang; Sun, Dazhi; Nan, Tianxiang; Sun, Nianxiang; Chen, Xing
2015-04-01
Antiferroelectric (AFE) materials with adjacent dipoles oriented in antiparallel directions have a double polarization hysteresis loops. An electric field (E-field)-induced AFE-ferroelectric (FE) phase transition takes place in such materials, leading to a large lattice strain and energy change. The high dielectric constant and the distinct phase transition in AFE materials provide great opportunities for the realization of energy storage devices like super-capacitors and energy conversion devices such as AFE MEMS applications. Lots of work has been done in this field since 60-70 s. Recently, the strain tuning of the spin, charge and orbital orderings and their interactions in complex oxides and multiferroic heterostructures have received great attention. In these systems, a single control parameter of lattice strain is used to control lattice-spin, lattice-phonon, and lattice-charge interactions and tailor properties or create a transition between distinct magnetic/electronic phases. Due to the large strain/stress arising from the phase transition, AFE materials are great candidates for integrating with ferromagnetic (FM) materials to realize in situ manipulation of magnetism and lattice-ordered parameters by voltage. In this paper, we introduce the AFE material and it's applications shortly and then review the recent progress in AFEs based on multiferroic heterostructures. These new multiferroic materials could pave a new way towards next generation light, compact, fast and energy efficient voltage tunable RF/microwave, spintronic and memory devices promising approaches to in situ manipulation of lattice-coupled order parameters is to grow epitaxial oxide films on FE/ferroelastic substrates.
Switching plastic crystals of colloidal rods with electric fields
Liu, Bing; Besseling, Thijs H.; Hermes, Michiel; Demirörs, Ahmet F.; Imhof, Arnout; van Blaaderen, Alfons
2014-01-01
When a crystal melts into a liquid both long-ranged positional and orientational order are lost, and long-time translational and rotational self-diffusion appear. Sometimes, these properties do not change at once, but in stages, allowing states of matter such as liquid crystals or plastic crystals with unique combinations of properties. Plastic crystals/glasses are characterized by long-ranged positional order/frozen-in-disorder but short-ranged orientational order, which is dynamic. Here we show by quantitative three-dimensional studies that charged rod-like colloidal particles form three-dimensional plastic crystals and glasses if their repulsions extend significantly beyond their length. These plastic phases can be reversibly switched to full crystals by an electric field. These new phases provide insight into the role of rotations in phase behaviour and could be useful for photonic applications. PMID:24446033
Switching plastic crystals of colloidal rods with electric fields
NASA Astrophysics Data System (ADS)
Liu, Bing; Besseling, Thijs H.; Hermes, Michiel; Demirörs, Ahmet F.; Imhof, Arnout; van Blaaderen, Alfons
2014-01-01
When a crystal melts into a liquid both long-ranged positional and orientational order are lost, and long-time translational and rotational self-diffusion appear. Sometimes, these properties do not change at once, but in stages, allowing states of matter such as liquid crystals or plastic crystals with unique combinations of properties. Plastic crystals/glasses are characterized by long-ranged positional order/frozen-in-disorder but short-ranged orientational order, which is dynamic. Here we show by quantitative three-dimensional studies that charged rod-like colloidal particles form three-dimensional plastic crystals and glasses if their repulsions extend significantly beyond their length. These plastic phases can be reversibly switched to full crystals by an electric field. These new phases provide insight into the role of rotations in phase behaviour and could be useful for photonic applications.
Ordered Fe(II)Ti(IV)O3 Mixed Monolayer Oxide on Rutile TiO2(011).
Halpegamage, Sandamali; Ding, Pan; Gong, Xue-Qing; Batzill, Matthias
2015-08-25
Oxide monolayers supported or intermixed with an oxide support are potential nanocatalysts whose properties are determined by the interplay with the support. For fundamental studies of monolayer oxides on metal oxide supports, well-defined systems are needed, but so far, the synthesis of monolayer oxides with long-range order on single-crystal oxide surfaces is rare. Here, we show by a combination of scanning tunneling microscopy, photoemission spectroscopy, and density functional theory (DFT)-based computational analysis that the rutile TiO2(011) surface supports the formation of an ordered mixed FeTiO3 monolayer. Deposition of iron in a slightly oxidizing atmosphere (10(-8) Torr O2) and annealing to 300 °C results in a well-ordered surface structure with Fe in a 2+ charge state and Ti in a 4+ charge states. Low-energy ion scattering suggests that the cation surface composition is close to half Fe and half Ti. This surface is stable in ultrahigh vacuum to annealing temperatures of 300 °C before the iron is reduced. DFT simulations confirm that a surface structure with coverage of 50% FeO units is stable and forms an ordered structure. Although distinct from known bulk phases of the iron-titanium oxide systems, the FeTiO3 monolayer exhibits some resemblance to the ilmenite structure, which may suggest that a variety of different mixed oxide phases (of systems that exist in a bulk ilmenite phase) may be synthesized in this way on the rutile TiO2(011) substrate.
NASA Astrophysics Data System (ADS)
Guyot, H.; Dumas, J.; Marcus, J.; Schlenker, C.; Vignolles, D.
2005-12-01
We report high magnetic field magnetoresistance measurements performed in pulsed fields up to 55 T on the quasi-two dimensional charge density wave conductor KMo{6}O{17}. Magnetoresistance curves show several anomalies below 28 T. First order transitions to smaller gap states take place at low temperature above 30 T. A phase diagram T(B) has been obtained. The angular dependence of the anomalies is reported.
Analytic Solution of the Electromagnetic Eigenvalues Problem in a Cylindrical Resonator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Checchin, Mattia; Martinello, Martina
Resonant accelerating cavities are key components in modern particles accelerating facilities. These take advantage of electromagnetic fields resonating at microwave frequencies to accelerate charged particles. Particles gain finite energy at each passage through a cavity if in phase with the resonating field, reaching energies even of the order of $TeV$ when a cascade of accelerating resonators are present. In order to understand how a resonant accelerating cavity transfers energy to charged particles, it is important to determine how the electromagnetic modes are exited into such resonators. In this paper we present a complete analytical calculation of the resonating fields formore » a simple cylindrical-shaped cavity.« less
Kotlyar, Victor V; Almazov, Anton A; Khonina, Svetlana N; Soifer, Victor A; Elfstrom, Henna; Turunen, Jari
2005-05-01
We deduce and study an analytical expression for Fresnel diffraction of a plane wave by a spiral phase plate (SPP) that imparts an arbitrary-order phase singularity on the light field. Estimates for the optical vortex radius that depends on the singularity's integer order n (also termed topological charge, or order of the dislocation) have been derived. The near-zero vortex intensity is shown to be proportional to rho2n, where p is the radial coordinate. Also, an analytical expression for Fresnel diffraction of the Gaussian beam by a SPP with nth-order singularity is analyzed. The far-field intensity distribution is derived. The radius of maximal intensity is shown to depend on the singularity number. The behavior of the Gaussian beam intensity after a SPP with second-order singularity (n = 2) is studied in more detail. The parameters of the light beams generated numerically with the Fresnel transform and via analytical formulas are in good agreement. In addition, the light fields with first- and second-order singularities were generated by a 32-level SPP fabricated on the resist by use of the electron-beam lithography technique.
Critical point in the phase diagram of primordial quark-gluon matter from black hole physics
NASA Astrophysics Data System (ADS)
Critelli, Renato; Noronha, Jorge; Noronha-Hostler, Jacquelyn; Portillo, Israel; Ratti, Claudia; Rougemont, Romulo
2017-11-01
Strongly interacting matter undergoes a crossover phase transition at high temperatures T ˜1012 K and zero net-baryon density. A fundamental question in the theory of strong interactions, QCD, is whether a hot and dense system of quarks and gluons displays critical phenomena when doped with more quarks than antiquarks, where net-baryon number fluctuations diverge. Recent lattice QCD work indicates that such a critical point can only occur in the baryon dense regime of the theory, which defies a description from first principles calculations. Here we use the holographic gauge/gravity correspondence to map the fluctuations of baryon charge in the dense quark-gluon liquid onto a numerically tractable gravitational problem involving the charge fluctuations of holographic black holes. This approach quantitatively reproduces ab initio results for the lowest order moments of the baryon fluctuations and makes predictions for the higher-order baryon susceptibilities and also for the location of the critical point, which is found to be within the reach of heavy-ion collision experiments.
Spin-valley locking in the normal state of a transition-metal dichalcogenide superconductor.
Bawden, L; Cooil, S P; Mazzola, F; Riley, J M; Collins-McIntyre, L J; Sunko, V; Hunvik, K W B; Leandersson, M; Polley, C M; Balasubramanian, T; Kim, T K; Hoesch, M; Wells, J W; Balakrishnan, G; Bahramy, M S; King, P D C
2016-05-23
Metallic transition-metal dichalcogenides (TMDCs) are benchmark systems for studying and controlling intertwined electronic orders in solids, with superconductivity developing from a charge-density wave state. The interplay between such phases is thought to play a critical role in the unconventional superconductivity of cuprates, Fe-based and heavy-fermion systems, yet even for the more moderately-correlated TMDCs, their nature and origins have proved controversial. Here, we study a prototypical example, 2H-NbSe2, by spin- and angle-resolved photoemission and first-principles theory. We find that the normal state, from which its hallmark collective phases emerge, is characterized by quasiparticles whose spin is locked to their valley pseudospin. This results from a combination of strong spin-orbit interactions and local inversion symmetry breaking, while interlayer coupling further drives a rich three-dimensional momentum dependence of the underlying Fermi-surface spin texture. These findings necessitate a re-investigation of the nature of charge order and superconducting pairing in NbSe2 and related TMDCs.
NASA Astrophysics Data System (ADS)
Gross, D. H. E.
1997-01-01
This review is addressed to colleagues working in different fields of physics who are interested in the concepts of microcanonical thermodynamics, its relation and contrast to ordinary, canonical or grandcanonical thermodynamics, and to get a first taste of the wide area of new applications of thermodynamical concepts like hot nuclei, hot atomic clusters and gravitating systems. Microcanonical thermodynamics describes how the volume of the N-body phase space depends on the globally conserved quantities like energy, angular momentum, mass, charge, etc. Due to these constraints the microcanonical ensemble can behave quite differently from the conventional, canonical or grandcanonical ensemble in many important physical systems. Microcanonical systems become inhomogeneous at first-order phase transitions, or with rising energy, or with external or internal long-range forces like Coulomb, centrifugal or gravitational forces. Thus, fragmentation of the system into a spatially inhomogeneous distribution of various regions of different densities and/or of different phases is a genuine characteristic of the microcanonical ensemble. In these cases which are realized by the majority of realistic systems in nature, the microcanonical approach is the natural statistical description. We investigate this most fundamental form of thermodynamics in four different nontrivial physical cases: (I) Microcanonical phase transitions of first and second order are studied within the Potts model. The total energy per particle is a nonfluctuating order parameter which controls the phase which the system is in. In contrast to the canonical form the microcanonical ensemble allows to tune the system continuously from one phase to the other through the region of coexisting phases by changing the energy smoothly. The configurations of coexisting phases carry important informations about the nature of the phase transition. This is more remarkable as the canonical ensemble is blind against these configurations. It is shown that the three basic quantities which specify a phase transition of first order - Transition temperature, latent heat, and interphase surface entropy - can be well determined for finite systems from the caloric equation of state T( E) in the coexistence region. Their values are already for a lattice of only ~ 30 ∗ 30 spins close to the ones of the corresponding infinite system. The significance of the backbending of the caloric equation of state T( E) is clarified. It is the signal for a phase transition of first order in a finite isolated system. (II) Fragmentation is shown to be a specific and generic phase transition of finite systems. The caloric equation of state T( E) for hot nuclei is calculated. The phase transition towards fragmentation can unambiguously be identified by the anomalies in T( E). As microcanonical thermodynamics is a full N-body theory it determines all many-body correlations as well. Consequently, various statistical multi-fragment correlations are investigated which give insight into the details of the equilibration mechanism. (III) Fragmentation of neutral and multiply charged atomic clusters is the next example of a realistic application of microcanonical thermodynamics. Our simulation method, microcanonical Metropolis Monte Carlo, combines the explicit microscopic treatment of the fragmentational degrees of freedom with the implicit treatment of the internal degrees of freedom of the fragments described by the experimental bulk specific heat. This micro-macro approach allows us to study the fragmentation of also larger fragments. Characteristic details of the fission of multiply charged metal clusters find their explanation by the different bulk properties. (IV) Finally, the fragmentation of strongly rotating nuclei is discussed as an example for a microcanonical ensemble under the action of a two-dimensional repulsive force.
Li, Haibin; Liu, Chusheng; Wang, Qiqin; Zhou, Haibo; Jiang, Zhengjin
2016-10-21
In order to investigate the effect of charged groups present in hydrophilic monolithic stationary phases on their chromatographic properties, three charged hydrophilic monomers, i.e. N,N-dimethyl-N-acryloyloxyethyl-N-(3-sulfopropyl)ammonium betaine (SPDA), [2-(acryloyloxy)ethyl]trimethylammonium chloride (AETA), and 3-sulfopropyl acrylate potassium salt (SPA) were co-polymerized with the crosslinker N,N'-methylenebisacrylamide (MBA), respectively. The physicochemical properties of the three resulting charged hydrophilic monolithic columns were evaluated using scanning electron microscopy, ζ-potential analysis and micro-HPLC. High column efficiency was obtained on the three monolithic columns at a linear velocity of 1mm/s using thiourea as test compound. Comparative characterization of the three charged HILIC phases was then carried out using a set of model compounds, including nucleobases, nucleosides, benzoic acid derivatives, phenols, β-blockers and small peptides. Depending on the combination of stationary phase/mobile phase/solute, both hydrophilic interaction and other potential secondary interactions, including electrostatic interaction, hydrogen-bonding interaction, molecular shape selectivity, could contribute to the over-all retention of the analytes. Because of the strong electrostatic interaction provided by the quaternary ammonium groups in the poly (AETA-co-MBA) monolith, this cationic HILIC monolith exhibited the strongest retention for benzoic acid derivatives and small peptides with distorted peak shapes and the weakest retention for basic β-blockers. The sulfonyl groups on the poly (SPA-co-MBA) hydrophilic monolith could provide strong electrostatic attraction and hydrogen bonding for positively charged analytes and hydrogen-donor/acceptor containing analytes, respectively. Therefore, basic drugs, nucleobases and nucleotides exhibited the strongest retention on this anionic monolith. Because of the weak but distinct cation exchange properties of the zwitterionic poly (SPDA-co-MBA) hydrophilic monolith, it exhibited the best separation for most test analytes (including phenols, β-blockers and small peptides) in terms of selectivity, peak shape and analysis time. The poly (AETA-co-MBA) hydrophilic monolithic column provides the best separation of nucleobases and nucleosides. These results could guide the selection and application of these charged HILIC monoliths in the future. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Shushu; Wang, Chunyan; Sun, Hao; Wang, Xiaojing; Su, Yiguo
2018-05-01
Tin niobate photocatalysts with the phase structures of froodite (SnNb2O6) and pyrochlore (Sn2Nb2O7) were obtained by a facile solvothermal method in order to explore the impact of phase structure and electronic structure on the charge kinetics and photocatalytic performance. By employing tin niobate as a model compound, the effects of phase structure over electronic structure, photocatalytic activity toward methyl orange solution and hydrogen evolution were systematically investigated. It is found that the variation of phase structure from SnNb2O6 to Sn2Nb2O7 accompanied with modulation of particle size and band edge potentials that has great consequences on photocatalytic performance. In combination with the electrochemical impedance spectroscopy (EIS), transient photocurrent responses, transient absorption spectroscopy (TAS), and the analysis of the charge-carrier dynamics suggested that variation of electronic structure has great impacts on the charge separation and transfer rate of tin niobate photocatalysts and the subsequent photocatalytic performance. Moreover, the results of the X-ray photoelectron spectroscopy (XPS) indicated that the existent of Sn4+ species in Sn2Nb2O7 could result in a decrease in photocatalytic activity. Photocatalytic test demonstrated that the SnNb2O6 (froodite) catalyst possesses a higher photocatalytic activity toward MO degradation and H2 evolution compared with the sample of Sn2Nb2O7 (pyrochlore). On the basis of spin resonance measurement and trapping experiment, it is expected that photogenerated holes, O2 -•, and OH• active species dominate the photodegradation of methyl orange.
Huang, Shushu; Wang, Chunyan; Sun, Hao; Wang, Xiaojing; Su, Yiguo
2018-05-23
Tin niobate photocatalysts with the phase structures of froodite (SnNb 2 O 6 ) and pyrochlore (Sn 2 Nb 2 O 7 ) were obtained by a facile solvothermal method in order to explore the impact of phase structure and electronic structure on the charge kinetics and photocatalytic performance. By employing tin niobate as a model compound, the effects of phase structure over electronic structure, photocatalytic activity toward methyl orange solution and hydrogen evolution were systematically investigated. It is found that the variation of phase structure from SnNb 2 O 6 to Sn 2 Nb 2 O 7 accompanied with modulation of particle size and band edge potentials that has great consequences on photocatalytic performance. In combination with the electrochemical impedance spectroscopy (EIS), transient photocurrent responses, transient absorption spectroscopy (TAS), and the analysis of the charge-carrier dynamics suggested that variation of electronic structure has great impacts on the charge separation and transfer rate of tin niobate photocatalysts and the subsequent photocatalytic performance. Moreover, the results of the X-ray photoelectron spectroscopy (XPS) indicated that the existent of Sn 4+ species in Sn 2 Nb 2 O 7 could result in a decrease in photocatalytic activity. Photocatalytic test demonstrated that the SnNb 2 O 6 (froodite) catalyst possesses a higher photocatalytic activity toward MO degradation and H 2 evolution compared with the sample of Sn 2 Nb 2 O 7 (pyrochlore). On the basis of spin resonance measurement and trapping experiment, it is expected that photogenerated holes, O 2 -• , and OH • active species dominate the photodegradation of methyl orange.
NASA Astrophysics Data System (ADS)
Sharma, Shivani; Shahee, Aga; Yadav, Poonam; da Silva, Ivan; Lalla, N. P.
2017-11-01
Low-temperature high-magnetic field (2 K, 8 T) (LTHM) powder X-ray diffraction (XRD) and time of flight powder neutron diffraction (NPD), low-temperature transmission electron microscopic (TEM), and resistivity and magnetization measurements have been carried out to investigate the re-entrant charge ordering (CO), field induced structural phase transitions, and metastability in phase-separated La0.175Pr0.45Ca0.375MnO3-δ (LPCMO). Low-temperature TEM and XRD studies reveal that on cooling under zero-field, paramagnetic Pnma phase transforms to P21/m CO antiferromagnetic (AFM) insulating phase below ˜233 K. Unlike reported literature, no structural signature of CO AFM P21/m to ferromagnetic (FM) Pnma phase-transition during cooling down to 2 K under zero-field was observed. However, the CO phase was found to undergo a re-entrant transition at ˜40 K. Neutron diffraction studies revealed a pseudo CE type spin arrangement of the observed CO phase. The low-temperature resistance, while cooled under zero-field, shows insulator to metal like transition below ˜105 K with minima at ˜25 K. On application of field, the CO P21/m phase was found to undergo field-induced transition to FM Pnma phase, which shows irreversibility on field removal below ˜40 K. Zero-field warming XRD and NPD studies reveal that field-induced FM Pnma phase is a metastable phase, which arise due to the arrest of kinetics of the first-order phase transition of FM Pnma to CO-AFM P21/m phase, below 40 K. Thus, a strong magneto-structural coupling is observed for this system. A field-temperature (H-T) phase-diagram has been constructed based on the LTHM-XRD, which matches very nicely with the reported H-T phase-diagram constructed based on magnetic measurements. Due to the occurrence of gradual growth of the re-entrant CO phase and the absence of a clear structural signature of phase-separation of CO-AFM P21/m and FM Pnma phases, the H-T minima in the phase-diagram of the present LPCMO sample has been attributed to the strengthening of AFM interaction during re-entrant CO transition and not to glass like "dynamic to frozen" transition.
NASA Astrophysics Data System (ADS)
Banerjee, D.; Jiang, F.-J.; Olesen, T. Z.; Orland, P.; Wiese, U.-J.
2018-05-01
We consider the (2 +1 ) -dimensional S U (2 ) quantum link model on the honeycomb lattice and show that it is equivalent to a quantum dimer model on the kagome lattice. The model has crystalline confined phases with spontaneously broken translation invariance associated with pinwheel order, which is investigated with either a Metropolis or an efficient cluster algorithm. External half-integer non-Abelian charges [which transform nontrivially under the Z (2 ) center of the S U (2 ) gauge group] are confined to each other by fractionalized strings with a delocalized Z (2 ) flux. The strands of the fractionalized flux strings are domain walls that separate distinct pinwheel phases. A second-order phase transition in the three-dimensional Ising universality class separates two confining phases: one with correlated pinwheel orientations, and the other with uncorrelated pinwheel orientations.
Evolution of electronic structure across the rare-earth RNiO 3 series
Freeland, John W.; van Veenendaal, Michel; Chakhalian, Jak
2015-07-31
Here, the perovksite rare-earth nickelates, RNiO 3 (R = La… Lu), are a class of materials displaying a rich phase-diagram of metallic and insulating phases associated with charge and magnetic order. Being in the charge transfer regime, Ni 3+ in octahedral coordination displays a strong hybridization with oxygen to form 3d-2p mixed states, which results in a strong admixture of 3d 8L_ into 3d 7, where L_ denotes a hole on the oxygen. To understand the nature of this strongly hybridized ground state, we present a detailed study of the Ni and O electronic structure using high-resolution soft X-ray absorptionmore » spectroscopy (XAS). Through a comparison of the evolution of the XAS line-shape at Ni L- and O K-edges across the phase diagram, we explore the changes in the electronic signatures in connection with the insulating and metallic phases that support the idea of hybridization playing a fundamental role.« less
On the brittle nature of rare earth pnictides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shriya, S.; Sapkale, R.; Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com, E-mail: sapkale.raju@rediffmail.com
The high-pressure structural phase transition and pressure as well temperature induced elastic properties in ReY; (Re = La, Sc, Pr; Y = N, P, As, Sb, Bi) pnictides have been performed using effective interionic interaction potential with emphasis on charge transfer interactions and covalent contribution. Estimated values of phase transition pressure and the volume discontinuity in pressure-volume phase diagram indicate the structural phase transition from NaCl to CsCl structure. From the investigations of elastic constants the pressure (temperature) dependent volume collapse/expansion, second order Cauchy discrepancy, anisotropy, hardness and brittle/ductile nature of rare earth pnictides are computed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Peijun; Xia, Yi; Gong, Jue
Solution-processable metal-halide perovskites (MHPs) offer great promise for efficient light harvesting and emitting devices due to their long carrier lifetime and superior carrier transport characteristics. Ferroelectric effects, a hallmark of traditional oxide perovskites, was proposed to be a mechanism to suppress carrier recombination and enhance charge transport in MHPs, but the existence and influence of such polar order is still of considerable debate. Here we performed transient reflection measurements on single crystals of both inorganic and organic-inorganic (hybrid) MHPs over a range of temperatures, and demonstrate significant phonon softening in the cubic phases close to the cubic-to-tetragonal phase transition temperatures.more » Such phonon softening indicates the formation of polar domains, which grow in size upon cooling and can persist in the low-temperature tetragonal and orthorhombic phases. Our results link the extraordinary electronic properties of MHPs to the spontaneous polarizations which can contribute to more efficient charge separation and characteristics of an indirect bandgap.« less
NASA Astrophysics Data System (ADS)
Huffstutler, Jacob; Wasala, Milinda; Richie, Julianna; Winchester, Andrew; Ghosh, Sujoy; Kar, Swastik; Talapatra, Saikat
2014-03-01
We will present the results of our investigations of electrochemical double layer capacitors (EDLCs) or supercapacitors (SC) fabricated using liquid-phase exfoliated graphene. Several electrolytes, such as aqueous potassium hydroxide KOH (6M), ionic 1-Butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6], and ionic 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate[BMP][FAP] were used. These EDLC's show good performance compared to other carbon nanomaterials based EDLC's devices. We found that the liquid phase exfoliated graphene based devices possess specific capacitance values as high as 262 F/g, when used with ionic liquid electrolyte[BMP][FAP], with power densities (~ 454 W/kg) and energy densities (~ 0.38Wh/kg). Further, these devices indicated rapid charge transfer response even without the use of any binders or specially prepared current collectors. A detailed electrochemical impedance spectroscopy analysis in order to understand the phenomenon of charge storage in these materials will be presented.
ff14ipq: A Self-Consistent Force Field for Condensed-Phase Simulations of Proteins
2015-01-01
We present the ff14ipq force field, implementing the previously published IPolQ charge set for simulations of complete proteins. Minor modifications to the charge derivation scheme and van der Waals interactions between polar atoms are introduced. Torsion parameters are developed through a generational learning approach, based on gas-phase MP2/cc-pVTZ single-point energies computed of structures optimized by the force field itself rather than the quantum benchmark. In this manner, we sacrifice information about the true quantum minima in order to ensure that the force field maintains optimal agreement with the MP2/cc-pVTZ benchmark for the ensembles it will actually produce in simulations. A means of making the gas-phase torsion parameters compatible with solution-phase IPolQ charges is presented. The ff14ipq model is an alternative to ff99SB and other Amber force fields for protein simulations in programs that accommodate pair-specific Lennard–Jones combining rules. The force field gives strong performance on α-helical and β-sheet oligopeptides as well as globular proteins over microsecond time scale simulations, although it has not yet been tested in conjunction with lipid and nucleic acid models. We show how our choices in parameter development influence the resulting force field and how other choices that may have appeared reasonable would actually have led to poorer results. The tools we developed may also aid in the development of future fixed-charge and even polarizable biomolecular force fields. PMID:25328495
Statistical physics of multicomponent alloys using KKR-CPA
Khan, Suffian N.; Staunton, Julie B.; Stocks, George Malcolm
2016-02-16
We apply variational principles from statistical physics and the Landau theory of phase transitions to multicomponent alloys using the multiple-scattering theory of Korringa-Kohn-Rostoker (KKR) and the coherent potential approximation (CPA). This theory is a multicomponent generalization of the S( 2) theory of binary alloys developed by G. M. Stocks, J. B. Staunton, D. D. Johnson and others. It is highly relevant to the chemical phase stability of high-entropy alloys as it predicts the kind and size of finite-temperature chemical fluctuations. In doing so it includes effects of rearranging charge and other electronics due to changing site occupancies. When chemical fluctuationsmore » grow without bound an absolute instability occurs and a second-order order-disorder phase transition may be inferred. The S( 2) theory is predicated on the fluctuation-dissipation theorem; thus we derive the linear response of the CPA medium to perturbations in site-dependent chemical potentials in great detail. The theory lends itself to a natural interpretation in terms of competing effects: entropy driving disorder and favorable pair interactions driving atomic ordering. Moreover, to further clarify interpretation we present results for representative ternary alloys CuAgAu, NiPdPt, RhPdAg, and CoNiCu within a frozen charge (or band-only) approximation. These results include the so-called Onsager mean field correction that extends the temperature range for which the theory is valid.« less
The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors.
Hinton, J P; Thewalt, E; Alpichshev, Z; Mahmood, F; Koralek, J D; Chan, M K; Veit, M J; Dorow, C J; Barišić, N; Kemper, A F; Bonn, D A; Hardy, W N; Liang, Ruixing; Gedik, N; Greven, M; Lanzara, A; Orenstein, J
2016-04-13
In the underdoped copper-oxides, high-temperature superconductivity condenses from a nonconventional metallic "pseudogap" phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW) phase exists within the pseudogap regime. This CDW coexists and competes with superconductivity (SC) below the transition temperature Tc, suggesting that these two orders are intimately related. Here we show that the condensation of the superfluid from this unconventional precursor is reflected in deviations from the predictions of BSC theory regarding the recombination rate of quasiparticles. We report a detailed investigation of the quasiparticle (QP) recombination lifetime, τqp, as a function of temperature and magnetic field in underdoped HgBa2CuO(4+δ) (Hg-1201) and YBa2Cu3O(6+x) (YBCO) single crystals by ultrafast time-resolved reflectivity. We find that τqp(T) exhibits a local maximum in a small temperature window near Tc that is prominent in underdoped samples with coexisting charge order and vanishes with application of a small magnetic field. We explain this unusual, non-BCS behavior by positing that Tc marks a transition from phase-fluctuating SC/CDW composite order above to a SC/CDW condensate below. Our results suggest that the superfluid in underdoped cuprates is a condensate of coherently-mixed particle-particle and particle-hole pairs.
The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors
Hinton, J. P.; Thewalt, E.; Alpichshev, Z.; Mahmood, F.; Koralek, J. D.; Chan, M. K.; Veit, M. J.; Dorow, C. J.; Barišić, N.; Kemper, A. F.; Bonn, D. A.; Hardy, W. N.; Liang, Ruixing; Gedik, N.; Greven, M.; Lanzara, A.; Orenstein, J.
2016-01-01
In the underdoped copper-oxides, high-temperature superconductivity condenses from a nonconventional metallic ”pseudogap” phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW) phase exists within the pseudogap regime. This CDW coexists and competes with superconductivity (SC) below the transition temperature Tc, suggesting that these two orders are intimately related. Here we show that the condensation of the superfluid from this unconventional precursor is reflected in deviations from the predictions of BSC theory regarding the recombination rate of quasiparticles. We report a detailed investigation of the quasiparticle (QP) recombination lifetime, τqp, as a function of temperature and magnetic field in underdoped HgBa2CuO4+δ (Hg-1201) and YBa2Cu3O6+x (YBCO) single crystals by ultrafast time-resolved reflectivity. We find that τqp(T ) exhibits a local maximum in a small temperature window near Tc that is prominent in underdoped samples with coexisting charge order and vanishes with application of a small magnetic field. We explain this unusual, non-BCS behavior by positing that Tc marks a transition from phase-fluctuating SC/CDW composite order above to a SC/CDW condensate below. Our results suggest that the superfluid in underdoped cuprates is a condensate of coherently-mixed particle-particle and particle-hole pairs. PMID:27071712
NASA Astrophysics Data System (ADS)
Li, Hui-Ling; Yang, Shu-Zheng; Zu, Xiao-Tao
2017-01-01
In the framework of holography, we survey the phase structure for a higher dimensional hairy black hole including the effects of the scalar field hair. It is worth emphasizing that, not only black hole entropy, but also entanglement entropy and two point correlation function exhibit the Van der Waals-like phase transition in a fixed scalar charge ensemble. Furthermore, by making use of numerical computation, we show that the Maxwell's equal area law is valid for the first order phase transition. In addition, we also discuss how the hair parameter affects the black hole's phase transition.
Point Charges Optimally Placed to Represent the Multipole Expansion of Charge Distributions
Onufriev, Alexey V.
2013-01-01
We propose an approach for approximating electrostatic charge distributions with a small number of point charges to optimally represent the original charge distribution. By construction, the proposed optimal point charge approximation (OPCA) retains many of the useful properties of point multipole expansion, including the same far-field asymptotic behavior of the approximate potential. A general framework for numerically computing OPCA, for any given number of approximating charges, is described. We then derive a 2-charge practical point charge approximation, PPCA, which approximates the 2-charge OPCA via closed form analytical expressions, and test the PPCA on a set of charge distributions relevant to biomolecular modeling. We measure the accuracy of the new approximations as the RMS error in the electrostatic potential relative to that produced by the original charge distribution, at a distance the extent of the charge distribution–the mid-field. The error for the 2-charge PPCA is found to be on average 23% smaller than that of optimally placed point dipole approximation, and comparable to that of the point quadrupole approximation. The standard deviation in RMS error for the 2-charge PPCA is 53% lower than that of the optimal point dipole approximation, and comparable to that of the point quadrupole approximation. We also calculate the 3-charge OPCA for representing the gas phase quantum mechanical charge distribution of a water molecule. The electrostatic potential calculated by the 3-charge OPCA for water, in the mid-field (2.8 Å from the oxygen atom), is on average 33.3% more accurate than the potential due to the point multipole expansion up to the octupole order. Compared to a 3 point charge approximation in which the charges are placed on the atom centers, the 3-charge OPCA is seven times more accurate, by RMS error. The maximum error at the oxygen-Na distance (2.23 Å ) is half that of the point multipole expansion up to the octupole order. PMID:23861790
Minimal color-flavor-locked-nuclear interface
NASA Astrophysics Data System (ADS)
Alford, Mark; Rajagopal, Krishna; Reddy, Sanjay; Wilczek, Frank
2001-10-01
At nuclear matter density, electrically neutral strongly interacting matter in weak equilibrium is made of neutrons, protons, and electrons. At sufficiently high density, such matter is made of up, down, and strange quarks in the color-flavor-locked (CFL) phase, with no electrons. As a function of increasing density (or, perhaps, increasing depth in a compact star) other phases may intervene between these two phases, which are guaranteed to be present. The simplest possibility, however, is a single first order phase transition between CFL and nuclear matter. Such a transition, in space, could take place either through a mixed phase region or at a single sharp interface with electron-free CFL and electron-rich nuclear matter in stable contact. Here we construct a model for such an interface. It is characterized by a region of separated charge, similar to an inversion layer at a metal-insulator boundary. On the CFL side, the charged boundary layer is dominated by a condensate of negative kaons. We then consider the energetics of the mixed phase alternative. We find that the mixed phase will occur only if the nuclear-CFL surface tension is significantly smaller than dimensional analysis would indicate.
Tangso, Kristian J; Patel, Hetika; Lindberg, Seth; Hartley, Patrick G; Knott, Robert; Spicer, Patrick T; Boyd, Ben J
2015-11-11
The self-assembly of ordered structures in mixtures of oppositely charged surfactant and polymer systems has been exploited in various cleaning and pharmaceutical applications and continue to attract much interest since their discovery in the late twentieth century. The ability to control the electrostatic and hydrophobic interactions that dictate the formation of liquid crystalline phases in these systems is advantageous in manipulation of structure and rendering them responsive to external stimuli. Nanostructured capsules comprised of the cationic surfactant, cetyltrimethylammonium bromide (CTAB), and the diblock copolymer poly(acrylamide-acrylic acid) (PAAm-AA) were prepared to assess their potential as pH responsive nanomaterials. Crossed-polarizing light microscopy (CPLM) and small-angle X-ray scattering (SAXS) identified coexisting Pm3n cubic and hexagonal phases at the surfactant-polymer interface. The hydrophobic and electrostatic interactions between the oppositely charged components were studied by varying temperature and solution pH, respectively, and were found to influence the liquid crystalline nanostructure formed. The lattice parameter of the mesophases and the fraction of cubic phase in the system decreased upon heating. Acidic conditions resulted in the loss of the highly ordered structures due to protonation of the carboxylic acid group, and subsequent reduction of attractive forces previously present between the oppositely charged molecules. The rate of release of the model hydrophilic drug, Rhodamine B (RhB), from nanostructured macro-sized capsules significantly increased when the pH of the solution was adjusted from pH 7 to pH 2. This allowed for immediate release of the compound of interest "on demand", opening new options for structured materials with increased functionality over typical layer-by-layer capsules.
NASA Astrophysics Data System (ADS)
Borroni, S.; Baldini, E.; Katukuri, V. M.; Mann, A.; Parlinski, K.; Legut, D.; Arrell, C.; van Mourik, F.; Teyssier, J.; Kozlowski, A.; Piekarz, P.; Yazyev, O. V.; Oleś, A. M.; Lorenzana, J.; Carbone, F.
2017-09-01
Symmetry breaking across phase transitions often causes changes in selection rules and emergence of optical modes which can be detected via spectroscopic techniques or generated coherently in pump-probe experiments. In second-order or weakly first-order transitions, fluctuations of the ordering field are present above the ordering temperature, giving rise to intriguing precursor phenomena, such as critical opalescence. Here, we demonstrate that in magnetite (Fe3O4 ) light excitation couples to the critical fluctuations of the charge order and coherently generates structural modes of the ordered phase above the critical temperature of the Verwey transition. Our findings are obtained by detecting coherent oscillations of the optical constants through ultrafast broadband spectroscopy and analyzing their dependence on temperature. To unveil the coupling between the structural modes and the electronic excitations, at the origin of the Verwey transition, we combine our results from pump-probe experiments with spontaneous Raman scattering data and theoretical calculations of both the phonon dispersion curves and the optical constants. Our methodology represents an effective tool to study the real-time dynamics of critical fluctuations across phase transitions.
Dark matter and electroweak phase transition in the mixed scalar dark matter model
NASA Astrophysics Data System (ADS)
Liu, Xuewen; Bian, Ligong
2018-03-01
We study the electroweak phase transition in the framework of the scalar singlet-doublet mixed dark matter model, in which the particle dark matter candidate is the lightest neutral Higgs that comprises the C P -even component of the inert doublet and a singlet scalar. The dark matter can be dominated by the inert doublet or singlet scalar depending on the mixing. We present several benchmark models to investigate the two situations after imposing several theoretical and experimental constraints. An additional singlet scalar and the inert doublet drive the electroweak phase transition to be strongly first order. A strong first-order electroweak phase transition and a viable dark matter candidate can be accomplished in two benchmark models simultaneously, for which a proper mass splitting among the neutral and charged Higgs masses is needed.
Coplanar three-beam interference and phase edge dislocations
NASA Astrophysics Data System (ADS)
Patorski, Krzysztof; SłuŻewski, Łukasz; Trusiak, Maciej; Pokorski, Krzysztof
2016-12-01
We present a comprehensive analysis of grating three-beam interference to discover a broad range of the ratio of amplitudes A of +/-1 diffraction orders and the zero order amplitude C providing phase edge dislocations. We derive a condition A/C > 0.5 for the occurrence of phase edge dislocations in three-beam interference self-image planes. In the boundary case A/C = 0.5 singularity conditions are met in those planes (once per interference field period), but the zero amplitude condition is not accompanied by an abrupt phase change. For A/C > 0.5 two adjacent singularities in a single field period show opposite sign topological charges. The occurrence of edge dislocations for selected values of A/C was verified by processing fork fringes obtained by introducing the fourth beam in the plane perpendicular to the one containing three coplanar diffraction orders. Two fork pattern processing methods are described, 2D CWT (two-dimensional continuous wavelet transform) and 2D spatial differentiation.
Rocha, Maria Victoria; Nerli, Bibiana Beatriz
2013-10-01
The partitioning patterns of papain (PAP) and bromelain (BR), two well-known cysteine-proteases, in polyethyleneglycol/sodium citrate aqueous two-phase systems (ATPSs) were determined. Polyethyleneglycols of different molecular weight (600, 1000, 2000, 4600 and 8000) were assayed. Thermodynamic characterization of partitioning process, spectroscopy measurements and computational calculations of protein surface properties were also carried out in order to explain their differential partitioning behavior. PAP was observed to be displaced to the salt-enriched phase in all the assayed systems with partition coefficients (KpPAP) values between 0.2 and 0.9, while BR exhibited a high affinity for the polymer phase in systems formed by PEGs of low molecular weight (600 and 1000) with partition coefficients (KpBR) values close to 3. KpBR values resulted higher than KpPAP in all the cases. This difference could be assigned neither to the charge nor to the size of the partitioned biomolecules since PAP and BR possess similar molecular weight (23,000) and isoelectric point (9.60). The presence of highly exposed tryptophans and positively charged residues (Lys, Arg and His) in BR molecule would be responsible for a charge transfer interaction between PEG and the protein and, therefore, the uneven distribution of BR in these systems. Copyright © 2013 Elsevier B.V. All rights reserved.
Dabre, Romain; Azad, Nazanin; Schwämmle, Achim; Lämmerhofer, Michael; Lindner, Wolfgang
2011-04-01
Several methods for the separation of vitamins on HPLC columns were already validated in the last 20 years. However, most of the techniques focus on separating either fat- or water-soluble vitamins and only few methods are intended to separate lipophilic and hydrophilic vitamins simultaneously. A mixed-mode reversed-phase weak anion exchange (RP-WAX) stationary phase was developed in our laboratory in order to address such mixture of analytes with different chemical characteristics, which are difficult to separate on standard columns. The high versatility in usage of the RP-WAX chromatographic material allowed a baseline separation of ten vitamins within a single run, seven water-soluble and three fat-soluble, using three different chromatographic modes: some positively charged vitamins are eluted in ion exclusion and ion repulsion modes whereas the negatively charged molecules are eluted in the ion exchange mechanism. The non-charged molecules are eluted in a classical reversed-phase mode, regarding their polarities. The method was validated for the vitamin analysis in tablets, evaluating selectivity, robustness, linearity, accuracy, and precision. The validated method was finally employed for the analysis of the vitamin content of some commercially available supplement tablets. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nematic phase in the CE-regime of colossal magnetoresistive manganites
NASA Astrophysics Data System (ADS)
Ochoa, Emily; Sen, Cengiz; Dagotto, Elbio; Lamar/UTK Collaboration
We report nematic phase tendencies around the first order CE transition in the two-orbital double exchange model with Jahn-Teller phonons at electronic density n = 0 . 5 . Starting with a random state at high temperatures, we employ a careful cool-down method using a Monte Carlo algorithm. We then monitor the spin structure factor S (q) of the CE phase as a function of temperature. Near the critical temperature, S (q) grows with decreasing temperature for both right- and left-ordered CE ladders, followed by a spontaneous symmetry breaking into one or the other as the critical temperature is achieved. Below the critical temperature a pure CE state with a staggered charge order is obtained. Our results are similar to those observed in pnictides in earlier studies. Lamar University Office of Undergraduate Research, and U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.
NASA Astrophysics Data System (ADS)
Nishikawa, H.; Oshio, H.; Higa, M.; Kondo, R.; Kagoshima, S.; Nakao, A.; Sawa, H.; Yasuzuka, S.; Murata, K.
2008-10-01
Physical properties of isostructural β''-(DODHT)2X [DODHT = (l,4-dioxane-2,3-diyldithio)dihydrotetrathiafulvalene; X = PF6, AsF6, and SbF6] at ambient pressure have been compared. The insulating phase of β''-(DODHT)2PF6 salt has already been revealed to be a charge ordering (CO) state by X-ray diffraction study and magnetic behavior. CO in this salt was also confirmed by the observation of satellite reflections in oscillation photograph using synchrotron radiation. Transport property of β''-(DODHT)2SbF6 salt was reinvestigated up to the pressure of 3.7 GPa applied by a cubic anvil apparatus. Although the SbF6 salt turned to be metallic above 2.0 GPa, no superconductivity was observed. In order to examine the anion size dependence of DODHT salts with octahedral anions, we prepared a new DODHT salt, β''-(DODHT)2TaF6, which has the larger counter anion compared with the previous salts. Crystal structure of this salt was isostructural to the other DODHT salts. The electrical and magnetic properties of this salt were similar to those of β''-(DODHT)2SbF6 salt.
Annealed Scaling for a Charged Polymer
NASA Astrophysics Data System (ADS)
Caravenna, F.; den Hollander, F.; Pétrélis, N.; Poisat, J.
2016-03-01
This paper studies an undirected polymer chain living on the one-dimensional integer lattice and carrying i.i.d. random charges. Each self-intersection of the polymer chain contributes to the interaction Hamiltonian an energy that is equal to the product of the charges of the two monomers that meet. The joint probability distribution for the polymer chain and the charges is given by the Gibbs distribution associated with the interaction Hamiltonian. The focus is on the annealed free energy per monomer in the limit as the length of the polymer chain tends to infinity. We derive a spectral representation for the free energy and use this to prove that there is a critical curve in the parameter plane of charge bias versus inverse temperature separating a ballistic phase from a subballistic phase. We show that the phase transition is first order. We prove large deviation principles for the laws of the empirical speed and the empirical charge, and derive a spectral representation for the associated rate functions. Interestingly, in both phases both rate functions exhibit flat pieces, which correspond to an inhomogeneous strategy for the polymer to realise a large deviation. The large deviation principles in turn lead to laws of large numbers and central limit theorems. We identify the scaling behaviour of the critical curve for small and for large charge bias. In addition, we identify the scaling behaviour of the free energy for small charge bias and small inverse temperature. Both are linked to an associated Sturm-Liouville eigenvalue problem. A key tool in our analysis is the Ray-Knight formula for the local times of the one-dimensional simple random walk. This formula is exploited to derive a closed form expression for the generating function of the annealed partition function, and for several related quantities. This expression in turn serves as the starting point for the derivation of the spectral representation for the free energy, and for the scaling theorems. What happens for the quenched free energy per monomer remains open. We state two modest results and raise a few questions.
VARIABLE CHARGE SOILS: MINERALOGY AND CHEMISTRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Ranst, Eric; Qafoku, Nikolla; Noble, Andrew
2016-09-19
Soils rich in particles with amphoteric surface properties in the Oxisols, Ultisols, Alfisols, Spodosols and Andisols orders (1) are considered to be variable charge soils (2) (Table 1). The term “variable charge” is used to describe organic and inorganic soil constituents with reactive surface groups whose charge varies with pH and ionic concentration and composition of the soil solution. Such groups are the surface carboxyl, phenolic and amino functional groups of organic materials in soils, and surface hydroxyl groups of Fe and Al oxides, allophane and imogolite. The hydroxyl surface groups are also present on edges of some phyllosilicate mineralsmore » such as kaolinite, mica, and hydroxyl-interlayered vermiculite. The variable charge is developed on the surface groups as a result of adsorption or desorption of ions that are constituents of the solid phase, i.e., H+, and the adsorption or desorption of solid-unlike ions that are not constituents of the solid phase. Highly weathered soils and subsoils (e.g., Oxisols and some Ultisols, Alfisols and Andisols) may undergo isoelectric weathering and reach a “zero net charge” stage during their development. They usually have a slightly acidic to acidic soil solution pH, which is close to either the point of zero net charge (PZNC) (3) or the point of zero salt effect (PZSE) (3). They are characterized by high abundances of minerals with a point of zero net proton charge (PZNPC) (3) at neutral and slightly basic pHs; the most important being Fe and Al oxides and allophane. Under acidic conditions, the surfaces of these minerals are net positively charged. In contrast, the surfaces of permanent charge phyllosilicates are negatively charged regardless of ambient conditions. Variable charge soils therefore, are heterogeneous charge systems.« less
Lattice-mediated magnetic order melting in TbMnO 3
Baldini, Edoardo; Kubacka, Teresa; Mallett, Benjamin P. P.; ...
2018-03-15
Recent ultrafast magnetic-sensitive measurements have revealed a delayed melting of the long-range cycloid spin order in TbMnO 3 following photoexcitation across the fundamental Mott-Hubbard gap. The microscopic mechanism behind this slow transfer of energy from the photoexcited carriers to the spin degrees of freedom is still elusive and not understood. Here, we address this problem by combining spectroscopic ellipsometry, ultrafast broadband optical spectroscopy, and ab initio calculations. Upon photoexcitation, we observe the emergence of a complex collective response, which is due to high-energy coherent optical phonons coupled to the out-of-equilibrium charge density. This response precedes the magnetic order melting andmore » is interpreted as the fingerprint of the formation of anti-Jahn-Teller polarons. We propose that the charge localization in a long-lived self-trapped state hinders the emission of magnons and other spin-flip mechanisms, causing the energy transfer from the charge to the spin system to be mediated by the reorganization of the lattice. In conclusion, we provide evidence for the coherent excitation of a phonon mode associated with the ferroelectric phase transition.« less
Lattice-mediated magnetic order melting in TbMnO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldini, Edoardo; Kubacka, Teresa; Mallett, Benjamin P. P.
Recent ultrafast magnetic-sensitive measurements have revealed a delayed melting of the long-range cycloid spin order in TbMnO 3 following photoexcitation across the fundamental Mott-Hubbard gap. The microscopic mechanism behind this slow transfer of energy from the photoexcited carriers to the spin degrees of freedom is still elusive and not understood. Here, we address this problem by combining spectroscopic ellipsometry, ultrafast broadband optical spectroscopy, and ab initio calculations. Upon photoexcitation, we observe the emergence of a complex collective response, which is due to high-energy coherent optical phonons coupled to the out-of-equilibrium charge density. This response precedes the magnetic order melting andmore » is interpreted as the fingerprint of the formation of anti-Jahn-Teller polarons. We propose that the charge localization in a long-lived self-trapped state hinders the emission of magnons and other spin-flip mechanisms, causing the energy transfer from the charge to the spin system to be mediated by the reorganization of the lattice. In conclusion, we provide evidence for the coherent excitation of a phonon mode associated with the ferroelectric phase transition.« less
Change of carrier density at the pseudogap critical point of a cuprate superconductor.
Badoux, S; Tabis, W; Laliberté, F; Grissonnanche, G; Vignolle, B; Vignolles, D; Béard, J; Bonn, D A; Hardy, W N; Liang, R; Doiron-Leyraud, N; Taillefer, Louis; Proust, Cyril
2016-03-10
The pseudogap is a partial gap in the electronic density of states that opens in the normal (non-superconducting) state of cuprate superconductors and whose origin is a long-standing puzzle. Its connection to the Mott insulator phase at low doping (hole concentration, p) remains ambiguous and its relation to the charge order that reconstructs the Fermi surface at intermediate doping is still unclear. Here we use measurements of the Hall coefficient in magnetic fields up to 88 tesla to show that Fermi-surface reconstruction by charge order in the cuprate YBa2Cu3Oy ends sharply at a critical doping p = 0.16 that is distinctly lower than the pseudogap critical point p* = 0.19 (ref. 11). This shows that the pseudogap and charge order are separate phenomena. We find that the change in carrier density n from n = 1 + p in the conventional metal at high doping (ref. 12) to n = p at low doping (ref. 13) starts at the pseudogap critical point. This shows that the pseudogap and the antiferromagnetic Mott insulator are linked.
High-order space charge effects using automatic differentiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reusch, M.F.; Bruhwiler, D.L.
1997-02-01
The Northrop Grumman Topkark code has been upgraded to Fortran 90, making use of operator overloading, so the same code can be used to either track an array of particles or construct a Taylor map representation of the accelerator lattice. We review beam optics and beam dynamics simulations conducted with TOPKARK in the past and we present a new method for modeling space charge forces to high-order with automatic differentiation. This method generates an accurate, high-order, 6-D Taylor map of the phase space variable trajectories for a bunched, high-current beam. The spatial distribution is modeled as the product of amore » Taylor Series times a Gaussian. The variables in the argument of the Gaussian are normalized to the respective second moments of the distribution. This form allows for accurate representation of a wide range of realistic distributions, including any asymmetries, and allows for rapid calculation of the space charge fields with free space boundary conditions. An example problem is presented to illustrate our approach. {copyright} {ital 1997 American Institute of Physics.}« less
Cascading gauge theory on dS4 and String Theory landscape
NASA Astrophysics Data System (ADS)
Buchel, Alex; Galante, Damián A.
2014-06-01
Placing anti-D3 branes at the tip of the conifold in Klebanov-Strassler geometry provides a generic way of constructing meta-stable de Sitter (dS) vacua in String Theory. A local geometry of such vacua exhibit gravitational solutions with a D3 charge measured at the tip opposite to the asymptotic charge. We discuss a restrictive set of such geometries, where anti-D3 branes are smeared at the tip. Such geometries represent holographic dual of cascading gauge theory in dS4 with or without chiral symmetry breaking. We find that in the phase with unbroken chiral symmetry the D3 charge at the tip is always positive. Furthermore, this charge is zero in the phase with spontaneously broken chiral symmetry. We show that the effective potential of the chirally symmetric phase is lower than that in the symmetry broken phase, i.e., there is no spontaneous chiral symmetry breaking for cascading gauge theory in dS4. The positivity of the D3 brane charge in smooth de-Sitter deformed conifold geometries with fluxes presents difficulties in uplifting AdS vacua to dS ones in String Theory via smeared anti-D3 branes. First, turning on fluxes on Calabi-Yau compactifications of type IIB string theory produces highly warped geometry with stabilized complex structure (but not Kähler) moduli of the compactification [3]; Next, including non-perturbative effects (which are under control given the unbroken supersymmetry), one obtains anti-de Sitter (AdS4) vacua with all moduli fixed; Finally, one uses anti-D3 branes of type IIB string theory to uplift AdS4 to de Sitter (dS4) vacua. As the last step of the construction completely breaks supersymmetry, it is much less controlled. In fact, in [4-7] it was argued that putting anti-D3 branes at the tip of the Klebanov-Strassler (KS) [8] geometry (as done in KKLT construction) leads to a naked singularity. Whether or not the resulting singularity is physical is subject to debates. When M4=dS4 and the chiral symmetry is unbroken, the D3 brane charge at the tip of the conifold is always positive, as long as ln H2Λ2/P2g0 ⩾-0.4. When M4=dS4 and the chiral symmetry is broken, the D3 brane charge at the tip of the conifold is always zero; we managed to construct geometries of this type for ln H2Λ2/P2g0⩾-0.03. Comparing effective potential of the gauge theory in broken Veffb and unbroken Veffs phases we establish that in all cases, when we can construct the phase with spontaneously broken chiral symmetry, Veffb>Veffs, when ln H2Λ2/P2g0⩾-0.03, i.e., spontaneous symmetry breaking does not happen for given values of the gauge theory parameters. To put these parameters in perspective, note that the (first-order) confinement/deconfinement and chiral symmetry breaking phase transition in cascading gauge theory plasma occurs at temperature T such that [16] ln Tdeconfinement,χSB2Λ2/P2g0=0.2571(2), and the (first-order) chiral symmetry breaking in cascading gauge theory on S3 occurs for compactification scale μ3≡ℓ3-1 such that [21] ln μ3,χSB2Λ2/P2g0=0.4309(8). When M4=R×S3 and the chiral symmetry is unbroken, the D3 brane charge at the tip of the conifold is negative when ln μ32Λ2/P2g0
Competing s-wave orders from Einstein-Gauss-Bonnet gravity
NASA Astrophysics Data System (ADS)
Li, Zhi-Hong; Fu, Yun-Chang; Nie, Zhang-Yu
2018-01-01
In this paper, the holographic superconductor model with two s-wave orders from 4 + 1 dimensional Einstein-Gauss-Bonnet gravity is explored in the probe limit. At different values of the Gauss-Bonnet coefficient α, we study the influence of tuning the mass and charge parameters of the bulk scalar field on the free energy curve of condensed solution with signal s-wave order, and compare the difference of tuning the two different parameters while the changes of the critical temperature are the same. Based on the above results, it is indicated that the two free energy curves of different s-wave orders can have one or two intersection points, where two typical phase transition behaviors of the s + s coexistent phase, including the reentrant phase transition near the Chern-Simons limit α = 0.25, can be found. We also give an explanation to the nontrivial behavior of the Tc- α curves near the Chern-Simons limit, which might be heuristic to understand the origin of the reentrant behavior near the Chern-Simons limit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nenashev, A. V.; Dvurechenskii, A. V.; Novosibirsk State University, 630090 Novosibirsk
2016-07-18
The apparent order δ of non-geminate recombination higher than δ = 2 has been evidenced in numerous experiments on organic bulk heterojunction (BHJ) structures intensively studied for photovoltaic applications. This feature is claimed puzzling, since the rate of the bimolecular recombination in organic BHJ systems is proportional to the product of the concentrations of recombining electrons and holes and therefore the reaction order δ = 2 is expected. In organic BHJ structures, electrons and holes are confined to two different material phases: electrons to the acceptor material (usually a fullerene derivative) while holes to the donor phase (usually a polymer). The non-geminatemore » recombination of charge carriers can therefore happen only at the interfaces between the two phases. Considering a simple geometrical model of the BHJ system, we show that the apparent order of recombination can deviate from δ = 2 due solely to the topological structure of the system.« less
NASA Astrophysics Data System (ADS)
Roy, Bitan; Foster, Matthew S.
2018-01-01
We compute the effects of generic short-range interactions on gapless electrons residing at the quantum critical point separating a two-dimensional Dirac semimetal and a symmetry-preserving band insulator. The electronic dispersion at this critical point is anisotropic (Ek=±√{v2kx2+b2ky2 n } with n =2 ), which results in unconventional scaling of thermodynamic and transport quantities. Because of the vanishing density of states [ϱ (E )˜|E |1 /n ], this anisotropic semimetal (ASM) is stable against weak short-range interactions. However, for stronger interactions, the direct Dirac-semimetal to band-insulator transition can either (i) become a fluctuation-driven first-order transition (although unlikely in a particular microscopic model considered here, the anisotropic honeycomb lattice extended Hubbard model) or (ii) get avoided by an intervening broken-symmetry phase. We perform a controlled renormalization group analysis with the small parameter ɛ =1 /n , augmented with a 1 /n expansion (parametrically suppressing quantum fluctuations in the higher dimension) by perturbing away from the one-dimensional limit, realized by setting ɛ =0 and n →∞ . We identify charge density wave (CDW), antiferromagnet (AFM), and singlet s -wave superconductivity as the three dominant candidates for broken symmetry. The onset of any such order at strong coupling (˜ɛ ) takes place through a continuous quantum phase transition across an interacting multicritical point, where the ordered phase, band insulator, Dirac, and anisotropic semimetals meet. We also present the phase diagram of an extended Hubbard model for the ASM, obtained via the controlled deformation of its counterpart in one dimension. The latter displays spin-charge separation and instabilities to CDW, spin density wave, and Luther-Emery liquid phases at arbitrarily weak coupling. The spin density wave and Luther-Emery liquid phases deform into pseudospin SU(2)-symmetric quantum critical points separating the ASM from the AFM and superconducting orders, respectively. Our phase diagram shows an intriguing interplay among CDW, AFM, and s -wave paired states that can be germane for a uniaxially strained optical honeycomb lattice for ultracold fermion atoms, or the organic compound α -(BEDT -TTF )2I3 .
Simulations to Predict the Phase Behavior and Structure of Multipolar Colloidal Particles
NASA Astrophysics Data System (ADS)
Rutkowski, David Matthew
Colloidal particles with anisotropic charge distributions can assemble into a number of interesting structures including chains, lattices and micelles that could be useful in biotechnology, optics and electronics. The goal of this work is to understand how the properties of the colloidal particles, such as their charge distribution or shape, affect the selfassembly and phase behavior of collections of such particles. The specific aim of this work is to understand how the separation between a pair of oppositely signed charges affects the phase behavior and structure of assemblies of colloidal particles. To examine these particles, we have used both discontinuous molecular dynamics (DMD) and Monte Carlo (MC) simulation techniques. In our first study of colloidal particles with finite charge separation, we simulate systems of 2-D colloidal rods with four possible charge separations. Our simulations show that the charge separation does indeed have a large effect on the phase behavior as can be seen in the phase diagrams we construct for these four systems in the area fraction-reduced temperature plane. The phase diagrams delineate the boundaries between isotropic fluid, string-fluid and percolated fluid for all systems considered. In particular, we find that coarse gel-like structures tend to form at large charge separations while denser aggregates form at small charge separations, suggesting a route to forming low volume gels by focusing on systems with large charge separations. Next we examine systems of circular particles with four embedded charges of alternating sign fixed to a triangular lattice. This system is found to form a limit periodic structure, a theoretical structure with an infinite number of phase transitions, under specific conditions. The limit-periodic structure only forms when the rotation of the particles in the system is restricted to increments of pi/3. When the rotation is restricted to increments of th/6 or the rotation is continuous, related structures form including a striped phase and a phase with nematic order. Neither the distance from the point charges to the center of the particle nor the angle between the charges influences whether the system forms a limit-periodic structure, suggesting that point quadrupoles may also be able to form limit-periodic structures. Results from these simulations will likely aid in the quest to find an experimental realization of a limit-periodic structure. Next we examine the effect of charge separation on the self-assembly of systems of 2-D colloidal particles with off-center extended dipoles. We simulate systems with both small and large charge separations for a set of displacements of the dipole from the particle center. Upon cooling, these particles self-assemble into closed, cyclic structures at large displacements including dimers, triangular shapes and square shapes, and chain-like structures at small displacements. At extremely low temperatures, the cyclic structures form interesting lattices with particles of similar chirality grouped together. Results from this work could aid in the experimental construction of open lattice-like structures that could find use in photonic applications. Finally, we present work in collaboration with Drs. Bhuvnesh Bharti and Orlin Velev in which we investigate how the surface coverage affects the self-assembly of systems of Janus particles coated with both an iron oxide and fatty acid chain layer. We model these particles by decorating a sphere with evenly dispersed points that interact with points on other spheres through square-well interactions. The interactions are designed to mimic specific coverage values for the iron oxide/fatty acid chain layer. Structures similar to those found in experiment form readily in the simulations. The number of clusters formed as a function of surface coverage agrees well with experiment. The aggregation behavior of these novel particles can therefore, be described by a relatively simple model.
Bingham, N. S.; Lampen, P.; Phan, M. H.; ...
2012-08-16
Bulk manganites of the form La 5/8–yPr yCa 3/8MnO₃ (LPCMO) exhibit a complex phase diagram due to coexisting charge-ordered antiferromagnetic (CO/AFM), charge-disordered paramagnetic (PM), and ferromagnetic (FM) phases. Because phase separation in LPCMO occurs on the microscale, reducing particle size to below this characteristic length is expected to have a strong impact on the magnetic properties of the system. Through a comparative study of the magnetic and magnetocaloric properties of single-crystalline (bulk) and nanocrystalline LPCMO (y=3/8) we show that the AFM, CO, and FM transitions seen in the single crystal can also be observed in the large particle sizes (400more » and 150 nm), while only a single PM to FM transition is found for the small particles (55 nm). Magnetic and magnetocaloric measurements reveal that decreasing particle size affects the balance of competing phases in LPCMO and narrows the range of fields over which PM, FM, and CO phases coexist. The FM volume fraction increases with size reduction, until CO is suppressed below some critical size, ~100 nm. With size reduction, the saturation magnetization and field sensitivity first increase as long-range CO is inhibited, then decrease as surface effects become increasingly important. The trend that the FM phase is stabilized on the nanoscale is contrasted with the stabilization of the charge-disordered PM phase occurring on the microscale, demonstrating that in terms of the characteristic phase separation length, a few microns and several hundred nanometers represent very different regimes in LPCMO.« less
Topological Excitations of One-Dimensional Correlated Electron Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salkola, M.I.; Schrieffer, J.R.; Salkola, M.I.
1999-02-01
Elementary, low-energy excitations are examined by bosonization in one-dimensional systems with quasi-long-range order. A new, independently measurable attribute is introduced to describe such excitations. It is defined as a number w which determines how many times the phase of the order parameter winds as an excitation is transposed from far left to far right. The winding number is zero for electrons and holes with conventional quantum numbers, but it acquires a nontrivial value w=1 for neutral spin- (1) /(2) excitations and for spinless excitations with a unit electron charge. It may even be irrational, if the charge is irrational. Thus,more » these excitations are topological. {copyright} {ital 1999} {ital The American Physical Society }« less
Role of multiorbital effects in the magnetic phase diagram of iron pnictides
NASA Astrophysics Data System (ADS)
Christensen, Morten H.; Scherer, Daniel D.; Kotetes, Panagiotis; Andersen, Brian M.
2017-07-01
We elucidate the pivotal role of the band structure's orbital content in deciding the type of commensurate magnetic order stabilized within the itinerant scenario of iron pnictides. Recent experimental findings in the tetragonal magnetic phase attest to the existence of the so-called charge and spin ordered density wave over the spin-vortex crystal phase, the latter of which tends to be favored in simplified band models of itinerant magnetism. Here we show that employing a multiorbital itinerant Landau approach based on realistic band structures can account for the experimentally observed magnetic phase, and thus shed light on the importance of the orbital content in deciding the magnetic order. In addition, we remark that the presence of a hole pocket centered at the Brillouin zone's M point favors a magnetic stripe rather than a tetragonal magnetic phase. For inferring the symmetry properties of the different magnetic phases, we formulate our theory in terms of magnetic order parameters transforming according to irreducible representations of the ensuing D4 h point group. The latter method not only provides transparent understanding of the symmetry-breaking schemes but also reveals that the leading instabilities always belong to the {A1 g,B1 g} subset of irreducible representations, independently of their C2 or C4 nature.
Topological phases reviewed: The Aharonov Bohm, Aharonov Casher, and He McKellar Wilkens phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKellar, B. H. J.; He, X-G.; Klein, A. G.
2014-03-05
There are three topological phases related to electromagnetic interactions in quantum mechanics: 1. The Aharonov Bohm phase acquired when a charged particle encircles a magnetic field but travels through a field free region. 2. The Aharonov Casher phase acquired when a magnetic dipole encircles electric charges but travels through a charge free region. 3. The He McKellar Wilkens phase acquired when an electric dipole encircles magnetic charges but travels through a charge free region. We review the conditions under which these phases are indeed topological and their experimental realisation. Because the He McKellar Wilkens phase has been recently observed wemore » pay particular attention to how the basic concept of 'an electric dipole encircles magnetic charges' was realised experimentally, and discuss possible future experimental realisations.« less
Electronic polymers and soft-matter-like broken symmetries in underdoped cuprates.
Capati, M; Caprara, S; Di Castro, C; Grilli, M; Seibold, G; Lorenzana, J
2015-07-06
Empirical evidence in heavy fermion, pnictide and other systems suggests that unconventional superconductivity appears associated to some form of real-space electronic order. For the cuprates, despite several proposals, the emergence of order in the phase diagram between the commensurate antiferromagnetic state and the superconducting state is not well understood. Here we show that in this regime doped holes assemble in 'electronic polymers'. Within a Monte Carlo study, we find that in clean systems by lowering the temperature the polymer melt condenses first in a smectic state and then in a Wigner crystal both with the addition of inversion symmetry breaking. Disorder blurs the positional order leaving a robust inversion symmetry breaking and a nematic order, accompanied by vector chiral spin order and with the persistence of a thermodynamic transition. Such electronic phases, whose properties are reminiscent of soft-matter physics, produce charge and spin responses in good accord with experiments.
Spontaneous charged lipid transfer between lipid vesicles.
Richens, Joanna L; Tyler, Arwen I I; Barriga, Hanna M G; Bramble, Jonathan P; Law, Robert V; Brooks, Nicholas J; Seddon, John M; Ces, Oscar; O'Shea, Paul
2017-10-03
An assay to study the spontaneous charged lipid transfer between lipid vesicles is described. A donor/acceptor vesicle system is employed, where neutrally charged acceptor vesicles are fluorescently labelled with the electrostatic membrane probe Fluoresceinphosphatidylethanolamine (FPE). Upon addition of charged donor vesicles, transfer of negatively charged lipid occurs, resulting in a fluorescently detectable change in the membrane potential of the acceptor vesicles. Using this approach we have studied the transfer properties of a range of lipids, varying both the headgroup and the chain length. At the low vesicle concentrations chosen, the transfer follows a first-order process where lipid monomers are transferred presumably through the aqueous solution phase from donor to acceptor vesicle. The rate of transfer decreases with increasing chain length which is consistent with energy models previously reported for lipid monomer vesicle interactions. Our assay improves on existing methods allowing the study of a range of unmodified lipids, continuous monitoring of transfer and simplified experimental procedures.
Observation of a Charge Density Wave Incommensuration Near the Superconducting Dome in Cu x TiSe 2
Kogar, A.; de la Pena, G. A.; Lee, Sangjun; ...
2017-01-11
X-ray diffraction was employed to study the evolution of the charge density wave (CDW) in Cu xTiSe 2 as a function of copper intercalation in order to clarify the relationship between the CDW and superconductivity. In this paper, the results show a CDW incommensuration arising at an intercalation value coincident with the onset of superconductivity at around x = 0.055(5) . Additionally, it was found that the charge density wave persists to higher intercalant concentrations than previously assumed, demonstrating that the CDW does not terminate inside the superconducting dome. A charge density wave peak was observed in samples up tomore » x = 0.091(6) , the highest copper concentration examined in this study. Lastly, the phase diagram established in this work suggests that charge density wave incommensuration may play a role in the formation of the superconducting state.« less
Liu, Junxue; Leng, Jing; Wu, Kaifeng; Zhang, Jun; Jin, Shengye
2017-02-01
Two-dimensional (2D) organolead halide perovskites are promising for various optoelectronic applications. Here we report a unique spontaneous charge (electron/hole) separation property in multilayered (BA) 2 (MA) n-1 Pb n I 3n+1 (BA = CH 3 (CH 2 ) 3 NH 3 + , MA = CH 3 NH 3 + ) 2D perovskite films by studying the charge carrier dynamics using ultrafast transient absorption and photoluminescence spectroscopy. Surprisingly, the 2D perovskite films, although nominally prepared as "n = 4", are found to be mixture of multiple perovskite phases, with n = 2, 3, 4 and ≈ ∞, that naturally align in the order of n along the direction perpendicular to the substrate. Driven by the band alignment between 2D perovskites phases, we observe consecutive photoinduced electron transfer from small-n to large-n phases and hole transfer in the opposite direction on hundreds of picoseconds inside the 2D film of ∼358 nm thickness. This internal charge transfer efficiently separates electrons and holes to the upper and bottom surfaces of the films, which is a unique property beneficial for applications in photovoltaics and other optoelectronics devices.
Possible formation of high temperature superconductor at an early stage of heavy-ion collisions
NASA Astrophysics Data System (ADS)
Liu, Hao; Yu, Lang; Chernodub, Maxim; Huang, Mei
2016-12-01
We investigate the effect of the inverse magnetic catalysis (IMC) on charged ρ meson condensation at finite temperature in the framework of the Nambu-Jona-Lasinio model, where mesons are calculated to the leading order of 1 /Nc expansion. The IMC for chiral condensate has been considered using three different approaches: incorporating the chiral condensate from lattice data, using the running coupling constant, and introducing the chiral chemical potential, respectively. It is observed that with no IMC effect included, the critical magnetic field e Bc for charged ρ condensation increases monotonically with the temperature. However, including IMC substantially affects the polarized charged ρ condensation around the critical temperature Tc of the chiral phase transition: first, the critical magnetic field e Bc for the charged ρ condensation decreases with the temperature, reaches its minimum value around Tc, and then increases with the temperature. It is quite surprising that the charged ρ can condense above the critical temperature of chiral phase transition with a even smaller critical magnetic field comparing its vacuum value. The Nambu-Jona-Lasinio model calculation shows that in the temperature region of 1 - 1.5 Tc , the critical magnetic field for charged ρ condensation is rather small and in the region of e Bc˜0.15 - 0.3 GeV2 , which suggests that high temperature superconductor might be created through noncentral heavy ion collisions at LHC energies.
NASA Astrophysics Data System (ADS)
Kumar, Manoranjan; Topham, Benjamin J.; Yu, RuiHui; Ha, Quoc Binh Dang; Soos, Zoltán G.
2011-06-01
The molar spin susceptibilities χ(T) of Na-tetracyanoquinodimethane (TCNQ), K-TCNQ, and Rb-TCNQ(II) are fit quantitatively to 450 K in terms of half-filled bands of three one-dimensional Hubbard models with extended interactions using exact results for finite systems. All three models have bond order wave (BOW) and charge density wave (CDW) phases with boundary V = Vc(U) for nearest-neighbor interaction V and on-site repulsion U. At high T, all three salts have regular stacks of TCNQ^- anion radicals. The χ(T) fits place Na and K in the CDW phase and Rb(II) in the BOW phase with V ≈ Vc. The Na and K salts have dimerized stacks at T < Td while Rb(II) has regular stacks at 100 K. The χ(T) analysis extends to dimerized stacks and to dimerization fluctuations in Rb(II). The three models yield consistent values of U, V, and transfer integrals t for closely related TCNQ^- stacks. Model parameters based on χ(T) are smaller than those from optical data that in turn are considerably reduced by electronic polarization from quantum chemical calculation of U, V, and t of adjacent TCNQ^- ions. The χ(T) analysis shows that fully relaxed states have reduced model parameters compared to optical or vibration spectra of dimerized or regular TCNQ^- stacks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alba, Paolo; Alberico, Wanda; Bellwied, Rene
We calculate ratios of higher-order susceptibilities quantifying fluctuations in the number of net-protons and in the net-electric charge using the Hadron Resonance Gas (HRG) model. We take into account the effect of resonance decays, the kinematic acceptance cuts in rapidity, pseudo-rapidity and transverse momentum used in the experimental analysis, as well as a randomization of the isospin of nucleons in the hadronic phase. By comparing these results to the latest experimental data from the STAR Collaboration, we determine the freeze-out conditions from net-electric charge and net-proton distributions and discuss their consistency.
New solutions of exotic charged black holes and their stability
NASA Astrophysics Data System (ADS)
Farhangkhah, N.
2016-01-01
We find a class of charged black hole solutions in third-order Lovelock Gravity. To obtain this class of solutions, we are not confined to the usual assumption of maximal symmetry on the horizon and will consider the solution whose boundary is Einstein space with supplementary conditions on its Weyl tensor. The Weyl tensor of such exotic horizons exposes two chargelike parameter to the solution. These parameters in addition with the electric charge, cause different features in comparison with the charged solution with constant-curvature horizon. For this class of asymptotically (A)dS solutions, the electric charge dominates the behavior of the metric as r goes to zero, and thus the central singularity is always timelike. We also compute the thermodynamic quantities for these solutions and will show that the first law of thermodynamics is satisfied. We also show that the extreme black holes with nonconstant-curvature horizons whose Ricci scalar are zero or a positive constant could exist depending on the value of the electric charge and chargelike parameters. Finally, we investigate the stability of the black holes by analyzing the behavior of free energy and heat capacity specially in the limits of small and large horizon radius. We will show that in contrast with charged solution with constant-curvature horizon, a phase transition occurs between very small and small black holes from a stable phase to an unstable one, while the large black holes show stability to both perturbative and nonperturbative fluctuations.
Optical properties of iron oxides
NASA Astrophysics Data System (ADS)
Musfeldt, Janice
2012-02-01
Magnetoelectric coupling in materials like multiferroics, dilute magnetic semiconductors, and topological insulators has attracted a great deal of attention, although most work has been done in the static limit. Optical spectroscopy offers a way to investigate the dynamics of charge-spin coupling, an area where there has been much less effort. Using these techniques, we discovered that charge fluctuation in LuFe2O4, the prototypical charge ordered multiferroic, has an onset well below the charge ordering transition, supporting the ``order by fluctuation'' mechanism for the development of charge order superstructure. Bragg splitting and large magneto-optical contrast suggest a low temperature monoclinic distortion that can be driven by both temperature and magnetic field. At the same time, dramatic splitting of the LuO2 layer phonon mode is attributed to charge-rich/poor proximity effects, and its temperature dependence reveals the antipolar nature of the W layer pattern. Using optical techniques, we also discovered that α-Fe2O3, a chemically-similar parent compound and one of the world's oldest and most iconic antiferromagnetic materials, appears more red in applied magnetic field than in zero field conditions. This effect is driven by a field-induced reorientation of magnetic order. The oscillator strength lost in the color band is partially transferred to the magnon side band, a process that also reveals a new exciton pattern induced by the modified exchange coupling. Analysis of the exciton pattern exposes C2/c monoclinic symmetry in the high field phase of hematite. Taken together, these findings advance our understanding of iron-based materials under extreme conditions. [4pt] Collaborators include: X. S. Xu, P. Chen, Q. -C. Sun, T. V. Brinzari (Tennessee); S. McGill (NHMFL); J. De Groot, M. Angst, R. P. Hermann (Julich); A. D. Christianson, B. C. Sales, D. Mandrus (ORNL); A. P. Litvinchuk (Houston); J. -W. Kim (Ames); Z. Islam (Argonne); N. Lee, S. -W. Cheong (Rutgers).
Electronic and elastic mode locking in charge density wave conductors
NASA Astrophysics Data System (ADS)
Zettl, A.
1986-12-01
Mode locking phenomena are investigated in the charge density wave (CDW) materials NbSe 3 and TaS 3. The joint application of ac and dc electric fields results in free running and mode locked solutions for the CDW drift velocity, with associated ac-induced dynamic coherence lengths ξ D(ac) on the order of several hundred microns. The electronic response couples directly to the elastic properties of the crystal, with corresponding free running and mode locked solutions for the velocity of sound. Phase slip center-induced discontinuities in the CDW phase velocity lead to mode locked solutions with period doubling routes to chaos, and noisy precursor effects at bifurcation points. These results are discussed in terms of simple models of CDW domain synchronization, and internal CDW dynamics.
Sun, J P; Matsuura, K; Ye, G Z; Mizukami, Y; Shimozawa, M; Matsubayashi, K; Yamashita, M; Watashige, T; Kasahara, S; Matsuda, Y; Yan, J-Q; Sales, B C; Uwatoko, Y; Cheng, J-G; Shibauchi, T
2016-07-19
The coexistence and competition between superconductivity and electronic orders, such as spin or charge density waves, have been a central issue in high transition-temperature (Tc) superconductors. Unlike other iron-based superconductors, FeSe exhibits nematic ordering without magnetism whose relationship with its superconductivity remains unclear. Moreover, a pressure-induced fourfold increase of Tc has been reported, which poses a profound mystery. Here we report high-pressure magnetotransport measurements in FeSe up to ∼15 GPa, which uncover the dome shape of magnetic phase superseding the nematic order. Above ∼6 GPa the sudden enhancement of superconductivity (Tc≤38.3 K) accompanies a suppression of magnetic order, demonstrating their competing nature with very similar energy scales. Above the magnetic dome, we find anomalous transport properties suggesting a possible pseudogap formation, whereas linear-in-temperature resistivity is observed in the normal states of the high-Tc phase above 6 GPa. The obtained phase diagram highlights unique features of FeSe among iron-based superconductors, but bears some resemblance to that of high-Tc cuprates.
Phase behavior and transitions of self-assembling nano-structured materials
NASA Astrophysics Data System (ADS)
Duan, Hu
Homologous series of supramolecular nanostructures have been investigated by a combination of transmission electron microscopy (TEM), electron diffraction (ED), thermal polarized optical microscopy and X-ray diffraction (XRD). Materials include amphiphilic oligomers and polymer such as charged complexes, dipeptide dendrons semi-fluorinated dendron and polyethyleneimines. Upon microphase separation, they self-assemble into either cylindrical or spherical shapes, which co-organize into a 2D P6mm hexagonal columnar phase or 3D Pm 3¯ n and Im 3¯ m cubic phases. Correlation between the phase selection and molecular architecture is established accordingly. The order-disorder transition (ODT) is explored by rheometry and rheo-optical microscopy in a model polymeric compound poly(N-[3,4-bis(n-dodecan-1-yloxy)benzoyl]ethyleneimine). Shear alignment of the hexagonal columnar liquid crystalline phase along the velocity direction at low temperature and shear disordering in the vicinity of the ODT were observed. After cessation of shear, transformation back to the stable columnar phase follows a row-nucleation mechanism. The order-order transition process is explored in a monodendron that exhibits a hexagonal columnar and a weakly birefringent mesophase. Polarized DIC microscopy strongly supports an epitaxial relationship between them.
Classical impurities and boundary Majorana zero modes in quantum chains
NASA Astrophysics Data System (ADS)
Müller, Markus; Nersesyan, Alexander A.
2016-09-01
We study the response of classical impurities in quantum Ising chains. The Z2 degeneracy they entail renders the existence of two decoupled Majorana modes at zero energy, an exact property of a finite system at arbitrary values of its bulk parameters. We trace the evolution of these modes across the transition from the disordered phase to the ordered one and analyze the concomitant qualitative changes of local magnetic properties of an isolated impurity. In the disordered phase, the two ground states differ only close to the impurity, and they are related by the action of an explicitly constructed quasi-local operator. In this phase the local transverse spin susceptibility follows a Curie law. The critical response of a boundary impurity is logarithmically divergent and maps to the two-channel Kondo problem, while it saturates for critical bulk impurities, as well as in the ordered phase. The results for the Ising chain translate to the related problem of a resonant level coupled to a 1d p-wave superconductor or a Peierls chain, whereby the magnetic order is mapped to topological order. We find that the topological phase always exhibits a continuous impurity response to local fields as a result of the level repulsion of local levels from the boundary Majorana zero mode. In contrast, the disordered phase generically features a discontinuous magnetization or charging response. This difference constitutes a general thermodynamic fingerprint of topological order in phases with a bulk gap.
Effect of duty-cycles on the air plasma gas-phase of dielectric barrier discharges
NASA Astrophysics Data System (ADS)
Barni, R.; Biganzoli, I.; Dell'Orto, E. C.; Riccardi, C.
2015-10-01
An experimental investigation concerning the effects of a duty-cycle in the supply of a dielectric barrier discharge in atmospheric pressure air has been performed. Electrical characteristics of the discharge have been measured, focusing mainly on the statistical properties of the current filaments and on dielectric surface charging, both affected by the frequent repetition of breakdown imposed by the duty-cycle. Information on the gas-phase composition was gathered too. In particular, a strong enhancement in the ozone formation rate is observed when suitable long pauses separate the active discharge phases. A simulation of the chemical kinetics in the gas-phase, based on a simplified discharge modeling, is briefly described in order to shed light on the observed increase in ozone production. The effect of a duty-cycle on surface modification of polymeric films in order to increase their wettability has been investigated too.
Hidden Order and Dimensional Crossover of the Charge Density Waves in TiSe 2
Chen, P.; Chan, Y. -H.; Fang, X. -Y.; ...
2016-11-29
Charge density wave (CDW) formation, a key physics issue for materials, arises from interactions among electrons and phonons that can also lead to superconductivity and other competing or entangled phases. The prototypical system TiSe 2, with a particularly simple (2 × 2 × 2) transition and no Kohn anomalies caused by electron-phonon coupling, is a fascinating but unsolved case after decades of research. Our angle-resolved photoemission measurements of the band structure as a function of temperature, aided by first-principles calculations, reveal a hitherto undetected but crucial feature: a (2 × 2) electronic order in each layer sets in at ~232more » K before the widely recognized three-dimensional structural order at ~205 K. The dimensional crossover, likely a generic feature of such layered materials, involves renormalization of different band gaps in two stages.« less
Order parameter fluctuations at a buried quantum critical point
Feng, Yejun; Wang, Jiyang; Jaramillo, R.; van Wezel, Jasper; Haravifard, S.; Srajer, G.; Liu, Y.; Xu, Z.-A.; Littlewood, P. B.; Rosenbaum, T. F.
2012-01-01
Quantum criticality is a central concept in condensed matter physics, but the direct observation of quantum critical fluctuations has remained elusive. Here we present an X-ray diffraction study of the charge density wave (CDW) in 2H-NbSe2 at high pressure and low temperature, where we observe a broad regime of order parameter fluctuations that are controlled by proximity to a quantum critical point. X-rays can track the CDW despite the fact that the quantum critical regime is shrouded inside a superconducting phase; and in contrast to transport probes, allow direct measurement of the critical fluctuations of the charge order. Concurrent measurements of the crystal lattice point to a critical transition that is continuous in nature. Our results confirm the long-standing expectations of enhanced quantum fluctuations in low-dimensional systems, and may help to constrain theories of the quantum critical Fermi surface. PMID:22529348
Willms, J Alexander; Beel, Rita; Schmidt, Martin L; Mundt, Christian
2014-01-01
Summary A new 4-hydroxy-L-proline derivative with a charged 1-ethylpyridinium-4-phenoxy substituent has been synthesized with the aim of facilitating mechanistic studies of proline-catalyzed reactions by ESI mass spectrometry. The charged residue ensures a strongly enhanced ESI response compared to neutral unmodified proline. The connection by a rigid linker fixes the position of the charge tag far away from the catalytic center in order to avoid unwanted interactions. The use of a charged catalyst leads to significantly enhanced ESI signal abundances for every catalyst-derived species which are the ones of highest interest present in a reacting solution. The new charged proline catalyst has been tested in the direct asymmetric inverse aldol reaction between aldehydes and diethyl ketomalonate. Two intermediates in accordance with the List–Houk mechanism for enamine catalysis have been detected and characterized by gas-phase fragmentation. In addition, their temporal evolution has been followed using a microreactor continuous-flow technique. PMID:25246962
DMSP Auroral Charging at Solar Cycle 24 Maximum
NASA Technical Reports Server (NTRS)
Chandler, M.; Parker, L. Neergaard; Minow, J. I.
2013-01-01
It has been well established that polar orbiting satellites can experience mild to severe auroral charging levels (on the order of a few hundred volts to few kilovolts negative frame potentials) during solar minimum conditions. These same studies have shown a strong reduction in charging during the rising and declining phases of the past few solar cycles with a nearly complete suppression of auroral charging at solar maximum. Recently, we have observed examples of high level charging during the recent approach to Solar Cycle 24 solar maximum conditions not unlike those reported by Frooninckx and Sojka. These observations demonstrate that spacecraft operations during solar maximum cannot be considered safe from auroral charging when solar activity is low. We present a survey of auroral charging events experienced by the Defense Meteorological Satellite Program (DMSP) F16 satellite during Solar Cycle 24 maximum conditions. We summarize the auroral energetic particle environment and the conditions necessary for charging to occur in this environment, we describe how the lower than normal solar activity levels for Solar Cycle 24 maximum conditions are conducive to charging in polar orbits, and we show examples of the more extreme charging events, sometimes exceeding 1 kV, during this time period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erokhin, A. N.; Erokhin, N. S.; Milant'ev, V. P.
2012-05-15
The phenomenon of trapping of weakly relativistic charged particles (with kinetic energies on the order of mc{sup 2}) into a regime of surfatron acceleration by an electromagnetic wave that propagates in plasma across a weak external magnetic field has been studied using nonlinear numerical calculations based on a solution of the relativistic equations of motion. Analysis showed that, for the wave amplitude above a certain threshold value and the initial wave phase outside the interval favorable for the surfing regime, the trajectory of a charged particle initially corresponds to its cyclotron rotation in the external magnetic field. For the initialmore » particle energies studied, the period of this rotation is relatively short. After a certain number (from several dozen to several thousand and above) of periods of rotation, the wave phase takes a value that is favorable for trapping of the charged particle on its trajectory by the electromagnetic wave, provided the Cherenkov resonance conditions are satisfied. As a result, the wave traps the charged particle and imparts it an ultrarelativistic acceleration. In momentum space, the region of trapping into the regime of surfing on an electromagnetic wave turns out to be rather large.« less
Hsu, Ben B Y; Seifter, Jason; Takacs, Christopher J; Zhong, Chengmei; Tseng, Hsin-Rong; Samuel, Ifor D W; Namdas, Ebinazar B; Bazan, Guillermo C; Huang, Fei; Cao, Yong; Heeger, Alan J
2013-03-26
Polymer light emitting field effect transistors are a class of light emitting devices that reveal interesting device physics. Device performance can be directly correlated to the most fundamental polymer science. Control over surface properties of the transistor dielectric can dramatically change the polymer morphology, introducing ordered phase. Electronic properties such as carrier mobility and injection efficiency on the interface can be promoted by ordered nanofibers in the polymer. Moreover, by controlling space charge in the polymer interface, the recombination zone can be spatially extended and thereby enhance the optical output.
BKT phase transition in a 2D system with long-range dipole-dipole interaction
NASA Astrophysics Data System (ADS)
Fedichev, P. O.; Men'shikov, L. I.
2012-01-01
We consider phase transitions in 2D XY-like systems with long-range dipole-dipole interactions and demonstrate that BKT-type phase transition always occurs separating the ordered (ferroelectric) and the disordered (paraelectric) phases. The low-temperature phase corresponds to a thermal state with bound vortex-antivortex pairs characterized by linear attraction at large distances. Using the Maier-Schwabl topological charge model, we show that bound vortex pairs polarize and screen the vortex-antivortex interaction, leaving only the logarithmic attraction at sufficiently large separations between the vortices. At higher temperatures the pairs dissociate and the phase transition similar to BKT occurs, though at a larger temperature than in a system without the dipole-dipole interaction.
Ultrafast gigantic photo-response in (EDO-TTF)2PF6 initiated by 10-fs laser pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenlein, Robert William; Itatani, Jiro; Rini, Matteo
2006-08-07
We photo-exited a charge-ordered organic salt (EDO-TTF)2PF6 with sub-10-fs optical pulses. The photo-induced metallic phase appeared within 80-fs after pumping, characterized by large changes in reflectivity (DELTA R/R~0.8) followed by strong coherent phonon modulation
Benali, Anouar; Shulenburger, Luke; Krogel, Jaron T.; ...
2016-06-07
The Magneli phase Ti 4O 7 is an important transition metal oxide with a wide range of applications because of its interplay between charge, spin, and lattice degrees of freedom. At low temperatures, it has non-trivial magnetic states very close in energy, driven by electronic exchange and correlation interactions. We have examined three low- lying states, one ferromagnetic and two antiferromagnetic, and calculated their energies as well as Ti spin moment distributions using highly accurate Quantum Monte Carlo methods. We compare our results to those obtained from density functional theory- based methods that include approximate corrections for exchange and correlation.more » Our results confirm the nature of the states and their ordering in energy, as compared with density-functional theory methods. However, the energy differences and spin distributions differ. Here, a detailed analysis suggests that non-local exchange-correlation functionals, in addition to other approximations such as LDA+U to account for correlations, are needed to simultaneously obtain better estimates for spin moments, distributions, energy differences and energy gaps.« less
NASA Astrophysics Data System (ADS)
Li, Neng; Mo, Yuxiang; Ching, Wai-Yim
2013-11-01
In this work, we assess a full spectrum of properties (chemical bonding, charge distribution, spin ordering, optical, and elastic properties) of Cr2AC (A = Al, Ge) and their hypothetical nitride counterparts Cr2AN (A = Al, Ge) based on density functional theory calculations. The calculated total energy values indicate that a variety of spin ordering of these four compounds depending on interlayer-interactions between M-A and M-X within the sublattice, which is supported by bonding analysis. MAX phase materials are discovered to possess exotic magnetic properties which indicates that these materials could serve as promising candidates for novel layered magnetic materials for various electronic and spintronic applications. Further analysis of optical properties for two polarization vectors of Cr2AX shows that the reflectivity is high in the visible-ultraviolet region up to ˜15 eV suggesting Cr2AX as a promising candidate for use as a coating material. The elastic coefficients (Cij) and bulk mechanical properties [bulk modulus (K), shear modulus (G), Young's modulus (E), Poisson's ratio (η), and Pugh ratio (G/K)] of these four Cr2AX compounds are also calculated and analyzed, which pave the way to predict or design new MAX phases that are less brittle or tougher by having a lower G/K value or higher η.
The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors
Hinton, J. P.; Thewalt, E.; Alpichshev, Z.; ...
2016-04-13
In the underdoped copper-oxides, high-temperature superconductivity condenses from a nonconventional metallic ”pseudogap” phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW) phase exists within the pseudogap regime. This CDW coexists and competes with superconductivity (SC) below the transition temperature T c, suggesting that these two orders are intimately related. Here we show that the condensation of the superfluid from this unconventional precursor is reflected in deviations from the predictions of BSC theory regarding the recombination rate of quasiparticles. We report a detailed investigation of the quasiparticle (QP) recombination lifetime,more » τ qp, as a function of temperature and magnetic field in underdoped HgBa 2CuO 4+δ (Hg-1201) and YBa 2Cu 3O 6+x (YBCO) single crystals by ultrafast time-resolved reflectivity. We find that τ qp(T) exhibits a local maximum in a small temperature window near T c that is prominent in underdoped samples with coexisting charge order and vanishes with application of a small magnetic field. We explain this unusual, non-BCS behavior by positing that T c marks a transition from phase-fluctuating SC/CDW composite order above to a SC/CDW condensate below. Lastly, our results suggest that the superfluid in underdoped cuprates is a condensate of coherently-mixed particle-particle and particle-hole pairs.« less
Liang, Wei-Wei; Huang, Chi-Feng; Wu, Kuan-Yi; Wu, San-Lien; Chang, Shu-Ting; Cheng, Yen-Ju; Wang, Chien-Lung
2016-04-21
A giant amphiphile, which is constructed with an amorphous nano-pyramid (triphenylamine, TPA) and a crystalline nano-sphere (C 60 ), was synthesized. Structural characterization indicates that this pyramid-sphere-shaped amphiphile ( TPA-C 60 ) forms a solvent-induced ordered phase, in which the two constituent units self-assemble into alternating stacks of two-dimensional (2D) TPA and C 60 nano-sheets. Due to the complexity of the molecular structure and the amorphous nature of the nano-pyramid, phase formation was driven by intermolecular C 60 -C 60 interactions and the ordered phase could not be reformed from the TPA-C 60 melt. Oriented crystal arrays of TPA-C 60 , which contain flat-on TPA/C 60 nano-stacks, can be obtained via a PDMS-assisted crystallization (PAC) technique. The flat-on dual-channel supramolecular structure of TPA-C 60 delivered ambipolar and balanced charge-transport characteristics with an average μ e of 2.11 × 10 -4 cm 2 V -1 s -1 and μ h of 3.37 × 10 -4 cm 2 V -1 s -1 . The anisotropic charge-transport ability of the pyramid-sphere-shaped amphiphile was further understood based on the lattice structure and the lattice orientation of TPA-C 60 revealed from electron diffraction analyses.
Linearization of the longitudinal phase space without higher harmonic field
NASA Astrophysics Data System (ADS)
Zeitler, Benno; Floettmann, Klaus; Grüner, Florian
2015-12-01
Accelerator applications like free-electron lasers, time-resolved electron diffraction, and advanced accelerator concepts like plasma acceleration desire bunches of ever shorter longitudinal extent. However, apart from space charge repulsion, the internal bunch structure and its development along the beam line can limit the achievable compression due to nonlinear phase space correlations. In order to improve such a limited longitudinal focus, a correction by properly linearizing the phase space is required. At large scale facilities like Flash at Desy or the European Xfel, a higher harmonic cavity is installed for this purpose. In this paper, another method is described and evaluated: Expanding the beam after the electron source enables a higher order correction of the longitudinal focus by a subsequent accelerating cavity which is operated at the same frequency as the electron gun. The elaboration of this idea presented here is based on a ballistic bunching scheme, but can be extended to bunch compression based on magnetic chicanes. The core of this article is an analytic model describing this approach, which is verified by simulations, predicting possible bunch length below 1 fs at low bunch charge. Minimizing the energy spread down to σE/E <1 0-5 while keeping the bunch long is another interesting possibility, which finds applications, e.g., in time resolved transmission electron microscopy concepts.
NASA Astrophysics Data System (ADS)
Radhakrishna, Mithun; Sing, Charles E.
Oppositely charged polymers can undergo associative liquid-liquid phase separation when mixed under suitable conditions of ionic strength, temperature and pH to form what are known as `polymeric complex coacervates'. Polymer coacervates find use in diverse array of applications like microencapsulation, drug delivery, membrane filtration and underwater adhesives. The similarity between complex coacervate environments and those in biological systems has also found relevance in areas of bio-mimicry. Our previous works have demonstrated how local charge correlations and molecular connectivity can drastically affect the phase behavior of coacervates. The precise location of charges along the chain therefore dramatically influences the local charge correlations, which consequently influences the phase behavior of coacervates. We investigate the effect of charge patterning along the polymer chain on the phase behavior of coacervates in the framework of the Restricted Primitive Model using Gibbs Ensemble Monte Carlo simulations. Our results show that charge patterning dramatically changes the phase behavior of polymer coacervates, which contrasts with the predictions of the classical Voorn-Overbeek theory. This provides the basis for designing new materials through charge driven self assembly by controlling the positioning of the charged monomers along the chain.
The QCD Equation of state and critical end-point estimates at O (μB6)
NASA Astrophysics Data System (ADS)
Sharma, Sayantan; Bielefeld-BNL-CCNU Collaboration
2017-11-01
We present results for the QCD Equation of State at non-zero chemical potentials corresponding to the conserved charges in QCD using Taylor expansion upto sixth order in the baryon number, electric charge and strangeness chemical potentials. The latter two are constrained by the strangeness neutrality and a fixed electric charge to baryon number ratio. In our calculations, we use the Highly Improved Staggered Quarks (HISQ) discretization scheme at physical quark masses and at different values of the lattice spacings to control lattice cut-off effects. Furthermore we calculate the pressure along lines of constant energy density, which serve as proxies for the freeze-out conditions and discuss their dependence on μB, which is necessary for hydrodynamic modelling near freezeout. We also provide an estimate of the radius of convergence of the Taylor series from the 6th order coefficients which provides a new constraint on the location of the critical end-point in the T-μB plane of the QCD phase diagram.
Atomic-scale observation of structural and electronic orders in the layered compound α-RuCl3
NASA Astrophysics Data System (ADS)
Ziatdinov, M.; Banerjee, A.; Maksov, A.; Berlijn, T.; Zhou, W.; Cao, H. B.; Yan, J.-Q.; Bridges, C. A.; Mandrus, D. G.; Nagler, S. E.; Baddorf, A. P.; Kalinin, S. V.
2016-12-01
A pseudospin-1/2 Mott phase on a honeycomb lattice is proposed to host the celebrated two-dimensional Kitaev model which has an elusive quantum spin liquid ground state, and fascinating physics relevant to the development of future templates towards topological quantum bits. Here we report a comprehensive, atomically resolved real-space study by scanning transmission electron and scanning tunnelling microscopies on a novel layered material displaying Kitaev physics, α-RuCl3. Our local crystallography analysis reveals considerable variations in the geometry of the ligand sublattice in thin films of α-RuCl3 that opens a way to realization of a spatially inhomogeneous magnetic ground state at the nanometre length scale. Using scanning tunnelling techniques, we observe the electronic energy gap of ~0.25 eV and intra-unit cell symmetry breaking of charge distribution in individual α-RuCl3 surface layer. The corresponding charge-ordered pattern has a fine structure associated with two different types of charge disproportionation at Cl-terminated surface.
Phenomenological view at the two-component physics of cuprates
NASA Astrophysics Data System (ADS)
Teitel'baum, G. B.
2017-08-01
In the search for mechanisms of high- T c superconductivity it is critical to know the electronic spectrum in the pseudogap phase from which superconductivity evolves. The lack of ARPES data for every cuprate family precludes an agreement as to its structure, doping and temperature dependence and the role of charge ordering. No approach has been developed yet to address the issue theoretically, and we limit ourselves by the phenomenological analysis of the experimental data. We argue that, in the Fermi-liquid-like regime ubiquitous in underdoped cuprates, the spectrum consists of holes on the Fermi arcs and an electronic pocket in contrast to the idea of the Fermi surface reconstruction via charge ordering. At high temperatures, the electrons are dragged by holes while at lower temperatures they get decoupled. The longstanding issue of the origin of the negative Hall coefficient in YBCO and Hg1201 at low temperature is resolved: the electronic contribution prevails, as its mobility becomes temperature independent, while the mobility of holes, scattered by the shortwavelength charge density waves, decreases.
Pinning of topological solitons at extrinsic defects in a quasi one-dimensional charge density wave
NASA Astrophysics Data System (ADS)
Razzaq, Samad; Wippermann, Stefan; Tae Hwan Kim Collaboration; Han Woong Yeom Collaboration
Quasi one-dimensional (1D) electronic systems are known to exhibit exotic physical phenomena, such as, e.g., Jahn Teller distortions, charge density wave (CDW) formation and non-Fermi liquid behavior. Solitonic excitations of the charge density wave ordered ground state and associated topological edge states in atomic wires are presently the focus of increasing attention. We carried out a combined ab initio and scanning tunneling microscopy (STM) study of solitonic and non-solitonic phase defects in the In/Si(111) atomic wire array. While free solitons move too fast to be imaged directly in STM, they can become trapped at extrinsic de- fects within the wire. We discuss the detailed atomistic structure of the responsible extrinsic defects and trapped solitons. Our study highlights the key role of coupled theory-experimental investigations in order to understand also the elusive fast moving solitons. S. W. gratefully acknowledges financial support from the German Research Foundation (DFG), Grant No. FOR1700.
Diffraction of Nondiverging Bessel Beams by Fork-Shaped and Rectilinear Grating
NASA Astrophysics Data System (ADS)
Janicijevic, Ljiljana; Topuzoski, Suzana
2007-04-01
We present an investigation about Fresnel diffraction of Bessel beams, propagating as nondiverging within a distance Ln, with or without phase singularities, by rectilinear and fork-shaped gratings. The common general transmission function of these gratings is defined and specialized for three different cases: binary amplitude gratings, amplitude holograms and their phase versions. Solving the Fresnel diffraction integral in cylindrical coordinates, we obtain analytical expressions for the diffracted wave amplitude for all types of proposed gratings, and make conclusions about the existence of phase singularities and corresponding topological charges in the created by the gratings beams of different diffraction orders.
Electronic phase transition in hollandite titanates BaxTi8O16 +δ
NASA Astrophysics Data System (ADS)
Murata, R.; Sato, T.; Okuda, T.; Horibe, Y.; Tsukasaki, H.; Mori, S.; Yamaguchi, N.; Sugimoto, K.; Kawaguchi, S.; Takata, M.; Katsufuji, T.
2015-12-01
We studied the physical properties of hollandite titanates, BaxTi8O16 +δ , which have double chains of edge-sharing TiO6 octahedra with d electrons in the t2 g states. We found that there is an electronic phase transition at ˜220 K, at which various properties exhibit anomalies. This phase transition is characterized by a modulation in the TiO6 chains and a spectral weight transfer of over 2 eV in the optical conductivity spectrum, which are presumably caused by charge and orbital ordering of the Ti t2 g electrons.
NASA Astrophysics Data System (ADS)
Kumar, Akshay
We study several quantum phases that are related to the quantum Hall effect. Our initial focus is on a pair of quantum Hall ferromagnets where the quantum Hall ordering occurs simultaneously with a spontaneous breaking of an internal symmetry associated with a semiconductor valley index. In our first example ---AlAs heterostructures--- we study domain wall structure, role of random-field disorder and dipole moment physics. Then in the second example ---Si(111)--- we show that symmetry breaking near several integer filling fractions involves a combination of selection by thermal fluctuations known as "order by disorder" and a selection by the energetics of Skyrme lattices induced by moving away from the commensurate fillings, a mechanism we term "order by doping". We also study ground state of such systems near filling factor one in the absence of valley Zeeman energy. We show that even though the lowest energy charged excitations are charge one skyrmions, the lowest energy skyrmion lattice has charge > 1 per unit cell. We then broaden our discussion to include lattice systems having multiple Chern number bands. We find analogs of quantum Hall ferromagnets in the menagerie of fractional Chern insulator phases. Unlike in the AlAs system, here the domain walls come naturally with gapped electronic excitations. We close with a result involving only topology: we show that ABC stacked multilayer graphene placed on boron nitride substrate has flat bands with non-zero local Berry curvature but zero Chern number. This allows access to an interaction dominated system with a non-trivial quantum distance metric but without the extra complication of a non-zero Chern number.
Competing spin density wave, collinear, and helical magnetism in Fe 1 + x Te
Stock, C.; Rodriguez, E. E.; Bourges, P.; ...
2017-04-07
The Fe 1+xTe phase diagram consists of two distinct magnetic structures with collinear order present at low interstitial iron concentrations and a helical phase at large values of x with these phases separated by a Lifshitz point. In this paper, we use unpolarized single-crystal diffraction to confirm the helical phase for large interstitial iron concentrations and polarized single-crystal diffraction to demonstrate the collinear order for the iron-deficient side of the Fe 1+xTe phase diagram. Polarized neutron inelastic scattering shows that the fluctuations associated with this collinear order are predominately transverse at low-energy transfers, consistent with a localized magnetic moment picture.more » We then apply neutron inelastic scattering and polarization analysis to investigate the dynamics and structure near the boundary between collinear and helical orders in the Fe 1+xTe phase diagram. We first show that the phase separating collinear and helical orders is characterized by a spin density wave with a single propagation wave vector of (~0.45, 0, 0.5). We do not observe harmonics or the presence of a charge density wave. The magnetic fluctuations associated with this wave vector are different from the collinear phase, being strongly longitudinal in nature and correlated anisotropically in the (H,K) plane. The excitations preserve the C 4 symmetry of the lattice but display different widths in momentum along the two tetragonal directions at low-energy transfers. Finally, while the low-energy excitations and minimal magnetic phase diagram can be understood in terms of localized interactions, we suggest that the presence of the density wave phase implies the importance of electronic and orbital properties.« less
Competing spin density wave, collinear, and helical magnetism in Fe 1 + x Te
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stock, C.; Rodriguez, E. E.; Bourges, P.
The Fe 1+xTe phase diagram consists of two distinct magnetic structures with collinear order present at low interstitial iron concentrations and a helical phase at large values of x with these phases separated by a Lifshitz point. In this paper, we use unpolarized single-crystal diffraction to confirm the helical phase for large interstitial iron concentrations and polarized single-crystal diffraction to demonstrate the collinear order for the iron-deficient side of the Fe 1+xTe phase diagram. Polarized neutron inelastic scattering shows that the fluctuations associated with this collinear order are predominately transverse at low-energy transfers, consistent with a localized magnetic moment picture.more » We then apply neutron inelastic scattering and polarization analysis to investigate the dynamics and structure near the boundary between collinear and helical orders in the Fe 1+xTe phase diagram. We first show that the phase separating collinear and helical orders is characterized by a spin density wave with a single propagation wave vector of (~0.45, 0, 0.5). We do not observe harmonics or the presence of a charge density wave. The magnetic fluctuations associated with this wave vector are different from the collinear phase, being strongly longitudinal in nature and correlated anisotropically in the (H,K) plane. The excitations preserve the C 4 symmetry of the lattice but display different widths in momentum along the two tetragonal directions at low-energy transfers. Finally, while the low-energy excitations and minimal magnetic phase diagram can be understood in terms of localized interactions, we suggest that the presence of the density wave phase implies the importance of electronic and orbital properties.« less
Competing spin density wave, collinear, and helical magnetism in Fe1 +xTe
NASA Astrophysics Data System (ADS)
Stock, C.; Rodriguez, E. E.; Bourges, P.; Ewings, R. A.; Cao, H.; Chi, S.; Rodriguez-Rivera, J. A.; Green, M. A.
2017-04-01
The Fe1 +xTe phase diagram consists of two distinct magnetic structures with collinear order present at low interstitial iron concentrations and a helical phase at large values of x with these phases separated by a Lifshitz point. We use unpolarized single-crystal diffraction to confirm the helical phase for large interstitial iron concentrations and polarized single-crystal diffraction to demonstrate the collinear order for the iron-deficient side of the Fe1 +xTe phase diagram. Polarized neutron inelastic scattering shows that the fluctuations associated with this collinear order are predominately transverse at low-energy transfers, consistent with a localized magnetic moment picture. We then apply neutron inelastic scattering and polarization analysis to investigate the dynamics and structure near the boundary between collinear and helical orders in the Fe1 +xTe phase diagram. We first show that the phase separating collinear and helical orders is characterized by a spin density wave with a single propagation wave vector of (˜0.45 , 0, 0.5). We do not observe harmonics or the presence of a charge density wave. The magnetic fluctuations associated with this wave vector are different from the collinear phase, being strongly longitudinal in nature and correlated anisotropically in the (H ,K ) plane. The excitations preserve the C4 symmetry of the lattice but display different widths in momentum along the two tetragonal directions at low-energy transfers. While the low-energy excitations and minimal magnetic phase diagram can be understood in terms of localized interactions, we suggest that the presence of the density wave phase implies the importance of electronic and orbital properties.
Ground-state magnetic phase diagram of bow-tie graphene nanoflakes in external magnetic field
NASA Astrophysics Data System (ADS)
Szałowski, Karol
2013-12-01
The magnetic phase diagram of a ground state is studied theoretically for graphene nanoflakes of bow-tie shape and various sizes in external in-plane magnetic field. The tight-binding Hamiltonian supplemented with Hubbard term is used to model the electronic structure of the systems in question. The existence of the antiferromagnetic phase with magnetic moments localized at the sides of the bow-tie is found for low field and a field-induced spin-flip transition to ferromagnetic state is predicted to occur in charge-undoped structures. For small nanoflake doped with a single charge carrier, the low-field phase is ferrimagnetic and a metamagnetic transition to ferromagnetic ordering can be forced by the field. The critical field is found to decrease with increasing size of the nanoflake. The influence of diagonal and off-diagonal disorder on the mentioned magnetic properties is studied. The effect of off-diagonal disorder is found to be more important than that of diagonal disorder, leading to significantly widened distribution of critical fields for disordered population of nanoflakes.
Hydrogen absorption by thin Pd/Nb films deposited on glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reisfeld, G.; Jisrawi, N.M.; Ruckman, M.W.
Hydrogen absorption by 200{endash}2000-A-thick Pd-capped Nb films, between 5 and 110{degree}C, was studied by simultaneous four-probe resistivity and volumetric measurements. The resistivity as a function of hydrogen concentration was measured while charging the films with hydrogen, and was used to compute the change in hydrogen concentration in the film, during the reaction with oxygen. For the thinnest films (200 A thick), the hydrogen charging and discharging curves indicate that a first-order gas-liquid-like phase transition with a {ital T}{sub {ital c}} of 70{endash}75{degree}C takes place. The H-Nb phase diagram for the 200-A film looks like the H/bulk Nb {alpha}-{alpha}{prime} phase diagrammore » which has a higher {ital T}{sub {ital c}} (173{degree}C). We attribute the substantial modifications of the film{close_quote}s phase diagram to the clamping of the Nb film at its interfaces with glass and Pd and to the nanostructure of the films. {copyright} {ital 1996 The American Physical Society.}« less
In operando infrared spectroscopy of lithium polysulfides using a novel spectro-electrochemical cell
NASA Astrophysics Data System (ADS)
Saqib, Najmus; Ohlhausen, Gretchen M.; Porter, Jason M.
2017-10-01
A new in operando spectro-electrochemical Li-S cell has been demonstrated. The novel design allows investigations of the liquid electrolyte phase, in a commercial coin cell geometry, at C rates much higher than conventional in situ cells. We use ATR FT-IR spectroscopy, coupled with a previously developed polysulfide diagnostic to quantify the evolution of lithium polysulfides during the discharge and charge cycles of a Li-S cell. The trends observed in the polysulfide order and concentration with respect to state of charge are consistent with prevailing understanding of the electrochemical mechanisms of Li-S battery operation. During discharge, we observe the reduction of elemental sulfur to dissolved Li2S8 polysulfides, and their cascading conversion to smaller polysulfides until insoluble species (Li2S2 and Li2S) are formed. During cell charging, we observe the oxidation of insoluble polysulfides to larger, soluble polysulfides (Li2Sn , n > 3), and infer an eventual recovery of crystalline sulfur, from changes in polysulfides. Long-term evolution of polysulfides is observed over 7 discharge/charge cycles. Capacity fading is evident in the decay of polysulfide order and concentration at the same state of charge between cycles. Sulfur is not recovered by charging the cell in the latter cycles, and the active material is lost as solid Li2S .
X-cube model on generic lattices: Fracton phases and geometric order
NASA Astrophysics Data System (ADS)
Slagle, Kevin; Kim, Yong Baek
2018-04-01
Fracton order is a new kind of quantum order characterized by topological excitations that exhibit remarkable mobility restrictions and a robust ground-state degeneracy (GSD) which can increase exponentially with system size. In this paper, we present a generic lattice construction (in three dimensions) for a generalized X-cube model of fracton order, where the mobility restrictions of the subdimensional particles inherit the geometry of the lattice. This helps explain a previous result that lattice curvature can produce a robust GSD, even on a manifold with trivial topology. We provide explicit examples to show that the (zero-temperature) phase of matter is sensitive to the lattice geometry. In one example, the lattice geometry confines the dimension-1 particles to small loops, which allows the fractons to be fully mobile charges, and the resulting phase is equivalent to (3+1)-dimensional toric code. However, the phase is sensitive to more than just lattice curvature; different lattices without curvature (e.g., cubic or stacked kagome lattices) also result in different phases of matter, which are separated by phase transitions. Unintuitively, however, according to a previous definition of phase [X. Chen et al., Phys. Rev. B 82, 155138 (2010), 10.1103/PhysRevB.82.155138], even just a rotated or rescaled cubic results in different phases of matter, which motivates us to propose a coarser definition of phase for gapped ground states and fracton order. This equivalence relation between ground states is given by the composition of a local unitary transformation and a quasi-isometry (which can rotate and rescale the lattice); equivalently, ground states are in the same phase if they can be adiabatically connected by varying both the Hamiltonian and the positions of the degrees of freedom (via a quasi-isometry). In light of the importance of geometry, we further propose that fracton orders should be regarded as a geometric order.
Hidden order and flux attachment in symmetry-protected topological phases: A Laughlin-like approach
NASA Astrophysics Data System (ADS)
Ringel, Zohar; Simon, Steven H.
2015-05-01
Topological phases of matter are distinct from conventional ones by their lack of a local order parameter. Still in the quantum Hall effect, hidden order parameters exist and constitute the basis for the celebrated composite-particle approach. Whether similar hidden orders exist in 2D and 3D symmetry protected topological phases (SPTs) is a largely open question. Here, we introduce a new approach for generating SPT ground states, based on a generalization of the Laughlin wave function. This approach gives a simple and unifying picture of some classes of SPTs in 1D and 2D, and reveals their hidden order and flux attachment structures. For the 1D case, we derive exact relations between the wave functions obtained in this manner and group cohomology wave functions, as well as matrix product state classification. For the 2D Ising SPT, strong analytical and numerical evidence is given to show that the wave function obtained indeed describes the desired SPT. The Ising SPT then appears as a state with quasi-long-range order in composite degrees of freedom consisting of Ising-symmetry charges attached to Ising-symmetry fluxes.
NASA Astrophysics Data System (ADS)
Paul, Sanjoy
Organic electronics offer the possibility of producing low cost, flexible, and large area electronics. Organic semiconductors (OSCs) (organic polymers and crystals), used in organic electronics, are promising materials for novel optical and electronic devices such as organic light emitting diodes, organic field effect transistors, organic sensors, and organic photovoltaics (OPVs). OSCs are composed of molecules weakly held together via van der Walls forces rather than covalent bonds as in the case of inorganic semiconductors such as Si. The combined effect of small wave function overlap, spatial and energetic disorder in organic semiconducting materials lead to localization of charge carriers and, in many cases, hopping conduction. OSCs also differ from conventional semiconductors in that charges photogeneration (e.g., in OPVs) proceeds via the production, diffusion, and dissociation of excitons. Liquid crystalline OSCs (LCOSCs) are semiconductors with phases intermediate between the highly ordered crystalline and completely disordered liquid phases. These materials offer many advantages including facile alignment and the opportunity to study the effects of differing intermolecular geometries on transfer integrals, disorder-induced trapping, charge mobilities, and photogeneration efficiency. In this dissertation work, we explored the photogeneration and charge transport mechanisms in a few model smectic and discotic LCs to better understand the governing principles of photogeneration and charge transport using conventional and novel methods based on the pulsed laser time-of-flight charge carrier transport technique. Four major interrelated topics were considered in this research. First, a sample of smectic LC was aligned in order to compare the resulting hole mobility to that of an unaligned sample, with the aim of understanding how the intermolecular alignment over large length scales affects the hopping probability. The role of the polarization of the photogenerating light was also explored in the context of these anisotropic systems. Next, the photogeneration and charge transport was investigated as a function of temperature, electric field, the wavelength and intensity of photogenerating light. Different exciton dissociation interfaces between the electrode and the LC to probe the details of the mechanism of excitonic dissociation (e.g., surface mediated generation vs. exciton-exciton fusion) were explored. Next, we have also developed a new method of spatially resolving the photogeneration and transport mechanisms in inhomogeneous OSCs called "scanning time of flight microscopy (STOFm)" which simultaneously obtains 2d images of transport coefficients and polarized transmittance. The STOFm was extensively used to study charge transport in various structured semiconductors: smectics, discotics, as well as in phase separated LC/polymer structures. Finally, this work involves characterization and analysis of transport in a number of new phenyl-naphthalene LC OSCs.
Physical properties and spin excitations in the lacunar spinels AV4S8(A =Ga, Ge)
NASA Astrophysics Data System (ADS)
Pokharel, Ganesh; Christianson, Andrew; Mandrus, David; Liusuo Wu Team; Mark Lumsden Collaboration; Rupam Mukherjee Collaboration; Matthew Stone Collaboration; Georg Ehlers Collaboration
In the lacunar spinels AV4S8 (A = Ga, Ge), the interplay of spin, charge, and orbital degrees of freedom results in a complex phase diagram which includes: ferroelectric, orbitally ordered, and Néel type skyrmion phases. Below 12.7 K GaV4S8 exhibits cycloidal and ferromagnetic order and the application of a magnetic field results in a Néel type skyrmion spin structure. On the other hand, GeV4S8 orders antiferromagentically below 18 K. To illuminate the underlying physics driving the formation of these novel phases, we have measured the magnetization, resistivity, thermal conductivity, and inelastic neutron scattering spectrum of these spinels. The inelastic neutron scattering data shows broadened spin excitations which extend to 6 meV within the magnetically order phases for both GaV4S8 and GeV4S8. The similarity of the spectra for ferromagnetic GaV4S8 and antiferromagnetic GeV4S8 reflects the close balance of ferromagnetic and antiferromagnetic interactions in these materials. This research is funded by the Gordon and Betty Moore Foundation's EPIQS Initiative through Grant GBMF4416.
Microscopic theory of longitudinal sound velocity in charge ordered manganites.
Rout, G C; Panda, S
2009-10-14
A microscopic theory of longitudinal sound velocity in a manganite system is reported here. The manganite system is described by a model Hamiltonian consisting of charge density wave (CDW) interaction in the e(g) band, an exchange interaction between spins of the itinerant e(g) band electrons and the core t(2g) electrons, and the Heisenberg interaction of the core level spins. The magnetization and the CDW order parameters are considered within mean-field approximations. The phonon Green's function was calculated by Zubarev's technique and hence the longitudinal velocity of sound was finally calculated for the manganite system. The results show that the elastic spring involved in the velocity of sound exhibits strong stiffening in the CDW phase with a decrease in temperature as observed in experiments.
Sharma, G D; Suresh, P; Sharma, S S; Vijay, Y K; Mikroyannidis, John A
2010-02-01
The morphology of the photoactive layer used in the bulk heterojunction photovoltaic devices is crucial for efficient charge generation and their collection at the electrodes. We investigated the solvent vapor annealing and thermal annealing effect of an alternating phenylenevinylene copolymer P:PCBM blend on its morphology and optical properties. The UV-visible absorption spectroscopy shows that both solvent and thermal annealing can result in self-assembling of copolymer P to form an ordered structure, leading to enhanced absorption in the red region and hole transport enhancement. By combining the solvent and thermal annealing of the devices, the power conversion efficiency is improved. This feature was attributed to the fact that the PCBM molecules begin to diffuse into aggregates and together with the ordered copolymer P phase form bicontinuous pathways in the entire layer for efficient charge separation and transport. Furthermore, the measured photocurrent also suggests that the space charges no longer limit the values of the short circuit current (J(sc)) and fill factor (FF) for solvent-treated and thermally annealed devices. These results indicate that the higher J(sc) and PCE for the solvent-treated and thermally annealed devices can be attributed to the phase separation of active layers, which leads to a balanced carrier mobility. The overall PCE of the device based on the combination of solvent annealing and thermal annealing is about 3.7 %.
Low Dimensionality Effects in Complex Magnetic Oxides
NASA Astrophysics Data System (ADS)
Kelley, Paula J. Lampen
Complex magnetic oxides represent a unique intersection of immense technological importance and fascinating physical phenomena originating from interwoven structural, electronic and magnetic degrees of freedom. The resulting energetically close competing orders can be controllably selected through external fields. Competing interactions and disorder represent an additional opportunity to systematically manipulate the properties of pure magnetic systems, leading to frustration, glassiness, and other novel phenomena while finite sample dimension plays a similar role in systems with long-range cooperative effects or large correlation lengths. A rigorous understanding of these effects in strongly correlated oxides is key to manipulating their functionality and device performance, but remains a challenging task. In this dissertation, we examine a number of problems related to intrinsic and extrinsic low dimensionality, disorder, and competing interactions in magnetic oxides by applying a unique combination of standard magnetometry techniques and unconventional magnetocaloric effect and transverse susceptibility measurements. The influence of dimensionality and disorder on the nature and critical properties of phase transitions in manganites is illustrated in La0.7 Ca0.3MnO3, in which both size reduction to the nanoscale and chemically-controlled quenched disorder are observed to induce a progressive weakening of the first-order nature of the transition, despite acting through the distinct mechanisms of surface effects and site dilution. In the second-order material La0.8Ca0.2MnO3, a strong magnetic field is found to drive the system toward its tricritical point as competition between exchange interactions in the inhomogeneous ground state is suppressed. In the presence of large phase separation stabilized by chemical disorder and long-range strain, dimensionality has a profound effect. With the systematic reduction of particle size in microscale-phase-separated (La, Pr, Ca)MnO3 we observe a disruption of the long-range glassy strains associated with the charge-ordered phase in the bulk, lowering the field and pressure threshold for charge-order melting and increasing the ferromagnetic volume fraction as particle size is decreased. The long-range charge-ordered phase becomes completely suppressed when the particle size falls below 100 nm. In contrast, low dimensionality in the geometrically frustrated pseudo-1D spin chain compound Ca3Co2O6 is intrinsic, arising from the crystal lattice. We establish a comprehensive phase diagram for this exotic system consistent with recent reports of an incommensurate ground state and identify new sub-features of the ferrimagnetic phase. When defects in the form of grain boundaries are incorporated into the system the low-temperature slow-dynamic state is weakened, and new crossover phenomena emerge in the spin relaxation behavior along with an increased distribution of relaxation times. The presence of both disorder and randomness leads to a spin-glass-like state, as observed in gammaFe2O3 hollow nanoparticles, where freezing of surface spins at low temperature generates an irreversible magnetization component and an associated exchange-biasing effect. Our results point to distinct dynamic behaviors on the inner and outer surfaces of the hollow structures. Overall, these studies yield new physical insights into the role of dimensionality and disorder in these complex oxide systems and highlight the sensitivity of their manifested magnetic ground states to extrinsic factors, leading in many cases to crossover behaviors where the balance between competing phases is altered, or to the emergence of entirely new magnetic phenomena.
Disorder induced spin coherence in polyfluorene thin film semiconductors
NASA Astrophysics Data System (ADS)
Miller, Richard G.; van Schooten, Kipp; Malissa, Hans; Waters, David P.; Lupton, John M.; Boehme, Christoph
2014-03-01
Charge carrier spins in polymeric organic semiconductors significantly influence magneto-optoelectronic properties of these materials. In particular, spin relaxation times influence magnetoresistance and electroluminescence. We have studied the role of structural and electronic disorder in polaron spin-relaxation times. As a model polymer, we used polyfluorene, which can exist in two distinct morphologies: an amorphous (glassy) and an ordered (beta) phase. The phases can be controlled in thin films by preparation parameters and verified by photoluminescence spectroscopy. We conducted pulsed electrically detected magnetic resonance (pEDMR) measurements to determine spin-dephasing times by transient current measurements under bipolar charge carrier injection conditions and a forward bias. The measurements showed that, contrary to intuition, spin-dephasing times increase with material disorder. We attribute this behavior to a reduction in hyperfine field strength for carriers in the glassy phase due to increased structural disorder in the hydrogenated side chains, leading to longer spin coherence times. We acknowledge support by the Department of Energy, Office of Basic Energy Sciences under Award #DE-SC0000909.
Polar Fluctuations in Metal Halide Perovskites Uncovered by Acoustic Phonon Anomalies
Guo, Peijun; Xia, Yi; Gong, Jue; ...
2017-09-28
Solution-processable metal-halide perovskites (MHPs) offer great promise for efficient light harvesting and emitting devices due to their long carrier lifetime and superior carrier transport characteristics. Ferroelectric effects, a hallmark of traditional oxide perovskites, was proposed to be a mechanism to suppress carrier recombination and enhance charge transport in MHPs, but the existence and influence of such polar order is still of considerable debate. Here we performed transient reflection measurements on single crystals of both inorganic and organic-inorganic (hybrid) MHPs over a range of temperatures, and demonstrate significant phonon softening in the cubic phases close to the cubic-to-tetragonal phase transition temperatures.more » Such phonon softening indicates the formation of polar domains, which grow in size upon cooling and can persist in the low-temperature tetragonal and orthorhombic phases. Our results link the extraordinary electronic properties of MHPs to the spontaneous polarizations which can contribute to more efficient charge separation and characteristics of an indirect bandgap.« less
Electronic ferroelectricity induced by charge and orbital orderings.
Yamauchi, Kunihiko; Barone, Paolo
2014-03-12
After the revival of the magnetoelectric effect which took place in the early 2000s, the interest in multiferroic materials displaying simultaneous presence of spontaneous long-range magnetic and dipolar order has motivated an exponential growth of research activity, from both the experimental and theoretical perspectives. Within this context, and relying also on the rigorous formulation of macroscopic polarization as provided by the Berry-phase approach, it has been possible to identify new microscopic mechanisms responsible for the appearance of ferroelectricity. In particular, it has been realized that electronic spin, charge and orbital degrees of freedom may be responsible for the breaking of the space-inversion symmetry, a necessary condition for the appearance of electric polarization, even in centrosymmetric crystal structures. In view of its immediate potential application in magnetoelectric-based devices, many efforts have been made to understand how magnetic orderings may lead to ferroelectric polarization, and to identify candidate materials. On the other hand, the role of charge and orbital degrees of freedom, which have received much less attention, has been predicted to be non-negligible in several cases. Here, we review recent theoretical advances in the field of so-called electronic ferroelectricity, focusing on the possible mechanisms by which charge- and/or orbital-ordering effects may cause the appearance of macroscopic polarization. Generally, a naive distinction can be drawn between materials displaying almost localized electrons and those characterized by a strong covalent character and delocalized electrons. As for the latter, an intuitive understanding of basic mechanisms is provided in the framework of tight-binding model Hamiltonians, which are used to shed light on unusual charge/orbital effects in half-doped manganites, whereas the case of magnetite will be thoroughly discussed in light of recent progress pointing to an electronic origin of its proposed ferroelectric and magnetoelectric properties.
Graphene analogue in (111)-oriented BaBiO3 bilayer heterostructures for topological electronics.
Kim, Rokyeon; Yu, Jaejun; Jin, Hosub
2018-01-11
Topological electronics is a new field that uses topological charges as current-carrying degrees of freedom. For topological electronics applications, systems should host topologically distinct phases to control the topological domain boundary through which the topological charges can flow. Due to their multiple Dirac cones and the π-Berry phase of each Dirac cone, graphene-like electronic structures constitute an ideal platform for topological electronics; graphene can provide various topological phases when incorporated with large spin-orbit coupling and mass-gap tunability via symmetry-breaking. Here, we propose that a (111)-oriented BaBiO 3 bilayer (BBL) sandwiched between large-gap perovskite oxides is a promising candidate for topological electronics by realizing a gap-tunable, and consequently a topology-tunable, graphene analogue. Depending on how neighboring perovskite spacers are chosen, the inversion symmetry of the BBL heterostructure can be either conserved or broken, leading to the quantum spin Hall (QSH) and quantum valley Hall (QVH) phases, respectively. BBL sandwiched by ferroelectric compounds enables switching of the QSH and QVH phases and generates the topological domain boundary. Given the abundant order parameters of the sandwiching oxides, the BBL can serve as versatile topological building blocks in oxide heterostructures.
NASA Astrophysics Data System (ADS)
Vivet, S.; Latroche, M.; Chabre, Y.; Joubert, J.-M.; Knosp, B.; Percheron-Guégan, A.
2005-05-01
Multi-substituted LaNi 5-type alloys (AB 5+x) are widely used as negative electrode materials in commercial Ni-MH batteries. Cobalt substitution on Ni sites allows to enhance battery cycle life by reducing alloy pulverization induced by hydrogen cycling. This improvement is attributed to the occurrence of a three-phase process (α, β and γ) during electrochemical hydrogen loading. In order to better understand the effect of the composition on the phase occurrence and to reduce the rate of costly cobalt, an in situ neutron diffraction study has been performed at room temperature during electrochemical charge of two different electrode materials MmNi 4.07Mn 0.63Al 0.2M 0.4 with M=Fe and Mn and B/A=5.3. These cobalt free compounds show cycle life comparable to that of commercial materials. The results show that three phases are also observed for these samples. The γ-phase content depends on M and is higher for M=Fe than for M=Mn. These results are related to the improved cycle lives and to the alloy pulverization process.
NASA Astrophysics Data System (ADS)
Nakamura, Shin
2012-09-01
We find novel phase transitions and critical phenomena that occur only outside the linear-response regime of current-driven nonequilibrium states. We consider the strongly interacting (3+1)-dimensional N=4 large-Nc SU(Nc) supersymmetric Yang-Mills theory with a single flavor of fundamental N=2 hypermultiplet as a microscopic theory. We compute its nonlinear nonballistic quark-charge conductivity by using the AdS/CFT correspondence. We find that the system exhibits a novel nonequilibrium first-order phase transition where the conductivity jumps and the sign of the differential conductivity flips at finite current density. A nonequilibrium critical point is discovered at the end point of the first-order regime. We propose a nonequilibrium steady-state analogue of thermodynamic potential in terms of the gravity-dual theory in order to define the transition point. Nonequilibrium analogues of critical exponents are proposed as well. The critical behavior of the conductivity is numerically confirmed on the basis of these proposals. The present work provides a new example of nonequilibrium phase transitions and nonequilibrium critical points.
NASA Astrophysics Data System (ADS)
Biedermann, Benedikt; Denner, Ansgar; Hofer, Lars
2017-10-01
The production of a neutral and a charged vector boson with subsequent decays into three charged leptons and a neutrino is a very important process for precision tests of the Standard Model of elementary particles and in searches for anomalous triple-gauge-boson couplings. In this article, the first computation of next-to-leading-order electroweak corrections to the production of the four-lepton final states μ + μ -e+ ν e, {μ}+{μ}-{e}-{\\overline{ν}}e , μ + μ - μ + ν μ , and {μ}+{μ}-{μ}-{\\overline{ν}}_{μ } at the Large Hadron Collider is presented. We use the complete matrix elements at leading and next-to-leading order, including all off-shell effects of intermediate massive vector bosons and virtual photons. The relative electroweak corrections to the fiducial cross sections from quark-induced partonic processes vary between -3% and -6%, depending significantly on the event selection. At the level of differential distributions, we observe large negative corrections of up to -30% in the high-energy tails of distributions originating from electroweak Sudakov logarithms. Photon-induced contributions at next-to-leading order raise the leading-order fiducial cross section by +2%. Interference effects in final states with equal-flavour leptons are at the permille level for the fiducial cross section, but can lead to sizeable effects in off-shell sensitive phase-space regions.
Zhou, Yong-Ning; Yue, Ji-Li; Hu, Enyuan; ...
2016-08-08
Using fast time-resolved in situ X-ray diffraction, charge-rate dependent phase transition processes of layer structured cathode material LiNi 1/3Mn 1/3Co 1/3O 2 for lithium-ion batteries are studied. During first charge, intermediate phases emerge at high rates of 10C, 30C, and 60C, but not at low rates of 0.1C and 1C. These intermediate phases can be continuously observed during relaxation after the charging current is switched off. After half-way charging at high rate, sample studied by scanning transmission electron microscopy shows Li-rich and Li-poor phases' coexistence with tetrahedral occupation of Li in Li-poor phase. Also, the high rate induced overpotential ismore » thought to be the driving force for the formation of this intermediate Li-poor phase. The in situ quick X-ray absorption results show that the oxidation of Ni accelerates with increasing charging rate and the Ni 4+ state can be reached at the end of charge with 30C rate. Finally, these results give new insights in the understanding of the layered cathodes during high-rate charging.« less
Multiorbital kinetic effects on charge ordering of frustrated electrons on the triangular lattice
NASA Astrophysics Data System (ADS)
Février, C.; Fratini, S.; Ralko, A.
2015-06-01
The role of the multiorbital effects on the emergence of frustrated electronic orders on the triangular lattice at half filling is investigated through an extended spinless fermion Hubbard model. By using two complementary approaches, unrestricted Hartree-Fock and exact diagonalizations, we unravel a very rich phase diagram controlled by the strength of both local and off-site Coulomb interactions and by the interorbital hopping anisotropy ratio t'/t . Three robust unconventional electronic phases, a pinball liquid, an inverse pinball liquid, and a large-unit-cell √{12 }×√{12 } droplet phase, are found to be generic in the triangular geometry, being controlled by the band structure parameters. The latter are also stabilized in the isotropic limit of our microscopic model, which recovers the standard SU(2) spinful extended single-band Hubbard model.
Nanoscale ferromagnetism in phase-separated manganites
NASA Astrophysics Data System (ADS)
Mori, S.; Horibe, Y.; Asaka, T.; Matsui, Y.; Chen, C. H.; Cheong, S. W.
2007-03-01
Magnetic domain structures in phase-separated manganites were investigated by low-temperature Lorentz electron microscopy, in order to understand some unusual physical properties such as a colossal magnetoresistance (CMR) effect and a metal-to-insulator transition. In particular, we examined a spatial distribution of the charge/orbital-ordered (CO/OO) insulator state and the ferromagnetic (FM) metallic one in phase-separated manganites; Cr-doped Nd0.5Ca0.5MnO3 and ( La1-xPrx)CaMnO3 with x=0.375, by obtaining both the dark-field images and Lorentz electron microscopic ones. It is found that an unusual coexistence of the CO/OO and FM metallic states below a FM transition temperature in the two compounds. The present experimental results clearly demonstrated the coexisting state of the two distinct ground states in manganites.
Peters, Baron
2009-12-28
Recent simulations of crystal nucleation from a compressed liquid of oppositely charged colloids show that the natural Brownian dynamics results in nuclei of a charge-disordered FCC (DFCC) solid whereas artificially accelerated dynamics with charge swap moves result in charge-ordered nuclei of a CsCl phase. These results were interpreted as a breakdown of the quasiequilibrium assumption for precritical nuclei. We use structure-specific nucleus size coordinates for the CsCl and DFCC structures and equilibrium based sampling methods to understand the dynamical effects on structure selectivity in this system. Nonequilibrium effects observed in previous simulations emerge from a diffusion tensor that dramatically changes when charge swap moves are used. Without the charge swap moves diffusion is strongly anisotropic with very slow motion along the charge-ordered CsCl axis and faster motion along the DFCC axis. Kramers-Langer-Berezhkovskii-Szabo theory predicts that under the realistic dynamics, the diffusion anisotropy shifts the current toward the DFCC axis. The diffusion tensor also varies with location on the free energy landscape. A numerical calculation of the current field with a diffusion tensor that depends on the location in the free energy landscape exacerbates the extent to which the current is skewed toward DFCC structures. Our analysis confirms that quasiequilibrium theories based on equilibrium properties can explain the nonequilibrium behavior of this system. Our analysis also shows that using a structure-specific nucleus size coordinate for each possible nucleation product can provide mechanistic insight on selectivity and competition between nucleation pathways.
NASA Astrophysics Data System (ADS)
Peters, Baron
2009-12-01
Recent simulations of crystal nucleation from a compressed liquid of oppositely charged colloids show that the natural Brownian dynamics results in nuclei of a charge-disordered FCC (DFCC) solid whereas artificially accelerated dynamics with charge swap moves result in charge-ordered nuclei of a CsCl phase. These results were interpreted as a breakdown of the quasiequilibrium assumption for precritical nuclei. We use structure-specific nucleus size coordinates for the CsCl and DFCC structures and equilibrium based sampling methods to understand the dynamical effects on structure selectivity in this system. Nonequilibrium effects observed in previous simulations emerge from a diffusion tensor that dramatically changes when charge swap moves are used. Without the charge swap moves diffusion is strongly anisotropic with very slow motion along the charge-ordered CsCl axis and faster motion along the DFCC axis. Kramers-Langer-Berezhkovskii-Szabo theory predicts that under the realistic dynamics, the diffusion anisotropy shifts the current toward the DFCC axis. The diffusion tensor also varies with location on the free energy landscape. A numerical calculation of the current field with a diffusion tensor that depends on the location in the free energy landscape exacerbates the extent to which the current is skewed toward DFCC structures. Our analysis confirms that quasiequilibrium theories based on equilibrium properties can explain the nonequilibrium behavior of this system. Our analysis also shows that using a structure-specific nucleus size coordinate for each possible nucleation product can provide mechanistic insight on selectivity and competition between nucleation pathways.
Zhang, Yuhan; Qiao, Jingsi; Gao, Si; Hu, Fengrui; He, Daowei; Wu, Bing; Yang, Ziyi; Xu, Bingchen; Li, Yun; Shi, Yi; Ji, Wei; Wang, Peng; Wang, Xiaoyong; Xiao, Min; Xu, Hangxun; Xu, Jian-Bin; Wang, Xinran
2016-01-08
One of the basic assumptions in organic field-effect transistors, the most fundamental device unit in organic electronics, is that charge transport occurs two dimensionally in the first few molecular layers near the dielectric interface. Although the mobility of bulk organic semiconductors has increased dramatically, direct probing of intrinsic charge transport in the two-dimensional limit has not been possible due to excessive disorders and traps in ultrathin organic thin films. Here, highly ordered single-crystalline mono- to tetralayer pentacene crystals are realized by van der Waals (vdW) epitaxy on hexagonal BN. We find that the charge transport is dominated by hopping in the first conductive layer, but transforms to bandlike in subsequent layers. Such an abrupt phase transition is attributed to strong modulation of the molecular packing by interfacial vdW interactions, as corroborated by quantitative structural characterization and density functional theory calculations. The structural modulation becomes negligible beyond the second conductive layer, leading to a mobility saturation thickness of only ∼3 nm. Highly ordered organic ultrathin films provide a platform for new physics and device structures (such as heterostructures and quantum wells) that are not possible in conventional bulk crystals.
NASA Astrophysics Data System (ADS)
Zhang, Yuhan; Qiao, Jingsi; Gao, Si; Hu, Fengrui; He, Daowei; Wu, Bing; Yang, Ziyi; Xu, Bingchen; Li, Yun; Shi, Yi; Ji, Wei; Wang, Peng; Wang, Xiaoyong; Xiao, Min; Xu, Hangxun; Xu, Jian-Bin; Wang, Xinran
2016-01-01
One of the basic assumptions in organic field-effect transistors, the most fundamental device unit in organic electronics, is that charge transport occurs two dimensionally in the first few molecular layers near the dielectric interface. Although the mobility of bulk organic semiconductors has increased dramatically, direct probing of intrinsic charge transport in the two-dimensional limit has not been possible due to excessive disorders and traps in ultrathin organic thin films. Here, highly ordered single-crystalline mono- to tetralayer pentacene crystals are realized by van der Waals (vdW) epitaxy on hexagonal BN. We find that the charge transport is dominated by hopping in the first conductive layer, but transforms to bandlike in subsequent layers. Such an abrupt phase transition is attributed to strong modulation of the molecular packing by interfacial vdW interactions, as corroborated by quantitative structural characterization and density functional theory calculations. The structural modulation becomes negligible beyond the second conductive layer, leading to a mobility saturation thickness of only ˜3 nm . Highly ordered organic ultrathin films provide a platform for new physics and device structures (such as heterostructures and quantum wells) that are not possible in conventional bulk crystals.
Ordered phases of ethylene adsorbed on charged fullerenes and their aggregates☆
Zöttl, Samuel; Kaiser, Alexander; Daxner, Matthias; Goulart, Marcelo; Mauracher, Andreas; Probst, Michael; Hagelberg, Frank; Denifl, Stephan; Scheier, Paul; Echt, Olof
2014-01-01
In spite of extensive investigations of ethylene adsorbed on graphite, bundles of nanotubes, and crystals of fullerenes, little is known about the existence of commensurate phases; they have escaped detection in almost all previous work. Here we present a combined experimental and theoretical study of ethylene adsorbed on free C60 and its aggregates. The ion yield of (C60)m(C2H4)n+ measured by mass spectrometry reveals a propensity to form a structurally ordered phase on monomers, dimers and trimers of C60 in which all sterically accessible hollow sites over carbon rings are occupied. Presumably the enhancement of the corrugation by the curvature of the fullerene surface favors this phase which is akin to a hypothetical 1 × 1 phase on graphite. Experimental data also reveal the number of molecules in groove sites of the C60 dimer through tetramer. The identity of the sites, adsorption energies and orientations of the adsorbed molecules are determined by molecular dynamics calculations based on quantum chemical potentials, as well as density functional theory. The decrease in orientational order with increasing temperature is also explored in the simulations whereas in the experiment it is impossible to vary the temperature. PMID:25843960
Stacked charge stripes in the quasi-2D trilayer nickelate La4Ni3O8
NASA Astrophysics Data System (ADS)
Zhang, Junjie; Chen, Yu-Sheng; Phelan, D.; Zheng, Hong; Norman, M. R.; Mitchell, J. F.
2016-08-01
The quasi-2D nickelate La4Ni3O8 (La-438), consisting of trilayer networks of square planar Ni ions, is a member of the so-called T' family, which is derived from the Ruddlesden-Popper (R-P) parent compound La4Ni3O10-x by removing two oxygen atoms and rearranging the rock salt layers to fluorite-type layers. Although previous studies on polycrystalline samples have identified a 105-K phase transition with a pronounced electronic and magnetic response but weak lattice character, no consensus on the origin of this transition has been reached. Here, we show using synchrotron X-ray diffraction on high-pO2 floating zone-grown single crystals that this transition is associated with a real space ordering of charge into a quasi-2D charge stripe ground state. The charge stripe superlattice propagation vector, q = (2/3, 0, 1), corresponds with that found in the related 1/3-hole doped single-layer R-P nickelate, La5/3Sr1/3NiO4 (LSNO-1/3; Ni2.33+), with orientation at 45° to the Ni-O bonds. The charge stripes in La-438 are weakly correlated along c to form a staggered ABAB stacking that reduces the Coulomb repulsion among the stripes. Surprisingly, however, we find that the charge stripes within each trilayer of La-438 are stacked in phase from one layer to the next, at odds with any simple Coulomb repulsion argument.
La 139 NMR investigation of the charge and spin order in a La 1.885 Sr 0.115 CuO 4 single crystal
Arsenault, A.; Takahashi, S. K.; Imai, T.; ...
2018-02-14
139La NMR is suited for investigations into magnetic properties of La 2CuO 4 -based cuprates in the vicinity of their magnetic instabilities, owing to the modest hyperfine interactions between 139La nuclear spins and Cu electron spins. We report comprehensive 139La NMR measurements on a single-crystal sample of high-T c superconductor La 1.885 Sr 0.115 CuO 4 in a broad temperature range across the charge and spin order transitions (T charge ≃ 80 K, T neutron spin ≃ T c = 30 K). From the high-precision measurements of the linewidth for the nuclear spin I z = + 1 / 2 to -1/2 central transition, we show that paramagnetic line broadening sets in precisely at T charge due to enhanced spin correlations within the CuO 2 planes. Additional paramagnetic line broadening ensues below ~35 K, signaling that Cu spins in some segments of CuO 2 planes are on the verge of three-dimensional magnetic order. A static hyperfine magnetic field arising from ordered Cu moments along the ab plane, however, begins to develop only below Tmore » $$μSR\\atop{spin}$$ = 15 – 20 K, where earlier muon spin rotation measurements detected Larmor precession for a small volume fraction (~20 % ) of the sample. Based on the measurement of 139 La nuclear-spin-lattice relaxation rate 1/T 1, we also show that charge order triggers enhancement of low-frequency Cu spin fluctuations inhomogeneously; a growing fraction of 139 La sites is affected by enhanced low-frequency spin fluctuations toward the eventual magnetic order, whereas a diminishing fraction continues to exhibit a behavior analogous to the optimally superconducting phase even below T charge. In conclusion, these 139La NMR results corroborate our recent 63Cu NMR observation that a very broad, anomalous winglike signal gradually emerges below T charge, whereas the normally behaving, narrower main peak is gradually wiped out [T. Imai et al., Phys. Rev. B 96, 224508 (2017)]. Furthermore, we show that the enhancement of low-energy spin excitations in the low-temperature regime below Tneutron spin (≃ Tc) depends strongly on the magnitude and orientation of the applied magnetic field.« less
La 139 NMR investigation of the charge and spin order in a La 1.885 Sr 0.115 CuO 4 single crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arsenault, A.; Takahashi, S. K.; Imai, T.
139La NMR is suited for investigations into magnetic properties of La 2CuO 4 -based cuprates in the vicinity of their magnetic instabilities, owing to the modest hyperfine interactions between 139La nuclear spins and Cu electron spins. We report comprehensive 139La NMR measurements on a single-crystal sample of high-T c superconductor La 1.885 Sr 0.115 CuO 4 in a broad temperature range across the charge and spin order transitions (T charge ≃ 80 K, T neutron spin ≃ T c = 30 K). From the high-precision measurements of the linewidth for the nuclear spin I z = + 1 / 2 to -1/2 central transition, we show that paramagnetic line broadening sets in precisely at T charge due to enhanced spin correlations within the CuO 2 planes. Additional paramagnetic line broadening ensues below ~35 K, signaling that Cu spins in some segments of CuO 2 planes are on the verge of three-dimensional magnetic order. A static hyperfine magnetic field arising from ordered Cu moments along the ab plane, however, begins to develop only below Tmore » $$μSR\\atop{spin}$$ = 15 – 20 K, where earlier muon spin rotation measurements detected Larmor precession for a small volume fraction (~20 % ) of the sample. Based on the measurement of 139 La nuclear-spin-lattice relaxation rate 1/T 1, we also show that charge order triggers enhancement of low-frequency Cu spin fluctuations inhomogeneously; a growing fraction of 139 La sites is affected by enhanced low-frequency spin fluctuations toward the eventual magnetic order, whereas a diminishing fraction continues to exhibit a behavior analogous to the optimally superconducting phase even below T charge. In conclusion, these 139La NMR results corroborate our recent 63Cu NMR observation that a very broad, anomalous winglike signal gradually emerges below T charge, whereas the normally behaving, narrower main peak is gradually wiped out [T. Imai et al., Phys. Rev. B 96, 224508 (2017)]. Furthermore, we show that the enhancement of low-energy spin excitations in the low-temperature regime below Tneutron spin (≃ Tc) depends strongly on the magnitude and orientation of the applied magnetic field.« less
Influence of electron doping on the ground state of (Sr 1-xLa x) 2IrO 4
Chen, Xiang; Hogan, Tom; Walkup, D.; ...
2015-08-17
The evolution of the electronic properties of electron-doped (Sr 1-xLa x) 2IrO 4 is experimentally explored as the doping limit of La is approached. As electrons are introduced, the electronic ground state transitions from a spin-orbit Mott phase into an electronically phase separated state, where long-range magnetic order vanishes beyond x = 0:02 and charge transport remains percolative up to the limit of La substitution (x =0:06). In particular, the electronic ground state remains inhomogeneous even beyond the collapse of the parent state's long-range antiferromagnetic order, while persistent short-range magnetism survives up to the highest La-substitution levels. Furthermore, as electronsmore » are doped into Sr 2IrO 4, we observe the appearance of a low temperature magnetic glass-like state intermediate to the complete suppression of antiferromagnetic order. Universalities and di erences in the electron-doped phase diagrams of single layer and bilayer Ruddlesden-Popper strontium iridates are discussed.« less
Yuan, Tao; Ruan, Jiafeng; Zhang, Weimin; Tan, Zhuopeng; Yang, Junhe; Ma, Zi-Feng; Zheng, Shiyou
2016-12-28
Flexible polypyrrole (PPy) films with highly ordered structures were fabricated by a novel vapor phase polymerization (VPP) process and used as the anode material in lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). The PPy films demonstrate excellent rate performance and cycling stability. At a charge/discharge rate of 1 C, the reversible capacities of the PPy film anode reach 284.9 and 177.4 mAh g -1 in LIBs and SIBs, respectively. Even at a charge/discharge rate of 20 C, the reversible capacity of the PPy film anode retains 54.0% and 52.9% of the capacity of 1 C in LIBs and SIBs, respectively. After 1000 electrochemical cycles at a rate of 10 C, there is no obvious capacity fading. The molecular structure and electrochemical behaviors of Li- and Na-ion doping and dedoping in the PPy films are investigated by XPS and ex situ XRD. It is believed that the PPy film electrodes in the overoxidized state can be reversibly charged and discharged through the doping and dedoping of lithium or sodium ions. Because of the self-adaptation of the doped ions, the ordered pyrrolic chain structure can realize a fast charge/discharge process. This result may substantially contribute to the progress of research into flexible polymer electrodes in various types of batteries.
Anomalous columnar order of charged colloidal platelets
NASA Astrophysics Data System (ADS)
Morales-Anda, L.; Wensink, H. H.; Galindo, A.; Gil-Villegas, A.
2012-01-01
Monte Carlo computer simulations are carried out for a model system of like-charged colloidal platelets in the isothermal-isobaric ensemble (NpT). The aim is to elucidate the role of electrostatic interactions on the structure of synthetic clay systems at high particle densities. Short-range repulsions between particles are described by a suitable hard-core model representing a discotic particle. This potential is supplemented with an electrostatic potential based on a Yukawa model for the screened Coulombic potential between infinitely thin disklike macro-ions. The particle aspect-ratio and electrostatic parameters were chosen to mimic an aqueous dispersion of thin, like-charged, rigid colloidal platelets at finite salt concentration. An examination of the fluid phase diagram reveals a marked shift in the isotropic-nematic transition compared to the hard cut-sphere reference system. Several statistical functions, such as the pair correlation function for the center-of-mass coordinates and structure factor, are obtained to characterize the structural organization of the platelets phases. At low salinity and high osmotic pressure we observe anomalous hexagonal columnar structures characterized by interpenetrating columns with a typical intercolumnar distance corresponding to about half of that of a regular columnar phase. Increasing the ionic strength leads to the formation of glassy, disordered structures consisting of compact clusters of platelets stacked into finite-sized columns. These so-called "nematic columnar" structures have been recently observed in systems of charge-stabilized gibbsite platelets. Our findings are corroborated by an analysis of the static structure factor from a simple density functional theory.
Origins of the structural phase transitions in MoTe2 and WTe2
NASA Astrophysics Data System (ADS)
Kim, Hyun-Jung; Kang, Seoung-Hun; Hamada, Ikutaro; Son, Young-Woo
2017-05-01
Layered transition metal dichalcogenides MoTe2 and WTe2 share almost similar lattice constants as well as topological electronic properties except their structural phase transitions. While the former shows a first-order phase transition between monoclinic and orthorhombic structures, the latter does not. Using a recently proposed van der Waals density functional method, we investigate structural stability of the two materials and uncover that the disparate phase transitions originate from delicate differences between their interlayer bonding states near the Fermi energy. By exploiting the relation between the structural phase transitions and the low energy electronic properties, we show that a charge doping can control the transition substantially, thereby suggesting a way to stabilize or to eliminate their topological electronic energy bands.
Charge storage in oxygen deficient phases of TiO2: defect Physics without defects.
Padilha, A C M; Raebiger, H; Rocha, A R; Dalpian, G M
2016-07-01
Defects in semiconductors can exhibit multiple charge states, which can be used for charge storage applications. Here we consider such charge storage in a series of oxygen deficient phases of TiO2, known as Magnéli phases. These Magnéli phases (TinO2n-1) present well-defined crystalline structures, i.e., their deviation from stoichiometry is accommodated by changes in space group as opposed to point defects. We show that these phases exhibit intermediate bands with an electronic quadruple donor transitions akin to interstitial Ti defect levels in rutile TiO2. Thus, the Magnéli phases behave as if they contained a very large pseudo-defect density: ½ per formula unit TinO2n-1. Depending on the Fermi Energy the whole material will become charged. These crystals are natural charge storage materials with a storage capacity that rivals the best known supercapacitors.
The cosmic QCD phase transition with dense matter and its gravitational waves from holography
NASA Astrophysics Data System (ADS)
Ahmadvand, M.; Bitaghsir Fadafan, K.
2018-04-01
Consistent with cosmological constraints, there are scenarios with the large lepton asymmetry which can lead to the finite baryochemical potential at the cosmic QCD phase transition scale. In this paper, we investigate this possibility in the holographic models. Using the holographic renormalization method, we find the first order Hawking-Page phase transition, between the Reissner-Nordström AdS black hole and thermal charged AdS space, corresponding to the de/confinement phase transition. We obtain the gravitational wave spectra generated during the evolution of bubbles for a range of the bubble wall velocity and examine the reliability of the scenarios and consequent calculations by gravitational wave experiments.
Synthesis of solid solutions of perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dambekalne, M.Y.; Antonova, M.K.; Perro, I.T.
The authors carry out thermographic studies, using a derivatograph, in order to understand the nature of the processes taking place during the synthesis of solid solutions of perovskites. Based on the detailed studies on the phase transformations occurring in the charges of the PSN-PMN solid solutions and on the selection of the optimum conditions for carrying out their synthesis, the authors obtained a powder containing a minimum quantity of the undesirable pyrochlore phase and by sintering it using the hot pressing method, they produced single phase ceramic specimens containing the perovskite phase alone with a density close to the theoreticalmore » value and showing zero apparent porosity and water absorption.« less
Evolution of ferromagnetism in charge ordered manganite: An effect of external pressure
NASA Astrophysics Data System (ADS)
Dash, S.; Pradhan, M. K.; Rao, T. Lakshmana
2018-05-01
Detailed magnetic measurements of the Pr0.75Na0.25MnO3 polycrystalline sample have been carried out under external hydrostatic pressure upto 10kbar. Pressure strongly suppresses the first order magnetic transition, while thermal hysteresis narrows down progressively and then disappears with increase in pressure. The significant enhancement of the field cooled magnetization value at different pressures is due to the antiferromagnetic to ferromagnetic transformation, while ruling out any contribution from the domain alignment within the ferromagnetic phase.
p-Forms and diffeomorphisms: Hamiltonian formulation
NASA Astrophysics Data System (ADS)
Baulieu, Laurent; Henneaux, Marc
1987-07-01
The BRST charges corresponding to various (equivalent) ways of writing the action of the diffeomorphism group on p-form gauge fields are canonically related by a canonical transformation in the extended phase space which is explicitly constructed. The occurrence of higher order structure functions is pointed out. Also at: Centro de Estudios Cientificos de Santiago, Casilla 16443, Santiago 9, Chile.
Kadyk, Thomas; Eikerling, Michael
2015-08-14
The possibility of correlating the magnetic susceptibility to the oxidation state of the porous active mass in a chemical or electrochemical reactor was analyzed. The magnetic permeability was calculated using a hierarchical model of the reactor. This model was applied to two practical examples: LiFePO4 batteries, in which the oxidation state corresponds with the state-of-charge, and cyclic water gas shift reactors, in which the oxidation state corresponds to the depletion of the catalyst. In LiFePO4 batteries phase separation of the lithiated and delithiated phases in the LiFePO4 particles in the positive electrode gives rise to a hysteresis effect, i.e. the magnetic permeability depends on the history of the electrode. During fast charge or discharge, non-uniform lithium distributionin the electrode decreases the hysteresis effect. However, the overall sensitivity of the magnetic response to the state-of-charge lies in the range of 0.03%, which makes practical measurement challenging. In cyclic water gas shift reactors, the sensitivity is 4 orders of magnitude higher and without phase separation, no hysteresis occurs. This shows that the method is suitable for such reactors, in which large changes of the magnetic permeability of the active material occurs.
Hepatitis C virus p7 mediates membrane-to-membrane adhesion.
Lee, Gi Young; Lee, Sora; Lee, Hye-Ra; Yoo, Young Do
2016-09-01
Viroporin p7 of the hepatitis C virus (HCV) acts as an ion channel for pH equilibration to stabilize HCV particles; most studies of p7 have focused on this role. However, pH equilibration by p7 via its ion channel activity does not fully explain the importance of p7 in HCV particle production. Indeed, several researchers have suggested p7 to have an unidentified ion channel-independent function. Here, we show that p7 has a novel role as a lipid raft adhesion factor, which is independent of its ion channel activity. We found that p7 targets not only the liquid-disordered (Ld) phase, but also the negatively-charged liquid-ordered (Lo) phase that can be represented as a lipid raft. p7 clusters at the phase boundary of the neutral Ld phase and the negatively-charged Lo phase. Interestingly, p7 targeting the Lo phase facilitates membrane-to-membrane adhesion, and this activity is not inhibited by p7 ion channel inhibitors. Our results demonstrated that HCV p7 has dual roles as a viroporin and as a lipid raft adhesion factor. This ion channel-independent function of p7 might be an attractive target for development of anti-HCV compounds. Copyright © 2016 Elsevier B.V. All rights reserved.
Statistical mechanics of the cluster Ising model
NASA Astrophysics Data System (ADS)
Smacchia, Pietro; Amico, Luigi; Facchi, Paolo; Fazio, Rosario; Florio, Giuseppe; Pascazio, Saverio; Vedral, Vlatko
2011-08-01
We study a Hamiltonian system describing a three-spin-1/2 clusterlike interaction competing with an Ising-like antiferromagnetic interaction. We compute free energy, spin-correlation functions, and entanglement both in the ground and in thermal states. The model undergoes a quantum phase transition between an Ising phase with a nonvanishing magnetization and a cluster phase characterized by a string order. Any two-spin entanglement is found to vanish in both quantum phases because of a nontrivial correlation pattern. Nevertheless, the residual multipartite entanglement is maximal in the cluster phase and dependent on the magnetization in the Ising phase. We study the block entropy at the critical point and calculate the central charge of the system, showing that the criticality of the system is beyond the Ising universality class.
Multiple orbital angular momentum generated by dielectric hybrid phase element
NASA Astrophysics Data System (ADS)
Wang, Xuewen; Kuchmizhak, Aleksandr; Hu, Dejiao; Li, Xiangping
2017-09-01
Vortex beam carrying multiple orbital angular momentum provides a new degree of freedom to manipulate light leading to the various exciting applications as trapping, quantum optics, information multiplexing, etc. Helical wavefront can be generated either via the geometric or the dynamic phase arising from a space-variant birefringence (q-plate) or from phase accumulation through propagation (spiral-phase-plate), respectively. Using fast direct laser writing technique we fabricate and characterize novel hybrid q-plate generating vortex beam simultaneously carrying two different high-order topological charges, which arise from the spin-orbital conversion and the azimuthal height variation of the recorded structures. We approve the versatile concept to generate multiple-OAM vortex beams combining the spin-orbital interaction and the phase accumulation in a single micro-scale device, a hybrid dielectric phase plate.
Complex coacervation of supercharged proteins with polyelectrolytes.
Obermeyer, Allie C; Mills, Carolyn E; Dong, Xue-Hui; Flores, Romeo J; Olsen, Bradley D
2016-04-21
Complexation of proteins with polyelectrolytes or block copolymers can lead to phase separation to generate a coacervate phase or self-assembly of coacervate core micelles. However, many proteins do not coacervate at conditions near neutral pH and physiological ionic strength. Here, protein supercharging is used to systematically explore the effect of protein charge on the complex coacervation with polycations. Four model proteins were anionically supercharged to varying degrees as quantified by mass spectrometry. Proteins phase separated with strong polycations when the ratio of negatively charged residues to positively charged residues on the protein (α) was greater than 1.1-1.2. Efficient partitioning of the protein into the coacervate phase required larger α (1.5-2.0). The preferred charge ratio for coacervation was shifted away from charge symmetry for three of the four model proteins and indicated an excess of positive charge in the coacervate phase. The composition of protein and polymer in the coacervate phase was determined using fluorescently labeled components, revealing that several of the coacervates likely have both induced charging and a macromolecular charge imbalance. The model proteins were also encapsulated in complex coacervate core micelles and micelles formed when the protein charge ratio α was greater than 1.3-1.4. Small angle neutron scattering and transmission electron microscopy showed that the micelles were spherical. The stability of the coacervate phase in both the bulk and micelles improved to increased ionic strength as the net charge on the protein increased. The micelles were also stable to dehydration and elevated temperatures.
NASA Astrophysics Data System (ADS)
Yabunaka, Shunsuke; Onuki, Akira
2017-09-01
We examine an electric double layer containing an antagonistic salt in an aqueous mixture, where the cations are small and hydrophilic but the anions are large and hydrophobic. In this situation, a strong coupling arises between the charge density and the solvent composition. As a result, the anions are trapped in an oil-rich adsorption layer on a hydrophobic wall. We then vary the surface charge density σ on the wall. For σ >0 the anions remain accumulated, but for σ <0 the cations are attracted to the wall with increasing |σ |. Furthermore, the electric potential drop Ψ (σ ) is nonmonotonic when the solvent interaction parameter χ (T ) exceeds a critical value χc determined by the composition and the ion density in the bulk. This leads to a first-order phase transition between two kinds of electric double layers with different σ and common Ψ . In equilibrium such two-layer regions can coexist. The steric effect due to finite ion sizes is crucial in these phenomena.
Systematic approaches to layered materials with strong electron correlations
NASA Astrophysics Data System (ADS)
Chung, Chung-Hou
I present systematic large-N approaches to study the ground state magnetic orderings and charge transport of layered materials with strong electron correlations, including the organic material kappa-(BEDT-TTF)2X, and the antiferromagnetic insulators Cs2CuCl4 and SrCu2(BO3) 2. I model the electronic properties of the organic materials kappa-(BEDT-TTF) 2X with a fermionic SU(N) Hubbard-Heisenberg model on an anisotropic triangular lattice. The ground state phase diagram shows a metal-insulator transition and a depression of the density of states in the metallic phase which are consistent with the experiments. The magnetic properties of kappa-(BEDT-TTF) 2X are modeled by a bosonic Sp(N) quantum Heisenberg antiferromagnet on the same lattice. The phase diagram consists of five different phases as a function of the size of the spin and the degree of frustration: the Neel ordered phase, a (pi, pi) short-range-order (SRO) phase, an incommensurate (q, q) long-range-order (LRO) phase, a (q, q) SRO phase, and a decoupled chain phase. I apply the same Sp(N) approach on the same triangular lattice to model the magnetic properties of Cs2CuCl 4 both with and without a magnetic field. At zero field, I find the ground state either exhibits incommensurate spin order, or is in a quantum disordered phase with deconfined spin-1/2 excitations and topological order. The Sp(N) calculation of spin excitation spectrum shows a large upward quantum renormalization consistent with that seen in experiments. For fields perpendicular to the plane of spin rotation, I find that the spins form an incommensurate "cone" of polarization up to a saturation field where all spins are fully polarized. There is a large quantum renormalization of the zero-field incommensuration. The results are in apparent agreement with neutron scattering experiments. Finally, the magnetic properties of the insulator SrCu2(BO 3)2 is modeled by the Sp(N) quantum antiferromagnet on the Shastry-Sutherland lattice. In addition to the familiar Neel and dimer phases, I find a confining phase with plaquette order, and a topologically ordered phase with deconfined S = 1/2 spinons and helical spin correlations. The deconfined phase is contiguous to the dimer phase, and in a regime of couplings close to those appropriate for the material.
Sun, J. P.; Matsuura, K.; Ye, G. Z.; ...
2016-07-19
The coexistence and competition between superconductivity and electronic orders, such as spin or charge density waves, have been a central issue in high transition-temperature (T c) superconductors. Unlike other iron-based superconductors, FeSe exhibits nematic ordering without magnetism whose relationship with its superconductivity remains unclear. Moreover, a pressure-induced fourfold increase of T c has been reported, which poses a profound mystery. Here we report high-pressure magnetotransport measurements in FeSe up to ~15 GPa, which uncover the dome shape of magnetic phase superseding the nematic order. Above ~6 GPa the sudden enhancement of superconductivity (T c ≤ 38.3 K) accompanies a suppressionmore » of magnetic order, demonstrating their competing nature with very similar energy scales. Above the magnetic dome, we find anomalous transport properties suggesting a possible pseudogap formation, whereas linear-in-temperature resistivity is observed in the normal states of the high-T c phase above 6 GPa. In conclusion, the obtained phase diagram highlights unique features of FeSe among iron-based superconductors, but bears some resemblance to that of high-T c cuprates.« less
Liu, Guang-Hua; You, Wen-Long; Li, Wei; Su, Gang
2015-04-29
Quantum phase transitions (QPTs) and the ground-state phase diagram of the spin-1/2 Heisenberg-Ising alternating chain (HIAC) with uniform Dzyaloshinskii-Moriya (DM) interaction are investigated by a matrix-product-state (MPS) method. By calculating the odd- and even-string order parameters, we recognize two kinds of Haldane phases, i.e. the odd- and even-Haldane phases. Furthermore, doubly degenerate entanglement spectra on odd and even bonds are observed in odd- and even-Haldane phases, respectively. A rich phase diagram including four different phases, i.e. an antiferromagnetic (AF), AF stripe, odd- and even-Haldane phases, is obtained. These phases are found to be separated by continuous QPTs: the topological QPT between the odd- and even-Haldane phases is verified to be continuous and corresponds to conformal field theory with central charge c = 1; while the rest of the phase transitions in the phase diagram are found to be c = 1/2. We also revisit, with our MPS method, the exactly solvable case of HIAC model with DM interactions only on odd bonds and find that the even-Haldane phase disappears, but the other three phases, i.e. the AF, AF stripe and odd-Haldane phases, still remain in the phase diagram. We exhibit the evolution of the even-Haldane phase by tuning the DM interactions on the even bonds gradually.
DMSP Auroral Charging at Solar Cycle 24 Maximum
NASA Technical Reports Server (NTRS)
Chandler, Michael; Parker, Linda Neergaard; Minow, Joseph I.
2013-01-01
It has been well established that polar orbiting satellites can experience mild to severe auroral charging levels (on the order of a few hundred volts to few kilovolts negative frame potentials) during solar minimum conditions (Frooninckx and Sojka, 1992; Anderson and Koons, 1996; Anderson, 2012). These same studies have shown a strong reduction in charging during the rising and declining phases of the past few solar cycles with a nearly complete suppression of auroral charging at solar maximum. Recently, we have observed examples of high level charging during the recent approach to Solar Cycle 24 solar maximum conditions not unlike those reported by Frooninckx and Sojka (1992). These observations demonstrate that spacecraft operations during solar maximum cannot be considered safe from auroral charging when solar activity is low. We present a survey of auroral charging events experienced by the Defense Meteorological Satellite Program (DMSP) F16 satellite during Solar Cycle 24 maximum conditions. We summarize the auroral energetic particle environment and the conditions necessary for charging to occur in this environment, we describe how the lower than normal solar activity levels for Solar Cycle 24 maximum conditions are conducive to charging in polar orbits, and we show examples of the more extreme charging events, sometimes exceeding 1 kV, during this time period.
Influence of charge and flexibility on smectic phase formation in filamentous virus suspensions
NASA Astrophysics Data System (ADS)
Purdy, Kirstin R.; Fraden, Seth
2007-07-01
We present experimental measurements of the cholesteric-smectic phase transition of suspensions of charged semiflexible rods as a function of rod flexibility and surface charge. The rod particles consist of the bacteriophage M13 and closely related mutants, which are structurally identical to M13, but vary either in contour length and therefore ratio of persistence length to contour length, or surface charge. Surface charge is altered in two ways; by changing solution pH and by comparing M13 with fd virus, a virus which differs from M13 only by the substitution of a single charged amino acid for a neutral one per viral coat protein. Phase diagrams are measured as a function of particle length, particle charge, and ionic strength. The experimental results are compared with existing theoretical predictions for the phase behavior of flexible rods and charged rods.
Hybridization wave as the cause of the metal-insulator transition in rare earth nickelates
NASA Astrophysics Data System (ADS)
Park, Hyowon; Marianetti, Chris A.; Millis, Andrew J.
2012-02-01
The metal-insulator transition driven by varying rare earth (Re) ion in ReNiO3 has been a longstanding challenge to materials theory. Experimental evidence suggesting charge order is seemingly incompatible with the strong Mott-Hubbard correlations characteristic of transition metals. We present density functional, Hartree-Fock and Dynamical Mean field calculations showing that the origin of the insulating phase is a hybridization wave, in which a two sublattice ordering of the oxygen breathing mode produces two Ni sites with almost identical Ni d-charge densities but very different magnetic moments and other properties. The high temperature crystal structure associated with smaller Re ions such as Lu is shown to be more susceptible to the distortion than the high temperature structure associated with larger Re ions such as La.
Magnetized black holes and nonlinear electrodynamics
NASA Astrophysics Data System (ADS)
Kruglov, S. I.
2017-08-01
A new model of nonlinear electrodynamics with two parameters is proposed. We study the phenomenon of vacuum birefringence, the causality and unitarity in this model. There is no singularity of the electric field in the center of pointlike charges and the total electrostatic energy is finite. We obtain corrections to the Coulomb law at r →∞. The weak, dominant and strong energy conditions are investigated. Magnetized charged black hole is considered and we evaluate the mass, metric function and their asymptotic at r →∞ and r → 0. The magnetic mass of the black hole is calculated. The thermodynamic properties and thermal stability of regular black holes are discussed. We calculate the Hawking temperature of black holes and show that there are first-order and second-order phase transitions. The parameters of the model when the black hole is stable are found.
Competing orders in the Hofstadter t -J model
NASA Astrophysics Data System (ADS)
Tu, Wei-Lin; Schindler, Frank; Neupert, Titus; Poilblanc, Didier
2018-01-01
The Hofstadter model describes noninteracting fermions on a lattice in the presence of an external magnetic field. Motivated by the plethora of solid-state phases emerging from electron interactions, we consider an interacting version of the Hofstadter model, including a Hubbard repulsion U . We investigate this model in the large-U limit corresponding to a t -J Hamiltonian with an external (orbital) magnetic field. By using renormalized mean-field theory supplemented by exact diagonalization calculations of small clusters, we find evidence for competing symmetry-breaking phases, exhibiting (possibly coexisting) charge, bond, and superconducting orders. Topological properties of the states are also investigated, and some of our results are compared to related experiments involving ultracold atoms loaded on optical lattices in the presence of a synthetic gauge field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Neng, E-mail: lineng@umkc.edu; Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, Missouri 64110; Mo, Yuxiang
2013-11-14
In this work, we assess a full spectrum of properties (chemical bonding, charge distribution, spin ordering, optical, and elastic properties) of Cr{sub 2}AC (A = Al, Ge) and their hypothetical nitride counterparts Cr{sub 2}AN (A = Al, Ge) based on density functional theory calculations. The calculated total energy values indicate that a variety of spin ordering of these four compounds depending on interlayer-interactions between M-A and M-X within the sublattice, which is supported by bonding analysis. MAX phase materials are discovered to possess exotic magnetic properties which indicates that these materials could serve as promising candidates for novel layered magnetic materials for various electronicmore » and spintronic applications. Further analysis of optical properties for two polarization vectors of Cr{sub 2}AX shows that the reflectivity is high in the visible-ultraviolet region up to ∼15 eV suggesting Cr{sub 2}AX as a promising candidate for use as a coating material. The elastic coefficients (C{sub ij}) and bulk mechanical properties [bulk modulus (K), shear modulus (G), Young's modulus (E), Poisson's ratio (η), and Pugh ratio (G/K)] of these four Cr{sub 2}AX compounds are also calculated and analyzed, which pave the way to predict or design new MAX phases that are less brittle or tougher by having a lower G/K value or higher η.« less
Aad, G.
2016-04-27
Charged-particle distributions are measured in proton–proton collisions at a centre-of-mass energy of 13 TeV, using a data sample of nearly 9 million events, corresponding to an integrated luminosity of 170 μb -1 , recorded by the ATLAS detector during a special Large Hadron Collider fill. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on the charged-particle multiplicity are presented. In this study, the measurements are performed with charged particles with transverse momentum greater than 500 MeV and absolute pseudorapidity less than 2.5, in events with at least one charged particlemore » satisfying these kinematic requirements. Additional measurements in a reduced phase space with absolute pseudorapidity less than 0.8 are also presented, in order to compare with other experiments. Finally, the results are corrected for detector effects, presented as particle-level distributions and are compared to the predictions of various Monte Carlo event generators.« less
Superconductor to Mott insulator transition in YBa2Cu3O7/LaCaMnO3 heterostructures.
Gray, B A; Middey, S; Conti, G; Gray, A X; Kuo, C-T; Kaiser, A M; Ueda, S; Kobayashi, K; Meyers, D; Kareev, M; Tung, I C; Liu, Jian; Fadley, C S; Chakhalian, J; Freeland, J W
2016-09-15
The superconductor-to-insulator transition (SIT) induced by means such as external magnetic fields, disorder or spatial confinement is a vivid illustration of a quantum phase transition dramatically affecting the superconducting order parameter. In pursuit of a new realization of the SIT by interfacial charge transfer, we developed extremely thin superlattices composed of high Tc superconductor YBa2Cu3O7 (YBCO) and colossal magnetoresistance ferromagnet La0.67Ca0.33MnO3 (LCMO). By using linearly polarized resonant X-ray absorption spectroscopy and magnetic circular dichroism, combined with hard X-ray photoelectron spectroscopy, we derived a complete picture of the interfacial carrier doping in cuprate and manganite atomic layers, leading to the transition from superconducting to an unusual Mott insulating state emerging with the increase of LCMO layer thickness. In addition, contrary to the common perception that only transition metal ions may respond to the charge transfer process, we found that charge is also actively compensated by rare-earth and alkaline-earth metal ions of the interface. Such deterministic control of Tc by pure electronic doping without any hindering effects of chemical substitution is another promising route to disentangle the role of disorder on the pseudo-gap and charge density wave phases of underdoped cuprates.
Electromagnetic signals from bare strange stars
NASA Astrophysics Data System (ADS)
Mannarelli, Massimo; Pagliaroli, Giulia; Parisi, Alessandro; Pilo, Luigi
2014-05-01
The crystalline color superconducting phase is believed to be the ground state of deconfined quark matter for sufficiently large values of the strange quark mass. This phase has the remarkable property of being more rigid than any known material. It can therefore sustain large shear stresses, supporting torsional oscillations of large amplitude. The torsional oscillations could lead to observable electromagnetic signals if strange stars have a crystalline color superconducting crust. Indeed, considering a simple model of a strange star with a bare quark matter surface, it turns out that a positive charge is localized in a narrow shell about ten Fermi thick beneath the star surface. The electrons needed to neutralize the positive charge of quarks spill in the star exterior forming an electromagnetically bounded atmosphere hundreds of Fermi thick. When a torsional oscillation is excited, for example by a stellar glitch, the positive charge oscillates with typical kHz frequencies, for a crust thickness of about one-tenth of the stellar radius, to hundreds of Hz, for a crust thickness of about nine-tenths of the stellar radius. Higher frequencies, of the order of few GHz, can be reached if the star crust is of the order of a few centimeters thick. We estimate the emitted power considering emission by an oscillating magnetic dipole, finding that it can be quite large, of the order of 1045 erg/s for a thin crust. The associated relaxation times are very uncertain, with values ranging between microseconds and minutes, depending on the crust thickness. The radiated photons will be in part absorbed by the electronic atmosphere, but a sizable fraction of them should be emitted by the star.
Charge states of ions, and mechanisms of charge ordering transitions
NASA Astrophysics Data System (ADS)
Pickett, Warren E.; Quan, Yundi; Pardo, Victor
2014-07-01
To gain insight into the mechanism of charge ordering transitions, which conventionally are pictured as a disproportionation of an ion M as 2Mn+→M(n+1)+ + M(n-1)+, we (1) review and reconsider the charge state (or oxidation number) picture itself, (2) introduce new results for the putative charge ordering compound AgNiO2 and the dual charge state insulator AgO, and (3) analyze the cationic occupations of the actual (not formal) charge, and work to reconcile the conundrums that arise. We establish that several of the clearest cases of charge ordering transitions involve no disproportion (no charge transfer between the cations, and hence no charge ordering), and that the experimental data used to support charge ordering can be accounted for within density functional-based calculations that contain no charge transfer between cations. We propose that the charge state picture retains meaning and importance, at least in many cases, if one focuses on Wannier functions rather than atomic orbitals. The challenge of modeling charge ordering transitions with model Hamiltonians isdiscussed.
Ultrafast molecular processes mapped by femtosecond x-ray diffraction
NASA Astrophysics Data System (ADS)
Elsaesser, Thomas
2012-02-01
X-ray diffraction with a femtosecond time resolution allows for mapping photoinduced structural dynamics on the length scale of a chemical bond and in the time domain of atomic and molecular motion. In a pump-probe approach, a femtosecond excitation pulse induces structural changes which are probed by diffracting a femtosecond hard x-ray pulse from the excited sample. The transient angular positions and intensities of diffraction peaks give insight into the momentary atomic or molecular positions and into the distribution of electronic charge density. The simultaneous measurement of changes on different diffraction peaks is essential for determining atom positions and charge density maps with high accuracy. Recent progress in the generation of ultrashort hard x-ray pulses (Cu Kα, wavelength λ=0.154 nm) in laser-driven plasma sources has led to the implementation of the powder diffraction and the rotating crystal method with a time resolution of 100 fs. In this contribution, we report new results from powder diffraction studies of molecular materials. A first series of experiments gives evidence of a so far unknown concerted transfer of electrons and protons in ammonium sulfate [(NH4)2SO4], a centrosymmetric structure. Charge transfer from the sulfate groups results in the sub-100 fs generation of a confined electron channel along the c-axis of the unit cell which is stabilized by transferring protons from the adjacent ammonium groups into the channel. Time-dependent charge density maps display a periodic modulation of the channel's charge density by low-frequency lattice motions with a concerted electron and proton motion between the channel and the initial proton binding site. A second study addresses atomic rearrangements and charge dislocations in the non-centrosymmetric potassium dihydrogen phosphate [KH2PO4, KDP]. Photoexcitation generates coherent low-frequency motions along the LO and TO phonon coordinates, leaving the average atomic positions unchanged. The time-dependent maps of electron density demonstrate a concomitant oscillatory relocation of electronic charge with a spatial amplitude of the order of a chemical bond length, two orders of magnitude larger than the vibrational amplitudes. The coherent phonon motions drive the charge relocation, similar to a soft mode driven phase transition between the ferro- and paraelectric phase of KDP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berdiyorov, G. R., E-mail: gberdiyorov@qf.org.qa; El-Mellouhi, F.; Madjet, M. E.
Density functional theory in combination with the nonequilibrium Green's function formalism is used to study the electronic transport properties of methylammonium lead-iodide perovskite CH{sub 3}NH{sub 3}PbI{sub 3}. Electronic transport in homogeneous ferroelectric and antiferroelectric phases, both of which do not contain any charged domain walls, is quite similar. The presence of charged domain wall drastically (by about an order of magnitude) enhances the electronic transport in the lateral direction. The increase of the transmission originates from the smaller variation of the electrostatic potential profile along the charged domain walls. This fact may provide a tool for tuning transport properties ofmore » such hybrid materials by manipulating molecular cations having dipole moment.« less
Reichhardt, Charles; Olson Reichhardt, Cynthia Jane
2016-12-20
Here, we review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic andmore » plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming phenomena.« less
NASA Astrophysics Data System (ADS)
Reichhardt, C.; Olson Reichhardt, C. J.
2017-02-01
We review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic and plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming phenomena.
NASA Astrophysics Data System (ADS)
Iwase, Fumitatsu; Sugiura, Koichi; Furukawa, Ko; Nakamura, Toshikazu
2009-10-01
A new TMTTF (tetramethyl-tetrathia-fulvalene)-family salt, (TMTTF)2TaF6, which has the largest octahedral (Oh) symmetry counter anion among the various salts in the TMTTF family, was prepared. X-ray, static magnetic susceptibility, electron spin resonance (ESR) and nuclear magnetic resonance (NMR) measurements were carried out in order to investigate the electronic state of (TMTTF)2TaF6. The unit-cell volume of (TMTTF)2TaF6 is larger than that of (TMTTF)2MF6 (M=P, As, and Sb). (TMTTF)2TaF6 shows the highest charge-ordering phase transition temperature (TCO˜ 175 K) among TMTTF salts with the Oh-symmetry counter anion. These facts indicate that (TMTTF)2TaF6 is located on the most negative side in the generalized phase-diagram for TMTCF family salts. (TMTTF)2TaF6 undergoes an antiferromagnetic transition around 9 K. It turned out the phase diagram needs to be modified.
Using nonequilibrium dynamics to probe competing orders in a Mott-Peierls system
Wang, Y.; Moritz, B.; Chen, C. -C.; ...
2016-02-24
Competition between ordered phases, and their associated phase transitions, are significant in the study of strongly correlated systems. Here, we examine one aspect, the nonequilibrium dynamics of a photoexcited Mott-Peierls system, using an effective Peierls-Hubbard model and exact diagonalization. Near a transition where spin and charge become strongly intertwined, we observe antiphase dynamics and a coupling-strength-dependent suppression or enhancement in the static structure factors. The renormalized bosonic excitations coupled to a particular photoexcited electron can be extracted, which provides an approach for characterizing the underlying bosonic modes. The results from this analysis for different electronic momenta show an uneven softeningmore » due to a stronger coupling near k F. As a result, this behavior reflects the strong link between the fermionic momenta, the coupling vertices, and ultimately, the bosonic susceptibilities when multiple phases compete for the ground state of the system.« less
Overcharge tolerant high-temperature cells and batteries
Redey, Laszlo; Nelson, Paul A.
1989-01-01
In a lithium-alloy/metal sulfide high temperature electrochemical cell, cell damage caused by overcharging is avoided by providing excess lithium in a high-lithium solubility phase alloy in the negative electrode and a specified ratio maximum of the capacity of a matrix metal of the negative electrode in the working phase to the capacity of a transition metal of the positive electrode. In charging the cell, or a plurality of such cells in series and/or parallel, chemical transfer of elemental lithium from the negative electrode through the electrolyte to the positive electrode provides sufficient lithium to support an increased self-charge current to avoid anodic dissolution of the positive electrode components above a critical potential. The lithium is subsequently electrochemically transferred back to the negative electrode in an electrochemical/chemical cycle which maintains high self-discharge currents on the order of 3-15 mA/cm.sup.2 in the cell to prevent overcharging.
Quantum critical point underlying the pseudogap state in underdoped cuprate superconductors
NASA Astrophysics Data System (ADS)
Pepin, Catherine
2014-03-01
Cuprate superconductors rank among the most complex materials that are known in the universe. Faced with this complexity, scientists have adopted two types of approaches. In a bottom up approach, one considers that strong correlations occur at a high energy scale of roughly 1 eV upon very strong Coulomb interactions. In the top down approach one considers that one universal singularity at very low temperatures is responsible for complexity of the phase diagram. In this talk we will argue that the strong quantum fluctuations experienced at the proximity to a anti-ferromagnetic Quantum Critical Point (QCP) is responsible for a cascade of phase transitions in the charge and superconducting channels. We will discuss in this context the emergence of the pseudo-gap and charge order modulations. Symmetries and relations to experimental observations will be addressed. Work done in collaboration with K.B. Efetov (Bochum) and H. Meier (Yale).
Realization of a mixed-symmetry superconducting gap in correlated organic metals
NASA Astrophysics Data System (ADS)
Altmeyer, Michaela; Guterding, Daniel; Jeschke, Harald O.; Diehl, Sandra; Methfessel, Torsten; Tutsch, Ulrich; Schubert, Harald; Lang, Michael; Müller, Jens; Huth, Michael; Jourdan, Martin; Elmers, Hans-Joachim; Valenti, Roser
Recent scanning tunneling spectroscopy measurements on the organic charge tranfer salt κ-(BEDT-TTF)2Cu[N(CN)2]Br show clear evidence of a highly anisotropic gap structure. Based on an ab initio derived model Hamiltonian we employ random phase approximation spin fluctuation theory yielding a composite order parameter of (extended) s+dx2-y2 symmetry. Taking explicitly also the shape of the Fermi surface into account we calculate STS spectra that are in excellent agreement to the experimental observations [1]. Moreover we determine the minimal tight binding model to describe the general lattice structure of these compounds accurately and generate a phase diagram for the gap symmetry by varying the hopping parameters. Based on ab initio derived parameter sets we predict the gap symmetry of other superconducting κ charge transfer salts. This work was supported by Deutsche Forschungsgemeinschaft under Grant No. SFB/TR 49.
Hour-glass magnetic excitations induced by nanoscopic phase separation in cobalt oxides.
Drees, Y; Li, Z W; Ricci, A; Rotter, M; Schmidt, W; Lamago, D; Sobolev, O; Rütt, U; Gutowski, O; Sprung, M; Piovano, A; Castellan, J P; Komarek, A C
2014-12-23
The magnetic excitations in the cuprate superconductors might be essential for an understanding of high-temperature superconductivity. In these cuprate superconductors the magnetic excitation spectrum resembles an hour-glass and certain resonant magnetic excitations within are believed to be connected to the pairing mechanism, which is corroborated by the observation of a universal linear scaling of superconducting gap and magnetic resonance energy. So far, charge stripes are widely believed to be involved in the physics of hour-glass spectra. Here we study an isostructural cobaltate that also exhibits an hour-glass magnetic spectrum. Instead of the expected charge stripe order we observe nano phase separation and unravel a microscopically split origin of hour-glass spectra on the nano scale pointing to a connection between the magnetic resonance peak and the spin gap originating in islands of the antiferromagnetic parent insulator. Our findings open new ways to theories of magnetic excitations and superconductivity in cuprate superconductors.
Insight into the microscopic structure of an AdS black hole from a thermodynamical phase transition.
Wei, Shao-Wen; Liu, Yu-Xiao
2015-09-11
Comparing with an ordinary thermodynamic system, we investigate the possible microscopic structure of a charged anti-de Sitter black hole completely from the thermodynamic viewpoint. The number density of the black hole molecules is introduced to measure the microscopic degrees of freedom of the black hole. We found that the number density suffers a sudden change accompanied by a latent heat when the black hole system crosses the small-large black hole coexistence curve, while when the system passes the critical point, it encounters a second-order phase transition with a vanishing latent heat due to the continuous change of the number density. Moreover, the thermodynamic scalar curvature suggests that there is a weak attractive interaction between two black hole molecules. These phenomena might cast new insight into the underlying microscopic structure of a charged anti-de Sitter black hole.
Lan, Xinzheng; Voznyy, Oleksandr; García de Arquer, F Pelayo; Liu, Mengxia; Xu, Jixian; Proppe, Andrew H; Walters, Grant; Fan, Fengjia; Tan, Hairen; Liu, Min; Yang, Zhenyu; Hoogland, Sjoerd; Sargent, Edward H
2016-07-13
Colloidal quantum dot (CQD) solar cells are solution-processed photovoltaics with broad spectral absorption tunability. Major advances in their efficiency have been made via improved CQD surface passivation and device architectures with enhanced charge carrier collection. Herein, we demonstrate a new strategy to improve further the passivation of CQDs starting from the solution phase. A cosolvent system is employed to tune the solvent polarity in order to achieve the solvation of methylammonium iodide (MAI) and the dispersion of hydrophobic PbS CQDs simultaneously in a homogeneous phase, otherwise not achieved in a single solvent. This process enables MAI to access the CQDs to confer improved passivation. This, in turn, allows for efficient charge extraction from a thicker photoactive layer device, leading to a certified solar cell power conversion efficiency of 10.6%, a new certified record in CQD photovoltaics.
Formation of ion clusters in the phase separated structures of neutral-charged polymer blends
NASA Astrophysics Data System (ADS)
Kwon, Ha-Kyung; Olvera de La Cruz, Monica
2015-03-01
Polyelectrolyte blends, consisting of at least one charged species, are promising candidate materials for fuel cell membranes, for their mechanical stability and high selectivity for proton conduction. The phase behavior of the blends is important to understand, as this can significantly affect the performance of the device. The phase behavior is controlled by χN, the Flory-Huggins parameter multiplied by the number of mers, as well as the electrostatic interactions between the charged backbone and the counterions. It has recently been shown that local ionic correlations, incorporated via liquid state (LS) theory, enhance phase separation of the blend, even in the absence of polymer interactions. In this study, we show phase diagrams of neutral-charged polymer blends including ionic correlations via LS theory. In addition to enhanced phase separation at low χN, the blends show liquid-liquid phase separation at high electrostatic interaction strengths. Above the critical strength, the charged polymer phase separates into ion-rich and ion-poor regions, resulting in the formation of ion clusters within the charged polymer phase. This can be shown by the appearance of multiple spinodal and critical points, indicating the coexistence of several charge separated phases. This work was performed under the following financial assistance award 70NANB14H012 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD).
Zeng, Chao; Huang, Hongwei; Zhang, Tierui; Dong, Fan; Zhang, Yihe; Hu, Yingmo
2017-08-23
Photocatalytic CO 2 reduction into solar fuels illustrates huge charm for simultaneously settling energy and environmental issues. The photoreduction ability of a semiconductor is closely correlated to its conduction band (CB) position. A homogeneous-phase solid-solution with the same crystal system always has a monotonously changed CB position, and the high CB level has to be sacrificed to achieve a benign photoabsorption. Herein, we report the fabrication of heterogeneous-phase solid-solution Zn X Ca 1-X In 2 S 4 between trigonal ZnIn 2 S 4 and cubic CaIn 2 S 4 . The Zn X Ca 1-X In 2 S 4 solid solutions with orderly tuned photoresponsive range from 540 to 640 nm present a more negative CB level and highly enhanced charge-separation efficiency. Profiting from these merits, all of these Zn X Ca 1-X In 2 S 4 solid solutions exhibit remarkably strengthened photocatalytic CO 2 reduction performance under visible light (λ > 420 nm) irradiation. Zn 0.4 Ca 0.6 In 2 S 4 , bearing the most negative CB position and highest charge-separation efficiency, casts the optimal photocatalytic CH 4 and CO evolution rates, which reach 16.7 and 6.8 times higher than that of ZnIn 2 S 4 and 7.2 and 3.9 times higher than that of CaIn 2 S 4 , respectively. To verify the crucial role of the heterogeneous-phase solid solution in promoting the band structure and photocatalytic performance, another heterogeneous-phase solid-solution Zn X Cd 1-X In 2 S 4 has been synthesized. It also displays an upshifted CB level and promoted charge separation. This work may provide a new perspective into the development of an efficient visible-light driven photocatalyst for CO 2 reduction and other photoreduction reactions.
Atomistic origin of an ordered superstructure induced superconductivity in layered chalcogenides.
Ang, R; Wang, Z C; Chen, C L; Tang, J; Liu, N; Liu, Y; Lu, W J; Sun, Y P; Mori, T; Ikuhara, Y
2015-01-27
Interplay among various collective electronic states such as charge density wave and superconductivity is of tremendous significance in low-dimensional electron systems. However, the atomistic and physical nature of the electronic structures underlying the interplay of exotic states, which is critical to clarifying its effect on remarkable properties of the electron systems, remains elusive, limiting our understanding of the superconducting mechanism. Here, we show evidence that an ordering of selenium and sulphur atoms surrounding tantalum within star-of-David clusters can boost superconductivity in a layered chalcogenide 1T-TaS2-xSex, which undergoes a superconducting transition in the nearly commensurate charge density wave phase. Advanced electron microscopy investigations reveal that such an ordered superstructure forms only in the x area, where the superconductivity manifests, and is destructible to the occurrence of the Mott metal-insulator transition. The present findings provide a novel dimension in understanding the relationship between lattice and electronic degrees of freedom.
Charged Particles on Surfaces: Coexistence of Dilute Phases and Periodic Structures at Interfaces
NASA Astrophysics Data System (ADS)
Loverde, Sharon M.; Solis, Francisco J.; Olvera de La Cruz, Monica
2007-06-01
We consider a mixture of two immiscible oppositely charged molecules strongly adsorbed to an interface, with a neutral nonselective molecular background. We determine the coexistence between a high density ionic periodic phase and a dilute isotropic ionic phase. We use a strong segregation approach for the periodic phase and determine the one-loop free energy for the dilute phase. Lamellar and hexagonal patterns are calculated for different charge stoichiometries of the mixture. Molecular dynamics simulations exhibit the predicted phase behavior. The periodic length scale of the solid phase is found to scale as ɛ/(lBψ3/2), where ψ is the effective charge density, lB is the Bjerrum length, and ɛ is the cohesive energy.
NASA Astrophysics Data System (ADS)
Li, Xiaoyu; Fan, Guodong; Pan, Ke; Wei, Guo; Zhu, Chunbo; Rizzoni, Giorgio; Canova, Marcello
2017-11-01
The design of a lumped parameter battery model preserving physical meaning is especially desired by the automotive researchers and engineers due to the strong demand for battery system control, estimation, diagnosis and prognostics. In light of this, a novel simplified fractional order electrochemical model is developed for electric vehicle (EV) applications in this paper. In the model, a general fractional order transfer function is designed for the solid phase lithium ion diffusion approximation. The dynamic characteristics of the electrolyte concentration overpotential are approximated by a first-order resistance-capacitor transfer function in the electrolyte phase. The Ohmic resistances and electrochemical reaction kinetics resistance are simplified to a lumped Ohmic resistance parameter. Overall, the number of model parameters is reduced from 30 to 9, yet the accuracy of the model is still guaranteed. In order to address the dynamics of phase-change phenomenon in the active particle during charging and discharging, variable solid-state diffusivity is taken into consideration in the model. Also, the observability of the model is analyzed on two types of lithium ion batteries subsequently. Results show the fractional order model with variable solid-state diffusivity agrees very well with experimental data at various current input conditions and is suitable for electric vehicle applications.
NASA Astrophysics Data System (ADS)
Schreiber, N. J.; Zhang, Junjie; Zheng, Hong; Freeland, J. W.; Chen, Yu-Sheng; Mitchell, J. F.; Phelan, D.
2017-10-01
Praseodymium-containing cobalt perovskites, such as (Pr1-yYy)1-xCaxCoO3-δ, have been argued to undergo a first-order charge shift between Pr and hybridized Co-O orbitals that leads to a metal-insulator transition at a temperature, TVT. Magnetization and x-ray absorption spectroscopy measurements on single crystals of (Pr0.85Y0.15)0.7Ca0.3CoO3-δ grown in an IR image furnace under 40-60 bar of oxygen confirm the presence of this valence transition. Single crystal x-ray synchrotron diffraction measurements are consistent with an isomorphic phase transition at TVT. No evidence of charge ordering was revealed by the single crystal diffraction. Dissimilar to analytical transmission electron microscopy measurements performed on a grain from a polycrystalline sample that revealed an oxygen vacancy order-disorder transition at TVT, the present single-crystal measurements did not evidence such a transition, likely reflecting a lower density of oxygen vacancies in the high-pO2 grown single crystals.
Incommensurate Phonon Anomaly and the Nature of Charge Density Waves in Cuprates
Miao, H.; Ishikawa, D.; Heid, R.; ...
2018-01-18
While charge density wave (CDW) instabilities are ubiquitous to superconducting cuprates, the different ordering wave vectors in various cuprate families have hampered a unified description of the CDW formation mechanism. Here, we investigate the temperature dependence of the low-energy phonons in the canonical CDW-ordered cuprate La 1.875Ba 0.125CuO 4. We discover that the phonon softening wave vector associated with CDW correlations becomes temperature dependent in the high-temperature precursor phase and changes from a wave vector of 0.238 reciprocal lattice units (r.l.u.) below the ordering transition temperature to 0.3 r.l.u. at 300 K. This high-temperature behavior also shows that “214”-type cupratesmore » can host CDW correlations at a similar wave vector to previously reported CDW correlations in non-214-type cuprates such as YBa 2Cu 3O 6+δ. This indicates that cuprate CDWs may arise from the same underlying instability despite their apparently different low-temperature ordering wave vectors.« less
Incommensurate Phonon Anomaly and the Nature of Charge Density Waves in Cuprates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, H.; Ishikawa, D.; Heid, R.
While charge density wave (CDW) instabilities are ubiquitous to superconducting cuprates, the different ordering wave vectors in various cuprate families have hampered a unified description of the CDW formation mechanism. Here, we investigate the temperature dependence of the low-energy phonons in the canonical CDW-ordered cuprate La 1.875Ba 0.125CuO 4. We discover that the phonon softening wave vector associated with CDW correlations becomes temperature dependent in the high-temperature precursor phase and changes from a wave vector of 0.238 reciprocal lattice units (r.l.u.) below the ordering transition temperature to 0.3 r.l.u. at 300 K. This high-temperature behavior also shows that “214”-type cupratesmore » can host CDW correlations at a similar wave vector to previously reported CDW correlations in non-214-type cuprates such as YBa 2Cu 3O 6+δ. This indicates that cuprate CDWs may arise from the same underlying instability despite their apparently different low-temperature ordering wave vectors.« less
NASA Astrophysics Data System (ADS)
Murakami, Yuta; Werner, Philipp; Tsuji, Naoto; Aoki, Hideo
2013-09-01
We study the Holstein-Hubbard model at half filling to explore ordered phases including superconductivity (SC), antiferromagnetism (AF), and charge order (CO) in situations where the electron-electron and electron-phonon interactions are strong (comparable to the electronic bandwidth). The model is solved in the dynamical mean-field approximation with a continuous-time quantum Monte Carlo impurity solver. We determine the superconducting transition temperature Tc and the SC order parameter and show that the phonon-induced retardation or the strong Coulomb interaction leads to a significant reduction and shift of the Tc dome against the effective electron-electron interaction Ueff given by the Hubbard U reduced by the phonon-mediated attraction in the static limit. This behavior is analyzed by comparison to an effective static model in the polaron representation with a renormalized bandwidth. In addition, we discuss the superconducting gap Δ and 2Δ/Tc to reveal the effect of the retardation and the Coulomb interaction. We also determine the finite-temperature phase diagram including AF and CO. In the moderate-coupling regime, there is a hysteretic region of AF and CO around Ueff=0, while the two phases are separated by a paramagnetic metal in the weak-coupling regime and a paramagnetic insulator in the strong-coupling regime.
Stability of the Weyl-semimetal phase on the pyrochlore lattice
NASA Astrophysics Data System (ADS)
Berke, Christoph; Michetti, Paolo; Timm, Carsten
2018-04-01
Motivated by the proposal of a Weyl-semimetal phase in pyrochlore iridates, we consider a Hubbard-type model on the pyrochlore lattice. To shed light on the question as to why such a state has not been observed experimentally, its robustness is analyzed. On the one hand, we study the possible phases when the system is doped. Magnetic frustration favors several phases with magnetic and charge order that do not occur at half filling, including additional Weyl-semimetal states close to quarter filling. On the other hand, we search for density waves that break translational symmetry and destroy the Weyl-semimetal phase close to half filling. The uniform Weyl semimetal is found to be stable, which we attribute to the low density of states close to the Fermi energy.
NASA Astrophysics Data System (ADS)
Goltz, Til; Zinth, Veronika; Johrendt, Dirk; Rosner, Helge; Pascua, Gwendolyne; Luetkens, Hubertus; Materne, Philipp; Klauss, Hans-Henning
2014-04-01
We present a detailed investigation of the electronic phase diagram of effectively charge compensated Ba1-xKx(Fe1-yCoy)2As2 with x /2≈y. Our experimental study by means of x-ray diffraction, Mössbauer spectroscopy, muon spin relaxation and ac-susceptibility measurements on polycrystalline samples is complemented by density functional electronic structure calculations. For low substitution levels of x /2≈y≤0.13, the system displays an orthorhombically distorted and antiferromagnetically ordered ground state. The low-temperature structural and magnetic order parameters are successively reduced with increasing substitution level. We observe a linear relationship between the structural and the magnetic order parameter as a function of temperature and substitution level for x /2≈y≤0.13. At intermediate substitution levels in the range between 0.13 and 0.19, we find superconductivity with a maximum Tc of 15 K coexisting with static magnetic order on a microscopic length scale. For higher substitution levels x /2≈y≥0.25, a tetragonal nonmagnetic ground state is observed. Our DFT calculations yield a significant reduction of the Fe 3d density of states at the Fermi energy and a strong suppression of the ordered magnetic moment in excellent agreement with experimental results. The appearance of superconductivity within the antiferromagnetic state can by explained by the introduction of disorder due to nonmagnetic impurities to a system with a constant charge carrier density.
Understanding Performance Limitations to Enable High Performance Magnesium-Ion Batteries
Kim, Sun Ung; Perdue, Brian; Apblett, Christopher A.; ...
2016-05-18
We developed a mathematical model in order to investigate the performance limiting factors of Mg-ion battery with a Chevrel phase (Mg xMo 6S 8) cathode and a Mg metal anode. Furthermore, the model was validated using experimental data from the literature [Cheng et al., Chem. Mater., 26, 4904 (2014)]. Two electrochemical reactions of the Chevrel phase with significantly different kinetics and solid diffusion were included in the porous electrode model, which captured the physics sufficiently well to generate charge curves of five rates (0.1C–2C) for two different particle sizes. Limitation analysis indicated that the solid diffusion and kinetics in themore » higher-voltage plateau limit the capacity and increase the overpotential in the Cheng et al.’s thin (20-μm) electrodes. The model reveals that the performance of the cells with reasonable thickness would also be subject to electrolyte-phase limitations. Finally, the simulation also suggested that the polarization losses on discharge will be lower than that on charge, because of the differences in the kinetics and solid diffusion between the two reactions of the Chevrel phase.« less
The application of phase contrast X-ray techniques for imaging Li-ion battery electrodes
NASA Astrophysics Data System (ADS)
Eastwood, D. S.; Bradley, R. S.; Tariq, F.; Cooper, S. J.; Taiwo, O. O.; Gelb, J.; Merkle, A.; Brett, D. J. L.; Brandon, N. P.; Withers, P. J.; Lee, P. D.; Shearing, P. R.
2014-04-01
In order to accelerate the commercialization of fuel cells and batteries across a range of applications, an understanding of the mechanisms by which they age and degrade at the microstructural level is required. Here, the most widely commercialized Li-ion batteries based on porous graphite based electrodes which de/intercalate Li+ ions during charge/discharge are studied by two phase contrast enhanced X-ray imaging modes, namely in-line phase contrast and Zernike phase contrast at the micro (synchrotron) and nano (laboratory X-ray microscope) level, respectively. The rate of charge cycling is directly dependent on the nature of the electrode microstructure, which are typically complex multi-scale 3D geometries with significant microstructural heterogeneities. We have been able to characterise the porosity and the tortuosity by micro-CT as well as the morphology of 5 individual graphite particles by nano-tomography finding that while their volume varied significantly their sphericity was surprisingly similar. The volume specific surface areas of the individual grains measured by nano-CT are significantly larger than the total volume specific surface area of the electrode from the micro-CT imaging, which can be attributed to the greater particle surface area visible at higher resolution.
Atomic-scale observation of structural and electronic orders in the layered compound α-RuCl3
Ziatdinov, M.; Banerjee, A.; Maksov, A.; Berlijn, T.; Zhou, W.; Cao, H. B.; Yan, J.-Q.; Bridges, C. A.; Mandrus, D. G.; Nagler, S. E.; Baddorf, A. P.; Kalinin, S. V.
2016-01-01
A pseudospin-1/2 Mott phase on a honeycomb lattice is proposed to host the celebrated two-dimensional Kitaev model which has an elusive quantum spin liquid ground state, and fascinating physics relevant to the development of future templates towards topological quantum bits. Here we report a comprehensive, atomically resolved real-space study by scanning transmission electron and scanning tunnelling microscopies on a novel layered material displaying Kitaev physics, α-RuCl3. Our local crystallography analysis reveals considerable variations in the geometry of the ligand sublattice in thin films of α-RuCl3 that opens a way to realization of a spatially inhomogeneous magnetic ground state at the nanometre length scale. Using scanning tunnelling techniques, we observe the electronic energy gap of ≈0.25 eV and intra-unit cell symmetry breaking of charge distribution in individual α-RuCl3 surface layer. The corresponding charge-ordered pattern has a fine structure associated with two different types of charge disproportionation at Cl-terminated surface. PMID:27941761
Atomic-scale observation of structural and electronic orders in the layered compound α-RuCl3.
Ziatdinov, M; Banerjee, A; Maksov, A; Berlijn, T; Zhou, W; Cao, H B; Yan, J-Q; Bridges, C A; Mandrus, D G; Nagler, S E; Baddorf, A P; Kalinin, S V
2016-12-12
A pseudospin-1/2 Mott phase on a honeycomb lattice is proposed to host the celebrated two-dimensional Kitaev model which has an elusive quantum spin liquid ground state, and fascinating physics relevant to the development of future templates towards topological quantum bits. Here we report a comprehensive, atomically resolved real-space study by scanning transmission electron and scanning tunnelling microscopies on a novel layered material displaying Kitaev physics, α-RuCl 3 . Our local crystallography analysis reveals considerable variations in the geometry of the ligand sublattice in thin films of α-RuCl 3 that opens a way to realization of a spatially inhomogeneous magnetic ground state at the nanometre length scale. Using scanning tunnelling techniques, we observe the electronic energy gap of ≈0.25 eV and intra-unit cell symmetry breaking of charge distribution in individual α-RuCl 3 surface layer. The corresponding charge-ordered pattern has a fine structure associated with two different types of charge disproportionation at Cl-terminated surface.
Atomic-scale observation of structural and electronic orders in the layered compound α-RuCl 3
Ziatdinov, Maxim A.; Banerjee, Arnab; Maksov, Artem B.; ...
2016-12-12
A pseudospin-1/2 Mott phase on a honeycomb lattice is proposed to host the celebrated two-dimensional Kitaev model which has an elusive quantum spin liquid ground state, and fascinating physics relevant to the development of future templates towards topological quantum bits. Here we report a comprehensive, atomically resolved real-space study by scanning transmission electron and scanning tunnelling microscopies on a novel layered material displaying Kitaev physics, -RuCl3. Our local crystallography analysis reveals considerable variations in the geometry of the ligand sublattice in thin films of -RuCl3 that opens a way to realization of a spatially inhomogeneous magnetic ground state at themore » nanometre length scale. Using scanning tunnelling techniques, we observe the electronic energy gap of 0.25 eV and intra-unit cell symmetry breaking of charge distribution in individual -RuCl3 surface layer. The corresponding charge-ordered pattern has a fine structure associated with two different types of charge disproportionation at Cl-terminated surface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yan; Sun, Zhao; Cai, Jia -Wei
Here, the mixed-valent Pbmore » $${}_{3}$$Rh $${}_{7}$$O$${}_{15}$$ undergoes a Verwey-type transition at $${T}_{{\\rm{v}}}\\approx 180$$ K, below which the development of Rh$${}^{3+}$$ /Rh$${}^{4+}$$ charge order induces an abrupt conductor-to-insulator transition in resistivity. Here we investigate the effect of pressure on the Verwey-type transition of Pb$${}_{3}$$Rh$${}_{7}$$O$${}_{15}$$ by measuring its electrical resistivity under hydrostatic pressures up to 8 GPa with a cubic anvil cell apparatus. We find that the application of high pressure can suppress the Verwey-type transition around 3 GPa, above which a metallic state is realized at temperatures below ~70 K, suggesting the melting of charge order by pressure. Interestingly, the low-temperature metallic region shrinks gradually upon further increasing pressure and disappears completely at P > 7 GPa, which indicates that the charge carriers in Pb$${}_{3}$$Rh$${}_{7}$$O$${}_{15}$$ undergo a reentrant localization under higher pressures. We have constructed a temperature-pressure phase diagram for Pb$${}_{3}$$Rh$${}_{7}$$O$${}_{15}$$ and compared to that of Fe$${}_{3}$$O$${}_{4}$$, showing an archetype Verwey transition.« less
Stacked charge stripes in the quasi-2D trilayer nickelate La 4 Ni 3 O 8
Zhang, Junjie; Chen, Yu-Sheng; Phelan, D.; ...
2016-07-26
The quasi-2D nickelate La 4Ni 3O 8 (La-438), consisting of trilayer networks of square planar Ni ions, is a member of the so-called T' family, which is derived from the Ruddlesden-Popper (R-P) parent compound La 4Ni 3O 10-x by removing two oxygen atoms and rearranging the rock salt layers to fluorite-type layers. Although previous studies on polycrystalline samples have identified a 105-K phase transition with a pronounced electronic and magnetic response but weak lattice character, no consensus on the origin of this transition has been reached. We show using synchrotron X-ray diffraction on high-pO(2) floating zone-grown single crystals that thismore » transition is associated with a real space ordering of charge into a quasi-2D charge stripe ground state. We found that the charge stripe superlattice propagation vector, q = (2/3, 0, 1), corresponds with that those in the related 1/3-hole doped single- layer R-P nickelate, La 5/3Sr 1/3NiO 4 (LSNO-1/3; Ni 2.33+), with orientation at 45 degrees to the Ni-O bonds. Furthermore, the charge stripes in La-438 are weakly correlated along c to form a staggered ABAB stacking that reduces the Coulomb repulsion among the stripes. Surprisingly, however, we find that the charge stripes within each trilayer of La-438 are stacked in phase from one layer to the next, at odds with any simple Coulomb repulsion argument.« less
Cortini, Ruggero; Cheng, Xiaolin; Smith, Jeremy C.
2017-01-16
Electrostatic interactions between DNA molecules have been extensively studied experimentally and theoretically, but several aspects (e.g. its role in determining the pitch of the cholesteric DNA phase) still remain unclear. Here, we performed large-scale all-atom molecular dynamics simulations in explicit water and 150 mM sodium chloride, to reconstruct the potential of mean force (PMF) of two DNA oligomers 24 base pairs long as a function of their interaxial angle and intermolecular distance. We find that the potential of mean force is dominated by total DNA charge, and not by the helical geometry of its charged groups. The theory of homogeneously charged cylinders fits well all our simulation data, and the fit yields the optimal value of the total compensated charge on DNA to ≈65% of its total fixed charge (arising from the phosphorous atoms), close to the value expected from Manning's theory of ion condensation. The PMF calculated from our simulations does not show a significant dependence on the handedness of the angle between the two DNA molecules, or its size is on the order ofmore » $$1{{k}_{\\text{B}}}T$$ . Thermal noise for molecules of the studied length seems to mask the effect of detailed helical charge patterns of DNA. The fact that in monovalent salt the effective interaction between two DNA molecules is independent on the handedness of the tilt may suggest that alternative mechanisms are required to understand the cholesteric phase of DNA.« less
Stacked charge stripes in the quasi-2D trilayer nickelate La 4 Ni 3 O 8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Junjie; Chen, Yu-Sheng; Phelan, D.
The quasi-2D nickelate La 4Ni 3O 8 (La-438), consisting of trilayer networks of square planar Ni ions, is a member of the so-called T' family, which is derived from the Ruddlesden-Popper (R-P) parent compound La 4Ni 3O 10-x by removing two oxygen atoms and rearranging the rock salt layers to fluorite-type layers. Although previous studies on polycrystalline samples have identified a 105-K phase transition with a pronounced electronic and magnetic response but weak lattice character, no consensus on the origin of this transition has been reached. We show using synchrotron X-ray diffraction on high-pO(2) floating zone-grown single crystals that thismore » transition is associated with a real space ordering of charge into a quasi-2D charge stripe ground state. We found that the charge stripe superlattice propagation vector, q = (2/3, 0, 1), corresponds with that those in the related 1/3-hole doped single- layer R-P nickelate, La 5/3Sr 1/3NiO 4 (LSNO-1/3; Ni 2.33+), with orientation at 45 degrees to the Ni-O bonds. Furthermore, the charge stripes in La-438 are weakly correlated along c to form a staggered ABAB stacking that reduces the Coulomb repulsion among the stripes. Surprisingly, however, we find that the charge stripes within each trilayer of La-438 are stacked in phase from one layer to the next, at odds with any simple Coulomb repulsion argument.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cortini, Ruggero; Cheng, Xiaolin; Smith, Jeremy C.
Electrostatic interactions between DNA molecules have been extensively studied experimentally and theoretically, but several aspects (e.g. its role in determining the pitch of the cholesteric DNA phase) still remain unclear. Here, we performed large-scale all-atom molecular dynamics simulations in explicit water and 150 mM sodium chloride, to reconstruct the potential of mean force (PMF) of two DNA oligomers 24 base pairs long as a function of their interaxial angle and intermolecular distance. We find that the potential of mean force is dominated by total DNA charge, and not by the helical geometry of its charged groups. The theory of homogeneously charged cylinders fits well all our simulation data, and the fit yields the optimal value of the total compensated charge on DNA to ≈65% of its total fixed charge (arising from the phosphorous atoms), close to the value expected from Manning's theory of ion condensation. The PMF calculated from our simulations does not show a significant dependence on the handedness of the angle between the two DNA molecules, or its size is on the order ofmore » $$1{{k}_{\\text{B}}}T$$ . Thermal noise for molecules of the studied length seems to mask the effect of detailed helical charge patterns of DNA. The fact that in monovalent salt the effective interaction between two DNA molecules is independent on the handedness of the tilt may suggest that alternative mechanisms are required to understand the cholesteric phase of DNA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayan, K.
2007-03-15
We explore the phase structure induced by closed string tachyon condensation of toric nonsupersymmetric conifold-like singularities described by an integral charge matrix Q=(n{sub 1}n{sub 2}-n{sub 3}-n{sub 4}), n{sub i}>0, iQ{sub i}{ne}0, initiated by Narayan [J. High Energy Phys. 03 (2006) 036]. Using gauged linear sigma model renormalization group flows and toric geometry techniques, we see a cascadelike phase structure containing decays to lower order conifold-like singularities, including, in particular, the supersymmetric conifold and the Y{sup pq} spaces. This structure is consistent with the Type II GSO projection obtained previously for these singularities. Transitions between the various phases of these geometriesmore » include flips and flops.« less
Aggregation of flexible polyelectrolytes: Phase diagram and dynamics.
Tom, Anvy Moly; Rajesh, R; Vemparala, Satyavani
2017-10-14
Similarly charged polymers in solution, known as polyelectrolytes, are known to form aggregated structures in the presence of oppositely charged counterions. Understanding the dependence of the equilibrium phases and the dynamics of the process of aggregation on parameters such as backbone flexibility and charge density of such polymers is crucial for insights into various biological processes which involve biological polyelectrolytes such as protein, DNA, etc. Here, we use large-scale coarse-grained molecular dynamics simulations to obtain the phase diagram of the aggregated structures of flexible charged polymers and characterize the morphology of the aggregates as well as the aggregation dynamics, in the presence of trivalent counterions. Three different phases are observed depending on the charge density: no aggregation, a finite bundle phase where multiple small aggregates coexist with a large aggregate and a fully phase separated phase. We show that the flexibility of the polymer backbone causes strong entanglement between charged polymers leading to additional time scales in the aggregation process. Such slowing down of the aggregation dynamics results in the exponent, characterizing the power law decay of the number of aggregates with time, to be dependent on the charge density of the polymers. These results are contrary to those obtained for rigid polyelectrolytes, emphasizing the role of backbone flexibility.
Reactive Blast Waves from Composite Charges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhl, A L; Bell, J B; Beckner, V E
2009-10-16
Investigated here is the performance of composite explosives - measured in terms of the blast wave they drive into the surrounding environment. The composite charge configuration studied here was a spherical booster (1/3 charge mass), surrounded by aluminum (Al) powder (2/3 charge mass) at an initial density of {rho}{sub 0} = 0.604 g/cc. The Al powder acts as a fuel but does not detonate - thereby providing an extreme example of a 'non-ideal' explosive (where 2/3 of the charge does not detonate). Detonation of the booster charge creates a blast wave that disperses the Al powder and ignites the ensuingmore » Al-air mixture - thereby forming a two-phase combustion cloud embedded in the explosion. Afterburning of the booster detonation products with air also enhances and promotes the Al-air combustion process. Pressure waves from such reactive blast waves have been measured in bomb calorimeter experiments. Here we describe numerical simulations of those experiments. A Heterogeneous Continuum Model was used to model the dispersion and combustion of the Al particle cloud. It combines the gasdynamic conservation laws for the gas phase with a dilute continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models of Khasainov. It incorporates a combustion model based on mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Adaptive Mesh Refinement (AMR) was used to capture the energy-bearing scales of the turbulent flow on the computational grid, and to track/resolve reaction zones. Numerical simulations of the explosion fields from 1.5-g and 10-kg composite charges were performed. Computed pressure histories (red curve) are compared with measured waveforms (black curves) in Fig. 1. Comparison of these results with a waveform for a non-combustion case in nitrogen (blue curve) demonstrates that a reactive blast wave was formed. Cross-sectional views of the temperature field at various times are presented in Fig. 2, which shows that the flow is turbulent. Initially, combustion occurs at the fuel-air interface, and the energy release rate is controlled by the rate of turbulent mixing. Eventually, oxidizer becomes distributed throughout the cloud via ballistic mixing of the particles with air; energy release then occurs in a distributed combustion mode, and Al particle kinetics controls the energy release rate. Details of the Heterogeneous Continuum Model and results of the numerical simulations of composite charge explosions will be described in the paper.« less
Electrochromatographic retention of peptides on strong cation-exchange stationary phases.
Nischang, Ivo; Höltzel, Alexandra; Tallarek, Ulrich
2010-03-01
We analyze the systematic and substantial electrical field-dependence of electrochromatographic retention for four counterionic peptides ([Met5]enkephalin, oxytocin, [Arg8]vasopressin, and luteinizing hormone releasing hormone (LHRH) ) on a strong cation-exchange (SCX) stationary phase. Our experiments show that retention behavior in the studied system depends on the charge-selectivity of the stationary phase particles, the applied voltage, and the peptides' net charge. Retention factors of twice positively charged peptides ([Arg8]vasopressin and LHRH at pH 2.7) decrease with increasing applied voltage, whereas lower charged peptides (oxytocin and [Met5]enkephalin at pH 2.7, [Arg8]vasopressin and LHRH at pH 7.0) show a concomitant increase in their retention factors. The observed behavior is explained on the basis of electrical field-induced concentration polarization (CP) that develops around the SCX particles of the packing. The intraparticle concentration of charged species (buffer ions, peptides) increases with increasing applied voltage due to diffusive backflux from the enriched CP zone associated with each SCX particle. For twice charged and on the SCX phase strongly retained peptides the local increase in mobile phase ionic strength reduces the electrostatic interactions with the stationary phase, which explains the decrease of retention factors with increasing applied voltage and CP intensity. Lower charged and weaker retained peptides experience a much stronger relative intraparticle enrichment than the twice-charged peptides, which results in a net increase of retention factors with increasing applied voltage. The CP-related contribution to electrochromatographic retention of peptides on the SCX stationary phase is modulated by the applied voltage, the mobile phase ionic strength, and the peptides' net charge and could be used for selectivity tuning in difficult separations.
Simulation of charge transfer and orbital rehybridization in molecular and condensed matter systems
NASA Astrophysics Data System (ADS)
Nistor, Razvan A.
The mixing and shifting of electronic orbitals in molecules, or between atoms in bulk systems, is crucially important to the overall structure and physical properties of materials. Understanding and accurately modeling these orbital interactions is of both scientific and industrial relevance. Electronic orbitals can be perturbed in several ways. Doping, adding or removing electrons from systems, can change the bond-order and the physical properties of certain materials. Orbital rehybridization, driven by either thermal or pressure excitation, alters the short-range structure of materials and changes their long-range transport properties. Macroscopically, during bond formation, the shifting of electronic orbitals can be interpreted as a charge transfer phenomenon, as electron density may pile up around, and hence, alter the effective charge of, a given atom in the changing chemical environment. Several levels of theory exist to elucidate the mechanisms behind these orbital interactions. Electronic structure calculations solve the time-independent Schrodinger equation to high chemical accuracy, but are computationally expensive and limited to small system sizes and simulation times. Less fundamental atomistic calculations use simpler parameterized functional expressions called force-fields to model atomic interactions. Atomistic simulations can describe systems and time-scales larger and longer than electronic-structure methods, but at the cost of chemical accuracy. In this thesis, both first-principles and phenomenological methods are addressed in the study of several encompassing problems dealing with charge transfer and orbital rehybridization. Firstly, a new charge-equilibration method is developed that improves upon existing models to allow next-generation force-fields to describe the electrostatics of changing chemical environments. Secondly, electronic structure calculations are used to investigate the doping dependent energy landscapes of several high-temperature superconducting materials in order to parameterize the apparently large nonlinear electron-phonon coupling. Thirdly, ab initio simulations are used to investigate the role of pressure-driven structural re-organization in the crystalline-to-amorphous (or, metallic-to-insulating) transition of a common binary phase-change material composed of Ge and Sb. Practical applications of each topic will be discussed. Keywords. Charge-equilibration methods, molecular dynamics, electronic structure calculations, ab initio simulations, high-temperature superconductors, phase-change materials.
Phase behavior of charged colloids on spherical surfaces
NASA Astrophysics Data System (ADS)
Kelleher, Colm; Guerra, Rodrigo; Chaikin, Paul
For a broad class of 2D materials, the transition from isotropic fluid to crystalline solid is described by the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson and Young. According to this theory, long-range order is achieved via elimination of the topological defects which proliferate in the fluid phase. However, many natural and man-made 2D systems posses spatial curvature and/or non-trivial topology, which require the presence of defects, even at T = 0 . In principle, the presence of these defects could profoundly affect the phase behavior of such a system. In this presentation, we describe experiments and simulations we have performed on repulsive particles which are bound to the surface of a sphere. We observe spatial structures and inhomogeneous dynamics that cannot be captured by the measures traditionally used to describe flat-space phase behavior. We show that ordering is achieved by a novel mechanism: sequestration of topological defects into freely-terminating grain boundaries (``scars''), and simultaneous spatial organization of the scars themselves on the vertices of an icosahedron. The emergence of icosahedral order coincides with the localization of mobility into isolated ``lakes'' of fluid or glassy particles, situated at the icosahedron vertices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahee, Aga, E-mail: agashahee@gmail.com; Lalla, N. P.
2015-06-24
Low temperature x-ray powder diffraction studies, in conjunction with transmission electron microscopy on stoichiometric (δ = 0.01) and oxygen deficient (δ =0.12) samples of La{sub 0.2}Sr{sub 0.8}MnO{sub 3-δ} manganites have been carried out. These studies revealed that oxygen stoichiometry plays a key role in controlling ground state of electron doped manganites. It is observed that the La{sub 0.2}Sr{sub 0.8}MnO{sub 2.99} undergoes a first order phase transition from cubic (Pm-3m) to JT-distorted twin tetragonal (I4/mcm) phase associated with C-type antiferromagnetic ordering at ∼260K. This JT-distortion induced cubic to tetragonal phase transition get totally suppressed in La{sub 0.2}Sr{sub 0.8}MnO{sub 2.88}. The basicmore » perovskite lattice of the off-stoichiometric La{sub 0.2}Sr{sub 0.8}MnO{sub 2.88} remains cubic down to 80K but undergoes a well-developed charge-ordering transition with 9x9 modulations at ∼260K.« less
Lattice-mediated magnetic order melting in TbMnO3
NASA Astrophysics Data System (ADS)
Baldini, Edoardo; Kubacka, Teresa; Mallett, Benjamin P. P.; Ma, Chao; Koohpayeh, Seyed M.; Zhu, Yimei; Bernhard, Christian; Johnson, Steven L.; Carbone, Fabrizio
2018-03-01
Recent ultrafast magnetic-sensitive measurements [Johnson et al., Phys. Rev. B 92, 184429 (2015), 10.1103/PhysRevB.92.184429; Bothschafter et al., Phys. Rev. B 96, 184414 (2017), 10.1103/PhysRevB.96.184414] have revealed a delayed melting of the long-range cycloid spin order in TbMnO3 following photoexcitation across the fundamental Mott-Hubbard gap. The microscopic mechanism behind this slow transfer of energy from the photoexcited carriers to the spin degrees of freedom is still elusive and not understood. Here, we address this problem by combining spectroscopic ellipsometry, ultrafast broadband optical spectroscopy, and ab initio calculations. Upon photoexcitation, we observe the emergence of a complex collective response, which is due to high-energy coherent optical phonons coupled to the out-of-equilibrium charge density. This response precedes the magnetic order melting and is interpreted as the fingerprint of the formation of anti-Jahn-Teller polarons. We propose that the charge localization in a long-lived self-trapped state hinders the emission of magnons and other spin-flip mechanisms, causing the energy transfer from the charge to the spin system to be mediated by the reorganization of the lattice. Furthermore, we provide evidence for the coherent excitation of a phonon mode associated with the ferroelectric phase transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Guyader, L.; Chase, T.; Reid, A. H.
Transitions between different charge density wave (CDW) states in quasi-two-dimensional materials may be accompanied also by changes in the inter-layer stacking of the CDW. Using MeV ultrafast electron diffraction, the out-of-plane stacking order dynamics in the quasi-two-dimensional dichalcogenide 1 T-TaS 2 is investigated for the first time. From the intensity of the CDW satellites aligned around the commensurate l = 1/6 characteristic stacking order, it is found out that this phase disappears with a 0.3 ps time constant. Simultaneously, in the same experiment, the emergence of the incommensurate phase, with a slightly slower 2.0 ps time constant, is determined frommore » the intensity of the CDW satellites aligned around the incommensurate l = 1/3 characteristic stacking order. Finally, these results might be of relevance in understanding the metallic character of the laser-induced metastable “hidden” state recently discovered in this compound.« less
Le Guyader, L; Chase, T; Reid, A H; Li, R K; Svetin, D; Shen, X; Vecchione, T; Wang, X J; Mihailovic, D; Dürr, H A
2017-07-01
Transitions between different charge density wave (CDW) states in quasi-two-dimensional materials may be accompanied also by changes in the inter-layer stacking of the CDW. Using MeV ultrafast electron diffraction, the out-of-plane stacking order dynamics in the quasi-two-dimensional dichalcogenide 1 T -TaS 2 is investigated for the first time. From the intensity of the CDW satellites aligned around the commensurate l = 1/6 characteristic stacking order, it is found out that this phase disappears with a 0.3 ps time constant. Simultaneously, in the same experiment, the emergence of the incommensurate phase, with a slightly slower 2.0 ps time constant, is determined from the intensity of the CDW satellites aligned around the incommensurate l = 1/3 characteristic stacking order. These results might be of relevance in understanding the metallic character of the laser-induced metastable "hidden" state recently discovered in this compound.
Le Guyader, L.; Chase, T.; Reid, A. H.; ...
2017-05-03
Transitions between different charge density wave (CDW) states in quasi-two-dimensional materials may be accompanied also by changes in the inter-layer stacking of the CDW. Using MeV ultrafast electron diffraction, the out-of-plane stacking order dynamics in the quasi-two-dimensional dichalcogenide 1 T-TaS 2 is investigated for the first time. From the intensity of the CDW satellites aligned around the commensurate l = 1/6 characteristic stacking order, it is found out that this phase disappears with a 0.3 ps time constant. Simultaneously, in the same experiment, the emergence of the incommensurate phase, with a slightly slower 2.0 ps time constant, is determined frommore » the intensity of the CDW satellites aligned around the incommensurate l = 1/3 characteristic stacking order. Finally, these results might be of relevance in understanding the metallic character of the laser-induced metastable “hidden” state recently discovered in this compound.« less
Photoinduced ultrafast charge-order melting: Charge-order inversion and nonthermal effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Veenendaal, Michel
2016-09-01
The effect of photoexcitation is studied for a system with checkerboard charge order induced by displacements of ligands around a metal site. The motion of the ligands is treated classically and the electronic charges are simplified to two-level molecular bond charges. The calculations are done for a checkerboard charge-ordered system with about 100 000 ligand oscillators coupled to a fixed-temperature bath. The initial photoexcitation is followed by a rapid decrease in the charge-order parameter within 50–100 femtoseconds while leaving the correlation length almost unchanged. Depending on the fluence, a complete melting of the charge order occurs in less than amore » picosecond. While for low fluences, the system returns to its original state, for full melting, it recovers to its broken-symmetry state leading to an inversion of the charge order. For small long-range interactions, recovery can be slow due to domain formation.« less
Photoinduced ultrafast charge-order melting: Charge-order inversion and nonthermal effects
van Veenendaal, Michel
2016-09-01
The effect of photoexcitation is studied for a system with checkerboard charge order induced by displacements of ligands around a metal site. The motion of the ligands is treated classically and the electronic charges are simplified to two-level molecular bond charges. The calculations are done for a checkerboard charge-ordered system with about 100 000 ligand oscillators coupled to a fixed-temperature bath. The initial photoexcitation is followed by a rapid decrease in the charge-order parameter within 50–100 femtoseconds while leaving the correlation length almost unchanged. Depending on the fluence, a complete melting of the charge order occurs in less than amore » picosecond. While for low fluences, the system returns to its original state, for full melting, it recovers to its broken-symmetry state leading to an inversion of the charge order. Finally, for small long-range interactions, recovery can be slow due to domain formation.« less
Fermionic Spinon Theory of Square Lattice Spin Liquids near the Néel State
NASA Astrophysics Data System (ADS)
Thomson, Alex; Sachdev, Subir
2018-01-01
Quantum fluctuations of the Néel state of the square lattice antiferromagnet are usually described by a CP1 theory of bosonic spinons coupled to a U(1) gauge field, and with a global SU(2) spin rotation symmetry. Such a theory also has a confining phase with valence bond solid (VBS) order, and upon including spin-singlet charge-2 Higgs fields, deconfined phases with Z2 topological order possibly intertwined with discrete broken global symmetries. We present dual theories of the same phases starting from a mean-field theory of fermionic spinons moving in π flux in each square lattice plaquette. Fluctuations about this π -flux state are described by (2 +1 )-dimensional quantum chromodynamics (QCD3 ) with a SU(2) gauge group and Nf=2 flavors of massless Dirac fermions. It has recently been argued by Wang et al. [Deconfined Quantum Critical Points: Symmetries and Dualities, Phys. Rev. X 7, 031051 (2017)., 10.1103/PhysRevX.7.031051] that this QCD3 theory describes the Néel-VBS quantum phase transition. We introduce adjoint Higgs fields in QCD3 and obtain fermionic dual descriptions of the phases with Z2 topological order obtained earlier using the bosonic CP1 theory. We also present a fermionic spinon derivation of the monopole Berry phases in the U(1) gauge theory of the VBS state. The global phase diagram of these phases contains multicritical points, and our results imply new boson-fermion dualities between critical gauge theories of these points.
Koschinsky, A.; Hein, J.R.
2003-01-01
Marine Fe-Mn oxyhydroxide crusts form by precipitation of dissolved components from seawater. Three hydrogenetic crust samples (one phosphatized) and two hydrothermal Mn-oxide samples were subjected to a sequential-leaching procedure in order to determine the host phases of 40 elements. Those host-phase associations are discussed with respect to element speciation in seawater. The partitioning of elements between the two major phases, Mn oxide and Fe oxyhydroxide, can in a first-order approximation be explained by a simple sorption model related to the inorganic speciation of the elements in seawater, as has been proposed in earlier models. Free and weakly complexed cations, such as alkali and alkaline earth metals, Mn, Co, Ni, Zn, T1(I), and partly Y, are sorbed preferentially on the negatively charged surface of the MnO2 in hydrogenetic crusts. The driving force is a strong coulombic interaction. All neutral or negatively charged chloro (Cd, Hg, T1), carbonate (Cu, Y, Pb, and U), and hydroxide (Be, Sc, Ti, Fe, Zr, Nb, In, Sn, Sb, Te, Hf, Ta, Bi, Th, and T1(III)) complexes and oxyanions (V, Cr, As, Se, Mo, and W) bind to the slightly positively charged surface of the amorphous FeOOH phase. While coulombic interaction can explain the sorption of the negatively charged species, the binding of neutral species is based on specific chemical interaction. Organic complexation of elements in deep-ocean water seems to be at most of minor importance. Surface oxidation can explain some strong metal associations, e.g. of Co and T1 with the MnO2 and Te with the FeOOH. Sorption reactions initially driven by coulombic forces are often followed by the formation of specific bonds between the adsorbate and the atoms of the oxide surface. Differences in the associations of some metals between the non-phosphatized and phosphatized hydrogenetic crusts and between the hydrogenetic and the hydrothermal samples reflect the different physico-chemical environments of formation and speciations in oxic seawater vs. less-oxic fluids, especially for the redox-sensitive metals such as Mo and V. These environmental-related differences indicate that the methodology of chemical speciation used here in combination with spectroscopic methods may allow for the detection of changes in paleoceanographic conditions recorded during the several tens of millions of years of crust growth. ?? 2003 Elsevier Science B.V. All rights reserved.
Surface field theories of point group symmetry protected topological phases
NASA Astrophysics Data System (ADS)
Huang, Sheng-Jie; Hermele, Michael
2018-02-01
We identify field theories that describe the surfaces of three-dimensional bosonic point group symmetry protected topological (pgSPT) phases. The anomalous nature of the surface field theories is revealed via a dimensional reduction argument. Specifically, we study three different surface field theories. The first field theory is quantum electrodynamics in three space-time dimensions (QED3) with four flavors of fermions. We show this theory can describe the surfaces of a majority of bosonic pgSPT phases protected by a single mirror reflection, or by Cn v point group symmetry for n =2 ,3 ,4 ,6 . The second field theory is a variant of QED3 with charge-1 and charge-3 Dirac fermions. This field theory can describe the surface of a reflection symmetric pgSPT phase built by placing an E8 state on the mirror plane. The third field theory is an O (4 ) nonlinear sigma model with a topological theta term at θ =π , or, equivalently, a noncompact CP1 model. Using a coupled wire construction, we show this is a surface theory for bosonic pgSPT phases with U (1 ) ×Z2P symmetry. For the latter two field theories, we discuss the connection to gapped surfaces with topological order. Moreover, we conjecture that the latter two field theories can describe surfaces of more general bosonic pgSPT phases with Cn v point group symmetry.
Line of magnetic monopoles and an extension of the Aharonov–Bohm effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chee, J.; Lu, W.
2016-10-15
In the Landau problem on the two-dimensional plane, physical displacement of a charged particle (i.e., magnetic translation) can be induced by an in-plane electric field. The geometric phase accompanying such magnetic translation around a closed path differs from the topological phase of Aharonov and Bohm in two essential aspects: The particle is in direct contact with the magnetic field and the geometric phase has an opposite sign from the Aharonov–Bohm phase. We show that magnetic translation on the two-dimensional cylinder implemented by the Schrödinger time evolution truly leads to the Aharonov–Bohm effect. The magnetic field normal to the cylinder’s surfacemore » corresponds to a line of magnetic monopoles of uniform density whose simulation is currently under investigation in cold atom physics. In order to characterize the quantum problem, one needs to specify the value of the magnetic flux (modulo the flux unit) that threads but not in touch with the cylinder. A general closed path on the cylinder may enclose both the Aharonov–Bohm flux and the local magnetic field that is in direct contact with the charged particle. This suggests an extension of the Aharonov–Bohm experiment that naturally takes into account both the geometric phase due to local interaction with the magnetic field and the topological phase of Aharonov and Bohm.« less
Cheshire charge in (3+1)-dimensional topological phases
NASA Astrophysics Data System (ADS)
Else, Dominic V.; Nayak, Chetan
2017-07-01
We show that (3 +1 ) -dimensional topological phases of matter generically support loop excitations with topological degeneracy. The loops carry "Cheshire charge": topological charge that is not the integral of a locally defined topological charge density. Cheshire charge has previously been discussed in non-Abelian gauge theories, but we show that it is a generic feature of all (3+1)-D topological phases (even those constructed from an Abelian gauge group). Indeed, Cheshire charge is closely related to nontrivial three-loop braiding. We use a dimensional reduction argument to compute the topological degeneracy of loop excitations in the (3 +1 ) -dimensional topological phases associated with Dijkgraaf-Witten gauge theories. We explicitly construct membrane operators associated with such excitations in soluble microscopic lattice models in Z2×Z2 Dijkgraaf-Witten phases and generalize this construction to arbitrary membrane-net models. We explain why these loop excitations are the objects in the braided fusion 2-category Z (2 VectGω) , thereby supporting the hypothesis that 2-categories are the correct mathematical framework for (3 +1 ) -dimensional topological phases.
Threshold Collision Energy of the QCD Phase Diagram Tricritical Endpoint
NASA Astrophysics Data System (ADS)
Bugaev, K. A.; Emaus, R.; Sagun, V. V.; Ivanytskyi, A. I.; Bravina, L. V.; Blaschke, D. B.; Nikonov, E. G.; Taranenko, A. V.; Zabrodin, E. E.; Zinovjev, G. M.
2018-05-01
Using the most advanced formulation of the hadron resonance gas model we analyze the two sets of irregularities found at chemical freeze-out of central nuclear-nuclear collisions at the center of mass energies 3.8-4.9 GeV and 7.6-9.2 GeV. In addition to previously reported irregularities at the collision energies 4.9 and 9.2 GeV we found sharp peaks of baryonic charge density. Also we analyze the collision energy dependence of the modified Wroblewski factor and the strangeness suppression factor. Based on the thermostatic properties of the mixed phase of a 1st order phase transition and the ones of the Hagedorn mass spectrum we explain, respectively, the reason of observed chemical equilibration of strangeness at the collision energy 4.9 GeV and above 8.7 GeV. It is argued that the both sets of irregularities possibly evidence for two phase transitions, namely, the 1st order transition at lower energy range and the 2nd order transition at higher one. In combination with a recent analysis of the light nuclei number fluctuations we conclude that the center of mass collision energy range 8.8-9.2 GeV may be in the nearest vicinity of the QCD tricritical endpoint. The properties of the phase existing between two phase transitions are revealed and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayami, Satoru; Lin, Shi -Zeng; Kamiya, Yoshitomo
Finite-Q magnetic instabilities are rather common in frustrated magnets. When the magnetic susceptibility is maximized at multiple-Q vectors related through lattice symmetry operations, exotic magnetic orderings such as vortex and skyrmion crystals may follow. Here, we show that a periodic array of nonmagnetic impurities, which can be realized through charge density wave ordering, leads to a rich phase diagram featuring a plethora of chiral magnetic phases, especially when there is a simple relation between the reciprocal vectors of the impurity superlattice and the magnetic Q vectors. We also investigate the effect of changing the impurity concentration or disturbing the impuritymore » array with small quenched randomness. Lastly, alternative realizations of impurity superlattices are briefly discussed.« less
Hayami, Satoru; Lin, Shi -Zeng; Kamiya, Yoshitomo; ...
2016-11-10
Finite-Q magnetic instabilities are rather common in frustrated magnets. When the magnetic susceptibility is maximized at multiple-Q vectors related through lattice symmetry operations, exotic magnetic orderings such as vortex and skyrmion crystals may follow. Here, we show that a periodic array of nonmagnetic impurities, which can be realized through charge density wave ordering, leads to a rich phase diagram featuring a plethora of chiral magnetic phases, especially when there is a simple relation between the reciprocal vectors of the impurity superlattice and the magnetic Q vectors. We also investigate the effect of changing the impurity concentration or disturbing the impuritymore » array with small quenched randomness. Lastly, alternative realizations of impurity superlattices are briefly discussed.« less
CDW order and unconventional s-wave superconductivity in Ba1-xNaxTi2Sb2O
NASA Astrophysics Data System (ADS)
Kamusella, Sirko; Doan, Phuong; Goltz, Til; Luetkens, Hubertus; Sarkar, Rajib; Guloy, Arnold; Klauss, Hans-Henning
2014-12-01
Due to its anticuprate Ti2O layer and its fascinating phase diagram with a large coexistence area of superconductivity and a density wave phase, the new class of titanium based superconductors attracts great scientific interest. In this paper we report μSR investigation on powder samples of Ba1-xNaxTi2Sb2O (x = 0, 0.15, 0.25). Our results exhibit both the presence of a charge density wave and superconductivity in Ba1-xNaxTi2Sb2O. The superconducting order parameter, extracted from a vortex state analysis using the numeric Ginzburg-Landau model, is compatible with a s-wave symmetry. In the universal Uemura classification of superconductors this compound is at the verge of unconventional superconductivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Abhishek, E-mail: cabhishek@rrcat.gov.in; Khamari, Shailesh K.; Kumar, R.
2015-01-12
GaN templates grown by hydride vapour phase epitaxy (HVPE) and metal organic vapour phase epitaxy (MOVPE) techniques are compared through electronic transport measurements. Carrier concentration measured by Hall technique is about two orders larger than the values estimated by capacitance voltage method for HVPE templates. It is learnt that there exists a critical thickness of HVPE templates below which the transport properties of epitaxial layers grown on top of them are going to be severely limited by the density of charged dislocations lying at layer-substrate interface. On the contrary MOVPE grown templates are found to be free from such limitations.
Dynamic phases, pinning, and pattern formation for driven dislocation assemblies
Zhou, Caizhi; Reichhardt, Charles; Olson Reichhardt, Cynthia J.; ...
2015-01-23
We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors, magnetic domain walls, and charge density wave materials. These phases include pinned-jammed, fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as specific features in the noise fluctuations and transport properties. Lastly, our work suggests that many of the results established for systems with quenched disorder undergoing plastic depinning transitions can be applied to dislocation systems, providing a new approach for understanding pattern formation andmore » dynamics in these systems.« less
Interface modulated currents in periodically proton exchanged Mg doped lithium niobate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neumayer, Sabine M.; Rodriguez, Brian J., E-mail: brian.rodriguez@ucd.ie, E-mail: gallo@kth.se; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4
2016-03-21
Conductivity in Mg doped lithium niobate (Mg:LN) plays a key role in the reduction of photorefraction and is therefore widely exploited in optical devices. However, charge transport through Mg:LN and across interfaces such as electrodes also yields potential electronic applications in devices with switchable conductivity states. Furthermore, the introduction of proton exchanged (PE) phases in Mg:LN enhances ionic conductivity, thus providing tailorability of conduction mechanisms and functionality dependent on sample composition. To facilitate the construction and design of such multifunctional electronic devices based on periodically PE Mg:LN or similar ferroelectric semiconductors, fundamental understanding of charge transport in these materials, asmore » well as the impact of internal and external interfaces, is essential. In order to gain insight into polarization and interface dependent conductivity due to band bending, UV illumination, and chemical reactivity, wedge shaped samples consisting of polar oriented Mg:LN and PE phases were investigated using conductive atomic force microscopy. In Mg:LN, three conductivity states (on/off/transient) were observed under UV illumination, controllable by the polarity of the sample and the externally applied electric field. Measurements of currents originating from electrochemical reactions at the metal electrode–PE phase interfaces demonstrate a memresistive and rectifying capability of the PE phase. Furthermore, internal interfaces such as domain walls and Mg:LN–PE phase boundaries were found to play a major role in the accumulation of charge carriers due to polarization gradients, which can lead to increased currents. The insight gained from these findings yield the potential for multifunctional applications such as switchable UV sensitive micro- and nanoelectronic devices and bistable memristors.« less
Geometrically Induced Interactions and Bifurcations
NASA Astrophysics Data System (ADS)
Binder, Bernd
2010-01-01
In order to evaluate the proper boundary conditions in spin dynamics eventually leading to the emergence of natural and artificial solitons providing for strong interactions and potentials with monopole charges, the paper outlines a new concept referring to a curvature-invariant formalism, where superintegrability is given by a special isometric condition. Instead of referring to the spin operators and Casimir/Euler invariants as the generator of rotations, a curvature-invariant description is introduced utilizing a double Gudermann mapping function (generator of sine Gordon solitons and Mercator projection) cross-relating two angular variables, where geometric phases and rotations arise between surfaces of different curvature. Applying this stereographic projection to a superintegrable Hamiltonian can directly map linear oscillators to Kepler/Coulomb potentials and/or monopoles with Pöschl-Teller potentials and vice versa. In this sense a large scale Kepler/Coulomb (gravitational, electro-magnetic) wave dynamics with a hyperbolic metric could be mapped as a geodesic vertex flow to a local oscillator singularity (Dirac monopole) with spherical metrics and vice versa. Attracting fixed points and dynamic constraints are given by special isometries with magic precession angles. The nonlinear angular encoding directly provides for a Shannon mutual information entropy measure of the geodesic phase space flow. The emerging monopole patterns show relations to spiral Fresnel holography and Berry/Aharonov-Bohm geometric phases subject to bifurcation instabilities and singularities from phase ambiguities due to a local (entropy) overload. Neutral solitons and virtual patterns emerging and mediating in the overlap region between charged or twisted holographic patterns are visualized and directly assigned to the Berry geometric phase revealing the role of photons, neutrons, and neutrinos binding repulsive charges in Coulomb, strong and weak interaction.
NASA Astrophysics Data System (ADS)
Chung, Seok-Hwan
This work focuses on two largely unexplored phenomena in micromagnetics: the temperature-driven paramagnetic insulator to ferromagnetic (FM) metallic phase transition in perovskite manganite and ballistic magnetoresistance in spin-polarized nanocontacts. To investigate the phase transition, an off-the-shelf commercial scanning force microscope was redesigned for operation at temperatures from 350 K to 100 K. This adaptation is elaborated in this thesis. Using this system, both ferromagnetic and charge-ordered domain structures of (La 1-xPrx)0.67Ca0.33MnO3 thin film were observed by magnetic force microscopy (MFM) and electric force microscopy (EFM) operated in the vicinity of the peak resistance temperature (Tp). Predominantly in-plane oriented FM domains of sub-micrometer size emerge below Tp and their local magnetic moment increased as the temperature is reduced. Charge-ordered insulating regions show a strong electrostatic interaction with an EFM tip at a few degrees above Tp and the interaction correlates well with the temperature dependence of resistivity of the film. Cross-correlation analysis between topography and magnetic structure on several substrates indicates FM domains form on the flat regions of the surface, while charge ordering occurs at surface protrusions. In the investigation of ballistic magnetoresistance, new results on half-metallic ferromagnets formed by atomic or nanometer contacts of CrO2-CrO 2 and CrO2-Ni are presented showing magnetoconductance as high as 400%. Analysis of the magnetoconductance versus conductance data for all materials known to exhibit so-called ballistic magnetoresistance strongly suggests that magnetoconductance of nanocontacts follows a universal mechanism. If the maximum magnetoconductance is normalized to unity and the conductance is scaled with the resistivity of the material, then all data points fall onto a universal curve independent of the contact material and the transport mechanism. The analysis has been applied to all available magnetoconductance data of magnetic nanocontacts in the literature. The results are in agreement with a theory that takes into account only the spin-scattering within a magnetic domain wall and are independent of whether the transport is ballistic or diffusive.
Soaking it up: new lipid sponge phases and their applications
NASA Astrophysics Data System (ADS)
Brasnett, Christopher; Seddon, Annela
Recent work has demonstrated that cubic lipid systems may be doped with charged lipids, with important consequences for their physical properties. Among others, Tyler et al. have reported some of the largest lipid cubic phases seen to date using this technique. The sponge phase is a disordered bicontinuous phase, formed when the membrane curvature of a cubic phase is reduced through the addition of butane diol. Additionally, it is known that sponge phases may be converted back into highly ordered cubic ones. Whilst past work has concentrated on sponge phases formed from monoolein, we have investigated the properties and behaviour of a bipartite sponge phase formed of monoolein and DOPG, and their conversion to cubic phases using shear. Furthermore, as both the sponge and cubic phase are of interest with respect to their applications in protein crystallography, we have explored the interaction of the protein light-harvesting complex with the lipid system. CB is supported by a University of Bristol EPSRC funded studentship.
Jiang, Hong-Min
2012-09-26
Based on an effective two-orbital tight-binding model, we examine the possible superconducting states in iron-vacancy-ordered A(y)Fe(2-x)Se(2). In the presence of ordered vacancies and blocked antiferromagnetic order, it is shown that the emergent SC pairing is the nodeless next-nearest-neighbor (NNN)-pairing due to the dominant antiferromagnetic (AFM) interaction between the inter-block NNN sites. In particular, we show that due to the ordered vacancies and the associated blocked AFM order, the interplay between the superconducting and AFM states results in three distinct states in the phase diagram as doping is varied. The divergent experimental observations can be accounted for by considering the different charge carrier concentrations in their respective compounds.
Design and Synthesis of Novel Block Copolymers for Efficient Opto-Electronic Applications
NASA Technical Reports Server (NTRS)
Sun, Sam-Shajing; Fan, Zhen; Wang, Yiqing; Taft, Charles; Haliburton, James; Maaref, Shahin
2002-01-01
It has been predicted that nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks may facilitate the charge carrier separation and migration in organic photovoltaic devices due to improved morphology in comparison to polymer blend system. This paper presents preliminary data describing the design and synthesis of a novel Donor-Bridge-Acceptor (D-B-A) block copolymer system for potential high efficient organic optoelectronic applications. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene (PPV), the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene (PPV), and the bridge block contains an electronically neutral non-conjugated aliphatic hydrocarbon chain. The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block stabilizes and facilitates the transport of the holes, the acceptor block stabilizes and facilitates the transport of the electrons, the bridge block is designed to hinder the probability of electron-hole recombination. Thus, improved charge separation and stability are expected with this system. In addition, charge migration toward electrodes may also be facilitated due to the potential nano-phase separated and highly ordered block copolymer ultra-structure.
Tritium Effects on Fracture Toughness of Stainless Steel Weldments
DOE Office of Scientific and Technical Information (OSTI.GOV)
MORGAN, MICHAEL; CHAPMAN, G. K.; TOSTEN, M. H.
2005-05-12
The effects of tritium on the fracture toughness properties of Type 304L and Type 21-6-9 stainless steel weldments were measured. Weldments were tritium-charged-and-aged and then tested in order to measure the effect of the increasing decay helium content on toughness. The results were compared to uncharged and hydrogen-charged samples. For unexposed weldments having 8-12 volume percent retained delta ferrite, fracture toughness was higher than base metal toughness. At higher levels of weld ferrite, the fracture toughness decreased to values below that of the base metal. Hydrogen-charged and tritium-charged weldments had lower toughness values than similarly charged base metals and toughnessmore » decreased further with increasing weld ferrite content. The effect of decay helium content was inconclusive because of tritium off-gassing losses during handling, storage and testing. Fracture modes were dominated by the dimpled rupture process in unexposed weldments. In hydrogen and tritium-exposed weldments, the fracture modes depended on the weld ferrite content. At high ferrite contents, hydrogen-induced transgranular fracture of the weld ferrite phase was observed.« less
Gross violation of the Wiedemann–Franz law in a quasi-one-dimensional conductor
Wakeham, Nicholas; Bangura, Alimamy F.; Xu, Xiaofeng; Mercure, Jean-Francois; Greenblatt, Martha; Hussey, Nigel E.
2011-01-01
When charge carriers are spatially confined to one dimension, conventional Fermi-liquid theory breaks down. In such Tomonaga–Luttinger liquids, quasiparticles are replaced by distinct collective excitations of spin and charge that propagate independently with different velocities. Although evidence for spin–charge separation exists, no bulk low-energy probe has yet been able to distinguish successfully between Tomonaga–Luttinger and Fermi-liquid physics. Here we show experimentally that the ratio of the thermal and electrical Hall conductivities in the metallic phase of quasi-one-dimensional Li0.9Mo6O17 diverges with decreasing temperature, reaching a value five orders of magnitude larger than that found in conventional metals. Both the temperature dependence and magnitude of this ratio are consistent with Tomonaga–Luttinger liquid theory. Such a dramatic manifestation of spin–charge separation in a bulk three-dimensional solid offers a unique opportunity to explore how the fermionic quasiparticle picture recovers, and over what time scale, when coupling to a second or third dimension is restored. PMID:21772267
NASA Astrophysics Data System (ADS)
Kwon, Ha-Kyung; Shull, Kenneth R.; Zwanikken, Jos W.; Olvera de La Cruz, Monica
Polyelectrolytes have received much attention as potential candidates for rechargeable batteries, membrane fuel cells, and drug delivery carriers, as they can combine the electrochemical properties of the charged components with the mechanical stability and biocompatibility of the polymer backbone. The role of salt in determining the bulk and interfacial behaviors of polyelectrolytes has been of particular interest, as the miscibility has shown to depend significantly on salt identity and concentration. Recent studies employing the SCFT-LS method have shown that ionic correlations can enhance phase separation in polyelectrolytes and can induce selectivity in neutral solvents. Here, we extend the theory to investigate the role of salt in strongly correlated polyelectrolytes. We find that in lamellae-forming block copolymers, the addition of monovalent, symmetric salt can lead to a decreased lamellar spacing due to increased selectivity of the salt. When multiple electrostatic interactions are introduced via size and valency asymmetry in the salt pair, the bulk phase behavior and salt distribution across interfaces are significantly altered, as size and charge mismatch can transform the charge ordering seen in monovalent, symmetric salts. This work was performed under the following financial assistance award 70NANB14H012 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD).
Superconductor to Mott insulator transition in YBa 2Cu 3O 7/LaCaMnO 3 heterostructures
Gray, B. A.; Middey, S.; Conti, G.; ...
2016-09-15
The superconductor-to-insulator transition (SIT) induced by means such as external magnetic fields, disorder or spatial confinement is a vivid illustration of a quantum phase transition dramatically affecting the superconducting order parameter. In this paper, in pursuit of a new realization of the SIT by interfacial charge transfer, we developed extremely thin superlattices composed of high Tc superconductor YBa 2Cu 3O 7 (YBCO) and colossal magnetoresistance ferromagnet La 0.67Ca 0.33MnO 3 (LCMO). By using linearly polarized resonant X-ray absorption spectroscopy and magnetic circular dichroism, combined with hard X-ray photoelectron spectroscopy, we derived a complete picture of the interfacial carrier doping inmore » cuprate and manganite atomic layers, leading to the transition from superconducting to an unusual Mott insulating state emerging with the increase of LCMO layer thickness. In addition, contrary to the common perception that only transition metal ions may respond to the charge transfer process, we found that charge is also actively compensated by rare-earth and alkaline-earth metal ions of the interface. Finally, such deterministic control of Tc by pure electronic doping without any hindering effects of chemical substitution is another promising route to disentangle the role of disorder on the pseudo-gap and charge density wave phases of underdoped cuprates.« less
NASA Astrophysics Data System (ADS)
Sherkatghanad, Zeinab; Mirza, Behrouz; Mirzaiyan, Zahra; Mansoori, Seyed Ali Hosseini
We consider the critical behaviors and phase transitions of Gauss-Bonnet-Born-Infeld-AdS black holes (GB-BI-AdS) for d = 5, 6 and the extended phase space. We assume the cosmological constant, Λ, the coupling coefficient α, and the BI parameter β to be thermodynamic pressures of the system. Having made these assumptions, the critical behaviors are then studied in the two canonical and grand canonical ensembles. We find “reentrant and triple point phase transitions” (RPT-TP) and “multiple reentrant phase transitions” (multiple RPT) with increasing pressure of the system for specific values of the coupling coefficient α in the canonical ensemble. Also, we observe a reentrant phase transition (RPT) of GB-BI-AdS black holes in the grand canonical ensemble and for d = 6. These calculations are then expanded to the critical behavior of Born-Infeld-AdS (BI-AdS) black holes in the third-order of Lovelock gravity and in the grand canonical ensemble to find a van der Waals (vdW) behavior for d = 7 and a RPT for d = 8 for specific values of potential ϕ in the grand canonical ensemble. Furthermore, we obtain a similar behavior for the limit of β →∞, i.e. charged-AdS black holes in the third-order of the Lovelock gravity. Thus, it is shown that the critical behaviors of these black holes are independent of the parameter β in the grand canonical ensemble.
Quenched disorder and vestigial nematicity in the pseudogap regime of the cuprates
Nie, Laimei; Tarjus, Gilles; Kivelson, Steven Allan
2014-01-01
The cuprate high-temperature superconductors have been the focus of unprecedentedly intense and sustained study not only because of their high superconducting transition temperatures, but also because they represent the most exquisitely investigated examples of highly correlated electronic materials. In particular, the pseudogap regime of the phase diagram exhibits a variety of mysterious emergent behaviors. In the last few years, evidence from NMR and scanning tunneling microscopy (STM) studies, as well as from a new generation of X-ray scattering experiments, has accumulated, indicating that a general tendency to short-range–correlated incommensurate charge density wave (CDW) order is “intertwined” with the superconductivity in this regime. Additionally, transport, STM, neutron-scattering, and optical experiments have produced evidence—not yet entirely understood—of the existence of an associated pattern of long-range–ordered point-group symmetry breaking with an electron-nematic character. We have carried out a theoretical analysis of the Landau–Ginzburg–Wilson effective field theory of a classical incommensurate CDW in the presence of weak quenched disorder. Although the possibilities of a sharp phase transition and long-range CDW order are precluded in such systems, we show that any discrete symmetry-breaking aspect of the charge order—nematicity in the case of the unidirectional (stripe) CDW we consider explicitly—generically survives up to a nonzero critical disorder strength. Such “vestigial order,” which is subject to unambiguous macroscopic detection, can serve as an avatar of what would be CDW order in the ideal, zero disorder limit. Various recent experiments in the pseudogap regime of the hole-doped cuprates are readily interpreted in light of these results. PMID:24799709
Charge carrier transport and photogeneration in P3HT:PCBM photovoltaic blends.
Laquai, Frédéric; Andrienko, Denis; Mauer, Ralf; Blom, Paul W M
2015-06-01
This article reviews the charge transport and photogeneration in bulk-heterojunction solar cells made from blend films of regioregular poly(3-hexylthiophene) (RR-P3HT) and methano-fullerene (PCBM). The charge transport, specifically the hole mobility in the RR-P3HT phase of the polymer:fullerene photovoltaic blend, is dramatically affected by thermal annealing. The hole mobility increases more than three orders of magnitude and reaches a value of up to 2 × 10(-4) cm(2) V(-1) s(-1) after the thermal annealing process as a result of an improved semi-crystallinity of the film. This significant increase of the hole mobility balances the electron and hole mobilities in a photovoltaic blend in turn reducing space-charge formation, and this is the most important factor for the strong enhancement of the photovoltaic efficiency compared to an as cast, that is, non-annealed device. In fact, the balanced charge carrier mobility in RR-P3HT:PCBM blends in combination with a field- and temperature-independent charge carrier generation and greatly reduced non-geminate recombination explains the large quantum efficiencies mea-sured in P3HT:PCBM photovoltaic devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Frey, Brian L.; Lin, Yuan; Westphall, Michael S.; Smith, Lloyd M.
2006-01-01
Charge reduction electrospray mass spectrometry (CREMS) reduces the charge states of electrospray-generated ions, which concentrates the ions from a protein into fewer peaks spread over a larger m/z range, thereby increasing peak separation and decreasing spectral congestion. An optimized design for a CREMS source is described that provides an order-of-magnitude increase in sensitivity compared to previous designs and provides control over the extent of charge reduction. Either a corona discharge or an α-particle source was employed to generate anions that abstract protons from electrosprayed protein cations. These desired ion/ion proton transfer reactions predominated, but some oxidation and ion-attachment reactions also occurred leading to new peaks or mass-shifted broader peaks while decreasing signal intensity. The species producing these deleterious side-reactions were identified, and conditions were found that prevented their formation. Spectrometer m/z biases were examined because of their effect upon the signal intensity of higher m/z charge-reduced protein ions. The utility of this atmospheric pressure CREMS was demonstrated using a cell lysate fraction from E. coli. The spectral simplification afforded by CREMS reveals more proteins than are observed without charge reduction. PMID:16198118
Formal Valence, 3 d Occupation, and Charge Ordering Transitions
NASA Astrophysics Data System (ADS)
Pickett, Warren
2014-03-01
The metal-insulator transition (MIT), discovered by Verwey in the late 1930s, has been thought to be one of the best understood of MITs, the other ones being named after Wigner, Peierls, Mott, and Anderson. Continuing work on these transitions finds in some cases less and less charge to order, raising the fundamental question of just where the entropy is coming from, and just what is ordering. To provide insight into the mechanism of charge-ordering transitions, which conventionally are pictured as a disproportionation, I will (1) review and reconsider the charge state (or oxidation number) picture itself, (2) introduce new theoretical results for the rare earth nickelates (viz. YNiO3), the putative charge ordering compound AgNiO2, and the dual charge state insulator AgO, and (3) analyze cationic occupations of actual (not formal) charge, and work to reconcile the conundrums that arise. Several of the clearest cases of charge ordering transitions involve no disproportion; moreover, the experimental data used to support charge ordering can be accounted for within density functional based calculations that contain no charge transfer The challenge of modeling charge ordering transitions with model Hamiltonians will be discussed. Acknowledgment: Y. Quan, V. Pardo. Supported by NSF award DMR-1207622-0.
A low jitter PLL clock used for phase change memory
NASA Astrophysics Data System (ADS)
Xiao, Hong; Houpeng, Chen; Zhitang, Song; Daolin, Cai; Xi, Li
2013-02-01
A fully integrated low-jitter, precise frequency CMOS phase-locked loop (PLL) clock for the phase change memory (PCM) drive circuit is presented. The design consists of a dynamic dual-reset phase frequency detector (PFD) with high frequency acquisition, a novel low jitter charge pump, a CMOS ring oscillator based voltage-controlled oscillator (VCO), a 2nd order passive loop filter, and a digital frequency divider. The design is fabricated in 0.35 μm CMOS technology and consumes 20 mW from a supply voltage of 5 V. In terms of the PCM's program operation requirement, the output frequency range is from 1 to 140 MHz. For the 140 MHz output frequency, the circuit features a cycle-to-cycle jitter of 28 ps RMS and 250 ps peak-to-peak.
Optical study of phase transitions in single-crystalline RuP
NASA Astrophysics Data System (ADS)
Chen, R. Y.; Shi, Y. G.; Zheng, P.; Wang, L.; Dong, T.; Wang, N. L.
2015-03-01
RuP single crystals of MnP-type orthorhombic structure were synthesized by the Sn flux method. Temperature-dependent x-ray diffraction measurements reveal that the compound experiences two structural phase transitions, which are further confirmed by enormous anomalies shown in temperature-dependent resistivity and magnetic susceptibility. Particularly, the resistivity drops monotonically upon temperature cooling below the second transition, indicating that the material shows metallic behavior, in sharp contrast with the insulating ground state of polycrystalline samples. Optical conductivity measurements were also performed in order to unravel the mechanism of these two transitions. The measurement revealed a sudden reconstruction of band structure over a broad energy scale and a significant removal of conducting carriers below the first phase transition, while a charge-density-wave-like energy gap opens below the second phase transition.
NASA Astrophysics Data System (ADS)
Kholmetskii, A. L.; Missevitch, O. V.; Yarman, T.
2018-05-01
We point out that the known quantum phases for an electric/magnetic dipole moving in an electromagnetic (EM) field must be presented as the superposition of more fundamental quantum phases emerging for elementary charges. Using this idea, we find two new fundamental quantum phases for point-like charges, next to the known electric and magnetic Aharonov-Bohm (A-B) phases, named by us as the complementary electric and magnetic phases, correspondingly. We further demonstrate that these new phases can indeed be derived via the Schrödinger equation for a particle in an EM field, where however the operator of momentum is re-defined via the replacement of the canonical momentum of particle by the sum of its mechanical momentum and interactional field momentum for a system "charged particle and a macroscopic source of EM field". The implications of the obtained results are discussed.
NASA Astrophysics Data System (ADS)
Liang, Sang-Zi; Chen, Gugang; Harutyunyan, Avetik R.; Sofo, Jorge O.
2014-09-01
In carbon nanotube and graphene gas sensing, the measured conductance change after the sensor is exposed to target molecules has been traditionally attributed to carrier density change due to charge transfer between the sample and the adsorbed molecule. However, this explanation has many problems when it is applied to graphene: The increased amount of Coulomb impurities should lead to decrease in carrier mobility which was not observed in many experiments, carrier density is controlled by the gate voltage in the experimental setup, and there are inconsistencies in the energetics of the charge transfer. In this paper we explore an alternative mechanism. Charged functional groups and dipolar molecules on the surface of graphene may counteract the effect of charged impurities on the substrate. Because scattering of electrons with these charged impurities has been shown to be the limiting factor in graphene conductivity, this leads to significant changes in the transport behavior. A model for the conductivity is established using the random phase approximation dielectric function of graphene and the first-order Born approximation for scattering. The model predicts optimal magnitudes for the charge and dipole moment which maximally screen a given charged impurity. The dipole screening is shown to be generally weaker than the charge screening although the former becomes more effective with higher gate voltage away from the charge neutrality point. The model also predicts that with increasing amount of adsorbates, the charge impurities eventually become saturated and additional adsorption always lead to decreasing conductivity.
Santhosh, Poornima Budime; Drašler, Barbara; Drobne, Damjana; Kreft, Mateja Erdani; Kralj, Slavko; Makovec, Darko; Ulrih, Nataša Poklar
2015-01-01
Superparamagnetic iron oxide nanoparticles (SPIONs) with multifunctional properties have shown great promise in theranostics. The aim of our work was to compare the effects of SPIONs on the fluidity and phase transition of the liposomal membranes prepared with zwitterionic phosphatidylcholine lipids. In order to study if the surface modification of SPIONs has any influence on these membrane properties, we have used four types of differently functionalized SPIONs, such as: plain SPIONs (primary size was shown to bê11 nm), silica-coated SPIONs, SPIONs coated with silica and functionalized with positively charged amino groups or negatively charged carboxyl groups (the primary size of all the surface-modified SPIONs was ~20 nm). Small unilamellar vesicles prepared with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine lipids and multilamellar vesicles prepared with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine lipids were encapsulated or incubated with the plain and surface-modified SPIONs to determine the fluidity and phase transition temperature of the bilayer lipids, respectively. Fluorescent anisotropy and differential scanning calorimetric measurements of the liposomes that were either encapsulated or incubated with the suspension of SPIONs did not show a significant difference in the lipid ordering and fluidity; though the encapsulated SPIONs showed a slightly increased effect on the fluidity of the model membranes in comparison with the incubated SPIONs. This indicates the low potential of the SPIONs to interact with the nontargeted cell membranes, which is a desirable factor for in vivo applications. PMID:26491286
Two-phase charge-coupled device
NASA Technical Reports Server (NTRS)
Kosonocky, W. F.; Carnes, J. E.
1973-01-01
A charge-transfer efficiency of 99.99% per stage was achieved in the fat-zero mode of operation of 64- and 128-stage two-phase charge-coupled shift registers at 1.0-MHz clock frequency. The experimental two-phase charge-coupled shift registers were constructed in the form of polysilicon gates overlapped by aluminum gates. The unidirectional signal flow was accomplished by using n-type substrates with 0.5 to 1.0 ohm-cm resistivity in conjunction with a channel oxide thickness of 1000 A for the polysilicon gates and 3000 A for the aluminum gates. The operation of the tested shift registers with fat zero is in good agreement with the free-charge transfer characteristics expected for the tested structures. The charge-transfer losses observed when operating the experimental shift registers without the fat zero are attributed to fast interface state trapping. The analytical part of the report contains a review backed up by an extensive appendix of the free-charge transfer characteristics of CCD's in terms of thermal diffusion, self-induced drift, and fringing field drift. Also, a model was developed for the charge-transfer losses resulting from charge trapping by fast interface states. The proposed model was verified by the operation of the experimental two-phase charge-coupled shift registers.
Dynamic tuning of optical absorbers for accelerated solar-thermal energy storage.
Wang, Zhongyong; Tong, Zhen; Ye, Qinxian; Hu, Hang; Nie, Xiao; Yan, Chen; Shang, Wen; Song, Chengyi; Wu, Jianbo; Wang, Jun; Bao, Hua; Tao, Peng; Deng, Tao
2017-11-14
Currently, solar-thermal energy storage within phase-change materials relies on adding high thermal-conductivity fillers to improve the thermal-diffusion-based charging rate, which often leads to limited enhancement of charging speed and sacrificed energy storage capacity. Here we report the exploration of a magnetically enhanced photon-transport-based charging approach, which enables the dynamic tuning of the distribution of optical absorbers dispersed within phase-change materials, to simultaneously achieve fast charging rates, large phase-change enthalpy, and high solar-thermal energy conversion efficiency. Compared with conventional thermal charging, the optical charging strategy improves the charging rate by more than 270% and triples the amount of overall stored thermal energy. This superior performance results from the distinct step-by-step photon-transport charging mechanism and the increased latent heat storage through magnetic manipulation of the dynamic distribution of optical absorbers.
NASA Astrophysics Data System (ADS)
Respaud, M.; Broto, J. M.; Rakoto, H.; Vanacken, J.; Wagner, P.; Martin, C.; Maignan, A.; Raveau, B.
2001-04-01
The magnetic properties of the polycrystalline manganites Sm1-xCaxMnO3 have been studied for (1>=x>=2/3) under high magnetic fields up to 50 T. The phase diagrams in the H-T plane have been determined. The more representative systems have also been studied by means of neutron diffraction experiments. Increasing the electron concentration in CaMnO3 leads to an increasing minor ferromagnetic (FM) component superimposed on the antiferromagnetic (AFM) background. A cluster-glass regime is observed for x=0.9, where FM clusters are embedded in the G-type AFM matrix of the parent compound. For 0.8>=x, field-induced transitions from the AFM ground state to a FM one have been observed. They correspond to the melting of the C-type AFM orbital-ordered phase for x=0.8, and to the collapse of the charge-ordered phase for x=3/4. In between these two characteristic domains of concentration, x~0.85, the magnetization curves show a superposition of the two above behaviors, suggesting phase separation. This scenario is consistent with the neutron diffraction results showing that the crystalline and magnetic structures of each phase coexist.
Exact Extremal Statistics in the Classical 1D Coulomb Gas
NASA Astrophysics Data System (ADS)
Dhar, Abhishek; Kundu, Anupam; Majumdar, Satya N.; Sabhapandit, Sanjib; Schehr, Grégory
2017-08-01
We consider a one-dimensional classical Coulomb gas of N -like charges in a harmonic potential—also known as the one-dimensional one-component plasma. We compute, analytically, the probability distribution of the position xmax of the rightmost charge in the limit of large N . We show that the typical fluctuations of xmax around its mean are described by a nontrivial scaling function, with asymmetric tails. This distribution is different from the Tracy-Widom distribution of xmax for Dyson's log gas. We also compute the large deviation functions of xmax explicitly and show that the system exhibits a third-order phase transition, as in the log gas. Our theoretical predictions are verified numerically.
Electro-osmotic flow in coated nanocapillaries: a theoretical investigation.
Marini Bettolo Marconi, Umberto; Monteferrante, Michele; Melchionna, Simone
2014-12-14
Motivated by recent experiments, we present a theoretical investigation of how the electro-osmotic flow occurring in a capillary is modified when its charged surfaces are coated with charged polymers. The theoretical treatment is based on a three-dimensional model consisting of a ternary fluid-mixture, representing the solvent and two species for the ions, confined between two parallel charged plates decorated with a fixed array of scatterers representing the polymer coating. The electro-osmotic flow, generated by a constant electric field applied in a direction parallel to the plates, is studied numerically by means of Lattice Boltzmann simulations. In order to gain further understanding we performed a simple theoretical analysis by extending the Stokes-Smoluchowski equation to take into account the porosity induced by the polymers in the region adjacent to the walls. We discuss the nature of the velocity profiles by focusing on the competing effects of the polymer charges and the frictional forces they exert. We show evidence of the flow reduction and of the flow inversion phenomenon when the polymer charge is opposite to the surface charge. By using the density of polymers and the surface charge as control variables, we propose a phase diagram that discriminates the direct and the reversed flow regimes and determines their dependence on the ionic concentration.
NASA Astrophysics Data System (ADS)
Hayami, Satoru; Kusunose, Hiroaki; Motome, Yukitoshi
2018-05-01
We investigate a two-orbital Hubbard model on a honeycomb structure, with a special focus on the antisymmetric spin-orbit coupling (ASOC) induced by symmetry breaking in the electronic degrees of freedom. By investigating the ground-state phase diagram by the mean-field approximation in addition to the analysis in the strong correlation limit, we obtain a variety of symmetry-broken phases that induce different types of effective ASOCs by breaking of spatial inversion symmetry. We find several unusual properties emergent from the ASOCs, such as a linear magnetoelectric effect in a spin-orbital ordered phase at 1/4 filling and a spin splitting in the band structure in charge ordered phases at 1/4 and 1/2 fillings. We also show that a staggered potential on the honeycomb structure leads to another type of ASOC, which gives rise to a valley splitting in the band structure at 1/2 filling. We discuss the experimental relevance of our results to candidate materials including transition metal dichalcogenides and trichalcogenides.
Grigoriadis, Christos; Niebel, Claude; Ruzié, Christian; Geerts, Yves H; Floudas, George
2014-02-06
The morphology, the viscoelastic, the dielectric properties and the dynamics of phase transformation are studied in symmetrically and asymmetrically substituted alkyl[1]benzothieno[3,2-b][1]benzothiophenes (C8-BTBT) by X-ray scattering, rheology, and dielectric spectroscopy. The interlayer spacing reflects the molecular and supramolecular ordering, respectively, in the symmetrically and asymmetrically substituted BTBTs. In the asymmetric BTBT, the core layer is double in size with a broader network of intermolecular interactions though the increased S-S contacts that is prerequisite for the development of high performance OFET devices. Two crystal states with elastic and viscoelastic responses were identified in the symmetric compound. In contrast, the SmA phase in the asymmetric compound is a viscoelastic solid. A path-dependent dielectric environment with a switchable dielectric permittivity was found in both compounds by cooling below 0 °C with possible implications to charge transport. The kinetics of phase transformation to the crystalline and SmA phases revealed a nucleation and growth mechanism with rates dominated by the low activation barriers.
Critical behavior and phase transition of dilaton black holes with nonlinear electrodynamics
NASA Astrophysics Data System (ADS)
Dayyani, Z.; Sheykhi, A.; Dehghani, M. H.; Hajkhalili, S.
2018-02-01
In this paper, we take into account the dilaton black hole solutions of Einstein gravity in the presence of logarithmic and exponential forms of nonlinear electrodynamics. First of all, we consider the cosmological constant and nonlinear parameter as thermodynamic quantities which can vary. We obtain thermodynamic quantities of the system such as pressure, temperature and Gibbs free energy in an extended phase space. We complete the analogy of the nonlinear dilaton black holes with the Van der Waals liquid-gas system. We work in the canonical ensemble and hence we treat the charge of the black hole as an external fixed parameter. Moreover, we calculate the critical values of temperature, volume and pressure and show that they depend on the dilaton coupling constant as well as on the nonlinear parameter. We also investigate the critical exponents and find that they are universal and independent of the dilaton and nonlinear parameters, which is an expected result. Finally, we explore the phase transition of nonlinear dilaton black holes by studying the Gibbs free energy of the system. We find that in the case of T>T_c, we have no phase transition. When T=T_c, the system admits a second-order phase transition, while for T=T_f
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aloui, Walid, E-mail: alouiwalid26@yahoo.fr; Adhikari, Tham; Nunzi, Jean-Michel
2016-06-15
Highlights: • A typical structure of ITO/PEDOT: PSS/P3HT: PC{sub 70}BM/Al was fabricated. • Charge carrier diffusion and recombination have been calculated. • AFM and optical results show that thermal annealing promotes the phase separation. • The annealing process improves the transport of charges. - Abstract: The effect of thermal annealing on the optical, structural and the dielectric properties of P3HT:PC{sub 70}BM blended films were investigated. By means of atomic force microscopy, we observed the morphology evolution of the annealed P3HT:PC{sub 70}BM nanocomposites. Raman spectroscopy showed a substantial ordering in the polymer film after annealing. The absorption spectra of the annealedmore » P3HT:PC{sub 70}BM films were improved and red shifted than un-annealed samples. The results indicate that the P3HT in the nanocomposite becomes an ordered structure with annealing. The ordered P3HT facilitates the charge transport. From the photoluminescence measurements, the formation of polymer crystallites was observed upon annealing. Thus, the device efficiency reaches 2.2% after annealing at 150 °C. Impedance spectroscopy shows the classical complex plan curves; the low frequency is related to the effective lifetime of charge carriers and the high frequency corresponds to the diffusion time of these carriers. Global mobilities are in the range 3.8–4.6 × 10{sup −3} cm{sup 2} V{sup −1} s{sup −1}.« less
Development of Novel PEM Membrane and Multiphase CD Modeling of PEM Fuel Cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. J. Berry; Susanta Das
2009-12-30
To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtainedmore » from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance. To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreiber, N. J.; Zhang, Junjie; Zheng, Hong
Here, praseodymium-containing cobalt perovskites, such as (Pr 1-yY y) 1-xCa xCoO 3-δ, have been argued to undergo a first-order charge shift between Pr and hybridized Co-O orbitals that leads to a metal-insulator transition at a temperature, T VT. Magnetization and x-ray absorption spectroscopy measurements on single crystals of (Pr 0.85Y 0.15) 0.7Ca 0.3CoO 3-δ grown in an IR image furnace under 40-60 bar of oxygen confirm the presence of this valence transition. Single crystal x-ray synchrotron diffraction measurements are consistent with an isomorphic phase transition at T VT. No evidence of charge ordering was revealed by the single crystal diffraction.more » Dissimilar to analytical transmission electron microscopy measurements performed on a grain from a polycrystalline sample that revealed an oxygen vacancy order-disorder transition at T VT, the present single-crystal measurements did not evidence such a transition, likely reflecting a lower density of oxygen vacancies in the high-pO 2 grown single crystals.« less
NASA Astrophysics Data System (ADS)
Petersen, J.; Bechstedt, F.; Furthmüller, J.; Scolfaro, L. M.
2018-05-01
Complex ordered phases involving spin and charge degrees of freedom in condensed matter, such as layered cuprates and nickelates, are exciting but not well understood solid-state phenomena. The rich underlying physics of the overdoped high-temperature superconductor L a7 /4S r1 /4Cu O4 and colossal dielectric constant insulator L a5 /3S r1 /3Ni O4 is studied from first principles within density functional (perturbation) theory, including an effective Hubbard potential U for the exchange and correlation of d orbitals. Charge density wave (CDW) and spin density wave (SDW) orders are found in both materials, where the stripes are commensurate with the lattice. The SDWs are accompanied by complex antiferromagnetic spin arrangements along the stripes. The first series of conduction bands related to the pseudogap observed in the cuprate are found to be directly related to CDW order, while the colossal dielectric constant in the nickelate is demonstrated to be a result of vibronic coupling with CDW order. Differences between the two oxides are related to how the stripes fill with carriers.
Schreiber, N. J.; Zhang, Junjie; Zheng, Hong; ...
2017-06-27
Here, praseodymium-containing cobalt perovskites, such as (Pr 1-yY y) 1-xCa xCoO 3-δ, have been argued to undergo a first-order charge shift between Pr and hybridized Co-O orbitals that leads to a metal-insulator transition at a temperature, T VT. Magnetization and x-ray absorption spectroscopy measurements on single crystals of (Pr 0.85Y 0.15) 0.7Ca 0.3CoO 3-δ grown in an IR image furnace under 40-60 bar of oxygen confirm the presence of this valence transition. Single crystal x-ray synchrotron diffraction measurements are consistent with an isomorphic phase transition at T VT. No evidence of charge ordering was revealed by the single crystal diffraction.more » Dissimilar to analytical transmission electron microscopy measurements performed on a grain from a polycrystalline sample that revealed an oxygen vacancy order-disorder transition at T VT, the present single-crystal measurements did not evidence such a transition, likely reflecting a lower density of oxygen vacancies in the high-pO 2 grown single crystals.« less
Thermodynamics of higher dimensional black holes with higher order thermal fluctuations
NASA Astrophysics Data System (ADS)
Pourhassan, B.; Kokabi, K.; Rangyan, S.
2017-12-01
In this paper, we consider higher order corrections of the entropy, which coming from thermal fluctuations, and find their effect on the thermodynamics of higher dimensional charged black holes. Leading order thermal fluctuation is logarithmic term in the entropy while higher order correction is proportional to the inverse of original entropy. We calculate some thermodynamics quantities and obtain the effect of logarithmic and higher order corrections of entropy on them. Validity of the first law of thermodynamics investigated and Van der Waals equation of state of dual picture studied. We find that five-dimensional black hole behaves as Van der Waals, but higher dimensional case have not such behavior. We find that thermal fluctuations are important in stability of black hole hence affect unstable/stable black hole phase transition.
Thermal State-of-Charge in Solar Heat Receivers
NASA Technical Reports Server (NTRS)
Hall, Carsie A., Jr.; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.
1998-01-01
A theoretical framework is developed to determine the so-called thermal state-of-charge (SOC) in solar heat receivers employing encapsulated phase change materials (PCMS) that undergo cyclic melting and freezing. The present problem is relevant to space solar dynamic power systems that would typically operate in low-Earth-orbit (LEO). The solar heat receiver is integrated into a closed-cycle Brayton engine that produces electric power during sunlight and eclipse periods of the orbit cycle. The concepts of available power and virtual source temperature, both on a finite-time basis, are used as the basis for determining the SOC. Analytic expressions for the available power crossing the aperture plane of the receiver, available power stored in the receiver, and available power delivered to the working fluid are derived, all of which are related to the SOC through measurable parameters. Lower and upper bounds on the SOC are proposed in order to delineate absolute limiting cases for a range of input parameters (orbital, geometric, etc.). SOC characterization is also performed in the subcooled, two-phase, and superheat regimes. Finally, a previously-developed physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) system is used in order to predict the SOC as a function of measurable parameters.
Zhang, Xun; Zhang, Junhu; Zhu, Difu; Li, Xiao; Zhang, Xuemin; Wang, Tieqiang; Yang, Bai
2010-12-07
We present a novel and simple method to fabricate two-dimensional (2D) poly(styrene sulfate) (PSS, negatively charged) colloidal crystals on a positively charged substrate. Our strategy contains two separate steps: one is the three-dimensional (3D) assembly of PSS particles in ethanol, and the other is electrostatic adsorption in water. First, 3D assembly in ethanol phase eliminates electrostatic attractions between colloids and the substrate. As a result, high-quality colloidal crystals are easily generated, for electrostatic attractions are unfavorable for the movement of colloidal particles during convective self-assembly. Subsequently, top layers of colloidal spheres are washed away in the water phase, whereas well-packed PSS colloids that are in contact with the substrate are tightly linked due to electrostatic interactions, resulting in the formation of ordered arrays of 2D colloidal spheres. Cycling these processes leads to the layer-by-layer assembly of 3D colloidal crystals with controllable layers. In addition, this strategy can be extended to the fabrication of patterned 2D colloidal crystals on patterned polyelectrolyte surfaces, not only on planar substrates but also on nonplanar substrates. This straightforward method may open up new possibilities for practical use of colloidal crystals of excellent quality, various patterns, and controllable fashions.
A-site ordered quadruple perovskite oxides
NASA Astrophysics Data System (ADS)
Youwen, Long
2016-07-01
The A-site ordered perovskite oxides with chemical formula display many intriguing physical properties due to the introduction of transition metals at both A‧ and B sites. Here, research on the recently discovered intermetallic charge transfer occurring between A‧-site Cu and B-site Fe ions in LaCu3Fe4O12 and its analogues is reviewed, along with work on the magnetoelectric multiferroicity observed in LaMn3Cr4O12 with cubic perovskite structure. The Cu-Fe intermetallic charge transfer leads to a first-order isostructural phase transition accompanied by drastic variations in magnetism and electrical transport properties. The LaMn3Cr4O12 is a novel spin-driven multiferroic system with strong magnetoelectric coupling effects. The compound is the first example of cubic perovskite multiferroics to be found. It opens up a new arena for studying unexpected multiferroic mechanisms. Project supported by the National Basic Research Program of China (Grant No. 2014CB921500), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07030300), and the National Natural Science Foundation of China (Grant No. 11574378).
Ordered materials for organic electronics and photonics.
O'Neill, Mary; Kelly, Stephen M
2011-02-01
We present a critical review of semiconducting/light emitting, liquid crystalline materials and their use in electronic and photonic devices such as transistors, photovoltaics, OLEDs and lasers. We report that annealing from the mesophase improves the order and packing of organic semiconductors to produce state-of-the-art transistors. We discuss theoretical models which predict how charge transport and light emission is affected by the liquid crystalline phase. Organic photovoltaics and OLEDs require optimization of both charge transport and optical properties and we identify the various trade-offs involved for ordered materials. We report the crosslinking of reactive mesogens to give pixellated full-colour OLEDs and distributed bi-layer photovoltaics. We show how the molecular organization inherent to the mesophase can control the polarization of light-emitting devices and the gain in organic, thin-film lasers and can also provide distributed feedback in chiral nematic mirrorless lasers. We update progress on the surface alignment of liquid crystalline semiconductors to obtain monodomain devices without defects or devices with spatially varying properties. Finally the significance of all of these developments is assessed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Abdel-Hafiez, M.; Zhao, X.-M.; Kordyuk, A. A.; Fang, Y.-W.; Pan, B.; He, Z.; Duan, C.-G.; Zhao, J.; Chen, X.-J.
2016-01-01
In low-dimensional electron systems, charge density waves (CDW) and superconductivity are two of the most fundamental collective quantum phenomena. For all known quasi-two-dimensional superconductors, the origin and exact boundary of the electronic orderings and superconductivity are still attractive problems. Through transport and thermodynamic measurements, we report on the field-temperature phase diagram in 2H-TaS2 single crystals. We show that the superconducting transition temperature (Tc) increases by one order of magnitude from temperatures at 0.98 K up to 9.15 K at 8.7 GPa when the Tc becomes very sharp. Additionally, the effects of 8.7 GPa illustrate a suppression of the CDW ground state, with critically small Fermi surfaces. Below the Tc the lattice of magnetic flux lines melts from a solid-like state to a broad vortex liquid phase region. Our measurements indicate an unconventional s-wave-like picture with two energy gaps evidencing its multi-band nature. PMID:27534898
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radzihovsky, Leo
Motivated by a realization of imbalanced Feshbach-resonant atomic Fermi gases, we formulate a low-energy theory of the Fulde-Ferrell and the Larkin-Ovchinnikov (LO) states and use it to analyze fluctuations, stability, and phase transitions in these enigmatic finite momentum-paired superfluids. Focusing on the unidirectional LO pair-density-wave state, which spontaneously breaks the continuous rotational and translational symmetries, we show that it is characterized by two Goldstone modes, corresponding to a superfluid phase and a smectic phonon. Because of the liquid-crystalline ''softness'' of the latter, at finite temperature the three-dimensional state is characterized by a vanishing LO order parameter, quasi-Bragg peaks in themore » structure and momentum distribution functions, and a ''charge''-4, paired-Cooper-pairs, off-diagonal long-range order, with a superfluid-stiffness anisotropy that diverges near a transition into a nonsuperfluid state. In addition to conventional integer vortices and dislocations, the LO superfluid smectic exhibits composite half-integer vortex-dislocation defects. A proliferation of defects leads to a rich variety of descendant states, such as the charge-4 superfluid and Fermi-liquid nematics and topologically ordered nonsuperfluid states, that generically intervene between the LO state and the conventional superfluid and the polarized Fermi liquid at low and high imbalance, respectively. The fermionic sector of the LO gapless superconductor is also quite unique, exhibiting a Fermi surface of Bogoliubov quasiparticles associated with the Andreev band of states, localized on the array of the LO domain walls.« less
Daily, Michael D; Baer, Marcel D; Mundy, Christopher J
2016-03-10
The description of peptides and the use of molecular dynamics simulations to refine structures and investigate the dynamics on an atomistic scale are well developed. Through a consensus in this community over multiple decades, parameters were developed for molecular interactions that only require the sequence of amino-acids and an initial guess for the three-dimensional structure. The recent discovery of peptoids will require a retooling of the currently available interaction potentials in order to have the same level of confidence in the predicted structures and pathways as there is presently in the peptide counterparts. Here we present modeling of peptoids using a combination of ab initio molecular dynamics (AIMD) and atomistic resolution classical force field (FF) to span the relevant time and length scales. To properly account for the dominant forces that stabilize ordered structures of peptoids, namely steric-, electrostatic, and hydrophobic interactions mediated through side chain-side chain interactions in the FF model, those have to be first mapped out using high fidelity atomistic representations. A key feature here is not only to use gas phase quantum chemistry tools, but also account for solvation effects in the condensed phase through AIMD. One major challenge is to elucidate ion binding to charged or polar regions of the peptoid and its concomitant role in the creation of local order. Here, similar to proteins, a specific ion effect is observed suggesting that both the net charge and the precise chemical nature of the ion will need to be described.
Metal-Insulator Transition in Copper Oxides Induced by Apex Displacements
NASA Astrophysics Data System (ADS)
Acharya, Swagata; Weber, Cédric; Plekhanov, Evgeny; Pashov, Dimitar; Taraphder, A.; Van Schilfgaarde, Mark
2018-04-01
High temperature superconductivity has been found in many kinds of compounds built from planes of Cu and O, separated by spacer layers. Understanding why critical temperatures are so high has been the subject of numerous investigations and extensive controversy. To realize high temperature superconductivity, parent compounds are either hole doped, such as La2 CuO4 (LCO) with Sr (LSCO), or electron doped, such as Nd2 CuO4 (NCO) with Ce (NCCO). In the electron-doped cuprates, the antiferromagnetic phase is much more robust than the superconducting phase. However, it was recently found that the reduction of residual out-of-plane apical oxygen dramatically affects the phase diagram, driving those compounds to a superconducting phase. Here we use a recently developed first-principles method to explore how displacement of the apical oxygen (AO) in LCO affects the optical gap, spin and charge susceptibilities, and superconducting order parameter. By combining quasiparticle self-consistent GW (QS GW) and dynamical mean-field theory (DMFT), we show that LCO is a Mott insulator, but small displacements of the apical oxygen drive the compound to a metallic state through a localization-delocalization transition, with a concomitant maximum in d -wave order parameter at the transition. We address the question of whether NCO can be seen as the limit of LCO with large apical displacements, and we elucidate the deep physical reasons why the behavior of NCO is so different from the hole-doped materials. We shed new light on the recent correlation observed between Tc and the charge transfer gap, while also providing a guide towards the design of optimized high-Tc superconductors. Further, our results suggest that strong correlation, enough to induce a Mott gap, may not be a prerequisite for high-Tc superconductivity.
Butlitsky, M A; Zelener, B B; Zelener, B V
2014-07-14
A two-component plasma model, which we called a "shelf Coulomb" model has been developed in this work. A Monte Carlo study has been undertaken to calculate equations of state, pair distribution functions, internal energies, and other thermodynamics properties. A canonical NVT ensemble with periodic boundary conditions was used. The motivation behind the model is also discussed in this work. The "shelf Coulomb" model can be compared to classical two-component (electron-proton) model where charges with zero size interact via a classical Coulomb law. With important difference for interaction of opposite charges: electrons and protons interact via the Coulomb law for large distances between particles, while interaction potential is cut off on small distances. The cut off distance is defined by an arbitrary ɛ parameter, which depends on system temperature. All the thermodynamics properties of the model depend on dimensionless parameters ɛ and γ = βe(2)n(1/3) (where β = 1/kBT, n is the particle's density, kB is the Boltzmann constant, and T is the temperature) only. In addition, it has been shown that the virial theorem works in this model. All the calculations were carried over a wide range of dimensionless ɛ and γ parameters in order to find the phase transition region, critical point, spinodal, and binodal lines of a model system. The system is observed to undergo a first order gas-liquid type phase transition with the critical point being in the vicinity of ɛ(crit) ≈ 13(T(*)(crit) ≈ 0.076), γ(crit) ≈ 1.8(v(*)(crit) ≈ 0.17), P(*)(crit) ≈ 0.39, where specific volume v* = 1/γ(3) and reduced temperature T(*) = ɛ(-1).
Electron-neutrino scattering off nuclei from two different theoretical perspectives
NASA Astrophysics Data System (ADS)
Martini, M.; Jachowicz, N.; Ericson, M.; Pandey, V.; Van Cuyck, T.; Van Dessel, N.
2016-07-01
We analyze charged-current electron-neutrino cross sections on carbon. We consider two different theoretical approaches, on one hand the continuum random phase approximation (CRPA) which allows a description of giant resonances and quasielastic excitations, on the other hand the RPA-based calculations which are able to describe multinucleon emission and coherent and incoherent pion production as well as quasielastic excitations. We compare the two approaches in the genuine quasielastic channel, and find a satisfactory agreement between them at large energies while at low energies the collective giant resonances show up only in the CRPA approach. We also compare electron-neutrino cross sections with the corresponding muon-neutrino ones in order to investigate the impact of the different charged-lepton masses. Finally, restricting to the RPA-based approach, we compare the sum of quasielastic, multinucleon emission, coherent, and incoherent one-pion production cross sections (folded with the electron-neutrino T2K flux) with the charged-current inclusive electron-neutrino differential cross sections on carbon measured by T2K. We find a good agreement with the data. The multinucleon component is needed in order to reproduce the T2K electron-neutrino inclusive cross sections.
Energy barriers between metastable states in first-order quantum phase transitions
NASA Astrophysics Data System (ADS)
Wald, Sascha; Timpanaro, André M.; Cormick, Cecilia; Landi, Gabriel T.
2018-02-01
A system of neutral atoms trapped in an optical lattice and dispersively coupled to the field of an optical cavity can realize a variation of the Bose-Hubbard model with infinite-range interactions. This model exhibits a first-order quantum phase transition between a Mott insulator and a charge density wave, with spontaneous symmetry breaking between even and odd sites, as was recently observed experimentally [Landig et al., Nature (London) 532, 476 (2016), 10.1038/nature17409]. In the present paper, we approach the analysis of this transition using a variational model which allows us to establish the notion of an energy barrier separating the two phases. Using a discrete WKB method, we then show that the local tunneling of atoms between adjacent sites lowers this energy barrier and hence facilitates the transition. Within our simplified description, we are thus able to augment the phase diagram of the model with information concerning the height of the barrier separating the metastable minima from the global minimum in each phase, which is an essential aspect for the understanding of the reconfiguration dynamics induced by a quench across a quantum critical point.