Emergent ultrafast phenomena in correlated oxides and heterostructures
NASA Astrophysics Data System (ADS)
Gandolfi, M.; Celardo, G. L.; Borgonovi, F.; Ferrini, G.; Avella, A.; Banfi, F.; Giannetti, C.
2017-03-01
The possibility of investigating the dynamics of solids on timescales faster than the thermalization of the internal degrees of freedom has disclosed novel non-equilibrium phenomena that have no counterpart at equilibrium. Transition metal oxides (TMOs) provide an interesting playground in which the correlations among the charges in the metal d-orbitals give rise to a wealth of intriguing electronic and thermodynamic properties involving the spin, charge, lattice and orbital orders. Furthermore, the physical properties of TMOs can be engineered at the atomic level, thus providing the platform to investigate the transport phenomena on timescales of the order of the intrinsic decoherence time of the charge excitations. Here, we review and discuss three paradigmatic examples of transient emerging properties that are expected to open new fields of research: (i) the creation of non-thermal magnetic states in spin-orbit Mott insulators; (ii) the possible exploitation of quantum paths for the transport and collection of charge excitations in heterostructures; (iii) the transient wave-like behavior of the temperature field in strongly anisotropic TMOs.
High-temperature charge density wave correlations in La1.875Ba0.125CuO4 without spin–charge locking
Lorenzana, J.; Seibold, G.; Peng, Y. Y.; Amorese, A.; Yakhou-Harris, F.; Kummer, K.; Brookes, N. B.; Konik, R. M.; Thampy, V.; Gu, G. D.; Ghiringhelli, G.; Braicovich, L.
2017-01-01
Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La1.875Ba0.125CuO4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. This indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates. PMID:29114049
Evidence for a Peierls phase-transition in a three-dimensional multiple charge-density waves solid
Mansart, Barbara; Cottet, Mathieu J. G.; Penfold, Thomas J.; Dugdale, Stephen B.; Tediosi, Riccardo; Chergui, Majed; Carbone, Fabrizio
2012-01-01
The effect of dimensionality on materials properties has become strikingly evident with the recent discovery of graphene. Charge ordering phenomena can be induced in one dimension by periodic distortions of a material’s crystal structure, termed Peierls ordering transition. Charge-density waves can also be induced in solids by strong coulomb repulsion between carriers, and at the extreme limit, Wigner predicted that crystallization itself can be induced in an electrons gas in free space close to the absolute zero of temperature. Similar phenomena are observed also in higher dimensions, but the microscopic description of the corresponding phase transition is often controversial, and remains an open field of research for fundamental physics. Here, we photoinduce the melting of the charge ordering in a complex three-dimensional solid and monitor the consequent charge redistribution by probing the optical response over a broad spectral range with ultrashort laser pulses. Although the photoinduced electronic temperature far exceeds the critical value, the charge-density wave is preserved until the lattice is sufficiently distorted to induce the phase transition. Combining this result with ab initio electronic structure calculations, we identified the Peierls origin of multiple charge-density waves in a three-dimensional system for the first time. PMID:22451898
Miao, H.; Lorenzana, J.; Seibold, G.; ...
2017-11-07
Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La 1.875Ba 0.125CuO 4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. Thismore » indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, H.; Lorenzana, J.; Seibold, G.
Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La 1.875Ba 0.125CuO 4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. Thismore » indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates.« less
Bending and breaking of stripes in a charge ordered manganite.
Savitzky, Benjamin H; El Baggari, Ismail; Admasu, Alemayehu S; Kim, Jaewook; Cheong, Sang-Wook; Hovden, Robert; Kourkoutis, Lena F
2017-12-01
In charge-ordered phases, broken translational symmetry emerges from couplings between charge, spin, lattice, or orbital degrees of freedom, giving rise to remarkable phenomena such as colossal magnetoresistance and metal-insulator transitions. The role of the lattice in charge-ordered states remains particularly enigmatic, soliciting characterization of the microscopic lattice behavior. Here we directly map picometer scale periodic lattice displacements at individual atomic columns in the room temperature charge-ordered manganite Bi 0.35 Sr 0.18 Ca 0.47 MnO 3 using aberration-corrected scanning transmission electron microscopy. We measure transverse, displacive lattice modulations of the cations, distinct from existing manganite charge-order models. We reveal locally unidirectional striped domains as small as ~5 nm, despite apparent bidirectionality over larger length scales. Further, we observe a direct link between disorder in one lattice modulation, in the form of dislocations and shear deformations, and nascent order in the perpendicular modulation. By examining the defects and symmetries of periodic lattice displacements near the charge ordering phase transition, we directly visualize the local competition underpinning spatial heterogeneity in a complex oxide.
Ultrafast magnetization reversal by picosecond electrical pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yang; Wilson, Richard B.; Gorchon, Jon
The field of spintronics involves the study of both spin and charge transport in solid-state devices. Ultrafast magnetism involves the use of femtosecond laser pulses to manipulate magnetic order on subpicosecond time scales. Here, we unite these phenomena by using picosecond charge current pulses to rapidly excite conduction electrons in magnetic metals. We observe deterministic, repeatable ultrafast reversal of the magnetization of a GdFeCo thin film with a single sub–10-ps electrical pulse. The magnetization reverses in ~10 ps, which is more than one order of magnitude faster than any other electrically controlled magnetic switching, and demonstrates a fundamentally new electricalmore » switching mechanism that does not require spin-polarized currents or spin-transfer/orbit torques. The energy density required for switching is low, projecting to only 4 fJ needed to switch a (20 nm) 3 cell. This discovery introduces a new field of research into ultrafast charge current–driven spintronic phenomena and devices.« less
Ultrafast magnetization reversal by picosecond electrical pulses
Yang, Yang; Wilson, Richard B.; Gorchon, Jon; ...
2017-11-03
The field of spintronics involves the study of both spin and charge transport in solid-state devices. Ultrafast magnetism involves the use of femtosecond laser pulses to manipulate magnetic order on subpicosecond time scales. Here, we unite these phenomena by using picosecond charge current pulses to rapidly excite conduction electrons in magnetic metals. We observe deterministic, repeatable ultrafast reversal of the magnetization of a GdFeCo thin film with a single sub–10-ps electrical pulse. The magnetization reverses in ~10 ps, which is more than one order of magnitude faster than any other electrically controlled magnetic switching, and demonstrates a fundamentally new electricalmore » switching mechanism that does not require spin-polarized currents or spin-transfer/orbit torques. The energy density required for switching is low, projecting to only 4 fJ needed to switch a (20 nm) 3 cell. This discovery introduces a new field of research into ultrafast charge current–driven spintronic phenomena and devices.« less
Coherent charge and spin density waves in underdoped HgBa 2CuO 4+δ
Lee, Jeongseop A.; Xin, Yizhou; Halperin, W. P.; ...
2017-03-16
Charge order in cuprate superconductors appears to be a universal characteristic, often associated with pseudogap behavior in the normal state. The central question is whether such charge ordering or the pseudogap are required for the existence of high temperature superconductivity and embody its mechanism. An important but phenomenological approach to this question is to examine whether these phenomena extend over various members of the cuprate family. Recent nuclear magnetic resonance (NMR) measurements on oxygen chain-ordered single crystals of YBa 2Cu 3O 6+y (Y123) have demonstrated temperature and magnetic field induced charge ordering that was confirmed in x-ray experiments. In themore » present work on high-quality single crystals of the tetragonal compound, HgBa 2CuO 4+δ, we use 17O NMR to investigate the interplay between charge and spin order deduced from the full quadrupolar-split NMR spectrum over a wide range of temperature and magnetic field. We have found evidence for a coherent modulation of charge and spin order in this compound. Furthermore, neither temperature nor magnetic field induced ordering was observed and we infer that this aspect of high temperature superconductivity is not universal.« less
Transformers: the changing phases of low-dimensional vanadium oxide bronzes.
Marley, Peter M; Horrocks, Gregory A; Pelcher, Kate E; Banerjee, Sarbajit
2015-03-28
In this feature article, we explore the electronic and structural phase transformations of ternary vanadium oxides with the composition MxV2O5 where M is an intercalated cation. The periodic arrays of intercalated cations ordered along quasi-1D tunnels or layered between 2D sheets of the V2O5 framework induce partial reduction of the framework vanadium atoms giving rise to charge ordering patterns that are specific to the metal M and stoichiometry x. This periodic charge ordering makes these materials remarkably versatile platforms for studying electron correlation and underpins the manifestation of phenomena such as colossal metal-insulator transitions, quantized charge corrals, and superconductivity. We describe current mechanistic understanding of these emergent phenomena with a particular emphasis on the benefits derived from scaling these materials to nanostructured dimensions wherein precise ordering of cations can be obtained and phase relationships can be derived that are entirely inaccessible in the bulk. In particular, structural transformations induced by intercalation are dramatically accelerated due to the shorter diffusion path lengths at nanometer-sized dimensions, which cause a dramatic reduction of kinetic barriers to phase transformations and facilitate interconversion between the different frameworks. We conclude by summarizing numerous technological applications that have become feasible due to recent advances in controlling the structural chemistry and both electronic and structural phase transitions in these versatile frameworks.
El Baggari, Ismail; Savitzky, Benjamin H; Admasu, Alemayehu S; Kim, Jaewook; Cheong, Sang-Wook; Hovden, Robert; Kourkoutis, Lena F
2018-02-13
Incommensurate charge order in hole-doped oxides is intertwined with exotic phenomena such as colossal magnetoresistance, high-temperature superconductivity, and electronic nematicity. Here, we map, at atomic resolution, the nature of incommensurate charge-lattice order in a manganite using scanning transmission electron microscopy at room temperature and cryogenic temperature ([Formula: see text]93 K). In diffraction, the ordering wave vector changes upon cooling, a behavior typically associated with incommensurate order. However, using real space measurements, we discover that the ordered state forms lattice-locked regions over a few wavelengths interspersed with phase defects and changing periodicity. The cations undergo picometer-scale ([Formula: see text]6 pm to 11 pm) transverse displacements, suggesting that charge-lattice coupling is strong. We further unearth phase inhomogeneity in the periodic lattice displacements at room temperature, and emergent phase coherence at 93 K. Such local phase variations govern the long-range correlations of the charge-ordered state and locally change the periodicity of the modulations, resulting in wave vector shifts in reciprocal space. These atomically resolved observations underscore the importance of lattice coupling and phase inhomogeneity, and provide a microscopic explanation for putative "incommensurate" order in hole-doped oxides. Copyright © 2018 the Author(s). Published by PNAS.
NASA Astrophysics Data System (ADS)
de Filippo, E.; Lanzanó, G.; Amorini, F.; Cardella, G.; Geraci, E.; Grassi, L.; La Guidara, E.; Lombardo, I.; Politi, G.; Rizzo, F.; Russotto, P.; Volant, C.; Hagmann, S.; Rothard, H.
2010-12-01
The interaction of ion beams with insulators leads to charging-up phenomena, which at present are under investigation in connection with guiding phenomena in nanocapillaries with possible application in nanofocused beams. We studied the charging dynamics of insulating foil targets [Mylar, polypropylene (PP)] irradiated with swift ion beams (C, O, Ag, and Xe at 40, 23, 40, and 30 MeV/u, respectively) via the measurement of the slowing down of fast binary-encounter electrons. Also, sandwich targets (Mylar covered with a thin Au layer on both surfaces) and Mylar with Au on only one surface were used. Fast-electron spectra were measured by the time-of-flight method at the superconducting cyclotron of Laboratori Nazionali del Sud (LNS) Catania. The charge buildup leads to target-material-dependent potentials of the order of 6.0 kV for Mylar and 2.8 kV for PP. The sandwich targets, surprisingly, show the same behavior as the insulating targets, whereas a single Au layer on the electron and ion exit side strongly suppresses the charging phenomenon. The accumulated number of projectiles needed for charging up is inversely proportional to electronic energy loss. Thus, the charging up is directly related to emission of secondary electrons.
Investigation of the charge-orbital ordering mechanism in single-layered Pr0.5Ca1.5MnO4
NASA Astrophysics Data System (ADS)
Rangkuti, C. N.; Majidi, M. A.
2018-04-01
Motivated by the experimental study of half-doped single-layered Pr0.5Ca1.5MnO4 showing charge, orbital, and spin orderings [1], we propose a model to theoretically study the system to explain such ordering phenomena. The ground state electron configuration reveals that the charges form a checkerboard pattern with alternating Mn3+/Mn4+ sites, while the orbitals are aligned in zigzag chains [1, 2]. We calculate the ground state energy of this system to find the most preferable configuration by comparing three types of configurations (charge-unordered, charge-ordered, and charge-orbital-ordered states). The calculations are based on a tight-binding model representing effective electron hoppings among Mn ions in MnO2-plane. We take into account the horizontally- and vertically-oriented orbital and spin degrees of freedom at Mn sites. We assume that the hopping integral values depend on the relative orientation between the corresponding orbitals of adjacent Mn ions. The interaction terms we incorporate into our effective Hamiltonian include inter-orbital, intra-orbital Hubbard repulsions, and Jahn-Teller distortion [2]. We absorb the exchange interaction between spins into local self-energy that we calculate within dynamical mean field algorithm [2]. Within our model we show a circumstance in which the charge-orbital ordered configuration has the lowest energy, consistent with the ground state ordering revealed by the experimental data.
Space-Charge Waves and Instabilities in Intense Beams
NASA Astrophysics Data System (ADS)
Wang, J. G.
1997-11-01
Advancced accelerator applications, such as drivers for heavy ion inertial fusion, high-intensity synchrotrons for spallation neutron sources, high energy boosters, free electron lasers, high-power microwave generators, etc., require ever-increasing beam intensity. An important beam dynamics issue in such beams is the collective behavior of charged particles due to their space charge effects. This includes the phenomena of space-charge waves and instabilities excited on beams by external perturbations. It is very crucial to fully understand these phenomena in order to develop advanced accelerators for various applications. At the University of Maryland we have been conducting experimental programs to study space-charge waves and longitudinal instabilities by employing low-energy, high-current, space-charge dominated electron beams. Localized perturbations on the beams are generated from a gridded electron gun. In a conducting transport channel focused by short solenoids, these perturbations evolve into space-charge waves propagating on the beams. The wave speed is measured and many beam parameters are determined with this technique. The reflection of space-charge waves at the shoulder of an initially rectangular beam bunch is also observed. In a resistive-wall channel focused by a uniform long solenoid, the space-charge waves suffer longitudinal instability. The properties of the instabilities are studied in detail in the long wavelength range. In this talk we review our experimental results on the waves and instabilities and compare with theory.
Electro-osmosis of nematic liquid crystals under weak anchoring and second-order surface effects
NASA Astrophysics Data System (ADS)
Poddar, Antarip; Dhar, Jayabrata; Chakraborty, Suman
2017-07-01
Advent of nematic liquid crystal flows has attracted renewed attention in view of microfluidic transport phenomena. Among various transport processes, electro-osmosis stands as one of the efficient flow actuation mechanisms through narrow confinements. In the present study, we explore the electrically actuated flow of an ordered nematic fluid with ionic inclusions, taking into account the influences from surface-induced elasticity and electrical double layer (EDL) phenomena. Toward this, we devise the coupled flow governing equations from fundamental free-energy analysis, considering the contributions from first- and second-order elastic, dielectric, flexoelectric, charged surface polarization, ionic and entropic energies. The present study focuses on the influence of surface charge and elasticity effects in the resulting linear electro-osmosis through a slit-type microchannel whose surfaces are chemically treated to display a homeotropic-type weak anchoring state. An optical periodic stripe configuration of the nematic director has been observed, especially for higher electric fields, wherein the Ericksen number for the dynamic study is restricted to the order of unity. Contrary to the isotropic electrolytes, the EDL potential in this case was found to be dependent on the external field strength. Through a systematic investigation, we brought out the fact that the wavelength of the oscillating patterns is dictated mainly by the external field, while the amplitude depends on most of the physical variables ranging from the anchoring strength and the flexoelectric coefficients to the surface charge density and electrical double layer thickness.
NASA Astrophysics Data System (ADS)
Vishik, I. M.
2018-06-01
In the course of seeking the microscopic mechanism of superconductivity in cuprate high temperature superconductors, the pseudogap phase— the very abnormal ‘normal’ state on the hole-doped side— has proven to be as big of a quandary as superconductivity itself. Angle-resolved photoemission spectroscopy (ARPES) is a powerful tool for assessing the momentum-dependent phenomenology of the pseudogap, and recent technological developments have permitted a more detailed understanding. This report reviews recent progress in understanding the relationship between superconductivity and the pseudogap, the Fermi arc phenomena, and the relationship between charge order and pseudogap from the perspective of ARPES measurements.
Gutzwiller charge phase diagram of cuprates, including electron–phonon coupling effects
Markiewicz, R. S.; Seibold, G.; Lorenzana, J.; ...
2015-02-01
Besides significant electronic correlations, high-temperature superconductors also show a strong coupling of electrons to a number of lattice modes. Combined with the experimental detection of electronic inhomogeneities and ordering phenomena in many high-T c compounds, these features raise the question as to what extent phonons are involved in the associated instabilities. Here we address this problem based on the Hubbard model including a coupling to phonons in order to capture several salient features of the phase diagram of hole-doped cuprates. Charge degrees of freedom, which are suppressed by the large Hubbard U near half-filling, are found to become active atmore » a fairly low doping level. We find that possible charge order is mainly driven by Fermi surface nesting, with competition between a near-(π, π) order at low doping and antinodal nesting at higher doping, very similar to the momentum structure of magnetic fluctuations. The resulting nesting vectors are generally consistent with photoemission and tunneling observations, evidence for charge density wave order in YBa₂Cu₃O 7-δ including Kohn anomalies, and suggestions of competition between one- and two-q-vector nesting.« less
Bazant, Martin Z; Kilic, Mustafa Sabri; Storey, Brian D; Ajdari, Armand
2009-11-30
The venerable theory of electrokinetic phenomena rests on the hypothesis of a dilute solution of point-like ions in quasi-equilibrium with a weakly charged surface, whose potential relative to the bulk is of order the thermal voltage (kT/e approximately 25 mV at room temperature). In nonlinear electrokinetic phenomena, such as AC or induced-charge electro-osmosis (ACEO, ICEO) and induced-charge electrophoresis (ICEP), several V approximately 100 kT/e are applied to polarizable surfaces in microscopic geometries, and the resulting electric fields and induced surface charges are large enough to violate the assumptions of the classical theory. In this article, we review the experimental and theoretical literatures, highlight discrepancies between theory and experiment, introduce possible modifications of the theory, and analyze their consequences. We argue that, in response to a large applied voltage, the "compact layer" and "shear plane" effectively advance into the liquid, due to the crowding of counterions. Using simple continuum models, we predict two general trends at large voltages: (i) ionic crowding against a blocking surface expands the diffuse double layer and thus decreases its differential capacitance, and (ii) a charge-induced viscosity increase near the surface reduces the electro-osmotic mobility; each trend is enhanced by dielectric saturation. The first effect is able to predict high-frequency flow reversal in ACEO pumps, while the second may explain the decay of ICEO flow with increasing salt concentration. Through several colloidal examples, such as ICEP of an uncharged metal sphere in an asymmetric electrolyte, we show that nonlinear electrokinetic phenomena are generally ion-specific. Similar theoretical issues arise in nanofluidics (due to confinement) and ionic liquids (due to the lack of solvent), so the paper concludes with a general framework of modified electrokinetic equations for finite-sized ions.
NASA Astrophysics Data System (ADS)
Tsuchiizu, Masahisa; Kawaguchi, Kouki; Yamakawa, Youichi; Kontani, Hiroshi
2018-04-01
Recently, complex rotational symmetry-breaking phenomena have been discovered experimentally in cuprate superconductors. To find the realized order parameters, we study various unconventional charge susceptibilities in an unbiased way by applying the functional-renormalization-group method to the d -p Hubbard model. Without assuming the wave vector of the order parameter, we reveal that the most dominant instability is the uniform (q =0 ) charge modulation on the px and py orbitals, which possesses d symmetry. This uniform nematic order triggers another nematic p -orbital density wave along the axial (Cu-Cu) direction at Qa≈(π /2 ,0 ) . It is predicted that uniform nematic order is driven by the spin fluctuations in the pseudogap region, and another nematic density-wave order at q =Qa is triggered by the uniform order. The predicted multistage nematic transitions are caused by Aslamazov-Larkin-type fluctuation-exchange processes.
Savitzky, Benjamin H.; Admasu, Alemayehu S.; Kim, Jaewook; Cheong, Sang-Wook; Hovden, Robert; Kourkoutis, Lena F.
2018-01-01
Incommensurate charge order in hole-doped oxides is intertwined with exotic phenomena such as colossal magnetoresistance, high-temperature superconductivity, and electronic nematicity. Here, we map, at atomic resolution, the nature of incommensurate charge–lattice order in a manganite using scanning transmission electron microscopy at room temperature and cryogenic temperature (∼93 K). In diffraction, the ordering wave vector changes upon cooling, a behavior typically associated with incommensurate order. However, using real space measurements, we discover that the ordered state forms lattice-locked regions over a few wavelengths interspersed with phase defects and changing periodicity. The cations undergo picometer-scale (∼6 pm to 11 pm) transverse displacements, suggesting that charge–lattice coupling is strong. We further unearth phase inhomogeneity in the periodic lattice displacements at room temperature, and emergent phase coherence at 93 K. Such local phase variations govern the long-range correlations of the charge-ordered state and locally change the periodicity of the modulations, resulting in wave vector shifts in reciprocal space. These atomically resolved observations underscore the importance of lattice coupling and phase inhomogeneity, and provide a microscopic explanation for putative “incommensurate” order in hole-doped oxides. PMID:29382750
Prediction and Experimental Evidence for Thermodynamically Stable Charged Orbital Domain Walls
Li, Qing’an; Gray, K. E.; Wilkins, S. B.; ...
2014-08-18
On theoretical grounds, we show that orbital domain walls (ODWs), which are known to exist in the charge and orbital ordered layered manganite LaSr 2Mn 2O 7, should be partially charged as a result of competition between orbital-induced strain and Coulomb repulsion. Furthermore, this unexpected result provides the necessary condition for the known thermodynamic stability of these ODWs, which are unlike the more typical domain walls that arise only from an external field. We offer experimental data consistent with this theoretical framework through a combined transport and x-ray-diffraction study. In particular, our transport data on this charge and orbital orderedmore » manganite exhibit abrupt transformations to higher conductance at a threshold electric field. As transport phenomena closely resemble effects found for sliding charge-density waves (SCDWs) in pseudo-one-dimensional (1D) materials, a SCDW along such pseudo-1D ODWs provides a natural explanation of our data. Importantly, x-ray-diffraction data eliminate heating and melting of charge order as tenable alternative explanations of our data.« less
Disentangled Cooperative Orderings in Artificial Rare-Earth Nickelates.
Middey, S; Meyers, D; Kareev, M; Cao, Yanwei; Liu, X; Shafer, P; Freeland, J W; Kim, J-W; Ryan, P J; Chakhalian, J
2018-04-13
Coupled transitions between distinct ordered phases are important aspects behind the rich phase complexity of correlated oxides that hinder our understanding of the underlying phenomena. For this reason, fundamental control over complex transitions has become a leading motivation of the designer approach to materials. We have devised a series of new superlattices by combining a Mott insulator and a correlated metal to form ultrashort period superlattices, which allow one to disentangle the simultaneous orderings in RENiO_{3}. Tailoring an incommensurate heterostructure period relative to the bulk charge ordering pattern suppresses the charge order transition while preserving metal-insulator and antiferromagnetic transitions. Such selective decoupling of the entangled phases resolves the long-standing puzzle about the driving force behind the metal-insulator transition and points to the site-selective Mott transition as the operative mechanism. This designer approach emphasizes the potential of heterointerfaces for selective control of simultaneous transitions in complex materials with entwined broken symmetries.
Disentangled Cooperative Orderings in Artificial Rare-Earth Nickelates
NASA Astrophysics Data System (ADS)
Middey, S.; Meyers, D.; Kareev, M.; Cao, Yanwei; Liu, X.; Shafer, P.; Freeland, J. W.; Kim, J.-W.; Ryan, P. J.; Chakhalian, J.
2018-04-01
Coupled transitions between distinct ordered phases are important aspects behind the rich phase complexity of correlated oxides that hinder our understanding of the underlying phenomena. For this reason, fundamental control over complex transitions has become a leading motivation of the designer approach to materials. We have devised a series of new superlattices by combining a Mott insulator and a correlated metal to form ultrashort period superlattices, which allow one to disentangle the simultaneous orderings in RENiO3 . Tailoring an incommensurate heterostructure period relative to the bulk charge ordering pattern suppresses the charge order transition while preserving metal-insulator and antiferromagnetic transitions. Such selective decoupling of the entangled phases resolves the long-standing puzzle about the driving force behind the metal-insulator transition and points to the site-selective Mott transition as the operative mechanism. This designer approach emphasizes the potential of heterointerfaces for selective control of simultaneous transitions in complex materials with entwined broken symmetries.
Chemical Physics of Charge Mechanisms in Nonmetallic Spacecraft Materials.
1979-05-01
techniques may not provide data truly representative of actual in-orbit space - craft charging effects . The results of the discharge characterization...phenomena, commonly referred to collectively as space - !. craft charging effects , can produce undesirable and sometimes serious prob- lems with the...lifetime of future space systems requires a practical understanding of spacecraft charging phenomena and their effects . The laboratory program
Electronic conduction in doped multiferroic BiFeO3
NASA Astrophysics Data System (ADS)
Yang, Chan-Ho; Seidel, Jan; Kim, Sang-Yong; Gajek, M.; Yu, P.; Holcomb, M. B.; Martin, L. W.; Ramesh, R.; Chu, Y. H.
2009-03-01
Competition between multiple ground states, that are energetically similar, plays a key role in many interesting material properties and physical phenomena as for example in high-Tc superconductors (electron kinetic energy vs. electron-electron repulsion), colossal magnetoresistance (metallic state vs. charge ordered insulating state), and magnetically frustrated systems (spin-spin interactions). We are exploring the idea of similar competing phenomena in doped multiferroics by control of band-filling. In this paper we present systematic investigations of divalent Ca doping of ferroelectric BiFeO3 in terms of structural and electronic conduction properties as well as diffusion properties of oxygen vacancies.
Possible charge analogues of spin transfer torques in bulk superconductors
NASA Astrophysics Data System (ADS)
Garate, Ion
2014-03-01
Spin transfer torques (STT) occur when electric currents travel through inhomogeneously magnetized systems and are important for the motion of magnetic textures such as domain walls. Since superconductors are easy-plane ferromagnets in particle-hole (charge) space, it is natural to ask whether any charge duals of STT phenomena exist therein. We find that the superconducting analogue of the adiabatic STT vanishes in a bulk superconductor with a momentum-independent order parameter, while the superconducting counterpart of the nonadiabatic STT does not vanish. This nonvanishing superconducting torque is induced by heat (rather than charge) currents and acts on the charge (rather than spin) degree of freedom. It can become significant in the vicinity of the superconducting transition temperature, where it generates a net quasiparticle charge and alters the dispersion and linewidth of low-frequency collective modes. This work has been financially supported by Canada's NSERC.
Unconventional slowing down of electronic recovery in photoexcited charge-ordered La 1/3Sr 2/3FeO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yi; Hoffman, Jason; Rowland, Clare E.
Ordered electronic phases are intimately related to emerging phenomena such as high Tc superconductivity and colossal magnetoresistance. The coupling of electronic charge with other degrees of freedom such as lattice and spin are of central interest in correlated systems. Their correlations have been intensively studied from femtosecond to picosecond time scales, while the dynamics of ordered electronic phases beyond nanoseconds are usually assumed to follow a trivia thermally driven recovery. Here, we report an unusual slowing down of electronic phases across a first-order phase transition, far beyond thermal relaxation time. Following optical excitation, the recovery time of both transient opticalmore » reflectivity and x-ray diffraction intensity from a charge-ordered superstructure in a La 1/3Sr 2/3FeO 3 thin film increases by orders of magnitude longer than the independently measured lattice cooling time when the sample temperature approaches the phase transition temperature. The combined experimental and theoretical investigations show that the slowing down of electronic recovery corresponds to the pseudo-critical dynamics that originates from magnetic interactions close to a weakly first-order phase transition. As a result, this extraordinary long electronic recovery time exemplifies an interplay of ordered electronic phases with magnetism beyond thermal processes in correlated systems.« less
Unconventional slowing down of electronic recovery in photoexcited charge-ordered La 1/3Sr 2/3FeO 3
Zhu, Yi; Hoffman, Jason; Rowland, Clare E.; ...
2018-05-04
Ordered electronic phases are intimately related to emerging phenomena such as high Tc superconductivity and colossal magnetoresistance. The coupling of electronic charge with other degrees of freedom such as lattice and spin are of central interest in correlated systems. Their correlations have been intensively studied from femtosecond to picosecond time scales, while the dynamics of ordered electronic phases beyond nanoseconds are usually assumed to follow a trivia thermally driven recovery. Here, we report an unusual slowing down of electronic phases across a first-order phase transition, far beyond thermal relaxation time. Following optical excitation, the recovery time of both transient opticalmore » reflectivity and x-ray diffraction intensity from a charge-ordered superstructure in a La 1/3Sr 2/3FeO 3 thin film increases by orders of magnitude longer than the independently measured lattice cooling time when the sample temperature approaches the phase transition temperature. The combined experimental and theoretical investigations show that the slowing down of electronic recovery corresponds to the pseudo-critical dynamics that originates from magnetic interactions close to a weakly first-order phase transition. As a result, this extraordinary long electronic recovery time exemplifies an interplay of ordered electronic phases with magnetism beyond thermal processes in correlated systems.« less
Lunar dust charging by photoelectric emissions
NASA Astrophysics Data System (ADS)
Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.
2007-05-01
The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar ultraviolet (UV) radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function (WF) of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17 and Luna-24 missions as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield increasing by an order of magnitude for grains of sub-micron to several micron size radii, at which it reaches asymptotic values. The yield for large size grains is found to be more than an order of magnitude higher than the bulk measurements on lunar fines reported in the literature.
Lunar Dust Charging by Photoelectric Emissions
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.
2007-01-01
The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar ultraviolet (UV) radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function (WF) of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17 and Luna-24 missions as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield increasing by an order of magnitude for grains of sub-micron to several micron size radii, at which it reaches asymptotic values. The yield for large size grains is found to be more than an order of magnitude higher than the bulk measurements on lunar fines reported in the literature.
Lunar Dust Charging by Photoelectric Emissions
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.
2007-01-01
The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon s surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17, and Luna 24 missions, as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield increasing by an order of magnitude for grains of sub-micron to several micron size radii, at which it reaches asymptotic values. The yield for large size grains is found to be more than an order of magnitude higher than the bulk measurements on lunar fines reported in the literature.
Critical phenomena and chemical potential of a charged AdS black hole
NASA Astrophysics Data System (ADS)
Wei, Shao-Wen; Liang, Bin; Liu, Yu-Xiao
2017-12-01
Inspired by the interpretation of the cosmological constant from the boundary gauge theory, we here treat it as the number of colors N and its conjugate quantity as the associated chemical potential μ in the black hole side. Then the thermodynamics and the chemical potential for a five-dimensional charged AdS black hole are studied. It is found that there exists a small-large black hole phase transition of van der Waals type. The critical phenomena are investigated in the N2-μ chart. The result implies that the phase transition can occur for large number of colors N , while is forbidden for small number. This to some extent implies that the interaction of the system increases with the number. In particular, in the reduced parameter space, all the thermodynamic quantities can be rescaled with the black hole charge such that these reduced quantities are charge-independent. Then we obtain the coexistence curve and the phase diagram. The latent heat is also numerically calculated. Moreover, the heat capacity and the thermodynamic scalar are studied. The result indicates that the information of the first-order black hole phase transition is encoded in the heat capacity and scalar. However, the phase transition point cannot be directly calculated with them. Nevertheless, the critical point linked to a second-order phase transition can be determined by either the heat capacity or the scalar. In addition, we calculate the critical exponents of the heat capacity and the scalar for the saturated small and large black holes near the critical point.
Higgs-mode radiance and charge-density-wave order in 2 H -NbSe2
NASA Astrophysics Data System (ADS)
Grasset, Romain; Cea, Tommaso; Gallais, Yann; Cazayous, Maximilien; Sacuto, Alain; Cario, Laurent; Benfatto, Lara; Méasson, Marie-Aude
2018-03-01
Despite being usually considered two competing phenomena, charge-density wave and superconductivity coexist in few systems, the most emblematic one being the transition-metal dichalcogenide 2 H -NbSe2 . This unusual condition is responsible for specific Raman signatures across the two phase transitions in this compound. While the appearance of a soft phonon mode is a well-established fingerprint of the charge-density-wave order, the nature of the sharp subgap mode emerging below the superconducting temperature is still under debate. In this work we use external pressure as a knob to unveil the delicate interplay between the two orders, and consequently the nature of the superconducting mode. Thanks to an advanced extreme-conditions Raman technique, we are able to follow the pressure evolution and the simultaneous collapse of the two intertwined charge-density-wave and superconducting modes. The comparison with microscopic calculations in a model system supports the Higgs-type nature of the superconducting mode and suggests that charge-density wave and superconductivity in 2 H -NbSe2 involve mutual electronic degrees of freedom. These findings fill the knowledge gap on the electronic mechanisms at play in transition-metal dichalcogenides, a crucial step to fully exploit their properties in few-layer systems optimized for device applications.
Polarization of electron-beam irradiated LDPE films: contribution to charge generation and transport
NASA Astrophysics Data System (ADS)
Banda, M. E.; Griseri, V.; Teyssèdre, G.; Le Roy, S.
2018-04-01
Electron-beam irradiation is an alternative way to generate charges in insulating materials, at controlled position and quantity, in order to monitor their behaviour in regard to transport phenomena under the space charge induced electric field or external field applied. In this study, low density polyethylene (LDPE) films were irradiated by a 80 keV electron-beam with a flux of 1 nA cm‑2 during 10 min in an irradiation chamber under vacuum conditions, and were then characterized outside the chamber using three experimental methods. The electrical behaviour of the irradiated material was assessed by space charge measurements using the pulsed electro-acoustic (PEA) method under dc stress. The influence of the applied electric field polarity and amplitude has been tested in order to better understand the charge behaviour after electron-beam irradiation. Fourier transform infra-red spectroscopy (FTIR) and photoluminescence (PL) measurements were performed to evaluate the impact of the electron beam irradiation, i.e. deposited charges and energy, on the chemical structure of the irradiated samples. The present results show that the electrical behaviour in LDPE after irradiation is mostly driven by charges, i.e. by physical process functions of the electric field, and that changes in the chemical structure seems to be mild.
Disentangled Cooperative Orderings in Artificial Rare-Earth Nickelates
Middey, S.; Meyers, D.; Kareev, M.; ...
2018-04-09
Coupled transitions between distinct ordered phases are important aspects behind the rich phase complexity of correlated oxides that hinder our understanding of the underlying phenomena. For this reason, fundamental control over complex transitions has become a leading motivation of the designer approach to materials. We have devised a series of new superlattices by combining a Mott insulator and a correlated metal to form ultrashort period superlattices, which allow one to disentangle the simultaneous orderings in RENiO 3. Tailoring an incommensurate heterostructure period relative to the bulk charge ordering pattern suppresses the charge order transition while preserving metal-insulator and antiferromagnetic transitions.more » Such selective decoupling of the entangled phases resolves the long-standing puzzle about the driving force behind the metal-insulator transition and points to the site-selective Mott transition as the operative mechanism. In conclusion, this designer approach emphasizes the potential of heterointerfaces for selective control of simultaneous transitions in complex materials with entwined broken symmetries.« less
Disentangled Cooperative Orderings in Artificial Rare-Earth Nickelates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middey, S.; Meyers, D.; Kareev, M.
Coupled transitions between distinct ordered phases are important aspects behind the rich phase complexity of correlated oxides that hinder our understanding of the underlying phenomena. For this reason, fundamental control over complex transitions has become a leading motivation of the designer approach to materials. We have devised a series of new superlattices by combining a Mott insulator and a correlated metal to form ultrashort period superlattices, which allow one to disentangle the simultaneous orderings in RENiO 3. Tailoring an incommensurate heterostructure period relative to the bulk charge ordering pattern suppresses the charge order transition while preserving metal-insulator and antiferromagnetic transitions.more » Such selective decoupling of the entangled phases resolves the long-standing puzzle about the driving force behind the metal-insulator transition and points to the site-selective Mott transition as the operative mechanism. In conclusion, this designer approach emphasizes the potential of heterointerfaces for selective control of simultaneous transitions in complex materials with entwined broken symmetries.« less
Change of carrier density at the pseudogap critical point of a cuprate superconductor.
Badoux, S; Tabis, W; Laliberté, F; Grissonnanche, G; Vignolle, B; Vignolles, D; Béard, J; Bonn, D A; Hardy, W N; Liang, R; Doiron-Leyraud, N; Taillefer, Louis; Proust, Cyril
2016-03-10
The pseudogap is a partial gap in the electronic density of states that opens in the normal (non-superconducting) state of cuprate superconductors and whose origin is a long-standing puzzle. Its connection to the Mott insulator phase at low doping (hole concentration, p) remains ambiguous and its relation to the charge order that reconstructs the Fermi surface at intermediate doping is still unclear. Here we use measurements of the Hall coefficient in magnetic fields up to 88 tesla to show that Fermi-surface reconstruction by charge order in the cuprate YBa2Cu3Oy ends sharply at a critical doping p = 0.16 that is distinctly lower than the pseudogap critical point p* = 0.19 (ref. 11). This shows that the pseudogap and charge order are separate phenomena. We find that the change in carrier density n from n = 1 + p in the conventional metal at high doping (ref. 12) to n = p at low doping (ref. 13) starts at the pseudogap critical point. This shows that the pseudogap and the antiferromagnetic Mott insulator are linked.
Models of charge pair generation in organic solar cells.
Few, Sheridan; Frost, Jarvist M; Nelson, Jenny
2015-01-28
Efficient charge pair generation is observed in many organic photovoltaic (OPV) heterojunctions, despite nominal electron-hole binding energies which greatly exceed the average thermal energy. Empirically, the efficiency of this process appears to be related to the choice of donor and acceptor materials, the resulting sequence of excited state energy levels and the structure of the interface. In order to establish a suitable physical model for the process, a range of different theoretical studies have addressed the nature and energies of the interfacial states, the energetic profile close to the heterojunction and the dynamics of excited state transitions. In this paper, we review recent developments underpinning the theory of charge pair generation and phenomena, focussing on electronic structure calculations, electrostatic models and approaches to excited state dynamics. We discuss the remaining challenges in achieving a predictive approach to charge generation efficiency.
Laboratory Measurements of Optical and Physical Properties of Individual Lunar Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Craven, P. D.; Hoover, R. B.
2006-01-01
The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, and transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17, and Luna 24 missions, as well as similar size dust grains from the JSC-1 simulants. The experimental results were obtained on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield increasing by an order of magnitude for grains of radii sub-micron size to several micron radii, at which it reaches asymptotic values. The yield for large size grains is found to be more than an order of magnitude higher than the bulk measurements on lunar fines reported in the literature.
NASA Technical Reports Server (NTRS)
Winokur, P. S. (Editor)
1984-01-01
Radiation effects on electronic systems and devices (particularly spacecraft systems) are examined with attention given to such topics as radiation transport, energy deposition, and charge collection; single-event phenomena; basic mechanisms of radiation effects in structures and materials; and EMP phenomena. Also considered are radiation effects in integrated circuits, spacecraft charging and space radiation effects, hardness assurance for devices and systems, and SGEMP/IEMP phenomena.
Pinning of topological solitons at extrinsic defects in a quasi one-dimensional charge density wave
NASA Astrophysics Data System (ADS)
Razzaq, Samad; Wippermann, Stefan; Tae Hwan Kim Collaboration; Han Woong Yeom Collaboration
Quasi one-dimensional (1D) electronic systems are known to exhibit exotic physical phenomena, such as, e.g., Jahn Teller distortions, charge density wave (CDW) formation and non-Fermi liquid behavior. Solitonic excitations of the charge density wave ordered ground state and associated topological edge states in atomic wires are presently the focus of increasing attention. We carried out a combined ab initio and scanning tunneling microscopy (STM) study of solitonic and non-solitonic phase defects in the In/Si(111) atomic wire array. While free solitons move too fast to be imaged directly in STM, they can become trapped at extrinsic de- fects within the wire. We discuss the detailed atomistic structure of the responsible extrinsic defects and trapped solitons. Our study highlights the key role of coupled theory-experimental investigations in order to understand also the elusive fast moving solitons. S. W. gratefully acknowledges financial support from the German Research Foundation (DFG), Grant No. FOR1700.
NASA Astrophysics Data System (ADS)
Nagaoka, Katsumi; Yaginuma, Shin; Nakayama, Tomonobu
2018-02-01
We have discovered the condensation/diffusion phenomena of copper phthalocyanine (CuPc) molecules controlled with a pulsed electric field induced by the scanning tunneling microscope tip. This behavior is not explained by the conventional induced dipole model. In order to understand the mechanism, we have measured the electronic structure of the molecule by tunneling spectroscopy and also performed theoretical calculations on molecular orbitals. These data clearly indicate that the molecule is positively charged owing to charge transfer to the substrate, and that hydrogen bonding exists between CuPc molecules, which makes the molecular island stable.
NASA Astrophysics Data System (ADS)
Roubidoux, J. A.; Jackson, J. E.; Lasseigne, A. N.; Mishra, B.; Olson, D. L.
2010-02-01
This paper correlates nonlinear material properties to nondestructive electronic measurements by using wave analysis techniques (e.g. Perturbation Methods) and incorporating higher-order phenomena. The correlations suggest that nondestructive electronic property measurements and practices can be used to assess thin films, surface layers, and other advanced materials that exhibit modified behaviors based on their space-charged interfacial behavior.
Landau quantization of Dirac fermions in graphene and its multilayers
NASA Astrophysics Data System (ADS)
Yin, Long-Jing; Bai, Ke-Ke; Wang, Wen-Xiao; Li, Si-Yu; Zhang, Yu; He, Lin
2017-08-01
When electrons are confined in a two-dimensional (2D) system, typical quantum-mechanical phenomena such as Landau quantization can be detected. Graphene systems, including the single atomic layer and few-layer stacked crystals, are ideal 2D materials for studying a variety of quantum-mechanical problems. In this article, we review the experimental progress in the unusual Landau quantized behaviors of Dirac fermions in monolayer and multilayer graphene by using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Through STS measurement of the strong magnetic fields, distinct Landau-level spectra and rich level-splitting phenomena are observed in different graphene layers. These unique properties provide an effective method for identifying the number of layers, as well as the stacking orders, and investigating the fundamentally physical phenomena of graphene. Moreover, in the presence of a strain and charged defects, the Landau quantization of graphene can be significantly modified, leading to unusual spectroscopic and electronic properties.
NASA Technical Reports Server (NTRS)
Jones, C. W. (Editor)
1985-01-01
Basic mechanisms of radiation effects in structures and materials are discussed, taking into account the time dependence of interface state production, process dependent build-up of interface states in irradiated N-channel MOSFETs, bias annealing of radiation and bias induced positive charges in n- and p-type MOS capacitors, hole removal in thin-gate MOSFETs by tunneling, and activation energies of oxide charge recovery in SOS or SOI structures after an ionizing pulse. Other topics investigated are related to radiation effects in devices, radiation effects in integrated circuits, spacecraft charging and space radiation effects, single-event phenomena, hardness assurance and radiation sources, SGEMP/IEMP phenomena, EMP phenomena, and dosimetry and energy-dependent effects. Attention is given to a model of the plasma wake generated by a large object, gate charge collection and induced drain current in GaAs FETs, simulation of charge collection in a multilayer device, and time dependent dose enhancement effects on integrated circuit transient response mechanisms.
NASA Astrophysics Data System (ADS)
Jones, C. W.
1985-12-01
Basic mechanisms of radiation effects in structures and materials are discussed, taking into account the time dependence of interface state production, process dependent build-up of interface states in irradiated N-channel MOSFETs, bias annealing of radiation and bias induced positive charges in n- and p-type MOS capacitors, hole removal in thin-gate MOSFETs by tunneling, and activation energies of oxide charge recovery in SOS or SOI structures after an ionizing pulse. Other topics investigated are related to radiation effects in devices, radiation effects in integrated circuits, spacecraft charging and space radiation effects, single-event phenomena, hardness assurance and radiation sources, SGEMP/IEMP phenomena, EMP phenomena, and dosimetry and energy-dependent effects. Attention is given to a model of the plasma wake generated by a large object, gate charge collection and induced drain current in GaAs FETs, simulation of charge collection in a multilayer device, and time dependent dose enhancement effects on integrated circuit transient response mechanisms.
Charge and current orders in the spin-fermion model with overlapping hot spots
NASA Astrophysics Data System (ADS)
Volkov, Pavel A.; Efetov, Konstantin B.
2018-04-01
Experiments carried over the last years on the underdoped cuprates have revealed a variety of symmetry-breaking phenomena in the pseudogap state. Charge-density waves, breaking of C4 rotational symmetry as well as time-reversal symmetry breaking have all been observed in several cuprate families. In this regard, theoretical models where multiple nonsuperconducting orders emerge are of particular interest. We consider the recently introduced [Volkov and Efetov, Phys. Rev. B 93, 085131 (2016), 10.1103/PhysRevB.93.085131] spin-fermion model with overlapping `hot spots' on the Fermi surface. Focusing on the particle-hole instabilities we obtain a rich phase diagram with the chemical potential relative to the dispersion at (0 ,π );(π ,0 ) and the Fermi surface curvature in the antinodal regions being the control parameters. We find evidence for d-wave Pomeranchuk instability, d-form factor charge density waves, as well as commensurate and incommensurate staggered bond current phases similar to the d-density wave state. The current orders are found to be promoted by the curvature. Considering the appropriate parameter range for the hole-doped cuprates, we discuss the relation of our results to the pseudogap state and incommensurate magnetic phases of the cuprates.
Structural insight of the charge-ordering phenomena in manganites
NASA Astrophysics Data System (ADS)
Garcia, Joaquin
2005-03-01
Recent experiments using x-ray absorption spectroscopy (XAS) and x-ray resonant scattering (XRS) techniques show that the conventional description of the so-called charge ordering phases of manganites in terms of Mn^3+/Mn^4+ ionic ordering is far from reality. I present here the XRS study of the low temperature phase of Nd0.5Sr0.5MnO3 manganite. Strong resonances are observed in the energy dependent spectra of (300), (030) and (05/20) reflections. Their azimuthal and polarization dependencies are well explained by the anisotropy of the local geometrical structure. Two different Mn sites were found. One of them is surrounded by a tetragonal distorted oxygen octahedron, whereas the other site has a nearly regular octahedral environment. The charge separation between the intermediate valence states is less than 0.2 e-. The analysis performed resolves some of the apparent contradictions with previous XRS and XAS experiments in manganites. These results joined to those recently obtained on the Verwey transition in magnetite indicate that the electronic states in transition-metal oxides need to be described in terms of band states instead of localized ones. Colaborators: G. Sub'ias, J. Blasco, M. G. Proietti, M. S'anchez and J. Herrero-Martin
Emergent Phenomena at Oxide Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, H.Y.
2012-02-16
Transition metal oxides (TMOs) are an ideal arena for the study of electronic correlations because the s-electrons of the transition metal ions are removed and transferred to oxygen ions, and hence the strongly correlated d-electrons determine their physical properties such as electrical transport, magnetism, optical response, thermal conductivity, and superconductivity. These electron correlations prohibit the double occupancy of metal sites and induce a local entanglement of charge, spin, and orbital degrees of freedom. This gives rise to a variety of phenomena, e.g., Mott insulators, various charge/spin/orbital orderings, metal-insulator transitions, multiferroics, and superconductivity. In recent years, there has been a burstmore » of activity to manipulate these phenomena, as well as create new ones, using oxide heterostructures. Most fundamental to understanding the physical properties of TMOs is the concept of symmetry of the order parameter. As Landau recognized, the essence of phase transitions is the change of the symmetry. For example, ferromagnetic ordering breaks the rotational symmetry in spin space, i.e., the ordered phase has lower symmetry than the Hamiltonian of the system. There are three most important symmetries to be considered here. (i) Spatial inversion (I), defined as r {yields} -r. In the case of an insulator, breaking this symmetry can lead to spontaneous electric polarization, i.e. ferroelectricity, or pyroelectricity once the point group belongs to polar group symmetry. (ii) Time-reversal symmetry (T) defined as t {yields} -t. In quantum mechanics, the time-evolution of the wave-function {Psi} is given by the phase factor e{sup -iEt/{h_bar}} with E being the energy, and hence time-reversal basically corresponds to taking the complex conjugate of the wave-function. Also the spin, which is induced by the 'spinning' of the particle, is reversed by time-reversal. Broken T-symmetry is most naturally associated with magnetism, since the spin operator changes sign with T-operation. (iii) Gauge symmetry (G), which is associated with a change in the phase of the wave-function as {Psi} {yields} e{sup i{theta}}{Psi}. Gauge symmetry is connected to the law of charge conservation, and broken G-symmetry corresponds to superconductivity/superfluidity. To summarize, the interplay among these electronic degrees of freedom produces various forms of symmetry breaking patterns of I, T, and G, leading to novel emergent phenomena, which can appear only by the collective behavior of electrons and cannot be expected from individual electrons. Figure 1 shows this schematically by means of several representative phenomena. From this viewpoint, the interfaces of TMOs offer a unique and important laboratory because I is already broken by the structure itself, and the detailed form of broken I-symmetry can often be designed. Also, two-dimensionality usually enhances the effects of electron correlations by reducing their kinetic energy. These two features of oxide interfaces produce many novel effects and functions that cannot be attained in bulk form. Given that the electromagnetic responses are a major source of the physical properties of solids, and new gauge structures often appear in correlated electronic systems, we put 'emergent electromagnetism' at the center of Fig. 1.« less
Studies in electron phenomena in MOS structures: The pulsed C-V method. M.S. Thesis. Abstract Only
NASA Technical Reports Server (NTRS)
Kaplan, G.
1983-01-01
The pulse hysteresis capacitance voltage (C-V) provides a straight forward technique for measuring the change of various charges in MOS structures and a tool for investigating the kinetics of various electron phenomena is developed and described. The method can be used for measuring the energy distribution and kinetics of surface states with the resolution of about 1/5 x 10 to the -9 power cm eV. Some transients in an MOS structure, particularly, the thermal generation of minority charge carriers via surface states and the relaxation of minority charge carriers supplied from the inversion layer outside the MOS structure are theoretically investigated. Analytical expressions which clearly present the physics of those electron phenomena are derived.
Charge generation in organic solar cell materials studied by terahertz spectroscopy
NASA Astrophysics Data System (ADS)
Scarongella, M.; Brauer, J. C.; Douglas, J. D.; Fréchet, J. M. J.; Banerji, N.
2015-09-01
We have investigated the photophysics in neat films of conjugated polymer PBDTTPD and its blend with PCBM using terahertz time-domain spectroscopy. This material has very high efficiency when used in organic solar cells. We were able to identify a THz signature for bound excitons in neat PBDTTPD films, pointing to important delocalization in those excitons. Then, we investigated the nature and local mobility (orders of magnitude higher than bulk mobility) of charges in the PBDTTPPD:PCBM blend as a function of excitation wavelength, fluence and pump-probe time delay. At low pump fluence (no bimolecular recombination phenomena), we were able to observe prompt and delayed charge generation components, the latter originating from excitons created in neat polymer domains which, thanks to delocalization, could reach the PCBM interface and dissociate to charges on a time scale of 1 ps. The nature of the photogenerated charges did not change between 0.5 ps and 800 ps after photo-excitation, which indicated that the excitons split directly into relatively free charges on an ultrafast time scale.
Membrane formation in liquids by adding an antagonistic salt
NASA Astrophysics Data System (ADS)
Sadakane, Koichiro; Seto, Hideki
2018-03-01
Antagonistic salts are composed of hydrophilic and hydrophobic ions. In a binary mixture, such as water and organic solvent, these ion pairs preferentially dissolve to those phases, respectively, and there is a coupling between the charge density and the composition. The heterogeneous distribution of ions forms a large electric double layer at the interface between these solvents. This reduces the interfacial tension between water and organic solvent, and stabilizes an ordered structure, such as a membrane. These phenomena have been extensively studied from both theoretical and experimental point of view. In addition, the numerical simulations can reproduce such ordered structures.
Interplay of local structure, charge, and spin in bilayered manganese perovskites
NASA Astrophysics Data System (ADS)
Rybicki, Damian; Sikora, Marcin; Przewoznik, Janusz; Kapusta, Czesław; Mitchell, John F.
2018-03-01
Chemical doping is a reliable method of modification of the electronic properties of transition metal compounds. In manganese perovskites, it leads to charge transfer and peculiar ordering phenomena. However, depending on the interplay of the local crystal structure and electronic properties, synthesis of stable compounds in the entire doping range is often impossible. Here, we show results of high-energy resolution x-ray absorption and emission spectroscopies on a La2 -2 xSr1 +2 xMn2O7 family of bilayered manganites in a broad doping range (0.5 ≤x ≤1 ). We established a relation between local Mn charge and Mn-O distances as a function of doping. Based on a comparison of such relation with other manganites, we suggest why stable structures cannot be realized for certain doping levels of bilayered compounds.
Electron beam interaction with space plasmas.
NASA Astrophysics Data System (ADS)
Krafft, C.; Bolokitin, A. S.
1999-12-01
Active space experiments involving the controlled injection of electron beams and the formation of artificially generated currents can provide in many cases a calibration of natural phenomena connected with the dynamic interaction of charged particles with fields. They have a long history beginning from the launches of small rockets with electron guns in order to map magnetic fields lines in the Earth's magnetosphere or to excite artificial auroras. Moreover, natural beams of charged particles exist in many space and astrophysical plasmas and were identified in situ by several satellites; a few examples are beams connected with solar bursts, planetary foreshocks or suprathermal fluxes traveling in planetary magnetospheres. Many experimental and theoretical works have been performed in order to interpret or plan space experiments involving beam injection as well as to understand the physics of wave-particle interaction, as wave radiation, beam dynamics and background plasma modification.
Prediction of Intrinsic Ferromagnetic Ferroelectricity in a Transition-Metal Halide Monolayer
NASA Astrophysics Data System (ADS)
Huang, Chengxi; Du, Yongping; Wu, Haiping; Xiang, Hongjun; Deng, Kaiming; Kan, Erjun
2018-04-01
The realization of multiferroics in nanostructures, combined with a large electric dipole and ferromagnetic ordering, could lead to new applications, such as high-density multistate data storage. Although multiferroics have been broadly studied for decades, ferromagnetic ferroelectricity is rarely explored, especially in two-dimensional (2D) systems. Here we report the discovery of 2D ferromagnetic ferroelectricity in layered transition-metal halide systems. On the basis of first-principles calculations, we reveal that a charged CrBr3 monolayer exhibits in-plane multiferroicity, which is ensured by the combination of orbital and charge ordering as realized by the asymmetric Jahn-Teller distortions of octahedral Cr - Br6 units. As an example, we further show that (CrBr3)2Li is a ferromagnetic ferroelectric multiferroic. The explored phenomena and mechanism of multiferroics in this 2D system not only are useful for fundamental research in multiferroics but also enable a wide range of applications in nanodevices.
Prediction of Intrinsic Ferromagnetic Ferroelectricity in a Transition-Metal Halide Monolayer.
Huang, Chengxi; Du, Yongping; Wu, Haiping; Xiang, Hongjun; Deng, Kaiming; Kan, Erjun
2018-04-06
The realization of multiferroics in nanostructures, combined with a large electric dipole and ferromagnetic ordering, could lead to new applications, such as high-density multistate data storage. Although multiferroics have been broadly studied for decades, ferromagnetic ferroelectricity is rarely explored, especially in two-dimensional (2D) systems. Here we report the discovery of 2D ferromagnetic ferroelectricity in layered transition-metal halide systems. On the basis of first-principles calculations, we reveal that a charged CrBr_{3} monolayer exhibits in-plane multiferroicity, which is ensured by the combination of orbital and charge ordering as realized by the asymmetric Jahn-Teller distortions of octahedral Cr─Br_{6} units. As an example, we further show that (CrBr_{3})_{2}Li is a ferromagnetic ferroelectric multiferroic. The explored phenomena and mechanism of multiferroics in this 2D system not only are useful for fundamental research in multiferroics but also enable a wide range of applications in nanodevices.
Analysis of Turbulent Combustion in Simplified Stratified Charge Conditions
NASA Astrophysics Data System (ADS)
Moriyoshi, Yasuo; Morikawa, Hideaki; Komatsu, Eiji
The stratified charge combustion system has been widely studied due to the significant potentials for low fuel consumption rate and low exhaust gas emissions. The fuel-air mixture formation process in a direct-injection stratified charge engine is influenced by various parameters, such as atomization, evaporation, and in-cylinder gas motion at high temperature and high pressure conditions. It is difficult to observe the in-cylinder phenomena in such conditions and also challenging to analyze the following stratified charge combustion. Therefore, the combustion phenomena in simplified stratified charge conditions aiming to analyze the fundamental stratified charge combustion are examined. That is, an experimental apparatus which can control the mixture distribution and the gas motion at ignition timing was developed, and the effects of turbulence intensity, mixture concentration distribution, and mixture composition on stratified charge combustion were examined. As a result, the effects of fuel, charge stratification, and turbulence on combustion characteristics were clarified.
First-principles Theory of Magnetic Multipoles in Condensed Matter Systems
NASA Astrophysics Data System (ADS)
Suzuki, Michi-To; Ikeda, Hiroaki; Oppeneer, Peter M.
2018-04-01
The multipole concept, which characterizes the spacial distribution of scalar and vector objects by their angular dependence, has already become widely used in various areas of physics. In recent years it has become employed to systematically classify the anisotropic distribution of electrons and magnetization around atoms in solid state materials. This has been fuelled by the discovery of several physical phenomena that exhibit unusual higher rank multipole moments, beyond that of the conventional degrees of freedom as charge and magnetic dipole moment. Moreover, the higher rank electric/magnetic multipole moments have been suggested as promising order parameters in exotic hidden order phases. While the experimental investigations of such anomalous phases have provided encouraging observations of multipolar order, theoretical approaches have developed at a slower pace. In particular, a materials' specific theory has been missing. The multipole concept has furthermore been recognized as the key quantity which characterizes the resultant configuration of magnetic moments in a cluster of atomic moments. This cluster multipole moment has then been introduced as macroscopic order parameter for a noncollinear antiferromagnetic structure in crystals that can explain unusual physical phenomena whose appearance is determined by the magnetic point group symmetry. It is the purpose of this review to discuss the recent developments in the first-principles theory investigating multipolar degrees of freedom in condensed matter systems. These recent developments exemplify that ab initio electronic structure calculations can unveil detailed insight in the mechanism of physical phenomena caused by the unconventional, multipole degree of freedom.
Charge-Carrier-Scattering Spectroscopy With BEEM
NASA Technical Reports Server (NTRS)
Hecht, Michael H.; Bell, Lloyd D.; Kaiser, William J.
1992-01-01
Ballistic-electron-emission microscopy (BEEM) constitutes basis of new spectroscopy of scattering of electrons and holes. Pointed tip electrode scans near surface of metal about 100 angstrom thick on semiconductor. Principle similar to scanning tunneling microscope, except metal acts as third electrode. Used to investigate transport phenomena, scattering phenomena, and creation of hot charge carriers in Au/Si and Au/GaAs metal/semiconductor microstructures.
NASA Astrophysics Data System (ADS)
Brazovskii, Serguei; Monceau, Pierre; Kirova, Natacha
2005-12-01
The International Workshop on ELECTRONIC CRYSTALS, ECRYS-2005, was the fourth in the series of such meetings held in France: following ECRYS-93 in Carry-le-Rouet, ECRYS-99, in La Colle-surLoup, and ECRYS-02 in Saint-Flour. The Workshop brought together nearly 100 researchers, chemists and physicists, from 11 countries; it was hosted by the Institut d'Études Scientifiques of the CNRS, at Cargèse, Corsica, France. The Workshop was supported by the European Physical Society, the Office of Naval Research Global of US, the Department of Mathematics and Physics of the CNRS, France. ECRYS Workshops are intended to provide a cross-link between various communities engaged in parallel studies of static and dynamic properties of superstructures formed by electrons and vortices. Representatives of such electronic crystals are charge and spin density waves in low dimensional materials, Wigner crystals of electrons in bulks, at 2D interfaces and in wires, stripe phases in conducting oxides including the family of high Tc superconductors, various forms of charge order in organic quasi 1D one- and two-dimensional materials, charged colloidal crystals. ECRYS Workshops consider also related systems like vortex lattices in superconductors, domain walls in magnetic and ferroelectric materials. While microscopic physical mechanisms are diverse and specific to each system, the general phenomena are quite universal: a depinning above a threshold, collective transport properties due to the sliding phenomena, non-stationary and memory effects, glassy properties due to numerous metastable states, aging dynamics and rejuvenation phenomena, etc. In recent years, much of experimental progress has been achieved in fields covered by ECRYS Workshops with the use of advanced techniques: focused ion beam and reactive ion etching for fabrication of CDW submicronic devices, atomic resolution in UHV STM, point contact spectroscopy, electron photoemission, microbeam diffraction, coherent X-ray diffraction, pulse laser light excitation, etc. The present proceedings highlight the state-of-art in this field. The topics discussed at the Workshop were related to microscopic mechanisms and quantum effects, charge ordering and charge disproportionation, ferroelectricity, collective effects in pinning and sliding, glassy behavior, tunneling, high magnetic fields and field induced density wave, two dimensional electron solids at heterojunctions, meso- and nanostructures of charge density wave materials. A short session was also devoted to charges in soft matter. Theoretical aspects ranged from the phenomenology of the collective sliding to microscopics of strongly correlated electrons. The discussion forum opened by the Workshop ECRYS-05, as well as the preceding ones, fills the need of an international meeting with a cross-disciplinary nature for a review of new developments and results in the field of spontaneous superstructures. The present ECRYS-05 Workshop Proceedings demonstrates, we believe, the lively research activity in this field and will serve as a useful reference document. We are grateful to all participants of the Workshop for their active contribution. Serguei Brazovskii, Pierre Monceau and Natacha Kirova
Interplay of local structure, charge, and spin in bilayered manganese perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rybicki, Damian; Sikora, Marcin; Przewoznik, Janusz
Chemical doping is a reliable method of modification of the electronic properties of transition metal compounds. In manganese perovskites, it leads to charge transfer and peculiar ordering phenomena. However, depending on the interplay of the local crystal structure and electronic properties, synthesis of stable compounds in the entire doping range is often impossible. In this paper, we show results of high-energy resolution x-ray absorption and emission spectroscopies on amore » $${\\mathrm{La}}_{2{-}2x}{\\mathrm{Sr}}_{1+2x}{\\mathrm{Mn}}_{2}{\\mathrm{O}}_{7}$$ family of bilayered manganites in a broad doping range $$(0.5{\\le}x{\\le}1)$$. We established a relation between local Mn charge and Mn-O distances as a function of doping. Finally, based on a comparison of such relation with other manganites, we suggest why stable structures cannot be realized for certain doping levels of bilayered compounds.« less
Interplay of local structure, charge, and spin in bilayered manganese perovskites
Rybicki, Damian; Sikora, Marcin; Przewoznik, Janusz; ...
2018-03-27
Chemical doping is a reliable method of modification of the electronic properties of transition metal compounds. In manganese perovskites, it leads to charge transfer and peculiar ordering phenomena. However, depending on the interplay of the local crystal structure and electronic properties, synthesis of stable compounds in the entire doping range is often impossible. In this paper, we show results of high-energy resolution x-ray absorption and emission spectroscopies on amore » $${\\mathrm{La}}_{2{-}2x}{\\mathrm{Sr}}_{1+2x}{\\mathrm{Mn}}_{2}{\\mathrm{O}}_{7}$$ family of bilayered manganites in a broad doping range $$(0.5{\\le}x{\\le}1)$$. We established a relation between local Mn charge and Mn-O distances as a function of doping. Finally, based on a comparison of such relation with other manganites, we suggest why stable structures cannot be realized for certain doping levels of bilayered compounds.« less
NASA Astrophysics Data System (ADS)
Härtel, Andreas
2017-10-01
Ongoing scientific interest is aimed at the properties and structure of electric double layers (EDLs), which are crucial for capacitive energy storage, water treatment, and energy harvesting technologies like supercapacitors, desalination devices, blue engines, and thermocapacitive heat-to-current converters. A promising tool to describe their physics on a microscopic level is (classical) density functional theory (DFT), which can be applied in order to analyze pair correlations and charge ordering in the primitive model of charged hard spheres. This simple model captures the main properties of ionic liquids and solutions and it predicts many of the phenomena that occur in EDLs. The latter often lead to anomalous response in the differential capacitance of EDLs. This work constructively reviews the powerful theoretical framework of DFT and its recent developments regarding the description of EDLs. It explains to what extent current approaches in DFT describe structural ordering and in-plane transitions in EDLs, which occur when the corresponding electrodes are charged. Further, the review briefly summarizes the history of modeling EDLs, presents applications, and points out limitations and strengths in present theoretical approaches. It concludes that DFT as a sophisticated microscopic theory for ionic systems is expecting a challenging but promising future in both fundamental research and applications in supercapacitive technologies.
Variability of ethane on Jupiter
NASA Technical Reports Server (NTRS)
Kostiuk, Theodor; Espenak, Fred; Mumma, Michael J.; Deming, Drake; Zipoy, David
1987-01-01
Varying stratospheric temperature profiles and C2H6 altitude distributions furnish contexts for the evaluation of ethane abundances and distributions in the Jupiter stratosphere. Substantial ethane line emission and retrieved mole fraction variability is noted near the footprint of Io's flux tube, as well as within the auroral regions. It is suggested that this and other observed phenomena are due to the modification of local stratospheric chemistry by higher-order effects, which are in turn speculated to be due to the precipitation of charged particles along magnetic field lines.
Spacecraft Charging Technology, 1980
NASA Technical Reports Server (NTRS)
1981-01-01
The third Spacecraft Charging Technology Conference proceedings contain 66 papers on the geosynchronous plasma environment, spacecraft modeling, charged particle environment interactions with spacecraft, spacecraft materials characterization, and satellite design and testing. The proceedings is a compilation of the state of the art of spacecraft charging and environmental interaction phenomena.
Low Dimensionality Effects in Complex Magnetic Oxides
NASA Astrophysics Data System (ADS)
Kelley, Paula J. Lampen
Complex magnetic oxides represent a unique intersection of immense technological importance and fascinating physical phenomena originating from interwoven structural, electronic and magnetic degrees of freedom. The resulting energetically close competing orders can be controllably selected through external fields. Competing interactions and disorder represent an additional opportunity to systematically manipulate the properties of pure magnetic systems, leading to frustration, glassiness, and other novel phenomena while finite sample dimension plays a similar role in systems with long-range cooperative effects or large correlation lengths. A rigorous understanding of these effects in strongly correlated oxides is key to manipulating their functionality and device performance, but remains a challenging task. In this dissertation, we examine a number of problems related to intrinsic and extrinsic low dimensionality, disorder, and competing interactions in magnetic oxides by applying a unique combination of standard magnetometry techniques and unconventional magnetocaloric effect and transverse susceptibility measurements. The influence of dimensionality and disorder on the nature and critical properties of phase transitions in manganites is illustrated in La0.7 Ca0.3MnO3, in which both size reduction to the nanoscale and chemically-controlled quenched disorder are observed to induce a progressive weakening of the first-order nature of the transition, despite acting through the distinct mechanisms of surface effects and site dilution. In the second-order material La0.8Ca0.2MnO3, a strong magnetic field is found to drive the system toward its tricritical point as competition between exchange interactions in the inhomogeneous ground state is suppressed. In the presence of large phase separation stabilized by chemical disorder and long-range strain, dimensionality has a profound effect. With the systematic reduction of particle size in microscale-phase-separated (La, Pr, Ca)MnO3 we observe a disruption of the long-range glassy strains associated with the charge-ordered phase in the bulk, lowering the field and pressure threshold for charge-order melting and increasing the ferromagnetic volume fraction as particle size is decreased. The long-range charge-ordered phase becomes completely suppressed when the particle size falls below 100 nm. In contrast, low dimensionality in the geometrically frustrated pseudo-1D spin chain compound Ca3Co2O6 is intrinsic, arising from the crystal lattice. We establish a comprehensive phase diagram for this exotic system consistent with recent reports of an incommensurate ground state and identify new sub-features of the ferrimagnetic phase. When defects in the form of grain boundaries are incorporated into the system the low-temperature slow-dynamic state is weakened, and new crossover phenomena emerge in the spin relaxation behavior along with an increased distribution of relaxation times. The presence of both disorder and randomness leads to a spin-glass-like state, as observed in gammaFe2O3 hollow nanoparticles, where freezing of surface spins at low temperature generates an irreversible magnetization component and an associated exchange-biasing effect. Our results point to distinct dynamic behaviors on the inner and outer surfaces of the hollow structures. Overall, these studies yield new physical insights into the role of dimensionality and disorder in these complex oxide systems and highlight the sensitivity of their manifested magnetic ground states to extrinsic factors, leading in many cases to crossover behaviors where the balance between competing phases is altered, or to the emergence of entirely new magnetic phenomena.
NASA Astrophysics Data System (ADS)
Khan, MD Shahrukh Adnan; Kuni, Sharsad Kara; Rajkumar, Rajprasad; Syed, Anas; Hawladar, Masum; Rahman, Md. Moshiur
2017-12-01
In this paper, an extensive effort has been made to design and develop a prototype in a laboratory setup environment in order to investigate experimentally the response of a novel Supercapacitor based energy harvesting circuit; particularly the phenomena of instantaneous charging and discharging cycle is analysed. To maximize battery lifespan and storage capacity, charging/discharging cycles need to be optimized in such a way, it ultimately enhances the system performances reliably. Keeping this into focus, an Arduino-MOSFET based control system is developed to charge the Supercapacitor from a low wind Vertical Axis Turbine (VAWT) and discharge it through a 6V battery. With a wind speed of 5m/s, the wind turbine requires approximately 8.1 hours to charge the 6V battery through Supercapacitor bank that constitutes 18 cycles in which each cycle consumes 27 minutes. The overall performance of the proposed system was quite convincing in a sense that the efficiency of the developed Energy Harvesting Circuit EHC raises to 19% in comparison to direct charging of the battery from the Vertical wind turbine. At low wind speed, such value of efficiency margin is quite encouraging which essentially validates the system design.
Evidence for collective phenomena in pp collisions
NASA Astrophysics Data System (ADS)
Chen, Zhenyu; CMS Collaboration
2017-11-01
Measurements of two- and multi-particle angular correlations in pp collisions at √{ s} = 5, 7, and 13 TeV are presented. The data, corresponding to integrated luminosities of 1.0 pb-1 (5 TeV), 6.2 pb-1 (7 TeV), and 0.7 pb-1 (13 TeV), were collected using the CMS detector at the LHC. The second-order (v2) and third-order (v3) azimuthal anisotropy harmonics of unidentified charged particles, as well as v2 of Ks0 and Λ / Λ ‾ particles, are extracted from long-range two-particle correlations as functions of particle multiplicity and transverse momentum. For high-multiplicity pp events, a mass ordering is observed for the v2 values of charged hadrons (mostly pions), Ks0, and Λ / Λ ‾ at pT ≲ 2 GeV /c. The v2 signals are also extracted from four- and six-particle correlations for 13 TeV pp collisions, with comparable magnitude to those from two-particle correlations. These observations strongly support the interpretation of a collective origin for the observed long-range correlations in high-multiplicity pp collisions.
NASA Astrophysics Data System (ADS)
Petersen, J.; Bechstedt, F.; Furthmüller, J.; Scolfaro, L. M.
2018-05-01
Complex ordered phases involving spin and charge degrees of freedom in condensed matter, such as layered cuprates and nickelates, are exciting but not well understood solid-state phenomena. The rich underlying physics of the overdoped high-temperature superconductor L a7 /4S r1 /4Cu O4 and colossal dielectric constant insulator L a5 /3S r1 /3Ni O4 is studied from first principles within density functional (perturbation) theory, including an effective Hubbard potential U for the exchange and correlation of d orbitals. Charge density wave (CDW) and spin density wave (SDW) orders are found in both materials, where the stripes are commensurate with the lattice. The SDWs are accompanied by complex antiferromagnetic spin arrangements along the stripes. The first series of conduction bands related to the pseudogap observed in the cuprate are found to be directly related to CDW order, while the colossal dielectric constant in the nickelate is demonstrated to be a result of vibronic coupling with CDW order. Differences between the two oxides are related to how the stripes fill with carriers.
NASA Astrophysics Data System (ADS)
Boukezzi, L.; Rondot, S.; Jbara, O.; Boubakeur, A.
2018-08-01
The effect of thermal aging on the charging phenomena in cross-linked polyethylene (XLPE) has been studied under electron beam irradiation in scanning electron microscope (SEM). The dynamic variation of trapped charge represents the trapping process of XLPE under electron beam irradiation. We have found that the trapped charge variation can be approximated by a first order exponential function. The amount of trapped charge presents enhanced values at the beginning of aging at lower temperatures (80 °C and 100 °C). This suggests the diffusion of cross-linking by-products to the surface of sample that acts as traps for injected electrons. The oxidation which is a very important form of XLPE degradation has an effect at the advanced stage of the aging process. For higher temperatures (120 °C and 140 °C), the taken part process in the evolution of the trapped charge is the crystallinity increase at the beginning of aging leading to the trapped charge decreasing, and the polar groups generated by thermo-oxidation process at the end of aging leading to the trapped charge increase. Variations of leakage current according to the aging time have quite similar trends with the dielectric losses factor and consequently some correlations must be made between charging mechanisms and the electrical behaviour of XLPE under thermal aging.
Critical point in the phase diagram of primordial quark-gluon matter from black hole physics
NASA Astrophysics Data System (ADS)
Critelli, Renato; Noronha, Jorge; Noronha-Hostler, Jacquelyn; Portillo, Israel; Ratti, Claudia; Rougemont, Romulo
2017-11-01
Strongly interacting matter undergoes a crossover phase transition at high temperatures T ˜1012 K and zero net-baryon density. A fundamental question in the theory of strong interactions, QCD, is whether a hot and dense system of quarks and gluons displays critical phenomena when doped with more quarks than antiquarks, where net-baryon number fluctuations diverge. Recent lattice QCD work indicates that such a critical point can only occur in the baryon dense regime of the theory, which defies a description from first principles calculations. Here we use the holographic gauge/gravity correspondence to map the fluctuations of baryon charge in the dense quark-gluon liquid onto a numerically tractable gravitational problem involving the charge fluctuations of holographic black holes. This approach quantitatively reproduces ab initio results for the lowest order moments of the baryon fluctuations and makes predictions for the higher-order baryon susceptibilities and also for the location of the critical point, which is found to be within the reach of heavy-ion collision experiments.
Electronic and elastic mode locking in charge density wave conductors
NASA Astrophysics Data System (ADS)
Zettl, A.
1986-12-01
Mode locking phenomena are investigated in the charge density wave (CDW) materials NbSe 3 and TaS 3. The joint application of ac and dc electric fields results in free running and mode locked solutions for the CDW drift velocity, with associated ac-induced dynamic coherence lengths ξ D(ac) on the order of several hundred microns. The electronic response couples directly to the elastic properties of the crystal, with corresponding free running and mode locked solutions for the velocity of sound. Phase slip center-induced discontinuities in the CDW phase velocity lead to mode locked solutions with period doubling routes to chaos, and noisy precursor effects at bifurcation points. These results are discussed in terms of simple models of CDW domain synchronization, and internal CDW dynamics.
NASA Technical Reports Server (NTRS)
Snowden, S. L.; Collier, M. R.; Cravens, T.; Kuntz, K. D.; Lepri, S. T.; Robertson, I.; Tomas, L.
2008-01-01
A long XMM-Newton exposure is used to observe solar wind charge exchange (SWCX) emission from exospheric material in and outside Earth s magnetosheath. The light curve of the O VII (0.5-0.62 keV) band is compared with a model for the expected emission, and while the emission is faint and the light curve has considerable scatter, the correlation is significant to better than 99.9%. This result demonstrates the validity of the geocoronal SWCX emission model for predicting a contribution to astrophysical observations to a scale factor of order unity (1.36). The results also demonstrate the potential utility of using X-ray observations to study global phenomena of the magnetosheath which currently are only investigated using in situ measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toyoda, S., E-mail: toyoda.satoshi.4w@kyoto-u.ac.jp; Oshima, M.
2016-08-28
We have studied the thickness-dependent change in the valence band offset (VBO) of the SiO{sub 2}/Si(001) interface using synchrotron-radiation photoemission spectroscopy with soft and hard X-rays. The SiO{sub 2}-film thickness (T{sub ox}) and X-ray irradiation time (t{sub irrad}) were systematically parameterized to distinguish between the “intrinsic” T{sub ox} effects in the VBOs and the “extrinsic” differential charging phenomena in SiO{sub 2} films on Si substrates. The results revealed that at a spontaneous time (t{sub irrad} ≈ 5 s) that suppresses the differential charging phenomena as much as possible, the experimental VBO abruptly increases as a function of T{sub ox} and graduallymore » saturates to the traditional VBO value range determined by the internal photoemission and photoconduction measurements. This effect is not attributed to the differential charging phenomena, but rather it is attributed to the “intrinsic” T{sub ox}-dependent change in the VBO. The two possible physical behaviors include electronic polarization and image charge. We have derived the electronic polarization contribution from experimental data by carefully describing the effects of the long-range image charges based on the classical dielectric-screening model.« less
In Situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries
Wang, Ziying; Santhanagopalan, Dhamodaran; Zhang, Wei; ...
2016-05-03
Behaviors of functional interfaces are crucial factors in the performance and safety of energy storage and conversion devices. Indeed, solid electrode–solid electrolyte interfacial impedance is now considered the main limiting factor in all-solid-state batteries rather than low ionic conductivity of the solid electrolyte. In this paper, we present a new approach to conducting in situ scanning transmission electron microscopy (STEM) coupled with electron energy loss spectroscopy (EELS) in order to uncover the unique interfacial phenomena related to lithium ion transport and its corresponding charge transfer. Our approach allowed quantitative spectroscopic characterization of a galvanostatically biased electrochemical system under in situmore » conditions. Using a LiCoO 2/LiPON/Si thin film battery, an unexpected structurally disordered interfacial layer between LiCoO 2 cathode and LiPON electrolyte was discovered to be inherent to this interface without cycling. During in situ charging, spectroscopic characterization revealed that this interfacial layer evolved to form highly oxidized Co ions species along with lithium oxide and lithium peroxide species. These findings suggest that the mechanism of interfacial impedance at the LiCoO 2/LiPON interface is caused by chemical changes rather than space charge effects. Finally, insights gained from this technique will shed light on important challenges of interfaces in all-solid-state energy storage and conversion systems and facilitate improved engineering of devices operated far from equilibrium.« less
Co-existence of monomers and clusters in concentrated protein solutions
NASA Astrophysics Data System (ADS)
Chinchalikar, Akshay J.; Kumar, Sugam; Aswal, V. K.; Callow, P.; Wagh, A. G.
2012-06-01
Small-angle neutron scattering (SANS) measurements have been performed on concentrated protein solutions in order to study aggregation of lysozyme molecules at different pH. The variation of correlation peak in concentration (C) dependent SANS data shows deviation from C1/3 behavior suggesting the aggregation phenomena in these systems. The aggregates or clusters coexist along with monomers with cluster fraction proportional to protein concentration. The clustering is also favored at higher pH approaching isoelectric point (pI) because of decrease in charge on the protein molecule.
High resolution study of magnetic ordering at absolute zero.
Lee, M; Husmann, A; Rosenbaum, T F; Aeppli, G
2004-05-07
High resolution pressure measurements in the zero-temperature limit provide a unique opportunity to study the behavior of strongly interacting, itinerant electrons with coupled spin and charge degrees of freedom. Approaching the precision that has become the hallmark of experiments on classical critical phenomena, we characterize the quantum critical behavior of the model, elemental antiferromagnet chromium, lightly doped with vanadium. We resolve the sharp doubling of the Hall coefficient at the quantum critical point and trace the dominating effects of quantum fluctuations up to surprisingly high temperatures.
Measurements of Photoelectric Yield and Physical Properties of Individual Lunar Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, F. A.; Taylor, L.; Hoover, R.
2005-01-01
Micron size dust grains levitated and transported on the lunar surface constitute a major problem for the robotic and human habitat missions for the Moon. It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron/sub-micron size dust grains. Transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and the levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics is believed to have a severe impact on the human habitat and the lifetime and operations of a variety of equipment, it is necessary to investigate the phenomena and the charging properties of the lunar dust in order to develop appropriate mitigating strategies. We will present results of some recent laboratory experiments on individual micro/sub-micron size dust grains levitated in electrodynamic balance in simulated space environments. The experiments involve photoelectric emission measurements of individual micron size lunar dust grains illuminated with UV radiation in the 120-160 nm wavelength range. The photoelectric yields are required to determine the charging properties of lunar dust illuminated by solar UV radiation. We will present some recent results of laboratory measurement of the photoelectric yields and the physical properties of individual micron size dust grains from the Apollo and Luna-24 sample returns as well as the JSC-1 lunar simulants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourg, I.C.; Sposito, G.
Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculationmore » (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).« less
Dust Grain Charge above the Lunar terminator
NASA Astrophysics Data System (ADS)
Vaverka, Jakub; Richterova, Ivana; Nemecek, Zdenek; Safrankova, Jana; Pavlu, Jiri; Vysinka, Marek
Interaction of a lunar surface with the solar wind and magnetosphere leads to its charging by several processes as photoemission, a collection of primary particles, and secondary electron emission. Nevertheless, charging of the lunar surface is complicated by a shielding of solar light and solar wind ions by hills, craters, and boulders that can locally influence the surface potential. Moreover, a presence of a plasma wake can strongly affect this potential at the night side of the Moon. A typical surface potential varies from slightly positive (dayside) to negative values of the order of several hundred volts (night side). An electric field above the charged surface can lead to a levitation of dust grains as it has been observed by several spacecraft and by astronauts during Apollo missions. Although charging and transport of dust grains above the lunar surface are in the center of interest for many years, these phenomena are not still completely understood. We present calculation of an equilibrium potential of dust grains above the lunar surface. We focus on a terminator area during the Earth’s plasma sheet crossing. We use the secondary electron emission model for dust grains which takes into account an influence of the grain size, material, and surface roughness and findings from laboratory experiments with charging of lunar dust simulants by an electron beam.
NASA Astrophysics Data System (ADS)
Sugioka, Hideyuki
2016-08-01
The standard theory of induced-charge electro-osmosis (ICEO) often overpredicts experimental values of ICEO velocities. Using a nonsteady direct multiphysics simulation technique based on the coupled Poisson-Nernst-Planck and Stokes equations for an electrolyte around a conductive cylinder subject to an ac electric field, we find that a phase delay effect concerning an ion response provides a fundamental mechanism for electrokinetic suppression. A surprising aspect of our findings is that the phase delay effect occurs even at much lower frequencies (e.g., 50 Hz) than the generally believed charging frequency of an electric double layer (typically, 1 kHz) and it can decrease the electrokinetic velocities in one to several orders. In addition, we find that the phase delay effect may also cause a change in the electrokinetic flow directions (i.e., flow reversal) depending on the geometrical conditions. We believe that our findings move toward a more complete understanding of complex experimental nonlinear electrokinetic phenomena.
Building health: The need for electromagnetic hygiene?
NASA Astrophysics Data System (ADS)
Jamieson, Isaac A.; Holdstock, Paul; ApSimon, Helen M.; Bell, J. Nigel B.
2010-04-01
Whilst the electromagnetic nature of the built environment has changed considerably over the past century, little thought is at present given to the possible advantages of creating electromagnetic microenvironments that more closely resemble those found in nature and/or developing biologically-friendly technology aligned more closely to its operating principles. This review paper examines how more natural exposures to a variety of electromagnetic phenomena could be re-introduced into the built environment, possible benefits that might arise, and discusses the extent to which there may be tangible benefits obtainable from introducing more rigorous properly considered electromagnetic hygiene measures. Amongst the matters discussed are: the effects of different materials, finishes and electrical items on charge generation (and the effects of excess charge on contaminant deposition); the possible benefits of suitably grounding conductive objects (including humans) in order to reduce excess charge and contaminant deposition; how the presence of vertical electric field regimes, similar to those found in nature, may enhance biological performance; and possible pitfalls to avoid when seeking to introduce appropriate electromagnetic hygiene regimes.
Electrochemical Transport Phenomena in Hybrid Pseudocapacitors under Galvanostatic Cycling
d'Entremont, Anna L.; Girard, Henri -Louis; Wang, Hainan; ...
2015-11-18
Here, this study aims to provide insights into the electrochemical transport and interfacial phenomena in hybrid pseudocapacitors under galvanostatic cycling. Pseudocapacitors are promising electrical energy storage devices for applications requiring large power density. They also involve complex, coupled, and multiscale physical phenomena that are difficult to probe experimentally. The present study performed detailed numerical simulations for a hybrid pseudocapacitor with planar electrodes and binary, asymmetric electrolyte under various cycling conditions, based on a first-principles continuum model accounting simultaneously for charge storage by electric double layer (EDL) formation and by faradaic reactions with intercalation. Two asymptotic regimes were identified corresponding tomore » (i) dominant faradaic charge storage at low current and low frequency or (ii) dominant EDL charge storage at high current and high frequency. Analytical expressions for the intercalated ion concentration and surface overpotential were derived for both asymptotic regimes. Features of typical experimentally measured cell potential were physically interpreted. These insights could guide the optimization of hybrid pseudocapacitors.« less
Current limiting mechanisms in electron and ion beam experiments
NASA Technical Reports Server (NTRS)
Olsen, R. C.
1990-01-01
The emission and collection of current from satellites or rockets in the ionosphere is a process which, at equilibrium, requires a balance between inward and outward currents. In most active experiments in the ionosphere and magnetosphere, the emitted current exceeds the integrated thermal current by one or more orders of magnitude. The system response is typically for the emitted current to be limited by processes such as differential charging of insulating surfaces, interactions between an emitted beam and the local plasma, and interactions between the beam and local neutral gas. These current limiting mechanisms have been illustrated for 20 years in sounding rocket and satellite experiments, which are reviewed here. Detailed presentations of the Spacecraft Charging at High Altitude (SCATHA) electron and ion gun experiments are used to demonstrate the general range of observed phenomena.
NASA Astrophysics Data System (ADS)
Lathrop, Daniel; Eiskowitz, Skylar; Rojas, Ruben
2017-11-01
In clouds of suspended particles, collisions electrify particles and the clouds produce electric potential differences over large scales. This is seen in the atmosphere as lightning in thunderstorms, thundersnow, dust storms, and volcanic ash plumes, but it is a general phenomena in granular systems. The electrification process is not well understood. To investigate the relative importance of particle material properties and collective phenomena in granular and atmospheric electrification, we used several tabletop experiments that excite particle-laden flows. Various electromagnetic phenomena ensue. Measured electric fields result from capacitive and direct charge transfer to electrodes. These results suggest that while particle properties do matter (as previous investigations have shown), macroscopic electrification of granular flows is somewhat material independent and large-scale collective phenomena play a major role. As well, our results on charge separation and Hall effects suggest a very different view of the dynamics of clouds, planetary rings, and cold accretion disks in proto-planetary systems. We gratefully acknowledge past funding from the Julian Schwinger Foundation as well as the Ph.D. work of Freja Nordsiek.
Multilevel Investigation of Charge Transport in Conjugated Polymers.
Dong, Huanli; Hu, Wenping
2016-11-15
Conjugated polymers have attracted the world's attentions since their discovery due to their great promise for optoelectronic devices. However, the fundamental understanding of charge transport in conjugated polymers remains far from clear. The origin of this challenge is the natural disorder of polymers with complex molecular structures in the solid state. Moreover, an effective way to examine the intrinsic properties of conjugated polymers is absent. Optoelectronic devices are always based on spin-coated films. In films, polymers tend to form highly disordered structures at nanometer to micrometer length scales due to the high degree of conformational freedom of macromolecular chains and the irregular interchain entanglement, thus typically resulting in much lower charge transport properties than their intrinsic performance. Furthermore, a subtle change of processing conditions may dramatically affect the film formation-inducing large variations in the morphology, crystallinity, microstructure, molecular packing, and alignment, and finally varying the effective charge transport significantly and leading to great inconsistency over an order of magnitude even for devices based on the same polymer semiconductor. Meanwhile, the charge transport mechanism in conjugated polymers is still unclear and its investigation is challenging based on such complex microstructures of polymers in films. Therefore, how to objectively evaluate the charge transport and probe the charge transport mechanism of conjugated polymers has confronted the world for decades. In this Account, we present our recent progress on multilevel charge transport in conjugated polymers, from disordered films, uniaxially aligned thin films, and single crystalline micro- or nanowires to molecular scale, where a derivative of poly(para-phenylene ethynylene) with thioacetyl end groups (TA-PPE) is selected as the candidate for investigation, which could also be extended to other conjugated polymer systems. Our systematic investigations demonstrated that 3-4 orders higher charge transport properties could be achieved with the improvement of polymer chain order and confirmed efficient charge transport along the conjugated polymer backbones. Moreover, with downscaling to molecular scale, many novel phenomena were observed such as the largely quantized electronic structure for an 18 nm-long TA-PPE and the modulation of the redox center of tetrathiafulvalene (TTF) units on tunneling charge transport, which opens the door for conjugated polymers used in nanometer quantum devices. We hope the understanding of charge transport in PPE and its related conjugated polymer at multilevel scale in this Account will provide a new method to sketch the charge transport properties of conjugated polymers, and new insights into the combination of more conjugated polymer materials in the multilevel optoelectronic and other related functional devices, which will offer great promise for the next generation of electronic devices.
Electronic Transport Behaviors due to Charge Density Waves in Ni-Nb-Zr-H Glassy Alloys
NASA Astrophysics Data System (ADS)
Fukuhara, Mikio; Umemori, Yoshimasa
2013-11-01
The amorphous Ni-Nb-Zr-H glassy alloy containing subnanometer-sized icosahedral Zr5 Nb5Ni3 clusters exhibited four types of electronic phenomena: a metal/insulator transition, an electric current-induced voltage oscillation (Coulomb oscillation), giant capacitor behavior and an electron avalanche with superior resistivity. These findings could be excluded by charge density waves that the low-dimensional component of clusters, in which the atoms are lined up in chains along the [130] direction, plays important roles in various electron transport phenomena.
A Classroom Activity for Teaching Electric Polarization of Insulators and Conductors
ERIC Educational Resources Information Center
Deligkaris, Christos
2018-01-01
The phenomenon of electric polarization is crucial to student understanding of forces exerted between charged objects and insulators or conductors, the process of charging by induction, and the behavior of electroscopes near charged objects. In addition, polarization allows for microscopic-level models of everyday-life macroscopic-level phenomena.…
Development of a low energy electron spectrometer for SCOPE
NASA Astrophysics Data System (ADS)
Tominaga, Yuu; Saito, Yoshifumi; Yokota, Shoichiro
We are newly developing a low-energy charged particle analyzer for the future satellite mission SCOPE (cross Scale COupling in the Plasma universE). The main purpose of the mission is to understand the cross scale coupling between macroscopic MHD scale phenomena and microscopic ion and electron-scale phenomena. In order to under-stand the dynamics of plasma in small scales, we need to observe the plasma with an analyzer which has high time resolution. For ion-scale phenomena, the time resolution must be as high as ion cyclotron frequency (-10 sec) in Earth's magnetosphere. However, for electron-scale phe-nomena, the time resolution must be as high as electron cyclotron frequency (-1 msec). The GEOTAIL satellite that observes Earth's magnetosphere has the analyzer whose time resolution is 12 sec, so the satellite can observe ion-scale phenomena. However in the SCOPE mission, we will go further to observe electron-scale phenomena. Then we need analyzers that have at least several msec time resolution. Besides, we need to make the analyzer as small as possible for the volume and weight restrictions of the satellite. The diameter of the top-hat analyzer must be smaller than 20 cm. In this study, we are developing an electrostatic analyzer that meets such requirements using numerical simulations. The electrostatic analyzer is a spherical/toroidal top-hat electrostatic analyzer with three nested spherical/toroidal deflectors. Using these deflectors, the analyzer measures charged particles simultaneously in two different energy ranges. Therefore time res-olution of the analyzer can be doubled. With the analyzer, we will measure energies from 10 eV to 22.5 keV. In order to obtain three-dimensional distribution functions of low energy parti-cles, the analyzer must have 4-pi str field of view. Conventional electrostatic analyzers use the spacecraft spin to have 4-pi field of view. So the time resolution of the analyzer depends on the spin frequency of the spacecraft. However, we cannot secure the several msec time resolution by using the spacecraft spin. In the SCOPE mission, we set 8 pairs of two nested electrostatic analyzers on each side of the spacecraft, which enable us to secure 4-pi field of view altogether. Then the time resolution of the analyzer does not depend on the spacecraft spin. Given that the sampling time of the analyzer is 0.5 msec, the time resolution of the analyzer can be 8 msec. In order to secure the time resolution as high as 10 msec, the geometric factor of the analyzer has to be as high as 8*10-3 (cm2 str eV/eV/22.5deg). Higher geometric factor requires bigger instrument. However, we have to reduce the volume and weight of the instrument to set it on the satellite. Under these restrictions, we have realized the analyzer which has the geometric factors of 7.5*10-3 (cm2 str eV/eV/22.5deg) (inner sphere) and 10.0*10-3 (cm2 str eV/eV/22.5deg) (outer sphere) with diameter of 17.4 cm.
Analytical model of secondary electron emission yield in electron beam irradiated insulators.
Ghorbel, N; Kallel, A; Damamme, G
2018-06-12
The study of secondary electron emission (SEE) yield as a function of the kinetic energy of the incident primary electron beam and its evolution with charge accumulation inside insulators is a source of valuable information (even though an indirect one) on charge transport and trapping phenomena. We will show that this evolution is essentially due, in plane geometry conditions (achieved using a defocused electron beam), to the electric field effect (due to the accumulation of trapped charges in the bulk) in the escape zone of secondary electrons and not to modifications of trapping cross sections, which only have side effects. We propose an analytical model including the main basic phenomena underlying the space charge dynamics. It will be observed that such a model makes it possible to reproduce both qualitatively and quantitatively the measurement of SEE evolution as well as to provide helpful indications concerning charge transport (more precisely, the ratios between the mobility and diffusion coefficient with the thermal velocity of the charge carrier). Copyright © 2018 Elsevier Ltd. All rights reserved.
Jacobsen, H.; Zaliznyak, I. A.; Savici, A. T.; ...
2015-11-20
Tmore » he relationships among charge order, spin fluctuations, and superconductivity in underdoped cuprates remain controversial. We use neutron scattering techniques to study these phenomena in La 1.93 Sr 0.07 CuO 4 a superconductor with a transition temperature of c = 20 K. At << c, we find incommensurate spin fluctuations with a quasielastic energy spectrum and no sign of a gap within the energy range from 0.2 to 15 meV. A weak elastic magnetic component grows below ~ 10 K, consistent with results from local probes. Regarding the atomic lattice, we have discovered unexpectedly strong fluctuations of the CuO 6 octahedra about Cu-O bonds, which are associated with inequivalent O sites within the CuO 2 planes. Moreover, we observed a weak elastic (3 ⁻30) superlattice peak that implies a reduced lattice symmetry. he presence of inequivalent O sites rationalizes various pieces of evidence for charge stripe order in underdoped La 2-xSr xCuO 4. he coexistence of superconductivity with quasi-static spin-stripe order suggests the presence of intertwined orders; however, the rotation of the stripe orientation away from the Cu-O bonds might be connected with evidence for a finite gap at the nodal points of the superconducting gap function.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, H.; Zaliznyak, I. A.; Savici, A. T.
Tmore » he relationships among charge order, spin fluctuations, and superconductivity in underdoped cuprates remain controversial. We use neutron scattering techniques to study these phenomena in La 1.93 Sr 0.07 CuO 4 a superconductor with a transition temperature of c = 20 K. At << c, we find incommensurate spin fluctuations with a quasielastic energy spectrum and no sign of a gap within the energy range from 0.2 to 15 meV. A weak elastic magnetic component grows below ~ 10 K, consistent with results from local probes. Regarding the atomic lattice, we have discovered unexpectedly strong fluctuations of the CuO 6 octahedra about Cu-O bonds, which are associated with inequivalent O sites within the CuO 2 planes. Moreover, we observed a weak elastic (3 ⁻30) superlattice peak that implies a reduced lattice symmetry. he presence of inequivalent O sites rationalizes various pieces of evidence for charge stripe order in underdoped La 2-xSr xCuO 4. he coexistence of superconductivity with quasi-static spin-stripe order suggests the presence of intertwined orders; however, the rotation of the stripe orientation away from the Cu-O bonds might be connected with evidence for a finite gap at the nodal points of the superconducting gap function.« less
Plasmon Enhancement of Photoinduced Resistivity Changes in Bi1-xCaxMnO3 Thin Films
NASA Astrophysics Data System (ADS)
Smolyaninova, Vera; Talanova, E.; Kolagani, Rajeswari; Yong, G.; Kennedy, R.; Steger, M.; Wall, K.
2007-03-01
Doped rare-earth manganese oxides (manganites) exhibit a wide variety of physical phenomena due to complex interplay of electronic, magnetic, orbital, and structural degrees of freedom and their sensitivity to external fields. A photoinduced insulator to conductor transition in charge-ordered manganites is especially interesting from the point of view of creating photonic devices. Thin films of Bi0.4Ca0.6MnO3 exhibit large photoinduced resistivity changes associated with melting of the charge ordering by visible light [1]. We have found a considerable increase of the photoinduced resistivity changes in the Bi0.4Ca0.6MnO3 thin film after depositing metal nanoparticles on the surface. This increase can be explained by enhancement of local electromagnetic field in the vicinity of the gold nanoparticle due to the plasmon resonance. The changes in lifetime of the photoinduced state will be reported, and the possible origin of these effects will be discussed. [1] V. N. Smolyaninova at al., Appl. Phys. Lett. 86, 071922 (2005).
Control of charge order melting through local memristive migration of oxygen vacancies
NASA Astrophysics Data System (ADS)
Wang, Zhi-Hong; Zhang, Q. H.; Gregori, G.; Cristiani, G.; Yang, Y.; Li, X.; Gu, L.; Sun, J. R.; Shen, B.-G.; Habermeier, H.-U.
2018-05-01
The colossal magnetoresistance (CMR) in perovskite manganites and the resistive switching (RS) effect in metal-oxide heterostructures have both attracted intensive attention in the past decades. Up to date, however, there has been surprisingly little effort to study the CMR phenomena by employing a memristive switch or by integrating the CMR and memristive properties in a single RS device. Here, we report a memristive control of the melting of the antiferromagnetic charge ordered (AFM-CO) state in La0.5Ca0.5MnO3 -δ epitaxial films. We show that an in situ electrotailoring of the boundary condition, which results in layers of oxygen vacancies at the metal-oxide interface, can not only suppress the critical magnetic field for the AFM-CO state melting in the interfacial memristive domain, but also promote the one in the common pristine domain of the RS device in the high and low resistive states. Our study thereby highlights the pivotal roles of functional oxygen vacancies and their dynamics in strong correlation physics and electronics.
Lightwave-driven quasiparticle collisions on a subcycle timescale
NASA Astrophysics Data System (ADS)
Langer, F.; Hohenleutner, M.; Schmid, C. P.; Poellmann, C.; Nagler, P.; Korn, T.; Schüller, C.; Sherwin, M. S.; Huttner, U.; Steiner, J. T.; Koch, S. W.; Kira, M.; Huber, R.
2016-05-01
Ever since Ernest Rutherford scattered α-particles from gold foils, collision experiments have revealed insights into atoms, nuclei and elementary particles. In solids, many-body correlations lead to characteristic resonances—called quasiparticles—such as excitons, dropletons, polarons and Cooper pairs. The structure and dynamics of quasiparticles are important because they define macroscopic phenomena such as Mott insulating states, spontaneous spin- and charge-order, and high-temperature superconductivity. However, the extremely short lifetimes of these entities make practical implementations of a suitable collider challenging. Here we exploit lightwave-driven charge transport, the foundation of attosecond science, to explore ultrafast quasiparticle collisions directly in the time domain: a femtosecond optical pulse creates excitonic electron-hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying dynamics of the wave packets, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands of the optical excitation. A full quantum theory explains our observations microscopically. This approach enables collision experiments with various complex quasiparticles and suggests a promising new way of generating sub-femtosecond pulses.
Lightwave-driven quasiparticle collisions on a subcycle timescale.
Langer, F; Hohenleutner, M; Schmid, C P; Poellmann, C; Nagler, P; Korn, T; Schüller, C; Sherwin, M S; Huttner, U; Steiner, J T; Koch, S W; Kira, M; Huber, R
2016-05-12
Ever since Ernest Rutherford scattered α-particles from gold foils, collision experiments have revealed insights into atoms, nuclei and elementary particles. In solids, many-body correlations lead to characteristic resonances--called quasiparticles--such as excitons, dropletons, polarons and Cooper pairs. The structure and dynamics of quasiparticles are important because they define macroscopic phenomena such as Mott insulating states, spontaneous spin- and charge-order, and high-temperature superconductivity. However, the extremely short lifetimes of these entities make practical implementations of a suitable collider challenging. Here we exploit lightwave-driven charge transport, the foundation of attosecond science, to explore ultrafast quasiparticle collisions directly in the time domain: a femtosecond optical pulse creates excitonic electron-hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying dynamics of the wave packets, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands of the optical excitation. A full quantum theory explains our observations microscopically. This approach enables collision experiments with various complex quasiparticles and suggests a promising new way of generating sub-femtosecond pulses.
NASA Technical Reports Server (NTRS)
Snowden, S. L.; Collier, M. R.; Cravens, T.; Kuntz, K. D.; Lepri, S. T.; Robertson, I.; Tomas, L.
2009-01-01
A long XMM-Newton exposure is used to observe solar wind charge exchange (SWCX) emission from exospheric material in and outside Earth's magnetosheath. The light curve of the O vii (0.5-0.62 keV) band is compared with a model for the expected emission, and while the emission is faint and the light curve has considerable scatter, the correlation is significant to better than 99.9%. This result demonstrates the validity of the geocoronal SWCX emission model for predicting a contribution to astrophysical observations to a scale factor of order unity (1.5). In addition, an average value of the SWCX O vii emission from the magnetosheath over the observation of 2.6 +/- 0.5 LU is derived. The results also demonstrate the potential utility of using X-ray observations to study global phenomena of the magnetosheath which currently are only investigated using in situ measurements.
New Physical Mechanism for Lightning
NASA Astrophysics Data System (ADS)
Artekha, Sergey N.; Belyan, Andrey V.
2018-02-01
The article is devoted to electromagnetic phenomena in the atmosphere. The set of experimental data on the thunderstorm activity is analyzed. It helps to identify a possible physical mechanism of lightning flashes. This mechanism can involve the formation of metallic bonds in thunderclouds. The analysis of the problem is performed at a microphysical level within the framework of quantum mechanics. The mechanism of appearance of metallic conductivity includes the resonant tunneling of electrons along resonance-percolation trajectories. Such bonds allow the charges from the vast cloud charged subsystems concentrate quickly in lightning channel. The formation of metal bonds in the thunderstorm cloudiness is described as the second-order phase transition. A successive mechanism for the process of formation and development of the lightning channel is suggested. This mechanism is associated with the change in the orientation of crystals in growing electric field. Possible consequences of the quantum-mechanical mechanism under discussion are compared with the results of observations.
Insight into the microscopic structure of an AdS black hole from a thermodynamical phase transition.
Wei, Shao-Wen; Liu, Yu-Xiao
2015-09-11
Comparing with an ordinary thermodynamic system, we investigate the possible microscopic structure of a charged anti-de Sitter black hole completely from the thermodynamic viewpoint. The number density of the black hole molecules is introduced to measure the microscopic degrees of freedom of the black hole. We found that the number density suffers a sudden change accompanied by a latent heat when the black hole system crosses the small-large black hole coexistence curve, while when the system passes the critical point, it encounters a second-order phase transition with a vanishing latent heat due to the continuous change of the number density. Moreover, the thermodynamic scalar curvature suggests that there is a weak attractive interaction between two black hole molecules. These phenomena might cast new insight into the underlying microscopic structure of a charged anti-de Sitter black hole.
Measurements of Charging of Apollo 17 Lunar Dust Grains by Electron Impact
NASA Technical Reports Server (NTRS)
Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.
2008-01-01
It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron size dust grains with unusually high adhesive characteristics. The dust grains observed to be levitated and transported on the lunar surface are believed to have a hazardous impact on the robotic and human missions to the Moon. The observed dust phenomena are attributed to the lunar dust being charged positively during the day by UV photoelectric emissions, and negatively during the night by the solar wind electrons. The current dust charging and the levitation models, however, do not fully explain the observed phenomena, with the uncertainty of dust charging processes and the equilibrium potentials of the individual dust grains. It is well recognized that the charging properties of individual dust grains are substantially different from those determined from measurements made on bulk materials that are currently available. An experimental facility has been developed in the Dusty Plasma Laboratory at MSFC for investigating the charging and optical properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present the laboratory measurements on charging of Apollo 17 individual lunar dust grains by a low energy electron beam. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission process are discussed.
NASA Astrophysics Data System (ADS)
Singh, Kirmender; Bhattacharyya, A. B.
2017-03-01
Gummel Symmetry Test (GST) has been a benchmark industry standard for MOSFET models and is considered as one of important tests by the modeling community. BSIM4 MOSFET model fails to pass GST as the drain current equation is not symmetrical because drain and source potentials are not referenced to bulk. BSIM6 MOSFET model overcomes this limitation by taking all terminal biases with reference to bulk and using proper velocity saturation (v -E) model. The drain current equation in BSIM6 is charge based and continuous in all regions of operation. It, however, adopts a complicated method to compute source and drain charges. In this work we propose to use conventional charge based method formulated by Enz for obtaining simpler analytical drain current expression that passes GST. For this purpose we adopt two steps: (i) In the first step we use a modified first-order hyperbolic v -E model with adjustable coefficients which is integrable, simple and accurate, and (ii) In the second we use a multiplying factor in the modified first-order hyperbolic v -E expression to obtain correct monotonic asymptotic behavior around the origin of lateral electric field. This factor is of empirical form, which is a function of drain voltage (vd) and source voltage (vs) . After considering both the above steps we obtain drain current expression whose accuracy is similar to that obtained from second-order hyperbolic v -E model. In modified first-order hyperbolic v -E expression if vd and vs is replaced by smoothing functions for the effective drain voltage (vdeff) and effective source voltage (vseff), it will as well take care of discontinuity between linear to saturation regions of operation. The condition of symmetry is shown to be satisfied by drain current and its higher order derivatives, as both of them are odd functions and their even order derivatives smoothly pass through the origin. In strong inversion region and technology node of 22 nm the GST is shown to pass till sixth-order derivative and for weak inversion it is shown till fifth-order derivative. In the expression of drain current major short channel phenomena like vertical field mobility reduction, velocity saturation and velocity overshoot have been taken into consideration.
Visual sensations induced by Cherenkov radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNulty, P.J.; Pease, V.P.; Bond, V.P.
1975-08-01
Pulses of relativistic singly charged particles entering the eyeball induce a variety of visual phenomena by means of Cerenkov radiation generated during their passage through the vitreous. These phenomena are similar in appearance to many of the visual sensations experienced by Apollo astronauts exposed to the cosmic rays in deep space. (auth)
Instrument study of the Lunar Dust eXplorer (LDX) for a lunar lander mission
NASA Astrophysics Data System (ADS)
Li, Yanwei; Srama, Ralf; Henkel, Hartmut; Sternovsky, Zoltan; Kempf, Sascha; Wu, Yiyong; Grün, Eberhard
2014-11-01
One of the highest-priority issues for a future human or robotic lunar exploration is the lunar dust. This problem should be studied in depth in order to develop an environment model for a future lunar exploration. A future ESA lunar lander mission requires the measurement of dust transport phenomena above the lunar surface. Here, we describe an instrument design concept to measure slow and fast moving charged lunar dust which is based on the principle of charge induction. LDX has a low mass and measures the speed and trajectory of individual dust particles with sizes below one micrometer. Furthermore, LDX has an impact ionization target to monitor the interplanetary dust background. The sensor consists of three planes of segmented grid electrodes and each electrode is connected to an individual charge sensitive amplifier. Numerical signals were computed using the Coulomb software package. The LDX sensitive area is approximately 400 cm2. Our simulations reveal trajectory uncertainties of better than 2° with an absolute position accuracy of better than 2 mm.
Harrison, N.; Sebastian, S. E.
2017-10-12
In this paper, we provide arguments relating to those recently made in a comment by Chakravarty and Wang, who question the validity of our proposed charge-density wave Fermi surface reconstruction model and its relation to sign changes in the Hall effect. First, we show that the form of rounding of the vertices (i.e. sharp corners) of the reconstructed electron pocket, as used in our model calculations of the Hall coefficient, is consistent with Bragg reflection from the periodic potential of a charge-density wave, rather than being arbitrarily chosen. Second, we provide further justifications for why an oscillatory transport scattering timemore » provides a useful means for modeling Shubnikov–de Haas oscillations in the Hall effect, in the situation where a Fermi surface pocket departs from the ideal circular form. Third and finally, we discuss recent experimental evidence gathered from two different families of underdoped cuprates supporting the existence of a single electron pocket produced by biaxial charge-density wave order as a universal phenomena.« less
NASA Astrophysics Data System (ADS)
Yabunaka, Shunsuke; Onuki, Akira
2017-09-01
We examine an electric double layer containing an antagonistic salt in an aqueous mixture, where the cations are small and hydrophilic but the anions are large and hydrophobic. In this situation, a strong coupling arises between the charge density and the solvent composition. As a result, the anions are trapped in an oil-rich adsorption layer on a hydrophobic wall. We then vary the surface charge density σ on the wall. For σ >0 the anions remain accumulated, but for σ <0 the cations are attracted to the wall with increasing |σ |. Furthermore, the electric potential drop Ψ (σ ) is nonmonotonic when the solvent interaction parameter χ (T ) exceeds a critical value χc determined by the composition and the ion density in the bulk. This leads to a first-order phase transition between two kinds of electric double layers with different σ and common Ψ . In equilibrium such two-layer regions can coexist. The steric effect due to finite ion sizes is crucial in these phenomena.
NASA Technical Reports Server (NTRS)
Chutjian, A.; Hossain, S.; Mawhorter, R. J.; Smith, S. J.
2006-01-01
Recent JPL absolute excitation and charge exchange cross sections, and measurements of lifetimes of metastable levels in highly-charged ions (HCIs) are reported. These data provide benchmark comparisons to results of theoretical calculations. Theoretical approaches can then be used to calculate the vast array of data which cannot be measured due to experimental constraints. Applications to the X-ray emission from comets are given.
Multiple reentrant phase transitions and triple points in Lovelock thermodynamics
NASA Astrophysics Data System (ADS)
Frassino, Antonia M.; Kubizňák, David; Mann, Robert B.; Simovic, Fil
2014-09-01
We investigate the effects of higher curvature corrections from Lovelock gravity on the phase structure of asymptotically AdS black holes, treating the cosmological constant as a thermodynamic pressure. We examine how various thermodynamic phenomena, such as Van der Waals behaviour, reentrant phase transitions (RPT), and tricritical points are manifest for U(1) charged black holes in Gauss-Bonnet and 3rd-order Lovelock gravities. We furthermore observe a new phenomenon of `multiple RPT' behaviour, in which for fixed pressure the small/large/small/large black hole phase transition occurs as the temperature of the system increases. We also find that when the higher-order Lovelock couplings are related in a particular way, a peculiar isolated critical point emerges for hyperbolic black holes and is characterized by non-standard critical exponents.
Quantum modeling of ultrafast photoinduced charge separation
NASA Astrophysics Data System (ADS)
Rozzi, Carlo Andrea; Troiani, Filippo; Tavernelli, Ivano
2018-01-01
Phenomena involving electron transfer are ubiquitous in nature, photosynthesis and enzymes or protein activity being prominent examples. Their deep understanding thus represents a mandatory scientific goal. Moreover, controlling the separation of photogenerated charges is a crucial prerequisite in many applicative contexts, including quantum electronics, photo-electrochemical water splitting, photocatalytic dye degradation, and energy conversion. In particular, photoinduced charge separation is the pivotal step driving the storage of sun light into electrical or chemical energy. If properly mastered, these processes may also allow us to achieve a better command of information storage at the nanoscale, as required for the development of molecular electronics, optical switching, or quantum technologies, amongst others. In this Topical Review we survey recent progress in the understanding of ultrafast charge separation from photoexcited states. We report the state-of-the-art of the observation and theoretical description of charge separation phenomena in the ultrafast regime mainly focusing on molecular- and nano-sized solar energy conversion systems. In particular, we examine different proposed mechanisms driving ultrafast charge dynamics, with particular regard to the role of quantum coherence and electron-nuclear coupling, and link experimental observations to theoretical approaches based either on model Hamiltonians or on first principles simulations.
Mahmoud, Akrama; Olivier, Jérémy; Vaxelaire, Jean; Hoadley, Andrew F A
2010-04-01
Electric field-assisted dewatering, also called electro-dewatering, is a technology in which a conventional dewatering mechanism such a pressure dewatering is combined with electrokinetic effects to realize an improved liquid/solids separation, to increase the final dry solids content and to accelerate the dewatering process with low energy consumption compared to thermal drying. Electro-dewatering is not a new idea, but the practical industrial applications have been limited to niche areas in soil mechanics, civil engineering, and the ceramics industry. Recently, it has received great attention, specially, in the fields of fine-particle sludge, gelatinous sludge, sewage sludge, pharmaceutical industries, food waste and bull kelp, which could not be successfully dewatered with conventional mechanical methods. This review focuses on the scientific and practical aspects of the application of an electrical field in laboratory/industrial dewatering, and discusses this in relation to conventional dewatering techniques. A comprehensive bibliography of research in the electro-dewatering of wastewater sludges is included. As the fine-particle suspensions possess a surface charge, usually negative, they are surrounded by a layer with a higher density of positive charges, the electric double layer. When an electric field is applied, the usually negative charged particles move towards the electrode of the opposite charge. The water, commonly with cations, is driven towards the negative electrode. Electro-dewatering thus involves the well-known phenomena of electrophoresis, electro-osmosis, and electromigration. Following a detailed outline of the role of the electric double layer and electrokinetic phenomena, an analysis of the components of applied voltage and their significance is presented from an electrochemical viewpoint. The aim of this elementary analysis is to provide a fundamental understanding of the different process variables and configurations in order to identify potential improvements. Also discussed herein is the investigation of the electrical behaviour of a porous medium, with particular emphasis on porous medium conductivity determination. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
The Electrification of Thunderstorms.
ERIC Educational Resources Information Center
Williams, Earle R.
1988-01-01
Discusses the natural phenomena of lightning. States that the exact microphysical processes responsible for the charging of storm clouds remain in dispute although for centuries it has been known that lightning is a form of electricity. Uses diagrams to explain the structures of thunderclouds and charge transfer. (RT)
Characteristics of motive force derived from trajectory analysis of Amoeba proteus.
Masaki, Noritaka; Miyoshi, Hiromi; Tsuchiya, Yoshimi
2007-01-01
We used a monochromatic charge-coupled-device camera to observe the migration behavior of Amoeba proteus every 5 s over a time course of 10000 s in order to investigate the characteristics of its centroid movement (cell velocity) over the long term. Fourier transformation of the time series of the cell velocity revealed that its power spectrum exhibits a Lorentz type profile with a relaxation time of a few hundred seconds. Moreover, some sharp peaks were found in the power spectrum, where the ratios of any two frequencies corresponding to the peaks were expressed as simple rational numbers. Analysis of the trajectory using a Langevin equation showed that the power spectrum reflects characteristics of the cell's motive force. These results suggest that some phenomena relating to the cell's motility, such as protoplasmic streaming and the sol-gel transformation of actin filaments, which seem to be independent phenomena and have different relaxation times, interact with each other and cooperatively participate in the generation process of the motive force.
Kelvin Probe Force Microscopy in liquid using Electrochemical Force Microscopy
Collins, Liam; Jesse, Stephen; Kilpatrick, J.; ...
2015-01-19
Conventional closed loop-Kelvin probe force microscopy (KPFM) has emerged as a powerful technique for probing electric and transport phenomena at the solid-gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid–liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe-sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present). Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q watermore » and aqueous NaCl) and ionically-inactive (non-polar decane) liquids by electrochemical force microscopy (EcFM), a multidimensional (i.e., bias- and time-resolved) spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids), KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD) values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions). EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample- and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid–liquid interface.« less
Neukirch, Amanda J.; Nie, Wanyi; Blancon, Jean-Christophe; ...
2016-05-25
Solution-processed organometallic perovskites have rapidly developed into a top candidate for the active layer of photovoltaic devices. In spite of the remarkable progress associated with perovskite materials, many questions about the fundamental photophysical processes taking place in these devices, remain open. High on the list of unexplained phenomena are very modest mobilities despite low charge carrier effective masses. Moreover, experiments elucidate unique degradation of photocurrent affecting stable operation of perovskite solar cells. These puzzles suggest that, while ionic hybrid perovskite devices may have efficiencies on par with conventional Si and GaAs devices, they exhibit more complicated charge transport phenomena. Wemore » report the results from an in-depth computational study of small polaron formation, electronic structure, charge density, and reorganization energies using both periodic boundary conditions and isolated structures. Using the hybrid density functional theory, we found that volumetric strain in a CsPbI 3 cluster creates a polaron with binding energy of around 300 and 900 meV for holes and electrons, respectively. In the MAPbI 3 (MA = CH 3NH 3) cluster, both volumetric strain and MA reorientation effects lead to larger binding energies at around 600 and 1300 meV for holes and electrons, respectively. Such large reorganization energies suggest appearance of small polarons in organometallic perovskite materials. Furthermore, the fact that both volumetric lattice strain and MA molecular rotational degrees of freedom can cooperate to create and stabilize polarons indicates that in order to mitigate this problem, formamidinium (FA = HC(NH 2) 2) and cesium (Cs) based crystals and alloys, are potentially better materials for solar cell and other optoelectronic applications.« less
Measurements of emission-propagation phenomena in low-energy atmospheric-pressure helium plasma
NASA Astrophysics Data System (ADS)
Yamada, Hiromasa; Shimizu, Tetsuji; Fujiwara, Masanori; Kato, Susumu; Fujiwara, Yutaka; Itagaki, Hirotomo; Kiyama, Satoru; Kim, Jaeho; Ikehara, Sanae; Shimizu, Nobuyuki; Nakanishi, Hayao; Ikehara, Yuzuru; Sakakita, Hajime
2018-05-01
In a low-temperature atmospheric pressure plasma jet using helium gas, emission-propagation phenomena, such as streamers and striations were measured using a high-speed intensified charge-coupled device camera. A particular focus was placed on the study of the dependence of the phenomena on the distance between the nozzle of the plasma device and a target plate. When the distance decreased, a transition from the positive streamer to a spatially continuous emission resulted. A further distance reduction resulted in a new propagation mode in which the positive and negative streamers appeared alternately with different current waveforms over two cycles of applied voltage. This phenomenon may be related to residual charges of the preceding cycle when streamer propagation begins. Striation structures were observed in the tail of the positive streamer head and in the successive spatially continuous-emission region. These structures can be measured only within a shorter period than one voltage cycle.
Leijtens, Tomas; Lim, Jongchul; Teuscher, Joël; Park, Taiho; Snaith, Henry J
2013-06-18
Transient mobility spectroscopy (TMS) is presented as a new tool to probe the charge carrier mobility of commonly employed organic and inorganic semiconductors over the relevant range of charge densities. The charge density dependence of the mobility of semiconductors used in hybrid and organic photovoltaics gives new insights into charge transport phenomena in solid state dye sensitized solar cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electromagnetic potential vectors and the Lagrangian of a charged particle
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1992-01-01
Maxwell's equations can be shown to imply the existence of two independent three-dimensional potential vectors. A comparison between the potential vectors and the electric and magnetic field vectors, using a spatial Fourier transformation, reveals six independent potential components but only four independent electromagnetic field components for each mode. Although the electromagnetic fields determined by Maxwell's equations give a complete description of all possible classical electromagnetic phenomena, potential vectors contains more information and allow for a description of such quantum mechanical phenomena as the Aharonov-Bohm effect. A new result is that a charged particle Lagrangian written in terms of potential vectors automatically contains a 'spontaneous symmetry breaking' potential.
Enhancement of IR and VCD intensities due to charge transfer.
Nicu, Valentin Paul; Autschbach, Jochen; Baerends, Evert Jan
2009-03-14
Donor-acceptor interactions such as the one between the Cl(-) base and the N-H sigma* acceptor orbitals encountered in the complexation of Cl(-) counterions to the [Co(en)(3)](3+) transition metal complex, have been shown to cause huge enhancement (between 1 and 2 orders of magnitude) of the VCD intensities of N-H stretching modes. This effect has been fully analyzed, and could be attributed to increased charge flow from the Cl(-) donors when the N-H bonds become stretched. The transfer of charge counteracts the movement of negative electronic charge that happens along with the motion of the H nuclei, effectively reversing the electronic part of the electric dipole transition moment (EDTM) in the direction of the charge flow (z, say), and of the magnetic transition dipole moment (MDTM) in the perpendicular direction. The consequences for the IR and VCD intensity follow: IR intensity is strongly increased if the EDTM is polarized in the z direction, e.g. in A(2) modes, but not so much if it is polarized in the xy plane (E modes), the VCD is strongly enhanced if the EDTM and MTDM are polarized in the xy plane (in E modes), but less so when they are polarized in the z direction (in A(2) modes). The explanation holds generally for complexation phenomena of this sort, including the donor-acceptor part of hydrogen bonding interactions, e.g. with solvent molecules.
Electrostatic Charging of Lunar Dust by UV Photoelectric Emissions and Solar Wind Electrons
NASA Technical Reports Server (NTRS)
Abbas, Mian M.; Tankosic, Dragana; Spann, James f.; LeClair, Andre C.; Dube, Michael J.
2008-01-01
The ubiquitous presence of dust in the lunar environment with its high adhesive characteristics has been recognized to be a major safety issue that must be addressed in view of its hazardous effects on robotic and human exploration of the Moon. The reported observations of a horizon glow and streamers at the lunar terminator during the Apollo missions are attributed to the sunlight scattered by the levitated lunar dust. The lunar surface and the dust grains are predominantly charged positively by the incident UV solar radiation on the dayside and negatively by the solar wind electrons on the night-side. The charged dust grains are levitated and transported over long distances by the established electric fields. A quantitative understanding of the lunar dust phenomena requires development of global dust distribution models, based on an accurate knowledge of lunar dust charging properties. Currently available data of lunar dust charging is based on bulk materials, although it is well recognized that measurements on individual dust grains are expected to be substantially different from the bulk measurements. In this paper we present laboratory measurements of charging properties of Apollo 11 & 17 dust grains by UV photoelectric emissions and by electron impact. These measurements indicate substantial differences of both qualitative and quantitative nature between dust charging properties of individual micron/submicron sized dust grains and of bulk materials. In addition, there are no viable theoretical models available as yet for calculation of dust charging properties of individual dust grains for both photoelectric emissions and electron impact. It is thus of paramount importance to conduct comprehensive measurements for charging properties of individual dust grains in order to develop realistic models of dust processes in the lunar atmosphere, and address the hazardous issues of dust on lunar robotic and human missions.
NASA Astrophysics Data System (ADS)
Borroni, S.; Baldini, E.; Katukuri, V. M.; Mann, A.; Parlinski, K.; Legut, D.; Arrell, C.; van Mourik, F.; Teyssier, J.; Kozlowski, A.; Piekarz, P.; Yazyev, O. V.; Oleś, A. M.; Lorenzana, J.; Carbone, F.
2017-09-01
Symmetry breaking across phase transitions often causes changes in selection rules and emergence of optical modes which can be detected via spectroscopic techniques or generated coherently in pump-probe experiments. In second-order or weakly first-order transitions, fluctuations of the ordering field are present above the ordering temperature, giving rise to intriguing precursor phenomena, such as critical opalescence. Here, we demonstrate that in magnetite (Fe3O4 ) light excitation couples to the critical fluctuations of the charge order and coherently generates structural modes of the ordered phase above the critical temperature of the Verwey transition. Our findings are obtained by detecting coherent oscillations of the optical constants through ultrafast broadband spectroscopy and analyzing their dependence on temperature. To unveil the coupling between the structural modes and the electronic excitations, at the origin of the Verwey transition, we combine our results from pump-probe experiments with spontaneous Raman scattering data and theoretical calculations of both the phonon dispersion curves and the optical constants. Our methodology represents an effective tool to study the real-time dynamics of critical fluctuations across phase transitions.
Ion transport in a pH-regulated nanopore.
Yeh, Li-Hsien; Zhang, Mingkan; Qian, Shizhi
2013-08-06
Fundamental understanding of ion transport phenomena in nanopores is crucial for designing the next-generation nanofluidic devices. Due to surface reactions of dissociable functional groups on the nanopore wall, the surface charge density highly depends upon the proton concentration on the nanopore wall, which in turn affects the electrokinetic transport of ions, fluid, and particles within the nanopore. Electrokinetic ion transport in a pH-regulated nanopore, taking into account both multiple ionic species and charge regulation on the nanopore wall, is theoretically investigated for the first time. The model is verified by the experimental data of nanopore conductance available in the literature. The results demonstrate that the spatial distribution of the surface charge density at the nanopore wall and the resulting ion transport phenomena, such as ion concentration polarization (ICP), ion selectivity, and conductance, are significantly affected by the background solution properties, such as the pH and salt concentration.
Static Electricity-Responsive Supramolecular Assembly.
Jintoku, Hirokuni; Ihara, Hirotaka; Matsuzawa, Yoko; Kihara, Hideyuki
2017-12-01
Stimuli-responsive materials can convert between molecular scale and macroscopic scale phenomena. Two macroscopic static electricity-responsive phenomena based on nanoscale supramolecular assemblies of a zinc porphyrin derivative are presented. One example involves the movement of supramolecular assemblies in response to static electricity. The assembly of a pyridine (Py) complex of the above-mentioned derivative in cyclohexane is drawn to a positively charged material, whereas the assembly of a 3,5-dimethylpyridine complex is drawn to a negatively charged material. The second phenomenon involves the movement of a non-polar solvent in response to static electrical stimulation. A cyclohexane solution containing a small quantity of the Py-complexed assembly exhibited a strong movement response towards negatively charged materials. Based on spectroscopic measurements and electron microscope observations, it was revealed that the assembled formation generates the observed response to static electricity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Schuster, Jonathan; Bellotti, Enrico
2013-06-01
We have investigated the quantum effiency in HgCdTe photovoltaic pixel arrays employing a photon-trapping structure realized with a periodic array of pillars intended to provide broadband operation. We have found that the quantum efficiency depends heavily on the passivation of the pillar surface. Pillars passivated with anodicoxide have a large fixed positive charge on the pillar surface. We use our three-dimensional numerical simulation model to study the effect of surface charge and surface recombination velocity on the exterior of the pillars. We then evaluate the quantum efficiency of this structure subject to different surface conditions. We have found that by themselves, the surface charge and surface recombination are detrimental to the quantum efficiency but the quantum efficiency is recovered when both phenomena are present. We will discuss the effects of these phenomena and the trade offs that exist between the two.
NASA Astrophysics Data System (ADS)
Bhowmik, R. N.; Siva, K. Venkata
2018-07-01
The samples of Ga-doped Cr2O3 system in rhombohedral crystal structure with space group R 3 bar C were prepared by chemical co-precipitation route and annealing at 800 °C. The current-voltage (I-V) curves exhibited many unique non-linear properties, e.g., hysteresis loop, resistive switching, and negative differential resistance (NDR). In this work, we report non-equilibrium properties of resistive switching and NDR phenomena. The non-equilibrium I-V characteristics were confirmed by repetiting measurement and time relaxation of current. The charge conduction process was understood by analysing the I-V curves using electrode-limited and bulk-limited charge conduction mechanisms, which were proposed for metal electrode/metal oxide/metal electrode structure. The I-V curves in the NDR regime and at higher bias voltage regime in our samples did not obey Fowler-Nordheim equation, which was proposed for charge tunneling mechanism in many thin film junctions. The non-equilibrium I-V phenomena were explained by considering the competitions between the injection of charge carriers from metal electrode to metal oxide, the charge flow through bulk material mediated by trapping/de-trapping and recombination of charge carriers at the defect sites of ions, the space charge effects at the junctions of electrodes and metal oxides, and finally, the out flow of electrons from metal oxide to metal electrode.
Electrostatic dust transport on the surfaces of airless bodies
NASA Astrophysics Data System (ADS)
Wang, X.; Schwan, J.; Hsu, H. W.; Horanyi, M.
2015-12-01
The surfaces of airless bodies are charged due to the exposure to solar wind plasma and UV radiation. Dust particles on the regolith of these surfaces can become charged, and may move and even get lofted due to electrostatic force. Electrostatic dust transport has been a long-standing problem that may be related to many observed phenomena on the surfaces of airless planetary bodies, including the lunar horizon glow, the dust ponds on asteroid Eros, the spokes in Saturn's rings, and more recently, the collection of dust particles ejected off Comet 67P, observed by Rosetta. In order to resolve these puzzles, a handful of laboratory experiments have been performed in the past and demonstrated that dust indeed moves and lifts from surfaces exposed to plasma. However, the exact mechanisms for the mobilization of dust particles still remain a mystery. Current charging models, including the so-called "shared charge model" and the charge fluctuation theory, will be discussed. It is found that neither of these models can explain the results from either laboratory experiments or in-situ observations. Recently, single dust trajectories were captured with our new dust experiments, enabling novel micro-scale investigations. The particles' initial launch speeds and size distributions are analyzed, and a new so-called "patched charge model" is proposed to explain our findings. We identify the role of plasma micro-cavities that are formed in-between neighboring dust particles. The emitted secondary or photo- electrons are proposed to be absorbed inside the micro-cavities, resulting in significant charge accumulation on the exposed patches of the surfaces of neighboring particles. The resulting enhanced Coulomb force (repulsion) between particles is likely the dominant force to mobilize and lift them off the surface. The role of other properties, including surface morphology, cohesion and photoelectron charging, will also be discussed.
Laboratory laser acceleration and high energy astrophysics: {gamma}-ray bursts and cosmic rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tajima, T.; Takahashi, Y.
1998-08-20
Recent experimental progress in laser acceleration of charged particles (electrons) and its associated processes has shown that intense electromagnetic pulses can promptly accelerate charged particles to high energies and that their energy spectrum is quite hard. On the other hand some of the high energy astrophysical phenomena such as extremely high energy cosmic rays and energetic components of {gamma}-ray bursts cry for new physical mechanisms for promptly accelerating particles to high energies. The authors suggest that the basic physics involved in laser acceleration experiments sheds light on some of the underlying mechanisms and their energy spectral characteristics of the promptlymore » accelerated particles in these high energy astrophysical phenomena.« less
Experimental and theoretical charge density studies at subatomic resolution.
Fischer, A; Tiana, D; Scherer, W; Batke, K; Eickerling, G; Svendsen, H; Bindzus, N; Iversen, B B
2011-11-17
Analysis of accurate experimental and theoretical structure factors of diamond and silicon reveals that the contraction of the core shell due to covalent bond formation causes significant perturbations of the total charge density that cannot be ignored in precise charge density studies. We outline that the nature and origin of core contraction/expansion and core polarization phenomena can be analyzed by experimental studies employing an extended Hansen-Coppens multipolar model. Omission or insufficient treatment of these subatomic charge density phenomena might yield erroneous thermal displacement parameters and high residual densities in multipolar refinements. Our detailed studies therefore suggest that the refinement of contraction/expansion and population parameters of all atomic shells is essential to the precise reconstruction of electron density distributions by a multipolar model. Furthermore, our results imply that also the polarization of the inner shells needs to be adopted, especially in cases where second row or even heavier elements are involved in covalent bonding. These theoretical studies are supported by direct multipolar refinements of X-ray powder diffraction data of diamond obtained from a third-generation synchrotron-radiation source (SPring-8, BL02B2).
NASA Technical Reports Server (NTRS)
Mcgarrity, J. M.
1980-01-01
The conference covered the radiation effects on devices, circuits, and systems, physics and basic radiation effects in materials, dosimetry and radiation transport, spacecraft charging, and space radiation effects. Other subjects included single particle upset phenomena, systems-generated electromagnetic pulse phenomena, fabrication of hardened components, testing techniques, and hardness assurance.
The role of interfacial water layer in atmospherically relevant charge separation
NASA Astrophysics Data System (ADS)
Bhattacharyya, Indrani
Charge separation at interfaces is important in various atmospheric processes, such as thunderstorms, lightning, and sand storms. It also plays a key role in several industrial processes, including ink-jet printing and electrostatic separation. Surprisingly, little is known about the underlying physics of these charging phenomena. Since thin films of water are ubiquitous, they may play a role in these charge separation processes. This talk will focus on the experimental investigation of the role of a water adlayer in interfacial charging, with relevance to meteorologically important phenomena, such as atmospheric charging due to wave actions on oceans and sand storms. An ocean wave generates thousands of bubbles, which upon bursting produce numerous large jet droplets and small film droplets that are charged. In the 1960s, Blanchard showed that the jet droplets are positively charged. However, the charge on the film droplets was not known. We designed an experiment to exclusively measure the charge on film droplets generated by bubble bursting on pure water and aqueous salt solution surfaces. We measured their charge to be negative and proposed a model where a slight excess of hydroxide ions in the interfacial water layer is responsible for generating these negatively charged droplets. The findings from this research led to a better understanding of the ionic disposition at the air-water interface. Sand particles in a wind-blown sand layer, or 'saltation' layer, become charged due to collisions, so much so, that it can cause lightning. Silica, being hydrophilic, is coated with a water layer even under low-humidity conditions. To investigate the importance of this water adlayer in charging the silica surfaces, we performed experiments to measure the charge on silica surfaces due to contact and collision processes. In case of contact charging, the maximum charge separation occurred at an optimum relative humidity. On the contrary, in collisional charging process, no humidity effect was observed. We proposed an ion transfer mechanism in case of contact charging. However, an electron transfer mechanism explained the collisional charging process. The effects of temperature, surface roughness, and chemical nature of surface were also studied for both contact and collisional charging processes.
On current transients in MoS2 Field Effect Transistors.
Macucci, Massimo; Tambellini, Gerry; Ovchinnikov, Dmitry; Kis, Andras; Iannaccone, Giuseppe; Fiori, Gianluca
2017-09-14
We present an experimental investigation of slow transients in the gate and drain currents of MoS 2 -based transistors. We focus on the measurement of both the gate and drain currents and, from the comparative analysis of the current transients, we conclude that there are at least two independent trapping mechanisms: trapping of charges in the silicon oxide substrate, occurring with time constants of the order of tens of seconds and involving charge motion orthogonal to the MoS 2 sheet, and trapping at the channel surface, which occurs with much longer time constants, in particular when the device is in a vacuum. We observe that the presence of such slow phenomena makes it very difficult to perform reliable low-frequency noise measurements, requiring a stable and repeatable steady-state bias point condition, and may explain the sometimes contradictory results that can be found in the literature about the dependence of the flicker noise power spectral density on gate bias.
Surface electroluminescence phenomena correlated with trapping parameters of insulating polymers
NASA Astrophysics Data System (ADS)
Zhang, Guan-Jun; Yang, Kai; Dong, Ming; Zhao, Wen-Bin; Yan, Zhang
2007-12-01
Electroluminescence (EL) phenomena are closely linked to the space charge and degradation in insulating polymers, and dominated by the luminescence and trap centers. EL emission has been promising in defining the onset of electrical aging and in the investigation of dissipation mechanisms. Generally, polymeric degradation reveals the increment of the density of luminescence and trap centers, so a fundamental study is proposed to correlate the EL emission of insulating polymers and their trapping parameters. A sensitive photon counting system is constructed to detect the weak EL. The time- and phase-resolved EL characteristics from different polymers (LDPE, PP and PTFE) are investigated with a planar electrode configuration under stepped ac voltage in vacuum. In succession, each sample is charged with exposing to multi-needle corona discharge, and then its surface potential decay is continuously recorded at a constant temperature. Based on the isothermal relaxation current theory, the energy level and density of both electron and hole trap distribution in the surface layer of each polymer is obtained. It is preliminarily concluded that EL phenomena are strongly affected by the trap properties, and for different polymers, its EL intensity is in direct contrast to its surface trap density, and this can be qualitatively explained by the trapping and detrapping sequence of charge carriers in trap centers with different energy level.
Heavy ion beam-ionosphere interactions - Charging and neutralizing the payload
NASA Technical Reports Server (NTRS)
Kaufmann, R. L.; Arnoldy, R. L.; Walker, D. N.; Holmes, J. C.; Pollock, C. J.
1989-01-01
Three different electrical charging and neutralization processes were experienced during gun operation in the Argon Release Controlled Studies rocket flights, which carried ion generators to 400-500 km in the nighttime auroral ionosphere: DC charging of the vehicle, brief charging at gun turn-on, and extended oscillatory sequences. The present analysis of these phenomena has determined that, during oscillatory events, the entire environment of a payload could alternate between hot electron and cold electron configurations at rates which may have been in excess of 10 kHz.
Ferraris, Sara; Cazzola, Martina; Peretti, Veronica; Stella, Barbara; Spriano, Silvia
2018-01-01
Surface properties of biomaterials (e.g., roughness, chemical composition, charge, wettability, and hydroxylation degree) are key features to understand and control the complex interface phenomena that happens upon contact with physiological fluids. Numerous physico-chemical techniques can be used in order to investigate in depth these crucial material features. Among them, zeta potential measurements are widely used for the characterization of colloidal suspensions, but actually poorly explored in the study of solid surfaces, even if they can give significant information about surface charge in function of pH and indirectly about surface functional groups and reactivity. The aim of the present research is application of zeta potential measurements of solid surfaces for the in vitro testing of biomaterials. In particular, bare and surface modified Ti6Al4V samples have been compared in order to evaluate their isoelectric points (IEPs), surface charge at physiological pH, in vitro bioactivity [in simulated body fluid (SBF)] and protein absorption. Zeta potential titration was demonstrated as a suitable technique for the surface characterization of surface treated Ti6Al4V substrates. Significant shift of the isoelectric point was recorded after a chemical surface treatment (because of the exposition of hydroxyl groups), SBF soaking (because of apatite precipitation IEP moves close to apatite one) and protein absorption (IEP moves close to protein ones). Moreover, the shape of the curve gives information about exposed functional groups (e.g., a plateau in the basic range appears due to the exposition of acidic OH groups and in the acidic range due to exposition of basic NH2 groups). PMID:29868575
NASA Astrophysics Data System (ADS)
Yu, David Ren-Hwa
This dissertation presents two searches for phenomena beyond the Standard Model using events with three or more charged leptons. The searches are based on 20.3 fb--1 of proton- proton collision data with a center-of-mass energy of [special characters omitted] s = 8 TeV collected by the ATLAS detector at the CERN Large Hadron Collider in 2012. The first is a model-independent search for excesses beyond Standard Model expectations in many signal regions. The events are required to have least three charged leptons, of which at least two are electrons or muons, and at most one is a hadronically decaying ? lepton. The selected events are categorized based on the flavor and charge of the leptons, and the signal regions are defined using several kinematic variables sensitive to beyond the Standard Model phenomena. The second search looks for new heavy leptons decaying resonantly to three electrons or muons, two of which are produced through an intermediate Z boson. The resonant decay produces a narrowly- peaked excess in the trilepton mass spectrum. In both cases, no significant excess beyond Standard Model expectations is observed, and the data are used to set limits on models of new physics. The model-independent trilepton search is used to confront a model of doubly charged scalar particles decaying to etau or mutau, excluding masses below 400 GeV at 95% confidence level. The trilepton resonance search is used to test models of vector-like leptons and the type III neutrino seesaw mechanism. The vector-like lepton model is excluded for most of the mass range 114 GeV -- 176 GeV, while the type III seesaw model is excluded for most the mass range 100 GeV -- 468 GeV. Both searches also present tools to facilitate reinterpretations in the context of other models predicting the production of three or more charged leptons.
Self field electromagnetism and quantum phenomena
NASA Astrophysics Data System (ADS)
Schatten, Kenneth H.
1994-07-01
Quantum Electrodynamics (QED) has been extremely successful inits predictive capability for atomic phenomena. Thus the greatest hope for any alternative view is solely to mimic the predictive capability of quantum mechanics (QM), and perhaps its usefulness will lie in gaining a better understanding of microscopic phenomena. Many ?paradoxes? and problematic situations emerge in QED. To combat the QED problems, the field of Stochastics Electrodynamics (SE) emerged, wherein a random ?zero point radiation? is assumed to fill all of space in an attmept to explain quantum phenomena, without some of the paradoxical concerns. SE, however, has greater failings. One is that the electromagnetic field energy must be infinit eto work. We have examined a deterministic side branch of SE, ?self field? electrodynamics, which may overcome the probelms of SE. Self field electrodynamics (SFE) utilizes the chaotic nature of electromagnetic emissions, as charges lose energy near atomic dimensions, to try to understand and mimic quantum phenomena. These fields and charges can ?interact with themselves? in a non-linear fashion, and may thereby explain many quantum phenomena from a semi-classical viewpoint. Referred to as self fields, they have gone by other names in the literature: ?evanesccent radiation?, ?virtual photons?, and ?vacuum fluctuations?. Using self fields, we discuss the uncertainty principles, the Casimir effects, and the black-body radiation spectrum, diffraction and interference effects, Schrodinger's equation, Planck's constant, and the nature of the electron and how they might be understood in the present framework. No new theory could ever replace QED. The self field view (if correct) would, at best, only serve to provide some understanding of the processes by which strange quantum phenomena occur at the atomic level. We discuss possible areas where experiments might be employed to test SFE, and areas where future work may lie.
Femtosecond movies of water near interfaces at sub-Angstrom resolution
NASA Astrophysics Data System (ADS)
Coridan, Robert; Hwee Lai, Ghee; Schmidt, Nathan; Abbamonte, Peter; Wong, Gerard C. L.
2010-03-01
The behavior of liquid water near interfaces with nanoscopic variations in chemistry influences a broad range of phenomena in biology. Using inelastic x-ray scattering (IXS) data from 3rd-generation synchrotron x-ray sources, we reconstruct the Greens function of liquid water, which describes the å-scale spatial and femtosecond-scale temporal evolution of density fluctuations. We extend this response function formalism to reconstruct the evolution of hydration structures near dynamic surfaces with different charge distributions, in order to define more precisely the molecular signature of hydrophilicity and hydrophobicity. Moreover, we investigate modifications to surface hydration structures and dynamics as the size of hydrophilic and hydrophobic patches are varied.
Formation of charged nanoparticles in hydrocarbon flames: principal mechanisms
NASA Astrophysics Data System (ADS)
Starik, A. M.; Savel'ev, A. M.; Titova, N. S.
2008-11-01
The processes of charged gaseous and particulate species formation in sooting hydrocarbon/air flame are studied. The original kinetic model, comprising the chemistry of neutral and charged gaseous species, generation of primary clusters, which then undergo charging due to attachment of ions and electrons to clusters and via thermoemission, and coagulation of charged-charged, charged-neutral and neutral-neutral particles, is reported. The analysis shows that the principal mechanisms of charged particle origin in hydrocarbon flames are associated with the attachment of ions and electrons produced in the course of chemoionization reactions to primary small clusters and particles and coagulation via charged-charged and charged-neutral particle interaction. Thermal ionization of particles does not play a significant role in the particle charging. This paper was presented at the Third International Symposium on Nonequilibrium Process, combustion, and Atmospheric Phenomena (Dagomys, Sochi, Russia, 25-29 June 2007).
Fast Neural Solution Of A Nonlinear Wave Equation
NASA Technical Reports Server (NTRS)
Barhen, Jacob; Toomarian, Nikzad
1996-01-01
Neural algorithm for simulation of class of nonlinear wave phenomena devised. Numerically solves special one-dimensional case of Korteweg-deVries equation. Intended to be executed rapidly by neural network implemented as charge-coupled-device/charge-injection device, very-large-scale integrated-circuit analog data processor of type described in "CCD/CID Processors Would Offer Greater Precision" (NPO-18972).
Anomalous transport from holography. Part I
NASA Astrophysics Data System (ADS)
Bu, Yanyan; Lublinsky, Michael; Sharon, Amir
2016-11-01
We revisit the transport properties induced by the chiral anomaly in a charged plasma holographically dual to anomalous U(1) V ×U(1) A Maxwell theory in Schwarzschild-AdS5. Off-shell constitutive relations for vector and axial currents are derived using various approximations generalising most of known in the literature anomaly-induced phenomena and revealing some new ones. In a weak external field approximation, the constitutive relations have all-order derivatives resummed into six momenta-dependent transport co-efficient functions: the diffusion, the electric/magnetic conductivity, and three anomaly induced functions. The latter generalise the chiral magnetic and chiral separation effects. Nonlinear transport is studied assuming presence of constant background external fields. The chiral magnetic effect, including all order nonlinearity in magnetic field, is proven to be exact when the magnetic field is the only external field that is turned on. Non-linear corrections to the constitutive relations due to electric and axial external fields are computed.
Water-mediated ion-ion interactions are enhanced at the water vapor-liquid interface.
Venkateshwaran, Vasudevan; Vembanur, Srivathsan; Garde, Shekhar
2014-06-17
There is overwhelming evidence that ions are present near the vapor-liquid interface of aqueous salt solutions. Charged groups can also be driven to interfaces by attaching them to hydrophobic moieties. Despite their importance in many self-assembly phenomena, how ion-ion interactions are affected by interfaces is not understood. We use molecular simulations to show that the effective forces between small ions change character dramatically near the water vapor-liquid interface. Specifically, the water-mediated attraction between oppositely charged ions is enhanced relative to that in bulk water. Further, the repulsion between like-charged ions is weaker than that expected from a continuum dielectric description and can even become attractive as the ions are drawn to the vapor side. We show that thermodynamics of ion association are governed by a delicate balance of ion hydration, interfacial tension, and restriction of capillary fluctuations at the interface, leading to nonintuitive phenomena, such as water-mediated like charge attraction. "Sticky" electrostatic interactions may have important consequences on biomolecular structure, assembly, and aggregation at soft liquid interfaces. We demonstrate this by studying an interfacially active model peptide that changes its structure from α-helical to a hairpin-turn-like one in response to charging of its ends.
Gillespie, Dirk; Khair, Aditya S; Bardhan, Jaydeep P; Pennathur, Sumita
2011-07-15
The electrokinetic behavior of nanofluidic devices is dominated by the electrical double layers at the device walls. Therefore, accurate, predictive models of double layers are essential for device design and optimization. In this paper, we demonstrate that density functional theory (DFT) of electrolytes is an accurate and computationally efficient method for computing finite ion size effects and the resulting ion-ion correlations that are neglected in classical double layer theories such as Poisson-Boltzmann. Because DFT is derived from liquid-theory thermodynamic principles, it is ideal for nanofluidic systems with small spatial dimensions, high surface charge densities, high ion concentrations, and/or large ions. Ion-ion correlations are expected to be important in these regimes, leading to nonlinear phenomena such as charge inversion, wherein more counterions adsorb at the wall than is necessary to neutralize its surface charge, leading to a second layer of co-ions. We show that DFT, unlike other theories that do not include ion-ion correlations, can predict charge inversion and other nonlinear phenomena that lead to qualitatively different current densities and ion velocities for both pressure-driven and electro-osmotic flows. We therefore propose that DFT can be a valuable modeling and design tool for nanofluidic devices as they become smaller and more highly charged. Copyright © 2011 Elsevier Inc. All rights reserved.
Water-mediated ion–ion interactions are enhanced at the water vapor–liquid interface
Venkateshwaran, Vasudevan; Vembanur, Srivathsan; Garde, Shekhar
2014-01-01
There is overwhelming evidence that ions are present near the vapor–liquid interface of aqueous salt solutions. Charged groups can also be driven to interfaces by attaching them to hydrophobic moieties. Despite their importance in many self-assembly phenomena, how ion–ion interactions are affected by interfaces is not understood. We use molecular simulations to show that the effective forces between small ions change character dramatically near the water vapor–liquid interface. Specifically, the water-mediated attraction between oppositely charged ions is enhanced relative to that in bulk water. Further, the repulsion between like-charged ions is weaker than that expected from a continuum dielectric description and can even become attractive as the ions are drawn to the vapor side. We show that thermodynamics of ion association are governed by a delicate balance of ion hydration, interfacial tension, and restriction of capillary fluctuations at the interface, leading to nonintuitive phenomena, such as water-mediated like charge attraction. “Sticky” electrostatic interactions may have important consequences on biomolecular structure, assembly, and aggregation at soft liquid interfaces. We demonstrate this by studying an interfacially active model peptide that changes its structure from α-helical to a hairpin-turn–like one in response to charging of its ends. PMID:24889634
Charge Redistribution from Anomalous Magnetovorticity Coupling
Hattori, Koichi; Yin, Yi
2016-10-05
Here, we investigate novel transport phenomena in a chiral fluid originated from an interplay between a vorticity and strong magnetic field, which induces a redistribution of vector charges in the system and an axial current along the magnetic field. The corresponding transport coefficients are obtained from an energy-shift argument for the chiral fermions in the lowest Landau level due to a spin-vorticity coupling and also from diagrammatic computations on the basis of the linear response theory. Based on consistent results from both methods, we also observe that the transport coefficients are proportional to the anomaly coefficient and are independent ofmore » temperature and chemical potential. Finally, we speculate that these transport phenomena are connected to quantum anomaly.« less
Constraints on Mass, Spin and Magnetic Field of Microquasar H 1743-322 from Observations of QPOs
NASA Astrophysics Data System (ADS)
Tursunov, A. A.; Kološ, M.
2018-03-01
The study of quasi-periodic oscillations (QPOs) of X-ray flux observed in many microquasars can provide a powerful tool for testing of the phenomena occurring in strong gravity regime. QPOs phenomena can be well related to the oscillations of charged particles in accretion disks orbiting Kerr black holes immersed in external large-scalemagnetic fields. In the present paper we study the model ofmagnetic relativistic precession and provide estimations of the mass and spin of the central object of the microquasar H 1743-322 which is a candidate for a black hole. Moreover, we discuss the possible values of external magnetic field and study its influence on the motion of charged particles around rotating black hole.
Characterization and Analysis of Paper Spray Ionization of Organic Compounds.
Aliaga-Aguilar, Hugo
2018-01-01
Paper spray ionization has arisen relatively recently as a complement and alternative to electro- and nanospray ionization with silica capillaries. A majority of the work in the present literature focuses on the chemical aspect of paper spray. In order to study the physical and phenomenological facet of its implementation, we measured current and voltage distributions of Taylor cones. To study transport phenomena on filter paper, we addressed the behavior of large, sparingly soluble tetraalkylammonium ions, which are usually used as mobility standards, in paper spray. The variation of intensity with time of monomers and dimers of these ions was measured with a differential mobility analyzer and compared with that produced by contamination in the paper. At the same time, we evaluated the proficiency of different paper spray techniques for protein analysis using nano spray as a reference. Experiments suggest that Taylor cones in paper spray are subject to hysteresis, whereas transport phenomena in the porous substrate notably affects the ionization of the sample. Additionally, we observed that paper spray tends to favor lower charge states in proteins. Graphical Abstract.
Electron-phonon coupling from finite differences
NASA Astrophysics Data System (ADS)
Monserrat, Bartomeu
2018-02-01
The interaction between electrons and phonons underlies multiple phenomena in physics, chemistry, and materials science. Examples include superconductivity, electronic transport, and the temperature dependence of optical spectra. A first-principles description of electron-phonon coupling enables the study of the above phenomena with accuracy and material specificity, which can be used to understand experiments and to predict novel effects and functionality. In this topical review, we describe the first-principles calculation of electron-phonon coupling from finite differences. The finite differences approach provides several advantages compared to alternative methods, in particular (i) any underlying electronic structure method can be used, and (ii) terms beyond the lowest order in the electron-phonon interaction can be readily incorporated. But these advantages are associated with a large computational cost that has until recently prevented the widespread adoption of this method. We describe some recent advances, including nondiagonal supercells and thermal lines, that resolve these difficulties, and make the calculation of electron-phonon coupling from finite differences a powerful tool. We review multiple applications of the calculation of electron-phonon coupling from finite differences, including the temperature dependence of optical spectra, superconductivity, charge transport, and the role of defects in semiconductors. These examples illustrate the advantages of finite differences, with cases where semilocal density functional theory is not appropriate for the calculation of electron-phonon coupling and many-body methods such as the GW approximation are required, as well as examples in which higher-order terms in the electron-phonon interaction are essential for an accurate description of the relevant phenomena. We expect that the finite difference approach will play a central role in future studies of the electron-phonon interaction.
NASA Astrophysics Data System (ADS)
Imada, Masatoshi; Fujimori, Atsushi; Tokura, Yoshinori
1998-10-01
Metal-insulator transitions are accompanied by huge resistivity changes, even over tens of orders of magnitude, and are widely observed in condensed-matter systems. This article presents the observations and current understanding of the metal-insulator transition with a pedagogical introduction to the subject. Especially important are the transitions driven by correlation effects associated with the electron-electron interaction. The insulating phase caused by the correlation effects is categorized as the Mott Insulator. Near the transition point the metallic state shows fluctuations and orderings in the spin, charge, and orbital degrees of freedom. The properties of these metals are frequently quite different from those of ordinary metals, as measured by transport, optical, and magnetic probes. The review first describes theoretical approaches to the unusual metallic states and to the metal-insulator transition. The Fermi-liquid theory treats the correlations that can be adiabatically connected with the noninteracting picture. Strong-coupling models that do not require Fermi-liquid behavior have also been developed. Much work has also been done on the scaling theory of the transition. A central issue for this review is the evaluation of these approaches in simple theoretical systems such as the Hubbard model and t-J models. Another key issue is strong competition among various orderings as in the interplay of spin and orbital fluctuations. Experimentally, the unusual properties of the metallic state near the insulating transition have been most extensively studied in d-electron systems. In particular, there is revived interest in transition-metal oxides, motivated by the epoch-making findings of high-temperature superconductivity in cuprates and colossal magnetoresistance in manganites. The article reviews the rich phenomena of anomalous metallicity, taking as examples Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Ru compounds. The diverse phenomena include strong spin and orbital fluctuations, mass renormalization effects, incoherence of charge dynamics, and phase transitions under control of key parameters such as band filling, bandwidth, and dimensionality. These parameters are experimentally varied by doping, pressure, chemical composition, and magnetic fields. Much of the observed behavior can be described by the current theory. Open questions and future problems are also extracted from comparison between experimental results and theoretical achievements.
Charge-spin Transport in Surface-disordered Three-dimensional Topological Insulators
NASA Astrophysics Data System (ADS)
Peng, Xingyue
As one of the most promising candidates for the building block of the novel spintronic circuit, the topological insulator (TI) has attracted world-wide interest of study. Robust topological order protected by time-reversal symmetry (TRS) makes charge transport and spin generation in TIs significantly different from traditional three-dimensional (3D) or two-dimensional (2D) electronic systems. However, to date, charge transport and spin generation in 3D TIs are still primarily modeled as single-surface phenomena, happening independently on top and bottom surfaces. In this dissertation, I will demonstrate via both experimental findings and theoretical modeling that this "single surface'' theory neither correctly describes a realistic 3D TI-based device nor reveals the amazingly distinct physical picture of spin transport dynamics in 3D TIs. Instead, I present a new viewpoint of the spin transport dynamics where the role of the insulating yet topologically non-trivial bulk of a 3D TI becomes explicit. Within this new theory, many mysterious transport and magneto-transport anomalies can be naturally explained. The 3D TI system turns out to be more similar to its low dimensional sibling--2D TI rather than some other systems sharing the Dirac dispersion, such as graphene. This work not only provides valuable fundamental physical insights on charge-spin transport in 3D TIs, but also offers important guidance to the design of 3D TI-based spintronic devices.
Lightwave-driven quasiparticle collisions on a sub-cycle timescale
Langer, F.; Hohenleutner, M.; Schmid, C.; Poellmann, C.; Nagler, P.; Korn, T.; Schüller, C.; Sherwin, M. S.; Huttner, U.; Steiner, J. T.; Koch, S. W.; Kira, M.; Huber, R.
2016-01-01
Ever since Ernest Rutherford first scattered α-particles from gold foils1, collision experiments have revealed unique insights into atoms, nuclei, and elementary particles2. In solids, many-body correlations also lead to characteristic resonances3, called quasiparticles, such as excitons, dropletons4, polarons, or Cooper pairs. Their structure and dynamics define spectacular macroscopic phenomena, ranging from Mott insulating states via spontaneous spin and charge order to high-temperature superconductivity5. Fundamental research would immensely benefit from quasiparticle colliders, but the notoriously short lifetimes of quasiparticles6 have challenged practical solutions. Here we exploit lightwave-driven charge transport7–24, the backbone of attosecond science9–13, to explore ultrafast quasiparticle collisions directly in the time domain: A femtosecond optical pulse creates excitonic electron–hole pairs in the layered dichalcogenide tungsten diselenide while a strong terahertz field accelerates and collides the electrons with the holes. The underlying wave packet dynamics, including collision, pair annihilation, quantum interference and dephasing, are detected as light emission in high-order spectral sidebands17–19 of the optical excitation. A full quantum theory explains our observations microscopically. This approach opens the door to collision experiments with a broad variety of complex quasiparticles and suggests a promising new way of sub-femtosecond pulse generation. PMID:27172045
Electroosmotic velocity in an array of parallel soft cylinders in a salt-free medium.
Ohshima, Hiroyuki
2004-11-15
A theory of electroosmosis in an array of parallel soft cylinders (i.e. polyelectrolyte-coated cylinders) in a salt-free medium is presented. It is shown that there is a certain critical value of the particle charge and that if the particle charge is greater than the critical value, then the electroosmotic velocity becomes constant independent of the particle charge due to the counterion condensation effects, as in the case of other electrokinetic phenomena in salt-free media.
Structure of Multiply Ionized Heavy Ions and Associated Collision Phenomena.
1978-10-01
Charge-State Dependence in K-Shell Ionization of Neon, Silicon , and Argon Gases by Lithium Proj ectiles ,” Physics Lett. 60A, 292 (1977). • “Charge...Projectile Charge-State Dependence in K-shell Ionization of Neon, Silicon , and Argon Gases by Lithium Projectiles,” Bull.Am. Phys. Soc. 22, 655 (1977...Probabilities , I . Martinson , ed. (Lunds Univeristet , Lund) , p. 8 (1977) . “Der 252S_2p 2 P° Doublettübergan g in Li-~hnlichem Schwefel , ” Verhandi
A Laboratory Study of Aircraft Precipitation Static Charging
1984-05-01
Hallett, Laboratory measurements of electric phenomena occurring during the freezing of S" charge transfer during multiple ice-ice coll - dilute aqueous...direction of field and the radius to the point are polarisation charges which flow along the sur - of contact. Gravitational separation of the two face of...mechanism is being obeyed. This is consistent 10 C 50/5 ,’ ;with the unity value of f derived previously. . lOup . 0um 40 " Several waveform of the same shape
Simulation of perturbation produced by an absorbing spherical body in collisionless plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasovsky, V. L., E-mail: vkrasov@iki.rssi.ru; Kiselyov, A. A., E-mail: alexander.kiselyov@stonehenge-3.net.ru; Dolgonosov, M. S.
2017-01-15
A steady plasma state reached in the course of charging of an absorbing spherical body is found using computational methods. Numerical simulations provide complete information on this process, thereby allowing one to find the spatiotemporal dependences of the physical quantities and observe the kinetic phenomena accompanying the formation of stable electron and ion distributions in phase space. The distribution function of trapped ions is obtained, and their contribution to the screening of the charged sphere is determined. The sphere charge and the charge of the trapped-ion cloud are determined as functions of the unperturbed plasma parameters.
Insulator edge voltage gradient effects in spacecraft charging phenomena
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Purvis, C. K.; Staskus, J. V.
1978-01-01
Insulating surfaces on geosynchronous satellites were charged by geomagnetic substorms to a point where discharges occur. The electromagnetic pulses from these discharges couple into satellite electronic systems disrupting operations are examined. Laboratory tests conducted on insulator charging have indicated that discharges appear to be initiated at insulator edges where voltage gradients can exist. An experimental investigation was conducted to measure edge voltage gradients on silvered Teflon samples as they are charged by monoenergetic electron beams. It was found that the surface voltage at insulator edges can be approximated by an exponential expression based on an electron current density balance.
NASA Technical Reports Server (NTRS)
Takahashi, Y.
1985-01-01
Observational data on anomalous cosmic-ray interaction events are compiled, classified, and briefly characterized. The events are divided into three groups: those confirmed by later observation or experiment, those shown to be the result of observational or analytical error, and those still unexplained. Among the phenomena in the latter group are magnetic-monopole candidates, fractionally charged particles, massive stable particles, anomalons, proton-decay and neutron-oscillation candidates, muon bundles, narrow showers, anomalous photons, fanlike phenomena, quark-gluon-plasma candidates, and anomalous long-range delta rays.
NASA Astrophysics Data System (ADS)
Yan, David
This thesis presents the one-dimensional equations, numerical method and simulations of a model to characterize the dynamical operation of an electrochemical cell. This model extends the current state-of-the art in that it accounts, in a primitive way, for the physics of the electrolyte/electrode interface and incorporates diffuse-charge dynamics, temperature coupling, surface coverage, and polarization phenomena. The one-dimensional equations account for a system with one or two mobile ions of opposite charge, and the electrode reaction we consider (when one is needed) is a one-electron electrodeposition reaction. Though the modeled system is far from representing a realistic electrochemical device, our results show a range of dynamics and behaviors which have not been observed previously, and explore the numerical challenges required when adding more complexity to a model. Furthermore, the basic transport equations (which are developed in three spatial dimensions) can in future accomodate the inclusion of additional physics, and coupling to more complex boundary conditions that incorporate two-dimensional surface phenomena and multi-rate reactions. In the model, the Poisson-Nernst-Planck equations are used to model diffusion and electromigration in an electrolyte, and the generalized Frumkin-Butler-Volmer equation is used to model reaction kinetics at electrodes. An energy balance equation is derived and coupled to the diffusion-migration equation. The model also includes dielectric polarization effects by introducing different values of the dielectric permittivity in different regions of the bulk, as well as accounting for surface coverage effects due to adsorption, and finite size "crowding", or steric effects. Advection effects are not modeled but could in future be incorporated. In order to solve the coupled PDE's, we use a variable step size second order scheme in time and finite differencing in space. Numerical tests are performed on a simplified system and the scheme's stability and convergence properties are discussed. While evaluating different methods for discretizing the coupled flux boundary condition, we discover a thresholding behaviour in the adaptive time stepper, and perform additional tests to investigate it. Finally, a method based on ghost points is chosen for its favorable numerical properties compared to the alternatives. With this method, we are able to run simulations with a large range of parameters, including any value of the nondimensionalized Debye length epsilon. The numerical code is first used to run simulations to explore the effects of polarization, surface coverage, and temperature. The code is also used to perform frequency sweeps of input signals in order to mimic impedance spectroscopy experiments. Finally, in Chapter 5, we use our model to apply ramped voltages to electrochemical systems, and show theoretical and simulated current-voltage curves for liquid and solid thin films, cells with blocking (polarized) electrodes, and electrolytes with background charge. Linear sweep and cyclic voltammetry techniques are important tools for electrochemists and have a variety of applications in engineering. Voltammetry has classically been treated with the Randles-Sevcik equation, which assumes an electroneutral supported electrolyte. No general theory of linear-sweep voltammetry is available, however, for unsupported electrolytes and for other situations where diffuse charge effects play a role. We show theoretical and simulated current-voltage curves for liquid and solid thin films, cells with blocking electrodes, and membranes with fixed background charge. The analysis focuses on the coupling of Faradaic reactions and diffuse charge dynamics, but capacitive charging of the double layers is also studied, for early time transients at reactive electrodes and for non-reactive blocking electrodes. The final chapter highlights the role of diffuse charge in the context of voltammetry, and illustrates which regimes can be approximated using simple analytical expressions and which require more careful consideration.
NASA Technical Reports Server (NTRS)
Ochoa, Agustin, Jr. (Editor)
1989-01-01
Various papers on nuclear science are presented. The general topics addressed include: basic mechanics of radiation effects, dosimetry and energy-dependent effects, hardness assurance and testing techniques, spacecraft charging and space radiation effects, EMP/SGEMP/IEMP phenomena, device radiation effects and hardening, radiation effects on isolation technologies, IC radiation effects and hardening, and single-event phenomena.
Tian, Jifa; Chang, Cuizu; Cao, Helin; He, Ke; Ma, Xucun; Xue, Qikun; Chen, Yong P.
2014-01-01
Weak antilocalization (WAL) and linear magnetoresistance (LMR) are two most commonly observed magnetoresistance (MR) phenomena in topological insulators (TIs) and often attributed to the Dirac topological surface states (TSS). However, ambiguities exist because these phenomena could also come from bulk states (often carrying significant conduction in many TIs) and are observable even in non-TI materials. Here, we demonstrate back-gated ambipolar TI field-effect transistors in (Bi0.04Sb0.96)2Te3 thin films grown by molecular beam epitaxy on SrTiO3(111), exhibiting a large carrier density tunability (by nearly 2 orders of magnitude) and a metal-insulator transition in the bulk (allowing switching off the bulk conduction). Tuning the Fermi level from bulk band to TSS strongly enhances both the WAL (increasing the number of quantum coherent channels from one to peak around two) and LMR (increasing its slope by up to 10 times). The SS-enhanced LMR is accompanied by a strongly nonlinear Hall effect, suggesting important roles of charge inhomogeneity (and a related classical LMR), although existing models of LMR cannot capture all aspects of our data. Our systematic gate and temperature dependent magnetotransport studies provide deeper insights into the nature of both MR phenomena and reveal differences between bulk and TSS transport in TI related materials. PMID:24810663
Observable phase factors and symmetry of electric and magnetic charges
NASA Technical Reports Server (NTRS)
Hsu, J. P.
1978-01-01
The observable phase factor is taken as a basic concept for the description of electromagnetism. Generalization of this concept to SU(2) and SU(2) x U(1) groups is carried out in such a way that the monopoles with quantized charges appear naturally and that the symmetry between the electric and magnetic phenomena is preserved. Some physical implications are discussed.
Ion association at discretely-charged dielectric interfaces: Giant charge inversion
NASA Astrophysics Data System (ADS)
Wang, Zhi-Yong; Wu, Jianzhong
2017-07-01
Giant charge reversal has been identified for the first time by Monte Carlo simulation for a discretely charged surface in contact with a trivalent electrolyte solution. It takes place regardless of the surface charge density under study and the monovalent salt. In stark contrast to earlier predictions based on the 2-dimensional Wigner crystal model to describe strong correlation of counterions at the macroion surface, we find that giant charge reversal reflects an intricate interplay of ionic volume effects, electrostatic correlations, surface charge heterogeneity, and the dielectric response of the confined fluids. While the novel phenomenon is yet to be confirmed with experiment, the simulation results appear in excellent agreement with a wide range of existing observations in the subregime of charge inversion. Our findings may have far-reaching implications to understanding complex electrochemical phenomena entailing ionic fluids under dielectric confinements.
Spacecraft dielectric material properties and spacecraft charging
NASA Technical Reports Server (NTRS)
Frederickson, A. R.; Wall, J. A.; Cotts, D. B.; Bouquet, F. L.
1986-01-01
The physics of spacecraft charging is reviewed, and criteria for selecting and testing semiinsulating polymers (SIPs) to avoid charging are discussed and illustrated. Chapters are devoted to the required properties of dielectric materials, the charging process, discharge-pulse phenomena, design for minimum pulse size, design to prevent pulses, conduction in polymers, evaluation of SIPs that might prevent spacecraft charging, and the general response of dielectrics to space radiation. SIPs characterized include polyimides, fluorocarbons, thermoplastic polyesters, poly(alkanes), vinyl polymers and acrylates, polymers containing phthalocyanine, polyacene quinones, coordination polymers containing metal ions, conjugated-backbone polymers, and 'metallic' conducting polymers. Tables summarizing the results of SIP radiation tests (such as those performed for the NASA Galileo Project) are included.
Magnon-based logic in a multi-terminal YIG/Pt nanostructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganzhorn, Kathrin, E-mail: kathrin.ganzhorn@wmi.badw.de; Klingler, Stefan; Wimmer, Tobias
2016-07-11
Boolean logic is the foundation of modern digital information processing. Recently, there has been a growing interest in phenomena based on pure spin currents, which allows to move from charge to spin based logic gates. We study a proof-of-principle logic device based on the ferrimagnetic insulator Yttrium Iron Garnet, with Pt strips acting as injectors and detectors for non-equilibrium magnons. We experimentally observe incoherent superposition of magnons generated by different injectors. This allows to implement a fully functional majority gate, enabling multiple logic operations (AND and OR) in one and the same device. Clocking frequencies of the order of severalmore » GHz and straightforward down-scaling make our device promising for applications.« less
News on Collectivity in PbPb Collisions at CMS
NASA Astrophysics Data System (ADS)
Moon, Dong Ho
2017-04-01
The flow anisotropies with the Fourier coefficients (n = 2, 3) for the charged particles produced in PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV is studied with the CMS detector. In order to extract the Fourier coefficients, several methods were used, such as the scalar product method or multi-particle cumulant method. The results cover both of the low-pT region (1 < pT < 3 GeV/c) associated with hydrodynamic flow phenomena and the high-pT region where anisotropic azimuthal distributions may reflect the path-length dependence of the parton energy loss in the created medium for the seven bins of collision centrality, spanning the rang of 0-60% most-central events.
Cross-scale phenological data integration to benefit resource management and monitoring
Richardson, Andrew D.; Weltzin, Jake F.; Morisette, Jeffrey T.
2017-01-01
Climate change is presenting new challenges for natural resource managers charged with maintaining sustainable ecosystems and landscapes. Phenology, a branch of science dealing with seasonal natural phenomena (bird migration or plant flowering in response to weather changes, for example), bridges the gap between the biosphere and the climate system. Phenological processes operate across scales that span orders of magnitude—from leaf to globe and from days to seasons—making phenology ideally suited to multiscale, multiplatform data integration and delivery of information at spatial and temporal scales suitable to inform resource management decisions.A workshop report: Workshop held June 2016 to investigate opportunities and challenges facing multi-scale, multi-platform integration of phenological data to support natural resource management decision-making.
Introduction to Atomic Structure: Demonstrations and Labs.
ERIC Educational Resources Information Center
Ciparick, Joseph D.
1988-01-01
Demonstrates a variety of electrical phenomena to help explain atomic structure. Topics include: establishing electrical properties, electrochemistry, and electrostatic charges. Recommends demonstration equipment needed and an explanation of each. (MVL)
NASA Technical Reports Server (NTRS)
Perez-Peraza, J.; Alvarez, M.; Laville, A.; Gallegos, A.
1985-01-01
The study of charge changing cross sections of fast ions colliding with matter provides the fundamental basis for the analysis of the charge states produced in such interactions. Given the high degree of complexity of the phenomena, there is no theoretical treatment able to give a comprehensive description. In fact, the involved processes are very dependent on the basic parameters of the projectile, such as velocity charge state, and atomic number, and on the target parameters, the physical state (molecular, atomic or ionized matter) and density. The target velocity, may have also incidence on the process, through the temperature of the traversed medium. In addition, multiple electron transfer in single collisions intrincates more the phenomena. Though, in simplified cases, such as protons moving through atomic hydrogen, considerable agreement has been obtained between theory and experiments However, in general the available theoretical approaches have only limited validity in restricted regions of the basic parameters. Since most measurements of charge changing cross sections are performed in atomic matter at ambient temperature, models are commonly based on the assumption of targets at rest, however at Astrophysical scales, temperature displays a wide range in atomic and ionized matter. Therefore, due to the lack of experimental data , an attempt is made here to quantify temperature dependent cross sections on basis to somewhat arbitrary, but physically reasonable assumptions.
ERIC Educational Resources Information Center
Criado, Ana Maria; Garcia-Carmona, Antonio
2010-01-01
Student teachers were tested before and after a teaching unit on electrostatic interactions in an attempt to consider their intuitive ideas and concept development. A study was made of students' explanations of basic interactions: those between two charged bodies, and those between a charged body and a neutral body. Two indicators of the cognitive…
NASA Astrophysics Data System (ADS)
Huang, Jun; Zhou, Tao; Zhang, Jianbo; Eikerling, Michael
2018-01-01
In this study, a refined double layer model of platinum electrodes accounting for chemisorbed oxygen species, oriented interfacial water molecules, and ion size effects in solution is presented. It results in a non-monotonic surface charging relation and a peculiar capacitance vs. potential curve with a maximum and possibly negative values in the potential regime of oxide-formation.
Subterahertz acoustical pumping of electronic charge in a resonant tunneling device.
Young, E S K; Akimov, A V; Henini, M; Eaves, L; Kent, A J
2012-06-01
We demonstrate that controlled subnanosecond bursts of electronic charge can be transferred through a resonant tunneling diode by successive picosecond acoustic pulses. The effect exploits the nonlinear current-voltage characteristics of the device and its asymmetric response to the compressive and tensile components of the strain pulse. This acoustoelectronic pump opens new possibilities for the control of quantum phenomena in nanostructures.
Students' Development and Use of Models to Explain Electrostatic Interactions
NASA Astrophysics Data System (ADS)
Mayer, Kristin Elizabeth
The National Research Council (2012) recently published A Framework for K-12 Science Education that describes a vision for science classrooms where students engage in three dimensions--scientific and engineering practices, crosscutting concepts, and disciplinary core ideas--to explain phenomena or observations they can make about the universe around them. This vision of science instruction is a significant shift from current classroom instruction. This dissertation provides detailed examples of how students developed and used models to build causal explanations of phenomena. I co-taught classes that focused on having students develop and revise models of electric fields and atomic structure using a curriculum that was designed to align with the three-dimensional vision of learning. I developed case studies of eleven students from these classes. I analyzed the students' responses and interviewed the students throughout the school year. By comparing and contrasting the analysis across the analysis of students' interviews, I identified four themes: 1) students could apply their ideas to explain novel and abstract phenomena; 2) students struggled to connect changes in their atomic models to evidence, but ended up with dynamic models of atomic structure that they could apply to explain phenomena; 3) students developed models of atomic structure that they applied to explain phenomena, but they did not use models of electric fields in this way; and 4) too much focus on details interfered with students' ability to apply their models to explain new phenomena. This dissertation highlights the importance of focusing on phenomena in classrooms that aim at aligning with three-dimensional learning. Students struggled to focus on specific content and apply their ideas to explain phenomena at the same time. In order to apply ideas to new context, students had to shift their focus from recalling ideas to applying the ideas they do have. A focus on phenomena allowed students to show their understanding through applying their ideas to new context. During this transition, students struggled, and in particular, had a hard time using evidence from experiments to justify the changes they made to their models of atomic structure. While the changes students made looked unproductive at times, by the end of the semester, students had developed models of atomic structure that incorporated relationships among charged components that they could apply to explain complex phenomena. Asking students to explore and evaluate their own ideas supported their development of models that they could apply to explain new context they experience in their future.
NASA Technical Reports Server (NTRS)
Williams, D. J.; Grubb, R. N.; Evans, D. S.; Sauer, H. H.
1974-01-01
The charged particle observations proposed for the new low altitude weather satellites, TIROS-N, are described that will provide the capability of routine monitoring of the instantaneous total energy deposition into the upper atmosphere by the precipitation of charged particles from higher altitudes. Estimates are given to assess the potential importance of this type of energy deposition. Discussion and examples are presented illustrating the importance in distinguishing between solar and geomagnetic activity as possible causative sources.
Earthquake lights and the stress-activation of positive hole charge carriers in rocks
St-Laurent, F.; Derr, J.S.; Freund, F.T.
2006-01-01
Earthquake-related luminous phenomena (also known as earthquake lights) may arise from (1) the stress-activation of positive hole (p-hole) charge carriers in igneous rocks and (2) the accumulation of high charge carrier concentrations at asperities in the crust where the stress rates increase very rapidly as an earthquake approaches. It is proposed that, when a critical charge carrier concentration is reached, the p-holes form a degenerated solid state plasma that can break out of the confined rock volume and propagate as a rapidly expanding charge cloud. Upon reaching the surface the charge cloud causes dielectric breakdown at the air-rock interface, i.e. corona discharges, accompanied by the emission of light and high frequency electromagnetic radiation. ?? 2006 Elsevier Ltd. All rights reserved.
Graphene Visualizes the Ion Distribution on Air-Cleaved Mica.
Bampoulis, Pantelis; Sotthewes, Kai; Siekman, Martin H; Zandvliet, Harold J W; Poelsema, Bene
2017-03-06
The distribution of potassium (K + ) ions on air-cleaved mica is important in many interfacial phenomena such as crystal growth, self-assembly and charge transfer on mica. However, due to experimental limitations to nondestructively probe single ions and ionic domains, their exact lateral organization is yet unknown. We show, by the use of graphene as an ultra-thin protective coating and scanning probe microscopies, that single potassium ions form ordered structures that are covered by an ice layer. The K + ions prefer to minimize the number of nearest neighbour K + ions by forming row-like structures as well as small domains. This trend is a result of repulsive ionic forces between adjacent ions, weakened due to screening by the surrounding water molecules. Using high resolution conductive atomic force microscopy maps, the local conductance of the graphene is measured, revealing a direct correlation between the K + distribution and the structure of the ice layer. Our results shed light on the local distribution of ions on the air-cleaved mica, solving a long-standing enigma. They also provide a detailed understanding of charge transfer from the ionic domains towards graphene.
Long-range electron tunneling.
Winkler, Jay R; Gray, Harry B
2014-02-26
Electrons have so little mass that in less than a second they can tunnel through potential energy barriers that are several electron-volts high and several nanometers wide. Electron tunneling is a critical functional element in a broad spectrum of applications, ranging from semiconductor diodes to the photosynthetic and respiratory charge transport chains. Prior to the 1970s, chemists generally believed that reactants had to collide in order to effect a transformation. Experimental demonstrations that electrons can transfer between reactants separated by several nanometers led to a revision of the chemical reaction paradigm. Experimental investigations of electron exchange between redox partners separated by molecular bridges have elucidated many fundamental properties of these reactions, particularly the variation of rate constants with distance. Theoretical work has provided critical insights into the superexchange mechanism of electronic coupling between distant redox centers. Kinetics measurements have shown that electrons can tunnel about 2.5 nm through proteins on biologically relevant time scales. Longer-distance biological charge flow requires multiple electron tunneling steps through chains of redox cofactors. The range of phenomena that depends on long-range electron tunneling continues to expand, providing new challenges for both theory and experiment.
Fluor Daniel Hanford implementation plan for DOE Order 5480.28, Natural phenomena hazards mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conrads, T.J.
1997-09-12
Natural phenomena hazards (NPH) are unexpected acts of nature that pose a threat or danger to workers, the public, or the environment. Earthquakes, extreme winds (hurricane and tornado), snow, flooding, volcanic ashfall, and lightning strikes are examples of NPH that could occur at the Hanford Site. U.S. Department of Energy (DOE) policy requires facilities to be designed, constructed, and operated in a manner that protects workers, the public, and the environment from hazards caused by natural phenomena. DOE Order 5480.28, Natural Phenomena Hazards Mitigation, includes rigorous new natural phenomena criteria for the design of new DOE facilities, as well asmore » for the evaluation and, if necessary, upgrade of existing DOE facilities. The Order was transmitted to Westinghouse Hanford Company in 1993 for compliance and is also identified in the Project Hanford Management Contract, Section J, Appendix C. Criteria and requirements of DOE Order 5480.28 are included in five standards, the last of which, DOE-STD-1023, was released in fiscal year 1996. Because the Order was released before all of its required standards were released, enforcement of the Order was waived pending release of the last standard and determination of an in-force date by DOE Richland Operations Office (DOE-RL). Agreement also was reached between the Management and Operations Contractor and DOE-RL that the Order would become enforceable for new structures, systems, and components (SSCS) 60 days following issue of a new order-based design criteria in HNF-PRO-97, Engineering Design and Evaluation. The order also requires that commitments addressing existing SSCs be included in an implementation plan that is to be issued 1 year following the release of the last standard. Subsequently, WHC-SP-1175, Westinghouse Hanford Company Implementation Plan for DOE Order 5480.28, Natural Phenomena Hazards Mitigation, Rev. 0, was issued in November 1996, and this document, HNF-SP-1175, Fluor Daniel Hanford Implementation Plan for DOE Order 5480.28, Natural Phenomena Hazards Mitigation, is Rev. 1 of that plan.« less
Charge states of ions, and mechanisms of charge ordering transitions
NASA Astrophysics Data System (ADS)
Pickett, Warren E.; Quan, Yundi; Pardo, Victor
2014-07-01
To gain insight into the mechanism of charge ordering transitions, which conventionally are pictured as a disproportionation of an ion M as 2Mn+→M(n+1)+ + M(n-1)+, we (1) review and reconsider the charge state (or oxidation number) picture itself, (2) introduce new results for the putative charge ordering compound AgNiO2 and the dual charge state insulator AgO, and (3) analyze the cationic occupations of the actual (not formal) charge, and work to reconcile the conundrums that arise. We establish that several of the clearest cases of charge ordering transitions involve no disproportion (no charge transfer between the cations, and hence no charge ordering), and that the experimental data used to support charge ordering can be accounted for within density functional-based calculations that contain no charge transfer between cations. We propose that the charge state picture retains meaning and importance, at least in many cases, if one focuses on Wannier functions rather than atomic orbitals. The challenge of modeling charge ordering transitions with model Hamiltonians isdiscussed.
Light-matter interaction in transition metal dichalcogenides and their heterostructures
NASA Astrophysics Data System (ADS)
Wurstbauer, Ursula; Miller, Bastian; Parzinger, Eric; Holleitner, Alexander W.
2017-05-01
The investigation of two-dimensional (2D) van der Waals materials is a vibrant, fast-moving and still growing interdisciplinary area of research. These materials are truly 2D crystals with strong covalent in-plane bonds and weak van der Waals interaction between the layers, and have a variety of different electronic, optical and mechanical properties. Transition metal dichalcogenides are a very prominent class of 2D materials, particularly the semiconducting subclass. Their properties include bandgaps in the near-infrared to the visible range, decent charge carrier mobility together with high (photo-) catalytic and mechanical stability, and exotic many-body phenomena. These characteristics make the materials highly attractive for both fundamental research as well as innovative device applications. Furthermore, the materials exhibit a strong light-matter interaction, providing a high sunlight absorbance of up to 15% in the monolayer limit, strong scattering cross section in Raman experiments, and access to excitonic phenomena in van der Waals heterostructures. This review focuses on the light-matter interaction in MoS2, WS2, MoSe2 and WSe2, which is dictated by the materials’ complex dielectric functions, and on the multiplicity of studying the first-order phonon modes by Raman spectroscopy to gain access to several material properties such as doping, strain, defects and temperature. 2D materials provide an interesting platform for stacking them into van der Waals heterostructures without the limitation of lattice mismatch, resulting in novel devices for applications but also to enable the study of exotic many-body interaction phenomena such as interlayer excitons. Future perspectives of semiconducting transition metal dichalcogenides and their heterostructures for applications in optoelectronic devices will be examined, and routes to study emergent fundamental problems and many-body quantum phenomena under excitations with photons will be discussed.
Modeling and character analyzing of current-controlled memristors with fractional kinetic transport
NASA Astrophysics Data System (ADS)
Si, Gangquan; Diao, Lijie; Zhu, Jianwei; Lei, Yuhang; Babajide, Oresanya; Zhang, Yanbin
2017-07-01
Memristors have come into limelight again after it was realized by HP researchers. This paper proposes a memristor model which can be called fractional-order current-controlled memristor, and it is more general and comprehensive. We introduce the fractional integral/differential to the current-controlled memristor model and model memristor with fractional kinetic of charge transport. An interesting phenomena found out is that the I-V characteristic is a triple-loop curve (0 < α < 1) and not the conventional double-loop I-V curve (α=1). Memristance (RM) is analyzed versus the fractional order α and time(t), and it reach saturation faster when 0 < α < 1. The saturation (Rmin → Rmax) time is given and analyzed versus different orders α and frequencies ω, which increase with α increasing and ω decreasing. More importantly, the memristors can't reach the Rmax in some cases. Energy loss of the model is analyzed, and the I-P curves isn't origin-symmetric when 0 < α < 1 which is very different with curves when α = 1 .
Overcoming Challenges in Kinetic Modeling of Magnetized Plasmas and Vacuum Electronic Devices
NASA Astrophysics Data System (ADS)
Omelchenko, Yuri; Na, Dong-Yeop; Teixeira, Fernando
2017-10-01
We transform the state-of-the art of plasma modeling by taking advantage of novel computational techniques for fast and robust integration of multiscale hybrid (full particle ions, fluid electrons, no displacement current) and full-PIC models. These models are implemented in 3D HYPERS and axisymmetric full-PIC CONPIC codes. HYPERS is a massively parallel, asynchronous code. The HYPERS solver does not step fields and particles synchronously in time but instead executes local variable updates (events) at their self-adaptive rates while preserving fundamental conservation laws. The charge-conserving CONPIC code has a matrix-free explicit finite-element (FE) solver based on a sparse-approximate inverse (SPAI) algorithm. This explicit solver approximates the inverse FE system matrix (``mass'' matrix) using successive sparsity pattern orders of the original matrix. It does not reduce the set of Maxwell's equations to a vector-wave (curl-curl) equation of second order but instead utilizes the standard coupled first-order Maxwell's system. We discuss the ability of our codes to accurately and efficiently account for multiscale physical phenomena in 3D magnetized space and laboratory plasmas and axisymmetric vacuum electronic devices.
NASA Astrophysics Data System (ADS)
Nakamura, Shin
2012-09-01
We find novel phase transitions and critical phenomena that occur only outside the linear-response regime of current-driven nonequilibrium states. We consider the strongly interacting (3+1)-dimensional N=4 large-Nc SU(Nc) supersymmetric Yang-Mills theory with a single flavor of fundamental N=2 hypermultiplet as a microscopic theory. We compute its nonlinear nonballistic quark-charge conductivity by using the AdS/CFT correspondence. We find that the system exhibits a novel nonequilibrium first-order phase transition where the conductivity jumps and the sign of the differential conductivity flips at finite current density. A nonequilibrium critical point is discovered at the end point of the first-order regime. We propose a nonequilibrium steady-state analogue of thermodynamic potential in terms of the gravity-dual theory in order to define the transition point. Nonequilibrium analogues of critical exponents are proposed as well. The critical behavior of the conductivity is numerically confirmed on the basis of these proposals. The present work provides a new example of nonequilibrium phase transitions and nonequilibrium critical points.
NASA Astrophysics Data System (ADS)
Thete, A.; Geelen, D.; van der Molen, S. J.; Tromp, R. M.
2017-12-01
The effects of exposure to ionizing radiation are central in many areas of science and technology, including medicine and biology. Absorption of UV and soft-x-ray photons releases photoelectrons, followed by a cascade of lower energy secondary electrons with energies down to 0 eV. While these low energy electrons give rise to most chemical and physical changes, their interactions with soft materials are not well studied or understood. Here, we use a low energy electron microscope to expose thin organic resist films to electrons in the range 0-50 eV, and to analyze the energy distribution of electrons returned to the vacuum. We observe surface charging that depends strongly and nonlinearly on electron energy and electron beam current, abruptly switching sign during exposure. Charging can even be sufficiently severe to induce dielectric breakdown across the film. We provide a simple but comprehensive theoretical description of these phenomena, identifying the presence of a cusp catastrophe to explain the sudden switching phenomena seen in the experiments. Surprisingly, the films undergo changes at all incident electron energies, starting at ˜0 eV .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiraishi, Hiroyuki
Laser-Supported Detonation (LSD), one type of Laser-Supported Plasma (LSP), is considered as the most important phenomena because it can generate high pressure and high temperature for laser absorption. In this study, I have numerically simulated the 1-D LSD waves propagating through a helium gas, in which Multiply-charged ionization model is considered for describing an accurate ionization process.
Modeling charge transport in organic photovoltaic materials.
Nelson, Jenny; Kwiatkowski, Joe J; Kirkpatrick, James; Frost, Jarvist M
2009-11-17
The performance of an organic photovoltaic cell depends critically on the mobility of charge carriers within the constituent molecular semiconductor materials. However, a complex combination of phenomena that span a range of length and time scales control charge transport in disordered organic semiconductors. As a result, it is difficult to rationalize charge transport properties in terms of material parameters. Until now, efforts to improve charge mobilities in molecular semiconductors have proceeded largely by trial and error rather than through systematic design. However, recent developments have enabled the first predictive simulation studies of charge transport in disordered organic semiconductors. This Account describes a set of computational methods, specifically molecular modeling methods, to simulate molecular packing, quantum chemical calculations of charge transfer rates, and Monte Carlo simulations of charge transport. Using case studies, we show how this combination of methods can reproduce experimental mobilities with few or no fitting parameters. Although currently applied to material systems of high symmetry or well-defined structure, further developments of this approach could address more complex systems such anisotropic or multicomponent solids and conjugated polymers. Even with an approximate treatment of packing disorder, these computational methods simulate experimental mobilities within an order of magnitude at high electric fields. We can both reproduce the relative values of electron and hole mobility in a conjugated small molecule and rationalize those values based on the symmetry of frontier orbitals. Using fully atomistic molecular dynamics simulations of molecular packing, we can quantitatively replicate vertical charge transport along stacks of discotic liquid crystals which vary only in the structure of their side chains. We can reproduce the trends in mobility with molecular weight for self-organizing polymers using a cheap, coarse-grained structural simulation method. Finally, we quantitatively reproduce the field-effect mobility in disordered C60 films. On the basis of these results, we conclude that all of the necessary building blocks are in place for the predictive simulation of charge transport in macromolecular electronic materials and that such methods can be used as a tool toward the future rational design of functional organic electronic materials.
NASA Astrophysics Data System (ADS)
Krasovsky, Victor L.; Kiselyov, Alexander A.
2017-12-01
New results of numerical simulation of collisionless plasma perturbation caused by a sphere absorbing electrons and ions are presented. Consideration is given to nonstationary phenomena accompanying the process of charging as well as to plasma steady state reached at long times. Corresponding asymptotic values of charges of the sphere and trapped-ion cloud around it have been found along with self-consistent electric field pattern depending on parameters of the unperturbed plasma. It is established that contribution of the trapped ions to screening of the charged sphere can be quite significant, so that the screening becomes essentially nonlinear in nature. A simple interconnection between the sphere radius, electron and ion Debye lengths has been revealed as the condition for maximum trapped-ion effect. Kinetic structure of the space charge induced in the plasma is discussed with relation to the specific form of the unperturbed charged particle distribution functions.
Mass and Charge Measurements on Heavy Ions
Sugai, Toshiki
2017-01-01
The relationship between mass and charge has been a crucial topic in mass spectrometry (MS) because the mass itself is typically evaluated based on the m/z ratio. Despite the fact that this measurement is indirect, a precise mass can be obtained from the m/z value with a high m/z resolution up to 105 for samples in the low mass and low charge region under 10,000 Da and 20 e, respectively. However, the target of MS has recently been expanded to the very heavy region of Mega or Giga Da, which includes large particles and biocomplexes, with very large and widely distributed charge from kilo to Mega range. In this region, it is necessary to evaluate charge and mass simultaneously. Recent studies for simultaneous mass and charge observation and related phenomena are discussed in this review. PMID:29302406
Asymmetric injection and distribution of space charges in propylene carbonate under impulse voltage
NASA Astrophysics Data System (ADS)
Sima, Wenxia; Chen, Qiulin; Sun, Potao; Yang, Ming; Guo, Hongda; Ye, Lian
2018-05-01
Space charge can distort the electric field in high voltage stressed liquid dielectrics and lead to breakdown. Observing the evolution of space charge in real time and determining the influencing factors are of considerable significance. The spatio-temporal evolution of space charge in propylene carbonate, which is very complex under impulse voltage, was measured in this study through the time-continuous Kerr electro-optic field mapping measurement. We found that the injection charge from a brass electrode displayed an asymmetric effect; that is, the negative charge injection near the cathode lags behind the positive charge injection near the anode. Physical mechanisms, including charge generation and drift, are analyzed, and a voltage-dependent saturated drift rectification model was established to explain the interesting phenomena. Mutual validation of models and our measurement data indicated that a barrier layer, which is similar to metal-semiconductor contact, was formed in the contact interface between the electrode and propylene carbonate and played an important role in the space charge injection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhi -Yong; Wu, Jianzhong
2017-07-11
Giant charge reversal has been identified for the first time by Monte Carlo simulation for a discretely charged surface in contact with a trivalent electrolyte solution. It takes place regardless of the surface charge density under study and the monovalent salt. In stark contrast to earlier predictions based on the 2-dimensional Wigner crystal model to describe strong correlation of counterions at the macroion surface, we find that giant charge reversal reflects an intricate interplay of ionic volume effects, electrostatic correlations, surface charge heterogeneity, and the dielectric response of the confined fluids. While the novel phenomenon is yet to be confirmedmore » with experiment, the simulation results appear in excellent agreement with a wide range of existing observations in the subregime of charge inversion. Lastly, our findings may have far-reaching implications to understanding complex electrochemical phenomena entailing ionic fluids under dielectric confinements.« less
Analysis of differential and active charging phenomena on ATS-5 and ATS-6
NASA Technical Reports Server (NTRS)
Olsen, R. C.; Whipple, E. C., Jr.
1980-01-01
Spacecraft charging on the differential charging and artificial particle emission experiments on ATS 5 and ATS 6 were studied. Differential charging of spacecraft surfaces generated large electrostatic barriers to spacecraft generated electrons, from photoemission, secondary emission, and thermal emitters. The electron emitter could partially or totally discharge the satellite, but the mainframe recharged negatively in a few 10's of seconds. The time dependence of the charging behavior was explained by the relatively large capacitance for differential charging in comparison to the small spacecraft to space capacitance. A daylight charging event on ATS 6 was shown to have a charging behavior suggesting the dominance of differential charging on the absolute potential of the mainframe. Ion engine operations and plasma emission experiments on ATS 6 were shown to be an effective means of controlling the spacecraft potential in eclipse and sunlight. Elimination of barrier effects around the detectors and improving the quality of the particle data are discussed.
Quantifying Temporal and Spatial Characteristics of Pulsating Aurora
NASA Astrophysics Data System (ADS)
Marchese, A. K.; Samara, M.; Michell, R.
2017-12-01
Aurorae are phenomena of colorful light due to charged solar wind particles colliding with gases in Earth's atmosphere. These events tend to be more prominent in higher latitudes since the particles travel along the magnetic field lines until they reach the poles where they enter the atmosphere. The effects of these energetic particles, however, also may damage technology. It is important to study aurorae to understand solar activity and how the magnetosphere responds to it to better deal with these problems. Imagers are located in Montana and Alaska facing towards the sky in order to take pictures of the aurora. Using the data from the imagers, numerous mathematical techniques were applied in order to extract quantitative information from the pictures to analyze pulsating aurora and study the differences between the aurora in Alaska and Montana. The two locations are at different latitudes and, thus, it is expected that they have different characteristics. Alaska, which is at a higher latitude, should have a more intense aurora than Montana.
Magnetotransport in Artificial Kagome Spin Ice
NASA Astrophysics Data System (ADS)
Chern, Gia-Wei
2017-12-01
Magnetic nanoarrays with special geometries exhibit nontrivial collective behaviors similar to those observed in spin-ice materials. Here, we present a circuit model to describe the complex magnetotransport phenomena in artificial kagome spin ice. In this picture, the system can be viewed as a resistor network driven by voltage sources that are located at vertices of the honeycomb array. The differential voltages across different terminals of these sources are related to the ice rules that govern the local magnetization ordering. The circuit model relates the transverse Hall voltage of kagome ice to the underlying spin correlations. Treating the magnetic nanoarray as metamaterials, we present a mesoscopic constitutive equation relating the Hall resistance to magnetization components of the system. We further show that the Hall signal is significantly enhanced when the kagome ice undergoes a magnetic-charge-ordering transition. Our analysis can be readily generalized to other lattice geometries, providing a quantitative method for the design of magnetoresistance devices based on artificial spin ice.
Abdel-Hafiez, M.; Zhao, X.-M.; Kordyuk, A. A.; Fang, Y.-W.; Pan, B.; He, Z.; Duan, C.-G.; Zhao, J.; Chen, X.-J.
2016-01-01
In low-dimensional electron systems, charge density waves (CDW) and superconductivity are two of the most fundamental collective quantum phenomena. For all known quasi-two-dimensional superconductors, the origin and exact boundary of the electronic orderings and superconductivity are still attractive problems. Through transport and thermodynamic measurements, we report on the field-temperature phase diagram in 2H-TaS2 single crystals. We show that the superconducting transition temperature (Tc) increases by one order of magnitude from temperatures at 0.98 K up to 9.15 K at 8.7 GPa when the Tc becomes very sharp. Additionally, the effects of 8.7 GPa illustrate a suppression of the CDW ground state, with critically small Fermi surfaces. Below the Tc the lattice of magnetic flux lines melts from a solid-like state to a broad vortex liquid phase region. Our measurements indicate an unconventional s-wave-like picture with two energy gaps evidencing its multi-band nature. PMID:27534898
Algorithm of resonance orders for the objects
NASA Astrophysics Data System (ADS)
Zhang, YongGang; Zhang, JianXue
2018-03-01
In mechanical engineering, the object resonance phenomena often occur when the external incident wave frequency is close to object of the natural frequency. Object resonance phenomena get the maximum value when the external incident frequency is equal to object the natural frequency. Experiments found that resonance intension of the object is changed, different objects resonance phenomena present different characteristics of ladders. Based on object orders resonance characteristics, the calculation method of object orders resonance is put forward in the paper, and the application for the light and sound waves on the seven order resonance characteristics by people feel, the result error is less than 1%.Visible in this paper, the method has high accuracy and usability. The calculation method reveals that some object resonance occur present order characteristic only four types, namely the first-orders resonance characteristics, third-orders characteristics, five orders characteristic, and seven orders characteristic.
Local gate control in carbon nanotube quantum devices
NASA Astrophysics Data System (ADS)
Biercuk, Michael Jordan
This thesis presents transport measurements of carbon nanotube electronic devices operated in the quantum regime. Nanotubes are contacted by source and drain electrodes, and multiple lithographically-patterned electrostatic gates are aligned to each device. Transport measurements of device conductance or current as a function of local gate voltages reveal that local gates couple primarily to the proximal section of the nanotube, hence providing spatially localized control over carrier density along the nanotube length. Further, using several different techniques we are able to produce local depletion regions along the length of a tube. This phenomenon is explored in detail for different contact metals to the nanotube. We utilize local gating techniques to study multiple quantum dots in carbon nanotubes produced both by naturally occurring defects, and by the controlled application of voltages to depletion gates. We study double quantum dots in detail, where transport measurements reveal honeycomb charge stability diagrams. We extract values of energy-level spacings, capacitances, and interaction energies for this system, and demonstrate independent control over all relevant tunneling rates. We report rf-reflectometry measurements of gate-defined carbon nanotube quantum dots with integrated charge sensors. Aluminum rf-SETs are electrostatically coupled to carbon nanotube devices and detect single electron charging phenomena in the Coulomb blockade regime. Simultaneous correlated measurements of single electron charging are made using reflected rf power from the nanotube itself and from the rf-SET on microsecond time scales. We map charge stability diagrams for the nanotube quantum dot via charge sensing, observing Coulomb charging diamonds beyond the first order. Conductance measurements of carbon nanotubes containing gated local depletion regions exhibit plateaus as a function of gate voltage, spaced by approximately 1e2/h, the quantum of conductance for a single (non-degenerate) mode. Plateau structure is investigated as a function of bias voltage, temperature, and magnetic field. We speculate on the origin of this surprising quantization, which appears to lack band and spin degeneracy.
NASA Technical Reports Server (NTRS)
1987-01-01
Various papers on nuclear and space radiation effects are presented. The general topics addressed include: basic mechanisms of radiation effects, single-event phenomena, temperature and field effects, modeling and characterization of radiation effects, IC radiation effects and hardening, and EMP/SGEMP/IEMP phenomena. Also considered are: dosimetry/energy-dependent effects, sensors in and for radiation environments, spacecraft charging and space radiation effects, radiation effects and devices, radiation effects on isolation technologies, and hardness assurance and testing techniques.
Photoinduced ultrafast charge-order melting: Charge-order inversion and nonthermal effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Veenendaal, Michel
2016-09-01
The effect of photoexcitation is studied for a system with checkerboard charge order induced by displacements of ligands around a metal site. The motion of the ligands is treated classically and the electronic charges are simplified to two-level molecular bond charges. The calculations are done for a checkerboard charge-ordered system with about 100 000 ligand oscillators coupled to a fixed-temperature bath. The initial photoexcitation is followed by a rapid decrease in the charge-order parameter within 50–100 femtoseconds while leaving the correlation length almost unchanged. Depending on the fluence, a complete melting of the charge order occurs in less than amore » picosecond. While for low fluences, the system returns to its original state, for full melting, it recovers to its broken-symmetry state leading to an inversion of the charge order. For small long-range interactions, recovery can be slow due to domain formation.« less
Photoinduced ultrafast charge-order melting: Charge-order inversion and nonthermal effects
van Veenendaal, Michel
2016-09-01
The effect of photoexcitation is studied for a system with checkerboard charge order induced by displacements of ligands around a metal site. The motion of the ligands is treated classically and the electronic charges are simplified to two-level molecular bond charges. The calculations are done for a checkerboard charge-ordered system with about 100 000 ligand oscillators coupled to a fixed-temperature bath. The initial photoexcitation is followed by a rapid decrease in the charge-order parameter within 50–100 femtoseconds while leaving the correlation length almost unchanged. Depending on the fluence, a complete melting of the charge order occurs in less than amore » picosecond. While for low fluences, the system returns to its original state, for full melting, it recovers to its broken-symmetry state leading to an inversion of the charge order. Finally, for small long-range interactions, recovery can be slow due to domain formation.« less
Mesoscopic modeling of multi-physicochemical transport phenomena in porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Qinjin; Wang, Moran; Mukherjee, Partha P
2009-01-01
We present our recent progress on mesoscopic modeling of multi-physicochemical transport phenomena in porous media based on the lattice Boltzmann method. Simulation examples include injection of CO{sub 2} saturated brine into a limestone rock, two-phase behavior and flooding phenomena in polymer electrolyte fuel cells, and electroosmosis in homogeneously charged porous media. It is shown that the lattice Boltzmann method can account for multiple, coupled physicochemical processes in these systems and can shed some light on the underlying physics occuning at the fundamental scale. Therefore, it can be a potential powerful numerical tool to analyze multi-physicochemical processes in various energy, earth,more » and environmental systems.« less
Atomic layer deposition and properties of ZrO2/Fe2O3 thin films
Seemen, Helina; Ritslaid, Peeter; Rähn, Mihkel; Tamm, Aile; Kukli, Kaupo; Kasikov, Aarne; Link, Joosep; Stern, Raivo; Dueñas, Salvador; Castán, Helena; García, Héctor
2018-01-01
Thin solid films consisting of ZrO2 and Fe2O3 were grown by atomic layer deposition (ALD) at 400 °C. Metastable phases of ZrO2 were stabilized by Fe2O3 doping. The number of alternating ZrO2 and Fe2O3 deposition cycles were varied in order to achieve films with different cation ratios. The influence of annealing on the composition and structure of the thin films was investigated. Additionally, the influence of composition and structure on electrical and magnetic properties was studied. Several samples exhibited a measurable saturation magnetization and most of the samples exhibited a charge polarization. Both phenomena were observed in the sample with a Zr/Fe atomic ratio of 2.0. PMID:29441257
NASA Astrophysics Data System (ADS)
Göckeritz, Robert; Homonnay, Nico; Müller, Alexander; Fuhrmann, Bodo; Schmidt, Georg
2016-04-01
Nanoscale multifunctional perpendicular organic spin valves have been fabricated. The devices based on an La0.7Sr0.3MnO3/Alq3/Co trilayer show resistive switching of up to 4-5 orders of magnitude and magnetoresistance as high as -70% the latter even changing sign when voltage pulses are applied. This combination of phenomena is typically observed in multiferroic tunnel junctions where it is attributed to magnetoelectric coupling between a ferromagnet and a ferroelectric material. Modeling indicates that here the switching originates from a modification of the La0.7Sr0.3MnO3 surface. This modification influences the tunneling of charge carriers and thus both the electrical resistance and the tunneling magnetoresistance which occurs at pinholes in the organic layer.
A triboelectric wind turbine for small-scale energy harvesting
NASA Astrophysics Data System (ADS)
Perez, Matthias; Boisseau, Sebastien; Geisler, Matthias; Despesse, Ghislain; Reboud, Jean Luc
2016-11-01
This paper deals with a rotational energy harvester including a Horizontal Axis Wind Turbine (HAWT), a cylindrical stator covered by several electrodes, and thin Teflon dielectric membranes hung on the rotor. The sliding contact of the Teflon membranes on the stator provides simultaneously large capacitance variations and a polarization source for the electrostatic converter by exploiting triboelectric phenomena. 1μW has been harvested at 4m/s; 130μW at 10m/s and 550μW at 20m/s with a 40mmØ device. In order to validate the energy harvesting chain, the airflow energy harvester has been connected to a power management circuit implementing Synchronous Electric Charge Extraction (SECE) to supply a wireless sensor node with temperature and acceleration measurements, transmitted to a computer at 868MHz.
Multifunctionalities driven by ferroic domains
NASA Astrophysics Data System (ADS)
Yang, J. C.; Huang, Y. L.; He, Q.; Chu, Y. H.
2014-08-01
Considerable attention has been paid to ferroic systems in pursuit of advanced applications in past decades. Most recently, the emergence and development of multiferroics, which exhibit the coexistence of different ferroic natures, has offered a new route to create functionalities in the system. In this manuscript, we step from domain engineering to explore a roadmap for discovering intriguing phenomena and multifunctionalities driven by periodic domain patters. As-grown periodic domains, offering exotic order parameters, periodic local perturbations and the capability of tailoring local spin, charge, orbital and lattice degrees of freedom, are introduced as modeling templates for fundamental studies and novel applications. We discuss related significant findings on ferroic domain, nanoscopic domain walls, and conjunct heterostructures based on the well-organized domain patterns, and end with future prospects and challenges in the field.
Characterization of charge trapping phenomena at III-N/dielectric interfaces
NASA Astrophysics Data System (ADS)
Stradiotto, Roberta; Pobegen, Gregor; Ostermaier, Clemens; Grasser, Tibor
2016-11-01
Charge trapping related phenomena are among the most serious reliability issues in GaN/AlGaN MIS-HEMTs technology. Today, many research efforts are undertaken to investigate and identify the defects responsible for device degradation. This work focuses on the trap sites located close to the interface with the dielectric, which are responsible for large voltage drifts in on-state conditions. We study the response of GaN/AlGaN/SiN systems to small and large signal excitation. Measurements performed with a lock-in amplifier enable us to deeply understand the dynamic behavior because of the improved time resolution and the versatility of the instrument. We investigate the frequency dispersion and the hysteresis of these devices and conclude that direct analysis of impedance characteristics is not sufficient to extract information about the interface trap response. We propose a methodology to study trapping phenomena based on transient measurement analysis, describing the approximations made and their effect on the accuracy of the result. Results on MIS test structures confirm the existence of a broad distribution of trap states. Capture time constants are found to be uniformly distributed in the experimental time window between 50 μs and 100 s.
In-situ study of the cracking of metal hydride electrodes by acoustic emission technique
NASA Astrophysics Data System (ADS)
Didier-Laurent, S.; Idrissi, H.; Roué, L.
Pulverisation phenomena occurring during the charge/discharge cycling of metal hydride materials were studied by acoustic emission coupled to electrochemical measurements. Two kinds of materials were studied: a commercial LaNi 5-based alloy and a ball-milled MgNi alloy. In both alloys, two populations of acoustic signals were detected during charging steps: P1, showing peak frequencies between 230 and 260 kHz, high energy and low rise time, and P2 with peak frequencies between 150 and 180 kHz, lower energy and longer rise time. Population P2 is related to the hydrogen evolution reaction whereas P1 is associated with pulverisation phenomena. No acoustic activity was detected during discharge. We also investigated pulverisation phenomena through cycles by monitoring the P1 population. It appears that pulverisation occurs mainly during the five first cycles for LaNi 5 with a maximum at the second cycle, while pulverisation takes place all along the cycling for MgNi, but at a decreasing rate. By comparing the P1 activities, it appears that the pulverization phenomenon is less intensive on the MgNi electrode than on the LaNi 5-based electrode.
NASA Technical Reports Server (NTRS)
Heyman, J. S.
1975-01-01
Phonon-charge carrier interactions are studied as well as ultrasonic resonators. Sensitivity enhancement factors predicted by one dimensional resonator theory are verified and several sensitive ultrasonic experimental techniques are developed. Measurements are reported of an anomalous sign reversal of the acoustoelectric voltage in a CdS resonator. Applications of CdS as an ultrasonic power detector are described.
Sprites, elf transients, and positive ground strokes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boccippio, D.J.; Boldi, R.; Williams, E.R.
1995-08-25
In two summertime mesoscale convective systems (MCSs), mesospheric optical sprite phenomena were often coincident with both large-amplitude positive cloud-to-ground lightning and transient Schumann resonance excitations of the entire Earth-ionosphere cavity. These observations, together with earlier studies of MCS electrification, suggest that sprites are triggered when the rapid removal of large quantities of positive charge from an areally extensive charge layer stresses the mesosphere to dielectric breakdown. 46 refs., 7 figs., 1 tab.
NASA Astrophysics Data System (ADS)
Ruffini, R.
2004-07-01
Recent developments in obtaining a detailed model for gamma-ray bursts have shown the need for a deeper understanding of phenomena described by solutions of the Einstein-Maxwell equations, reviving interest in the behavior of charges close to a black hole. In particular a drastic difference has been found between the lines of force of a charged test particle in the fields of Schwarzschild and Reissner-Nordström black holes. This difference characterizes a general relativistic effect for the electric field of a charged test particle around a (charged) Reissner-Nordström black hole similar to the “Meissner effect” for a magnetic field around a superconductor. These new results are related to earlier work by Fermi and Hanni-Ruffini-Wheeler.
General analytic results for nonlinear waves and solitons in molecular clouds
NASA Technical Reports Server (NTRS)
Adams, Fred C.; Fatuzzo, Marco; Watkins, Richard
1994-01-01
We study nonlinear wave phenomena in self-gravitating fluid systems, with a particular emphasis on applications to molecular clouds. This paper presents analytical results for one spatial dimension. We show that a large class of physical systems can be described by theories with a 'charge density' q(rho); this quantity replaces the density on the right-hand side of the Poisson equation for the gravitational potential. We use this formulation to prove general results about nonlinear wave motions in self-gravitating systems. We show that in order for stationary waves to exist, the total charge (the integral of the charge density over the wave profile) must vanish. This 'no-charge' property for solitary waves is related to the capability of a system to be stable to gravitational perturbations for arbitrarily long wavelengths. We find necessary and sufficient conditions on the charge density for the existence of solitary waves and stationary waves. We study nonlinear wave motions for Jeans-type theories (where q(rho) = rho-rho(sub 0)) and find that nonlinear waves of large amplitude are confined to a rather narrow range of wavelengths. We also study wave motions for molecular clouds threaded by magnetic fields and show how the allowed range of wavelengths is affected by the field strength. Since the gravitational force in one spatial dimension does not fall off with distance, we consider two classes of models with more realistic gravity: Yukawa potentials and a pseudo two-dimensional treatment. We study the allowed types of wave behavior for these models. Finally, we discuss the implications of this work for molecular cloud structure. We argue that molecular clouds can support a wide variety of wave motions and suggest that stationary waves (such as those considered in this paper) may have already been observed.
Inception of Snapover and Gas Induced Glow Discharges
NASA Technical Reports Server (NTRS)
Galofaro, J. T.; Vayner, B. V.; Degroot, W. A.; Ferguson, D. C.; Thomson, C. D.; Dennison, J. R.; Davies, R. E.
2000-01-01
Ground based experiments of the snapover phenomenon were conducted in the large vertical simulation chamber at the Glenn Research Center (GRC) Plasma Interaction Facility (PIF). Two Penning sources provided both argon and xenon plasmas for the experiments. The sources were used to simulate a variety of ionospheric densities pertaining to a spacecraft in a Low Earth Orbital (LEO) environment. Secondary electron emission is believed responsible for dielectric surface charging, and all subsequent snapover phenomena observed. Voltage sweeps of conductor potentials versus collected current were recorded in order to examine the specific charging history of each sample. The average time constant for sample charging was estimated between 25 and 50 seconds for all samples. It appears that current drops off by approximately a factor of 3 over the charging time of the sample. All samples charged in the forward and reverse bias directions, demonstrated hysteresis. Current jumps were only observed in the forward or positive swept voltage direction. There is large dispersion in tile critical snapover potential when repeating sweeps on any one sample. The current ratio for the first snapover region jumps between 2 and 4.6 times, with a standard deviation less than 1.6. Two of the samples showed even larger current ratios. It is believed the second large snapover region is due to sample outgassing. Under certain preset conditions, namely at the higher neutral gas background pressures, a perceptible blue-green glow was observed around the conductor. The glow is believed to be a result of secondary electrons undergoing collisions with an expelled tenuous cloud of gas, that is outgassed from the sample. Spectroscopic measurements of the glow discharge were made in an attempt to identify specific lines contributing to the observed glow.
NASA Astrophysics Data System (ADS)
Lyon, M.; Rolston, S. L.
2017-01-01
By photoionizing samples of laser-cooled atoms with laser light tuned just above the ionization limit, plasmas can be created with electron and ion temperatures below 10 K. These ultracold neutral plasmas have extended the temperature bounds of plasma physics by two orders of magnitude. Table-top experiments, using many of the tools from atomic physics, allow for the study of plasma phenomena in this new regime with independent control over the density and temperature of the plasma through the excitation process. Characteristic of these systems is an inhomogeneous density profile, inherited from the density distribution of the laser-cooled neutral atom sample. Most work has dealt with unconfined plasmas in vacuum, which expand outward at velocities of order 100 m/s, governed by electron pressure, and with lifetimes of order 100 μs, limited by stray electric fields. Using detection of charged particles and optical detection techniques, a wide variety of properties and phenomena have been observed, including expansion dynamics, collective excitations in both the electrons and ions, and collisional properties. Through three-body recombination collisions, the plasmas rapidly form Rydberg atoms, and clouds of cold Rydberg atoms have been observed to spontaneously avalanche ionize to form plasmas. Of particular interest is the possibility of the formation of strongly coupled plasmas, where Coulomb forces dominate thermal motion and correlations become important. The strongest impediment to strong coupling is disorder-induced heating, a process in which Coulomb energy from an initially disordered sample is converted into thermal energy. This restricts electrons to a weakly coupled regime and leaves the ions barely within the strongly coupled regime. This review will give an overview of the field of ultracold neutral plasmas, from its inception in 1999 to current work, including efforts to increase strong coupling and effects on plasma properties due to strong coupling.
Ferroelectric Switching by the Grounded Scanning Probe Microscopy Tip
Ievlev, Anton V.; Morozovska, A. N.; Shur, Vladimir Ya.; ...
2015-06-19
The process of polarization reversal by the tip of scanning probe microscope was intensively studied for last two decades. Number of the abnormal switching phenomena was reported by the scientific groups worldwide. In particularly it was experimentally and theoretically shown that slow dynamics of the surface screening controls kinetics of the ferroelectric switching, backswitching and relaxation and presence of the charges carriers on the sample surface and in the sample bulk significantly change polarization reversal dynamics. Here we experimentally demonstrated practical possibility of the history dependent polarization reversal by the grounded SPM tip. This phenomenon was attributed to induction ofmore » the slowly dissipating charges into the surface of the grounded tip that enables polarization reversal under the action of the produced electric field. Analytical and numerical electrostatic calculations allow additional insight into nontrivial abnormal switching phenomena reported earlier.« less
Agreement for NASA/OAST - USAF/AFSC space interdependency on spacecraft environment interaction
NASA Technical Reports Server (NTRS)
Pike, C. P.; Stevens, N. J.
1980-01-01
A joint AF/NASA comprehensive program on spacecraft environment interactions consists of combined contractual and in house efforts aimed at understanding spacecraft environment ineraction phenomena and relating ground test results to space conditions. Activities include: (1) a concerted effort to identify project related environmental interactions; (2) a materials investigation to measure the basic properties of materials and develop or modify materials as needed; and (3) a ground simulation investigation to evaluate basic plasma interaction phenomena and provide inputs to the analytical modeling investigation. Systems performance is evaluated by both ground tests and analysis. There is an environmental impact investigation to determine the effect of future large spacecraft on the charged particle environment. Space flight investigations are planned to verify the results. The products of this program are test standards and design guidelines which summarize the technology, specify test criteria, and provide techniques to minimize or eliminate system interactions with the charged particle environment.
Modeling of second order space charge driven coherent sum and difference instabilities
NASA Astrophysics Data System (ADS)
Yuan, Yao-Shuo; Boine-Frankenheim, Oliver; Hofmann, Ingo
2017-10-01
Second order coherent oscillation modes in intense particle beams play an important role for beam stability in linear or circular accelerators. In addition to the well-known second order even envelope modes and their instability, coupled even envelope modes and odd (skew) modes have recently been shown in [Phys. Plasmas 23, 090705 (2016), 10.1063/1.4963851] to lead to parametric instabilities in periodic focusing lattices with sufficiently different tunes. While this work was partly using the usual envelope equations, partly also particle-in-cell (PIC) simulation, we revisit these modes here and show that the complete set of second order even and odd mode phenomena can be obtained in a unifying approach by using a single set of linearized rms moment equations based on "Chernin's equations." This has the advantage that accurate information on growth rates can be obtained and gathered in a "tune diagram." In periodic focusing we retrieve the parametric sum instabilities of coupled even and of odd modes. The stop bands obtained from these equations are compared with results from PIC simulations for waterbag beams and found to show very good agreement. The "tilting instability" obtained in constant focusing confirms the equivalence of this method with the linearized Vlasov-Poisson system evaluated in second order.
Experimental and Theoretical Investigations of Glass Surface Charging Phenomena
NASA Astrophysics Data System (ADS)
Agnello, Gabriel
Charging behavior of multi-component display-type (i.e. low alkali) glass surfaces has been studied using a combination of experimental and theoretical methods. Data obtained by way of a Rolling Sphere Test (RST), streaming/zeta potential and surface energy measurements from commercially available display glass surfaces (Corning EAGLE XGRTM and Lotus(TM) XT) suggest that charge accumulation is highly dependent on surface treatment (chemical and/or physical modification) and measurement environment, presumably through reactionary mechanisms at the surface with atmospheric moisture. It has been hypothesized that water dissociation, along with the corresponding hydroxylation of the glass surface, are important processes related to charging in glass-metal contact systems. Classical Molecular Dynamics (MD) simulations, in conjunction with various laboratory based measurements (RST, a newly developed ElectroStatic Gauge (ESG) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS)) on simpler Calcium AluminoSilicate (CAS) glass surfaces were used to further explore these phenomena. Analysis of simulated high-silica content (≥50%) (CAS) glass structures suggest that controlled variation of bulk chemistry can directly affect surface defect concentrations, such as non-bridging oxygen (NBO), which can be suitable high-energy sites for hydrolysis-type reactions to occur. Calculated NBO surface concentrations correlate well with charge based measurements on laboratory fabricated CAS surfaces. The data suggest that a directional/polar shift in contact-charge transfer occurs at low silica content (≤50%) where the highest concentrations of NBOs are observed. Surface charging sensitivity with respect to NBO concentration decreases as the relative humidity of the measurement environment increases; which should be expected as the highly reactive sites are progressively covered by liquid water layers. DRIFTS analysis of CAS powders expand on this analysis showing a gradual increase in molecular water absorption at the surface in samples containing ≥60% silica, and an abrupt decrease in those with ≤60% silica. This behavior is very likely related to the aforementioned charge polarity shift (negative (-) to positive (+)) in low silica containing glasses, leading to the conclusion that structural defect mediated charge accumulation and/or transfer are likely to be important mechanisms related to the contact charging of glass surfaces.
NASA Astrophysics Data System (ADS)
LeRoy, S.; Segur, P.; Teyssedre, G.; Laurent, C.
2004-01-01
We present a conduction model aimed at describing bipolar transport and space charge phenomena in low density polyethylene under dc stress. In the first part we recall the basic requirements for the description of charge transport and charge storage in disordered media with emphasis on the case of polyethylene. A quick review of available conduction models is presented and our approach is compared with these models. Then, the bases of the model are described and related assumptions are discussed. Finally, results on external current, trapped and free space charge distributions, field distribution and recombination rate are presented and discussed, considering a constant dc voltage, a step-increase of the voltage, and a polarization-depolarization protocol for the applied voltage. It is shown that the model is able to describe the general features reported for external current, electroluminescence and charge distribution in polyethylene.
Formal Valence, 3 d Occupation, and Charge Ordering Transitions
NASA Astrophysics Data System (ADS)
Pickett, Warren
2014-03-01
The metal-insulator transition (MIT), discovered by Verwey in the late 1930s, has been thought to be one of the best understood of MITs, the other ones being named after Wigner, Peierls, Mott, and Anderson. Continuing work on these transitions finds in some cases less and less charge to order, raising the fundamental question of just where the entropy is coming from, and just what is ordering. To provide insight into the mechanism of charge-ordering transitions, which conventionally are pictured as a disproportionation, I will (1) review and reconsider the charge state (or oxidation number) picture itself, (2) introduce new theoretical results for the rare earth nickelates (viz. YNiO3), the putative charge ordering compound AgNiO2, and the dual charge state insulator AgO, and (3) analyze cationic occupations of actual (not formal) charge, and work to reconcile the conundrums that arise. Several of the clearest cases of charge ordering transitions involve no disproportion; moreover, the experimental data used to support charge ordering can be accounted for within density functional based calculations that contain no charge transfer The challenge of modeling charge ordering transitions with model Hamiltonians will be discussed. Acknowledgment: Y. Quan, V. Pardo. Supported by NSF award DMR-1207622-0.
NASA Technical Reports Server (NTRS)
Wall, J. A.; Burke, E. A.; Frederickson, A. R.
1977-01-01
The objective of the literature search was to determine the required material properties and electron interaction parameters needed for modeling charge buildup and breakdown in insulators. A brief overview of the results of the literature search is given. A partial list of the references covered is included in a bibliography. Although inorganic insulators were also considered in the search, coverage is limited to the organics, primarily Kapton and Teflon.
Tunable charge transfer properties in metal-phthalocyanine heterojunctions.
Siles, P F; Hahn, T; Salvan, G; Knupfer, M; Zhu, F; Zahn, D R T; Schmidt, O G
2016-04-28
Organic materials such as phthalocyanine-based systems present a great potential for organic device applications due to the possibility of integrating films of different organic materials to create organic heterostructures which combine the electrical capabilities of each material. This opens the possibility to precisely engineer and tune new electrical properties. In particular, similar transition metal phthalocyanines demonstrate hybridization and charge transfer properties which could lead to interesting physical phenomena. Although, when considering device dimensions, a better understanding and control of the tuning of the transport properties still remain in the focus of research. Here, by employing conductive atomic force microscopy techniques, we provide an insight about the nanoscale electrical properties and transport mechanisms of MnPc and fluorinated phthalocyanines such as F16CuPc and F16CoPc. We report a transition from typical diode-like transport mechanisms for pure MnPc thin films to space-charge-limited current transport regime (SCLC) for Pc-based heterostructures. The controlled addition of fluorinated phthalocyanine also provides highly uniform and symmetric-polarized transport characteristics with conductance enhancements up to two orders of magnitude depending on the polarization. We present a method to spatially map the mobility of the MnPc/F16CuPc structures with a nanoscale resolution and provide theoretical calculations to support our experimental findings. This well-controlled nanoscale tuning of the electrical properties for metal transition phthalocyanine junctions stands as key step for future phthalocyanine-based electronic devices, where the low dimension charge transfer, mediated by transition metal atoms could be intrinsically linked to a transfer of magnetic moment or spin.
NASA Technical Reports Server (NTRS)
Stevens, N. J.
1979-01-01
Cases where the charged-particle environment acts on the spacecraft (e.g., spacecraft charging phenomena) and cases where a system on the spacecraft causes the interaction (e.g., high voltage space power systems) are considered. Both categories were studied in ground simulation facilities to understand the processes involved and to measure the pertinent parameters. Computer simulations are based on the NASA Charging Analyzer Program (NASCAP) code. Analytical models are developed in this code and verified against the experimental data. Extrapolation from the small test samples to space conditions are made with this code. Typical results from laboratory and computer simulations are presented for both types of interactions. Extrapolations from these simulations to performance in space environments are discussed.
CHARGED TORI IN SPHERICAL GRAVITATIONAL AND DIPOLAR MAGNETIC FIELDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slany, P.; Kovar, J.; Stuchlik, Z.
2013-03-01
A Newtonian model of non-conductive, charged, perfect fluid tori orbiting in combined spherical gravitational and dipolar magnetic fields is presented and stationary, axisymmetric toroidal structures are analyzed. Matter in such tori exhibits a purely circulatory motion and the resulting convection carries charges into permanent rotation around the symmetry axis. As a main result, we demonstrate the possible existence of off-equatorial charged tori and equatorial tori with cusps that also enable outflows of matter from the torus in the Newtonian regime. These phenomena qualitatively represent a new consequence of the interplay between gravity and electromagnetism. From an astrophysical point of view,more » our investigation can provide insight into processes that determine the vertical structure of dusty tori surrounding accretion disks.« less
Microscopic models for bridging electrostatics and currents
NASA Astrophysics Data System (ADS)
Borghi, L.; DeAmbrosis, A.; Mascheretti, P.
2007-03-01
A teaching sequence based on the use of microscopic models to link electrostatic phenomena with direct currents is presented. The sequence, devised for high school students, was designed after initial work carried out with student teachers attending a school of specialization for teaching physics at high school, at the University of Pavia. The results obtained with them are briefly presented, because they directed our steps for the development of the teaching sequence. For both the design of the experiments and their interpretation, we drew inspiration from the original works of Alessandro Volta; in addition, a structural model based on the particular role of electrons as elementary charges both in electrostatic phenomena and in currents was proposed. The teaching sequence starts from experiments on charging objects by rubbing and by induction, and engages students in constructing microscopic models to interpret their observations. By using these models and by closely examining the ideas of tension and capacitance, the students acknowledge that a charging (or discharging) process is due to the motion of electrons that, albeit for short time intervals, represent a current. Finally, they are made to see that the same happens in transients of direct current circuits.
Kepner, Gordon R
2010-04-13
The numerous natural phenomena that exhibit saturation behavior, e.g., ligand binding and enzyme kinetics, have been approached, to date, via empirical and particular analyses. This paper presents a mechanism-free, and assumption-free, second-order differential equation, designed only to describe a typical relationship between the variables governing these phenomena. It develops a mathematical model for this relation, based solely on the analysis of the typical experimental data plot and its saturation characteristics. Its utility complements the traditional empirical approaches. For the general saturation curve, described in terms of its independent (x) and dependent (y) variables, a second-order differential equation is obtained that applies to any saturation phenomena. It shows that the driving factor for the basic saturation behavior is the probability of the interactive site being free, which is described quantitatively. Solving the equation relates the variables in terms of the two empirical constants common to all these phenomena, the initial slope of the data plot and the limiting value at saturation. A first-order differential equation for the slope emerged that led to the concept of the effective binding rate at the active site and its dependence on the calculable probability the interactive site is free. These results are illustrated using specific cases, including ligand binding and enzyme kinetics. This leads to a revised understanding of how to interpret the empirical constants, in terms of the variables pertinent to the phenomenon under study. The second-order differential equation revealed the basic underlying relations that describe these saturation phenomena, and the basic mathematical properties of the standard experimental data plot. It was shown how to integrate this differential equation, and define the common basic properties of these phenomena. The results regarding the importance of the slope and the new perspectives on the empirical constants governing the behavior of these phenomena led to an alternative perspective on saturation behavior kinetics. Their essential commonality was revealed by this analysis, based on the second-order differential equation.
Nguyen, Viet Cuong; Lee, Pooi See
2016-01-01
We study resistive switching memory phenomena in conducting polymer PEDOT PSS. In the same film, there are two types of memory behavior coexisting; namely, the switchable diode effect and write once read many memory. This is the first report on switchable diode phenomenon based on conducting organic materials. The effect was explained as charge trapping of PEDOT PSS film and movement of proton. The same PEDOT PSS device also exhibits write once read many memory (WORM) phenomenon which arises due to redox reaction that reduces PEDOT PSS and renders it non-conducting. The revelation of these two types of memory phenomena in PEDOT PSS highlights the remarkable versatility of this conducting conjugated polymer. PMID:26806868
CHARGE-2 rocket observations of vehicle charging and charge neutralization
NASA Astrophysics Data System (ADS)
Banks, P. M.; Gilchrist, B. E.; Neubert, T.; Myers, N.; Raitt, W. J.; Williamson, P. R.; Fraser-Smith, A. C.; Sasaki, S.
Observations of electrical charging and other phenomena have been made in the ionosphere with the CHARGE-2 tethered rocket system. In this experiment, two electrically connected payloads with a variety of plasma instruments measured effects associated with operation of a 1 keV, 40 mA electron gun and a 450-volt dc power supply. During electron beam operations, it was found that both mother and daughter payloads reached high positive potentials as a consequence of the restricted electron current collecting area of the payloads. During neutral gas thruster firings, the payload potentials were dramatically reduced, indicating that electrical discharges could effectively ground each payload to plasma potential. Other thruster-related effects were also seen, including substantial reductions of return current-associated electrical noise at HF and VLF and large increases in 3914 A light in the plasma sheath.
Charge Induced Dynamics of Water in a Graphene–Mica Slit Pore
2017-01-01
We use atomic force microscopy to in situ investigate the dynamic behavior of confined water at the interface between graphene and mica. The graphene is either uncharged, negatively charged, or positively charged. At high humidity, a third water layer will intercalate between graphene and mica. When graphene is negatively charged, the interface fills faster with a complete three layer water film, compared to uncharged graphene. As charged positively, the third water layer dewets the interface, either by evaporation into the ambient or by the formation of three-dimensional droplets under the graphene, on top of the bilayer. Our experimental findings reveal novel phenomena of water at the nanoscale, which are interesting from a fundamental point of view and demonstrate the direct control over the wetting properties of the graphene/water interface. PMID:28985466
Overcharging and charge reversal in the electrical double layer around the point of zero charge.
Guerrero-García, G Iván; González-Tovar, Enrique; Chávez-Páez, Martín; Lozada-Cassou, Marcelo
2010-02-07
The ionic adsorption around a weakly charged spherical colloid, immersed in size-asymmetric 1:1 and 2:2 salts, is studied. We use the primitive model (PM) of an electrolyte to perform Monte Carlo simulations as well as theoretical calculations by means of the hypernetted chain/mean spherical approximation (HNC/MSA) and the unequal-radius modified Gouy-Chapman (URMGC) integral equations. Structural quantities such as the radial distribution functions, the integrated charge, and the mean electrostatic potential are reported. Our Monte Carlo "experiments" evidence that near the point of zero charge, the smallest ionic species is preferentially adsorbed onto the macroparticle, independently of the sign of the charge carried by this tiniest electrolytic component, giving rise to the appearance of the phenomena of charge reversal (CR) and overcharging (OC). Accordingly, colloidal CR, due to an excessive attachment of counterions, is observed when the macroion is slightly charged and the coions are larger than the counterions. In the opposite situation, i.e., if the counterions are larger than the coions, the central macroion acquires additional like-charge (coions) and hence becomes "overcharged," a feature theoretically predicted in the past [F. Jiménez-Angeles and M. Lozada-Cassou, J. Phys. Chem. B 108, 7286 (2004)]. In other words, here we present the first simulation data on OC in the PM electrical double layer, showing that close to the point of zero charge, this novel effect surges as a consequence of the ionic size asymmetry. We also find that the HNC/MSA theory captures well the CR and OC phenomena exhibited by the computer experiments, especially as the macroion's charge increases. On the contrary, even if URMGC also displays CR and OC, its predictions do not compare favorably with the Monte Carlo data, evidencing that the inclusion of hard-core correlations in Monte Carlo and HNC/MSA enhances and extends those effects. We explain our findings in terms of the energy-entropy balance. In the field of electrophoresis, it has been generally agreed that the charge of a colloid in motion is partially decreased by counterion adsorption. Depending on the location of the macroion's slipping surface, the OC results of this paper could imply an increase in the expected electrophoretic mobility. These observations aware about the interpretation of electrokinetic measurements using the standard Poisson-Boltzmann approximation beyond its validity region.
Physical Mechanism of Comet Outbursts: The Movie
NASA Astrophysics Data System (ADS)
Hartmann, William K.
2014-11-01
During experiments conducted in 1976 at the NASA Ames Research Center’s Vertical Gun Facility (VGF), the author studied low velocity impacts into simulated regolith powders and gravels, in order to examine physics of low-velocity collisions during early solar system planetesimal formation. In one “accidental” experiment, the bucket of powder remained gas-charged during evacuation of the VGF vacuum chamber. The impactor, moving at 5.5 m/s, disturbed the surface, initiating eruptions of dust-charged gas, shooting in jets from multiple vents at speeds up to about 3 m/s, with sporadic venting until 17 seconds after the impact. This experiment was described in [1], which concluded that it simulated comet eruption phenomena. In this hypothesis, a comet nucleus develops a lag deposit of regolith in at least some regions. At a certain distance from the sun, the thermal wave penetrates to an ice-rich depth, causing sublimation. Gas rises into the regolith, collects in pore spaces, and creates a gas-charged powder, as in our experiment. Any surface disturbance, such as a meteoroid, may initiate a temporary eruption, or eventually the gas pressure becomes sufficient to blow off the overburden. Our observed ejection speed would be sufficient to launch dust off of a kilometer-scale comet nucleus.Film (100 frames/s) of the event was obtained, but was partially torn up in a projector. It has recently been reconstituted (Centric Photo Labs, Tucson) and dramatically illustrates various cometary phenomena. Parabolic curtains of erupted material resemble curtains of material photographed from earth in real comet comas, “falling back” under solar wind forces. In retrospect, the mechanism photographed here helps explain:*sporadic eruptions in Comet P/Schwassmann-Wachmann 1 (near-circular orbit at ~6 A.U., where repeated recharge may occur).*sporadic eruptions on “asteroid” 2060 Chiron (which stays beyond 8.5 A.U.). *the thicker dust curtain (and longer eruption?) than predicted for the Deep Impact experiment in Comet Tempel 1.The film is posted on the Planetary Science Institute website, www.psi.edu/hartmann. [1] Hartmann, W. K. 1993 Physical Mechanism of Comet Outbursts: An Experimental Result. Icarus 104, 226-233.
NASA Technical Reports Server (NTRS)
Venturini, C. C.; Spann, J. F.; Comfort, R. H.
1999-01-01
The interaction of micron sized particles or "dust particles" with different space and planetary environments has become an important area of research. One particular area of interest is how dust particles interact with plasmas. Studies have shown that charged dust particles immersed in plasmas can alter plasma characteristics, while ions and electrons in plasmas can affect a particle's potential and thereby, its interaction with other particles. The basis for understanding these phenomena is the charging mechanisms of the dust particle, specifically, how the particle's charge and characteristics are affected when exposed to ions and electrons. At NASA Marshall Space Flight Center, a laboratory experiment has been developed to study the interaction of dust particles with electrons. Using a unique laboratory technique known as electrodynamic suspension, a single charged particle is suspended in a modified quadrupole trap. Once suspended, the particle is then exposed to an electron beam to study the charging/discharging mechanisms due to collisions of energetic electrons. The change in the particle's charge, approximations of the charging/discharging currents, and the charging/discharging yield are calculated.
Magnetic properties of the synthetically charged neutral bosons
NASA Astrophysics Data System (ADS)
Hassan, Ahmed S.; Abbas, Abbas H.; El-Sherbini, Tharwat M.; Seif, Walaa M.
2018-07-01
In this paper, we conclude that BEC of synthetically charged bosons is possible and leads to several new and interesting phenomena. Thermal and magnetic properties of the system are investigated. The temperature dependence of the magnetic parameters, including the magnetization, magnetic susceptibility and the heat capacity at constant synthetic magnetic field are calculated. These properties are investigated for finite atoms number and synthetic magnetic field strength. We show that those properties, in particular Bose- Einstein transition temperature, depends upon the strength of the synthetic magnetic field. A diffuse condensation of the synthetically charged bosons appears for changing the synthetic field. The obtained results provide important magnetic properties.
He, Yadong; Huang, Jingsong; Sumpter, Bobby G; Kornyshev, Alexei A; Qiao, Rui
2015-01-02
Understanding the dynamic charge storage in nanoporous electrodes with room-temperature ionic liquid electrolytes is essential for optimizing them to achieve supercapacitors with high energy and power densities. Herein, we report coarse-grained molecular dynamics simulations of the cyclic voltammetry of supercapacitors featuring subnanometer pores and model ionic liquids. We show that the cyclic charging and discharging of nanopores are governed by the interplay between the external field-driven ion transport and the sloshing dynamics of ions inside of the pore. The ion occupancy along the pore length depends strongly on the scan rate and varies cyclically during charging/discharging. Unlike that at equilibrium conditions or low scan rates, charge storage at high scan rates is dominated by counterions while the contribution by co-ions is marginal or negative. These observations help explain the perm-selective charge storage observed experimentally. We clarify the mechanisms underlying these dynamic phenomena and quantify their effects on the efficiency of the dynamic charge storage in nanopores.
Cu nuclear magnetic resonance study of charge and spin stripe order in La 1.875 Ba 0.125 CuO 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelc, D.; Grafe, H. -J.; Gu, G. D.
In this paper, we present a Cu nuclear magnetic/quadrupole resonance study of the charge stripe ordered phase of LBCO, with detection of previously unobserved (“wiped-out”) signal. We show that spin-spin and spin-lattice relaxation rates are strongly enhanced in the charge ordered phase, explaining the apparent signal decrease in earlier investigations. The enhancement is caused by magnetic, rather than charge fluctuations, conclusively confirming the long-suspected assumption that spin fluctuations are responsible for the wipeout effect. Observation of the full Cu signal enables insight into the spin and charge dynamics of the stripe-ordered phase, and measurements in external magnetic fields provide informationmore » on the nature and suppression of spin fluctuations associated with charge order. Lastly, we find glassy spin dynamics, in agreement with previous work, and incommensurate static charge order with charge modulation amplitude similar to other cuprate compounds, suggesting that the amplitude of charge stripes is universal in the cuprates.« less
Cu nuclear magnetic resonance study of charge and spin stripe order in La 1.875 Ba 0.125 CuO 4
Pelc, D.; Grafe, H. -J.; Gu, G. D.; ...
2017-02-15
In this paper, we present a Cu nuclear magnetic/quadrupole resonance study of the charge stripe ordered phase of LBCO, with detection of previously unobserved (“wiped-out”) signal. We show that spin-spin and spin-lattice relaxation rates are strongly enhanced in the charge ordered phase, explaining the apparent signal decrease in earlier investigations. The enhancement is caused by magnetic, rather than charge fluctuations, conclusively confirming the long-suspected assumption that spin fluctuations are responsible for the wipeout effect. Observation of the full Cu signal enables insight into the spin and charge dynamics of the stripe-ordered phase, and measurements in external magnetic fields provide informationmore » on the nature and suppression of spin fluctuations associated with charge order. Lastly, we find glassy spin dynamics, in agreement with previous work, and incommensurate static charge order with charge modulation amplitude similar to other cuprate compounds, suggesting that the amplitude of charge stripes is universal in the cuprates.« less
NASA Technical Reports Server (NTRS)
Coakley, Peter G. (Editor)
1988-01-01
The effects of nuclear and space radiation on the performance of electronic devices are discussed in reviews and reports of recent investigations. Topics addressed include the basic mechanisms of radiation effects, dosimetry and energy-dependent effects, sensors in and for radiation environments, EMP/SGEMP/IEMP phenomena, radiation effects on isolation technologies, and spacecraft charging and space radiation effects. Consideration is given to device radiation effects and hardening, hardness assurance and testing techniques, IC radiation effects and hardening, and single-event phenomena.
Diffuse-charge dynamics of ionic liquids in electrochemical systems.
Zhao, Hui
2011-11-01
We employ a continuum theory of solvent-free ionic liquids accounting for both short-range electrostatic correlations and steric effects (finite ion size) [Bazant et al., Phys. Rev. Lett. 106, 046102 (2011)] to study the response of a model microelectrochemical cell to a step voltage. The model problem consists of a 1-1 symmetric ionic liquid between two parallel blocking electrodes, neglecting any transverse transport phenomena. Matched asymptotic expansions in the limit of thin double layers are applied to analyze the resulting one-dimensional equations and study the overall charge-time relation in the weakly nonlinear regime. One important conclusion is that our simple scaling analysis suggests that the length scale √(λ*(D)l*(c)) accurately characterizes the double-layer structure of ionic liquids with strong electrostatic correlations where l*(c) is the electrostatic correlation length (in contrast, the Debye screening length λ*(D) is the primary double-layer length for electrolytes) and the response time of λ(D)(*3/2)L*/(D*l(c)(1/2)) (not λ*(D)L*/D* that is the primary charging time of electrolytes) is the correct charging time scale of ionic liquids with strong electrostatic correlations where D* is the diffusivity and L* is the separation length of the cell. With these two new scales, data of both electric potential versus distance from the electrode and the total diffuse charge versus time collapse onto each individual master curve in the presence of strong electrostatic correlations. In addition, the dependance of the total diffuse charge on steric effects, short-range correlations, and driving voltages is thoroughly examined. The results from the asymptotic analysis are compared favorably with those from full numerical simulations. Finally, the absorption of excess salt by the double layer creates a depletion region outside the double layer. Such salt depletion may bring a correction to the leading order terms and break down the weakly nonlinear analysis. A criterion which justifies the weakly nonlinear analysis is verified with numerical simulations.
NASA Astrophysics Data System (ADS)
Su, Hongyang; Wang, Yue; Yu, Zhi; Liu, Yawen; Zhang, Xiaolei; Wang, Xiaolei; Sui, Huimin; Sun, Chengbin; Zhao, Bing
2017-10-01
4-Mercaptophenylboronic Acid (4-MPBA) plays pivotal role in various fields. The orientation and existing form of the 4-MPBA strongly depend on the pH value of the media. The general aim of this work is to obtain information about the structure changes of 4-MPBA absorbed on Ag nanoparticles in different pH environment. Surface-enhanced Raman spectroscopy (SERS) technique is a simple and rapid method to study adsorption phenomena at molecule level. The investigation is done by means of SERS. In order to interpret the experimental information, a series of SERS spectra is carried out. The relative intensities of the totally symmetric (a1 mode) and non-totally symmetric (b2 mode) bands in the SERS spectra of 4-MPBA change depend on the environmental pH values, which is a manifestation of charge transfer (CT) processes. The degree of charge transfer increases with the pH value of the media changing from acidity to alkalinity. The structure changes of MPBA had been carried out in different pH environment. We envision that this approach will be of great significance in related fields of 4-MPBA-involved detection.
High field charge order across the phase diagram of YBa2Cu3Oy
NASA Astrophysics Data System (ADS)
Laliberté, Francis; Frachet, Mehdi; Benhabib, Siham; Borgnic, Benjamin; Loew, Toshinao; Porras, Juan; Le Tacon, Mathieu; Keimer, Bernhard; Wiedmann, Steffen; Proust, Cyril; LeBoeuf, David
2018-03-01
In hole-doped cuprates there is now compelling evidence that inside the pseudogap phase, charge order breaks translational symmetry. In YBa2Cu3Oy charge order emerges in two steps: a 2D order found at zero field and at high temperature inside the pseudogap phase, and a 3D order that is superimposed below the superconducting transition Tc when superconductivity is weakened by a magnetic field. Several issues still need to be addressed such as the effect of disorder, the relationship between those charge orders and their respective impact on the Fermi surface. Here, we report high magnetic field sound velocity measurements of the 3D charge order in underdoped YBa2Cu3Oy in a large doping range. We found that the 3D charge order exists over the same doping range as its 2D counterpart, indicating an intimate connection between the two distinct orders. Moreover, our data suggest that 3D charge order has only a limited impact on low-lying electronic states of YBa2Cu3Oy.
Laboratory simulation of irradiation-induced dielectric breakdown in spacecraft charging
NASA Technical Reports Server (NTRS)
Yadlowsky, E. J.; Churchill, R. J.; Hazelton, R. C.
1980-01-01
The discharging of dielectric samples irradiated by a beam of monoenergetic electrons is investigated. The development of a model, or models, which describe the discharge phenomena occuring on the irradiated dielectric targets is discussed. The electrical discharge characteristics of irradiated dielectric samples are discussed and the electrical discharge paths along dielectric surfaces and within the dielectric material are determined. The origin and destination of the surface emitted particles is examined and the charge and energy balance in the system is evaluated.
1992-10-01
DBMBF2 ) undergoes photoreaction with olefins through a partial electron transfer that leads to cycloaddition or sensitized Diels - Alder reactions. We...8217 Fluorescence. 10:00 J.M. WARMAN: Photon-induced Intramolecular Charge Sepaiation Studied byTime-Resolved Microwave Conductivity. 10:30 Coffee 11:)) W...26 Photon-Induced Intramolecular Charge Separation Studied by Time-Resolved Microwave Conductivity John M. Warman IRI, Delft University of Technology
Gary, S. Peter
2015-04-06
Plasma turbulence consists of an ensemble of enhanced, broadband electromagnetic fluctuations, typically driven by multi-wave interactions which transfer energy in wavevector space via non- linear cascade processes. In addition, temperature anisotropy instabilities in collisionless plasmas are driven by quasi-linear wave–particle interactions which transfer particle kinetic energy to field fluctuation energy; the resulting enhanced fluctuations are typically narrowband in wavevector magnitude and direction. Whatever their sources, short-wavelength fluctuations are those at which charged particle kinetic, that is, velocity-space, properties are important; these are generally wavelengths of the order of or shorter than the ion inertial length or the thermal ion gyroradius.more » The purpose of this review is to summarize and interpret recent computational results concerning short-wavelength plasma turbulence, short-wavelength temperature anisotropy instabilities and relationships between the two phenomena.« less
NASA Astrophysics Data System (ADS)
Qi, Bo; Gao, Chunjia; Sun, Zelai; Li, Chengrong
2017-11-01
Surface charge accumulation can incur changes in electric field distribution, involved in the electron propagation process, and result in a significant decrease in the surface flashover voltage. The existing 2D surface charge measurement fails to meet the actual needs in real engineering applications that usually adopt the 45° conical frustum insulators. The present research developed a novel 3D measurement platform to capture surface charge distribution on solid insulation under nanosecond pulse in a vacuum. The results indicate that all surface charges are positive under a positive pulse and negative under a negative pulse. Surface charges tend to accumulate more near the upper electrode. Surface charge density increases significantly with the increase in pulse counts and amplitudes. Accumulation of surface charge results in a certain decrease of flashover voltage. Taking consideration of the secondary electron emission for the surface charge accumulation, four materials were obtained to demonstrate the effects on surface charge. Combining the effect incurred by secondary electron emission and the weighty action taken by surface charge accumulation on the flashover phenomena, the discharge mechanism along the insulator surface under nanosecond pulse voltage was proposed.
Numerical Methods of Computational Electromagnetics for Complex Inhomogeneous Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Wei
Understanding electromagnetic phenomena is the key in many scientific investigation and engineering designs such as solar cell designs, studying biological ion channels for diseases, and creating clean fusion energies, among other things. The objectives of the project are to develop high order numerical methods to simulate evanescent electromagnetic waves occurring in plasmon solar cells and biological ion-channels, where local field enhancement within random media in the former and long range electrostatic interactions in the latter are of major challenges for accurate and efficient numerical computations. We have accomplished these objectives by developing high order numerical methods for solving Maxwell equationsmore » such as high order finite element basis for discontinuous Galerkin methods, well-conditioned Nedelec edge element method, divergence free finite element basis for MHD, and fast integral equation methods for layered media. These methods can be used to model the complex local field enhancement in plasmon solar cells. On the other hand, to treat long range electrostatic interaction in ion channels, we have developed image charge based method for a hybrid model in combining atomistic electrostatics and continuum Poisson-Boltzmann electrostatics. Such a hybrid model will speed up the molecular dynamics simulation of transport in biological ion-channels.« less
Holographic studies of Einsteinian cubic gravity
NASA Astrophysics Data System (ADS)
Bueno, Pablo; Cano, Pablo A.; Ruipérez, Alejandro
2018-03-01
Einsteinian cubic gravity provides a holographic toy model of a nonsupersymmetric CFT in three dimensions, analogous to the one defined by Quasi-topological gravity in four. The theory admits explicit non-hairy AdS4 black holes and allows for numerous exact calculations, fully nonperturbative in the new coupling. We identify several entries of the AdS/CFT dictionary for this theory, and study its thermodynamic phase space, finding interesting new phenomena. We also analyze the dependence of Rényi entropies for disk regions on universal quantities characterizing the CFT. In addition, we show that η/ s is given by a non-analytic function of the ECG coupling, and that the existence of positive-energy black holes strictly forbids violations of the KSS bound. Along the way, we introduce a new method for evaluating Euclidean on-shell actions for general higher-order gravities possessing second-order linearized equations on AdS( d+1). Our generalized action involves the very same Gibbons-Hawking boundary term and counterterms valid for Einstein gravity, which now appear weighted by the universal charge a * controlling the entanglement entropy across a spherical region in the CFT dual to the corresponding higher-order theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugioka, Hideyuki, E-mail: hsugioka@shinshu-u.ac.jp
2016-02-15
It would be advantageous to move fluid by the gradient of random thermal noises that are omnipresent in the natural world. To achieve this motion, we propose a rectifier that uses a thermal noise along with induced-charge electroosmosis and electrophoresis (ICEO and ICEP) around a metal post cylinder in an asymmetrically structured channel and numerically examine its rectification performance. By the boundary element method combined with the thin double layer approximation, we find that rectified motion occurs in the asymmetrically structured channel due to ICEO and ICEP. Further, by thermodynamical and equivalent circuit methods, we discuss a thermal voltage thatmore » drives a rectifier consisting of a fluidic channel of an electrolyte and an impedance as a noise source. Our calculations show that fluid can be moved in the asymmetrically structured channel by the fluctuation of electric fields due to a thermal noise only when there is a temperature difference. In addition, our simple noise argument provides a different perspective for the thermo-kinetic phenomena (around a metal post) which was predicted based on the electrolyte Seebeck effect in our previous paper [H. Sugioka, “Nonlinear thermokinetic phenomena due to the Seebeck effect,” Langmuir 30, 8621 (2014)].« less
Simulation of electrokinetic flow in microfluidic channels
NASA Astrophysics Data System (ADS)
Sabur, Romena; Matin, M.
2005-08-01
Electrokinetic phenomena become an increasingly efficient fluid transport mechanism in micro- and nano-fluidic fields. These phenomena have also been applied successfully in microfluidic devices to achieve particle separation, pre-concentration and mixing. Electrokinetic is the flow produced by the action of an electric field on a fluid with a net charge, where the charged ions of fluid are able to drag the whole solution through the channels in the microfluidic device from one analyzing point to the other. We will present the simulation results of electrokinetic transports of fluid in various typical micro-channel geometries such as T-channel, Y-channel, cross channel and straight channel. In practice, high-speed micro-PIV technique is used to measure transient fluidic phenomena in a microfluidic channel. Particle Image Velocimetry (PIV) systems provide two- or three-dimensional velocity maps in flows using whole field techniques based on imaging the light scattered by small particles in the flow illuminated by a laser light sheet. The system generally consists of an epifluorescent microscope, CW laser and a high-speed CMOS of CCD camera. The flow of a liquid, (water for example), containing fluorescent particle is then analyzed in a counter microchannel by the highly accurate PIV method. One can then compare the simulated and experimental microfluidic flow due to electroosmotic effect.
Doping-dependent charge order correlations in electron-doped cuprates
da Silva Neto, Eduardo H.; Yu, Biqiong; Minola, Matteo; Sutarto, Ronny; Schierle, Enrico; Boschini, Fabio; Zonno, Marta; Bluschke, Martin; Higgins, Joshua; Li, Yangmu; Yu, Guichuan; Weschke, Eugen; He, Feizhou; Le Tacon, Mathieu; Greene, Richard L.; Greven, Martin; Sawatzky, George A.; Keimer, Bernhard; Damascelli, Andrea
2016-01-01
Understanding the interplay between charge order (CO) and other phenomena (for example, pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. We use resonant x-ray scattering to measure the CO correlations in electron-doped cuprates (La2−xCexCuO4 and Nd2−xCexCuO4) and their relationship to antiferromagnetism, pseudogap, and superconductivity. Detailed measurements of Nd2−xCexCuO4 show that CO is present in the x = 0.059 to 0.166 range and that its doping-dependent wave vector is consistent with the separation between straight segments of the Fermi surface. The CO onset temperature is highest between x = 0.106 and 0.166 but decreases at lower doping levels, indicating that it is not tied to the appearance of antiferromagnetic correlations or the pseudogap. Near optimal doping, where the CO wave vector is also consistent with a previously observed phonon anomaly, measurements of the CO below and above the superconducting transition temperature, or in a magnetic field, show that the CO is insensitive to superconductivity. Overall, these findings indicate that, although verified in the electron-doped cuprates, material-dependent details determine whether the CO correlations acquire sufficient strength to compete for the ground state of the cuprates. PMID:27536726
Doping-dependent charge order correlations in electron-doped cuprates.
da Silva Neto, Eduardo H; Yu, Biqiong; Minola, Matteo; Sutarto, Ronny; Schierle, Enrico; Boschini, Fabio; Zonno, Marta; Bluschke, Martin; Higgins, Joshua; Li, Yangmu; Yu, Guichuan; Weschke, Eugen; He, Feizhou; Le Tacon, Mathieu; Greene, Richard L; Greven, Martin; Sawatzky, George A; Keimer, Bernhard; Damascelli, Andrea
2016-08-01
Understanding the interplay between charge order (CO) and other phenomena (for example, pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. We use resonant x-ray scattering to measure the CO correlations in electron-doped cuprates (La2-x Ce x CuO4 and Nd2-x Ce x CuO4) and their relationship to antiferromagnetism, pseudogap, and superconductivity. Detailed measurements of Nd2-x Ce x CuO4 show that CO is present in the x = 0.059 to 0.166 range and that its doping-dependent wave vector is consistent with the separation between straight segments of the Fermi surface. The CO onset temperature is highest between x = 0.106 and 0.166 but decreases at lower doping levels, indicating that it is not tied to the appearance of antiferromagnetic correlations or the pseudogap. Near optimal doping, where the CO wave vector is also consistent with a previously observed phonon anomaly, measurements of the CO below and above the superconducting transition temperature, or in a magnetic field, show that the CO is insensitive to superconductivity. Overall, these findings indicate that, although verified in the electron-doped cuprates, material-dependent details determine whether the CO correlations acquire sufficient strength to compete for the ground state of the cuprates.
Antimatter/HiPAT Support Services
NASA Technical Reports Server (NTRS)
Lewis, Raymond A.
2001-01-01
Techniques were developed for trapping normal matter in the High Performance Antiproton Trap (HiPAT). Situations encountered included discharge phenomena, charge exchange and radial diffusion processes. It is important to identify these problems, since they will also limit the performance in trapping antimatter next year.
Simulation of external and internal electrostatic discharges at the spacecraft system test level
NASA Technical Reports Server (NTRS)
Whittlesey, A.; Leung, P.
1984-01-01
Environmental test activities concerned with space plasma-caused charging and discharing phenomena are discussed. It is pointed out that the origin of such an electrostatic discharge (ESD) is charging of spacecraft dielectrics by an energetic plasma in geosynchronous orbit, Jupiter's magnetosphere, or other similar space environments. In dealing with environmental testing problems, it is necessary to define the location and magnitude of any ESD's in preparation for a subsequent simulation of the given conditions. Questions of external and internal charging are discussed separately. The environmental hazard from an external discharge can be assessed by viewing the dielectric surface as one side of a parallel plate capacitor. In the case of internal charging, the level of environmental concern depends on the higher energy spectrum of the ambient electrons.
NASA Astrophysics Data System (ADS)
Maiz, Lotfi; Trzciński, Waldemar A.; Paszula, Józef
2017-01-01
Confined and semi-closed explosions of new class of energetic composites as well as TNT and RDX charges were investigated using optical spectroscopy. These composites are considered as thermobarics when used in layered charges or enhanced blast explosives when pressed. Two methods to estimate fireball temperature histories of both homogeneous and metallized explosives from the spectroscopic data are also presented, compared and analyzed. Fireball temperature results of the charges detonated in a small explosion chamber under air and argon atmospheres, and detonated in a semi-closed bunker are presented and compared with theoretical ones calculated by a thermochemical code. Important conclusions about the fireball temperatures and the physical and chemical phenomena occurring after the detonation of homogeneous explosives and composite formulations are deduced.
Charge-displacement analysis for excited states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronca, Enrico, E-mail: enrico@thch.unipg.it; Tarantelli, Francesco, E-mail: francesco.tarantelli@unipg.it; Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto 8, I-06123 Perugia
2014-02-07
We extend the Charge-Displacement (CD) analysis, already successfully employed to describe the nature of intermolecular interactions [L. Belpassi et al., J. Am. Chem. Soc. 132, 13046 (2010)] and various types of controversial chemical bonds [L. Belpassi et al., J. Am. Chem. Soc. 130, 1048 (2008); N. Salvi et al., Chem. Eur. J. 16, 7231 (2010)], to study the charge fluxes accompanying electron excitations, and in particular the all-important charge-transfer (CT) phenomena. We demonstrate the usefulness of the new approach through applications to exemplary excitations in a series of molecules, encompassing various typical situations from valence, to Rydberg, to CT excitations.more » The CD functions defined along various spatial directions provide a detailed and insightful quantitative picture of the electron displacements taking place.« less
Preface to Special Topic: Collective Effects in Particle Beams and Nonneutral Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilson, Erik P.; Qin, Hong
Nonneutral plasmas are plasma systems in which there is no overall charge neutrality, including the limit of systems that are fully unneutralized in which there are particles of only a single sign of charge. Here, examples of nonneutral plasmas include charged-particle beams, pure electron plasmas, pure positron plasmas, and pure-ion plasmas consisting of a variety of ion charge states in a single trap. A key feature of nonneutral plasmas which distinguishes them from quasineutral plasmas is that their self-electric and self-magnetic fields can play a dominant role in the behavior of the system. Moreover, single-component plasmas can be confined inmore » states of global thermal equilibrium, enabling detailed theoretical and experimental studies of fundamental plasma phenomena and precise testing of models.« less
Preface to Special Topic: Collective Effects in Particle Beams and Nonneutral Plasmas
Gilson, Erik P.; Qin, Hong
2018-01-30
Nonneutral plasmas are plasma systems in which there is no overall charge neutrality, including the limit of systems that are fully unneutralized in which there are particles of only a single sign of charge. Here, examples of nonneutral plasmas include charged-particle beams, pure electron plasmas, pure positron plasmas, and pure-ion plasmas consisting of a variety of ion charge states in a single trap. A key feature of nonneutral plasmas which distinguishes them from quasineutral plasmas is that their self-electric and self-magnetic fields can play a dominant role in the behavior of the system. Moreover, single-component plasmas can be confined inmore » states of global thermal equilibrium, enabling detailed theoretical and experimental studies of fundamental plasma phenomena and precise testing of models.« less
On charging of snow particles in blizzard
NASA Technical Reports Server (NTRS)
Shio, Hisashi
1991-01-01
The causes of the charge polarity on the blizzard, which consisted of fractured snow crystals and ice particles, were investigated. As a result, the charging phenomena showed that the characteristics of the blizzard are as follows: (1) In the case of the blizzard with snowfall, the fractured snow particles drifting near the surface of snow field (lower area: height 0.3 m) had positive charge, while those drifting at higher area (height 2 m) from the surface of snow field had negative charge. However, during the series of blizzards two kinds of particles positively and negatively charged were collected in equal amounts in a Faraday Cage. It may be considered that snow crystals with electrically neutral properties were separated into two kinds of snow flakes (charged positively and negatively) by destruction of the snow crystals. (2) In the case of the blizzard which consisted of irregularly formed ice drops (generated by peeling off the hardened snow field), the charge polarity of these ice drops salting over the snow field was particularly controlled by the crystallographic characteristics of the surface of the snow field hardened by the powerful wind pressure.
NASA Astrophysics Data System (ADS)
Devine, R. A. B.
2002-09-01
The electrical characteristics of hydrogen silsesquioxane based flowable oxide (FOxregistered) films proposed for interconnect isolation applications have been studied. It is demonstrated that negative and positive charges exist in the as-made, cured films with densities of 0.95 x1012 and 1.5 x1012 cm-2, respectively for thicknesses of 114 nm. The negative charges can be removed from the films by application of modest electric fields (positive or negative, approx1.75 MV cm-1). The positive charge can be similarly displaced but not removed from the film; this results in time dependent relaxation and redistribution of the positive charge if the films are left unbiased. Time dependent irreversible evolution of the leakage current under positive and negative bias (approx3 MV cm-1) shows a slow breakdown phenomena. An unusual self-healing effect is evidenced in these films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Changwon; Atalla, Viktor; Smith, Sean
Charge transfer between an electron donor and an electron acceptor is widely accepted as being independent of their relative configurations if the interaction between them is weak; however, the limit of this concept for an interacting system has not yet been well established. Our study of prototypical electron donor–acceptor molecules, tetrathiafulvalene–tetracyanoquinodimethane, using density functional theory based on an advanced functional, clearly demonstrates that for interacting molecules, their configurational arrangement is as important as their individual electronic properties in the asymptotic limit to determine the charge transfer direction. For the first time, we demonstrate that by changing their relative orientation, onemore » can reverse the charge transfer direction of the pair, causing the molecules to exchange roles as donor and acceptor. In conclusion, our theory has important implications for understanding the interfacial charge-transfer mechanism of hybrid systems and related phenomena.« less
Park, Changwon; Atalla, Viktor; Smith, Sean; ...
2017-06-16
Charge transfer between an electron donor and an electron acceptor is widely accepted as being independent of their relative configurations if the interaction between them is weak; however, the limit of this concept for an interacting system has not yet been well established. Our study of prototypical electron donor–acceptor molecules, tetrathiafulvalene–tetracyanoquinodimethane, using density functional theory based on an advanced functional, clearly demonstrates that for interacting molecules, their configurational arrangement is as important as their individual electronic properties in the asymptotic limit to determine the charge transfer direction. For the first time, we demonstrate that by changing their relative orientation, onemore » can reverse the charge transfer direction of the pair, causing the molecules to exchange roles as donor and acceptor. In conclusion, our theory has important implications for understanding the interfacial charge-transfer mechanism of hybrid systems and related phenomena.« less
The influence of charge and magnetic order on polaron and acoustic phonon dynamics in LuFe 2O 4
Lee, J.; Trugman, S. A.; Zhang, C. L.; ...
2015-07-27
Femtosecond optical pump-probe spectroscopy is used to reveal the influence of charge and magnetic order on polarondynamics and coherent acoustic phonon oscillations in single crystals of charge-ordered, ferrimagnetic LuFe 2O 4. We experimentally observed the influence of magnetic order on polarondynamics. We also observed a correlation between charge order and the amplitude of the acoustic phonon oscillations, due to photoinduced changes in the lattice constant that originate from the photoexcited electrons. As a result, this provides insight into the general behavior of coherent acoustic phonon oscillations in charge-ordered materials.
Engineering charge ordering into multiferroicity
NASA Astrophysics Data System (ADS)
He, Xu; Jin, Kui-juan
2016-04-01
Multiferroic materials have attracted great interest but are rare in nature. In many transition-metal oxides, charge ordering and magnetic ordering coexist, so that a method of engineering charge-ordered materials into ferroelectric materials would lead to a large class of multiferroic materials. We propose a strategy for designing new ferroelectric or even multiferroic materials by inserting a spacing layer into each two layers of charge-ordered materials and artificially making a superlattice. One example of the model demonstrated here is the perovskite (LaFeO3)2/LaTiO3 (111) superlattice, in which the LaTiO3 layer acts as the donor and the spacing layer, and the LaFeO3 layer is half doped and performs charge ordering. The collaboration of the charge ordering and the spacing layer breaks the space inversion symmetry, resulting in a large ferroelectric polarization. As the charge ordering also leads to a ferrimagnetic structure, (LaFeO3)2/LaTiO3 is multiferroic. It is expected that this work can encourage the designing and experimental implementation of a large class of multiferroic structures with novel properties.
NASA Astrophysics Data System (ADS)
Nellist, Michael R.; Laskowski, Forrest A. L.; Qiu, Jingjing; Hajibabaei, Hamed; Sivula, Kevin; Hamann, Thomas W.; Boettcher, Shannon W.
2018-01-01
Heterogeneous electrochemical phenomena, such as (photo)electrochemical water splitting to generate hydrogen using semiconductors and/or electrocatalysts, are driven by the accumulated charge carriers and thus the interfacial electrochemical potential gradients that promote charge transfer. However, measurements of the "surface" electrochemical potential during operation are not generally possible using conventional electrochemical techniques, which measure/control the potential of a conducting electrode substrate. Here we show that the nanoscale conducting tip of an atomic force microscope cantilever can sense the surface electrochemical potential of electrocatalysts in operando. To demonstrate utility, we measure the potential-dependent and thickness-dependent electronic properties of cobalt (oxy)hydroxide phosphate (CoPi). We then show that CoPi, when deposited on illuminated haematite (α-Fe2O3) photoelectrodes, acts as both a hole collector and an oxygen evolution catalyst. We demonstrate the versatility of the technique by comparing surface potentials of CoPi-decorated planar and mesoporous haematite and discuss viability for broader application in the study of electrochemical phenomena.
Charge Inversion by Electrostatic Complexation: Molecular Dynamics Simulations
NASA Astrophysics Data System (ADS)
Faraudo, Jordi; Travesset, Alex
2007-03-01
Ions near interfaces play an important role in many biological and physico-chemical processes and exhibit a fascinating diverse range of phenomena. A relevant example is charge inversion, where interfacial charges attract counterions in excess of their own nominal charge, thus leading to an inversion of the sign of the interfacial charge. In this work, we argue that in the case of amphiphilic interfaces, charge inversion can be generated by complexation, that is, electrostatic complexes containing several counterions bound to amphiphilic molecules. The formation of these complexes require the presence at the interface of groups with conformational degrees of freedom with many electronegative atoms. We illustrate this mechanism by analyzing all atomic molecular dynamics simulations of a DMPA (Dimirystoil-Phosphatidic acid) phospholipid monolayer in contact with divalent counterions. The results are found to be in agreement with recent experimental results on Langmuir monolayers. We also discuss the implications for biological systems, as Phosphatidic acid is emerging as a key signaling phospholipid.
Space Charge Modulated Electrical Breakdown
Li, Shengtao; Zhu, Yuanwei; Min, Daomin; Chen, George
2016-01-01
Electrical breakdown is one of the most important physical phenomena in electrical and electronic engineering. Since the early 20th century, many theories and models of electrical breakdown have been proposed, but the origin of one key issue, that the explanation for dc breakdown strength being twice or higher than ac breakdown strength in insulating materials, remains unclear. Here, by employing a bipolar charge transport model, we investigate the space charge dynamics in both dc and ac breakdown processes. We demonstrate the differences in charge accumulations under both dc and ac stresses and estimate the breakdown strength, which is modulated by the electric field distortion induced by space charge. It is concluded that dc breakdown initializes in the bulk whereas ac breakdown initializes in the vicinity of the sample-electrode interface. Compared with dc breakdown, the lower breakdown strength under ac stress and the decreasing breakdown strength with an increase in applied frequency, are both attributed to the electric field distortion induced by space charges located in the vicinity of the electrodes. PMID:27599577
Experiments in charge control at geosynchronous orbit - ATS-5 and ATS-6
NASA Technical Reports Server (NTRS)
Olsen, R. C.
1985-01-01
In connection with existing theoretical concepts, it was difficult to explain the negative potentials found in sunlight, first on Applied Technology Satellite-5 (ATS-5) and then on ATS-6. The problem became important when an association between spacecraft charging and anomalies in spacecraft behavior was observed. A study of daylight charging phenomena on ATS-6 was conducted, and an investigation was performed with the objective to determine effective methods of charge control, taking into account the feasibility to utilize the ATS-5 and ATS-6 ion engines as current sources. In the present paper, data and analysis for the ion engine experiments on ATS-5 and ATS-6 are presented. It is shown that electron emission from a satellite with insulating surfaces is not an effective method of charge control because the increase in differential charging which results limits the effectiveness of electron emitters and increases the possibility of electrostatic discharges between surfaces at different potentials.
NASA Astrophysics Data System (ADS)
Lee, Victor; James, Nicole M.; Waitukaitis, Scott R.; Jaeger, Heinrich M.
2018-03-01
Electrostatic charging of insulating fine particles can be responsible for numerous phenomena ranging from lightning in volcanic plumes to dust explosions. However, even basic aspects of how fine particles become charged are still unclear. Studying particle charging is challenging because it usually involves the complexities associated with many-particle collisions. To address these issues, we introduce a method based on acoustic levitation, which makes it possible to initiate sequences of repeated collisions of a single submillimeter particle with a flat plate, and to precisely measure the particle charge in situ after each collision. We show that collisional charge transfer between insulators is dependent on the hydrophobicity of the contacting surfaces. We use glass, which we modify by attaching nonpolar molecules to the particle, the plate, or both. We find that hydrophilic surfaces develop significant positive charges after contacting hydrophobic surfaces. Moreover, we demonstrate that charging between a hydrophilic and a hydrophobic surface is suppressed in an acidic environment and enhanced in a basic one. Application of an electric field during each collision is found to modify the charge transfer, again depending on surface hydrophobicity. We discuss these results within the context of contact charging due to ion transfer, and we show that they lend strong support to O H- ions as the charge carriers.
On the applicability of the standard kinetic theory to the study of nanoplasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Angola, A., E-mail: antonio.dangola@unibas.it; Boella, E.; GoLP/Instituto de Plasmas e Fusão Nuclear-Laboratório Associado, Instituto Superior Técnico, Avenida Rovisco Pais 1-1049-001 Lisboa
Kinetic theory applies to systems with a large number of particles, while nanoplasma generated by the interaction of ultra–short laser pulses with atomic clusters are systems composed by a relatively small number (10{sup 2} ÷ 10{sup 4}) of electrons and ions. In the paper, the applicability of the kinetic theory for studying nanoplasmas is discussed. In particular, two typical phenomena are investigated: the collisionless expansion of electrons in a spherical nanoplasma with immobile ions and the formation of shock shells during Coulomb explosions. The analysis, which is carried out comparing ensemble averages obtained by solving the exact equations of motionmore » with reference solutions of the Vlasov-Poisson model, shows that for the dynamics of the electrons the error of the usually employed models is of the order of few percents (but the standard deviation in a single experiment can be of the order of 10%). Instead, special care must be taken in the study of shock formation, as the discrete structure of the electric charge can destroy or strongly modify the phenomenon.« less
Theory and modeling of correlated ionic motions in hybrid organic-inorganic perovskites
NASA Astrophysics Data System (ADS)
Rappe, Andrew
The perovskite crystal structure hosts a wealth of intriguing properties, and the renaissance of interest in halide (and hybrid organic-inorganic) perovskites (HOIPs) has further broadened the palette of exciting physical phenomena. Breakthroughs in HOIP synthesis, characterization, and solar cell design have led to remarkable increases in reported photovoltaic efficiency. However, the observed long carrier lifetime and PV performance have eluded comprehensive physical justification. The hybrid perovskites serve as an enigmatic crossroads of physics. Concepts from crystalline band theory, molecular physics, liquids, and phase transitions have been applied with some success, but the observations of HOIPs make it clear that none of these conceptual frameworks completely fits. In this talk, recent theoretical progress in understanding HOIPs will be reviewed and integrated with experimental findings. The large amplitude motions of HOIPs will be highlighted, including ionic diffusion, anharmonic phonons, and dynamic incipient order on various length and time scales. The intricate relationships between correlated structural fluctuations, polar order, and excited charge carrier dynamics will also be discussed. This work was supported by the Office of Naval Research, under Grant N00014-14-1-0761.
Charged dust in Saturn's magnetosphere
NASA Technical Reports Server (NTRS)
Mendis, D. A.; Hill, J. R.; Houpis, H. L. F.
1983-01-01
The overall distribution of fine dust in the Saturnian magnetosphere, its behavior, the cosmogony of the Saturnian ring system, and observations of the magnetosphere and ring system are synthesized and explained using gravito-electrodynamics. Among the phenomena discussed are the formation of waves in the F-ring, the cause of eccentricities of certain isolated ringlets, and the origin and morphology of the broad diffuse E-ring. Magnetogravitational resonance of charged dust with nearby satellites, gyro-orbital resonances, and magnetogravitational capture of exogenic dust by the magnetosphere are used to explain individual observations. The effect of a ring current associated with the charged dust is evaluated. Finally, the cosmogonic implications of the magnetogravitational theory are discussed.
Development of a secondary electron energy analyzer for a transmission electron microscope.
Magara, Hideyuki; Tomita, Takeshi; Kondo, Yukihito; Sato, Takafumi; Akase, Zentaro; Shindo, Daisuke
2018-04-01
A secondary electron (SE) energy analyzer was developed for a transmission electron microscope. The analyzer comprises a microchannel plate (MCP) for detecting electrons, a coil for collecting SEs emitted from the specimen, a tube for reducing the number of backscattered electrons incident on the MCP, and a retarding mesh for selecting the energy of SEs incident on the MCP. The detection of the SEs associated with charging phenomena around a charged specimen was attempted by performing electron holography and SE spectroscopy using the energy analyzer. The results suggest that it is possible to obtain the energy spectra of SEs using the analyzer and the charging states of a specimen by electron holography simultaneously.
A Classroom Activity for Teaching Electric Polarization of Insulators and Conductors
NASA Astrophysics Data System (ADS)
Deligkaris, Christos
2018-04-01
The phenomenon of electric polarization is crucial to student understanding of forces exerted between charged objects and insulators or conductors, the process of charging by induction, and the behavior of electroscopes near charged objects. In addition, polarization allows for microscopic-level models of everyday-life macroscopic-level phenomena. Textbooks may adequately discuss polarization, but there is little material in active learning labs and tutorials on this topic. Since polarization of materials is a microscopic phenomenon, instructors often use diagrams and figures on the classroom board to explain the process in a lecture setting. In this paper I will describe a classroom activity where the students play the role of electrons as an alternative option.
Adsorption of surfactants and polymers at interfaces
NASA Astrophysics Data System (ADS)
Rojas, Orlando Jose
Surface tension and high-resolution laser light scattering experiments were used to investigate the adsorption of isomeric sugar-based surfactants at the air/liquid interface in terms of surfactant surface packing and rheology. Soluble monolayers of submicellar surfactant solutions exhibited a relatively viscous behavior. It was also proved that light scattering of high-frequency thermally-induced capillary waves can be utilized to study surfactant exchange between the surface and the bulk solution. Such analysis revealed the existence of a diffusional relaxation mechanism. A procedure based on XPS was developed for quantification, on an absolute basis, of polymer adsorption on mica and Langmuir-Blodgett cellulose films. The adsorption of cationic polyelectrolytes on negatively-charged solid surfaces was highly dependent on the polymer ionicity. It was found that the adsorption process is driven by electrostatic mechanisms. Charge overcompensation (or charge reversal) of mica occurred after adsorption of polyelectrolytes of ca. 50% charge density, or higher. It was demonstrated that low-charge-density polyelectrolytes adsorb on solid surfaces with an extended configuration dominated by loops and tails. In this case the extent of adsorption is limited by steric constraints. The conformation of the polyelectrolyte in the adsorbed layer is dramatically affected by the presence of salts or surfactants in aqueous solution. The phenomena which occur upon increasing the ionic strength are consistent with the screening of the electrostatic attraction between polyelectrolyte segments and solid surface. This situation leads to polyelectrolyte desorption accompanied by both an increase in the layer thickness and the range of the steric force. Adsorbed polyelectrolytes and oppositely charged surfactants readily associate at the solid/liquid interface. Such association induces polyelectrolyte desorption at a surfactant concentration which depends on the polyelectrolyte charge density. In practical systems the adsorption phenomena were found to be far more complex. Electrostatic and hydrogen bonding interactions play a major role in the adsorption of cationic polyelectrolytes on cellulosic substrates. Cationic and underivatized guar gum macromolecules form complexes with fines and dissolved and colloidal carbohydrates which are then retained on the cellulose fibers. The extent of the adsorption and association depends on the charge and nature of all the components present in pulp suspensions.
NASA Astrophysics Data System (ADS)
Kondakov, D. Y.; Sandifer, J. R.; Tang, C. W.; Young, R. H.
2003-01-01
Organic light-emitting diodes (OLEDs) are attractive for display applications because of their high brightness, low driving voltage, and tunable color. Their operating lifetimes, hundreds or thousands of hours, are sufficient for only a limited range of applications. The luminance efficiency decreases gradually as the device is operated (electrically aged), for reasons that are poorly understood. A prototypical OLED has the structure anode|HTL|ETL|cathode, where the HTL and ETL are hole- and electron-transporting layers, and the recombination and emission occur at or near the HTL|ETL interface. We find that the decreasing luminance efficiency is linearly correlated with an accumulation of immobile positive charge at the HTL|ETL interface, and the magnitude of the charge is comparable to the total charge at that interface when an unaged device is operated. A natural explanation of the connection between the two phenomena is that electrical aging either generates hole traps (and trapped holes) or drives metal ions into the device, and that either species act as nonradiative recombination centers. To estimate the accumulating immobile charge and determine its location, we use a variant of a recently introduced capacitance versus voltage technique. In the prototypical OLEDs described here, the HTL is a ca. 1000 Å layer of NPB, and the ETL is a 300-1800 Å layer of Alq3. A device with an additional "emission layer" (EML) of an anthracene derivative between the HTL and ETL, in which the electroluminescence spectrum is characteristic of the EML, behaved similarly. We surmise that the phenomena reported here may be common to a wider variety of OLED structures and compositions.
Pendulum Phenomena and the Assessment of Scientific Inquiry Capabilities
ERIC Educational Resources Information Center
Zachos, Paul
2004-01-01
Phenomena associated with the "pendulum" present numerous opportunities for assessing higher order human capabilities related to "scientific inquiry" and the "discovery" of natural law. This paper illustrates how systematic "assessment of scientific inquiry capabilities", using "pendulum" phenomena, can provide a useful tool for classroom teachers…
La 139 and Cu 63 NMR investigation of charge order in La 2 CuO 4 + y ( T c = 42 K)
Imai, T.; Lee, Y. S.
2018-03-14
Here, we report 139La and 63Cu NMR investigation of the successive charge order, spin order, and superconducting transitions in superoxygenated La 2CuO 4+y single crystal with stage-4 excess oxygen order at T stage≃290 K. We show that the stage-4 order induces tilting of CuO 6 octahedra below T stage, which in turn causes 139La NMR line broadening. The structural distortion continues to develop far below Tstage, and completes at T charge≃60 K, where charge order sets in. This sequence is reminiscent of the the charge-order transition in Nd codoped La 1.88Sr 0.12CuO 4 that sets in once the low-temperature tetragonalmore » phase is established. We also show that the paramagnetic 63Cu NMR signals are progressively wiped out below T charge due to enhanced low-frequency spin fluctuations in charge-ordered domains, but the residual 63Cu NMR signals continue to exhibit the characteristics expected for optimally doped superconducting CuO 2 planes. This indicates that charge order in La 2CuO 4+y does not take place uniformly in space. In addition, unlike the typical second-order magnetic phase transitions, low-frequency Cu spin fluctuations as probed by 139La nuclear spin-lattice relaxation rate do not exhibit critical divergence at T spin(≃T c) =42 K. These findings, including the spatially inhomogeneous nature of the charge-ordered state, are qualitatively similar to the case of La 1.885Sr 0.115CuO 4, but both charge and spin order take place more sharply in the present case.« less
La 139 and Cu 63 NMR investigation of charge order in La 2 CuO 4 + y ( T c = 42 K)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imai, T.; Lee, Y. S.
Here, we report 139La and 63Cu NMR investigation of the successive charge order, spin order, and superconducting transitions in superoxygenated La 2CuO 4+y single crystal with stage-4 excess oxygen order at T stage≃290 K. We show that the stage-4 order induces tilting of CuO 6 octahedra below T stage, which in turn causes 139La NMR line broadening. The structural distortion continues to develop far below Tstage, and completes at T charge≃60 K, where charge order sets in. This sequence is reminiscent of the the charge-order transition in Nd codoped La 1.88Sr 0.12CuO 4 that sets in once the low-temperature tetragonalmore » phase is established. We also show that the paramagnetic 63Cu NMR signals are progressively wiped out below T charge due to enhanced low-frequency spin fluctuations in charge-ordered domains, but the residual 63Cu NMR signals continue to exhibit the characteristics expected for optimally doped superconducting CuO 2 planes. This indicates that charge order in La 2CuO 4+y does not take place uniformly in space. In addition, unlike the typical second-order magnetic phase transitions, low-frequency Cu spin fluctuations as probed by 139La nuclear spin-lattice relaxation rate do not exhibit critical divergence at T spin(≃T c) =42 K. These findings, including the spatially inhomogeneous nature of the charge-ordered state, are qualitatively similar to the case of La 1.885Sr 0.115CuO 4, but both charge and spin order take place more sharply in the present case.« less
Scaling of plasma-body interactions in low Earth orbit
NASA Astrophysics Data System (ADS)
Capon, C. J.; Brown, M.; Boyce, R. R.
2017-04-01
This paper derives the generalised set of dimensionless parameters that scale the interaction of an unmagnetised multi-species plasma with an arbitrarily charged object - the application in this work being to the interaction of the ionosphere with Low Earth Orbiting (LEO) objects. We find that a plasma with K ion species can be described by 1 + 4 K independent dimensionless parameters. These parameters govern the deflection and coupling of ion species k , the relative electrical shielding of the body, electron energy, and scaling of temporal effects. The general shielding length λ ϕ is introduced, which reduces to the Debye length in the high-temperature (weakly coupled) limit. The ability of the scaling parameters to predict the self-similar transformations of single and multi-species plasma interactions is demonstrated numerically using pdFOAM, an electrostatic Particle-in-Cell—Direct Simulation Monte Carlo code. The presented scaling relationships represent a significant generalisation of past work, linking low and high voltage plasma phenomena. Further, the presented parameters capture the scaling of multi-species plasmas with multiply charged ions, demonstrating previously unreported scaling relationship transformations. The implications of this work are not limited to LEO plasma-body interactions but apply to processes governed by the Vlasov-Maxwell equations and represent a framework upon which to incorporate the scaling of additional phenomena, e.g., magnetism and charging.
NASA Technical Reports Server (NTRS)
Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.; Angelopoulos, V.; McFadden, J. P.; Bonnell, J. W.; Ergun, R. E.
2012-01-01
As an airless body in space with no global magnetic field, the Moon is exposed to both solar ultraviolet radiation and ambient plasmas. Photoemission from solar UV radiation and collection of ambient plasma are typically opposing charging currents and simple charging current balance predicts that the lunar dayside surface should charge positively; however, the two ARTEMIS probes have observed energydependent loss cones and high-energy, surface-originating electron beams above the dayside lunar surface for extended periods in the magnetosphere, which are indicative of negative surface potentials. In this paper, we compare observations by the ARTEMIS P1 spacecraft with a one dimensional particle-in-cell simulation and show that the energy-dependent loss cones and electron beams are due to the presence of stable, non-monotonic, negative potentials above the lunar surface. The simulations also show that while the magnitude of the non-monotonic potential is mainly driven by the incoming electron temperature, the incoming ion temperature can alter this magnitude, especially for periods in the plasma sheet when the ion temperature is more than twenty times the electron temperature. Finally, we note several other plasma phenomena associated with these non-monotonic potentials, such as broadband electrostatic noise and electron cyclotron harmonic emissions, and offer possible generation mechanisms for these phenomena.
X-ray Spectroscopy and Imaging as Multiscale Probes of Intercalation Phenomena in Cathode Materials
NASA Astrophysics Data System (ADS)
Horrocks, Gregory A.; De Jesus, Luis R.; Andrews, Justin L.; Banerjee, Sarbajit
2017-09-01
Intercalation phenomena are at the heart of modern electrochemical energy storage. Nevertheless, as out-of-equilibrium processes involving concomitant mass and charge transport, such phenomena can be difficult to engineer in a predictive manner. The rational design of electrode architectures requires mechanistic understanding of physical phenomena spanning multiple length scales, from atomistic distortions and electron localization at individual transition metal centers to phase inhomogeneities and intercalation gradients in individual particles and concentration variances across ensembles of particles. In this review article, we discuss the importance of the electronic structure in mediating electrochemical storage and mesoscale heterogeneity. In particular, we discuss x-ray spectroscopy and imaging probes of electronic and atomistic structure as well as statistical regression methods that allow for monitoring of the evolution of the electronic structure as a function of intercalation. The layered α-phase of V2O5 is used as a model system to develop fundamental ideas on the origins of mesoscale heterogeneity.
Electrostatics in Stueckelberg-Horwitz electrodynamics
NASA Astrophysics Data System (ADS)
Land, Martin
2013-04-01
In this paper, we study fundamental aspects of electrostatics as a special case in Stueckelberg-Horwitz electromagnetic theory. In this theory, spacetime events xμ(τ) evolve in an unconstrained 8-dimensional phase space, interacting through five τ-dependent gauge fields induced by the current densities associated with their evolutions. The chronological time τ was introduced as an independent evolution parameter in order to free the laboratory clock x0 to evolve alternately 'forward' and 'backward' in time according to the sign of the energy, thus providing a classical implementation of the Feynman-Stueckelberg interpretation of pair creation/annihilation. The resulting theory differs in its underlying mechanics from conventional electromagnetism, but coincides with Maxwell theory in an equilibrium limit. After a brief review of Stueckelberg-Horwitz electrodynamics, we obtain the field produced by an event in uniform motion and verify that it satisfies the field equations. We study this field in the rest frame of the event, where it depends explicitly on coordinate time x0 and the parameter τ, as well as spatial distance R. Calculating with this generalized Coulomb field, we demonstrate how Gauss's theorem and Stoke's theorem apply in 4D spacetime, and obtain the fields associated with a charged line and a charged sheet. Finally, we use the field of the charged sheet to study a static event in the vicinity of a potential barrier. In all of these cases, we observe a small transfer of mass from the field to the particle. It is seen that for an event in the field of an oppositely charged sheet of sufficient density, the event can reverse time direction, providing a specific model for pair phenomena.
Doping dependence of charge order in electron-doped cuprate superconductors
NASA Astrophysics Data System (ADS)
Mou, Yingping; Feng, Shiping
2017-12-01
In the recent studies of the unconventional physics in cuprate superconductors, one of the central issues is the interplay between charge order and superconductivity. Here the mechanism of the charge-order formation in the electron-doped cuprate superconductors is investigated based on the t-J model. The experimentally observed momentum dependence of the electron quasiparticle scattering rate is qualitatively reproduced, where the scattering rate is highly anisotropic in momentum space, and is intriguingly related to the charge-order gap. Although the scattering strength appears to be weakest at the hot spots, the scattering in the antinodal region is stronger than that in the nodal region, which leads to the original electron Fermi surface is broken up into the Fermi pockets and their coexistence with the Fermi arcs located around the nodal region. In particular, this electron Fermi surface instability drives the charge-order correlation, with the charge-order wave vector that matches well with the wave vector connecting the hot spots, as the charge-order correlation in the hole-doped counterparts. However, in a striking contrast to the hole-doped case, the charge-order wave vector in the electron-doped side increases in magnitude with the electron doping. The theory also shows the existence of a quantitative link between the single-electron fermiology and the collective response of the electron density.
NASA Astrophysics Data System (ADS)
Chung, Seok-Hwan
This work focuses on two largely unexplored phenomena in micromagnetics: the temperature-driven paramagnetic insulator to ferromagnetic (FM) metallic phase transition in perovskite manganite and ballistic magnetoresistance in spin-polarized nanocontacts. To investigate the phase transition, an off-the-shelf commercial scanning force microscope was redesigned for operation at temperatures from 350 K to 100 K. This adaptation is elaborated in this thesis. Using this system, both ferromagnetic and charge-ordered domain structures of (La 1-xPrx)0.67Ca0.33MnO3 thin film were observed by magnetic force microscopy (MFM) and electric force microscopy (EFM) operated in the vicinity of the peak resistance temperature (Tp). Predominantly in-plane oriented FM domains of sub-micrometer size emerge below Tp and their local magnetic moment increased as the temperature is reduced. Charge-ordered insulating regions show a strong electrostatic interaction with an EFM tip at a few degrees above Tp and the interaction correlates well with the temperature dependence of resistivity of the film. Cross-correlation analysis between topography and magnetic structure on several substrates indicates FM domains form on the flat regions of the surface, while charge ordering occurs at surface protrusions. In the investigation of ballistic magnetoresistance, new results on half-metallic ferromagnets formed by atomic or nanometer contacts of CrO2-CrO 2 and CrO2-Ni are presented showing magnetoconductance as high as 400%. Analysis of the magnetoconductance versus conductance data for all materials known to exhibit so-called ballistic magnetoresistance strongly suggests that magnetoconductance of nanocontacts follows a universal mechanism. If the maximum magnetoconductance is normalized to unity and the conductance is scaled with the resistivity of the material, then all data points fall onto a universal curve independent of the contact material and the transport mechanism. The analysis has been applied to all available magnetoconductance data of magnetic nanocontacts in the literature. The results are in agreement with a theory that takes into account only the spin-scattering within a magnetic domain wall and are independent of whether the transport is ballistic or diffusive.
Heterogeneity in magnetic complex oxides
NASA Astrophysics Data System (ADS)
Arenholz, Elke
Heterogeneity of quantum materials on the nanoscale can result from the spontaneous formation of regions with distinct atomic, electronic and/or magnetic order, and indicates coexistence of competing quantum phases. In complex oxides, the subtle interplay of lattice, charge, orbital, and spin degrees of freedom gives rise to especially rich phase diagrams. For example, coexisting conducting and insulating phases can occur near metal-insulator transitions, colossal magnetoresistance can emerge where ferromagnetic and antiferromagnetic domains compete, and charge-ordered and superconducting regions are present simultaneously in materials exhibiting high-temperature superconductivity. Additionally, externally applied fields (electric, magnetic, or strain) or other external excitations (light or heat) can tip the energy balance towards one phase, or support heterogeneity and phase coexistence and provide the means to perturb and tailor quantum heterogeneity at the nanoscale. Engineering nanomaterials, with structural, electronic and magnetic characteristics beyond what is found in bulk materials, is possible today through the technique of thin film epitaxy, effectively a method of `spray painting' atoms on single crystalline substrates to create precisely customized layered structures with atomic arrangements defined by the underlying substrate. Charge transfer and spin polarization across interfaces as well as imprinting nanoscale heterogeneity between adjacent layers lead to intriguing and important new phenomena testing our understanding of basic physics and creating new functionalities. Moreover, the abrupt change of orientation of an order parameter between nanoscale domains can lead to unique phases that are localized at domain walls, including conducting domain walls in insulating ferroelectrics, and ferromagnetic domain walls in antiferromagnets. Here we present our recent results on tailoring the electronic anisotropy of multiferroic heterostructures by imprinting the BiFeO3 domain pattern in an adjacent La0.7Sr0.3MnO3 layer, understanding the metal-insulator transition in strained VO2 thin films and identifying a three-dimensional quasi-long-range electronic supermodulation in YBa2Cu3O7-x/La0.7Ca0.3MnO3 heterostructures. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Including resonances in the multiperipheral model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinsky, S.S.; Snider, D.R.; Thomas, G.H.
1973-10-01
A simple generalization of the multiperipheral model (MPM) and the Mueller--Regge Model (MRM) is given which has improved phenomenological capabilities by explicitly incorporating resonance phenomena, and still is simple enough to be an important theoretical laboratory. The model is discussed both with and without charge. In addition, the one channel, two channel, three channel and N channel cases are explicitly treated. Particular attention is paid to the constraints of charge conservation and positivity in the MRM. The recently proven equivalence between the MRM and MPM is extended to this model, and is used extensively. (auth)
Diffusion in Deterministic Interacting Lattice Systems
NASA Astrophysics Data System (ADS)
Medenjak, Marko; Klobas, Katja; Prosen, Tomaž
2017-09-01
We study reversible deterministic dynamics of classical charged particles on a lattice with hard-core interaction. It is rigorously shown that the system exhibits three types of transport phenomena, ranging from ballistic, through diffusive to insulating. By obtaining an exact expressions for the current time-autocorrelation function we are able to calculate the linear response transport coefficients, such as the diffusion constant and the Drude weight. Additionally, we calculate the long-time charge profile after an inhomogeneous quench and obtain diffusive profilewith the Green-Kubo diffusion constant. Exact analytical results are corroborated by Monte Carlo simulations.
Charge redistribution from novel magneto-vorticity coupling in anomalous hydrodynamics
NASA Astrophysics Data System (ADS)
Hattori, Koichi; Yin, Yi
2017-11-01
We discuss new transport phenomena in the presence of both a strong magnetic field and a vortex field. Their interplay induces a charge distribution and a current along the magnetic field. We show that the associated transport coefficients can be obtained from a simple analysis of the single-particle distribution functions and also from the Kubo formula calculation. The consistent results from these analyses suggest that the transport coefficients are tied to the chiral anomaly in the (1 + 1) dimension because of the dimensional reduction in the lowest Landau levels.
Spherical accretion of matter by charged black holes on f(T) Gravity
NASA Astrophysics Data System (ADS)
Rodrigues, M. E.; Junior, E. L. B.
2018-03-01
We studied the spherical accretion of matter by charged black holes on f(T) Gravity. Considering the accretion model of a isentropic perfect fluid we obtain the general form of the Hamiltonian and the dynamic system for the fluid. We have analysed the movements of an isothermal fluid model with p=ω e and where p is the pressure and e the total energy density. The analysis of the cases shows the possibility of spherical accretion of fluid by black holes, revealing new phenomena as cyclical movement inside the event horizon.
“Capacitive Sensor” to Measure Flow Electrification and Prevent Electrostatic Hazards
Paillat, Thierry; Touchard, Gerard; Bertrand, Yves
2012-01-01
At a solid/liquid interface, physico-chemical phenomena occur that lead to the separation of electrical charges, establishing a zone called electrical double layer. The convection of one part of these charges by the liquid flow is the cause of the flow electrification phenomenon which is suspected of being responsible of incidents in the industry. The P' Institute of Poitiers University and CNRS has developed an original sensor called “capacitive sensor” that allows the characterization of the mechanisms involved in the generation, accumulation and transfer of charges. As an example, this sensor included in the design of high power transformers, could easily show the evolution of electrostatic charge generation developed during the operating time of the transformer and, therefore, point out the operations leading to electrostatic hazards and, then, monitor the transformer to prevent such risks. PMID:23202162
Charge Generation and Propagation in Igneous Rocks
NASA Technical Reports Server (NTRS)
Freund, Friedemann
2000-01-01
Resistivity changes, ground potentials, electromagnetic (EM) and luminous signals prior to or during earthquakes have been reported, in addition to ground uplift and tilt, and to changes in the seismic wave propagation parameters. However, no physical model exists that ties these diverse phenomena together. Through time-resolved impacts experiments it has been observed that, when igneous rocks (gabbro, diorite, granite) are impacted at low velocities (approx. 100 m/sec), highly mobile electronic charge carriers are generated, spreading from a small volume near the impact point, causing electric potentials, EM and light emission. The rock becomes momentarily conductive. When impacted at higher velocities (approx. 1.5 km/sec), the propagation of the P and S waves is registered through the transient piezoelectric response of quartz. At the same time, the rock volume is filled with mobile charge carriers, and a positive surface potential is registered. During the next 1-2 msec the surface potential oscillates, due to electron injection from ground. These observations are consistent with positive holes, e.g. defect electrons in the O(2-) sublattice, that can travel via the O 2p-dominated valence band of the silicate minerals at the speed of a phonon-mediated charge transfer. Before activation, the positive hole charge carriers lay dormant in form of positive hole pairs, PHP, electrically inactive, chemically equivalent to peroxy links in the structures of constituent minerals. PHPs are introduced by way of hydroxyl (O3Si-OH) incorporated into nominally anhydrous minerals when they crystallize in water-laden environments. Given that sound waves of even relatively low intensity appear to cause PHPs dissociation, thus generating mobile positive holes, it is proposed that microfracturing during rock deformation cause PHP dissociation. Depending on where and how much the rock volume is stressed, the positive holes are expected to form fluctuating charge clouds in the earthquake source region that may account for earthquake-related electrical phenomena and the reported low frequency EM signals.
NASA Astrophysics Data System (ADS)
Calvo, Juan; Nieto, Juanjo
2016-09-01
The management of human crowds in extreme situations is a complex subject which requires to take into account a variety of factors. To name a few, the understanding of human behaviour, the psychological and behavioural features of individuals, the quality of the venue and the stress level of the pedestrian need to be addressed in order to select the most appropriate action during an evacuation process on a complex venue. In this sense, the mathematical modeling of such complex phenomena can be regarded as a very useful tool to understand and predict these situations. As presented in [4], mathematical models can provide guidance to the personnel in charge of managing evacuation processes, by means of helping to design a set of protocols, among which the most appropriate during a given critical situation is then chosen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosikhin, Ahmad, E-mail: a.rosikhin86@yahoo.co.id; Hidayat, Aulia Fikri; Marimpul, Rinaldo
High crystalline metal thin film preparation in application both for catalyst substrate or electrode in any electronic devices always to be considered in material functional material research and development. As a substrate catalyst, this metal take a role as guidance for material growth in order to resulted in proper surface structure although at the end it will be removed via etching process. Meanwhile as electrodes, it will dragging charges to be collected inside. This brief discussion will elaborate general fundamental principle of physical vapor deposition (PVD) system for metal thin film preparation in micro-nanometer scale. The influence of thermodynamic parametersmore » and metal characteristic such as melting point and particle size will be elucidated. Physical description of deposition process in the chamber can be simplified by schematic evaporation phenomena which is supported by experimental measurement such as SEM and XRD.« less
Hirata, Michihiro; Ishikawa, Kyohei; Miyagawa, Kazuya; Tamura, Masafumi; Berthier, Claude; Basko, Denis; Kobayashi, Akito; Matsuno, Genki; Kanoda, Kazushi
2016-01-01
The Coulomb interaction among massless Dirac fermions in graphene is unscreened around the isotropic Dirac points, causing a logarithmic velocity renormalization and a cone reshaping. In less symmetric Dirac materials possessing anisotropic cones with tilted axes, the Coulomb interaction can provide still more exotic phenomena, which have not been experimentally unveiled yet. Here, using site-selective nuclear magnetic resonance, we find a non-uniform cone reshaping accompanied by a bandwidth reduction and an emergent ferrimagnetism in tilted Dirac cones that appear on the verge of charge ordering in an organic compound. Our theoretical analyses based on the renormalization-group approach and the Hubbard model show that these observations are the direct consequences of the long-range and short-range parts of the Coulomb interaction, respectively. The cone reshaping and the bandwidth renormalization, as well as the magnetic behaviour revealed here, can be ubiquitous and vital for many Dirac materials. PMID:27578363
Radical chiral Floquet phases in a periodically driven Kitaev model and beyond
NASA Astrophysics Data System (ADS)
Po, Hoi Chun; Fidkowski, Lukasz; Vishwanath, Ashvin; Potter, Andrew C.
2017-12-01
We theoretically discover a family of nonequilibrium fractional topological phases in which time-periodic driving of a 2D system produces excitations with fractional statistics, and produces chiral quantum channels that propagate a quantized fractional number of qubits along the sample edge during each driving period. These phases share some common features with fractional quantum Hall states, but are sharply distinct dynamical phenomena. Unlike the integer-valued invariant characterizing the equilibrium quantum Hall conductance, these phases are characterized by a dynamical topological invariant that is a square root of a rational number, inspiring the label: radical chiral Floquet phases. We construct solvable models of driven and interacting spin systems with these properties, and identify an unusual bulk-boundary correspondence between the chiral edge dynamics and bulk "anyon time-crystal" order characterized by dynamical transmutation of electric-charge into magnetic-flux excitations in the bulk.
Tringe, J. W.; Ileri, N.; Levie, H. W.; ...
2015-08-01
We use Molecular Dynamics and Monte Carlo simulations to examine molecular transport phenomena in nanochannels, explaining four orders of magnitude difference in wheat germ agglutinin (WGA) protein diffusion rates observed by fluorescence correlation spectroscopy (FCS) and by direct imaging of fluorescently-labeled proteins. We first use the ESPResSo Molecular Dynamics code to estimate the surface transport distance for neutral and charged proteins. We then employ a Monte Carlo model to calculate the paths of protein molecules on surfaces and in the bulk liquid transport medium. Our results show that the transport characteristics depend strongly on the degree of molecular surface coverage.more » Atomic force microscope characterization of surfaces exposed to WGA proteins for 1000 s show large protein aggregates consistent with the predicted coverage. These calculations and experiments provide useful insight into the details of molecular motion in confined geometries.« less
X-ray spectroscopy diagnostics of a recombining plasma in laboratory astrophysics studies
NASA Astrophysics Data System (ADS)
Ryazantsev, S. N.; Skobelev, I. Yu.; Faenov, A. Ya.; Pikuz, T. A.; Grum-Grzhimailo, A. N.; Pikuz, S. A.
2015-12-01
The investigation of a recombining laser plasma is topical primarily because it can be used to simulate the interaction between plasma jets in astrophysical objects. It has been shown that the relative intensities of transitions of a resonance series of He-like multicharged ions can be used for the diagnostics of the recombining plasma. It has been found that the intensities of the indicated transitions for ions with the nuclear charge number Z n ~ 10 are sensitive to the plasma density in the range N e ~ 1016-1020 cm-3 at temperatures of 10-100 eV. The calculations performed for the F VIII ion have determined the parameters of plasma jets created at the ELFIE nanosecond laser facility (Ecole Polytechnique, France) in order to simulate astrophysical phenomena. The resulting universal calculation dependences can be used to diagnose different recombining plasmas containing helium-like fluorine ions.
BiFeO3 Thin Films: A Playground for Exploring Electric-Field Control of Multifunctionalities
NASA Astrophysics Data System (ADS)
Yang, Jan-Chi; He, Qing; Yu, Pu; Chu, Ying-Hao
2015-07-01
A promising approach to the next generation of low-power, functional, and green nanoelectronics relies on advances in the electric-field control of lattice, charge, orbital, and spin degrees of freedom in novel materials. The possibility of electric-field control of these multiple materials functionalities offers interesting options across a range of modern technologies, including information communication, computing processes, data storage, active components, and functional electronics. This article reviews electric-field control and modulation of various degrees of freedom through the medium of multiferroic BiFeO3. Coexisting order parameters and inherent couplings in this materials system form a potent playground, enabling direct and indirect manipulation to obtain intriguing properties and functionalities with an electric stimulus. An in-depth understanding of those electrically controlled phenomena and breakthroughs is highlighted, paving a new route toward multifunctional nanoelectronics. This article concludes with a brief discussion on foreseeable challenges as well as future directions.
NASA Astrophysics Data System (ADS)
Kurban, Mustafa; Erkoç, Şakir
2017-04-01
Surface and core formation, thermal and electronic properties of ternary cubic CdZnTe clusters are investigated by using classical molecular dynamics (MD) simulations and density functional theory (DFT) calculations. In this work, MD simulations of the CdZnTe clusters are performed by means of LAMMPS by using bond order potential (BOP). MD simulations are carried out at different temperatures to study the segregation phenomena of Cd, Zn and Te atoms, and deviation of clusters and heat capacity. After that, using optimized geometries obtained, excess charge on atoms, dipole moments, highest occupied molecular orbitals, lowest unoccupied molecular orbitals, HOMO-LUMO gaps (Eg) , total energies, spin density and the density of states (DOS) have been calculated with DFT. Simulation results such as heat capacity and segregation formation are compared with experimental bulk and theoretical results.
Thermodynamics of fission products in UO(2 ± x).
Nerikar, P V; Liu, X-Y; Uberuaga, B P; Stanek, C R; Phillpot, S R; Sinnott, S B
2009-10-28
The stabilities of selected fission products-Xe, Cs, and Sr-are investigated as a function of non-stoichiometry x in UO(2 ± x). In particular, density functional theory (DFT) is used to calculate the incorporation and solution energies of these fission products at the anion and cation vacancy sites, at the divacancy, and at the bound Schottky defect. In order to reproduce the correct insulating state of UO(2), the DFT calculations are performed using spin polarization and with the Hubbard U term. In general, higher charge defects are more soluble in the fuel matrix and the solubility of fission products increases as the hyperstoichiometry increases. The solubility of fission product oxides is also explored. Cs(2)O is observed as a second stable phase and SrO is found to be soluble in the UO(2) matrix for all stoichiometries. These observations mirror experimentally observed phenomena.
Modeling of convection phenomena in Bridgman-Stockbarger crystal growth
NASA Technical Reports Server (NTRS)
Carlson, F. M.; Eraslan, A. H.; Sheu, J. Z.
1985-01-01
Thermal convection phenomena in a vertically oriented Bridgman-Stockbarger apparatus were modeled by computer simulations for different gravity conditions, ranging from earth conditions to extremely low gravity, approximate space conditions. The modeling results were obtained by the application of a state-of-the art, transient, multi-dimensional, completely densimetrically coupled, discrete-element computational model which was specifically developed for the simulation of flow, temperature, and species concentration conditions in two-phase (solid-liquid) systems. The computational model was applied to the simulation of the flow and the thermal conditions associated with the convection phenomena in a modified Germanium-Silicon charge enclosed in a stationary fused-silica ampoule. The results clearly indicated that the gravitational field strength influences the characteristics of the coherent vortical flow patterns, interface shape and position, maximum melt velocity, and interfacial normal temperature gradient.
Dynamics of Charge Transfer in DNA Wires: A Proton-Coupled Approach
NASA Astrophysics Data System (ADS)
Behnia, Sohrab; Fathizadeh, Samira; Ziaei, Javid; Akhshani, Afshin
2017-12-01
The advent of molecular electronics has fueled interest in studying DNA as a nanowire. The well-known Peyrard-Bishop-Dauxois (PBD) model, which was proposed for the purpose of understanding the mechanism of DNA denaturation, has a limited number of degrees of freedom. In addition, considering the Peyrard-Bishop-Holstein (PBH) model as a means of studying the charge transfer effect, in which the dynamical motion is described via the PBD model, may apply limitations on observing all the phenomena. Therefore, we have attempted to add the mutual interaction of a proton and electron in the form of proton-coupled electron transfer (PCET) to the PBH model. PCET has been implicated in a variety of oxidative processes that ultimately lead to mutations. When we have considered the PCET approach to DNA based on a proton-combined PBH model, we were able to extract the electron and proton currents independently. In this case, the reciprocal influence of electron and proton current is considered. This interaction does not affect the general form of the electronic current in DNA, but it changes the threshold of the occurrence of phenomena such as negative differential resistance. It is worth mentioning that perceiving the structural properties of the attractors in phase space via the Rényi dimension and concentrating on the critical regions through a scalogram can present a clear picture of the critical points in such phenomena.
Oxidation catalysis by polyoxometalates fundamental electron-transfer phenomena
Yurii V. Geletii; Rajai H. Atalla; Alan J. Bailey; Laurent Delannoy; Craig L. Hill; Ira A. Weinstock
2002-01-01
Early transition-metal oxygen-anion clusters (polyoxometalates, POMs) are a large and rapidly growing class of versatile and tunable oxidation catalysts. All key molecular properties of these clusters (composition, size, shape, charge density, reduction potential, solubility, etc.) can be systematically altered, and the clusters themselves can serve as tunable ligands...
Stress Induced Charge-Ordering Process in LiMn 2O 4
Chen, Yan; Yu, Dunji; An, Ke
2016-07-25
In this letter we report the stress-induced Mn charge-ordering process in the LiMn 2O 4 spinel, evidenced by the lattice strain evolutions due to the Jahn–Teller effects. In situ neutron diffraction reveals the initial stage of this process at low stress, indicating the eg electron localization at the preferential Mn sites during the early phase transition as an underlying charge-ordering mechanism in the charge-frustrated LiMn 2O 4. The initial stage of this transition exhibits as a progressive lattice and charge evolution, without showing a first-order behavior.
Biophysical mechanisms complementing "classical" cell biology.
Funk, Richard H W
2018-01-01
This overview addresses phenomena in cell- and molecular biology which are puzzling by their fast and highly coordinated way of organization. Generally, it appears that informative processes probably involved are more on the biophysical than on the classical biochemical side. The coordination problem is explained within the first part of the review by the topic of endogenous electrical phenomena. These are found e.g. in fast tissue organization and reorganization processes like development, wound healing and regeneration. Here, coupling into classical biochemical signaling and reactions can be shown by modern microscopy, electronics and bioinformatics. Further, one can follow the triggered reactions seamlessly via molecular biology till into genetics. Direct observation of intracellular electric processes is very difficult because of e.g. shielding through the cell membrane and damping by other structures. Therefore, we have to rely on photonic and photon - phonon coupling phenomena like molecular vibrations, which are addressed within the second part. Molecules normally possess different charge moieties and thus small electromagnetic (EMF) patterns arise during molecular vibration. These patterns can now be measured best within the optical part of the spectrum - much less in the lower terahertz till kHz and lower Hz part (third part of this review). Finally, EMFs facilitate quantum informative processes in coherent domains of molecular, charge and electron spin motion. This helps to coordinate such manifold and intertwined processes going on within cells, tissues and organs (part 4). Because the phenomena described in part 3 and 4 of the review still await really hard proofs we need concerted efforts and a combination of biophysics, molecular biology and informatics to unravel the described mysteries in "physics of life".
Simulation of Space Charge Dynamic in Polyethylene Under DC Continuous Electrical Stress
NASA Astrophysics Data System (ADS)
Boukhari, Hamed; Rogti, Fatiha
2016-10-01
The space charge dynamic plays a very important role in the aging and breakdown of polymeric insulation materials under high voltage. This is due to the intensification of the local electric field and the attendant chemical-mechanical effects in the vicinity around the trapped charge. In this paper, we have investigated the space charge dynamic in low-density polyethylene under high direct-current voltage, which is evaluated by experimental conditions. The evaluation is on the basis of simulation using a bipolar charge transport model consisting of charge injection, transports, trapping, detrapping, and recombination phenomena. The theoretical formulation of the physical problem is based on the Poisson, the continuity, and the transport equations. Numerical results provide temporal and local distributions of the electric field, the space charge density for the different kinds of charges (net charge density, mobile and trapped of electron density, mobile hole density), conduction and displacement current densities, and the external current. The result shows the appearance of the negative packet-like space charge with a large amount of the bulk under the dc electric field of 100 kV/mm, and the induced distortion of the electric field is largely near to the anode, about 39% higher than the initial electric field applied.
Irrational Charge from Topological Order
NASA Astrophysics Data System (ADS)
Moessner, R.; Sondhi, S. L.
2010-10-01
Topological or deconfined phases of matter exhibit emergent gauge fields and quasiparticles that carry a corresponding gauge charge. In systems with an intrinsic conserved U(1) charge, such as all electronic systems where the Coulombic charge plays this role, these quasiparticles are also characterized by their intrinsic charge. We show that one can take advantage of the topological order fairly generally to produce periodic Hamiltonians which endow the quasiparticles with continuously variable, generically irrational, intrinsic charges. Examples include various topologically ordered lattice models, the three-dimensional resonating valence bond liquid on bipartite lattices as well as water and spin ice. By contrast, the gauge charges of the quasiparticles retain their quantized values.
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2012-01-01
Observations made during Apollo missions, as well as theoretical models indicate that the lunar surface and dust grains are electrostatically charged, levitated and transported. Lunar dust grains are charged by UV photoelectric emissions on the lunar dayside and by the impact of the solar wind electrons on the nightside. The knowledge of charging properties of individual lunar dust grains is important for developing appropriate theoretical models and mitigating strategies. Currently, very limited experimental data are available for charging of individual micron-size size lunar dust grains in particular by low energy electron impact. However, experimental results based on extensive laboratory measurements on the charging of individual 0.2-13 micron size lunar dust grains by the secondary electron emissions (SEE) have been presented in a recent publication. The SEE process of charging of micron-size dust grains, however, is found to be very complex phenomena with strong particle size dependence. In this paper we present some examples of the complex nature of the SEE properties of positively charged individual lunar dust grains levitated in an electrodynamic balance (EDB), and show that they remain unaffected by the variation of the AC field employed in the above mentioned measurements.
Chirality and orbital order in charge density waves
NASA Astrophysics Data System (ADS)
van Wezel, Jasper
2011-12-01
Helical arrangements of spins are common among magnetic materials. The first material to harbor a corkscrew pattern of charge density, on the other hand, was discovered only very recently. The nature of the order parameter is of key relevance, since rotating a magnetic vector around any propagation vector trivially yields a helical pattern. In contrast, the purely scalar charge density cannot straightforwardly support a chiral state. Here we use a Landau order parameter analysis to resolve this paradox, and show that the chiral charge order may be understood as a form of orbital ordering. We discuss the microscopic mechanism driving the transition and show it to be of a general form, thus allowing for a broad class of materials to display this novel type of orbital-ordered chiral charge density wave.
Electronic structure imperfections and chemical bonding at graphene interfaces
NASA Astrophysics Data System (ADS)
Schultz, Brian Joseph
The manifestation of novel phenomena upon scaling to finite size has inspired a paradigm shift in materials science that takes advantage of the distinctive electrical and physical properties of nanomaterials. Remarkably, the simple honeycomb arrangement of carbon atoms in a single atomic layer has become renowned for exhibiting never-before-seen electronic and physical phenomena. This archetypal 2-dimensional nanomaterial is known as graphene, a single layer of graphite. Early reports in the 1950's eluded to graphene-like nanostructures that were evidenced from exfoliation of oxidized graphite followed by chemical reduction, absorbed carbon on transition metals, and thermal decomposition of SiC. Furthermore, the earliest tight binding approximation calculations in the 1950's held clues that a single-layer of graphite would behave drastically different than bulk graphite. Not until 2004, when Giem and Novoselov first synthesized graphene by mechanical exfoliation from highly-oriented pyrolytic graphite did the field of graphene-based research bloom within the scientific community. Since 2004, the availability and relatively straight forward synthesis of single-layer graphene (SLG) enabled the observation of remarkable phenomena including: massless Dirac fermions, extremely high mobilities of its charge carriers, room temperature half-integer quantum Hall effect, the Rashba effect, and the potential for ballistic conduction over macroscopic distances. These enticing electronic properties produce the drive to study graphene for use in truly nanoscale electrical interconnects, integrated circuits, transparent conducting electrodes, ultra-high frequency transistors, and spintronic devices, just to name a few. Yet, for almost all real world applications graphene will need to be interfaced with other materials, metals, dielectrics, organics, or any combination thereof that in turn are constituted from various inorganic and organic components. Interfacing graphene, a nanomaterial with lateral dimensions in the hundreds of microns if not larger, with a corresponding atomic vertical thickness poses significant difficulties. Graphene's unique structure is dominated by surface area or potentially hybridized interfaces; consequently, the true realization of this remarkable nanomaterial in device constructs relies on engineering graphene interfaces at the surface in order to controllably mold the electronic structure. Near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy and the transmission mode analogue scanning transmission X-ray microscopy (STXM) are particularly useful tools to study the unoccupied states of graphene and graphene interfaces. In addition, polarized NEXAFS and STXM studies provide information on surface orientation, bond sterics, and the extent of substrate alignment before and after interfacial hybridization. The work presented in this dissertation is fundamentally informed by NEXAFS and STXM measurements on graphene/metal, graphene/dielectric, and graphene/organic interfaces. We start with a general review of the electronic structure of freestanding graphene and graphene interfaces in Chapter 1. In Chapter 2, we investigate freestanding single-layer graphene via STXM and NEXAFS demonstrating that electronic structure heterogeneities from synthesis and processing are ubiquitous in 2-dimensional graphene. We show the mapping of discrete charge transfer regions as a result of doped impurities that decorate the surfaces of graphene and that transfer processing imparts local electronic corrugations or ripples. In corroboration with density functional theory, definitive assignments to the spectral features, global steric orientations of the localized domains, and quantitative charge transfer schemes are evidenced. In the following chapters, we deliberately (Chapter 3) incorporate substitutional nitrogen into reduced graphene oxide to induce C--N charge redistribution and improve global conductivity, (Chapter 4) fabricate graphene/metal interfaces and metal/graphene/metal sandwich structures evidencing classical anisotropic umpolung chemistry from carbon pz-orbrital charge pinning, and (Chapter 5) engineer graphene/dielectric interfaces showing electron depletion from carbon atoms at the HfO2/graphene interface. The fabrication of graphene interfaces remains a critical gap for successful commercialization of graphene-based devices, yet we demonstrate that interfacial hybridization, anisotropic charge redistribution, local chemical bonding, and discrete electronic hybridization regimes play a critical role in the electronic structure at graphene interfaces.
Free-electron gas at charged domain walls in insulating BaTiO3
Sluka, Tomas; Tagantsev, Alexander K.; Bednyakov, Petr; Setter, Nava
2013-01-01
Hetero interfaces between metal-oxides display pronounced phenomena such as semiconductor-metal transitions, magnetoresistance, the quantum hall effect and superconductivity. Similar effects at compositionally homogeneous interfaces including ferroic domain walls are expected. Unlike hetero interfaces, domain walls can be created, displaced, annihilated and recreated inside a functioning device. Theory predicts the existence of 'strongly' charged domain walls that break polarization continuity, but are stable and conduct steadily through a quasi-two-dimensional electron gas. Here we show this phenomenon experimentally in charged domain walls of the prototypical ferroelectric BaTiO3. Their steady metallic-type conductivity, 109 times that of the parent matrix, evidence the presence of stable degenerate electron gas, thus adding mobility to functional interfaces. PMID:23651996
Noriega, Rodrigo; Salleo, Alberto; Spakowitz, Andrew J.
2013-01-01
Existing models for the electronic properties of conjugated polymers do not capture the spatial arrangement of the disordered macromolecular chains over which charge transport occurs. Here, we present an analytical and computational description in which the morphology of individual polymer chains is dictated by well-known statistical models and the electronic coupling between units is determined using Marcus theory. The multiscale transport of charges in these materials (high mobility at short length scales, low mobility at long length scales) is naturally described with our framework. Additionally, the dependence of mobility with electric field and temperature is explained in terms of conformational variability and spatial correlation. Our model offers a predictive approach to connecting processing conditions with transport behavior. PMID:24062459
Noriega, Rodrigo; Salleo, Alberto; Spakowitz, Andrew J
2013-10-08
Existing models for the electronic properties of conjugated polymers do not capture the spatial arrangement of the disordered macromolecular chains over which charge transport occurs. Here, we present an analytical and computational description in which the morphology of individual polymer chains is dictated by well-known statistical models and the electronic coupling between units is determined using Marcus theory. The multiscale transport of charges in these materials (high mobility at short length scales, low mobility at long length scales) is naturally described with our framework. Additionally, the dependence of mobility with electric field and temperature is explained in terms of conformational variability and spatial correlation. Our model offers a predictive approach to connecting processing conditions with transport behavior.
Charge Transport Processes in Molecular Junctions
NASA Astrophysics Data System (ADS)
Smith, Christopher Eugene
Molecular electronics (ME) has evolved into a rich area of exploration that combines the fields of chemistry, materials, electronic engineering and computational modeling to explore the physics behind electronic conduction at the molecular level. Through studying charge transport properties of single molecules and nanoscale molecular materials the field has gained the potential to bring about new avenues for the miniaturization of electrical components where quantum phenomena are utilized to achieve solid state molecular device functionality. Molecular junctions are platforms that enable these studies and consist of a single molecule or a small group of molecules directly connected to electrodes. The work presented in this thesis has built upon the current understanding of the mechanisms of charge transport in ordered junctions using self-assembled monolayer (SAM) molecular thin films. Donor and acceptor compounds were synthesized and incorporated into SAMs grown on metal substrates then the transport properties were measured with conducting probe atomic force microscopy (CP-AFM). In addition to experimentally measured current-voltage (I-V) curves, the transport properties were addressed computationally and modeled theoretically. The key objectives of this project were to 1) investigate the impact of molecular structure on hole and electron charge transport, 2) understand the nature of the charge carriers and their structure-transport properties through long (<4 nm) conjugated molecular wires, and 3) quantitatively extract interfacial properties characteristic to macroscopic junctions, such as energy level alignment and molecule-contact electronic coupling from experimental I-V curves. Here, we lay ground work for creating a more complete picture of charge transport in macroscopically ordered molecular junctions of controlled architecture, length and charge carrier. The polaronic nature of hopping transport has been predicted in long, conjugated molecular wires. Using quantum-based calculations, we modeled 'p-type' polaron transport through oligophenylenethiophene (OPTI) wires and assigned transport activation energies to specific modes of nuclear motion. We also show control over 'n-type', LUMO-mediated transport in short ( 2 nm) redox-active perylenediimide (PDI) SAMs bound to contacts through isocyano linkers. By changing the contact work function (φ) and temperature, we were able to verify thermally-assisted LUMO transport. Transition voltage spectroscopy and the single level model was employed to fit the experimental I-V curves and extract the electronic coupling (epsilon) and the EF-LUMO offset (epsilonl). It was found that epsilonl does not change with φ (LUMO pinning), while Gamma changes with both φ and temperature. Further, the PDI SAMs could be reversibly chemically gated to modulate the transport. These results help advance our understanding of transport behavior in semiconducting molecular thin films, and open opportunities to engineer improved electronic functionality into molecular devices.
Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (hydr)oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiemstra, T.; Riemsdijk, W.H. van
1999-02-01
An important challenge in surface complexation models (SCM) is to connect the molecular microscopic reality to macroscopic adsorption phenomena. This study elucidates the primary factor controlling the adsorption process by analyzing the adsorption and competition of PO{sub 4}, AsO{sub 4}, and SeO{sub 3}. The authors show that the structure of the surface-complex acting in the dominant electrostatic field can be ascertained as the primary controlling adsorption factor. The surface species of arsenate are identical with those of phosphate and the adsorption behavior is very similar. On the basis of the selenite adsorption, The authors show that the commonly used 1pKmore » models are incapable to incorporate in the adsorption modeling the correct bidentate binding mechanism found by spectroscopy. The use of the bidentate mechanism leads to a proton-oxyanion ratio and corresponding pH dependence that are too large. The inappropriate intrinsic charge attribution to the primary surface groups and the condensation of the inner sphere surface complex to a point charge are responsible for this behavior of commonly used 2pK models. Both key factors are differently defined in the charge distributed multi-site complexation (CD-MUSIC) model and are based in this model on a surface structural approach. The CD-MUSIC model can successfully describe the macroscopic adsorption phenomena using the surface speciation and binding mechanisms as found by spectroscopy. The model is also able to predict the anion competition well. The charge distribution in the interface is in agreement with the observed structure of surface complexes.« less
Spontaneous Droplet Jump with Electro-Bouncing
NASA Astrophysics Data System (ADS)
Schmidt, Erin; Weislogel, Mark
2016-11-01
We investigate the dynamics of water droplet jumps from superhydrophobic surfaces in the presence of an electric field during a step reduction in gravity level. In the brief free-fall environment of a drop tower, when a strong non-homogeneous electric field (with a measured strength between 0 . 39 and 2 . 36 kV/cm) is imposed, body forces acting on the jumped droplets are primarily supplied by polarization stress and Coulombic attraction instead of gravity. The droplet charge, measured to be on the order of 2 . 3 . (10-11) C, originates by electro-osmosis of charged species at the (PTFE coated) hydrophobic surface interface. This electric body force leads to a droplet bouncing behavior similar to well-known phenomena in 1-g, though occurring for larger drops 0.1 mL for a given range of impact Weber numbers, We < 20 . In 1-g, for We > 0 . 4 , impact recoil behavior on a super-hydrophobic surface is normally dominated by damping from contact line hysteresis and by air-layer interactions. However, in the strong electric field, the droplet bounce dynamics additionally include electrohydrodynamic effects on wettability and Cassie-Wenzel transition. This is qualitatively discussed in terms of coefficients of restitution and trends in contact time. This work was supported primarily by NASA Cooperative Agreement NNX12A047A.
NASA Astrophysics Data System (ADS)
Kološ, Martin; Tursunov, Arman; Stuchlík, Zdeněk
2017-12-01
The study of quasi-periodic oscillations (QPOs) of X-ray flux observed in the stellar-mass black hole binaries can provide a powerful tool for testing of the phenomena occurring in the strong gravity regime. Magnetized versions of the standard geodesic models of QPOs can explain the observationally fixed data from the three microquasars. We perform a successful fitting of the HF QPOs observed for three microquasars, GRS 1915+105, XTE 1550-564 and GRO 1655-40, containing black holes, for magnetized versions of both epicyclic resonance and relativistic precession models and discuss the corresponding constraints of parameters of the model, which are the mass and spin of the black hole and the parameter related to the external magnetic field. The estimated magnetic field intensity strongly depends on the type of objects giving the observed HF QPOs. It can be as small as 10^{-5} G if electron oscillatory motion is relevant, but it can be by many orders higher for protons or ions (0.02-1 G), or even higher for charged dust or such exotic objects as lighting balls, etc. On the other hand, if we know by any means the magnetic field intensity, our model implies strong limit on the character of the oscillating matter, namely its specific charge.
Impurity Induced Phase Competition and Supersolidity
NASA Astrophysics Data System (ADS)
Karmakar, Madhuparna; Ganesh, R.
2017-12-01
Several material families show competition between superconductivity and other orders. When such competition is driven by doping, it invariably involves spatial inhomogeneities which can seed competing orders. We study impurity-induced charge order in the attractive Hubbard model, a prototypical model for competition between superconductivity and charge density wave order. We show that a single impurity induces a charge-ordered texture over a length scale set by the energy cost of the competing phase. Our results are consistent with a strong-coupling field theory proposed earlier in which superconducting and charge order parameters form components of an SO(3) vector field. To discuss the effects of multiple impurities, we focus on two cases: correlated and random distributions. In the correlated case, the CDW puddles around each impurity overlap coherently leading to a "supersolid" phase with coexisting pairing and charge order. In contrast, a random distribution of impurities does not lead to coherent CDW formation. We argue that the energy lowering from coherent ordering can have a feedback effect, driving correlations between impurities. This can be understood as arising from an RKKY-like interaction, mediated by impurity textures. We discuss implications for charge order in the cuprates and doped CDW materials such as NbSe2.
Development of Novel PEM Membrane and Multiphase CD Modeling of PEM Fuel Cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. J. Berry; Susanta Das
2009-12-30
To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtainedmore » from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance. To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance.« less
Electrohydrodynamics of drops in strong electric fields: Simulations and theory
NASA Astrophysics Data System (ADS)
Saintillan, David; Das, Debasish
2016-11-01
Weakly conducting dielectric liquid drops suspended in another dielectric liquid exhibit a wide range of dynamical behaviors when subject to an applied uniform electric field contingent on field strength and material properties. These phenomena are best described by the much celebrated Maylor-Taylor leaky dielectric model that hypothesizes charge accumulation on the drop-fluid interface and prescribes a balance between charge relaxation, the jump in Ohmic currents and charge convection by the interfacial fluid flow. Most previous numerical simulations based on this model have either neglected interfacial charge convection or restricted themselves to axisymmetric drops. In this work, we develop a three-dimensional boundary element method for the complete leaky dielectric model to systematically study the deformation and dynamics of liquid drops in electric fields. The inclusion of charge convection in our simulation permits us to investigate drops in the Quincke regime, in which experiments have demonstrated symmetry-breaking bifurcations leading to steady electrorotation. Our simulation results show excellent agreement with existing experimental data and small deformation theories. ACSPRF Grant 53240-ND9.
Ferroelectric ferrimagnetic LiFe2F6 : Charge-ordering-mediated magnetoelectricity
NASA Astrophysics Data System (ADS)
Lin, Ling-Fang; Xu, Qiao-Ru; Zhang, Yang; Zhang, Jun-Jie; Liang, Yan-Ping; Dong, Shuai
2017-12-01
Trirutile-type LiFe2F6 is a charge-ordered material with an Fe2 +/Fe3 + configuration. Here, its physical properties, including magnetism, electronic structure, phase transition, and charge ordering, are studied theoretically. On one hand, the charge ordering leads to improper ferroelectricity with a large polarization. On the other hand, its magnetic ground state can be tuned from the antiferromagnetic to ferrimagnetic by moderate compressive strain. Thus, LiFe2F6 can be a rare multiferroic with both large magnetization and polarization. Most importantly, since the charge ordering is the common ingredient for both ferroelectricity and magnetization, the net magnetization may be fully switched by flipping the polarization, rendering intrinsically strong magnetoelectric effects and desirable functions.
An alternative low-loss stack topology for vanadium redox flow battery: Comparative assessment
NASA Astrophysics Data System (ADS)
Moro, Federico; Trovò, Andrea; Bortolin, Stefano; Del, Davide, , Col; Guarnieri, Massimo
2017-02-01
Two vanadium redox flow battery topologies have been compared. In the conventional series stack, bipolar plates connect cells electrically in series and hydraulically in parallel. The alternative topology consists of cells connected in parallel inside stacks by means of monopolar plates in order to reduce shunt currents along channels and manifolds. Channelled and flat current collectors interposed between cells were considered in both topologies. In order to compute the stack losses, an equivalent circuit model of a VRFB cell was built from a 2D FEM multiphysics numerical model based on Comsol®, accounting for coupled electrical, electrochemical, and charge and mass transport phenomena. Shunt currents were computed inside the cells with 3D FEM models and in the piping and manifolds by means of equivalent circuits solved with Matlab®. Hydraulic losses were computed with analytical models in piping and manifolds and with 3D numerical analyses based on ANSYS Fluent® in the cell porous electrodes. Total losses in the alternative topology resulted one order of magnitude lower than in an equivalent conventional battery. The alternative topology with channelled current collectors exhibits the lowest shunt currents and hydraulic losses, with round-trip efficiency higher by about 10%, as compared to the conventional topology.
NASA Astrophysics Data System (ADS)
Yuan, Li; Wang, Lejia; Garrigues, Alvar R.; Jiang, Li; Annadata, Harshini Venkata; Anguera Antonana, Marta; Barco, Enrique; Nijhuis, Christian A.
2018-04-01
Solid-state molecular tunnel junctions are often assumed to operate in the Landauer regime, which describes essentially activationless coherent tunnelling processes. In solution, on the other hand, charge transfer is described by Marcus theory, which accounts for thermally activated processes. In practice, however, thermally activated transport phenomena are frequently observed also in solid-state molecular junctions but remain poorly understood. Here, we show experimentally the transition from the Marcus to the inverted Marcus region in a solid-state molecular tunnel junction by means of intra-molecular orbital gating that can be tuned via the chemical structure of the molecule and applied bias. In the inverted Marcus region, charge transport is incoherent, yet virtually independent of temperature. Our experimental results fit well to a theoretical model that combines Landauer and Marcus theories and may have implications for the interpretation of temperature-dependent charge transport measurements in molecular junctions.
Electrohydrodynamic simulation of an electrospray in a colloid thruster
NASA Astrophysics Data System (ADS)
Jugroot, Manish; Forget, Martin; Malardier-Jugroot, Cecile
2012-02-01
A precise understanding of electrosprays is highly interesting as the complexity of micro-technology (such as nano-material processing, spacecraft propulsion and mass-spectrometers) systems increases. A multi-component CFD-based model coupling fluid dynamics, charged species dynamics and electric field is developed. The simulations describe the charged fluid interface with emphasis on the Taylor cone formation and cone-jet transition under the effect of a electric field. The goal is to recapture this transition from a rounded liquid interface into a Taylor cone from an initial uniform distribution, without making assumptions on the behaviour, geometry or charge distribution of the system. The time evolution of the interface highlights the close interaction among space charge, coulombic forces and the surface tension, which appear as governing and competing processes in the transition. The results from the coupled formalism provide valuable insights on the physical phenomena and will be applied to a colloid thruster for small spacecrafts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, W. F.; Nishimula, T.; Nagashio, K.
2013-03-11
We report a consistent conduction band offset (CBO) at a GeO{sub 2}/Ge interface determined by internal photoemission spectroscopy (IPE) and charge-corrected X-ray photoelectron spectroscopy (XPS). IPE results showed that the CBO value was larger than 1.5 eV irrespective of metal electrode and substrate type variance, while an accurate determination of valence band offset (VBO) by XPS requires a careful correction of differential charging phenomena. The VBO value was determined to be 3.60 {+-} 0.2 eV by XPS after charge correction, thus yielding a CBO (1.60 {+-} 0.2 eV) in excellent agreement with the IPE results. Such a large CBO (>1.5more » eV) confirmed here is promising in terms of using GeO{sub 2} as a potential passivation layer for future Ge-based scaled CMOS devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitamura, Miho; Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization; Horiba, Koji
2016-03-14
To investigate the interfacial charge-transfer phenomena between perovskite transition metal oxides LaNiO{sub 3} (LNO) and LaMnO{sub 3} (LMO), we have performed in situ x-ray absorption spectroscopy (XAS) measurements on LNO/LMO multilayers. The Ni-L{sub 2,3} and Mn-L{sub 2,3} XAS spectra clearly show the occurrence of electron transfer from Mn to Ni ions in the interface region. Detailed analysis of the thickness dependence of these XAS spectra has revealed that the spatial distribution of the transferred charges across the interface is significantly different between the two constituent layers. The observed spatial distribution is presumably described by the charge spreading model that treatsmore » the transfer integral between neighboring transition metal ions and the Coulomb interaction, rather than the Thomas–Fermi screening model.« less
The onset of electrospray: the universal scaling laws of the first ejection
Gañán-Calvo, A. M.; López-Herrera, J. M.; Rebollo-Muñoz, N.; Montanero, J. M.
2016-01-01
The disintegration of liquid drops with low electrical conductivity and subject to an electric field is investigated both theoretically and experimentally. This disintegration takes place through the development of a conical cusp that eventually ejects an ultrathin liquid ligament. A first tiny drop is emitted from the end of this ligament. Due to its exceptionally small size and large electric charge per unit volume, that drop has been the object of relevant recent studies. In this paper, universal scaling laws for the diameter and electric charge of the first issued droplet are proposed and validated both numerically and experimentally. Our analysis shows how charge relaxation is the mechanism that differentiates the onset of electrospray, including the first droplet ejection, from the classical steady cone-jet mode. In this way, our study identifies when and where charge relaxation and electrokinetic phenomena come into play in electrospray, a subject of live controversy in the field. PMID:27581554
Engineering charge transport by heterostructuring solution-processed semiconductors
NASA Astrophysics Data System (ADS)
Voznyy, Oleksandr; Sutherland, Brandon R.; Ip, Alexander H.; Zhitomirsky, David; Sargent, Edward H.
2017-06-01
Solution-processed semiconductor devices are increasingly exploiting heterostructuring — an approach in which two or more materials with different energy landscapes are integrated into a composite system. Heterostructured materials offer an additional degree of freedom to control charge transport and recombination for more efficient optoelectronic devices. By exploiting energetic asymmetry, rationally engineered heterostructured materials can overcome weaknesses, augment strengths and introduce emergent physical phenomena that are otherwise inaccessible to single-material systems. These systems see benefit and application in two distinct branches of charge-carrier manipulation. First, they influence the balance between excitons and free charges to enhance electron extraction in solar cells and photodetectors. Second, they promote radiative recombination by spatially confining electrons and holes, which increases the quantum efficiency of light-emitting diodes. In this Review, we discuss advances in the design and composition of heterostructured materials, consider their implementation in semiconductor devices and examine unexplored paths for future advancement in the field.
NASA Astrophysics Data System (ADS)
Tully, Katherine C.; Whitacre, Jay F.; Litster, Shawn
2014-02-01
This paper presents in-situ spatiotemporal measurements of the electrolyte phase potential within an electric double layer capacitor (EDLC) negative electrode as envisaged for use in an aqueous hybrid battery for grid-scale energy storage. The ultra-thick electrodes used in these batteries to reduce non-functional material costs require sufficiently fast through-plane mass and charge transport to attain suitable charging and discharging rates. To better evaluate the through-plane transport, we have developed an electrode scaffold (ES) for making in situ electrolyte potential distribution measurements at discrete known distances across the thickness of an uninterrupted EDLC negative electrode. Using finite difference methods, we calculate local current, volumetric charging current and charge storage distributions from the spatiotemporal electrolyte potential measurements. These potential distributions provide insight into complex phenomena that cannot be directly observed using other existing methods. Herein, we use the distributions to identify areas of the electrode that are underutilized, assess the effects of various parameters on the cumulative charge storage distribution, and evaluate an effectiveness factor for charge storage in EDLC electrodes.
Method for eliminating artifacts in CCD imagers
Turko, B.T.; Yates, G.J.
1992-06-09
An electronic method for eliminating artifacts in a video camera employing a charge coupled device (CCD) as an image sensor is disclosed. The method comprises the step of initializing the camera prior to normal read out and includes a first dump cycle period for transferring radiation generated charge into the horizontal register while the decaying image on the phosphor being imaged is being integrated in the photosites, and a second dump cycle period, occurring after the phosphor image has decayed, for rapidly dumping unwanted smear charge which has been generated in the vertical registers. Image charge is then transferred from the photosites and to the vertical registers and read out in conventional fashion. The inventive method allows the video camera to be used in environments having high ionizing radiation content, and to capture images of events of very short duration and occurring either within or outside the normal visual wavelength spectrum. Resultant images are free from ghost, smear and smear phenomena caused by insufficient opacity of the registers and, and are also free from random damage caused by ionization charges which exceed the charge limit capacity of the photosites. 3 figs.
Dolgobrodov, S G; Lukashkin, A N; Russell, I J
2000-12-01
This paper provides theoretical estimates for the forces of electrostatic interaction between adjacent stereocilia in auditory and vestibular hair cells. Estimates are given for parameters within the measured physiological range using constraints appropriate for the known geometry of the hair bundle. Stereocilia are assumed to possess an extended, negatively charged surface coat, the glycocalyx. Different charge distribution profiles within the glycocalyx are analysed. It is shown that charged glycocalices on the apical surface of the hair cells can support spatial separation between adjacent stereocilia in the hair bundles through electrostatic repulsion between stereocilia. The charge density profile within the glycocalyx is a crucial parameter. In fact, attraction instead of repulsion between adjacent stereocilia will be observed if the charge of the glycocalyx is concentrated near the membrane of the stereocilia, thereby making this type of charge distribution unlikely. The forces of electrostatic interaction between stereocilia may influence the mechanical properties of the hair bundle and, being strongly non-linear, contribute to the non-linear phenomena that have been recorded from the periphery of the auditory and vestibular systems.
NASA Astrophysics Data System (ADS)
Husain, Ali; Vig, Sean; Kogar, Anshul; Mishra, Vivek; Rak, Melinda; Mitrano, Matteo; Johnson, Peter; Gu, Genda; Fradkin, Eduardo; Norman, Michael; Abbamonte, Peter
Static charge order is a ubiquitous feature of the underdoped cuprates. However, at optimal doping, charge-order has been thought to be completely suppressed, suggesting an interplay between the charge-ordering and superconducting order parameters. Using Momentum-resolved Electron Energy Loss Spectroscopy (M-EELS) we show the existence of diffuse fluctuating charge-order in the optimally doped cuprate Bi2Sr2CaCu2O8+δ (Bi-2212) at low-temperature. We present full momentum-space maps of both elastic and inelastic scattering at room temperature and below the superconducting transition with 4meV resolution. We show that the ``rods'' of diffuse scattering indicate nematic-like fluctuations, and the energy width defines a fluctuation timescale of 160 fs. We discuss the implications of fluctuating charge-order on the dynamics at optimal doping. This work was supported by the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant GBMF-4542. An early prototype of the M-EELS instrument was supported by the DOE Center for Emergent Superconductivity under Award No. DE-AC02-98CH10886.
Emergent properties of nuclei from ab initio coupled-cluster calculations
NASA Astrophysics Data System (ADS)
Hagen, G.; Hjorth-Jensen, M.; Jansen, G. R.; Papenbrock, T.
2016-06-01
Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. This endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. This paper reviews some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLO{}{{sat}} is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to 56Ni. We derive an efficient scheme for including continuum effects in coupled-cluster computations of nuclei based on chiral nucleon-nucleon and three-nucleon forces, and present new results for unbound states in the neutron-rich isotopes of oxygen and calcium. The coupling to the continuum impacts the energies of the {J}π =1/{2}-,3/{2}-,7/{2}-,3/{2}+ states in {}{17,23,25}O, and—contrary to naive shell-model expectations—the level ordering of the {J}π =3/{2}+,5/{2}+,9/{2}+ states in {}{53,55,61}Ca. ).
Villeneuve-Faure, C; Boudou, L; Makasheva, K; Teyssedre, G
2017-12-15
To understand the physical phenomena occurring at metal/dielectric interfaces, determination of the charge density profile at nanoscale is crucial. To deal with this issue, charges were injected applying a DC voltage on lateral Al-electrodes embedded in a SiN x thin dielectric layer. The surface potential induced by the injected charges was probed by Kelvin probe force microscopy (KPFM). It was found that the KPFM frequency mode is a better adapted method to probe accurately the charge profile. To extract the charge density profile from the surface potential two numerical approaches based on the solution to Poisson's equation for electrostatics were investigated: the second derivative model method, already reported in the literature, and a new 2D method based on the finite element method (FEM). Results highlight that the FEM is more robust to noise or artifacts in the case of a non-flat initial surface potential. Moreover, according to theoretical study the FEM appears to be a good candidate for determining charge density in dielectric films with thicknesses in the range from 10 nm to 10 μm. By applying this method, the charge density profile was determined at nanoscale, highlighting that the charge cloud remains close to the interface.
An equivalent body surface charge model representing three-dimensional bioelectrical activity
NASA Technical Reports Server (NTRS)
He, B.; Chernyak, Y. B.; Cohen, R. J.
1995-01-01
A new surface-source model has been developed to account for the bioelectrical potential on the body surface. A single-layer surface-charge model on the body surface has been developed to equivalently represent bioelectrical sources inside the body. The boundary conditions on the body surface are discussed in relation to the surface-charge in a half-space conductive medium. The equivalent body surface-charge is shown to be proportional to the normal component of the electric field on the body surface just outside the body. The spatial resolution of the equivalent surface-charge distribution appears intermediate between those of the body surface potential distribution and the body surface Laplacian distribution. An analytic relationship between the equivalent surface-charge and the surface Laplacian of the potential was found for a half-space conductive medium. The effects of finite spatial sampling and noise on the reconstruction of the equivalent surface-charge were evaluated by computer simulations. It was found through computer simulations that the reconstruction of the equivalent body surface-charge from the body surface Laplacian distribution is very stable against noise and finite spatial sampling. The present results suggest that the equivalent body surface-charge model may provide an additional insight to our understanding of bioelectric phenomena.
NASA Astrophysics Data System (ADS)
Villeneuve-Faure, C.; Boudou, L.; Makasheva, K.; Teyssedre, G.
2017-12-01
To understand the physical phenomena occurring at metal/dielectric interfaces, determination of the charge density profile at nanoscale is crucial. To deal with this issue, charges were injected applying a DC voltage on lateral Al-electrodes embedded in a SiN x thin dielectric layer. The surface potential induced by the injected charges was probed by Kelvin probe force microscopy (KPFM). It was found that the KPFM frequency mode is a better adapted method to probe accurately the charge profile. To extract the charge density profile from the surface potential two numerical approaches based on the solution to Poisson’s equation for electrostatics were investigated: the second derivative model method, already reported in the literature, and a new 2D method based on the finite element method (FEM). Results highlight that the FEM is more robust to noise or artifacts in the case of a non-flat initial surface potential. Moreover, according to theoretical study the FEM appears to be a good candidate for determining charge density in dielectric films with thicknesses in the range from 10 nm to 10 μm. By applying this method, the charge density profile was determined at nanoscale, highlighting that the charge cloud remains close to the interface.
Conceptualizing Autism: The Role for Emergence
ERIC Educational Resources Information Center
Anderson, George M.
2009-01-01
The establishment of a criterion for operationally defining emergent phenomena in autism is needed. Key initial questions for autism researchers include how to define emergent phenomena in order to better diagnosis the condition.
Sinha, Shayandev; Sachar, Harnoor Singh; Das, Siddhartha
2018-01-30
Electric double layers (or EDLs) formed at the membrane-electrolyte interface (MEI) and membrane-cytosol interface (MCI) of a charged lipid bilayer plasma membrane develop finitely large capacitances. However, these EDL capacitances are often much larger than the intrinsic capacitance of the membrane, and all of these capacitances are in series. Consequently, the effect of these EDL capacitances in dictating the overall membrane-EDL effective capacitance C eff becomes negligible. In this paper, we challenge this conventional notion pertaining to the membrane-EDL capacitances. We demonstrate that, on the basis of the system parameters, the EDL capacitance for both the permeable and semipermeable membranes can be small enough to influence C eff . For the semipermeable membranes, however, this lowering of the EDL capacitance can be much larger, ensuring a reduction of C eff by more than 20-25%. Furthermore, for the semipermeable membranes, the reduction in C eff is witnessed over a much larger range of system parameters. We attribute such an occurrence to the highly nonintuitive electrostatic potential distribution associated with the recently discovered phenomena of charge-inversion-like electrostatics and the attainment of a positive zeta potential at the MCI for charged semipermeable membranes. We anticipate that our findings will impact the quantification and the identification of a large number of biophysical phenomena that are probed by measuring the plasma membrane capacitance.
NASA Astrophysics Data System (ADS)
Gokhshtein, Aleksandr Ya
2000-07-01
The development of knowledge about electric current, potential, and the conversion of energy at the interface between electronic- and ionic-conductivity phases is briefly reviewed. Although soon after its discovery it was realized that electric current is the motion of charged particles, the double-layer field promoting charge transfer through the interface was considered for a long time to be as uniform as in a capacitor. One-dimensional ion discharge theory failed to explain the observed dependence of the current on the potential jump across the interface. The spatial segmentation of energy in the double layer due to the quantum evolution of the layer's periphery puts a limit on the charge transfer work the field may perform locally, and creates conditions for the ionic atmosphere being spontaneously compressed after the critical potential jump has been reached. A discrete interchange of states also occurs due to the adsorption of discharged particles and corresponds to the consecutive exclusion of the d-wave function nodes of metal surface atoms, the exclusion manifesting itself in the larger longitudinal and smaller lateral sizes of the atomic orbital. The elastic extension of the metal surface reduces the d-function overlap thus intensifying adsorption. Advances in experimentation, in particular new techniques capable of detecting alternating surface tension of solids, enabled these and some other phenomena to be observed.
Linear dichroism and the nature of charge order in underdoped cuprates
Norman, M. R.
2015-04-21
Recent experiments have addressed the nature of the charge order seen in underdoped cuprates. In this paper, I show that x-ray absorption and linear dichroism are excellent probes of such order. Ab initio calculations reveal that a d-wave charge density wave order involving the oxygen ions is a much better description of the data than alternate models.
Investigations of planetary ring phenomena
NASA Technical Reports Server (NTRS)
Burns, Joseph A.
1987-01-01
Faint planetary rings, their dynamical behavior and physical properties, were the main focus of the research efforts. The motion of weakly-charged dust through the gravitational and magnetic fields of Jupiter were examined. Several topics concerning features of Saturn's rings were addressed. The origin and fate of the Uranian ring dust is presently being studied.
Polarizing PVC--A Discrepant Event
ERIC Educational Resources Information Center
Headly, David; Karabatek, Mohamed
2016-01-01
This article describes an experiment teaching polarization phenomena and the Triboelectric Series in a unit on electrostatics. Using rods (2-3 ft in length) made from wood, aluminum, PVC, and Plexiglas on an inverted watch glass, these items demonstrated to the class how a party balloon rubbed with fake rabbit fur (charging the balloon negative)…
Neutron Imaging of Lithium Concentration for Validation of Li-Ion Battery State of Charge Estimation
2010-12-01
2008: Understanding liq- uid water distribution and removal phenomena in an op- erating pemfc via neutron radiography. Journal of The...2008: Measurement of liq- uid water accumulation in a pemfc with dead-ended an- ode. Journal of The Electrochemical Society, 155 (11), B1168–B1178
Deionization shocks in microstructures
NASA Astrophysics Data System (ADS)
Mani, Ali; Bazant, Martin Z.
2011-12-01
Salt transport in bulk electrolytes is limited by diffusion and advection, but in microstructures with charged surfaces (e.g., microfluidic devices, porous media, soils, or biological tissues) surface conduction and electro-osmotic flow also contribute to ionic fluxes. For small applied voltages, these effects lead to well known linear electrokinetic phenomena. In this paper, we predict some surprising nonlinear dynamics that can result from the competition between bulk and interfacial transport at higher voltages. When counterions are selectively removed by a membrane or electrode, a “deionization shock” can propagate through the microstructure, leaving in its wake an ultrapure solution, nearly devoid of coions and colloidal impurities. We elucidate the basic physics of deionization shocks and develop a mathematical theory of their existence, structure, and stability, allowing for slow variations in surface charge or channel geometry. Via asymptotic approximations and similarity solutions, we show that deionization shocks accelerate and sharpen in narrowing channels, while they decelerate and weaken, and sometimes disappear, in widening channels. These phenomena may find applications in separations (deionization, decontamination, biological assays) and energy storage (batteries, supercapacitors) involving electrolytes in microstructures.
Atomic-scale compensation phenomena at polar interfaces.
Chisholm, Matthew F; Luo, Weidong; Oxley, Mark P; Pantelides, Sokrates T; Lee, Ho Nyung
2010-11-05
The interfacial screening charge that arises to compensate electric fields of dielectric or ferroelectric thin films is now recognized as the most important factor in determining the capacitance or polarization of ultrathin ferroelectrics. Here we investigate using aberration-corrected electron microscopy and density-functional theory to show how interfaces cope with the need to terminate ferroelectric polarization. In one case, we show evidence for ionic screening, which has been predicted by theory but never observed. For a ferroelectric film on an insulating substrate, we found that compensation can be mediated by an interfacial charge generated, for example, by oxygen vacancies.
Search for the chiral magnetic effect in relativistic heavy-ion collisions
NASA Astrophysics Data System (ADS)
Zhao, Jie
2018-05-01
Relativistic heavy-ion collisions provide an ideal environment to study the emergent phenomena in quantum chromodynamics (QCD). The chiral magnetic effect (CME) is one of the most interesting, arising from the topological charge fluctuations of QCD vacua, immersed in a strong magnetic field. Since the first measurement nearly a decade ago of the possibly CME-induced charge correlation, extensive studies have been devoted to background contributions to those measurements. Many new ideas and techniques have been developed to reduce or eliminate the backgrounds. This paper reviews these developments and the overall progress in the search for the CME.
Vondrak, Tomas; Plane, John M C; Meech, Stephen R
2006-03-09
Photoemission from sodium deposited on ice films is described. Deposition of 0.02 ML of sodium is found to dramatically reduce the threshold for photoemission from the ice film to (2.3+/-0.2) eV. Thus, the cross-section for photoemission reaches >10(-18) cm2 in the visible region of the spectrum. It is proposed that the initial state is a solvated electron on the ice surface, which is supported by optical transmission spectroscopy. The potential significance of these results in understanding unexplained charging phenomena in the mesosphere is discussed.
Quantum design of photosynthesis for bio-inspired solar-energy conversion.
Romero, Elisabet; Novoderezhkin, Vladimir I; van Grondelle, Rienk
2017-03-15
Photosynthesis is the natural process that converts solar photons into energy-rich products that are needed to drive the biochemistry of life. Two ultrafast processes form the basis of photosynthesis: excitation energy transfer and charge separation. Under optimal conditions, every photon that is absorbed is used by the photosynthetic organism. Fundamental quantum mechanics phenomena, including delocalization, underlie the speed, efficiency and directionality of the charge-separation process. At least four design principles are active in natural photosynthesis, and these can be applied practically to stimulate the development of bio-inspired, human-made energy conversion systems.
Magellan star scanner experiences - What a long, stange trip it's been
NASA Astrophysics Data System (ADS)
Seale, Eric H.
Since its launch to Venus in 1989, the Magellan spacecraft has encountered a variety of interesting phenomena - several related to its star scanner. After much concentration, it was determined that the scanner events were due to environmental effects on the instrument - in particular, its response to solar protons and an unanticipated amount of thermal blanket dust (this dust is, in turn, generated and moved by other environmental forces). In short, while those phenomena were originally an operational nuisance, our scanner has unexpectedly shown new use as a particle and fields detector. Since its simple design makes Magellan's star scanner a good proton detector, a brief description of the charged-particle environment (particularly proton propagation) is also included. Short- and long-term trends in sensor behavior are presented, as are their correlations to the local environment. A summary of results to date is provided in the hope that these may be of help to future operations teams diagnosing similar phenomena. A summary is also given of methods found to reduce the operational impact of these phenomena.
Chiral charge and orbital order in 1T-TiSe2
NASA Astrophysics Data System (ADS)
van Wezel, Jasper
2012-02-01
Helical arrangements of spins are common among magnetic materials. The first material to harbor a corkscrew pattern of charge density on the other hand, was discovered only very recently [1,2]. The nature of the order parameter is of key relevance, since rotating a magnetic vector around any propagation vector trivially yields a helical pattern. In contrast, the purely scalar charge density cannot straightforwardly support a chiral state. Here we resolve this paradox by identifying the microscopic mechanism underlying the formation of the chiral charge density wave in 1T-TiSe2. It is shown that the emergence of chirality is accompanied by the simultaneous formation of orbital order [3] We show that this type of combined orbital and charge order may in fact be expected to be a generic property of a broad class of charge ordered materials and discuss the prerequisites for finding chiral charge order in other materials. [4pt] [1] J. Ishioka, Y. H. Liu, K. Shimatake, T. Kurosawa, K. Ichimura, Y. Toda, M. Oda and S. Tanda, Phys. Rev. Lett. 105, 176401 (2010). [2] J. van Wezel and P. B. Littlewood, Physics 3, 87 (2010). [3] J. van Wezel, arXiv:1106.1930v1 (2011).
NASA Astrophysics Data System (ADS)
Nonoyama, Yoshito; Maekawa, Yukiko; Kobayashi, Akito; Suzumura, Yoshikazu; Yamada, Jun-ichi
2008-10-01
Mechanisms of superconductivity in quasi-two-dimensional organic conductors have been investigated using an extended Hubbard model by using the transfer energies between BDA-TTP molecules for β-(BDA-TTP)2I3 based on the X-ray experiment data and the extended Hückel calculation. We obtain several mean-field solutions with charge orderings which may represent short-range orderings or low-energy fluctuations in the low-dimensional electronic system. In the pressure-temperature phase diagram, a charge ordered metal state almost degenerates with a normal metal state between an insulating phase with charge ordering and the normal metal phase. Using the random phase approximation (RPA) and the linearized gap equation, the transition temperature of the superconducting state is estimated for the charge-ordered metal state and the normal metal state. It is found that transition temperature of the superconductivity induced by spin fluctuations in the charge-ordered metal state is much higher than that of the normal metal state and that the superconductivity in the charge-ordered metal state is the gapless d-wave. This suggests that the short range charge ordering may also contribute to an enhancement of spin-fluctuation-mediated superconductivity. The difference in the superconducting states between β-(BDA-TTP)2I3 and β-(BDA-TTP)2SbF6 are briefly discussed.
Review of Natural Phenomena Hazard (NPH) Assessments for the DOE Hanford Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snow, Robert L.; Ross, Steven B.
2011-09-15
The purpose of this review is to assess the need for updating Natural Phenomena Hazard (NPH) assessments for the DOE's Hanford Site, as required by DOE Order 420.1B Chapter IV, Natural Phenomena Hazards Mitigation, based on significant changes in state-of-the-art NPH assessment methodology or site-specific information. This review is an update and expansion to the September 2010 review of PNNL-19751, Review of Natural Phenomena Hazard (NPH) Assessments for the Hanford 200 Areas (Non-Seismic).
Charge Generation and Propagation in Igneous Rocks
NASA Technical Reports Server (NTRS)
Freund, Friedemann
2002-01-01
Various electrical phenomena have been reported prior to or concurrent with earthquakes such as resistivity changes, ground potentials, electromagnetic (EM), and luminous signals. Doubts have been raised as to whether some of these phenomena are real and indeed precursory. One of the reasons for uncertainty is that, despite decades of intense work, there is still no physically coherent model. Using low- to medium-velocity impacts to measure electrical signals with microsecond time resolution, it has now been observed that when dry gabbro and diorite cores are impacted at relatively low velocities, approximately 100 m/s, highly mobile charge carriers are generated in a small volume near the impact point. They spread through the rocks, causing electric potentials exceeding +400 mV, EM, and light emission. As the charge cloud spreads, the rock becomes momentarily conductive. When a dry granite block is impacted at higher velocity, approximately 1.5 km/s, the propagation of the P and S waves is registered through the transient piezoelectric response of quartz. After the sound waves have passed, the surface of the granite block becomes positively charged, suggesting the same charge carriers as observed during the low-velocity impact experiments, expanding from within the bulk. During the next 2-3 ms the surface potential oscillates, indicating pulses of electrons injected from ground and contact electrodes. The observations are consistent with positive holes, e.g., defect electrons in the O(2-) sublattice, traveling via the O 2p-dominated valence band of the silicate minerals. Before activation, the positive holes lay dormant in the form of electrically inactive positive hole pairs (PHP), chemically equivalent to peroxy links, O3X/OO\\XO3, with X=Si(4+), Al(3+), etc. PHPs are introduced into the minerals by way of hydroxyl,O3X-OH, which all nominally anhydrous minerals incorporate when crystallizing in H2O-laden environments. The fact that positive holes can be activated by low-energy impacts, and their attendant sound waves, suggests that they can also be activated by microfracturing. Depending on where in the stressed rock volume the charge carriers are activated, they will form rapidly moving or fluctuating charge clouds that may account for earthquake-related electrical signals and EM emission. Wherever such charge clouds intersect the surface, high fields are expected, causing electric discharges and earthquake lights.
Aerosol domination of mesosheric ionization: In situ data spanning five decades
NASA Astrophysics Data System (ADS)
Hale, L.
Local mesospheric electrical phenomena are controlled by ionization production and recombination, and by electron attachment and detachment. These in turn are controlled by ionizing and detaching radiation, and by neutral atmosphere dynamics and chemistry, the latter frequently dominated by aerosol particles. Many detailed studies have been made of these phenomena for a gas phase atmosphere, but much less has been determined about the characteristics of aerosol particles, particularly those in the "invisible" range of order 10 nm. Aerosol dominates gas phase phenomena in many situations at all latitudes. The presence of larger particles at high latitudes has been known for over a century from the presence of "noctilucent clouds," and their variability has been inferred by Thomas, et al. (Nature v.337, 1989) from the relative absence of observations in earlier eras, before the massive release of industrial pollution. Studies of such particles are being well researched at the present time, and this paper is mainly concerned with "invisible" particles at lower latitudes. The presence of such particles was first inferred from a rocket launched at White Sands by Bourdeau, et al. in 1950 (JGR, 1959), and has been confirmed by many subsequent measurements (e.g. Hale, COSPAR, 1983). However the aerosol contributes to a variability so large (over six orders of magnitude in total conductivity at a single altitude) that it is difficult to study their variability with the limited amount of data (a few hundred rockets as compared to hundreds of thousands launched to measure temperature). One rocket series conducted during relatively "stationary" conditions without much chemistry or cosmic ray variat ions led to the conclusion that they were ice or water coated (Chesworth and Hale, v.1, GRL., 1974). The aerosol contributes to a very low nighttime conductivity that facilitates the penetration of ELF energy to about 80 km at night. Quasi static fields following- large lightning strokes provide the energy necessary to initiate the phenomena of "red sprites" in the mesosphere. "Slow tails" associated with the establishment of these fields propagate globally and comprise a few percent of the DC global circuit. Also, while travelling the globe in the earth-ionosphere cavity they "polarize" the magnetosphere depositing charge at the base of the conjugate ionosphere, sufficient to maintain the large "volt/meter" mesospheric fields (including hemispheric differences), observed by Russian and US groups (Hale, COSPAR, 2000). Examination of the data show that evaluation of long term secular changes, independent of many variables, can best be done in the DAYTIME by positive ion measurements at altitudes where free electrons dominate the conductivity.
139La and 63Cu NMR investigation of charge order in La2CuO4 +y (Tc=42 K)
NASA Astrophysics Data System (ADS)
Imai, T.; Lee, Y. S.
2018-03-01
We report 139La and 63Cu NMR investigation of the successive charge order, spin order, and superconducting transitions in superoxygenated La2CuO4 +y single crystal with stage-4 excess oxygen order at Tstage≃290 K. We show that the stage-4 order induces tilting of CuO6 octahedra below Tstage, which in turn causes 139La NMR line broadening. The structural distortion continues to develop far below Tstage, and completes at Tcharge≃60 K, where charge order sets in. This sequence is reminiscent of the the charge-order transition in Nd codoped La1.88Sr0.12CuO4 that sets in once the low-temperature tetragonal phase is established. We also show that the paramagnetic 63Cu NMR signals are progressively wiped out below Tcharge due to enhanced low-frequency spin fluctuations in charge-ordered domains, but the residual 63Cu NMR signals continue to exhibit the characteristics expected for optimally doped superconducting CuO2 planes. This indicates that charge order in La2CuO4 +y does not take place uniformly in space. In addition, unlike the typical second-order magnetic phase transitions, low-frequency Cu spin fluctuations as probed by 139La nuclear spin-lattice relaxation rate do not exhibit critical divergence at Tspin(≃Tc ) =42 K. These findings, including the spatially inhomogeneous nature of the charge-ordered state, are qualitatively similar to the case of La1.885Sr0.115CuO4 [Imai et al., Phys. Rev. B 96, 224508 (2017), 10.1103/PhysRevB.96.224508 and Arsenault et al., Phys. Rev. B 97, 064511 (2018), 10.1103/PhysRevB.97.064511], but both charge and spin order take place more sharply in the present case.
Yang, Yang; Yu, Haibo; York, Darrin; Cui, Qiang; Elstner, Marcus
2007-10-25
The standard self-consistent-charge density-functional-tight-binding (SCC-DFTB) method (Phys. Rev. B 1998, 58, 7260) is derived by a second-order expansion of the density functional theory total energy expression, followed by an approximation of the charge density fluctuations by charge monopoles and an effective damped Coulomb interaction between the atomic net charges. The central assumptions behind this effective charge-charge interaction are the inverse relation of atomic size and chemical hardness and the use of a fixed chemical hardness parameter independent of the atomic charge state. While these approximations seem to be unproblematic for many covalently bound systems, they are quantitatively insufficient for hydrogen-bonding interactions and (anionic) molecules with localized net charges. Here, we present an extension of the SCC-DFTB method to incorporate third-order terms in the charge density fluctuations, leading to chemical hardness parameters that are dependent on the atomic charge state and a modification of the Coulomb scaling to improve the electrostatic treatment within the second-order terms. These modifications lead to a significant improvement in the description of hydrogen-bonding interactions and proton affinities of biologically relevant molecules.
Measurements of Lunar Dust Charging Properties by Electron Impact
NASA Technical Reports Server (NTRS)
Abbas, Mian M.; Tankosic, Dragana; Craven, Paul D.; Schneider, Todd A.; Vaughn, Jason A.; LeClair, Andre; Spann, James F.; Norwood, Joseph K.
2009-01-01
Dust grains in the lunar environment are believed to be electrostatically charged predominantly by photoelectric emissions resulting from solar UV radiation on the dayside, and on the nightside by interaction with electrons in the solar wind plasma. In the high vacuum environment on the lunar surface with virtually no atmosphere, the positive and negative charge states of micron/submicron dust grains lead to some unusual physical and dynamical dust phenomena. Knowledge of the electrostatic charging properties of dust grains in the lunar environment is required for addressing their hazardous effect on the humans and mechanical systems. It is well recognized that the charging properties of individual small micron size dust grains are substantially different from the measurements on bulk materials. In this paper we present the results of measurements on charging of individual Apollo 11 and Apollo 17 dust grains by exposing them to mono-energetic electron beams in the 10-100 eV energy range. The charging/discharging rates of positively and negatively charged particles of approx. 0.1 to 5 micron radii are discussed in terms of the sticking efficiencies and secondary electron yields. The secondary electron emission process is found to be a complex and effective charging/discharging mechanism for incident electron energies as low as 10-25 eV, with a strong dependence on particle size. Implications of the laboratory measurements on the nature of dust grain charging in the lunar environment are discussed.
HyperCP: A high-rate spectrometer for the study of charged hyperon and kaon decays
NASA Astrophysics Data System (ADS)
Burnstein, R. A.; Chakravorty, A.; Chan, A.; Chen, Y. C.; Choong, W.-S.; Clark, K.; Dukes, E. C.; Durandet, C.; Felix, J.; Fuzesy, R.; Gidal, G.; Gu, P.; Gustafson, H. R.; Ho, C.; Holmstrom, T.; Huang, M.; James, C.; Jenkins, C. M.; Jones, T. D.; Kaplan, D. M.; Lederman, L. M.; Leros, N.; Longo, M. J.; Lopez, F.; Lu, L. C.; Luebke, W.; Luk, K.-B.; Nelson, K. S.; Park, H. K.; Perroud, J.-P.; Rajaram, D.; Rubin, H. A.; Teng, P. K.; Turko, B.; Volk, J.; White, C. G.; White, S. L.; Zyla, P.
2005-04-01
The HyperCP experiment (Fermilab E871) was designed to search for rare phenomena in the decays of charged strange particles, in particular CP violation in Ξ and Λ hyperon decays with a sensitivity of 10-4. Intense charged secondary beams were produced by 800 GeV/ c protons and momentum selected by a magnetic channel. Decay products were detected in a large-acceptance, high-rate magnetic spectrometer using multiwire proportional chambers, trigger hodoscopes, a hadronic calorimeter, and a muon-detection system. Nearly identical acceptances and efficiencies for hyperons and antihyperons decaying within an evacuated volume were achieved by reversing the polarities of the channel and spectrometer magnets. A high-rate data-acquisition system enabled 231 billion events to be recorded in 12 months of data-taking.
Gate-tunable electron interaction in high-κ dielectric films
Kondovych, Svitlana; Luk’yanchuk, Igor; Baturina, Tatyana I.; ...
2017-02-20
The two-dimensional (2D) logarithmic character of Coulomb interaction between charges and the resulting logarithmic confinement is a remarkable inherent property of high dielectric constant (high-k) thin films with far reaching implications. Most and foremost, this is the charge Berezinskii-Kosterlitz-Thouless transition with the notable manifestation, low-temperature superinsulating topological phase. Here we show that the range of the confinement can be tuned by the external gate electrode and unravel a variety of electrostatic interactions in high-k films. Lastly, our findings open a unique laboratory for the in-depth study of topological phase transitions and a plethora of related phenomena, ranging from criticality ofmore » quantum metal- and superconductor-insulator transitions to the effects of charge-trapping and Coulomb scalability in memory nanodevices.« less
Revealing weak spin-orbit coupling effects on charge carriers in a π -conjugated polymer
NASA Astrophysics Data System (ADS)
Malissa, H.; Miller, R.; Baird, D. L.; Jamali, S.; Joshi, G.; Bursch, M.; Grimme, S.; van Tol, J.; Lupton, J. M.; Boehme, C.
2018-04-01
We measure electrically detected magnetic resonance on organic light-emitting diodes made of the polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] at room temperature and high magnetic fields where spectral broadening of the resonance due to spin-orbit coupling (SOC) exceeds that due to the local hyperfine fields. Density-functional-theory calculations on an open-shell model of the material reveal g -tensors of charge-carrier spins in the lowest unoccupied (electron) and highest occupied (hole) molecular orbitals. These tensors are used for simulations of magnetic resonance line shapes. Besides providing the first quantification and direct observation of SOC effects on charge-carrier states in these weakly SO-coupled hydrocarbons, this procedure demonstrates that spin-related phenomena in these materials are fundamentally monomolecular in nature.
Current at Metal-Organic Interfaces
NASA Astrophysics Data System (ADS)
Kern, Klaus
2012-02-01
Charge transport through atomic and molecular constrictions greatly affects the operation and performance of organic electronic devices. Much of our understanding of the charge injection and extraction processes in these systems relays on our knowledge of the electronic structure at the metal-organic interface. Despite significant experimental and theoretical advances in studying charge transport in nanoscale junctions, a microscopic understanding at the single atom/molecule level is missing. In the present talk I will present our recent results to probe directly the nanocontact between single molecules and a metal electrode using scanning probe microscopy and spectroscopy. The experiments provide unprecedented microscopic details of single molecule and atom junctions and open new avenues to study quantum critical and many body phenomena at the atomic scale. Implications for energy conversion devices and carbon based nanoelectronics will also be discussed.
Redox reactions with empirical potentials: atomistic battery discharge simulations.
Dapp, Wolf B; Müser, Martin H
2013-08-14
Batteries are pivotal components in overcoming some of today's greatest technological challenges. Yet to date there is no self-consistent atomistic description of a complete battery. We take first steps toward modeling of a battery as a whole microscopically. Our focus lies on phenomena occurring at the electrode-electrolyte interface which are not easily studied with other methods. We use the redox split-charge equilibration (redoxSQE) method that assigns a discrete ionization state to each atom. Along with exchanging partial charges across bonds, atoms can swap integer charges. With redoxSQE we study the discharge behavior of a nano-battery, and demonstrate that this reproduces the generic properties of a macroscopic battery qualitatively. Examples are the dependence of the battery's capacity on temperature and discharge rate, as well as performance degradation upon recharge.
Phase diagram of the underdoped cuprates at high magnetic field
NASA Astrophysics Data System (ADS)
Chakraborty, Debmalya; Morice, Corentin; Pépin, Catherine
2018-06-01
The experimentally measured phase diagram of cuprate superconductors in the temperature-applied magnetic field plane illuminates key issues in understanding the physics of these materials. At low temperature, the superconducting state gives way to a long-range charge order with increasing magnetic field; both the orders coexist in a small intermediate region. The charge order transition is strikingly insensitive to temperature and quickly reaches a transition temperature close to the zero-field superconducting Tc. We argue that such a transition along with the presence of the coexisting phase is difficult to obtain in a weak coupling competing orders formalism. We demonstrate that for some range of parameters there is an enlarged symmetry of the strongly coupled charge and superconducting orders in the system depending on their relative masses and the coupling strength of the two orders. We establish that this sharp switch from the superconducting phase to the charge order phase can be understood in the framework of a composite SU(2) order parameter comprising the charge and superconducting orders. Finally, we illustrate that there is a possibility of the coexisting phase of the competing charge and superconducting orders only when the SU(2) symmetry between them is weakly broken due to biquadratic terms in the free energy. The relation of this sharp transition to the proximity to the pseudogap quantum critical doping is also discussed.
NASA Astrophysics Data System (ADS)
Hajipour, Ahmad; Tavakoli, Hamidreza
2017-12-01
In this study, the dynamic behavior and chaos control of a chaotic fractional incommensurate-order financial system are investigated. Using well-known tools of nonlinear theory, i.e. Lyapunov exponents, phase diagrams and bifurcation diagrams, we observe some interesting phenomena, e.g. antimonotonicity, crisis phenomena and route to chaos through a period doubling sequence. Adopting largest Lyapunov exponent criteria, we find that the system yields chaos at the lowest order of 2.15. Next, in order to globally stabilize the chaotic fractional incommensurate order financial system with uncertain dynamics, an adaptive fractional sliding mode controller is designed. Numerical simulations are used to demonstrate the effectiveness of the proposed control method.
Khanna, V.; Mankowsky, R.; Petrich, M.; ...
2016-06-30
Here, we show that disruption of charge-density-wave (stripe) order by charge transfer excitation, enhances the superconducting phase rigidity in La 1.885Ba 0.115CuO 4. Time-resolved resonant soft x-ray diffraction demonstrates that charge order melting is prompt following near-infrared photoexcitation whereas the crystal structure remains intact for moderate fluences. THz time-domain spectroscopy reveals that, for the first 2 ps following photoexcitation, a new Josephson plasma resonance edge, at higher frequency with respect to the equilibrium edge, is induced indicating enhanced superconducting interlayer coupling. Furthermore, the fluence dependence of the charge-order melting and the enhanced superconducting interlayer coupling are correlated with a saturationmore » limit of ~0.5mJ/cm 2. When using a combination of x-ray and optical spectroscopies we establish a hierarchy of timescales between enhanced superconductivity, melting of charge order, and rearrangement of the crystal structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khanna, V.; Mankowsky, R.; Petrich, M.
Here, we show that disruption of charge-density-wave (stripe) order by charge transfer excitation, enhances the superconducting phase rigidity in La 1.885Ba 0.115CuO 4. Time-resolved resonant soft x-ray diffraction demonstrates that charge order melting is prompt following near-infrared photoexcitation whereas the crystal structure remains intact for moderate fluences. THz time-domain spectroscopy reveals that, for the first 2 ps following photoexcitation, a new Josephson plasma resonance edge, at higher frequency with respect to the equilibrium edge, is induced indicating enhanced superconducting interlayer coupling. Furthermore, the fluence dependence of the charge-order melting and the enhanced superconducting interlayer coupling are correlated with a saturationmore » limit of ~0.5mJ/cm 2. When using a combination of x-ray and optical spectroscopies we establish a hierarchy of timescales between enhanced superconductivity, melting of charge order, and rearrangement of the crystal structure.« less
Charge Transport in Semiconductor Nanocrystal Solids
NASA Astrophysics Data System (ADS)
Talapin, Dmitri; Shevchenko, Elena; Lee, Jong Soo; Urban, Jeffrey; Mitzi, David; Murray, Christopher
2007-03-01
Self-assembly of chemically-synthesized nanocrystals can yield complex long-range ordered structures which can be used as model systems for studying transport phenomena in low-dimensional materials [1]. Treatment of close-packed PbSe nanocrystal arrays with hydrazine enhanced exchange coupling between the nanocrystals and improved conductance by more than ten orders of magnitude compared to native nanocrystal films [2]. The conductivity of PbSe nanocrystal solids can be switched between n- and p-type transports by controlling the saturation of electronic states at nanocrystal surfaces. Nanocrystal arrays form the n- and p-channels of field-effect transistors with electron and hole mobilities of 2.5 cm^2V-1s-1 and 0.3 cm^2V-1s-1, respectively, and current modulation Ion/Ioff˜10^3-10^4. The field-effect mobility in PbSe nanocrystal arrays is higher than the mobility of organic transistors while the easy switch between n- and p-transport allows realization of complimentary circuits and p-n junctions for nanocrystal-based solar cells and thermoelectric devices. [1] E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O'Brien, C. B. Murray. Nature 439, 55 (2006). [2] D. V. Talapin, C. B. Murray. Science 310, 86 (2005).
NASA Astrophysics Data System (ADS)
Lumpkin, A. H.; Thurman-Keup, R.; Edstrom, D.; Ruan, J.; Eddy, N.; Prieto, P.; Napoly, O.; Carlsten, B. E.; Bishofberger, K.
2018-06-01
We report the direct observations of submacropulse beam centroid oscillations correlated with higher order modes (HOMs) which were generated by off-axis electron beam steering in TESLA-type superconducting rf cavities. The experiments were performed at the Fermilab Accelerator Science and Technology (FAST) facility using its unique configuration of a photocathode rf gun injecting beam into two separated nine-cell cavities in series with corrector magnets and beam position monitors (BPMs) located before, between, and after them. Oscillations of ˜100 kHz in the vertical plane and ˜380 kHz in the horizontal plane with up to 600 -μ m amplitudes were observed in a 3-MHz micropulse repetition rate beam with charges of 100, 300, 500, and 1000 pC /b . However, the effects were much reduced at 100 pC /b . The measurements were based on HOM detector circuitry targeting the first and second dipole passbands, rf BPM bunch-by-bunch array data, imaging cameras, and a framing camera. Calculations reproduced the oscillation frequencies of the phenomena in the vertical case. In principle, these fundamental results may be scaled to cryomodule configurations of major accelerator facilities.
Lumpkin, A. H.; Thurman-Keup, R.; Edstrom, D.; ...
2018-06-04
Here, we report the direct observations of submacropulse beam centroid oscillations correlated with higher order modes (HOMs) which were generated by off-axis electron beam steering in TESLA-type superconducting rf cavities. The experiments were performed at the Fermilab Accelerator Science and Technology (FAST) facility using its unique configuration of a photocathode rf gun injecting beam into two separated nine-cell cavities in series with corrector magnets and beam position monitors (BPMs) located before, between, and after them. Oscillations of ~100 kHz in the vertical plane and ~380 kHz in the horizontal plane with up to 600-μm amplitudes were observed in a 3-MHzmore » micropulse repetition rate beam with charges of 100, 300, 500, and 1000 pC/b. However, the effects were much reduced at 100 pC/b. The measurements were based on HOM detector circuitry targeting the first and second dipole passbands, rf BPM bunch-by-bunch array data, imaging cameras, and a framing camera. Calculations reproduced the oscillation frequencies of the phenomena in the vertical case. In principle, these fundamental results may be scaled to cryomodule configurations of major accelerator facilities.« less
Manifestation of intelligence implications for SETI
NASA Technical Reports Server (NTRS)
Kuiper, T. B. H.
1986-01-01
The objectives of the SETI projects are discussed. Life, intelligence, and sapience are defined in order to characterize the phenomena. Dissipation and coherence are useful characteristics for detection. Consideration is given to electromagnetically observable phenomena, in particular spatial coherence.
Recent Applications of Higher-Order Spectral Analysis to Nonlinear Aeroelastic Phenomena
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Hajj, Muhammad R.; Dunn, Shane; Strganac, Thomas W.; Powers, Edward J.; Stearman, Ronald
2005-01-01
Recent applications of higher-order spectral (HOS) methods to nonlinear aeroelastic phenomena are presented. Applications include the analysis of data from a simulated nonlinear pitch and plunge apparatus and from F-18 flight flutter tests. A MATLAB model of the Texas A&MUniversity s Nonlinear Aeroelastic Testbed Apparatus (NATA) is used to generate aeroelastic transients at various conditions including limit cycle oscillations (LCO). The Gaussian or non-Gaussian nature of the transients is investigated, related to HOS methods, and used to identify levels of increasing nonlinear aeroelastic response. Royal Australian Air Force (RAAF) F/A-18 flight flutter test data is presented and analyzed. The data includes high-quality measurements of forced responses and LCO phenomena. Standard power spectral density (PSD) techniques and HOS methods are applied to the data and presented. The goal of this research is to develop methods that can identify the onset of nonlinear aeroelastic phenomena, such as LCO, during flutter testing.
NASA Astrophysics Data System (ADS)
Deng, Mingge; Li, Zhen; Borodin, Oleg; Karniadakis, George Em
2016-10-01
We develop a "charged" dissipative particle dynamics (cDPD) model for simulating mesoscopic electrokinetic phenomena governed by the stochastic Poisson-Nernst-Planck and the Navier-Stokes equations. Specifically, the transport equations of ionic species are incorporated into the DPD framework by introducing extra degrees of freedom and corresponding evolution equations associated with each DPD particle. Diffusion of ionic species driven by the ionic concentration gradient, electrostatic potential gradient, and thermal fluctuations is captured accurately via pairwise fluxes between DPD particles. The electrostatic potential is obtained by solving the Poisson equation on the moving DPD particles iteratively at each time step. For charged surfaces in bounded systems, an effective boundary treatment methodology is developed for imposing both the correct hydrodynamic and electrokinetics boundary conditions in cDPD simulations. To validate the proposed cDPD model and the corresponding boundary conditions, we first study the electrostatic structure in the vicinity of a charged solid surface, i.e., we perform cDPD simulations of the electrostatic double layer and show that our results are in good agreement with the well-known mean-field theoretical solutions. We also simulate the electrostatic structure and capacity densities between charged parallel plates in salt solutions with different salt concentrations. Moreover, we employ the proposed methodology to study the electro-osmotic and electro-osmotic/pressure-driven flows in a micro-channel. In the latter case, we simulate the dilute poly-electrolyte solution drifting by electro-osmotic flow in a micro-channel, hence demonstrating the flexibility and capability of this method in studying complex fluids with electrostatic interactions at the micro- and nano-scales.
Aad, G.; Abbott, B.; Abdallah, J.; ...
2015-08-01
A generic search for anomalous production of events with at least three charged leptons is presented. The data sample consists of pp collisions at √s=8 TeV collected in 2012 by the ATLAS experiment at the CERN Large Hadron Collider, and corresponds to an integrated luminosity of 20.3 fb -1 . Events are required to have at least three selected lepton candidates, at least two of which must be electrons or muons, while the third may be a hadronically decaying tau. Selected events are categorized based on their lepton flavour content and signal regions are constructed using several kinematic variables ofmore » interest. No significant deviations from Standard Model predictions are observed. Model-independent upper limits on contributions from beyond the Standard Model phenomena are provided for each signal region, along with prescription to re-interpret the limits for any model. Constraints are also placed on models predicting doubly charged Higgs bosons and excited leptons. For doubly charged Higgs bosons decaying to eτ or μτ, lower limits on the mass are set at 400 GeV at 95% confidence level. For excited leptons, constraints are provided as functions of both the mass of the excited state and the compositeness scale Λ, with the strongest mass constraints arising in regions where the mass equals Λ. In such scenarios, lower mass limits are set at 3.0 TeV for excited electrons and muons, 2.5 TeV for excited taus, and 1.6 TeV for every excited-neutrino flavour.« less
Interfacial Ordering and Accompanying Divergent Capacitance at Ionic Liquid-Metal Interfaces.
Limmer, David T
2015-12-18
A theory is constructed for dense ionic solutions near charged planar walls that is valid for strong interionic correlations. This theory predicts a fluctuation-induced, first-order transition and spontaneous charge density ordering at the interface, in the presence of an otherwise disordered bulk solution. The surface ordering is driven by applied voltage and results in an anomalous differential capacitance, in agreement with recent simulation results and consistent with experimental observations of a wide array of systems. Explicit forms for the charge density profile and capacitance are given. The theory is compared with numerical results for the charge frustrated Ising model, which is also found to exhibit a voltage driven first-order transition.
Interfacial Ordering and Accompanying Divergent Capacitance at Ionic Liquid-Metal Interfaces
NASA Astrophysics Data System (ADS)
Limmer, David T.
2015-12-01
A theory is constructed for dense ionic solutions near charged planar walls that is valid for strong interionic correlations. This theory predicts a fluctuation-induced, first-order transition and spontaneous charge density ordering at the interface, in the presence of an otherwise disordered bulk solution. The surface ordering is driven by applied voltage and results in an anomalous differential capacitance, in agreement with recent simulation results and consistent with experimental observations of a wide array of systems. Explicit forms for the charge density profile and capacitance are given. The theory is compared with numerical results for the charge frustrated Ising model, which is also found to exhibit a voltage driven first-order transition.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-25
... marketing charges for Customer executions in the complex order book is hindering their ability to route and...\\ The standard marketing charges are $0.25 per contract for any electronic Customer order in a Penny...-imposition of marketing charges on market makers who trade with electronic Customer orders in the complex...
1993-03-28
Signature) BAMANDAS BASU DAVID N. ANDERSON Contract Manager Branch Chief (Signature) WILLIAM K. VICKERT Division Director This report has been revieved by...Fluids, 20, 1525 (1977). 18. S.L. Musher and B. Sturman, JETP Lett., English Translation, 22, 265 (1976). 19. R. McWilliams, R. Koslover, H. Boehmer
Field-Induced Phenomena in Electrical Insulation.
1984-09-29
Dis- charges," Jour. of App. Phys., Vol. 55, No. 1, 1984, pp. 9-14. 112 • ’ -. ; . - -. A " . i . . .- L ."L 35. A. Tomago and T. Suzuki, "A New...Impregnated with Supercritical Helium," IEE PROC., Vol. 129, pt. A, No. 3, 1982, pp. 176-182. 31. A. Tomago , et. al., "Development of Oil-Impregnated, All
Symmetry and charge order in Fe2OBO3 studied through polarized resonant x-ray diffraction
NASA Astrophysics Data System (ADS)
Bland, S. R.; Angst, M.; Adiga, S.; Scagnoli, V.; Johnson, R. D.; Herrero-Martín, J.; Hatton, P. D.
2010-09-01
Bond valence sum calculations have previously suggested that iron oxyborate exhibits charge order of the Fe ions with integer 2+/3+ valence states. Meanwhile transition metal oxides typically show much smaller, fractional charge disproportionations. Using resonant x-ray diffraction at the iron K edge, we find resonant features which are much larger than those ordinarily observed in charge ordered oxides. Simulations were subsequently performed using a cluster-based, monoelectronic code. The nanoscale domain structure prevents precise fitting; nevertheless the simulations confirm the diagonal charge order symmetry, as well as the unusually large charge disproportionation. We have demonstrated the conversion of linearly to nonlinearly polarized light and vice versa through full polarization analysis. Simulations show that this effect principally results from interference between the isotropic and anisotropic scattering terms. This mechanism is likely to account for similar observations in alternative systems.
Hartnett, Patrick E.; Dyar, Scott M.; Margulies, Eric A.; ...
2015-07-31
The photophysics of a covalently linked perylenediimide–diketopyrrolopyrrole–perylenediimide acceptor–donor–acceptor molecule (PDI–DPP–PDI, 1) were investigated and found to be markedly different in solution versus in unannealed and solvent annealed films. Photoexcitation of 1 in toluene results in quantitative charge separation in τ = 3.1 ± 0.2 ps, with charge recombination in τ = 340 ± 10 ps, while in unannealed/disordered films of 1, charge separation occurs in τ < 250 fs, while charge recombination displays a multiexponential decay in ~6 ns. The absence of long-lived, charge separation in the disordered film suggests that few free charge carriers are generated. In contrast, uponmore » CH₂Cl₂ vapor annealing films of 1, grazing-incidence X-ray scattering shows that the molecules form a more ordered structure. Photoexcitation of the ordered films results in initial formation of a spin-correlated radical ion pair (electron–hole pair) as indicated by magnetic field effects on the formation of free charge carriers which live for ~4 μs. This result has significant implications for the design of organic solar cells based on covalent donor–acceptor systems and shows that long-lived, charge-separated states can be achieved by controlling intramolecular charge separation dynamics in well-ordered systems.« less
String theory and aspects of higher dimensional gravity
NASA Astrophysics Data System (ADS)
Copsey, Keith
2007-05-01
String theory generically requires that there are more than the four dimensions easily observable. It has become clear in recent years that gravity in more than four dimensions presents qualitative new features and this thesis is dedicated to exploring some of these phenomena. I discuss the thermodynamics of new types of black holes with new types of charges and study aspects of the AdS-CFT correspondence dual to gravitational phenomena unique to higher dimensions. I further describe the construction of a broad new class of solutions in more than four dimensions containing dynamical minimal spheres ("bubbles of nothing") in asymptotically flat and AdS space without any asymptotic Kaluza-Klein direction.
NASA Technical Reports Server (NTRS)
Frederickson, A. R.
1985-01-01
A model was developed which places radiation induced discharge pulse results into a unified conceptual framework. Only two phenomena are required to interpret all space and laboratory results: (1) radiation produces large electrostatic fields inside insulators via the trapping of a net space charge density; and (2) the electrostatic fields initiate discharge streamer plasmas similar to those investigated in high voltage electrical insulation materials; these streamer plasmas generate the pulsing phenomena. The apparent variability and diversity of results seen is an inherent feature of the plasma streamer mechanism acting in the electric fields which is created by irradiation of the dielectrics. The implications of the model are extensive and lead to constraints over what can be done about spacecraft pulsing.
Long path-length experimental studies of longitudinal phenomena in intense beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaudoin, B. L.; Haber, I.; Kishek, R. A.
2016-05-15
Intense charged particle beams are nonneutral plasmas as they can support a host of plasma waves and instabilities. The longitudinal physics, for a long beam, can often be reasonably described by a 1-D cold-fluid model with a geometry factor to account for the transverse effects. The plasma physics of such beams has been extensively studied theoretically and computationally for decades, but until recently, the only experimental measurements were carried out on relatively short linacs. This work reviews experimental studies over the past five years on the University of Maryland Electron Ring, investigating longitudinal phenomena over time scales of thousands ofmore » plasma periods, illustrating good agreement with simulations.« less
Charged dust phenomena in the near-Earth space environment.
Scales, W A; Mahmoudian, A
2016-10-01
Dusty (or complex) plasmas in the Earth's middle and upper atmosphere ultimately result in exotic phenomena that are currently forefront research issues in the space science community. This paper presents some of the basic criteria and fundamental physical processes associated with the creation, evolution and dynamics of dusty plasmas in the near-Earth space environment. Recent remote sensing techniques to probe naturally created dusty plasma regions are also discussed. These include ground-based experiments employing high-power radio wave interaction. Some characteristics of the dusty plasmas that are actively produced by space-borne aerosol release experiments are discussed. Basic models that may be used to investigate the characteristics of such dusty plasma regions are presented.
NASA Technical Reports Server (NTRS)
Kimble, Michael C.; White, Ralph E.
1991-01-01
A mathematical model of a hydrogen/oxygen alkaline fuel cell is presented that can be used to predict the polarization behavior under various power loads. The major limitations to achieving high power densities are indicated and methods to increase the maximum attainable power density are suggested. The alkaline fuel cell model describes the phenomena occurring in the solid, liquid, and gaseous phases of the anode, separator, and cathode regions based on porous electrode theory applied to three phases. Fundamental equations of chemical engineering that describe conservation of mass and charge, species transport, and kinetic phenomena are used to develop the model by treating all phases as a homogeneous continuum.
Antisite defects in layered multiferroic CuCr0.9In0.1P2S6
NASA Astrophysics Data System (ADS)
He, Qian; Belianinov, Alex; Dziaugys, Andrius; Maksymovych, Petro; Vysochanskii, Yulian; Kalinin, Sergei V.; Borisevich, Albina Y.
2015-11-01
The CuCr1-xInxP2S6 system represents a large family of metal chalcogenophosphates that are unique and promising candidates for 2D materials with functionalities such as ferroelectricity. In this work, we carried out detailed microstructural and chemical characterization of these compounds using aberration-corrected STEM, in order to understand the origin of these different ordering phenomena. Quantitative STEM-HAADF imaging and analysis identified the stacking order of an 8-layer thin flake, which leads to the identification of anti-site In3+(Cu+) doping. We believe that these findings will pave the way towards understanding the ferroic coupling phenomena in van der Waals lamellar compounds, as well as their potential applications in 2-D electronics.The CuCr1-xInxP2S6 system represents a large family of metal chalcogenophosphates that are unique and promising candidates for 2D materials with functionalities such as ferroelectricity. In this work, we carried out detailed microstructural and chemical characterization of these compounds using aberration-corrected STEM, in order to understand the origin of these different ordering phenomena. Quantitative STEM-HAADF imaging and analysis identified the stacking order of an 8-layer thin flake, which leads to the identification of anti-site In3+(Cu+) doping. We believe that these findings will pave the way towards understanding the ferroic coupling phenomena in van der Waals lamellar compounds, as well as their potential applications in 2-D electronics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04779j
Tamashiro, M N; Barbetta, C; Germano, R; Henriques, V B
2011-09-01
We propose a statistical model to account for the gel-fluid anomalous phase transitions in charged bilayer- or lamellae-forming ionic lipids. The model Hamiltonian comprises effective attractive interactions to describe neutral-lipid membranes as well as the effect of electrostatic repulsions of the discrete ionic charges on the lipid headgroups. The latter can be counterion dissociated (charged) or counterion associated (neutral), while the lipid acyl chains may be in gel (low-temperature or high-lateral-pressure) or fluid (high-temperature or low-lateral-pressure) states. The system is modeled as a lattice gas with two distinct particle types--each one associated, respectively, with the polar-headgroup and the acyl-chain states--which can be mapped onto an Ashkin-Teller model with the inclusion of cubic terms. The model displays a rich thermodynamic behavior in terms of the chemical potential of counterions (related to added salt concentration) and lateral pressure. In particular, we show the existence of semidissociated thermodynamic phases related to the onset of charge order in the system. This type of order stems from spatially ordered counterion association to the lipid headgroups, in which charged and neutral lipids alternate in a checkerboard-like order. Within the mean-field approximation, we predict that the acyl-chain order-disorder transition is discontinuous, with the first-order line ending at a critical point, as in the neutral case. Moreover, the charge order gives rise to continuous transitions, with the associated second-order lines joining the aforementioned first-order line at critical end points. We explore the thermodynamic behavior of some physical quantities, like the specific heat at constant lateral pressure and the degree of ionization, associated with the fraction of charged lipid headgroups.
Laboratory Measurements of Charging of Apollo 17 Lunar Dust Grains by Low Energy Electrons
NASA Technical Reports Server (NTRS)
Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.; Gaskin, Jessica
2007-01-01
It is well recognized that the charging properties of individual micron/sub-micron size dust grains by various processes are expected to be substantially different from the currently available measurements made on bulk materials. Solar UV radiation and the solar wind plasma charge micron size dust grains on the lunar surface with virtually no atmosphere. The electrostatically charged dust grains are believed to be levitated and transported long distances over the lunar terminator from the day to the night side. The current models do not fully explain the lunar dust phenomena and laboratory measurements are needed to experimentally determine the charging properties of lunar dust grains. An experimental facility has been developed in the Dusty Plasma Laboratory at NASA Marshall Space Flight Center MSFC for investigating the charging properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present laboratory measurements on charging of Apollo 17 individual lunar dust grains by low energy electron beams in the 5-100 eV energy range. The measurements are made by levitating Apollo 17 dust grains of 0.2 to 10 micrometer diameters, in an electrodynamic balance and exposing them to mono-energetic electron beams. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission processes are discussed.
Unconventional charge order in a co-doped high-Tc superconductor
Pelc, D.; Vučković, M.; Grafe, H. -J.; Baek, S. -H.; Požek, M.
2016-01-01
Charge-stripe order has recently been established as an important aspect of cuprate high-Tc superconductors. However, owing to the complex interplay between competing phases and the influence of disorder, it is unclear how it emerges from the parent high-temperature state. Here we report on the discovery of an unconventional ordered phase between charge-stripe order and (pseudogapped) metal in the cuprate La1.8−xEu0.2SrxCuO4. We use three complementary experiments—nuclear quadrupole resonance, nonlinear conductivity and specific heat—to demonstrate that the order appears through a sharp phase transition and exists in a dome-shaped region of the phase diagram. Our results imply that the new phase is a state, which preserves translational symmetry: a charge nematic. We thus resolve the process of charge-stripe development in cuprates, show that this nematic phase is distinct from high-temperature pseudogap and establish a link with other strongly correlated electronic materials with prominent nematic order. PMID:27605152
Magnetic Fluctuations, Precursor Phenomena, and Phase Transition in MnSi under a Magnetic Field
NASA Astrophysics Data System (ADS)
Pappas, C.; Bannenberg, L. J.; Lelièvre-Berna, E.; Qian, F.; Dewhurst, C. D.; Dalgliesh, R. M.; Schlagel, D. L.; Lograsso, T. A.; Falus, P.
2017-07-01
The reference chiral helimagnet MnSi is the first system where Skyrmion lattice correlations have been reported. At a zero magnetic field the transition at TC to the helimagnetic state is of first order. Above TC, in a region dominated by precursor phenomena, neutron scattering shows the buildup of strong chiral fluctuating correlations over the surface of a sphere with radius 2 π /ℓ, where ℓ is the pitch of the helix. It has been suggested that these fluctuating correlations drive the helical transition to first order following a scenario proposed by Brazovskii for liquid crystals. We present a comprehensive neutron scattering study under magnetic fields, which provides evidence that this is not the case. The sharp first order transition persists for magnetic fields up to 0.4 T whereas the fluctuating correlations weaken and start to concentrate along the field direction already above 0.2 T. Our results thus disconnect the first order nature of the transition from the precursor fluctuating correlations. They also show no indication for a tricritical point, where the first order transition crosses over to second order with increasing magnetic field. In this light, the nature of the first order helical transition and the precursor phenomena above TC, both of general relevance to chiral magnetism, remain an open question.
7 CFR 1205.500 - Terms defined.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton... administrative body established pursuant to the Cotton Research and Promotion Order. (c) CCC means the Commodity... research and promotion assessment, picking charges, ginning charges, warehouse receiving charges, warehouse...
7 CFR 1205.500 - Terms defined.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton... administrative body established pursuant to the Cotton Research and Promotion Order. (c) CCC means the Commodity... research and promotion assessment, picking charges, ginning charges, warehouse receiving charges, warehouse...
Ferrick, Adam; Wang, Mei; Woehl, Taylor J
2018-05-29
Electric field-directed assembly of colloidal nanoparticles (NPs) has been widely adopted for fabricating functional thin films and nanostructured surfaces. While first-order electrokinetic effects on NPs are well-understood in terms of classical models, effects of second-order electrokinetics that involve induced surface charge are still poorly understood. Induced charge electroosmotic phenomena, such as electrohydrodynamic (EHD) flow, have long been implicated in electric field-directed NP assembly with little experimental basis. Here, we use in situ dark-field optical microscopy and plasmonic NPs to directly observe the dynamics of planar assembly of colloidal NPs adjacent to a planar electrode in low-frequency (<1 kHz) oscillatory electric fields. We exploit the change in plasmonic NP color resulting from interparticle plasmonic coupling to visualize the assembly dynamics and assembly structure of silver NPs. Planar assembly of NPs is unexpected because of strong electrostatic repulsion between NPs and indicates that there are strong attractive interparticle forces oriented perpendicular to the electric field direction. A parametric investigation of the voltage- and frequency-dependent phase behavior reveals that planar NP assembly occurs over a narrow frequency range below which irreversible ballistic deposition occurs. Two key experimental observations are consistent with EHD flow-induced NP assembly: (1) NPs remain mobile during assembly and (2) electron microscopy observations reveal randomly close-packed planar assemblies, consistent with strong interparticle attraction. We interpret planar assembly in terms of EHD fluid flow and develop a scaling model that qualitatively agrees with the measured phase regions. Our results are the first direct in situ observations of EHD flow-induced NP assembly and shed light on long-standing unresolved questions concerning the formation of NP superlattices during electric field-induced NP deposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Först, M.; Frano, A.; Kaiser, S.
2014-11-17
In this study, we use femtosecond resonant soft x-ray diffraction to measure the optically stimulated ultrafast changes of charge density wave correlations in underdoped YBa₂Cu₃O₆.₆. We find that when coherent interlayer transport is enhanced by optical excitation of the apical oxygen distortions, at least 50% of the in-plane charge density wave order is melted. These results indicate that charge ordering and superconductivity may be competing up to the charge ordering transition temperature, with the latter becoming a hidden phase that is accessible only by nonlinear phonon excitation.
Reversed Hall effect and plasma conductivity in the presence of charged impurities
NASA Astrophysics Data System (ADS)
Yaroshenko, V. V.; Lühr, H.
2018-01-01
The Hall conductivity of magnetized plasma can be strongly suppressed by the contribution of negatively charged particulates (referred further as "dust"). Once the charge density accumulated by the dust exceeds a certain threshold, the Hall component becomes negative, providing a reversal in the Hall current. Such an effect is unique for dust-loaded plasmas, and it can hardly be achieved in electronegative plasmas. Further growth of the dust density leads to an increase in both the absolute value of the Hall and Pedersen conductivities, while the field-aligned component is decreased. These modifications enhance the role of transverse electric currents and reduce the anisotropy of a magnetized plasma when loaded with charged impurities. The findings provide an important basis for studying the generation of electric currents and transport phenomena in magnetized plasma systems containing small charged particulates. They can be relevant for a wide range of applications from naturally occurring space plasmas in planetary magnetospheres and astrophysical objects to laboratory dusty plasmas (Magnetized Dusty Plasma Experiment) and to technological and fusion plasmas.
Coulomb Blockade and Multiple Andreev Reflection in a Superconducting Single-Electron Transistor
NASA Astrophysics Data System (ADS)
Lorenz, Thomas; Sprenger, Susanne; Scheer, Elke
2018-06-01
In superconducting quantum point contacts, multiple Andreev reflection (MAR), which describes the coherent transport of m quasiparticles each carrying an electron charge with m≥3, sets in at voltage thresholds eV = 2Δ /m. In single-electron transistors, Coulomb blockade, however, suppresses the current at low voltage. The required voltage for charge transport increases with the square of the effective charge eV∝ ( me) ^2. Thus, studying the charge transport in all-superconducting single-electron transistors (SSETs) sets these two phenomena into competition. In this article, we present the fabrication as well as a measurement scheme and transport data for a SSET with one junction in which the transmission and thereby the MAR contributions can be continuously tuned. All regimes from weak to strong coupling are addressed. We extend the Orthodox theory by incorporating MAR processes to describe the observed data qualitatively. We detect a new transport process the nature of which is unclear at present. Furthermore, we observe a renormalization of the charging energy when approaching the strong coupling regime.
Analysis of Static Spacecraft Floating Potential at Low Earth Orbit (LEO)
NASA Technical Reports Server (NTRS)
Herr, Joel L.; Hwang, K. S.; Wu, S. T.
1995-01-01
Spacecraft floating potential is the charge on the external surfaces of orbiting spacecraft relative to the space. Charging is caused by unequal negative and positive currents to spacecraft surfaces. The charging process continues until the accelerated particles can be collected rapidly enough to balance the currents at which point the spacecraft has reached its equilibrium or floating potential. In low inclination. Low Earth Orbit (LEO), the collection of positive ion and negative electrons. in a particular direction. are typically not equal. The level of charging required for equilibrium to be established is influenced by the characteristics of the ambient plasma environment. by the spacecraft motion, and by the geometry of the spacecraft. Using the kinetic theory, a statistical approach for studying the interaction is developed. The approach used to study the spacecraft floating potential depends on which phenomena are being applied. and on the properties of the plasma. especially the density and temperature. The results from kinetic theory derivation are applied to determine the charging level and the electric potential distribution at an infinite flat plate perpendicular to a streaming plasma using finite-difference scheme.
Method for eliminating artifacts in CCD imagers
Turko, Bojan T.; Yates, George J.
1992-01-01
An electronic method for eliminating artifacts in a video camera (10) employing a charge coupled device (CCD) (12) as an image sensor. The method comprises the step of initializing the camera (10) prior to normal read out and includes a first dump cycle period (76) for transferring radiation generated charge into the horizontal register (28) while the decaying image on the phosphor (39) being imaged is being integrated in the photosites, and a second dump cycle period (78), occurring after the phosphor (39) image has decayed, for rapidly dumping unwanted smear charge which has been generated in the vertical registers (32). Image charge is then transferred from the photosites (36) and (38) to the vertical registers (32) and read out in conventional fashion. The inventive method allows the video camera (10) to be used in environments having high ionizing radiation content, and to capture images of events of very short duration and occurring either within or outside the normal visual wavelength spectrum. Resultant images are free from ghost, smear and smear phenomena caused by insufficient opacity of the registers (28) and (32), and are also free from random damage caused by ionization charges which exceed the charge limit capacity of the photosites (36) and (37).
(LaTiO3)n/(LaVO3)n as a model system for unconventional charge transfer and polar metallicity
NASA Astrophysics Data System (ADS)
Weng, Yakui; Zhang, Jun-Jie; Gao, Bin; Dong, Shuai
At interfaces between oxide materials, lattice and electronic reconstructions always play important roles in exotic phenomena. In this study, the density-functional theory and maximally localized Wannier functions are employed to investigate the (LaTiO3)n/(LaVO3)n magnetic superlattices. By considering lattice distortion and dimensional effect, many interesting interfacial physics have been found in the n = 1 superlattice, e.g. magnetic phase transition, unconventional charge transfer, and metal-insulator transition. In addition, the compatibility among the polar structure, ferrimagnetism, and metallicity is predicted in the n = 2 superlattice.
Electrostatic demonstration of free-fall weightlessness
NASA Astrophysics Data System (ADS)
Balukovic, Jasmina; Slisko, Josip; Corona Cruz, Adrian
2015-05-01
The phenomena of free-fall weightlessness have been demonstrated to students for many years in a number of different ways. The essential basis of all these demonstrations is the fact that in free-falling, gravitationally accelerated systems, the weight force and weight-related forces (for example, friction and hydrostatic forces) disappear. In this article, an original electrostatic demonstration of weightlessness is presented. A charged balloon fixed at the opening of a plastic container cannot lift a light styrofoam sphere sitting on the bottom when the container is at rest. However, while the system is in free-fall, the sphere becomes weightless and the charged balloon is able to lift it electrostatically.
Temperature dependence of frequency response characteristics in organic field-effect transistors
NASA Astrophysics Data System (ADS)
Lu, Xubing; Minari, Takeo; Liu, Chuan; Kumatani, Akichika; Liu, J.-M.; Tsukagoshi, Kazuhito
2012-04-01
The frequency response characteristics of semiconductor devices play an essential role in the high-speed operation of electronic devices. We investigated the temperature dependence of dynamic characteristics in pentacene-based organic field-effect transistors and metal-insulator-semiconductor capacitors. As the temperature decreased, the capacitance-voltage characteristics showed large frequency dispersion and a negative shift in the flat-band voltage at high frequencies. The cutoff frequency shows Arrhenius-type temperature dependence with different activation energy values for various gate voltages. These phenomena demonstrate the effects of charge trapping on the frequency response characteristics, since decreased mobility prevents a fast charge response for alternating current signals at low temperatures.
Kepner, Gordon R
2014-08-27
This study uses dimensional analysis to derive the general second-order differential equation that underlies numerous physical and natural phenomena described by common mathematical functions. It eschews assumptions about empirical constants and mechanisms. It relies only on the data plot's mathematical properties to provide the conditions and constraints needed to specify a second-order differential equation that is free of empirical constants for each phenomenon. A practical example of each function is analyzed using the general form of the underlying differential equation and the observable unique mathematical properties of each data plot, including boundary conditions. This yields a differential equation that describes the relationship among the physical variables governing the phenomenon's behavior. Complex phenomena such as the Standard Normal Distribution, the Logistic Growth Function, and Hill Ligand binding, which are characterized by data plots of distinctly different sigmoidal character, are readily analyzed by this approach. It provides an alternative, simple, unifying basis for analyzing each of these varied phenomena from a common perspective that ties them together and offers new insights into the appropriate empirical constants for describing each phenomenon.
Postfact phenomena of the wet-steam flow electrization in turbines
NASA Astrophysics Data System (ADS)
Tarelin, A. A.
2017-11-01
Physical processes occurring in a turbine with natural electrization of a humidity-steam flow and their effect on efficiency and reliability of the turbine operation has been considered. Causes of the electrical potential occurrence on a rotor shaft are analyzed. The wet steam's electrization exposure on the electrical potential that is one of the major factors of bearings' electroerosion has been demonstrated on the full-scale installation. Hydrogen formation in wheelspace of the turbine as a result of electrochemical processes and electric field exposure of the space charge has been considered. Hydrogen concentration dependence on a volume charge density in the steam flow has been determined. It is stated that the processes occurring behind the final stage of wet-steam turbines are similar to the ones in elaerosol ectrostatic generators. It has been demonstrated that this phenomenon causes the flow's temporal inhibition and starts pulsations. These factors' impact on power loss of the turbine has been evaluated and recommendations for their elimination have been offered. It has been determined that motions of charged drops can cause self-maintained discharges inside of the flow and between the flow and grounded surfaces that are accompanied by electromagnetic radiation of the wide spectrum. The integrated studies have shown that physical phenomena occurring due to natural electrization negatively affect efficiency and reliability of the turbine operation. Practical recommendations allowing one to minimize the negative effects of the flow natural electrization process have been offered.
Electronic Tuning In The Hidden Order Compound URu2Si 2 Through Si → P substitution
NASA Astrophysics Data System (ADS)
Gallagher, Andrew
Crystalline materials that include 4f- and 5 f-electron elements frequently exhibit a variety of intriguing phenomena including spin and charge orderings, spin and valence fluctuations, heavy fermion behavior, breakdown of Fermi liquid behavior, and unconventional superconductivity. [5, 6, 7, 8, 9, 10, 11, 12, 13] Amongst such materials, the Kondo lattice system URu2Si2 stands out as being particularly unusual. [14, 15, 16] While at high temperature it exhibits behavior that is typical for an f-electron lattice immersed in a sea of conduction electrons, at T0 = 17:5 K there is a second order phase transition that is followed by unconventional superconductivity near Tc ≈ 1:5 K. [15] Despite three decades of work, the order parameter for the transition at T0 remains unknown and hence, it has been named "hidden order". There have been a multitude of experimental attempts to unravel hidden order, mainly through tuning of the electronic state via pressure, applied magnetic field, and chemical substitution. [17, 18] While these strategies reveal interesting phase diagrams, a longstanding challenge is that any such approach explores the phase space along an unknown vector: i.e., many different factors are affected. To address this issue, we developed a new organizational map for the U-based ThCr2Si2-type compounds that are related to URu2Si2 and thus guided, we explored a new chemical tuning axis: Si -> P. Our studies were enabled by the development of a new molten metal crystal growth method for URu2Si2 which produces high quality single crystals and allows us to introduce high vapor pressure elements, such as phosphorous. [19, 20] Si → P tuning reveals that while the high temperature Kondo lattice behavior is robust, the low temperature phenomena are remarkably sensitive to electronic tuning. [21, 22] In the URu2Si2-xPx phase diagram we find that while hidden order is monotonically suppressed and destroyed for x < 0.035, the superconducting strength evolves non-monotonically with a maximum near x = 0.01 and that superconductivity is destroyed near x ≈ 0.028. For 0.03 < x < 0.26 there is a region with Kondo coherence but no ordered state. Antiferromagnetism abruptly appears for x = 0.26. This phase diagram differs significantly from those produced by most other tuning strategies in URu2Si2, including applied pressure, and isoelectronic chemical substitution (i.e. Ru→Fe and Os), where hidden order and magnetism share a common phase boundary. [2, 23, 24] We discuss implications for understanding hidden order, its relationship to magnetism, and prospects for uncovering novel sibling electronic states.
Nonlinear phenomena in general relativity
NASA Astrophysics Data System (ADS)
Allahyari, Alireza; Firouzjaee, Javad T.; Mansouri, Reza
2018-04-01
The perturbation theory plays an important role in studying structure formation in cosmology and post-Newtonian physics, but not all phenomena can be described by the linear perturbation theory. Thus, it is necessary to study exact solutions or higher-order perturbations. Specifically, we study black hole (apparent) horizons and the cosmological event horizon formation in the perturbation theory. We emphasize that in the perturbative regime of the gravitational potential these horizons cannot form in the lower order. Studying the infinite plane metric, we show that, to capture the cosmological constant effect, we need at least a second-order expansion.
NASA Astrophysics Data System (ADS)
Shen, Ji; Linn, Marcia C.
2011-08-01
What trajectories do students follow as they connect their observations of electrostatic phenomena to atomic-level visualizations? We designed an electrostatics unit, using the knowledge integration framework to help students link observations and scientific ideas. We analyze how learners integrate ideas about charges, charged particles, energy, and observable events. We compare learning enactments in a typical school and a magnet school in the USA. We use pre-tests, post-tests, embedded notes, and delayed post-tests to capture the trajectories of students' knowledge integration. We analyze how visualizations help students grapple with abstract electrostatics concepts such as induction. We find that overall students gain more sophisticated ideas. They can interpret dynamic, interactive visualizations, and connect charge- and particle-based explanations to interpret observable events. Students continue to have difficulty in applying the energy-based explanation.
NASA Astrophysics Data System (ADS)
Ângelo, Joana; Magalhães, Pedro; Andrade, Luísa; Mendes, Adélio
2016-11-01
The photocatalytic activity of a commercial titanium dioxide (P25) and of an in-house prepared P25/graphene composite is assessed according to standard ISO 22197-1:2007. The photoactivity performances of bare and composite TiO2-based materials were further studied by electrochemical impedance spectroscopy (EIS) technique to better understand the function of the graphene in the composite. EIS experiments were performed using a three-electrode configuration, which allows obtaining more detailed information about the complex charge transfer phenomena at the semiconductor/electrolyte interface. The Randles equivalent circuit was selected as the most suitable for modelling the present photocatalysts. The use of the graphene composite allows a more effective charge separation with lower charge transfer resistance and less e-/h+ recombination on the composite photocatalyst, reflected in the higher values of NO conversion.
Huang, Xian-Rong; Peng, Ru-Wen
2010-04-01
Interactions between light and conducting microstructures or nanostructures can result in a variety of novel phenomena, but their underlying mechanisms have not been completely understood. From calculations of surface charge density waves on conducting gratings and by comparing them with classical surface plasmons, we revealed a general yet concrete picture regarding the coupling of light to free electron oscillation on structured conducting surfaces that can lead to oscillating subwavelength charge patterns (i.e., structured surface plasmons). New wavelets emitted from these light sources then destructively interfere to form evanescent waves. This principle, usually combined with other mechanisms, is mainly a geometrical effect that can be universally involved in light scattering from all periodic and non-periodic structures containing free electrons. This picture may provide clear guidelines for developing conductor-based nano-optical devices.
Coherent transmutation of electrons into fractionalized anyons.
Barkeshli, Maissam; Berg, Erez; Kivelson, Steven
2014-11-07
Electrons have three quantized properties-charge, spin, and Fermi statistics-that are directly responsible for a vast array of phenomena. Here we show how these properties can be coherently and dynamically stripped from the electron as it enters a certain exotic state of matter known as a quantum spin liquid (QSL). In a QSL, electron spins collectively form a highly entangled quantum state that gives rise to the fractionalization of spin, charge, and statistics. We show that certain QSLs host distinct, topologically robust boundary types, some of which allow the electron to coherently enter the QSL as a fractionalized quasi-particle, leaving its spin, charge, or statistics behind. We use these ideas to propose a number of universal, conclusive experimental signatures that would establish fractionalization in QSLs. Copyright © 2014, American Association for the Advancement of Science.
Theory of hydrodynamic transport in fluctuating electronic charge density wave states
NASA Astrophysics Data System (ADS)
Delacrétaz, Luca V.; Goutéraux, Blaise; Hartnoll, Sean A.; Karlsson, Anna
2017-11-01
We describe the collective hydrodynamic motion of an incommensurate charge density wave state in a clean electronic system. Our description simultaneously incorporates the effects of both pinning due to weak disorder and also phase relaxation due to proliferating dislocations. We show that the interplay between these two phenomena has important consequences for charge and momentum transport. For instance, it can lead to metal-insulator transitions. We furthermore identify signatures of fluctuating density waves in frequency and spatially resolved conductivities. Phase disordering is well known to lead to a large viscosity. We derive a precise formula for the phase relaxation rate in terms of the viscosity in the dislocation cores. We thereby determine the viscosity of the superconducting state of BSCCO from the observed melting dynamics of Abrikosov lattices and show that the result is consistent with dissipation into Bogoliubov quasiparticles.
Patsahan, O; Ciach, A
2012-09-01
Effects of size and charge asymmetry between oppositely charged ions or particles on spatial inhomogeneities are studied for a large range of charge and size ratios. We perform a stability analysis of the primitive model of ionic systems with respect to periodic ordering using the collective variables-based theory. We extend previous studies [Ciach et al., Phys. Rev. E 75, 051505 (2007)] in several ways. First, we employ a nonlocal approximation for the reference hard-sphere fluid which leads to the Percus-Yevick pair direct correlation functions for the uniform case. Second, we use the Weeks-Chandler-Anderson regularization scheme for the Coulomb potential inside the hard core. We determine the relevant order parameter connected with the periodic ordering and analyze the character of the dominant fluctuations along the λ lines. We show that the above-mentioned modifications produce large quantitative and partly qualitative changes in the phase diagrams obtained previously. We discuss possible scenarios of the periodic ordering for the whole range of size and charge ratios of the two ionic species, covering electrolytes, ionic liquids, charged globular proteins or nanoparticles in aqueous solutions, and charge-stabilized colloids.
Scattering of charge and spin excitations and equilibration of a one-dimensional Wigner crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matveev, K. A.; Andreev, A. V.; Klironomos, A. D.
2014-07-01
We study scattering of charge and spin excitations in a system of interacting electrons in one dimension. At low densities, electrons form a one-dimensional Wigner crystal. To a first approximation, the charge excitations are the phonons in the Wigner crystal, and the spin excitations are described by the Heisenberg model with nearest-neighbor exchange coupling. This model is integrable and thus incapable of describing some important phenomena, such as scattering of excitations off each other and the resulting equilibration of the system. We obtain the leading corrections to this model, including charge-spin coupling and the next-nearest-neighbor exchange in the spin subsystem.more » We apply the results to the problem of equilibration of the one-dimensional Wigner crystal and find that the leading contribution to the equilibration rate arises from scattering of spin excitations off each other. We discuss the implications of our results for the conductance of quantum wires at low electron densities« less
Nonequilibrium electrokinetic effects in beds of ion-permselective particles.
Leinweber, Felix C; Tallarek, Ulrich
2004-12-21
Electrokinetic transport of fluorescent tracer molecules in a bed of porous glass beads was investigated by confocal laser scanning microscopy. Refractive index matching between beads and the saturating fluid enabled a quantitative analysis of intraparticle and extraparticle fluid-side concentration profiles. Kinetic data were acquired for the uptake and release of electroneutral and counterionic tracer under devised conditions with respect to constant pressure-driven flow through the device and the effect of superimposed electrical fields. Transport of neutral tracer is controlled by intraparticle mass transfer resistance which can be strongly reduced by electroosmotic flow, while steady-state distributions and bead-averaged concentrations are unaffected by the externally applied fields. Electrolytes of low ionic strength caused the transport through the charged (mesoporous) beads to become highly ion-permselective, and concentration polarization is induced in the bulk solution due to the superimposed fields. The depleted concentration polarization zone comprises extraparticle fluid-side mass transfer resistance. Ionic concentrations in this diffusion boundary layer decrease at increasing field strength, and the flux densities approach an upper limit. Meanwhile, intraparticle transport of counterions by electromigration and electroosmosis continues to increase and finally exceeds the transport from bulk solution into the beads. A nonequilibrium electrical double layer is induced which consists of mobile and immobile space charge regions in the extraparticle bulk solution and inside a bead, respectively. These electrical field-induced space charges form the basis for nonequilibrium electrokinetic phenomena. Caused by the underlying transport discrimination (intraparticle electrokinetic vs extraparticle boundary-layer mass transfer), the dynamic adsorption capacity for counterions can be drastically reduced. Further, the extraparticle mobile space charge region leads to nonlinear electroosmosis. Flow patterns can become highly chaotic, and electrokinetic instability mixing is shown to increase lateral dispersion. Under these conditions, the overall axial dispersion of counterionic tracer can be reduced by more than 2 orders of magnitude, as demonstrated by pulse injections.
Mesure des couplages trilineaires anomaux des bosons de jauge avec le detecteur OPAL au LEP
NASA Astrophysics Data System (ADS)
Trigger, Isabel Marian
Since 1996, the Large Electron-Positron collider (LEP) at CERN has run at energies sufficiently high for the pair production of electroweak gauge bosons. This permits stringent new tests of the Standard Model of particle physics, which makes very precise predictions of the force and nature of the couplings between these bosons. Two of the possible production processes for W+W- pairs are e+e - --> Z0/γ --> W+W -, which involve W+W-Z 0 and W+W-γ couplings. A detailed study of W+W- events can be used to verify the non-Abelian nature of electroweak interactions, and also, eventually, to probe for phenomena arising from physics beyond the Standard Model. The existence of certain new heavy particles, for example, might result in anomalous couplings. We measure the W+W-Z0 and W+W-γ couplings directly, from the rate of W+W- production in the OPAL detector and from characteristics of the decay product distributions of these events. There are three possible final states for W+W - decays: (i) two oppositely charged leptons and missing energy (W+W- --> l - n l+ n ); (ii)one charged lepton, two jets and missing energy (W+W- --> qq¯l n ); or (iii)four hadronic jets (W+W - --> qq¯qq¯). This thesis principally describes the four-jet decays. This is a complicated final state to reconstruct, as the kinematics of the event must be used to determine which of three possible jet pairings corresponds to the true W+ and W- , and in order to increase the sensitivity to anomalous couplings, it is also necessary to use the charges and momenta of the hadrons in the jets to reconstruct the charge of each W. The angular distributions of the W+/- and of their decay products are directly related to the helicities of the Ws, and provide an insight into the nature of the gauge boson couplings.
NASA Astrophysics Data System (ADS)
Yamakawa, Emi; Yoshimoto, Masahiro; Kinsho, Michikazu
At the injection area of the RCS ring in the J-PARC, residual gamma dose at the rectangular ceramic ducts, especially immediately downstream of the charge-exchanged foil, has increased with the output beam power. In order to investigate the cause of high residual activities, residual gamma dose and radioactive sources produced at the exterior surface of the ducts have been measured by a GM survey meter and a handy type of Germanium (Ge) semiconductor detector in the case of 181 MeV injected proton beam energy. With these measurements, it is revealed that the radioactive sources produced by nuclear reactions cause the high activities at the injection area. For a better understanding of phenomena in the injection area, various simulations have been done with the PHITS Monte Carlo code. The distribution of radioactive sources and residual gamma dose rate obtained by the calculations are consistent with the measurement results. With this consistency, secondary neutrons and protons derived from nuclear reactions at the charge-exchanged foil are the dominant cause to high residual gamma dose at the ceramic ducts in the injection area. These measurements and calculations are unique approaches to reveal the cause of high residual dose around the foil. This study is essential for the future of high-intensity proton accelerators using a stripping foil.
Exploring 4D quantum Hall physics with a 2D topological charge pump
NASA Astrophysics Data System (ADS)
Lohse, Michael; Schweizer, Christian; Price, Hannah M.; Zilberberg, Oded; Bloch, Immanuel
2018-01-01
The discovery of topological states of matter has greatly improved our understanding of phase transitions in physical systems. Instead of being described by local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example is the two-dimensional (2D) integer quantum Hall effect: it is characterized by the first Chern number, which manifests in the quantized Hall response that is induced by an external electric field. Generalizing the quantum Hall effect to four-dimensional (4D) systems leads to the appearance of an additional quantized Hall response, but one that is nonlinear and described by a 4D topological invariant—the second Chern number. Here we report the observation of a bulk response with intrinsic 4D topology and demonstrate its quantization by measuring the associated second Chern number. By implementing a 2D topological charge pump using ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect. Using a small cloud of atoms as a local probe, we fully characterize the nonlinear response of the system via in situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probing higher-dimensional quantum Hall systems, in which additional strongly correlated topological phases, exotic collective excitations and boundary phenomena such as isolated Weyl fermions are predicted.
Exploring 4D quantum Hall physics with a 2D topological charge pump.
Lohse, Michael; Schweizer, Christian; Price, Hannah M; Zilberberg, Oded; Bloch, Immanuel
2018-01-03
The discovery of topological states of matter has greatly improved our understanding of phase transitions in physical systems. Instead of being described by local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example is the two-dimensional (2D) integer quantum Hall effect: it is characterized by the first Chern number, which manifests in the quantized Hall response that is induced by an external electric field. Generalizing the quantum Hall effect to four-dimensional (4D) systems leads to the appearance of an additional quantized Hall response, but one that is nonlinear and described by a 4D topological invariant-the second Chern number. Here we report the observation of a bulk response with intrinsic 4D topology and demonstrate its quantization by measuring the associated second Chern number. By implementing a 2D topological charge pump using ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect. Using a small cloud of atoms as a local probe, we fully characterize the nonlinear response of the system via in situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probing higher-dimensional quantum Hall systems, in which additional strongly correlated topological phases, exotic collective excitations and boundary phenomena such as isolated Weyl fermions are predicted.
Raman spectroelectrochemistry of molecules within individual electromagnetic hot spots.
Shegai, Timur; Vaskevich, Alexander; Rubinstein, Israel; Haran, Gilad
2009-10-14
The role of chemical enhancement in surface-enhanced Raman scattering (SERS) remains a contested subject. We study SERS spectra of 4-mercaptopyridine molecules excited far from the molecular resonance, which are collected from individual electromagnetic hot spots at concentrations close to the single-molecule limit. The hot spots are created by depositing Tollen's silver island films on a transparent electrode incorporated within an electrochemical cell. Analysis of the intensity of the spectra relative to those obtained from individual rhodamine 6G molecules on the same surface provides a lower limit of approximately 3 orders of magnitude for the chemical enhancement. This large enhancement is likely to be due to a charge transfer resonance involving the transfer of an electron from the metal to an adsorbed molecule. Excitation at three different wavelengths, as well as variation of electrode potential from 0 to -1.2 V, lead to significant changes in the relative intensities of bands in the spectrum. It is suggested that while the bulk of the enhancement is due to an Albrecht A-term resonance Raman effect (involving the charge transfer transition), vibronic coupling provides additional enhancement which is sensitive to electrode potential. The measurement of potential-dependent SERS spectra from individual hot spots opens the way to a thorough characterization of chemical enhancement, as well to studies of redox phenomena at the single-molecule level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmermann, M. V.; Grenier, S.; Nelson, C. S.
2003-09-01
The interpretation given in our recent x-ray scattering study of Pr{sub 1-x}Ca{sub x}MnO{sub 3} in terms of charge and orbital ordering is questioned in the preceding Comment by Garcia and Subias. They argue that anisotropy of the charge distribution induced by local distortions gives rise to the so-called charge order reflections. In this Reply we suggest that the two different pictures are reconcilable.
Voltage Scaling of Graphene Device on SrTiO3 Epitaxial Thin Film.
Park, Jeongmin; Kang, Haeyong; Kang, Kyeong Tae; Yun, Yoojoo; Lee, Young Hee; Choi, Woo Seok; Suh, Dongseok
2016-03-09
Electrical transport in monolayer graphene on SrTiO3 (STO) thin film is examined in order to promote gate-voltage scaling using a high-k dielectric material. The atomically flat surface of thin STO layer epitaxially grown on Nb-doped STO single-crystal substrate offers good adhesion between the high-k film and graphene, resulting in nonhysteretic conductance as a function of gate voltage at all temperatures down to 2 K. The two-terminal conductance quantization under magnetic fields corresponding to quantum Hall states survives up to 200 K at a magnetic field of 14 T. In addition, the substantial shift of charge neutrality point in graphene seems to correlate with the temperature-dependent dielectric constant of the STO thin film, and its effective dielectric properties could be deduced from the universality of quantum phenomena in graphene. Our experimental data prove that the operating voltage reduction can be successfully realized due to the underlying high-k STO thin film, without any noticeable degradation of graphene device performance.
NASA Technical Reports Server (NTRS)
Santiago-Perez, Julio
1988-01-01
The frequency and intensity of thunderstorms around the Kennedy Space Center (KSC) has affected scheduled launch, landing, and other ground operations for many years. In order to protect against and provide safe working facilities, KSC has performed and hosted several studies on lightning phenomena. For the reasons mentioned above, KSC has established the Atmospheric Science Field Laboratory (ASFL). At these facilities KSC launches wire-towing rockets into thunderstorms to trigger natural lightning to the launch site. A program named Rocket Triggered Lightning Program (RTLP) is being conducted at the ASFL. This report calls for two of the experiments conducted in the summer 1988 Rocket Triggered Lightning Program. One experiment suspended an electric field mill over the launching areas from a balloon about 500 meters high to measure the space charges over the launching area. The other was to connect a waveform recorder to a nearby distribution power line to record currents and voltages wave forms induced by natural and triggered lightning.
NASA Astrophysics Data System (ADS)
Santiago-Perez, Julio
1988-10-01
The frequency and intensity of thunderstorms around the Kennedy Space Center (KSC) has affected scheduled launch, landing, and other ground operations for many years. In order to protect against and provide safe working facilities, KSC has performed and hosted several studies on lightning phenomena. For the reasons mentioned above, KSC has established the Atmospheric Science Field Laboratory (ASFL). At these facilities KSC launches wire-towing rockets into thunderstorms to trigger natural lightning to the launch site. A program named Rocket Triggered Lightning Program (RTLP) is being conducted at the ASFL. This report calls for two of the experiments conducted in the summer 1988 Rocket Triggered Lightning Program. One experiment suspended an electric field mill over the launching areas from a balloon about 500 meters high to measure the space charges over the launching area. The other was to connect a waveform recorder to a nearby distribution power line to record currents and voltages wave forms induced by natural and triggered lightning.
Hypervelocity impact effects on solar cells
NASA Technical Reports Server (NTRS)
Rose, M. Frank
1993-01-01
One of the space hazards of concern is the problem of natural matter and space debris impacting spacecraft. This phenomena has been studied since the early sixties and a methodology has been established to determine the relative abundance of meteoroids as a function of mass. As the mass decreases, the probability of suffering collisions increases, resulting in a constant bombardment from particles in the sub-micron range. The composition of this 'cosmic dust' is primarily Fe, Ni, Al, Mg, Na, Ca, Cr, H, O, and Mn. In addition to mechanical damage, impact velocities greater than 5 k m/sec can produce shock induced ionization effects with resultant surface charging and complex chemical interactions. The upper limit of the velocity distribution for these particles is on the order of 70 km/sec. The purpose of this work was to subject samples from solar power arrays to debris flux typical of what would be encountered in space, and measure the degradation of the panels after impact.
Experimental Determination of Infrared Extinction Coefficients of Interplanetary Dust Particles
NASA Technical Reports Server (NTRS)
Spann, J. F., Jr.; Abbas, M. M.
1998-01-01
This technique is based on irradiating a single isolated charged dust particle suspended in balance by an electric field, and measuring the scattered radiation as a function of angle. The observed scattered intensity profile at a specific wavelength obtained for a dust particle of known composition is compared with Mie theory calculations, and the variable parameters relating to the particle size and complex refractive index are adjusted for a best fit between the two profiles. This leads to a simultaneous determination of the particle radius, the complex refractive index, and the scattering and extinction coefficients. The results of these experiments can be utilized to examine the IRAS and DIRBE (Diffuse Infrared Background Experiment) infrared data sets in order to determine the dust particle physical characteristics and distributions by using infrared models and inversion techniques. This technique may also be employed for investigation of the rotational bursting phenomena whereby large size cosmic and interplanetary particles are believed to fragment into smaller dust particles.
Probing Long-Range Neutrino-Mediated Forces with Atomic and Nuclear Spectroscopy.
Stadnik, Yevgeny V
2018-06-01
The exchange of a pair of low-mass neutrinos between electrons, protons, and neutrons produces a "long-range" 1/r^{5} potential, which can be sought for in phenomena originating on the atomic and subatomic length scales. We calculate the effects of neutrino-pair exchange on transition and binding energies in atoms and nuclei. In the case of atomic s-wave states, there is a large enhancement of the induced energy shifts due to the lack of a centrifugal barrier and the highly singular nature of the neutrino-mediated potential. We derive limits on neutrino-mediated forces from measurements of the deuteron binding energy and transition energies in positronium, muonium, hydrogen, and deuterium, as well as isotope-shift measurements in calcium ions. Our limits improve on existing constraints on neutrino-mediated forces from experiments that search for new macroscopic forces by 18 orders of magnitude. Future spectroscopy experiments have the potential to probe long-range forces mediated by the exchange of pairs of standard-model neutrinos and other weakly charged particles.
Correlation between ground state and orbital anisotropy in heavy fermion materials
Willers, Thomas; Strigari, Fabio; Hu, Zhiwei; ...
2015-02-09
The interplay of structural, orbital, charge, and spin degrees of freedom is at the heart of many emergent phenomena, including superconductivity. We find that unraveling the underlying forces of such novel phases is a great challenge because it not only requires understanding each of these degrees of freedom, it also involves accounting for the interplay between them. Cerium-based heavy fermion compounds are an ideal playground for investigating these interdependencies, and we present evidence for a correlation between orbital anisotropy and the ground states in a representative family of materials. We have measured the 4f crystal-electric field ground-state wave functions ofmore » the strongly correlated materials CeRh 1₋xIr xIn 5 with great accuracy using linear polarization-dependent soft X-ray absorption spectroscopy. These measurements show that these wave functions correlate with the ground-state properties of the substitution series, which covers long-range antiferromagnetic order, unconventional superconductivity, and coexistence of these two states.« less
Probing Long-Range Neutrino-Mediated Forces with Atomic and Nuclear Spectroscopy
NASA Astrophysics Data System (ADS)
Stadnik, Yevgeny V.
2018-06-01
The exchange of a pair of low-mass neutrinos between electrons, protons, and neutrons produces a "long-range" 1 /r5 potential, which can be sought for in phenomena originating on the atomic and subatomic length scales. We calculate the effects of neutrino-pair exchange on transition and binding energies in atoms and nuclei. In the case of atomic s -wave states, there is a large enhancement of the induced energy shifts due to the lack of a centrifugal barrier and the highly singular nature of the neutrino-mediated potential. We derive limits on neutrino-mediated forces from measurements of the deuteron binding energy and transition energies in positronium, muonium, hydrogen, and deuterium, as well as isotope-shift measurements in calcium ions. Our limits improve on existing constraints on neutrino-mediated forces from experiments that search for new macroscopic forces by 18 orders of magnitude. Future spectroscopy experiments have the potential to probe long-range forces mediated by the exchange of pairs of standard-model neutrinos and other weakly charged particles.
Fast soft x-ray images of magnetohydrodynamic phenomena in NSTX.
Bush, C E; Stratton, B C; Robinson, J; Zakharov, L E; Fredrickson, E D; Stutman, D; Tritz, K
2008-10-01
A variety of magnetohydrodynamic (MHD) phenomena have been observed on NSTX. Many of these affect fast particle losses, which are of major concern for future burning plasma experiments. Usual diagnostics for studying these phenomena are arrays of Mirnov coils for magnetic oscillations and p-i-n diode arrays for soft x-ray emission from the plasma core. Data reported here are from a unique fast soft x-ray imaging camera (FSXIC) with a wide-angle (pinhole) tangential view of the entire plasma minor cross section. The camera provides a 64x64 pixel image, on a charge coupled device chip, of light resulting from conversion of soft x rays incident on a phosphor to the visible. We have acquired plasma images at frame rates of 1-500 kHz (300 frames/shot) and have observed a variety of MHD phenomena: disruptions, sawteeth, fishbones, tearing modes, and edge localized modes (ELMs). New data including modes with frequency >90 kHz are also presented. Data analysis and modeling techniques used to interpret the FSXIC data are described and compared, and FSXIC results are compared to Mirnov and p-i-n diode array results.
Spin-Dependent Phenomena in Graphene
2012-03-15
scattering on spin relaxation: By investigating the effect of gold dopants on spin transport, we concluded that charged impurity scattering is not...transport in graphene spin valves consisting of an ultrathin sheet of graphene (single or bilayer) contacted by ferromagnetic cobalt electrodes...workfunction cannot explain the observed behavior. The second effect was that the mobility was reduced by the transition metal dopants , as indicated by
NASA Astrophysics Data System (ADS)
2014-12-01
This special issue of Applied Surface Science is a compilation of papers inspired by the symposium on "Surface/Interfaces Characterization and Renewable Energy" held at the 2013 MRS Fall Meeting. Practical uses of renewable energy are one of the greatest technical challenges today. The symposium explored a number of surface and interface-related questions relevant to this overarching theme. Topics from fuel cells to photovoltaics, from water splitting to fundamental and practical issues in charge generation and storage were discussed. The work presented included the use of novel experimental spectroscopic and microscopic analytical techniques, theoretical and computational understanding of interfacial phenomena, characterization of intricate behavior of charged species, as well as molecules and molecular fragments at surfaces and interfaces. It emphasized fundamental understanding of underlying processes, as well as practical devices design and applications of surface and interfacial phenomena related to renewable energy. These subjects are complicated by the transport of photons, electrons, ions, heat, and almost any other form of energy. Given the current concerns of climate change, energy independence and national security, this work is important and of interest to the field of Applied Surface Science. The sixteen papers published in this special issue have all been refereed.
NASA Astrophysics Data System (ADS)
Chubb, Scott
2003-03-01
Three, Key, Unanswered Questions posed by LENR's are: 1. How do we explain the lack of high energy particles (HEP's)? 2. Can we understand and prioritize the way coupling can occur between nuclear- and atomic- lengthscales, and 3. What are the roles of Surface-Like (SL), as opposed to Bulk-Like (BL), processes in triggering nuclear phenomena. One important source of confusion associated with each of these questions is the common perception that the quantum mechanical phases of different particles are not correlated with each other. When the momenta p of interacting particles is large, and reactions occur rapidly (between HEP's, for example), this is a valid assumption. But when the relative difference in p becomes vanishingly small, between one charge, and many others, as a result of implicit electromagnetic coupling, each charge can share a common phase, relative to the others, modulo 2nπ, where n is an integer, even when outside forces are introduced. The associated forms of broken gauge symmetry, distinguish BL from SL phenomena, at room temperature, also explain super- and normal- conductivity in solids, and can be used to address the Three, Key, Unanswered Questions posed by LENR's.
The TSS-1R Results - the Physics of Current Collection in Magnetized Plasmas Revised
NASA Astrophysics Data System (ADS)
Papadopoulos, Konstantinos
1996-11-01
The Tethered Satellite System (TSS-1R) was deployed from the space shuttle "Columbia" (STS-75 Mission) on February 24, 1996. The satellite was deployed to a distance of 19.7 km above the shuttle. The system operated nominally over its deployment phase which lasted 5.5 hours. A defect in the tether insulation inside the orbiter caused a local discharge which led to a tether break. Data collected before and during the break revealed a host of new physics phenomena concerning the current collection by charged bodies in space moving at orbital velocities. The maximum EMF observed during the mission was 3.8 kV and the maximum current exceeded 1A. Power generation of several kW's was demonstrated. The current collected was significantly larger than expected by space charged limited flow in magnetized and even unmagnetized plasmas. For example the 1A current was collected with less than 1 kV potential instead of the 20 kV given by previous theories. The presentation will review the fascinating results of the TSS-1R and will discuss the ongoing physics analysis of the observed phenomena. *In collaboration with A. Drobot and C.L. Chang of SAIC.
Emergent properties of nuclei from ab initio coupled-cluster calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagen, G.; Hjorth-Jensen, M.; Jansen, G. R.
Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. Our endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. We review some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLOmore » $${}_{{\\rm{sat}}}$$ is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to 56Ni. We derive an efficient scheme for including continuum effects in coupled-cluster computations of nuclei based on chiral nucleon–nucleon and three-nucleon forces, and present new results for unbound states in the neutron-rich isotopes of oxygen and calcium. Finally, the coupling to the continuum impacts the energies of the $${J}^{\\pi }=1/{2}^{-},3/{2}^{-},7/{2}^{-},3/{2}^{+}$$ states in $${}^{\\mathrm{17,23,25}}$$O, and—contrary to naive shell-model expectations—the level ordering of the $${J}^{\\pi }=3/{2}^{+},5/{2}^{+},9/{2}^{+}$$ states in $${}^{\\mathrm{53,55,61}}$$Ca.« less
Emergent properties of nuclei from ab initio coupled-cluster calculations
Hagen, G.; Hjorth-Jensen, M.; Jansen, G. R.; ...
2016-05-17
Emergent properties such as nuclear saturation and deformation, and the effects on shell structure due to the proximity of the scattering continuum and particle decay channels are fascinating phenomena in atomic nuclei. In recent years, ab initio approaches to nuclei have taken the first steps towards tackling the computational challenge of describing these phenomena from Hamiltonians with microscopic degrees of freedom. Our endeavor is now possible due to ideas from effective field theories, novel optimization strategies for nuclear interactions, ab initio methods exhibiting a soft scaling with mass number, and ever-increasing computational power. We review some of the recent accomplishments. We also present new results. The recently optimized chiral interaction NNLOmore » $${}_{{\\rm{sat}}}$$ is shown to provide an accurate description of both charge radii and binding energies in selected light- and medium-mass nuclei up to 56Ni. We derive an efficient scheme for including continuum effects in coupled-cluster computations of nuclei based on chiral nucleon–nucleon and three-nucleon forces, and present new results for unbound states in the neutron-rich isotopes of oxygen and calcium. Finally, the coupling to the continuum impacts the energies of the $${J}^{\\pi }=1/{2}^{-},3/{2}^{-},7/{2}^{-},3/{2}^{+}$$ states in $${}^{\\mathrm{17,23,25}}$$O, and—contrary to naive shell-model expectations—the level ordering of the $${J}^{\\pi }=3/{2}^{+},5/{2}^{+},9/{2}^{+}$$ states in $${}^{\\mathrm{53,55,61}}$$Ca.« less
Natural phenomena hazards design and evaluation criteria for Department of Energy Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-01-01
The Department of Energy (DOE) has issued an Order 420.1 which establishes policy for its facilities in the event of natural phenomena hazards (NPH) along with associated NPH mitigation requirements. This DOE Standard gives design and evaluation criteria for NPH effects as guidance for implementing the NPH mitigation requirements of DOE Order 420.1 and the associated implementation Guides. These are intended to be consistent design and evaluation criteria for protection against natural phenomena hazards at DOE sites throughout the United States. The goal of these criteria is to assure that DOE facilities can withstand the effects of natural phenomena suchmore » as earthquakes, extreme winds, tornadoes, and flooding. These criteria apply to the design of new facilities and the evaluation of existing facilities. They may also be used for modification and upgrading of existing facilities as appropriate. The design and evaluation criteria presented herein control the level of conservatism introduced in the design/evaluation process such that earthquake, wind, and flood hazards are treated on a consistent basis. These criteria also employ a graded approach to ensure that the level of conservatism and rigor in design/evaluation is appropriate for facility characteristics such as importance, hazards to people on and off site, and threat to the environment. For each natural phenomena hazard covered, these criteria consist of the following: Performance Categories and target performance goals as specified in the DOE Order 420.1 NPH Implementation Guide, and DOE-STD-1 021; specified probability levels from which natural phenomena hazard loading on structures, equipment, and systems is developed; and design and evaluation procedures to evaluate response to NPH loads and criteria to assess whether or not computed response is permissible.« less
Dynamics of dissipative self-assembly of particles interacting through oscillatory forces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tagliazucchi, M.; Szleifer, I.
Dissipative self-assembly is the formation of ordered structures far from equilibrium, which continuously uptake energy and dissipate it into the environment. Due to its dynamical nature, dissipative self-assembly can lead to new phenomena and possibilities of self-organization that are unavailable to equilibrium systems. Understanding the dynamics of dissipative self-assembly is required in order to direct the assembly to structures of interest. In the present work, Brownian dynamics simulations and analytical theory were used to study the dynamics of self-assembly of a mixture of particles coated with weak acids and bases under continuous oscillations of the pH. The pH of themore » system modulates the charge of the particles and, therefore, the interparticle forces oscillate in time. This system produces a variety of self-assembled structures, including colloidal molecules, fibers and different types of crystalline lattices. The most important conclusions of our study are: (i) in the limit of fast oscillations, the whole dynamics (and not only those at the non-equilibrium steady state) of a system of particles interacting through time-oscillating interparticle forces can be described by an effective potential that is the time average of the time-dependent potential over one oscillation period; (ii) the oscillation period is critical to determine the order of the system. In some cases the order is favored by very fast oscillations while in others small oscillation frequencies increase the order. In the latter case, it is shown that slow oscillations remove kinetic traps and, thus, allow the system to evolve towards the most stable non-equilibrium steady state.« less
NASA Astrophysics Data System (ADS)
Lunkenheimer, Peter; Müller, Jens; Krohns, Stephan; Schrettle, Florian; Loidl, Alois; Hartmann, Benedikt; Rommel, Robert; de Souza, Mariano; Hotta, Chisa; Schlueter, John A.; Lang, Michael
2012-09-01
Multiferroics, showing simultaneous ordering of electrical and magnetic degrees of freedom, are remarkable materials as seen from both the academic and technological points of view. A prominent mechanism of multiferroicity is the spin-driven ferroelectricity, often found in frustrated antiferromagnets with helical spin order. There, as for conventional ferroelectrics, the electrical dipoles arise from an off-centre displacement of ions. However, recently a different mechanism, namely purely electronic ferroelectricity, where charge order breaks inversion symmetry, has attracted considerable interest. Here we provide evidence for ferroelectricity, accompanied by antiferromagnetic spin order, in a two-dimensional organic charge-transfer salt, thus representing a new class of multiferroics. We propose a charge-order-driven mechanism leading to electronic ferroelectricity in this material. Quite unexpectedly for electronic ferroelectrics, dipolar and spin order arise nearly simultaneously. This can be ascribed to the loss of spin frustration induced by the ferroelectric ordering. Hence, here the spin order is driven by the ferroelectricity, in marked contrast to the spin-driven ferroelectricity in helical magnets.
Mission Concept to Connect Magnetospheric Physical Processes to Ionospheric Phenomena
NASA Astrophysics Data System (ADS)
Dors, E. E.; MacDonald, E.; Kepko, L.; Borovsky, J.; Reeves, G. D.; Delzanno, G. L.; Thomsen, M. F.; Sanchez, E. R.; Henderson, M. G.; Nguyen, D. C.; Vaith, H.; Gilchrist, B. E.; Spanswick, E.; Marshall, R. A.; Donovan, E.; Neilson, J.; Carlsten, B. E.
2017-12-01
On the Earth's nightside the magnetic connections between the ionosphere and the dynamic magnetosphere have a great deal of uncertainty: this uncertainty prevents us from scientifically understanding what physical processes in the magnetosphere are driving the various phenomena in the ionosphere. Since the 1990s, the space plasma physics group at Los Alamos National Laboratory has been working on a concept to connect magnetospheric physical processes to auroral phenomena in the ionosphere by firing an electron beam from a magnetospheric spacecraft and optically imaging the beam spot in the ionosphere. The magnetospheric spacecraft will carry a steerable electron accelerator, a power-storage system, a plasma contactor, and instruments to measure magnetic and electric fields, plasma, and energetic particles. The spacecraft orbit will be coordinated with a ground-based network of cameras to (a) locate the electron beam spot in the upper atmosphere and (b) monitor the aurora. An overview of the mission concept will be presented, including recent enabling advancements based on (1) a new understanding of the dynamic spacecraft charging of the accelerator and plasma-contactor system in the tenuous magnetosphere based on ion emission rather than electron collection, (2) a new understanding of the propagation properties of pulsed MeV-class beams in the magnetosphere, and (3) the design of a compact high-power 1-MeV electron accelerator and power-storage system. This strategy to (a) determine the magnetosphere-to-ionosphere connections and (b) reduce accelerator- platform charging responds to one of the six emerging-technology needs called out in the most-recent National Academies Decadal Survey for Solar and Space Physics. [LA-UR-17-23614
Charge ordering in stoichiometric FeTe: Scanning tunneling microscopy and spectroscopy
Li, Wei; Yin, Wei -Guo; Wang, Lili; ...
2016-01-04
In this study, we use scanning tunneling microscopy and spectroscopy to reveal a unique stripy charge order in a parent phase of iron-based superconductors in stoichiometric FeTe epitaxy films. The charge order has unusually the same—usually half—period as the spin order. We also found highly anisotropic electron band dispersions being large and little along the ferromagnetic (crystallographic b) and antiferromagnetic (a) directions, respectively. Our data suggest that the microscopic mechanism is likely of the Stoner type driven by interatomic Coulomb repulsion V ij, and that V ij and charge fluctuations, so far much neglected, are important to the understanding ofmore » iron-based superconductors.« less
Surface damage characterization of FBK devices for High Luminosity LHC (HL-LHC) operations
NASA Astrophysics Data System (ADS)
Moscatelli, F.; Passeri, D.; Morozzi, A.; Dalla Betta, G.-F.; Mattiazzo, S.; Bomben, M.; Bilei, G. M.
2017-12-01
The very high fluences (e.g. up to 2×1016 1 MeV neq/cm2) and total ionising doses (TID) of the order of 1 Grad, expected at the High Luminosity LHC (HL-LHC), impose new challenges for the design of effective, radiation resistant detectors. Ionising energy loss is the dominant effect for what concerns SiO2 and SiO2/Si interface radiation damage. In particular, surface damage can create a positive charge layer near the SiO2/Si interface and interface traps along the SiO2/Si interface, which strongly influence the breakdown voltage, the inter-electrode isolation and capacitance, and might also impact the charge collection properties of silicon sensors. To better understand in a comprehensive framework the complex and articulated phenomena related to surface damage at these very high doses, measurements on test structures have been carried out in this work (e.g. C-V and I-V). In particular, we have studied the properties of the SiO2 layer and of the SiO2/Si interface, using MOS capacitors, gated diodes (GD) and MOSFETs manufactured by FBK on high-resistivity n-type and p-type silicon, before and after irradiation with X-rays in the range from 50 krad(SiO2) to 20 Mrad(SiO2). Relevant parameters have been determined for all the tested devices, converging in the oxide charge density NOX, the surface generation velocity s0 and the integrated interface-trap density NIT dose-dependent values. These parameters have been extracted to both characterize the technology as a function of the dose and to be used in TCAD simulations for the surface damage effect modeling and the analysis and optimization of different classes of detectors for the next HEP experiments.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-17
... Market Maker,\\5\\ Firm Proprietary and Customer (Professional) \\6\\ orders; and (ii) $0.78 per contract for Non-ISE Market Maker \\7\\ orders. Priority Customer \\8\\ orders are not charged a ``taker'' fee for... Proprietary and Customer (Professional) orders. Priority Customer orders are not charged a ``maker'' fee for...
Review of Natural Phenomena Hazard (NPH) Assessments for the Hanford 200 Areas (Non-Seismic)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snow, Robert L.; Ross, Steven B.; Sullivan, Robin S.
2010-09-24
The purpose of this review is to assess the need for updating Natural Phenomena Hazard (NPH) assessments for the Hanford 200 Areas, as required by DOE Order 420.1B Chapter IV, Natural Phenomena Hazards Mitigation, based on significant changes in state-of-the-art NPH assessment methodology or site-specific information. The review includes all natural phenomena hazards with the exception of seismic/earthquake hazards, which are being addressed under a separate effort. It was determined that existing non-seismic NPH assessments are consistent with current design methodology and site specific data.
Charge breeding simulations for radioactive ion beam production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Variale, V.; Raino, A. C.; Clauser, T.
2012-02-15
The charge breeding technique is used for radioactive ion beam (RIB) production in order of optimizing the re-acceleration of the radioactive element ions produced by a primary beam in a thick target. Charge breeding is achieved by means of a device capable of increasing the ion charge state from 1+ to a desired value n+. In order to get high intensity RIB, experiments with charge breeding of very high efficiency could be required. To reach this goal, the charge breeding simulation could help to optimize the high charge state production efficiency by finding more proper parameters for the radioactive 1+more » ions. In this paper a device based on an electron beam ion source (EBIS) is considered. In order to study that problem, a code already developed for studying the ion selective containment in an EBIS with RF quadrupoles, BRICTEST, has been modified to simulate the ion charge state breeding rate for different 1+ ion injection conditions. Particularly, the charge breeding simulations for an EBIS with a hollow electron beam have been studied.« less
Matt, C. E.; Fatuzzo, C. G.; Sassa, Y.; ...
2015-10-27
We report an angle-resolved photoemission study of the charge stripe ordered La 1.6–xNd 0.4Sr xCuO 4 (Nd-LSCO) system. A comparative and quantitative line-shape analysis is presented as the system evolves from the overdoped regime into the charge ordered phase. On the overdoped side (x = 0.20), a normal-state antinodal spectral gap opens upon cooling below 80 K. In this process, spectral weight is preserved but redistributed to larger energies. A correlation between this spectral gap and electron scattering is found. A different line shape is observed in the antinodal region of charge ordered Nd-LSCO x = 1/8. Significant low-energy spectralmore » weight appears to be lost. As a result, these observations are discussed in terms of spectral-weight redistribution and gapping originating from charge stripe ordering.« less
NASA Astrophysics Data System (ADS)
Kalinin, Sergei V.; Kim, Yunseok; Fong, Dillon D.; Morozovska, Anna N.
2018-03-01
For over 70 years, ferroelectric materials have been one of the central research topics for condensed matter physics and material science, an interest driven both by fundamental science and applications. However, ferroelectric surfaces, the key component of ferroelectric films and nanostructures, still present a significant theoretical and even conceptual challenge. Indeed, stability of ferroelectric phase per se necessitates screening of polarization charge. At surfaces, this can lead to coupling between ferroelectric and semiconducting properties of material, or with surface (electro) chemistry, going well beyond classical models applicable for ferroelectric interfaces. In this review, we summarize recent studies of surface-screening phenomena in ferroelectrics. We provide a brief overview of the historical understanding of the physics of ferroelectric surfaces, and existing theoretical models that both introduce screening mechanisms and explore the relationship between screening and relevant aspects of ferroelectric functionalities starting from phase stability itself. Given that the majority of ferroelectrics exist in multiple-domain states, we focus on local studies of screening phenomena using scanning probe microscopy techniques. We discuss recent studies of static and dynamic phenomena on ferroelectric surfaces, as well as phenomena observed under lateral transport, light, chemical, and pressure stimuli. We also note that the need for ionic screening renders polarization switching a coupled physical–electrochemical process and discuss the non-trivial phenomena such as chaotic behavior during domain switching that stem from this. ).
Charge ordering transition in GdBaCo2O5: Evidence of reentrant behavior
NASA Astrophysics Data System (ADS)
Allieta, M.; Scavini, M.; Lo Presti, L.; Coduri, M.; Loconte, L.; Cappelli, S.; Oliva, C.; Ghigna, P.; Pattison, P.; Scagnoli, V.
2013-12-01
We present a detailed study on the charge ordering transition in a GdBaCo2O5.0 system by combining high-resolution synchrotron powder/single-crystal diffraction with electron paramagnetic resonance experiments as a function of temperature. We found a second-order structural phase transition at TCO = 247 K (Pmmm to Pmma) associated with the onset of long-range charge ordering. At Tmin ≈ 1.2TCO, the electron paramagnetic resonance linewidth rapidly broadens, providing evidence of antiferromagnetic spin fluctuations. This likely indicates that, analogously to manganites, the long-range antiferromagnetic order in GdBaCo2O5.0 sets in at ≈TCO. Pair distribution function analysis of diffraction data revealed signatures of structural inhomogeneities at low temperature. By comparing the average and local bond valences, we found that above TCO the local structure is consistent with a fully random occupation of Co2+ and Co3+ in a 1:1 ratio and with a complete charge ordering below TCO. Below T ≈ 100 K the charge localization is partially melted at the local scale, suggesting a reentrant behavior of charge ordering. This result is supported by the weakening of superstructure reflections and the temperature evolution of electron paramagnetic resonance linewidth that is consistent with paramagnetic reentrant behavior reported in the GdBaCo2O5.5 parent compound.
Random-order fractional bistable system and its stochastic resonance
NASA Astrophysics Data System (ADS)
Gao, Shilong; Zhang, Li; Liu, Hui; Kan, Bixia
2017-01-01
In this paper, the diffusion motion of Brownian particles in a viscous liquid suffering from stochastic fluctuations of the external environment is modeled as a random-order fractional bistable equation, and as a typical nonlinear dynamic behavior, the stochastic resonance phenomena in this system are investigated. At first, the derivation process of the random-order fractional bistable system is given. In particular, the random-power-law memory is deeply discussed to obtain the physical interpretation of the random-order fractional derivative. Secondly, the stochastic resonance evoked by random-order and external periodic force is mainly studied by numerical simulation. In particular, the frequency shifting phenomena of the periodical output are observed in SR induced by the excitation of the random order. Finally, the stochastic resonance of the system under the double stochastic excitations of the random order and the internal color noise is also investigated.
Nanoplasmonic Phenomena at Electronic Boundaries in Graphene
Fei, Zhe; Ni, Guang -Xin; Jiang, Bor -Yuan; ...
2017-06-30
Here, we review recent discoveries of the intriguing plasmonic phenomena at a variety of electronic boundaries (EBs) in graphene including a line of charges in graphene induced by a carbon nanotube gate, grain boundaries in chemical vapor deposited graphene films, an interface between graphene and moiré patterned graphene, an interface between graphene and bilayer graphene, and others. All these and other EBs cause plasmonic impedance mismatch at the two sides of the boundaries. Manifestations of this effect include plasmonic fringes that stem from plasmon reflections and interference. Quantitative analysis and modeling of these plasmonic fringes uncovered intriguing properties and underlyingmore » physics of the EBs. Potential plasmonic applications associated with these EBs are also briefly discussed.« less
Nanoplasmonic Phenomena at Electronic Boundaries in Graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fei, Zhe; Ni, Guang -Xin; Jiang, Bor -Yuan
Here, we review recent discoveries of the intriguing plasmonic phenomena at a variety of electronic boundaries (EBs) in graphene including a line of charges in graphene induced by a carbon nanotube gate, grain boundaries in chemical vapor deposited graphene films, an interface between graphene and moiré patterned graphene, an interface between graphene and bilayer graphene, and others. All these and other EBs cause plasmonic impedance mismatch at the two sides of the boundaries. Manifestations of this effect include plasmonic fringes that stem from plasmon reflections and interference. Quantitative analysis and modeling of these plasmonic fringes uncovered intriguing properties and underlyingmore » physics of the EBs. Potential plasmonic applications associated with these EBs are also briefly discussed.« less
NASA Astrophysics Data System (ADS)
Krishnan, M.
2017-05-01
We present a model for calculating the net and effective electrical charge of globular macromolecules and linear polyelectrolytes such as proteins and DNA, given the concentration of monovalent salt and pH in solution. The calculation is based on a numerical solution of the non-linear Poisson-Boltzmann equation using a finite element discretized continuum approach. The model simultaneously addresses the phenomena of charge regulation and renormalization, both of which underpin the electrostatics of biomolecules in solution. We show that while charge regulation addresses the true electrical charge of a molecule arising from the acid-base equilibria of its ionizable groups, charge renormalization finds relevance in the context of a molecule's interaction with another charged entity. Writing this electrostatic interaction free energy in terms of a local electrical potential, we obtain an "interaction charge" for the molecule which we demonstrate agrees closely with the "effective charge" discussed in charge renormalization and counterion-condensation theories. The predictions of this model agree well with direct high-precision measurements of effective electrical charge of polyelectrolytes such as nucleic acids and disordered proteins in solution, without tunable parameters. Including the effective interior dielectric constant for compactly folded molecules as a tunable parameter, the model captures measurements of effective charge as well as published trends of pKa shifts in globular proteins. Our results suggest a straightforward general framework to model electrostatics in biomolecules in solution. In offering a platform that directly links theory and experiment, these calculations could foster a systematic understanding of the interrelationship between molecular 3D structure and conformation, electrical charge and electrostatic interactions in solution. The model could find particular relevance in situations where molecular crystal structures are not available or rapid, reliable predictions are desired.
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Spann, J. F.; LeClair, A. C.
2010-01-01
Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions. Knowledge of the dust grain charges and equilibrium potentials is important for understanding of a variety of physical and dynamical processes in the interstellar medium (ISM), and heliospheric, interplanetary, planetary, and lunar environments. The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. It has been well recognized that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the corresponding values for bulk materials and theoretical models. In this paper we present experimental results on charging of individual dust grains selected from Apollo 11 and Apollo 17 dust samples by exposing them to mono-energetic electron beams in the 10- 400 eV energy range. The charging rates of positively and negatively charged particles of approximately 0.2 to 13 microns diameters are discussed in terms of the secondary electron emission (SEE) process, which is found to be a complex charging process at electron energies as low as 10-25 eV, with strong particle size dependence. The measurements indicate substantial differences between dust charging properties of individual small size dust grains and of bulk materials.
Charge Separation Mechanisms in Ordered Films of Self-Assembled Donor–Acceptor Dyad Ribbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logsdon, Jenna L.; Hartnett, Patrick E.; Nelson, Jordan N.
2017-04-21
Orthogonal attachment of polar and nonpolar side-chains to a zinc porphyrin-perylenediimide dyad (ZnP-PDI, 1a) is shown to result in self-assembly of ordered supramolecular ribbons in which the ZnP and PDI molecules form segregated π-stacked columns. Following photoexcitation of the ordered ribbons, ZnP+•-PDI–• radical ion pairs form in <200 fs and subsequently produce a 30 ± 3% yield of free charge carriers that live for about 100 μs. Elongating the side chains on ZnP and PDI in 1b enhances the order of the films, but does not result in an increase in free charge carrier yield. In addition, this yield ismore » independent of temperature, free energy of reaction, and the ZnP-PDI distance in the covalent dyad. These results suggest that the free charge carrier yield in this system is not limited by a bound charge transfer (CT) state or promoted by a vibronically hot CT state. Instead, it is likely that π-stacking of the segregated donors and acceptors within the ribbons results in delocalization of the charges following photoexcitation, allowing them to overcome Coulombic attraction and generate free charge carriers.« less
Active Colloids in Isotropic and Anisotropic Electrolytes
NASA Astrophysics Data System (ADS)
Peng, Chenhui
Electrically driven flows of fluids with respect to solid surfaces (electro-osmosis) and transport of particles in fluids (electrophoresis), collectively called electrokinetics, is a technologically important area of modern science. In this thesis, we study the electrokinetic phenomena in both isotropic and anisotropic fluids. A necessary condition of electrokinetics is separation of electric charges in space. In classic linear electrokinetics, with an isotropic electrolyte such as water, the charges are separated through dissociation of ionic groups at the solid-fluid interface; presence of the electric field is not required. In the nonlinear electrokinetics, the charges are separated with the assistance of the electric field. In the so-called induced-charge electro-osmosis (ICEO) the electric field separates charges near strongly polarizable surfaces such as metals. We establish the patterns of electro-osmotic velocities caused by nonlinear ICEO around an immobilized metallic and Janus (metallic-dielectric) spheres placed in water. In the case of the Janus particles, the flows are asymmetric, which results in pumping of water around the particle if it is immobilized, or in electrophoresis is the particle is free. When the isotropic electrolyte such as water is replaced with a LC electrolyte, the mechanism of the field-assisted charge separation becomes very different. Namely, the charges are separated at the director gradients, thanks to the anisotropy of electric conductivity and dielectric permittivity of the LC. These distortions can be created by the colloidal particles placed in the LC. We demonstrate the occurrence of nonlinear LC-enabled electro-osmosis (LCEO) by studying the flow patterns around colloidal spheres with different surface anchoring. LCEO velocities grow with the square of the electric field, which allows one to use an AC field to drive steady flows and to avoid electrode damage. Director distortions needed to trigger the LCEO can also be designed by surface-patterned modulated molecular orientation. The surface patterning is produced by photo-alignment. In the presence of an electric field, the spatially varying orientation induces space charges that trigger flows of the LC. The active patterned LC electrolyte converts the electric energy into the LC flows and transport of embedded particles of any type (fluid, solid, gaseous) along a predesigned trajectory, posing no limitation on the electric nature (charge, polarizability) of these particles and interfaces. The patterned LC electrolyte also induces persistent vortices of controllable rotation speed and direction that are quintessential for micro- and nanoscale mixing applications. The thesis also describes transport and placement of colloids by elasticity of a nematic LC with spatially varying molecular orientation. Colloidal particles in nematic environment are subject to the long-range elastic forces originating in the orientational order of the nematic. Gradients of the orientational order create an elastic energy landscape that drives the colloids into locations with preferred type of deformations. As an example, we demonstrate that colloidal spheres with perpendicular surface anchoring are driven into the regions of maximum splay, while spheres with tangential surface anchoring settle into the regions of bend. Elastic forces responsible for preferential placement are measured by exploring overdamped dynamics of the colloids. The results obtained in this thesis open new opportunities for design of materials and devices for micropumping, mixing, lab-on-a-chip and biosensing applications.
NASA Astrophysics Data System (ADS)
Lanfranchi, G. B.
2011-06-01
For Ancient Mesopotamians, astronomical phenomena were signs signifying the gods' judgment on human behaviour. Mesopotamian scholars studied celestial phenomena for understanding the gods' will, and strongly developed astrology. From the 8th to the 6th century BC Assyrian and Babylonian astronomers achieved the ability to predict solar and lunar eclipses, and the planets' movements through mathematical calculations. Predictability of astral phenomena solicited the awareness that they are all regular, and that the universe is governed by an eternal, immutable order fixed at its very beginning. This finally favoured the idea that the cosmic order depended on the will of one god only, displacing polytheism in favour of monotheism; and astrology lost its religious importance as a mean to know the divine will.
NASA Astrophysics Data System (ADS)
Lowe, Benjamin M.; Skylaris, Chris-Kriton; Green, Nicolas G.; Shibuta, Yasushi; Sakata, Toshiya
2018-04-01
Continuum-based methods are important in calculating electrostatic properties of interfacial systems such as the electric field and surface potential but are incapable of providing sufficient insight into a range of fundamentally and technologically important phenomena which occur at atomistic length-scales. In this work a molecular dynamics methodology is presented for interfacial electric field and potential calculations. The silica–water interface was chosen as an example system, which is highly relevant for understanding the response of field-effect transistors sensors (FET sensors). Detailed validation work is presented, followed by the simulated surface charge/surface potential relationship. This showed good agreement with experiment at low surface charge density but at high surface charge density the results highlighted challenges presented by an atomistic definition of the surface potential. This methodology will be used to investigate the effect of surface morphology and biomolecule addition; both factors which are challenging using conventional continuum models.
Molecular Simulation Results on Charged Carbon Nanotube Forest-Based Supercapacitors.
Muralidharan, Ajay; Pratt, Lawrence R; Hoffman, Gary G; Chaudhari, Mangesh I; Rempe, Susan B
2018-06-22
Electrochemical double-layer capacitances of charged carbon nanotube (CNT) forests with tetraethyl ammonium tetrafluoro borate electrolyte in propylene carbonate are studied on the basis of molecular dynamics simulation. Direct molecular simulation of the filling of pore spaces of the forest is feasible even with realistic, small CNT spacings. The numerical solution of the Poisson equation based on the extracted average charge densities then yields a regular experimental dependence on the width of the pore spaces, in contrast to the anomalous pattern observed in experiments on other carbon materials and also in simulations on planar slot-like pores. The capacitances obtained have realistic magnitudes but are insensitive to electric potential differences between the electrodes in this model. This agrees with previous calculations on CNT forest supercapacitors, but not with experiments which have suggested electrochemical doping for these systems. Those phenomena remain for further theory/modeling work. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nanotube Tunneling as a Consequence of Probable Discrete Trajectories
NASA Technical Reports Server (NTRS)
Robinson, Daryl C.
2001-01-01
It has been recently reported that the electrical charge in a semiconductive carbon nanotube is not evenly distributed, but is divided into charge "islands." A clear understanding of tunneling phenomena can be useful to elucidate the mechanism for electrical conduction in nanotubes. This paper represents the first attempt to shed light on the aforementioned phenomenon through viewing tunneling as a natural consequence of "discrete trajectories." The relevance of this analysis is that it may provide further insight into the higher rate of tunneling processes, which makes tunneling devices attractive. In a situation involving particles impinging on a classically impenetrable barrier, the result of quantum mechanics that the probability of detecting transmitted particles falls off exponentially is derived without wave theory. This paper should provide a basis for calculating the charge profile over the length of the tube so that nanoscale devices' conductive properties may be fully exploited.
Simulations of induced-charge electro-osmosis in microfluidic devices
NASA Astrophysics Data System (ADS)
Ben, Yuxing
2005-03-01
Theories of nonlinear electrokinetic phenomena generally assume a uniform, neutral bulk electroylte in contact with a polarizable thin double layer near a metal or dielectric surface, which acts as a "capacitor skin". Induced-charge electro-osmosis (ICEO) is the general effect of nonlinear electro-osmotic slip, when an applied electric field acts on its own induced (diffuse) double-layer charge. In most theoretical and experimental work, ICEO has been studied in very simple geometries, such as colloidal spheres and planar, periodic micro-electrode arrays. Here we use finite-element simulations to predict how more complicated geometries of polarizable surfaces and/or electrodes yield flow profiles with subtle dependence on the amplitude and frequency of the applied voltage. We also consider how the simple model equations break down, due to surface conduction, bulk diffusion, and concentration polarization, for large applied voltages (as in most experiments).
Electrification of Shaken Granular Flows as a Model of Natural Storm Charging
NASA Astrophysics Data System (ADS)
Kara, O.; Nordsiek, F.; Lathrop, D. P.
2015-12-01
The charging of particulates in nature is widespread and observed in thunderstorms, volcanic ash clouds, thunder-snow, and dust storms. However the mechanism of charge separation at large (> 1km) scale is poorly understood. We perform simple laboratory experiments to better understand the collective phenomena involved in granular electrification. We confine granular particles in an oscillating cylindrical chamber which is enclosed and sealed by two conducting plates. The primary measurement is the voltage difference between the two plates. We find that collective effects occurring in the bulk of the material play a significant role in the electrification process. We extend that by addition of photodetection capabilities to the experimental chamber to detect electrical discharges between the particles and each other and the plates. We present measurements of electrical discharges in addition to the slower dynamics of voltage variation in the system.
Mathematical physics approaches to lightning discharge problems
NASA Technical Reports Server (NTRS)
Kyrala, A.
1985-01-01
Mathematical physics arguments useful for lightning discharge and generation problems are pursued. A soliton Ansatz for the lightning stroke is treated including a charge generation term which is the ultimate source for the phenomena. Equations are established for a partially ionized plasma inding the effects of pressure, magnetic field, electric field, gravitation, viscosity, and temperature. From these equations is then derived the non-stationary generalized Ohm's Law essential for describing field/current density relationships in the horizon channel of the lightning stroke. The discharge initiation problem is discussed. It is argued that the ionization rate drives both the convective current and electric displacement current to increase exponentially. The statistical distributions of charge in the thundercloud preceding a lightning dischage are considered. The stability of the pre-lightning charge distributions and the use of Boltzmann relaxational equations to determine them are discussed along with a covered impedance path provided by the aircraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varade, Vaibhav, E-mail: vaibhav.tvarade@gmail.com; Jagtap, Amardeep M.; Koteswara Rao, K. S. R.
2015-06-07
Temperature and photo-dependent current–voltage characteristics are investigated in thin film devices of a hybrid-composite comprising of organic semiconductor poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) and cadmium telluride quantum dots (CdTe QDs). A detailed study of the charge injection mechanism in ITO/PEDOT:PSS-CdTe QDs/Al device exhibits a transition from direct tunneling to Fowler–Nordheim tunneling with increasing electric field due to formation of high barrier at the QD interface. In addition, the hybrid-composite exhibits a huge photoluminescence quenching compared to aboriginal CdTe QDs and high increment in photoconductivity (∼ 400%), which is attributed to the charge transfer phenomena. The effective barrier height (Φ{sub B} ≈ 0.68 eV) ismore » estimated from the transition voltage and the possible origin of its variation with temperature and photo-illumination is discussed.« less
Sasikumar, Kiran; Narayanan, Badri; Cherukara, Mathew; ...
2017-03-19
Heterostructures of tantalum and its oxide are of tremendous technological interest for a myriad of technological applications, including electronics, thermal management, catalysis and biochemistry. In particular, local oxygen stoichiometry variation in TaO x memristors comprising of thermodynamically stable metallic (Ta) and insulating oxide (Ta 2O 5) have been shown to result in fast switching on the subnanosecond timescale over a billion cycles. This rapid switching opens up the potential for advanced functional platforms such as stateful logic operations and neuromorphic computation. Despite its broad importance, an atomistic scale understanding of oxygen stoichiometry variation across Ta/TaO x heterointerfaces, such as duringmore » early stages of oxidation and oxide growth, is not well understood. This is mainly due to the lack of a unified interatomic potential model for tantalum oxides that can accurately describe metallic (Ta), ionic (TaO x) as well as mixed (Ta/TaO x interfaces) bonding environments simultaneously. To address this challenge, we introduce a Charge Transfer Ionic Potential (CTIP) model for Ta/Ta-oxide system by training against lattice parameters, cohesive energies, equations of state (EOS), elastic properties, and surface energies of the various experimentally observed Ta 2O 5 polymorphs (hexagonal, orthorhombic and monoclinic) obtained from density functional theory (DFT) calculations. The best CTIP parameters are determined by employing a global optimization scheme driven by genetic algorithms followed by local Simplex optimization. Our newly developed CTIP potential accurately predicts structure, thermodynamics, energetic ordering of polymorphs, as well as elastic and surface properties of both Ta and Ta 2O 5, in excellent agreement with DFT calculations and experiments. We employ our newly parameterized CTIP potential to investigate the early stages of oxidation and atomic scale mechanisms associated with oxide growth on Ta surface at various temperatures. Furthermore, the CTIP potential developed in this work is an invaluable tool to investigate atomic-scale mechanisms and transport phenomena underlying the response of Ta/TaO x interfaces to external stimuli (e.g, temperature, pressure, strain, electric field etc.), as well as other interesting dynamical phenomena including the physics of switching dynamics in TaO x based memristors and neuromorphic devices.« less
NASA Astrophysics Data System (ADS)
Sarwar, T.; Qamar, A.; Nadeem, M.
2017-07-01
Dynamics of spin ordering in the manganite Nd0.5Ca0.5MnO3 have been investigated in this paper. It was observed that the complex mixed magnetic ordering in pellets is comprised of antiferromagnetic ordering at 160 K (TN) and complete charge ordering at 250 K (TCO). Under ac field, appearance of unstable ferromagnetic correlations is observed above TCO, which is badly frustrated due to strong spin disorder induced by Jahn Teller distortions. Impedance measurements reveal the spin glass like scenario, suppressing the strong antiferromagnetic and charge ordering states below TN.
Statistics of excitations in the electron glass model
NASA Astrophysics Data System (ADS)
Palassini, Matteo
2011-03-01
We study the statistics of elementary excitations in the classical electron glass model of localized electrons interacting via the unscreened Coulomb interaction in the presence of disorder. We reconsider the long-standing puzzle of the exponential suppression of the single-particle density of states near the Fermi level, by measuring accurately the density of states of charged and electron-hole pair excitations via finite temperature Monte Carlo simulation and zero-temperature relaxation. We also investigate the statistics of large charge rearrangements after a perturbation of the system, which may shed some light on the slow relaxation and glassy phenomena recently observed in a variety of Anderson insulators. In collaboration with Martin Goethe.
NASA Technical Reports Server (NTRS)
Roy, N. L.
1975-01-01
Signals from impact ionization plasmas were studied as a means of performing microparticle composition analysis. Impact ionization signal response was measured in a time-of-flight (TOF) system for lanthanum hexaboride, carbonyl iron, and aluminum microparticle impacts on a tantalum target, primarily in the 1 - 8 km/s velocity range. Oscilloscope photographs of representative ion TOF signal response are given for each material studied. Graphs and histograms are presented of the total charge collected as well as the charge collected in each observed ion mass group. Data show that ion signals consist primarily of the lower ionization potential elements over the 1 - 8 km/s range.
Charge Order in (TMTTF)2TaF6 by Infrared Spectroscopy
NASA Astrophysics Data System (ADS)
Oka, Yuki; Matsunaga, Noriaki; Nomura, Kazushige; Kawamoto, Atsuhi; Yamamoto, Kaoru; Yakushi, Kyuya
2015-11-01
We have performed infrared spectroscopy in (TMTTF)2TaF6 (TMTTF: tetramethyltetrathiafulvalene) to investigate the relationship between the charge order (CO) state and the antiferromagnetic (AF) insulating ground state. A clear peak splitting corresponding to the charge disproportionation was observed below the CO transition temperature. We estimated the degree of charge disproportionation, Δρ = ρrich - ρpoor, as 0.28e from the peak splitting and found that the CO state coexists with the AF state and there is no charge redistribution below the AF transition.
Charge density on thin straight wire, revisited
NASA Astrophysics Data System (ADS)
Jackson, J. D.
2000-09-01
The question of the equilibrium linear charge density on a charged straight conducting "wire" of finite length as its cross-sectional dimension becomes vanishingly small relative to the length is revisited in our didactic presentation. We first consider the wire as the limit of a prolate spheroidal conductor with semi-minor axis a and semi-major axis c when a/c<<1. We then treat an azimuthally symmetric straight conductor of length 2c and variable radius r(z) whose scale is defined by a parameter a. A procedure is developed to find the linear charge density λ(z) as an expansion in powers of 1/Λ, where Λ≡ln(4c2/a2), beginning with a uniform line charge density λ0. We show, for this rather general wire, that in the limit Λ>>1 the linear charge density becomes essentially uniform, but that the tiny nonuniformity (of order 1/Λ) is sufficient to produce a tangential electric field (of order Λ0) that cancels the zeroth-order field that naively seems to belie equilibrium. We specialize to a right circular cylinder and obtain the linear charge density explicitly, correct to order 1/Λ2 inclusive, and also the capacitance of a long isolated charged cylinder, a result anticipated in the published literature 37 years ago. The results for the cylinder are compared with published numerical computations. The second-order correction to the charge density is calculated numerically for a sampling of other shapes to show that the details of the distribution for finite 1/Λ vary with the shape, even though density becomes constant in the limit Λ→∞. We give a second method of finding the charge distribution on the cylinder, one that approximates the charge density by a finite polynomial in z2 and requires the solution of a coupled set of linear algebraic equations. Perhaps the most striking general observation is that the approach to uniformity as a/c→0 is extremely slow.
Effect of intake pipe on the volumetric efficiency of an internal combustion engine
NASA Technical Reports Server (NTRS)
Capetti, Antonio
1929-01-01
The writer discusses the phenomena of expansion and compression which alternately take place in the cylinders of four-stroke engines during the induction process at a high mean piston speed due to the inertia and elasticity of the mixture in the intake pipe. The present paper is intended to demonstrate theoretically the existence of a most favorable pipe length for charging.
ERIC Educational Resources Information Center
Riveros, Héctor G.
2012-01-01
The inquiry-based approach to learning has proven to be quite effective, since Socrates, but it is difficult to found good questions to induce reasoning. Many sources explain wrongly some experimental results, which can be used as discrepant events. Some use the breaking of a ruler with a newspaper to "show" that the atmospheric pressure…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, M. M.; Craven, P. D.; LeClair, A. C.
2010-08-01
Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individualmore » micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 {mu}m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.« less
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Crave, P. D.; LeClair, A.; Spann, J. F.
2010-01-01
Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEES). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/ planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEES discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.
Revisiting Cu 63 NMR evidence for charge order in superconducting La 1.885 Sr 0.115 CuO 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imai, T.; Takahashi, S. K.; Arsenault, A.
Here, the presence of charge and spin stripe order in the La 2CuO 4-based family of superconductors continues to lead to new insight on the unusual ground-state properties of high- T c cuprates. Soon after the discovery of charge stripe order at T charge≃65 K in Nd 3+ co-doped La 1.48Nd 0.4Sr 0.12CuO 4( Tc≃6 K), Hunt et al. demonstrated that La 1.48Nd 0.4Sr 0.12CuO 4 and superconducting La 2–xSr xCuO 4 with x~1/8( Tc≃30 K) share nearly identical NMR anomalies near Tcharge of the former. Their inevitable conclusion that La 1.885Sr 0.115CuO 4 also undergoes charge order at amore » comparable temperature became controversial, because diffraction measurements at the time were unable to detect Bragg peaks associated with charge order. Recent advances in x-ray diffraction techniques finally led to definitive confirmations of the charge order Bragg peaks in La 1.885Sr 0.115CuO 4 with an onset at as high as Tcharge≃80 K. Meanwhile, improved instrumental technology has enabled routine NMR measurements that were not feasible two decades ago. Motivated by these new developments, we revisit the charge order transition of a La 1.885Sr 0.115CuO 4 single crystal based on 63Cu NMR techniques. We demonstrate that 63Cu NMR properties of the nuclear spin I z=–1/2 to +1/2 central transition below Tcharge exhibit unprecedentedly strong dependence on the measurement time scale set by the separation time τ between the 90° and 180° radio-frequency pulses; a new kind of anomalous, very broad winglike 63Cu NMR signals gradually emerge below Tcharge only for extremely short τ≲4μs, while the spectral weight I Normal of the normal NMR signals is progressively wiped out. The NMR linewidth and relaxation rates depend strongly on τ below Tcharge, and their enhancement in the charge ordered state indicates that charge order turns on strong but inhomogeneous growth of Cu spin-spin correlations.« less
Revisiting Cu 63 NMR evidence for charge order in superconducting La 1.885 Sr 0.115 CuO 4
Imai, T.; Takahashi, S. K.; Arsenault, A.; ...
2017-12-26
Here, the presence of charge and spin stripe order in the La 2CuO 4-based family of superconductors continues to lead to new insight on the unusual ground-state properties of high- T c cuprates. Soon after the discovery of charge stripe order at T charge≃65 K in Nd 3+ co-doped La 1.48Nd 0.4Sr 0.12CuO 4( Tc≃6 K), Hunt et al. demonstrated that La 1.48Nd 0.4Sr 0.12CuO 4 and superconducting La 2–xSr xCuO 4 with x~1/8( Tc≃30 K) share nearly identical NMR anomalies near Tcharge of the former. Their inevitable conclusion that La 1.885Sr 0.115CuO 4 also undergoes charge order at amore » comparable temperature became controversial, because diffraction measurements at the time were unable to detect Bragg peaks associated with charge order. Recent advances in x-ray diffraction techniques finally led to definitive confirmations of the charge order Bragg peaks in La 1.885Sr 0.115CuO 4 with an onset at as high as Tcharge≃80 K. Meanwhile, improved instrumental technology has enabled routine NMR measurements that were not feasible two decades ago. Motivated by these new developments, we revisit the charge order transition of a La 1.885Sr 0.115CuO 4 single crystal based on 63Cu NMR techniques. We demonstrate that 63Cu NMR properties of the nuclear spin I z=–1/2 to +1/2 central transition below Tcharge exhibit unprecedentedly strong dependence on the measurement time scale set by the separation time τ between the 90° and 180° radio-frequency pulses; a new kind of anomalous, very broad winglike 63Cu NMR signals gradually emerge below Tcharge only for extremely short τ≲4μs, while the spectral weight I Normal of the normal NMR signals is progressively wiped out. The NMR linewidth and relaxation rates depend strongly on τ below Tcharge, and their enhancement in the charge ordered state indicates that charge order turns on strong but inhomogeneous growth of Cu spin-spin correlations.« less
Revisiting 63Cu NMR evidence for charge order in superconducting La1.885Sr0.115CuO4
NASA Astrophysics Data System (ADS)
Imai, T.; Takahashi, S. K.; Arsenault, A.; Acton, A. W.; Lee, D.; He, W.; Lee, Y. S.; Fujita, M.
2017-12-01
The presence of charge and spin stripe order in the La2CuO4 -based family of superconductors continues to lead to new insight on the unusual ground-state properties of high-Tc cuprates. Soon after the discovery of charge stripe order at Tcharge≃65 K in Nd3 + co-doped La1.48Nd0.4Sr0.12CuO4 (Tc≃6 K) [Tranquada et al., Nature (London) 375, 561 (1995), 10.1038/375561a0], Hunt et al. demonstrated that La1.48Nd0.4Sr0.12CuO4 and superconducting La2 -xSrxCuO4 with x ˜1 /8 (Tc≃30 K) share nearly identical NMR anomalies near Tcharge of the former [Phys. Rev. Lett. 82, 4300 (1999), 10.1103/PhysRevLett.82.4300]. Their inevitable conclusion that La1.885Sr0.115CuO4 also undergoes charge order at a comparable temperature became controversial, because diffraction measurements at the time were unable to detect Bragg peaks associated with charge order. Recent advances in x-ray diffraction techniques finally led to definitive confirmations of the charge order Bragg peaks in La1.885Sr0.115CuO4 with an onset at as high as Tcharge≃80 K. Meanwhile, improved instrumental technology has enabled routine NMR measurements that were not feasible two decades ago. Motivated by these new developments, we revisit the charge order transition of a La1.885Sr0.115CuO4 single crystal based on 63Cu NMR techniques. We demonstrate that 63Cu NMR properties of the nuclear spin Iz=-1/2 to +1/2 central transition below Tcharge exhibit unprecedentedly strong dependence on the measurement time scale set by the separation time τ between the 90∘ and 180∘ radio-frequency pulses; a new kind of anomalous, very broad winglike 63Cu NMR signals gradually emerge below Tcharge only for extremely short τ ≲4 μ s , while the spectral weight INormal of the normal NMR signals is progressively wiped out. The NMR linewidth and relaxation rates depend strongly on τ below Tcharge, and their enhancement in the charge ordered state indicates that charge order turns on strong but inhomogeneous growth of Cu spin-spin correlations.
Gravity-dependent transport in industrial processes
NASA Technical Reports Server (NTRS)
Ostrach, Simon; Kamotani, Yasuhiro
1994-01-01
Gravity-dependent transport phenomena in various industrial processes are investigated in order to address a broader range of microgravity phenomena and to develop new applications of microgravity. A number of important topics are identified and analyzed in detail. The present article describes results on coating flow, zeolite growth, and rotating electrochemical system.
Moon, Jong Kyun; Song, Myung Won; Pak, Hyuk Kyu
2015-05-20
A solid surface in contact with water or aqueous solution usually carries specific electric charges. These surface charges attract counter ions from the liquid side. Since the geometry of opposite charge distribution parallel to the solid-liquid interface is similar to that of a capacitor, it is called an electrical double layer capacitor (EDLC). Therefore, there is an electrical potential difference across an EDLC in equilibrium. When a liquid bridge is formed between two conducting plates, the system behaves as two serially connected EDLCs. In this work, we propose a new method for investigating the surface charge density on solid-liquid interfaces. By mechanically modulating the electrical double layers and simultaneously applying a dc bias voltage across the plates, an ac electric current can be generated. By measuring the voltage drop across a load resistor as a function of bias voltage, we can study the surface charge density on solid-liquid interfaces. Our experimental results agree very well with the simple equivalent electrical circuit model proposed here. Furthermore, using this method, one can determine the polarity of the adsorbed state on the solid surface depending on the material used. We expect this method to aid in the study of electrical phenomena on solid-liquid interfaces.
Genesis of charge orders in high temperature superconductors
Tu, Wei-Lin; Lee, Ting-Kuo
2016-01-01
One of the most puzzling facts about cuprate high-temperature superconductors in the lightly doped regime is the coexistence of uniform superconductivity and/or antiferromagnetism with many low-energy charge-ordered states in a unidirectional charge density wave or a bidirectional checkerboard structure. Recent experiments have discovered that these charge density waves exhibit different symmetries in their intra-unit-cell form factors for different cuprate families. Using a renormalized mean-field theory for a well-known, strongly correlated model of cuprates, we obtain a number of charge-ordered states with nearly degenerate energies without invoking special features of the Fermi surface. All of these self-consistent solutions have a pair density wave intertwined with a charge density wave and sometimes a spin density wave. Most of these states vanish in the underdoped regime, except for one with a large d-form factor that vanishes at approximately 19% doping of the holes, as reported by experiments. Furthermore, these states could be modified to have a global superconducting order, with a nodal-like density of states at low energy. PMID:26732076
NASA Astrophysics Data System (ADS)
Bünemann, Jörg; Seibold, Götz
2017-12-01
Pump-probe experiments have turned out as a powerful tool in order to study the dynamics of competing orders in a large variety of materials. The corresponding analysis of the data often relies on standard linear-response theory generalized to nonequilibrium situations. Here we examine the validity of such an approach for the charge and pairing response of systems with charge-density wave and (or) superconducting (SC) order. Our investigations are based on the attractive Hubbard model which we study within the time-dependent Hartree-Fock approximation. In particular, we calculate the quench and pump-probe dynamics for SC and charge order parameters in order to analyze the frequency spectra and the coupling of the probe field to the specific excitations. Our calculations reveal that the "linear-response assumption" is justified for small to moderate nonequilibrium situations (i.e., pump pulses) in the case of a purely charge-ordered ground state. However, the pump-probe dynamics on top of a superconducting ground state is determined by phase and amplitude modes which get coupled far from the equilibrium state indicating the failure of the linear-response assumption.
Hole-phonon coupling effect on the band dispersion of organic molecular semiconductors.
Bussolotti, F; Yang, J; Yamaguchi, T; Yonezawa, K; Sato, K; Matsunami, M; Tanaka, K; Nakayama, Y; Ishii, H; Ueno, N; Kera, S
2017-08-02
The dynamic interaction between the traveling charges and the molecular vibrations is critical for the charge transport in organic semiconductors. However, a direct evidence of the expected impact of the charge-phonon coupling on the band dispersion of organic semiconductors is yet to be provided. Here, we report on the electronic properties of rubrene single crystal as investigated by angle resolved ultraviolet photoelectron spectroscopy. A gap opening and kink-like features in the rubrene electronic band dispersion are observed. In particular, the latter results in a large enhancement of the hole effective mass (> 1.4), well above the limit of the theoretical estimations. The results are consistent with the expected modifications of the band structures in organic semiconductors as introduced by hole-phonon coupling effects and represent an important experimental step toward the understanding of the charge localization phenomena in organic materials.The charge transport properties in organic semiconductors are affected by the impact of molecular vibrations, yet it has been challenging to quantify them to date. Here, Bussolotti et al. provide direct experimental evidence on the band dispersion modified by molecular vibrations in a rubrene single crystal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noyes, H. Pierre
In order to ground my approach to the study of paranormal phenomena, I first explain my operational approach to physics, and to the ''historical'' sciences of cosmic, biological, human, social and political evolution. I then indicate why I believe that ''paranormal phenomena'' might-but need not- fit into this framework. I endorse the need for a new theoretical framework for the investigation of this field presented by Etter and Shoup at this meeting. I close with a short discussion of Ted Bastin's contention that paranormal phenomena should be defined as contradicting physics.
Gravity-Dependent Transport in Industrial Processes
NASA Technical Reports Server (NTRS)
Ostrach, Simon; Kamotani, Yasuhiro
1996-01-01
Gravity dependent transport phenomena in various industrial processes are investigated in order to indicate new directions for micro-gravity research that enhance the commercial success of the space program. The present article describes the commercialization possibilities of such topics associated with physicochemical transport phenomena. The topics are: coating flow, rotating electrochemical system, and convection in low Plandtl number fluids. The present study is directed to understand these phenomena, and to develop a knowledge base for their applications with emphasis to a micro-gravity environment.
Structural and Magnetic Phase Coexistence in Oxygen Deficient Perovskites (Sr,Ca)FeO 2 . 5 + δ
NASA Astrophysics Data System (ADS)
Carlo, J. P.; Evans, M. E.; Anczarski, J. A.; Ock, J.; Boyd, K.; Pollichemi, J. R.; Leahy, I. A.; Vogel, W.; Viescas, A. J.; Papaefthymiou, G. C.
A variety of compounds crystallize into perovskite and similar structures, making them versatile laboratories for many phenomena and applications, including multiferroicity, superconductivity, and photovoltaics. Oxygen-deficient perovskites ABOx have attracted interest for use in fuel cells and related applications due to high oxygen mobility and the possibility of charge disproportionation. Vast chemical flexibility is obtained through reductions in lattice symmetry and rotation/distortion of the BO6 octahedra, as well as ordering of oxygen vacancies. We have synthesized and studied the structural and magnetic properties of oxygen-deficient perovskites (Sr,Ca)FeO2 . 5 + δ using x-ray diffraction and Mossbauer spectroscopy. While the ideal perovskite has δ = 0.5, this requires Fe4+, and hence strongly oxidizing environments. When grown in air, Fe3+ is favored, yielding δ ~ 0. SrFeO2 . 5 + δ exhibits cubic symmetry and paramagnetism at 300K, but CaFeO2 . 5 + δ crystallizes into the orthorhombic brownmillerite structure, and is magnetically ordered at 300K. In the doped intermediaries we find coexistence of cubic/paramagnetic and orthorhombic/magnetic phases over a wide range of Ca content. Financial support from the Villanova Undergraduate Research Fellowship program and the Research Corporation for Science Advancement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lei; Cole, Jacqueline M.; Liu, Xiaogang
2013-11-25
“Smart tuning” of optical properties in three azo dyes containing intramolecular hydrogen bonding is realized by the judicious control of solvents, when the dyes are in solution or adsorbed onto titanium dioxide nanoparticles. In solution, certain solvents destabilizing intramolecular hydrogen bonding induce a distinctive ≈70 nm “blue-shifted” absorption peak, compared with other solvents. In parallel, the optical properties of azo dye/TiO2 nanocomposites can be tuned using solvents with different hydrogen-bond accepting/donating abilities, giving insights into smart materials and dye-sensitized solar cell device design. It is proposed that intramolecular hydrogen bonding alone plays the leading role in such phenomena, which ismore » fundamentally different to other mechanisms, such as tautomerism and cis–trans isomerization, that explain the optical control of azo dyes. Hybrid density functional theory (DFT) is employed in order to trace the origin of this optical control, and these calculations support the mechanism involving intramolecular hydrogen bonding. Two complementary studies are also reported: 1H NMR spectroscopy is conducted in order to further understand the solvent effects on intramolecular hydrogen bonding; crystal structure analysis from associated research indicates the importance of intramolecular hydrogen bonding on intramolecular charge transfer.« less
Superconductivity-insensitive order at q~1/4 in electron doped cuprates
Lee, Jun -Sik; Jang, H.; Asano, S.; ...
2017-12-15
One of the central questions in the cuprate research is the nature of the ‘normal state’ which develops into high temperature superconductivity (HTSC). In the normal state of hole-doped cuprates, the existence of charge density wave (CDW) is expected to shed light on the mechanism of HTSC. With evidence emerging for CDW order in the electron-doped cuprates, the CDW would be thought to be a universal phenomenon in high-T c cuprates. However, the CDW phenomena in electron-doped cuprate are quite different than those in hole-doped cuprates. Here we study the nature of the putative CDW in an electron-doped cuprate throughmore » direct comparisons between as-grown and post-annealed Nd 1.86Ce 0.14CuO 4 (NCCO) single crystals using Cu L 3-edge resonant soft x-ray scattering (RSXS) and angleresolved photoemission spectroscopy (ARPES). The RSXS result reveals that the non-superconducting NCCO shows the same reflections at the wavevector (~1/4, 0, l) as like the reported superconducting NCCO. This superconductivity-insensitivesignal is quite different with the characteristics of the CDW reflection in hole-doped cuprates. Moreover, the ARPES result suggests that the fermiology cannot account for such wavevector. Furthermore, these results call into question the universality of CDW phenomenon in the cuprates.« less
Tan, B S; Harrison, N; Zhu, Z; Balakirev, F; Ramshaw, B J; Srivastava, A; Sabok-Sayr, S A; Sabok, S A; Dabrowski, B; Lonzarich, G G; Sebastian, Suchitra E
2015-08-04
The normal state in the hole underdoped copper oxide superconductors has proven to be a source of mystery for decades. The measurement of a small Fermi surface by quantum oscillations on suppression of superconductivity by high applied magnetic fields, together with complementary spectroscopic measurements in the hole underdoped copper oxide superconductors, point to a nodal electron pocket from charge order in YBa2Cu3(6+δ). Here, we report quantum oscillation measurements in the closely related stoichiometric material YBa2Cu4O8, which reveals similar Fermi surface properties to YBa2Cu3(6+δ), despite the nonobservation of charge order signatures in the same spectroscopic techniques, such as X-ray diffraction, that revealed signatures of charge order in YBa2Cu3(6+δ). Fermi surface reconstruction in YBa2Cu4O8 is suggested to occur from magnetic field enhancement of charge order that is rendered fragile in zero magnetic fields because of its potential unconventional nature and/or its occurrence as a subsidiary to more robust underlying electronic correlations.
Charge ordered ferromagnetic phase in La_0.5Ca_0.5MnO_3
NASA Astrophysics Data System (ADS)
Mathur, Neil
2003-03-01
Charge order and ferromagnetism should be mutually exclusive in the manganites, because ferromagnetism in these materials is normally promoted by delocalised electrons. Surprisingly, a phase that is both strongly charge ordered and fully ferromagnetic is observed [1] at 90 K in La_0.5Ca_0.5MnO_3, using Fresnel imaging, dark-field TEM and electron holography. This new phase coexists with the two low temperature phases that were already known to coexist in La_0.5Ca_0.5MnO_3. (One of these expected phases is ferromagnetic but not charge-ordered, the other is charge-ordered but not ferromagnetic.) Strain fields could be responsible for the novel microscopic texture presented here - perhaps creating conditions in which nearest neighbour hopping is sufficient to promote ferromagnetism. Similarly, strain fields are believed to cause sub-micron phase separation in the manganites. It therefore seems that the manganites can adapt to their environments over a wide range of length scales [2]. [1] http://xxx.lanl.gov/abs/cond-mat/0209436 [2] Neil Mathur and Peter Littlewood, Physics Today, early 2003.
Collective Dynamics and Strong Pinning near the Onset of Charge Order in La1.48Nd0.4Sr0.12CuO4
NASA Astrophysics Data System (ADS)
Baity, P. G.; Sasagawa, T.; Popović, Dragana
2018-04-01
The dynamics of charge-ordered states is one of the key issues in underdoped cuprate high-temperature superconductors, but static short-range charge-order (CO) domains have been detected in almost all cuprates. We probe the dynamics across the CO (and structural) transition in La1.48Nd0.4Sr0.12CuO4 by measuring nonequilibrium charge transport, or resistance R as the system responds to a change in temperature and to an applied magnetic field. We find evidence for metastable states, collective behavior, and criticality. The collective dynamics in the critical regime indicates strong pinning by disorder. Surprisingly, nonequilibrium effects, such as avalanches in R , are revealed only when the critical region is approached from the charge-ordered phase. Our results on La1.48Nd0.4Sr0.12CuO4 provide the long-sought evidence for the fluctuating order across the CO transition, and also set important constraints on theories of dynamic stripes.
Shen, Jia-Wei; Wu, Tao; Wang, Qi; Kang, Yu; Chen, Xin
2009-06-02
Ordered hydration shells: The more ordered hydration shells outside the charged CNT surfaces prevent more compact adsorption of the peptide in the charged CNT systems [picture: see text], but peptide binding strengths on the charged CNT surfaces are stronger due to the electrostatic interaction.Studies of adsorption dynamics and stability for peptides/proteins on single-walled carbon nanotubes (SWNTs) are of great importance for a better understanding of the properties and nature of nanotube-based biosystems. Herein, the dynamics and mechanism of the adsorption of the insulin chain B peptide on different charged SWNTs are investigated by explicit solvent molecular dynamics simulations. The results show that all types of surfaces effectively attract the model peptide. Water molecules play a significant role in peptide adsorption on the surfaces of charged carbon nanotubes (CNTs). Compared to peptide adsorption on neutral CNT surfaces, the more ordered hydration shells outside the tube prevent more compact adsorption of the peptide in charged CNT systems. This shield effect leads to a smaller conformational change and van der Waals interaction between the peptide and surfaces, but peptide binding strengths on charged CNT surfaces are stronger than those on the neutral CNT surface due to the strong electrostatic interaction. The result of these simulations implies the possibility of improving the binding strength of peptides/proteins on CNT surfaces, as well as keeping the integrity of the peptide/protein conformation in peptide/protein-CNT complexes by charging the CNTs.
Higher-Order Spectral Analysis of F-18 Flight Flutter Data
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Dunn, Shane
2005-01-01
Royal Australian Air Force (RAAF) F/A-18 flight flutter test data is presented and analyzed using various techniques. The data includes high-quality measurements of forced responses and limit cycle oscillation (LCO) phenomena. Standard correlation and power spectral density (PSD) techniques are applied to the data and presented. Novel applications of experimentally-identified impulse responses and higher-order spectral techniques are also applied to the data and presented. The goal of this research is to develop methods that can identify the onset of nonlinear aeroelastic phenomena, such as LCO, during flutter testing.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-22
... Exchange currently charges $0.11 per contract for Customer orders executed at NYSE MKT LLC (``AMEX''), BOX... Customer orders executed at MIAX and $0.57 per contract for Professional, Firm, and Market Maker orders executed at MIAX. As noted above, the Exchange currently charges $0.11 per contract for Customer orders and...
29 CFR 1981.109 - Decision and orders of the administrative law judge.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 9 2011-07-01 2011-07-01 false Decision and orders of the administrative law judge. 1981... charged has violated the law, the order shall direct the party charged to take appropriate affirmative... SECTION 6 OF THE PIPELINE SAFETY IMPROVEMENT ACT OF 2002 Litigation § 1981.109 Decision and orders of the...
29 CFR 1981.109 - Decision and orders of the administrative law judge.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 9 2013-07-01 2013-07-01 false Decision and orders of the administrative law judge. 1981... charged has violated the law, the order shall direct the party charged to take appropriate affirmative... SECTION 6 OF THE PIPELINE SAFETY IMPROVEMENT ACT OF 2002 Litigation § 1981.109 Decision and orders of the...
29 CFR 1981.109 - Decision and orders of the administrative law judge.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 9 2010-07-01 2010-07-01 false Decision and orders of the administrative law judge. 1981... charged has violated the law, the order shall direct the party charged to take appropriate affirmative... SECTION 6 OF THE PIPELINE SAFETY IMPROVEMENT ACT OF 2002 Litigation § 1981.109 Decision and orders of the...
29 CFR 1981.109 - Decision and orders of the administrative law judge.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 9 2012-07-01 2012-07-01 false Decision and orders of the administrative law judge. 1981... charged has violated the law, the order shall direct the party charged to take appropriate affirmative... SECTION 6 OF THE PIPELINE SAFETY IMPROVEMENT ACT OF 2002 Litigation § 1981.109 Decision and orders of the...
29 CFR 1981.109 - Decision and orders of the administrative law judge.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 9 2014-07-01 2014-07-01 false Decision and orders of the administrative law judge. 1981... charged has violated the law, the order shall direct the party charged to take appropriate affirmative... SECTION 6 OF THE PIPELINE SAFETY IMPROVEMENT ACT OF 2002 Litigation § 1981.109 Decision and orders of the...
Nonequilibrium lattice-driven dynamics of stripes in nickelates using time-resolved x-ray scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W. S.; Kung, Y. F.; Moritz, B.
We investigate the lattice coupling to the spin and charge orders in the striped nickelate, La 1.75 Sr 0.25 NiO 4 , using time-resolved resonant x-ray scattering. Lattice-driven dynamics of both spin and charge orders are observed when the pump photon energy is tuned to that of an E u bond- stretching phonon. We present a likely scenario for the behavior of the spin and charge order parameters and its implications using a Ginzburg-Landau theory.
Complex (dusty) plasmas-kinetic studies of strong coupling phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morfill, Gregor E.; Ivlev, Alexei V.; Thomas, Hubertus M.
2012-05-15
'Dusty plasmas' can be found almost everywhere-in the interstellar medium, in star and planet formation, in the solar system in the Earth's atmosphere, and in the laboratory. In astrophysical plasmas, the dust component accounts for only about 1% of the mass, nevertheless this component has a profound influence on the thermodynamics, the chemistry, and the dynamics. Important physical processes are charging, sputtering, cooling, light absorption, and radiation pressure, connecting electromagnetic forces to gravity. Surface chemistry is another important aspect. In the laboratory, there is great interest in industrial processes (e.g., etching, vapor deposition) and-at the fundamental level-in the physics ofmore » strong coupling phenomena. Here, the dust (or microparticles) are the dominant component of the multi-species plasma. The particles can be observed in real time and space, individually resolved at all relevant length and time scales. This provides an unprecedented means for studying self-organisation processes in many-particle systems, including the onset of cooperative phenomena. Due to the comparatively large mass of the microparticles (10{sup -12}to10{sup -9}g), precision experiments are performed on the ISS. The following topics will be discussed: Phase transitions, phase separation, electrorheology, flow phenomena including the onset of turbulence at the kinetic level.« less
Zhao, Cunlu; Yang, Chun
2018-02-14
In this work, we report an effective microfluidic technique for continuous-flow trapping and localized enrichment of micro- and nano-particles by using induced-charge electrokinetic (ICEK) phenomena. The proposed technique utilizes a simple microfluidic device that consists of a straight microchannel and a conducting strip attached to the bottom wall of the microchannel. Upon application of the electric field along the microchannel, the conducting strip becomes polarized to introduce two types of ICEK phenomena, the ICEK flow vortex and particle dielectrophoresis, and they are identified by a theoretical model formulated in this study to be jointly responsible for the trapping of particles over the edge of the conducting strip. Our experiments showed that successful trapping requires an AC/DC combined electric field: the DC component is mainly to induce electroosmotic flow for transporting particles to the trapping location; the AC component induces ICEK phenomena over the edge of the conducting strip for particle trapping. The performance of the technique is examined with respect to the applied electric voltage, AC frequency and the particle size. We observed that the trapped particles form a narrow band (nearly a straight line) defined by the edge of the conducting strip, thereby allowing localized particle enrichment. For instance, we found that under certain conditions a high particle enrichment ratio of 200 was achieved within 30 seconds. We also demonstrated that the proposed technique was able to trap particles from several microns down to several tens of nanometer. We believe that the proposed ICEK trapping would have great flexibility that the trapping location can be readily varied by controlling the location of the patterned conducting strip and multiple-location trapping can be expected with the use of multiple conducting strips.
Ultrafast electron microscopy in materials science, biology, and chemistry
NASA Astrophysics Data System (ADS)
King, Wayne E.; Campbell, Geoffrey H.; Frank, Alan; Reed, Bryan; Schmerge, John F.; Siwick, Bradley J.; Stuart, Brent C.; Weber, Peter M.
2005-06-01
The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental knowledge for discovery-class science.
Manzano, Sara; Manzano, Raquel; Doblaré, Manuel; Doweidar, Mohamed Hamdy
2015-01-01
In healthy cartilage, mechano-electrochemical phenomena act together to maintain tissue homeostasis. Osteoarthritis (OA) and degenerative diseases disrupt this biological equilibrium by causing structural deterioration and subsequent dysfunction of the tissue. Swelling and ion flux alteration as well as abnormal ion distribution are proposed as primary indicators of tissue degradation. In this paper, we present an extension of a previous three-dimensional computational model of the cartilage behaviour developed by the authors to simulate the contribution of the main tissue components in its behaviour. The model considers the mechano-electrochemical events as concurrent phenomena in a three-dimensional environment. This model has been extended here to include the effect of repulsion of negative charges attached to proteoglycans. Moreover, we have studied the fluctuation of these charges owning to proteoglycan variations in healthy and pathological articular cartilage. In this sense, standard patterns of healthy and degraded tissue behaviour can be obtained which could be a helpful diagnostic tool. By introducing measured properties of unhealthy cartilage into the computational model, the severity of tissue degeneration can be predicted avoiding complex tissue extraction and subsequent in vitro analysis. In this work, the model has been applied to monitor and analyse cartilage behaviour at different stages of OA and in both short (four, six and eight weeks) and long-term (11 weeks) fully immobilized joints. Simulation results showed marked differences in the corresponding swelling phenomena, in outgoing cation fluxes and in cation distributions. Furthermore, long-term immobilized patients display similar swelling as well as fluxes and distribution of cations to patients in the early stages of OA, thus, preventive treatments are highly recommended to avoid tissue deterioration. PMID:25392400
Nonlinear electrokinetic phenomena in microfluidic devices
NASA Astrophysics Data System (ADS)
Ben, Yuxing
This thesis addresses nonlinear electrokinetic mechanisms for transporting fluid and particles in microfluidic devices for potential applications in biomedical chips, microelectronic cooling and micro-fuel cells. Nonlinear electrokinetics have many advantages, such as low voltage, low power, high velocity, and no significant gas formation in the electrolyte. However, they involve new and complex charging and flow mechanisms that are still not fully understood or explored. Linear electrokinetic fingering that occurs when a fluid with a lower electrolyte concentration advances into one with a higher concentration is first analyzed. Unlike earlier miscible fingering theories, the linear stability analysis is carried out in the self-similar coordinates of the diffusing front. This new spectral theory is developed for small-amplitude gravity and viscous miscible fingering phenomena in general and applied to electrokinetic miscible fingering specifically. Transient electrokinetic fingering is shown to be insignificant in sub-millimeter micro-devices. Nonlinear electroosmotic flow around an ion-exchange spherical granule is studied next. When an electric field is applied across a conducting and ion-selective porous granule in an electrolyte solution, a polarized surface layer with excess counter-ions is created. The flux-induced polarization produces a nonlinear slip velocity to produce micro-vortices around this sphere. This polarization layer is reduced by convection at high velocity. Two velocity scalings at low and high electric fields are derived and favorably compared with experimental results. A mixing device based on this mechanism is shown to produce mixing efficiency 10-100 times higher than molecular diffusion. Finally, AC nonlinear electrokinetic flow on planar electrodes is studied. Two double layer charging mechanisms are responsible for the flow---one due to capacitive charging of ions from the bulk electrolyte and one due to Faradaic reactions at the electrode that consume or produce ions in the double layer. Faradaic charging is analyzed for specific reactions. From the theory, particular electrokinetic flows above the electrodes are selected for micropumps and bioparticle trapping by specifying the electrode geometry and the applied voltage and frequency.
NASA Astrophysics Data System (ADS)
Latry, O.; Divay, A.; Fadil, D.; Dherbécourt, P.
2017-01-01
Electrical characterization analyses are proposed in this work using the Lambert function on Schottky junctions in GaN wide band gap semiconductor devices for extraction of physical parameters. The Lambert function is used to give an explicit expression of the current in the Schottky junction. This function is applied with defined conduction phenomena, whereas other work presented arbitrary (or undefined) conduction mechanisms in such parameters’ extractions. Based upon AlGaN/GaN HEMT structures, extractions of parameters are undergone in order to provide physical characteristics. This work highlights a new expression of current with defined conduction phenomena in order to quantify the physical properties of Schottky contacts in AlGaN/GaN HEMT transistors. Project supported by the French Department of Defense (DGA).
Atomic-scale visualization of oxide thin-film surfaces.
Iwaya, Katsuya; Ohsawa, Takeo; Shimizu, Ryota; Okada, Yoshinori; Hitosugi, Taro
2018-01-01
The interfaces of complex oxide heterostructures exhibit intriguing phenomena not observed in their constituent materials. The oxide thin-film growth of such heterostructures has been successfully controlled with unit-cell precision; however, atomic-scale understandings of oxide thin-film surfaces and interfaces have remained insufficient. We examined, with atomic precision, the surface and electronic structures of oxide thin films and their growth processes using low-temperature scanning tunneling microscopy. Our results reveal that oxide thin-film surface structures are complicated in contrast to the general perception and that atomically ordered surfaces can be achieved with careful attention to the surface preparation. Such atomically ordered oxide thin-film surfaces offer great opportunities not only for investigating the microscopic origins of interfacial phenomena but also for exploring new surface phenomena and for studying the electronic states of complex oxides that are inaccessible using bulk samples.
Apparent critical phenomena in the superionic phase transition of Cu 2-xSe
Kang, Stephen Dongmin; Danilkin, Sergey A.; Aydemir, Umut; ...
2016-01-11
The superionic phase transition ofmore » $${\\mathrm{Cu}}_{2-x}\\mathrm{Se}$$ accompanies drastic changes in transport properties. The Seebeck coefficient increases sharply while the electrical conductivity and thermal diffusivity drops. Such behavior has previously been attributed to critical phenomena under the assumption of a continuous phase transition. However, applying Landau's criteria suggests that the transition should be first order. Using the phase diagram that is consistent with a first order transition, we show that the observed transport properties and heat capacity curves can be accounted for and modeled with good agreement. The apparent critical phenomena is shown to be a result of compositional degree-of-freedom. In conclusion, understanding of the phase transition allows to explain the enhancement in the thermoelectric figure-of-merit that is accompanied with the transition.« less
Spacecraft Charging in Low Temperature Environments
NASA Technical Reports Server (NTRS)
Parker, Linda N.
2007-01-01
Spacecraft charging in plasma and radiation environments is a temperature dependent phenomenon due to the reduction of electrical conductivity in dielectric materials at low temperatures. Charging time constants are proportional to l/conductivity may become very large (on the order of days to years) at low temperatures and accumulation of charge densities in insulators in charging environments traditionally considered benign at ambient temperatures may be sufficient to produce charge densities and electric fields of concern in insulators at low temperatures. Low temperature charging is of interest because a number of spacecraft-primarily infrared astronomy and microwave cosmology observatories-are currently being design, built, and or operated at very cold temperatures on the order of 40K to 100K. This paper reviews the temperature dependence of spacecraft charging processes and material parameters important to charging as a function of temperature with an emphasis on low temperatures regimes.
Phase transitions of a water overlayer on charged graphene: from electromelting to electrofreezing.
Zhu, Xueyan; Yuan, Quanzi; Zhao, Ya-Pu
2014-05-21
We show by using molecular dynamics simulations that a water overlayer on charged graphene experiences first-order ice-to-liquid (electromelting), and then liquid-to-ice (electrofreezing) phase transitions with the increase of the charge value. Corresponding to the ice-liquid-ice transition, the variations of the order parameters indicate an order-disorder-order transition. The key to this novel phenomenon is the surface charge induced change of the orientations of water dipoles, which leads to the change of the water-water interactions from being attractive to repulsive at a critical charge value qc. To further uncover how the orientations of water dipoles influence the interaction strength between water molecules, a theoretical model considering both the Coulomb and van der Waals interactions is established. The results show that with the increase of the charge value, the interaction strength between water molecules decreases below qc, then increases above qc. These two inverse processes lead to electromelting and electrofreezing, respectively. Combining this model with the Eyring equation, the diffusion coefficient is obtained, the variation of which is in qualitative agreement with the simulation results. Our findings not only expand our knowledge of the graphene-water interface, but related analyses could also help recognize the controversial role of the surface charge or electric field in promoting phase transitions of water.
NASA Technical Reports Server (NTRS)
Williams, D. J.; Grubb, R. N.; Evans, D. S.; Sauer, H. H.
1975-01-01
Monitoring of earth's atmosphere was conducted for several years utilizing the ITOS series of low-altitude, polar-orbiting weather satellites. A space environment monitoring package was included in these satellites to perform measurements of a portion of earth's charged particle environment. The charged particle observations proposed for the low-altitude weather satellite TIROS N, are described which will provide the capability of routine monitoring of the instantaneous total energy deposition into the upper atmosphere by the precipitation of charged particles from higher altitudes. Such observations may be of use in future studies of the relationships between geomagnetic activity and atmospheric weather pattern developments. Estimates are given to assess the potential importance of this type of energy deposition. Discussion and examples are presented illustrating the importance of distinguishing between solar and geomagnetic activity as possible causative sources. Such differentiation is necessary because of the widely different spatial and time scales involved in the atmospheric energy input resulting from these various sources of activity.