Sample records for charge separation due

  1. The role of interfacial water layer in atmospherically relevant charge separation

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Indrani

    Charge separation at interfaces is important in various atmospheric processes, such as thunderstorms, lightning, and sand storms. It also plays a key role in several industrial processes, including ink-jet printing and electrostatic separation. Surprisingly, little is known about the underlying physics of these charging phenomena. Since thin films of water are ubiquitous, they may play a role in these charge separation processes. This talk will focus on the experimental investigation of the role of a water adlayer in interfacial charging, with relevance to meteorologically important phenomena, such as atmospheric charging due to wave actions on oceans and sand storms. An ocean wave generates thousands of bubbles, which upon bursting produce numerous large jet droplets and small film droplets that are charged. In the 1960s, Blanchard showed that the jet droplets are positively charged. However, the charge on the film droplets was not known. We designed an experiment to exclusively measure the charge on film droplets generated by bubble bursting on pure water and aqueous salt solution surfaces. We measured their charge to be negative and proposed a model where a slight excess of hydroxide ions in the interfacial water layer is responsible for generating these negatively charged droplets. The findings from this research led to a better understanding of the ionic disposition at the air-water interface. Sand particles in a wind-blown sand layer, or 'saltation' layer, become charged due to collisions, so much so, that it can cause lightning. Silica, being hydrophilic, is coated with a water layer even under low-humidity conditions. To investigate the importance of this water adlayer in charging the silica surfaces, we performed experiments to measure the charge on silica surfaces due to contact and collision processes. In case of contact charging, the maximum charge separation occurred at an optimum relative humidity. On the contrary, in collisional charging process, no humidity effect was observed. We proposed an ion transfer mechanism in case of contact charging. However, an electron transfer mechanism explained the collisional charging process. The effects of temperature, surface roughness, and chemical nature of surface were also studied for both contact and collisional charging processes.

  2. Characterization of charge separation in the Array of Micromachined UltraSonic Electrospray (AMUSE) ion source for mass spectrometry.

    PubMed

    Forbes, Thomas P; Dixon, R Brent; Muddiman, David C; Degertekin, F Levent; Fedorov, Andrei G

    2009-09-01

    An initial investigation into the effects of charge separation in the Array of Micromachined UltraSonic Electrospray (AMUSE) ion source is reported to gain understanding of ionization mechanisms and to improve analyte ionization efficiency and operation stability. In RF-only mode, AMUSE ejects, on average, an equal number of slightly positive and slightly negative charged droplets due to random charge fluctuations, providing inefficient analyte ionization. Charge separation at the nozzle orifice is achieved by the application of an external electric field. By bringing the counter electrode close to the nozzle array, strong electric fields can be applied at relatively low DC potentials. It has been demonstrated, through a number of electrode/electrical potential configurations, that increasing charge separation leads to improvement in signal abundance, signal-to-noise ratio, and signal stability.

  3. Characterization of Charge Separation in the Array of Micromachined UltraSonic Electrospray (AMUSE) Ion Source for Mass Spectrometry

    PubMed Central

    Forbes, Thomas P.; Dixon, R. Brent; Muddiman, David C.; Degertekin, F. Levent; Fedorov, Andrei G.

    2009-01-01

    An initial investigation into the effects of charge separation in the Array of Micromachined UltraSonic Electrospray (AMUSE) ion source is reported in order to gain understanding of ionization mechanisms and to improve analyte ionization efficiency and operation stability. In RF-only mode, AMUSE ejects on average, an equal number of slightly positive and slightly negative charged droplets due to random charge fluctuations, providing inefficient analyte ionization. Charge separation at the nozzle orifice is achieved by the application of an external electric field. By bringing the counter electrode close to the nozzle array, strong electric fields can be applied at relatively low DC potentials. It has been demonstrated, through a number of electrode/electrical potential configurations that increasing charge separation leads to improvement in signal abundance, signal-to-noise ratio, and signal stability. PMID:19525123

  4. Impact of charge-transfer excitons in regioregular polythiophene on the charge separation at polythiophene-fullerene heterojunctions

    NASA Astrophysics Data System (ADS)

    Polkehn, M.; Tamura, H.; Burghardt, I.

    2018-01-01

    This study addresses the mechanism of ultrafast charge separation in regioregular oligothiophene-fullerene assemblies representative of poly-3-hexylthiophene (P3HT)-[6,6]-phenyl-C61 butyric acid methyl ester (PCBM) heterojunctions, with special emphasis on the inclusion of charge transfer excitons in the oligothiophene phase. The formation of polaronic inter-chain charge separated species in highly ordered oligothiophene has been demonstrated in recent experiments and could have a significant impact on the net charge transfer to the fullerene acceptor. The present approach combines a first-principles parametrized multi-site Hamiltonian, based on time-dependent density functional theory calculations, with accurate quantum dynamics simulations using the multi-layer multi-configuration time-dependent Hartree method. Quantum dynamical studies are carried out for up to 182 electronic states and 112 phonon modes. The present analysis follows up on our previous study of (Huix-Rotllant et al 2015 J. Phys. Chem. Lett. 6 1702) and significantly expands the scope of this analysis by including the dynamical role of charge transfer excitons. Our investigation highlights the pronounced mixing of photogenerated Frenkel excitons with charge transfer excitons in the oligothiophene domain, and the opening of new transfer channels due the creation of such charge-separated species. As a result, it turns out that the interfacial donor/acceptor charge transfer state can be largely circumvented due to the presence of charge transfer excitons. However, the latter states in turn act as a trap, such that the free carrier yield observed on ultrafast time scales is tangibly reduced. The present analysis underscores the complexity of the transfer pathways at P3HT-PCBM type junctions.

  5. Charge instabilities due to local charge conjugation symmetry in /2+1 dimensions

    NASA Astrophysics Data System (ADS)

    Bais, F. A.; Striet, J.

    2003-08-01

    Alice electrodynamics (AED) is a theory of electrodynamics in which charge conjugation is a local gauge symmetry. In this paper we investigate a charge instability in alice electrodynamics in 2+1 dimensions due to this local charge conjugation. The instability manifests itself through the creation of a pair of alice fluxes. The final state is one in which the charge is completely delocalized, i.e., it is carried as cheshire charge by the flux pair that gets infinitely separated. We determine the decay rate in terms of the parameters of the model. The relation of this phenomenon with other salient features of 2-dimensional compact QED, such as linear confinement due to instantons/monopoles, is discussed.

  6. Charge separation and transport of the n=2 instability in C-2 FRC plasmas

    NASA Astrophysics Data System (ADS)

    Deng, Bihe; Sun, Xuan; Tuszewski, Michel

    2012-10-01

    Charge separation is critical in the positive feedback loop for gravitational type instabilities to grow [1], such as in the case of the n=2 mode in the C-2 field reversed configuration (FRC) experiment [2]. A fast time response Langmuir probe with minimum perturbation to the plasma is inserted into the edge of the C-2 plasma to measure the plasma floating potential. With the combined plasma wobble motion and spin motion, 2-D scans of the plasma floating potential are obtained, and evidence of charge separation associated with the n=2 instability is observed. The transport due to charge separation is estimated. Charge neutralization can provide an alternative method to stabilize the n=2 mode. An experiment is proposed to test this method with two probes inserted into the plasma from two azimuthally separated ports and an external shorting circuit, to constantly neutralize the charge separation, thus suppress the growth of the n=2 mode. [4pt] [1] R.J. Goldston and P.H. Rutherford, Introduction to Plasma Physics (Institute of Physics Publishing, Bristol, 2000).[0pt] [2]. M.W. Binderbauer et al, Phys. Rev. Lett. 105, 045003 (2010).

  7. Excited state electron transfer in systems with a well-defined geometry. [cyclophane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufmann, K.J.

    1980-12-01

    The effect of temperature, dielectric strength and ligand on the structure of the mesopyropheophorbide cyclophanes will be studied. ESR, NMR, emission and absorption spectroscopy, as well as circular dichroism will be used. The changes in structure will be correlated with changes in the photochemical activity. Electron acceptors such as benzoquinone will be utilized to stabilize the charge separation. Charge separation in porphyrin quinone dimers will also be studied. It was found that electron transfer in the cyclophane system is relatively slow. This is presumably due to an orientation requirement for fast electron transfer. Solvent dielectric also is important in producingmore » a charge separation. Decreasing the temperature effects the yield of charge transfer, but not the kinetics.« less

  8. A SONOS device with a separated charge trapping layer for improvement of charge injection

    NASA Astrophysics Data System (ADS)

    Ahn, Jae-Hyuk; Moon, Dong-Il; Ko, Seung-Won; Kim, Chang-Hoon; Kim, Jee-Yeon; Kim, Moon-Seok; Seol, Myeong-Lok; Moon, Joon-Bae; Choi, Ji-Min; Oh, Jae-Sub; Choi, Sung-Jin; Choi, Yang-Kyu

    2017-03-01

    A charge trapping layer that is separated from the primary gate dielectric is implemented on a FinFET SONOS structure. By virtue of the reduced effective oxide thickness of the primary gate dielectric, a strong gate-to-channel coupling is obtained and thus short-channel effects in the proposed device are effectively suppressed. Moreover, a high program/erase speed and a large shift in the threshold voltage are achieved due to the improved charge injection by the reduced effective oxide thickness. The proposed structure has potential for use in high speed flash memory.

  9. The physics of charge separation preceding lightning strokes in thunderclouds

    NASA Technical Reports Server (NTRS)

    Kyrala, Ali

    1987-01-01

    The physics of charge separation preceding lightning strokes in thunderclouds is presented by three types of arguments: An explanation is given for the aggregation of electrical charges of like sign overcoming Coulomb repulsion by attraction due to exchange interaction. The latter is well known in quantum mechanics from the theories of the nuclear bond and the covalent bond. A classical electrostatic model of charge balls of segregated positive and negative charges in the thundercloud is presented. These charge balls can only be maintained in temporarily stable locations by a containing vortex. Because they will be of different sizes and masses, they will stabilize at different altitudes when drag forces are included with the given electrostatic force. The question of how the charges become concentrated again after lightning discharges is approached by means of the collisional Boltzmann transport equation to explain quasi-periodic recharging. It is shown that solutions cannot be separable in both position and time if they are to represent aggregation.

  10. Protein separation using an electrically tunable membrane

    NASA Astrophysics Data System (ADS)

    Jou, Ining; Melnikov, Dmitriy; Gracheva, Maria

    Separation of small proteins by charge with a solid-state porous membrane requires control over the protein's movement. Semiconductor membrane has this ability due to the electrically tunable electric potential profile inside the nanopore. In this work we investigate the possibility to separate the solution of two similar sized proteins by charge. As an example, we consider two small globular proteins abundant in humans: insulin (negatively charged) and ubiquitin (neutral). We find that the localized electric field inside the pore either attracts or repels the charged protein to or from the pore wall which affects the delay time before a successful translocation of the protein through the nanopore. However, the motion of the uncharged ubiquitin is unaffected. The difference in the delay time (and hence the separation) can be further increased by the application of the electrolyte bias which induces an electroosmotic flow in the pore. NSF DMR and CBET Grant No. 1352218.

  11. Greatly Increasing Trapped Ion Populations for Mobility Separations Using Traveling Waves in Structures for Lossless Ion Manipulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Liulin; Ibrahim, Yehia M.; Garimella, Sandilya V. B.

    The initial use of traveling waves (TW) for ion mobility (IM) separations using a structures for lossless ion manipulations (SLIM) employed an ion funnel trap (IFT) to accumulate ions from a continuous electrospray ionization source, and limited to injected ion populations of ~106 charges due to the onset of space charge effects in the trapping region. Additional limitations arise due to the loss of resolution for the injection of ions over longer periods (e.g. in extended pulses). In this work a new SLIM ‘flat funnel’ (FF) module has been developed and demonstrated to enable the accumulation of much larger ionmore » populations and their injection for IM separations. Ion current measurements indicate a capacity of ~3.2×108 charges for the extended trapping volume, over an order of magnitude greater than the IFT. The orthogonal ion injection into a funnel shaped separation region can greatly reduce space charge effects during the initial IM separation stage, and the gradually reduced width of the path allows the ion packet to be increasingly compressed in the lateral dimension as the separation progresses, allowing e.g. efficient transmission through conductance limits or compatibility with subsequent ion manipulations. This work examined the TW, RF, and DC confining field SLIM parameters involved in ion accumulation, injection, transmission and separation in the FF IM module using both direct ion current and MS measurements. Wide m/z range ion transmission is demonstrated, along with significant increases in signal to noise (S/N) ratios due to the larger ion populations injected. Additionally, we observed a reduction in the chemical background, which was attributed to more efficient desolvation of solvent related clusters over the extended ion accumulation periods. The TW SLIM FF IM module is anticipated to be especially effective as a front end for long path SLIM IM separation modules.« less

  12. Role of coherence and delocalization in photo-induced electron transfer at organic interfaces

    NASA Astrophysics Data System (ADS)

    Abramavicius, V.; Pranculis, V.; Melianas, A.; Inganäs, O.; Gulbinas, V.; Abramavicius, D.

    2016-09-01

    Photo-induced charge transfer at molecular heterojunctions has gained particular interest due to the development of organic solar cells (OSC) based on blends of electron donating and accepting materials. While charge transfer between donor and acceptor molecules can be described by Marcus theory, additional carrier delocalization and coherent propagation might play the dominant role. Here, we describe ultrafast charge separation at the interface of a conjugated polymer and an aggregate of the fullerene derivative PCBM using the stochastic Schrödinger equation (SSE) and reveal the complex time evolution of electron transfer, mediated by electronic coherence and delocalization. By fitting the model to ultrafast charge separation experiments, we estimate the extent of electron delocalization and establish the transition from coherent electron propagation to incoherent hopping. Our results indicate that even a relatively weak coupling between PCBM molecules is sufficient to facilitate electron delocalization and efficient charge separation at organic interfaces.

  13. Separating large microscale particles by exploiting charge differences with dielectrophoresis.

    PubMed

    Polniak, Danielle V; Goodrich, Eric; Hill, Nicole; Lapizco-Encinas, Blanca H

    2018-04-13

    Dielectrophoresis (DEP), the migration of particles due to polarization effects under the influence of a nonuniform electric field, was employed for characterizing the behavior and achieving the separation of larger (diameter >5 μm) microparticles by exploiting differences in electrical charge. Usually, electrophoresis (EP) is the method of choice for separating particles based on differences in electrical charge; however, larger particles, which have low electrophoretic mobilities, cannot be easily separated with EP-based techniques. This study presents an alternative for the characterization, assessment, and separation of larger microparticles, where charge differences are exploited with DEP instead of EP. Polystyrene microparticles with sizes varying from 5 to 10 μm were characterized employing microdevices for insulator-based dielectrophoresis (iDEP). Particles within an iDEP microchannel were exposed simultaneously to DEP, EP, and electroosmotic (EO) forces. The electrokinetic behavior of four distinct types of microparticles was carefully characterized by means of velocimetry and dielectrophoretic capture assessments. As a final step, a dielectropherogram separation of two distinct types of 10 μm particles was devised by first characterizing the particles and then performing the separation. The two types of 10 μm particles were eluted from the iDEP device as two separate peaks of enriched particles in less than 80 s. It was demonstrated that particles with the same size, shape, surface functionalization, and made from the same bulk material can be separated with iDEP by exploiting slight differences in the magnitude of particle charge. The results from this study open the possibility for iDEP to be used as a technique for the assessment and separation of biological cells that have very similar characteristics (shape, size, similar make-up), but slight variance in surface electrical charge. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Magnetic field enhancement of organic photovoltaic cells performance.

    PubMed

    Oviedo-Casado, S; Urbina, A; Prior, J

    2017-06-27

    Charge separation is a critical process for achieving high efficiencies in organic photovoltaic cells. The initial tightly bound excitonic electron-hole pair has to dissociate fast enough in order to avoid photocurrent generation and thus power conversion efficiency loss via geminate recombination. Such process takes place assisted by transitional states that lie between the initial exciton and the free charge state. Due to spin conservation rules these intermediate charge transfer states typically have singlet character. Here we propose a donor-acceptor model for a generic organic photovoltaic cell in which the process of charge separation is modulated by a magnetic field which tunes the energy levels. The impact of a magnetic field is to intensify the generation of charge transfer states with triplet character via inter-system crossing. As the ground state of the system has singlet character, triplet states are recombination-protected, thus leading to a higher probability of successful charge separation. Using the open quantum systems formalism we demonstrate that the population of triplet charge transfer states grows in the presence of a magnetic field, and discuss the impact on carrier population and hence photocurrent, highlighting its potential as a tool for research on charge transfer kinetics in this complex systems.

  15. Hydrodynamics with chiral anomaly and charge separation in relativistic heavy ion collisions

    DOE PAGES

    Yin, Yi; Liao, Jinfeng

    2016-03-03

    Matter with chiral fermions is microscopically described by theory with quantum anomaly and macroscopically described (at low energy) by anomalous hydrodynamics. For such systems in the presence of external magnetic field and chirality imbalance, a charge current is generated along the magnetic field direction ₋ a phenomenon known as the Chiral Magnetic Effect (CME). The quark- gluon plasma created in relativistic heavy ion collisions provides an (approximate) example, for which the CME predicts a charge separation perpendicular to the collisional reaction plane. Charge correlation measurements designed for the search of such signal have been done at RHIC and the LHCmore » for which the interpretations, however, remain unclear due to contamination by background effects that are collective flow driven, theoretically poorly constrained, and experimentally hard to separate. Using anomalous (and viscous) hydrodynamic simulations, we make a first attempt at quantifying contributions to observed charge correlations from both CME and background effects in one and same framework. We discuss the implications for the search of CME.« less

  16. Design and Synthesis of Novel Block Copolymers for Efficient Opto-Electronic Applications

    NASA Technical Reports Server (NTRS)

    Sun, Sam-Shajing; Fan, Zhen; Wang, Yiqing; Taft, Charles; Haliburton, James; Maaref, Shahin

    2002-01-01

    It has been predicted that nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks may facilitate the charge carrier separation and migration in organic photovoltaic devices due to improved morphology in comparison to polymer blend system. This paper presents preliminary data describing the design and synthesis of a novel Donor-Bridge-Acceptor (D-B-A) block copolymer system for potential high efficient organic optoelectronic applications. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene (PPV), the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene (PPV), and the bridge block contains an electronically neutral non-conjugated aliphatic hydrocarbon chain. The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block stabilizes and facilitates the transport of the holes, the acceptor block stabilizes and facilitates the transport of the electrons, the bridge block is designed to hinder the probability of electron-hole recombination. Thus, improved charge separation and stability are expected with this system. In addition, charge migration toward electrodes may also be facilitated due to the potential nano-phase separated and highly ordered block copolymer ultra-structure.

  17. Localized Charges Control Exciton Energetics and Energy Dissipation in Doped Carbon Nanotubes.

    PubMed

    Eckstein, Klaus H; Hartleb, Holger; Achsnich, Melanie M; Schöppler, Friedrich; Hertel, Tobias

    2017-10-24

    Doping by chemical or physical means is key for the development of future semiconductor technologies. Ideally, charge carriers should be able to move freely in a homogeneous environment. Here, we report on evidence suggesting that excess carriers in electrochemically p-doped semiconducting single-wall carbon nanotubes (s-SWNTs) become localized, most likely due to poorly screened Coulomb interactions with counterions in the Helmholtz layer. A quantitative analysis of blue-shift, broadening, and asymmetry of the first exciton absorption band also reveals that doping leads to hard segmentation of s-SWNTs with intrinsic undoped segments being separated by randomly distributed charge puddles approximately 4 nm in width. Light absorption in these doped segments is associated with the formation of trions, spatially separated from neutral excitons. Acceleration of exciton decay in doped samples is governed by diffusive exciton transport to, and nonradiative decay at charge puddles within 3.2 ps in moderately doped s-SWNTs. The results suggest that conventional band-filling in s-SWNTs breaks down due to inhomogeneous electrochemical doping.

  18. Separation of rat pituitary secretory granules by continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Hayes, Daniel; Exton, Carrie; Salada, Thomas; Shellenberger, Kathy; Waddle, Jenny; Hymer, W. C.

    1990-01-01

    The separation of growth hormone-containing cytoplasmic secretory granules from the rat pituitary gland by continuous flow electrophoresis is described. The results are consistent with the hypothesis that granule subpopulations can be separated due to differences in surface charge; these, in turn, may be related to the oligomeric state of the hormone.

  19. Charge Transfer Processes in OPV Materials as Revealed by EPR Spectroscopy

    DOE PAGES

    Niklas, Jens; Poluektov, Oleg

    2017-03-03

    Understanding charge separation and charge transport at a molecular level is crucial for improving the efficiency of organic photovoltaic (OPV) cells. Under illumination of Bulk Heterojunction (BHJ) blends of polymers and fullerenes, various paramagnetic species are formed including polymer and fullerene radicals, radical pairs, and photoexcited triplet states. Light-induced Electron Paramagnetic Resonance (EPR) spectroscopy is ideally suited to study these states in BHJ due to its selectivity in probing the paramagnetic intermediates. Some advanced EPR techniques like light-induced ENDOR spectroscopy and pulsed techniques allow the determination of hyperfine coupling tensors, while high-frequency EPR allows the EPR signals of the individualmore » species to be resolved and their g-tensors to be determined. In these magnetic resonance parameters reveal details about the delocalization of the positive polaron on the various polymer donors which is important for the efficient charge separation in BHJ systems. Time-resolved EPR can contribute to the study of the dynamics of charge separation, charge transfer and recombination in BHJ by probing the unique spectral signatures of charge transfer and triplet states. Furthermore, the potential of the EPR also allows characterization of the intermediates and products of BHJ degradation.« less

  20. Strong field gravitational lensing by a charged Galileon black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shan-Shan; Xie, Yi, E-mail: clefairy035@163.com, E-mail: yixie@nju.edu.cn

    Strong field gravitational lensings are dramatically disparate from those in the weak field by representing relativistic images due to light winds one to infinity loops around a lens before escaping. We study such a lensing caused by a charged Galileon black hole, which is expected to have possibility to evade no-hair theorem. We calculate the angular separations and time delays between different relativistic images of the charged Galileon black hole. All these observables can potentially be used to discriminate a charged Galileon black hole from others. We estimate the magnitudes of these observables for the closest supermassive black hole Sgrmore » A*. The strong field lensing observables of the charged Galileon black hole can be close to those of a tidal Reissner-Nordström black hole or those of a Reissner-Nordström black hole. It will be helpful to distinguish these black holes if we can separate the outermost relativistic images and determine their angular separation, brightness difference and time delay, although it requires techniques beyond the current limit.« less

  1. Microscopic dynamics of charge separation at the aqueous electrochemical interface.

    PubMed

    Kattirtzi, John A; Limmer, David T; Willard, Adam P

    2017-12-19

    We have used molecular simulation and methods of importance sampling to study the thermodynamics and kinetics of ionic charge separation at a liquid water-metal interface. We have considered this process using canonical examples of two different classes of ions: a simple alkali-halide pair, Na + I - , or classical ions, and the products of water autoionization, H 3 O + OH - , or water ions. We find that for both ion classes, the microscopic mechanism of charge separation, including water's collective role in the process, is conserved between the bulk liquid and the electrode interface. However, the thermodynamic and kinetic details of the process differ between these two environments in a way that depends on ion type. In the case of the classical ion pairs, a higher free-energy barrier to charge separation and a smaller flux over that barrier at the interface result in a rate of dissociation that is 40 times slower relative to the bulk. For water ions, a slightly higher free-energy barrier is offset by a higher flux over the barrier from longer lived hydrogen-bonding patterns at the interface, resulting in a rate of association that is similar both at and away from the interface. We find that these differences in rates and stabilities of charge separation are due to the altered ability of water to solvate and reorganize in the vicinity of the metal interface.

  2. Microscopic dynamics of charge separation at the aqueous electrochemical interface

    PubMed Central

    Kattirtzi, John A.; Limmer, David T.; Willard, Adam P.

    2017-01-01

    We have used molecular simulation and methods of importance sampling to study the thermodynamics and kinetics of ionic charge separation at a liquid water–metal interface. We have considered this process using canonical examples of two different classes of ions: a simple alkali–halide pair, Na+I−, or classical ions, and the products of water autoionization, H3O+OH−, or water ions. We find that for both ion classes, the microscopic mechanism of charge separation, including water’s collective role in the process, is conserved between the bulk liquid and the electrode interface. However, the thermodynamic and kinetic details of the process differ between these two environments in a way that depends on ion type. In the case of the classical ion pairs, a higher free-energy barrier to charge separation and a smaller flux over that barrier at the interface result in a rate of dissociation that is 40 times slower relative to the bulk. For water ions, a slightly higher free-energy barrier is offset by a higher flux over the barrier from longer lived hydrogen-bonding patterns at the interface, resulting in a rate of association that is similar both at and away from the interface. We find that these differences in rates and stabilities of charge separation are due to the altered ability of water to solvate and reorganize in the vicinity of the metal interface. PMID:28698368

  3. A semiempirical study for the ground and excited states of free-base and zinc porphyrin-fullerene dyads

    NASA Technical Reports Server (NTRS)

    Parusel, A. B.

    2000-01-01

    The ground and excited states of a covalently linked porphyrin-fullerene dyad in both its free-base and zinc forms (D. Kuciauskas et al., J. Phys. Chem. 100 (1996) 15926) have been investigated by semiempirical methods. The excited-state properties are discussed by investigation of the character of the molecular orbitals. All frontier MOs are mainly localized on either the donor or the acceptor subunit. Thus, the absorption spectra of both systems are best described as the sum of the spectra of the single components. The experimentally observed spectra are well reproduced by the theoretical computations. Both molecules undergo efficient electron transfer in polar but not in apolar solvents. This experimental finding is explained theoretically by explicitly considering solvent effects. The tenth excited state in the gas phase is of charge-separated character where an electron is transferred from the porphyrin donor to the fullerene acceptor subunit. This state is stabilized in energy in polar solvents due to its large formal dipole moment. The stabilization energy for an apolar environment such as benzene is not sufficient to lower this state to become the first excited singlet state. Thus, no electron transfer is observed, in agreement with experiment. In a polar environment such as acetonitrile, the charge-separated state becomes the S, state and electron transfer takes place, as observed experimentally. The flexible single bond connecting both the donor and acceptor subunits allows free rotation by ca. +/- 30 degrees about the optimized ground-state conformation. For the charge-separated state this optimized geometry has a maximum dipole moment. The geometry of the charge-separated state thus does not change relatively to the ground-state conformation. The electron-donating properties of porphyrin are enhanced in the zinc derivative due to a reduced porphyrin HOMO-LUMO energy gap. This yields a lower energy for the charge-separated state compared to the free-base dyad.

  4. Energy Conversion Mechanism for Electron Perpendicular Energy in High Guide-Field Reconnection

    NASA Astrophysics Data System (ADS)

    Guo, Xuehan; Horiuchi, Ritoku; Kaminou, Yasuhiro; Cheng, Frank; Ono, Yasushi

    2016-10-01

    The energy conversion mechanism for electron perpendicular energy, both the thermal and the kinetic energy, is investigated by means of two-dimensional, full-particle simulations in an open system. It is shown that electron perpendicular heating is mainly due to the breaking of magnetic moment conservation in separatrix region because the charge separation generates intense variation of electric field within the electron Larmor radius. Meanwhile, electron perpendicular acceleration takes place manly due to the polarization drift term as well as the curvature drift term of E . u⊥ in the downstream near the X-point. The enhanced electric field due to the charge separation there results in a significant effect of the polarization drift term on the dissipation of magnetic energy within the ion inertia length in the downstream. Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.

  5. Breaking the barriers of all-polymer solar cells: Solving electron transporter and morphology problems

    NASA Astrophysics Data System (ADS)

    Gavvalapalli, Nagarjuna

    All-polymer solar cells (APSC) are a class of organic solar cells in which hole and electron transporting phases are made of conjugated polymers. Unlike polymer/fullerene solar cell, photoactive material of APSC can be designed to have hole and electron transporting polymers with complementary absorption range and proper frontier energy level offset. However, the highest reported PCE of APSC is 5 times less than that of polymer/fullerene solar cell. The low PCE of APSC is mainly due to: i) low charge separation efficiency; and ii) lack of optimal morphology to facilitate charge transfer and transport; and iii) lack of control over the exciton and charge transport in each phase. My research work is focused towards addressing these issues. The charge separation efficiency of APSC can be enhanced by designing novel electron transporting polymers with: i) broad absorption range; ii) high electron mobility; and iii) high dielectric constant. In addition to with the above parameters chemical and electronic structure of the repeating unit of conjugated polymer also plays a role in charge separation efficiency. So far only three classes of electron transporting polymers, CN substituted PPV, 2,1,3-benzothiadiazole derived polymers and rylene diimide derived polymers, are used in APSC. Thus to enhance the charge separation efficiency new classes of electron transporting polymers with the above characteristics need to be synthesized. I have developed a new straightforward synthetic strategy to rapidly generate new classes of electron transporting polymers with different chemical and electronic structure, broad absorption range, and high electron mobility from readily available electron deficient monomers. In APSCs due to low entropy of mixing, polymers tend to micro-phase segregate rather than forming the more useful nano-phase segregation. Optimizing the polymer blend morphology to obtain nano-phase segregation is specific to the system under study, time consuming, and not trivial. Thus to avoid micro-phase segregation, nanoparticles of hole and electron transporters are synthesized and blended. But the PCE of nanoparticle blends are far less than those of polymer blends. This is mainly due to the: i) lack of optimal assembly of nanoparticles to facilitate charge transfer and transport processes; and ii) lack of control over the exciton and charge transport properties within the nanoparticles. Polymer packing within the nanoparticle controls the optoelectronic and charge transport properties of the nanoparticle. In this work I have shown that the solvent used to synthesize nanoparticles plays a crucial role in determining the assembly of polymer chains inside the nanoparticle there by affecting its exciton and charge transport processes. To obtain the optimal morphology for better charge transfer and transport, we have also synthesized nanoparticles of different radius with surfactants of opposite charge. We propose that depending on the radius and/or Coulombic interactions these nanoparticles can be assembled into mineral structure-types that are useful for photovoltaic devices.

  6. Large impact of reorganization energy on photovoltaic conversion due to interfacial charge-transfer transitions.

    PubMed

    Fujisawa, Jun-ichi

    2015-05-14

    Interfacial charge-transfer (ICT) transitions are expected to be a novel charge-separation mechanism for efficient photovoltaic conversion featuring one-step charge separation without energy loss. Photovoltaic conversion due to ICT transitions has been investigated using several TiO2-organic hybrid materials that show organic-to-inorganic ICT transitions in the visible region. In applications of ICT transitions to photovoltaic conversion, there is a significant problem that rapid carrier recombination is caused by organic-inorganic electronic coupling that is necessary for the ICT transitions. In order to solve this problem, in this work, I have theoretically studied light-to-current conversions due to the ICT transitions on the basis of the Marcus theory with density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. An apparent correlation between the reported incident photon-to-current conversion efficiencies (IPCE) and calculated reorganization energies was clearly found, in which the IPCE increases with decreasing the reorganization energy consistent with the Marcus theory in the inverted region. This activation-energy dependence was systematically explained by the equation formulated by the Marcus theory based on a simple excited-state kinetic scheme. This result indicates that the reduction of the reorganization energy can suppress the carrier recombination and enhance the IPCE. The reorganization energy is predominantly governed by the structural change in the chemical-adsorption moiety between the ground and ICT excited states. This work provides crucial knowledge for efficient photovoltaic conversion due to ICT transitions.

  7. Impact of the titania nanostructure on charge transport and its application in hybrid solar cells

    NASA Astrophysics Data System (ADS)

    Koffman-Frischknecht, Alejandro; Gonzalez, Fernando; Plá, Juan; Violi, Ianina; Soler-Illia, Galo J. A. A.; Perez, M. Dolores

    2018-02-01

    Porous titania films are widely studied in a number of optoelectronic applications due to its favorable optical and electronic characteristics. Mesoporous titania thin films (MTTFs) with tunable pore size, pore order, accessibility and crystallinity are of interest in electronic devices due to the potential for optimization of the desired characteristics for charge separation and carrier transport. In this work, several MTTFs were prepared by sol-gel chemistry with different structural properties tuned by post-synthesis thermal treatment. The effect of the structural properties (pore diameter, order and accessibility) on the electrical properties of the material was studied by films fabrication onto a transparent conducting electrode, ITO, such that it enables optoelectronic applications. The performance as photoanode was explored by the fabrication of hybrid polymer (P3HT): titania solar cells. Not only does structural properties affect polymer impregnation inside the titania pores as expected and hence impacts charge separation at the interface, but also the thermal treatment affects crystallinity and the films electronic properties. A more complete picture about the electronic properties of the different MTTFs prepared in this work was studied by mobility measurement by space charge limited current and impedance spectroscopy.

  8. Work Function of Oxide Ultrathin Films on the Ag(100) Surface.

    PubMed

    Sementa, Luca; Barcaro, Giovanni; Negreiros, Fabio R; Thomas, Iorwerth O; Netzer, Falko P; Ferrari, Anna Maria; Fortunelli, Alessandro

    2012-02-14

    Theoretical calculations of the work function of monolayer (ML) and bilayer (BL) oxide films on the Ag(100) surface are reported and analyzed as a function of the nature of the oxide for first-row transition metals. The contributions due to charge compression, charge transfer and rumpling are singled out. It is found that the presence of empty d-orbitals in the oxide metal can entail a charge flow from the Ag(100) surface to the oxide film which counteracts the decrease in the work function due to charge compression. This flow can also depend on the thickness of the film and be reduced in passing from ML to BL systems. A regular trend is observed along first-row transition metals, exhibiting a maximum for CuO, in which the charge flow to the oxide is so strong as to reverse the direction of rumpling. A simple protocol to estimate separately the contribution due to charge compression is discussed, and the difference between the work function of the bare metal surface and a Pauling-like electronegativity of the free oxide slabs is used as a descriptor quantity to predict the direction of charge transfer.

  9. Explicit symplectic algorithms based on generating functions for charged particle dynamics.

    PubMed

    Zhang, Ruili; Qin, Hong; Tang, Yifa; Liu, Jian; He, Yang; Xiao, Jianyuan

    2016-07-01

    Dynamics of a charged particle in the canonical coordinates is a Hamiltonian system, and the well-known symplectic algorithm has been regarded as the de facto method for numerical integration of Hamiltonian systems due to its long-term accuracy and fidelity. For long-term simulations with high efficiency, explicit symplectic algorithms are desirable. However, it is generally believed that explicit symplectic algorithms are only available for sum-separable Hamiltonians, and this restriction limits the application of explicit symplectic algorithms to charged particle dynamics. To overcome this difficulty, we combine the familiar sum-split method and a generating function method to construct second- and third-order explicit symplectic algorithms for dynamics of charged particle. The generating function method is designed to generate explicit symplectic algorithms for product-separable Hamiltonian with form of H(x,p)=p_{i}f(x) or H(x,p)=x_{i}g(p). Applied to the simulations of charged particle dynamics, the explicit symplectic algorithms based on generating functions demonstrate superiorities in conservation and efficiency.

  10. Explicit symplectic algorithms based on generating functions for charged particle dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Ruili; Qin, Hong; Tang, Yifa; Liu, Jian; He, Yang; Xiao, Jianyuan

    2016-07-01

    Dynamics of a charged particle in the canonical coordinates is a Hamiltonian system, and the well-known symplectic algorithm has been regarded as the de facto method for numerical integration of Hamiltonian systems due to its long-term accuracy and fidelity. For long-term simulations with high efficiency, explicit symplectic algorithms are desirable. However, it is generally believed that explicit symplectic algorithms are only available for sum-separable Hamiltonians, and this restriction limits the application of explicit symplectic algorithms to charged particle dynamics. To overcome this difficulty, we combine the familiar sum-split method and a generating function method to construct second- and third-order explicit symplectic algorithms for dynamics of charged particle. The generating function method is designed to generate explicit symplectic algorithms for product-separable Hamiltonian with form of H (x ,p ) =pif (x ) or H (x ,p ) =xig (p ) . Applied to the simulations of charged particle dynamics, the explicit symplectic algorithms based on generating functions demonstrate superiorities in conservation and efficiency.

  11. Direct measurement of sub-Debye-length attraction between oppositely charged surfaces.

    PubMed

    Kampf, Nir; Ben-Yaakov, Dan; Andelman, David; Safran, S A; Klein, Jacob

    2009-09-11

    Using a surface force balance with fast video analysis, we have measured directly the attractive forces between oppositely charged solid surfaces (charge densities sigma(+), sigma(-)) across water over the entire range of interaction, in particular, at surface separations D below the Debye screening length lambda(S). At very low salt concentration we find a long-ranged attraction between the surfaces (onset ca. 100 nm), whose variation at D

  12. Study of gain and photoresponse characteristics for back-illuminated separate absorption and multiplication GaN avalanche photodiodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaodong; Pan, Ming; Hou, Liwei

    2014-01-07

    The gain and photoresponse characteristics have been numerically studied for back-illuminated separate absorption and multiplication (SAM) GaN avalanche photodiodes (APDs). The parameters of fundamental models are calibrated by simultaneously comparing the simulated dark and light current characteristics with the experimental results. Effects of environmental temperatures and device dimensions on gain characteristics have been investigated, and a method to achieve the optimum thickness of charge layer is obtained. The dependence of gain characteristics and breakdown voltage on the doping concentration of the charge layer is also studied in detail to get the optimal charge layer. The bias-dependent spectral responsivity and quantummore » efficiency are then presented to study the photoresponse mechanisms inside SAM GaN APDs. It is found the responsivity peak red-shifts at first due to the Franz-Keldysh effect and then blue-shifts due to the reach-through effect of the absorption layer. Finally, a new SAM GaN/AlGaN heterojunction APD structure is proposed for optimizing SAM GaN APDs.« less

  13. Novel High Efficient Organic Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Sun, Sam; Haliburton, James; Fan, Zben; Taft, Charles; Wang, Yi-Qing; Maaref, Shahin; Mackey, Willie R. (Technical Monitor)

    2001-01-01

    In man's mission to the outer space or a remote site, the most abundant, renewable, nonpolluting, and unlimited external energy source is light. Photovoltaic (PV) materials can convert light into electrical power. In order to generate appreciable electrical power in space or on the Earth, it is necessary to collect sunlight from large areas due to the low density of sunlight, and this would be very costly using current commercially available inorganic solar cells. Future organic or polymer based solar cells seemed very attractive due to several reasons. These include lightweight, flexible shape, ultra-fast optoelectronic response time (this also makes organic PV materials attractive for developing ultra-fast photo detectors), tunability of energy band-gaps via molecular design, versatile materials synthesis and device fabrication schemes, and much lower cost on large-scale industrial production. It has been predicted that nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks will facilitate the charge separation and migration due to improved electronic ultrastructure and morphology in comparison to current polymer composite photovoltaic system. This presentation will describe our recent progress in the design, synthesis and characterization of a novel donor-bridge-acceptor block copolymer system for potential high-efficient organic optoelectronic applications. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene, the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene, and the bridge block contains an electronically neutral non-conjugated aliphatic hydrocarbon chain. The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block stabilizes the holes, the acceptor block stabilizes the electrons. The bridge block is designed to hinder the electron-hole recombination. Thus, improved charge separation is expected. In addition, charge migration will also be facilitated due to the expected nano-phase separated and highly ordered block copolymer ultrastructural. The combination of all these factors will result in significant overall enhancement of photovoltaic power conversion efficiency.

  14. The influence of electrode and separator thickness on the cell resistance of symmetric cellulose-polypyrrole-based electric energy storage devices

    NASA Astrophysics Data System (ADS)

    Tammela, Petter; Olsson, Henrik; Strømme, Maria; Nyholm, Leif

    2014-12-01

    The influence of the cell design of symmetric polypyrrole and cellulose-based electric energy storage devices on the cell resistance was investigated using chronopotentiometric and ac impedance measurements with different separator and electrode thicknesses. The cell resistance was found to be dominated by the electrolyte and current collector resistances while the contribution from the composite electrode material was negligible. Due to the electrolyte within the porous electrodes thin separators could be used in combination with thick composite electrodes without loss of performance. The paper separator contributed with a resistance of ∼1.5 Ω mm-1 in a 1.0 M NaNO3 electrolyte and the tortuosity value for the separator was about 2.5. The contribution from the graphite foil current collectors was about ∼0.4-1.1 Ω and this contribution could not be reduced by using platinum foil current collectors due to larger contact resistances. The introduction of chopped carbon fibres into the electrode material or the application of pressure across the cells, however, decreased the charge transfer resistance significantly. As the present results demonstrate that cells with higher charge storage capacities but with the same cell resistance can be obtained by increasing the electrode thickness, the development of paper based energy storage devices is facilitated.

  15. Spin-orbit induced electronic spin separation in semiconductor nanostructures.

    PubMed

    Kohda, Makoto; Nakamura, Shuji; Nishihara, Yoshitaka; Kobayashi, Kensuke; Ono, Teruo; Ohe, Jun-ichiro; Tokura, Yasuhiro; Mineno, Taiki; Nitta, Junsaku

    2012-01-01

    The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin-orbit interaction in an InGaAs-based heterostructure. Using a Stern-Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 10(8) T m(-1) resulting in a highly polarized spin current.

  16. Spin–orbit induced electronic spin separation in semiconductor nanostructures

    PubMed Central

    Kohda, Makoto; Nakamura, Shuji; Nishihara, Yoshitaka; Kobayashi, Kensuke; Ono, Teruo; Ohe, Jun-ichiro; Tokura, Yasuhiro; Mineno, Taiki; Nitta, Junsaku

    2012-01-01

    The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin–orbit interaction in an InGaAs-based heterostructure. Using a Stern–Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 108 T m−1 resulting in a highly polarized spin current. PMID:23011136

  17. Rotatingwall Technique and Centrifugal Separation

    NASA Astrophysics Data System (ADS)

    Anderegg, François

    This chapter describes the "rotating wall" technique which enables essentially unlimited confinement time of 109-1010 charged particles in a Penning trap. The applied rotating wall electric field provides a positive torque that counteracts background drags, resulting in radial compression or steady-state confinement in near-thermal equilibrium states. The last part of the chapter discusses centrifugal separation in a rotating multi-species non-neutral plasma. Separation occurs when the centrifugal energy is larger than the mixing due to thermal energy.

  18. Separation of biogenic materials by electrophoresis under zero gravity (L-3)

    NASA Technical Reports Server (NTRS)

    Kuroda, Masao

    1993-01-01

    Electrophoresis separates electrically charged materials by imposing a voltage between electrodes. Though free-flow electrophoresis is used without carriers such as colloids to separate and purify biogenic materials including biogenic cells and proteins in blood, its resolving power and separation efficiency is very low on Earth due to sedimentation, flotation, and thermal convection caused by the specific gravity differences between separated materials and buffer solutions. The objective of this experiment is to make a comparative study of various electrophoresis conditions on the ground and in zero-gravity in order to ultimately develop a method for separating various important 'vial' components which are difficult to separate on the ground.

  19. Electrokinetic Response of Charge-Selective Nanostructured Polymeric Membranes

    NASA Astrophysics Data System (ADS)

    Schiffbauer, Jarrod; Li, Diya; Gao, Feng; Phillip, William; Chang, Hsueh-Chia

    2017-11-01

    Nanostructured polymeric membranes, with a tunable pore size and ease of surface molecular functionalization, are a promising material for separations, filtration, and sensing applications. Recently, such membranes have been fabricated wherein the ion selectivity is imparted by self-assembled functional groups through a two-step process. Amine groups are used to provide a positive surface charge and acid groups are used to yield a negative charge. The membranes can be fabricated as either singly-charged or patterned/mosaic membranes, where there are alternating regions of amine- lined or acid-lined pores. We demonstrate that such membranes, in addition to having many features in common with other charge selective membranes (i.e. AMX or Nafion), display a unique single-membrane rectification behavior. This is due to the asymmetric distribution of charged functional groups during the fabrication process. We demonstrate this rectification effect using both dc current-voltage characteristics as well as dc-biased electrical impedance spectroscopy. Furthermore, surface charge changes due to dc concentration polarization and generation of localized pH shifts are monitored using electrical impedance spectroscopy. (formerly at University of Notre Dame).

  20. Enhanced Photocatalytic Activity of Two-Pot-Synthesized BiFeO3-ZnFe2O4 Heterojunction Nanocomposite

    NASA Astrophysics Data System (ADS)

    Ghasemi, A.; Hasheminiasari, M.; Masoudpanah, S. M.; Safizade, B.

    2018-04-01

    BiFeO3-ZnFe2O4 heterojunction nanocomposites have been produced by a chemical synthesis method using one- and two-pot approaches. X-ray diffraction patterns of as-calcined samples indicated formation of pure zinc ferrite (ZnFe2O4) and bismuth ferrite (BiFeO3) phases, each retaining its crystal structure. Diffuse reflectance spectrometry was applied to calculate the optical bandgap of the photocatalysts, revealing values in the range from 2.03 eV to 2.17 eV, respectively. The maximum photodegradation of methylene blue of about 97% was achieved using two-pot-synthesized photocatalyst after 120 min of visible-light irradiation due to the higher probability of charge separation of photogenerated electron-hole pairs in the heterojunction structure. Photoluminescence spectra showed lower emission intensity of two-pot-synthesized photocatalyst, due to its lower recombination rate originating from greater charge separation.

  1. Energy gap law of electron transfer in nonpolar solvents.

    PubMed

    Tachiya, M; Seki, Kazuhiko

    2007-09-27

    We investigate the energy gap law of electron transfer in nonpolar solvents for charge separation and charge recombination reactions. In polar solvents, the reaction coordinate is given in terms of the electrostatic potentials from solvent permanent dipoles at solutes. In nonpolar solvents, the energy fluctuation due to solvent polarization is absent, but the energy of the ion pair state changes significantly with the distance between the ions as a result of the unscreened strong Coulomb potential. The electron transfer occurs when the final state energy coincides with the initial state energy. For charge separation reactions, the initial state is a neutral pair state, and its energy changes little with the distance between the reactants, whereas the final state is an ion pair state and its energy changes significantly with the mutual distance; for charge recombination reactions, vice versa. We show that the energy gap law of electron-transfer rates in nonpolar solvents significantly depends on the type of electron transfer.

  2. The Role of FRET in Non-Fullerene Organic Solar Cells: Implications for Molecular Design.

    PubMed

    Gautam, Bhoj R; Younts, Robert; Carpenter, Joshua; Ade, Harald; Gundogdu, Kenan

    2018-04-19

    Non-fullerene acceptors (NFAs) have been demonstrated to be promising candidates for highly efficient organic photovoltaic (OPV) devices. The tunability of absorption characteristics of NFAs can be used to make OPVs with complementary donor-acceptor absorption to cover a broad range of the solar spectrum. However, both charge transfer from donor to acceptor moieties and energy (energy) transfer from high-bandgap to low-bandgap materials are possible in such structures. Here, we show that when charge transfer and exciton transfer processes are both present, the coexistence of excitons in both domains can cause a loss mechanism. Charge separation of excitons in a low-bandgap material is hindered due to exciton population in the larger bandgap acceptor domains. Our results further show that excitons in low-bandgap material should have a relatively long lifetime compared to the transfer time of excitons from higher bandgap material in order to contribute to the charge separation. These observations provide significant guidance for design and development of new materials in OPV applications.

  3. Repulsion Between Finite Charged Plates with Strongly Overlapped Electric Double Layers.

    PubMed

    Ghosal, Sandip; Sherwood, John D

    2016-09-20

    Screened Coulomb interactions between uniformly charged flat plates are considered at very small plate separations for which the Debye layers are strongly overlapped, in the limit of small electrical potentials. If the plates are of infinite length, the disjoining pressure between the plates decays as an inverse power of the plate separation. If the plates are of finite length, we show that screening Debye layer charges close to the edge of the plates are no longer constrained to stay between the plates, but instead spill out into the surrounding electrolyte. The resulting change in the disjoining pressure is calculated analytically: the force between the plates is reduced by this edge correction when the charge density is uniform over the surface of the plates, and is increased when the surface is at constant potential. A similar change in disjoining pressure due to loss of lateral confinement of the Debye layer charges should occur whenever the sizes of the interacting charged objects become small enough to approach the Debye scale. We investigate the effect here in the context of a two-dimensional model problem that is sufficiently simple to yield analytical results.

  4. The influence of charge and the distribution of charge in the polar region of phospholipids on the activity of UDP-glucuronosyltransferase.

    PubMed

    Zakim, D; Eibl, H

    1992-07-05

    Studies of the mechanism of lipid-induced regulation of the microsomal enzyme UDP-glucuronosyltransferase have been extended by examining the influence of charge within the polar region on the ability of lipids to activate delipidated pure enzyme. The effects of net negative charge, of charge separation in phosphocholine, and of the distribution of charge in the polar region of lipids were studied using the GT2p isoform isolated from pig liver. Prior experiments have shown that lipids with net negative charge inhibit the enzyme (Zakim, D., Cantor, M., and Eibl, H. (1988) J. Biol. Chem. 263, 5164-5169). The current experiments show that the extent of inhibition on a molar basis increases as the net negative charge increases from -1 to -2. The inhibitory effect of negatively charged lipids is on the functional state of the enzyme and is not due to electrostatic repulsion of negatively charged substrates of the enzyme. Although the inhibitory effect of net negative charge is removed when negative charge is balanced by a positive charge due to a quaternary nitrogen, neutrality of the polar region is not a sufficient condition for activation of the enzyme. In addition to a balance of charge between Pi and the quaternary nitrogen, the distance between the negative and positive charges and the orientation of the dipole created by them are critical for activation of GT2p. The negative and positive charges must be separated by the equivalent of three -CH2- groups for optimal activation by a lipid. Shortening this distance by one -CH2- unit leads to a lipid that is ineffective in activating the enzyme. Reversal of the orientation of the dipole in which the negative charge is on the polymethylene side of the lipid-water interface and the positive charge extends into water also produces a lipid that is not effective for activating GT2p. On the other hand, lipids with phosphoserine as the polar region, which has the "normal" P-N distance but carries a net negative charge, do not inhibit GT2p. This result again illustrates the importance of the dipole of phosphocholine for modulating the functional state of GT2p.

  5. AC-impedance measurements during thermal runaway process in several lithium/polymer batteries

    NASA Astrophysics Data System (ADS)

    Uchida, I.; Ishikawa, H.; Mohamedi, M.; Umeda, M.

    In this work, we present a set of thermal characterization experiments of charged prismatic polymer lithium-ion battery (PLB) comparatively with those of a lithium-ion battery (LIB). These cells at different state of charge (SOC) were tested inside an accelerated rate calorimeter (ARC) to determine the onset-of-thermal runaway (OTR) temperatures. In addition, the thermally activated components of these cells were followed by monitoring the impedance (at 1 kHz) and the open-circuit voltage (OCV) as a function of temperature. An increase in the impedance was observed at around 133 °C corresponding to the polyethylene separator shutdown. Above 140 °C, the OCV dropped to zero indicating an internal short-circuit due the separator meltdown suggesting that the pinholes created in the separator at meltdown are large enough to create an internal short-circuit.

  6. Explicit Solvent Simulations of Friction between Brush Layers of Charged and Neutral Bottle-Brush Macromolecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrillo, Jan-Michael; Brown, W Michael; Dobrynin, Andrey

    2012-01-01

    We study friction between charged and neutral brush layers of bottle-brush macromolecules using molecular dynamics simulations. In our simulations the solvent molecules were treated explicitly. The deformation of the bottle-brush macromolecules under the shear were studied as a function of the substrate separation and shear stress. For charged bottle-brush layers we study effect of the added salt on the brush lubricating properties to elucidate factors responsible for energy dissipation in charged and neutral brush systems. Our simulations have shown that for both charged and neutral brush systems the main deformation mode of the bottle-brush macromolecule is associated with the backbonemore » deformation. This deformation mode manifests itself in the backbone deformation ratio, , and shear viscosity, , to be universal functions of the Weissenberg number W. The value of the friction coefficient, , and viscosity, , are larger for the charged bottle-brush coatings in comparison with those for neutral brushes at the same separation distance, D, between substrates. The additional energy dissipation generated by brush sliding in charged bottle-brush systems is due to electrostatic coupling between bottle-brush and counterion motion. This coupling weakens as salt concentration, cs, increases resulting in values of the viscosity, , and friction coefficient, , approaching corresponding values obtained for neutral brush systems.« less

  7. Ultrafast Exciton Dissociation and Long-Lived Charge Separation in a Photovoltaic Pentacene-MoS2 van der Waals Heterojunction.

    PubMed

    Bettis Homan, Stephanie; Sangwan, Vinod K; Balla, Itamar; Bergeron, Hadallia; Weiss, Emily A; Hersam, Mark C

    2017-01-11

    van der Waals heterojunctions between two-dimensional (2D) layered materials and nanomaterials of different dimensions present unique opportunities for gate-tunable optoelectronic devices. Mixed-dimensional p-n heterojunction diodes, such as p-type pentacene (0D) and n-type monolayer MoS 2 (2D), are especially interesting for photovoltaic applications where the absorption cross-section and charge transfer processes can be tailored by rational selection from the vast library of organic molecules and 2D materials. Here, we study the kinetics of excited carriers in pentacene-MoS 2 p-n type-II heterojunctions by transient absorption spectroscopy. These measurements show that the dissociation of MoS 2 excitons occurs by hole transfer to pentacene on the time scale of 6.7 ps. In addition, the charge-separated state lives for 5.1 ns, up to an order of magnitude longer than the recombination lifetimes from previously reported 2D material heterojunctions. By studying the fractional amplitudes of the MoS 2 decay processes, the hole transfer yield from MoS 2 to pentacene is found to be ∼50%, with the remaining holes undergoing trapping due to surface defects. Overall, the ultrafast charge transfer and long-lived charge-separated state in pentacene-MoS 2 p-n heterojunctions suggest significant promise for mixed-dimensional van der Waals heterostructures in photovoltaics, photodetectors, and related optoelectronic technologies.

  8. Electrostatic Beneficiation of Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Trigwell, Steve; Captain, James; Captain, Janine; Arens, Ellen; Quinn, Jacqueline; Calle, Carlos

    2006-01-01

    Electrostatic beneficiation of lunar regolith is a method allowing refinement of specific minerals in the material for processing on the moon. The use of tribocharging the regolith prior to separation was investigated on the lunar simulant MLS-I by passing the dust through static mixers constructed from different materials; aluminum, copper, stainless steel, and polytetrafluoroethylene (PTFE). The amount of charge acquired by the simulant was dependent upon the difference in the work function of the dust and the charging material. XPS and SEM were used to characterize the simulant after it was sieved into five size fractions (> 100 pm, 75-100 pm, 50- 75 pm, 50-25 pm, and < 25 pm), where very little difference in surface composition was observed between the sizes. Samples of the smallest (< 25 pm) and largest (> 100 pm) size fractions were beneficiated through a charge separator using the aluminum (charged the simulant negatively) and PTFE (charged positively) mixers. The mass fractions of the separated simulant revealed that for the larger particle size, significant unipolar charging was observed for both mixers, whereas for the smaller particle sizes, more bipolar charging was observed, probably due to the finer simulant adhering to the inside of the mixers shielding the dust from the charging material. Subsequent XPS analysis of the beneficiated fractions showed the larger particle size fraction having some species differentiation, but very little difference for the smaller.size. Although MLS-1 was made to have similar chemistry to actual lunar dust, its mineralogy is quite different. On-going experiments are using NASA JSC-1 lunar simulant. A vacuum chamber has been constructed, and future experiments are planned in a simulated lunar environment.

  9. Spectroscopic Analysis of a Biomimetic Model of Tyr(Z) Function in PSII.

    PubMed

    Ravensbergen, Janneke; Antoniuk-Pablant, Antaeres; Sherman, Benjamin D; Kodis, Gerdenis; Megiatto, Jackson D; Méndez-Hernández, Dalvin D; Frese, Raoul N; van Grondelle, Rienk; Moore, Thomas A; Moore, Ana L; Gust, Devens; Kennis, John T M

    2015-09-17

    Using natural photosynthesis as a model, bio-inspired constructs for fuel generation from sunlight are being developed. Here we report the synthesis and time-resolved spectroscopic analysis of a molecular triad in which a porphyrin electron donor is covalently linked to both a cyanoporphyrin electron acceptor and a benzimidazole-phenol model for the TyrZ-D1His190 pair of PSII. A dual-laser setup enabled us to record the ultrafast kinetics and long-living species in a single experiment. From this data, the photophysical relaxation pathways were elucidated for the triad and reference compounds. For the triad, quenching of the cyanoporphyrin singlet excited state lifetime was interpreted as photoinduced electron transfer from the porphyrin to the excited cyanoporphyrin. In contrast to a previous study of a related molecule, we were unable to observe subsequent formation of a long-lived charge separated state involving the benzimidazole-phenol moiety. The lack of detection of a long-lived charge separated state is attributed to a change in energetic landscape for charge separation/recombination due to small differences in structure and solvation of the new triad.

  10. PVC removal from mixed plastics by triboelectrostatic separation.

    PubMed

    Park, Chul-Hyun; Jeon, Ho-Seok; Park, Jai-Koo

    2007-06-01

    Ever increasing oil price and the constant growth in generation of waste plastics stimulate a research on material separation for recycling of waste plastics. At present, most waste plastics cause serious environmental problems due to the disposal by reclamation and incineration. Particularly, polyvinyl chloride (PVC) materials among waste plastics generates hazardous HCl gas, dioxins containing Cl, and so on, which lead to air pollution and shorten the life of incinerator, and it makes difficultly recycling of other plastics. Therefore, we designed a bench scale triboelectrostatic separator for PVC removal from mixed plastics (polyvinyl chloride/polyethylene terephthalate), and then carried out material separation tests. In triboelectrostatic separation, PVC and PET particles are charged negatively and positively, respectively, due to the difference of the work function of plastics in tribo charger of the fluidized-bed, and are separated by means of splitter through an opposite electric field. In this study, the charge efficiency of PVC and PET was strongly dependent on the tribo charger material (polypropylene), relative humidity (below 30%), air velocity (over 10 m/s), and mixture ratio (PET:PVC=1:1). At the optimum conditions (electrode potential of 20 kV and splitter position of -2 cm), PVC rejection and PET recovery in PET products were 99.60 and 98.10%, respectively, and the reproducibility of optimal test was very good (+/-1%). In addition, as a change of splitter position, we developed the technique to recover high purity PET (over 99.99%) although PET recovery decreases by degrees.

  11. Pentachlorophenol removal from water using surfactant-enhanced filtration through low-pressure thin film composite membranes.

    PubMed

    Kumar, Yogesh; Popat, K M; Brahmbhatt, H; Ganguly, B; Bhattacharya, A

    2008-06-15

    Removal of pentachlorophenol from water is investigated using the surfactant-enhanced cross-flow membrane filtration technique in which anionic surfactant; sodium dodecyl sulfate (SDS) is the carrier of pentachlorophenol. The separation performances are studied by varying SDS concentrations (

  12. Induced-Charge Enhancement of the Diffusion Potential in Membranes with Polarizable Nanopores

    NASA Astrophysics Data System (ADS)

    Ryzhkov, I. I.; Lebedev, D. V.; Solodovnichenko, V. S.; Shiverskiy, A. V.; Simunin, M. M.

    2017-12-01

    When a charged membrane separates two salt solutions of different concentrations, a potential difference appears due to interfacial Donnan equilibrium and the diffusion junction. Here, we report a new mechanism for the generation of a membrane potential in polarizable conductive membranes via an induced surface charge. It results from an electric field generated by the diffusion of ions with different mobilities. For uncharged membranes, this effect strongly enhances the diffusion potential and makes it highly sensitive to the ion mobilities ratio, electrolyte concentration, and pore size. Theoretical predictions on the basis of the space-charge model extended to polarizable nanopores fully agree with experimental measurements in KCl and NaCl aqueous solutions.

  13. A Methodological Approach for Conducting a Business Case Analysis (BCA) of the Global Observer Joint Capability Technology Demonstration (JCTD)

    DTIC Science & Technology

    2007-12-01

    Justthebasics.html [Accessed September 29, 2007]. [8] Smithsonian National Museum of American History . “ Proton Exchange Membrame (PEM) Fuel Cell...hydrogen-rich fuel, is fed to the anode where a catalyst separates hydrogen’s negatively charged electrons from the positively charged protons ...The protons are conducted through the electrolyte to the cathode, whereas the electrons are forced to travel in an external circuit, due to the

  14. A Model of the Turbulent Electric Dynamo in Multi-Phase Media

    NASA Astrophysics Data System (ADS)

    Dementyeva, Svetlana; Mareev, Evgeny

    2016-04-01

    Many terrestrial and astrophysical phenomena witness the conversion of kinetic energy into electric energy (the energy of the quasi-stationary electric field) in conducting media, which is natural to treat as manifestations of electric dynamo by analogy with well-known theory of magnetic dynamo. Such phenomena include thunderstorms and lightning in the Earth's atmosphere and atmospheres of other planets, electric activity caused by dust storms in terrestrial and Martian atmospheres, snow storms, electrical discharges occurring in technological setups, connected with intense mixing of aerosol particles like in the milling industry. We have developed a model of the large-scale turbulent electric dynamo in a weakly conducting medium, containing two heavy-particle components. We have distinguished two main classes of charging mechanisms (inductive and non-inductive) in accordance with the dependence or independence of the electric charge, transferred during a particle collision, on the electric field intensity and considered the simplified models which demonstrate the possibility of dynamo realization and its specific peculiarities for these mechanisms. Dynamo (the large-scale electric field growth) appears due to the charge separation between the colliding and rebounding particles. This process is may be greatly intensified by the turbulent mixing of particles with different masses and, consequently, different inertia. The particle charge fluctuations themselves (small-scale dynamo), however, do not automatically mean growth of the large-scale electric field without a large-scale asymmetry. Such an asymmetry arises due to the dependence of the transferred charge magnitude on the electric field intensity in the case of the inductive mechanism of charge separation, or due to the gravity and convection for non-inductive mechanisms. We have found that in the case of the inductive mechanism the large-scale dynamo occurs if the medium conductivity is small enough while the electrification process determined by the turbulence intensity and particles sizes is strong enough. The electric field strength grows exponentially. For the non-inductive mechanism we have found the conditions when the electric field strength grows but linearly in time. Our results show that turbulent electric dynamo could play a substantial role in the electrification processes for different mechanisms of charge generation and separation. Thunderstorms and lightning are the most frequent and spectacular manifestations of electric dynamo in the atmosphere, but turbulent electric dynamo may also be the reason of electric discharges occurring in dust and snow storms or even in technological setups with intense mixing of small particles.

  15. Investigations on the photoreactions of phenothiazine and phenoxazine in presence of 9-cyanoanthracene by using steady state and time resolved spectroscopic techniques.

    PubMed

    Bardhan, Munmun; Mandal, Paulami; Tzeng, Wen-Bih; Ganguly, Tapan

    2010-09-01

    By using electrochemical, steady state and time resolved (fluorescence lifetime and transient absorption) spectroscopic techniques, detailed investigations were made to reveal the mechanisms of charge separation or forward electron transfer reactions within the electron donor phenothiazine (PTZH) or phenoxazine (PXZH) and well known electron acceptor 9-cyanoanthracene (CNA). The transient absorption spectra suggest that the charge separated species formed in the excited singlet state resulted from intermolecular photoinduced electron transfer reactions within the donor PTZH (or PXZH) and CNA acceptor relaxes to the corresponding triplet state. Though alternative mechanisms of via formations of contact neutral radical by H-transfer reaction have been proposed but the observed results obtained from the time resolved measurements indicate that the regeneration of ground state reactants is primarily responsible due to direct recombination of triplet contact ion-pair (CIP) or solvent-separated ion-pair (SSIP).

  16. Ion sensing method

    DOEpatents

    Smith, Richard Harding; Martin, Glenn Brian

    2004-05-18

    The present invention allows the determination of trace levels of ionic substances in a sample solution (ions, metal ions, and other electrically charged molecules) by coupling a separation method, such as liquid chromatography, with ion selective electrodes (ISE) prepared so as to allow detection at activities below 10.sup.-6 M. The separation method distributes constituent molecules into fractions due to unique chemical and physical properties, such as charge, hydrophobicity, specific binding interactions, or movement in an electrical field. The separated fractions are detected by means of the ISE(s). These ISEs can be used singly or in an array. Accordingly, modifications in the ISEs are used to permit detection of low activities, specifically, below 10.sup.-6 M, by using low activities of the primary analyte (the molecular species which is specifically detected) in the inner filling solution of the ISE. Arrays constructed in various ways allow flow-through sensing for multiple ions.

  17. Novel High Efficient Organic Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Sun, Sam; Haliburton, James; Wang, Yi-Qing; Fan, Zhen; Taft, Charles; Maaref, Shahin; Bailey, Sheila (Technical Monitor)

    2003-01-01

    Solar energy is a renewable, nonpolluting, and most abundant energy source for human exploration of a remote site or outer space. In order to generate appreciable electrical power in space or on the earth, it is necessary to collect sunlight from large areas and with high efficiency due to the low density of sunlight. Future organic or polymer (plastic) solar cells appear very attractive due to their unique features such as light weight, flexible shape, tunability of energy band-gaps via versatile molecular or supramolecular design, synthesis, processing and device fabrication schemes, and much lower cost on large scale industrial production. It has been predicted that supramolecular and nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks may facilitate the charge carrier separation and migration due to improved electronic ultrastructure and morphology in comparison to polymer composite system. This presentation will describe our recent progress in the design, synthesis and characterization of a novel block copolymer system containing donor and acceptor blocks covalently attached. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene (RO-PPV), the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene (SF-PPV). The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block has a strong PL emission at around 560 nm, and acceptor block has a strong PL emission at around 520 nm, the PL emissions of final block copolymers are severely quenched. This verifies the expected electron transfer and charge separation due to interfaces of donor and acceptor nano phase separated blocks. The system therefore has potential for variety light harvesting applications, including high efficient photovoltaic applications.

  18. Long-range interaction between heterogeneously charged membranes.

    PubMed

    Jho, Y S; Brewster, R; Safran, S A; Pincus, P A

    2011-04-19

    Despite their neutrality, surfaces or membranes with equal amounts of positive and negative charge can exhibit long-range electrostatic interactions if the surface charge is heterogeneous; this can happen when the surface charges form finite-size domain structures. These domains can be formed in lipid membranes where the balance of the different ranges of strong but short-ranged hydrophobic interactions and longer-ranged electrostatic repulsion result in a finite, stable domain size. If the domain size is large enough, oppositely charged domains in two opposing surfaces or membranes can be strongly correlated by the electrostatic interactions; these correlations give rise to an attractive interaction of the two membranes or surfaces over separations on the order of the domain size. We use numerical simulations to demonstrate the existence of strong attractions at separations of tens of nanometers. Large line tensions result in larger domains but also increase the charge density within the domain. This promotes correlations and, as a result, increases the intermembrane attraction. On the other hand, increasing the salt concentration increases both the domain size and degree of domain anticorrelation, but the interactions are ultimately reduced due to increased screening. The result is a decrease in the net attraction as salt concentration is increased. © 2011 American Chemical Society

  19. Energy exchange between a laser beam and charged particles using inverse transition radiation and method for its use

    DOEpatents

    Kimura, Wayne D.; Romea, Richard D.; Steinhauer, Loren C.

    1998-01-01

    A method and apparatus for exchanging energy between relativistic charged particles and laser radiation using inverse diffraction radiation or inverse transition radiation. The beam of laser light is directed onto a particle beam by means of two optical elements which have apertures or foils through which the particle beam passes. The two apertures or foils are spaced by a predetermined distance of separation and the angle of interaction between the laser beam and the particle beam is set at a specific angle. The separation and angle are a function of the wavelength of the laser light and the relativistic energy of the particle beam. In a diffraction embodiment, the interaction between the laser and particle beams is determined by the diffraction effect due to the apertures in the optical elements. In a transition embodiment, the interaction between the laser and particle beams is determined by the transition effect due to pieces of foil placed in the particle beam path.

  20. Photon induced non-linear quantized double layer charging in quaternary semiconducting quantum dots.

    PubMed

    Nair, Vishnu; Ananthoju, Balakrishna; Mohapatra, Jeotikanta; Aslam, M

    2018-03-15

    Room temperature quantized double layer charging was observed in 2 nm Cu 2 ZnSnS 4 (CZTS) quantum dots. In addition to this we observed a distinct non-linearity in the quantized double layer charging arising from UV light modulation of double layer. UV light irradiation resulted in a 26% increase in the integral capacitance at the semiconductor-dielectric (CZTS-oleylamine) interface of the quantum dot without any change in its core size suggesting that the cause be photocapacitive. The increasing charge separation at the semiconductor-dielectric interface due to highly stable and mobile photogenerated carriers cause larger electrostatic forces between the quantum dot and electrolyte leading to an enhanced double layer. This idea was supported by a decrease in the differential capacitance possible due to an enhanced double layer. Furthermore the UV illumination enhanced double layer gives us an AC excitation dependent differential double layer capacitance which confirms that the charging process is non-linear. This ultimately illustrates the utility of a colloidal quantum dot-electrolyte interface as a non-linear photocapacitor. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Relationship between composition of mixture charged and that in circulation in an auto refrigerant cascade and a J-T refrigerator operating in liquid refrigerant supply mode

    NASA Astrophysics Data System (ADS)

    Sreenivas, Bura; Nayak, H. Gurudath; Venkatarathnam, G.

    2017-01-01

    The composition of the refrigerant mixture in circulation during steady state operation of J-T and allied refrigerators is not the same as that charged due to liquid hold up in the heat exchangers and phase separators, as well as the differential solubility of different refrigerant components in the compressor lubricating oil. The performance of refrigerators/liquefiers operating on mixed refrigerant cycles is dependent on the mixture composition. It is therefore important to charge the right mixture that results in an optimum composition in circulation during steady state operation. The relationship between the charged and circulating composition has been experimentally studied in a J-T refrigerator operating in the liquid refrigerant supply (LRS) mode and an auto refrigerant cascade refrigerator (with a phase separator) operating in the gas refrigerant supply (GRS) mode. The results of the study are presented in this work. The results show that the method presented earlier for J-T refrigerators operating in GRS mode is also applicable in the case of refrigerators studied in this work.

  2. The Charging Events in Contact-Separation Electrification.

    PubMed

    Musa, Umar G; Cezan, S Doruk; Baytekin, Bilge; Baytekin, H Tarik

    2018-02-06

    Contact electrification (CE)-charging of surfaces that are contacted and separated, is a common phenomenon, however it is not completely understood yet. Recent studies using surface imaging techniques and chemical analysis revealed a 'spatial' bipolar distribution of charges at the nano dimension, which made a paradigm shift in the field. However, such analyses can only provide information about the charges that remained on the surface after the separation, providing limited information about the actual course of the CE event. Tapping common polymers and metal surfaces to each other and detecting the electrical potential produced on these surfaces 'in-situ' in individual events of contact and separation, we show that, charges are generated and transferred between the surfaces in both events; the measured potential is bipolar in contact and unipolar in separation. We show, the 'contact-charges' on the surfaces are indeed the net charges that results after the separation process, and a large contribution to tribocharge harvesting comes, in fact, from the electrostatic induction resulting from the generated CE charges. Our results refine the mechanism of CE providing information for rethinking the conventional ranking of materials' charging abilities, charge harvesting, and charge prevention.

  3. Energetics of bacterial photosynthesis.

    PubMed

    Lebard, David N; Matyushov, Dmitry V

    2009-09-10

    We report the results of extensive numerical simulations and theoretical calculations of electronic transitions in the reaction center of Rhodobacter sphaeroides photosynthetic bacterium. The energetics and kinetics of five electronic transitions related to the kinetic scheme of primary charge separation have been analyzed and compared to experimental observations. Nonergodic formulation of the reaction kinetics is required for the calculation of the rates due to a severe breakdown of the system ergodicity on the time scale of primary charge separation, with the consequent inapplicability of the standard canonical prescription to calculate the activation barrier. Common to all reactions studied is a significant excess of the charge-transfer reorganization energy from the width of the energy gap fluctuations over that from the Stokes shift of the transition. This property of the hydrated proteins, breaking the linear response of the thermal bath, allows the reaction center to significantly reduce the reaction free energy of near-activationless electron hops and thus raise the overall energetic efficiency of the biological charge-transfer chain. The increase of the rate of primary charge separation with cooling is explained in terms of the temperature variation of induction solvation, which dominates the average donor-acceptor energy gap for all electronic transitions in the reaction center. It is also suggested that the experimentally observed break in the Arrhenius slope of the primary recombination rate, occurring near the temperature of the dynamical transition in proteins, can be traced back to a significant drop of the solvent reorganization energy close to that temperature.

  4. Study of talcum charging status in parallel plate electrostatic separator based on particle trajectory analysis

    NASA Astrophysics Data System (ADS)

    Yunxiao, CAO; Zhiqiang, WANG; Jinjun, WANG; Guofeng, LI

    2018-05-01

    Electrostatic separation has been extensively used in mineral processing, and has the potential to separate gangue minerals from raw talcum ore. As for electrostatic separation, the particle charging status is one of important influence factors. To describe the talcum particle charging status in a parallel plate electrostatic separator accurately, this paper proposes a modern images processing method. Based on the actual trajectories obtained from sequence images of particle movement and the analysis of physical forces applied on a charged particle, a numerical model is built, which could calculate the charge-to-mass ratios represented as the charging status of particle and simulate the particle trajectories. The simulated trajectories agree well with the experimental results obtained by images processing. In addition, chemical composition analysis is employed to reveal the relationship between ferrum gangue mineral content and charge-to-mass ratios. Research results show that the proposed method is effective for describing the particle charging status in electrostatic separation.

  5. Charge exchange in solar wind-cometary interactions

    NASA Technical Reports Server (NTRS)

    Gombosi, T. I.; Horanyi, M.; Kecskemety, K.; Cravens, T. E.; Nagy, A. F.

    1983-01-01

    A simple model of a cometary spherically symmetrical atmosphere and ionosphere is considered. An analytic solution of the governing equations describing the radial distribution of the neutral and ion densities is found. The new solution is compared to the well-known solution of the equations containing only ionization terms. Neglecting recombination causes a significant overestimate of the ion density in the vicinity of the comet. An axisymmetric model of the solar wind-cometary interaction is considered, taking into account the loss of solar wind ions due to charge exchange. The calculations predict that for active comets, solar wind absorption due to charge exchange becomes important at a few thousand kilometers from the nucleus, and a surface separating the shocked solar wind from the cometary ionosphere develops in this region. These calculations are in reasonable agreement with the few observations available for the ionopause location at comets.

  6. Chiral perturbation theory and nucleon-pion-state contaminations in lattice QCD

    NASA Astrophysics Data System (ADS)

    Bär, Oliver

    2017-05-01

    Multiparticle states with additional pions are expected to be a non-negligible source of excited-state contamination in lattice simulations at the physical point. It is shown that baryon chiral perturbation theory can be employed to calculate the contamination due to two-particle nucleon-pion-states in various nucleon observables. Leading order results are presented for the nucleon axial, tensor and scalar charge and three Mellin moments of parton distribution functions (quark momentum fraction, helicity and transversity moment). Taking into account phenomenological results for the charges and moments the impact of the nucleon-pion-states on lattice estimates for these observables can be estimated. The nucleon-pion-state contribution results in an overestimation of all charges and moments obtained with the plateau method. The overestimation is at the 5-10% level for source-sink separations of about 2 fm. The source-sink separations accessible in contemporary lattice simulations are found to be too small for chiral perturbation theory to be directly applicable.

  7. Single charging events on colloidal particles in a nonpolar liquid with surfactant

    NASA Astrophysics Data System (ADS)

    Schreuer, Caspar; Vandewiele, Stijn; Brans, Toon; Strubbe, Filip; Neyts, Kristiaan; Beunis, Filip

    2018-01-01

    Electrical charging of colloidal particles in nonpolar liquids due to surfactant additives is investigated intensively, motivated by its importance in a variety of applications. Most methods rely on average electrophoretic mobility measurements of many particles, which provide only indirect information on the charging mechanism. In the present work, we present a method that allows us to obtain direct information on the charging mechanism, by measuring the charge fluctuations on individual particles with a precision higher than the elementary charge using optical trapping electrophoresis. We demonstrate the capabilities of the method by studying the influence of added surfactant OLOA 11000 on the charging of single colloidal PMMA particles in dodecane. The particle charge and the frequency of charging events are investigated both below and above the critical micelle concentration (CMC) and with or without applying a DC offset voltage. It is found that at least two separate charging mechanisms are present below the critical micelle concentration. One mechanism is a process where the particle is stripped from negatively charged ionic molecules. An increase in the charging frequency with increased surfactant concentration suggests a second mechanism that involves single surfactant molecules. Above the CMC, neutral inverse micelles can also be involved in the charging process.

  8. Strong coupling electrostatics for randomly charged surfaces: antifragility and effective interactions.

    PubMed

    Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf

    2015-05-07

    We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to the (equal) mean charges on the two surfaces and the osmotic pressure of monovalent ions residing between them. These effects can be quite significant even with a small degree of surface charge disorder relative to the mean surface charge. The strong coupling, disorder-induced attraction is typically much stronger than the van der Waals interaction between the surfaces, especially within a range of several nanometers for the inter-surface separation, where such effects are predicted to be most pronounced.

  9. Separation of distinct photoexcitation species in femtosecond transient absorption microscopy

    DOE PAGES

    Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane; ...

    2016-02-03

    Femtosecond transient absorption microscopy is a novel chemical imaging capability with simultaneous high spatial and temporal resolution. Although several powerful data analysis approaches have been developed and successfully applied to separate distinct chemical species in such images, the application of such analysis to distinguish different photoexcited species is rare. In this paper, we demonstrate a combined approach based on phasor and linear decomposition analysis on a microscopic level that allows us to separate the contributions of both the excitons and free charge carriers in the observed transient absorption response of a composite organometallic lead halide perovskite film. We found spatialmore » regions where the transient absorption response was predominately a result of excitons and others where it was predominately due to charge carriers, and regions consisting of signals from both contributors. Lastly, quantitative decomposition of the transient absorption response curves further enabled us to reveal the relative contribution of each photoexcitation to the measured response at spatially resolved locations in the film.« less

  10. Multi-hadron-state contamination in nucleon observables from chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Bär, Oliver

    2018-03-01

    Multi-particle states with additional pions are expected to be a non-negligible source of the excited-state contamination in lattice simulations at the physical point. It is shown that baryon chiral perturbation theory (ChPT) can be employed to calculate the contamination due to two-particle nucleon-pion states in various nucleon observables. Results to leading order are presented for the nucleon axial, tensor and scalar charge and three Mellin moments of parton distribution functions: the average quark momentum fraction, the helicity and the transversity moment. Taking into account experimental and phenomenological results for the charges and moments the impact of the nucleon-pionstates on lattice estimates for these observables can be estimated. The nucleon-pion-state contribution leads to an overestimation of all charges and moments obtained with the plateau method. The overestimation is at the 5-10% level for source-sink separations of about 2 fm. Existing lattice data is not in conflict with the ChPT predictions, but the comparison suggests that significantly larger source-sink separations are needed to compute the charges and moments with few-percent precision. Talk given at the 35th International Symposium on Lattice Field Theory, 18 - 24 June 2017, Granada, Spain.

  11. Characterization and correction of charge-induced pixel shifts in DECam

    DOE PAGES

    Gruen, D.; Bernstein, G. M.; Jarvis, M.; ...

    2015-05-28

    Interaction of charges in CCDs with the already accumulated charge distribution causes both a flux dependence of the point-spread function (an increase of observed size with flux, also known as the brighter/fatter effect) and pixel-to-pixel correlations of the Poissonian noise in flat fields. We describe these effects in the Dark Energy Camera (DECam) with charge dependent shifts of effective pixel borders, i.e. the Antilogus et al. (2014) model, which we fit to measurements of flat-field Poissonian noise correlations. The latter fall off approximately as a power-law r -2.5 with pixel separation r, are isotropic except for an asymmetry in themore » direct neighbors along rows and columns, are stable in time, and are weakly dependent on wavelength. They show variations from chip to chip at the 20% level that correlate with the silicon resistivity. The charge shifts predicted by the model cause biased shape measurements, primarily due to their effect on bright stars, at levels exceeding weak lensing science requirements. We measure the flux dependence of star images and show that the effect can be mitigated by applying the reverse charge shifts at the pixel level during image processing. Differences in stellar size, however, remain significant due to residuals at larger distance from the centroid.« less

  12. Measurement of interfacial thermal conductance in Lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Gaitonde, Aalok; Nimmagadda, Amulya; Marconnet, Amy

    2017-03-01

    Increasing usage and recent accidents due to Lithium ion (Li-ion) batteries exploding or catching on fire has inspired research on the thermal management of these batteries. In cylindrical 18650 cells, heat generated during the charge/discharge cycle must dissipate to the surrounding through its metallic case due to the poor thermal conductivity of the jelly roll, which is spirally wound with many interfaces between electrodes and the polymeric separator. This work develops a technique to measure the thermal resistance across the case-separator interface, which ultimately limits heat transfer out of the jelly roll. Commercial 18650 batteries are discharged and opened using a battery disassembly tool, and the 25 μm thick separator and the 200 μm thick metallic case are harvested to make samples. A miniaturized version of the conventional reference bar method (ASTM astm:D5470)

  13. Effect of Ca2+ ion concentration on adsorption of poly(carboxylate ether)-based (PCE) superplasticizer on mica.

    PubMed

    Wu, Bo; Chun, Byong-Wa; Gu, Le; Kuhl, Tonya L

    2018-05-09

    Poly(carboxylate ether)-based (PCE) superplasticizers consist of a carboxylic acid backbone and grafted poly(ethylene glycol) (PEG) side chains. Ca 2+ ion bridging mechanism is commonly purported to control PCE's adsorption on negatively charged cement particle surfaces in cement suspension, thus PCE was expected to adsorb on negatively charged surfaces in synthetic pore solutions via Ca 2+ /COO - interactions. Adsorption behaviors of a commercial PCE on negatively charged mica were studied in aqueous electrolyte solutions by a surface forces apparatus. Direct force measurements indicated that the PCE adsorbed onto mica from 0.1 M K 2 SO 4 due to K + ion chelation by the ether oxygen units CH 2 CH 2 O on the PEG chains, but surprisingly did not adsorb from either 0.1 M K 2 SO 4 with saturated Ca(OH) 2 or 0.1 M Ca(NO 3 ) 2 . The adsorption in K 2 SO 4 was weak, enabling the adsorbed PCE layers to be squeezed out under modest compression. Upon separating the surfaces, the PCE immediately achieved an identical re-adsorption. In high-calcium conditions, the PCE was highly positively charged due to Ca 2+ ion chelation by PEG chains and backbone carboxylic groups COO - , and mica also underwent charge reversal due to electrostatic adsorption/binding of Ca 2+ ions. Consequently, the interaction between mica and PCE was electrostatically repulsive and no PCE adsorption occurred. These findings can be explained by the complex interplay of ion chelation by PEG chains, electrostatic binding and screening interactions with charged surfaces in the presence of monovalent and divalent counterions, and ultimately charge reversal of both the charged surfaces and polyelectrolyte in high divalent ion conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Physical stage of photosynthesis charge separation

    NASA Astrophysics Data System (ADS)

    Yakovlev, A. G.; Shuvalov, V. A.

    2016-06-01

    An analytical review is given concerning the biophysical aspects of light-driven primary charge separation in photosynthesis reaction centers (RCs) which are special pigment-protein complexes residing in a cell membrane. The primary (physical) stage of charge separation occurs in the pico- and femtosecond ranges and consists of transferring an electron along the active A-branch of pigments. The review presents vast factual material on both the general issues of primary photosynthesis and some more specific topics, including (1) the role of the inactive B-branch of pigments, (2) the effect of the protein environment on the charge separation, and (3) the participation of monomeric bacteriochlorophyll BA in primary electron acceptance. It is shown that the electron transfer and stabilization are strongly influenced by crystallographic water and tyrosine M210 molecules from the nearest environment of BA. A linkage between collective nuclear motions and electron transfer upon charge separation is demonstrated. The nature of the high quantum efficiency of primary charge separation reactions is discussed.

  15. Molecular design and nanoscale engineering of organic nanofibril donor-acceptor heterojunctions

    NASA Astrophysics Data System (ADS)

    Huang, Helin

    Organic nanofibril heterojunction materials have gained increasing research interest due to their broad applications in organic semiconductor devices. In order to enhance the device performance, we have investigated the structure-property relationship of these nanostructures by designing and synthesizing functional building block molecules, selfassembling the molecules into well-defined nanofibers, fabricating the nanofibers into optical and electrical devices, and testing their photoconductivity and sensor properties. In Chapter 2, we present a simple approach to fabricate efficient nanofibril heterojunctions by interfacial engineering of electron donor (D) coating onto acceptor (A) nanofibers. The nanofibers both create a large D/A interface for increased charge separation and act as long-range transport pathways for photogenerated charge carriers towards the electrodes, and the alkyl groups modified at the A molecules not only enable effective surface adsorption of D molecules on the nanofibers for effective electron-transfer communication, but also spatially separate the photogenerated charge carriers to prevent their recombination. In Chapter 3, we further investigated the effect of D molecular structure and coating morphology on photoconductivity of organic nanofiber materials. A series of D molecules with varying side-chain modifications were synthesized and investigated for the different intermolecular arrangements caused by pi-pi stacking in balance with steric hindrance of side-chains. Different molecular assemblies of D resulted in distinctive phase segregation between D and A nanofiber, which significantly affects the interfacial charge separation. In Chapter 4, we developed an alternative nanofibril heterojunction structure that is composed of D as the nanofiber, onto which a monolayer of A molecule was coated. Due to the strong redox (charge transfer) interaction between D and A, the nanofibril junction demonstrated high conductivity even without light illumination, which makes this material suitable for applications in chemiresistor sensors for detection of amines. In Chapter 5, a series of perylene tetracarboxylic monoimides were synthesized through a one-step reaction between cycloalkyl amines and the parent perylene dianhydride. The selection of appropriate reaction medium is the most critical for achieving the high purity of product. This approach opens up a new way for large scale production of the monoimides, which are the precursor for making a variety of perylene based building block molecules.

  16. Modeling the Electric Potential and Surface Charge Density near Charged Thunderclouds

    ERIC Educational Resources Information Center

    Neel, Matthew Stephen

    2018-01-01

    Thundercloud charge separation, or the process by which the bottom portion of a cloud gathers charge and the top portion of the cloud gathers the opposite charge, is still not thoroughly understood. Whatever the mechanism, though, a charge separation definitely exists and can lead to electrostatic discharge via cloud-to-cloud lightning and…

  17. Effective Electrostatic Interactions Between Two Overall Neutral Surfaces with Quenched Charge Heterogeneity Over Atomic Length Scale

    NASA Astrophysics Data System (ADS)

    Zhou, S.

    2017-12-01

    Using Monte Carlo results as a reference, a classical density functional theory ( CDFT) is shown to reliably predict the forces between two heterogeneously charged surfaces immersed in an electrolyte solution, whereas the Poisson-Boltzmann ( PB) theory is demonstrated to deteriorate obviously for the same system even if the system parameters considered fall within the validity range of the PB theory in the homogeneously charged surfaces. By applying the tested CDFT, we study the effective electrostatic potential of mean force ( EPMF) between two face-face planar and hard surfaces of zero net charge on which positive and negative charges are separated and considered to present as discontinuous spots on the inside edges of the two surfaces. Main conclusions are summarized as follows: (i) strength of the EPMF in the surface charge separation case is very sensitively and positively correlated with the surface charge separation level and valency of the salt ion. Particularly, the charge separation level and the salt ion valency have a synergistic effect, which makes high limit of the EPMF strength in the surface charge separation case significantly go beyond that of the ideal homogeneously charged surface counterpart at average surface charge density similar to the average surface positive or negative charge density in the charge separation case. (ii) The surface charge distribution patterns mainly influence sign of the EPMF: symmetrical and asymmetrical patterns induce repulsive and attractive (at small distances) EPMF, respectively; but with low valency salt ions and low charge separation level the opposite may be the case. With simultaneous presence of both higher valency cation and anion, the EPMF can be repulsive at intermediate distances for asymmetrical patterns. (iii) Salt ion size has a significant impact, which makes the EPMF tend to become more and more repulsive with the ion diameter regardless of the surface charge distribution patterns and the valency of the salt ion; whereas if the 1:1 type electrolyte and the symmetrical patterns are considered, then the opposite may be the case. All of these findings can be explained self-consistently from several perspectives: an excess adsorption of the salt ions (induced by the surface charge separation) serving to raise the osmotic pressure between the plates, configuration fine-tuning in the thinner ion adsorption layer driven by the energy decrease principle, direct Coulombic interactions operating between charged objects on the two face-to-face plates involved, and net charge strength in the ion adsorption layer responsible for the net electrostatic repulsion.

  18. Graphene-based supercapacitors in the parallel-plate electrode configuration: ionic liquids versus organic electrolytes.

    PubMed

    Shim, Youngseon; Kim, Hyung J; Jung, Younjoon

    2012-01-01

    Supercapacitors with two single-sheet graphene electrodes in the parallel plate geometry are studied via molecular dynamics (MD) computer simulations. Pure 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI+BF4-) and a 1.1 M solution of EMI+BF4- in acetonitrile are considered as prototypes of room-temperature ionic liquids (RTILs) and organic electrolytes. Electrolyte structure, charge density and associated electric potential are investigated by varying the charges and separation of the two electrodes. Multiple charge layers formed in the electrolytes in the vicinity of the electrodes are found to screen the electrode surface charge almost completely. As a result, the supercapacitors show nearly an ideal electric double layer behavior, i.e., the electric potential exhibits essentially a plateau behavior in the entire electrolyte region except for sharp changes in screening zones very close to the electrodes. Due to its small size and large charge separation, BF4- is considerably more efficient in shielding electrode charges than EMI+. In the case of the acetonitrile solution, acetonitrile also plays an important role by aligning its dipoles near the electrodes; however, the overall screening mainly arises from ions. Because of the disparity of shielding efficiency between cations and anions, the capacitance of the positively-charged anode is significantly larger than that of the negatively-charged cathode. Therefore, the total cell capacitance in the parallel plate configuration is primarily governed by the cathode. Ion conductivity obtained via the Green-Kubo (GK) method is found to be largely independent of the electrode surface charge. Interestingly, EMI+BF4- shows higher GK ion conductivity than the 1.1 M acetonitrile solution between two parallel plate electrodes.

  19. Interaction between like-charged polyelectrolyte-colloid complexes in electrolyte solutions: a Monte Carlo simulation study in the Debye-Hückel approximation.

    PubMed

    Truzzolillo, D; Bordi, F; Sciortino, F; Sennato, S

    2010-07-14

    We study the effective interaction between differently charged polyelectrolyte-colloid complexes in electrolyte solutions via Monte Carlo simulations. These complexes are formed when short and flexible polyelectrolyte chains adsorb onto oppositely charged colloidal spheres, dispersed in an electrolyte solution. In our simulations the bending energy between adjacent monomers is small compared to the electrostatic energy, and the chains, once adsorbed, do not exchange with the solution, although they rearrange on the particles surface to accommodate further adsorbing chains or due to the electrostatic interaction with neighbor complexes. Rather unexpectedly, when two interacting particles approach each other, the rearrangement of the surface charge distribution invariably produces antiparallel dipolar doublets that invert their orientation at the isoelectric point. These findings clearly rule out a contribution of dipole-dipole interactions to the observed attractive interaction between the complexes, pointing out that such suspensions cannot be considered dipolar fluids. On varying the ionic strength of the electrolyte, we find that a screening length kappa(-1), short compared with the size of the colloidal particles, is required in order to observe the attraction between like-charged complexes due to the nonuniform distribution of the electric charge on their surface ("patch attraction"). On the other hand, by changing the polyelectrolyte/particle charge ratio xi(s), the interaction between like-charged polyelectrolyte-decorated particles, at short separations, evolves from purely repulsive to strongly attractive. Hence, the effective interaction between the complexes is characterized by a potential barrier, whose height depends on the net charge and on the nonuniformity of their surface charge distribution.

  20. Charge-dependent flow and the search for the chiral magnetic wave in Pb-Pb collisions at s N N = 2.76 TeV

    DOE PAGES

    Adam, J.; Adamová, D.; Aggarwal, M. M.; ...

    2016-04-08

    We report on measurements of a charge-dependent flow using a novel three-particle correlator with ALICE in Pb-Pb collisions at the CERN Large Hadron Collider (LHC), and discuss the implications for observation of local parity violation and the chiral magnetic wave (CMW) in heavy-ion collisions. Charge-dependent flow is reported for different collision centralities as a function of the event charge asymmetry. While our results are in qualitative agreement with expectations based on the CMW, the nonzero signal observed in higher harmonics correlations indicates a possible significant background contribution. We also present results on a differential correlator, where the flow of positivemore » and negative charges is reported as a function of the mean charge of the particles and their pseudorapidity separation. We argue that this differential correlator is better suited to distinguish the differences in positive and negative charges expected due to the CMW and the background effects, such as local charge conservation coupled with strong radial and anisotropic flow.« less

  1. Charge-dependent flow and the search for the chiral magnetic wave in Pb-Pb collisions at √{sN N}=2.76 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Benacek, P.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Incani, E.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pal, S. K.; Pan, J.; Pandey, A. K.; Papcun, P.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Pereira da Costa, H.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarma, P.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; de Souza, R. D.; Sozzi, F.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stankus, P.; Stefanek, G.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yang, H.; Yang, P.; Yano, S.; Yasar, C.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.; Alice Collaboration

    2016-04-01

    We report on measurements of a charge-dependent flow using a novel three-particle correlator with ALICE in Pb-Pb collisions at the CERN Large Hadron Collider (LHC), and discuss the implications for observation of local parity violation and the chiral magnetic wave (CMW) in heavy-ion collisions. Charge-dependent flow is reported for different collision centralities as a function of the event charge asymmetry. While our results are in qualitative agreement with expectations based on the CMW, the nonzero signal observed in higher harmonics correlations indicates a possible significant background contribution. We also present results on a differential correlator, where the flow of positive and negative charges is reported as a function of the mean charge of the particles and their pseudorapidity separation. We argue that this differential correlator is better suited to distinguish the differences in positive and negative charges expected due to the CMW and the background effects, such as local charge conservation coupled with strong radial and anisotropic flow.

  2. Improvement of calcium mineral separation contrast using anionic reagents: electrokinetics properties and flotation

    NASA Astrophysics Data System (ADS)

    Lafhaj, Z.; Filippov, L. O.; Filippova, I. V.

    2017-07-01

    The flotation separation of salt type calcium minerals is problematic, due to the similarities in their same active Ca2+ related site for interaction with anionic collectors and similar physicochemical characteristics such as solubility, zero-point charge, surface speciation and Ca-site density. The work was performed to achieve effective and selective separation of the calcium-minerals using pure minerals samples: orange calcite with Mg impurities, optic calcite with impurities level and an apatite. The pure samples surface was examined using techniques sensitive near-surface like infrared spectroscopy (FTIR) and chemical composition was obtained by ICPMS. The isoelectric point (IEP) and point of zero charge (PZC) in electrolyte were recorded using electrophoresis method at different ionic strengths of the solution. Mechanisms of charge development at the mineral-water interface are discussed. The time of contact as important parameter for the charge equilibrium was deduced from kinetics study and fixed to 30 minutes. The difference in the values obtained between IEP and PZSE can be explained by the presence of a specific adsorption of cations and anions on the surface. The effect of pure anionic collectors such as oleic and linoleic acid were studied. At low pH, both collectors lead to a good recovery for the calcites. The flotation recovery of optic calcite at pH 9 with sodium oleate is higher than with sodium linoleate. At alkaline pH, apatite showed a better recovery with sodium linoleate.

  3. A predictive theory of charge separation in organic photovoltaics interfaces

    NASA Astrophysics Data System (ADS)

    Troisi, Alessandro; Liu, Tao; Caruso, Domenico; Cheung, David L.; McMahon, David P.

    2012-09-01

    The key process in organic photovoltaics cells is the separation of an exciton, close to the donor/acceptor interface into a free hole (in the donor) and a free electron (in the acceptor). In an efficient solar cell, the majority of absorbed photons generate such hole-electron pairs but it is not clear why such a charge separation process is so efficient in some blends (for example in the blend formed by poly(3- hexylthiophene) (P3HT) and a C60 derivative (PCBM)) and how can one design better OPV materials. The electronic and geometric structure of the prototypical polymer:fullerene interface (P3HT:PCBM) is investigated theoretically using a combination of classical and quantum simulation methods. It is shown that the electronic structure of P3HT in contact with PCBM is significantly altered compared to bulk P3HT. Due to the additional free volume of the interface, P3HT chains close to PCBM are more disordered and, consequently, they are characterized by an increased band gap. Excitons and holes are therefore repelled by the interface. This provides a possible explanation of the low recombination efficiency and supports the direct formation of "quasi-free" charge separated species at the interface. This idea is further explored here by using a more general system-independent model Hamiltonian. The long range exciton dissociation rate is computed as a function of the exciton distance from the interface and the average dissociation distance is evaluated by comparing this rate with the exciton migration rate with a kinetic model. The phenomenological model shows that also in a generic interface the direct formation if quasi-free charges is extremely likely.

  4. Comparison of TiO₂ and ZnO solar cells sensitized with an indoline dye: time-resolved laser spectroscopy studies of partial charge separation processes.

    PubMed

    Sobuś, Jan; Burdziński, Gotard; Karolczak, Jerzy; Idígoras, Jesús; Anta, Juan A; Ziółek, Marcin

    2014-03-11

    Time-resolved laser spectroscopy techniques in the time range from femtoseconds to seconds were applied to investigate the charge separation processes in complete dye-sensitized solar cells (DSC) made with iodide/iodine liquid electrolyte and indoline dye D149 interacting with TiO2 or ZnO nanoparticles. The aim of the studies was to explain the differences in the photocurrents of the cells (3-4 times higher for TiO2 than for ZnO ones). Electrochemical impedance spectroscopy and nanosecond flash photolysis studies revealed that the better performance of TiO2 samples is not due to the charge collection and dye regeneration processes. Femtosecond transient absorption results indicated that after first 100 ps the number of photoinduced electrons in the semiconductor is 3 times higher for TiO2 than for ZnO solar cells. Picosecond emission studies showed that the lifetime of the D149 excited state is about 3 times longer for ZnO than for TiO2 samples. Therefore, the results indicate that lower performance of ZnO solar cells is likely due to slower electron injection. The studies show how to correlate the laser spectroscopy methodology with global parameters of the solar cells and should help in better understanding of the behavior of alternative materials for porous electrodes for DSC and related devices.

  5. Effects of Magnetic Nanoparticles and External Magnetostatic Field on the Bulk Heterojunction Polymer Solar Cells

    DOE PAGES

    Wang, Kai; Yi, Chao; Liu, Chang; ...

    2015-03-18

    The price of energy to separate tightly bound electron-hole pair (or charge-transfer state) and extract freely movable charges from low-mobility materials represents fundamental losses for many low-cost photovoltaic devices. In bulk heterojunction (BHJ) polymer solar cells (PSCs), approximately 50% of the total efficiency lost among all energy loss pathways is due to the photogenerated charge carrier recombination within PSCs and low charge carrier mobility of disordered organic materials. To address these issues, we introduce magnetic nanoparticles (MNPs) and orientate these MNPS within BHJ composite by an external magnetostatic field. Over 50% enhanced efficiency was observed from BHJ PSCs incorporated withmore » MNPs and an external magnetostatic field alignment when compared to the control BHJ PSCs. The optimization of BHJ thin film morphology, suppression of charge carrier recombination, and enhancement in charge carrier collection result in a greatly increased short-circuit current density and fill factor, as a result, enhanced power conversion efficiency.« less

  6. Separating the influence of electric charges in magnetic force microscopy images of inhomogeneous metal samples

    NASA Astrophysics Data System (ADS)

    Arenas, Mónica P.; Lanzoni, Evandro M.; Pacheco, Clara J.; Costa, Carlos A. R.; Eckstein, Carlos B.; de Almeida, Luiz H.; Rebello, João M. A.; Deneke, Christoph F.; Pereira, Gabriela R.

    2018-01-01

    In this study, we investigate artifacts arising from electric charges present in magnetic force microscopy images. Therefore, we use two austenitic steel samples with different microstructural conditions. Furthermore, we examine the influence of the surface preparation, like etching, in magnetic force images. Using Kelvin probe force microscopy we can quantify the charges present on the surface. Our results show that electrical charges give rise to a signature in the magnetic force microscopy, which is indistinguishable from a magnetic signal. Our results on two differently aged steel samples demonstrate that the magnetic force microscopy images need to be interpreted with care and must be corrected due to the influence of electrical charges present. We discuss three approaches, how to identify these artifacts - parallel acquisition of magnetic force and electric force images on the same position, sample surface preparation to decrease the presence of charges and inversion of the magnetic polarization in two succeeding measurement.

  7. Role of charge separation mechanism and local disorder at hybrid solar cell interfaces

    NASA Astrophysics Data System (ADS)

    Ehrenreich, Philipp; Pfadler, Thomas; Paquin, Francis; Dion-Bertrand, Laura-Isabelle; Paré-Labrosse, Olivier; Silva, Carlos; Weickert, Jonas; Schmidt-Mende, Lukas

    2015-01-01

    Dye-sensitized metal oxide polymer hybrid solar cells deliver a promising basis in organic solar cell development due to many conceptual advantages. Since the power conversion efficiency is still in a noncompetitive state, it has to be understood how the photocurrent contribution can be maximized (i.e., which dye-polymer properties are most beneficial for efficient charge generation in hybrid solar cells). By the comparison of three model systems for hybrid solar cells with Ti O2 -dye-polymer interfaces, this paper was aimed at elucidating the role of the exact mechanism of charge generation. In the exciton dissociation (ED) case, an exciton that is generated in the polymer is split at the dye-polymer interface. Alternatively, this exciton can be transferred to the dye via an energy transfer (ET), upon which charge separation occurs between dye and Ti O2 . For comparison, the third case is included in which the high lowest unoccupied molecular orbital of the dye does not allow exciton separation or ET from the dye to the polymer, so that the dye only is responsible for charge generation. To separate effects owing to differences in energy levels of the involved materials from the impact of local order and disorder in the polymer close to the interface, this paper further comprises a detailed analysis of the polymer crystallinity based on the H-aggregate model. While the massive impact of the poly(3-hexylthiophene) crystallinity on device function has been outlined for bare metal oxide-polymer interfaces, it has not been considered for hybrid solar cells with dye-sensitized Ti O2 . The results presented here indicate that all dye molecules in general influence the polymer morphology, which has to be taken into account for future optimization of hybrid solar cells. Apart from that, it can be suggested that ED on the polymer needs an additional driving force to work efficiently; thus, energy transfer seems to be currently the most promising strategy to increase the polymer photocurrent contribution.

  8. Charge Separation and Exciton Dynamics at Polymer/ZnO Interface from First-Principles Simulations.

    PubMed

    Wu, Guangfen; Li, Zi; Zhang, Xu; Lu, Gang

    2014-08-07

    Charge separation and exciton dynamics play a crucial role in determining the performance of excitonic photovoltaics. Using time-dependent density functional theory with a range-separated exchange-correlation functional as well as nonadiabatic ab initio molecular dynamics, we have studied the formation and dynamics of charge-transfer (CT) excitons at polymer/ZnO interface. The interfacial atomic structure, exciton density of states and conversions between exciton species are examined from first-principles. The exciton dynamics exhibits both adiabatic and nonadiabatic characters. While the adiabatic transitions are facilitated by C═C vibrations along the polymer (P3HT) backbone, the nonadiabatic transitions are realized by exciton hopping between the excited states. We find that the localized ZnO surface states lead to localized low-energy CT states and poor charge separation. In contrast, the surface states of crystalline C60 are indistinguishable from the bulk states, resulting in delocalized CT states and efficient charge separation in polymer/fullerene (P3HT/PCBM) heterojunctions. The hot CT states are found to cool down in an ultrafast time scale and may not play a major role in charge separation of P3HT/ZnO. Finally we suggest that the dimensions of nanostructured acceptors can be tuned to obtain both efficient charge separation and high open circuit voltages.

  9. Long-lived charge carrier generation in ordered films of a covalent perylenediimide–diketopyrrolopyrrole–perylenediimide molecule

    DOE PAGES

    Hartnett, Patrick E.; Dyar, Scott M.; Margulies, Eric A.; ...

    2015-07-31

    The photophysics of a covalently linked perylenediimide–diketopyrrolopyrrole–perylenediimide acceptor–donor–acceptor molecule (PDI–DPP–PDI, 1) were investigated and found to be markedly different in solution versus in unannealed and solvent annealed films. Photoexcitation of 1 in toluene results in quantitative charge separation in τ = 3.1 ± 0.2 ps, with charge recombination in τ = 340 ± 10 ps, while in unannealed/disordered films of 1, charge separation occurs in τ < 250 fs, while charge recombination displays a multiexponential decay in ~6 ns. The absence of long-lived, charge separation in the disordered film suggests that few free charge carriers are generated. In contrast, uponmore » CH₂Cl₂ vapor annealing films of 1, grazing-incidence X-ray scattering shows that the molecules form a more ordered structure. Photoexcitation of the ordered films results in initial formation of a spin-correlated radical ion pair (electron–hole pair) as indicated by magnetic field effects on the formation of free charge carriers which live for ~4 μs. This result has significant implications for the design of organic solar cells based on covalent donor–acceptor systems and shows that long-lived, charge-separated states can be achieved by controlling intramolecular charge separation dynamics in well-ordered systems.« less

  10. Reduced order modeling of mechanical degradation induced performance decay in lithium-ion battery porous electrodes

    DOE PAGES

    Barai, Pallab; Smith, Kandler; Chen, Chien -Fan; ...

    2015-06-17

    In this paper, a one-dimensional computational framework is developed that can solve for the evolution of voltage and current in a lithium-ion battery electrode under different operating conditions. A reduced order model is specifically constructed to predict the growth of mechanical degradation within the active particles of the carbon anode as a function of particle size and C-rate. Using an effective diffusivity relation, the impact of microcracks on the diffusivity of the active particles has been captured. Reduction in capacity due to formation of microcracks within the negative electrode under different operating conditions (constant current discharge and constant current constantmore » voltage charge) has been investigated. At the beginning of constant current discharge, mechanical damage to electrode particles predominantly occurs near the separator. As the reaction front shifts, mechanical damage spreads across the thickness of the negative electrode and becomes relatively uniform under multiple discharge/charge cycles. Mechanical degradation under different drive cycle conditions has been explored. It is observed that electrodes with larger particle sizes are prone to capacity fade due to microcrack formation. Finally, under drive cycle conditions, small particles close to the separator and large particles close to the current collector can help in reducing the capacity fade due to mechanical degradation.« less

  11. Fabrication of nanostructured CIGS solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Hongwang; Wang, Fang; Parry, James; Perera, Samanthe; Zeng, Hao

    2012-02-01

    We present the work on Cu(In,Ga)(Se,S)2 based nanostructured solar cells based on nanowire arrays. CIGS as the light absorber for thin-film solar cells has been widely studied recently, due to its high absorption coefficient, long-term stability, and low-cost of fabrication. Recently, solution phase processed CIGS thin film solar cells attracted great attention due to their extremely low fabrication cost. However, the performance is lower than vacuum based thin films possibly due to higher density of defects and lower carrier mobility. On the other hand, one dimensional ordered nanostructures such as nanowires and nanorods can be used to make redial junction solar cells, where the orthogonality between light absorption and charge carrier separation can lead to enhanced PV performance. Since the charge carriers only need to traverse a short distance in the radial direction before they are separated at the heterojunction interface, the radial junction scheme can be more defect tolerant than their planar junction scheme. In this work, a wide band gap nanowire or nanotube array such as TiO2 is used as a scaffold where CIGS is conformally coated using solution phase to obtain a radial heterojunction solar cell. Their performance is compared that of the planar thin film solar cells fabricated with the same materials.

  12. Behavior of a spin-1/2 massive charged particle in Schwarzschild immersed in an electromagnetic universe

    NASA Astrophysics Data System (ADS)

    Al-Badawi, A.

    2018-02-01

    The Dirac equation is considered in a spacetime that represents a Schwarzschild metric coupled to a uniform external electromagnetic field. Due to the presence of electromagnetic field from the surroundings, the interaction with the spin-1/2 massive charged particle is considered. The equations of the spin-1/2 massive charged particle are separated into radial and angular equations by adopting the Newman-Penrose formalism. The angular equations obtained are similar to the Schwarzschild geometry. For the radial equations we manage to obtain the one dimensional Schrödinger-type wave equations with effective potentials. Finally, we study the behavior of the potentials by plotting them as a function of radial distance and expose the effect of the external parameter, charge and the frequency of the particle on them.

  13. Influence of polarization and self-polarization charges on impurity binding energy in spherical quantum dot with parabolic confinement

    NASA Astrophysics Data System (ADS)

    Sarkar, Supratik; Sarkar, Samrat; Bose, Chayanika

    2018-07-01

    We present a general formulation of the ground state binding energy of a shallow hydrogenic impurity in spherical quantum dot with parabolic confinement, considering the effects of polarization and self energy. The variational approach within the effective mass approximation is employed here. The binding energy of an on-center impurity is computed for a GaAs/AlxGa1-xAs quantum dot as a function of the dot size with the dot barrier as parameter. The influence of polarization and self energy are also treated separately. Results indicate that the binding energy increases due to the presence of polarization charge, while decreases due to the self energy of the carrier. An overall enhancement in impurity binding energy, especially for small dots is noted.

  14. Magnetic field effect on the optoelectronic response of amorphous hydrogenated silicon

    NASA Astrophysics Data System (ADS)

    McLaughlin, Ryan; Sun, Dali; Zhang, Chuang; Ehrenfreund, Eitan; Vardeny, Zeev Valy

    We have studied the magneto-photoluminescence and magneto photoconductivity in amorphous hydrogenated silicon (a-Si:H) thin films and devices as a function of temperature up to field of 5 Tesla. The magnetic field effects (MFE) are interpreted as spin mixing between spin-singlet and spin-triplet charge pairs due to the ''delta- g'' mechanism that is based on the g-value difference between the paired electron and hole, which directly affects the rate of radiative recombination and charge carrier separation, respectively. We found that the MFE(B) response does not form a Lorentzian (that is expected from the ''delta- g'' mechanism) due to disorder in the film that results in a broad distribution of e-h recombination rates, which could be extracted directly by time-resolved photoluminescence.

  15. A multi-pathway model for photosynthetic reaction center

    NASA Astrophysics Data System (ADS)

    Qin, M.; Shen, H. Z.; Yi, X. X.

    2016-03-01

    Charge separation occurs in a pair of tightly coupled chlorophylls at the heart of photosynthetic reaction centers of both plants and bacteria. Recently it has been shown that quantum coherence can, in principle, enhance the efficiency of a solar cell, working like a quantum heat engine. Here, we propose a biological quantum heat engine (BQHE) motivated by Photosystem II reaction center (PSII RC) to describe the charge separation. Our model mainly considers two charge-separation pathways which is more than that typically considered in the published literature. We explore how these cross-couplings increase the current and power of the charge separation and discuss the effects of multiple pathways in terms of current and power. The robustness of the BQHE against the charge recombination in natural PSII RC and dephasing induced by environments is also explored, and extension from two pathways to multiple pathways is made. These results suggest that noise-induced quantum coherence helps to suppress the influence of acceptor-to-donor charge recombination, and besides, nature-mimicking architectures with engineered multiple pathways for charge separations might be better for artificial solar energy devices considering the influence of environments.

  16. Recovery of Anthocyanins Using Membrane Technologies: A Review.

    PubMed

    Martín, Julia; Díaz-Montaña, Enrique Jacobo; Asuero, Agustin G

    2018-05-04

    Anthocyanins are naturally occurring polyphenolic compounds and give many flowers, fruits and vegetable their orange, red, purple and blue colors. Besides their color attributes, anthocyanins have received much attention in recent years due to the growing evidence of their antioxidant capacity and health benefits on humans. However, these compounds usually occur in low concentrations in mixtures of complex matrices, and therefore large-scale harvesting is needed to obtain sufficient amounts for their practical usage. Effective fractionation or separation technologies are therefore essential for the screening and production of these bioactive compounds. In this context, membrane technologies have become popular due to their operational simplicity, the capacity to achieve good simultaneous separation/pre-concentration and matrix reduction with lower temperature and lower operating cost in comparison to other sample preparation methods. Membrane fractionation is based on the molecular or particle sizes (pressure-driven processes), on their charge (electrically driven processes) or are dependent on both size and charge. Other non-pressure-driven membrane processes (osmotic pressure and vapor pressure-driven) have been developed in recent years and employed as alternatives for the separation or fractionation of bioactive compounds at ambient conditions without product deterioration. These technologies are applied either individually or in combination as an integrated membrane system to meet the different requirements for the separation of bioactive compounds. The first section of this review examines the basic principles of membrane processes, including the different types of membranes, their structure, morphology and geometry. The most frequently used techniques are also discussed. Last, the specific application of these technologies for the separation, purification and concentration of phenolic compounds, with special emphasis on anthocyanins, are also provided.

  17. Scattering of charged particles on two spatially separated time-periodic optical fields

    NASA Astrophysics Data System (ADS)

    Szabó, Lóránt Zs.; Benedict, Mihály G.; Földi, Péter

    2017-12-01

    We consider a monoenergetic beam of moving charged particles interacting with two separated oscillating electric fields. Time-periodic linear potential is assumed to model the light-particle interaction using a nonrelativistic, quantum mechanical description based on Gordon-Volkov states. Applying Floquet theory, we calculate transmission probabilities as a function of the laser field parameters. The transmission resonances in this Ramsey-like setup are interpreted as if they originated from a corresponding static double-potential barrier with heights equal to the ponderomotive potential resulting from the oscillating field. Due to the opening of new "Floquet channels," the resonances are repeated at input energies when the corresponding frequency is shifted by an integer multiple of the exciting frequency. These narrow resonances can be used as precise energy filters. The fine structure of the transmission spectra is determined by the phase difference between the two oscillating light fields, allowing for the optical control of the transmission.

  18. Temperature evolution of polar states in GdMn2O5 and Gd0.8Ce0.2Mn2O5

    NASA Astrophysics Data System (ADS)

    Sanina, V. A.; Golovenchits, E. I.; Khannanov, B. Kh.; Scheglov, M. P.; Zalesskii, V. G.

    2014-11-01

    The polar order along the c axis is revealed in GdMn2O5 and Gd0.8Ce0.2Mn2O5 at T ≤ T C1 ≈ 160 K for the first time. This polar order is induced by the charge disproportion in the 2D superstructures emerged due to phase separation. The dynamic state with restricted polar domains of different sizes is found at T > T C1 which is typical of the diffuse ferroelectric phase transition. At the lowest temperatures ( T < 40 K) two polar orders of different origins with perpendicular orientations (along the b and c axes) coexist. The 1D superlattices studied by us earlier in the set of RMn2O5 multiferroics are the charged domain walls which separate of these polar order domains.

  19. A charge-polarized porous metal-organic framework for gas chromatographic separation of alcohols from water.

    PubMed

    Sun, Jian-Ke; Ji, Min; Chen, Cheng; Wang, Wu-Gen; Wang, Peng; Chen, Rui-Ping; Zhang, Jie

    2013-02-25

    A bipyridinium ligand with a charge separated skeleton has been introduced into a metal-organic framework to yield a porous material with charge-polarized pore space, which exhibits selective adsorption for polar guest molecules and can be further used in gas chromatography for the separation of alcohol-water mixtures.

  20. A Charge Separation Study to Enable the Design of a Complete Muon Cooling Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshikawa, C.; Ankenbrandt, Charles M.; Johnson, Rolland P.

    2013-12-01

    The most promising designs for 6D muon cooling channels operate on a specific sign of electric charge. In particular, the Helical Cooling Channel (HCC) and Rectilinear RFOFO designs are the leading candidates to become the baseline 6D cooling channel in the Muon Accelerator Program (MAP). Time constraints prevented the design of a realistic charge separator, so a simplified study was performed to emulate the effects of charge separation on muons exiting the front end of a muon collider. The output of the study provides particle distributions that the competing designs will use as input into their cooling channels. We reportmore » here on the study of the charge separator that created the simulated particles.« less

  1. Ion distributions, exclusion coefficients, and separation factors of electrolytes in a charged cylindrical nanopore: a partially perturbative density functional theory study.

    PubMed

    Peng, Bo; Yu, Yang-Xin

    2009-10-07

    The structural and thermodynamic properties for charge symmetric and asymmetric electrolytes as well as mixed electrolyte system inside a charged cylindrical nanopore are investigated using a partially perturbative density functional theory. The electrolytes are treated in the restricted primitive model and the internal surface of the cylindrical nanopore is considered to have a uniform charge density. The proposed theory is directly applicable to the arbitrary mixed electrolyte solution containing ions with the equal diameter and different valences. Large amount of simulation data for ion density distributions, separation factors, and exclusion coefficients are used to determine the range of validity of the partially perturbative density functional theory for monovalent and multivalent counterion systems. The proposed theory is found to be in good agreement with the simulations for both mono- and multivalent counterion systems. In contrast, the classical Poisson-Boltzmann equation only provides reasonable descriptions of monovalent counterion system at low bulk density, and is qualitatively and quantitatively wrong in the prediction for the multivalent counterion systems due to its neglect of the strong interionic correlations in these systems. The proposed density functional theory has also been applied to an electrolyte absorbed into a pore that is a model of the filter of a physiological calcium channel.

  2. Ligand-modulated interactions between charged monolayer-protected Au144 (SR)60 gold nanoparticles in physiological saline

    NASA Astrophysics Data System (ADS)

    Villarreal, Oscar; Chen, Liao; Whetten, Robert; Yacaman, Miguel

    2015-03-01

    We studied the interactions of functionalized Au144 nanoparticles (NPs) in a near-physiological environment through all-atom molecular dynamics simulations. The AuNPs were coated with a homogeneous selection of 60 thiolates: 11-mercapto-1-undecanesulfonate, 5-mercapto-1-pentanesulfonate, 5-mercapto-1-pentane-amine, 4-mercapto-benzoate or 4-mercapto-benzamide. These ligands were selected to elucidate how the aggregation behavior depends on the ligands' sign of charge, length, and flexibility. Simulating the dynamics of a pair of identical AuNPs in a cell of saline of 150 mM NaCl in addition to 120 Na+/Cl- counter-ions, we computed the aggregation affinities from the potential of mean force as a function of the pair separation. We found that NPs coated with negatively charged, short ligands have the strongest affinities mediated by multiple Na+ counter-ions residing on a plane in-between the pair and forming ``salt bridges'' to both NPs. Positively charged NPs have weaker affinities, as Cl counter-ions form fewer and weaker salt bridges. The longer ligands' large fluctuations disfavor the forming of salt bridges, enable hydrophobic contact between the exposed hydrocarbon chains and interact at greater separations due to the fact that the screening effect is rather incomplete. Supported by the CONACYT, NIH, NSF and TACC.

  3. Highly-Efficient Charge Separation and Polaron Delocalization in Polymer-Fullerene Bulk-Heterojunctions: A Comparative Multi-Frequency EPR & DFT Study

    PubMed Central

    Niklas, Jens; Mardis, Kristy L.; Banks, Brian P.; Grooms, Gregory M.; Sperlich, Andreas; Dyakonov, Vladimir; Beaupré, Serge; Leclerc, Mario; Xu, Tao; Yu, Luping; Poluektov, Oleg G.

    2016-01-01

    The ongoing depletion of fossil fuels has led to an intensive search for additional renewable energy sources. Solar-based technologies could provide sufficient energy to satisfy the global economic demands in the near future. Photovoltaic (PV) cells are the most promising man-made devices for direct solar energy utilization. Understanding the charge separation and charge transport in PV materials at a molecular level is crucial for improving the efficiency of the solar cells. Here, we use light-induced EPR spectroscopy combined with DFT calculations to study the electronic structure of charge separated states in blends of polymers (P3HT, PCDTBT, and PTB7) and fullerene derivatives (C60-PCBM and C70-PCBM). Solar cells made with the same composites as active layers show power conversion efficiencies of 3.3% (P3HT), 6.1% (PCDTBT), and 7.3% (PTB7), respectively. Under illumination of these composites, two paramagnetic species are formed due to photo-induced electron transfer between the conjugated polymer and the fullerene. They are the positive, P+, and negative, P-, polarons on the polymer backbone and fullerene cage, respectively, and correspond to radical cations and radical anions. Using the high spectral resolution of high-frequency EPR (130 GHz), the EPR spectra of these species were resolved and principal components of the g-tensors were assigned. Light-induced pulsed ENDOR spectroscopy allowed the determination of 1H hyperfine coupling constants of photogenerated positive and negative polarons. The experimental results obtained for the different polymer-fullerene composites have been compared with DFT calculations, revealing that in all three systems the positive polaron is distributed over distances of 40 - 60 Å on the polymer chain. This corresponds to about 15 thiophene units for P3HT, approximately three units PCDTBT, and about three to four units for PTB7. No spin density delocalization between neighboring fullerene molecules was detected by EPR. Strong delocalization of the positive polaron on the polymer donor is an important reason for the efficient charge separation in bulk heterojunction systems as it minimizes the wasteful process of charge recombination. The combination of advanced EPR spectroscopy and DFT is a powerful approach for investigation of light-induced charge dynamics in organic photovoltaic materials. PMID:23670645

  4. Structural dynamics of a noncovalent charge transfer complex from femtosecond stimulated Raman spectroscopy.

    PubMed

    Fujisawa, Tomotsumi; Creelman, Mark; Mathies, Richard A

    2012-09-06

    Femtosecond stimulated Raman spectroscopy is used to examine the structural dynamics of photoinduced charge transfer within a noncovalent electron acceptor/donor complex of pyromellitic dianhydride (PMDA, electron acceptor) and hexamethylbenzene (HMB, electron donor) in ethylacetate and acetonitrile. The evolution of the vibrational spectrum reveals the ultrafast structural changes that occur during the charge separation (Franck-Condon excited state complex → contact ion pair) and the subsequent charge recombination (contact ion pair → ground state complex). The Franck-Condon excited state is shown to have significant charge-separated character because its vibrational spectrum is similar to that of the ion pair. The charge separation rate (2.5 ps in ethylacetate and ∼0.5 ps in acetonitrile) is comparable to solvation dynamics and is unaffected by the perdeuteration of HMB, supporting the dominant role of solvent rearrangement in charge separation. On the other hand, the charge recombination slows by a factor of ∼1.4 when using perdeuterated HMB, indicating that methyl hydrogen motions of HMB mediate the charge recombination process. Resonance Raman enhancement of the HMB vibrations in the complex reveals that the ring stretches of HMB, and especially the C-CH(3) deformations are the primary acceptor modes promoting charge recombination.

  5. Enhanced Photocarrier Separation in Hierarchical Graphitic-C3N4-Supported CuInS2 for Noble-Metal-Free Z-Scheme Photocatalytic Water Splitting.

    PubMed

    Li, Xiaoxue; Xie, Keyu; Song, Long; Zhao, Mengjia; Zhang, Zhipan

    2017-07-26

    The effective separation of photogenerated electrons and holes in photocatalysts is a prerequisite for efficient photocatalytic water splitting. CuInS 2 (CIS) is a widely used light absorber that works properly in photovoltaics but only shows limited performance in solar-driven hydrogen evolution due to its intrinsically severe charge recombination. Here, we prepare hierarchical graphitic C 3 N 4 -supported CuInS 2 (denoted as GsC) by an in situ growth of CIS directly on exfoliated thin graphitic C 3 N 4 nanosheets (g-C 3 N 4 NS) and demonstrate efficient separation of photoinduced charge carriers in the GsC by forming the Z-scheme system for the first time in CIS-catalyzed water splitting. Under visible light illumination, the GsC features an enhanced hydrogen evolution rate up to 1290 μmol g -1 h -1 , which is 3.3 and 6.1 times higher than that of g-C 3 N 4 NS and bare-CIS, respectively, thus setting a new performance benchmark for CIS-based water-splitting photocatalysts.

  6. Lightning generation in Titan due to the electrical self-polarization properties of Methane

    NASA Astrophysics Data System (ADS)

    Quintero, A.; Falcón, N.

    2009-05-01

    We describe an electrical charge process in Titan's thunderclouds, due to the self-polarization properties or pyroelectricity of methane, which increases the internal electric field in thunderclouds and facilitates the charge generation and separation processes. Microphysics that generates lightning flashes is associated with the physical and chemical properties of the local atmosphere, so methane could be the principal agent of the electrical activity because of its great concentration in Titan's atmosphere. Besides, Titan's electrical activity should not be very influenced by Saturn's magnetosphere because lightning occurs at very low altitude above Titan's surface, compared with the greater distance of Saturn's magnetosphere and Titan's troposphere. Using an electrostatic treatment, we calculate the internal electric field of Titan's thunderclouds due to methane's pyroelectrical properties, 7.05×10^11 Vm^-1; and using the telluric capacitor approximation for thunderclouds, we calculate the total charge obtained for a typical Titan thundercloud, 2.67×10^9 C. However, it is not right to use an electrostatic treatment because charge times are very fast due to the large methane concentration in Titan's clouds and the life time of thunderclouds is very low (around 2 hours). We consider a time dependent mechanism, employing common Earth atmospheric approaches, because of the similitude in chemical composition of both atmospheres (mainly nitrogen), so the typical charge of a thundercloud in Titan should reach between 20 C to 40 C, like on Earth. We obtain that lightning occurs with a frequency between 2 and 6 KHz. In Titan's atmosphere, methane concentration is higher than on Earth, and atmospheric electrical activity is stronger, so this model could be consistent with the observed phenomenology.

  7. Wide size range fast integrated mobility spectrometer

    DOEpatents

    Wang, Jian

    2013-10-29

    A mobility spectrometer to measure a nanometer particle size distribution is disclosed. The mobility spectrometer includes a conduit and a detector. The conduit is configured to receive and provide fluid communication of a fluid stream having a charged nanometer particle mixture. The conduit includes a separator section configured to generate an electrical field of two dimensions transverse to a dimension associated with the flow of the charged nanometer particle mixture through the separator section to spatially separate charged nanometer particles of the charged nanometer particle mixture in said two dimensions. The detector is disposed downstream of the conduit to detect concentration and position of the spatially-separated nanometer particles.

  8. Antiferroelectric Nature of CH3NH3PbI3-xClx Perovskite and Its Implication for Charge Separation in Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Sewvandi, Galhenage A.; Kodera, Kei; Ma, Hao; Nakanishi, Shunsuke; Feng, Qi

    2016-07-01

    Perovskite solar cells (PSCs) have been attracted scientific interest due to high performance. Some researchers have suggested anomalous behavior of PSCs to the polarizations due to the ion migration or ferroelectric behavior. Experimental results and theoretical calculations have suggested the possibility of ferroelectricity in organic-inorganic perovskite. However, still no studies have been concretely discarded the ferroelectric nature of perovskite absorbers in PSCs. Hysteresis of P-E (polarization-electric field) loops is an important evidence to confirm the ferroelectricity. In this study, P-E loop measurements, in-depth structural study, analyses of dielectric behavior and the phase transitions of CH3NH3PbI3-xClx perovskite were carried out and investigated. The results suggest that CH3NH3PbI3-xClx perovskite is in an antiferroelectric phase at room temperature. The antiferroelectric phase can be switched to ferroelectric phase by the poling treatment and exhibits ferroelectric-like hysteresis P-E loops and dielectric behavior around room temperature; namely, the perovskite can generate a ferroelectric polarization under PSCs operating conditions. Furthermore, we also discuss the implications of ferroelectric polarization on PSCs charge separation.

  9. Antiferroelectric Nature of CH3NH3PbI3-xClx Perovskite and Its Implication for Charge Separation in Perovskite Solar Cells.

    PubMed

    Sewvandi, Galhenage A; Kodera, Kei; Ma, Hao; Nakanishi, Shunsuke; Feng, Qi

    2016-07-29

    Perovskite solar cells (PSCs) have been attracted scientific interest due to high performance. Some researchers have suggested anomalous behavior of PSCs to the polarizations due to the ion migration or ferroelectric behavior. Experimental results and theoretical calculations have suggested the possibility of ferroelectricity in organic-inorganic perovskite. However, still no studies have been concretely discarded the ferroelectric nature of perovskite absorbers in PSCs. Hysteresis of P-E (polarization-electric field) loops is an important evidence to confirm the ferroelectricity. In this study, P-E loop measurements, in-depth structural study, analyses of dielectric behavior and the phase transitions of CH3NH3PbI3-xClx perovskite were carried out and investigated. The results suggest that CH3NH3PbI3-xClx perovskite is in an antiferroelectric phase at room temperature. The antiferroelectric phase can be switched to ferroelectric phase by the poling treatment and exhibits ferroelectric-like hysteresis P-E loops and dielectric behavior around room temperature; namely, the perovskite can generate a ferroelectric polarization under PSCs operating conditions. Furthermore, we also discuss the implications of ferroelectric polarization on PSCs charge separation.

  10. Organic solar cells based on high dielectric constant materials: An approach to increase efficiency

    NASA Astrophysics Data System (ADS)

    Hamam, Khalil Jumah Tawfiq

    The efficiency of organic solar cells still lags behind inorganic solar cells due to their low dielectric constant which results in a weakly screened columbic attraction between the photogenerated electron-hole system, therefore the probability of charge separating is low. Having an organic material with a high dielectric constant could be the solution to get separated charges or at least weakly bounded electron-hole pairs. Therefore, high dielectric constant materials have been investigated and studied by measuring modified metal-phthalocyanine (MePc) and polyaniline in pellets and thin films. The dielectric constant was investigated as a function of temperature and frequency in the range of 20Hz to1MHz. For MePc we found that the high dielectric constant was an extrinsic property due to water absorption and the formation of hydronuim ion allowed by the ionization of the functional groups such as sulphonated and carboxylic groups. The dielectric constant was high at low frequencies and decreasing as the frequency increase. Investigated materials were applied in fabricated bilayer heterojunction organic solar cells. The application of these materials in an organic solar cells show a significant stability under room conditions rather than improvement in their efficiency.

  11. Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting.

    PubMed

    Tsai, Shin-Hung; Chang, Hung-Chih; Wang, Hsin-Hua; Chen, Szu-Ying; Lin, Chin-An; Chen, Show-An; Chueh, Yu-Lun; He, Jr-Hau

    2011-12-27

    A novel strategy employing core-shell nanowire arrays (NWAs) consisting of Si/regioregular poly(3-hexylthiophene) (P3HT) was demonstrated to facilitate efficient light harvesting and exciton dissociation/charge collection for hybrid solar cells (HSCs). We experimentally demonstrate broadband and omnidirectional light-harvesting characteristics of core-shell NWA HSCs due to their subwavelength features, further supported by the simulation based on finite-difference time domain analysis. Meanwhile, core-shell geometry of NWA HSCs guarantees efficient charge separation since the thickness of the P3HT shells is comparable to the exciton diffusion length. Consequently, core-shell HSCs exhibit a 61% improvement of short-circuit current for a conversion efficiency (η) enhancement of 31.1% as compared to the P3HT-infiltrated Si NWA HSCs with layers forming a flat air/polymer cell interface. The improvement of crystal quality of P3HT shells due to the formation of ordering structure at Si interfaces after air mass 1.5 global (AM 1.5G) illumination was confirmed by transmission electron microscopy and Raman spectroscopy. The core-shell geometry with the interfacial improvement by AM 1.5G illumination promotes more efficient exciton dissociation and charge separation, leading to η improvement (∼140.6%) due to the considerable increase in V(oc) from 257 to 346 mV, J(sc) from 11.7 to 18.9 mA/cm(2), and FF from 32.2 to 35.2%, which is not observed in conventional P3HT-infiltrated Si NWA HSCs. The stability of the Si/P3HT core-shell NWA HSCs in air ambient was carefully examined. The core-shell geometry should be applicable to many other material systems of solar cells and thus holds high potential in third-generation solar cells.

  12. Charge Separation and Recombination at Polymer-Fullerene Heterojunctions: Delocalization and Hybridization Effects.

    PubMed

    D'Avino, Gabriele; Muccioli, Luca; Olivier, Yoann; Beljonne, David

    2016-02-04

    We address charge separation and recombination in polymer/fullerene solar cells with a multiscale modeling built from accurate atomistic inputs and accounting for disorder, interface electrostatics and genuine quantum effects on equal footings. Our results show that bound localized charge transfer states at the interface coexist with a large majority of thermally accessible delocalized space-separated states that can be also reached by direct photoexcitation, thanks to their strong hybridization with singlet polymer excitons. These findings reconcile the recent experimental reports of ultrafast exciton separation ("hot" process) with the evidence that high quantum yields do not require excess electronic or vibrational energy ("cold" process), and show that delocalization, by shifting the density of charge transfer states toward larger effective electron-hole radii, may reduce energy losses through charge recombination.

  13. Exploring what prompts ITIC to become a superior acceptor in organic solar cell by combining molecular dynamics simulation with quantum chemistry calculation.

    PubMed

    Pan, Qing-Qing; Li, Shuang-Bao; Duan, Ying-Chen; Wu, Yong; Zhang, Ji; Geng, Yun; Zhao, Liang; Su, Zhong-Min

    2017-11-29

    The interface characteristic is a crucial factor determining the power conversion efficiency of organic solar cells (OSCs). In this work, our aim is to conduct a comparative study on the interface characteristics between the very famous non-fullerene acceptor, ITIC, and a fullerene acceptor, PC71BM by combining molecular dynamics simulations with density functional theory. Based on some typical interface models of the acceptor ITIC or PC71BM and the donor PBDB-T selected from MD simulation, besides the evaluation of charge separation/recombination rates, the relative positions of Frenkel exciton (FE) states and the charge transfer states along with their oscillator strengths are also employed to estimate the charge separation abilities. The results show that, when compared with those for the PBDB-T/PC71BM interface, the CT states are more easily formed for the PBDB-T/ITIC interface by either the electron transfer from the FE state or direct excitation, indicating the better charge separation ability of the former. Moreover, the estimation of the charge separation efficiency manifests that although these two types of interfaces have similar charge recombination rates, the PBDB-T/ITIC interface possesses the larger charge separation rates than those of the PBDB-T/PC71BM interface. Therefore, the better match between PBDB-T and ITIC together with a larger charge separation efficiency at the interface are considered to be the reasons for the prominent performance of ITIC in OSCs.

  14. Charge-induced fluctuation forces in graphitic nanostructures

    DOE PAGES

    Drosdoff, D.; Bondarev, Igor V.; Widom, Allan; ...

    2016-01-21

    Charge fluctuations in nanocircuits with capacitor components are shown to give rise to a novel type of long-ranged interaction, which coexist with the regular Casimir–van derWaals force. The developed theory distinguishes between thermal and quantum mechanical effects, and it is applied to capacitors involving graphene nanostructures. The charge fluctuations mechanism is captured via the capacitance of the system with geometrical and quantum mechanical components. The dependence on the distance separation, temperature, size, and response properties of the system shows that this type of force can have a comparable and even dominant effect to the Casimir interaction. Lastly, our results stronglymore » indicate that fluctuation-induced interactions due to various thermodynamic quantities can have important thermal and quantum mechanical contributions at the microscale and the nanoscale.« less

  15. Effects of neutral gas release on current collection during the CHARGE-2 rocket experiment

    NASA Technical Reports Server (NTRS)

    Gilchrist, B. E.; Banks, P. M.; Neubert, T.; Williamson, P. R.; Myers, Neil B.; Raitt, W. John; Sasaki, S.

    1990-01-01

    Observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged rocket payload in the ionosphere are reported. These observations were made during the second cooperative high altitude rocket gun experiment (CHARGE-2) which was an electrically tethered mother/daughter payload system. The current collection enhancement was observed at the daughter payload located 100 to 400 m away from the mother which was firing an energetic electron beam. The authors interpret these results in terms of an electrical discharge forming in close proximity to the daughter during the short periods of gas emission. The results indicate that it is possible to enhance the electron current collection capability of positively charged vehicles by means of deliberate neutral gas releases into an otherwise undisturbed space plasma. These results can also be compared with recent laboratory observations of hollow cathode plasma contactors operating in the ignited mode. Experimental observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged, isolated daughter payload in the nighttime ionosphere were made. These observations were derived from the second cooperative high altitude rocket gun experiment (CHARGE-2) which was an electrically tethered mother-daughter payload system. The rocket flew from White Sands Missile Range (WSMR) in December, 1985. The rocket achieved an altitude of 261 km and carried a 1 keV electron beam emitting up to 48 mA of current (Myers, et al., 1989a). The mother payload, carried the electron beam source, while the daughter acted as a remote current collection and observation platform and reached a distance of 426 m away from the main payload. Gas emissions at the daughter were due to periodic thruster jet firings to maintain separation velocity between the two payloads.

  16. Field-induced exciton dissociation in PTB7-based organic solar cells

    NASA Astrophysics Data System (ADS)

    Gerhard, Marina; Arndt, Andreas P.; Bilal, Mühenad; Lemmer, Uli; Koch, Martin; Howard, Ian A.

    2017-05-01

    The physics of charge separation in organic semiconductors is a topic of ongoing research of relevance to material and device engineering. Herein, we present experimental observations of the field and temperature dependence of charge separation from singlet excitons in PTB7 and PC71BM , and from charge-transfer states created across interfaces in PTB 7 /PC71BM bulk heterojunction solar cells. We obtain this experimental data by time-resolving the near infrared emission of the states from 10 K to room temperature and electric fields from 0 to 2.5 MVcm -1 . Examining how the luminescence is quenched by field and temperature gives direct insight into the underlying physics. We observe that singlet excitons can be split by high fields, and that disorder broadens the high threshold fields needed to split the excitons. Charge-transfer (CT) states, on the other hand, can be separated by both field and temperature. Also, the data imply a strong reduction of the activation barrier for charge splitting from the CT state relative to the exciton state. The observations provided herein of the field-dependent separation of CT states as a function of temperature offer a rich data set against which theoretical models of charge separation can be rigorously tested; it should be useful for developing the more advanced theoretical models of charge separation.

  17. 77 FR 69522 - Self-Regulatory Organizations; National Stock Exchange, Inc.; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-19

    ... participants to: (1) Charge a flat fee per quotation update; (2) charge a separate flat fee per quotation... to: (1) Charge a flat fee per quotation update; (2) charge a separate flat fee per quotation update... fund the NSX's regulatory oversight of Order Delivery participants. Quotation Update Fee for Existing...

  18. Spontaneous symmetry breaking in quasi one dimension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satpathi, Urbashi, E-mail: urbashi@bose.res.in; Deo, P. Singha

    2015-06-24

    Electronic charge and spin separation leading to charge density wave and spin density wave is well established in one dimension in the presence and absence of Coulomb interaction. We start from quasi one dimension and show the possibility of such a transition in quasi one dimension as well as in two dimensions by going to a regime where it can be shown for electrons that just interact via Fermi statistics. Such density waves arise due to internal symmetry breaking in a many fermion quantum system. We can extend this result to very wide rings with infinitely many electrons including Coulombmore » interaction.« less

  19. Exceptionally Long-Lived Charge Separated State in Zeolitic Imidazolate Framework: Implication for Photocatalytic Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pattengale, Brian; Yang, Sizhuo; Ludwig, John

    2016-06-22

    Zeolitic Imidazolate Frameworks (ZIFs) have emerged as a novel class of porous metal-organic frameworks (MOFs) for catalysis application because of their exceptional thermal and chemical stability. Inspired by the broad absorption of ZIF-67 in UV-visible-near IR region, we explored its excited state and charge separation dynamics, properties essential for photocatalytic applications, using optical (OTA) and X-ray transient absorption (XTA) spectroscopy. OTA results show that an exceptionally long-lived excited state is formed after photoexcitation. This long-lived excited state was confirmed to be the charge separated state with ligandto-metal charge transfer character using XTA. The surprisingly long-lived charge separated state, together withmore » its intrinsic hybrid nature, all point to its potential application in heterogeneous photocatalysis and energy conversion.« less

  20. Domain Formation Induced by the Adsorption of Charged Proteins on Mixed Lipid Membranes

    PubMed Central

    Mbamala, Emmanuel C.; Ben-Shaul, Avinoam; May, Sylvio

    2005-01-01

    Peripheral proteins can trigger the formation of domains in mixed fluid-like lipid membranes. We analyze the mechanism underlying this process for proteins that bind electrostatically onto a flat two-component membrane, composed of charged and neutral lipid species. Of particular interest are membranes in which the hydrocarbon lipid tails tend to segregate owing to nonideal chain mixing, but the (protein-free) lipid membrane is nevertheless stable due to the electrostatic repulsion between the charged lipid headgroups. The adsorption of charged, say basic, proteins onto a membrane containing anionic lipids induces local lipid demixing, whereby charged lipids migrate toward (or away from) the adsorption site, so as to minimize the electrostatic binding free energy. Apart from reducing lipid headgroup repulsion, this process creates a gradient in lipid composition around the adsorption zone, and hence a line energy whose magnitude depends on the protein's size and charge and the extent of lipid chain nonideality. Above a certain critical lipid nonideality, the line energy is large enough to induce domain formation, i.e., protein aggregation and, concomitantly, macroscopic lipid phase separation. We quantitatively analyze the thermodynamic stability of the dressed membrane based on nonlinear Poisson-Boltzmann theory, accounting for both the microscopic characteristics of the proteins and lipid composition modulations at and around the adsorption zone. Spinodal surfaces and critical points of the dressed membranes are calculated for several different model proteins of spherical and disk-like shapes. Among the models studied we find the most substantial protein-induced membrane destabilization for disk-like proteins whose charges are concentrated in the membrane-facing surface. If additional charges reside on the side faces of the proteins, direct protein-protein repulsion diminishes considerably the propensity for domain formation. Generally, a highly charged flat face of a macroion appears most efficient in inducing large compositional gradients, hence a large and unfavorable line energy and consequently lateral macroion aggregation and, concomitantly, macroscopic lipid phase separation. PMID:15626713

  1. Enhanced excitonic photoconductivity due to built-in internal electric field in TlGaSe{sub 2} layered semiconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seyidov, MirHasan Yu., E-mail: smirhasan@gyte.edu.tr; Suleymanov, Rauf A.; Institute of Physics Azerbaijan National Academy of Sciences, AZ-1143 Baku

    2014-12-07

    The strong enhancement, by several orders of magnitude, of the excitonic peak within the photoconductivity spectrum of TlGaSe{sub 2} semiconductor was observed. The samples were polarized in external dc electric field, which was applied prior to the measurements. Due to the accumulation of charges near the surface, an internal electric field was formed. Electron-hole pairs that were created after the absorption of light are fallen in and then separated by the built-in electric field, which prevents radiative recombination process.

  2. Cu2O-tipped ZnO nanorods with enhanced photoelectrochemical performance for CO2 photoreduction

    NASA Astrophysics Data System (ADS)

    Iqbal, Muzaffar; Wang, Yanjie; Hu, Haifeng; He, Meng; Hassan Shah, Aamir; Lin, Lin; Li, Pan; Shao, Kunjuan; Reda Woldu, Abebe; He, Tao

    2018-06-01

    The design of Cu2O-tipped ZnO nanorods is proposed here aiming at enhanced photoelectrochemical properties. The tip-selective deposition of Cu2O is confirmed by scanning transmission electron microscopy (STEM). The photoinduced charge behavior like charge generation, separation and transport has been thoroughly studied by UV-vis absorption analysis and different photoelectrochemical characterizations, including transient photocurrent, incident photon-to-current efficiency (IPCE), electrochemical impedance spectroscopy (EIS), intensity-modulated photocurrent spectroscopy (IMPS), and Mott-Schottky measurements. The photoelectrochemical characterizations clearly indicate that ZnO/Cu2O structures exhibit much higher performance than pristine ZnO, due to the formation of p-n junction, as well as the tip selective growth of Cu2O on ZnO. Photocatalytic CO2 reduction in aqueous solution under UV-visible light illumination shows that CO is the main product, and with the increase of the Cu2O content in the heterostructure, the CO yield increases. This work shows that Cu2O-tipped ZnO nanorods possess improved behavior of charge generation, separation and transport, which may work as a potential candidate for photocatalytic CO2 reduction.

  3. Photoinduced electron transfer in a ferrocene-distyryl BODIPY dyad and a ferrocene-distyryl BODIPY-C60 triad.

    PubMed

    Liu, Jian-Yong; El-Khouly, Mohamed E; Fukuzumi, Shunichi; Ng, Dennis K P

    2012-06-04

    A ferrocene-distyryl BODIPY dyad and a ferrocene-distyryl BODIPY-C(60) triad are synthesized and characterized. Upon photoexcitation at the distyryl BODIPY unit, these arrays undergo photoinduced electron transfer to form the corresponding charge-separated species. Based on their redox potentials, determined by cyclic voltammetry, the direction of the charge separation and the energies of these states are revealed. Femtosecond transient spectroscopic studies reveal that a fast charge separation (k(CS) =1.0×10(10) s(-1)) occurs for both the ferrocene-distyryl BODIPY dyad and the ferrocene-distyryl BODIPY-C(60) triad, but that a relatively slow charge recombination is observed only for the triad. The lifetime of the charge-separated state is 500 ps. Charge recombination of the dyad and triad leads to population of the triplet excited sate of ferrocene and the ground state, respectively. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Nucleon scalar and tensor charges using lattice QCD simulations at the physical value of the pion mass

    NASA Astrophysics Data System (ADS)

    Alexandrou, C.; Constantinou, M.; Dimopoulos, P.; Frezzotti, R.; Hadjiyiannakou, K.; Jansen, K.; Kallidonis, C.; Kostrzewa, B.; Koutsou, G.; Mangin-Brinet, M.; Vaquero Avilès-Casco, A.; Wenger, U.

    2017-06-01

    We present results on the light, strange and charm nucleon scalar and tensor charges from lattice QCD, using simulations with Nf=2 flavors of twisted mass clover-improved fermions with a physical value of the pion mass. Both connected and disconnected contributions are included, enabling us to extract the isoscalar, strange and charm charges for the first time directly at the physical point. Furthermore, the renormalization is computed nonperturbatively for both isovector and isoscalar quantities. We investigate excited state effects by analyzing several sink-source time separations and by employing a set of methods to probe ground state dominance. Our final results for the scalar charges are gSu=5.20 (42 )(15 )(12 ), gSd=4.27 (26 )(15 )(12 ), gSs=0.33 (7 )(1 )(4 ), and gSc=0.062 (13 )(3 )(5 ) and for the tensor charges gTu=0.794 (16 )(2 )(13 ), gTd=-0.210 (10 )(2 )(13 ), gTs=0.00032 (24 )(0 ), and gTc=0.00062 (85 )(0 ) in the MS ¯ scheme at 2 GeV. The first error is statistical, the second is the systematic error due to the renormalization and the third the systematic arising from estimating the contamination due to the excited states, when our data are precise enough to probe the first excited state.

  5. Describing long-range charge-separation processes with subsystem density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solovyeva, Alisa; Neugebauer, Johannes, E-mail: j.neugebauer@uni-muenster.de; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu

    2014-04-28

    Long-range charge-transfer processes in extended systems are difficult to describe with quantum chemical methods. In particular, cost-effective (non-hybrid) approximations within time-dependent density functional theory (DFT) are not applicable unless special precautions are taken. Here, we show that the efficient subsystem DFT can be employed as a constrained DFT variant to describe the energetics of long-range charge-separation processes. A formal analysis of the energy components in subsystem DFT for such excitation energies is presented, which demonstrates that both the distance dependence and the long-range limit are correctly described. In addition, electronic couplings for these processes as needed for rate constants inmore » Marcus theory can be obtained from this method. It is shown that the electronic structure of charge-separated states constructed by a positively charged subsystem interacting with a negatively charged one is difficult to converge — charge leaking from the negative subsystem to the positive one can occur. This problem is related to the delocalization error in DFT and can be overcome with asymptotically correct exchange–correlation (XC) potentials or XC potentials including a sufficiently large amount of exact exchange. We also outline an approximate way to obtain charge-transfer couplings between locally excited and charge-separated states.« less

  6. Macroscopic electric charge separation during hypervelocity impacts: Potential implications for planetary paleomagnetism

    NASA Technical Reports Server (NTRS)

    Crawford, D. A.; Schultz, P. H.

    1993-01-01

    The production of transient magnetic fields by hypervelocity meteoroid impact has been proposed to possibly explain the presence of paleomagnetic fields in certain lunar samples as well as across broader areas of the lunar surface. In an effort to understand the lunar magnetic record, continued experiments at the NASA Ames Vertical Gun Range allow characterizing magnetic fields produced by the 5 km/s impacts of 0.32-0.64 cm projectiles over a broad range of impact angles and projectile/target compositions. From such studies, another phenomenon has emerged, macroscopic electric charge separation, that may have importance for the magnetic state of solid-body surfaces. This phenomenon was observed during explosive cratering experiments, but the magnetic consequences of macroscopic electric charge separation (as opposed to plasma production) during explosion and impact cratering have not, to our knowledge, been explored before now. It is straightforward to show that magnetic field production due to this process may scale as a weakly increasing function of impactor kinetic energy, although more work is needed to precisely assess the scaling dependence. The original intent of our experiments was to assess the character of purely electrostatic signals for comparison with inferred electrostatic noise signals acquired by shielded magnetic sensors buried within particulate dolomite targets. The results demonstrated that electrostatic noise does affect the magnetic sensors but only at relatively short distances (less than 4 cm) from the impact point (our magnetic studies are generally performed at distances greater than approximately 5.5 cm). However, to assess models for magnetic field generation during impact, measurements are needed of the magnetic field as close to the impact point as possible; hence, work with an improved magnetic sensor design is in progress. In this paper, we focus on electric charge separation during hypervelocity impacts as a potential transient magnetic field production mechanism in its own right.

  7. Formation of ion clusters in the phase separated structures of neutral-charged polymer blends

    NASA Astrophysics Data System (ADS)

    Kwon, Ha-Kyung; Olvera de La Cruz, Monica

    2015-03-01

    Polyelectrolyte blends, consisting of at least one charged species, are promising candidate materials for fuel cell membranes, for their mechanical stability and high selectivity for proton conduction. The phase behavior of the blends is important to understand, as this can significantly affect the performance of the device. The phase behavior is controlled by χN, the Flory-Huggins parameter multiplied by the number of mers, as well as the electrostatic interactions between the charged backbone and the counterions. It has recently been shown that local ionic correlations, incorporated via liquid state (LS) theory, enhance phase separation of the blend, even in the absence of polymer interactions. In this study, we show phase diagrams of neutral-charged polymer blends including ionic correlations via LS theory. In addition to enhanced phase separation at low χN, the blends show liquid-liquid phase separation at high electrostatic interaction strengths. Above the critical strength, the charged polymer phase separates into ion-rich and ion-poor regions, resulting in the formation of ion clusters within the charged polymer phase. This can be shown by the appearance of multiple spinodal and critical points, indicating the coexistence of several charge separated phases. This work was performed under the following financial assistance award 70NANB14H012 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD).

  8. Photoelectrodes based on 2D opals assembled from Cu-delafossite double-shelled microspheres for an enhanced photoelectrochemical response.

    PubMed

    Oh, Yunjung; Yang, Wooseok; Tan, Jeiwan; Lee, Hyungsoo; Park, Jaemin; Moon, Jooho

    2018-02-22

    Although a unique light-harvesting property was recently demonstrated in a photocathode based on 2-dimensional (2D) opals of CuFeO 2 -shelled SiO 2 microspheres, the performance of a monolayer of ultra-thin CuFeO 2 -shelled microspheres is limited by ineffective charge separation. Herein, we propose an innovative design rule, in which an inner CuFeO 2 /outer CuAlO 2 double-shelled heterojunction is formed on each partially etched microsphere to obtain a hexagonally assembled 2D opal photoelectrode. Our Cu-delafossite double-shelled photocathode shows a dramatically improved charge separation capability, with a 9-fold increase in the photocurrent compared to that of the single-shelled counterpart. Electrochemical impedance spectroscopy clearly confirms the reduced charge transport/transfer resistance associated with the Cu-delafossite double-shelled photocathode, while surface photovoltage spectra reveal enhanced polarization of the photogenerated carrier, indicating improved charge separation capability with the aid of the heterojunction. Our finding sheds light on the importance of heterojunction interfaces in achieving optimal charge separation in opal architectures as well as the inner-shell/electrolyte interface to expedite charge separation/transport.

  9. Quantum modeling of ultrafast photoinduced charge separation

    NASA Astrophysics Data System (ADS)

    Rozzi, Carlo Andrea; Troiani, Filippo; Tavernelli, Ivano

    2018-01-01

    Phenomena involving electron transfer are ubiquitous in nature, photosynthesis and enzymes or protein activity being prominent examples. Their deep understanding thus represents a mandatory scientific goal. Moreover, controlling the separation of photogenerated charges is a crucial prerequisite in many applicative contexts, including quantum electronics, photo-electrochemical water splitting, photocatalytic dye degradation, and energy conversion. In particular, photoinduced charge separation is the pivotal step driving the storage of sun light into electrical or chemical energy. If properly mastered, these processes may also allow us to achieve a better command of information storage at the nanoscale, as required for the development of molecular electronics, optical switching, or quantum technologies, amongst others. In this Topical Review we survey recent progress in the understanding of ultrafast charge separation from photoexcited states. We report the state-of-the-art of the observation and theoretical description of charge separation phenomena in the ultrafast regime mainly focusing on molecular- and nano-sized solar energy conversion systems. In particular, we examine different proposed mechanisms driving ultrafast charge dynamics, with particular regard to the role of quantum coherence and electron-nuclear coupling, and link experimental observations to theoretical approaches based either on model Hamiltonians or on first principles simulations.

  10. Acquisition of a High Performance Computer Cluster for Materials Research and Education

    DTIC Science & Technology

    2015-04-17

    separation in all-organic and hybrid organic- inorganic solar cells. The outcome of the project 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13...diffusion and interfacial charge separation in all-organic and hybrid organic- inorganic solar cells. The outcome of the project is the development...simulations to predict charge carrier mobilities, exciton diffusion and interfacial charge separation in all- organic and hybrid organic- inorganic solar

  11. Charge separation at nanoscale interfaces: energy-level alignment including two-quasiparticle interactions.

    PubMed

    Li, Huashan; Lin, Zhibin; Lusk, Mark T; Wu, Zhigang

    2014-10-21

    The universal and fundamental criteria for charge separation at interfaces involving nanoscale materials are investigated. In addition to the single-quasiparticle excitation, all the two-quasiparticle effects including exciton binding, Coulomb stabilization, and exciton transfer are considered, which play critical roles on nanoscale interfaces for optoelectronic applications. We propose a scheme allowing adding these two-quasiparticle interactions on top of the single-quasiparticle energy level alignment for determining and illuminating charge separation at nanoscale interfaces. Employing the many-body perturbation theory based on Green's functions, we quantitatively demonstrate that neglecting or simplifying these crucial two-quasiparticle interactions using less accurate methods is likely to predict qualitatively incorrect charge separation behaviors at nanoscale interfaces where quantum confinement dominates.

  12. Directional charge separation in isolated organic semiconductor crystalline nanowires

    DOE PAGES

    Labastide, J. A.; Thompson, H. B.; Marques, S. R.; ...

    2016-02-25

    One of the fundamental design paradigms in organic photovoltaic device engineering is based on the idea that charge separation is an extrinsically driven process requiring an interface for exciton fission. This idea has driven an enormous materials science engineering effort focused on construction of domain sizes commensurate with a nominal exciton diffusion length of order 10 nm. Here, we show that polarized optical excitation of isolated pristine crystalline nanowires of a small molecule n-type organic semiconductor, 7,8,15,16-tetraazaterrylene, generates a significant population of charge-separated polaron pairs along the π-stacking direction. Charge separation was signalled by pronounced power-law photoluminescence decay polarized alongmore » the same axis. In the transverse direction, we observed exponential decay associated with excitons localized on individual monomers. We propose that this effect derives from an intrinsic directional charge-transfer interaction that can ultimately be programmed by molecular packing geometry.« less

  13. High yield of secondary B-side electron transfer in mutant Rhodobacter capsulatus reaction centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kressel, Lucas; Faries, Kaitlyn M.; Wander, Marc J.

    2014-08-01

    From the crystal structures of reaction centers (RCs) from purple photosynthetic bacteria, two pathways for electron transfer (ET) are apparent but only one pathway (the A side) operates in the native protein-cofactor complex. Partial activation of the B-side pathway has unveiled the true inefficiencies of ET processes on that side in comparison to analogous reactions on the A side. Of significance are the relative rate constants for forward ET and the competing charge recombination reactions. On the B side, these rate constants are nearly equal for the secondary charge-separation step (ET from bacteriopheophytin to quinone), relegating the yield of thismore » process to < 50%. Herein we report efforts to optimize this step. In surveying all possible residues at position 131 in the M subunit, we discovered that when glutamic acid replaces the native valine the efficiency of the secondary ET is nearly two-fold higher than in the wild-type RC. The positive effect of M131 Glu is likely due to formation of a hydrogen bond with the ring V keto group of the B-side bacteriopheophytin leading to stabilization of the charge-separated state involving this cofactor. In conclusion, this change slows charge recombination by roughly a factor of two and affords the improved yield of the desired forward ET to the B-side quinone terminal acceptor.« less

  14. Means and method of detection in chemical separation procedures

    DOEpatents

    Yeung, Edward S.; Koutny, Lance B.; Hogan, Barry L.; Cheung, Chan K.; Ma, Yinfa

    1993-03-09

    A means and method for indirect detection of constituent components of a mixture separated in a chemical separation process. Fluorescing ions are distributed across the area in which separation of the mixture will occur to provide a generally uniform background fluorescence intensity. For example, the mixture is comprised of one or more charged analytes which displace fluorescing ions where its constituent components separate to. Fluorescing ions of the same charge as the charged analyte components cause a displacement. The displacement results in the location of the separated components having a reduced fluorescence intensity to the remainder of the background. Detection of the lower fluorescence intensity areas can be visually, by photographic means and methods, or by automated laser scanning.

  15. Means and method of detection in chemical separation procedures

    DOEpatents

    Yeung, E.S.; Koutny, L.B.; Hogan, B.L.; Cheung, C.K.; Yinfa Ma.

    1993-03-09

    A means and method are described for indirect detection of constituent components of a mixture separated in a chemical separation process. Fluorescing ions are distributed across the area in which separation of the mixture will occur to provide a generally uniform background fluorescence intensity. For example, the mixture is comprised of one or more charged analytes which displace fluorescing ions where its constituent components separate to. Fluorescing ions of the same charge as the charged analyte components cause a displacement. The displacement results in the location of the separated components having a reduced fluorescence intensity to the remainder of the background. Detection of the lower fluorescence intensity areas can be visually, by photographic means and methods, or by automated laser scanning.

  16. Electrophoretic sample insertion. [device for uniformly distributing samples in flow path

    NASA Technical Reports Server (NTRS)

    Mccreight, L. R. (Inventor)

    1974-01-01

    Two conductive screens located in the flow path of an electrophoresis sample separation apparatus are charged electrically. The sample is introduced between the screens, and the charge is sufficient to disperse and hold the samples across the screens. When the charge is terminated, the samples are uniformly distributed in the flow path. Additionally, a first separation by charged properties has been accomplished.

  17. Freezing, fragmentation, and charge separation in sonic sprayed water droplets

    NASA Astrophysics Data System (ADS)

    Zilch, Lloyd W.; Maze, Joshua T.; Smith, John W.; Jarrold, Martin F.

    2009-06-01

    Water droplets are generated by sonic spray, transferred into vacuum through a capillary interface, and then passed through two image charge detectors separated by a drift region. The image charge detectors measure the charge and velocity of each droplet. For around 1% of the droplets, the charge changes significantly between the detectors. In some cases it increases, in others it decreases, and for some droplets the charge changes polarity. We attribute the charge changing behavior to fragmentation caused by freezing. Simulations indicate that the time required for a droplet to cool and freeze in vacuum depends on its size, and that droplets with radii of 1-2 [mu]m have the right size to freeze between the two detectors. These sizes correspond to the smaller end of the distribution present in the experiment. When the charge on a droplet increases or changes polarity, fragmentation must be accompanied by charge separation where fragments carry away opposite charges. In some cases, two fission fragments were observed in the second charge detector. We show examples where the droplet breaks apart to give fragments of the same charge and opposite charges. The fragmentation and charge changing behavior found here is consistent with what has been found in the freezing of larger suspended and supported droplets.

  18. Detuning dependence of Rabi oscillations in an InAs self-assembled quantum dot ensemble

    NASA Astrophysics Data System (ADS)

    Suzuki, Takeshi; Singh, Rohan; Bayer, Manfred; Ludzwig, Arne; Wieck, Andreas D.; Cundiff, Steven T.

    2018-04-01

    We study the coherent evolution of an InAs self-assembled quantum dot (QD) ensemble in the ultrafast regime. The evolution of the entire frequency distribution is revealed by performing prepulse two-dimensional (2D) coherent spectroscopy. Charged and neutral QDs display distinct nonlinear responses arising from two-level trion and four-level exciton-biexciton systems, respectively, and each signal is clearly separated in 2D spectra. Whereas the signals for charged QDs are symmetric with respect to the detuning, those for neutral QDs are asymmetric due to the asymmetric four-level energy structure. Experimental results for charged and neutral QDs are well reproduced by solving the optical Bloch equations, including detuning and excitation-induced dephasing (EID) effects. The temperature dependence suggests that wetting-layer carriers play an important role in EID.

  19. Device and method for separating minerals, carbon and cement additives from fly ash

    DOEpatents

    Link, Thomas A.; Schoffstall, Micael R.; Soong, Yee

    2004-01-27

    A process for separating organic and inorganic particles from a dry mixture by sizing the particles into isolated fractions, contacting the sized particles to a charged substrate and subjecting the charged particles to an electric field to separate the particles.

  20. Tribo-charging properties of waste plastic granules in process of tribo-electrostatic separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jia, E-mail: weee@sjtu.edu.cn; Wu, Guiqing; Xu, Zhenming

    Highlights: • The cyclone charging was more effective and stable than vibrating charging. • The small particle size was better changed than large ones and was more suitable recycled by TES. • The drying pretreatment is good for improving the short-term charging effect. - Abstract: Plastic products can be found everywhere in people’s daily life. With the consistent growth of plastic consumption, more and more plastic waste is generated. Considering the stable chemical and physics characteristics of plastic, regular waste management methods are not suitable for recycling economic strategy of each government, which has become a serious environmental problem. Recyclingmore » plastic waste is considered to be the best way to treat it, because it cannot only deduce the waste but also save the energy to produce new virgin plastic. Tribo-electrostatic separation is strongly recommended for plastic separation as it can preserve the original properties of plastic and has little additional pollution. In this study, plastic granules are generated by crushing plastic waste in waste electric and electronic equipment. The tribo-charging properties of plastic waste were studied by vibrating tribo-charging and cyclone tribo-charging. The triboelectric series obtained by vibrating was: (−)-PE–PS–PC–PVC–ABS–PP-(+), while the triboelectric series obtained by cyclone was (−)-PE–PS–PC–PVC–ABS–PP-(+). Further, the cyclone charging was more effective and stable than vibrating charging. The impact factors experiments showed that small particle size was better changed than large ones and were more suitable recycled by tribo-electrostatic separation. High relative humidity was identified as impede charging effect. The results of this study will help defining the operating parameters of subsequent separator.« less

  1. Femtosecond Visible Transient Absorption Spectroscopy of Chlorophyll f-Containing Photosystem I.

    PubMed

    Kaucikas, Marius; Nürnberg, Dennis; Dorlhiac, Gabriel; Rutherford, A William; van Thor, Jasper J

    2017-01-24

    Photosystem I (PSI) from Chroococcidiopsis thermalis PCC 7203 grown under far-red light (FRL; >725 nm) contains both chlorophyll a and a small proportion of chlorophyll f. Here, we investigated excitation energy transfer and charge separation using this FRL-grown form of PSI (FRL-PSI). We compared femtosecond transient visible absorption changes of normal, white-light (WL)-grown PSI (WL-PSI) with those of FRL-PSI using excitation at 670 nm, 700 nm, and (in the case of FRL-PSI) 740 nm. The possibility that chlorophyll f participates in energy transfer or charge separation is discussed on the basis of spectral assignments. With selective pumping of chlorophyll f at 740 nm, we observe a final ∼150 ps decay assigned to trapping by charge separation, and the amplitude of the resulting P700 +• A 1 -• charge-separated state indicates that the yield is directly comparable to that of WL-PSI. The kinetics shows a rapid 2 ps time constant for almost complete transfer to chlorophyll f if chlorophyll a is pumped with a wavelength of 670 nm or 700 nm. Although the physical role of chlorophyll f is best supported as a low-energy radiative trap, the physical location should be close to or potentially within the charge-separating pigments to allow efficient transfer for charge separation on the 150 ps timescale. Target models can be developed that include a branching in the formation of the charge separation for either WL-PSI or FRL-PSI. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Effects of granular charge on flow and mixing

    NASA Astrophysics Data System (ADS)

    Shinbrot, T.; Herrmann, H. J.

    2008-12-01

    Sandstorms in the desert have long been reported to produce sparks and other electrical disturbances - indeed as long ago as 1850, Faraday commented on the peculiarities of granular charging during desert sandstorms. Similarly, lightning strikes within volcanic dust plumes have been repeatedly reported for over half a century, but remain unexplained. The problem of granular charging has applied, as well as natural, implications, for charged particle clouds frequently generate spectacularly devastating dust explosions in granular processing plants, and sand becomes strongly electrified by helicopters traveling in desert environments. The issue even has implications for missions to the Moon and to Mars, where charged dust degrades solar cells viability and clings to spacesuits, limiting the lifetime of their joints. Despite the wide-ranging importance of granular charging, even the simplest aspects of its causes remain elusive. To take one example, sand grains in the desert manage to charge one another despite having only similar materials to rub against over expanses of many miles - thus existing theories of charging due to material differences fail entirely to account for the observed charging of desert sands. In this talk, we describe recent progress made in identifying underlying causes of granular charging, both in desert-like environments and in industrial applications, and we examine effects of granular charging on flow, mixing and separation of common granular materials. We find that charging of identical grains can occur under simple laboratory conditions, and we make new predictions for the effects of this charging on granular behaviours.

  3. The selective conversion of glutamic acid in amino acid mixtures using glutamate decarboxylase--a means of separating amino acids for synthesizing biobased chemicals.

    PubMed

    Teng, Yinglai; Scott, Elinor L; Sanders, Johan P M

    2014-01-01

    Amino acids (AAs) derived from hydrolysis of protein rest streams are interesting feedstocks for the chemical industry due to their functionality. However, separation of AAs is required before they can be used for further applications. Electrodialysis may be applied to separate AAs, but its efficiency is limited when separating AAs with similar isoelectric points. To aid the separation, specific conversion of an AA to a useful product with different charge behavior to the remaining compounds is desired. Here the separation of L-aspartic acid (Asp) and L-glutamic acid (Glu) was studied. L-Glutamate α-decarboxylase (GAD, Type I, EC 4.1.1.15) was applied to specifically convert Glu into γ-aminobutyric acid (GABA). GABA has a different charge behavior from Asp therefore allowing a potential separation by electrodialysis. Competitive inhibition and reduced operational stability caused by Asp could be eliminated by maintaining a sufficiently high concentration of Glu. Immobilization of GAD does not reduce the enzyme's initial activity. However, the operational stability was slightly reduced. An initial study on the reaction operating in a continuous mode was performed using a column reactor packed with immobilized GAD. As the reaction mixture was only passed once through the reactor, the conversion of Glu was lower than expected. To complete the conversion of Glu, the stream containing Asp and unreacted Glu might be recirculated back to the reactor after GABA has been removed. Overall, the reaction by GAD is specific to Glu and can be applied to aid the electrodialysis separation of Asp and Glu. © 2014 American Institute of Chemical Engineers.

  4. Enhancement of plasmon-induced charge separation efficiency by coupling silver nanocubes with a thin gold film

    NASA Astrophysics Data System (ADS)

    Akiyoshi, Kazutaka; Saito, Koichiro; Tatsuma, Tetsu

    2016-10-01

    Plasmon-induced charge separation (PICS), in which an energetic electron is injected from a plasmonic nanoparticle (NP) to a semiconductor on contact, is often inhibited by a protecting agent adsorbed on the NP. We addressed this issue for an Ag nanocube-TiO2 system by coating it with a thin Au layer or by inserting the Au layer between the nanocubes (NCs) and TiO2. Both of the electrodes exhibit much higher photocurrents due to PICS than the electrodes without the Au film or the Ag NCs. These photocurrent enhancements can be explained in terms of PICS with accelerated electron transfer, in which electron injection from the Ag NCs or Ag@Au core-shell NCs to TiO2 is promoted by the Au film, or PICS enhanced by a nanoantenna effect, in which the electron injection from the Au film to TiO2 is enhanced by optical near field generated by the Ag NC.

  5. Utilization of photoinduced charge-separated state of donor-acceptor-linked molecules for regulation of cell membrane potential and ion transport.

    PubMed

    Numata, Tomohiro; Murakami, Tatsuya; Kawashima, Fumiaki; Morone, Nobuhiro; Heuser, John E; Takano, Yuta; Ohkubo, Kei; Fukuzumi, Shunichi; Mori, Yasuo; Imahori, Hiroshi

    2012-04-11

    The control of ion transport across cell membranes by light is an attractive strategy that allows targeted, fast control of precisely defined events in the biological membrane. Here we report a novel general strategy for the control of membrane potential and ion transport by using charge-separation molecules and light. Delivery of charge-separation molecules to the plasma membrane of PC12 cells by a membranous nanocarrier and subsequent light irradiation led to depolarization of the membrane potential as well as inhibition of the potassium ion flow across the membrane. Photoregulation of the cell membrane potential and ion transport by using charge-separation molecules is highly promising for control of cell functions. © 2012 American Chemical Society

  6. The first radial-mode Lorentzian Landau damping of dust acoustic space-charge waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588

    2016-05-15

    The dispersion properties and the first radial-mode Lorentzian Landau damping of a dust acoustic space-charge wave propagating in a cylindrical waveguide dusty plasma which contains nonthermal electrons and ions are investigated by employing the normal mode analysis and the method of separation of variables. It is found that the frequency of dust acoustic space-charge wave increases as the wave number increases as well as the radius of cylindrical plasma does. However, the nonthermal property of the Lorentzian plasma is found to suppress the wave frequency of the dust acoustic space-charge wave. The Landau damping rate of the dust acoustic space-chargemore » wave is derived in a cylindrical waveguide dusty plasma. The damping of the space-charge wave is found to be enhanced as the radius of cylindrical plasma and the nonthermal property increase. The maximum Lorentzian Landau damping rate is also found in a cylindrical waveguide dusty plasma. The variation of the wave frequency and the Landau damping rate due to the nonthermal character and geometric effects are also discussed.« less

  7. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion

    NASA Astrophysics Data System (ADS)

    Kang, Keehoon; Watanabe, Shun; Broch, Katharina; Sepe, Alessandro; Brown, Adam; Nasrallah, Iyad; Nikolka, Mark; Fei, Zhuping; Heeney, Martin; Matsumoto, Daisuke; Marumoto, Kazuhiro; Tanaka, Hisaaki; Kuroda, Shin-Ichi; Sirringhaus, Henning

    2016-08-01

    Doping is one of the most important methods to control charge carrier concentration in semiconductors. Ideally, the introduction of dopants should not perturb the ordered microstructure of the semiconducting host. In some systems, such as modulation-doped inorganic semiconductors or molecular charge transfer crystals, this can be achieved by spatially separating the dopants from the charge transport pathways. However, in conducting polymers, dopants tend to be randomly distributed within the conjugated polymer, and as a result the transport properties are strongly affected by the resulting structural and electronic disorder. Here, we show that in the highly ordered lamellar microstructure of a regioregular thiophene-based conjugated polymer, a small-molecule p-type dopant can be incorporated by solid state diffusion into the layers of solubilizing side chains without disrupting the conjugated layers. In contrast to more disordered systems, this allows us to observe coherent, free-electron-like charge transport properties, including a nearly ideal Hall effect in a wide temperature range, a positive magnetoconductance due to weak localization and the Pauli paramagnetic spin susceptibility.

  8. Antiferroelectric Nature of CH3NH3PbI3−xClx Perovskite and Its Implication for Charge Separation in Perovskite Solar Cells

    PubMed Central

    Sewvandi, Galhenage A.; Kodera, Kei; Ma, Hao; Nakanishi, Shunsuke; Feng, Qi

    2016-01-01

    Perovskite solar cells (PSCs) have been attracted scientific interest due to high performance. Some researchers have suggested anomalous behavior of PSCs to the polarizations due to the ion migration or ferroelectric behavior. Experimental results and theoretical calculations have suggested the possibility of ferroelectricity in organic-inorganic perovskite. However, still no studies have been concretely discarded the ferroelectric nature of perovskite absorbers in PSCs. Hysteresis of P-E (polarization-electric field) loops is an important evidence to confirm the ferroelectricity. In this study, P-E loop measurements, in-depth structural study, analyses of dielectric behavior and the phase transitions of CH3NH3PbI3−xClx perovskite were carried out and investigated. The results suggest that CH3NH3PbI3−xClx perovskite is in an antiferroelectric phase at room temperature. The antiferroelectric phase can be switched to ferroelectric phase by the poling treatment and exhibits ferroelectric-like hysteresis P-E loops and dielectric behavior around room temperature; namely, the perovskite can generate a ferroelectric polarization under PSCs operating conditions. Furthermore, we also discuss the implications of ferroelectric polarization on PSCs charge separation. PMID:27468802

  9. Motion-based, high-yielding, and fast separation of different charged organics in water.

    PubMed

    Xuan, Mingjun; Lin, Xiankun; Shao, Jingxin; Dai, Luru; He, Qiang

    2015-01-12

    We report a self-propelled Janus silica micromotor as a motion-based analytical method for achieving fast target separation of polyelectrolyte microcapsules, enriching different charged organics with low molecular weights in water. The self-propelled Janus silica micromotor catalytically decomposes a hydrogen peroxide fuel and moves along the direction of the catalyst face at a speed of 126.3 μm s(-1) . Biotin-functionalized Janus micromotors can specifically capture and rapidly transport streptavidin-modified polyelectrolyte multilayer capsules, which could effectively enrich and separate different charged organics in water. The interior of the polyelectrolyte multilayer microcapsules were filled with a strong charged polyelectrolyte, and thus a Donnan equilibrium is favorable between the inner solution within the capsules and the bulk solution to entrap oppositely charged organics in water. The integration of these self-propelled Janus silica micromotors and polyelectrolyte multilayer capsules into a lab-on-chip device that enables the separation and analysis of charged organics could be attractive for a diverse range of applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Promoting Charge Separation and Injection by Optimizing the Interfaces of GaN:ZnO Photoanode for Efficient Solar Water Oxidation.

    PubMed

    Wang, Zhiliang; Zong, Xu; Gao, Yuying; Han, Jingfeng; Xu, Zhiqiang; Li, Zheng; Ding, Chunmei; Wang, Shengyang; Li, Can

    2017-09-13

    Photoelectrochemical water splitting provides an attractive way to store solar energy in molecular hydrogen as a kind of sustainable fuel. To achieve high solar conversion efficiency, the most stringent criteria are effective charge separation and injection in electrodes. Herein, efficient photoelectrochemical water oxidation is realized by optimizing charge separation and surface charge transfer of GaN:ZnO photoanode. The charge separation can be greatly improved through modified moisture-assisted nitridation and HCl acid treatment, by which the interfaces in GaN:ZnO solid solution particles are optimized and recombination centers existing at the interfaces are depressed in GaN:ZnO photoanode. Moreover, a multimetal phosphide of NiCoFeP was employed as water oxidation cocatalyst to improve the charge injection at the photoanode/electrolyte interface. Consequently, it significantly decreases the overpotential and brings the photocurrent to a benchmark of 3.9 mA cm -2 at 1.23 V vs RHE and a solar conversion efficiency over 1% was obtained.

  11. Electron in higher-dimensional weakly charged rotating black hole spacetimes

    NASA Astrophysics Data System (ADS)

    Cariglia, Marco; Frolov, Valeri P.; Krtouš, Pavel; Kubizňák, David

    2013-03-01

    We demonstrate separability of the Dirac equation in weakly charged rotating black hole spacetimes in all dimensions. The electromagnetic field of the black hole is described by a test field approximation, with the vector potential proportional to the primary Killing vector field. It is shown that the demonstrated separability can be intrinsically characterized by the existence of a complete set of mutually commuting first-order symmetry operators generated from the principal Killing-Yano tensor. The presented results generalize the results on integrability of charged particle motion and separability of charged scalar field studied in V. P. Frolov and P. Krtous [Phys. Rev. D 83, 024016 (2011)].

  12. Distorted Carbon Nitride Structure with Substituted Benzene Moieties for Enhanced Visible Light Photocatalytic Activities.

    PubMed

    Kim, Hyejin; Gim, Suji; Jeon, Tae Hwa; Kim, Hyungjun; Choi, Wonyong

    2017-11-22

    Carbon nitride (CN) is being intensively investigated as a low-cost visible light active photocatalyst, but its practical applications are limited because of the fast charge pair recombination and low visible light absorption. Here, we introduce a new strategy for enhancing its visible light photocatalytic activity by designing the CN structure in which the nitrogen of tertiary amine is substituted with a benzene molecule connected by three heptazine rings. The intramolecular benzene doping induced the structural changes from planar symmetric structure to distorted geometry, which could be predicted by density functional theory calculation. This structural distortion facilitated the spatial separation of photogenerated charge pairs and retarded charge recombination via exciton dissociation. Such unique properties of the benzene-incorporated CN were confirmed by the photoluminescence (PL) and photoelectrochemical analyses. The optimal loading of benzene doping reduced the PL of the conjugated ring system (π → π* transition) but enhanced the PL of the forbidden n → π* transition at the nitrogen atoms with lone pair electrons due to the distortion from the planar geometry. The photoelectrode of benzene-doped CN exhibited higher photocurrent and lower charge transfer resistance than bare CN electrode, indicating that the photogenerated charge pairs are more efficiently separated. As a result, the benzene-doped CN markedly increased the photocatalytic activity for the degradation of various organic pollutants and that for H 2 O 2 production (via O 2 reduction). This study proposes a simple strategy for chemical structural modification of carbon nitride to boost the visible light photocatalytic activity.

  13. Defect engineering of two-dimensional WO3 nanosheets for enhanced electrochromism and photoeletrochemical performance

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaofang; Zheng, Xiaoli; Yan, Bo; Xu, Tao; Xu, Qun

    2017-04-01

    The capability of introduction of oxygen vacancies in a controlled way has emerged as the heart of modern transition metal oxide semiconductor chemistry. As chemical defects, the oxygen vacancies have been proposed as electron donors, which are prone to increase carrier density and promote charge carrier separation. Herein, we have successfully prepared 2D WO3 ultrathin nanosheets with abundant surface oxygen vacancies by a combination of facile solvothermal reaction and hydrogenation method. The resultant hydrogenated WO3 ultrathin nanosheets exhibit remarkable electrochromism and photocatalytic performances compared with the non-hydrogenated samples, mainly due to their increased oxygen vacancies, narrowed band gap coupled with fast charge transfer and enhanced adsorption of visible light.

  14. Fuel injection of coal slurry using vortex nozzles and valves

    DOEpatents

    Holmes, Allen B.

    1989-01-01

    Injection of atomized coal slurry fuel into an engine combustion chamber is achieved at relatively low pressures by means of a vortex swirl nozzle. The outlet opening of the vortex nozzle is considerably larger than conventional nozzle outlets, thereby eliminating major sources of failure due to clogging by contaminants in the fuel. Control fluid, such as air, may be used to impart vorticity to the slurry and/or purge the nozzle of contaminants during the times between measured slurry charges. The measured slurry charges may be produced by a diaphragm pump or by vortex valves controlled by a separate control fluid. Fluidic circuitry, employing vortex valves to alternatively block and pass cool slurry fuel flow, is disclosed.

  15. Ring correlations in random networks.

    PubMed

    Sadjadi, Mahdi; Thorpe, M F

    2016-12-01

    We examine the correlations between rings in random network glasses in two dimensions as a function of their separation. Initially, we use the topological separation (measured by the number of intervening rings), but this leads to pseudo-long-range correlations due to a lack of topological charge neutrality in the shells surrounding a central ring. This effect is associated with the noncircular nature of the shells. It is, therefore, necessary to use the geometrical distance between ring centers. Hence we find a generalization of the Aboav-Weaire law out to larger distances, with the correlations between rings decaying away when two rings are more than about three rings apart.

  16. Ewald Electrostatics for Mixtures of Point and Continuous Line Charges.

    PubMed

    Antila, Hanne S; Tassel, Paul R Van; Sammalkorpi, Maria

    2015-10-15

    Many charged macro- or supramolecular systems, such as DNA, are approximately rod-shaped and, to the lowest order, may be treated as continuous line charges. However, the standard method used to calculate electrostatics in molecular simulation, the Ewald summation, is designed to treat systems of point charges. We extend the Ewald concept to a hybrid system containing both point charges and continuous line charges. We find the calculated force between a point charge and (i) a continuous line charge and (ii) a discrete line charge consisting of uniformly spaced point charges to be numerically equivalent when the separation greatly exceeds the discretization length. At shorter separations, discretization induces deviations in the force and energy, and point charge-point charge correlation effects. Because significant computational savings are also possible, the continuous line charge Ewald method presented here offers the possibility of accurate and efficient electrostatic calculations.

  17. Electrochemical capacitance modulation in an interacting mesoscopic capacitor induced by internal charge transfer

    NASA Astrophysics Data System (ADS)

    Liu, Wei; He, Jianhong; Guo, Huazhong; Gao, Jie

    2018-04-01

    We report experiments on the dynamic response of an interacting mesoscopic capacitor consisting of a quantum dot with two confined spin-split levels of the lowest Landau level. In high magnetic fields, states inside the dot are regulated by a mixture of Coulomb interaction and Landau-level quantization, and electrons distribute on two spatially separated regions. Quantum point contact voltage and magnetic field are employed to manipulate the number and distribution of electrons inside the quantum dot. We find that the periodicity of the electrochemical capacitance oscillations is dominated by the charging energy, and their amplitudes, due to internal charge transfer and strong internal capacitive coupling, show rich variations of modulations. Magnetocapacitance displays a sawtoothlike manner and may differ in tooth directions for different voltages, which, we demonstrate, result from a sawtoothlike electrochemical potential change induced by internal charge transfer and field-sensitive electrostatic potential. We further build a charge stability diagram, which, together with all other capacitance properties, is consistently interpreted in terms of a double-dot model. The demonstrated technique is of interest as a tool for fast and sensitive charge state readout of a double-quantum-dot qubit in the gigahertz frequency quantum electronics.

  18. Numerical Simulations of Flow Separation Control in Low-Pressure Turbines using Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.; Ashpis, D. E.

    2007-01-01

    A recently introduced phenomenological model to simulate flow control applications using plasma actuators has been further developed and improved in order to expand its use to complicated actuator geometries. The new modeling approach eliminates the requirement of an empirical charge density distribution shape by using the embedded electrode as a source for the charge density. The resulting model is validated against a flat plate experiment with quiescent environment. The modeling approach incorporates the effect of the plasma actuators on the external flow into Navier Stokes computations as a body force vector which is obtained as a product of the net charge density and the electric field. The model solves the Maxwell equation to obtain the electric field due to the applied AC voltage at the electrodes and an additional equation for the charge density distribution representing the plasma density. The new modeling approach solves the charge density equation in the computational domain assuming the embedded electrode as a source therefore automatically generating a charge density distribution on the surface exposed to the flow similar to that observed in the experiments without explicitly specifying an empirical distribution. The model is validated against a flat plate experiment with quiescent environment.

  19. Directional Charge Separation in Isolated Organic Semiconductor Crystalline Nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Michael; Labastide, Joelle; Bond-Thompson, Hilary

    2017-03-01

    In the conventional view of organic photovoltaics (OPV), localized electronic excitations (excitons) formed in the active layer are transported by random 3D diffusion to an interface where charge separation and extraction take place. Because radiative de-excitation is usually strongly allowed in organic semiconductors, efficient charge separation requires high exciton mobility, with much of the diffusive motion ‘wasted’ in directions that don’t result in an interface encounter. Our research efforts are focused on ways to enforce a preferred directionality in energy and/or charge transport using ordered crystalline nanowires in which the intermolecular interactions that facilitate transport along, for example, the pi-stackingmore » axis, can be made several orders of magnitude stronger than those in a transverse direction. The results presented in our recent work (Nature Communications) is a first step towards realizing the goal of directional control of both energy transport and charge separation, where excitons shared between adjacent molecules dissociate exclusively along the pi-stacking direction.« less

  20. Charge-specific size-dependent separation of water-soluble organic molecules by fluorinated nanoporous networks

    NASA Astrophysics Data System (ADS)

    Byun, Jeehye; Patel, Hasmukh A.; Thirion, Damien; Yavuz, Cafer T.

    2016-11-01

    Molecular architecture in nanoscale spaces can lead to selective chemical interactions and separation of species with similar sizes and functionality. Substrate specific sorbent chemistry is well known through highly crystalline ordered structures such as zeolites, metal organic frameworks and widely available nanoporous carbons. Size and charge-dependent separation of aqueous molecular contaminants, on the contrary, have not been adequately developed. Here we report a charge-specific size-dependent separation of water-soluble molecules through an ultra-microporous polymeric network that features fluorines as the predominant surface functional groups. Treatment of similarly sized organic molecules with and without charges shows that fluorine interacts with charges favourably. Control experiments using similarly constructed frameworks with or without fluorines verify the fluorine-cation interactions. Lack of a σ-hole for fluorine atoms is suggested to be responsible for this distinct property, and future applications of this discovery, such as desalination and mixed matrix membranes, may be expected to follow.

  1. Charge-specific size-dependent separation of water-soluble organic molecules by fluorinated nanoporous networks

    PubMed Central

    Byun, Jeehye; Patel, Hasmukh A.; Thirion, Damien; Yavuz, Cafer T.

    2016-01-01

    Molecular architecture in nanoscale spaces can lead to selective chemical interactions and separation of species with similar sizes and functionality. Substrate specific sorbent chemistry is well known through highly crystalline ordered structures such as zeolites, metal organic frameworks and widely available nanoporous carbons. Size and charge-dependent separation of aqueous molecular contaminants, on the contrary, have not been adequately developed. Here we report a charge-specific size-dependent separation of water-soluble molecules through an ultra-microporous polymeric network that features fluorines as the predominant surface functional groups. Treatment of similarly sized organic molecules with and without charges shows that fluorine interacts with charges favourably. Control experiments using similarly constructed frameworks with or without fluorines verify the fluorine-cation interactions. Lack of a σ-hole for fluorine atoms is suggested to be responsible for this distinct property, and future applications of this discovery, such as desalination and mixed matrix membranes, may be expected to follow. PMID:27830697

  2. The impact of long-range electron-hole interaction on the charge separation yield of molecular photocells

    NASA Astrophysics Data System (ADS)

    Nemati Aram, Tahereh; Ernzerhof, Matthias; Asgari, Asghar; Mayou, Didier

    2017-01-01

    We discuss the effects of charge carrier interaction and recombination on the operation of molecular photocells. Molecular photocells are devices where the energy conversion process takes place in a single molecular donor-acceptor complex attached to electrodes. Our investigation is based on the quantum scattering theory, in particular on the Lippmann-Schwinger equation; this minimizes the complexity of the problem while providing useful and non-trivial insight into the mechanism governing photocell operation. In this study, both exciton pair creation and dissociation are treated in the energy domain, and therefore there is access to detailed spectral information, which can be used as a framework to interpret the charge separation yield. We demonstrate that the charge carrier separation is a complex process that is affected by different parameters, such as the strength of the electron-hole interaction and the non-radiative recombination rate. Our analysis helps to optimize the charge separation process and the energy transfer in organic solar cells and in molecular photocells.

  3. Separator for lithium-sulfur battery based on polymer blend membrane

    NASA Astrophysics Data System (ADS)

    Freitag, Anne; Stamm, Manfred; Ionov, Leonid

    2017-09-01

    In this work we report a novel way of reducing the polysulfide shuttle in lithium-sulfur batteries by a new separator material. Polyvinylsulfate potassium salt (PVSK) as polymeric additive is introduced into a polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) matrix membrane to improve the battery performance. PVSK is expected to lower the polysulfide mobility due to interaction with the sulfonic group. PVdF-HFP/PVSK blend membranes are prepared and an UV/Vis polysulfide diffusion test clearly demonstrates the positive effect of PVSK. Electrochemical testing reveals a significant improvement of cycling stability up to more than 200 cycles. In addition, the effect of separator porosity to the polysulfide shuttle is investigated with PVdF-HFP membranes of different porosity. A simple polysulfide diffusion test and potentiostatic charge/discharge cycling clearly demonstrate that low separator porosity is favorable in a lithium-sulfur cell.

  4. Inherent Driving Force for Charge Separation in Curved Stacks of Oligothiophenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qin

    Coexistence of high local charge mobility and an energy gradient can lead to efficient free charge carrier generation from geminate charge transfer states at the donor–acceptor interface in bulk heterojunction organic photovoltaics. It is, however, not clear what polymer microstructures can support such coexistence. Using recent methods from density functional theory, we propose that a stack of similarly curved oligothiophene chains can deliver the requirements for efficient charge separation. Curved stacks are stable because of the polymer’s strong π-stacking ability and because backbone torsions are flexible in neutral chains. However, energy of a charge in a polymer chain has remarkablymore » stronger dependence on torsions. The trend of increasing planarity in curved stacks effectively creates an energy gradient that drives charge in one direction. The curvature of these partially ordered stacks is found to beneficially interact with fullerenes for charge separation. The curved stacks, therefore, are identified as possible building blocks for interfacial structures that lead to efficient free carrier generation in high-performing organic photovoltaic systems.« less

  5. Inherent Driving Force for Charge Separation in Curved Stacks of Oligothiophenes

    DOE PAGES

    Wu, Qin

    2015-01-30

    Coexistence of high local charge mobility and an energy gradient can lead to efficient free charge carrier generation from geminate charge transfer states at the donor–acceptor interface in bulk heterojunction organic photovoltaics. It is, however, not clear what polymer microstructures can support such coexistence. Using recent methods from density functional theory, we propose that a stack of similarly curved oligothiophene chains can deliver the requirements for efficient charge separation. Curved stacks are stable because of the polymer’s strong π-stacking ability and because backbone torsions are flexible in neutral chains. However, energy of a charge in a polymer chain has remarkablymore » stronger dependence on torsions. The trend of increasing planarity in curved stacks effectively creates an energy gradient that drives charge in one direction. The curvature of these partially ordered stacks is found to beneficially interact with fullerenes for charge separation. The curved stacks, therefore, are identified as possible building blocks for interfacial structures that lead to efficient free carrier generation in high-performing organic photovoltaic systems.« less

  6. Negative charge emission due to excimer laser bombardment of sodium trisilicate glass

    NASA Astrophysics Data System (ADS)

    Langford, S. C.; Jensen, L. C.; Dickinson, J. T.; Pederson, L. R.

    1990-10-01

    We describe measurements of negative charge emission accompanying irradiation of sodium trisilicate glass (Na2Oṡ3SiO2) with 248-nm excimer laser light at fluences on the order of 2 J/cm2 per pulse, i.e., at the threshold for ablative etching of the glass surface. The negative charge emission consists of a very prompt photoelectron burst coincident with the laser pulse, followed by a much slower plume of electrons and negative ions traveling with a high density cloud of positive ions, previously identified as primarily Na+. Using combinations of E and B fields in conjunction with time-of-flight methods, the negative ions were successfully separated from the plume and tentatively identified as O-, Si-, NaO-, and perhaps NaSi-. These negative species are probably formed by gas phase collisions in the near-surface region which result in electron attachment.

  7. Oligomeric ferrocene rings

    NASA Astrophysics Data System (ADS)

    Inkpen, Michael S.; Scheerer, Stefan; Linseis, Michael; White, Andrew J. P.; Winter, Rainer F.; Albrecht, Tim; Long, Nicholas J.

    2016-09-01

    Cyclic oligomers comprising strongly interacting redox-active monomer units represent an unknown, yet highly desirable class of nanoscale materials. Here we describe the synthesis and properties of the first family of molecules belonging to this compound category—differently sized rings comprising only 1,1‧-disubstituted ferrocene units (cyclo[n], n = 5-7, 9). Due to the close proximity and connectivity of centres (covalent Cp-Cp linkages; Cp = cyclopentadienyl) solution voltammograms exhibit well-resolved, separated 1e- waves. Theoretical interrogations into correlations based on ring size and charge state are facilitated using values of the equilibrium potentials of these transitions, as well as their relative spacing. As the interaction free energies between the redox centres scale linearly with overall ring charge and in conjunction with fast intramolecular electron transfer (˜107 s-1), these molecules can be considered as uniformly charged nanorings (diameter ˜1-2 nm).

  8. Adsorption of goethite onto quartz and kaolinite

    USGS Publications Warehouse

    Goldberg, M.C.; Weiner, Eugene R.; Boymel, P.M.

    1984-01-01

    The adsorption of colloidal goethite onto quartz and kaolinite substrates has been studied as a function of pH and NaCl concentration. Goethite adsorption was measured quantitatively by Fourier-transform infrared spectroscopy. The results indicate that adsorption onto both substrates is due primarily to coulombic forces; however, the pH dependence of adsorption is very different for the two substrates. This is explained by the fact that the surface charge on quartz is entirely pH-dependent, while kaolinite has surface faces which carry a permanent negative charge. Adsorption of goethite on to kaolinite increases markedly with increasing NaCl concentration, while adsorption onto quartz is relatively independent of NaCl concentration. This can be explained by the influence of NaCl concentration upon the development of surface charge on the substrates. A method is described for separating surface-bound goethite from free goethite.

  9. Characterization of charged polymer self-assemblies by multidetector thermal field-flow fractionation in aqueous mobile phases.

    PubMed

    Greyling, Guilaume; Pasch, Harald

    2018-01-12

    Charged block copolymer self-assemblies, such as charged micelles, have attracted much attention as versatile drug delivery systems due to their readily tunable characteristics such as size and surface charge. However, current column-based analytical techniques are not suitable to fractionate and comprehensively characterize charged micelles in terms of size, molar mass, chemical composition and morphology. Multidetector thermal field-flow fractionation (ThFFF) is shown to be a unique characterization platform that can be used to characterize charged micelles in terms of size, molar mass, chemical composition and morphology in aqueous mobile phases with various ionic strengths and pH. This is demonstrated by the characterization of poly(methacrylic acid)-b-poly(methyl methacrylate) self-assemblies in high pH buffers as well as the characterization of cationic poly(2-vinyl pyridine)-b-polystyrene and poly(4-vinyl pyridine)-b-polystyrene self-assemblies in low pH buffers. Moreover, it is shown that ThFFF is capable of separating charged micelles according to the corona composition. These investigations prove convincingly that ThFFF is broadly applicable to the comprehensive characterization of amphiphilic self-assemblies even when aqueous mobile phases are used. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Tribo-charging properties of waste plastic granules in process of tribo-electrostatic separation.

    PubMed

    Li, Jia; Wu, Guiqing; Xu, Zhenming

    2015-01-01

    Plastic products can be found everywhere in people's daily life. With the consistent growth of plastic consumption, more and more plastic waste is generated. Considering the stable chemical and physics characteristics of plastic, regular waste management methods are not suitable for recycling economic strategy of each government, which has become a serious environmental problem. Recycling plastic waste is considered to be the best way to treat it, because it cannot only deduce the waste but also save the energy to produce new virgin plastic. Tribo-electrostatic separation is strongly recommended for plastic separation as it can preserve the original properties of plastic and has little additional pollution. In this study, plastic granules are generated by crushing plastic waste in waste electric and electronic equipment. The tribo-charging properties of plastic waste were studied by vibrating tribo-charging and cyclone tribo-charging. The triboelectric series obtained by vibrating was: (-)-PE-PS-PC-PVC-ABS-PP-(+), while the triboelectric series obtained by cyclone was (-)-PE-PS-PC-PVC-ABS-PP-(+). Further, the cyclone charging was more effective and stable than vibrating charging. The impact factors experiments showed that small particle size was better changed than large ones and were more suitable recycled by tribo-electrostatic separation. High relative humidity was identified as impede charging effect. The results of this study will help defining the operating parameters of subsequent separator. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Charge and spin in low-dimensional cuprates

    NASA Astrophysics Data System (ADS)

    Maekawa, Sadamichi; Tohyama, Takami

    2001-03-01

    One of the central issues in the study of high-temperature superconducting cuprates which are composed of two-dimensional (2D) CuO2 planes is whether the 2D systems with strong electron correlation behave as a Fermi liquid or a non-Fermi-liquid-like one-dimensional (1D) system with electron correlation. In this article, we start with the detailed examination of the electronic structure in cuprates and study theoretically the spin and charge dynamics in 1D and 2D cuprates. The theoretical background of spin-charge separation in the 1D model systems including the Hubbard and t-J models is presented. The first direct observation of collective modes of spin and charge excitations in a 1D cuprate, which are called spinons and holons respectively, in angle-resolved photoemission spectroscopy (ARPES) experiments is reviewed in the light of the theoretical results based on the numerically exact-diagonalization method. The charge and spin dynamics in 1D insulating cuprates is also discussed in connection with the spin-charge separation. The arguments are extended to the 2D cuprates, and the unique aspects of the electronic properties of high-temperature superconductors are discussed. Special emphasis is placed on the d-wave-like excitations in insulating 2D cuprates observed in ARPES experiments. We explain how the excitations are caused by the spin-charge separation. The charge stripes observed in the underdoped cuprates are examined in connection with spin-charge separation in real space.

  12. Computational modeling of electrostatic charge and fields produced by hypervelocity impact

    DOE PAGES

    Crawford, David A.

    2015-05-19

    Following prior experimental evidence of electrostatic charge separation, electric and magnetic fields produced by hypervelocity impact, we have developed a model of electrostatic charge separation based on plasma sheath theory and implemented it into the CTH shock physics code. Preliminary assessment of the model shows good qualitative and quantitative agreement between the model and prior experiments at least in the hypervelocity regime for the porous carbonate material tested. The model agrees with the scaling analysis of experimental data performed in the prior work, suggesting that electric charge separation and the resulting electric and magnetic fields can be a substantial effectmore » at larger scales, higher impact velocities, or both.« less

  13. Synthesis and Photophysical Characterization of an Artificial Photosynthetic Reaction Center Exhibiting Acid-Responsive Regulation of Charge Separation

    NASA Astrophysics Data System (ADS)

    Pahk, Ian

    Non-photochemical quenching (NPQ) is a photoprotective regulatory mechanism essential to the robustness of the photosynthetic apparatus of green plants. Energy flow within the low-light adapted reaction centers is dynamically optimized to match the continuously fluctuating light conditions found in nature. Activated by compartmentalized decreases in pH resulting from photosynthetic activity during periods of elevated photon flux, NPQ induces rapid thermal dissipation of excess excitation energy that would otherwise overwhelm the apparatus's ability to consume it. Consequently, the frequency of charge separation decreases and the formation of potentially deleterious, high-energy intermediates slows, thereby reducing the threat of photodamage by disallowing their accumulation. Herein is described the synthesis and photophysical analysis of a molecular triad that mimics the effects of NPQ on charge separation within the photosynthetic reaction centers. Steady-state absorption and emission, time-resolved fluorescence, and transient absorption spectroscopies were used to demonstrate reversible quenching of the first singlet excited state affecting the quantum yield of charge separation by approximately one order of magnitude. As in the natural system, the populations of unquenched and quenched states and, therefore, the overall yields of charge separation were found to be dependent upon acid concentration.

  14. Investigating Premature Ignition of Thruster Pressure Cartridges by Vibration-Induced Electrostatic Discharge

    NASA Technical Reports Server (NTRS)

    Woods, Stephen S.; Saulsberry, Regor

    2010-01-01

    Pyrotechnic thruster pressure cartridges (TPCs) are used for aeroshell separation on a new NASA crew launch vehicle. Nondestructive evaluation (NDE) during TPC acceptance testing indicated that internal assemblies moved during shock and vibration testing due to an internal bond anomaly. This caused concerns that the launch environment might produce the same movement and release propellant grains that might be prematurely ignited through impact or through electrostatic discharge (ESD) as grains vibrated against internal surfaces. Since a new lot could not be fabricated in time, a determination had to be made as to whether the lot was acceptable to fly. This paper discusses the ESD evaluation and a separate paper addresses the impact problem. A challenge to straight forward assessment existed due to the unavailability of triboelectric data characterizing the static charging characteristics of the propellants within the TPC. The approach examined the physical limitations for charge buildup within the TPC system geometry and evaluated it for discharge under simulated vibrations used to qualify components for launch. A facsimile TPC was fabricated using SS 301 for the case and surrogate worst case materials for the propellants based on triboelectric data. System discharge behavior was evaluated by applying high voltage to the point of discharge in air and by placing worst case charge accumulations within the facsimile TPC and forcing discharge. The facsimile TPC contained simulated propellant grains and lycopodium, a well characterized indicator for static discharge in dust explosions, and was subjected to accelerations equivalent to the maximum accelerations possible during launch. The magnitude of charge generated within the facsimile TPC system was demonstrated to lie in a range of 100 to 10,000 times smaller than the spark energies measured to ignite propellant grains in industry standard discharge tests. The test apparatus, methodology, and results are described in this paper.

  15. A charge-stabilizing, multimodular, ferrocene-bis(triphenylamine)-zinc-porphyrin-fullerene polyad.

    PubMed

    Wijesinghe, Channa A; El-Khouly, Mohamed E; Zandler, Melvin E; Fukuzumi, Shunichi; D'Souza, Francis

    2013-07-15

    A novel multimodular donor-acceptor polyad featuring zinc porphyrin, fullerene, ferrocene, and triphenylamine entities was designed, synthesized, and studied as a charge-stabilizing, photosynthetic-antenna/reaction-center mimic. The ferrocene and fullerene entities, covalently linked to the porphyrin ring, were distantly separated to accomplish the charge-separation/hole-migration events leading to the creation of a long-lived charge-separated state. The geometry and electronic structures of the newly synthesized compound was deduced by B3LYP/3-21G(*) optimization, while the energy levels for different photochemical events was established using data from the optical absorption and emission, and electrochemical studies. Excitation of the triphenylamine entities revealed singlet-singlet energy transfer to the appended zinc porphyrin. As predicted from the energy levels, photoinduced electron transfer from both the singlet and triplet excited states of the zinc porphyrin to fullerene followed by subsequent hole migration involving ferrocene was witnessed from the transient absorption studies. The charge-separated state persisted for about 8.5 μs and was governed by the distance between the final charge-transfer product, that is, a species involving a ferrocenium cation and a fullerene radical anion, with additional influence from the charge-stabilizing triphenylamine entities located on the zinc-porphyrin macrocycle. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Edge effects in vertically-oriented graphene based electric double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Yang, Huachao; Yang, Jinyuan; Bo, Zheng; Zhang, Shuo; Yan, Jianhua; Cen, Kefa

    2016-08-01

    Vertically-oriented graphenes (VGs) have been demonstrated as a promising active material for electric double-layer capacitors (EDLCs), partially due to their edge-enriched structure. In this work, the 'edge effects', i.e., edges as the promoters of high capacitance, in VG based EDLCs are investigated with experimental research and numerical simulations. VGs with diverse heights (i.e., edge-to-basal ratios) and edge densities are prepared with varying the plasma-enabled growth time and employing different plasma sources. Electrochemical measurements show that the edges play a predominant role on the charge storage behavior of VGs. A simulation is further conducted to unveil the roles of the edges on the separation and adsorption of ions within VG channels. The initial charge distribution of a VG plane is obtained with density functional theory (DFT) calculations, which is subsequently applied to a molecular dynamics (MD) simulation system to gain the insights into the microscope EDLC structures. Compared with the basal planes, the edges present higher initial charge density (by 4.2 times), higher ion packing density (by 2.6 times), closer ion packing location (by 0.8 Å), and larger ion separation degree (by 14%). The as-obtained findings will be instructive in designing the morphology and structure of VGs for enhanced capacitive performances.

  17. Spin-correlated doublet pairs as intermediate states in charge separation processes

    NASA Astrophysics Data System (ADS)

    Kraffert, Felix; Behrends, Jan

    2017-10-01

    Spin-correlated charge-carrier pairs play a crucial role as intermediate states in charge separation both in natural photosynthesis as well as in solar cells. Using transient electron paramagnetic resonance (trEPR) spectroscopy in combination with spectral simulations, we study spin-correlated polaron pairs in polymer:fullerene blends as organic solar cells materials. The semi-analytical simulations presented here are based on the well-established theoretical description of spin-correlated radical pairs in biological systems, however, explicitly considering the disordered nature of polymer:fullerene blends. The large degree of disorder leads to the fact that many different relative orientations between both polarons forming the spin-correlated pairs have to be taken into account. This has important implications for the spectra, which differ significantly from those of spin-correlated radical pairs with a fixed relative orientation. We systematically study the influence of exchange and dipolar couplings on the trEPR spectra and compare the simulation results to measured X- and Q-band trEPR spectra. Our results demonstrate that assuming dipolar couplings alone does not allow us to reproduce the experimental spectra. Due to the rather delocalised nature of polarons in conjugated organic semiconductors, a significant isotropic exchange coupling needs to be included to achieve good agreement between experiments and simulations.

  18. Metal-semiconductor barrier modulation for high photoresponse in transition metal dichalcogenide field effect transistors.

    PubMed

    Li, Hua-Min; Lee, Dae-Yeong; Choi, Min Sup; Qu, Deshun; Liu, Xiaochi; Ra, Chang-Ho; Yoo, Won Jong

    2014-02-10

    A gate-controlled metal-semiconductor barrier modulation and its effect on carrier transport were investigated in two-dimensional (2D) transition metal dichalcogenide (TMDC) field effect transistors (FETs). A strong photoresponse was observed in both unipolar MoS2 and ambipolar WSe2 FETs (i) at the high drain voltage due to a high electric field along the channel for separating photo-excited charge carriers and (ii) at the certain gate voltage due to the optimized barriers for the collection of photo-excited charge carriers at metal contacts. The effective barrier height between Ti/Au and TMDCs was estimated by a low temperature measurement. An ohmic contact behavior and drain-induced barrier lowering (DIBL) were clearly observed in MoS2 FET. In contrast, a Schottky-to-ohmic contact transition was observed in WSe2 FET as the gate voltage increases, due to the change of majority carrier transport from holes to electrons. The gate-dependent barrier modulation effectively controls the carrier transport, demonstrating its great potential in 2D TMDCs for electronic and optoelectronic applications.

  19. Photochemical charge separation in zeolites: Electron transfer dynamics, nanocrystals and zeolitic membranes. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Prabir K.

    2001-09-30

    Aluminosilicate zeolites provide an excellent host for photochemical charge separation. Because of the constraints provided by the zeolite, the back electron transfer from the reduced acceptor to the oxidized sensitizer is slowed down. This provides the opportunity to separate the charge and use it in a subsequent reaction for water oxidation and reduction. Zeolite-based ruthenium oxide catalysts have been found to be efficient for the water splitting process. This project has demonstrated the usefulness of zeolite hosts for photolytic splitting of water.

  20. Disordered hyperuniformity in two-component nonadditive hard-disk plasmas

    NASA Astrophysics Data System (ADS)

    Lomba, Enrique; Weis, Jean-Jacques; Torquato, Salvatore

    2017-12-01

    We study the behavior of a classical two-component ionic plasma made up of nonadditive hard disks with additional logarithmic Coulomb interactions between them. Due to the Coulomb repulsion, long-wavelength total density fluctuations are suppressed and the system is globally hyperuniform. Short-range volume effects lead to phase separation or to heterocoordination for positive or negative nonadditivities, respectively. These effects compete with the hidden long-range order imposed by hyperuniformity. As a result, the critical behavior of the mixture is modified, with long-wavelength concentration fluctuations partially damped when the system is charged. It is also shown that the decrease of configurational entropy due to hyperuniformity originates from contributions beyond the two-particle level. Finally, despite global hyperuniformity, we show that in our system the spatial configuration associated with each component separately is not hyperuniform, i.e., the system is not "multihyperuniform."

  1. Ultrafast photoinduced charge separation in metal-semiconductor nanohybrids.

    PubMed

    Mongin, Denis; Shaviv, Ehud; Maioli, Paolo; Crut, Aurélien; Banin, Uri; Del Fatti, Natalia; Vallée, Fabrice

    2012-08-28

    Hybrid nano-objects formed by two or more disparate materials are among the most promising and versatile nanosystems. A key parameter in their properties is interaction between their components. In this context we have investigated ultrafast charge separation in semiconductor-metal nanohybrids using a model system of gold-tipped CdS nanorods in a matchstick architecture. Experiments are performed using an optical time-resolved pump-probe technique, exciting either the semiconductor or the metal component of the particles, and probing the light-induced change of their optical response. Electron-hole pairs photoexcited in the semiconductor part of the nanohybrids are shown to undergo rapid charge separation with the electron transferred to the metal part on a sub-20 fs time scale. This ultrafast gold charging leads to a transient red-shift and broadening of the metal surface plasmon resonance, in agreement with results for free clusters but in contrast to observation for static charging of gold nanoparticles in liquid environments. Quantitative comparison with a theoretical model is in excellent agreement with the experimental results, confirming photoexcitation of one electron-hole pair per nanohybrid followed by ultrafast charge separation. The results also point to the utilization of such metal-semiconductor nanohybrids in light-harvesting applications and in photocatalysis.

  2. Simulations of stretching a flexible polyelectrolyte with varying charge separation

    DOE PAGES

    Stevens, Mark J.; Saleh, Omar A.

    2016-07-22

    We calculated the force-extension curves for a flexible polyelectrolyte chain with varying charge separations by performing Monte Carlo simulations of a 5000 bead chain using a screened Coulomb interaction. At all charge separations, the force-extension curves exhibit a Pincus-like scaling regime at intermediate forces and a logarithmic regime at large forces. As the charge separation increases, the Pincus regime shifts to a larger range of forces and the logarithmic regime starts are larger forces. We also found that force-extension curve for the corresponding neutral chain has a logarithmic regime. Decreasing the diameter of bead in the neutral chain simulations removedmore » the logarithmic regime, and the force-extension curve tends to the freely jointed chain limit. In conclusion, this result shows that only excluded volume is required for the high force logarithmic regime to occur.« less

  3. Charge Splitting In Situ Recorder (CSIR) for Real-Time Examination of Plasma Charging Effect in FinFET BEOL Processes

    NASA Astrophysics Data System (ADS)

    Tsai, Yi-Pei; Hsieh, Ting-Huan; Lin, Chrong Jung; King, Ya-Chin

    2017-09-01

    A novel device for monitoring plasma-induced damage in the back-end-of-line (BEOL) process with charge splitting capability is first-time proposed and demonstrated. This novel charge splitting in situ recorder (CSIR) can independently trace the amount and polarity of plasma charging effects during the manufacturing process of advanced fin field-effect transistor (FinFET) circuits. Not only does it reveal the real-time and in situ plasma charging levels on the antennas, but it also separates positive and negative charging effect and provides two independent readings. As CMOS technologies push for finer metal lines in the future, the new charge separation scheme provides a powerful tool for BEOL process optimization and further device reliability improvements.

  4. Charge exchange molecular ion source

    DOEpatents

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  5. Structural and dynamical properties of recombining ultracold neutral plasma

    NASA Astrophysics Data System (ADS)

    Tiwari, Sanat Kumar; Shaffer, Nathaniel R.; Baalrud, Scott D.

    2017-10-01

    An ultracold plasma (UCP) is an evolving collection of free charges and bound charges (Rydberg atoms). Over time, bound species concentration increases due to recombination. We present the structural and dynamical properties of an evolving UCP using classical molecular dynamics simulation. Coulomb collapse is avoided using a repulsive core with the attractive Coulomb potential. The repulsive core size controls the concentration of bound states, as it determines the depth of the potential well between opposite charges. We vary the repulsive core size to emulate the quasi-static state of plasma at different time during the evolution. Binary, chain and ring-like bound states are observed in the simulation carried out at different coupling strengths and repulsive core size. The effect of bound states can be seen as molecular peaks in the radial distribution function (RDF). The thermodynamic properties associated with the free charges can be analyzed from RDF by separating free from bound states. These bound states also change the dynamical properties of the plasma. The electron velocity auto-correlation displays oscillations due to the orbital motion in bound states. These bound states act like a neutral species, damping electron plasmon modes and broadening the ion acoustic mode. This work is supported by AFOSR Grant Number FA9550-16-1-0221. It used computational resources by XSEDE, which is supported by NSF Grant Number ACI-1053575.

  6. Enhanced Raman Scattering on In-plane Anisotropic Layered Materials

    DOE PAGES

    Liang, Liangbo; Meunier, Vincent; Sumpter, Bobby G.; ...

    2015-11-19

    Surface-enhanced Raman scattering (SERS) on two-dimensional (2D) layered materials has provided a unique platform to study the chemical mechanism (CM) of the enhancement due to its natural separation from electromagnetic enhancement. The CM stems from the basic charge interactions between the substrate and molecules. Despite the extensive studies of the energy alignment between 2D materials and molecules, an understanding of how the electronic properties of the substrate are explicitly involved in the charge interaction is still unclear. Lately, a new group of 2D layered materials with anisotropic structure, including orthorhombic black phosphorus (BP) and triclinic rhenium disulphide (ReS2), has attractedmore » great interest due to their unique anisotropic electrical and optical properties. Herein, we report a unique anisotropic Raman enhancement on few-layered BP and ReS2 using copper phthalocyanine (CuPc) molecules as a Raman probe, which is absent on isotropic graphene and h-BN. According to detailed Raman tensor analysis and density functional theory calculations, anisotropic charge interactions due to the anisotropic carrier mobilities of the 2D materials are responsible for the angular dependence of the Raman enhancement. Our findings not only provide new insights into the CM process in SERS, but also open up new avenues for the exploration and application of the electronic properties of anisotropic 2D layered materials.« less

  7. Enhanced separation of membranes during free flow zonal electrophoresis in plants.

    PubMed

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2007-07-15

    Free flow zonal electrophoresis (FFZE) is a versatile technique that allows for the separation of cells, organelles, membranes, and proteins based on net surface charge during laminar flow through a thin aqueous layer. We have been optimizing the FFZE technique to enhance separation of plant vacuolar membranes (tonoplast) from other endomembranes to pursue a directed proteomics approach to identify novel tonoplast transporters. Addition of ATP to a mixture of endomembranes selectively enhanced electrophoretic mobility of acidic vesicular compartments during FFZE toward the positive electrode. This has been attributed to activation of the V-ATPase generating a more negative membrane potential outside the vesicles, resulting in enhanced migration of acidic vesicles, including tonoplast, to the anode (Morré, D. J.; Lawrence, J.; Safranski, K.; Hammond, T.; Morré, D. M. J. Chromatogr., A 1994, 668, 201-213). We confirm that ATP does induce a redistribution of membranes during FFZE of microsomal membranes isolated from several plant species, including Arabidopsis thaliana, Thellungiella halophila, Mesembryanthemum crystallinum, and Ananas comosus. However, we demonstrate, using V-ATPase-specific inhibitors, nonhydrolyzable ATP analogs, and ionophores to dissipate membrane potential, that the ATP-dependent migrational shift of membranes under FFZE is not due to activation of the V-ATPase. Addition of EDTA to chelate Mg2+, leading to the production of the tetravalent anionic form of ATP, resulted in a further enhancement of membrane migration toward the anode, and manipulation of cell surface charge by addition of polycations also influenced the ATP-dependent migration of membranes. We propose that ATP enhances the mobility of endomembranes by screening positive surface charges on the membrane surface.

  8. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory.

    PubMed

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  9. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sissay, Adonay; Abanador, Paul; Mauger, François

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagatingmore » the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.« less

  10. Separation of heat and charge currents for boosted thermoelectric conversion

    NASA Astrophysics Data System (ADS)

    Mazza, Francesco; Valentini, Stefano; Bosisio, Riccardo; Benenti, Giuliano; Giovannetti, Vittorio; Fazio, Rosario; Taddei, Fabio

    2015-06-01

    In a multiterminal device the (electronic) heat and charge currents can follow different paths. In this paper we introduce and analyze a class of multiterminal devices where this property is pushed to its extreme limits, with charge and heat currents flowing in different reservoirs. After introducing the main characteristics of this heat-charge current separation regime, we show how to realize it in a multiterminal device with normal and superconducting leads. We demonstrate that this regime allows us to control independently heat and charge flows and to greatly enhance thermoelectric performances at low temperatures. We analyze in detail a three-terminal setup involving a superconducting lead, a normal lead, and a voltage probe. For a generic scattering region we show that in the regime of heat-charge current separation both the power factor and the figure of merit Z T are highly increased with respect to a standard two-terminal system. These results are confirmed for the specific case of a system consisting of three coupled quantum dots.

  11. Photoinduced Dynamics of Charge Separation: From Photosynthesis to Polymer–Fullerene Bulk Heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niklas, Jens; Beaupré, Serge; Leclerc, Mario

    2015-06-18

    Understanding charge separation and charge transport is crucial for improving the efficiency of organic solar cells. Their active media are based on organic molecules and polymers, serving as both light-absorbing and transport layers. The charge-transfer (CT) states play an important role, being intermediate for free carrier generation and charge recombination. Here, we use light-induced electron paramagnetic resonance spectroscopy to study the CT dynamics in blends of the polymers P3HT, PCDTBT, and PTB7 with the fullerene derivative C-60-PCBM. Time-resolved EPR measurements show strong spin-polarization patterns for all polymer-fullerene blends, confirming predominant generation of singlet CT states and partial orientation ordering nearmore » the donor-acceptor interface. These observations allow a comparison with charge separation processes in molecular donor-acceptor systems and in natural and artificial photosynthetic assemblies, and thus the elucidation of the initial steps of sequential CT in organic photovoltaic materials.« less

  12. Superconductivity, phase separation, and charge-transfer instability in the U = infinity limit of the three-band model of the CuO sub 2 planes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grilli, M.; Raimondi, R.; Castellani, C.

    1991-07-08

    The {ital U}={infinity} limit of the three-band Hubbard model with nearest-neighbor repulsion {ital V} is studied using the slave-boson approach and the large-{ital N} expansion technique to order 1/{ital N}. A charge-transfer instability is found as in weak-coupling theory. The charge-transfer instability is always associated with a diverging compressibility leading to a phase separation. Near the phase-separation, charge-transfer-instability region we find superconducting instabilities in the {ital s}- and {ital d}-wave channel. The requirement for superconductivity is that {ital V} be on the scale of the Cu-O hopping as suggested by Varma, Schmitt-Rink, and Abrahams.

  13. Rapid preparative separation of monoclonal antibody charge variants using laterally-fed membrane chromatography.

    PubMed

    Sadavarte, Rahul; Madadkar, Pedram; Filipe, Carlos Dm; Ghosh, Raja

    2018-01-15

    Monoclonal antibodies undergo various forms of chemical transformation which have been shown to cause loss in efficacy and alteration in pharmacokinetic properties of these molecules. Such modified antibody molecules are known as variants. They also display physical properties such as charge that are different from intact antibody molecules. However, the difference in charge is very subtle and separation based on it is quite challenging. Charge variants are usually separated using ion-exchange column chromatography or isoelectric focusing. In this paper, we report a rapid and scalable method for fractionating monoclonal antibody charge variants, based on the use of cation exchange laterally-fed membrane chromatography (LFMC). Starting with a sample of monoclonal antibody hIgG1-CD4, three well-resolved fractions were obtained using either pH or salt gradient. These fractions were identified as acidic, neutral and basic variants. Each of these fractions contained intact heavy and light chains and so antibody fragmentation had no role in variant generation. The separation was comparable to that using column chromatography but was an order of magnitude faster. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Left-right symmetry and the charged Higgs bosons at the LHC

    NASA Astrophysics Data System (ADS)

    Bambhaniya, G.; Chakrabortty, J.; Gluza, J.; Kordiaczynska, M.; Szafron, R.

    2014-05-01

    The charged Higgs boson sector of the Minimal Manifest Left-Right Symmetric model (MLRSM) is investigated in the context of LHC discovery search for new physics beyond Standard Model. We discuss and summarise the main processes within MLRSM where heavy charged Higgs bosons can be produced at the LHC. We explore the scenarios where the amplified signals due to relatively light charged scalars dominate against heavy neutral Z 2 and charged gauge W 2 as well as heavy neutral Higgs bosons signals which are dumped due to large vacuum expectation value v R of the right-handed scalar triplet. Consistency with FCNC effects implies masses of two neutral Higgs bosons to be at least of 10 TeV order, which in turn implies that in MLRSM only three of four charged Higgs bosons, namely and ,and can be simultaneously light. In particular, production processes with one and two doubly charged Higgs bosons are considered. We further incorporate the decays of those scalars leading to multi lepton signals at the LHC. Branching ratios for heavy neutrino N R , W 2 and Z 2 decay into charged Higgs bosons are calculated. These effects are substantial enough and cannot be neglected. The tri- and four-lepton final states for different benchmark points are analysed. Kinematic cuts are chosen in order to strength the leptonic signals and decrease the Standard Model (SM) background. The results are presented using di-lepton invariant mass and lepton-lepton separation distributions for the same sign (SSDL) and opposite sign (OSDL) di-leptons as well as the charge asymmetry are also discussed. We have found that for considered MLRSM processes tri-lepton and four-lepton signals are most important for their detection when compared to the SM background. Both of the signals can be detected at 14 TeV collisions at the LHC with integrated luminosity at the level of 300 fb-1 with doubly charged Higgs bosons up to approximately 600 GeV. Finally, possible extra contribution of the charged MLRSM scalar particles to the measured Higgs to di-photon ( → γγ) decay is computed and pointed out.

  15. Macroparticle separation and plasma collimation in positively biased ducts in filtered vacuum arc deposition systems

    NASA Astrophysics Data System (ADS)

    Beilis, I. I.; Keidar, M.; Boxman, R. L.; Goldsmith, S.

    1999-02-01

    The objective of the present work was to determine the influence of positive bias on plasma and macroparticle (MP) flow in curved magnetized plasma ducts. The plasma bulk and sheath regions were analyzed. In the plasma bulk, the current density and electrical field component normal to the wall were obtained and used as boundary conditions for the near wall sheath region. In the sheath, a nonstationary model for MP charging and motion was developed. The solution of the hydrodynamic equations in the plasma when a positive bias is applied to the wall result in a radial electrical current. The electric field in the plasma bulk is generated by the separation between the magnetically confined electrons, and the ions, which are thrown outwards by the centrifugal force. The field increases with increasing positive bias. It was shown that MPs traveling in the sheath accumulate a charge which depends on the potential distribution, in contrast to MP charging in the quasineutral plasma where the charge depends on plasma density and electron temperature. MP trapping in the near-wall sheath was found. MPs may move in the sheath region along the wall by a repetitive process of electrostatic attraction to the wall, mechanical reflection and neutralization, followed by MP charging and attraction, etc. For example, titanium MPs with a radius less than 0.4 μm and with a velocity component normal to the wall of about 20 m/s are trapped if the sheath potential drop exceeds 20 V. It was obtained that the MP transmission fraction through filter decreases by more than few orders of magnitude due to the trapping effect when a bias potential of +100 V is applied between the wall and the plasma.

  16. Numerical Simulations of Plasma Based Flow Control Applications

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.; Jacob, J. D.; Ashpis, D. E.

    2005-01-01

    A mathematical model was developed to simulate flow control applications using plasma actuators. The effects of the plasma actuators on the external flow are incorporated into Navier Stokes computations as a body force vector. In order to compute this body force vector, the model solves two additional equations: one for the electric field due to the applied AC voltage at the electrodes and the other for the charge density representing the ionized air. The model is calibrated against an experiment having plasma-driven flow in a quiescent environment and is then applied to simulate a low pressure turbine flow with large flow separation. The effects of the plasma actuator on control of flow separation are demonstrated numerically.

  17. Charge-based separation of particles and cells with similar sizes via the wall-induced electrical lift.

    PubMed

    Thomas, Cory; Lu, Xinyu; Todd, Andrew; Raval, Yash; Tzeng, Tzuen-Rong; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun

    2017-01-01

    The separation of particles and cells in a uniform mixture has been extensively studied as a necessity in many chemical and biomedical engineering and research fields. This work demonstrates a continuous charge-based separation of fluorescent and plain spherical polystyrene particles with comparable sizes in a ψ-shaped microchannel via the wall-induced electrical lift. The effects of both the direct current electric field in the main-branch and the electric field ratio in between the inlet branches for sheath fluid and particle mixture are investigated on this electrokinetic particle separation. A Lagrangian tracking method based theoretical model is also developed to understand the particle transport in the microchannel and simulate the parametric effects on particle separation. Moreover, the demonstrated charge-based separation is applied to a mixture of yeast cells and polystyrene particles with similar sizes. Good separation efficiency and purity are achieved for both the cells and the particles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Non-aqueous capillary electrophoretic separation of cholesterol and 25-hydroxycholesterol after derivatization with Girard P reagent.

    PubMed

    Gregus, Michal; Roberg-Larsen, Hanne; Lundanes, Elsa; Foret, Frantisek; Kuban, Petr; Wilson, Steven Ray

    2017-10-01

    Capillary electrophoresis (CE) can provide high separation efficiency with very simple instrumentation, but has yet to be explored regarding oxysterols/cholesterol. Cholesterol and 25-hydroxycholesterol (both are 4-ene-3-ketosteroids) were quantitatively transformed into hydrazones using Girard P reagent after enzymatic oxidation by cholesterol oxidase. Separation was achieved using non-aqueous capillary electrophoresis with UV detection at 280nm; the "charge-tagging" Girard P reagent ensured both charge and chromophore (which are requirements for CE-UV). Excess reagent was also separated from the two analytes, eliminating the need for removal prior to the analysis. The compounds were separated in less than 5min with excellent separation efficiency, using separation electrolytes fully compatible with mass spectrometry. The CE-UV method was used to optimize steps for charge-tagging, revealing that the procedure is affected by the analyte/reagent ratio and reaction time, but also the analyte structure. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Understanding the free energy barrier and multiple timescale dynamics of charge separation in organic photovoltaic cells.

    PubMed

    Yan, Yaming; Song, Linze; Shi, Qiang

    2018-02-28

    By employing several lattice model systems, we investigate the free energy barrier and real-time dynamics of charge separation in organic photovoltaic (OPV) cells. It is found that the combined effects of the external electric field, entropy, and charge delocalization reduce the free energy barrier significantly. The dynamic disorder reduces charge carrier delocalization and results in the increased charge separation barrier, while the effect of static disorder is more complicated. Simulation of the real-time dynamics indicates that the free charge generation process involves multiple time scales, including an ultrafast component within hundreds of femtoseconds, an intermediate component related to the relaxation of the hot charge transfer (CT) state, and a slow component on the time scale of tens of picoseconds from the thermally equilibrated CT state. Effects of hot exciton dissociation as well as its dependence on the energy offset between the Frenkel exciton and the CT state are also analyzed. The current results indicate that only a small energy offset between the band gap and the lowest energy CT state is needed to achieve efficient free charge generation in OPV devices, which agrees with recent experimental findings.

  20. Understanding the free energy barrier and multiple timescale dynamics of charge separation in organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Yan, Yaming; Song, Linze; Shi, Qiang

    2018-02-01

    By employing several lattice model systems, we investigate the free energy barrier and real-time dynamics of charge separation in organic photovoltaic (OPV) cells. It is found that the combined effects of the external electric field, entropy, and charge delocalization reduce the free energy barrier significantly. The dynamic disorder reduces charge carrier delocalization and results in the increased charge separation barrier, while the effect of static disorder is more complicated. Simulation of the real-time dynamics indicates that the free charge generation process involves multiple time scales, including an ultrafast component within hundreds of femtoseconds, an intermediate component related to the relaxation of the hot charge transfer (CT) state, and a slow component on the time scale of tens of picoseconds from the thermally equilibrated CT state. Effects of hot exciton dissociation as well as its dependence on the energy offset between the Frenkel exciton and the CT state are also analyzed. The current results indicate that only a small energy offset between the band gap and the lowest energy CT state is needed to achieve efficient free charge generation in OPV devices, which agrees with recent experimental findings.

  1. Method development of enantiomer separations by affinity capillary electrophoresis, cyclodextrin electrokinetic chromatography and capillary electrophoresis-mass spectrometry.

    PubMed

    Tanaka, Yoshihide

    2002-07-01

    Capillary electrophoresis (CE) has become a powerful tool for enantiomer separations during the last decade. Since 1993, the author has investigated enantiomer separations by affinity capillary electrophoresis (affinity CE) with some proteins and by cyclodextrin electrokinetic chromatography (CDEKC) with some charged cyclodextrins (CDs). Many successful enantiomer separations are demonstrated from our study in this review article. In the enantiomer separations by affinity CE, the deterioration of detection sensitivity was observed under high concentration of the protein in running solutions. The partial filling technique was practically useful to solve the serious problem. It allowed operation at high protein concentrations, such as 500 mumol/L, without the detection problem. Charged CDs had several advantages for the enantiomer separations over neutral ones. Strong electrostatic interactions between a charged CD and oppositely charged analytes should be effective for the formation of the complex. A large difference in electrophoretic mobility between the free analyte and the inclusion complex should also enhance the enantiomeric resolution. In CE-mass spectrometry (CE-MS), the partial filling technique was applied to avoid the introduction of nonvolatile chiral selectors into the CE-MS interface. By replacing the nonvolatile electrolytes in the running buffer by volatile ones, the separation conditions employed in CE with the UV detection method could be transferred to CE-MS.

  2. High resolution separations of charge variants and disulfide isomers of monoclonal antibodies and antibody drug conjugates using ultra-high voltage capillary electrophoresis with high electric field strength.

    PubMed

    Henley, W Hampton; He, Yan; Mellors, J Scott; Batz, Nicholas G; Ramsey, J Michael; Jorgenson, James W

    2017-11-10

    Ultra-high voltage capillary electrophoresis with high electric field strength has been applied to the separation of the charge variants, drug conjugates, and disulfide isomers of monoclonal antibodies. Samples composed of many closely related species are difficult to resolve and quantify using traditional analytical instrumentation. High performance instrumentation can often save considerable time and effort otherwise spent on extensive method development. Ideally, the resolution obtained for a given CE buffer system scales with the square root of the applied voltage. Currently available commercial CE instrumentation is limited to an applied voltage of approximately 30kV and a maximum electric field strength of 1kV/cm due to design limitations. The instrumentation described here is capable of safely applying potentials of at least 120kV with electric field strengths over 2000V/cm, potentially doubling the resolution of the best conventional CE buffer/capillary systems while decreasing analysis time in some applications. Separations of these complex mixtures using this new instrumentation demonstrate the potential of ultra-high voltage CE to identify the presence of previously unresolved components and to reduce analysis time for complex mixtures of antibody variants and drug conjugates. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Phthalimide Copolymer Solar Cells

    NASA Astrophysics Data System (ADS)

    Xin, Hao; Guo, Xugang; Ren, Guoqiang; Kim, Felix; Watson, Mark; Jenekhe, Samson

    2010-03-01

    Photovoltaic properties of bulk heterojunction solar cells based on phthalimide donor-acceptor copolymers have been investigated. Due to the strong π-π stacking of the polymers, the state-of-the-art thermal annealing approach resulted in micro-scale phase separation and thus negligible photocurrent. To achieve ideal bicontinuous morphology, different strategies including quickly film drying and mixed solvent for film processing have been explored. In these films, nano-sale phase separation was achieved and a power conversion efficiency of 3.0% was obtained. Absorption and space-charge limited current mobility measurements reveal similar light harvesting and hole mobilities in all the films, indicating that the morphology is the dominant factor determining the photovoltaic performance. Our results demonstrate that for highly crystalline and/or low-solubility polymers, finding a way to prevent polymer aggregation and large scale phase separation is critical to realizing high performance solar cells.

  4. An insight into the mechanism of charge-transfer of hybrid polymer:ternary/quaternary chalcopyrite colloidal nanocrystals.

    PubMed

    Chawla, Parul; Singh, Son; Sharma, Shailesh Narain

    2014-01-01

    In this work, we have demonstrated the structural and optoelectronic properties of the surface of ternary/quaternary (CISe/CIGSe/CZTSe) chalcopyrite nanocrystallites passivated by tri-n-octylphosphine-oxide (TOPO) and tri-n-octylphosphine (TOP) and compared their charge transfer characteristics in the respective polymer: chalcopyrite nanocomposites by dispersing them in poly(3-hexylthiophene) polymer. It has been found that CZTSe nanocrystallites due to their high crystallinity and well-ordered 3-dimensional network in its pristine form exhibit a higher steric- and photo-stability, resistance against coagulation and homogeneity compared to the CISe and CIGSe counterparts. Moreover, CZTSe nanocrystallites display efficient photoluminescence quenching as evident from the high value of the Stern-Volmer quenching constant (K SV) and eventually higher charge transfer efficiency in their respective polymer P3HT:CZTSe composites. We modelled the dependency of the charge transfer from the donor and the charge separation mechanism across the donor-acceptor interface from the extent of crystallinity of the chalcopyrite semiconductors (CISe/CIGSe/CZTSe). Quaternary CZTSe chalcopyrites with their high crystallinity and controlled morphology in conjunction with regioregular P3HT polymer is an attractive candidate for hybrid solar cells applications.

  5. Understanding self-assembly of charged-neutral block copolymer (BCP) and surfactant complexes using molecular dynamics (MD) simulation

    NASA Astrophysics Data System (ADS)

    Goswami, Monojoy; Sumpter, Bobby; Kilbey, Michael

    Here we report the formation of phase separated BCP-surfactant complexes resulting from the electrostatic self-assembly of charge-neutral block copolymers with oppositely charged surfactants. Complexation behaviors of oppositely charged polyelectrolytes has gained considerable attention in the field of soft condensed matter physics due to their potential application as functional nanomaterials for batteries, wastewater treatment and drug delivery systems. Numerous experiments have examined the self-assembled structures resulting from complexation of charge-neutral BCP and surfactants, however, there is a lack of comprehensive understanding at the fundamental level. To help bridge this gap, we use, MD simulations to study self-assembly and dynamics of the BCP-surfactant complex at the molecular level. Our results show an overcharging effect in BCPs with hydrophobic neutral blocks and a formation of core-shell colloidal structure. Hydrophilic neutral blocks, on the other hand, show stable, hairy colloidal structures with neutral blocks forming a loosely-bound, fuzzy outer layer. Our results qualitatively agree with previous SANS and SAXS experiments. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Materials Science and Engineering Division.

  6. Self-assembled photosynthesis-inspired light harvesting material and solar cells containing the same

    DOEpatents

    Lindsey, Jonathan S [Raleigh, NC; Chinnasamy, Muthiah [Raleigh, NC; Fan, Dazhong [Raleigh, NC

    2009-12-15

    A solar cell is described that comprises: (a) a semiconductor charge separation material; (b) at least one electrode connected to the charge separation material; and (c) a light-harvesting film on the charge separation material, the light-harvesting film comprising non-covalently coupled, self-assembled units of porphyrinic macrocycles. The porphyrinic macrocycles preferably comprise: (i) an intramolecularly coordinated metal; (ii) a first coordinating substituent; and (iii) a second coordinating substituent opposite the first coordinating substituent. The porphyrinic macrocycles can be assembled by repeating intermolecular coordination complexes of the metal, the first coordinating substituent and the second coordinating substituent.

  7. Oxidation driven ZnS Core-ZnO shell photocatalysts under controlled oxygen atmosphere for improved photocatalytic solar water splitting

    NASA Astrophysics Data System (ADS)

    Bak, Daegil; Kim, Jung Hyeun

    2018-06-01

    Zinc type photocatalysts attract great attentions in solar hydrogen production due to their easy availability and benign environmental characteristics. Spherical ZnS particles are synthesized with a facile hydrothermal method, and they are further used as core materials to introduce ZnO shell layer surrounding the core part by partial oxidation under controlled oxygen contents. The resulting ZnS core-ZnO shell photocatalysts represent the heterostructural type II band alignment. The existence of oxide layer also influences on proton adsorption power with an aid of strong base cites derived from highly electronegative oxygen atoms in ZnO shell layer. Photocatalytic water splitting reaction is performed to evaluate catalyst efficiency under standard one sun condition, and the highest hydrogen evolution rate (1665 μmolg-1h-1) is achieved from the sample oxidized at 16.2 kPa oxygen pressure. This highest hydrogen production rate is achieved in cooperation with increased light absorption and promoted charge separations. Photoluminescence analysis reveals that the improved visible light response is obtained after thermal oxidation process due to the oxygen vacancy states in the ZnO shell layer. Therefore, overall photocatalytic efficiency in solar hydrogen production is enhanced by improved charge separations, crystallinity, and visible light responses from the ZnS core-ZnO shell structures induced by thermal oxidation.

  8. CHARGE BOTTLE FOR A MASS SEPARATOR

    DOEpatents

    Davidson, P.H.

    1959-07-01

    Improved mass separator charge bottles are described for containing a dense charge of a chemical compound of copper, nickel, lead or other useful substance which is to be vaporized, and to the method of utilizing such improvcd charge bottles so that the chemical compound is vaporized from the under surface of the charge and thus permits the non-volatile portion thereof to fall to the bottom of the charge bottle where it does not form an obstacle to further evaporation. The charge bottle comprises a vertically disposed cylindrical portion, an inner re-entrant cylindrical portion extending axially and downwardly into the same from the upper end thereof, and evaporative source material in the form of a chemical compound compacted within the upper annular pontion of the charge bottle formed by the re-entrant cylindrical portion, whereby vapor from the chemical compound will pass outwardly from the charge bottle through an apertured closure.

  9. Origin of Reversible Photoinduced Phase Separation in Hybrid Perovskites.

    PubMed

    Bischak, Connor G; Hetherington, Craig L; Wu, Hao; Aloni, Shaul; Ogletree, D Frank; Limmer, David T; Ginsberg, Naomi S

    2017-02-08

    The distinct physical properties of hybrid organic-inorganic materials can lead to unexpected nonequilibrium phenomena that are difficult to characterize due to the broad range of length and time scales involved. For instance, mixed halide hybrid perovskites are promising materials for optoelectronics, yet bulk measurements suggest the halides reversibly phase separate upon photoexcitation. By combining nanoscale imaging and multiscale modeling, we find that the nature of halide demixing in these materials is distinct from macroscopic phase separation. We propose that the localized strain induced by a single photoexcited charge interacting with the soft, ionic lattice is sufficient to promote halide phase separation and nucleate a light-stabilized, low-bandgap, ∼8 nm iodide-rich cluster. The limited extent of this polaron is essential to promote demixing because by contrast bulk strain would simply be relaxed. Photoinduced phase separation is therefore a consequence of the unique electromechanical properties of this hybrid class of materials. Exploiting photoinduced phase separation and other nonequilibrium phenomena in hybrid materials more generally could expand applications in sensing, switching, memory, and energy storage.

  10. Understanding How Isotopes Affect Charge Transfer in P3HT/PCBM: A Quantum Trajectory-Electronic Structure Study with Nonlinear Quantum Corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lei; Jakowski, Jacek; Garashchuk, Sophya

    The experimentally observed effect of selective deuterium substitution on the open circuit voltage for a blend of poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl-C 61- butyric acid methyl ester (PCBM) (Nat. Commun. 5:3180, 2014) is explored using a 221-atom model of a polymer-wrapped PCBM molecule. We describe the protonic and deuteronic wavefunctions for the H/D isotopologues of the hexyl side chains within a Quantum Trajectory/Electronic Structure approach where the dynamics is performed with newly developed nonlinear corrections to the quantum forces, necessary to describe the nuclear wavefunctions; the classical forces are generated with a Density Functional Tight Binding method. We used the resulting protonicmore » and deuteronic time-dependent wavefunctions to assess the effects of isotopic substitution (deuteration) on the energy gaps relevant to the charge transfer for the donor and acceptor electronic states. Furthermore, while the isotope effect on the electronic energy levels is found negligible, the quantum-induced fluctuations of the energy gap between the charge transfer and charge separated states due to nuclear wavefunctions may account for experimental trends by promoting charge transfer in P3HT/PCBM and increasing charge recombination on the donor in the deuterium substituted P3HT/PCBM.« less

  11. Understanding How Isotopes Affect Charge Transfer in P3HT/PCBM: A Quantum Trajectory-Electronic Structure Study with Nonlinear Quantum Corrections

    DOE PAGES

    Wang, Lei; Jakowski, Jacek; Garashchuk, Sophya; ...

    2016-08-09

    The experimentally observed effect of selective deuterium substitution on the open circuit voltage for a blend of poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl-C 61- butyric acid methyl ester (PCBM) (Nat. Commun. 5:3180, 2014) is explored using a 221-atom model of a polymer-wrapped PCBM molecule. We describe the protonic and deuteronic wavefunctions for the H/D isotopologues of the hexyl side chains within a Quantum Trajectory/Electronic Structure approach where the dynamics is performed with newly developed nonlinear corrections to the quantum forces, necessary to describe the nuclear wavefunctions; the classical forces are generated with a Density Functional Tight Binding method. We used the resulting protonicmore » and deuteronic time-dependent wavefunctions to assess the effects of isotopic substitution (deuteration) on the energy gaps relevant to the charge transfer for the donor and acceptor electronic states. Furthermore, while the isotope effect on the electronic energy levels is found negligible, the quantum-induced fluctuations of the energy gap between the charge transfer and charge separated states due to nuclear wavefunctions may account for experimental trends by promoting charge transfer in P3HT/PCBM and increasing charge recombination on the donor in the deuterium substituted P3HT/PCBM.« less

  12. Exciplexes versus Loose Ion Pairs: How Does the Driving Force Impact the Initial Product Ratio of Photoinduced Charge Separation Reactions?

    PubMed Central

    2014-01-01

    Many donor–acceptor systems can undergo a photoinduced charge separation reaction, yielding loose ion pairs (LIPs). LIPs can be formed either directly via (distant) electron transfer (ET) or indirectly via the dissociation of an initially formed exciplex or tight ion pair. Establishing the prevalence of one of the reaction pathways is challenging because differentiating initially formed exciplexes from LIPs is difficult due to similar spectroscopic footprints. Hence, no comprehensive reaction model has been established for moderately polar solvents. Here, we employ an approach based on the time-resolved magnetic field effect (MFE) of the delayed exciplex luminescence to distinguish the two reaction channels. We focus on the effects of the driving force of ET and the solvent permittivity. We show that, surprisingly, the exciplex channel is significant even for an exergonic ET system with a free energy of ET of −0.58 eV and for the most polar solutions studied (butyronitrile). Our findings demonstrate that exciplexes play a crucial role even in polar solvents and at moderate driving forces, contrary to what is usually assumed. PMID:25243054

  13. On the generation of double layers from ion- and electron-acoustic instabilities

    NASA Astrophysics Data System (ADS)

    Fu, Xiangrong; Cowee, Misa M.; Gary, S. Peter; Winske, Dan

    2016-03-01

    A plasma double layer (DL) is a nonlinear electrostatic structure that carries a uni-polar electric field parallel to the background magnetic field due to local charge separation. Past studies showed that DLs observed in space plasmas are mostly associated with the ion acoustic instability. Recent Van Allen Probes observations of parallel electric field structures traveling much faster than the ion acoustic speed have motivated a computational study to test the hypothesis that a new type of DLs—electron acoustic DLs—generated from the electron acoustic instability are responsible for these electric fields. Nonlinear particle-in-cell simulations yield negative results, i.e., the hypothetical electron acoustic DLs cannot be formed in a way similar to ion acoustic DLs. Linear theory analysis and the simulations show that the frequencies of electron acoustic waves are too high for ions to respond and maintain charge separation required by DLs. However, our results do show that local density perturbations in a two-electron-component plasma can result in unipolar-like electric field structures that propagate at the electron thermal speed, suggesting another potential explanation for the observations.

  14. Effect of charge ordering and phase separation on the electrical and magnetoresistive properties of polycrystalline La0.4Eu0.1Ca0.5MnO3

    NASA Astrophysics Data System (ADS)

    Krichene, A.; Boujelben, W.; Mukherjee, S.; Shah, N. A.; Solanki, P. S.

    2018-03-01

    We have investigated the effect of charge ordering and phase separation on the electrical and magnetotransport properties of La0.4Eu0.1Ca0.5MnO3 polycrystalline sample. Temperature dependence of resistivity shows a metal-insulator transition at transition temperature Tρ. A hysteretic behavior is observed for zero field resistivity curves with Tρ = 128 K on cooling process and Tρ = 136 K on warming process. Zero field resistivity curves follow Zener polynomial law in the metallic phase with unusual n exponent value ∼9. Presence of resistivity minimum at low temperatures has been ascribed to the coulombic electron-electron scattering process. Resistivity modification due to the magnetic field cycling testifies the presence of the training effect. Magnetization and resistivity appear to be highly correlated. Magnetoresistive study reveals colossal values of negative magnetoresistance reaching about 75% at 132 K under only 2T applied field. Colossal values of magnetoresistance suggest the possibility of using this sample for magnetic field sensing and spintronic applications.

  15. Using quantum dot photoluminescence for load detection

    NASA Astrophysics Data System (ADS)

    Moebius, M.; Martin, J.; Hartwig, M.; Baumann, R. R.; Otto, T.; Gessner, T.

    2016-08-01

    We propose a novel concept for an integrable and flexible sensor capable to visualize mechanical impacts on lightweight structures by quenching the photoluminescence (PL) of CdSe quantum dots. Considering the requirements such as visibility, storage time and high optical contrast of PL quenching with low power consumption, we have investigated a symmetrical and an asymmetrical layer stack consisting of semiconductor organic N,N,N',N'-Tetrakis(3-methylphenyl)-3,3'-dimethylbenzidine (HMTPD) and CdSe quantum dots with elongated CdS shell. Time-resolved series of PL spectra from layer stacks with applied voltages of different polarity and simultaneous observation of power consumption have shown that a variety of mechanisms such as photo-induced charge separation and charge injection, cause PL quenching. However, mechanisms such as screening of external field as well as Auger-assisted charge ejection is working contrary to that. Investigations regarding the influence of illumination revealed that the positive biased asymmetrical layer stack is the preferred sensor configuration, due to a charge carrier injection at voltages of 10 V without the need of coincident illumination.

  16. Rapid detection of cardiac troponin I using antibody-immobilized gate-pulsed AlGaN/GaN high electron mobility transistor structures

    NASA Astrophysics Data System (ADS)

    Yang, Jiancheng; Carey, Patrick; Ren, Fan; Wang, Yu-Lin; Good, Michael L.; Jang, Soohwan; Mastro, Michael A.; Pearton, S. J.

    2017-11-01

    We report a comparison of two different approaches to detecting cardiac troponin I (cTnI) using antibody-functionalized AlGaN/GaN High Electron Mobility Transistors (HEMTs). If the solution containing the biomarker has high ionic strength, there can be difficulty in detection due to charge-screening effects. To overcome this, in the first approach, we used a recently developed method involving pulsed biases applied between a separate functionalized electrode and the gate of the HEMT. The resulting electrical double layer produces charge changes which are correlated with the concentration of the cTnI biomarker. The second approach fabricates the sensing area on a glass slide, and the pulsed gate signal is externally connected to the nitride HEMT. This produces a larger integrated change in charge and can be used over a broader range of concentrations without suffering from charge-screening effects. Both approaches can detect cTnI at levels down to 0.01 ng/ml. The glass slide approach is attractive for inexpensive cartridge-type sensors.

  17. Charge Weld Effects on High Cycle Fatigue Behavior of a Hollow Extruded AA6082 Profile

    NASA Astrophysics Data System (ADS)

    Nanninga, N.; White, C.; Dickson, R.

    2011-10-01

    Fatigue properties of specimens taken from different locations along the length of a hollow AA6082 extrusion, where charge weld (interface between successive billets in multi-billet extrusions) properties and the degree of coring (accumulation of highly sheared billet surface material at back end of billet) are expected to vary, have been evaluated. The fatigue strength of transverse specimens containing charge welds is lower near the front of the extrusion where the charge weld separation is relatively large. The relationship between fatigue failure and charge weld separation appears to be directly related to charge weld properties. The lower fatigue properties of the specimens are likely associated with early overload fatigue failure along the charge weld interface. Coring does not appear to have significantly affected fatigue behavior.

  18. Particle separation

    NASA Technical Reports Server (NTRS)

    Arnott, W. Patrick (Inventor); Chakrabarty, Rajan K. (Inventor); Moosmuller, Hans (Inventor)

    2011-01-01

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  19. Particle separation

    DOEpatents

    Moosmuller, Hans [Reno, NV; Chakrabarty, Rajan K [Reno, NV; Arnott, W Patrick [Reno, NV

    2011-04-26

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  20. The effect of cosmic rays on thunderstorm electricity

    NASA Technical Reports Server (NTRS)

    Bragin, Y. A.

    1975-01-01

    The inflow of charges of small ions, formed by cosmic rays, into thunderstorm cells is estimated on the basis of rocket measurements of ionic concentrations below 90 km. Out of the two processes that form the thunderstorm charge (generation and separation of charges), the former is supposed to be caused by cosmic rays, and the nature of separation is assumed to be the same as in other thunderstorm theories.

  1. 17 CFR 270.26a-2 - Exemptions from certain provisions of sections 26 and 27 for registered separate accounts and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... deduction of certain fees and charges from the assets of such accounts. 270.26a-2 Section 270.26a-2... registered separate accounts and others regarding custodianship of and deduction of certain fees and charges... by any State or other governmental entity and, if the separate account is registered under the Act as...

  2. High-potential perfluorinated phthalocyanine-fullerene dyads for generation of high-energy charge-separated states: formation and photoinduced electron-transfer studies.

    PubMed

    Das, Sushanta K; Mahler, Andrew; Wilson, Angela K; D'Souza, Francis

    2014-08-25

    High oxidation potential perfluorinated zinc phthalocyanines (ZnF(n)Pcs) are synthesised and their spectroscopic, redox, and light-induced electron-transfer properties investigated systematically by forming donor-acceptor dyads through metal-ligand axial coordination of fullerene (C60) derivatives. Absorption and fluorescence spectral studies reveal efficient binding of the pyridine- (Py) and phenylimidazole-functionalised fullerene (C60Im) derivatives to the zinc centre of the F(n)Pcs. The determined binding constants, K, in o-dichlorobenzene for the 1:1 complexes are in the order of 10(4) to 10(5) M(-1); nearly an order of magnitude higher than that observed for the dyad formed from zinc phthalocyanine (ZnPc) lacking fluorine substituents. The geometry and electronic structure of the dyads are determined by using the B3LYP/6-31G* method. The HOMO and LUMO levels are located on the Pc and C60 entities, respectively; this suggests the formation of ZnF(n)Pc(.+)-C60Im(.-) and ZnF(n)Pc(.+)-C60Py(.-) (n=0, 8 or 16) intra-supramolecular charge-separated states during electron transfer. Electrochemical studies on the ZnPc-C60 dyads enable accurate determination of their oxidation and reduction potentials and the energy of the charge-separated states. The energy of the charge-separated state for dyads composed of ZnF(n)Pc is higher than that of normal ZnPc-C60 dyads and reveals their significance in harvesting higher amounts of light energy. Evidence for charge separation in the dyads is secured from femtosecond transient absorption studies in nonpolar toluene. Kinetic evaluation of the cation and anion radical ion peaks reveals ultrafast charge separation and charge recombination in dyads composed of perfluorinated phthalocyanine and fullerene; this implies their significance in solar-energy harvesting and optoelectronic device building applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. "Double-Cable" Conjugated Polymers with Linear Backbone toward High Quantum Efficiencies in Single-Component Polymer Solar Cells.

    PubMed

    Feng, Guitao; Li, Junyu; Colberts, Fallon J M; Li, Mengmeng; Zhang, Jianqi; Yang, Fan; Jin, Yingzhi; Zhang, Fengling; Janssen, René A J; Li, Cheng; Li, Weiwei

    2017-12-27

    A series of "double-cable" conjugated polymers were developed for application in efficient single-component polymer solar cells, in which high quantum efficiencies could be achieved due to the optimized nanophase separation between donor and acceptor parts. The new double-cable polymers contain electron-donating poly(benzodithiophene) (BDT) as linear conjugated backbone for hole transport and pendant electron-deficient perylene bisimide (PBI) units for electron transport, connected via a dodecyl linker. Sulfur and fluorine substituents were introduced to tune the energy levels and crystallinity of the conjugated polymers. The double-cable polymers adopt a "face-on" orientation in which the conjugated BDT backbone and the pendant PBI units have a preferential π-π stacking direction perpendicular to the substrate, favorable for interchain charge transport normal to the plane. The linear conjugated backbone acts as a scaffold for the crystallization of the PBI groups, to provide a double-cable nanophase separation of donor and acceptor phases. The optimized nanophase separation enables efficient exciton dissociation as well as charge transport as evidenced from the high-up to 80%-internal quantum efficiency for photon-to-electron conversion. In single-component organic solar cells, the double-cable polymers provide power conversion efficiency up to 4.18%. This is one of the highest performances in single-component organic solar cells. The nanophase-separated design can likely be used to achieve high-performance single-component organic solar cells.

  4. Do diabetes group visits lead to lower medical care charges?

    PubMed

    Clancy, Dawn E; Dismuke, Clara E; Magruder, Kathryn Marley; Simpson, Kit N; Bradford, David

    2008-01-01

    To evaluate whether attending diabetes group visits (GVs) leads to lower medical care charges for inadequately insured patients with type 2 diabetes mellitus (DM). Randomized controlled clinical trial. Data were abstracted from financial records for 186 patients with uncontrolled type 2 DM randomized to receive care in GVs or usual care for 12 months. Mann-Whitney tests for differences of means for outpatient visits (primary and specialty care), emergency department (ED) visits, and inpatient stays were performed. Separate charge models were developed for primary and specialty outpatient visits. Because GV adherence is potentially dependent on unobserved patient characteristics, treatment effect models of outpatient charges and specialty care visits were estimated using maximum likelihood methods. Mann-Whitney test results indicated that GV patients had reduced ED and total charges but more outpatient charges than usual care patients. Ordinary least squares estimations confirmed that GVs increased outpatient visit charges; however, controlling for endogeneity by estimating a treatment effect model of outpatient visit charges showed that GVs statistically significantly reduced outpatient charges (P <.001). Estimation of a separate treatment effect model of specialty care visits confirmed that GV effects on outpatient visit charges occurred via a reduction in specialty care visits. After controlling for endogeneity via estimation of a treatment effect model, GVs statistically significantly reduced outpatient visit charges. Estimation of a separate treatment effect model of specialty care visits indicated that GVs likely substitute for more expensive specialty care visits.

  5. Encapsulating Bi2Ti2O7 (BTO) with reduced graphene oxide (RGO): an effective strategy to enhance photocatalytic and photoelectrocatalytic activity of BTO.

    PubMed

    Gupta, Satyajit; Subramanian, Vaidyanathan Ravi

    2014-11-12

    Multimetal oxides (AxByOz) offer a higher degree of freedom compared to single metal oxides (AOx) in that these oxides facilitate (i) designing nanomaterials with greater stability, (ii) tuning of the optical bandgap, and (iii) promoting visible light absorption. However, all AxByOz materials such as pyrochlores (A2B2O7)--referred to here as band-gap engineered composite oxide nanomaterials or BECONs--are traditionally prone to severe charge recombination at their surface. To alleviate the charge recombination, an effective strategy is to employ reduced graphene oxide (RGO) as a charge separator. The BECON and the RGO with oppositely charged functional groups attached to them can be integrated at the interface by employing a simple electrostatic self-assembly approach. As a case study, the approach is demonstrated using the Pt-free pyrochlore bismuth titanate (BTO) with RGO, and the application of the composite is investigated for the first time. When tested as a photocatalyst toward hydrogen production, an increase of ∼ 250% using BTO in the presence of RGO was observed. Further, photoelectrochemical measurements indicate an enhancement of ∼ 130% in the photocurrent with RGO inclusion. These two results firmly establish the viability of the electrostatic approach and the inclusion of RGO. The merits of the RGO addition is identified as (i) the RGO-assisted improvement in the separation of the photogenerated charges of BTO, (ii) the enhanced utilization of the charges in a photocatalytic process, and (iii) the maintenance of the BTO/RGO structural integrity after repeated use (established through reusability analysis). The success of the self-assembly strategy presented here lays the foundation for developing other forms of BECONs, belonging to perovskites (ABO3), sillenite (A12BO20), or delafossite (ABO2) groups, hitherto written off due to limited or no photoelectrochemicalactivity.

  6. Trypsin treatment of reaction centers from Rhodobacter sphaeroides in the dark and under illumination: protein structural changes follow charge separation.

    PubMed

    Brzezinski, P; Andréasson, L E

    1995-06-06

    Reaction centers from Rhodobacter sphaeroides R-26 were treated with trypsin in the dark and during illumination (in the charge-separated state). Trypsination resulted in a time-dependent modification of the reaction centers, reflected in changes in the charge recombination rate, in the inhibition of QA- to QB electron transfer, and eventually to inhibition of charge separation. Comparisons of centers with ubiquinone or anthraquinone in the QA site, in which the charge recombination pathways are different, indicate that trypsination affects charges close to the QA(-)-binding site. Studies of light-induced voltage changes from moving charges in reaction centers incorporated in lipid layers on a Teflon film, a technique which allows the discrimination of effects on donor and acceptor sides, indicate that the acceptor side is preferentially degraded by trypsin in the dark. Tryptic digestion during illumination generally resulted in a marked strengthening and acceleration of the effects seen already during dark treatment, but new effects were also detected in gel electrophoretic peptide patterns, in optical spectra, and in the kinetic measurements. Optical kinetic measurements revealed that the donor side of the reaction centers became susceptible to modification by trypsin during illumination as seen in the value of the binding constant for soluble cytochrome c2 which increased by a factor of 2, whereas it was much less affected after trypsination of reaction centers in the dark. The influence of illumination on the rate and mode by which trypsin acts on reaction centers indicates that changes in the protein conformation follow charge separation.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Composition and structure of whey protein/gum arabic coacervates.

    PubMed

    Weinbreck, F; Tromp, R H; de Kruif, C G

    2004-01-01

    Complex coacervation in whey protein/gum arabic (WP/GA) mixtures was studied as a function of three main key parameters: pH, initial protein to polysaccharide mixing ratio (Pr:Ps)(ini), and ionic strength. Previous studies had already revealed under which conditions a coacervate phase was obtained. This study is aimed at understanding how these parameters influence the phase separation kinetics, the coacervate composition, and the internal coacervate structure. At a defined (Pr:Ps)(ini), an optimum pH of complex coacervation was found (pH(opt)), at which the strength of electrostatic interaction was maximum. For (Pr:Ps)(ini) = 2:1, the phase separation occurred the fastest and the final coacervate volume was the largest at pH(opt) = 4.0. The composition of the coacervate phase was determined after 48 h of phase separation and revealed that, at pH(opt), the coacervate phase was the most concentrated. Varying the (Pr:Ps)(ini) shifted the pH(opt) to higher values when (Pr:Ps)(ini) was increased and to lower values when (Pr:Ps)(ini) was decreased. This phenomenon was due to the level of charge compensation of the WP/GA complexes. Finally, the structure of the coacervate phase was studied with small-angle X-ray scattering (SAXS). SAXS data confirmed that at pH(opt) the coacervate phase was dense and structured. Model calculations revealed that the structure factor of WP induced a peak at Q = 0.7 nm(-1), illustrating that the coacervate phase was more structured, inducing the stronger correlation length of WP molecules. When the pH was changed to more acidic values, the correlation peak faded away, due to a more open structure of the coacervate. A shoulder in the scattering pattern of the coacervates was visible at small Q. This peak was attributed to the presence of residual charges on the GA. The peak intensity was reduced when the strength of interaction was increased, highlighting a greater charge compensation of the polyelectrolyte. Finally, increasing the ionic strength led to a less concentrated, a more heterogeneous, and a less structured coacervate phase, induced by the screening of the electrostatic interactions.

  8. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.

    PubMed

    Hammarström, Leif

    2015-03-17

    The conversion and storage of solar energy into a fuel holds promise to provide a significant part of the future renewable energy demand of our societies. Solar energy technologies today generate heat or electricity, while the large majority of our energy is used in the form of fuels. Direct conversion of solar energy to a fuel would satisfy our needs for storable energy on a large scale. Solar fuels can be generated by absorbing light and converting its energy to chemical energy by electron transfer leading to separation of electrons and holes. The electrons are used in the catalytic reduction of a cheap substrate with low energy content into a high-energy fuel. The holes are filled by oxidation of water, which is the only electron source available for large scale solar fuel production. Absorption of a single photon typically leads to separation of a single electron-hole pair. In contrast, fuel production and water oxidation are multielectron, multiproton reactions. Therefore, a system for direct solar fuel production must be able to accumulate the electrons and holes provided by the sequential absorption of several photons in order to complete the catalytic reactions. In this Account, the process is termed accumulative charge separation. This is considerably more complicated than charge separation on a single electron level and needs particular attention. Semiconductor materials and molecular dyes have for a long time been optimized for use in photovoltaic devices. Efforts are made to develop new systems for light harvesting and charge separation that are better optimized for solar fuel production than those used in the early devices presented so far. Significant progress has recently been made in the discovery and design of better homogeneous and heterogeneous catalysts for solar fuels and water oxidation. While the heterogeneous ones perform better today, molecular catalysts based on transition metal complexes offer much greater tunability of electronic and structural properties, they are typically more amenable to mechanistic analysis, and they are small and therefore require less material. Therefore, they have arguably greater potential as future efficient catalysts but must be efficiently coupled to accumulative charge separation. This Account discusses accumulative charge separation with focus on molecular and molecule-semiconductor hybrid systems. The coupling between charge separation and catalysis involves many challenges that are often overlooked, and they are not always apparent when studying water oxidation and fuel formation as separate half-reactions with sacrificial agents. Transition metal catalysts, as well as other multielectron donors and acceptors, cycle through many different states that may quench the excited sensitizer by nonproductive pathways. Examples where this has been shown, often with ultrafast rates, are reviewed. Strategies to avoid these competing energy-loss reactions and still obtain efficient coupling of charge separation to catalysis are discussed. This includes recent examples of dye-sensitized semiconductor devices with molecular catalysts and dyes that realize complete water splitting, albeit with limited efficiency.

  9. First-principles studies of interfacial charge separation in nano-materials photovoltaic heterojunction

    NASA Astrophysics Data System (ADS)

    Kanai, Yosuke

    2009-03-01

    Charge separation is a crucial process that must be understood in order to make substantial improvements in nano-materials based PV cells. In our work, first principles quantum mechanical calculations are employed to shed light on this process for some important nano-material heterojunctions. I will first present our work on the interfacial charge separation in Fullerene/P3HT and CNT/P3HT heterojunctions. Our findings indicate that in the fullerene system a two-step process is operative, involving an adiabatic electron transfer and an exciton dissociation via quasi-degenerate states localized on the fullerene. For the nanotubes, on the other hand, while such a two-step process is not necessary for efficient charge separation, the presence of metallic nanotubes lead to undesirable charge traps. Secondly, I will discuss how we are addressing the difficulty in employing standard DFT approaches for investigating inorganic-organic PV interfaces, which are composed of two distinct materials with very different electronic environments. I will discuss a QMC scheme for obtaining many-body corrections to the Kohn-Sham level alignments and its application to a CdSe/Oligothiophene hybrid PV interface, with the aim of tailoring its behavior by controlling the conjugation length.

  10. Long-Lived Photoinduced Charge Separation in a Trinuclear Iron-μ 3 -oxo-based Metal–Organic Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanna, Lauren; Kucheryavy, Pavel; Liu, Cunming

    2017-06-14

    The presence of long-lived charge-separated excited states in metal-organic frameworks (MOFs) can enhance their photocatalytic activity by decreasing the probability that photogenerated electrons and holes recombine before accessing adsorbed reactants. Detecting these charge separated states via optical transient absorption, however, can be challenging when they lack definitive optical signatures. Here, we investigate the long-lived excited state of a MOF with such vague optical properties, MIL-100(Fe), comprised of Fe3-μ3-oxo clusters and trimesic acid linkers using Fe K-edge X-ray transient absorption (XTA) spectroscopy, to unambiguously determine its ligand-to-metal charge transfer character. Spectra measured at time delays up to 3.6 μs confirm themore » long lived nature of the charge separated excited state. Several trinuclear iron μ3- oxo carboxylate complexes, which model the trinuclear cores of the MOF structure, are measured for comparison using both steady state XAS and XTA to further support this assignment and corresponding decay time. The MOF is prepared as a colloidal nanoparticle suspension for these measurements so both its fabrication and particle size analysis are presented, as well.« less

  11. Imaging the Anomalous Charge Distribution Inside CsPbBr3 Perovskite Quantum Dots Sensitized Solar Cells.

    PubMed

    Panigrahi, Shrabani; Jana, Santanu; Calmeiro, Tomás; Nunes, Daniela; Martins, Rodrigo; Fortunato, Elvira

    2017-10-24

    Highly luminescent CsPbBr 3 perovskite quantum dots (QDs) have gained huge attention in research due to their various applications in optoelectronics, including as a light absorber in photovoltaic solar cells. To improve the performances of such devices, it requires a deeper knowledge on the charge transport dynamics inside the solar cell, which are related to its power-conversion efficiency. Here, we report the successful fabrication of an all-inorganic CsPbBr 3 perovskite QD sensitized solar cell and the imaging of anomalous electrical potential distribution across the layers of the cell under different illuminations using Kelvin probe force microscopy. Carrier generation, separation, and transport capacity inside the cells are dependent on the light illumination. Large differences in surface potential between electron and hole transport layers with unbalanced carrier separation at the junction have been observed under white light (full solar spectrum) illumination. However, under monochromatic light (single wavelength of solar spectrum) illumination, poor charge transport occurred across the junction as a consequence of less difference in surface potential between the active layers. The outcome of this study provides a clear idea on the carrier dynamic processes inside the cells and corresponding surface potential across the layers under the illumination of different wavelengths of light to understand the functioning of the solar cells and ultimately for the improvement of their photovoltaic performances.

  12. Charge separation and charge delocalization identified in long-living states of photoexcited DNA

    PubMed Central

    Bucher, Dominik B.; Pilles, Bert M.; Carell, Thomas; Zinth, Wolfgang

    2014-01-01

    Base stacking in DNA is related to long-living excited states whose molecular nature is still under debate. To elucidate the molecular background we study well-defined oligonucleotides with natural bases, which allow selective UV excitation of one single base in the strand. IR probing in the picosecond regime enables us to dissect the contribution of different single bases to the excited state. All investigated oligonucleotides show long-living states on the 100-ps time scale, which are not observable in a mixture of single bases. The fraction of these states is well correlated with the stacking probabilities and reaches values up to 0.4. The long-living states show characteristic absorbance bands that can be assigned to charge-transfer states by comparing them to marker bands of radical cation and anion spectra. The charge separation is directed by the redox potential of the involved bases and thus controlled by the sequence. The spatial dimension of this charge separation was investigated in longer oligonucleotides, where bridging sequences separate the excited base from a sensor base with a characteristic marker band. After excitation we observe a bleach of all involved bases. The contribution of the sensor base is observable even if the bridge is composed of several bases. This result can be explained by a charge delocalization along a well-stacked domain in the strand. The presence of charged radicals in DNA strands after light absorption may cause reactions—oxidative or reductive damage—currently not considered in DNA photochemistry. PMID:24616517

  13. Simulations to Predict the Phase Behavior and Structure of Multipolar Colloidal Particles

    NASA Astrophysics Data System (ADS)

    Rutkowski, David Matthew

    Colloidal particles with anisotropic charge distributions can assemble into a number of interesting structures including chains, lattices and micelles that could be useful in biotechnology, optics and electronics. The goal of this work is to understand how the properties of the colloidal particles, such as their charge distribution or shape, affect the selfassembly and phase behavior of collections of such particles. The specific aim of this work is to understand how the separation between a pair of oppositely signed charges affects the phase behavior and structure of assemblies of colloidal particles. To examine these particles, we have used both discontinuous molecular dynamics (DMD) and Monte Carlo (MC) simulation techniques. In our first study of colloidal particles with finite charge separation, we simulate systems of 2-D colloidal rods with four possible charge separations. Our simulations show that the charge separation does indeed have a large effect on the phase behavior as can be seen in the phase diagrams we construct for these four systems in the area fraction-reduced temperature plane. The phase diagrams delineate the boundaries between isotropic fluid, string-fluid and percolated fluid for all systems considered. In particular, we find that coarse gel-like structures tend to form at large charge separations while denser aggregates form at small charge separations, suggesting a route to forming low volume gels by focusing on systems with large charge separations. Next we examine systems of circular particles with four embedded charges of alternating sign fixed to a triangular lattice. This system is found to form a limit periodic structure, a theoretical structure with an infinite number of phase transitions, under specific conditions. The limit-periodic structure only forms when the rotation of the particles in the system is restricted to increments of pi/3. When the rotation is restricted to increments of th/6 or the rotation is continuous, related structures form including a striped phase and a phase with nematic order. Neither the distance from the point charges to the center of the particle nor the angle between the charges influences whether the system forms a limit-periodic structure, suggesting that point quadrupoles may also be able to form limit-periodic structures. Results from these simulations will likely aid in the quest to find an experimental realization of a limit-periodic structure. Next we examine the effect of charge separation on the self-assembly of systems of 2-D colloidal particles with off-center extended dipoles. We simulate systems with both small and large charge separations for a set of displacements of the dipole from the particle center. Upon cooling, these particles self-assemble into closed, cyclic structures at large displacements including dimers, triangular shapes and square shapes, and chain-like structures at small displacements. At extremely low temperatures, the cyclic structures form interesting lattices with particles of similar chirality grouped together. Results from this work could aid in the experimental construction of open lattice-like structures that could find use in photonic applications. Finally, we present work in collaboration with Drs. Bhuvnesh Bharti and Orlin Velev in which we investigate how the surface coverage affects the self-assembly of systems of Janus particles coated with both an iron oxide and fatty acid chain layer. We model these particles by decorating a sphere with evenly dispersed points that interact with points on other spheres through square-well interactions. The interactions are designed to mimic specific coverage values for the iron oxide/fatty acid chain layer. Structures similar to those found in experiment form readily in the simulations. The number of clusters formed as a function of surface coverage agrees well with experiment. The aggregation behavior of these novel particles can therefore, be described by a relatively simple model.

  14. Coulomb fission in multiply charged molecular clusters: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Harris, Christopher; Baptiste, Joshua; Lindgren, Eric B.; Besley, Elena; Stace, Anthony J.

    2017-04-01

    A series of three multiply charged molecular clusters, (C6H6)nz+ (benzene), (CH3CNnz) + (acetonitrile), and (C4H8O)nz+ (tetrahydrofuran), where the charge z is either 3 or 4, have been studied for the purpose of identifying the patterns of behaviour close to the charge instability limit. Experiments show that on a time scale of ˜10-4 s, ions close to the limit undergo Coulomb fission where the observed pathways exhibit considerable asymmetry in the sizes of the charged fragments and are all associated with kinetic (ejection) energies of between 1.4 and 2.2 eV. Accurate kinetic energies have been determined through a computer simulation of peak profiles recorded in the experiments and the results modelled using a theory formulated to describe how charged particles of dielectric materials interact with one another [E. Bichoutskaia et al., J. Chem. Phys. 133, 024105 (2010)]. The calculated electrostatic interaction energy between separating fragments gives an accurate account for the measured kinetic energies and also supports the conclusion that +4 ions fragment into +3 and +1 products as opposed to the alternative of two +2 fragments. This close match between the theory and experiment reinforces the assumption that a significant fraction of excess charge resides on the surfaces of the fragment ions. It is proposed that the high degree of asymmetry seen in the fragmentation patterns of the multiply charged clusters is due, in part, to limits imposed by the time window during which observations are made.

  15. Lamellar cationic lipid-DNA complexes from lipids with a strong preference for planar geometry: A Minimal Electrostatic Model.

    PubMed

    Perico, Angelo; Manning, Gerald S

    2014-11-01

    We formulate and analyze a minimal model, based on condensation theory, of the lamellar cationic lipid (CL)-DNA complex of alternately charged lipid bilayers and DNA monolayers in a salt solution. Each lipid bilayer, composed by a random mixture of cationic and neutral lipids, is assumed to be a rigid uniformly charged plane. Each DNA monolayer, located between two lipid bilayers, is formed by the same number of parallel DNAs with a uniform separation distance. For the electrostatic calculation, the model lipoplex is collapsed to a single plane with charge density equal to the net lipid and DNA charge. The free energy difference between the lamellar lipoplex and a reference state of the same number of free lipid bilayers and free DNAs, is calculated as a function of the fraction of CLs, of the ratio of the number of CL charges to the number of negative charges of the DNA phosphates, and of the total number of planes. At the isoelectric point the free energy difference is minimal. The complex formation, already favoured by the decrease of the electrostatic charging free energy, is driven further by the free energy gain due to the release of counterions from the DNAs and from the lipid bilayers, if strongly charged. This minimal model compares well with experiment for lipids having a strong preference for planar geometry and with major features of more detailed models of the lipoplex. © 2014 Wiley Periodicals, Inc.

  16. Model of anisotropic nonlinearity in self-defocusing photorefractive media.

    PubMed

    Barsi, C; Fleischer, J W

    2015-09-21

    We develop a phenomenological model of anisotropy in self-defocusing photorefractive crystals. In addition to an independent term due to nonlinear susceptibility, we introduce a nonlinear, non-separable correction to the spectral diffraction operator. The model successfully describes the crossover between photovoltaic and photorefractive responses and the spatially dispersive shock wave behavior of a nonlinearly spreading Gaussian input beam. It should prove useful for characterizing internal charge dynamics in complex materials and for accurate image reconstruction through nonlinear media.

  17. High-performance liquid chromatography analysis of plant saponins: An update 2005-2010

    PubMed Central

    Negi, Jagmohan S.; Singh, Pramod; Pant, Geeta Joshi Nee; Rawat, M. S. M.

    2011-01-01

    Saponins are widely distributed in plant kingdom. In view of their wide range of biological activities and occurrence as complex mixtures, saponins have been purified and separated by high-performance liquid chromatography using reverse-phase columns at lower wavelength. Mostly, saponins are not detected by ultraviolet detector due to lack of chromophores. Electrospray ionization mass spectrometry, diode array detector , evaporative light scattering detection, and charged aerosols have been used for overcoming the detection problem of saponins. PMID:22303089

  18. Coherent states on horospheric three-dimensional Lobachevsky space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurochkin, Yu., E-mail: y.kurochkin@ifanbel.bas-net.by; Shoukavy, Dz., E-mail: shoukavy@ifanbel.bas-net.by; Rybak, I., E-mail: Ivan.Rybak@astro.up.pt

    2016-08-15

    In the paper it is shown that due to separation of variables in the Laplace-Beltrami operator (Hamiltonian of a free quantum particle) in horospheric and quasi-Cartesian coordinates of three dimensional Lobachevsky space, it is possible to introduce standard (“conventional” according to Perelomov [Generalized Coherent States and Their Applications (Springer-Verlag, 1986), p. 320]) coherent states. Some problems (oscillator on horosphere, charged particle in analogy of constant uniform magnetic field) where coherent states are suitable for treating were considered.

  19. Photoelectric performance of TiO2 nanotube array photoelectrodes sensitized with CdS0.54Se0.46 quantum dots

    NASA Astrophysics Data System (ADS)

    Gakhar, Ruchi; Smith, York R.; Misra, Mano; Chidambaram, Dev

    2015-11-01

    The photoelectrochemical performance of CdSSe quantum dots tethered to a framework of vertically oriented titania (TiO2) nanotubes was studied. The TiO2/CdSSe framework demonstrated improved charge transfer due to its unique band edge structure, thus validating the higher photocurrent generation. The composite film led to an 11-fold enhancement in comparison to the control TiO2 film, implying that the ternary quantum dots and the nanotubular structure of TiO2 work in tandem to promote charge separation and favorably impact photoelectrochemical performance. Further, the results also suggest that structural and optoelectronic properties of TiO2 films are significantly affected by the thicknesses of the CdSSe layer.

  20. Molecular Structure and Sequence in Complex Coacervates

    NASA Astrophysics Data System (ADS)

    Sing, Charles; Lytle, Tyler; Madinya, Jason; Radhakrishna, Mithun

    Oppositely-charged polyelectrolytes in aqueous solution can undergo associative phase separation, in a process known as complex coacervation. This results in a polyelectrolyte-dense phase (coacervate) and polyelectrolyte-dilute phase (supernatant). There remain challenges in understanding this process, despite a long history in polymer physics. We use Monte Carlo simulation to demonstrate that molecular features (charge spacing, size) play a crucial role in governing the equilibrium in coacervates. We show how these molecular features give rise to strong monomer sequence effects, due to a combination of counterion condensation and correlation effects. We distinguish between structural and sequence-based correlations, which can be designed to tune the phase diagram of coacervation. Sequence effects further inform the physical understanding of coacervation, and provide the basis for new coacervation models that take monomer-level features into account.

  1. Detection of electromagnetic radiation using nonlinear materials

    DOEpatents

    Hwang, Harold Y.; Liu, Mengkun; Averitt, Richard D.; Nelson, Keith A.; Sternbach, Aaron; Fan, Kebin

    2016-06-14

    An apparatus for detecting electromagnetic radiation within a target frequency range is provided. The apparatus includes a substrate and one or more resonator structures disposed on the substrate. The substrate can be a dielectric or semiconductor material. Each of the one or more resonator structures has at least one dimension that is less than the wavelength of target electromagnetic radiation within the target frequency range, and each of the resonator structures includes at least two conductive structures separated by a spacing. Charge carriers are induced in the substrate near the spacing when the resonator structures are exposed to the target electromagnetic radiation. A measure of the change in conductivity of the substrate due to the induced charge carriers provides an indication of the presence of the target electromagnetic radiation.

  2. Direct observation of metal nanoparticles as heterogeneous nuclei for the condensation of supersaturated organic vapors: nucleation of size-selected aluminum nanoparticles in acetonitrile and n-hexane vapors.

    PubMed

    Abdelsayed, Victor; El-Shall, M Samy

    2014-08-07

    This work reports the direct observation and separation of size-selected aluminum nanoparticles acting as heterogeneous nuclei for the condensation of supersaturated vapors of both polar and nonpolar molecules. In the experiment, we study the condensation of supersaturated acetonitrile and n-hexane vapors on charged and neutral Al nanoparticles by activation of the metal nanoparticles to act as heterogeneous nuclei for the condensation of the organic vapor. Aluminum seed nanoparticles with diameters of 1 and 2 nm are capable of acting as heterogeneous nuclei for the condensation of supersaturated acetonitrile and hexane vapors. The comparison between the Kelvin and Fletcher diameters indicates that for the heterogeneous nucleation of both acetonitrile and hexane vapors, particles are activated at significantly smaller sizes than predicted by the Kelvin equation. The activation of the Al nanoparticles occurs at nearly 40% and 65% of the onset of homogeneous nucleation of acetonitrile and hexane supersaturated vapors, respectively. The lower activation of the charged Al nanoparticles in acetonitrile vapor is due to the charge-dipole interaction which results in rapid condensation of the highly polar acetonitrile molecules on the charged Al nanoparticles. The charge-dipole interaction decreases with increasing the size of the Al nanoparticles and therefore at low supersaturations, most of the heterogeneous nucleation events are occurring on neutral nanoparticles. No sign effect has been observed for the condensation of the organic vapors on the positively and negatively charged Al nanoparticles. The present approach of generating metal nanoparticles by pulsed laser vaporization within a supersaturated organic vapor allows for efficient separation between nucleation and growth of the metal nanoparticles and, consequently controls the average particle size, particle density, and particle size distribution within the liquid droplets of the condensing vapor. Strong correlation is found between the seed nanoparticle's size and the degree of the supersaturation of the condensing vapor. This result and the agreement among the calculated Kelvin diameters and the size of the nucleating Al nanoparticles determined by transmission electron microscopy provide strong proof for the development of a new approach for the separation and characterization of heterogeneous nuclei formed in organic vapors. These processes can take place in the atmosphere by a combination of several organic species including polar compounds which could be very efficient in activating charged nanoparticles and cluster ions of atmospheric relevance.

  3. Direct observation of metal nanoparticles as heterogeneous nuclei for the condensation of supersaturated organic vapors: Nucleation of size-selected aluminum nanoparticles in acetonitrile and n-hexane vapors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelsayed, Victor; Samy El-Shall, M., E-mail: mselshal@vcu.edu

    This work reports the direct observation and separation of size-selected aluminum nanoparticles acting as heterogeneous nuclei for the condensation of supersaturated vapors of both polar and nonpolar molecules. In the experiment, we study the condensation of supersaturated acetonitrile and n-hexane vapors on charged and neutral Al nanoparticles by activation of the metal nanoparticles to act as heterogeneous nuclei for the condensation of the organic vapor. Aluminum seed nanoparticles with diameters of 1 and 2 nm are capable of acting as heterogeneous nuclei for the condensation of supersaturated acetonitrile and hexane vapors. The comparison between the Kelvin and Fletcher diameters indicatesmore » that for the heterogeneous nucleation of both acetonitrile and hexane vapors, particles are activated at significantly smaller sizes than predicted by the Kelvin equation. The activation of the Al nanoparticles occurs at nearly 40% and 65% of the onset of homogeneous nucleation of acetonitrile and hexane supersaturated vapors, respectively. The lower activation of the charged Al nanoparticles in acetonitrile vapor is due to the charge-dipole interaction which results in rapid condensation of the highly polar acetonitrile molecules on the charged Al nanoparticles. The charge-dipole interaction decreases with increasing the size of the Al nanoparticles and therefore at low supersaturations, most of the heterogeneous nucleation events are occurring on neutral nanoparticles. No sign effect has been observed for the condensation of the organic vapors on the positively and negatively charged Al nanoparticles. The present approach of generating metal nanoparticles by pulsed laser vaporization within a supersaturated organic vapor allows for efficient separation between nucleation and growth of the metal nanoparticles and, consequently controls the average particle size, particle density, and particle size distribution within the liquid droplets of the condensing vapor. Strong correlation is found between the seed nanoparticle's size and the degree of the supersaturation of the condensing vapor. This result and the agreement among the calculated Kelvin diameters and the size of the nucleating Al nanoparticles determined by transmission electron microscopy provide strong proof for the development of a new approach for the separation and characterization of heterogeneous nuclei formed in organic vapors. These processes can take place in the atmosphere by a combination of several organic species including polar compounds which could be very efficient in activating charged nanoparticles and cluster ions of atmospheric relevance.« less

  4. The origin of high PCE in PTB7 based photovoltaics: proper charge neutrality level and free energy of charge separation at PTB7/PC71BM interface

    PubMed Central

    Park, Soohyung; Jeong, Junkyeong; Hyun, Gyeongho; Kim, Minju; Lee, Hyunbok; Yi, Yeonjin

    2016-01-01

    The energy level alignments at donor/acceptor interfaces in organic photovoltaics (OPVs) play a decisive role in device performance. However, little is known about the interfacial energetics in polymer OPVs due to technical issues of the solution process. Here, the frontier ortbial line-ups at the donor/acceptor interface in high performance polymer OPVs, PTB7/PC71BM, were investigated using in situ UPS, XPS and IPES. The evolution of energy levels during PTB7/PC71BM interface formation was investigated using vacuum electrospray deposition, and was compared with that of P3HT/PC61BM. At the PTB7/PC71BM interface, the interface dipole and the band bending were absent due to their identical charge neutrality levels. In contrast, a large interfacial dipole was observed at the P3HT/PC61BM interface. The measured photovoltaic energy gap (EPVG) was 1.10 eV for PTB7/PC71BM and 0.90 eV for P3HT/PC61BM. This difference in the EPVG leads to a larger open-circuit voltage of PTB7/PC71BM than that of P3HT/PC61BM. PMID:27734957

  5. The origin of high PCE in PTB7 based photovoltaics: proper charge neutrality level and free energy of charge separation at PTB7/PC71BM interface.

    PubMed

    Park, Soohyung; Jeong, Junkyeong; Hyun, Gyeongho; Kim, Minju; Lee, Hyunbok; Yi, Yeonjin

    2016-10-13

    The energy level alignments at donor/acceptor interfaces in organic photovoltaics (OPVs) play a decisive role in device performance. However, little is known about the interfacial energetics in polymer OPVs due to technical issues of the solution process. Here, the frontier ortbial line-ups at the donor/acceptor interface in high performance polymer OPVs, PTB7/PC 71 BM, were investigated using in situ UPS, XPS and IPES. The evolution of energy levels during PTB7/PC 71 BM interface formation was investigated using vacuum electrospray deposition, and was compared with that of P3HT/PC 61 BM. At the PTB7/PC 71 BM interface, the interface dipole and the band bending were absent due to their identical charge neutrality levels. In contrast, a large interfacial dipole was observed at the P3HT/PC 61 BM interface. The measured photovoltaic energy gap (E PVG ) was 1.10 eV for PTB7/PC 71 BM and 0.90 eV for P3HT/PC 61 BM. This difference in the E PVG leads to a larger open-circuit voltage of PTB7/PC 71 BM than that of P3HT/PC 61 BM.

  6. Solid state electrochromic light modulator

    DOEpatents

    Cogan, Stuart F.; Rauh, R. David

    1993-01-01

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

  7. Solid state electrochromic light modulator

    DOEpatents

    Cogan, Stuart F.; Rauh, R. David

    1993-12-07

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

  8. Solid state electrochromic light modulator

    DOEpatents

    Cogan, Stuart F.; Rauh, R. David

    1990-01-01

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

  9. Solid state electrochromic light modulator

    DOEpatents

    Cogan, S.F.; Rauh, R.D.

    1990-07-03

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counter electrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films. 4 figs.

  10. On the role of local charge carrier mobility in the charge separation mechanism of organic photovoltaics.

    PubMed

    Yoshikawa, Saya; Saeki, Akinori; Saito, Masahiko; Osaka, Itaru; Seki, Shu

    2015-07-21

    Although the charge separation (CS) and transport processes that compete with geminate and non-geminate recombination are commonly regarded as the governing factors of organic photovoltaic (OPV) efficiency, the details of the CS mechanism remain largely unexplored. Here we provide a systematic investigation on the role of local charge carrier mobility in bulk heterojunction films of ten different low-bandgap polymers and polythiophene analogues blended with methanofullerene (PCBM). By correlating with the OPV performances, we demonstrated that the local mobility of the blend measured by time-resolved microwave conductivity is more important for the OPV output than those of the pure polymers. Furthermore, the results revealed two separate trends for crystalline and semi-crystalline polymers. This work offers guidance in the design of high-performance organic solar cells.

  11. A theoretical study on hot charge-transfer states and dimensional effects of organic photocells based on an ideal diode model.

    PubMed

    Shimazaki, Tomomi; Nakajima, Takahito

    2017-05-21

    This paper discusses an ideal diode model with hot charge-transfer (CT) states to analyze the power conversion efficiency of an organic photocell. A free carrier generation mechanism via sunlight in an organic photocell consists of four microscopic processes: photon absorption, exciton dissociation, CT, and charge separation. The hot CT state effect has been actively investigated to understand the charge separation process. We previously reported a theoretical method to calculate the efficiency of the charge separation process via a hot CT state (T. Shimazaki et al., Phys. Chem. Chem. Phys., 2015, 17, 12538 and J. Chem. Phys., 2016, 144, 234906). In this paper, we integrate the simulation method into the ideal photocell diode model and calculate several properties such as short circuit current, open circuit voltage, and power conversion efficiency. Our results highlight that utilizing the dimensional (entropy) effect together with the hot CT state can play an essential role in developing more efficient organic photocell devices.

  12. Influence of Crystallinity and Energetics on Charge Separation in Polymer–Inorganic Nanocomposite Films for Solar Cells

    PubMed Central

    Bansal, Neha; Reynolds, Luke X.; MacLachlan, Andrew; Lutz, Thierry; Ashraf, Raja Shahid; Zhang, Weimin; Nielsen, Christian B.; McCulloch, Iain; Rebois, Dylan G.; Kirchartz, Thomas; Hill, Michael S.; Molloy, Kieran C.; Nelson, Jenny; Haque, Saif A.

    2013-01-01

    The dissociation of photogenerated excitons and the subsequent spatial separation of the charges are of crucial importance to the design of efficient donor-acceptor heterojunction solar cells. While huge progress has been made in understanding charge generation at all-organic junctions, the process in hybrid organic:inorganic systems has barely been addressed. Here, we explore the influence of energetic driving force and local crystallinity on the efficiency of charge pair generation at hybrid organic:inorganic semiconductor heterojunctions. We use x-ray diffraction, photoluminescence quenching, transient absorption spectroscopy, photovoltaic device and electroluminescence measurements to demonstrate that the dissociation of photogenerated polaron pairs at hybrid heterojunctions is assisted by the presence of crystalline electron acceptor domains. We propose that such domains encourage delocalization of the geminate pair state. The present findings suggest that the requirement for a large driving energy for charge separation is relaxed when a more crystalline electron acceptor is used. PMID:23524906

  13. Spontaneous Charge Separation and Sublimation Processes are Ubiquitous in Nature and in Ionization Processes in Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah; Lu, I.-Chung; Rauschenbach, Stephan; Hoang, Khoa; Wang, Beixi; Chubatyi, Nicholas D.; Zhang, Wen-Jing; Inutan, Ellen D.; Pophristic, Milan; Sidorenko, Alexander; McEwen, Charles N.

    2018-02-01

    Ionization processes have been discovered by which small and large as well as volatile and nonvolatile compounds are converted to gas-phase ions when associated with a matrix and exposed to sub-atmospheric pressure. Here, we discuss experiments further defining these simple and unexpected processes. Charge separation is found to be a common process for small molecule chemicals, solids and liquids, passed through an inlet tube from a higher to a lower pressure region, with and without heat applied. This charge separation process produces positively- and negatively-charged particles with widely different efficiencies depending on the compound and its physical state. Circumstantial evidence is presented suggesting that in the new ionization process, charged particles carry analyte into the gas phase, and desolvation of these particles produce the bare ions similar to electrospray ionization, except that solid particles appear likely to be involved. This mechanistic proposition is in agreement with previous theoretical work related to ion emission from ice.

  14. Fast charge separation in a non-fullerene organic solar cell with a small driving force

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Chen, Shangshang; Qian, Deping; Gautam, Bhoj; Yang, Guofang; Zhao, Jingbo; Bergqvist, Jonas; Zhang, Fengling; Ma, Wei; Ade, Harald; Inganäs, Olle; Gundogdu, Kenan; Gao, Feng; Yan, He

    2016-07-01

    Fast and efficient charge separation is essential to achieve high power conversion efficiency in organic solar cells (OSCs). In state-of-the-art OSCs, this is usually achieved by a significant driving force, defined as the offset between the bandgap (Egap) of the donor/acceptor materials and the energy of the charge transfer (CT) state (ECT), which is typically greater than 0.3 eV. The large driving force causes a relatively large voltage loss that hinders performance. Here, we report non-fullerene OSCs that exhibit ultrafast and efficient charge separation despite a negligible driving force, as ECT is nearly identical to Egap. Moreover, the small driving force is found to have minimal detrimental effects on charge transfer dynamics of the OSCs. We demonstrate a non-fullerene OSC with 9.5% efficiency and nearly 90% internal quantum efficiency despite a low voltage loss of 0.61 V. This creates a path towards highly efficient OSCs with a low voltage loss.

  15. Negative charge emission due to excimer laser bombardment of sodium trisilicate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langford, S.C.; Jensen, L.C.; Dickinson, J.T.

    We describe measurements of negative charge emission accompanying irradiation of sodium trisilicate glass (Na{sub 2}O{center dot}3SiO{sub 2}) with 248-nm excimer laser light at fluences on the order of 2 J/cm{sup 2} per pulse, i.e., at the threshold for ablative etching of the glass surface. The negative charge emission consists of a very prompt photoelectron burst coincident with the laser pulse, followed by a much slower plume of electrons and negative ions traveling with a high density cloud of positive ions, previously identified as primarily Na{sup +}. Using combinations of {bold E} and {bold B} fields in conjunction with time-of-flight methods,more » the negative ions were successfully separated from the plume and tentatively identified as O{sup {minus}}, Si{sup {minus}}, NaO{sup {minus}}, and perhaps NaSi{sup {minus}}. These negative species are probably formed by gas phase collisions in the near-surface region which result in electron attachment.« less

  16. Near-field spatial mapping of strongly interacting multiple plasmonic infrared antennas.

    PubMed

    Grefe, Sarah E; Leiva, Daan; Mastel, Stefan; Dhuey, Scott D; Cabrini, Stefano; Schuck, P James; Abate, Yohannes

    2013-11-21

    Near-field dipolar plasmon interactions of multiple infrared antenna structures in the strong coupling limit are studied using scattering-type scanning near-field optical microscope (s-SNOM) and theoretical finite-difference time-domain (FDTD) calculations. We monitor in real-space the evolution of plasmon dipolar mode of a stationary antenna structure as multiple resonantly matched dipolar plasmon particles are closely approaching it. Interparticle separation, length and polarization dependent studies show that the cross geometry structure favors strong interparticle charge-charge, dipole-dipole and charge-dipole Coulomb interactions in the nanometer scale gap region, which results in strong field enhancement in cross-bowties and further allows these structures to be used as polarization filters. The nanoscale local field amplitude and phase maps show that due to strong interparticle Coulomb coupling, cross-bowtie structures redistribute and highly enhance the out-of-plane (perpendicular to the plane of the sample) plasmon near-field component at the gap region relative to ordinary bowties.

  17. Inversion layer solar cell fabrication and evaluation

    NASA Technical Reports Server (NTRS)

    Call, R. L.

    1972-01-01

    Silicon solar cells with induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. This charged layer was supplied through three mechanisms: (1) supplying a positive potential to a transparent electrode separated from the silicon surface by a dielectric, (2) contaminating the oxide layer with positive ions, and (3) forming donor surface states that leave a positive charge on the surface. A movable semi-infinite shadow delineated the extent of sensitivity of the cell due to the inversion region. Measurements of the inversion layer cell response to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. Theory of the conductance of the inversion layer vs. strength of the inversion layer was compared with experiment and found to match. Theoretical determinations of junction depth and inversion layer strength were made as a function of the surface potential for the transparent electrode cell.

  18. Inversion layer solar cell fabrication and evaluation. [measurement of response of inversion layer solar cell to light of different wavelengths

    NASA Technical Reports Server (NTRS)

    Call, R. L.

    1973-01-01

    Silicon solar cells operating with induced junctions rather than diffused junctions have been fabricated and tested. Induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. This charged layer was supplied through three mechanisms: (1) applying a positive potential to a transparent electrode separated from the silicon surface by a dielectric, (2) contaminating the oxide layer with positive ions, and (3) forming donor surface states that leave a positive charge on the surface. A movable semi-infinite shadow delineated the extent of sensitivity of the cell due to the inversion region. Measurements of the response of the inversion layer cell to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. The greater sensitivity occurs because of the shallow junction and the strong electric field at the surface.

  19. Understanding performance limitation and suppression of leakage current or self-discharge in electrochemical capacitors: a review.

    PubMed

    Ike, Innocent S; Sigalas, Iakovos; Iyuke, Sunny

    2016-01-14

    Self-discharge is known to have considerable adverse effects on the performance and application of electrochemical capacitors (ECs). Thus, obtaining an understanding of EC self-discharge mechanism(s) and subsequent derivation and solution of EC models, subject to a particular mechanism or combination of mechanisms during charging, discharging and storage of the device, is the only way to solve problems associated with EC self-discharge. In this review, we summarize recent progress with respect to EC self-discharge by considering the two basic types, electric double-layer capacitors (EDLC) and pseudocapacitors, and their hybrids with their respective charge storage mechanisms, distinguishable self-discharge mechanisms, charge redistribution and charge/energy loss during self-discharge. It was clearly observed that most of the voltage reduction is not purely due to the self-discharge effect but is basically due to redistribution of charge carriers deep inside pores and can therefore be retrieved from a capacitor during long-time discharging. Tuning the self-discharge rate is therefore feasible for single-walled carbon nanotube (SWNT) ECs and can be achieved by simply adjusting the surface chemistry of the nanotubes. The effects of surface chemistry modification on EC self-discharge are very important in studying and suppressing the self-discharge process and will benefit potential applications of ECs with respect to energy retention. Self-discharge can be averted by the use of redox couples that are transformed to insoluble species via electrolysis and adsorbed onto the activated carbon electrode in redox-couple EDLCs, thus transforming the EDLC electrolyte into a material that can store charge. Self-discharge in ECs can also be successfully suppressed by utilizing an ion-interchange layer (ion-exchange membrane), separator or CuSO4 mobile electrolyte that can be converted into an insoluble species by electrolysis during the charge/discharge process. This will help in producing a modern-day blueprint for ECs with high capacitance and improved energy sustainability.

  20. Impact of nanostructuring on the magnetic and magnetocaloric properties of microscale phase-separated La 5/8–yPr yCa 3/8MnO₃ manganites

    DOE PAGES

    Bingham, N. S.; Lampen, P.; Phan, M. H.; ...

    2012-08-16

    Bulk manganites of the form La 5/8–yPr yCa 3/8MnO₃ (LPCMO) exhibit a complex phase diagram due to coexisting charge-ordered antiferromagnetic (CO/AFM), charge-disordered paramagnetic (PM), and ferromagnetic (FM) phases. Because phase separation in LPCMO occurs on the microscale, reducing particle size to below this characteristic length is expected to have a strong impact on the magnetic properties of the system. Through a comparative study of the magnetic and magnetocaloric properties of single-crystalline (bulk) and nanocrystalline LPCMO (y=3/8) we show that the AFM, CO, and FM transitions seen in the single crystal can also be observed in the large particle sizes (400more » and 150 nm), while only a single PM to FM transition is found for the small particles (55 nm). Magnetic and magnetocaloric measurements reveal that decreasing particle size affects the balance of competing phases in LPCMO and narrows the range of fields over which PM, FM, and CO phases coexist. The FM volume fraction increases with size reduction, until CO is suppressed below some critical size, ~100 nm. With size reduction, the saturation magnetization and field sensitivity first increase as long-range CO is inhibited, then decrease as surface effects become increasingly important. The trend that the FM phase is stabilized on the nanoscale is contrasted with the stabilization of the charge-disordered PM phase occurring on the microscale, demonstrating that in terms of the characteristic phase separation length, a few microns and several hundred nanometers represent very different regimes in LPCMO.« less

  1. Cadmium migration in aerospace nickel cadmium cells

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.

    1976-01-01

    The effects of temperature, the nature of separator material, charge and discharge, carbonate contamination, and the mode of storage are studied with respect to the migration of active material from the negative toward the positive plate. A theoretical model is proposed which takes into account the solubility of cadmium in various concentrations of hydroxide and carbonate at different temperatures, the generation of the cadmiate ion, Cd(OH)3(-), during discharge, the migration of the cadmiate ion and particulate Cd(OH)2 due to electrophoretic effects and the movement of electrolyte in and out of the negative plate and, finally, the recrystallization of cadmiate ion in the separator as Cd(OH)2. Application of the theoretical model to observations of cadmium migration in cycled cells is also discussed.

  2. Electric field measurements during the Condor critical velocity experiment

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.; Pfaff, R. F.; Haerendel, G.

    1986-01-01

    The instrumentation of the Condor critical velocity Ba experiment (Wescott et al., 1986) for the measurements of the energetic particles and the electric field associated with a Ba explosion is described. The Ba explosion created a complex electric field pulse detected in situ by a single-axis double electric-field probe on a separate spacecraft. The measurements provide evidence of several important links in the critical-velocity chain, and are consistent with two hypotheses. The first hypothesis involves the creation of large polarization electric field due to charge separation; the second hypothesis implies a polarization of the beam by currents flowing across it. The chain of physical processes inferred from the observations is in agreement with most theories for the Alfven process.

  3. Synthesis and Study of Optical Characteristics of Ti0.91O2/CdS Hybrid Sphere Structures

    NASA Astrophysics Data System (ADS)

    Kong, Lingbin; Xu, Qinfeng; Zhang, Meng; Wang, Dehua; Liu, Mingliang; Zhang, Lei; Jiao, Mengmeng; Wang, Honggang; Yang, Chuanlu

    2018-03-01

    The optical properties of alternating ultrathin Ti0.91O2 nanosheets and CdS nanoparticle hybrid spherical structures designed by the layer-by-layer (LBL) assembly technique are investigated. From the photoluminescence (PL) spectral measurements on the hybrid spherical structures, a spectrum-shifted fluorescence emission occurs in this novel hybrid material. The time-resolved PL measurements exhibit a remarkably increased PL lifetime of 3.75 ns compared with only Ti0.91O2 spheres or CdS nanoparticles. The novel results were attributed to the enhanced electron-hole separation due to the new type II indirect optical transition mechanism between Ti0.91O2 and CdS in a charge-separated configuration.

  4. Measurement of Separate Cosmic-Ray Electron and Positron Spectra with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; hide

    2011-01-01

    We measured separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope. Because the instrument does not have an onboard magnet, we distinguish the two species by exploiting the Earth's shadow, which is offset in opposite directions for opposite charges due to the Earth's magnetic field. We estimate and subtract the cosmic-ray proton background using two different methods that produce consistent results. We report the electron-only spectrum, the positron-only spectrum, and the positron fraction between 20 GeV and 200 GeV, We confirm that the fraction rises with energy in the 20-100 GeV range and determine for the first time that it continues to rise between 100 and 200 GeV,

  5. Photoinduced charge separation at polymer-fullerene interfaces of BHJ solar cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Poluektov, Oleg G.; Niklas, Jens; Mardis, Kristy

    2016-09-01

    While photovoltaic cells are highly promising man-made devices for direct solar energy utilization, a number of fundamental questions about how the organic bulk heterojunction cell enables efficient long-lived and long-range charge separation remain unanswered. These questions were address by employing an advanced suite of EPR spectroscopy in combination with DFT calculations to study mechanism of charge separation at the polymer-fullerene interfaces of photo-active BHJ. Observed charge delocalization in BHJ upon photoinduced ET is analogous to that in organic donor-acceptor material. This is an efficient mechanism of charge stabilization in photosynthetic assemblies. Time-resolved EPR spectra show a strong polarization pattern for all polymer-fullerene blends under study, which is caused by non-Boltzmann population of the electron spin energy levels in the radical pairs. The first observation of this phenomenon was reported in natural and artificial photosynthetic assemblies, and comparison with these systems allows us to better understand charge separation processes in OPVs. The spectral analysis presented here, in combination with DFT calculations, shows that CS processes in OPV materials are similar to that in organic photosynthetic systems. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract DE-AC02-06CH11357 at Argonne National Laboratory.

  6. Coulomb Fission in Multiply-Charged Ammonia Clusters: Accurate Measurements of the Rayleigh Instability Limit from Fragmentation Patterns.

    PubMed

    Harris, Christopher; Stace, Anthony J

    2018-03-15

    A series of experiments have been undertaken on the fragmentation of multiply charged ammonia clusters, (NH 3 ) n z+ , where z ≤ 8 and n ≤ 850, to establish Rayleigh instability limits, whereby clusters at certain critical sizes become unstable due to Coulomb repulsion between the resident charges. Experimental results on size-selected clusters are found to be in excellent agreement with theoretical predictions of Rayleigh instability limits at all values of the charge. Electrostatic theory has been used to help identify fragmentation patterns on the assumption that the clusters separate into two dielectric spheres, and the predicted Coulomb repulsion energies used to establish pathways and the sizes of cluster fragments. The results show that fragmentation is very asymmetric in terms of both the numbers of molecules involved and the amount of charge each fragment accommodates. For clusters carrying a charge ≤+4, the results show that fragmentation proceeds via the loss of small, singly charged clusters. When clusters carry a charge of +5 or more, the experimental observations suggest a marked switch in behavior. Although the laboratory measurements equate to fragmentation via the loss of a large dication cluster, electrostatic theory supports an interpretation that involves the sequential loss of two smaller, singly charged clusters possibly accompanied by the extensive evaporation of neutral molecules. It is suggested that this change in fragmentation pattern is driven by the channelling of Coulomb repulsion energy into intermolecular modes within these larger clusters. Overall, the results appear to support the ion evaporation model that is frequently used to interpret electrospray experiments.

  7. Harvesting solar energy by means of charge-separating nanocrystals and their solids.

    PubMed

    Diederich, Geoffrey; O'Connor, Timothy; Moroz, Pavel; Kinder, Erich; Kohn, Elena; Perera, Dimuthu; Lorek, Ryan; Lambright, Scott; Imboden, Martene; Zamkov, Mikhail

    2012-08-23

    Conjoining different semiconductor materials in a single nano-composite provides synthetic means for the development of novel optoelectronic materials offering a superior control over the spatial distribution of charge carriers across material interfaces. As this study demonstrates, a combination of donor-acceptor nanocrystal (NC) domains in a single nanoparticle can lead to the realization of efficient photocatalytic materials, while a layered assembly of donor- and acceptor-like nanocrystals films gives rise to photovoltaic materials. Initially the paper focuses on the synthesis of composite inorganic nanocrystals, comprising linearly stacked ZnSe, CdS, and Pt domains, which jointly promote photoinduced charge separation. These structures are used in aqueous solutions for the photocatalysis of water under solar radiation, resulting in the production of H2 gas. To enhance the photoinduced separation of charges, a nanorod morphology with a linear gradient originating from an intrinsic electric field is used. The inter-domain energetics are then optimized to drive photogenerated electrons toward the Pt catalytic site while expelling the holes to the surface of ZnSe domains for sacrificial regeneration (via methanol). Here we show that the only efficient way to produce hydrogen is to use electron-donating ligands to passivate the surface states by tuning the energy level alignment at the semiconductor-ligand interface. Stable and efficient reduction of water is allowed by these ligands due to the fact that they fill vacancies in the valence band of the semiconductor domain, preventing energetic holes from degrading it. Specifically, we show that the energy of the hole is transferred to the ligand moiety, leaving the semiconductor domain functional. This enables us to return the entire nanocrystal-ligand system to a functional state, when the ligands are degraded, by simply adding fresh ligands to the system. To promote a photovoltaic charge separation, we use a composite two-layer solid of PbS and TiO2 films. In this configuration, photoinduced electrons are injected into TiO2 and are subsequently picked up by an FTO electrode, while holes are channeled to a Au electrode via PbS layer. To develop the latter we introduce a Semiconductor Matrix Encapsulated Nanocrystal Arrays (SMENA) strategy, which allows bonding PbS NCs into the surrounding matrix of CdS semiconductor. As a result, fabricated solids exhibit excellent thermal stability, attributed to the heteroepitaxial structure of nanocrystal-matrix interfaces, and show compelling light-harvesting performance in prototype solar cells.

  8. State of charge indicators for a battery

    DOEpatents

    Rouhani, S. Zia

    1999-01-01

    The present invention relates to state of charge indicators for a battery. One aspect of the present invention utilizes expansion and contraction displacements of an electrode plate of a battery to gauge the state of charge in the battery. One embodiment of a battery of the present invention includes an anodic plate; a cathodic plate; an electrolyte in contact with the anodic and cathodic plates; plural terminals individually coupled with one of the anodic and cathodic plates; a separator intermediate the anodic and cathodic plates; an indicator configured to indicate an energy level of the battery responsive to movement of the separator; and a casing configured to house the anodic and cathodic plates, electrolyte, and separator.

  9. Poisson-Boltzmann theory of the charge-induced adsorption of semi-flexible polyelectrolytes.

    PubMed

    Ubbink, Job; Khokhlov, Alexei R

    2004-03-15

    A model is suggested for the structure of an adsorbed layer of a highly charged semi-flexible polyelectrolyte on a weakly charged surface of opposite charge sign. The adsorbed phase is thin, owing to the effective reversal of the charge sign of the surface upon adsorption, and ordered, owing to the high surface density of polyelectrolyte strands caused by the generally strong binding between polyelectrolyte and surface. The Poisson-Boltzmann equation for the electrostatic interaction between the array of adsorbed polyelectrolytes and the charged surface is solved for a cylindrical geometry, both numerically, using a finite element method, and analytically within the weak curvature limit under the assumption of excess monovalent salt. For small separations, repulsive surface polarization and counterion osmotic pressure effects dominate over the electrostatic attraction and the resulting electrostatic interaction curve shows a minimum at nonzero separations on the Angstrom scale. The equilibrium density of the adsorbed phase is obtained by minimizing the total free energy under the condition of equality of chemical potential and osmotic pressure of the polyelectrolyte in solution and in the adsorbed phase. For a wide range of ionic conditions and charge densities of the charged surface, the interstrand separation as predicted by the Poisson-Boltzmann model and the analytical theory closely agree. For low to moderate charge densities of the adsorbing surface, the interstrand spacing decreases as a function of the charge density of the charged surface. Above about 0.1 M excess monovalent salt, it is only weakly dependent on the ionic strength. At high charge densities of the adsorbing surface, the interstrand spacing increases with increasing ionic strength, in line with the experiments by Fang and Yang [J. Phys. Chem. B 101, 441 (1997)]. (c) 2004 American Institute of Physics.

  10. Spray Formation from a Charged Liquid Jet of a Dielectric Fluid

    NASA Astrophysics Data System (ADS)

    Doak, William; de Bellis, Victor; Chiarot, Paul; Microfluidics; Multiphase Flow Laboratory Team

    2017-11-01

    Atomization of a dielectric micro-jet is achieved via an electrohydrodynamic charge injection process. The atomizer is comprised of a grounded nozzle housing (ground electrode) and an internal probe (high voltage electrode) that is concentric with the emitting orifice. The internal probe is held at electric potentials ranging from 1-10 kV. A pressurized reservoir drives a dielectric fluid at a desired flow rate through the 100-micrometer diameter orifice. The fluid fills the cavity between the electrodes as it passes through the atomizer, impeding the transport of electrons. This process injects charge into the flowing fluid. Upon exiting the orifice, the emitted jet is highly charged and it deforms via a bending instability that is qualitatively similar to the behavior observed in the electrospinning of fibers. We observed bulging regions, or nodes, of highly charged fluid forming along the bent, rotating jet. These nodes separate into highly charged droplets that emit satellite droplets. The remaining ligaments break up due to capillarity in a process that produces additional satellites. All of the droplets possess a normal (inertial) and radial (electrically-driven) momentum component. The radial component is responsible for the formation of a conical spray envelope. Our research focuses on the jet, its break up, and the droplet dynamics of this system. This research supported by the American Chemical Society.

  11. Charge Transfer from n-Doped Nanocrystals: Mimicking Intermediate Events in Multielectron Photocatalysis.

    PubMed

    Wang, Junhui; Ding, Tao; Wu, Kaifeng

    2018-06-12

    In multielectron photocatalytic reactions, an absorbed photon triggers charge transfer from the light-harvester to the attached catalyst, leaving behind a charge of the opposite sign in the light-harvester. If this charge is not scavenged before the absorption of the following photons, photoexcitation generates not neutral but charged excitons from which the extraction of charges should become more difficult. This is potentially an efficiency-limiting intermediate event in multielectron photocatalysis. To study the charge dynamics in this event, we doped CdS nanocrystal quantum dots (QDs) with an extra electron and measured hole transfer from n-doped QDs to attached acceptors. We find that the Auger decay of charged excitons lowers the charge separation yield to 68.6% from 98.4% for neutral excitons. In addition, the hole transfer rate in the presence of two electrons (1290 ps) is slower than that in the presence one electron (776 ps), and the recombination rate of charge separated states is about 2 times faster in the former case. This model study provides important insights into possible efficiency-limiting intermediate events involved in photocatalysis.

  12. Transient and modulated charge separation at CuInSe2/C60 and CuInSe2/ZnPc hybrid interfaces

    NASA Astrophysics Data System (ADS)

    von Morzé, Natascha; Dittrich, Thomas; Calvet, Wolfram; Lauermann, Iver; Rusu, Marin

    2017-02-01

    Spectral dependent charge transfer and exciton dissociation have been investigated at hybrid interfaces between inorganic polycrystalline CuInSe2 (untreated and Na-conditioned) thin films and organic C60 as well as zinc phthalocyanine (ZnPc) layers by transient and modulated surface photovoltage measurements. The stoichiometry and electronic properties of the bare CuInSe2 surface were characterized by photoelectron spectroscopy which revealed a Cu-poor phase with n-type features. After the deposition of the C60 layer, a strong band bending at the CuInSe2 surface was observed. Evidence for dissociation of excitons followed by charge separation was found at the CuInSe2/ZnPc interface. The Cu-poor layer at the CuInSe2 surface was found to be crucial for transient and modulated charge separation at CuInSe2/organic hybrid interfaces.

  13. Tracking the coherent generation of polaron pairs in conjugated polymers

    NASA Astrophysics Data System (ADS)

    de Sio, Antonietta; Troiani, Filippo; Maiuri, Margherita; Réhault, Julien; Sommer, Ephraim; Lim, James; Huelga, Susana F.; Plenio, Martin B.; Rozzi, Carlo Andrea; Cerullo, Giulio; Molinari, Elisa; Lienau, Christoph

    2016-12-01

    The optical excitation of organic semiconductors not only generates charge-neutral electron-hole pairs (excitons), but also charge-separated polaron pairs with high yield. The microscopic mechanisms underlying this charge separation have been debated for many years. Here we use ultrafast two-dimensional electronic spectroscopy to study the dynamics of polaron pair formation in a prototypical polymer thin film on a sub-20-fs time scale. We observe multi-period peak oscillations persisting for up to about 1 ps as distinct signatures of vibronic quantum coherence at room temperature. The measured two-dimensional spectra show pronounced peak splittings revealing that the elementary optical excitations of this polymer are hybridized exciton-polaron-pairs, strongly coupled to a dominant underdamped vibrational mode. Coherent vibronic coupling induces ultrafast polaron pair formation, accelerates the charge separation dynamics and makes it insensitive to disorder. These findings open up new perspectives for tailoring light-to-current conversion in organic materials.

  14. AlInAsSb separate absorption, charge, and multiplication avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Ren, Min; Maddox, Scott J.; Woodson, Madison E.; Chen, Yaojia; Bank, Seth R.; Campbell, Joe C.

    2016-05-01

    We report AlxIn1-xAsySb1-y separate absorption, charge, and multiplication avalanche photodiodes (APDs) that operate in the short-wavelength infrared spectrum. They exhibit excess noise factor less or equal to that of Si and the low dark currents typical of III-V compound APDs.

  15. Charge and energy dynamics in photo-excited poly(para-phenylenevinylene) systems

    NASA Astrophysics Data System (ADS)

    Gisslén, L.; Johansson, A.˚.; Stafström, S.

    2004-07-01

    We report results from simulations of charge and energy dynamics in poly(para-phenylenevinylene) (PPV) and PPV interacting with C60. The simulations were performed by solving the time-dependent Schrödinger equation and the lattice equation of motion simultaneously and nonadiabatically. The electronic system and the coupling of the electrons to the lattice were described by an extended three-dimensional version of the Su-Schrieffer-Heeger model, which also included an external electric field. Electron and lattice dynamics following electronic excitations at different energies have been simulated. The effect of additional lattice energy was also included in the simulations. Our results show that both exciton diffusion and transitions from high to lower lying excitations are stimulated by increasing the lattice energy. Also field induced charge separation occurs faster if the lattice energy is increased. This separation process is highly nonadiabatic and involves a significant rearrangement of the electron distribution. In the case of PPV coupled to C60, we observe a spontaneous charge separation. The separation time is in this case limited by the local concentration of C60 molecules close to the PPV chain.

  16. Molecular approaches to solar energy conversion: the energetic cost of charge separation from molecular-excited states.

    PubMed

    Durrant, James R

    2013-08-13

    This review starts with a brief overview of the technological potential of molecular-based solar cell technologies. It then goes on to focus on the core scientific challenge associated with using molecular light-absorbing materials for solar energy conversion, namely the separation of short-lived, molecular-excited states into sufficiently long-lived, energetic, separated charges capable of generating an external photocurrent. Comparisons are made between different molecular-based solar cell technologies, with particular focus on the function of dye-sensitized photoelectrochemical solar cells as well as parallels with the function of photosynthetic reaction centres. The core theme of this review is that generating charge carriers with sufficient lifetime and a high quantum yield from molecular-excited states comes at a significant energetic cost-such that the energy stored in these charge-separated states is typically substantially less than the energy of the initially generated excited state. The role of this energetic loss in limiting the efficiency of solar energy conversion by such devices is emphasized, and strategies to minimize this energy loss are compared and contrasted.

  17. Guest and solvent modulated photo-driven charge separation and triplet generation in a perylene bisimide cyclophane

    DOE PAGES

    Spenst, Peter; Young, Ryan M.; Wasielewski, Michael R.; ...

    2016-05-18

    Cofacial positioning of two perylene bisimide (PBI) chromophores at a distance of 6.5 Å in a cyclophane structure prohibits the otherwise common excimer formation and directs photoexcited singlet state relaxation towards intramolecular symmetry-breaking charge separation (τ CS = 161 ± 4 ps) in polar CH 2Cl 2, which is thermodynamically favored with a Gibbs free energy of ΔG CS = –0.32 eV. The charges then recombine slowly in τ CR = 8.90 ± 0.06 ns to form the PBI triplet excited state, which can be used subsequently to generate singlet oxygen in 27% quantum yield. This sequence of events ismore » eliminated by dissolving the PBI cyclophane in non-polar toluene, where only excited singlet state decay occurs. In contrast, complexation of electron-rich aromatic hydrocarbons by the host PBI cyclophane followed by photoexcitation of PBI results in ultrafast electron transfer (<10 ps) from the guest to the PBI in CH 2Cl 2. As a result, the rate constants for charge separation and recombination increase as the guest molecules become easier to oxidize, demonstrating that charge separation occurs close to the peak of the Marcus curve and the recombination lies far into the Marcus inverted region.« less

  18. Size and Temperature Dependence of Electron Transfer between CdSe Quantum Dots and a TiO 2 Nanobelt

    DOE PAGES

    Tafen, De Nyago; Prezhdo, Oleg V.

    2015-02-24

    Understanding charge transfer reactions between quantum dots (QD) and metal oxides is fundamental for improving photocatalytic, photovoltaic and electronic devices. The complexity of these processes makes it difficult to find an optimum QD size with rapid charge injection and low recombination. We combine time-domain density functional theory with nonadiabatic molecular dynamics to investigate the size and temperature dependence of the experimentally studied electron transfer and charge recombination at CdSe QD-TiO 2 nanobelt (NB) interfaces. The electron injection rate shows strong dependence on the QD size, increasing for small QDs. The rate exhibits Arrhenius temperature dependence, with the activation energy ofmore » the order of millielectronvolts. The charge recombination process occurs due to coupling of the electronic subsystem to vibrational modes of the TiO 2 NB. Inelastic electron-phonon scattering happens on a picosecond time scale, with strong dependence on the QD size. Our simulations demonstrate that the electron-hole recombination rate decreases significantly as the QD size increases, in excellent agreement with experiments. The temperature dependence of the charge recombination rates can be successfully modeled within the framework of the Marcus theory through optimization of the electronic coupling and the reorganization energy. Our simulations indicate that by varying the QD size, one can modulate the photoinduced charge separation and charge recombination, fundamental aspects of the design principles for high efficiency devices.« less

  19. Charge Separation and Triplet Exciton Formation Pathways in Small-Molecule Solar Cells as Studied by Time-Resolved EPR Spectroscopy

    DOE PAGES

    Thomson, Stuart A. J.; Niklas, Jens; Mardis, Kristy L.; ...

    2017-09-13

    Organic solar cells are a promising renewable energy technology, offering the advantages of mechanical flexibility and solution processability. An understanding of the electronic excited states and charge separation pathways in these systems is crucial if efficiencies are to be further improved. Here we use light induced electron paramagnetic resonance (LEPR) spectroscopy and density functional theory calculations (DFT) to study the electronic excited states, charge transfer (CT) dynamics and triplet exciton formation pathways in blends of the small molecule donors (DTS(FBTTh 2) 2, DTS(F2BTTh 2) 2, DTS(PTTh 2) 2, DTG(FBTTh 2) 2 and DTG(F2BTTh 2) 2) with the fullerene derivative PCmore » 61BM. Using high frequency EPR the g-tensor of the positive polaron on the donor molecules was determined. The experimental results are compared with DFT calculations which reveal that the spin density of the polaron is distributed over a dimer or trimer. Time-resolved EPR (TR-EPR) spectra attributed to singlet CT states were identified and the polarization patterns revealed similar charge separation dynamics in the four fluorobenzothiadiazole donors, while charge separation in the DTS(PTTh 2) 2 blend is slower. Using TR-EPR we also investigated the triplet exciton formation pathways in the blend. The polarization patterns reveal that the excitons originate from both intersystem crossing (ISC) and back electron transfer (BET) processes. The DTS(PTTh 2) 2 blend was found to contain substantially more triplet excitons formed by BET than the fluorobenzothiadiazole blends. As a result, the higher BET triplet exciton population in the DTS(PTTh 2) 2 blend is in accordance with the slower charge separation dynamics observed in this blend.« less

  20. Charge Separation and Triplet Exciton Formation Pathways in Small Molecule Solar Cells as Studied by Time-resolved EPR Spectroscopy.

    PubMed

    Thomson, Stuart A J; Niklas, Jens; Mardis, Kristy L; Mallares, Christopher; Samuel, Ifor D W; Poluektov, Oleg G

    2017-10-19

    Organic solar cells are a promising renewable energy technology, offering the advantages of mechanical flexibility and solution processability. An understanding of the electronic excited states and charge separation pathways in these systems is crucial if efficiencies are to be further improved. Here we use light induced electron paramagnetic resonance (LEPR) spectroscopy and density functional theory calculations (DFT) to study the electronic excited states, charge transfer (CT) dynamics and triplet exciton formation pathways in blends of the small molecule donors (DTS(FBTTh 2 ) 2 , DTS(F 2 BTTh 2 ) 2 , DTS(PTTh 2 ) 2 , DTG(FBTTh 2 ) 2 and DTG(F 2 BTTh 2 ) 2 ) with the fullerene derivative PC 61 BM. Using high frequency EPR the g-tensor of the positive polaron on the donor molecules was determined. The experimental results are compared with DFT calculations which reveal that the spin density of the polaron is distributed over a dimer or trimer. Time-resolved EPR (TR-EPR) spectra attributed to singlet CT states were identified and the polarization patterns revealed similar charge separation dynamics in the four fluorobenzothiadiazole donors, while charge separation in the DTS(PTTh 2 ) 2 blend is slower. Using TR-EPR we also investigated the triplet exciton formation pathways in the blend. The polarization patterns reveal that the excitons originate from both intersystem crossing (ISC) and back electron transfer (BET) processes. The DTS(PTTh 2 ) 2 blend was found to contain substantially more triplet excitons formed by BET than the fluorobenzothiadiazole blends. The higher BET triplet exciton population in the DTS(PTTh 2 ) 2 blend is in accordance with the slower charge separation dynamics observed in this blend.

  1. Charge Separation and Triplet Exciton Formation Pathways in Small-Molecule Solar Cells as Studied by Time-Resolved EPR Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, Stuart A. J.; Niklas, Jens; Mardis, Kristy L.

    Organic solar cells are a promising renewable energy technology, offering the advantages of mechanical flexibility and solution processability. An understanding of the electronic excited states and charge separation pathways in these systems is crucial if efficiencies are to be further improved. Here we use light induced electron paramagnetic resonance (LEPR) spectroscopy and density functional theory calculations (DFT) to study the electronic excited states, charge transfer (CT) dynamics and triplet exciton formation pathways in blends of the small molecule donors (DTS(FBTTh 2) 2, DTS(F2BTTh 2) 2, DTS(PTTh 2) 2, DTG(FBTTh 2) 2 and DTG(F2BTTh 2) 2) with the fullerene derivative PCmore » 61BM. Using high frequency EPR the g-tensor of the positive polaron on the donor molecules was determined. The experimental results are compared with DFT calculations which reveal that the spin density of the polaron is distributed over a dimer or trimer. Time-resolved EPR (TR-EPR) spectra attributed to singlet CT states were identified and the polarization patterns revealed similar charge separation dynamics in the four fluorobenzothiadiazole donors, while charge separation in the DTS(PTTh 2) 2 blend is slower. Using TR-EPR we also investigated the triplet exciton formation pathways in the blend. The polarization patterns reveal that the excitons originate from both intersystem crossing (ISC) and back electron transfer (BET) processes. The DTS(PTTh 2) 2 blend was found to contain substantially more triplet excitons formed by BET than the fluorobenzothiadiazole blends. As a result, the higher BET triplet exciton population in the DTS(PTTh 2) 2 blend is in accordance with the slower charge separation dynamics observed in this blend.« less

  2. Gradient Self-Doped CuBi2O4 with Highly Improved Charge Separation Efficiency.

    PubMed

    Wang, Fuxian; Septina, Wilman; Chemseddine, Abdelkrim; Abdi, Fatwa F; Friedrich, Dennis; Bogdanoff, Peter; van de Krol, Roel; Tilley, S David; Berglund, Sean P

    2017-10-25

    A new strategy of using forward gradient self-doping to improve the charge separation efficiency in metal oxide photoelectrodes is proposed. Gradient self-doped CuBi 2 O 4 photocathodes are prepared with forward and reverse gradients in copper vacancies using a two-step, diffusion-assisted spray pyrolysis process. Decreasing the Cu/Bi ratio of the CuBi 2 O 4 photocathodes introduces Cu vacancies that increase the carrier (hole) concentration and lowers the Fermi level, as evidenced by a shift in the flat band toward more positive potentials. Thus, a gradient in Cu vacancies leads to an internal electric field within CuBi 2 O 4 , which can facilitate charge separation. Compared to homogeneous CuBi 2 O 4 photocathodes, CuBi 2 O 4 photocathodes with a forward gradient show highly improved charge separation efficiency and enhanced photoelectrochemical performance for reduction reactions, while CuBi 2 O 4 photocathodes with a reverse gradient show significantly reduced charge separation efficiency and photoelectrochemical performance. The CuBi 2 O 4 photocathodes with a forward gradient produce record AM 1.5 photocurrent densities for CuBi 2 O 4 up to -2.5 mA/cm 2 at 0.6 V vs RHE with H 2 O 2 as an electron scavenger, and they show a charge separation efficiency of 34% for 550 nm light. The gradient self-doping accomplishes this without the introduction of external dopants, and therefore the tetragonal crystal structure and carrier mobility of CuBi 2 O 4 are maintained. Lastly, forward gradient self-doped CuBi 2 O 4 photocathodes are protected with a CdS/TiO 2 heterojunction and coated with Pt as an electrocatalyst. These photocathodes demonstrate photocurrent densities on the order of -1.0 mA/cm 2 at 0.0 V vs RHE and evolve hydrogen with a faradaic efficiency of ∼91%.

  3. Foam separation of Rhodamine-G and Evans Blue using a simple separatory bottle system.

    PubMed

    Dasarathy, Dhweeja; Ito, Yoichiro

    2017-09-29

    A simple separatory glass bottle was used to improve separation effectiveness and cost efficiency while simultaneously creating a simpler system for separating biological compounds. Additionally, it was important to develop a scalable separation method so this would be applicable to both analytical and preparative separations. Compared to conventional foam separation methods, this method easily forms stable dry foam which ensures high purity of yielded fractions. A negatively charged surfactant, sodium dodecyl sulfate (SDS), was used as the ligand to carry a positively charged Rhodamine-G, leaving a negatively charged Evans Blue in the bottle. The performance of the separatory bottle was tested for separating Rhodamine-G from Evans Blue with sample sizes ranged from 1 to 12mg in preparative separations and 1-20μg in analytical separations under optimum conditions. These conditions including N 2 gas pressure, spinning speed of contents with a magnetic stirrer, concentration of the ligand, volume of the solvent, and concentration of the sample, were all modified and optimized. Based on the calculations at their peak absorbances, Rhodamine-G and Evans Blue were efficiently separated in times ranging from 1h to 3h, depending on sample volume. Optimal conditions were found to be 60psi N 2 pressure and 2mM SDS for the affinity ligand. This novel separation method will allow for rapid separation of biological compounds while simultaneously being scalable and cost effective. Published by Elsevier B.V.

  4. Development of Omniphobic Desalination Membranes Using a Charged Electrospun Nanofiber Scaffold.

    PubMed

    Lee, Jongho; Boo, Chanhee; Ryu, Won-Hee; Taylor, André D; Elimelech, Menachem

    2016-05-04

    In this study, we present a facile and scalable approach to fabricate omniphobic nanofiber membranes by constructing multilevel re-entrant structures with low surface energy. We first prepared positively charged nanofiber mats by electrospinning a blend polymer-surfactant solution of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and cationic surfactant (benzyltriethylammonium). Negatively charged silica nanoparticles (SiNPs) were grafted on the positively charged electrospun nanofibers via dip-coating to achieve multilevel re-entrant structures. Grafted SiNPs were then coated with fluoroalkylsilane to lower the surface energy of the membrane. The fabricated membrane showed excellent omniphobicity, as demonstrated by its wetting resistance to various low surface tension liquids, including ethanol with a surface tension of 22.1 mN/m. As a promising application, the prepared omniphobic membrane was tested in direct contact membrane distillation to extract water from highly saline feed solutions containing low surface tension substances, mimicking emerging industrial wastewaters (e.g., from shale gas production). While a control hydrophobic PVDF-HFP nanofiber membrane failed in the desalination/separation process due to low wetting resistance, our fabricated omniphobic membrane exhibited a stable desalination performance for 8 h of operation, successfully demonstrating clean water production from the low surface tension feedwater.

  5. A Paramagnetic Molecular Voltmeter

    PubMed Central

    Surek, Jack T.; Thomas, David D.

    2008-01-01

    We have developed a general electron paramagnetic resonance (EPR) method to measure electrostatic potential at spin labels on proteins to millivolt accuracy. Electrostatic potential is fundamental to energy-transducing proteins like myosin, because molecular energy storage and retrieval is primarily electrostatic. Quantitative analysis of protein electrostatics demands a site-specific spectroscopic method sensitive to millivolt changes. Previous electrostatic potential studies on macromolecules fell short in sensitivity, accuracy and/or specificity. Our approach uses fast-relaxing charged and neutral paramagnetic relaxation agents (PRAs) to increase nitroxide spin label relaxation rate solely through collisional spin exchange. These PRAs were calibrated in experiments on small nitroxides of known structure and charge to account for differences in their relaxation efficiency. Nitroxide longitudinal (R1) and transverse (R2) relaxation rates were separated by applying lineshape analysis to progressive saturation spectra. The ratio of measured R1 increases for each pair of charged and neutral PRAs measures the shift in local PRA concentration due to electrostatic potential. Voltage at the spin label is then calculated using the Boltzmann equation. Measured voltages for two small charged nitroxides agree with Debye-Hückel calculations. Voltage for spin-labeled myosin fragment S1 also agrees with calculation based on the pK shift of the reacted cysteine. PMID:17964835

  6. The effects of return current and target charging in short pulse high intensity laser interactions

    NASA Astrophysics Data System (ADS)

    Beg, Farhat

    2003-10-01

    Since the introduction of the technique of chirped pulse amplification (CPA), peak laser intensities have increased dramatically. It is now possible to perform laser-plasma interaction experiments at intensities approaching 1021 Wcm-2. The electrons in the field of such lasers are highly relativistic (gamma 31) and the temperature of the hot electron distribution produced in a plasma at such extreme intensities can exceed 10 MeV. Since the resulting beam current exceeds the Alfvén limit, a neutralizing return current of cold plasma electrons moving in the opposite direction is produced. Another source of return current is that due to the escape of very energetic electrons from the target, which then creates a large electrostatic potential due to charge separation. These return currents can cause significant ohmic heating. We present results from experiments performed at Rutherford Appleton Laboratory using the VULCAN laser facility (I> 5 x1019 Wcm-2). Single wire targets were used and in some shots a secondary wire or foil was placed near the target. Three main observations were made: (i) generation of a Z-pinch in the wire due to the return current, (ii) optical transition radiation at 2w and (iii) proton emission from both the primary wire target and the secondary wire or foil. The Z-pinch was observed to be m=0 unstable. The current was estimated to be about 0.8 MA using simple energy balance considerations. Intense second harmonic emission due to coherent optical transition radiation from both the primary target and secondary objects was observed and is likely due to electron bunches accelerated by the ponderomotive jxB force of the laser. The proton emission from the secondary wire or foil was likely due to field emission of electrons from the these objects in response to the large potential produced from charging of the primary target. Results of simulations to model these interactions will also be presented.

  7. Interaction of bacteria and ion-exchange particles and its potential in separation for matrix-assisted laser desorption/ionization mass spectrometric identification of bacteria in water.

    PubMed

    Guo, Zhongxian; Liu, Ying; Li, Shuping; Yang, Zhaoguang

    2009-12-01

    Identification of microbial contaminants in drinking water is a challenge to matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) due to low levels of microorganisms in fresh water. To avoid the time-consuming culture step of obtaining enough microbial cells for subsequent MALDI-MS analysis, a combination of membrane filtration and nanoparticles- or microparticles-based magnetic separation is a fast and efficient approach. In this work, the interaction of bacteria and fluidMAG-PAA, a cation-exchange superparamagnetic nanomaterial, was investigated by MALDI-MS analysis and transmission electron microscopy. FluidMAG-PAA selectively captured cells of Salmonella, Bacillus, Enterococcus and Staphylococcus aureus. This capture was attributed to the aggregation of negatively charged nanoparticles on bacterial cell regional surfaces that bear positive charges. Three types of non-porous silica-encapsulated anion-exchange magnetic microparticles (SiMAG-Q, SiMAG-PEI, SiMAG-DEAE) were capable of concentrating a variety of bacteria, and were compared with silica-free, smaller fluidMAG particles. Salmonella, Escherichia coli, Enterococcus and other bacteria spiked in aqueous solutions, tap water and reservoir water were separated and concentrated by membrane filtration and magnetic separation based on these ion-exchange magnetic materials, and then characterized by whole cell MALDI-MS. By comparing with the mass spectra of the isolates and pure cells, bacteria in fresh water can be rapidly detected at 1 x 10(3) colony-forming units (cfu)/mL. Copyright 2009 John Wiley & Sons, Ltd.

  8. On the nature of liquid junction and membrane potentials.

    PubMed

    Perram, John W; Stiles, Peter J

    2006-09-28

    Whenever a spatially inhomogeneous electrolyte, composed of ions with different mobilities, is allowed to diffuse, charge separation and an electric potential difference is created. Such potential differences across very thin membranes (e.g. biomembranes) are often interpreted using the steady state Goldman equation, which is usually derived by assuming a spatially constant electric field. Through the fundamental Poisson equation of electrostatics, this implies the absence of free charge density that must provide the source of any such field. A similarly paradoxical situation is encountered for thick membranes (e.g. in ion-selective electrodes) for which the diffusion potential is normally interpreted using the Henderson equation. Standard derivations of the Henderson equation appeal to local electroneutrality, which is also incompatible with sources of electric fields, as these require separated charges. We analyse self-consistent solutions of the Nernst-Planck-Poisson equations for a 1 : 1-univalent electrolyte to show that the Goldman and Henderson steady-state membrane potentials are artefacts of extraneous charges created in the reservoirs of electrolyte solution on either side of the membrane, due to the unphysical nature of the usual (Dirichlet) boundary conditions assumed to apply at the membrane-electrolyte interfaces. We also show, with the aid of numerical simulations, that a transient electric potential difference develops in any confined, but initially non-uniform, electrolyte solution. This potential difference ultimately decays to zero in the real steady state of the electrolyte, which corresponds to thermodynamic equilibrium. We explain the surprising fact that such transient potential differences are well described by the Henderson equation by using a computer algebra system to extend previous steady-state singular perturbation theories to the time-dependent case. Our work therefore accounts for the success of the Henderson equation in analysing experimental liquid-junction potentials.

  9. Efficient Solar-Induced Photoelectrochemical Response Using Coupling Semiconductor TiO2-ZnO Nanorod Film

    PubMed Central

    Abd Samad, Nur Azimah; Lai, Chin Wei; Lau, Kung Shiuh; Abd Hamid, Sharifah Bee

    2016-01-01

    Efficient solar driven photoelectrochemical (PEC) response by enhancing charge separation has attracted great interest in the hydrogen generation application. The formation of one-dimensional ZnO nanorod structure without bundling is essential for high efficiency in PEC response. In this present research work, ZnO nanorod with an average 500 nm in length and average diameter of about 75 nm was successfully formed via electrodeposition method in 0.05 mM ZnCl2 and 0.1 M KCl electrolyte at 1 V for 60 min under 70 °C condition. Continuous efforts have been exerted to further improve the solar driven PEC response by incorporating an optimum content of TiO2 into ZnO nanorod using dip-coating technique. It was found that 0.25 at % of TiO2 loaded on ZnO nanorod film demonstrated a maximum photocurrent density of 19.78 mA/cm2 (with V vs. Ag/AgCl) under UV illumination and 14.75 mA/cm2 (with V vs. Ag/AgCl) under solar illumination with photoconversion efficiency ~2.9% (UV illumination) and ~4.3% (solar illumination). This performance was approximately 3–4 times higher than ZnO film itself. An enhancement of photocurrent density and photoconversion efficiency occurred due to the sufficient Ti element within TiO2-ZnO nanorod film, which acted as an effective mediator to trap the photo-induced electrons and minimize the recombination of charge carriers. Besides, phenomenon of charge-separation effect at type-II band alignment of Zn and Ti could further enhance the charge carrier transportation during illumination. PMID:28774068

  10. 46 CFR 401.427 - Charge on past due accounts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Charge on past due accounts. 401.427 Section 401.427... REGULATIONS Rates, Charges, and Conditions for Pilotage Services § 401.427 Charge on past due accounts. A charge of two percent (2%) per month shall be paid on the opening monthly balance on accounts remaining...

  11. On the generation of double layers from ion- and electron-acoustic instabilities

    DOE PAGES

    Fu, Xiangrong; Cowee, Misa M.; Gary, Stephen Peter; ...

    2016-03-17

    A plasma double layer (DL) is a nonlinear electrostatic structure that carries a uni-polar electric field parallel to the background magnetic field due to local charge separation. Past studies showed that DLs observed in space plasmas are mostly associated with the ion acoustic instability. Recent Van Allen Probes observations of parallel electric fields traveling much faster than the ion acoustic speed have motivated a computational study to test the hypothesis that a new type of DLs – electron acoustic DLs – generated from the electron acoustic instability are responsible for these electric fields. Nonlinear particle-in-cell simulations yield negative results, i.e.more » the hypothetical electron acoustic DLs cannot be formed in a way similar to ion acoustic DLs. We find that linear theory analysis and the simulations show that the frequencies of electron acoustic waves are too high for ions to respond and maintain charge separation required by DLs. However, our results do show that local density perturbations in a two-electron-component plasma can result in unipolar-like electric fields that propagate at the electron thermal speed, suggesting another potential explanation for the observations.« less

  12. On the generation of double layers from ion- and electron-acoustic instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Xiangrong, E-mail: xrfu@lanl.gov; Cowee, Misa M.; Winske, Dan

    2016-03-15

    A plasma double layer (DL) is a nonlinear electrostatic structure that carries a uni-polar electric field parallel to the background magnetic field due to local charge separation. Past studies showed that DLs observed in space plasmas are mostly associated with the ion acoustic instability. Recent Van Allen Probes observations of parallel electric field structures traveling much faster than the ion acoustic speed have motivated a computational study to test the hypothesis that a new type of DLs—electron acoustic DLs—generated from the electron acoustic instability are responsible for these electric fields. Nonlinear particle-in-cell simulations yield negative results, i.e., the hypothetical electronmore » acoustic DLs cannot be formed in a way similar to ion acoustic DLs. Linear theory analysis and the simulations show that the frequencies of electron acoustic waves are too high for ions to respond and maintain charge separation required by DLs. However, our results do show that local density perturbations in a two-electron-component plasma can result in unipolar-like electric field structures that propagate at the electron thermal speed, suggesting another potential explanation for the observations.« less

  13. Design of suitable carrier buffer for free-flow zone electrophoresis by charge-to-mass ratio and band broadening analysis.

    PubMed

    Kong, Fan-Zhi; Yang, Ying; He, Yu-Chen; Zhang, Qiang; Li, Guo-Qing; Fan, Liu-Yin; Xiao, Hua; Li, Shan; Cao, Cheng-Xi

    2016-09-01

    In this work, charge-to-mass ratio (C/M) and band broadening analyses were combined to provide better guidance for the design of free-flow zone electrophoresis carrier buffer (CB). First, the C/M analyses of hemoglobin and C-phycocyanin (C-PC) under different pH were performed by CLC Protein Workbench software. Second, band dispersion due to the initial bandwidth, diffusion, and hydrodynamic broadening were discussed, respectively. Based on the analyses of the C/M and band broadening, a better guidance for preparation of free-flow zone electrophoresis CB was obtained. Series of experiments were performed to validate the proposed method. The experimental data showed high accordance with our prediction allowing the CB to be prepared easily with our proposed method. To further evaluate this method, C-PC was purified from crude extracts of Spirulina platensis with the selected separation condition. Results showed that C-PC was well separated from other phycobiliproteins that have similar physicochemical properties, and analytical grade product with purity up to 4.5 (A620/A280) was obtained. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. An Analytical Model of Tribocharging in Regolith

    NASA Astrophysics Data System (ADS)

    Carter, D. P.; Hartzell, C. M.

    2015-12-01

    Nongravitational forces, including electrostatic forces and cohesion, can drive the behavior of regolith in low gravity environments such as the Moon and asteroids. Regolith is the 'skin' of solid planetary bodies: it is the outer coating that is observed by orbiters and the first material contacted by landers. Triboelectric charging, the phenomenon by which electrical charge accumulates during the collision or rubbing of two surfaces, has been found to occur in initially electrically neutral granular mixtures. Although charge transfer is often attributed to chemical differences between the different materials, charge separation has also been found to occur in mixtures containing grains of a single material, but with a variety of grain sizes. In such cases, the charge always separates according to grain size; typically the smaller grains acquire a more negative charge than the larger grains. Triboelectric charging may occur in a variety of planetary phenomena (including mass wasting and dust storms) as well as during spacecraft-surface interactions (including sample collection and wheel motion). Interactions between charged grains or with the solar wind plasma could produce regolith motion. However, a validated, predictive model of triboelectric charging between dielectric grains has not yet been developed. A model for such size-dependent charge separation will be presented, demonstrating how random collisions between initially electrically neutral grains lead to net migration of electrons toward the smaller grains. The model is applicable to a wide range of single-material granular mixtures, including those with unusual or wildly varying size distributions, and suggests a possible mechanism for the reversal of the usual size-dependent charge polarity described above. This is a significant improvement over existing charge exchange models, which are restricted to two discrete grains sizes and provide severely limited estimates for charge magnitude. We will also discuss the design of an experiment planned to test the charging estimates provided by the model presented and the potential implications for our understanding of regolith behavior.

  15. Characterization of X-ray emission from laser generated plasma

    NASA Astrophysics Data System (ADS)

    Cannavò, Antonino; Torrisi, Lorenzo; Ceccio, Giovanni; Cutroneo, Mariapompea; Calcagno, Lucia; Sciuto, Antonella; Mazzillo, Massimo

    2018-01-01

    X-ray emission from laser generated plasma was studied at low (1010 W/cm2) and high (1018 W/cm2) intensity using ns and fs laser, respectively. Plasma characteristics were controlled trough the laser parameters, the irradiation conditions and the target properties. The X-ray spectra were acquired using fast detection technique based on SiC diodes with different active regions. The X-ray yield increases with the atomic number of the target, both at low and high intensity, and a similar empirical law has been obtained. The X-ray emission mechanisms from plasma are correlated to the plasma temperature and density and to the Coulomb charge particle acceleration, due to the charge separation effects produced in the non-equilibrium plasma. Functional dependences, theoretical approaches and interpretation of possible mechanism will be presented and discussed.

  16. Energy storage device with large charge separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei T.

    High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.

  17. Energy storage device with large charge separation

    DOEpatents

    Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei

    2016-04-12

    High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.

  18. Capillary electrophoresis electrospray ionization mass spectrometry interface

    DOEpatents

    Smith, Richard D.; Severs, Joanne C.

    1999-01-01

    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an anolyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  19. Mechanical Deformation of a Lithium-Metal Anode Due to a Very Stiff Separator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrese, A; Newman, J

    2014-05-21

    This work builds on the two-dimensional model presented by Ferrese et al. [J. Electrochem. Soc., 159, A1615 (2012)1, which captures the movement of lithium metal at the negative electrode during cycling in a Li-metal/LiCoO2 cell. In this paper, the separator is modeled as a dendrite-inhibiting polymer separator with an elastic modulus of 16 GPa. The separator resists the movement of lithium through the generation of stresses in the cell. These stresses affect the negative electrode through two mechanisms altering the thermodynamics of the negative electrode and deforming the negative electrode mechanically. From this analysis, we find that the dendrite-inhibiting separatormore » causes plastic and elastic deformation of the lithium at the negative electrode which flattens the electrode considerably when compared to the liquid-electrolyte case. This flattening of the negative electrode causes only very slight differences in the local state of charge in the positive electrode. When comparing the magnitude of the effects flattening the negative electrode, we find that the plastic deformation plays a much larger role than either the pressure-modified reaction kinetics or elastic deformation. This is due to the low yield strength of the lithium metal, which limits the stresses such that they have only a small effect on the reaction kinetics. (C) 2014 The Electrochemical Society. All rights reserved.« less

  20. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer.

    PubMed

    Kamat, Prashant V

    2012-11-20

    The demand for clean energy will require the design of nanostructure-based light-harvesting assemblies for the conversion of solar energy into chemical energy (solar fuels) and electrical energy (solar cells). Semiconductor nanocrystals serve as the building blocks for designing next generation solar cells, and metal chalcogenides (e.g., CdS, CdSe, PbS, and PbSe) are particularly useful for harnessing size-dependent optical and electronic properties in these nanostructures. This Account focuses on photoinduced electron transfer processes in quantum dot sensitized solar cells (QDSCs) and discusses strategies to overcome the limitations of various interfacial electron transfer processes. The heterojunction of two semiconductor nanocrystals with matched band energies (e.g., TiO(2) and CdSe) facilitates charge separation. The rate at which these separated charge carriers are driven toward opposing electrodes is a major factor that dictates the overall photocurrent generation efficiency. The hole transfer at the semiconductor remains a major bottleneck in QDSCs. For example, the rate constant for hole transfer is 2-3 orders of magnitude lower than the electron injection from excited CdSe into oxide (e.g., TiO(2)) semiconductor. Disparity between the electron and hole scavenging rate leads to further accumulation of holes within the CdSe QD and increases the rate of electron-hole recombination. To overcome the losses due to charge recombination processes at the interface, researchers need to accelerate electron and hole transport. The power conversion efficiency for liquid junction and solid state quantum dot solar cells, which is in the range of 5-6%, represents a significant advance toward effective utilization of nanomaterials for solar cells. The design of new semiconductor architectures could address many of the issues related to modulation of various charge transfer steps. With the resolution of those problems, the efficiencies of QDSCs could approach those of dye sensitized solar cells (DSSC) and organic photovoltaics.

  1. Measurement of separate cosmic-ray electron and positron spectra with the fermi large area telescope.

    PubMed

    Ackermann, M; Ajello, M; Allafort, A; Atwood, W B; Baldini, L; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; de Angelis, A; de Palma, F; Dermer, C D; Digel, S W; do Couto E Silva, E; Drell, P S; Drlica-Wagner, A; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Germani, S; Giglietto, N; Giommi, P; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guiriec, S; Gustafsson, M; Hadasch, D; Harding, A K; Hayashida, M; Hughes, R E; Jóhannesson, G; Johnson, A S; Kamae, T; Katagiri, H; Kataoka, J; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Llena Garde, M; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Madejski, G M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Roth, M; Sadrozinski, H F-W; Sbarra, C; Schalk, T L; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Strong, A W; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J G; Thayer, J B; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Uchiyama, Y; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S

    2012-01-06

    We measured separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope. Because the instrument does not have an onboard magnet, we distinguish the two species by exploiting Earth's shadow, which is offset in opposite directions for opposite charges due to Earth's magnetic field. We estimate and subtract the cosmic-ray proton background using two different methods that produce consistent results. We report the electron-only spectrum, the positron-only spectrum, and the positron fraction between 20 and 200 GeV. We confirm that the fraction rises with energy in the 20-100 GeV range. The three new spectral points between 100 and 200 GeV are consistent with a fraction that is continuing to rise with energy.

  2. Measurement of Separate Cosmic-Ray Electron and Positron Spectra with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ferrara, E. C.; Harding, A. K.; McEnery, J. E.; Moiseev, A. A.; Ackemann, M.

    2012-01-01

    We measured separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope. Because the instrument does not have an onboard magnet, we distinguish the two species by exploiting Earth's shadow, which, is offset in opposite directions for opposite charges due to Earth's magnetic field. We estimate and subtract the cosmic-ray proton background using two different methods that produce consistent results. We report the electron-only spectrum, the positron-only spectrum, and the positron fraction between 20 and 200 Ge V. We confirm that the fraction rises with energy in the 20-100 Ge V range. The three new spectral points between 100 and 200 GeV are consistent with a fraction that is continuing to rise with energy.

  3. Final Technical Report for the Energy Frontier Research Center Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanden Bout, David A.

    2015-09-14

    Our EFRC was founded with the vision of creating a broadly collaborative and synergistic program that would lead to major breakthroughs in the molecular-level understanding of the critical interfacial charge separation and charge transfer (CST) processes that underpin the function of candidate materials for organic photovoltaic (OPV) and electrical-energy-storage (EES) applications. Research in these energy contexts shares an imposing challenge: How can we understand charge separation and transfer mechanisms in the presence of immense materials complexity that spans multiple length scales? To address this challenge, our 50-member Center undertook a total of 28 coordinated research projects aimed at unraveling themore » CST mechanisms that occur at interfaces in these nanostructured materials. This rigorous multi-year study of CST interfaces has greatly illuminated our understanding of early-timescale processes (e.g., exciton generation and dissociation dynamics at OPV heterojunctions; control of Li+-ion charging kinetics by surface chemistry) occurring in the immediate vicinity of interfaces. Program outcomes included: training of 72 graduate student and postdoctoral energy researchers at 5 institutions and spanning 7 academic disciplines in science and engineering; publication of 94 peer-reviewed journal articles; and dissemination of research outcomes via 340 conference, poster and other presentations. Major scientific outcomes included: implementation of a hierarchical strategy for understanding the electronic communication mechanisms and ultimate fate of charge carriers in bulk heterojunction OPV materials; systematic investigation of ion-coupled electron transfer processes in model Li-ion battery electrode/electrolyte systems; and the development and implementation of 14 unique technologies and instrumentation capabilities to aid in probing sub-ensemble charge separation and transfer mechanisms.« less

  4. Thermally stimulated processes in samarium-modified lead titanate ferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Peláiz-Barranco, A.; García-Wong, A. C.; González-Abreu, Y.; Gagou, Y.; Saint-Grégoire, P.

    2013-08-01

    The thermally stimulated processes in a samarium-modified lead titanate ferroelectric system are analyzed from the thermally stimulated depolarization discharge current. The discharge due to the space charge injected during the poling process, the pyroelectric response and a conduction process related to oxygen vacancies are evaluated considering a theoretical decomposition by using a numerical method. The pyroelectric response is separated from other components to evaluate the polarization behavior and some pyroelectric parameters. High remanent polarization, pyroelectric coefficient and merit figure values are obtained at room temperature.

  5. Hybrid Organic/Inorganic Nanocomposites for Photovoltaic Cells

    PubMed Central

    Liu, Ruchuan

    2014-01-01

    Inorganic/organic hybrid solar cells have attracted a lot of interest due to their potential in combining the advantages of both components. To understand the key issues in association with photoinduced charge separation/transportation processes and to improve overall power conversion efficiency, various combinations with nanostructures of hybrid systems have been investigated. Here, we briefly review the structures of hybrid nanocomposites studied so far, and attempt to associate the power conversion efficiency with these nanostructures. Subsequently, we are then able to summarize the factors for optimizing the performance of inorganic/organic hybrid solar cells. PMID:28788591

  6. Separation and Purification of Mineral Salts from Spacecraft Wastewater Processing via Electrostatic Beneficiation

    NASA Technical Reports Server (NTRS)

    Miles, John D., II; Lunn, Griffin

    2013-01-01

    Electrostatic separation is a class of material processing technologies commonly used for the sorting of coarse mixtures by means of electrical forces acting on charged or polarized particles. Most if not all of the existing tribo-electrostatic separators had been initially developed for mineral ores beneficiation. It is a well-known process that has been successfully used to separate coal from minerals. Potash (potassium) enrichment where underground salt mines containing large amounts of sodium is another use of this techno logy. Through modification this technology can be used for spacecraft wastewater brine beneficiation. This will add in closing the gap beeen traveling around Earth's Gravity well and long-term space explorations. Food has been brought on all man missions, which is why plant growth for food crops continues to be of interest to NASA. For long-term mission considerations food productions is one of the top priorities. Nutrient recovery is essential for surviving in or past low earth orbit. In our advance bio-regenerative process instead of nitrogen gas produced; soluble nitrate salts that can be recovered for plant fertilizer would be produced instead. The only part missing is the beneficiation of brine to separate the potassium from the sodium. The use of electrostatic beneficiation in this experiment utilizes the electrical charge differences between aluminum and dried brine by surface contact. The helixes within the aluminum tribocharger allows for more surface contact when being agitated. When two materials are in contact, the material with the highest affinity for electrons becomes negatively charged, while the other becomes positively charged. This contact exchange of charge may cause the particles to agglomerate depending on their residence time within the tribocharger, compromising the efficiency of separation. The aim of this experiment is to further the development in electrostatic beneficiation by optimizing the separation of ersatz and possibly real wastewater brine residues. In doing so, ideally it will yield a high potassium enrichment for use in spacecraft plant systems.

  7. Electrochromatographic retention of peptides on strong cation-exchange stationary phases.

    PubMed

    Nischang, Ivo; Höltzel, Alexandra; Tallarek, Ulrich

    2010-03-01

    We analyze the systematic and substantial electrical field-dependence of electrochromatographic retention for four counterionic peptides ([Met5]enkephalin, oxytocin, [Arg8]vasopressin, and luteinizing hormone releasing hormone (LHRH) ) on a strong cation-exchange (SCX) stationary phase. Our experiments show that retention behavior in the studied system depends on the charge-selectivity of the stationary phase particles, the applied voltage, and the peptides' net charge. Retention factors of twice positively charged peptides ([Arg8]vasopressin and LHRH at pH 2.7) decrease with increasing applied voltage, whereas lower charged peptides (oxytocin and [Met5]enkephalin at pH 2.7, [Arg8]vasopressin and LHRH at pH 7.0) show a concomitant increase in their retention factors. The observed behavior is explained on the basis of electrical field-induced concentration polarization (CP) that develops around the SCX particles of the packing. The intraparticle concentration of charged species (buffer ions, peptides) increases with increasing applied voltage due to diffusive backflux from the enriched CP zone associated with each SCX particle. For twice charged and on the SCX phase strongly retained peptides the local increase in mobile phase ionic strength reduces the electrostatic interactions with the stationary phase, which explains the decrease of retention factors with increasing applied voltage and CP intensity. Lower charged and weaker retained peptides experience a much stronger relative intraparticle enrichment than the twice-charged peptides, which results in a net increase of retention factors with increasing applied voltage. The CP-related contribution to electrochromatographic retention of peptides on the SCX stationary phase is modulated by the applied voltage, the mobile phase ionic strength, and the peptides' net charge and could be used for selectivity tuning in difficult separations.

  8. Photochemistry of Inorganic Nanomaterials for Solar Energy Conversion

    NASA Astrophysics Data System (ADS)

    Shelton, Timothy L.

    As our world's population is constantly growing, so also is the need to power the growth and spread of technology. The conversion of abundant solar energy into useable sources of fuel is an area of significant and vital research. Photocatalytic water splitting via suspended nanomaterials or photoelectrochemical cells has great promise for this purpose. This research focuses on the preparation and analysis of nanomaterials utilizing simple methods and earth abundant chemicals that will lead to cost-competitive methods to convert solar energy into an easily stored and transported fuel source. Specifically, our research seeks to better understand the methods of charge generation and separation in nanomaterial films and to quantify the limits of activity in suspended photocatalysts. Chapter 2 introduces a study on the nature of photovoltage generation in well-ordered hematite films under zero applied bias. The thickness of Fe 2O3 nanorod films is varied by a simple hydrothermal synthesis and confirmed with TEM and profilometry measurements. Surface photovoltage spectroscopy (SPS) in the presence of air, water, nitrogen, oxygen, and under vacuum confirms photovoltages are associated with oxidation of surface water and hydroxyl groups and with reversible surface hole trapping on the 1 minute time scale and de-trapping on the 1 hour time scale with a maximum photovoltage of -130 mW under 2.0 eV - 4.5 eV illumination. Sacrificial donors (KI, H2O2, KOH) increase the voltage to -240 and -400 mW, due to improved hole transfer. The photovoltage is quenched with the addition of co-catalysts CoOx and Co-Pi, possibly due to the removal of surface states and enhanced e/h recombination. Chapter 3 outlines a methodical exploration of the limits of water oxidation from illuminated beta-FeO(OH) suspensions. Well-defined akaganeite nanocrystals are able to produce oxygen gas from aqueous solutions in the presence of an appropriate electron acceptor. Optimal conditions were achieved by systematically varying the amount of catalyst, concentration of the electron acceptor, pH of the solution, and light intensity. A decrease in activity is shown to be the result of particle agglomeration after roughly 5 hours of illumination. A maximum O2 evolution rate of 35.2 mumol O 2 h-1 is observed from an optimized system, with a QE of 0.19%, and TON of 2.58 based on total beta-FeO(OH). Chapter 4 continues to understand charge separation and transport in CdS nanorods. These nanomaterials are capable of catalytic proton reduction under visible illumination, but suffer from photo-corrosion resulting in decreased H2 production. SPS measurements show a maximum photovoltage of -230 mV at 2.75 eV and the charge separation is largely reversible. Coating the rods with graphitic carbon nitride (g-C3N4) creates a hole accepting protective layer than prevents oxidative loss of photo-activity. By adding platinum salts, additional photovoltage could be extracted through field induced charge migration from excited sub gap defect states and trap sites. The addition of a sacrificial reagent would either decrease or increase the photovoltage (depending on the reagent used) by creating additional bias in the films or charge recombination pathways. Finally, it was shown that varying the substrate has an effect on the platinum/substrate polarized charge injection. Chapter 5 Surface photovoltage is used to show for the first time the charge separation properties of Sn2TiO4, an n-type photocatalyst, a series of cuprous niobium oxides doped with tantalum (CuNb1-yTa yOx), and a Cu (I) tantalum oxide Cu5Ta11 O3.

  9. Multi-frequency inversion-charge pumping for charge separation and mobility analysis in high-k/InGaAs metal-oxide-semiconductor field-effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djara, V.; Cherkaoui, K.; Negara, M. A.

    2015-11-28

    An alternative multi-frequency inversion-charge pumping (MFICP) technique was developed to directly separate the inversion charge density (N{sub inv}) from the trapped charge density in high-k/InGaAs metal-oxide-semiconductor field-effect transistors (MOSFETs). This approach relies on the fitting of the frequency response of border traps, obtained from inversion-charge pumping measurements performed over a wide range of frequencies at room temperature on a single MOSFET, using a modified charge trapping model. The obtained model yielded the capture time constant and density of border traps located at energy levels aligned with the InGaAs conduction band. Moreover, the combination of MFICP and pulsed I{sub d}-V{sub g}more » measurements enabled an accurate effective mobility vs N{sub inv} extraction and analysis. The data obtained using the MFICP approach are consistent with the most recent reports on high-k/InGaAs.« less

  10. Early time evolution of negative ion clouds and electron density depletions produced during electron attachment chemical release experiments

    NASA Technical Reports Server (NTRS)

    Scales, W. A.; Bernhardt, P. A.; Ganguli, G.

    1994-01-01

    Two-dimensional electrostatic particle-in-cell simulations are used to study the early time evolution of electron depletions and negative ion clouds produced during electron attachment chemical releases in the ionosphere. The simulation model considers the evolution in the plane perpendicular to the magnetic field and a three-species plasma that contains electrons, positive ions, and also heavy negative ions that result as a by-product of the electron attachment reaction. The early time evolution (less than the negative ion cyclotron period) of the system shows that a negative charge surplus initially develops outside of the depletion boundary as the heavy negative ions move across the boundary. The electrons are initially restricted from moving into the depletion due to the magnetic field. An inhomogenous electric field develops across the boundary layer due to this charge separation. A highly sheared electron flow velocity develops in the depletion boundary due to E x B and Delta-N x B drifts that result from electron density gradients and this inhomogenous electric field. Structure eventually develops in the depletion boundary layer due to low-frequency electrostatic waves that have growth times shorter than the negative ion cyclotron period. It is proposed that these waves are most likely produced by the electron-ion hybrid instability that results from sufficiently large shears in the electron flow velocity.

  11. Solution deposited and modified iron oxide for enhanced solar water splitting

    NASA Astrophysics Data System (ADS)

    Abel, Anthony J.

    Growing worldwide energy demand coupled with an increasing awareness of anthropogenic climate change has driven research into carbon-neutral and solar-derived energy sources. One attractive strategy is the storage of solar energy in the bonds of H2 formed by photoelectrochemical (PEC) water splitting. Hematite, an iron oxide, has been widely investigated as a candidate material for PEC water splitting due to its stability, non-toxicity, earth abundance and consequent low cost, and a theoretical 15% solar-to-hydrogen conversion efficiency. However, poor electrical properties and slow rates of the water oxidation reaction have limited its potential as an economical water splitting catalyst. Additionally, the most efficient hematite-based devices are fabricated via expensive, vacuum-phase techniques, limiting scalability to broad integration into the energy supply. In this thesis, I develop a new, solution-based deposition method for high quality, planar hematite thin films using successive ionic layer adsorption and reaction (SILAR). The constant geometry and tight control over layer thickness possible with SILAR makes these films ideal model systems to understand the two key steps of PEC water oxidation: charge separation and interfacial hole transfer. In Chapter 3, I report on facile annealing treatments to dope hematite with Ti and Sn, and I show that these impurity atoms at the hematite/electrolyte interface increase hole transfer efficiency from nearly 0 to above 60%. However, charge separation remains below 15% with these dopants incorporated via solid state diffusion, mainly due to low hole mobility. To overcome this associated small transport length, extremely thin hematite coatings were deposited on Sb:SnO2 monolayer inverse opal scaffolds. With this modified substrate, photocurrent increased proportionately to the surface area of the scaffold. While Chapter 3 discusses incorporation of dopants via solid state diffusion, Chapter 4 examines methods to incorporate Ti via modified SILAR solutions. With this method, hematite films with well-controlled, uniform doping profiles were successfully fabricated. An optimal Ti concentration of 4.2% in the film enabled a charge separation efficiency of >20%, and I show that holes generated within 3 nm of the depletion region are separated with unity efficiency. With the addition of an ultrathin FeOOH overlayer, hole transfer efficiency is increased to 100% as a result of an increased concentration of reactive holes at the hematite/electrolyte interface. These combined effects lead to photocurrents >0.85 mAcm-2 at 1.23 VRHE, which is competitive with champion planar films regardless of fabrication method. Importantly, the methods of fabrication and analysis described in this thesis are applicable to a wide range of materials for a variety of applications. The SILAR method can be applied to many compounds, provided their constituent atoms are soluble in liquid solvents. Additionally, the facile optical and electrochemical measurements used to analyze hematite in Chapters 3 and 4 can be readily adapted to other semiconductor materials with the aim of understanding their charge transport properties.

  12. Composite tin and zinc oxide nanocrystalline particles for enhanced charge separation in sensitized degradation of dyes.

    PubMed

    Bandara, J; Tennakone, K; Jayatilaka, P P B

    2002-10-01

    Composite ZnO/SnO2 catalyst has been studied for the sensitized degradation of dyes e.g. Eosin Y (2', 4', 5', 7'-tetrabromofluorescein disodium salt) in relation to efficient charge separation properties of the catalyst. Improved photocatalytic activity was observed in the case of ZnO/SnO2 composite catalyst compared to the catalytic activity of ZnO, SnO2 or TiO2 powder. The suppression of charge recombination in the composite ZnO/SnO2 catalyst led to higher catalytic activity for the degradation of Eosin Y. Degradation of Eosin follows concomitant formation of CO2 and formation of CO2 followed a pseudo-first-order rate. Photoelectrochemical cells constructed using SnO2, ZnO, ZnO/SnO2 sensitized with Eosin Y showed V(oc) of 175, 306, 512 mV/cm2 and I(sc) of 50, 70, 200 microA/cm2 respectively. A higher irreversible degradation of Eosin Y and higher V(oc) observed on composite ZnO/SnO2 than ZnO and SnO2 separately can be considered as a proof of enhanced charge separation of ZnO/SnO2 catalyst. Eosin Y showed a higher emission decreases on ZnO/SnO2 composite than on individual ZnO, SnO2 or TiO2 indicating dominance of the charge injection process. Photoinjected electrons are tunneled from ZnO to SnO2 particles accumulating injected electrons in the conduction bands allowing wider separation of excited carriers.

  13. Charge separation at disordered semiconductor heterojunctions from random walk numerical simulations.

    PubMed

    Mandujano-Ramírez, Humberto J; González-Vázquez, José P; Oskam, Gerko; Dittrich, Thomas; Garcia-Belmonte, Germa; Mora-Seró, Iván; Bisquert, Juan; Anta, Juan A

    2014-03-07

    Many recent advances in novel solar cell technologies are based on charge separation in disordered semiconductor heterojunctions. In this work we use the Random Walk Numerical Simulation (RWNS) method to model the dynamics of electrons and holes in two disordered semiconductors in contact. Miller-Abrahams hopping rates and a tunnelling distance-dependent electron-hole annihilation mechanism are used to model transport and recombination, respectively. To test the validity of the model, three numerical "experiments" have been devised: (1) in the absence of constant illumination, charge separation has been quantified by computing surface photovoltage (SPV) transients. (2) By applying a continuous generation of electron-hole pairs, the model can be used to simulate a solar cell under steady-state conditions. This has been exploited to calculate open-circuit voltages and recombination currents for an archetypical bulk heterojunction solar cell (BHJ). (3) The calculations have been extended to nanostructured solar cells with inorganic sensitizers to study, specifically, non-ideality in the recombination rate. The RWNS model in combination with exponential disorder and an activated tunnelling mechanism for transport and recombination is shown to reproduce correctly charge separation parameters in these three "experiments". This provides a theoretical basis to study relevant features of novel solar cell technologies.

  14. Capillary electrophoresis of covalently functionalized single-chirality carbon nanotubes.

    PubMed

    He, Pingli; Meany, Brendan; Wang, Chunyan; Piao, Yanmei; Kwon, Hyejin; Deng, Shunliu; Wang, YuHuang

    2017-07-01

    We demonstrate the separation of chirality-enriched single-walled carbon nanotubes (SWCNTs) by degree of surface functionalization using high-performance CE. Controlled amounts of negatively charged and positively charged functional groups were attached to the sidewall of chirality-enriched SWCNTs through covalent functionalization using 4-carboxybenzenediazonium tetrafluoroborate or 4-diazo-N,N-diethylaniline tetrafluoroborate, respectively. Surfactant- and pH-dependent studies confirmed that under conditions that minimized ionic screening effects, separation of these functionalized SWCNTs was strongly dependent on the surface charge density introduced through covalent surface chemistry. For both heterogeneous mixtures and single-chirality-enriched samples, covalently functionalized SWCNTs showed substantially increased peak width in electropherogram spectra compared to nonfunctionalized SWCNTs, which can be attributed to a distribution of surface charges along the functionalized nanotubes. Successful separation of functionalized single-chirality SWCNTs by functional density was confirmed with UV-Vis-NIR absorption and Raman scattering spectroscopies of fraction collected samples. These results suggest a high degree of structural heterogeneity in covalently functionalized SWCNTs, even for chirality-enriched samples, and show the feasibility of applying CE for high-performance separation of nanomaterials based on differences in surface functional density. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Understanding the influence of solvent field and fluctuations on the stability of photo-induced charge-separated state in molecular triad

    NASA Astrophysics Data System (ADS)

    Balamurugan, D.; Aquino, Adelia; Lischka, Hans; Dios, Francis; Flores, Lionel; Cheung, Margaret

    2013-03-01

    Molecular triad composed of fullerene, porphyrin, and carotene is an artificial analogue of natural photosynthetic system and is considered for applications in solar energy conversion because of its ability to produce long-lived photo-induced charge separated state. The goal of the present multiscale simulation is to understand how the stability of photo-induced charge-separated state in molecular triad is influenced by a polar organic solvent, namely tetrahydrofuran (THF). The multiscale approach is based on combined quantum, classical molecular dynamics, and statistical physics calculations. The quantum chemical calculations were performed on the triad using the second order algebraic diagrammatic perturbation and time-dependent density functional theory. Molecular dynamics simulations were performed on triad in a box of THF solvent with the replica exchange method. The two methods on different length and time scales are bridged through an important sampling technique. We have analyzed the free energy landscape, structural fluctuations, and the long- range electrostatic interactions between triad and solvent molecules. The results suggest that the polarity and re-organization of the solvent is critical in stabilization of charge-separated state in triad. Supported by DOE (DE-FG02-10ER16175)

  16. Study of the physicochemical effects on the separation of the non-metallic fraction from printed circuit boards by inverse flotation.

    PubMed

    Flores-Campos, R; Estrada-Ruiz, R H; Velarde-Sánchez, E J

    2017-11-01

    Recycling printed circuit boards using green technology is increasingly important due to the metals these contain and the environmental care that must be taken when separating the different materials. Inverse flotation is a process that can be considered a Green Technology, which separates metallic from non-metallic fractions. The degree of separation depends on how much material is adhered to air bubbles. The contact angle measurement allows to determine, in an easy way, whether the flotation process will occur or not and thus establish a material as hydrophobic or not. With the material directly obtained from the milling process, it was found that the contact angle of the non-metallic fraction-liquid-air system increases as temperature increases. In the same way, the increments in concentration of frother in the liquid increase the contact angle of the non-metallic fraction-liquid-air system. 10ppm of Methyl Isobutyl Carbinol provides the highest contact angle as well as the highest material charging in the bubble. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Surface and material analytics based on Dresden-EBIS platform technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, M., E-mail: mike.schmidt@dreebit.com; König, J., E-mail: mike.schmidt@dreebit.com; Bischoff, L.

    2015-01-09

    Nowadays widely used mass spectrometry systems utilize energetic ions hitting a sample and sputter material from the surface of a specimen. The generated secondary ions are separated and detected with high mass resolution to determine the target materials constitution. Based on this principle, we present an alternative approach implementing a compact Electron Beam Ion Source (EBIS) in combination with a Liquid Metal Ion Source (LMIS). An LMIS can deliver heavy elements which generate high sputter yields on a target surface. More than 90% of this sputtered material consists of mono- and polyatomic neutrals. These particles are able to penetrate themore » magnetic field of an EBIS and they will be ionized within the electron beam. A broad spectrum of singly up to highly charged ions can be extracted depending on the operation conditions. Polyatomic ions will decay during the charge-up process. A standard bending magnet or a Wien filter is used to separate the different ion species due to their mass-to-charge ratio. Using different charge states of ions as it is common with EBIS it is also possible to resolve interfering charge-to-mass ratios of only singly charged ions. Different setups for the realization of feeding the electron beam with sputtered atoms of solids will be presented and discussed. As an example the analysis of a copper surface is used to show high-resolution spectra with low background noise. Individual copper isotopes and clusters with different isotope compositions can be resolved at equal atomic numbers. These results are a first step for the development of a new compact low-cost and high-resolution mass spectrometry system. In a more general context, the described technique demonstrates an efficient method for feeding an EBIS with atoms of nearly all solid elements from various solid target materials. The new straightforward design of the presented setup should be of high interest for a broad range of applications in materials research as well as for applications connected to analyzing the biosphere, hydrosphere, lithosphere, cosmosphere and technosphere.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Mark J.; Saleh, Omar A.

    We calculated the force-extension curves for a flexible polyelectrolyte chain with varying charge separations by performing Monte Carlo simulations of a 5000 bead chain using a screened Coulomb interaction. At all charge separations, the force-extension curves exhibit a Pincus-like scaling regime at intermediate forces and a logarithmic regime at large forces. As the charge separation increases, the Pincus regime shifts to a larger range of forces and the logarithmic regime starts are larger forces. We also found that force-extension curve for the corresponding neutral chain has a logarithmic regime. Decreasing the diameter of bead in the neutral chain simulations removedmore » the logarithmic regime, and the force-extension curve tends to the freely jointed chain limit. In conclusion, this result shows that only excluded volume is required for the high force logarithmic regime to occur.« less

  19. Separations by supported liquid membrane cascades

    DOEpatents

    Danesi, P.R.

    1983-09-01

    The invention describes a new separation technique which leads to multi-stage operations by the use of a series (a cascade) of alternated carrier-containing supported-liquid cation exchanger extractant and a liquid anion exchanger extractant (or a neutral extractant) as carrier. The membranes are spaced between alternated aqueous electrolytic solutions of different composition which alternatively provide positively charged extractable species and negatively charged (or zero charged) extractable species, of the chemical species to be separated. The alternated aqueous electrolytic solutions in addition to providing the driving force to the process, simultaneously function as a stripping solution from one type of membrane and as an extraction-promoting solution for the other type of membrane. The aqueous electrolytic solution and the supported liquid membranes are arranged to provide a continuous process.

  20. Electrostatic attraction between overall neutral surfaces.

    PubMed

    Adar, Ram M; Andelman, David; Diamant, Haim

    2016-08-01

    Two overall neutral surfaces with positively and negatively charged domains ("patches") have been shown in recent experiments to exhibit long-range attraction when immersed in an ionic solution. Motivated by the experiments, we calculate analytically the osmotic pressure between such surfaces within the Poisson-Boltzmann framework, using a variational principle for the surface-averaged free energy. The electrostatic potential, calculated beyond the linear Debye-Hückel theory, yields an overall attraction at large intersurface separations, over a wide range of the system's controlled length scales. In particular, the attraction is stronger and occurs at smaller separations for surface patches of larger size and charge density. In this large patch limit, we find that the attraction-repulsion crossover separation is inversely proportional to the square of the patch-charge density and to the Debye screening length.

  1. Electric Field Fluctuations in Water

    NASA Astrophysics Data System (ADS)

    Thorpe, Dayton; Limmer, David; Chandler, David

    2013-03-01

    Charge transfer in solution, such as autoionization and ion pair dissociation in water, is governed by rare electric field fluctuations of the solvent. Knowing the statistics of such fluctuations can help explain the dynamics of these rare events. Trajectories short enough to be tractable by computer simulation are virtually certain not to sample the large fluctuations that promote rare events. Here, we employ importance sampling techniques with classical molecular dynamics simulations of liquid water to study statistics of electric field fluctuations far from their means. We find that the distributions of electric fields located on individual water molecules are not in general gaussian. Near the mean this non-gaussianity is due to the internal charge distribution of the water molecule. Further from the mean, however, there is a previously unreported Bjerrum-like defect that stabilizes certain large fluctuations out of equilibrium. As expected, differences in electric fields acting between molecules are gaussian to a remarkable degree. By studying these differences, though, we are able to determine what configurations result not only in large electric fields, but also in electric fields with long spatial correlations that may be needed to promote charge separation.

  2. Aerosols and seismo-ionosphere coupling: A review

    NASA Astrophysics Data System (ADS)

    Namgaladze, Aleksandr; Karpov, Mikhail; Knyazeva, Maria

    2018-06-01

    The role of atmosphere aerosols in the global electric circuit, particularly during earthquakes preparation periods, is discussed in this review paper. Aerosols participate in production and transport of electric charges as well as in clouds formation. Satellite imagery shows increased aerosol optical depth over the tectonic faults and formation of the anomalous clouds aligned with the faults shortly before the earthquake shocks. At the same time variations of the ionospheric electric field and total electron content (TEC) are observed. We assume that the vertical electric current is generated over the fault due to the separation and vertical transport of charges with different masses and polarities. This charges the ionosphere positively relative to the Earth in the same way as the thunderstorm currents do. The resulting electric field in the ionosphere drives F2-layer plasma via the electromagnetic [E→ ×B→ ] drift and decreases or increases electron density depending on the configuration of the electric field, thus, creating observed negative or positive TEC disturbances. The important role of the electric dynamo effect in these processes is underlined.

  3. Electrical characteristics in reverse electrodialysis using nanoporous membranes

    NASA Astrophysics Data System (ADS)

    Chanda, Sourayon; Tsai, Peichun Amy

    2017-11-01

    We experimentally and numerically investigate the effects of concentration difference and flow velocity on sustainable electricity generation and associated fluid dynamics using a single reverse electrodialysis (RED) cell. By exploiting the charge-selective nature of nanoporous interfaces, electrical energy is generated by reverse electrodialysis harnessing chemical Gibbs energy via a salinity gradient. Experimentally, a RED cell was designed with two reservoirs, which are separated by a nanoporous, cation-selective membrane. We injected deionized water through one reservoir, whereas a solution of high salt concentration through the other. The gradient of salt concentration primarily drives the flow in the charged nano-pores, due to the interplay between charge selectivity, diffusion processes, and electro-migration. The current-voltage characteristics of the single RED cell shows a linear current-voltage relationship, similar to an electrochemical cell. The membrane resistance is increased with increasing salt concentration difference and external flow rate. The present experimental work was further analyzed numerically to better understand the detailed electrical and flow fields under different concentration gradients and external flows. NSERC Discovery, Accelerator, and CRC Programs.

  4. Hydrogen rearrangements in the fragmentation of anthracene by low-energy electron impact

    NASA Astrophysics Data System (ADS)

    van der Burgt, Peter J. M.; Dunne, Melissa; Gradziel, Marcin L.

    2018-02-01

    We have measured mass spectra for positive ions produced by low-energy electron impact on anthracene using a reflectron time-of-flight mass spectrometer. The electron impact energy has been varied from 0 to 100 eV in steps of 0.5 eV. Ion yield curves of most of the fragment ions have been determined by fitting groups of adjacent peaks in the mass spectra with sequences of normalized Gaussians. Appearance energies for all these ions have been determined, and we report the first direct measurement of the triple ionization energy of anthracene at 45.5±0.5 eV. The groups of fragments containing 8-13 carbon atoms provide evidence for hydrogen rearrangements during the fragmentation, involving retention or loss of one or two additional hydrogen atoms. Groups of fragments with 6 and 7 carbon atoms clearly show the presence of doubly-charged fragments. The smaller fragments with 1-4 carbon atoms all show broadened peaks, and these fragments may be partly or mostly due to energetic charge-separation fragmentations of doubly-charged anthracene.

  5. A numerical study on liquid charging inside electrostatic atomizers

    NASA Astrophysics Data System (ADS)

    Kashir, Babak; Perri, Anthony; Sankaran, Abhilash; Staszel, Christopher; Yarin, Alexander; Mashayek, Farzad

    2016-11-01

    The charging of the dielectric liquid inside an electrostatic atomizer is studied numerically by developing codes based on the OpenFOAM platform. Electrostatic atomization is an appealing technology in painting, fuel injection and oil coating systems due to improved particle-size distribution, enhanced controlability of droplets' trajectories and lower power consumption. The numerical study is conducted concurrently to an experimental investigation to facilitate the validation and deliver feedback for further development. The atomizer includes a pin electrode that is placed at the center of a converging chamber. The chamber orifice is located at a known distance from the electrode tip. The pin electrode is connected to a high voltage that leads to the charging of the liquid. In the present work, the theoretical foundations of separated treatment of the polarized layer and the electronuetral bulk flow are set by describing the governing equations, relevant boundary conditions and the matching condition between these two domains. The resulting split domains are solved numerically to find the distribution of velocity and electrostatic fields over the specified regions. National Science Foundation Award Number: 1505276.

  6. Electric Double Layer Composed of an Antagonistic Salt in an Aqueous Mixture: Local Charge Separation and Surface Phase Transition

    NASA Astrophysics Data System (ADS)

    Yabunaka, Shunsuke; Onuki, Akira

    2017-09-01

    We examine an electric double layer containing an antagonistic salt in an aqueous mixture, where the cations are small and hydrophilic but the anions are large and hydrophobic. In this situation, a strong coupling arises between the charge density and the solvent composition. As a result, the anions are trapped in an oil-rich adsorption layer on a hydrophobic wall. We then vary the surface charge density σ on the wall. For σ >0 the anions remain accumulated, but for σ <0 the cations are attracted to the wall with increasing |σ |. Furthermore, the electric potential drop Ψ (σ ) is nonmonotonic when the solvent interaction parameter χ (T ) exceeds a critical value χc determined by the composition and the ion density in the bulk. This leads to a first-order phase transition between two kinds of electric double layers with different σ and common Ψ . In equilibrium such two-layer regions can coexist. The steric effect due to finite ion sizes is crucial in these phenomena.

  7. Monte Carlo simulations of the counter ion effect on the conformational equilibrium of the N, N'-diphenyl-guanidinium ion in aqueous solution

    NASA Astrophysics Data System (ADS)

    Nagy, Peter I.; Durant, Graham J.

    1996-01-01

    Results of calculations for the equilibrium of the syn-syn, anti-syn, and anti-anti conformers of the N, N'-diphenyl-guanidinium ion in aqueous solution are sensitive to whether a counter ion is considered. Relative internal free energies were calculated upon MP2/6-31G*//HF/4-31G energies (second order Møller-Plesset energies obtained when using the 6-31G* basis set at geometries optimized at the Hartree-Fock level and using the 4-31G basis set) and relative solvation free energy terms were obtained by Monte Carlo simulations. Without considering a counter ion only a small fraction of the solute has been predicted to adopt the anti-anti conformation in the solution. When considering acetate and chloride counter ions with salt concentration of 0.11 mol/l at 310 K, mimicking physiological conditions, the counter ion close to the cation stabilizes the anti-anti form significantly. Though there are not local free energy minima for the present systems with close counter ions because of the relatively weak ion-ion interaction due to the largely delocalized total charge and atomic charge alternation in the cation, the constraint for the C(guanidinium)...C(carboxylate) separation of 4.6 Å allows an insight into the arginine...aspartate or glutamate interactions commonly found in peptides. The N-H(guanidinium)...O(carboxylate) hydrogen bonds are not stable due to thermal motion in aqueous solution. The neighboring water molecules, however, move into the space in-between the charged groups and comprise a hydrogen bonded network. Interactions with a chloride counter ion may be significant for the drug delivery process to the receptor site. Close contact between the N, N'-diphenyl guanidinium and a chloride ion is also not favored, though it may occur temporarily and then would favor the anti-anti conformer. Deviation from the relative solvation free energy obtained for the conformational change of the single cation is still some tenths of a kcal/mol with ions separated as much as 12.4 Å. While solvation energetics is affected even at such a separation, solution structure around the ions can be basically characterized without considering the effect of a remote counterpart.

  8. Spectroscopy of Photovoltaic Materials: Charge-Transfer Complexes and Titanium Dioxide

    NASA Astrophysics Data System (ADS)

    Dillon, Robert John

    The successful function of photovoltaic (PV) and photocatalytic (PC) systems centers primarily on the creation and photophysics of charge separated electron-hole pairs. The pathway leading to separate carriers varies by material; organic materials typically require multiple events to charge separate, whereas inorganic semiconductors can directly produce free carriers. In this study, time-resolved spectroscopy is used to provide insight into two such systems: 1) organic charge-transfer (CT) complexes, where electrons and holes are tightly bound to each other, and 2) Au-TiO2 core-shell nanostructures, where free carriers are directly generated. 1) CT complexes are structurally well defined systems consisting of donor molecules, characterized by having low ionization potentials, and acceptor molecules, characterized by having high electron affinities. Charge-transfer is the excitation of an electron from the HOMO of a donor material directly into the LUMO of the acceptor material, leading to an electron and hole separated across the donor:acceptor interface. The energy of the CT transition is often less than that of the bandgaps of donor and acceptor materials individually, sparking much interest if PV systems can utilize the CT band to generate free carriers from low energy photons. In this work we examine the complexes formed between acceptors tetracyanobenzene (TCNB) and tetracyanoquinodimethane (TCNQ) with several aromatic donors. We find excitation of the charge-transfer band of these systems leads to strongly bound electron-hole pairs that exclusively undergo recombination to the ground state. In the case of the TCNB complexes, our initial studies were flummoxed by the samples' generally low threshold for photo and mechanical damage. As our results conflicted with previous literature, a significant portion of this study was spent quantifying the photodegradation process. 2) Unlike the previous system, free carriers are directly photogenerated in TiO2, and the prime consideration is avoiding loss due to recombination of the electron and hole. In this study, four samples of core-shell Au-TiO 2 nanostructures are analyzed for their photocatalytic activity and spectroscopic properties. The samples were made with increasingly crystalline TiO2 shells. The more crystalline samples had higher photocatalytic activities, attributed to longer carrier lifetimes. The observed photophysics of these samples vary with excitation wavelength and detection method used. We find the time-resolved photoluminescence correlates with the samples' photocatalytic activities only when high energy, excitation wavelength less than or equal to 300 nm is used, while transient absorption experiments show no correlation regardless of excitation source. The results imply that photoexcitation with high energy photons can generate both reactive surface sites and photoluminescent surface sites in parallel. Both types of sites then undergo similar electron-hole recombination processes that depend on the crystallinity of the TiO2 shell. Surface sites created by low energy photons, as well as bulk TiO2 carrier dynamics that are probed by transient absorption, do not appear to be sensitive to the same dynamics that determine chemical reactivity.

  9. Towards a stakeholders' consensus on patient payment policy: the views of health-care consumers, providers, insurers and policy makers in six Central and Eastern European countries.

    PubMed

    Tambor, Marzena; Pavlova, Milena; Golinowska, Stanisława; Sowada, Christoph; Groot, Wim

    2015-08-01

    Although patient charges for health-care services may contribute to a more sustainable health-care financing, they often raise public opposition, which impedes their introduction. Thus, a consensus among the main stakeholders on the presence and role of patient charges should be worked out to assure their successful implementation. To analyse the acceptability of formal patient charges for health-care services in a basic package among different health-care system stakeholders in six Central and Eastern European countries (Bulgaria, Hungary, Lithuania, Poland, Romania and Ukraine). Qualitative data were collected in 2009 via focus group discussions and in-depth interviews with health-care consumers, providers, policy makers and insurers. The same participants were asked to fill in a self-administrative questionnaire. Qualitative and quantitative data are analysed separately to outline similarities and differences in the opinions between the stakeholder groups and across countries. There is a rather weak consensus on patient charges in the countries. Health policy makers and insurers strongly advocate patient charges. Health-care providers overall support charges but their financial profits from the system strongly affects their approval. Consumers are against paying for services, mostly due to poor quality and access to health-care services and inability to pay. To build consensus on patient charges, the payment policy should be responsive to consumers' needs with regard to quality and equity. Transparency and accountability in the health-care system should be improved to enhance public trust and acceptance of patient payments. © 2012 John Wiley & Sons Ltd.

  10. Charged nanoparticle attraction in multivalent salt solution: A classical-fluids density functional theory and molecular dynamics study

    DOE PAGES

    Salerno, K. Michael; Frischknecht, Amalie L.; Stevens, Mark J.

    2016-04-08

    Here, negatively charged nanoparticles (NPs) in 1:1, 1:2, and 1:3 electrolyte solutions are studied in a primitive ion model using molecular dynamics (MD) simulations and classical density functional theory (DFT). We determine the conditions for attractive interactions between the like-charged NPs. Ion density profiles and NP–NP interaction free energies are compared between the two methods and are found to be in qualitative agreement. The NP interaction free energy is purely repulsive for monovalent counterions, but can be attractive for divalent and trivalent counterions. Using DFT, the NP interaction free energy for different NP diameters and charges is calculated. The depthmore » and location of the minimum in the interaction depend strongly on the NPs’ charge. For certain parameters, the depth of the attractive well can reach 8–10 k BT, indicating that kinetic arrest and aggregation of the NPs due to electrostatic interactions is possible. Rich behavior arises from the geometric constraints of counterion packing at the NP surface. Layering of counterions around the NPs is observed and, as secondary counterion layers form the minimum of the NP–NP interaction free energy shifts to larger separation, and the depth of the free energy minimum varies dramatically. We find that attractive interactions occur with and without NP overcharging.« less

  11. Ion transport restriction in mechanically strained separator membranes

    NASA Astrophysics Data System (ADS)

    Cannarella, John; Arnold, Craig B.

    2013-03-01

    We use AC impedance methods to investigate the effect of mechanical deformation on ion transport in commercial separator membranes and lithium-ion cells as a whole. A Bruggeman type power law relationship is found to provide an accurate correlation between porosity and tortuosity of deformed separators, which allows the impedance of a separator membrane to be predicted as a function of deformation. By using mechanical compression to vary the porosity of the separator membranes during impedance measurements it is possible to determine both the α and γ parameters from the modified Bruggeman relation for individual separator membranes. From impedance testing of compressed pouch cells it is found that separator deformation accounts for the majority of the transport restrictions arising from compressive stress in a lithium-ion cell. Finally, a charge state dependent increase in the impedance associated with charge transfer is observed with increasing cell compression.

  12. A multimodal histamine ligand for chromatographic purification of plasmid DNA.

    PubMed

    Černigoj, Urh; Vidic, Urška; Barut, Miloš; Podgornik, Aleš; Peterka, Matjaž; Štrancar, Aleš

    2013-03-15

    To exploit different chromatographic modes for efficient plasmid DNA (pDNA) purification a novel monolithic chromatographic support bearing multimodal histamine (HISA) groups was developed and characterized. Electrostatic charge of HISA groups depends on the pH of the mobile phase, being neutral above pH 7 and becoming positively charged below. As a consequence, HISA groups exhibit predominantly ion-exchange character at low pH values, which decreases with titration of the HISA groups resulting in increased hydrophobicity. This feature enabled separation of supercoiled (sc) pDNA from other plasmid isoforms (and other process related impurities) by adjusting salt or pH gradient. The dynamic binding capacity (DBC) for a 5.1kbp large plasmid at pH 5 was 4.0 mg/ml under low salt binding conditions, remaining relatively high (3.0 mg/ml) even in the presence of 1.0 M NaCl due to the multimodal nature of HISA ligand. Only slightly lower DBC (2.7 mg/ml) was determined under preferentially hydrophobic conditions in 3.0 M (NH(4))(2)SO(4), pH 7.4. Open circular and sc pDNA isoforms were baseline separated in descending (NH(4))(2)SO(4) gradient. Furthermore, an efficient plasmid DNA separation was possible both on analytical as well as on preparative scale by applying the descending pH gradient at a constant concentration (above 3.0 M) of (NH(4))(2)SO(4). Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Superhydrophilic Functionalization of Microfiltration Ceramic Membranes Enables Separation of Hydrocarbons from Frac and Produced Water.

    PubMed

    Maguire-Boyle, Samuel J; Huseman, Joseph E; Ainscough, Thomas J; Oatley-Radcliffe, Darren L; Alabdulkarem, Abdullah A; Al-Mojil, Sattam Fahad; Barron, Andrew R

    2017-09-25

    The environmental impact of shale oil and gas production by hydraulic fracturing (fracking) is of increasing concern. The biggest potential source of environmental contamination is flowback and produced water, which is highly contaminated with hydrocarbons, bacteria and particulates, meaning that traditional membranes are readily fouled. We show the chemical functionalisation of alumina ceramic microfiltration membranes (0.22 μm pore size) with cysteic acid creates a superhydrophilic surface, allowing for separation of hydrocarbons from frac and produced waters without fouling. The single pass rejection coefficients was >90% for all samples. The separation of hydrocarbons from water when the former have hydrodynamic diameters smaller than the pore size of the membrane is due to the zwitter ionically charged superhydrophilic pore surface. Membrane fouling is essentially eliminated, while a specific flux is obtained at a lower pressure (<2 bar) than that required achieving the same flux for the untreated membrane (4-8 bar).

  14. ELECTROSTATIC SURFACE STRUCTURES OF COAL AND MINERAL PARTICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    It is the purpose of this research to study electrostatic charging mechanisms related to electrostatic beneficiation of coal with the goal of improving models of separation and the design of electrostatic separators. Areas addressed in this technical progress report are (a) electrostatic beneficiation of Pittsburgh #8 coal powders as a function of grind size and processing atmosphere; (b) the use of fluorescent micro-spheres to probe the charge distribution on the surfaces of coal particles; (c) the use of electrostatic beneficiation to recover unburned carbon from flyash; (d) the development of research instruments for investigation of charging properties of coal. Pittsburghmore » #8 powders were beneficiated as a function of grind size and under three atmosphere conditions: fresh ground in air , after 24 hours of air exposure, or under N2 atmosphere. The feed and processed powders were analyzed by a variety of methods including moisture, ash, total sulfur, and pyritic sulfur content. Mass distribution and cumulative charge of the processed powders were also measured. Fresh ground coal performed the best in electrostatic beneficiation. Results are compared with those of similar studies conducted on Pittsburgh #8 powders last year (April 1, 1997 to September 30, 1997). Polystyrene latex spheres were charged and deposited onto coal particles that had been passed through the electrostatic separator and collected onto insulating filters. The observations suggest bipolar charging of individual particles and patches of charge on the particles which may be associated with particular maceral types or with mineral inclusions. A preliminary investigation was performed on eletrostatic separation of unburned carbon particles from flyash. Approximately 25% of the flyash acquired positive charge in the copper tribocharger. This compares with 75% of fresh ground coal. The negatively charged material had a slightly reduced ash content suggesting some enrichment of carbonaceous material. There was also evidence that the carbon is present at a higher ratio in larger particles than in small particles. An ultraviolet photoelectron counter for use in ambient atmosphere is nearing completion. The counter will be used to measure work functions of different maceral and mineral types in the coal matrix. A Particle Image Analyzer for measuring size and charge of airborne particles is also under contruction and its current status is presented. A charged, monodisperse, droplet generator is also being constructed for calibration of the Particle Image Analyzer and other airborne particle analyzers in our labs.« less

  15. Enhanced Internal Quantum Efficiency in Dye-Sensitized Solar Cells: Effect of Long-Lived Charge-Separated State of Sensitizers.

    PubMed

    Sun, Haiya; Liu, Dongzhi; Wang, Tianyang; Lu, Ting; Li, Wei; Ren, Siyao; Hu, Wenping; Wang, Lichang; Zhou, Xueqin

    2017-03-22

    Effective charge separation is one of the key determinants for the photovoltaic performance of the dye-sensitized solar cells (DSSCs). Herein, two charge-separated (CS) sensitizers, MTPA-Pyc and YD-Pyc, have been synthesized and applied in DSSCs to investigate the effect of the CS states of the sensitizers on the device's efficiency. The CS states with lifetimes of 64 and 177 ns for MTPA-Pyc and YD-Pyc, respectively, are formed via the photoinduced electron transfer (PET) from the 4-styryltriphenylamine (MTPA) or 4-styrylindoline (YD) donor to the pyrimidine cyanoacrylic acid (Pyc) acceptor. DSSCs based on MTPA-Pyc and YD-Pyc exhibit high internal quantum efficiency (IQE) values of over 80% from 400 to 600 nm. In comparison, the IQEs of the charge transfer (CT) sensitizer cells are 10-30% lower in the same wavelength range. The enhanced IQE values in the devices based on the CS sensitizers are ascribed to the higher electron injection efficiencies and slower charge recombination. The results demonstrate that taking advantage of the CS states in the sensitizers can be a promising strategy to improve the IQEs and further enhance the overall efficiencies of the DSSCs.

  16. Mimicking the photosynthetic triplet energy-transfer relay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gust, D.; Moore, T.A.; Moore, A.L.

    1993-06-30

    In the reaction centers of photosynthetic organisms, chlorophyll triplet states are sometimes formed by recombination of charge-separated intermediates. These triplets are excellent sensitizers for singlet oxygen formation. Carotenoid polyenes can provide photoprotection from singlet oxygen generation by rapidly quenching chlorophyll triplet states via triplet-triplet energy transfer. Because in bacteria the reaction center carotenoid is not located adjacent to the bacteriochlorophyll special pair, which is the origin of the charge separation, it has been postulated that quenching may occur via a triplet relay involving an intermediate chlorophyll monomer. We now report the synthesis and spectroscopic study of a covalently linked carotenoidmore » (C)-porphyrin (P)-pyropheophorbide (Ppd) triad molecule which mimics this triplet relay. The pyropheophorbide singlet-state C-P-[sup 1]Ppd (generated by direct excitation or energy transfer from the attached porphyrin) undergoes intersystem crossing to the triplet C-P-[sup 3]Ppd. In oxygen-free solutions, this triplet decays to [sup 3]C-p-Ppd through a triplet-transfer relay involving an intermediate C-[sup 3]P-Ppd species. In aerated solutions, quenching of C-P-[sup 3]Ppd by the attached carotenoid competes with singlet oxygen sensitization and thus provides a degree of photoprotection. In a similar traid containing a zinc porphyrin moiety, triplet transfer is slow due to the higher energy of the C-[sup 3]P[sub Zn]-Ppd intermediate, and photoprotection via the relay is nonexistent. The triplet relay ceases to function at low temperatures in both the natural and biomimetic cases due to the endergonicity of the first step. 37 refs., 6 figs., 1 tab.« less

  17. Extension of the charge separated-state lifetime by supramolecular association of a tetrathiafulvalene electron donor to a zinc/gold bisporphyrin.

    PubMed

    Boixel, Julien; Fortage, Jérôme; Blart, Errol; Pellegrin, Yann; Hammarström, Leif; Becker, Hans-Christian; Odobel, Fabrice

    2010-02-14

    Supramolecular triads were prepared by self-assembly of 4'-pyridyl-2-tetrathiafulvalene axially bound on ZnP-spacer-AuP(+) dyads; the lifetime of the charge separated state ((+)TTF-ZnP-Spacer-AuP ) formed upon light excitation of the triad is greatly increased with respect to that found in the parent dyad.

  18. Therapeutic Antibody Engineering To Improve Viscosity and Phase Separation Guided by Crystal Structure.

    PubMed

    Chow, Chi-Kin; Allan, Barrett W; Chai, Qing; Atwell, Shane; Lu, Jirong

    2016-03-07

    Antibodies at high concentrations often reveal unanticipated biophysical properties suboptimal for therapeutic development. The purpose of this work was to explore the use of point mutations based on crystal structure information to improve antibody physical properties such as viscosity and phase separation (LLPS) at high concentrations. An IgG4 monoclonal antibody (Mab4) that exhibited high viscosity and phase separation at high concentration was used as a model system. Guided by the crystal structure, four CDR point mutants were made to evaluate the role of hydrophobic and charge interactions on solution behavior. Surprisingly and unpredictably, two of the charge mutants, R33G and N35E, showed a reduction in viscosity and a lower propensity to form LLPS at high concentration compared to the wild-type (WT), while a third charge mutant S28K showed an increased propensity to form LLPS compared to the WT. A fourth mutant, F102H, had reduced hydrophobicity, but unchanged viscosity and phase separation behavior. We further evaluated the correlation of various biophysical measurements including second virial coefficient (A2), interaction parameter (kD), weight-average molecular weight (WAMW), and hydrodynamic diameters (DH), at relatively low protein concentration (4 to 15 mg/mL) to physical properties, such as viscosity and liquid-liquid phase separation (LLPS), at high concentration. Surprisingly, kD measured using dynamic light scattering (DLS) at low antibody concentration correlated better with viscosity and phase separation than did A2 for Mab4. Our results suggest that the high viscosity and phase separation observed at high concentration for Mab4 are mainly driven by charge and not hydrophobicity.

  19. Two-terminal charge tunneling: Disentangling Majorana zero modes from partially separated Andreev bound states in semiconductor-superconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Moore, Christopher; Stanescu, Tudor D.; Tewari, Sumanta

    2018-04-01

    We show that a pair of overlapping Majorana bound states (MBSs) forming a partially separated Andreev bound state (ps-ABS) represents a generic low-energy feature in spin-orbit-coupled semiconductor-superconductor (SM-SC) hybrid nanowire in the presence of a Zeeman field. The ps-ABS interpolates continuously between the "garden variety" ABS, which consists of two MBSs sitting on top of each other, and the topologically protected Majorana zero modes (MZMs), which are separated by a distance given by the length of the wire. The really problematic ps-ABSs consist of component MBSs separated by a distance of the order of the characteristic Majorana decay length ξ , and have nearly zero energy in a significant range of control parameters, such as the Zeeman field and chemical potential, within the topologically trivial phase. Despite being topologically trivial, such ps-ABSs can generate signatures identical to MZMs in local charge tunneling experiments. In particular, the height of the zero-bias conductance peak (ZBCP) generated by ps-ABSs has the quantized value 2 e2/h , and it can remain unchanged in an extended range of experimental parameters, such as Zeeman field and the tunnel barrier height. We illustrate the formation of such low-energy robust ps-ABSs in two experimentally relevant situations: a hybrid SM-SC system consisting of a proximitized nanowire coupled to a quantum dot and the SM-SC system in the presence of a spatially varying inhomogeneous potential. We then show that, unlike local measurements, a two-terminal experiment involving charge tunneling at both ends of the wire is capable of distinguishing between the generic ps-ABSs and the non-Abelian MZMs. While the MZMs localized at the opposite ends of the wire generate correlated differential conduction spectra, including correlations in energy splittings and critical Zeeman fields associated with the emergence of the ZBCPs, such correlations are absent if the ZBCPs are due to ps-ABSs emerging in the topologically trivial phase. Measuring such correlations is the clearest and most straightforward test of topological MZMs in SM-SC heterostructures that can be done in a currently accessible experimental setup.

  20. Efficient interfacial charge transfer through plasmon sensitized Ag@Bi2O3 hierarchical photoanodes for photoelectrocatalytic degradation of chlorinated phenols.

    PubMed

    Eswar, Neerugatti KrishnaRao; Adhikari, Sangeeta; Ramamurthy, Praveen C; Madras, Giridhar

    2018-01-31

    The present work demonstrates an extremely proficient and robust study of efficient interfacial charge transfer through plasmonic Ag decorated Bi 2 O 3 hierarchical photoanodes for the photoelectrochemical treatment of chlorinated phenols. Unique 2D flake-like Bi 2 O 3 hierarchical nanostructures were grown onto a fluorine-doped tin oxide (FTO) substrate by a simple chemical bath deposition method using triethanolamine as complexing agent. The formation of Bi 2 O 3 on FTO was governed by the decomposition of a nucleated bismuth-hydroxyl complex (Bi 2 O 1-x (OH) x ) and modification to the electrode was carried out by the deposition of Ag via a chemical reduction method using hydrazine hydrate. Both the fabricated electrodes were well characterized for their photo- and electro-optical properties. Efficient charge separation was observed due to the surface plasmon resonance phenomenon of silver nanoparticles with the favorable intrinsic properties of Bi 2 O 3 under application of a small electric bias of 1 V preventing the recombination of charge carriers and thereby increasing the rate of photoelectrocatalytic degradation of the chlorinated phenols. PEC degradation using the Ag@Bi 2 O 3 photoelectrode followed the trend 4-CP < 2,4-DCP < 2,4,6-TCP < P-CP due to efficient attack at the chlorinated positions by reactive oxygen species with increasing chlorine substitution and also due to the absence of an expected chain reaction of the generated chlorine radicals (Cl˙) during the PEC reaction. The PEC activity of Ag@Bi 2 O 3 was 1.5 times higher than a Bi 2 O 3 nanoflake electrode for 4-CP over 2 h. The fabricated Ag@Bi 2 O 3 proved to be an efficient photoelectrode with synergistic solar-induced photoactivity. A detailed mechanistic study in the presence of scavengers suggests degradation by produced hydroxyl radical species. Thus, physical insights into the degradation of chlorinated phenols were obtained.

  1. Charge carrier concentration dependence of encounter-limited bimolecular recombination in phase-separated organic semiconductor blends

    NASA Astrophysics Data System (ADS)

    Heiber, Michael C.; Nguyen, Thuc-Quyen; Deibel, Carsten

    2016-05-01

    Understanding how the complex intermolecular configurations and nanostructure present in organic semiconductor donor-acceptor blends impacts charge carrier motion, interactions, and recombination behavior is a critical fundamental issue with a particularly major impact on organic photovoltaic applications. In this study, kinetic Monte Carlo (KMC) simulations are used to numerically quantify the complex bimolecular charge carrier recombination behavior in idealized phase-separated blends. Recent KMC simulations have identified how the encounter-limited bimolecular recombination rate in these blends deviates from the often used Langevin model and have been used to construct the new power mean mobility model. Here, we make a challenging but crucial expansion to this work by determining the charge carrier concentration dependence of the encounter-limited bimolecular recombination coefficient. In doing so, we find that an accurate treatment of the long-range electrostatic interactions between charge carriers is critical, and we further argue that many previous KMC simulation studies have used a Coulomb cutoff radius that is too small, which causes a significant overestimation of the recombination rate. To shed more light on this issue, we determine the minimum cutoff radius required to reach an accuracy of less than ±10 % as a function of the domain size and the charge carrier concentration and then use this knowledge to accurately quantify the charge carrier concentration dependence of the recombination rate. Using these rigorous methods, we finally show that the parameters of the power mean mobility model are determined by a newly identified dimensionless ratio of the domain size to the average charge carrier separation distance.

  2. Characterization of LiMn 2O 4 cathodes by electrochemical strain microscopy

    DOE PAGES

    Alikin, D. O.; Ievlev, A. V.; Luchkin, S. Yu.; ...

    2016-03-15

    Electrochemical strain microscopy (ESM) is a scanning probe microscopy(SPM) method in which the local electrodiffusion is probed via application of AC voltage to the SPM tip and registration of resulting electrochemical strain. In this study, we implemented ESM to measure local strain in bulk LiMn 2O 4 cathodes of a commercial Li-battery in different states of charge to investigate distribution of Li-ion mobility and concentration. Ramped AC ESM imaging and voltage spectroscopy were used to find the most reliable regime of measurements allowing separating and diminishing different contributions to ESM. This is not a trivial task due to complex geometrymore » of the sample and various obstacles resulting in less predictable contributions of different origins into ESM response: electrostatic tip–surface interactions, charge injection, electrostriction, and flexoelectricity. Finally, understanding and control of these contributions is an important step towards quantitative interpretation of ESM data.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Peijun; Xia, Yi; Gong, Jue

    Solution-processable metal-halide perovskites (MHPs) offer great promise for efficient light harvesting and emitting devices due to their long carrier lifetime and superior carrier transport characteristics. Ferroelectric effects, a hallmark of traditional oxide perovskites, was proposed to be a mechanism to suppress carrier recombination and enhance charge transport in MHPs, but the existence and influence of such polar order is still of considerable debate. Here we performed transient reflection measurements on single crystals of both inorganic and organic-inorganic (hybrid) MHPs over a range of temperatures, and demonstrate significant phonon softening in the cubic phases close to the cubic-to-tetragonal phase transition temperatures.more » Such phonon softening indicates the formation of polar domains, which grow in size upon cooling and can persist in the low-temperature tetragonal and orthorhombic phases. Our results link the extraordinary electronic properties of MHPs to the spontaneous polarizations which can contribute to more efficient charge separation and characteristics of an indirect bandgap.« less

  4. Salt effects in surfactant-free microemulsions

    NASA Astrophysics Data System (ADS)

    Schöttl, Sebastian; Horinek, Dominik

    2018-06-01

    The weakly associated micellar aggregates found in the so-called "pre-ouzo region" of the surfactant-free microemulsion water/ethanol/1-octanol are sensitive to changes in the system composition and also to the presence of additives like salt. In this work, we study the influence of two salts, sodium iodide and lithium chloride, on aggregates in water/ethanol/1-octanol by molecular dynamics simulations. In both cases, ethanol concentration in the nonpolar phase and at the interface is increased due to a salting out effect on ethanol in the aqueous pseudo-phase. In addition, minor charging of the interface as a consequence of differential adsorption of anions and cations occurs. However, this charge separation is overall weakened by the erratic surface of octanol aggregates, where polar hydroxyl groups and hydrophobic patches are both present. Furthermore, ethanol at the interface shields hydrophobic patches and reduces the preferential adsorption of iodide and lithium.

  5. Low power, compact charge coupled device signal processing system

    NASA Technical Reports Server (NTRS)

    Bosshart, P. W.; Buss, D. D.; Eversole, W. L.; Hewes, C. R.; Mayer, D. J.

    1980-01-01

    A variety of charged coupled devices (CCDs) for performing programmable correlation for preprocessing environmental sensor data preparatory to its transmission to the ground were developed. A total of two separate ICs were developed and a third was evaluated. The first IC was a CCD chirp z transform IC capable of performing a 32 point DFT at frequencies to 1 MHz. All on chip circuitry operated as designed with the exception of the limited dynamic range caused by a fixed pattern noise due to interactions between the digital and analog circuits. The second IC developed was a 64 stage CCD analog/analog correlator for performing time domain correlation. Multiplier errors were found to be less than 1 percent at designed signal levels and less than 0.3 percent at the measured smaller levels. A prototype IC for performing time domain correlation was also evaluated.

  6. Cascading electron and hole transfer dynamics in a CdS/CdTe core-shell sensitized with bromo-pyrogallol red (Br-PGR): slow charge recombination in type II regime.

    PubMed

    Maity, Partha; Debnath, Tushar; Chopra, Uday; Ghosh, Hirendra Nath

    2015-02-14

    Ultrafast cascading hole and electron transfer dynamics have been demonstrated in a CdS/CdTe type II core-shell sensitized with Br-PGR using transient absorption spectroscopy and the charge recombination dynamics have been compared with those of CdS/Br-PGR composite materials. Steady state optical absorption studies suggest that Br-PGR forms strong charge transfer (CT) complexes with both the CdS QD and CdS/CdTe core-shell. Hole transfer from the photo-excited QD and QD core-shell to Br-PGR was confirmed by both steady state and time-resolved emission spectroscopy. Charge separation was also confirmed by detecting electrons in the conduction band of the QD and the cation radical of Br-PGR as measured from femtosecond transient absorption spectroscopy. Charge separation in the CdS/Br-PGR composite materials was found to take place in three different pathways, by transferring the photo-excited hole of CdS to Br-PGR, electron injection from the photo-excited Br-PGR to the CdS QD, and direct electron transfer from the HOMO of Br-PGR to the conduction band of the CdS QD. However, in the CdS/CdTe/Br-PGR system hole transfer from the photo-excited CdS to Br-PGR and electron injection from the photo-excited Br-PGR to CdS take place after cascading through the CdTe shell QD. Charge separation also takes place via direct electron transfer from the Br-PGR HOMO to the conduction band of CdS/CdTe. Charge recombination (CR) dynamics between the electron in the conduction band of the CdS QD and the Br-PGR cation radical were determined by monitoring the bleach recovery kinetics. The CR dynamics were found to be much slower in the CdS/CdTe/Br-PGR system than in the CdS/Br-PGR system. The formation of the strong CT complex and the separation of charges cascading through the CdTe shell help to slow down charge recombination in the type II regime.

  7. Controlling retention, selectivity and magnitude of EOF by segmented monolithic columns consisting of octadecyl and naphthyl monolithic segments--applications to RP-CEC of both neutral and charged solutes.

    PubMed

    Karenga, Samuel; El Rassi, Ziad

    2011-04-01

    Monolithic capillaries made of two adjoining segments each filled with a different monolith were introduced for the control and manipulation of the electroosmotic flow (EOF), retention and selectivity in reversed phase-capillary electrochromatography (RP-CEC). These columns were called segmented monolithic columns (SMCs) where one segment was filled with a naphthyl methacrylate monolith (NMM) to provide hydrophobic and π-interactions, while the other segment was filled with an octadecyl acrylate monolith (ODM) to provide solely hydrophobic interaction. The ODM segment not only provided hydrophobic interactions but also functioned as the EOF accelerator segment. The average EOF of the SMC increased linearly with increasing the fractional length of the ODM segment. The neutral SMC provided a convenient way for tuning EOF, selectivity and retention in the absence of annoying electrostatic interactions and irreversible solute adsorption. The SMCs allowed the separation of a wide range of neutral solutes including polycyclic aromatic hydrocarbons (PAHs) that are difficult to separate using conventional alkyl-bonded stationary phases. In all cases, the k' of a given solute was a linear function of the fractional length of the ODM or NMM segment in the SMCs, thus facilitating the tailoring of a given SMC to solve a given separation problem. At some ODM fractional length, the fabricated SMC allowed the separation of charged solutes such as peptides and proteins that could not otherwise be achieved on a monolithic column made from NMM as an isotropic stationary phase due to the lower EOF exhibited by this monolith. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Tuned range separated hybrid functionals for solvated low bandgap oligomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Queiroz, Thiago B. de, E-mail: thiago.branquinho-de-queiroz@uni-bayreuth.de; Kümmel, Stephan

    2015-07-21

    The description of charge transfer excitations has long been a challenge to time dependent density functional theory. The recently developed concept of “optimally tuned range separated hybrid (OT-RSH) functionals” has proven to describe charge transfer excitations accurately in many cases. However, describing solvated or embedded systems is yet a challenge. This challenge is not only computational but also conceptual, because the tuning requires identifying a specific orbital, typically the highest occupied one of the molecule under study. For solvated molecules, this orbital may be delocalized over the solvent. We here demonstrate that one way of overcoming this problem is tomore » use a locally projected self-consistent field diagonalization on an absolutely localized molecular orbital expansion. We employ this approach to determine ionization energies and the optical gap of solvated oligothiophenes, i.e., paradigm low gap systems that are of relevance in organic electronics. Dioxane solvent molecules are explicitly represented in our calculations, and the ambiguities of straightforward parameter tuning in solution are elucidated. We show that a consistent estimate of the optimal range separated parameter (ω) at the limit of bulk solvation can be obtained by gradually extending the solvated system. In particular, ω is influenced by the solvent beyond the first coordination sphere. For determining ionization energies, a considerable number of solvent molecules on the first solvation shell must be taken into account. We demonstrate that accurately calculating optical gaps of solvated systems using OT-RSH can be done in three steps: (i) including the chemical environment when determining the range-separation parameter, (ii) taking into account the screening due to the solvent, and (iii) using realistic molecular geometries.« less

  9. Double heterojunction nanowire photocatalysts for hydrogen generation.

    PubMed

    Tongying, P; Vietmeyer, F; Aleksiuk, D; Ferraudi, G J; Krylova, G; Kuno, M

    2014-04-21

    Charge separation and charge transfer across interfaces are key aspects in the design of efficient photocatalysts for solar energy conversion. In this study, we investigate the hydrogen generating capabilities and underlying photophysics of nanostructured photocatalysts based on CdSe nanowires (NWs). Systems studied include CdSe, CdSe/CdS core/shell nanowires and their Pt nanoparticle-decorated counterparts. Femtosecond transient differential absorption measurements reveal how semiconductor/semiconductor and metal/semiconductor heterojunctions affect the charge separation and hydrogen generation efficiencies of these hybrid photocatalysts. In turn, we unravel the role of surface passivation, charge separation at semiconductor interfaces and charge transfer to metal co-catalysts in determining photocatalytic H2 generation efficiencies. This allows us to rationalize why Pt nanoparticle decorated CdSe/CdS NWs, a double heterojunction system, performs best with H2 generation rates of ∼434.29 ± 27.40 μmol h(-1) g(-1) under UV/Visible irradiation. In particular, we conclude that the CdS shell of this double heterojunction system serves two purposes. The first is to passivate CdSe NW surface defects, leading to long-lived charges at the CdSe/CdS interface capable of carrying out reduction chemistries. Upon photoexcitation, we also find that CdS selectively injects charges into Pt NPs, enabling simultaneous reduction chemistries at the Pt NP/solvent interface. Pt nanoparticle decorated CdSe/CdS NWs thus enable reduction chemistries at not one, but rather two interfaces, taking advantage of each junction's optimal catalytic activities.

  10. Revealing the Double-Edged Sword Role of Graphene on Boosted Charge Transfer versus Active Site Control in TiO2 Nanotube Arrays@RGO/MoS2 Heterostructure.

    PubMed

    Quan, Quan; Xie, Shunji; Weng, Bo; Wang, Ye; Xu, Yi-Jun

    2018-05-01

    Charge separation/transfer is generally believed to be the most key factor affecting the efficiency of photocatalysis, which however will be counteracted if not taking the active site engineering into account for a specific photoredox reaction. Here, a 3D heterostructure composite is designed consisting of MoS 2 nanoplatelets decorated on reduced graphene oxide-wrapped TiO 2 nanotube arrays (TNTAs@RGO/MoS 2 ). Such a cascade configuration renders a directional migration of charge carriers and controlled immobilization of active sites, thereby showing much higher photoactivity for water splitting to H 2 than binary TNTAs@RGO and TNTAs/MoS 2 . The photoactivity comparison and mechanistic analysis reveal the double-edged sword role of RGO on boosted charge separation/transfer versus active site control in this composite system. The as-observed inconsistency between boosted charge transfer and lowered photoactivity over TNTAs@RGO is attributed to the decrease of active sites for H 2 evolution, which is significantly different from the previous reports in literature. The findings of the intrinsic relationship of balanced benefits from charge separation/transfer and active site control could promote the rational optimization of photocatalyst design by cooperatively manipulating charge flow and active site control, thereby improving the efficiency of photocatalysis for target photoredox processes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Evaluation of newly synthesized and commercially available charged cyclomaltooligosaccharides (cyclodextrins) for capillary electrokinetic chromatography.

    PubMed

    Culha, Mustafa; Schell, Fred M; Fox, Shannon; Green, Thomas; Betts, Thomas; Sepaniak, Michael J

    2004-01-22

    A highly new charged cyclodextrin (CD) derivatives, (6-O-carboxymethyl-2,3-di-O-methyl)cyclomaltoheptaoses (CDM-beta-CDs), was synthesized and characterized as anionic reagents for capillary electrophoresis (CE) in an electrokinetic chromatography mode of separation. Substitution with dimethyl groups at the secondary hydroxyl sites of the CD is aimed at influencing the magnitude and selectivity of analyte-CD interactions, while substitution by carboxymethyl groups at the primary hydroxyl sites provides for high charge and electrophoretic mobility. Full regioselective methylation at the secondary hydroxyl sites was achieved in this work, while substitution at the primary hydroxyl sites generated a mixture of multiply charged products. The separation performance of CDM-beta-CD was evaluated using a variety of analyte mixtures. The results obtained from commercially available negatively charged cyclodextrins, heptakis(2,3-di-O-methyl-6-O-sulfo)cyclomaltoheptaose (HDMS-beta-CD) and O-(carboxymethyl)cyclomaltoheptaose (CM-beta-CD) with an average degree of substitution one (DS 1), were compared to CDM-beta-CD using a sample composed of eight positional isomers of dihydroxynaphthalene. Four hydroxylated polychlorobiphenyl derivatives, a group of chiral and isomeric catchecins, and chiral binaphthyl compounds were also separated with CDM-beta-CD. The effect of adding neutral beta-cyclodextrin (beta-CD) into the running buffer containing charged cyclodextrins was investigated and provided evidence of significant inter-CD interactions. Under certain running buffer conditions, the charged cyclodextrins also appear to adsorb to the capillary walls to various degrees.

  12. Versatile organic (fullerene)-inorganic (CdTe nanoparticle) nanoensembles.

    PubMed

    Guldi, Dirk M; Zilbermann, Israel; Anderson, Greg; Kotov, Nicholas A; Tagmatarchis, Nikos; Prato, Maurizio

    2004-11-10

    Novel organic (positively charged fullerene)-inorganic (negatively charged CdTe nanoparticle) nanoensembles were devised through electrostatic interactions and probed as versatile donor-acceptor hybrids. Photoirradiation of their homogeneous solutions, containing the electrostatically packed components, let to very long-lived (1.3 ms) charge separated states.

  13. The effect of charged quantum dots on the mobility of a two-dimensional electron gas: How important is the Coulomb scattering?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurzmann, A., E-mail: annika.kurzmann@uni-due.de; Beckel, A.; Lorke, A.

    2015-02-07

    We have investigated the influence of a layer of charged self-assembled quantum dots (QDs) on the mobility of a nearby two-dimensional electron gas (2DEG). Time-resolved transconductance spectroscopy was used to separate the two contributions of the change in mobility, which are: (i) The electrons in the QDs act as Coulomb scatterers for the electrons in the 2DEG. (ii) The screening ability and, hence, the mobility of the 2DEG decreases when the charge carrier density is reduced by the charged QDs, i.e., the mobility itself depends on the charge carrier concentration. Surprisingly, we find a negligible influence of the Coulomb scatteringmore » on the mobility for a 2DEG, separated by a 30 nm tunneling barrier to the layer of QDs. This means that the mobility change is completely caused by depletion, i.e., reduction of the charge carrier density in the 2DEG, which indirectly influences the mobility.« less

  14. Ultrafast spectroscopic investigation of a fullerene poly(3-hexylthiophene) dyad

    NASA Astrophysics Data System (ADS)

    Banerji, Natalie; Seifter, Jason; Wang, Mingfeng; Vauthey, Eric; Wudl, Fred; Heeger, Alan J.

    2011-08-01

    We present the femtosecond spectroscopic investigation of a covalently linked dyad, PCB-P3HT, formed by a segment of the conjugated polymer P3HT (regioregular poly(3-hexylthiophene)) that is end capped with the fullerene derivative PCB ([6,6]-phenyl-C61-butyric acid ester), adapted from PCBM. The fluorescence of the P3HT segment in tetrahydrofuran (THF) solution is reduced by 64% in the dyad compared to a control compound without attached fullerene (P3HT-OH). Fluorescence upconversion measurements reveal that the partial fluorescence quenching of PCB-P3HT in THF is multiphasic and occurs on an average time scale of 100 ps, in parallel to excited-state relaxation processes. Judging from ultrafast transient absorption experiments, the origin of the quenching is excitation energy transfer from the P3HT donor to the PCB acceptor. Due to the much higher solubility of P3HT compared to PCB in THF, the PCB-P3HT dyad molecules self-assemble into micelles. When pure C60 is added to the solution, it is incorporated into the fullerene-rich center of the micelles. This dramatically increases the solubility of C60 but does not lead to significant additional quenching of the P3HT fluorescence by the C60 contained in the micelles. In PCB-P3HT thin films drop-cast from THF, the micelle structure is conserved. In contrast to solution, quantitative and ultrafast (<150 fs) charge separation occurs in the solid-state films and leads to the formation of long-lived mobile charge carriers with characteristic transient absorption signatures similar to those that have been observed in P3HT:PCBM bulk heterojunction blends. While π-stacking interactions between neighboring P3HT chains are weak in the micelles, they are strong in thin films drop-cast from ortho-dichlorobenzene. Here, PCB-P3HT self-assembles into a network of long fibers, clearly seen in atomic force microscopy images. Ultrafast charge separation occurs also for the fibrous morphology, but the transient absorption experiments show fast loss of part of the charge carriers due to intensity-induced recombination and annihilation processes and monomolecular interfacial trap-mediated or geminate recombination. The yield of the long-lived charge carriers in the highly organized fibers is however comparable to that obtained with annealed P3HT:PCBM blends. PCB-P3HT can therefore be considered as an active material in organic photovoltaic devices.

  15. Electrostatic Separator for Beneficiation of Lunar Soil

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Arens, Ellen; Trigwell, Steve; Captain, James

    2010-01-01

    A charge separator has been constructed for use in a lunar environment that will allow for separation of minerals from lunar soil. In the present experiments, whole lunar dust as received was used. The approach taken here was that beneficiation of ores into an industrial feedstock grade may be more efficient. Refinement or enrichment of specific minerals in the soil before it is chemically processed may be more desirable as it would reduce the size and energy requirements necessary to produce the virgin material, and it may significantly reduce the process complexity. The principle is that minerals of different composition and work function will charge differently when tribocharged against different materials, and hence be separated in an electric field.

  16. Charged-pion cross sections and double-helicity asymmetries in polarized p + p collisions at √s = 200 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adare, A.; Aidala, C.; Ajitanand, N. N.

    2015-02-02

    We present midrapidity charged-pion invariant cross sections, the ratio of the π⁻ to π⁺ cross sections and the charge-separated double-spin asymmetries in polarized p+p collisions at √s = 200 GeV. While the cross section measurements are consistent within the errors of next-to-leadingorder (NLO) perturbative quantum chromodynamics predictions (pQCD), the same calculations over estimate the ratio of the charged-pion cross sections. This discrepancy arises from the cancellation of the substantial systematic errors associated with the NLO-pQCD predictions in the ratio and highlights the constraints these data will place on flavor dependent pion fragmentation functions. Thus, the charge-separated pion asymmetries presented heremore » sample an x range of ~0.03–0.16 and provide unique information on the sign of the gluon-helicity distribution.« less

  17. Charged-pion cross sections and double-helicity asymmetries in polarized p +p collisions at √{s }=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Ta'Ani, H.; Alexander, J.; Andrews, K. R.; Angerami, A.; Aoki, K.; Apadula, N.; Appelt, E.; Aramaki, Y.; Armendariz, R.; Aschenauer, E. C.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Bazilevsky, A.; Belmont, R.; Ben-Benjamin, J.; Bennett, R.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Broxmeyer, D.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Campbell, S.; Castera, P.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Conesa Del Valle, Z.; Connors, M.; Csanád, M.; Csörgő, T.; Dairaku, S.; Datta, A.; David, G.; Dayananda, M. K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Dion, A.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; D'Orazio, L.; Efremenko, Y. V.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fusayasu, T.; Gal, C.; Garishvili, I.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Guo, L.; Gustafsson, H.-Å.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Hanks, J.; Harper, C.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Huang, S.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Ikeda, Y.; Imai, K.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ishihara, M.; Issah, M.; Ivanischev, D.; Iwanaga, Y.; Jacak, B. V.; Jia, J.; Jiang, X.; John, D.; Johnson, B. M.; Jones, T.; Joo, K. S.; Jouan, D.; Kamin, J.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, D. J.; Kim, E.-J.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiss, Á.; Kistenev, E.; Kleinjan, D.; Kline, P.; Kochenda, L.; Komkov, B.; Konno, M.; Koster, J.; Kotov, D.; Král, A.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Li, X.; Lim, S. H.; Linden Levy, L. A.; Liu, H.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Masui, H.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Miki, K.; Milov, A.; Mitchell, J. T.; Miyachi, Y.; Mohanty, A. K.; Moon, H. J.; Morino, Y.; Morreale, A.; Morrison, D. P.; Motschwiller, S.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Nagamiya, S.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Newby, J.; Nguyen, M.; Nihashi, M.; Nouicer, R.; Nyanin, A. S.; Oakley, C.; O'Brien, E.; Ogilvie, C. A.; Oka, M.; Okada, K.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, S. K.; Pate, S. F.; Patel, L.; Pei, H.; Peng, J.-C.; Pereira, H.; Peressounko, D. Yu.; Petti, R.; Pinkenburg, C.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Reygers, K.; Riabov, V.; Riabov, Y.; Richardson, E.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosendahl, S. S. E.; Rubin, J. G.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Samsonov, V.; Sano, S.; Sarsour, M.; Sato, T.; Savastio, M.; Sawada, S.; Sedgwick, K.; Seidl, R.; Seto, R.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shim, H. H.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Sodre, T.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stenlund, E.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Themann, H.; Thomas, D.; Togawa, M.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Utsunomiya, K.; Vale, C.; van Hecke, H. W.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; White, S. N.; Winter, D.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Yamaguchi, Y. L.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. S.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Phenix Collaboration

    2015-02-01

    We present midrapidity charged-pion invariant cross sections, the ratio of the π- to π+ cross sections and the charge-separated double-spin asymmetries in polarized p +p collisions at √{s }=200 GeV . While the cross section measurements are consistent within the errors of next-to-leading-order (NLO) perturbative quantum chromodynamics predictions (pQCD), the same calculations overestimate the ratio of the charged-pion cross sections. This discrepancy arises from the cancellation of the substantial systematic errors associated with the NLO-pQCD predictions in the ratio and highlights the constraints these data will place on flavor-dependent pion fragmentation functions. The charge-separated pion asymmetries presented here sample an x range of ˜0.03 - 0.16 and provide unique information on the sign of the gluon-helicity distribution.

  18. The pyroelectric behavior of lead free ferroelectric ceramics in thermally stimulated depolarization current measurements

    NASA Astrophysics Data System (ADS)

    González-Abreu, Y.; Peláiz-Barranco, A.; Garcia-Wong, A. C.; Guerra, J. D. S.

    2012-06-01

    The present paper shows a detailed analysis on the thermally stimulated processes in barium modified SrBi2Nb2O9 ferroelectric bi-layered perovskite, which is one of the most promising candidates for non-volatile random access memory applications because of its excellent fatigue-resistant properties. A numerical method is used to separate the real pyroelectric current from the other thermally stimulated processes. A discharge due to the space-charge injected during the poling process, the pyroelectric response, and a conductive process are discussed in a wide temperature range from ferroelectric to paraelectric phase. The pyroelectric response is separated from the other components to evaluate the polarization behavior and some pyroelectric parameters. The remanent polarization, the pyroelectric coefficient, and the merit figure are evaluated, which show good results.

  19. Measurement of Separate Cosmic-Ray Electron and Positron Spectra with the Fermi Large Area Telescope

    DOE PAGES

    Ackermann, M.

    2012-01-05

    We measured separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope. Because the instrument does not have an onboard magnet, we distinguish the two species by exploiting the Earth’s shadow, which is offset in opposite directions for opposite charges due to the Earth’s magnetic field. We estimate and subtract the cosmic-ray proton background using two different methods that produce consistent results. We report the electron-only spectrum, the positron-only spectrum, and the positron fraction between 20 GeV and 200 GeV. We confirm that the fraction rises with energy in the 20–100 GeV range. The three new spectral pointsmore » between 100 and 200 GeV are consistent with a fraction that is continuing to rise with energy.« less

  20. Review on charge transfer and chemical activity of TiO2: Mechanism and applications

    NASA Astrophysics Data System (ADS)

    Cai, Yongqing; Feng, Yuan Ping

    2016-12-01

    Charge separation and transfer at the interface between two materials play a significant role in various atomic-scale processes and energy conversion systems. In this review, we present the mechanism and outcome of charge transfer in TiO2, which is extensively explored for photocatalytic applications in the field of environmental science. We list several experimental and computational methods to estimate the amount of charge transfer. The effects of the work function, defects and doping, and employment of external electric field on modulating the charge transfer are presented. The interplay between the band bending and carrier transport across the surface and interface consisting of TiO2 is discussed. We show that the charge transfer can also strongly affect the behavior of deposited nanoparticles on TiO2 through built-in electric field that it creates. This review encompasses several advances of composite materials where TiO2 is combined with two-dimensional materials like graphene, MoS2, phosphorene, etc. The charge transport in the TiO2-organohalide perovskite with respect to the electron-hole separation at the interface is also discussed.

  1. Control of gel swelling and phase separation of weakly charged thermoreversible gels by salt addition

    PubMed Central

    Solis, Francisco J.; Vernon, Brent

    2009-01-01

    Doping of thermoreversible polymer gels with charged monomers provides a way to control phase separation and gelation conditions by coupling the properties of the gel with a tunable ionic environment. We analyze the dependence of the gelation and phase separation conditions on the amount of salt present using a mean field model of weakly charged associative polymers. The ions and co-ions present are explicitly considered at the mean field level, and we determine their concentrations in the different equilibrium phases when the system undergoes phase separation. For weak polymer charge, the entropic contributions of the ions to the free energy of the system play a central role in the determination of the location of phase equilibrium. In the simplest case, when the associative interaction responsible for gel formation is independent of the electrostatic interaction, the addition of salt changes the polymer equilibrium concentrations and indirectly changes the measurable swelling of the gel. We construct phase diagrams of these systems showing the location of the coexistence region, the gel-sol boundary and the location of the tie-lines. We determine the swelling of the gel within the co-existence region. Our main result is that the description of the effect of the salt on the properties of the weakly charged gel can be described through an extra contribution to the effective immiscibility parameter χ proportional to the square of the doping degree f2 and to the inverse square of the added salt concentration s−2. PMID:19759854

  2. A Novel, In-solution Separation of Endogenous Cardiac Sarcomeric Proteins and Identification of Distinct Charged Variants of Regulatory Light Chain*

    PubMed Central

    Scruggs, Sarah B.; Reisdorph, Rick; Armstrong, Mike L.; Warren, Chad M.; Reisdorph, Nichole; Solaro, R. John; Buttrick, Peter M.

    2010-01-01

    The molecular conformation of the cardiac myosin motor is modulated by intermolecular interactions among the heavy chain, the light chains, myosin binding protein-C, and titin and is governed by post-translational modifications (PTMs). In-gel digestion followed by LC/MS/MS has classically been applied to identify cardiac sarcomeric PTMs; however, this approach is limited by protein size, pI, and difficulties in peptide extraction. We report a solution-based work flow for global separation of endogenous cardiac sarcomeric proteins with a focus on the regulatory light chain (RLC) in which specific sites of phosphorylation have been unclear. Subcellular fractionation followed by OFFGEL electrophoresis resulted in isolation of endogenous charge variants of sarcomeric proteins, including regulatory and essential light chains, myosin heavy chain, and myosin-binding protein-C of the thick filament. Further purification of RLC using reverse-phase HPLC separation and UV detection enriched for RLC PTMs at the intact protein level and provided a stoichiometric and quantitative assessment of endogenous RLC charge variants. Digestion and subsequent LC/MS/MS unequivocally identified that the endogenous charge variants of cardiac RLC focused in unique OFFGEL electrophoresis fractions were unphosphorylated (78.8%), singly phosphorylated (18.1%), and doubly phosphorylated (3.1%) RLC. The novel aspects of this study are that 1) milligram amounts of endogenous cardiac sarcomeric subproteome were focused with resolution comparable with two-dimensional electrophoresis, 2) separation and quantification of post-translationally modified variants were achieved at the intact protein level, 3) separation of intact high molecular weight thick filament proteins was achieved in solution, and 4) endogenous charge variants of RLC were separated; a novel doubly phosphorylated form was identified in mouse, and singly phosphorylated, singly deamidated, and deamidated/phosphorylated forms were identified and quantified in human non-failing and failing heart samples, thus demonstrating the clinical utility of the method. PMID:20445002

  3. First Observation of a Hall Effect in a Dusty Plasma: A Charged Granular Flow with Relevance to Planetary Rings

    NASA Astrophysics Data System (ADS)

    Eiskowitz, Skylar; Ballew, Nolan; Rojas, Rubén; Lathrop, Daniel

    2017-11-01

    The particles in Saturn's rings exhibit complex dynamic behavior. They experience solar radiation pressure, electromagnetic forces, and granular collisions. To investigate the possibility of the Hall Effect in the dusty plasma that comprise Saturn's rings, we have built an experiment that demonstrates the Hall Effect in granular matter. We focus on the Hall Effect because the rings' grains become collisionally charged and experience Saturn's dipolar magnetic field and Lorentz forces as they orbit. The experimental setup includes a closed ring-like track where granular matter is forced to circulate driven by compressed air. The structure sits between two electromagnets so that a portion of the track experiences up to a 0.2 T magnetic field. We vary the strength of the field and the speed of the particles. We report the voltage differences between two conducting plates on opposite sides of the track. If Saturn's rings do experience the Hall Effect, the inside and outside of the rings will develop a charge separation that can lead to a radial electric field and various phenomena including orbital effects due to the additional electric forces. Observational evidence from Cassini suggests that Saturn's rings exhibit lighting, supporting the notion that they are electrically charged. TREND REU program sponsored by the National Science Foundation.

  4. The rates of charge separation and energy destructive charge recombination processes within an organic dyad in presence of metal-semiconductor core shell nanocomposites.

    PubMed

    Mandal, Gopa; Bhattacharya, Sudeshna; Das, Subrata; Ganguly, Tapan

    2012-01-01

    Steady state and time resolved spectroscopic measurements were made at the ambient temperature on an organic dyad, 1-(4-Chloro-phenyl)-3-(4-methoxy-naphthalen-1-yl)-propenone (MNCA), where the donor 1-methoxynaphthalene (1 MNT) is connected with the acceptor p-chloroacetophenone (PCA) by an unsaturated olefinic bond, in presence of Ag@TiO2 nanoparticles. Time resolved fluorescence and absorption measurements reveal that the rate parameters associated with charge separation, k(CS), within the dyad increases whereas charge recombination rate k(CR) reduces significantly when the surrounding medium is changed from only chloroform to mixture of chloroform and Ag@TiO2 (noble metal-semiconductor) nanocomposites. The observed results indicate that the dyad being combined with core-shell nanocomposites may form organic-inorganic nanocomposite system useful for developing light energy conversion devices. Use of metal-semiconductor nanoparticles may provide thus new ways to modulate charge recombination processes in light energy conversion devices. From comparison with the results obtained in our earlier investigations with only TiO2 nanoparticles, it is inferred that much improved version of light energy conversion device, where charge-separated species could be protected for longer period of time of the order of millisecond, could be designed by using metal-semiconductor core-shell nanocomposites rather than semiconductor nanoparticles only.

  5. Electrospun nylon 6/zinc doped hydroxyapatite membrane for protein separation: Mechanism of fouling and blocking model.

    PubMed

    Esfahani, Hamid; Prabhakaran, Molamma P; Salahi, Esmaeil; Tayebifard, Ali; Rahimipour, Mohamad Reza; Keyanpour-Rad, Mansour; Ramakrishna, Seeram

    2016-02-01

    Development of composite nanofibrous membrane via electrospinning a polymer with ceramic nanoparticles (NPs) for application in protein separation systems is explored during this study. Positively charged zinc doped hydroxyapatite (xZH) NPs were prepared in three different compositions via chemical precipitation method. Herein, we created a positively charged surface containing nanoparticles on electrospun Nylon-6 nanofibers (NFs) to improve the separation and selectivity properties for adsorption of negatively charged protein, namely bovine serum albumin (BSA). The decline in permeate flux was analyzed using the framework of classical blocking models and fitting, demonstrated that the transition of fouling mechanisms was dominated during the filtration process. The standard blocking model provided the best fit of the experimental results during the mid-filtration period. The membrane decorated by NPs containing 4at.% zinc cations not only provided maximum BSA separation but also capable of separating higher amounts of BSA molecules (even after 1h filtration) than the pure Nylon membrane. Protein separation was achieved through this membrane with the incorporation of NPs that had high zeta potential (+5.9±0.2mV) and lower particle area (22,155nm(2)). The developed membrane has great potential to act as a high efficiency membrane for capturing BSA. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Simultaneous separation and analysis of water- and fat-soluble vitamins on multi-modal reversed-phase weak anion exchange material by HPLC-UV.

    PubMed

    Dabre, Romain; Azad, Nazanin; Schwämmle, Achim; Lämmerhofer, Michael; Lindner, Wolfgang

    2011-04-01

    Several methods for the separation of vitamins on HPLC columns were already validated in the last 20 years. However, most of the techniques focus on separating either fat- or water-soluble vitamins and only few methods are intended to separate lipophilic and hydrophilic vitamins simultaneously. A mixed-mode reversed-phase weak anion exchange (RP-WAX) stationary phase was developed in our laboratory in order to address such mixture of analytes with different chemical characteristics, which are difficult to separate on standard columns. The high versatility in usage of the RP-WAX chromatographic material allowed a baseline separation of ten vitamins within a single run, seven water-soluble and three fat-soluble, using three different chromatographic modes: some positively charged vitamins are eluted in ion exclusion and ion repulsion modes whereas the negatively charged molecules are eluted in the ion exchange mechanism. The non-charged molecules are eluted in a classical reversed-phase mode, regarding their polarities. The method was validated for the vitamin analysis in tablets, evaluating selectivity, robustness, linearity, accuracy, and precision. The validated method was finally employed for the analysis of the vitamin content of some commercially available supplement tablets. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions.

    PubMed

    Williams, Peggy E; Marshall, David L; Poad, Berwyck L J; Narreddula, Venkateswara R; Kirk, Benjamin B; Trevitt, Adam J; Blanksby, Stephen J

    2018-06-04

    In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions. Graphical Abstract.

  8. Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions

    NASA Astrophysics Data System (ADS)

    Williams, Peggy E.; Marshall, David L.; Poad, Berwyck L. J.; Narreddula, Venkateswara R.; Kirk, Benjamin B.; Trevitt, Adam J.; Blanksby, Stephen J.

    2018-06-01

    In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions.

  9. Creating Graphitic Carbon Nitride Based Donor-π-Acceptor-π-Donor Structured Catalysts for Highly Photocatalytic Hydrogen Evolution.

    PubMed

    Li, Kui; Zhang, Wei-De

    2018-03-01

    Conjugated polymers with tailored donor-acceptor units have recently attracted considerable attention in organic photovoltaic devices due to the controlled optical bandgap and retained favorable separation of charge carriers. Inspired by these advantages, an effective strategy is presented to solve the main obstructions of graphitic carbon nitride (g-C 3 N 4 ) photocatalyst for solar energy conversion, that is, inefficient visible light response and insufficient separation of photogenerated electrons and holes. Donor-π-acceptor-π-donor polymers are prepared by incorporating 4,4'-(benzoc 1,2,5 thiadiazole-4,7-diyl) dianiline (BD) into the g-C 3 N 4 framework (UCN-BD). Benefiting from the visible light band tail caused by the extended π conjugation, UCN-BD possesses expanded visible light absorption range. More importantly, the BD monomer also acts as an electron acceptor, which endows UCN-BD with a high degree of intramolecular charge transfer. With this unique molecular structure, the optimized UCN-BD sample exhibits a superior performance for photocatalytic hydrogen evolution upon visible light illumination (3428 µmol h -1 g -1 ), which is nearly six times of that of the pristine g-C 3 N 4 . In addition, the photocatalytic property remains stable for six cycles in 3 d. This work provides an insight into the synthesis of g-C 3 N 4 -based D-π-A-π-D systems with highly visible light response and long lifetime of intramolecular charge carriers for solar fuel production. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ultrafast photoinduced charge transport in Pt(II) donor-acceptor assembly bearing naphthalimide electron acceptor and phenothiazine electron donor.

    PubMed

    Sazanovich, Igor V; Best, Jonathan; Scattergood, Paul A; Towrie, Michael; Tikhomirov, Sergei A; Bouganov, Oleg V; Meijer, Anthony J H M; Weinstein, Julia A

    2014-12-21

    Visible light-induced charge transfer dynamics were investigated in a novel transition metal triad acceptor-chromophore-donor, (NDI-phen)Pt(II)(-C≡C-Ph-CH2-PTZ)2 (1), designed for photoinduced charge separation using a combination of time-resolved infrared (TRIR) and femtosecond electronic transient absorption (TA) spectroscopy. In 1, the electron acceptor is 1,4,5,8-naphthalene diimide (NDI), and the electron donor is phenothiazine (PTZ), and [(phen)Pt(-C≡C-Ph-)], where phen is 1,10-phenanthroline, represents the chromophoric core. The first excited state observed in 1 is a (3)MLCT/LL'CT, with {Pt(II)-acetylide}-to-phen character. Following that, charge transfer from the phen-anion onto the NDI subunit to form NDI(-)-phen-[Pt-(C≡C)2](+)-PTZ2 occurs with a time constant of 2.3 ps. This transition is characterised by appearance of the prominent NDI-anion features in both TRIR and TA spectra. The final step of the charge separation in 1 proceeds with a time constant of ∼15 ps during which the hole migrates from the [Pt-(C≡C)2] subunit to one of the PTZ groups. Charge recombination in 1 then occurs with two distinct time constants of 36 ns and 107 ns, corresponding to the back electron transfer to each of the two donor groups; a rather rare occurrence which manifests that the hole in the final charge-separated state is localised on one of the two donor PTZ groups. The assignment of the nature of the excited states and dynamics in 1 was assisted by TRIR investigations of the analogous previously reported ((COOEt)2bpy)Pt(C≡C-Ph-CH2-PTZ)2 (2), (J. E. McGarrah and R. Eisenberg, Inorg. Chem., 2003, 42, 4355; J. E. McGarrah, J. T. Hupp and S. N. Smirnov, J. Phys. Chem. A, 2009, 113, 6430) as well as (bpy)Pt(C≡C-Ph-C7H15)2, which represent the acceptor-free dyad, and the chromophoric core, respectively. Thus, the step-wise formation of the full charge-separated state on the picosecond time scale and charge recombination via tunnelling have been established; and the presence of two distinct charge recombination pathways has been observed.

  11. Morphological Control of Mesoporosity and Nanoparticles within Co3O4-CuO Electrospun Nanofibers: Quantum Confinement and Visible Light Photocatalysis Performance.

    PubMed

    Pradhan, Amaresh C; Uyar, Tamer

    2017-10-18

    The one-dimensional (1D) mesoporous and interconnected nanoparticles (NPs) enriched composite Co 3 O 4 -CuO nanofibers (NFs) in the ratio Co:Cu = 1/4 (Co 3 O 4 -CuO NFs) composite have been synthesized by electrospinning and calcination of mixed polymeric template. Not merely the mesoporous composite Co 3 O 4 -CuO NFs but also single mesoporous Co 3 O 4 NFs and CuO NFs have been produced for comparison. The choice of mixed polymer templates such as polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) for electrospinning is responsible for the formation of 1D mesoporous NFs. The HR-TEM result showed evolution of interconnected nanoparticles (NPs) and creation of mesoporosity in all electrospun NFs. The quantum confinement is due to NPs within NFs and has been proved by the surface-enhanced Raman scattering (SERS) study and the UV-vis-NRI diffuse reflectance spectra (DRS). The high intense photoluminescence (PL) spectra showing blue shift of all NFs also confirmed the quantum confinement phenomena. The lowering of PL spectrum after mixing of CuO in Co 3 O 4 nanofibers framework (Co 3 O 4 -CuO NFs) proved CuO as an efficient visible light response low cost cocatalyst/charge separator. The red shifting of the band gap in composite Co 3 O 4 -CuO NFs is due to the internal charge transfer between Co 2+ to Co 3+ and Cu 2+ , proved by UV-vis absorption spectroscopy. Creation of oxygen vacancies by mixing of CuO and Co 3 O 4 also prevents the electron-hole recombination and enhances the photocatalytic activity in composite Co 3 O 4 -CuO NFs. The photocurrent density, Mott-Schottky (MS), and electrochemical impedance spectroscopy (EIS) studies of all NFs favor the high photocatalytic performance. The mesoporous composite Co 3 O 4 -CuO NFs exhibits high photocatalytic activity toward phenolic compounds degradation as compared to the other two NFs (Co 3 O 4 NFs and CuO NFs). The kinetic study of phenolic compounds followed first order rate equation. The high photocatalytic activity of composite Co 3 O 4 -CuO NFs is attributed to the formation of mesoporosity and interconnected NPs within NFs framework, quantum confinement, extended light absorption property, internal charge transfer, and effective photogenerated charge separations.

  12. Room-temperature preparation of trisilver-copper-sulfide/polymer based heterojunction thin film for solar cell application

    NASA Astrophysics Data System (ADS)

    Lei, Yan; Yang, Xiaogang; Gu, Longyan; Jia, Huimin; Ge, Suxiang; Xiao, Pin; Fan, Xiaoli; Zheng, Zhi

    2015-04-01

    Solar cells devices based on inorganic/polymer heterojunction can be a possible solution to harvest solar energy and convert to electric energy with high efficiency through a cost-effective fabrication. The solution-process method can be easily used to produce large area devices. Moreover, due to the intrinsic different charge separation, diffusion or recombination in various semiconductors, the interfaces between each component may strongly influence the inorganic/polymer heterojunction performance. Here we prepared a n-type Ag3CuS2 (Eg = 1.25 eV) nanostructured film through a room-temperature element reaction process, which was confirmed as direct bandgap semiconductor through density function theory simulation. This Ag3CuS2 film was spin-coated with an organic semiconducting poly(3-hexythiophene) (P3HT) or polythieno[3,4-b]-thiophene-co-benzodithiophene (PTB7) film, which formed an inorganic/polymer heterojunction. After constructing it to a solar cell device, the power conversion efficiencies of 0.79% and 0.31% were achieved with simulated solar illumination on Ag3CuS2/P3HT and Ag3CuS2/PTB7, respectively. A possible mechanism was discussed and we showed the charge separation at interface of inorganic and polymer semiconductors played an important role.

  13. Energy level alignment at planar organic heterojunctions: influence of contact doping and molecular orientation.

    PubMed

    Opitz, Andreas

    2017-04-05

    Planar organic heterojunctions are widely used in photovoltaic cells, light-emitting diodes, and bilayer field-effect transistors. The energy level alignment in the devices plays an important role in obtaining the aspired gap arrangement. Additionally, the π-orbital overlap between the involved molecules defines e.g. the charge-separation efficiency in solar cells due to charge-transfer effects. To account for both aspects, direct/inverse photoemission spectroscopy and near edge x-ray absorption fine structure spectroscopy were used to determine the energy level landscape and the molecular orientation at prototypical planar organic heterojunctions. The combined experimental approach results in a comprehensive model for the electronic and morphological characteristics of the interface between the two investigated molecular semiconductors. Following an introduction on heterojunctions used in devices and on energy levels of organic materials, the energy level alignment of planar organic heterojunctions will be discussed. The observed energy landscape is always determined by the individual arrangement between the energy levels of the molecules and the work function of the electrode. This might result in contact doping due to Fermi level pinning at the electrode for donor/acceptor heterojunctions, which also improves the solar cell efficiency. This pinning behaviour can be observed across an unpinned interlayer and results in charge accumulation at the donor/acceptor interface, depending on the transport levels of the respective organic semiconductors. Moreover, molecular orientation will affect the energy levels because of the anisotropy in ionisation energy and electron affinity and is influenced by the structural compatibility of the involved molecules at the heterojunction. High structural compatibility leads to π-orbital stacking between different molecules at a heterojunction, which is of additional interest for photovoltaic active interfaces and for ground-state charge-transfer.

  14. Charge collection and SEU mechanisms

    NASA Astrophysics Data System (ADS)

    Musseau, O.

    1994-01-01

    In the interaction of cosmic ions with microelectronic devices a dense electron-hole plasma is created along the ion track. Carriers are separated and transported by the electric field and under the action of the concentration gradient. The subsequent collection of these carriers induces a transient current at some electrical node of the device. This "ionocurrent" (single ion induced current) acts as any electrical perturbation in the device, propagating in the circuit and inducing failures. In bistable systems (registers, memories) the stored data can be upset. In clocked devices (microprocessors) the parasitic perturbation may propagate through the device to the outputs. This type of failure only effects the information, and do not degrade the functionally of the device. The purpose of this paper is to review the mechanisms of single event upset in microelectronic devices. Experimental and theoretical results are presented, and actual questions and problems are discussed. A brief introduction recalls the creation of the dense plasma of electron-hole pairs. The basic processes for charge collection in a simple np junction (drift and diffusion) are presented. The funneling-field effect is discussed and experimental results are compared to numerical simulations and semi-empirical models. Charge collection in actual microelectronic structures is then presented. Due to the parasitic elements, coupling effects are observed. Geometrical effects, in densely packed structures, results in multiple errors. Electronic couplings are due to the carriers in excess, acting as minority carriers, that trigger parasitic bipolar transistors. Single event upset of memory cells is discussed, based on numerical and experimental data. The main parameters for device characterization are presented. From the physical interpretation of charge collection mechanisms, the intrinsic sensitivity of various microelectronic technologies is determined and compared to experimental data. Scaling laws and future trends are finally discussed.

  15. Electrokinetic Supercapacitor for Simultaneous Harvesting and Storage of Mechanical Energy.

    PubMed

    Yang, Peihua; Qu, Xiaopeng; Liu, Kang; Duan, Jiangjiang; Li, Jia; Chen, Qian; Xue, Guobin; Xie, Wenke; Xu, Zhimou; Zhou, Jun

    2018-03-07

    Energy harvesting and storage are two distinct processes that are generally achieved using two separated parts based on different physical and chemical principles. Here we report a self-charging electrokinetic supercapacitor that directly couples the energy harvesting and storage processes into one device. The device consists of two identical carbon nanotube/titanium electrodes, separated by a piece of anodic aluminum oxide nanochannels membrane. Pressure-driven electrolyte flow through the nanochannels generates streaming potential, which can be used to charge the capacitive electrodes, accomplishing simultaneous energy generation and storage. The device stores electric charge density of 0.4 mC cm -2 after fully charging under pressure of 2.5 bar. This work may offer a train of thought for the development of a new type of energy unit for self-powered systems.

  16. Effective Ion Heating in Guide Field Reconnection

    NASA Astrophysics Data System (ADS)

    Guo, Xuehan; Horiuchi, Ritoku; Usami, Shunsuke; Ono, Yasushi

    2017-10-01

    The energy conversion mechanism for ion perpendicular thermal energy is investigated by means of two-dimensional, full particle simulations in an open system. It is shown that ions gain kinetic energy due to the plasma potential drop, which is caused by the charge separation in the one pair of separatrix arms. Based on the force balance in the inflow direction, the strength of the normalized charge density can be expressed by electron Alfvén velocity, which is measurable value in the laboratory experiment and/or satellite observation. Meanwhile, we found that the accelerated ions form a ring shape like distribution in f(v1 ,v2) , as a result, the ion perpendicular temperature Ti , perp increases from inflow region. Here, both v1 and v2 are perpendicular to the magnetic field and v2 is parallel to the in-plane. The mixing of particle populations is verified by means of tracing ions and it is shown three typical particle orbits and each orbit has different entry angle to the potential drop. This ring shape like distribution consists three different population due to the difference of the entry angles to the potential drop. This mixing process will thermalize ions and produce entropy without collisions.

  17. Self-energy-modified Poisson-Nernst-Planck equations: WKB approximation and finite-difference approaches.

    PubMed

    Xu, Zhenli; Ma, Manman; Liu, Pei

    2014-07-01

    We propose a modified Poisson-Nernst-Planck (PNP) model to investigate charge transport in electrolytes of inhomogeneous dielectric environment. The model includes the ionic polarization due to the dielectric inhomogeneity and the ion-ion correlation. This is achieved by the self energy of test ions through solving a generalized Debye-Hückel (DH) equation. We develop numerical methods for the system composed of the PNP and DH equations. Particularly, toward the numerical challenge of solving the high-dimensional DH equation, we developed an analytical WKB approximation and a numerical approach based on the selective inversion of sparse matrices. The model and numerical methods are validated by simulating the charge diffusion in electrolytes between two electrodes, for which effects of dielectrics and correlation are investigated by comparing the results with the prediction by the classical PNP theory. We find that, at the length scale of the interface separation comparable to the Bjerrum length, the results of the modified equations are significantly different from the classical PNP predictions mostly due to the dielectric effect. It is also shown that when the ion self energy is in weak or mediate strength, the WKB approximation presents a high accuracy, compared to precise finite-difference results.

  18. Separations by supported liquid membrane cascades

    DOEpatents

    Danesi, Pier R.

    1986-01-01

    The invention describes a new separation technique which leads to multi-stage operations by the use of a series (a cascade) of alternated carrier-containing supported-liquid membranes. The membranes contain alternatively a liquid cation exchanger extractant and a liquid anion exchanger extractant (or a neutral extractant) as carrier. The membranes are spaced between alternated aqueous electrolytic solutions of different composition which alternatively provide positively charged extractable species and negatively charged (or zero charged) extractable species, of the chemical species to be separated. The alternated aqueous electrolytic solutions in addition to providing the driving force to the process, simultaneously function as a stripping solution from one type of membrane and as an extraction-promoting solution for the other type of membrane. The aqueous electrolytic solutions and the supported liquid membranes are arranged in such a way to provide a continuous process which leads to the continuous enrichment of the species which show the highest permeability coefficients. By virtue of the very high number of stages which can be arranged, even chemical species having very similar chemical behavior (and consequently very similar permeability coefficients) can be completely separated. The invention also provide a way to concentrate the separated species.

  19. Simulation of ASTROD I test mass charging due to solar energetic particles and interplanetary electrons

    NASA Astrophysics Data System (ADS)

    Liu, L.; Dong, Y.; Bao, G.; Ni, W.-T.; Shaul, D. N. A.

    2010-01-01

    As ASTROD I travels through space, its test mass will accrue charge due to exposure of the spacecraft to high-energy particles. This test mass charge will result in Coulomb forces between the test mass and the surrounding electrodes. In earlier work, we have used the GEANT 4 toolkit to simulate charging of the ASTROD test mass due to cosmic-ray protons of energies between 0.1 and 1000 GeV at solar maximum and at solar minimum. Here we use GEANT 4 to simulate the charging process due to solar energetic particle events and interplanetary electrons. We then estimate the test mass acceleration noise due to these fluxes. The predicted charging rates range from 2247 e+/s to 47,055 e+/s, at peak intensity, for the four largest SEP events in September and October 1989. Although the noise due to charging exceeds the ASTROD I budget for the two larger events, it can be suppressed through continuous discharging. The acceleration noise during the two small events is well below the design target. The charging rate of the ASTROD I test mass due to interplanetary electrons in this simulation is about -11% of the cosmic-ray protons at solar minimum, and over -37% at solar maximum. In addition to the Monte Carlo uncertainty, an error of ±30% in the net charging rates should be added to account for uncertainties in the spectra, physics models and geometry implementations.

  20. Spin dynamics of light-induced charge separation in composites of semiconducting polymers and PC60BM revealed using Q-band pulse EPR.

    PubMed

    Lukina, E A; Suturina, E; Reijerse, E; Lubitz, W; Kulik, L V

    2017-08-23

    Light-induced processes in composites of semiconducting polymers and fullerene derivatives have been widely studied due to their usage as active layers of organic solar cells. However the process of charge separation under light illumination - the key process of an organic solar cell is not well understood yet. Here we report a Q-band pulse electron paramagnetic resonance study of composites of the fullerene derivative PC 60 BM ([6,6]-phenyl-C 61 -butyric acid methyl ester) with different p-type semiconducting polymers regioregular and regiorandom P3HT (poly(3-hexylthiophene-2,5-diyl), MEH-PPV (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]), PCDTBT (poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]), PTB7 (poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}))), resulting in a detailed description of the in-phase laser flash-induced electron spin echo (ESE) signal. We found that in organic donor-acceptor composites the laser flash simultaneously induces species of two types: a polymer˙ + /fullerene˙ - spin-correlated polaron pair (SCPP) with an initial singlet spin state and (nearly) free polymer˙ + and fullerene˙ - species with non-equilibrium spin polarization. Species of the first type (SCPP) are well-known for polymer/fullerene blends and are usually associated with a charge-separated state. Also, spin polarization of long-living free species (polarons in deep traps) is affected by the laser flash, which is the third contribution to the flash-induced ESE signal. A protocol for extracting the in-phase ESE signal of the SCPP based on the dependence of the microwave nutation frequency on the strength of the spin coupling within the polaron pair was developed. Nutation experiments revealed an unusual pattern of the SCPP in RR-P3HT/PC 60 BM composites, from which the strength of the exchange interaction between the polymer˙ + and fullerene˙ - was extracted. In composites with low-efficient polymers the contribution of the SCPP to the in-phase ESE signal is high, while in composites with high-efficient polymers it is low. This finding can be used as a selection criterion of charge separation efficiency in the polymer/fullerene composites.

  1. 48 CFR 871.201-2 - Requirements when contracts are not required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., fees, and charges for books, supplies, or services necessary to train or educate an eligible veteran..., including the rate of tuition, fees, and separate charges, if any, for books, supplies, and equipment... accordance with catalog or other published document (identify publication). The statement of charges may not...

  2. Stacked white OLED having separate red, green and blue sub-elements

    DOEpatents

    Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael

    2014-07-01

    The present invention relates to efficient organic light emitting devices (OLEDs). The devices employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. Thus, the devices may be white-emitting OLEDs, or WOLEDs. Each sub-element comprises at least one organic layer which is an emissive layer--i.e., the layer is capable of emitting light when a voltage is applied across the stacked device. The sub-elements are vertically stacked and are separated by charge generating layers. The charge-generating layers are layers that inject charge carriers into the adjacent layer(s) but do not have a direct external connection.

  3. Electrostatic Explorations.

    ERIC Educational Resources Information Center

    Gallai, Ditta; Stewart, Gay

    1998-01-01

    Presents a set of hands-on electrostatics experiments in the form of an activity guide and worksheet through which students discover the different types of electric charge, Coulomb's Law, induced charge separation, and grounding. (DDR)

  4. Graphene oxide/ferroferric oxide/polyethylenimine nanocomposites for Congo red adsorption from water.

    PubMed

    Wang, Lina; Mao, Changming; Sui, Ning; Liu, Manhong; Yu, William W

    2017-04-01

    Graphene oxide/ferroferric oxide/polyethylenimine (GO/Fe 3 O 4 /PEI) nanocomposites were synthesized by an in situ growth of Fe 3 O 4 nanoparticles on GO sheets, and then modified by PEI. The GO/Fe 3 O 4 /PEI nanocomposites showed extremely high removal efficiency for anionic dye Congo Red (CR) due to the positively charged PEI molecules (methylene blue was also tested but with low adsorption capacity due to its cationic property). The CR removal capacity was 574.7 mg g -1 , higher than most of reported results. The adsorption kinetics could be well described by a pseudo-second-order model. Furthermore, GO/Fe 3 O 4 /PEI nanocomposites could be easily recycled by magnetic separation. The removal efficiency remained above 70% after five cycles.

  5. The effect of solvent relaxation time constants on free energy gap law for ultrafast charge recombination following photoinduced charge separation.

    PubMed

    Mikhailova, Valentina A; Malykhin, Roman E; Ivanov, Anatoly I

    2018-05-16

    To elucidate the regularities inherent in the kinetics of ultrafast charge recombination following photoinduced charge separation in donor-acceptor dyads in solutions, the simulations of the kinetics have been performed within the stochastic multichannel point-transition model. Increasing the solvent relaxation time scales has been shown to strongly vary the dependence of the charge recombination rate constant on the free energy gap. In slow relaxing solvents the non-equilibrium charge recombination occurring in parallel with solvent relaxation is very effective so that the charge recombination terminates at the non-equilibrium stage. This results in a crucial difference between the free energy gap laws for the ultrafast charge recombination and the thermal charge transfer. For the thermal reactions the well-known Marcus bell-shaped dependence of the rate constant on the free energy gap is realized while for the ultrafast charge recombination only a descending branch is predicted in the whole area of the free energy gap exceeding 0.2 eV. From the available experimental data on the population kinetics of the second and first excited states for a series of Zn-porphyrin-imide dyads in toluene and tetrahydrofuran solutions, an effective rate constant of the charge recombination into the first excited state has been calculated. The obtained rate constant being very high is nearly invariable in the area of the charge recombination free energy gap from 0.2 to 0.6 eV that supports the theoretical prediction.

  6. Enhanced charge separation of rutile TiO2 nanorods by trapping holes and transferring electrons for efficient cocatalyst-free photocatalytic conversion of CO2 to fuels.

    PubMed

    Wu, Jing; Lu, Hongwei; Zhang, Xuliang; Raziq, Fazal; Qu, Yang; Jing, Liqiang

    2016-04-11

    Modification with chloride and phosphate anions, and coupling with carbon nanotubes could effectively trap holes and transfer the electrons of rutile nanorods, respectively, so as to greatly promote photogenerated charge separation, leading to an obviously-improved cocatalyst-free photocatalytic conversion of CO2 to CH4 and CO, along with the positive effects of constructed phosphate bridges.

  7. Report of investigations into charge cadmium reactivity: Nickel-cadmium cell ESD 91-86

    NASA Technical Reports Server (NTRS)

    Lewis, Harlan L.

    1992-01-01

    In Aug. 1990, a presentation was given at the 25th Ann. IECEC meeting on the results of Destructive Physical Analysis (DPA) on two successive sets of Ni-Cd cells. The cells were of two different separator types, Pellon 2505 and 2536. One cell of each separator type was analyzed on two occasions; the first pair were analyzed to establish baseline data on essentially new cells; the second pair were analyzed after the cells had been on charge-discharge cycling for a year in connection with a satellite simulation study. The gas composition found in the cells, the absence of charged cadmium in the analytical data, and the appearance of dried out portions on the Cd plates in the one year cell S/N 7 which used Pellon 2505 as its separator material, were questions which arose. These concerns are answered and the observational results are clarified.

  8. Worm Algorithm simulations of the hole dynamics in the t-J model

    NASA Astrophysics Data System (ADS)

    Prokof'ev, Nikolai; Ruebenacker, Oliver

    2001-03-01

    In the limit of small J << t, relevant for HTSC materials and Mott-Hubbard systems, computer simulations have to be performed for large systems and at low temperatures. Despite convincing evidence against spin-charge separation obtained by various methods for J > 0.4t there is an ongoing argument that at smaller J spin-charge separation is still possible. Worm algorithm Monte Carlo simulations of the hole Green function for 0.1 < J/t < 0.4 were performed on lattices with up to 32x32 sites, and at temperature J/T = 40 (for the largest size). Spectral analysis reveals a single, delta-function sharp quasiparticle peak at the lowest edge of the spectrum and two distinct peaks above it at all studied J. We rule out the possibility of spin-charge separation in this parameter range, and present, apparently, the hole spectral function in the thermodynamic limit.

  9. Picosecond absorption studies of photoinduced charge separation in polyelectrolyte bound aromatic chromophores

    NASA Astrophysics Data System (ADS)

    Shand, M. A.; Rodgers, M. A. J.; Webber, S. E.

    1991-02-01

    Picosecond absorption studies of photoinduced electron transfer between aromatic chromophores bound to polymethacrylic acid (P) and methylviologen (MV 2+ have been carried out in aqueous solution. The diphenylanthracene copolymer/viologen system at pH 2.8 shows the corresponding redox products DPA + rad and MV + rad arising from the singlet state of DPA with a forward rate constant of electron transfer of 2.6 × 10 9 s -1. At pH 9.0 the quenching of the S 1 state of DPA occurs with no charge separated products being observed. The pyrene copolymer shows no evidence of charge separated products at any pH in the range 2.8-9.0. It is proposed that the differences in the radical pair kinetics arise from differences in the degree of binding of the ground state complexes formed by the donor and acceptor species.

  10. Effect of interstitial palladium on plasmon-driven charge transfer in nanoparticle dimers.

    PubMed

    Lerch, Sarah; Reinhard, Björn M

    2018-04-23

    Capacitive plasmon coupling between noble metal nanoparticles (NPs) is characterized by an increasing red-shift of the bonding dipolar plasmon mode (BDP) in the classical electromagnetic coupling regime. This model breaks down at short separations where plasmon-driven charge transfer induces a gap current between the NPs with a magnitude and separation dependence that can be modulated if molecules are present in the gap. Here, we use gap contained DNA as a scaffold for the growth of palladium (Pd) NPs in the gap between two gold NPs and investigate the effect of increasing Pd NP concentration on the BDP mode. Consistent with enhanced plasmon-driven charge transfer, the integration of discrete Pd NPs depolarizes the capacitive BDP mode over longer interparticle separations than is possible in only DNA-linked Au NPs. High Pd NP densities in the gap increases the gap conductance and induces the transition from capacitive to conductive coupling.

  11. Inactivation of Gating Currents of L-Type Calcium Channels

    PubMed Central

    Shirokov, Roman; Ferreira, Gonzalo; Yi, Jianxun; Ríos, Eduardo

    1998-01-01

    In studies of gating currents of rabbit cardiac Ca channels expressed as α1C/β2a or α1C/β2a/α2δ subunit combinations in tsA201 cells, we found that long-lasting depolarization shifted the distribution of mobile charge to very negative potentials. The phenomenon has been termed charge interconversion in native skeletal muscle (Brum, G., and E. Ríos. 1987. J. Physiol. (Camb.). 387:489–517) and cardiac Ca channels (Shirokov, R., R. Levis, N. Shirokova, and E. Ríos. 1992. J. Gen. Physiol. 99:863–895). Charge 1 (voltage of half-maximal transfer, V1/2 ≃ 0 mV) gates noninactivated channels, while charge 2 (V1/2 ≃ −90 mV) is generated in inactivated channels. In α1C/β2a cells, the available charge 1 decreased upon inactivating depolarization with a time constant τ ≃ 8, while the available charge 2 decreased upon recovery from inactivation (at −200 mV) with τ ≃ 0.3 s. These processes therefore are much slower than charge movement, which takes <50 ms. This separation between the time scale of measurable charge movement and that of changes in their availability, which was even wider in the presence of α2δ, implies that charges 1 and 2 originate from separate channel modes. Because clear modal separation characterizes slow (C-type) inactivation of Na and K channels, this observation establishes the nature of voltage-dependent inactivation of L-type Ca channels as slow or C-type. The presence of the α2δ subunit did not change the V1/2 of charge 2, but sped up the reduction of charge 1 upon inactivation at 40 mV (to τ ≃ 2 s), while slowing the reduction of charge 2 upon recovery (τ ≃ 2 s). The observations were well simulated with a model that describes activation as continuous electrodiffusion (Levitt, D. 1989. Biophys. J. 55:489–498) and inactivation as discrete modal change. The effects of α2δ are reproduced assuming that the subunit lowers the free energy of the inactivated mode. PMID:9607938

  12. Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage.

    PubMed

    Kim, T; Dykstra, J E; Porada, S; van der Wal, A; Yoon, J; Biesheuvel, P M

    2015-05-15

    Capacitive deionization (CDI) is an electrochemical method for water desalination using porous carbon electrodes. A key parameter in CDI is the charge efficiency, Λ, which is the ratio of salt adsorption over charge in a CDI-cycle. Values for Λ in CDI are typically around 0.5-0.8, significantly less than the theoretical maximum of unity, due to the fact that not only counterions are adsorbed into the pores of the carbon electrodes, but at the same time coions are released. To enhance Λ, ion-exchange membranes (IEMs) can be implemented. With membranes, Λ can be close to unity because the membranes only allow passage for the counterions. Enhancing the value of Λ is advantageous as this implies a lower electrical current and (at a fixed charging voltage) a reduced energy use. We demonstrate how, without the need to include IEMs, the charge efficiency can be increased to values close to the theoretical maximum of unity, by increasing the cell voltage during discharge, with only a small loss of salt adsorption capacity per cycle. In separate constant-current CDI experiments, where after some time the effluent salt concentration reaches a stable value, this value is reached earlier with increased discharge voltage. We compare the experimental results with predictions of porous electrode theory which includes an equilibrium Donnan electrical double layer model for salt adsorption in carbon micropores. Our results highlight the potential of modified operational schemes in CDI to increase charge efficiency and reduce energy use of water desalination. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. 47 CFR 69.121 - Connection charges for expanded interconnection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... separations. (2) Charges for subelements associated with physical collocation or virtual collocation, other... of the virtual collocation equipment described in § 64.1401(e)(1) of this chapter, may reasonably...

  14. 77 FR 19425 - Prescription Drugs Not Administered During Treatment; Update to Administrative Cost for Calendar...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... that requires automobile accident reparations insurance. This updated administrative cost charge was... automobile accident reparations insurance, ``charges billed separately for such prescription drugs will...

  15. Charging YOYO-1 on Capillary Wall for Online DNA Intercalation and Integrating This Approach with Multiplex PCR and Bare Narrow Capillary–Hydrodynamic Chromatography for Online DNA Analysis

    PubMed Central

    2016-01-01

    Multiplex polymerase chain reaction (PCR) has been widely utilized for high-throughput pathogen identification. Often, a dye is used to intercalate the amplified DNA fragments, and identifications of the pathogens are carried out by DNA melting curve analysis or gel electrophoresis. Integrating DNA amplification and identification is a logic path toward maximizing the benefit of multiplex PCR. Although PCR and gel electrophoresis have been integrated, replenishing the gels after each run is tedious and time-consuming. In this technical note, we develop an approach to address this issue. We perform multiplex PCR inside a capillary, transfer the amplified fragments to a bare narrow capillary, and measure their lengths online using bare narrow capillary–hydrodynamic chromatography (BaNC-HDC), a new technique recently developed in our laboratory for free-solution DNA separation. To intercalate the DNA with YOYO-1 (a fluorescent dye) for BaNC-HDC, we flush the capillary column with a YOYO-1 solution; positively charged YOYO-1 is adsorbed (or charged) onto the negatively charged capillary wall. As DNA molecules are driven down the column for separation, they react with the YOYO-1 stored on the capillary wall and are online-intercalated with the dye. With a single YOYO-1 charging, the column can be used for more than 40 runs, although the fluorescence signal intensities of the DNA peaks decrease gradually. Although the dye-DNA intercalation occurs during the separation, it does not affect the retention times, separation efficiencies, or resolutions. PMID:25555111

  16. Development of high energy density electrical double layer capacitors

    NASA Astrophysics Data System (ADS)

    Devarajan, Thamarai selvi

    Electrochemical Double Layer capacitors (EDLCs) have shown themselves as a viable energy storage alternative. EDLCs have high power density, faster charge/discharge, wide operating temperature and long cycle life compared to batteries since it stores charge by physical separation. Despites all their advantages, their low energy density stand as a bottleneck for capacitors. This research aims to increase the energy density of EDLC without compromising the power density. Energy is proportional to the square of cell voltage. Cell voltage is mainly dependent on electrolyte breakdown. Electrolytes also provide ions for charge separation and conduction. Therefore various electrolytes (Solutes and Solvents) which can give high concentration, solubility and decomposition potential were characterized in the first part of the research. In that study, a novel ionic liquid OPBF4 had higher capacitance and comparable voltage window compared to commercial TEABF4 in Acetonitrile. However, the increased polarity of the fixed ring O-atom and the ion-ion interaction in OPBF4 was responsible for lowering its conductivity. Oxygenated ionic compounds with alkyl groups had lower stability due to beta elimination between two electron withdrawing atoms. Volume based thermodynamics and quantum chemical calculations were used to calculate ion size, HOMO/LUMO energies, and free energy changes and establish relationship with capacitance, redox potential and melting points respectively. In addition free energy of fusion was used to predict the melting point. Ion size had correlation with capacitance due to compact double layer formation. Free energy changes did not explain the differences in melting point and predicted dielectric constant was inconsistent with the polarity. This is presumably due to using Van der Waals volume instead of crystal structure volume and insufficient incorporation of polarization term. The HOMO/LUMO energies gave direct relation between oxidation and reduction potential at 1mA/cm 2. A brief study on non-polar co-solvents for EDLC was studied. Among the solvents studied, fluorinated solvents had low melting point and viscosity due to incorporation of asymmetry. However, because of low dielectric constant, TEABF4 is insoluble and had to be mixed with other solvents. The mixed fluorinated solvents had slightly higher voltage window due to decreased donicity of lone pairs of electrons. The second approach to increasing energy density is to increase capacitance. Capacitance is mainly dependent on surface area and porosity of electrodes. Nanostructured materials which can offer multiple charge storage are currently of interest. Hence, novel NiSi nanotubes were studied as electrodes for supercapacitor applications. Silicon material has high capacity and these inert electrodes can enable higher capacitance by controlling the porosity and functional groups in specific electrolytes. The Silicon wafers were made porous by anodization using hydrofluoric acid. In order to improve the conductivity, the porous silicon was doped, then plated with Ni using electroless plating method and annealed to form nickel mono silicide. Gold was deposited on the back side of the electrode to enhance conductivity. Our porous NiSi electrodes gave capacitance of about 1185muF /cm2 in 0.5 M H 2SO4. Further investigation of oxide formation and modification of functional groups will help achieve higher capacitance.

  17. The electrification of stratiform anvils

    NASA Astrophysics Data System (ADS)

    Boccippio, Dennis J.

    1997-10-01

    Stratiform precipitation regions accompany convective activity on many spatial scales. The electrification of these regions is anomalous in a number of ways. Surface and above-cloud fields are often 'inverted' from normal thunderstorm conditions. Unusually large, bright, horizontal 'spider' lightning and high current and charge transfer positive cloud-to-ground (CC) lightning dominates in these regions. Mesospheric 'red sprite' emissions have to date been observed exclusively over stratiform cloud shields. We postulate that a dominant 'inverted dipole' charge structure may account for this anomalous electrification. This is based upon laboratory observations of charge separation which show that in low liquid water content (LWC) environments, or dry but ice- supersaturated environments, precipitation ice tends to charge positively (instead of negatively) upon collision with smaller crystals. Under typical stratiform cloud conditions, liquid water should be depleted and this charging regime favored. An inverted dipole would be the natural consequence of large-scale charge separation (net flux divergence of charged ice), given typical hydrometeor profiles. The inverted dipole hypothesis is tested using radar and electrical observations of four weakly organized, late- stage systems in Orlando, Albuquerque and the Western Pacific. Time-evolving, area-average vertical velocity profiles are inferred from single Doppler radar data. These profiles provide the forcing for a 1-D steady state micro-physical retrieval, which yields vertical hydrometeor profiles and ice/water saturation conditions. The retrieved microphysical parameters are then combined with laboratory charge transfer measurements to infer the instantaneous charging behavior of the systems. Despite limitations in the analysis technique, the retrievals yield useful results. Total charge transfer drops only modestly as the storm enters the late (stratiform) stage, suggesting a continued active generator is plausible. Generator currents show an enhanced lowermost inverted dipole charging structure, which we may infer will result in a comparable inverted dipole charge structure, consistent with surface, in-situ and remote observations. Fine-scale vertical variations in ice and liquid water content may yield multipolar generator current profiles, despite unipolar charge transfer regimes. This suggests that multipoles observed in balloon soundings may not necessarily conflict with the simple ice-ice collisional charge separation mechanism. Overall, the results are consistent with, but not proof of, the inverted dipole model. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253- 1690.)

  18. Modeling the Electric Potential and Surface Charge Density Near Charged Thunderclouds

    NASA Astrophysics Data System (ADS)

    Neel, Matthew Stephen

    2018-03-01

    Thundercloud charge separation, or the process by which the bottom portion of a cloud gathers charge and the top portion of the cloud gathers the opposite charge, is still not thoroughly understood. Whatever the mechanism, though, a charge separation definitely exists and can lead to electrostatic discharge via cloud-to-cloud lightning and cloud-to-ground lightning. We wish to examine the latter form, in which upward leaders from Earth connect with downward leaders from the cloud to form a plasma channel and produce lightning. Much of the literature indicates that the lower part of a thundercloud becomes negatively charged while the upper part becomes positively charged via convective charging, although the opposite polarity can certainly exist along with various, complex intra-cloud currents. It is estimated that >90% of cloud-to-ground lightning is "negative lightning," or the flow of charges from the bottom of the cloud, while the remaining <10% of lightning strikes is "positive lightning," or the flow of charges from the top of the cloud. We wish to understand the electric potential surrounding charged thunderclouds as well as the resulting charge density on the surface of Earth below them. In this paper we construct a simple and adaptable model that captures the very basic features of the cloud/ground system and that exhibits conditions favorable for both forms of lightning. In this way, we provide a practical application of electrostatic dipole physics as well as the method of images that can serve as a starting point for further modeling and analysis by students.

  19. Photo-electrochemical properties of graphene wrapped hierarchically branched nanostructures obtained through hydrothermally transformed TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Rambabu, Y.; Jaiswal, Manu; Roy, Somnath C.

    2017-10-01

    Hierarchically structured nanomaterials play an important role in both light absorption and separation of photo-generated charges. In the present study, hierarchically branched TiO2 nanostructures (HB-MLNTs) are obtained through hydrothermal transformation of electrochemically anodized TiO2 multi-leg nanotubes (MLNT) arrays. Photo-anodes based on HB-MLNTs demonstrated 5 fold increase in applied bias to photo-conversion efficiency (%ABPE) over that of TiO2 MLNTs without branches. Further, such nanostructures are wrapped with reduced graphene oxide (rGO) films to enhance the charge separation, which resulted in ∼6.5 times enhancement in %ABPE over that of bare MLNTs. We estimated charge transport (η tr) and charge transfer (η ct) efficiencies by analyzing the photo-current data. The ultra-fine nano branches grown on the MLNTs are effective in increasing light absorption through multiple scattering and improving charge transport/transfer efficiencies by enlarging semiconductor/electrolyte interface area. The charge transfer resistance, interfacial capacitance and electron decay time have been estimated through electrochemical impedance measurements which correlate with the results obtained from photocurrent measurements.

  20. Non-Faradaic Li + Migration and Chemical Coordination across Solid-State Battery Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gittleson, Forrest S.; El Gabaly, Farid

    Efficient and reversible charge transfer is essential to realizing high-performance solid-state batteries. Efforts to enhance charge transfer at critical electrode–electrolyte interfaces have proven successful, yet interfacial chemistry and its impact on cell function remains poorly understood. Using X-ray photoelectron spectroscopy combined with electrochemical techniques, we elucidate chemical coordination near the LiCoO 2–LIPON interface, providing experimental validation of space-charge separation. Space-charge layers, defined by local enrichment and depletion of charges, have previously been theorized and modeled, but the unique chemistry of solid-state battery interfaces is now revealed. Here we highlight the non-Faradaic migration of Li+ ions from the electrode to themore » electrolyte, which reduces reversible cathodic capacity by ~15%. Inserting a thin, ion-conducting LiNbO 3 interlayer between the electrode and electrolyte, however, can reduce space-charge separation, mitigate the loss of Li+ from LiCoO 2, and return cathodic capacity to its theoretical value. This work illustrates the importance of interfacial chemistry in understanding and improving solid-state batteries.« less

  1. 5 CFR 842.404 - Reductions in basic annuity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... by removal for cause on charges of misconduct or delinquency; (2) A firefighter and/or law enforcement officer, except one separated by removal for cause on charges of misconduct of delinquency; or (3...

  2. Stick slip, charge separation and decay

    USGS Publications Warehouse

    Lockner, D.A.; Byerlee, J.D.; Kuksenko, V.S.; Ponomarev, A.V.

    1986-01-01

    Measurements of charge separation in rock during stable and unstable deformation give unexpectedly large decay times of 50 sec. Time-domain induced polarization experiments on wet and dry rocks give similar decay times and suggest that the same decay mechanisms operate in the induced polarization response as in the relaxation of charge generated by mechanical deformation. These large decay times are attributed to electrochemical processes in the rocks, and they require low-frequency relative permittivity to be very large, in excess of 105. One consequence of large permittivity, and therefore long decay times, is that a significant portion of any electrical charge generated during an earthquake can persist for tens or hundreds of seconds. As a result, electrical disturbances associated with earthquakes should be observable for these lengths of time rather than for the milliseconds previously suggested. ?? 1986 Birka??user Verlag.

  3. Efficient charge-carrier extraction from Ag₂S quantum dots prepared by the SILAR method for utilization of multiple exciton generation.

    PubMed

    Zhang, Xiaoliang; Liu, Jianhua; Johansson, Erik M J

    2015-01-28

    The utilization of electron-hole pairs (EHPs) generated from multiple excitons in quantum dots (QDs) is of great interest toward efficient photovoltaic devices and other optoelectronic devices; however, extraction of charge carriers remains difficult. Herein, we extract photocharges from Ag2S QDs and investigate the dependence of the electric field on the extraction of charges from multiple exciton generation (MEG). Low toxic Ag2S QDs are directly grown on TiO2 mesoporous substrates by employing the successive ionic layer adsorption and reaction (SILAR) method. The contact between QDs is important for the initial charge separation after MEG and for the carrier transport, and the space between neighbor QDs decreases with more SILAR cycles, resulting in better charge extraction. At the optimal electric field for extraction of photocharges, the results suggest that the threshold energy (hνth) for MEG is 2.41Eg. The results reveal that Ag2S QD is a promising material for efficient extraction of charges from MEG and that QDs prepared by SILAR have an advantageous electrical contact facilitating charge separation and extraction.

  4. An exploration into municipal waste charges for environmental management at local level: The case of Spain.

    PubMed

    Puig-Ventosa, Ignasi; Sastre Sanz, Sergio

    2017-11-01

    Municipal waste charges have been widely acknowledged as a crucial tool for waste management at the local level. This is because they contribute to financing the costly provision of waste collection and treatment services and they can be designed to provide an economic stimulus to encourage citizens and local businesses to improve separate collection and recycling. This work presents a methodology to evaluate a sample of 125 municipal waste charges in Spain for the year 2015, covering 33.91% of the Spanish population. The qualitative benchmarking of municipal waste charges shows that flat fees are frequent, whereas variable fees are set according to criteria that are weakly related to waste generation. The average fee per household is €82.2 per year, which does not provide full cost recovery. The current configuration of municipal waste charges penalises taxpayers contributing to source separation of waste, while subsidising less environmentally friendly behaviours. In this sense, municipal waste charges in Spain are far from applying the polluter pays principle. Furthermore, it is argued that municipal waste charges are ineffective for promoting the proper application of the so-called 'waste hierarchy'.

  5. Single-hole spectral function and spin-charge separation in the t-J model

    NASA Astrophysics Data System (ADS)

    Mishchenko, A. S.; Prokof'ev, N. V.; Svistunov, B. V.

    2001-07-01

    Worm algorithm Monte Carlo simulations of the hole Green function with subsequent spectral analysis were performed for 0.1<=J/t<=0.4 on lattices with up to L×L=32×32 sites at a temperature as low as T=J/40, and present, apparently, the hole spectral function in the thermodynamic limit. Spectral analysis reveals a δ-function-sharp quasiparticle peak at the lower edge of the spectrum that is incompatible with the power-law singularity and thus rules out the possibility of spin-charge separation in this parameter range. Spectral continuum features two peaks separated by a gap ~4÷5 t.

  6. Enhanced photoelectrochemical water splitting of BiVO4 photonic crystal photoanode by decorating with MoS2 nanosheets

    NASA Astrophysics Data System (ADS)

    Nan, Feng; Cai, Tianyi; Ju, Sheng; Fang, Liang

    2018-04-01

    Bismuth vanadate (BiVO4) has been considered as one of the promising Photoelectrochemical (PEC) photoanode materials. However, the performances remain poorly rated due to inefficient carrier separation, short carrier diffusion length, and sluggish water oxidation kinetics. Herein, a photoanode consisting of MoS2 nanosheet coating on the three-dimensional ordered BiVO4 inverse opal is fabricated by a facile combination of nanosphere lithography and hydrothermal methods. By taking advantage of the photonic crystal and two-dimensional material, the optimized MoS2/BiVO4 inverse opal photoanode exhibits a 560% improvement of the photocurrent density and threefold enhancement of the incident photon-to-current efficiency than that of the pristine BiVO4 film photoanode. Systematic studies reveal that the excellent PEC activity should be attributed to enhanced light harvesting and charge separation efficiency.

  7. Solar Wind Charge Exchange and Local Hot Bubble X-Ray Emission with the DXL Sounding Rocket Experiment

    NASA Technical Reports Server (NTRS)

    Galeazzi, M.; Collier, M. R.; Cravens, T.; Koutroumpa, D.; Kuntz, K. D.; Lepri, S.; McCammon, D.; Porter, F. S.; Prasai, K.; Robertson, I.; hide

    2012-01-01

    The Diffuse X-ray emission from the Local Galaxy (DXL) sounding rocket is a NASA approved mission with a scheduled first launch in December 2012. Its goal is to identify and separate the X-ray emission of the SWCX from that of the Local Hot Bubble (LHB) to improve our understanding of both. To separate the SWCX contribution from the LHB. DXL will use the SWCX signature due to the helium focusing cone at 1=185 deg, b=-18 deg, DXL uses large area propostionai counters, with an area of 1.000 sq cm and grasp of about 10 sq cm sr both in the 1/4 and 3/4 keY bands. Thanks to the large grasp, DXL will achieve in a 5 minule flight what cannot be achieved by current and future X-ray satellites.

  8. Computer modeling and simulation in inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCrory, R.L.; Verdon, C.P.

    1989-03-01

    The complex hydrodynamic and transport processes associated with the implosion of an inertial confinement fusion (ICF) pellet place considerable demands on numerical simulation programs. Processes associated with implosion can usually be described using relatively simple models, but their complex interplay requires that programs model most of the relevant physical phenomena accurately. Most hydrodynamic codes used in ICF incorporate a one-fluid, two-temperature model. Electrons and ions are assumed to flow as one fluid (no charge separation). Due to the relatively weak coupling between the ions and electrons, each species is treated separately in terms of its temperature. In this paper wemore » describe some of the major components associated with an ICF hydrodynamics simulation code. To serve as an example we draw heavily on a two-dimensional Lagrangian hydrodynamic code (ORCHID) written at the University of Rochester's Laboratory for Laser Energetics. 46 refs., 19 figs., 1 tab.« less

  9. In-Source Reduction of Disulfide-Bonded Peptides Monitored by Ion Mobility Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Stocks, Bradley B.; Melanson, Jeremy E.

    2018-02-01

    Many peptides with antimicrobial activity and/or therapeutic potential contain disulfide bonds as a means to enhance stability, and their quantitation is often performed using electrospray ionization mass spectrometry (ESI-MS). Disulfides can be reduced during ESI under commonly used instrument conditions, which has the potential to hinder accurate peptide quantitation. We demonstrate that this in-source reduction (ISR) is predominantly observed for peptides infused from acidic solutions and subjected to elevated ESI voltages (3-4 kV). ISR is readily apparent in the mass spectrum of oxytocin—a small, single disulfide-containing peptide. However, subtle m/z shifts due to partial ISR of highly charged (z ≥ 3) peptides with multiple disulfide linkages may proceed unnoticed. Ion mobility (IM)-MS separates ions on the basis of charge and shape in the gas phase, and using insulin as a model system, we show that IM-MS arrival time distributions (ATDs) are particularly sensitive to partial ISR of large peptides. Isotope modeling allows for the relative quantitation of disulfide-intact and partially reduced states of the mobility-separated peptide conformers. Interestingly, hepcidin peptides ionized from acidic solutions at elevated ESI voltages undergo gas-phase compaction, ostensibly due to partial disulfide ISR. Our IM-MS results lead us to propose that residual acid is the likely cause of disparate ATDs recently measured for hepcidin from different suppliers [Anal. Bioanal. Chem. 409, 2559-2567 (2017)]. Overall, our results demonstrate the utility of IM-MS to detect partial ISR of disulfide-bonded peptides and reinforce the notion that peptide/protein measurements should be carried out using minimally activating instrument conditions. [Figure not available: see fulltext.

  10. Escape of anions from geminate recombination in THF due to charge delocalization

    DOE PAGES

    Chen, Hung -Cheng; Cook, Andrew R.; Asaoka, Sadayuki; ...

    2017-11-24

    Geminate recombination of 24 radical anions (M˙ –) with solvated protons (RH 2 +) was studied in tetrahydrofuran (THF) with pulse radiolysis. The recombination has two steps: (1) diffusion of M˙ – and RH 2 + together to form intimate (contact and solvent separated) ion pairs, driven by Coulomb attraction; (2) annihilation of anions due to proton transfer (PT) from RH 2 + to M˙ –. The non-exponential time-dependence of the geminate diffusion was determined. For all molecules protonated on O or N atoms the subsequent PT step is too fast (<0.2 ns) to measure, except for the anion ofmore » TCNE which did not undergo proton transfer. PT to C atoms was as slow as 70 ns and was always slow enough to be observable. A possible effect of charge delocalization on the PT rates could not be clearly separated from other factors. For 21 of the 24 molecules studied here, a free ion yield (71.6 ± 6.2 nmol J –1) comprising ~29% of the total, was formed. This yield of “Type I” free ions is independent of the PT rate because it arises entirely by escape from the initial distribution of ion pair distances without forming intimate ion pairs. Furthermore, three anions of oligo(9,9-dihexyl)fluorenes, F n˙ – (n = 2–4) were able to escape from intimate ion-pairs to form additional yields of “Type II” free ions with escape rate constants near 3 × 10 6 s –1. These experiments find no evidence for an inverted region for proton transfer.« less

  11. Charge recombination in organic photovoltaic devices with high open-circuit voltages.

    PubMed

    Westenhoff, Sebastian; Howard, Ian A; Hodgkiss, Justin M; Kirov, Kiril R; Bronstein, Hugo A; Williams, Charlotte K; Greenham, Neil C; Friend, Richard H

    2008-10-15

    A detailed charge recombination mechanism is presented for organic photovoltaic devices with a high open-circuit voltage. In a binary blend comprised of polyfluorene copolymers, the performance-limiting process is found to be the efficient recombination of tightly bound charge pairs into neutral triplet excitons. We arrive at this conclusion using optical transient absorption (TA) spectroscopy with visible and IR probes and over seven decades of time resolution. By resolving the polarization of the TA signal, we track the movement of polaronic states generated at the heterojunction not only in time but also in space. It is found that the photogenerated charge pairs are remarkably immobile at the heterojunction during their lifetime. The charge pairs are shown to be subject to efficient intersystem crossing and terminally recombine into F8BT triplet excitons within approximately 40 ns. Long-range charge separation competes rather unfavorably with intersystem crossing--75% of all charge pairs decay into triplet excitons. Triplet exciton states are thermodynamically accessible in polymer solar cells with high open circuit voltage, and we therefore suggest this loss mechanism to be general. We discuss guidelines for the design of the next generation of organic photovoltaic materials where separating the metastable interfacial charge pairs within approximately 40 ns is paramount.

  12. How to harvest solar energy with the photosynthetic reaction center

    NASA Astrophysics Data System (ADS)

    Balaeff, Alexander; Reyes, Justin

    Photosynthetic reaction center (PRC) is a protein complex that performs a key step in photosynthesis: the electron-hole separation driven by photon absorbtion. The PRC has a great promise for applications in solar energy harvesting and photosensing. Such applications, however, are hampered by the difficulty in extracting the photogenerated electric charge from the PRC. To that end, it was proposed to attach the PRC to a molecular wire through which the charge could be collected. In order to find the attachment point for the wire that would maximize the rate of charge outflow from the PRC, we performed a computational study of the PRC from the R. virdis bacterium. An ensemble of PRC structures generated by a molecular dynamics simulation was used to calculate the rate of charge transport from the site of initial charge separation to several trial sites on the protein surface. The Pathways model was used to calculate the charge transfer rate in each step of the network of heme co-factors through which the charge transport was presumed to proceed. A simple kinetic model was then used to determine the overall rate of the multistep charge transport. The calculations revealed several candidate sites for the molecular wire attachment, recommended for experimental verification.

  13. The impact of chemical structure and molecular packing on the electronic polarisation of fullerene arrays.

    PubMed

    Few, Sheridan; Chia, Cleaven; Teo, Daniel; Kirkpatrick, James; Nelson, Jenny

    2017-07-19

    Electronic polarisation contributes to the electronic landscape as seen by separating charges in organic materials. The nature of electronic polarisation depends on the polarisability, density, and arrangement of polarisable molecules. In this paper, we introduce a microscopic, coarse-grained model in which we treat each molecule as a polarisable site, and use an array of such polarisable dipoles to calculate the electric field and associated energy of any arrangement of charges in the medium. The model incorporates chemical structure via the molecular polarisability and molecular packing patterns via the structure of the array. We use this model to calculate energies of charge pairs undergoing separation in finite fullerene lattices of different chemical and crystal structures. The effective dielectric constants that we estimate from this approach are in good quantitative agreement with those measured experimentally in C 60 and phenyl-C 61 -butyric acid methyl ester (PCBM) films, but we find significant differences in dielectric constant depending on packing and on direction of separation, which we rationalise in terms of density of polarisable fullerene cages in regions of high field. In general, we find lattices containing molecules of more isotropic polarisability tensors exhibit higher dielectric constants. By exploring several model systems we conclude that differences in molecular polarisability (and therefore, chemical structure) appear to be less important than differences in molecular packing and separation direction in determining the energetic landscape for charge separation. We note that the results are relevant for finite lattices, but not necessarily for infinite systems. We propose that the model could be used to design molecular systems for effective electronic screening.

  14. Application of ion mobility-mass spectrometry to microRNA analysis.

    PubMed

    Takebayashi, Kosuke; Hirose, Kenji; Izumi, Yoshihiro; Bamba, Takeshi; Fukusaki, Eiichiro

    2013-03-01

    Liquid chromatography/mass spectrometry is widely used for studying sequence determination and modification analysis of small RNAs. However, the efficiency of liquid chromatography-based separation of intact small RNA species is insufficient, since the physiochemical properties among small RNAs are very similar. In this study, we focused on ion mobility-mass spectrometry (IM-MS), which is a gas-phase separation technique coupled with mass spectrometry; we have evaluated the utility of IM-MS for microRNA (miRNA) analysis. A multiply charged deprotonated ion derived from an 18-24-nt-long miRNA was formed by electrospray ionization, and then the time, called the "drift time", taken by each ion to migrate through a buffer gas was measured. Each multivalent ion was temporally separated on the basis of the charge state and structural formation; 3 types of unique mass-mobility correlation patterns (i.e., chainlike-form, hairpin-form, and dimer-form) were present on the two-dimensional mobility-mass spectrum. Moreover, we found that the ion size (sequence length) and the secondary structures of the small RNAs strongly contributed to the IM-MS-based separation, although solvent conditions such as pH had no effect. Therefore, sequence isomers could also be discerned by the selection of each specific charged ion, i.e., the 6(-) charged ion reflected a majority among chainlike-, hairpin-, and other structures. We concluded that the IM-MS provides additional capability for separation; thus, this analytical method will be a powerful tool for comprehensive small RNA analysis. Copyright © 2012. Published by Elsevier B.V.

  15. Wavelength-dependent ultrafast charge carrier separation in the WO 3/BiVO 4 coupled system

    DOE PAGES

    Grigioni, Ivan; Stamplecoskie, Kevin G.; Jara, Danilo H.; ...

    2017-05-08

    Due to its ~2.4 eV band gap, BiVO 4 is a very promising photoanode material for harvesting the blue portion of the solar light for photoelectrochemical (PEC) water splitting applications. In WO 3/BiVO 4 heterojunction films, the electrons photoexcited in BiVO 4 are injected into WO 3, overcoming the lower charge carriers’ diffusion properties limiting the PEC performance of BiVO 4 photoanodes. Here, we investigate by ultrafast transient absorption spectroscopy the charge carrier interactions occurring at the interface between the two oxides in heterojunction systems to directly unveil their wavelength dependence. Under selective BiVO 4 excitation, a favorable electron transfermore » from photoexcited BiVO 4 to WO 3 occurs immediately after excitation and leads to an increase of the trapped holes’ lifetime in BiVO4. However, a recombination channel opens when both oxides are simultaneously excited, evidenced by a shorter lifetime of trapped holes in BiVO 4. As a result, PEC measurements reveal the implication of these wavelength-dependent ultrafast interactions on the performances of the WO 3/BiVO 4 heterojunction.« less

  16. The Use of Clay-Polymer Nanocomposites in Wastewater Pretreatment

    PubMed Central

    Rytwo, Giora

    2012-01-01

    Some agricultural effluents are unsuitable for discharge into standard sewage-treatment plants: their pretreatment is necessary to avoid clogging of the filtering devices by colloidal matter. The colloidal stability of the effluents is mainly due to mutual repulsive forces that keep charged particles in suspension. Pretreatment processes are based on two separate stages: (a) neutralization of the charges (“coagulation”) and (b) bridging between several small particles to form larger aggregates that sink, leaving clarified effluent (“flocculation”). The consequent destabilization of the colloidal suspension lowers total suspended solids (TSSs), turbidity, and other environmental quality parameters, making the treatments that follow more efficient. Clay-based materials have been widely used for effluent pretreatment and pollutant removal. This study presents the use of nanocomposites, comprised of an anchoring particle and a polymer, as “coagoflocculants” for the efficient and rapid reduction of TSS and turbidity in wastewater with a high organic load. The use of such particles combines the advantages of coagulant and flocculant by neutralizing the charge of the suspended particles while bridging between them and anchoring them to a denser particle (the clay mineral), enhancing their precipitation. Very rapid and efficient pretreatment is achieved in one single treatment step. PMID:22454607

  17. Largely enhanced photocatalytic activity of Au/XS2/Au (X = Re, Mo) antenna-reactor hybrids: charge and energy transfer.

    PubMed

    Chen, Kai; Ding, Si-Jing; Luo, Zhi-Jun; Pan, Gui-Ming; Wang, Jia-Hong; Liu, Jia; Zhou, Li; Wang, Qu-Quan

    2018-02-22

    An antenna-reactor hybrid coupling plasmonic antenna with catalytic nanoparticles is a new strategy to optimize photocatalytic activity. Herein, we have rationally proposed a Au/XS 2 /Au (X = Re, Mo) antenna reactor, which has a large Au core as the antenna and small satellite Au nanoparticles as the reactor separated by an ultrathin two-dimensional transition-metal dichalcogenide XS 2 shell (∼2.6 nm). Due to efficient charge transfer across the XS 2 shell as well as energy transfer via coupling of the Au antenna and Au reactor, the photocatalytic activity has been largely enhanced: Au/ReS 2 /Au exhibits a 3.59-fold enhancement, whereas Au/MoS 2 /Au exhibits a 2.66-fold enhancement as compared to that of the sum of the three individual components. The different enhancement in the Au/ReS 2 /Au and Au/MoS 2 /Au antenna-reactor hybrid is related to the competition and cooperation of charge and energy transfer. These results indicate the great potential of the Au/XS 2 /Au antenna-reactor hybrid for the development of highly efficient plasmonic photocatalysts.

  18. Dental technology services and industry trends in New Zealand from 2010 to 2012.

    PubMed

    Alameri, S S; Aarts, J M; Smith, M; Waddell, J N

    2014-06-01

    To provide a snapshot of the New Zealand dental technology industry and influencing factors. Developing an understanding of the commercial dental laboratory environment in New Zealand can provide insight into the entire dental industry. A web-based survey was the primary method for data collection, with separate questionnaires used for dental laboratory owners and dental technician employees. The mean net income for dental laboratory owners in New Zealand was similar to that of the United Kingdom, at $40.50 per hour. Clinical dental technicians are the highest paid employees, with a mean of $33.49 per hour. The mean technical charge for complete dentures was $632.59; including clinical services, it was $1907.00. The mean charge for a porcelain-fused-to-metal (PFM) crown was $290.27. Dental laboratory owners expressed fear about the possibility of losing dental clients to overseas laboratories due to the availability and cheap charge of offshore work. Only 25.4% of dental laboratories surveyed had computer-aided design (CAD) facilities, and even fewer (7.9%) had computer-aided manufacturing (CAM) systems. Clinical dental technology appears to be prospering. The dental technology industry appears to be adapting and remains viable, despite facing many challenges.

  19. Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells

    PubMed Central

    Sun, Zhenhua; Sitbon, Gary; Pons, Thomas; Bakulin, Artem A.; Chen, Zhuoying

    2015-01-01

    Energy loss due to carrier recombination is among the major factors limiting the performance of TiO2/PbS colloidal quantum dot (QD) heterojunction solar cells. In this work, enhanced photocurrent is achieved by incorporating another type of hole-transporting QDs, Zn-doped CuInS2 (Zn-CIS) QDs into the PbS QD matrix. Binary QD solar cells exhibit a reduced charge recombination associated with the spatial charge separation between these two types of QDs. A ~30% increase in short-circuit current density and a ~20% increase in power conversion efficiency are observed in binary QD solar cells compared to cells built from PbS QDs only. In agreement with the charge transfer process identified through ultrafast pump/probe spectroscopy between these two QD components, transient photovoltage characteristics of single-component and binary QDs solar cells reveal longer carrier recombination time constants associated with the incorporation of Zn-CIS QDs. This work presents a straightforward, solution-processed method based on the incorporation of another QDs in the PbS QD matrix to control the carrier dynamics in colloidal QD materials and enhance solar cell performance. PMID:26024021

  20. Computational Investigation of In-Flight Temperature in Shaped Charge Jets and Explosively Formed Penetrators

    NASA Astrophysics Data System (ADS)

    Sable, Peter; Helminiak, Nathaniel; Harstad, Eric; Gullerud, Arne; Hollenshead, Jeromy; Hertel, Eugene; Sandia National Laboratories Collaboration; Marquette University Collaboration

    2017-06-01

    With the increasing use of hydrocodes in modeling and system design, experimental benchmarking of software has never been more important. While this has been a large area of focus since the inception of computational design, comparisons with temperature data are sparse due to experimental limitations. A novel temperature measurement technique, magnetic diffusion analysis, has enabled the acquisition of in-flight temperature measurements of hyper velocity projectiles. Using this, an AC-14 bare shaped charge and an LX-14 EFP, both with copper linings, were simulated using CTH to benchmark temperature against experimental results. Particular attention was given to the slug temperature profiles after separation, and the effect of varying equation-of-state and strength models. Simulations are in agreement with experimental, attaining better than 2% error between observed shaped charge temperatures. This varied notably depending on the strength model used. Similar observations were made simulating the EFP case, with a minimum 4% deviation. Jet structures compare well with radiographic images and are consistent with ALEGRA simulations previously conducted. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Wavelength-dependent ultrafast charge carrier separation in the WO 3/BiVO 4 coupled system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigioni, Ivan; Stamplecoskie, Kevin G.; Jara, Danilo H.

    Due to its ~2.4 eV band gap, BiVO 4 is a very promising photoanode material for harvesting the blue portion of the solar light for photoelectrochemical (PEC) water splitting applications. In WO 3/BiVO 4 heterojunction films, the electrons photoexcited in BiVO 4 are injected into WO 3, overcoming the lower charge carriers’ diffusion properties limiting the PEC performance of BiVO 4 photoanodes. Here, we investigate by ultrafast transient absorption spectroscopy the charge carrier interactions occurring at the interface between the two oxides in heterojunction systems to directly unveil their wavelength dependence. Under selective BiVO 4 excitation, a favorable electron transfermore » from photoexcited BiVO 4 to WO 3 occurs immediately after excitation and leads to an increase of the trapped holes’ lifetime in BiVO4. However, a recombination channel opens when both oxides are simultaneously excited, evidenced by a shorter lifetime of trapped holes in BiVO 4. As a result, PEC measurements reveal the implication of these wavelength-dependent ultrafast interactions on the performances of the WO 3/BiVO 4 heterojunction.« less

  2. Combined electrophoretic-separation and electrospray method and system

    DOEpatents

    Smith, Richard D.; Olivares, Jose A.

    1989-01-01

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary zone electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5-100 KVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., .+-.2-8 KVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit.

  3. An Investigation of Low Earth Orbit Internal Charging

    NASA Technical Reports Server (NTRS)

    NeergaardParker, Linda; Minow, Joseph I.; Willis, Emily M.

    2014-01-01

    Low Earth orbit is usually considered a relatively benign environment for internal charging threats due to the low flux of penetrating electrons with energies of a few MeV that are encountered over an orbit. There are configurations, however, where insulators and ungrounded conductors used on the outside of a spacecraft hull may charge when exposed to much lower energy electrons of some 100's keV in a process that is better characterized as internal charging than surface charging. For example, the minimal radiation shielding afforded by thin thermal control materials such as metalized polymer sheets (e.g., aluminized Kapton or Mylar) and multilayer insulation may allow electrons of 100's of keV to charge underlying materials. Yet these same thermal control materials protect the underlying insulators and ungrounded conductors from surface charging currents due to electrons and ions at energies less than a few keV as well as suppress the photoemission, secondary electron, and backscattered electron processes associated with surface charging. We investigate the conditions required for this low Earth orbit "internal charging" to occur and evaluate the environments for which the process may be a threat to spacecraft. First, we describe a simple one-dimensional internal charging model that is used to compute the charge accumulation on materials under thin shielding. Only the electron flux that penetrates exposed surface shielding material is considered and we treat the charge balance in underlying insulation as a parallel plate capacitor accumulating charge from the penetrating electron flux and losing charge due to conduction to a ground plane. Charge dissipation due to conduction can be neglected to consider the effects of charging an ungrounded conductor. In both cases, the potential and electric field is computed as a function of time. An additional charge loss process is introduced due to an electrostatic discharge current when the electric field reaches a prescribed breakdown strength. For simplicity, the amount of charge lost in the discharge is treated as a random percentage of the total charge between a set maximum and minimum amount so a user can consider partial discharges of insulating materials (small loss of charge) or arcing from a conductor (large loss of charge). We apply the model to electron flux measurements from the NOAA-19 spacecraft to demonstrate that charging can reach levels where electrostatic discharges occur and estimate the magnitude of the discharge.

  4. System and method for charging a plug-in electric vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bassham, Marjorie A.; Spigno, Jr., Ciro A.; Muller, Brett T.

    2017-05-02

    A charging system and method that may be used to automatically apply customized charging settings to a plug-in electric vehicle, where application of the settings is based on the vehicle's location. According to an exemplary embodiment, a user may establish and save a separate charging profile with certain customized charging settings for each geographic location where they plan to charge their plug-in electric vehicle. Whenever the plug-in electric vehicle enters a new geographic area, the charging method may automatically apply the charging profile that corresponds to that area. Thus, the user does not have to manually change or manipulate themore » charging settings every time they charge the plug-in electric vehicle in a new location.« less

  5. Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells.

    PubMed

    Wang, Jin; Mora-Seró, Iván; Pan, Zhenxiao; Zhao, Ke; Zhang, Hua; Feng, Yaoyu; Yang, Guang; Zhong, Xinhua; Bisquert, Juan

    2013-10-23

    Searching suitable panchromatic QD sensitizers for expanding the light-harvesting range, accelerating charge separation, and retarding charge recombination is an effective way to improve power conversion efficiency (PCE) of quantum-dot-sensitized solar cells (QDSCs). One possible way to obtain a wide absorption range is to use the exciplex state of a type-II core/shell-structured QDs. In addition, this system could also provide a fast charge separation and low charge-recombination rate. Herein, we report on using a CdTe/CdSe type-II core/shell QD sensitizer with an absorption range extending into the infrared region because of its exciplex state, which is covalently linked to TiO2 mesoporous electrodes by dropping a bifunctional linker molecule mercaptopropionic acid (MPA)-capped QD aqueous solution onto the film electrode. High loading and a uniform distribution of QD sensitizer throughout the film electrode thickness have been confirmed by energy dispersive X-ray (EDX) elemental mapping. The accelerated electron injection and retarded charge-recombination pathway in the built CdTe/CdSe QD cells in comparison with reference CdSe QD-based cells have been confirmed by impedance spectroscopy, fluorescence decay, and intensity-modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS) analysis. With the combination of the high QD loading and intrinsically superior optoelectronic properties of type-II core/shell QD (wide absorption range, fast charge separation, and slow charge recombination), the resulting CdTe/CdSe QD-based regenerative sandwich solar cells exhibit a record PCE of 6.76% (J(sc) = 19.59 mA cm(-2), V(oc) = 0.606 V, and FF = 0.569) with a mask around the active film under a full 1 sun illumination (simulated AM 1.5), which is the highest reported to date for liquid-junction QDSCs.

  6. Interfacial charge separation and recombination in InP and quasi-type II InP/CdS core/shell quantum dot-molecular acceptor complexes.

    PubMed

    Wu, Kaifeng; Song, Nianhui; Liu, Zheng; Zhu, Haiming; Rodríguez-Córdoba, William; Lian, Tianquan

    2013-08-15

    Recent studies of group II-VI colloidal semiconductor heterostuctures, such as CdSe/CdS core/shell quantum dots (QDs) or dot-in-rod nanorods, show that type II and quasi-type II band alignment can facilitate electron transfer and slow down charge recombination in QD-molecular electron acceptor complexes. To explore the general applicability of this wave function engineering approach for controlling charge transfer properties, we investigate exciton relaxation and dissociation dynamics in InP (a group III-V semiconductor) and InP/CdS core/shell (a heterostructure beween group III-V and II-VI semiconductors) QDs by transient absorption spectroscopy. We show that InP/CdS QDs exhibit a quasi-type II band alignment with the 1S electron delocalized throughout the core and shell and the 1S hole confined in the InP core. In InP-methylviologen (MV(2+)) complexes, excitons in the QD can be dissociated by ultrafast electron transfer to MV(2+) from the 1S electron level (with an average time constant of 11.4 ps) as well as 1P and higher electron levels (with a time constant of 0.39 ps), which is followed by charge recombination to regenerate the complex in its ground state (with an average time constant of 47.1 ns). In comparison, InP/CdS-MV(2+) complexes show similar ultrafast charge separation and 5-fold slower charge recombination rates, consistent with the quasi-type II band alignment in these heterostructures. This result demonstrates that wave function engineering in nanoheterostructures of group III-V and II-VI semiconductors provides a promising approach for optimizing their light harvesting and charge separation for solar energy conversion applications.

  7. Protein Separation by Electrophoretic-Electroosmotic Focusing on Supported Lipid Bilayers

    PubMed Central

    Liu, Chunming; Monson, Christopher F.; Yang, Tinglu; Pace, Hudson; Cremer, Paul S.

    2011-01-01

    An electrophoretic-electroosmotic focusing (EEF) method was developed and used to separate membrane-bound proteins and charged lipids based on their charge-to-size ratio from an initially homogeneous mixture. EEF uses opposing electrophoretic and electroosmotic forces to focus and separate proteins and lipids into narrow bands on supported lipid bilayers (SLBs). Membrane-associated species were focused into specific positions within the SLB in a highly repeatable fashion. The steady-state focusing positions of the proteins could be predicted and controlled by tuning experimental conditions, such as buffer pH, ionic strength, electric field and temperature. Careful tuning of the variables should enable one to separate mixtures of membrane proteins with only subtle differences. The EEF technique was found to be an effective way to separate protein mixtures with low initial concentrations, and it overcame diffusive peak broadening to allow four bands to be separated simultaneously within a 380 μm wide isolated supported membrane patch. PMID:21958061

  8. 27 CFR 53.91 - Charges to be included in sale price.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the Code and § 53.100. In the case of sales on credit, a carrying, finance, or service charge is... connection with collection). (b) Tools and dies. Separate charges for tools and dies used in the manufacture... manufacture taxable articles, the tools and dies used in production pass to the purchaser, only the amount of...

  9. Energy level engineering in ternary organic solar cells: Evaluating exciton dissociation at organic semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Feron, Krishna; Thameel, Mahir N.; Al-Mudhaffer, Mohammed F.; Zhou, Xiaojing; Belcher, Warwick J.; Fell, Christopher J.; Dastoor, Paul C.

    2017-03-01

    Electronic energy level engineering, with the aim to improve the power conversion efficiency in ternary organic solar cells, is a complex problem since multiple charge transfer steps and exciton dissociation driving forces must be considered. Here, we examine exciton dissociation in the ternary system poly(3-hexylthiophene): [6,6]-phenyl-C61-butyric acid methyl ester:2,4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl] squaraine (P3HT:PCBM:DIBSq). Even though the energy level diagram suggests that exciton dissociation at the P3HT:DIBSq interface should be efficient, electron paramagnetic resonance and external quantum efficiency measurements of planar devices show that this interface is not capable of generating separated charge carriers. Efficient exciton dissociation is still realised via energy transfer, which transports excitons from the P3HT:DIBSq interface to the DIBSq:PCBM interface, where separated charge carriers can be generated efficiently. This work demonstrates that energy level diagrams alone cannot be relied upon to predict the exciton dissociation and charge separation capability of an organic semiconductor interface and that energy transfer relaxes the energy level constraints for optimised multi-component organic solar cells.

  10. Analysis of pharmaceutical impurities using multi-heartcutting 2D LC coupled with UV-charged aerosol MS detection.

    PubMed

    Zhang, Kelly; Li, Yi; Tsang, Midco; Chetwyn, Nik P

    2013-09-01

    To overcome challenges in HPLC impurity analysis of pharmaceuticals, we developed an automated online multi-heartcutting 2D HPLC system with hyphenated UV-charged aerosol MS detection. The first dimension has a primary column and the second dimension has six orthogonal columns to enhance flexibility and selectivity. The two dimensions were interfaced by a pair of switching valves equipped with six trapping loops that allow multi-heartcutting of peaks of interest in the first dimension and also allow "peak parking." The hyphenated UV-charged aerosol MS detection provides comprehensive detection for compounds with and without UV chromophores, organics, and inorganics. It also provides structural information for impurity identification. A hidden degradation product that co-eluted with the drug main peak was revealed by RP × RP separation and thus enabled the stability-indicating method development. A poorly retained polar component with no UV chromophores was analyzed by RP × hydrophilic interaction liquid chromatography separation with charged aerosol detection. Furthermore, using this system, the structures of low-level impurities separated by a method using nonvolatile phosphate buffer were identified and tracked by MS in the second dimension. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nonuniform Effect of Carrier Separation Efficiency and Light Absorption in Type-II Perovskite Nanowire Solar Cells

    NASA Astrophysics Data System (ADS)

    Wang, Weiping; He, Jialun; Cao, Yiyan; Kong, Lijing; Zheng, Xuanli; Wu, Yaping; Chen, Xiaohong; Li, Shuping; Wu, Zhiming; Kang, Junyong

    2017-03-01

    Coaxial structures exhibit great potential for the application of high-efficiency solar cells due to the novel mechanism of radial charge separation. Here, we intensively investigate the nonuniform effect of carrier separation efficiency (CSE) and light absorption in perovskite-based type-II coaxial nanowire solar cells (ZnO/CH3NH3PbI3). Results show that the CSE rapidly decreases along the radial direction in the shell, and the value at the outer side becomes extremely low for the thick shell. Besides, the position of the main light absorption gradually moves to the outer side with the increase of the shell thickness. As a result, the external quantum efficiency shows a positional dependence with a maximal value close to the border of the nanowire. Eventually, in our case, it is found that the maximal power conversion efficiency of the solar cells reduces from 19.5 to 17.9% under the effect of the nonuniformity of CSE and light absorption. This work provides a basis for the design of high-efficiency solar cells, especially type-II nanowire solar cells.

  12. Nonuniform Effect of Carrier Separation Efficiency and Light Absorption in Type-II Perovskite Nanowire Solar Cells.

    PubMed

    Wang, Weiping; He, Jialun; Cao, Yiyan; Kong, Lijing; Zheng, Xuanli; Wu, Yaping; Chen, Xiaohong; Li, Shuping; Wu, Zhiming; Kang, Junyong

    2017-12-01

    Coaxial structures exhibit great potential for the application of high-efficiency solar cells due to the novel mechanism of radial charge separation. Here, we intensively investigate the nonuniform effect of carrier separation efficiency (CSE) and light absorption in perovskite-based type-II coaxial nanowire solar cells (ZnO/CH 3 NH 3 PbI 3 ). Results show that the CSE rapidly decreases along the radial direction in the shell, and the value at the outer side becomes extremely low for the thick shell. Besides, the position of the main light absorption gradually moves to the outer side with the increase of the shell thickness. As a result, the external quantum efficiency shows a positional dependence with a maximal value close to the border of the nanowire. Eventually, in our case, it is found that the maximal power conversion efficiency of the solar cells reduces from 19.5 to 17.9% under the effect of the nonuniformity of CSE and light absorption. This work provides a basis for the design of high-efficiency solar cells, especially type-II nanowire solar cells.

  13. Complex coacervation of supercharged proteins with polyelectrolytes.

    PubMed

    Obermeyer, Allie C; Mills, Carolyn E; Dong, Xue-Hui; Flores, Romeo J; Olsen, Bradley D

    2016-04-21

    Complexation of proteins with polyelectrolytes or block copolymers can lead to phase separation to generate a coacervate phase or self-assembly of coacervate core micelles. However, many proteins do not coacervate at conditions near neutral pH and physiological ionic strength. Here, protein supercharging is used to systematically explore the effect of protein charge on the complex coacervation with polycations. Four model proteins were anionically supercharged to varying degrees as quantified by mass spectrometry. Proteins phase separated with strong polycations when the ratio of negatively charged residues to positively charged residues on the protein (α) was greater than 1.1-1.2. Efficient partitioning of the protein into the coacervate phase required larger α (1.5-2.0). The preferred charge ratio for coacervation was shifted away from charge symmetry for three of the four model proteins and indicated an excess of positive charge in the coacervate phase. The composition of protein and polymer in the coacervate phase was determined using fluorescently labeled components, revealing that several of the coacervates likely have both induced charging and a macromolecular charge imbalance. The model proteins were also encapsulated in complex coacervate core micelles and micelles formed when the protein charge ratio α was greater than 1.3-1.4. Small angle neutron scattering and transmission electron microscopy showed that the micelles were spherical. The stability of the coacervate phase in both the bulk and micelles improved to increased ionic strength as the net charge on the protein increased. The micelles were also stable to dehydration and elevated temperatures.

  14. Effects of ion size and charge asymmetry on the salt distribution in polyelectrolyte blends and block copolymers

    NASA Astrophysics Data System (ADS)

    Kwon, Ha-Kyung; Shull, Kenneth R.; Zwanikken, Jos W.; Olvera de La Cruz, Monica

    Polyelectrolytes have received much attention as potential candidates for rechargeable batteries, membrane fuel cells, and drug delivery carriers, as they can combine the electrochemical properties of the charged components with the mechanical stability and biocompatibility of the polymer backbone. The role of salt in determining the bulk and interfacial behaviors of polyelectrolytes has been of particular interest, as the miscibility has shown to depend significantly on salt identity and concentration. Recent studies employing the SCFT-LS method have shown that ionic correlations can enhance phase separation in polyelectrolytes and can induce selectivity in neutral solvents. Here, we extend the theory to investigate the role of salt in strongly correlated polyelectrolytes. We find that in lamellae-forming block copolymers, the addition of monovalent, symmetric salt can lead to a decreased lamellar spacing due to increased selectivity of the salt. When multiple electrostatic interactions are introduced via size and valency asymmetry in the salt pair, the bulk phase behavior and salt distribution across interfaces are significantly altered, as size and charge mismatch can transform the charge ordering seen in monovalent, symmetric salts. This work was performed under the following financial assistance award 70NANB14H012 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD).

  15. The behavior of exciplex decay processes and interplay of radiationless transition and preliminary reorganization mechanisms of electron transfer in loose and tight pairs of reactants.

    PubMed

    Kuzmin, Michael G; Soboleva, Irina V; Dolotova, Elena V

    2007-01-18

    Exciplex emission spectra and rate constants of their decay via internal conversion and intersystem crossing are studied and discussed in terms of conventional radiationless transition approach. Exciplexes of 9-cyanophenanthrene with 1,2,3-trimethoxybenzene and 1,3,5-trimethoxybenzene were studied in heptane, toluene, butyl acetate, dichloromethane, butyronitrile, and acetonitrile. A better description of spectra and rate constants is obtained using 0-0 transition energy and Gauss broadening of vibrational bands rather than the free energy of electron transfer and reorganization energy. The coincidence of parameters describing exciplex emission spectra and dependence of exciplex decay rate constants on energy gap gives the evidence of radiationless quantum transition mechanism rather than thermally activated medium reorganization mechanism of charge recombination in exciplexes and excited charge transfer complexes (contact radical ion pairs) as well as in solvent separated radical ion pairs. Radiationless quantum transition mechanism is shown to provide an appropriate description also for the main features of exergonic excited-state charge separation reactions if fast mutual transformations of loose and tight pairs of reactants are considered. In particular, very fast electron transfer (ET) in tight pairs of reactants with strong electronic coupling of locally excited and charge transfer states can prevent the observation of an inverted region in bimolecular excited-state charge separation even for highly exergonic reactions.

  16. Terahertz Emission from Hybrid Perovskites Driven by Ultrafast Charge Separation and Strong Electron-Phonon Coupling.

    PubMed

    Guzelturk, Burak; Belisle, Rebecca A; Smith, Matthew D; Bruening, Karsten; Prasanna, Rohit; Yuan, Yakun; Gopalan, Venkatraman; Tassone, Christopher J; Karunadasa, Hemamala I; McGehee, Michael D; Lindenberg, Aaron M

    2018-03-01

    Unusual photophysical properties of organic-inorganic hybrid perovskites have not only enabled exceptional performance in optoelectronic devices, but also led to debates on the nature of charge carriers in these materials. This study makes the first observation of intense terahertz (THz) emission from the hybrid perovskite methylammonium lead iodide (CH 3 NH 3 PbI 3 ) following photoexcitation, enabling an ultrafast probe of charge separation, hot-carrier transport, and carrier-lattice coupling under 1-sun-equivalent illumination conditions. Using this approach, the initial charge separation/transport in the hybrid perovskites is shown to be driven by diffusion and not by surface fields or intrinsic ferroelectricity. Diffusivities of the hot and band-edge carriers along the surface normal direction are calculated by analyzing the emitted THz transients, with direct implications for hot-carrier device applications. Furthermore, photogenerated carriers are found to drive coherent terahertz-frequency lattice distortions, associated with reorganizations of the lead-iodide octahedra as well as coupled vibrations of the organic and inorganic sublattices. This strong and coherent carrier-lattice coupling is resolved on femtosecond timescales and found to be important both for resonant and far-above-gap photoexcitation. This study indicates that ultrafast lattice distortions play a key role in the initial processes associated with charge transport. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Terahertz Emission from Hybrid Perovskites Driven by Ultrafast Charge Separation and Strong Electron-Phonon Coupling

    DOE PAGES

    Guzelturk, Burak; Belisle, Rebecca A.; Smith, Matthew D.; ...

    2018-01-23

    Unusual photophysical properties of organic–inorganic hybrid perovskites have not only enabled exceptional performance in optoelectronic devices, but also led to debates on the nature of charge carriers in these materials. This study makes the first observation of intense terahertz (THz) emission from the hybrid perovskite methylammonium lead iodide (CH 3NH 3PbI 3) following photoexcitation, enabling an ultrafast probe of charge separation, hot–carrier transport, and carrier–lattice coupling under 1–sun–equivalent illumination conditions. Using this approach, the initial charge separation/transport in the hybrid perovskites is shown to be driven by diffusion and not by surface fields or intrinsic ferroelectricity. Diffusivities of the hotmore » and band–edge carriers along the surface normal direction are calculated by analyzing the emitted THz transients, with direct implications for hot–carrier device applications. Furthermore, photogenerated carriers are found to drive coherent terahertz–frequency lattice distortions, associated with reorganizations of the lead–iodide octahedra as well as coupled vibrations of the organic and inorganic sublattices. This strong and coherent carrier–lattice coupling is resolved on femtosecond timescales and found to be important both for resonant and far–above–gap photoexcitation. As a result, this study indicates that ultrafast lattice distortions play a key role in the initial processes associated with charge transport.« less

  18. Particle astronomy with a superconducting magnet.

    NASA Technical Reports Server (NTRS)

    Buffington, A.

    1972-01-01

    The magnetic spectrometer measures deflections of charged particles moving in a magnetic field and provides a direct means of determining the rigidity of charged primary cosmic rays up to about 100 GV/c rigidity. The underlying concepts of the method are reviewed, and factors delineating the applicable momentum range and accuracy are described along with calibration techniques. Previous experiments employing this technique are summarized, and prospects for future applications are evaluated with emphasis on separate measurement of electron and positron spectra and on isotopic separation.

  19. Self-Assembly Strategies for Integrating Light Harvesting and Charge Separation in Artificial Photosynthetic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasielewski, Michael R.

    In natural photosynthesis, organisms optimize solar energy conversion through organized assemblies of photofunctional chromophores and catalysts within proteins that provide specifically tailored environments for chemical reactions. As with their natural counterparts, artificial photosynthetic systems for practical solar fuels production must collect light energy, separate charge, and transport charge to catalytic sites where multielectron redox processes will occur. While encouraging progress has been made on each aspect of this complex problem, researchers have not yet developed self-ordering and self-assembling components and the tailored environments necessary to realize a fully-functional artificial system. Previously researchers have used complex, covalent molecular systems comprised ofmore » chromophores, electron donors, and electron acceptors to mimic both the light-harvesting and the charge separation functions of photosynthetic proteins. These systems allow for study of the dependencies of electron transfer rate constants on donor?acceptor distance and orientation, electronic interaction, and the free energy of the reaction. The most useful and informative systems are those in which structural constraints control both the distance and the orientation between the electron donors and acceptors. Self-assembly provides a facile means for organizing large numbers of molecules into supramolecular structures that can bridge length scales from nanometers to macroscopic dimensions. The resulting structures must provide pathways for migration of light excitation energy among antenna chromophores, and from antennas to reaction centers. They also must incorporate charge conduits, that is, molecular 'wires' that can efficiently move electrons and holes between reaction centers and catalytic sites. The central scientific challenge is to develop small, functional building blocks with a minimum number of covalent linkages, which also have the appropriate molecular recognition properties to facilitate self-assembly of complete, functional artificial photosynthetic systems. In this Account, we explore how self-assembly strategies involving ?-stacking can be used to integrate light harvesting with charge separation and transport.« less

  20. Direct evidence of charge separation in a metal-organic framework: efficient and selective photocatalytic oxidative coupling of amines via charge and energy transfer.

    PubMed

    Xu, Caiyun; Liu, Hang; Li, Dandan; Su, Ji-Hu; Jiang, Hai-Long

    2018-03-28

    The selective aerobic oxidative coupling of amines under mild conditions is an important laboratory and commercial procedure yet a great challenge. In this work, a porphyrinic metal-organic framework, PCN-222, was employed to catalyze the reaction. Upon visible light irradiation, the semiconductor-like behavior of PCN-222 initiates charge separation, evidently generating oxygen-centered active sites in Zr-oxo clusters indicated by enhanced porphyrin π-cation radical signals. The photogenerated electrons and holes further activate oxygen and amines, respectively, to give the corresponding redox products, both of which have been detected for the first time. The porphyrin motifs generate singlet oxygen based on energy transfer to further promote the reaction. As a result, PCN-222 exhibits excellent photocatalytic activity, selectivity and recyclability, far superior to its organic counterpart, for the reaction under ambient conditions via combined energy and charge transfer.

  1. A submicron device to rectify a square-wave angular velocity.

    PubMed

    Moradian, A; Miri, M F

    2011-02-01

    We study a system composed of two thick dielectric disks separated by a thin layer of an electrolyte solution. Initially both plates have the same surface charge distribution. The surface charge distribution has no rotational symmetry. We show that the top plate experiences a torque [Formula: see text]([Formula: see text]) if it rotates about its axis by an angle [Formula: see text] . The torque can be controlled by varying the electrolyte concentration, the separation and the surface charge density of the plates. For a specific example of charged rods attached to the plates, we find [Formula: see text]([Formula: see text]) [Formula: see text] sin(4[Formula: see text]) . We also study the dynamics of the system. We consider the case where the angular velocity of the bottom disk is a square-wave signal. We find that the average angular velocity of the top disk is not zero.

  2. Influence of the electrode gap separation on the pseudospark-sourced electron beam generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, J., E-mail: junping.zhao@qq.com; State Key Laboratory of Electrical Insulation and Power Equipment, West Xianning Road, Xi'an 710049; Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG Scotland

    Pseudospark-sourced electron beam is a self-focused intense electron beam which can propagate without any external focusing magnetic field. This electron beam can drive a beam-wave interaction directly or after being post-accelerated. It is especially suitable for terahertz radiation generation due to the ability of a pseudospark discharge to produce small size in the micron range and very high current density and bright electron beams. In this paper, a single-gap pseudospark discharge chamber has been built and tested with several electrode gap separations to explore the dependence of the pseudospark-sourced electron beam current on the discharge voltage and the electrode gapmore » separation. Experimental results show that the beam pulses have similar pulse width and delay time from the distinct drop of the applied voltage for smaller electrode gap separations but longer delay time for the largest gap separation used in the experiment. It has been found that the electron beam only starts to occur when the charging voltage is above a certain value, which is defined as the starting voltage of the electron beam. The starting voltage is different for different electrode gap separations and decreases with increasing electrode gap separation in our pseudospark discharge configuration. The electron beam current increases with the increasing discharge voltage following two tendencies. Under the same discharge voltage, the configuration with the larger electrode gap separation will generate higher electron beam current. When the discharge voltage is higher than 10 kV, the beam current generated at the electrode gap separation of 17.0 mm, is much higher than that generated at smaller gap separations. The ionization of the neutral gas in the main gap is inferred to contribute more to the current increase with increasing electrode gap separation.« less

  3. Oligothiophene/graphene supramolecular ensembles managing light induced processes: preparation, characterization, and femtosecond transient absorption studies leading to charge-separation

    NASA Astrophysics Data System (ADS)

    Stergiou, A.; Gobeze, H. B.; Petsalakis, I. D.; Zhao, S.; Shinohara, H.; D'Souza, F.; Tagmatarchis, N.

    2015-09-01

    Advances in organic synthetic chemistry combined with the exceptional electronic properties of carbon allotropes, particularly graphene, is the basis used to design and fabricate novel electron donor-acceptor ensembles with desired properties for technological applications. Thiophene-based materials, which are mainly thiophene-containing polymers, are known for their notable electronic properties. In this frame moving from polymer to oligomer forms, new fundamental information would help for a better understanding of their electrochemical and photophysical properties. Furthermore, a successful combination of their electronic properties with those of graphene is a challenging goal. In this study, two oligothiophene compounds, which consist of three and nine thiophene-rings and are abbreviated 3T and 9T, respectively, were synthesized and noncovalently associated with liquid phase exfoliated few-layered graphene sheets (abbreviated eG), thus forming donor-acceptor 3T/eG and 9T/eG nanoensembes. Markedly, intra-ensemble electronic interactions between the two components in the ground and excited states were evaluated with the aid of UV-Vis and photoluminescence spectroscopy. Furthermore, redox assays revealed the one-electron oxidation of 3T accompanied by one-electron reduction due to eG in 3T/eG, whereas there were two reversible one-electron oxidations of 9T accompanied by one-electron reduction of eG9T/eG. The electrochemical band gap for the 3T/eG and 9T/eG ensembles were calculated and verified, in which the negative free-energy change for the charge-separated state of 3T/eG and 9T/eGvia the singlet excited state of 3T and 9T, respectively, were thermodynamically favorable. Finally, the results of transient pump-probe spectroscopy studies at the femtosecond time scale were supportive of charge transfer type interactions in the 3T/eG and 9T/eG ensembles. The estimated rates for intra-ensemble charge separation were found to be 9.52 × 109 s-1 and 2.2 × 1011 s-1, respectively, for 3T/eG and 9T/eG in THF, which reveal moderate to ultrafast photoinduced events in the oligothiophene/graphene supramolecular ensembles.Advances in organic synthetic chemistry combined with the exceptional electronic properties of carbon allotropes, particularly graphene, is the basis used to design and fabricate novel electron donor-acceptor ensembles with desired properties for technological applications. Thiophene-based materials, which are mainly thiophene-containing polymers, are known for their notable electronic properties. In this frame moving from polymer to oligomer forms, new fundamental information would help for a better understanding of their electrochemical and photophysical properties. Furthermore, a successful combination of their electronic properties with those of graphene is a challenging goal. In this study, two oligothiophene compounds, which consist of three and nine thiophene-rings and are abbreviated 3T and 9T, respectively, were synthesized and noncovalently associated with liquid phase exfoliated few-layered graphene sheets (abbreviated eG), thus forming donor-acceptor 3T/eG and 9T/eG nanoensembes. Markedly, intra-ensemble electronic interactions between the two components in the ground and excited states were evaluated with the aid of UV-Vis and photoluminescence spectroscopy. Furthermore, redox assays revealed the one-electron oxidation of 3T accompanied by one-electron reduction due to eG in 3T/eG, whereas there were two reversible one-electron oxidations of 9T accompanied by one-electron reduction of eG9T/eG. The electrochemical band gap for the 3T/eG and 9T/eG ensembles were calculated and verified, in which the negative free-energy change for the charge-separated state of 3T/eG and 9T/eGvia the singlet excited state of 3T and 9T, respectively, were thermodynamically favorable. Finally, the results of transient pump-probe spectroscopy studies at the femtosecond time scale were supportive of charge transfer type interactions in the 3T/eG and 9T/eG ensembles. The estimated rates for intra-ensemble charge separation were found to be 9.52 × 109 s-1 and 2.2 × 1011 s-1, respectively, for 3T/eG and 9T/eG in THF, which reveal moderate to ultrafast photoinduced events in the oligothiophene/graphene supramolecular ensembles. Electronic supplementary information (ESI) available: NMR, MS, ATR-IR, UV-Vis spectra, CV graphs, femto- and nano-second transient absorption spectra of oligothiophenes and their ensembles with exfoliated graphene. See DOI: 10.1039/c5nr04875c

  4. Separability of massive field equations for spin-0 and spin-1/2 charged particles in the general nonextremal rotating charged black hole spacetimes in minimal five-dimensional gauged supergravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Shuangqing

    We continue to investigate the separability of massive field equations for spin-0 and spin-1/2 charged particles in the general, nonextremal, rotating, charged, Chong-Cvetic-Lue-Pope black holes with two independent angular momenta and a nonzero cosmological constant in minimal D=5 gauged supergravity theory. We show that the complex Klein-Gordon equation and the modified Dirac equation with the inclusion of an extra counterterm can be separated by variables into purely radial and purely angular parts in this general Einstein-Maxwell-Chern-Simons background spacetime. A second-order symmetry operator that commutes with the complex Laplacian operator is constructed from the separated solutions and expressed compactly in termsmore » of a rank-2 Staeckel-Killing tensor which admits a simple diagonal form in the chosen pentad one-forms so that it can be understood as the square of a rank-3 totally antisymmetric tensor. A first-order symmetry operator that commutes with the modified Dirac operator is expressed in terms of a rank-3 generalized Killing-Yano tensor and its covariant derivative. The Hodge dual of this generalized Killing-Yano tensor is a generalized principal conformal Killing-Yano tensor of rank-2, which can generate a 'tower' of generalized (conformal) Killing-Yano and Staeckel-Killing tensors that are responsible for the whole hidden symmetries of this general, rotating, charged, Kerr-anti-de Sitter black hole geometry. In addition, the first laws of black hole thermodynamics have been generalized to the case that the cosmological constant can be viewed as a thermodynamical variable.« less

  5. Artificial stimulation of auroral electron acceleration by intense field aligned currents

    NASA Technical Reports Server (NTRS)

    Holmgren, G.; Bostrom, R.; Kelley, M. C.; Kintner, P. M.; Lundin, R.; Bering, E. A.; Sheldon, W. R.; Fahleson, U. V.

    1979-01-01

    A cesium-doped high explosion was detonated at 165 km altitude in the auroral ionosphere during quiet conditions. An Alfven wave pulse with a 200-mV/m electric field was observed, with the peak occurring 135 ms after the explosion at a distance of about 1 km. The count rate of fixed energy 2-keV electron detectors abruptly increased at 140 ms, peaked at 415 ms, and indicated a downward field-aligned beam of accelerated electrons. An anomalously high-field aligned beam of backscattered electrons was also detected. The acceleration is interpreted as due to production of an electrostatic shock or double layer between 300 and 800 km altitude. The structure was probably formed by an instability of the intense field-aligned currents in the Alfven wave launched by the charge-separation electric field due to the explosion.

  6. Photoinduced energy and electron transfer processes in hexapyropheophorbide a- fullerene [C(60)] molecular systems.

    PubMed

    Regehly, Martin; Ermilov, Eugeny A; Helmreich, Matthias; Hirsch, Andreas; Jux, Norbert; Röder, Beate

    2007-02-08

    The photophysical properties of the novel hexapyropheophorbide a (P6), and hexakis (pyropheophorbide a)-C60 (FP6) were studied and compared with those of hexakis (pyropheophorbide a)-fullerene [5:1] hexaadduct (FHP6). It was found that after light absorption the pyropheophorbide a molecules in all three compounds undergo very efficient energy transfer as well as partly excitonic interactions. The last process results in the formation of energy traps, which could be resolved experimentally. For P6, due to shorter distances between neighboring dye molecules, stronger interactions between pyropheophorbide a units than for FHP6 were observed. As a consequence, the excitation energy is delivered rapidly to traps formed by stacked pyropheophorbide a molecules resulting in the reduction of fluorescence, intersystem crossing, and singlet oxygen quantum yields compared to the values of FHP6. For FP6 the reduction of these values is much stronger due to an additional fast and efficient deactivation process, namely photoinduced electron transfer from pyropheophorbide a to the fullerene moiety. Consequently, FP6 can be considered as a combination of a light-harvesting system consisting of several separate pyropheophorbide a molecules and a charge-separating center.

  7. Gamma-burst emission from neutron-star accretion

    NASA Technical Reports Server (NTRS)

    Colgate, S. A.; Petschek, A. G.; Sarracino, R.

    1983-01-01

    A model for emission of the hard photons of gamma bursts is presented. The model assumes accretion at nearly the Eddington limited rate onto a neutron star without a magnetic field. Initially soft photons are heated as they are compressed between the accreting matter and the star. A large electric field due to relatively small charge separation is required to drag electrons into the star with the nuclei against the flux of photons leaking out through the accreting matter. The photon number is not increased substantially by Bremsstrahlung or any other process. It is suggested that instability in an accretion disc might provide the infalling matter required.

  8. Black phosphorus quantum dots/attapulgite nanocomposite with enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Li, Xiazhang; Li, Feihong; Lu, Xiaowang; Zuo, Shixiang; Zhuang, Ziheng; Yao, Chao

    Novel black phosphorus quantum dots/attapulgite (BPQDs/ATP) nanocomposites were prepared via a facile hydrothermal-deposition method. TEM showed that BPQDs dispersed evenly on the surface of ATP with uniform particle size about 5nm. UV-Vis revealed that the BPQDs/ATP composite showed wider visible light absorption range as compared with pure ATP. The photocatalytic activity was evaluated by degradation of bisphenol A (BPA). Results showed that BPQDs/ATP reached 90% degradation rate under solar light irradiation for 180min. The coherent heterostructure formed by BPQDs and ATP was responsible for the enhanced photocatalytic performance, due to the sensitization effect of BPQDs and the facilitation of charges separation.

  9. Plasma block acceleration based upon the interaction between double targets and an ultra-intense linearly polarized laser pulse

    NASA Astrophysics Data System (ADS)

    Xu, Yanxia; Wang, Jiaxiang; Hora, Heinrich; Qi, Xin; Xing, Yifan; Yang, Lei; Zhu, Wenjun

    2018-04-01

    A new scheme of plasma block acceleration based upon the interaction between double targets and an ultra-intense linearly polarized laser pulse with intensity I ˜ 1022 W/cm2 is investigated via two-dimensional particle-in-cell simulations. The targets are composed of a pre-target of low-density aluminium plasma and an overdense main-target of hydrogen plasma. Through intensive parameter optimization, we have observed highly efficient plasma block accelerations with a monochromatic proton beam peaked at GeVs. The underlying mechanism is attributed to the enhancement of the charge separation field due to the properly selected pre-target.

  10. Method and apparatus for increasing resistance of bipolar buried layer integrated circuit devices to single-event upsets

    NASA Technical Reports Server (NTRS)

    Zoutendyk, John A. (Inventor)

    1991-01-01

    Bipolar transistors fabricated in separate buried layers of an integrated circuit chip are electrically isolated with a built-in potential barrier established by doping the buried layer with a polarity opposite doping in the chip substrate. To increase the resistance of the bipolar transistors to single-event upsets due to ionized particle radiation, the substrate is biased relative to the buried layer with an external bias voltage selected to offset the built-in potential just enough (typically between about +0.1 to +0.2 volt) to prevent an accumulation of charge in the buried-layer-substrate junction.

  11. Photoluminescence spectra of n-ZnO/p-GaN:(Er + Zn) and p-AlGaN:(Er + Zn) heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezdrogina, M. M., E-mail: margaret.m@mail.ioffe.ru; Krivolapchuk, V. V., E-mail: vlad.krivol@mail.ioffe.ru; Feoktistov, N. A.

    2008-07-15

    Luminescence intensity of heterostructures based on n-ZnO/p-GaN:(Er + Zn) and n-ZnO/AlGaN:(Er + Zn) is higher by more than an order of magnitude than the corresponding intensity of separate n-ZnO, p-GaN:(Er + Zn), and AlGaN:(Er + Zn) layers. Most likely, this phenomenon is due to the effective tunneling recombination of charge carriers caused by a decrease in the concentration of the nonradiative recombination centers located between the n-ZnO/p-GaN:(Er + Zn) and n-ZnO/AlGaN:(Er + Zn) layers.

  12. The influence of chain rigidity and the degree of sulfonation on the morphology of block copolymers as nano reactor

    NASA Astrophysics Data System (ADS)

    Hong, K.; Zhang, X.

    2005-03-01

    Polyelectrolyte block copolymer was used to form an ordered domain of ionic block as a ``nanoreactor'' due to its ability to bind oppositely charged metal ion, Zn^2+, Fe^2+ etc. The purpose of our research is to investigate the controllability of the size and morphology of domains (inorganic nano particles) by changing backbone stiffness, the charge density and the volume fraction of ionic block. Poly(styrene sulfonate) (PSS), which backbone is flexible, and poly(cyclohexadiene sulfonate) (PCHDS), which backbone is ``semiflexible'', were used as ionic blocks. We synthesized PtBS-PSS and PS-PCHDS with various degree of sulfonation and the volume fraction. Zinc oxide (ZnO) nano particles successfully formed in the ionic domain of microphase separated block copolymers. We used SANS to characterize the morphology of block copolymers and TEM for block copolymer containing ZnO nano particles. Our experimental results show that the chemistry of ``sulfonation'' of block copolymers can be successfully used to synthesize nano composite materials.

  13. Determination of somatropin charged variants by capillary zone electrophoresis - optimisation, verification and implementation of the European pharmacopoeia method.

    PubMed

    Storms, S M; Feltus, A; Barker, A R; Joly, M-A; Girard, M

    2009-03-01

    Measurement of somatropin charged variants by isoelectric focusing was replaced with capillary zone electrophoresis in the January 2006 European Pharmacopoeia Supplement 5.3, based on results from an interlaboratory collaborative study. Due to incompatibilities and method-robustness issues encountered prior to verification, a number of method parameters required optimisation. As the use of a diode array detector at 195 nm or 200 nm led to a loss of resolution, a variable wavelength detector using a 200 nm filter was employed. Improved injection repeatability was obtained by increasing the injection time and pressure, and changing the sample diluent from water to running buffer. Finally, definition of capillary pre-treatment and rinse procedures resulted in more consistent separations over time. Method verification data are presented demonstrating linearity, specificity, repeatability, intermediate precision, limit of quantitation, sample stability, solution stability, and robustness. Based on these experiments, several modifications to the current method have been recommended and incorporated into the European Pharmacopoeia to help improve method performance across laboratories globally.

  14. Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge.

    PubMed

    Chun, Sang-Eun; Evanko, Brian; Wang, Xingfeng; Vonlanthen, David; Ji, Xiulei; Stucky, Galen D; Boettcher, Shannon W

    2015-08-04

    Electrochemical double-layer capacitors exhibit high power and long cycle life but have low specific energy compared with batteries, limiting applications. Redox-enhanced capacitors increase specific energy by using redox-active electrolytes that are oxidized at the positive electrode and reduced at the negative electrode during charging. Here we report characteristics of several redox electrolytes to illustrate operational/self-discharge mechanisms and the design rules for high performance. We discover a methyl viologen (MV)/bromide electrolyte that delivers a high specific energy of ∼14 Wh kg(-1) based on the mass of electrodes and electrolyte, without the use of an ion-selective membrane separator. Substituting heptyl viologen for MV increases stability, with no degradation over 20,000 cycles. Self-discharge is low, due to adsorption of the redox couples in the charged state to the activated carbon, and comparable to cells with inert electrolyte. An electrochemical model reproduces experiments and predicts that 30-50 Wh kg(-1) is possible with optimization.

  15. Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge

    PubMed Central

    Chun, Sang-Eun; Evanko, Brian; Wang, Xingfeng; Vonlanthen, David; Ji, Xiulei; Stucky, Galen D.; Boettcher, Shannon W.

    2015-01-01

    Electrochemical double-layer capacitors exhibit high power and long cycle life but have low specific energy compared with batteries, limiting applications. Redox-enhanced capacitors increase specific energy by using redox-active electrolytes that are oxidized at the positive electrode and reduced at the negative electrode during charging. Here we report characteristics of several redox electrolytes to illustrate operational/self-discharge mechanisms and the design rules for high performance. We discover a methyl viologen (MV)/bromide electrolyte that delivers a high specific energy of ∼14 Wh kg−1 based on the mass of electrodes and electrolyte, without the use of an ion-selective membrane separator. Substituting heptyl viologen for MV increases stability, with no degradation over 20,000 cycles. Self-discharge is low, due to adsorption of the redox couples in the charged state to the activated carbon, and comparable to cells with inert electrolyte. An electrochemical model reproduces experiments and predicts that 30–50 Wh kg−1 is possible with optimization. PMID:26239891

  16. Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface

    PubMed Central

    Sun, Ce; Paulauskas, Tadas; Sen, Fatih G.; Lian, Guoda; Wang, Jinguo; Buurma, Christopher; Chan, Maria K. Y.; Klie, Robert F.; Kim, Moon J.

    2016-01-01

    Extended defects are of considerable importance in determining the electronic properties of semiconductors, especially in photovoltaics (PVs), due to their effects on electron-hole recombination. We employ model systems to study the effects of dislocations in CdTe by constructing grain boundaries using wafer bonding. Atomic-resolution scanning transmission electron microscopy (STEM) of a [1–10]/(110) 4.8° tilt grain boundary reveals that the interface is composed of three distinct types of Lomer dislocations. Geometrical phase analysis is used to map strain fields, while STEM and density functional theory (DFT) modeling determine the atomic structure at the interface. The electronic structure of the dislocation cores calculated using DFT shows significant mid-gap states and different charge-channeling tendencies. Cl-doping is shown to reduce the midgap states, while maintaining the charge separation effects. This report offers novel avenues for exploring grain boundary effects in CdTe-based solar cells by fabricating controlled bicrystal interfaces and systematic atomic-scale analysis. PMID:27255415

  17. Transition-Metal Chalcogenide/Graphene Ensembles for Light-Induced Energy Applications.

    PubMed

    Kagkoura, Antonia; Skaltsas, Theodosis; Tagmatarchis, Nikos

    2017-09-21

    Recently, nanomaterials that harvest solar energy and convert it to other forms of energy are of great interest. In this context, transition metal chalcogenides (TMCs) have recently been in the spotlight due to their optoelectronic properties that render them potential candidates mainly in energy conversion applications. Integration of TMCs onto a strong electron-accepting material, such as graphene, yielding novel TMC/graphene ensembles is of high significance, since photoinduced charge-transfer phenomena, leading to intra-ensemble charge separation, may occur. In this review, we highlight the utility of TMC/graphene ensembles, with a specific focus on latest trends in applications, while their synthetic routes are also discussed. In fact, TMC/graphene ensembles are photocatalytically active and superior as compared to intact TMCs analogues, when examined toward photocatalytic H 2 evolution, dye degradation and redox transformations of organic compounds. Moreover, TMC/graphene ensembles have shown excellent prospect when employed in photovoltaics and biosensing applications. Finally, the future prospects of such materials are outlined. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Plasmonic Enhancement in BiVO4 Photonic Crystals for Efficient Water Splitting

    PubMed Central

    Zhang, Liwu; Lin, Chia-Yu; Valev, Ventsislav K; Reisner, Erwin; Steiner, Ullrich; Baumberg, Jeremy J

    2014-01-01

    Photo-electrochemical water splitting is a very promising and environmentally friendly route for the conversion of solar energy into hydrogen. However, the solar-to-H2 conversion efficiency is still very low due to rapid bulk recombination of charge carriers. Here, a photonic nano-architecture is developed to improve charge carrier generation and separation by manipulating and confining light absorption in a visible-light-active photoanode constructed from BiVO4 photonic crystal and plasmonic nanostructures. Synergistic effects of photonic crystal stop bands and plasmonic absorption are observed to operate in this photonic nanostructure. Within the scaffold of an inverse opal photonic crystal, the surface plasmon resonance is significantly enhanced by the photonic Bragg resonance. Nanophotonic photoanodes show AM 1.5 photocurrent densities of 3.1 ± 0.1 mA cm−2 at 1.23 V versus RHE, which is among the highest for oxide-based photoanodes and over 4 times higher than the unstructured planar photoanode. PMID:24916174

  19. Polar Fluctuations in Metal Halide Perovskites Uncovered by Acoustic Phonon Anomalies

    DOE PAGES

    Guo, Peijun; Xia, Yi; Gong, Jue; ...

    2017-09-28

    Solution-processable metal-halide perovskites (MHPs) offer great promise for efficient light harvesting and emitting devices due to their long carrier lifetime and superior carrier transport characteristics. Ferroelectric effects, a hallmark of traditional oxide perovskites, was proposed to be a mechanism to suppress carrier recombination and enhance charge transport in MHPs, but the existence and influence of such polar order is still of considerable debate. Here we performed transient reflection measurements on single crystals of both inorganic and organic-inorganic (hybrid) MHPs over a range of temperatures, and demonstrate significant phonon softening in the cubic phases close to the cubic-to-tetragonal phase transition temperatures.more » Such phonon softening indicates the formation of polar domains, which grow in size upon cooling and can persist in the low-temperature tetragonal and orthorhombic phases. Our results link the extraordinary electronic properties of MHPs to the spontaneous polarizations which can contribute to more efficient charge separation and characteristics of an indirect bandgap.« less

  20. Sign Reversal of Coulom Interaction Between Two Quasiparticles in Momentum Space

    NASA Astrophysics Data System (ADS)

    Fan, J. D.; Malozovsky, Yuriy M.

    2013-06-01

    The main misconception regarding the interaction between quasiparticles stems from the assertion that the interaction energy between two quasiparticles is exactly identical to that of the renormalized interaction between two particles due to interparticle interaction in the Fermi system. If the main concept regarding the definition of quasiparticle as a weakly excited state of the Fermi system with conservation of charge and spin is paramount (except for the charge and spin separation models), the concept of the interaction between quasiparticles is very different from the assumption in the common sense. In this paper, we will prove a general theorem that the interaction between two quasiparticles is very much different from the renormalized interaction between two particles. The major difference lies in two places: the interaction between two quasiparticles is just negative to the renormalized interaction between two particles, and the interaction energy between the two particles is proportional to the product of two Fermi liquid renormalization factors. The result shed light on the reinterpretation of Cooper's pairing without invoking electron-photon interaction.

  1. Electrochemical performance and transport properties of a Nafion membrane in a hydrogen-bromine cell environment

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.

    1987-01-01

    The overall energy conversion efficiency of a hydrogen-bromine energy storage system is highly dependent upon the characteristics and performance of the ion-exchange membrane utilized as a half-cell separator. The electrochemical performance and transport properties of a duPont Nafion membrane in an aqueous HBr-Br2 environment were investigated. Membrane conductivity data are presented as a function of HBr concentration and temperature for the determination of ohmic voltage losses across the membrane in an operational cell. Diffusion-controlled bromine permeation rates and permeabilities are presented as functions of solution composition and temperature. Relationships between the degree of membrane hydration and the membrane transport characteristics are discussed. The solution chemistry of an operational hydrogen-bromine cell undergoing charge from 45% HBr to 5% HBr is discussed, and, based upon the experimentally observed bromine permeation behavior, predicted cell coulombic losses due to bromine diffusion through the membrane are presented as a function of the cell state-of-charge.

  2. Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface

    DOE PAGES

    Sun, Ce; Paulauskas, Tadas; Sen, Fatih G.; ...

    2016-06-03

    Extended defects are of considerable importance in determining the electronic properties of semiconductors, especially in photovoltaics (PVs), due to their effects on electron-hole recombination. We employ model systems to study the effects of dislocations in CdTe by constructing grain boundaries using wafer bonding. Atomic-resolution scanning transmission electron microscopy (STEM) of a [1–10]/ (110) 4.8° tilt grain boundary reveals that the interface is composed of three distinct types of Lomer dislocations. Geometrical phase analysis is used to map strain fields, while STEM and density functional theory (DFT) modeling determine the atomic structure at the interface. The electronic structure of the dislocationmore » cores calculated using DFT shows significant mid-gap states and different charge-channeling tendencies. Cl-doping is shown to reduce the midgap states, while maintaining the charge separation effects. In conclusion, this report offers novel avenues for exploring grain boundary effects in CdTe-based solar cells by fabricating controlled bicrystal interfaces and systematic atomic-scale analysis.« less

  3. Plasmonic enhancement in BiVO4 photonic crystals for efficient water splitting.

    PubMed

    Zhang, Liwu; Lin, Chia-Yu; Valev, Ventsislav K; Reisner, Erwin; Steiner, Ullrich; Baumberg, Jeremy J

    2014-10-15

    Photo-electrochemical water splitting is a very promising and environmentally friendly route for the conversion of solar energy into hydrogen. However, the solar-to-H2 conversion efficiency is still very low due to rapid bulk recombination of charge carriers. Here, a photonic nano-architecture is developed to improve charge carrier generation and separation by manipulating and confining light absorption in a visible-light-active photoanode constructed from BiVO4 photonic crystal and plasmonic nanostructures. Synergistic effects of photonic crystal stop bands and plasmonic absorption are observed to operate in this photonic nanostructure. Within the scaffold of an inverse opal photonic crystal, the surface plasmon resonance is significantly enhanced by the photonic Bragg resonance. Nanophotonic photoanodes show AM 1.5 photocurrent densities of 3.1 ± 0.1 mA cm(-2) at 1.23 V versus RHE, which is among the highest for oxide-based photoanodes and over 4 times higher than the unstructured planar photoanode. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Photoinitated charge separation in a hybrid titanium dioxide metalloporphyrin peptide material

    NASA Astrophysics Data System (ADS)

    Fry, H. Christopher; Liu, Yuzi; Dimitrijevic, Nada M.; Rajh, Tijana

    2014-08-01

    In natural systems, electron flow is mediated by proteins that spatially organize donor and acceptor molecules with great precision. Achieving this guided, directional flow of information is a desirable feature in photovoltaic media. Here, we design self-assembled peptide materials that organize multiple electronic components capable of performing photoinduced charge separation. Two peptides, c16-AHL3K3-CO2H and c16-AHL3K9-CO2H, self-assemble into fibres and provide a scaffold capable of binding a metalloporphyrin via histidine axial ligation and mineralize titanium dioxide (TiO2) on the lysine-rich surface of the resulting fibrous structures. Electron paramagnetic resonance studies of this self-assembled material under continuous light excitation demonstrate charge separation induced by excitation of the metalloporphyrin and mediated by the peptide assembly structure. This approach to dye-sensitized semiconducting materials offers a means to spatially control the dye molecule with respect to the semiconducting material through careful, strategic peptide design.

  5. Charge separation and carrier dynamics in donor-acceptor heterojunction photovoltaic systems.

    PubMed

    Teuscher, Joël; Brauer, Jan C; Stepanov, Andrey; Solano, Alicia; Boziki, Ariadni; Chergui, Majed; Wolf, Jean-Pierre; Rothlisberger, Ursula; Banerji, Natalie; Moser, Jacques-E

    2017-11-01

    Electron transfer and subsequent charge separation across donor-acceptor heterojunctions remain the most important areas of study in the field of third-generation photovoltaics. In this context, it is particularly important to unravel the dynamics of individual ultrafast processes (such as photoinduced electron transfer, carrier trapping and association, and energy transfer and relaxation), which prevail in materials and at their interfaces. In the frame of the National Center of Competence in Research "Molecular Ultrafast Science and Technology," a research instrument of the Swiss National Science Foundation, several groups active in the field of ultrafast science in Switzerland have applied a number of complementary experimental techniques and computational simulation tools to scrutinize these critical photophysical phenomena. Structural, electronic, and transport properties of the materials and the detailed mechanisms of photoinduced charge separation in dye-sensitized solar cells, conjugated polymer- and small molecule-based organic photovoltaics, and high-efficiency lead halide perovskite solar energy converters have been scrutinized. Results yielded more than thirty research articles, an overview of which is provided here.

  6. New Techniques to Evaluate the Incendiary Behavior of Insulators

    NASA Technical Reports Server (NTRS)

    Buhler, Charles; Calle, Carlos; Clements, Sid; Trigwell, Steve; Ritz, Mindy

    2008-01-01

    New techniques for evaluating the incendiary behavior of insulators is presented. The onset of incendive brush discharges in air is evaluated using standard spark probe techniques for the case simulating approaches of an electrically grounded sphere to a charged insulator in the presence of a flammable atmosphere. However, this standard technique is unsuitable for the case of brush discharges that may occur during the charging-separation process for two insulator materials. We present experimental techniques to evaluate this hazard in the presence of a flammable atmosphere which is ideally suited to measure the incendiary nature of micro-discharges upon separation, a measurement never before performed. Other measurement techniques unique to this study include; surface potential measurements of insulators before, during and after contact and separation, as well as methods to verify fieldmeter calibrations using a charge insulator surface opposed to standard high voltage plates. Key words: Kapton polyimide film, incendiary discharges, brush discharges, contact and frictional electrification, ignition hazards, insulators, contact angle, surface potential measurements.

  7. Improved visible-light photocatalytic activity of TiO2 co-doped with copper and iodine

    NASA Astrophysics Data System (ADS)

    Dorraj, Masoumeh; Goh, Boon Tong; Sairi, Nor Asrina; Woi, Pei Meng; Basirun, Wan Jefrey

    2018-05-01

    Cu-I-co-doped TiO2 photocatalysts active to visible light absorption were prepared by hydrothermal method and calcined at various temperatures (350 °C, 450 °C, and 550 °C). The co-doped powders at 350 °C displayed the highest experimental Brunauer-Emmett-Teller surface area and lowest photoluminescence intensity, which demonstrated that a decrease in electron-hole recombination process. The synthesis of co-doped TiO2 was performed at this optimized temperature. In the co-doped sample, the Cu2+ doped TiO2 lattice created a major "red-shift" in the absorption edge due to the presence of the 3d Cu states, whereas the amount of red-shift from the I5+ doping in the TiO2 lattice was minor. Interestingly, the presence of Cu2+ species also boosted the reduction of I5+ ions to the lower multi-valance state I- in the TiO2 lattice by trapping the photogenerated electrons, which resulted in effective separation of the photogenerated charges. The Cu-I-co-doped TiO2 was able to degrade methyl orange dye under visible-light irradiation with improved photocatalytic activity compared with the single metal-doped TiO2 and pure TiO2 because of the strong visible light absorption and effective separation of photogenerated charges caused by the synergistic effects of Cu and I co-dopants.

  8. Can neutral analytes be concentrated by transient isotachophoresis in micellar electrokinetic chromatography and how much?

    PubMed

    Matczuk, Magdalena; Foteeva, Lidia S; Jarosz, Maciej; Galanski, Markus; Keppler, Bernhard K; Hirokawa, Takeshi; Timerbaev, Andrei R

    2014-06-06

    Transient isotachophoresis (tITP) is a versatile sample preconcentration technique that uses ITP to focus electrically charged analytes at the initial stage of CE analysis. However, according to the ruling principle of tITP, uncharged analytes are beyond its capacity while being separated and detected by micellar electrokinetic chromatography (MEKC). On the other hand, when these are charged micelles that undergo the tITP focusing, one can anticipate the concentration effect, resulting from the formation of transient micellar stack at moving sample/background electrolyte (BGE) boundary, which increasingly accumulates the analytes. This work expands the enrichment potential of tITP for MEKC by demonstrating the quantitative analysis of uncharged metal-based drugs from highly saline samples and introducing to the BGE solution anionic surfactants and buffer (terminating) co-ions of different mobility and concentration to optimize performance. Metallodrugs of assorted lipophilicity were chosen so as to explore whether their varying affinity toward micelles plays the role. In addition to altering the sample and BGE composition, optimization of the detection capability was achieved due to fine-tuning operational variables such as sample volume, separation voltage and pressure, etc. The results of optimization trials shed light on the mechanism of micellar tITP and render effective determination of selected drugs in human urine, with practical limits of detection using conventional UV detector. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Disentangling flow and signals of Chiral Magnetic Effect in U+U, Au+Au and p+Au collisions

    NASA Astrophysics Data System (ADS)

    Tribedy, Prithwish; STAR Collaboration

    2017-11-01

    We present STAR measurements of the charge-dependent three-particle correlator γ a , b = 〈 cos ⁡ (ϕ1a + ϕ2b - 2ϕ3) 〉 /v2 { 2 } and elliptic flow v2 { 2 } in U+U, Au+Au and p+Au collisions at RHIC. The difference Δγ = γ (opposite-sign) - γ (same-sign) measures charge separation across the reaction plane, a predicted signal of the Chiral Magnetic Effect (CME). Although charge separation has been observed, it has been argued that the measured separation can also be explained by elliptic flow related backgrounds. In order to separate the two effects we perform measurements of the γ-correlator where background expectations differ from magnetic field driven effects. A differential measurement of γ with the relative pseudorapidity (Δη) between the first and second particles indicate that Δγ in peripheral A+A and p+A collisions are dominated by short-range correlations in Δη. However, a relatively wider component of the correlation in Δη tends to vanish the same way as projected magnetic field as predicted by MC-Glauber simulations.

  10. Optical excitations dynamics at hetero-interfaces fullerene/quantum dots

    NASA Astrophysics Data System (ADS)

    Righetto, Marcello; Privitera, Alberto; Franco, Lorenzo; Bozio, Renato

    2017-08-01

    Embedding Semiconductor Quantum Dots (QDs) into hybrid organic-inorganic solar cell holds promises for improving photovoltaic performances. Thanks to their strong coupling with electro-magnetic radiation field, QDs represent paradigmatic photon absorbers. Nevertheless, the quest for suitable charge separating hetero-interfaces is still an open challenge. Within this framework, the excited state interactions between QDs and fullerene derivatives are of great interest for ternary solar cells (polymer:QDs:fullerene). In this work, we investigated the exciton dynamics of core/shell CdSe/CdS QDs both in solution and in blends with fullerene derivative (PCBM). By means of transient optical techniques, we aimed to unveil the dynamics of the QDs-PCBM interaction. Indeed, the observed excited state depopulation of QDs in blends is compatible with an excited state interaction living on picosecond timescale. Through electron paramagnetic resonance, we delved into the nature of this interaction, identifying the presence of charge separated states. The concurrence of these observations suggest a fast electron transfer process, where QDs act as donors and PCBM molecules as acceptors, followed by effective charge separation. Therefore, our experimental results indicate the QDs-PCBM heterointerface as suitable exciton separating interface, paving the way for possible applications in photovoltaics.

  11. Engine Tune-up Service. Unit 2: Charging System. Review Exercise Book. Automotive Mechanics Curriculum.

    ERIC Educational Resources Information Center

    Richardson, Roger L.; Bacon, E. Miles

    This book of pretests and review exercises is designed to accompany the Engine Tune-Up Service Student Guide for Unit 2, Charging System, available separately as CE 031 208. Focus of the exercises and pretests is testing the charging system. Pretests and performance checklists are provided for each of the three performance objectives contained in…

  12. Engine Tune-up Service. Unit 2: Charging System. Posttests. Automotive Mechanics Curriculum.

    ERIC Educational Resources Information Center

    Richardson, Roger L.; Bacon, E. Miles

    This book of posttests is designed to accompany the Engine Tune-Up Service Student Guide for Unit 2, Charging System, available separately as CE 031 208. Focus of the posttest is on the testing of the charging system. One multiple choice posttest is provided, that covers the three performance objectives contained in the unit. (No answer key is…

  13. 26 CFR 48.4216(a)-1 - Charges to be included in sale price.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... sales promotion programs, or otherwise. With respect to the rules relating to exclusion (in the case of... section 4216(e) and § 48.4216(e)-1. In the case of sales on credit, a carrying, finance, or service charge... communication in connection with collection). (b) Tools and dies. Separate charges for tools and dies used in...

  14. Hot kinetic model as a guide to improve organic photovoltaic materials.

    PubMed

    Sosorev, Andrey Yu; Godovsky, Dmitry Yu; Paraschuk, Dmitry Yu

    2018-01-31

    The modeling of organic solar cells (OSCs) can provide a roadmap for their further improvement. Many OSC models have been proposed in recent years; however, the impact of the key intermediates from photons to electricity-hot charge-transfer (CT) states-on the OSC efficiency is highly ambiguous. In this study, we suggest an analytical kinetic model for OSC that considers a two-step charge generation via hot CT states. This hot kinetic model allowed us to evaluate the impact of different material parameters on the OSC performance: the driving force for charge separation, optical bandgap, charge mobility, geminate recombination rate, thermalization rate, average electron-hole separation distance in the CT state, dielectric permittivity, reorganization energy and charge delocalization. In contrast to a widespread trend of lowering the material bandgap, the model predicts that this approach is only efficient along with improvement of the other material properties. The most promising ways to increase the OSC performance are decreasing the reorganization energy, i.e., an energy change accompanying CT from the donor molecule to the acceptor, increasing the dielectric permittivity and charge delocalization. The model suggests that there are no fundamental limitations that can prevent achieving the OSC efficiency above 20%.

  15. Modulating interactions between ligand-coated nanoparticles and phase-separated lipid bilayers by varying the ligand density and the surface charge.

    PubMed

    Chen, Xiaojie; Tieleman, D Peter; Liang, Qing

    2018-02-01

    The interactions between nanoparticles and lipid bilayers are critical in applications of nanoparticles in nanomedicine, cell imaging, toxicology, and elsewhere. Here, we investigate the interactions between nanoparticles coated with neutral and/or charged ligands and phase-separated lipid bilayers using coarse-grained molecular dynamics simulation. Both penetration and adsorption processes as well as the final distribution of the nanoparticles can be readily modulated by varying the ligand density and the surface charge of the nanoparticles. Completely hydrophobic (neutral) nanoparticles with larger size initially preferentially penetrate into the liquid-disordered region of the lipid bilayer and finally transfer into the liquid-ordered region; partially hydrophilic nanoparticles with low or moderate surface charge tend to either distribute in the liquid-disordered region or be adsorbed on the surface of the lipid bilayer, while strongly hydrophilic nanoparticles with high surface charge always reside on the surface of the lipid bilayer. Interactions of the nanoparticles with the lipid bilayers are affected by the surface charge of nanoparticles, hydrophobic mismatch, bending of the ligands, and the packing state of the lipids. Insight in these factors can be used to improve the efficiency of designing nanoparticles for specific applications.

  16. One-dimension modeling on the parallel-plate ion extraction process based on a non-electron-equilibrium fluid model

    NASA Astrophysics Data System (ADS)

    Li, He-Ping; Chen, Jian; Guo, Heng; Jiang, Dong-Jun; Zhou, Ming-Sheng; Department of Engineering Physics Team

    2017-10-01

    Ion extraction from a plasma under an externally applied electric field involve multi-particle and multi-field interactions, and has wide applications in the fields of materials processing, etching, chemical analysis, etc. In order to develop the high-efficiency ion extraction methods, it is indispensable to establish a feasible model to understand the non-equilibrium transportation processes of the charged particles and the evolutions of the space charge sheath during the extraction process. Most of the previous studies on the ion extraction process are mainly based on the electron-equilibrium fluid model, which assumed that the electrons are in the thermodynamic equilibrium state. However, it may lead to some confusions with neglecting the electron movement during the sheath formation process. In this study, a non-electron-equilibrium model is established to describe the transportation of the charged particles in a parallel-plate ion extraction process. The numerical results show that the formation of the Child-Langmuir sheath is mainly caused by the charge separation. And thus, the sheath shielding effect will be significantly weakened if the charge separation is suppressed during the extraction process of the charged particles.

  17. Combined electrophoretic-separation and electrospray method and system

    DOEpatents

    Smith, R.D.; Olivares, J.A.

    1989-06-27

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary zone electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5--100 kVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., [+-]2--8 kVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit. 10 figs.

  18. Separation of Albumin, Ceruloplasmin, and Transferrin from Human Plasma.

    ERIC Educational Resources Information Center

    Barnes, Grady; Frieden, Earl

    1982-01-01

    Procedures are provided for separating the principal metalloproteins (albumin, ceruloplasmin, and transferrin) from plasma using column chromatographic techniques. The experiment can be completed in two separate three-hour laboratory periods during which column chromatography is illustrated and the effect of pH on charge and affinity of a protein…

  19. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions

    ERIC Educational Resources Information Center

    Johnson, Brian J.

    2014-01-01

    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  20. Improvement of charge separation in TiO{sub 2} by its modification with different tungsten compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tryba, B., E-mail: beata.tryba@zut.edu.pl; Tygielska, M.; Grzeskowiak, M.

    2016-04-15

    Highlights: • Ammonium m-tungstate doped to TiO{sub 2} highly improved charge separation in TiO{sub 2}. • Negative electrokinetic potential of TiO{sub 2} facilitates holes migration to its surface. • Fast migration of holes to TiO{sub 2} surfaces increased yield of OH radicals formation. • Adsorption of dyes on photocatalyst increased its decomposition under visible light. - Abstract: Three different tungsten precursors were used for TiO{sub 2} modification: H{sub 2}WO{sub 4}, WO{sub 2}, and ammonium m-tungstate. It was proved that modification of TiO{sub 2} with tungsten compounds enhanced its photocatalytic activity through the improvement of charge separation. This effect was obtainedmore » by coating of TiO{sub 2} particles with tungsten compound, which changed their surficial electrokinetical potential from positive onto negative. The most efficient tungsten compound, which caused enhanced separation of free carriers was ammonium m-tungstate (AMT). Two dyes with different ionic potential were used for the photocatalytic decomposition. It appeared that cationic dye—Methylene Blue was highly adsorbed on the negatively charged surface of TiO{sub 2} modified by AMT and decomposed, however this photocatalyst was quickly deactivated whereas anionic dye—acid red was better adsorbed on the less acidic surface of TiO{sub 2} and was rapidly decomposed with almost the same rate in the five following cycles.« less

  1. Ru–protein–Co biohybrids designed for solar hydrogen production: understanding electron transfer pathways related to photocatalytic function† †Electronic supplementary information (ESI) available: Time traces of photocatalysis, additional EPR spectra and parameters, UV-visible spectroscopy data, and kinetic fits of TA traces. See DOI: 10.1039/c6sc03121h Click here for additional data file.

    PubMed Central

    Soltau, Sarah R.; Dahlberg, Peter D.; Niklas, Jens; Poluektov, Oleg G.; Mulfort, Karen L.

    2016-01-01

    A series of Ru–protein–Co biohybrids have been prepared using the electron transfer proteins ferredoxin (Fd) and flavodoxin (Fld) as scaffolds for photocatalytic hydrogen production. The light-generated charge separation within these hybrids has been monitored by transient optical and electron paramagnetic resonance spectroscopies. Two distinct electron transfer pathways are observed. The Ru–Fd–Co biohybrid produces up to 650 turnovers of H2 utilizing an oxidative quenching mechanism for Ru(ii)* and a sequential electron transfer pathway via the native [2Fe–2S] cluster to generate a Ru(iii)–Fd–Co(i) charge separated state that lasts for ∼6 ms. In contrast, a direct electron transfer pathway occurs for the Ru–ApoFld–Co biohybrid, which lacks an internal electron relay, generating Ru(i)–ApoFld–Co(i) charge separated state that persists for ∼800 μs and produces 85 turnovers of H2 by a reductive quenching mechanism for Ru(ii)*. This work demonstrates the utility of protein architectures for linking donor and catalytic function via direct or sequential electron transfer pathways to enable stabilized charge separation which facilitates photocatalysis for solar fuel production. PMID:28451142

  2. The background model in the energy range from 0.1 MeV up to several MeV for low altitude and high inclination satellites.

    NASA Astrophysics Data System (ADS)

    Arkhangelskaja, I. V.; Arkhangelskiy, A. I.

    2016-02-01

    The gamma-ray background physical origin for low altitude orbits defined by: diffuse cosmic gamma-emission, atmospheric gamma-rays, gamma-emission formed in interactions of charged particles (both prompt and activation) and transient events such as electrons precipitations and solar flares. The background conditions in the energy range from 0.1 MeV up to several MeV for low altitude orbits differ due to frequency of Earth Radiation Belts - ERBs (included South Atlantic Anomaly - SAA) passes and cosmic rays rigidity. The detectors and satellite constructive elements are activated by trapped in ERBs and moving along magnetic lines charged particles. In this case we propose simplified polynomial model separately for polar and equatorial orbits parts: background count rate temporal profile approximation by 4-5 order polynomials in equatorial regions, and linear approximations, parabolas or constants in polar caps. The polynomials’ coefficients supposed to be similar for identical spectral channels for each analyzed equatorial part taken into account normalization coefficients defined due to Kp-indexes study within period corresponding to calibration coefficients being approximately constants. The described model was successfully applied for the solar flares hard X-ray and gamma-ray emission characteristic studies by AVS-F apparatus data onboard CORONAS-F satellite.

  3. Microphysical and Kinematic Characteristics of Regions of Flash Initiation in a Supercell Storm and a Multicell Storm Observed During the DC3 Field Program

    NASA Astrophysics Data System (ADS)

    DiGangi, E.; MacGorman, D. R.; Ziegler, C.; Betten, D.; Biggerstaff, M. I.

    2017-12-01

    Lightning initiation in thunderstorms requires that the local electric field magnitude exceed breakdown values somewhere, and this tends to occur between regions of positive and negative charge, where the largest electric field magnitudes tend to occur. Past studies have demonstrated that, near updrafts, storms with very strong updrafts tend to elevate regions of charge and of flash initiations higher, as well as to have more flashes initiated by small pockets of charge, than in storms with much weaker updrafts. In all thunderstorms, the source of these charge regions is generally thought to be microscopic charge separation via the relative growth rate noninductive mechanism, followed by macroscopic charge separation via sedimentation, although other charge generation mechanisms can contribute to charge in some regions. Charge generation and lightning initiation are therefore inherently dependent on the microphysical and kinematic characteristics of a given storm. This study compares the results of a hydrometeor classification algorithm applied to C-band mobile radar data with mixing ratios calculated by a diabatic Lagrangian analysis retrieval from the dual-Doppler wind fields for two storms, the 29-30 May 2012 supercell storm and the 21 June 2012 multicell storm, observed during the Deep Convective Clouds and Chemistry experiment. Using these data, we then compare the inferred microphysical and kinematic characteristics of regions in which the Oklahoma Lightning Mapping Array indicated that flashes were initiated in these two very different storms.

  4. An Electrostatic Charge Partitioning Model for the Dissociation of Protein Complexes in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Sciuto, Stephen V.; Liu, Jiangjiang; Konermann, Lars

    2011-10-01

    Electrosprayed multi-protein complexes can be dissociated by collisional activation in the gas phase. Typically, these processes follow a mechanism whereby a single subunit gets ejected with a disproportionately high amount of charge relative to its mass. This asymmetric behavior suggests that the departing subunit undergoes some degree of unfolding prior to being separated from the residual complex. These structural changes occur concomitantly with charge (proton) transfer towards the subunit that is being unraveled. Charge accumulation takes place up to the point where the subunit loses physical contact with the residual complex. This work develops a simple electrostatic model for studying the relationship between conformational changes and charge enrichment during collisional activation. Folded subunits are described as spheres that carry continuum surface charge. The unfolded chain is envisioned as random coil bead string. Simulations are guided by the principle that the system will adopt the charge configuration with the lowest potential energy for any backbone conformation. A finite-difference gradient algorithm is used to determine the charge on each subunit throughout the dissociation process. Both dimeric and tetrameric protein complexes are investigated. The model reproduces the occurrence of asymmetric charge partitioning for dissociation events that are preceded by subunit unfolding. Quantitative comparisons of experimental MS/MS data with model predictions yield estimates of the structural changes that occur during collisional activation. Our findings suggest that subunit separation can occur over a wide range of scission point structures that correspond to different degrees of unfolding.

  5. Interfacial Engineering and Charge Carrier Dynamics in Extremely Thin Absorber Solar Cells

    NASA Astrophysics Data System (ADS)

    Edley, Michael

    Photovoltaic energy is a clean and renewable source of electricity; however, it faces resistance to widespread use due to cost. Nanostructuring decouples constraints related to light absorption and charge separation, potentially reducing cost by allowing a wider variety of processing techniques and materials to be used. However, the large interfacial areas also cause an increased dark current which negatively affects cell efficiency. This work focuses on extremely thin absorber (ETA) solar cells that used a ZnO nanowire array as a scaffold for an extremely thin CdSe absorber layer. Photoexcited electrons generated in the CdSe absorber are transferred to the ZnO layer, while photogenerated holes are transferred to the liquid electrolyte. The transfer of photoexcited carriers to their transport layer competes with bulk recombination in the absorber layer. After charge separation, transport of charge carriers to their respective contacts must occur faster than interfacial recombination for efficient collection. Charge separation and collection depend sensitively on the dimensions of the materials as well as their interfaces. We demonstrated that an optimal absorber thickness can balance light absorption and charge separation. By treating the ZnO/CdSe interface with a CdS buffer layer, we were able to improve the Voc and fill factor, increasing the ETA cell's efficiency from 0.53% to 1.34%, which is higher than that achievable using planar films of the same material. We have gained additional insight into designing ETA cells through the use of dynamic measurements. Ultrafast transient absorption spectroscopy revealed that characteristic times for electron injection from CdSe to ZnO are less than 1 ps. Electron injection is rapid compared to the 2 ns bulk lifetime in CdSe. Optoelectronic measurements such as transient photocurrent/photovoltage and electrochemical impedance spectroscopy were applied to study the processes of charge transport and interfacial recombination. With these techniques, the extension of the depletion layer from CdSe into ZnO was determined to be vital to suppression of interfacial recombination. However, depletion of the ZnO also restricted the effective diffusion core for electrons and slowed their transport. Thus, materials and geometries should be chosen to allow for a depletion layer that suppresses interfacial recombination without impeding electron transport to the point that it is detrimental to cell performance. Thin film solar cells are another promising technology that can reduce costs by relaxing material processing requirements. CuInxGa (1-x)Se (CIGS) is a well studied thin film solar cell material that has achieved good efficiencies of 22.6%. However, use of rare elements raise concerns over the use of CIGS for global power production. CuSbS2 shares chemistry with CuInSe2 and also presents desirable properties for thin film absorbers such as optimal band gap (1.5 eV), high absorption coefficient, and Earth-abundant and non-toxic elements. Despite the promise of CuSbS2, direct characterization of the material for solar cell application is scarce in the literature. CuSbS2 nanoplates were synthesized by a colloidal hot-injection method at 220 °C in oleylamine. The CuSbS2 platelets synthesized for 30 minutes had dimensions of 300 nm by 400 nm with a thickness of 50 nm and were capped with the insulating oleylamine synthesis ligand. The oleylamine synthesis ligand provides control over nanocrystal growth but is detrimental to intercrystal charge transport that is necessary for optoelectronic device applications. Solid-state and solution phase ligand exchange of oleylamine with S2- were used to fabricate mesoporous films of CuSbS2 nanoplates for application in solar cells. Exchange of the synthesis ligand with S2- resulted in a two order of magnitude increase in 4-point probe conductivity. Photoexcited carrier lifetimes of 1.4 ns were measured by time-resolved terahertz spectroscopy, indicating potential for CuSbS2 as a solar cell absorber material.

  6. Fabrication of polyamide thin-film nanocomposite membranes with enhanced surface charge for nitrate ion removal from water resources.

    PubMed

    Ghaee, A; Zerafat, M M; Askari, P; Sabbaghi, S; Sadatnia, B

    2017-03-01

    Exclusion due to membrane surface charge is considered as one of the main separation mechanisms occurring in charged membranes, which can be varied through various approaches to affect membrane rejection performance. In this study, thin-film composite (TFC) polyamide (PA) membranes were fabricated via interfacial polymerization of m-phenylenediamine (m-PDA) and 2,4-diaminobenzene sulfonic acid with trimesoyl chloride (TMC) on a polysulfone sub-layer. The ability of the prepared membrane to remove nitrate ions from water resources has been investigated. In order to improve membrane permeability, zeolite-PA thin film nanocomposite (TFN) membranes were fabricated by incorporating natural zeolite nanoparticles obtained through ball milling of an Iranian natural zeolite powder in the interfacial polymerization process. The size, morphology and specific surface area of the as-obtained nanozeolite were characterized using particle size analysis, FE-SEM and BET. The functional groups, morphology and surface charge of the membrane were characterized using ATR-FTIR, SEM and zeta potential analyses. Also, field-emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS) were used to determine the distribution of nanozeolite in TFN membranes. The influence of zeolite addition to surface roughness was accessed by atomic force microscopy. The performance of TFC and TFN membranes was evaluated in terms of pure water flux and nitrate rejection. The results showed that in case of sulfonated diamine, nitrate ions rejection was enhanced from 63% to 85% which could be attributed to surface charge enhancement. TFN permeability was almost doubled by the addition of nanozeolite.

  7. Z-M in Lightning Forecasting

    DTIC Science & Technology

    2009-03-01

    hydrometers create a charge separation. Inductive processes rely on a preexisting external electric field to induce charges on polarized particles, which...frozen hydrometers . A. FLORIDA CLIMATE Florida is often referred to as the lightning capital of the United States (Hodanish et al. 1997) or

  8. An Analysis of Two Thunderstorms Producing Five Negative Sprites on 12 September 2014

    NASA Astrophysics Data System (ADS)

    Boggs, L.; Liu, N.; Splitt, M. E.; Lazarus, S. M.; Cummer, S. A.; Rassoul, H.

    2015-12-01

    We present a detailed analysis of the thunderstorms and the parent lightning discharge morphologies of five confirmed negative sprites taking place in two different thunderstorms. These two thunderstorms took place in east-central and south Florida on 12 September 2014. We utilized several lightning location networks, remote magnetic field measurements, dual polarization radar, and balloon borne soundings in our analysis. Each parent discharge was immediately preceded by intra-cloud (IC) discharges between the mid-level negative and upper positive charge regions. This either allowed a second upward negative leader to escape the upper positive charge region, or encouraged a downward negative leader to be initiated and connect with ground. The discharges found in this study support the findings of Lu et al., 2012 [JGR,117, D04212, 2012] that negative sprite-parent lightning consists primarily of hybrid intra-cloud negative cloud-to-ground (IC-NCG) and bolt-from-the-blue (BFB) lightning. Our work finds these unique discharges form in thunderstorms that have an excess of mid-level negative charge and weakened upper positive charge. Due to this charge structure, these unusual discharges transfer more charge to the ground than typical negative cloud-to-ground discharges. Our study suggests that the key difference separating bolt-from-the-blue and gigantic jet discharges is an asymmetric charge structure. This acts to bring the negative leader exiting the thundercloud closer to the lateral positive screening layer, encouraging the negative leader to turn towards ground. This investigation reveals IC discharges that involve multiple convective cells and come to ground as a negative CG discharge, a breed of hybrid IC-NCG discharges, also transfer more negative charge to ground than typical negative CG discharges and are able to initiate negative sprites. From this work, the charge structures mentioned above resulted from tall, intense convective cells with low CG flash rates with high wind shear in the mid to upper regions of the cloud. This acted to create a large reservoir of mid-level negative charge and create a general asymmetry to the charge structure. The wind shear in the upper regions also acted to weaken the upper positive charge by turbulent mixing with the upper negative screening charge layer.

  9. Symmetry-protected topological phases of one-dimensional interacting fermions with spin-charge separation

    NASA Astrophysics Data System (ADS)

    Montorsi, Arianna; Dolcini, Fabrizio; Iotti, Rita C.; Rossi, Fausto

    2017-06-01

    The low energy behavior of a huge variety of one-dimensional interacting spinful fermionic systems exhibits spin-charge separation, described in the continuum limit by two sine-Gordon models decoupled in the charge and spin channels. Interaction is known to induce, besides the gapless Luttinger liquid phase, eight possible gapped phases, among which are the Mott, Haldane, charge-/spin-density, and bond-ordered wave insulators, and the Luther Emery liquid. Here we prove that some of these physically distinct phases have nontrivial topological properties, notably the presence of degenerate protected edge modes with fractionalized charge/spin. Moreover, we show that the eight gapped phases are in one-to-one correspondence with the symmetry-protected topological (SPT) phases classified by group cohomology theory in the presence of particle-hole symmetry P. The latter result is also exploited to characterize SPT phases by measurable nonlocal order parameters which follow the system evolution to the quantum phase transition. The implications on the appearance of exotic orders in the class of microscopic Hubbard Hamiltonians, possibly without P symmetry at higher energies, are discussed.

  10. Selective, ultrathin membrane skins prepared by deposition of novel polymer films on porous alumina supports

    NASA Astrophysics Data System (ADS)

    Balachandra, Anagi Manjula

    Membrane-based separations are attractive in industrial processes because of their low energy costs and simple operation. However, low permeabilities often make membrane processes uneconomical. Since flux is inversely proportional to membrane thickness, composite membranes consisting of ultrathin, selective skins on highly permeable supports are required to simultaneously achieve high throughput and high selectivity. However, the synthesis of defect-free skins with thicknesses less than 50 nm is difficult, and thus flux is often limited. Layer-by-layer deposition of oppositely charged polyelectrolytes on porous supports is an attractive method to synthesize ultrathin ion-separation membranes with high flux and high selectivity. The ion-transport selectivity of multilayer polyelectrolyte membranes (MPMs) is primarily due to Donnan exclusion; therefore increase in fixed charge density should yield high selectivity. However, control over charge density in MPMs is difficult because charges on polycations are electrostatically compensated by charges on polyanions, and the net charge in the bulk of these films is small. To overcome this problem, we introduced a templating method to create ion-exchange sites in the bulk of the membrane. This strategy involves alternating deposition of a Cu2+-poly(acrylic acid) complex and poly(allylamine hydrochloride) on a porous alumina support followed by removal of Cu2+ and deprotonation to yield free -COO- ion-exchange sites. Diffusion dialysis studies showed that the Cl-/SO42-. Selectivity of Cu2+-templated membranes is 4-fold higher than that of membranes prepared in the absence of Cu2+. Post-deposition cross-linking of these membranes by heat-induced amide bond formation further increased Cl-/SO42- selectivity to values as high as 600. Room-temperature, surface-initiated atom transfer radical polymerization (ATRP) provides another convenient method for formation of ultrathin polymer skins. This process involves attachment of polymerization initiators to a porous alumina support and subsequent polymerization from these initiators. Because ATRP is a controlled polymerization technique, it yields well-defined polymer films with low polydispersity indices (narrow molecular weight distributions). Additionally, this method is attractive because film thickness can be easily controlled by adjusting polymerization time. Gas-permeability data showed that grafted poly(ethylene glycol dimethacrylate) membranes have a CO 2/CH4 selectivity of 20, whereas poly(2-hydroxyethyl methacrylate) (PHEMA) films grown from a surface have negligible selectivity. However, derivatization of PHEMA with pentadecafluorooctanoyl chloride increases the solubility of CO2 in the membrane and results in a CO2/CH4 selectivity of 9. Although composite PHEMA membranes have no significant gas-transport selectivity, diffusion dialysis studies with PHEMA membranes showed moderate ion-transport selectivities. Cross-linking of PHEMA membranes by reaction with succinyl chloride greatly enhanced anion-transport selectivities while maintaining reasonable flux. The selectivities of these systems demonstrate that alternating polyelectrolyte deposition and surface-initiated ATRP are indeed capable of forming ultrathin, defect-free membrane skins that can potentially be modified for specific separations.

  11. Buffer Gas Modifiers Effect Resolution in Ion Mobility Spectrometry through Selective Ion-Molecule Clustering Reactions

    PubMed Central

    Fernández-Maestre, Roberto; Wu, Ching; Hill, Herbert H.

    2013-01-01

    RATIONALE When polar molecules (modifiers) are introduced into the buffer gas of an ion mobility spectrometer, most ion mobilities decrease due to the formation of ion-modifier clusters. METHODS We used ethyl lactate, nitrobenzene, 2-butanol, and tetrahydrofuran-2-carbonitrile as buffer gas modifiers and electrospray ionization ion mobility spectrometry (IMS) coupled to quadrupole mass spectrometry. Ethyl lactate, nitrobenzene, and tetrahydrofuran-2-carbonitrile had not been tested as buffer gas modifiers and 2-butanol had not been used with basic amino acids. RESULTS The ion mobilities of several diamines (arginine, histidine, lysine, and atenolol) were not affected or only slightly reduced when these modifiers were introduced into the buffer gas (3.4% average reduction in an analyte's mobility for the three modifiers). Intramolecular bridges caused limited change in the ion mobilities of diamines when modifiers were added to the buffer gas; these bridges hindered the attachment of modifier molecules to the positive charge of ions and delocalized the charge, which deterred clustering. There was also a tendency towards large changes in ion mobility when the mass of the analyte decreased; ethanolamine, the smallest compound tested, had the largest reduction in ion mobility with the introduction of modifiers into the buffer gas (61%). These differences in mobilities, together with the lack of shift in bridge-forming ions, were used to separate ions that overlapped in IMS, such as isoleucine and lysine, and arginine and phenylalanine, and made possible the prediction of separation or not of overlapping ions. CONCLUSIONS The introduction of modifiers into the buffer gas in IMS can selectively alter the mobilities of analytes to aid in compound identification and/or enable the separation of overlapping analyte peaks. PMID:22956312

  12. Nickel-hydrogen battery state of charge during low rate trickle charging

    NASA Technical Reports Server (NTRS)

    Lurie, C.; Foroozan, S.; Brewer, J.; Jackson, L.

    1995-01-01

    Battery temperature increase, due to low rate trickle charging, has been determined experimentally, using a six cell battery module in a test setup simulating the anticipated AXAF-1 prelaunch environment. Test results indicate trickle charge rates less than or equal to the self discharge rate do not increase dissipation beyond that due to the self discharge. Significant trickle charge rates (approximately C/500) result in battery temperatures only a few degrees (F) higher than those observed during periods of open circuit stand.

  13. Charge sniffer for electrostatics demonstrations

    NASA Astrophysics Data System (ADS)

    Dinca, Mihai P.

    2011-02-01

    An electronic electroscope with a special design for demonstrations and experiments on static electricity is described. It operates as an electric charge sniffer by detecting slightly charged objects when they are brought to the front of its sensing electrode. The sniffer has the advantage of combining high directional sensitivity with a logarithmic bar display. It allows for the identification of electric charge polarity during charge separation by friction, peeling, electrostatic induction, batteries, or secondary coils of power transformers. Other experiments in electrostatics, such as observing the electric field of an oscillating dipole and the distance dependence of the electric field generated by simple charge configurations, are also described.

  14. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations.

    PubMed

    Kaus, Joseph W; Harder, Edward; Lin, Teng; Abel, Robert; McCammon, J Andrew; Wang, Lingle

    2015-06-09

    Recent advances in improved force fields and sampling methods have made it possible for the accurate calculation of protein–ligand binding free energies. Alchemical free energy perturbation (FEP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies. However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy may depend on the initial conformation used in the simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical FEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain improved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the ligands. This improved the root-mean-square error (RMSE) for the predicted binding free energy from 1.9 kcal/mol with the original partial charges to 1.3 kcal/mol with the corrected partial charges.

  15. How To Deal with Multiple Binding Poses in Alchemical Relative Protein–Ligand Binding Free Energy Calculations

    PubMed Central

    2016-01-01

    Recent advances in improved force fields and sampling methods have made it possible for the accurate calculation of protein–ligand binding free energies. Alchemical free energy perturbation (FEP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies. However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy may depend on the initial conformation used in the simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical FEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain improved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the ligands. This improved the root-mean-square error (RMSE) for the predicted binding free energy from 1.9 kcal/mol with the original partial charges to 1.3 kcal/mol with the corrected partial charges. PMID:26085821

  16. Ultrafast dynamics in multifunctional Ru(II)-loaded polymers for solar energy conversion.

    PubMed

    Morseth, Zachary A; Wang, Li; Puodziukynaite, Egle; Leem, Gyu; Gilligan, Alexander T; Meyer, Thomas J; Schanze, Kirk S; Reynolds, John R; Papanikolas, John M

    2015-03-17

    The use of sunlight to make chemical fuels (i.e., solar fuels) is an attractive approach in the quest to develop sustainable energy sources. Using nature as a guide, assemblies for artificial photosynthesis will need to perform multiple functions. They will need to be able to harvest light across a broad region of the solar spectrum, transport excited-state energy to charge-separation sites, and then transport and store redox equivalents for use in the catalytic reactions that produce chemical fuels. This multifunctional behavior will require the assimilation of multiple components into a single macromolecular system. A wide variety of different architectures including porphyrin arrays, peptides, dendrimers, and polymers have been explored, with each design posing unique challenges. Polymer assemblies are attractive due to their relative ease of production and facile synthetic modification. However, their disordered nature gives rise to stochastic dynamics not present in more ordered assemblies. The rational design of assemblies requires a detailed understanding of the energy and electron transfer events that follow light absorption, which can occur on time scales ranging from femtoseconds to hundreds of microseconds, necessitating the use of sophisticated techniques. We have used a combination of time-resolved absorption and emission spectroscopies with observation times that span 9 orders of magnitude to follow the excited-state evolution within polymer-based molecular assemblies. We complement experimental observations with molecular dynamics simulations to develop a microscopic view of these dynamics. This Account provides an overview of our work on polymers decorated with pendant Ru(II) chromophores, both in solution and on surfaces. We have examined site-to-site energy transport among the Ru(II) complexes, and in systems incorporating π-conjugated polymers, we have observed ultrafast formation of a long-lived charge-separated state. When attached to TiO2, these assemblies exhibit multifunctional behavior in which photon absorption is followed by energy transport to the surface and electron injection to produce an oxidized metal complex. The oxidizing equivalent is then transferred to the conjugated polymer, giving rise to a long-lived charge-separated state.

  17. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.

    PubMed

    Wu, Kaifeng; Zhu, Haiming; Lian, Tianquan

    2015-03-17

    Colloidal quantum confined one-dimensional (1D) semiconductor nanorods (NRs) and related semiconductor-metal heterostructures are promising new materials for efficient solar-to-fuel conversion because of their unique physical and chemical properties. NRs can simultaneously exhibit quantum confinement effects in the radial direction and bulk like carrier transport in the axial direction. The former implies that concepts well-established in zero-dimensional quantum dots, such as size-tunable energetics and wave function engineering through band alignment in heterostructures, can also be applied to NRs; while the latter endows NRs with fast carrier transport to achieve long distance charge separation. Selective growth of catalytic metallic nanoparticles, such as Pt, at the tips of NRs provides convenient routes to multicomponent heterostructures with photocatalytic capabilities and controllable charge separation distances. The design and optimization of such materials for efficient solar-to-fuel conversion require the understanding of exciton and charge carrier dynamics. In this Account, we summarize our recent studies of ultrafast charge separation and recombination kinetics and their effects on steady-state photocatalytic efficiencies of colloidal CdS and CdSe/CdS NRs and related NR-Pt heterostructures. After a brief introduction of their electronic structure, we discuss exciton dynamics of CdS NRs. By transient absorption and time-resolved photoluminescence decay, it is shown that although the conduction band electrons are long-lived, photogenerated holes in CdS NRs are trapped on an ultrafast time scale (∼0.7 ps), which forms localized excitons due to strong Coulomb interaction in 1D NRs. In quasi-type II CdSe/CdS dot-in-rod NRs, a large valence band offset drives the ultrafast localization of holes to the CdSe core, and the competition between this process and ultrafast hole trapping on a CdS rod leads to three types of exciton species with distinct spatial distributions. The effect of the exciton dynamics on photoreduction reactions is illustrated using methyl viologen (MV(2+)) as a model electron acceptor. The steady-state MV(2+) photoreduction quantum yield of CdSe/CdS dot-in-rod NRs approaches unity under rod excitation, much larger than CdSe QDs and CdSe/CdS core/shell QDs. Detailed time-resolved studies show that in quasi-type II CdSe/CdS NRs and type II ZnSe/CdS NRs strong quantum confinement in the radial direction facilitates fast electron transfer and hole removal, whereas the fast carrier mobility along the axial direction enables long distance charge separation and slow charge recombination, which is essential for efficient MV(2+) photoreduction. The NR/MV(2+) relay system can be coupled to Pt nanoparticles in solution for light-driven H2 generation. Alternatively, Pt-tipped CdS and CdSe/CdS NRs provide fully integrated all inorganic systems for light-driven H2 generation. In CdS-Pt and CdSe/CdS-Pt hetero-NRs, ultrafast hole trapping on the CdS rod surface or in CdSe core enables efficient electron transfer from NRs to Pt tips by suppressing hole and energy transfer. It is shown that the quantum yields of photodriven H2 generation using these heterostructures correlate well with measured hole transfer rates from NRs to sacrificial donors, revealing that hole removal is the key efficiency-limiting step. These findings provide important insights for designing more efficient quantum confined NR and NR-Pt based systems for solar-to-fuel conversion.

  18. A more than six orders of magnitude UV-responsive organic field-effect transistor utilizing a benzothiophene semiconductor and Disperse Red 1 for enhanced charge separation.

    PubMed

    Smithson, Chad S; Wu, Yiliang; Wigglesworth, Tony; Zhu, Shiping

    2015-01-14

    A more than six orders of magnitude UV-responsive organic field-effect transistor is developed using a benzothiophene (BTBT) semiconductor and strong donor-acceptor Disperse Red 1 as the traps to enhance charge separation. The device can be returned to its low drain current state by applying a short gate bias, and is completely reversible with excellent stability under ambient conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Enhanced specific heat jump in electron-doped CaMnO3: Spin ordering driven by charge separation

    NASA Astrophysics Data System (ADS)

    Moritomo, Y.; Machida, A.; Nishibori, E.; Takata, M.; Sakata, M.

    2001-12-01

    Temperature variation of the magnetic susceptibility χ, resistivity ρ, specific heat C, and lattice constants has been investigated in electron-doped CaMnO3. The parent CaMnO3 is an antiferromagnetic band insulator, and shows an insulator-metal crossover with electron doping, together with an enhanced ferromagnetic component. We have found an enhancement of the specific heat jump ΔC at the spin-ordering temperature Tspin and interpreted the enhancement in terms of the intrinsic charge separation.

  20. Photoionization of N,N,N',N'-tetramethylbenzidine in anionic-cationic mixed micelles of sodium dodecyl sulfate-dodecyltrimethylammonium chloride: electron spin resonance and electron spin echo modulation studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivara-Minten, E.; Baglioni, P.; Kevan, L.

    1988-05-05

    Electron spin echo modulation (ESEM) and electron spin resonance (ESR) spectra of the photogenerated N,N,N',N'-tetramethylbenzidine cation radical (TMB/sup +/) in frozen mixed micelles of dodecyltrimethylammonium chloride (DTAC) and sodium dodecyl sulfate (SDS) have been studied as a function of the mixed micelle composition. ESEM effects due to TMB/sup +/ interactions with deuterium in D/sub 2/O show a decrease of the TMB/sup +/-water interaction that depends on the SDS-DTAC mixed micelle composition and reaches a minimum for the equimolar mixed micelle. The efficiency of charge separation upon photoionization of TMB to produce TMB/sup +/ measured by ESR correlates with the degreemore » of water penetration into the micelle. ESEM effects due to interaction of x-doxylstearic acid nitroxide probes with deuterium in D/sub 2/O show that the decrease of water penetration is due to higher surface packing due to electrostatic attraction among the polar headgroups of the two surfactants.« less

Top