Sample records for charge separation induced

  1. A multi-pathway model for photosynthetic reaction center

    NASA Astrophysics Data System (ADS)

    Qin, M.; Shen, H. Z.; Yi, X. X.

    2016-03-01

    Charge separation occurs in a pair of tightly coupled chlorophylls at the heart of photosynthetic reaction centers of both plants and bacteria. Recently it has been shown that quantum coherence can, in principle, enhance the efficiency of a solar cell, working like a quantum heat engine. Here, we propose a biological quantum heat engine (BQHE) motivated by Photosystem II reaction center (PSII RC) to describe the charge separation. Our model mainly considers two charge-separation pathways which is more than that typically considered in the published literature. We explore how these cross-couplings increase the current and power of the charge separation and discuss the effects of multiple pathways in terms of current and power. The robustness of the BQHE against the charge recombination in natural PSII RC and dephasing induced by environments is also explored, and extension from two pathways to multiple pathways is made. These results suggest that noise-induced quantum coherence helps to suppress the influence of acceptor-to-donor charge recombination, and besides, nature-mimicking architectures with engineered multiple pathways for charge separations might be better for artificial solar energy devices considering the influence of environments.

  2. Role of coherence and delocalization in photo-induced electron transfer at organic interfaces

    NASA Astrophysics Data System (ADS)

    Abramavicius, V.; Pranculis, V.; Melianas, A.; Inganäs, O.; Gulbinas, V.; Abramavicius, D.

    2016-09-01

    Photo-induced charge transfer at molecular heterojunctions has gained particular interest due to the development of organic solar cells (OSC) based on blends of electron donating and accepting materials. While charge transfer between donor and acceptor molecules can be described by Marcus theory, additional carrier delocalization and coherent propagation might play the dominant role. Here, we describe ultrafast charge separation at the interface of a conjugated polymer and an aggregate of the fullerene derivative PCBM using the stochastic Schrödinger equation (SSE) and reveal the complex time evolution of electron transfer, mediated by electronic coherence and delocalization. By fitting the model to ultrafast charge separation experiments, we estimate the extent of electron delocalization and establish the transition from coherent electron propagation to incoherent hopping. Our results indicate that even a relatively weak coupling between PCBM molecules is sufficient to facilitate electron delocalization and efficient charge separation at organic interfaces.

  3. Charge-based separation of particles and cells with similar sizes via the wall-induced electrical lift.

    PubMed

    Thomas, Cory; Lu, Xinyu; Todd, Andrew; Raval, Yash; Tzeng, Tzuen-Rong; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun

    2017-01-01

    The separation of particles and cells in a uniform mixture has been extensively studied as a necessity in many chemical and biomedical engineering and research fields. This work demonstrates a continuous charge-based separation of fluorescent and plain spherical polystyrene particles with comparable sizes in a ψ-shaped microchannel via the wall-induced electrical lift. The effects of both the direct current electric field in the main-branch and the electric field ratio in between the inlet branches for sheath fluid and particle mixture are investigated on this electrokinetic particle separation. A Lagrangian tracking method based theoretical model is also developed to understand the particle transport in the microchannel and simulate the parametric effects on particle separation. Moreover, the demonstrated charge-based separation is applied to a mixture of yeast cells and polystyrene particles with similar sizes. Good separation efficiency and purity are achieved for both the cells and the particles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Understanding the influence of solvent field and fluctuations on the stability of photo-induced charge-separated state in molecular triad

    NASA Astrophysics Data System (ADS)

    Balamurugan, D.; Aquino, Adelia; Lischka, Hans; Dios, Francis; Flores, Lionel; Cheung, Margaret

    2013-03-01

    Molecular triad composed of fullerene, porphyrin, and carotene is an artificial analogue of natural photosynthetic system and is considered for applications in solar energy conversion because of its ability to produce long-lived photo-induced charge separated state. The goal of the present multiscale simulation is to understand how the stability of photo-induced charge-separated state in molecular triad is influenced by a polar organic solvent, namely tetrahydrofuran (THF). The multiscale approach is based on combined quantum, classical molecular dynamics, and statistical physics calculations. The quantum chemical calculations were performed on the triad using the second order algebraic diagrammatic perturbation and time-dependent density functional theory. Molecular dynamics simulations were performed on triad in a box of THF solvent with the replica exchange method. The two methods on different length and time scales are bridged through an important sampling technique. We have analyzed the free energy landscape, structural fluctuations, and the long- range electrostatic interactions between triad and solvent molecules. The results suggest that the polarity and re-organization of the solvent is critical in stabilization of charge-separated state in triad. Supported by DOE (DE-FG02-10ER16175)

  5. Effective Electrostatic Interactions Between Two Overall Neutral Surfaces with Quenched Charge Heterogeneity Over Atomic Length Scale

    NASA Astrophysics Data System (ADS)

    Zhou, S.

    2017-12-01

    Using Monte Carlo results as a reference, a classical density functional theory ( CDFT) is shown to reliably predict the forces between two heterogeneously charged surfaces immersed in an electrolyte solution, whereas the Poisson-Boltzmann ( PB) theory is demonstrated to deteriorate obviously for the same system even if the system parameters considered fall within the validity range of the PB theory in the homogeneously charged surfaces. By applying the tested CDFT, we study the effective electrostatic potential of mean force ( EPMF) between two face-face planar and hard surfaces of zero net charge on which positive and negative charges are separated and considered to present as discontinuous spots on the inside edges of the two surfaces. Main conclusions are summarized as follows: (i) strength of the EPMF in the surface charge separation case is very sensitively and positively correlated with the surface charge separation level and valency of the salt ion. Particularly, the charge separation level and the salt ion valency have a synergistic effect, which makes high limit of the EPMF strength in the surface charge separation case significantly go beyond that of the ideal homogeneously charged surface counterpart at average surface charge density similar to the average surface positive or negative charge density in the charge separation case. (ii) The surface charge distribution patterns mainly influence sign of the EPMF: symmetrical and asymmetrical patterns induce repulsive and attractive (at small distances) EPMF, respectively; but with low valency salt ions and low charge separation level the opposite may be the case. With simultaneous presence of both higher valency cation and anion, the EPMF can be repulsive at intermediate distances for asymmetrical patterns. (iii) Salt ion size has a significant impact, which makes the EPMF tend to become more and more repulsive with the ion diameter regardless of the surface charge distribution patterns and the valency of the salt ion; whereas if the 1:1 type electrolyte and the symmetrical patterns are considered, then the opposite may be the case. All of these findings can be explained self-consistently from several perspectives: an excess adsorption of the salt ions (induced by the surface charge separation) serving to raise the osmotic pressure between the plates, configuration fine-tuning in the thinner ion adsorption layer driven by the energy decrease principle, direct Coulombic interactions operating between charged objects on the two face-to-face plates involved, and net charge strength in the ion adsorption layer responsible for the net electrostatic repulsion.

  6. Charge Transfer Processes in OPV Materials as Revealed by EPR Spectroscopy

    DOE PAGES

    Niklas, Jens; Poluektov, Oleg

    2017-03-03

    Understanding charge separation and charge transport at a molecular level is crucial for improving the efficiency of organic photovoltaic (OPV) cells. Under illumination of Bulk Heterojunction (BHJ) blends of polymers and fullerenes, various paramagnetic species are formed including polymer and fullerene radicals, radical pairs, and photoexcited triplet states. Light-induced Electron Paramagnetic Resonance (EPR) spectroscopy is ideally suited to study these states in BHJ due to its selectivity in probing the paramagnetic intermediates. Some advanced EPR techniques like light-induced ENDOR spectroscopy and pulsed techniques allow the determination of hyperfine coupling tensors, while high-frequency EPR allows the EPR signals of the individualmore » species to be resolved and their g-tensors to be determined. In these magnetic resonance parameters reveal details about the delocalization of the positive polaron on the various polymer donors which is important for the efficient charge separation in BHJ systems. Time-resolved EPR can contribute to the study of the dynamics of charge separation, charge transfer and recombination in BHJ by probing the unique spectral signatures of charge transfer and triplet states. Furthermore, the potential of the EPR also allows characterization of the intermediates and products of BHJ degradation.« less

  7. Improved solar-driven photocatalytic performance of Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} prepared in-situ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Junbo, E-mail: junbozhong@163.com; Li, Jianzhang, E-mail: lschmanuscript@163.com; Huang, Shengtian

    Highlights: • Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} photocatalysts were prepared in-situ. • The photo-induced charge separation rate has been greatly increased. • The photocatalytic activity has been greatly promoted. - Abstract: Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} composites have been fabricated in-situ via a facile parallel flaw co-precipitation method. The specific surface area, structure, morphology, and the separation rate of photo-induced charge pairs of the photocatalysts were characterized by Brunauer–Emmett–Teller (BET) method, X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy(DRS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and surface photovoltage (SPV) spectroscopy, respectively. XRD patterns and DRS demonstrated that Ag{submore » 2}CO{sub 3} has no effect on the crystal phase and bandgap of (BiO){sub 2}CO{sub 3}. The existence of Ag{sub 2}CO{sub 3} in the composites enhances the separation rate of photo-induced charge pairs of the photocatalysts. The photocatalytic performance of Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} was evaluated by the decolorization of methyl orange (MO) aqueous solution under simulated solar irradiation. It was found that the simulated solar-induced photocatalytic activity of Ag{sub 2}CO{sub 3}/(BiO){sub 2}CO{sub 3} copmposites was significantly improved, which was mainly attributed to the enhanced surface area and the separation rate of photo-induced charge pairs.« less

  8. Electrostatic Explorations.

    ERIC Educational Resources Information Center

    Gallai, Ditta; Stewart, Gay

    1998-01-01

    Presents a set of hands-on electrostatics experiments in the form of an activity guide and worksheet through which students discover the different types of electric charge, Coulomb's Law, induced charge separation, and grounding. (DDR)

  9. Effect of interstitial palladium on plasmon-driven charge transfer in nanoparticle dimers.

    PubMed

    Lerch, Sarah; Reinhard, Björn M

    2018-04-23

    Capacitive plasmon coupling between noble metal nanoparticles (NPs) is characterized by an increasing red-shift of the bonding dipolar plasmon mode (BDP) in the classical electromagnetic coupling regime. This model breaks down at short separations where plasmon-driven charge transfer induces a gap current between the NPs with a magnitude and separation dependence that can be modulated if molecules are present in the gap. Here, we use gap contained DNA as a scaffold for the growth of palladium (Pd) NPs in the gap between two gold NPs and investigate the effect of increasing Pd NP concentration on the BDP mode. Consistent with enhanced plasmon-driven charge transfer, the integration of discrete Pd NPs depolarizes the capacitive BDP mode over longer interparticle separations than is possible in only DNA-linked Au NPs. High Pd NP densities in the gap increases the gap conductance and induces the transition from capacitive to conductive coupling.

  10. Stick slip, charge separation and decay

    USGS Publications Warehouse

    Lockner, D.A.; Byerlee, J.D.; Kuksenko, V.S.; Ponomarev, A.V.

    1986-01-01

    Measurements of charge separation in rock during stable and unstable deformation give unexpectedly large decay times of 50 sec. Time-domain induced polarization experiments on wet and dry rocks give similar decay times and suggest that the same decay mechanisms operate in the induced polarization response as in the relaxation of charge generated by mechanical deformation. These large decay times are attributed to electrochemical processes in the rocks, and they require low-frequency relative permittivity to be very large, in excess of 105. One consequence of large permittivity, and therefore long decay times, is that a significant portion of any electrical charge generated during an earthquake can persist for tens or hundreds of seconds. As a result, electrical disturbances associated with earthquakes should be observable for these lengths of time rather than for the milliseconds previously suggested. ?? 1986 Birka??user Verlag.

  11. Ewald Electrostatics for Mixtures of Point and Continuous Line Charges.

    PubMed

    Antila, Hanne S; Tassel, Paul R Van; Sammalkorpi, Maria

    2015-10-15

    Many charged macro- or supramolecular systems, such as DNA, are approximately rod-shaped and, to the lowest order, may be treated as continuous line charges. However, the standard method used to calculate electrostatics in molecular simulation, the Ewald summation, is designed to treat systems of point charges. We extend the Ewald concept to a hybrid system containing both point charges and continuous line charges. We find the calculated force between a point charge and (i) a continuous line charge and (ii) a discrete line charge consisting of uniformly spaced point charges to be numerically equivalent when the separation greatly exceeds the discretization length. At shorter separations, discretization induces deviations in the force and energy, and point charge-point charge correlation effects. Because significant computational savings are also possible, the continuous line charge Ewald method presented here offers the possibility of accurate and efficient electrostatic calculations.

  12. Charge Splitting In Situ Recorder (CSIR) for Real-Time Examination of Plasma Charging Effect in FinFET BEOL Processes

    NASA Astrophysics Data System (ADS)

    Tsai, Yi-Pei; Hsieh, Ting-Huan; Lin, Chrong Jung; King, Ya-Chin

    2017-09-01

    A novel device for monitoring plasma-induced damage in the back-end-of-line (BEOL) process with charge splitting capability is first-time proposed and demonstrated. This novel charge splitting in situ recorder (CSIR) can independently trace the amount and polarity of plasma charging effects during the manufacturing process of advanced fin field-effect transistor (FinFET) circuits. Not only does it reveal the real-time and in situ plasma charging levels on the antennas, but it also separates positive and negative charging effect and provides two independent readings. As CMOS technologies push for finer metal lines in the future, the new charge separation scheme provides a powerful tool for BEOL process optimization and further device reliability improvements.

  13. Protein separation using an electrically tunable membrane

    NASA Astrophysics Data System (ADS)

    Jou, Ining; Melnikov, Dmitriy; Gracheva, Maria

    Separation of small proteins by charge with a solid-state porous membrane requires control over the protein's movement. Semiconductor membrane has this ability due to the electrically tunable electric potential profile inside the nanopore. In this work we investigate the possibility to separate the solution of two similar sized proteins by charge. As an example, we consider two small globular proteins abundant in humans: insulin (negatively charged) and ubiquitin (neutral). We find that the localized electric field inside the pore either attracts or repels the charged protein to or from the pore wall which affects the delay time before a successful translocation of the protein through the nanopore. However, the motion of the uncharged ubiquitin is unaffected. The difference in the delay time (and hence the separation) can be further increased by the application of the electrolyte bias which induces an electroosmotic flow in the pore. NSF DMR and CBET Grant No. 1352218.

  14. Field-induced exciton dissociation in PTB7-based organic solar cells

    NASA Astrophysics Data System (ADS)

    Gerhard, Marina; Arndt, Andreas P.; Bilal, Mühenad; Lemmer, Uli; Koch, Martin; Howard, Ian A.

    2017-05-01

    The physics of charge separation in organic semiconductors is a topic of ongoing research of relevance to material and device engineering. Herein, we present experimental observations of the field and temperature dependence of charge separation from singlet excitons in PTB7 and PC71BM , and from charge-transfer states created across interfaces in PTB 7 /PC71BM bulk heterojunction solar cells. We obtain this experimental data by time-resolving the near infrared emission of the states from 10 K to room temperature and electric fields from 0 to 2.5 MVcm -1 . Examining how the luminescence is quenched by field and temperature gives direct insight into the underlying physics. We observe that singlet excitons can be split by high fields, and that disorder broadens the high threshold fields needed to split the excitons. Charge-transfer (CT) states, on the other hand, can be separated by both field and temperature. Also, the data imply a strong reduction of the activation barrier for charge splitting from the CT state relative to the exciton state. The observations provided herein of the field-dependent separation of CT states as a function of temperature offer a rich data set against which theoretical models of charge separation can be rigorously tested; it should be useful for developing the more advanced theoretical models of charge separation.

  15. Z-M in Lightning Forecasting

    DTIC Science & Technology

    2009-03-01

    hydrometers create a charge separation. Inductive processes rely on a preexisting external electric field to induce charges on polarized particles, which...frozen hydrometers . A. FLORIDA CLIMATE Florida is often referred to as the lightning capital of the United States (Hodanish et al. 1997) or

  16. Domain Formation Induced by the Adsorption of Charged Proteins on Mixed Lipid Membranes

    PubMed Central

    Mbamala, Emmanuel C.; Ben-Shaul, Avinoam; May, Sylvio

    2005-01-01

    Peripheral proteins can trigger the formation of domains in mixed fluid-like lipid membranes. We analyze the mechanism underlying this process for proteins that bind electrostatically onto a flat two-component membrane, composed of charged and neutral lipid species. Of particular interest are membranes in which the hydrocarbon lipid tails tend to segregate owing to nonideal chain mixing, but the (protein-free) lipid membrane is nevertheless stable due to the electrostatic repulsion between the charged lipid headgroups. The adsorption of charged, say basic, proteins onto a membrane containing anionic lipids induces local lipid demixing, whereby charged lipids migrate toward (or away from) the adsorption site, so as to minimize the electrostatic binding free energy. Apart from reducing lipid headgroup repulsion, this process creates a gradient in lipid composition around the adsorption zone, and hence a line energy whose magnitude depends on the protein's size and charge and the extent of lipid chain nonideality. Above a certain critical lipid nonideality, the line energy is large enough to induce domain formation, i.e., protein aggregation and, concomitantly, macroscopic lipid phase separation. We quantitatively analyze the thermodynamic stability of the dressed membrane based on nonlinear Poisson-Boltzmann theory, accounting for both the microscopic characteristics of the proteins and lipid composition modulations at and around the adsorption zone. Spinodal surfaces and critical points of the dressed membranes are calculated for several different model proteins of spherical and disk-like shapes. Among the models studied we find the most substantial protein-induced membrane destabilization for disk-like proteins whose charges are concentrated in the membrane-facing surface. If additional charges reside on the side faces of the proteins, direct protein-protein repulsion diminishes considerably the propensity for domain formation. Generally, a highly charged flat face of a macroion appears most efficient in inducing large compositional gradients, hence a large and unfavorable line energy and consequently lateral macroion aggregation and, concomitantly, macroscopic lipid phase separation. PMID:15626713

  17. Photoinduced Dynamics of Charge Separation: From Photosynthesis to Polymer–Fullerene Bulk Heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niklas, Jens; Beaupré, Serge; Leclerc, Mario

    2015-06-18

    Understanding charge separation and charge transport is crucial for improving the efficiency of organic solar cells. Their active media are based on organic molecules and polymers, serving as both light-absorbing and transport layers. The charge-transfer (CT) states play an important role, being intermediate for free carrier generation and charge recombination. Here, we use light-induced electron paramagnetic resonance spectroscopy to study the CT dynamics in blends of the polymers P3HT, PCDTBT, and PTB7 with the fullerene derivative C-60-PCBM. Time-resolved EPR measurements show strong spin-polarization patterns for all polymer-fullerene blends, confirming predominant generation of singlet CT states and partial orientation ordering nearmore » the donor-acceptor interface. These observations allow a comparison with charge separation processes in molecular donor-acceptor systems and in natural and artificial photosynthetic assemblies, and thus the elucidation of the initial steps of sequential CT in organic photovoltaic materials.« less

  18. Spin-orbit induced electronic spin separation in semiconductor nanostructures.

    PubMed

    Kohda, Makoto; Nakamura, Shuji; Nishihara, Yoshitaka; Kobayashi, Kensuke; Ono, Teruo; Ohe, Jun-ichiro; Tokura, Yasuhiro; Mineno, Taiki; Nitta, Junsaku

    2012-01-01

    The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin-orbit interaction in an InGaAs-based heterostructure. Using a Stern-Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 10(8) T m(-1) resulting in a highly polarized spin current.

  19. Spin–orbit induced electronic spin separation in semiconductor nanostructures

    PubMed Central

    Kohda, Makoto; Nakamura, Shuji; Nishihara, Yoshitaka; Kobayashi, Kensuke; Ono, Teruo; Ohe, Jun-ichiro; Tokura, Yasuhiro; Mineno, Taiki; Nitta, Junsaku

    2012-01-01

    The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin–orbit interaction in an InGaAs-based heterostructure. Using a Stern–Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 108 T m−1 resulting in a highly polarized spin current. PMID:23011136

  20. Synthesis and Photophysical Characterization of an Artificial Photosynthetic Reaction Center Exhibiting Acid-Responsive Regulation of Charge Separation

    NASA Astrophysics Data System (ADS)

    Pahk, Ian

    Non-photochemical quenching (NPQ) is a photoprotective regulatory mechanism essential to the robustness of the photosynthetic apparatus of green plants. Energy flow within the low-light adapted reaction centers is dynamically optimized to match the continuously fluctuating light conditions found in nature. Activated by compartmentalized decreases in pH resulting from photosynthetic activity during periods of elevated photon flux, NPQ induces rapid thermal dissipation of excess excitation energy that would otherwise overwhelm the apparatus's ability to consume it. Consequently, the frequency of charge separation decreases and the formation of potentially deleterious, high-energy intermediates slows, thereby reducing the threat of photodamage by disallowing their accumulation. Herein is described the synthesis and photophysical analysis of a molecular triad that mimics the effects of NPQ on charge separation within the photosynthetic reaction centers. Steady-state absorption and emission, time-resolved fluorescence, and transient absorption spectroscopies were used to demonstrate reversible quenching of the first singlet excited state affecting the quantum yield of charge separation by approximately one order of magnitude. As in the natural system, the populations of unquenched and quenched states and, therefore, the overall yields of charge separation were found to be dependent upon acid concentration.

  1. Highly-Efficient Charge Separation and Polaron Delocalization in Polymer-Fullerene Bulk-Heterojunctions: A Comparative Multi-Frequency EPR & DFT Study

    PubMed Central

    Niklas, Jens; Mardis, Kristy L.; Banks, Brian P.; Grooms, Gregory M.; Sperlich, Andreas; Dyakonov, Vladimir; Beaupré, Serge; Leclerc, Mario; Xu, Tao; Yu, Luping; Poluektov, Oleg G.

    2016-01-01

    The ongoing depletion of fossil fuels has led to an intensive search for additional renewable energy sources. Solar-based technologies could provide sufficient energy to satisfy the global economic demands in the near future. Photovoltaic (PV) cells are the most promising man-made devices for direct solar energy utilization. Understanding the charge separation and charge transport in PV materials at a molecular level is crucial for improving the efficiency of the solar cells. Here, we use light-induced EPR spectroscopy combined with DFT calculations to study the electronic structure of charge separated states in blends of polymers (P3HT, PCDTBT, and PTB7) and fullerene derivatives (C60-PCBM and C70-PCBM). Solar cells made with the same composites as active layers show power conversion efficiencies of 3.3% (P3HT), 6.1% (PCDTBT), and 7.3% (PTB7), respectively. Under illumination of these composites, two paramagnetic species are formed due to photo-induced electron transfer between the conjugated polymer and the fullerene. They are the positive, P+, and negative, P-, polarons on the polymer backbone and fullerene cage, respectively, and correspond to radical cations and radical anions. Using the high spectral resolution of high-frequency EPR (130 GHz), the EPR spectra of these species were resolved and principal components of the g-tensors were assigned. Light-induced pulsed ENDOR spectroscopy allowed the determination of 1H hyperfine coupling constants of photogenerated positive and negative polarons. The experimental results obtained for the different polymer-fullerene composites have been compared with DFT calculations, revealing that in all three systems the positive polaron is distributed over distances of 40 - 60 Å on the polymer chain. This corresponds to about 15 thiophene units for P3HT, approximately three units PCDTBT, and about three to four units for PTB7. No spin density delocalization between neighboring fullerene molecules was detected by EPR. Strong delocalization of the positive polaron on the polymer donor is an important reason for the efficient charge separation in bulk heterojunction systems as it minimizes the wasteful process of charge recombination. The combination of advanced EPR spectroscopy and DFT is a powerful approach for investigation of light-induced charge dynamics in organic photovoltaic materials. PMID:23670645

  2. Ultrafast photoinduced charge separation in metal-semiconductor nanohybrids.

    PubMed

    Mongin, Denis; Shaviv, Ehud; Maioli, Paolo; Crut, Aurélien; Banin, Uri; Del Fatti, Natalia; Vallée, Fabrice

    2012-08-28

    Hybrid nano-objects formed by two or more disparate materials are among the most promising and versatile nanosystems. A key parameter in their properties is interaction between their components. In this context we have investigated ultrafast charge separation in semiconductor-metal nanohybrids using a model system of gold-tipped CdS nanorods in a matchstick architecture. Experiments are performed using an optical time-resolved pump-probe technique, exciting either the semiconductor or the metal component of the particles, and probing the light-induced change of their optical response. Electron-hole pairs photoexcited in the semiconductor part of the nanohybrids are shown to undergo rapid charge separation with the electron transferred to the metal part on a sub-20 fs time scale. This ultrafast gold charging leads to a transient red-shift and broadening of the metal surface plasmon resonance, in agreement with results for free clusters but in contrast to observation for static charging of gold nanoparticles in liquid environments. Quantitative comparison with a theoretical model is in excellent agreement with the experimental results, confirming photoexcitation of one electron-hole pair per nanohybrid followed by ultrafast charge separation. The results also point to the utilization of such metal-semiconductor nanohybrids in light-harvesting applications and in photocatalysis.

  3. Tracking the coherent generation of polaron pairs in conjugated polymers

    NASA Astrophysics Data System (ADS)

    de Sio, Antonietta; Troiani, Filippo; Maiuri, Margherita; Réhault, Julien; Sommer, Ephraim; Lim, James; Huelga, Susana F.; Plenio, Martin B.; Rozzi, Carlo Andrea; Cerullo, Giulio; Molinari, Elisa; Lienau, Christoph

    2016-12-01

    The optical excitation of organic semiconductors not only generates charge-neutral electron-hole pairs (excitons), but also charge-separated polaron pairs with high yield. The microscopic mechanisms underlying this charge separation have been debated for many years. Here we use ultrafast two-dimensional electronic spectroscopy to study the dynamics of polaron pair formation in a prototypical polymer thin film on a sub-20-fs time scale. We observe multi-period peak oscillations persisting for up to about 1 ps as distinct signatures of vibronic quantum coherence at room temperature. The measured two-dimensional spectra show pronounced peak splittings revealing that the elementary optical excitations of this polymer are hybridized exciton-polaron-pairs, strongly coupled to a dominant underdamped vibrational mode. Coherent vibronic coupling induces ultrafast polaron pair formation, accelerates the charge separation dynamics and makes it insensitive to disorder. These findings open up new perspectives for tailoring light-to-current conversion in organic materials.

  4. Induced-Charge Enhancement of the Diffusion Potential in Membranes with Polarizable Nanopores

    NASA Astrophysics Data System (ADS)

    Ryzhkov, I. I.; Lebedev, D. V.; Solodovnichenko, V. S.; Shiverskiy, A. V.; Simunin, M. M.

    2017-12-01

    When a charged membrane separates two salt solutions of different concentrations, a potential difference appears due to interfacial Donnan equilibrium and the diffusion junction. Here, we report a new mechanism for the generation of a membrane potential in polarizable conductive membranes via an induced surface charge. It results from an electric field generated by the diffusion of ions with different mobilities. For uncharged membranes, this effect strongly enhances the diffusion potential and makes it highly sensitive to the ion mobilities ratio, electrolyte concentration, and pore size. Theoretical predictions on the basis of the space-charge model extended to polarizable nanopores fully agree with experimental measurements in KCl and NaCl aqueous solutions.

  5. Segregation in like-charged polyelectrolyte-surfactant mixtures can be precisely tuned via manipulation of the surfactant mass ratio.

    PubMed

    Wills, Peter W; Lopez, Sonia G; Burr, Jocelyn; Taboada, Pablo; Yeates, Stephen G

    2013-04-09

    In this study, we consider segregative phase separation in aqueous mixtures of quaternary ammonium surfactants didecyldimethylammonium chloride (DDQ) and alkyl (C12, 70%; C14 30%) dimethyl benzyl ammonium chloride (BAC) upon the addition of poly(diallyldimethylammonium) chloride (pDADMAC) as a function of both concentration and molecular weight. The nature of the surfactant type is dominant in determining the concentration at which separation into an upper essentially surfactant-rich phase and lower polyelectrolyte-rich phase is observed. However, for high-molecular-weight pDADMAC there is a clear indication of an additional depletion flocculation effect. When the BAC/DDQ ratio is tuned, the segregative phase separation point can be precisely controlled. We propose a phase separation mechanism for like-charged quaternary ammonium polyelectrolyte/surfactant/water mixtures induced by a reduction in the ionic atmosphere around the surfactant headgroup and possible ion pair formation. An additional polyelectrolyte-induced depletion flocculation effect was also observed.

  6. Plasmon-induced charge separation at two-dimensional gold semishell arrays on SiO2@TiO2 colloidal crystals

    NASA Astrophysics Data System (ADS)

    Wu, Ling; Nishi, Hiroyasu; Tatsuma, Tetsu

    2015-10-01

    Photoelectrodes based on plasmonic Au semishell (or halfshell) arrays are developed. A colloidal crystal consisting of SiO2@TiO2 core-shell particles is prepared on a TiO2-coated transparent electrode. A Au semishell (or halfshell) array is deposited by sputtering or evaporation on the colloidal crystal. An electrode with the semishell (or halfshell) array exhibits negative photopotential shifts and anodic photocurrents under visible light at 500-800 nm wavelengths in an aqueous electrolyte containing an electron donor. In particular, hydroquinone and ethanol are good electron donors. The photocurrents can be explained in terms of plasmon-induced charge separation at the Au-TiO2 interface.

  7. Plasmon-induced charge separation at two-dimensional gold semishell arrays on SiO{sub 2}@TiO{sub 2} colloidal crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ling; Nishi, Hiroyasu; Tatsuma, Tetsu, E-mail: tatsuma@iis.u-tokyo.ac.jp

    2015-10-01

    Photoelectrodes based on plasmonic Au semishell (or halfshell) arrays are developed. A colloidal crystal consisting of SiO{sub 2}@TiO{sub 2} core-shell particles is prepared on a TiO{sub 2}-coated transparent electrode. A Au semishell (or halfshell) array is deposited by sputtering or evaporation on the colloidal crystal. An electrode with the semishell (or halfshell) array exhibits negative photopotential shifts and anodic photocurrents under visible light at 500-800 nm wavelengths in an aqueous electrolyte containing an electron donor. In particular, hydroquinone and ethanol are good electron donors. The photocurrents can be explained in terms of plasmon-induced charge separation at the Au-TiO{sub 2} interface.

  8. Charge and energy dynamics in photo-excited poly(para-phenylenevinylene) systems

    NASA Astrophysics Data System (ADS)

    Gisslén, L.; Johansson, A.˚.; Stafström, S.

    2004-07-01

    We report results from simulations of charge and energy dynamics in poly(para-phenylenevinylene) (PPV) and PPV interacting with C60. The simulations were performed by solving the time-dependent Schrödinger equation and the lattice equation of motion simultaneously and nonadiabatically. The electronic system and the coupling of the electrons to the lattice were described by an extended three-dimensional version of the Su-Schrieffer-Heeger model, which also included an external electric field. Electron and lattice dynamics following electronic excitations at different energies have been simulated. The effect of additional lattice energy was also included in the simulations. Our results show that both exciton diffusion and transitions from high to lower lying excitations are stimulated by increasing the lattice energy. Also field induced charge separation occurs faster if the lattice energy is increased. This separation process is highly nonadiabatic and involves a significant rearrangement of the electron distribution. In the case of PPV coupled to C60, we observe a spontaneous charge separation. The separation time is in this case limited by the local concentration of C60 molecules close to the PPV chain.

  9. Experimental and Theoretical Aspects of Excited State Electron Transfer and Related Phenomena: Conference Held in Honour of Zbigniew R. Grabowski in Pultusk, Poland on September 27-October 2, 1992

    DTIC Science & Technology

    1992-10-01

    DBMBF2 ) undergoes photoreaction with olefins through a partial electron transfer that leads to cycloaddition or sensitized Diels - Alder reactions. We...8217 Fluorescence. 10:00 J.M. WARMAN: Photon-induced Intramolecular Charge Sepaiation Studied byTime-Resolved Microwave Conductivity. 10:30 Coffee 11:)) W...26 Photon-Induced Intramolecular Charge Separation Studied by Time-Resolved Microwave Conductivity John M. Warman IRI, Delft University of Technology

  10. Nanoimprinting-induced nanomorphological transition in polymer solar cells: enhanced electrical and optical performance.

    PubMed

    Jeong, Seonju; Cho, Changsoon; Kang, Hyunbum; Kim, Ki-Hyun; Yuk, Youngji; Park, Jeong Young; Kim, Bumjoon J; Lee, Jung-Yong

    2015-03-24

    We have investigated the effects of a directly nanopatterned active layer on the electrical and optical properties of inverted polymer solar cells (i-PSCs). The capillary force in confined molds plays a critical role in polymer crystallization and phase separation of the film. The nanoimprinting process induced improved crystallization and multidimensional chain alignment of polymers for more effective charge transfer and a fine phase-separation between polymers and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) to favor exciton dissociation and increase the generation rate of charge transfer excitons. Consequently, the power conversion efficiency with a periodic nanostructure was enhanced from 7.40% to 8.50% and 7.17% to 9.15% in PTB7 and PTB7-Th based i-PSCs, respectively.

  11. Plasmon-induced charge separation: chemistry and wide applications.

    PubMed

    Tatsuma, Tetsu; Nishi, Hiroyasu; Ishida, Takuya

    2017-05-01

    Recent development of nanoplasmonics has stimulated chemists to utilize plasmonic nanomaterials for efficient and distinctive photochemical applications, and physicists to boldly go inside the "wet" chemistry world. The discovery of plasmon-induced charge separation (PICS) has even accelerated these trends. On the other hand, some confusion is found in discussions about PICS. In this perspective, we focus on differences between PICS and some other phenomena such as co-catalysis effect and plasmonic nanoantenna effect. In addition, materials and nanostructures suitable for PICS are shown, and characteristics and features unique to PICS are documented. Although it is well known that PICS has been applied to photovoltaics and photocatalysis, here light is shed on other applications that take better advantage of PICS, such as chemical sensing and biosensing, various photochromisms, photoswitchable functionalities and nanoscale photofabrication.

  12. Trypsin treatment of reaction centers from Rhodobacter sphaeroides in the dark and under illumination: protein structural changes follow charge separation.

    PubMed

    Brzezinski, P; Andréasson, L E

    1995-06-06

    Reaction centers from Rhodobacter sphaeroides R-26 were treated with trypsin in the dark and during illumination (in the charge-separated state). Trypsination resulted in a time-dependent modification of the reaction centers, reflected in changes in the charge recombination rate, in the inhibition of QA- to QB electron transfer, and eventually to inhibition of charge separation. Comparisons of centers with ubiquinone or anthraquinone in the QA site, in which the charge recombination pathways are different, indicate that trypsination affects charges close to the QA(-)-binding site. Studies of light-induced voltage changes from moving charges in reaction centers incorporated in lipid layers on a Teflon film, a technique which allows the discrimination of effects on donor and acceptor sides, indicate that the acceptor side is preferentially degraded by trypsin in the dark. Tryptic digestion during illumination generally resulted in a marked strengthening and acceleration of the effects seen already during dark treatment, but new effects were also detected in gel electrophoretic peptide patterns, in optical spectra, and in the kinetic measurements. Optical kinetic measurements revealed that the donor side of the reaction centers became susceptible to modification by trypsin during illumination as seen in the value of the binding constant for soluble cytochrome c2 which increased by a factor of 2, whereas it was much less affected after trypsination of reaction centers in the dark. The influence of illumination on the rate and mode by which trypsin acts on reaction centers indicates that changes in the protein conformation follow charge separation.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Strong coupling electrostatics for randomly charged surfaces: antifragility and effective interactions.

    PubMed

    Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf

    2015-05-07

    We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to the (equal) mean charges on the two surfaces and the osmotic pressure of monovalent ions residing between them. These effects can be quite significant even with a small degree of surface charge disorder relative to the mean surface charge. The strong coupling, disorder-induced attraction is typically much stronger than the van der Waals interaction between the surfaces, especially within a range of several nanometers for the inter-surface separation, where such effects are predicted to be most pronounced.

  14. Photo-reactive charge trapping memory based on lanthanide complex.

    PubMed

    Zhuang, Jiaqing; Lo, Wai-Sum; Zhou, Li; Sun, Qi-Jun; Chan, Chi-Fai; Zhou, Ye; Han, Su-Ting; Yan, Yan; Wong, Wing-Tak; Wong, Ka-Leung; Roy, V A L

    2015-10-09

    Traditional utilization of photo-induced excitons is popularly but restricted in the fields of photovoltaic devices as well as photodetectors, and efforts on broadening its function have always been attempted. However, rare reports are available on organic field effect transistor (OFET) memory employing photo-induced charges. Here, we demonstrate an OFET memory containing a novel organic lanthanide complex Eu(tta)3ppta (Eu(tta)3 = Europium(III) thenoyltrifluoroacetonate, ppta = 2-phenyl-4,6-bis(pyrazol-1-yl)-1,3,5-triazine), in which the photo-induced charges can be successfully trapped and detrapped. The luminescent complex emits intense red emission upon ultraviolet (UV) light excitation and serves as a trapping element of holes injected from the pentacene semiconductor layer. Memory window can be significantly enlarged by light-assisted programming and erasing procedures, during which the photo-induced excitons in the semiconductor layer are separated by voltage bias. The enhancement of memory window is attributed to the increasing number of photo-induced excitons by the UV light. The charges are stored in this luminescent complex for at least 10(4) s after withdrawing voltage bias. The present study on photo-assisted novel memory may motivate the research on a new type of light tunable charge trapping photo-reactive memory devices.

  15. Photo-reactive charge trapping memory based on lanthanide complex

    NASA Astrophysics Data System (ADS)

    Zhuang, Jiaqing; Lo, Wai-Sum; Zhou, Li; Sun, Qi-Jun; Chan, Chi-Fai; Zhou, Ye; Han, Su-Ting; Yan, Yan; Wong, Wing-Tak; Wong, Ka-Leung; Roy, V. A. L.

    2015-10-01

    Traditional utilization of photo-induced excitons is popularly but restricted in the fields of photovoltaic devices as well as photodetectors, and efforts on broadening its function have always been attempted. However, rare reports are available on organic field effect transistor (OFET) memory employing photo-induced charges. Here, we demonstrate an OFET memory containing a novel organic lanthanide complex Eu(tta)3ppta (Eu(tta)3 = Europium(III) thenoyltrifluoroacetonate, ppta = 2-phenyl-4,6-bis(pyrazol-1-yl)-1,3,5-triazine), in which the photo-induced charges can be successfully trapped and detrapped. The luminescent complex emits intense red emission upon ultraviolet (UV) light excitation and serves as a trapping element of holes injected from the pentacene semiconductor layer. Memory window can be significantly enlarged by light-assisted programming and erasing procedures, during which the photo-induced excitons in the semiconductor layer are separated by voltage bias. The enhancement of memory window is attributed to the increasing number of photo-induced excitons by the UV light. The charges are stored in this luminescent complex for at least 104 s after withdrawing voltage bias. The present study on photo-assisted novel memory may motivate the research on a new type of light tunable charge trapping photo-reactive memory devices.

  16. Nanoengineered field induced charge separation membranes manufacture thereof

    DOEpatents

    O'Brien, Kevin C.; Haslam, Jeffery J.; Bourcier, William L.; Floyd, III, William Clary

    2016-08-02

    A device according to one embodiment includes a porous membrane having a surface charge and pore configuration characterized by a double layer overlap effect being present in pores of the membrane, where the porous membrane includes functional groups that preferentially interact with either cations or anions. A device according to another embodiment includes a porous membrane having a surface charge in pores thereof sufficient to impart anion or cation selectivity in the pores. Additional devices, systems and methods are also presented.

  17. Plasmon-induced charge separation: chemistry and wide applications

    PubMed Central

    Nishi, Hiroyasu; Ishida, Takuya

    2017-01-01

    Recent development of nanoplasmonics has stimulated chemists to utilize plasmonic nanomaterials for efficient and distinctive photochemical applications, and physicists to boldly go inside the “wet” chemistry world. The discovery of plasmon-induced charge separation (PICS) has even accelerated these trends. On the other hand, some confusion is found in discussions about PICS. In this perspective, we focus on differences between PICS and some other phenomena such as co-catalysis effect and plasmonic nanoantenna effect. In addition, materials and nanostructures suitable for PICS are shown, and characteristics and features unique to PICS are documented. Although it is well known that PICS has been applied to photovoltaics and photocatalysis, here light is shed on other applications that take better advantage of PICS, such as chemical sensing and biosensing, various photochromisms, photoswitchable functionalities and nanoscale photofabrication. PMID:28507702

  18. High-potential perfluorinated phthalocyanine-fullerene dyads for generation of high-energy charge-separated states: formation and photoinduced electron-transfer studies.

    PubMed

    Das, Sushanta K; Mahler, Andrew; Wilson, Angela K; D'Souza, Francis

    2014-08-25

    High oxidation potential perfluorinated zinc phthalocyanines (ZnF(n)Pcs) are synthesised and their spectroscopic, redox, and light-induced electron-transfer properties investigated systematically by forming donor-acceptor dyads through metal-ligand axial coordination of fullerene (C60) derivatives. Absorption and fluorescence spectral studies reveal efficient binding of the pyridine- (Py) and phenylimidazole-functionalised fullerene (C60Im) derivatives to the zinc centre of the F(n)Pcs. The determined binding constants, K, in o-dichlorobenzene for the 1:1 complexes are in the order of 10(4) to 10(5) M(-1); nearly an order of magnitude higher than that observed for the dyad formed from zinc phthalocyanine (ZnPc) lacking fluorine substituents. The geometry and electronic structure of the dyads are determined by using the B3LYP/6-31G* method. The HOMO and LUMO levels are located on the Pc and C60 entities, respectively; this suggests the formation of ZnF(n)Pc(.+)-C60Im(.-) and ZnF(n)Pc(.+)-C60Py(.-) (n=0, 8 or 16) intra-supramolecular charge-separated states during electron transfer. Electrochemical studies on the ZnPc-C60 dyads enable accurate determination of their oxidation and reduction potentials and the energy of the charge-separated states. The energy of the charge-separated state for dyads composed of ZnF(n)Pc is higher than that of normal ZnPc-C60 dyads and reveals their significance in harvesting higher amounts of light energy. Evidence for charge separation in the dyads is secured from femtosecond transient absorption studies in nonpolar toluene. Kinetic evaluation of the cation and anion radical ion peaks reveals ultrafast charge separation and charge recombination in dyads composed of perfluorinated phthalocyanine and fullerene; this implies their significance in solar-energy harvesting and optoelectronic device building applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Dissociation of doubly charged clusters of lithium acetate: Asymmetric fission and breakdown of the liquid drop model: Dissociation of doubly charged clusters of lithium acetate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Anil

    2016-06-08

    Unimolecular and collision-induced dissociation of doubly charged lithium acetate clusters, (CH3COOLi)nLi22+, demonstrated that Coulomb fission via charge separation is the dominant dissociation process with no contribution from the neutral evaporation processes for all such ions from the critical limit to larger cluster ions, although latter process have normally been observed in all earlier studies. These results are clearly in disagreement with the Rayleigh’s liquid drop model that has been used successfully to predict the critical size and explain the fragmentation behavior of multiply charged clusters.

  20. Reduced Charge Transfer Exciton Recombination in Organic Semiconductor Heterojunctions by Molecular Doping

    NASA Astrophysics Data System (ADS)

    Deschler, Felix; da Como, Enrico; Limmer, Thomas; Tautz, Raphael; Godde, Tillmann; Bayer, Manfred; von Hauff, Elizabeth; Yilmaz, Seyfullah; Allard, Sybille; Scherf, Ullrich; Feldmann, Jochen

    2011-09-01

    We investigate the effect of molecular doping on the recombination of electrons and holes localized at conjugated-polymer-fullerene interfaces. We demonstrate that a low concentration of p-type dopant molecules (<4% weight) reduces the interfacial recombination via charge transfer excitons and results in a favored formation of separated carriers. This is observed by the ultrafast quenching of photoluminescence from charge transfer excitons and the increase in photoinduced polaron density by ˜70%. The results are consistent with a reduced formation of emissive charge transfer excitons, induced by state filling of tail states.

  1. Poisson-Boltzmann theory of the charge-induced adsorption of semi-flexible polyelectrolytes.

    PubMed

    Ubbink, Job; Khokhlov, Alexei R

    2004-03-15

    A model is suggested for the structure of an adsorbed layer of a highly charged semi-flexible polyelectrolyte on a weakly charged surface of opposite charge sign. The adsorbed phase is thin, owing to the effective reversal of the charge sign of the surface upon adsorption, and ordered, owing to the high surface density of polyelectrolyte strands caused by the generally strong binding between polyelectrolyte and surface. The Poisson-Boltzmann equation for the electrostatic interaction between the array of adsorbed polyelectrolytes and the charged surface is solved for a cylindrical geometry, both numerically, using a finite element method, and analytically within the weak curvature limit under the assumption of excess monovalent salt. For small separations, repulsive surface polarization and counterion osmotic pressure effects dominate over the electrostatic attraction and the resulting electrostatic interaction curve shows a minimum at nonzero separations on the Angstrom scale. The equilibrium density of the adsorbed phase is obtained by minimizing the total free energy under the condition of equality of chemical potential and osmotic pressure of the polyelectrolyte in solution and in the adsorbed phase. For a wide range of ionic conditions and charge densities of the charged surface, the interstrand separation as predicted by the Poisson-Boltzmann model and the analytical theory closely agree. For low to moderate charge densities of the adsorbing surface, the interstrand spacing decreases as a function of the charge density of the charged surface. Above about 0.1 M excess monovalent salt, it is only weakly dependent on the ionic strength. At high charge densities of the adsorbing surface, the interstrand spacing increases with increasing ionic strength, in line with the experiments by Fang and Yang [J. Phys. Chem. B 101, 441 (1997)]. (c) 2004 American Institute of Physics.

  2. Active Colloids in Isotropic and Anisotropic Electrolytes

    NASA Astrophysics Data System (ADS)

    Peng, Chenhui

    Electrically driven flows of fluids with respect to solid surfaces (electro-osmosis) and transport of particles in fluids (electrophoresis), collectively called electrokinetics, is a technologically important area of modern science. In this thesis, we study the electrokinetic phenomena in both isotropic and anisotropic fluids. A necessary condition of electrokinetics is separation of electric charges in space. In classic linear electrokinetics, with an isotropic electrolyte such as water, the charges are separated through dissociation of ionic groups at the solid-fluid interface; presence of the electric field is not required. In the nonlinear electrokinetics, the charges are separated with the assistance of the electric field. In the so-called induced-charge electro-osmosis (ICEO) the electric field separates charges near strongly polarizable surfaces such as metals. We establish the patterns of electro-osmotic velocities caused by nonlinear ICEO around an immobilized metallic and Janus (metallic-dielectric) spheres placed in water. In the case of the Janus particles, the flows are asymmetric, which results in pumping of water around the particle if it is immobilized, or in electrophoresis is the particle is free. When the isotropic electrolyte such as water is replaced with a LC electrolyte, the mechanism of the field-assisted charge separation becomes very different. Namely, the charges are separated at the director gradients, thanks to the anisotropy of electric conductivity and dielectric permittivity of the LC. These distortions can be created by the colloidal particles placed in the LC. We demonstrate the occurrence of nonlinear LC-enabled electro-osmosis (LCEO) by studying the flow patterns around colloidal spheres with different surface anchoring. LCEO velocities grow with the square of the electric field, which allows one to use an AC field to drive steady flows and to avoid electrode damage. Director distortions needed to trigger the LCEO can also be designed by surface-patterned modulated molecular orientation. The surface patterning is produced by photo-alignment. In the presence of an electric field, the spatially varying orientation induces space charges that trigger flows of the LC. The active patterned LC electrolyte converts the electric energy into the LC flows and transport of embedded particles of any type (fluid, solid, gaseous) along a predesigned trajectory, posing no limitation on the electric nature (charge, polarizability) of these particles and interfaces. The patterned LC electrolyte also induces persistent vortices of controllable rotation speed and direction that are quintessential for micro- and nanoscale mixing applications. The thesis also describes transport and placement of colloids by elasticity of a nematic LC with spatially varying molecular orientation. Colloidal particles in nematic environment are subject to the long-range elastic forces originating in the orientational order of the nematic. Gradients of the orientational order create an elastic energy landscape that drives the colloids into locations with preferred type of deformations. As an example, we demonstrate that colloidal spheres with perpendicular surface anchoring are driven into the regions of maximum splay, while spheres with tangential surface anchoring settle into the regions of bend. Elastic forces responsible for preferential placement are measured by exploring overdamped dynamics of the colloids. The results obtained in this thesis open new opportunities for design of materials and devices for micropumping, mixing, lab-on-a-chip and biosensing applications.

  3. Charge Separation and Triplet Exciton Formation Pathways in Small-Molecule Solar Cells as Studied by Time-Resolved EPR Spectroscopy

    DOE PAGES

    Thomson, Stuart A. J.; Niklas, Jens; Mardis, Kristy L.; ...

    2017-09-13

    Organic solar cells are a promising renewable energy technology, offering the advantages of mechanical flexibility and solution processability. An understanding of the electronic excited states and charge separation pathways in these systems is crucial if efficiencies are to be further improved. Here we use light induced electron paramagnetic resonance (LEPR) spectroscopy and density functional theory calculations (DFT) to study the electronic excited states, charge transfer (CT) dynamics and triplet exciton formation pathways in blends of the small molecule donors (DTS(FBTTh 2) 2, DTS(F2BTTh 2) 2, DTS(PTTh 2) 2, DTG(FBTTh 2) 2 and DTG(F2BTTh 2) 2) with the fullerene derivative PCmore » 61BM. Using high frequency EPR the g-tensor of the positive polaron on the donor molecules was determined. The experimental results are compared with DFT calculations which reveal that the spin density of the polaron is distributed over a dimer or trimer. Time-resolved EPR (TR-EPR) spectra attributed to singlet CT states were identified and the polarization patterns revealed similar charge separation dynamics in the four fluorobenzothiadiazole donors, while charge separation in the DTS(PTTh 2) 2 blend is slower. Using TR-EPR we also investigated the triplet exciton formation pathways in the blend. The polarization patterns reveal that the excitons originate from both intersystem crossing (ISC) and back electron transfer (BET) processes. The DTS(PTTh 2) 2 blend was found to contain substantially more triplet excitons formed by BET than the fluorobenzothiadiazole blends. As a result, the higher BET triplet exciton population in the DTS(PTTh 2) 2 blend is in accordance with the slower charge separation dynamics observed in this blend.« less

  4. Charge Separation and Triplet Exciton Formation Pathways in Small Molecule Solar Cells as Studied by Time-resolved EPR Spectroscopy.

    PubMed

    Thomson, Stuart A J; Niklas, Jens; Mardis, Kristy L; Mallares, Christopher; Samuel, Ifor D W; Poluektov, Oleg G

    2017-10-19

    Organic solar cells are a promising renewable energy technology, offering the advantages of mechanical flexibility and solution processability. An understanding of the electronic excited states and charge separation pathways in these systems is crucial if efficiencies are to be further improved. Here we use light induced electron paramagnetic resonance (LEPR) spectroscopy and density functional theory calculations (DFT) to study the electronic excited states, charge transfer (CT) dynamics and triplet exciton formation pathways in blends of the small molecule donors (DTS(FBTTh 2 ) 2 , DTS(F 2 BTTh 2 ) 2 , DTS(PTTh 2 ) 2 , DTG(FBTTh 2 ) 2 and DTG(F 2 BTTh 2 ) 2 ) with the fullerene derivative PC 61 BM. Using high frequency EPR the g-tensor of the positive polaron on the donor molecules was determined. The experimental results are compared with DFT calculations which reveal that the spin density of the polaron is distributed over a dimer or trimer. Time-resolved EPR (TR-EPR) spectra attributed to singlet CT states were identified and the polarization patterns revealed similar charge separation dynamics in the four fluorobenzothiadiazole donors, while charge separation in the DTS(PTTh 2 ) 2 blend is slower. Using TR-EPR we also investigated the triplet exciton formation pathways in the blend. The polarization patterns reveal that the excitons originate from both intersystem crossing (ISC) and back electron transfer (BET) processes. The DTS(PTTh 2 ) 2 blend was found to contain substantially more triplet excitons formed by BET than the fluorobenzothiadiazole blends. The higher BET triplet exciton population in the DTS(PTTh 2 ) 2 blend is in accordance with the slower charge separation dynamics observed in this blend.

  5. Charge Separation and Triplet Exciton Formation Pathways in Small-Molecule Solar Cells as Studied by Time-Resolved EPR Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, Stuart A. J.; Niklas, Jens; Mardis, Kristy L.

    Organic solar cells are a promising renewable energy technology, offering the advantages of mechanical flexibility and solution processability. An understanding of the electronic excited states and charge separation pathways in these systems is crucial if efficiencies are to be further improved. Here we use light induced electron paramagnetic resonance (LEPR) spectroscopy and density functional theory calculations (DFT) to study the electronic excited states, charge transfer (CT) dynamics and triplet exciton formation pathways in blends of the small molecule donors (DTS(FBTTh 2) 2, DTS(F2BTTh 2) 2, DTS(PTTh 2) 2, DTG(FBTTh 2) 2 and DTG(F2BTTh 2) 2) with the fullerene derivative PCmore » 61BM. Using high frequency EPR the g-tensor of the positive polaron on the donor molecules was determined. The experimental results are compared with DFT calculations which reveal that the spin density of the polaron is distributed over a dimer or trimer. Time-resolved EPR (TR-EPR) spectra attributed to singlet CT states were identified and the polarization patterns revealed similar charge separation dynamics in the four fluorobenzothiadiazole donors, while charge separation in the DTS(PTTh 2) 2 blend is slower. Using TR-EPR we also investigated the triplet exciton formation pathways in the blend. The polarization patterns reveal that the excitons originate from both intersystem crossing (ISC) and back electron transfer (BET) processes. The DTS(PTTh 2) 2 blend was found to contain substantially more triplet excitons formed by BET than the fluorobenzothiadiazole blends. As a result, the higher BET triplet exciton population in the DTS(PTTh 2) 2 blend is in accordance with the slower charge separation dynamics observed in this blend.« less

  6. Photoinitated charge separation in a hybrid titanium dioxide metalloporphyrin peptide material

    NASA Astrophysics Data System (ADS)

    Fry, H. Christopher; Liu, Yuzi; Dimitrijevic, Nada M.; Rajh, Tijana

    2014-08-01

    In natural systems, electron flow is mediated by proteins that spatially organize donor and acceptor molecules with great precision. Achieving this guided, directional flow of information is a desirable feature in photovoltaic media. Here, we design self-assembled peptide materials that organize multiple electronic components capable of performing photoinduced charge separation. Two peptides, c16-AHL3K3-CO2H and c16-AHL3K9-CO2H, self-assemble into fibres and provide a scaffold capable of binding a metalloporphyrin via histidine axial ligation and mineralize titanium dioxide (TiO2) on the lysine-rich surface of the resulting fibrous structures. Electron paramagnetic resonance studies of this self-assembled material under continuous light excitation demonstrate charge separation induced by excitation of the metalloporphyrin and mediated by the peptide assembly structure. This approach to dye-sensitized semiconducting materials offers a means to spatially control the dye molecule with respect to the semiconducting material through careful, strategic peptide design.

  7. Collision-Induced Dissociation of Electrosprayed Protein Complexes: An All-Atom Molecular Dynamics Model with Mobile Protons.

    PubMed

    Popa, Vlad; Trecroce, Danielle A; McAllister, Robert G; Konermann, Lars

    2016-06-16

    Electrospray ionization mass spectrometry (ESI-MS) has become an indispensable technique for examining noncovalent protein complexes. Collision-induced dissociation (CID) of these multiply protonated gaseous ions usually culminates in ejection of a single subunit with a disproportionately large amount of charge. Experiments suggest that this process involves subunit unfolding prior to separation from the residual complex, as well as H(+) migration onto the unravelling chain. Molecular dynamics (MD) simulations are a promising avenue for gaining detailed insights into these CID events. Unfortunately, typical MD algorithms do not allow for mobile protons. Here we address this limitation by implementing a strategy that combines atomistic force fields (such as OPLS/AA and CHARMM36) with a proton hopping algorithm, focusing on the tetrameric complexes transthyretin and streptavidin. Protons are redistributed over all acidic and basic sites in 20 ps intervals, subject to an energy function that reflects electrostatic interactions and proton affinities. Our simulations predict that nativelike conformers at the onset of collisional heating contain multiple salt bridges. Collisional heating initially causes subtle structural changes that lead to a gradual decline of these zwitterionic patterns. Many of the MD runs show gradual unfolding of a single subunit in conjunction with H(+) migration, culminating in subunit separation from the complex. However, there are also instances where two or more chains start to unfold simultaneously, giving rise to charge competition. The scission point where the "winning" subunit separates from the complex can be attained for different degrees of unfolding, giving rise to product ions in various charge states. The simulated product ion distributions are in close agreement with experimental CID data. Proton enrichment in the departing subunit is driven by charge-charge repulsion, but the combination of salt bridge depletion, charge migration, and proton affinity causes surprising compensation effects among the various energy terms. It appears that this work provides the most detailed account to date of the mechanism whereby noncovalent protein complexes disassemble during CID.

  8. Dual initiation strip charge apparatus and methods for making and implementing the same

    DOEpatents

    Jakaboski, Juan-Carlos [Albuquerque, NM; Todd,; Steven, N [Rio Rancho, NM; Polisar, Stephen [Albuquerque, NM; Hughs, Chance [Tijeras, NM

    2011-03-22

    A Dual Initiation Strip Charge (DISC) apparatus is initiated by a single initiation source and detonates a strip of explosive charge at two separate contacts. The reflection of explosively induced stresses meet and create a fracture and breach a target along a generally single fracture contour and produce generally fragment-free scattering and no spallation. Methods for making and implementing a DISC apparatus provide numerous advantages over previous methods of creating explosive charges by utilizing steps for rapid prototyping; by implementing efficient steps and designs for metering consistent, repeatable, and controlled amount of high explosive; and by utilizing readily available materials.

  9. Charge-induced fluctuation forces in graphitic nanostructures

    DOE PAGES

    Drosdoff, D.; Bondarev, Igor V.; Widom, Allan; ...

    2016-01-21

    Charge fluctuations in nanocircuits with capacitor components are shown to give rise to a novel type of long-ranged interaction, which coexist with the regular Casimir–van derWaals force. The developed theory distinguishes between thermal and quantum mechanical effects, and it is applied to capacitors involving graphene nanostructures. The charge fluctuations mechanism is captured via the capacitance of the system with geometrical and quantum mechanical components. The dependence on the distance separation, temperature, size, and response properties of the system shows that this type of force can have a comparable and even dominant effect to the Casimir interaction. Lastly, our results stronglymore » indicate that fluctuation-induced interactions due to various thermodynamic quantities can have important thermal and quantum mechanical contributions at the microscale and the nanoscale.« less

  10. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1997-01-01

    Electrophoresis has long been recognized as an effective analytic technique for the separation of proteins and other charged species, however attempts at scaling up to accommodate commercial volumes have met with limited success. In this report we describe a novel electrophoretic separation technique - Binary Oscillatory Crossflow Electrophoresis (BOCE). Numerical simulations indicate that the technique has the potential for preparative scale throughputs with high resolution, while simultaneously avoiding many problems common to conventional electrophoresis. The technique utilizes the interaction of an oscillatory electric field and a transverse oscillatory shear flow to create an active binary filter for the separation of charged protein species. An oscillatory electric field is applied across the narrow gap of a rectangular channel inducing a periodic motion of charged protein species. The amplitude of this motion depends on the dimensionless electrophoretic mobility, alpha = E(sub o)mu/(omega)d, where E(sub o) is the amplitude of the electric field oscillations, mu is the dimensional mobility, omega is the angular frequency of oscillation and d is the channel gap width. An oscillatory shear flow is induced along the length of the channel resulting in the separation of species with different mobilities. We present a model that predicts the oscillatory behavior of charged species and allows estimation of both the magnitude of the induced convective velocity and the effective diffusivity as a function of a in infinitely long channels. Numerical results indicate that in addition to the mobility dependence, the steady state behavior of solute species may be strongly affected by oscillating fluid into and out of the active electric field region at the ends of the cell. The effect is most pronounced using time dependent shear flows of the same frequency (cos((omega)t)) flow mode) as the electric field oscillations. Under such conditions, experiments indicate that solute is drawn into the cell from reservoirs at both ends of the cell leading to a large mass build up. As a consequence, any initially induced mass flux will vanish after short times. This effect was not captured by the infinite channel model and hence numerical and experimental results deviated significantly. The revised model including finite cell lengths and reservoir volumes allowed quantitative predictions of the time history of the concentration profile throughout the system. This latter model accurately describes the fluxes observed for both oscillatory flow modes in experiments using single protein species. Based on the results obtained from research funded under NASA grant NAG-8-1080.S, we conclude that binary separations are not possible using purely oscillatory flow modes because of end effects associated with the cos((omega)t) mode. Our research shows, however, that a combination of cos(2(omega)t) and steady flow should lead to efficient separation free of end effects. This possibility is currently under investigation.

  11. Spin dynamics of light-induced charge separation in composites of semiconducting polymers and PC60BM revealed using Q-band pulse EPR.

    PubMed

    Lukina, E A; Suturina, E; Reijerse, E; Lubitz, W; Kulik, L V

    2017-08-23

    Light-induced processes in composites of semiconducting polymers and fullerene derivatives have been widely studied due to their usage as active layers of organic solar cells. However the process of charge separation under light illumination - the key process of an organic solar cell is not well understood yet. Here we report a Q-band pulse electron paramagnetic resonance study of composites of the fullerene derivative PC 60 BM ([6,6]-phenyl-C 61 -butyric acid methyl ester) with different p-type semiconducting polymers regioregular and regiorandom P3HT (poly(3-hexylthiophene-2,5-diyl), MEH-PPV (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]), PCDTBT (poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]), PTB7 (poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}))), resulting in a detailed description of the in-phase laser flash-induced electron spin echo (ESE) signal. We found that in organic donor-acceptor composites the laser flash simultaneously induces species of two types: a polymer˙ + /fullerene˙ - spin-correlated polaron pair (SCPP) with an initial singlet spin state and (nearly) free polymer˙ + and fullerene˙ - species with non-equilibrium spin polarization. Species of the first type (SCPP) are well-known for polymer/fullerene blends and are usually associated with a charge-separated state. Also, spin polarization of long-living free species (polarons in deep traps) is affected by the laser flash, which is the third contribution to the flash-induced ESE signal. A protocol for extracting the in-phase ESE signal of the SCPP based on the dependence of the microwave nutation frequency on the strength of the spin coupling within the polaron pair was developed. Nutation experiments revealed an unusual pattern of the SCPP in RR-P3HT/PC 60 BM composites, from which the strength of the exchange interaction between the polymer˙ + and fullerene˙ - was extracted. In composites with low-efficient polymers the contribution of the SCPP to the in-phase ESE signal is high, while in composites with high-efficient polymers it is low. This finding can be used as a selection criterion of charge separation efficiency in the polymer/fullerene composites.

  12. Tuning transport selectivity of ionic species by phosphoric acid gradient in positively charged nanochannel membranes.

    PubMed

    Yang, Meng; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Fan, Xin; Liu, Wei; Liu, Xizhen; Liu, Jianbo; Huang, Jin

    2015-02-03

    The transport of ionic species through a nanochannel plays important roles in fundamental research and practical applications of the nanofluidic device. Here, we demonstrated that ionic transport selectivity of a positively charged nanochannel membrane can be tuned under a phosphoric acid gradient. When phosphoric acid solution and analyte solution were connected by the positively charged nanochannel membrane, the faster-moving analyte through the positively charged nanochannel membrane was the positively charged dye (methylviologen, MV(2+)) instead of the negatively charged dye (1,5-naphthalene disulfonate, NDS(2-)). In other words, a reversed ion selectivity of the nanochannel membranes can be found. It can be explained as a result of the combination of diffusion, induced electroosmosis, and induced electrophoresis. In addition, the influencing factors of transport selectivity, including concentration of phosphoric acid, penetration time, and volume of feed solution, were also investigated. The results showed that the transport selectivity can further be tuned by adjusting these factors. As a method of tuning ionic transport selectivity by establishing phosphoric acid gradient, it will be conducive to improving the separation of ionic species.

  13. Symmetry-protected topological phases of one-dimensional interacting fermions with spin-charge separation

    NASA Astrophysics Data System (ADS)

    Montorsi, Arianna; Dolcini, Fabrizio; Iotti, Rita C.; Rossi, Fausto

    2017-06-01

    The low energy behavior of a huge variety of one-dimensional interacting spinful fermionic systems exhibits spin-charge separation, described in the continuum limit by two sine-Gordon models decoupled in the charge and spin channels. Interaction is known to induce, besides the gapless Luttinger liquid phase, eight possible gapped phases, among which are the Mott, Haldane, charge-/spin-density, and bond-ordered wave insulators, and the Luther Emery liquid. Here we prove that some of these physically distinct phases have nontrivial topological properties, notably the presence of degenerate protected edge modes with fractionalized charge/spin. Moreover, we show that the eight gapped phases are in one-to-one correspondence with the symmetry-protected topological (SPT) phases classified by group cohomology theory in the presence of particle-hole symmetry P. The latter result is also exploited to characterize SPT phases by measurable nonlocal order parameters which follow the system evolution to the quantum phase transition. The implications on the appearance of exotic orders in the class of microscopic Hubbard Hamiltonians, possibly without P symmetry at higher energies, are discussed.

  14. Near infrared light induced plasmonic hot hole transfer at a nano-heterointerface.

    PubMed

    Lian, Zichao; Sakamoto, Masanori; Matsunaga, Hironori; Vequizo, Junie Jhon M; Yamakata, Akira; Haruta, Mitsutaka; Kurata, Hiroki; Ota, Wataru; Sato, Tohru; Teranishi, Toshiharu

    2018-06-13

    Localized surface plasmon resonance (LSPR)-induced hot-carrier transfer is a key mechanism for achieving artificial photosynthesis using the whole solar spectrum, even including the infrared (IR) region. In contrast to the explosive development of photocatalysts based on the plasmon-induced hot electron transfer, the hole transfer system is still quite immature regardless of its importance, because the mechanism of plasmon-induced hole transfer has remained unclear. Herein, we elucidate LSPR-induced hot hole transfer in CdS/CuS heterostructured nanocrystals (HNCs) using time-resolved IR (TR-IR) spectroscopy. TR-IR spectroscopy enables the direct observation of carrier in a LSPR-excited CdS/CuS HNC. The spectroscopic results provide insight into the novel hole transfer mechanism, named plasmon-induced transit carrier transfer (PITCT), with high quantum yields (19%) and long-lived charge separations (9.2 μs). As an ultrafast charge recombination is a major drawback of all plasmonic energy conversion systems, we anticipate that PITCT will break the limit of conventional plasmon-induced energy conversion.

  15. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.

    PubMed

    Hammarström, Leif

    2015-03-17

    The conversion and storage of solar energy into a fuel holds promise to provide a significant part of the future renewable energy demand of our societies. Solar energy technologies today generate heat or electricity, while the large majority of our energy is used in the form of fuels. Direct conversion of solar energy to a fuel would satisfy our needs for storable energy on a large scale. Solar fuels can be generated by absorbing light and converting its energy to chemical energy by electron transfer leading to separation of electrons and holes. The electrons are used in the catalytic reduction of a cheap substrate with low energy content into a high-energy fuel. The holes are filled by oxidation of water, which is the only electron source available for large scale solar fuel production. Absorption of a single photon typically leads to separation of a single electron-hole pair. In contrast, fuel production and water oxidation are multielectron, multiproton reactions. Therefore, a system for direct solar fuel production must be able to accumulate the electrons and holes provided by the sequential absorption of several photons in order to complete the catalytic reactions. In this Account, the process is termed accumulative charge separation. This is considerably more complicated than charge separation on a single electron level and needs particular attention. Semiconductor materials and molecular dyes have for a long time been optimized for use in photovoltaic devices. Efforts are made to develop new systems for light harvesting and charge separation that are better optimized for solar fuel production than those used in the early devices presented so far. Significant progress has recently been made in the discovery and design of better homogeneous and heterogeneous catalysts for solar fuels and water oxidation. While the heterogeneous ones perform better today, molecular catalysts based on transition metal complexes offer much greater tunability of electronic and structural properties, they are typically more amenable to mechanistic analysis, and they are small and therefore require less material. Therefore, they have arguably greater potential as future efficient catalysts but must be efficiently coupled to accumulative charge separation. This Account discusses accumulative charge separation with focus on molecular and molecule-semiconductor hybrid systems. The coupling between charge separation and catalysis involves many challenges that are often overlooked, and they are not always apparent when studying water oxidation and fuel formation as separate half-reactions with sacrificial agents. Transition metal catalysts, as well as other multielectron donors and acceptors, cycle through many different states that may quench the excited sensitizer by nonproductive pathways. Examples where this has been shown, often with ultrafast rates, are reviewed. Strategies to avoid these competing energy-loss reactions and still obtain efficient coupling of charge separation to catalysis are discussed. This includes recent examples of dye-sensitized semiconductor devices with molecular catalysts and dyes that realize complete water splitting, albeit with limited efficiency.

  16. Enhancement of plasmon-induced charge separation efficiency by coupling silver nanocubes with a thin gold film

    NASA Astrophysics Data System (ADS)

    Akiyoshi, Kazutaka; Saito, Koichiro; Tatsuma, Tetsu

    2016-10-01

    Plasmon-induced charge separation (PICS), in which an energetic electron is injected from a plasmonic nanoparticle (NP) to a semiconductor on contact, is often inhibited by a protecting agent adsorbed on the NP. We addressed this issue for an Ag nanocube-TiO2 system by coating it with a thin Au layer or by inserting the Au layer between the nanocubes (NCs) and TiO2. Both of the electrodes exhibit much higher photocurrents due to PICS than the electrodes without the Au film or the Ag NCs. These photocurrent enhancements can be explained in terms of PICS with accelerated electron transfer, in which electron injection from the Ag NCs or Ag@Au core-shell NCs to TiO2 is promoted by the Au film, or PICS enhanced by a nanoantenna effect, in which the electron injection from the Au film to TiO2 is enhanced by optical near field generated by the Ag NC.

  17. Ca2+-induced phase separation in black lipid membranes and its effect on the transport of a hydrophobic ion.

    PubMed

    Miller, A; Schmidt, G; Eibl, H; Knoll, W

    1985-03-14

    Voltage jump-current relaxation studies have been performed with dipicrylamine-doped black membranes of binary lipid mixtures. As in the case of the carrier-mediated ion transport (Schmidt, G., Eibl, H. and Knoll, W. (1982) J. Membrane Biol. 70, 147-155) no evidence was found that the neutral lipid phosphatidylcholine (DPMPC) and the charged phosphatidic acid (DPMPA) are heterogeneously distributed in the membrane over the whole range of composition. However, besides a continuous dilution of the surface charges of DPMPA by the addition of DPMPC molecules, different structural properties of mixed membranes influence the kinetics of the dipicrylamine transport. The addition of Ca2+ to the electrolyte induces a lipid phase separation within the membrane into two fluid phases of distinctly different characteristics of the translocation of hydrophobic ions. Thus, it is possible to determine a preliminary composition phase diagram for the DPMPA/DPMPC mixtures as a function of the Ca2+ concentration.

  18. Facile fabrication of BiVO4 nanofilms with controlled pore size and their photoelectrochemical performances

    NASA Astrophysics Data System (ADS)

    Feng, Chenchen; Jiao, Zhengbo; Li, Shaopeng; Zhang, Yan; Bi, Yingpu

    2015-12-01

    We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO4 photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures.We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO4 photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06584d

  19. Complex coacervation of supercharged proteins with polyelectrolytes.

    PubMed

    Obermeyer, Allie C; Mills, Carolyn E; Dong, Xue-Hui; Flores, Romeo J; Olsen, Bradley D

    2016-04-21

    Complexation of proteins with polyelectrolytes or block copolymers can lead to phase separation to generate a coacervate phase or self-assembly of coacervate core micelles. However, many proteins do not coacervate at conditions near neutral pH and physiological ionic strength. Here, protein supercharging is used to systematically explore the effect of protein charge on the complex coacervation with polycations. Four model proteins were anionically supercharged to varying degrees as quantified by mass spectrometry. Proteins phase separated with strong polycations when the ratio of negatively charged residues to positively charged residues on the protein (α) was greater than 1.1-1.2. Efficient partitioning of the protein into the coacervate phase required larger α (1.5-2.0). The preferred charge ratio for coacervation was shifted away from charge symmetry for three of the four model proteins and indicated an excess of positive charge in the coacervate phase. The composition of protein and polymer in the coacervate phase was determined using fluorescently labeled components, revealing that several of the coacervates likely have both induced charging and a macromolecular charge imbalance. The model proteins were also encapsulated in complex coacervate core micelles and micelles formed when the protein charge ratio α was greater than 1.3-1.4. Small angle neutron scattering and transmission electron microscopy showed that the micelles were spherical. The stability of the coacervate phase in both the bulk and micelles improved to increased ionic strength as the net charge on the protein increased. The micelles were also stable to dehydration and elevated temperatures.

  20. Mesons from Laser-Induced Processes in Ultra-Dense Hydrogen H(0)

    PubMed Central

    2017-01-01

    Large signals of charged light mesons are observed in the laser-induced particle flux from ultra-dense hydrogen H(0) layers. The mesons are formed in such layers on metal surfaces using < 200 mJ laser pulse-energy. The time variation of the signal to metal foil collectors and the magnetic deflection to a movable pin collector are now studied. Relativistic charged particles with velocity up to 500 MeV u-1 thus 0.75 c are observed. Characteristic decay time constants for meson decay are observed, for charged and neutral kaons and also for charged pions. Magnetic deflections agree with charged pions and kaons. Theoretical predictions of the decay chains from kaons to muons in the particle beam agree with the results. Muons are detected separately by standard scintillation detectors in laser-induced processes in ultra-dense hydrogen H(0) as published previously. The muons formed do not decay appreciably within the flight distances used here. Most of the laser-ejected particle flux with MeV energy is not deflected by the magnetic fields and is thus neutral, either being neutral kaons or the ultra-dense HN(0) precursor clusters. Photons give only a minor part of the detected signals. PACS: 67.63.Gh, 14.40.-n, 79.20.Ds, 52.57.-z. PMID:28081199

  1. Light-induced charge separation across bio-inorganic interface.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimitrijevic, N. M.; Rajh, T.; De La Garza, L.

    Rational design of hybrid biomolecule - nanoparticulate semiconductor conjugates enables coupling of functionality of biomolecules with the capability of semiconductors for solar energy capture, that can have potential application in energy conversion, sensing and catalysis. The particular challenge is to obtain efficient charge separation analogous to the natural photosynthesis process. The synthesis of axially anisotropic TiO{sub 2} nano-objects such as tubes, rods and bricks, as well as spherical and faceted nanoparticles has been developed in our laboratory. Depending on their size and shape, these nanostructures exhibit different domains of crystallinity, surface areas and aspect ratios. Moreover, in order to accommodatemore » for high curvature in nanoscale regime, the surfaces of TiO{sub 2} nano-objects reconstructs resulting in changes in the coordination of surface Ti atoms from octahedral (D{sub 2d}) to square pyramidal structures (C{sub 4v}). The formation of these coordinatively unsaturated Ti atoms, thus depends strongly on the size and shape of nanocrystallites and affects trapping and reactivity of photogenerated charges. We have exploited these coordinatively unsaturated Ti atoms to coupe electron-donating (such as dopamine) and electron-accepting (pyrroloquinoline quinone) conductive linkers that allow wiring of biomolecules and proteins resulting in enhanced charge separation which increases the yield of ensuing chemical transformations.« less

  2. Phase separation and long-wavelength charge instabilities in spin-orbit coupled systems

    NASA Astrophysics Data System (ADS)

    Seibold, G.; Bucheli, D.; Caprara, S.; Grilli, M.

    2015-01-01

    We investigate a two-dimensional electron model with Rashba spin-orbit interaction where the coupling constant g=g(n) depends on the electronic density. It is shown that this dependence may drive the system unstable towards a long-wavelength charge density wave (CDW) where the associated second-order instability occurs in close vicinity to global phase separation. For very low electron densities the CDW instability is nesting-induced and the modulation follows the Fermi momentum kF. At higher density the instability criterion becomes independent of kF and the system may become unstable in a broad momentum range. Finally, upon filling the upper spin-orbit split band, finite momentum instabilities disappear in favor of phase separation alone. We discuss our results with regard to the inhomogeneous phases observed at the LaAlO3/SrTiO3 or LaTiO3/SrTiO3 interfaces.

  3. Electron beam influence on the carbon contamination of electron irradiated hydroxyapatite thin films

    NASA Astrophysics Data System (ADS)

    Hristu, Radu; Stanciu, Stefan G.; Tranca, Denis E.; Stanciu, George A.

    2015-08-01

    Electron beam irradiation which is considered a reliable method for tailoring the surface charge of hydroxyapatite is hindered by carbon contamination. Separating the effects of the carbon contamination from those of irradiation-induced trapped charge is important for a wide range of biological applications. In this work we focus on the understanding of the electron-beam-induced carbon contamination with special emphasis on the influence of the electron irradiation parameters on this phenomenon. Phase imaging in atomic force microscopy is used to evaluate the influence of electron energy, beam current and irradiation time on the shape and size of the resulted contamination patterns. Different processes involved in the carbon contamination of hydroxyapatite are discussed.

  4. A quantitative structure–function relationship for the Photosystem II reaction center: Supermolecular behavior in natural photosynthesis

    PubMed Central

    Barter, Laura M. C.; Durrant, James R.; Klug, David R.

    2003-01-01

    Light-induced charge separation is the primary photochemical event of photosynthesis. Efficient charge separation in photosynthetic reaction centers requires the balancing of electron and excitation energy transfer processes, and in Photosystem II (PSII), these processes are particularly closely entangled. Calculations that treat the cofactors of the PSII reaction center as a supermolecular complex allow energy and electron transfer reactions to be described in a unified way. This calculational approach is shown to be in good agreement with experimentally observed energy and electron transfer dynamics. This supermolecular view also correctly predicts the effect of changing the redox potentials of cofactors by site-directed mutagenesis, thus providing a unified and quantitative structure–function relationship for the PSII reaction center. PMID:12538865

  5. Dendronized fullerene-porphyrin conjugates in ortho, meta, and para positions: a charge-transfer assay.

    PubMed

    Krokos, Evangelos; Schubert, Christina; Spänig, Fabian; Ruppert, Michaela; Hirsch, Andreas; Guldi, Dirk M

    2012-06-01

    The physicochemical characterization, that is, ground and excited state, of a new series of dendronized porphyrin/fullerene electron donor-acceptor conjugates in nonaqueous and aqueous environments is reported. In contrast to previous work, we detail the charge-separation and charge-recombination dynamics in zinc and copper metalloporphyrins as a function of first- and second-generation dendrons as well as a function of ortho, meta, and para substitution. Both have an appreciable impact on the microenvironments of the redox-active constituents, namely the porphyrins and the fullerenes. As a matter of fact, the resulting charge-transfer dynamics were considerably impacted by the interplay between the associated forces that reach from dendron-induced shielding to dipole-charge interactions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Electrochemical capacitance modulation in an interacting mesoscopic capacitor induced by internal charge transfer

    NASA Astrophysics Data System (ADS)

    Liu, Wei; He, Jianhong; Guo, Huazhong; Gao, Jie

    2018-04-01

    We report experiments on the dynamic response of an interacting mesoscopic capacitor consisting of a quantum dot with two confined spin-split levels of the lowest Landau level. In high magnetic fields, states inside the dot are regulated by a mixture of Coulomb interaction and Landau-level quantization, and electrons distribute on two spatially separated regions. Quantum point contact voltage and magnetic field are employed to manipulate the number and distribution of electrons inside the quantum dot. We find that the periodicity of the electrochemical capacitance oscillations is dominated by the charging energy, and their amplitudes, due to internal charge transfer and strong internal capacitive coupling, show rich variations of modulations. Magnetocapacitance displays a sawtoothlike manner and may differ in tooth directions for different voltages, which, we demonstrate, result from a sawtoothlike electrochemical potential change induced by internal charge transfer and field-sensitive electrostatic potential. We further build a charge stability diagram, which, together with all other capacitance properties, is consistently interpreted in terms of a double-dot model. The demonstrated technique is of interest as a tool for fast and sensitive charge state readout of a double-quantum-dot qubit in the gigahertz frequency quantum electronics.

  7. Impedance simulation for LEReC booster cavity transformed from ERL gun cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chuyu

    2015-11-24

    Wake impedance induced energy spread is a concern for the low energy cooling electron beam. The impedance simulation of the booster cavity for the LEReC projection is presented in this report. The simulation is done for both non-relativistic and ultra-relativistic cases. The space charge impedance in the first case is discussed. For impedance budget consideration of the electron machine, only simulation of the geometrical impedance in the latter case is necessary since space charge is considered separately.

  8. Electroosmotic flow in a microcavity with nonuniform surface charges.

    PubMed

    Halpern, David; Wei, Hsien-Hung

    2007-08-28

    In this work, we theoretically explore the characteristics of electroosmostic flow (EOF) in a microcavity with nonuniform surface charges. It is well known that a uniformly charged EOF does not give rise to flow separation because of its irrotational nature, as opposed to the classical problem of viscous flow past a cavity. However, if the cavity walls bear nonuniform surface charges, then the similitude between electric and flow fields breaks down, leading to the generation of vorticity in the cavity. Because this vorticity must necessarily diffuse into the exterior region that possesses a zero vorticity set by a uniform EOF, a new flow structure emerges. Assuming Stokes flow, we employ a boundary element method to explore how a nonuniform charge distribution along the cavity surface affects the flow structure. The results show that the stream can be susceptible to flow separation and exhibits a variety of flow structures, depending on the distributions of zeta potentials and the aspect ratio of the cavity. The interactions between patterned EOF vortices and Moffatt eddies are further demonstrated for deep cavities. This work not only has implications for electrokinetic flow induced by surface imperfections but also provides optimal strategies for achieving effective mixing in microgrooves.

  9. Enhanced Solar Cell Conversion Efficiency of InGaN/GaN Multiple Quantum Wells by Piezo-Phototronic Effect.

    PubMed

    Jiang, Chunyan; Jing, Liang; Huang, Xin; Liu, Mengmeng; Du, Chunhua; Liu, Ting; Pu, Xiong; Hu, Weiguo; Wang, Zhong Lin

    2017-09-26

    The piezo-phototronic effect is the tuning of piezoelectric polarization charges at the interface to largely enhance the efficiency of optoelectronic processes related to carrier separation or recombination. Here, we demonstrated the enhanced short-circuit current density and the conversion efficiency of InGaN/GaN multiple quantum well solar cells with an external stress applied on the device. The external-stress-induced piezoelectric charges generated at the interfaces of InGaN and GaN compensate the piezoelectric charges induced by lattice mismatch stress in the InGaN wells. The energy band realignment is calculated with a self-consistent numerical model to clarify the enhancement mechanism of optical-generated carriers. This research not only theoretically and experimentally proves the piezo-phototronic effect modulated the quantum photovoltaic device but also provides a great promise to maximize the use of solar energy in the current energy revolution.

  10. The energetics of the primary proton transfer in bacteriorhodopsin revisited: it is a sequential light-induced charge separation after all.

    PubMed

    Braun-Sand, Sonja; Sharma, Pankaz K; Chu, Zhen T; Pisliakov, Andrei V; Warshel, Arieh

    2008-05-01

    The light-induced proton transport in bacteriorhodopsin has been considered as a model for other light-induced proton pumps. However, the exact nature of this process is still unclear. For example, it is not entirely clear what the driving force of the initial proton transfer is and, in particular, whether it reflects electrostatic forces or other effects. The present work simulates the primary proton transfer (PT) by a specialized combination of the EVB and the QCFF/PI methods. This combination allows us to obtain sufficient sampling and a quantitative free energy profile for the PT at different protein configurations. The calculated profiles provide new insight about energetics of the primary PT and its coupling to the protein conformational changes. Our finding confirms the tentative analysis of an earlier work (A. Warshel, Conversion of light energy to electrostatic energy in the proton pump of Halobacterium halobium, Photochem. Photobiol. 30 (1979) 285-290) and determines that the overall PT process is driven by the energetics of the charge separation between the Schiff base and its counterion Asp85. Apparently, the light-induced relaxation of the steric energy of the chromophore leads to an increase in the ion-pair distance, and this drives the PT process. Our use of the linear response approximation allows us to estimate the change in the protein conformational energy and provides the first computational description of the coupling between the protein structural changes and the PT process. It is also found that the PT is not driven by twist-modulated changes of the Schiff base's pKa, changes in the hydrogen bond directionality, or other non-electrostatic effects. Overall, based on a consistent use of structural information as the starting point for converging free energy calculations, we conclude that the primary event should be described as a light-induced formation of an unstable ground state, whose relaxation leads to charge separation and to the destabilization of the ion-pair state. This provides the driving force for the subsequent PT steps.

  11. Zeta potential control for electrophoresis cells

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.

    1973-01-01

    Zeta potential arises from fact that ions tend to be adsorbed on surface of cell walls. This potential interfaces with electric field sensed by migrating particles and degrades resolution of separation. By regulating sign and magnitude of applied potential induced charge can be used to increase or decrease effective wall zeta potential.

  12. Charge separation related to photocatalytic H 2 production from a Ru–apoflavodoxin–Ni biohybrid

    DOE PAGES

    Soltau, Sarah R.; Niklas, Jens; Dahlberg, Peter D.; ...

    2016-12-27

    The direct creation of a fuel from sunlight and water via photochemical energy conversion provides a sustainable method for producing a clean source of energy. Here we report the preparation of a solar fuel biohybrid that embeds a nickel diphosphine hydrogen evolution catalyst into the cofactor binding pocket of the electron shuttle protein, flavodoxin (Fld). The system is made photocatalytic by linking a cysteine residue in Fld to a ruthenium photosensitizer. Importantly, the protein environment enables the otherwise insoluble Ni catalyst to perform photocatalysis in aqueous solution over a pH range of 3.5–12.0, with optimal turnover frequency 410 ± 30more » h –1 and turnover number 620 ± 80 mol H 2/mol hybrid observed at pH 6.2. For the first time, a reversible light-induced charge-separated state involving a Ni(I) intermediate was directly monitored by electron paramagnetic resonance spectroscopy. As a result, transient optical measurements reflect two conformational states, with a Ni(I) state formed in ~1.6 or ~185 μs that persists for several milliseconds as a long-lived charge-separated state facilitated by the protein matrix.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadiz, Fabian, E-mail: cadiz@insa-toulouse.fr; Tricard, Simon; Gay, Maxime

    Developments in optoelectronics and spin-optronics based on transition metal dichalcogenide monolayers (MLs) need materials with efficient optical emission and well-defined transition energies. In as-exfoliated MoS{sub 2} MLs, the photoluminescence (PL) spectra even at low temperature consist typically of broad, overlapping contributions from neutral, charged excitons (trions) and localized states. Here, we show that in superacid treated MoS{sub 2} MLs, the PL intensity increases by up to 60 times at room temperature. The neutral and charged exciton transitions are spectrally well separated in PL and reflectivity at T = 4 K, with linewidth for the neutral exciton of 15 meV, but both transitions have similarmore » intensities compared to the ones in as-exfoliated MLs at the same temperature. Time resolved experiments uncover picoseconds recombination dynamics analyzed separately for charged and neutral exciton emissions. Using the chiral interband selection rules, we demonstrate optically induced valley polarization for both complexes and valley coherence for only the neutral exciton.« less

  14. Digital modulation of the nickel valence state in a cuprate-nickelate heterostructure

    NASA Astrophysics Data System (ADS)

    Wrobel, F.; Geisler, B.; Wang, Y.; Christiani, G.; Logvenov, G.; Bluschke, M.; Schierle, E.; van Aken, P. A.; Keimer, B.; Pentcheva, R.; Benckiser, E.

    2018-03-01

    Layer-by-layer oxide molecular-beam epitaxy has been used to synthesize cuprate-nickelate multilayer structures of composition (La2CuO4)m/LaO /(LaNiO3)n . In a combined experimental and theoretical study, we show that these structures allow a clean separation of dopant and doped layers. Specifically, the LaO layer separating cuprate and nickelate blocks provides an additional charge that, according to density-functional theory calculations, is predominantly accommodated in the interfacial nickelate layers. This is reflected in an elongation of bond distances and changes in valence state, as observed by scanning transmission electron microscopy and x-ray absorption spectroscopy. Moreover, the predicted charge disproportionation in the nickelate interface layers leads to a metal-to-insulator transition when the thickness is reduced to n =2 , as observed in electrical transport measurements. The results exemplify the perspectives of charge transfer in metal-oxide multilayers to induce doping without introducing chemical and structural disorder.

  15. Ultrafast photoinduced charge transport in Pt(II) donor-acceptor assembly bearing naphthalimide electron acceptor and phenothiazine electron donor.

    PubMed

    Sazanovich, Igor V; Best, Jonathan; Scattergood, Paul A; Towrie, Michael; Tikhomirov, Sergei A; Bouganov, Oleg V; Meijer, Anthony J H M; Weinstein, Julia A

    2014-12-21

    Visible light-induced charge transfer dynamics were investigated in a novel transition metal triad acceptor-chromophore-donor, (NDI-phen)Pt(II)(-C≡C-Ph-CH2-PTZ)2 (1), designed for photoinduced charge separation using a combination of time-resolved infrared (TRIR) and femtosecond electronic transient absorption (TA) spectroscopy. In 1, the electron acceptor is 1,4,5,8-naphthalene diimide (NDI), and the electron donor is phenothiazine (PTZ), and [(phen)Pt(-C≡C-Ph-)], where phen is 1,10-phenanthroline, represents the chromophoric core. The first excited state observed in 1 is a (3)MLCT/LL'CT, with {Pt(II)-acetylide}-to-phen character. Following that, charge transfer from the phen-anion onto the NDI subunit to form NDI(-)-phen-[Pt-(C≡C)2](+)-PTZ2 occurs with a time constant of 2.3 ps. This transition is characterised by appearance of the prominent NDI-anion features in both TRIR and TA spectra. The final step of the charge separation in 1 proceeds with a time constant of ∼15 ps during which the hole migrates from the [Pt-(C≡C)2] subunit to one of the PTZ groups. Charge recombination in 1 then occurs with two distinct time constants of 36 ns and 107 ns, corresponding to the back electron transfer to each of the two donor groups; a rather rare occurrence which manifests that the hole in the final charge-separated state is localised on one of the two donor PTZ groups. The assignment of the nature of the excited states and dynamics in 1 was assisted by TRIR investigations of the analogous previously reported ((COOEt)2bpy)Pt(C≡C-Ph-CH2-PTZ)2 (2), (J. E. McGarrah and R. Eisenberg, Inorg. Chem., 2003, 42, 4355; J. E. McGarrah, J. T. Hupp and S. N. Smirnov, J. Phys. Chem. A, 2009, 113, 6430) as well as (bpy)Pt(C≡C-Ph-C7H15)2, which represent the acceptor-free dyad, and the chromophoric core, respectively. Thus, the step-wise formation of the full charge-separated state on the picosecond time scale and charge recombination via tunnelling have been established; and the presence of two distinct charge recombination pathways has been observed.

  16. Exciting baryon resonances in isobar charge-exchange reactions

    NASA Astrophysics Data System (ADS)

    Benlliure, J.; Rodriguez-Sanchez, J. L.; Vargas, J.; Alavarez-Pol, H.; Aumann, T.; Atkinson, J.; Ayyad, Y.; Beceiro, S.; Boretzky, K.; Chatillon, A.; Cortina, D.; Diaz, P.; Estrade, A.; Geissel, H.; Lenske, H.; Litvinov, Y.; Mostazo, M.; Paradela, C.; Pietri, S.; Prochazka, A.; Takechi, M.; Vidaña, I.; Weick, H.; Winfield, J.

    2017-11-01

    Isobaric charge-exchange reactions induced by different tin isotopes have been investigated at GSI. The high-resolving power of the FRS spectrometer made it possible to separate elastic and inelastic components in the missing-energy spectra of the ejectiles. The inelastic component was associated to the in-medium excitation of nucleon resonances such as the Delta and Roper resonances. These data are expected to contribute to better understand the in-medium properties of baryon resonances but also to investigate the abundance of protons and neutrons at the nuclear periphery.

  17. Separation and detection of VX and its methylphosphonic acid degradation products on a microchip using indirect laser-induced fluorescence.

    PubMed

    Heleg-Shabtai, Vered; Gratziany, Natzach; Liron, Zvi

    2006-05-01

    The application of indirect LIF (IDLIF) technique for on-chip electrophoretic separation and detection of the nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX) and its major phosphonic degradation products, ethyl methylphosphonic acid (EMPA) and methylphosphonic acid (MPA) was demonstrated. Separation and detection of MPA degradation products of VX and the nerve agent isopropyl methylphosphonofluoridate (GB) are presented. The negatively charged dye eosin was found to be a good fluorescent marker for both the negatively charged phosphonic acids and the positively charged VX, and was chosen as the IDLIF visualization fluorescent dye. Separation and detection of VX, EMPA, and MPA in a simple-cross microchip were completed within less than a minute, and consumed only a 50 pL sample volume. A characteristic system peak that appeared in all IDLIF electropherograms served as an internal standard that increased the reliability of peak identification. The negative peak of both VX and the MPAs is in agreement with indirect detection theory and with previous reports in the literature. The LOD of VX and EMPA by IDLIF was 30 and 37 microM, respectively. Despite the fact that the detection sensitivity is relatively low, the rapid simultaneous on-chip analysis of both VX and its degradation products as well as the separation and detection of the MPA degradation products of both VX and GB, increases detection reliability and may present a choice when sensitivity is not critical compared with speed and simplicity of the assay.

  18. Enhanced Charge Separation in Ternary P3HT/PCBM/CuInS2 Nanocrystals Hybrid Solar Cells

    PubMed Central

    Lefrançois, Aurélie; Luszczynska, Beata; Pepin-Donat, Brigitte; Lombard, Christian; Bouthinon, Benjamin; Verilhac, Jean-Marie; Gromova, Marina; Faure-Vincent, Jérôme; Pouget, Stéphanie; Chandezon, Frédéric; Sadki, Saïd; Reiss, Peter

    2015-01-01

    Geminate recombination of bound polaron pairs at the donor/acceptor interface is one of the major loss mechanisms in organic bulk heterojunction solar cells. One way to overcome Coulomb attraction between opposite charge carriers and to achieve their full dissociation is the introduction of high dielectric permittivity materials such as nanoparticles of narrow band gap semiconductors. We selected CuInS2 nanocrystals of 7.4 nm size, which present intermediate energy levels with respect to poly(3-hexylthiophene) (P3HT) and Phenyl-C61-butyric acid methyl ester (PCBM). Efficient charge transfer from P3HT to nanocrystals takes place as evidenced by light-induced electron spin resonance. Charge transfer between nanocrystals and PCBM only occurs after replacing bulky dodecanethiol (DDT) surface ligands with shorter 1,2-ethylhexanethiol (EHT) ligands. Solar cells containing in the active layer a ternary blend of P3HT:PCBM:CuInS2-EHT nanocrystals in 1:1:0.5 mass ratio show strongly improved short circuit current density and a higher fill factor with respect to the P3HT:PCBM reference device. Complementary measurements of the absorption properties, external quantum efficiency and charge carrier mobility indicate that enhanced charge separation in the ternary blend is at the origin of the observed behavior. The same trend is observed for blends using the glassy polymer poly(triarylamine) (PTAA). PMID:25588811

  19. Photoinduced charge separation in a colloidal system of exfoliated layered semiconductor controlled by coexisting aluminosilicate clay.

    PubMed

    Nakato, Teruyuki; Yamada, Yoshimi; Miyamoto, Nobuyoshi

    2009-02-05

    We investigated photoinduced charge separation occurring in a multicomponent colloidal system composed of oxide nanosheets of photocatalytically active niobate and photochemically inert clay and electron accepting methylviologen dications (MV2+). The inorganic nanosheets were obtained by exfoliation of layered hexaniobate and hectorite clay. The niobate and clay nanosheets were spatially separated in the colloidally dispersed state, and the MV2+ molecules were selectively adsorbed on the clay platelets. UV irradiation of the colloids led to electron transfer from the niobate nanosheets to the MV2+ molecules adsorbed on clay. The photoinduced electron transfer produced methylviologen radical cations (MV*+), which was characterized by high yield and long lifetime. The yield and stability of the MV*+ species were found to depend strongly on the clay content of the colloid: from a few mol % to approximately 70 mol % of the yield and several tens of minutes to more than 40 h of the lifetime. The contents of the niobate nanosheets and MV2+ molecules and the aging of the colloid also affected the photoinduced charge separation. In the absence of MV2+ molecules in the colloid, UV irradiation induced electron accumulation in the niobate nanosheets. The stability of the electron-accumulated state also depended on the clay content. The variation in the photochemical behavior is discussed in relation to the viscosity of the colloid.

  20. The Charging Events in Contact-Separation Electrification.

    PubMed

    Musa, Umar G; Cezan, S Doruk; Baytekin, Bilge; Baytekin, H Tarik

    2018-02-06

    Contact electrification (CE)-charging of surfaces that are contacted and separated, is a common phenomenon, however it is not completely understood yet. Recent studies using surface imaging techniques and chemical analysis revealed a 'spatial' bipolar distribution of charges at the nano dimension, which made a paradigm shift in the field. However, such analyses can only provide information about the charges that remained on the surface after the separation, providing limited information about the actual course of the CE event. Tapping common polymers and metal surfaces to each other and detecting the electrical potential produced on these surfaces 'in-situ' in individual events of contact and separation, we show that, charges are generated and transferred between the surfaces in both events; the measured potential is bipolar in contact and unipolar in separation. We show, the 'contact-charges' on the surfaces are indeed the net charges that results after the separation process, and a large contribution to tribocharge harvesting comes, in fact, from the electrostatic induction resulting from the generated CE charges. Our results refine the mechanism of CE providing information for rethinking the conventional ranking of materials' charging abilities, charge harvesting, and charge prevention.

  1. Experimental and Theoretical Investigations of Charged Phospholipid Bilayers.

    NASA Astrophysics Data System (ADS)

    Graham, Ian Stanley

    1987-09-01

    Lipid systems containing charged species are examined by both experiment and theory. Experimental studies of the mixing of phosphatidylcholine or phosphatidylethanolamine with phosphatidic acid show that calcium induces fast ( <=q1s) phase separation of these otherwise miscible systems, and that this can occur in an isolated bilayer. Ionogenic behaviour is theoretically investigated using a new electrolyte model which explicitly includes both the solvent and particle sizes, and a binding model which uses Guggenheim combinatorics to treat non 1-1 binding stoichiometries. This work predicts a reduced dielectric constant near charged surfaces and strong repulsive forces between closely spaced (<15A) surfaces. A reanalysis of data from charged monolayers experiments indicates (1) that the new electrolyte model describes double layer behaviour at high surface charge densities better than the traditional Derjaguin - Landau - Verwey - Overbeek (DLVO) theory, (2) that calcium and magnesium bind to phosphatidylserine monolayers with a 1-1 stoichiometry.

  2. Mutations in algal and cyanobacterial Photosystem I that independently affect the yield of initial charge separation in the two electron transfer cofactor branches.

    PubMed

    Badshah, Syed Lal; Sun, Junlei; Mula, Sam; Gorka, Mike; Baker, Patricia; Luthra, Rajiv; Lin, Su; van der Est, Art; Golbeck, John H; Redding, Kevin E

    2018-01-01

    In Photosystem I, light-induced electron transfer can occur in either of two symmetry-related branches of cofactors, each of which is composed of a pair of chlorophylls (ec2 A /ec3 A or ec2 B /ec3 B ) and a phylloquinone (PhQ A or PhQ B ). The axial ligand to the central Mg 2+ of the ec2 A and ec2 B chlorophylls is a water molecule that is also H-bonded to a nearby Asn residue. Here, we investigate the importance of this interaction for charge separation by converting each of the Asn residues to a Leu in the green alga, Chlamydomonas reinhardtii, and the cyanobacterium, Synechocystis sp. PCC6803, and studying the energy and electron transfer using time-resolved optical and EPR spectroscopy. Nanosecond transient absorbance measurements of the PhQ to F X electron transfer show that in both species, the PsaA-N604L mutation (near ec2 B ) results in a ~50% reduction in the amount of electron transfer in the B-branch, while the PsaB-N591L mutation (near ec2 A ) results in a ~70% reduction in the amount of electron transfer in the A-branch. A diminished quantum yield of P 700 + PhQ - is also observed in ultrafast optical experiments, but the lower yield does not appear to be a consequence of charge recombination in the nanosecond or microsecond timescales. The most significant finding is that the yield of electron transfer in the unaffected branch did not increase to compensate for the lower yield in the affected branch. Hence, each branch of the reaction center appears to operate independently of the other in carrying out light-induced charge separation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Study of talcum charging status in parallel plate electrostatic separator based on particle trajectory analysis

    NASA Astrophysics Data System (ADS)

    Yunxiao, CAO; Zhiqiang, WANG; Jinjun, WANG; Guofeng, LI

    2018-05-01

    Electrostatic separation has been extensively used in mineral processing, and has the potential to separate gangue minerals from raw talcum ore. As for electrostatic separation, the particle charging status is one of important influence factors. To describe the talcum particle charging status in a parallel plate electrostatic separator accurately, this paper proposes a modern images processing method. Based on the actual trajectories obtained from sequence images of particle movement and the analysis of physical forces applied on a charged particle, a numerical model is built, which could calculate the charge-to-mass ratios represented as the charging status of particle and simulate the particle trajectories. The simulated trajectories agree well with the experimental results obtained by images processing. In addition, chemical composition analysis is employed to reveal the relationship between ferrum gangue mineral content and charge-to-mass ratios. Research results show that the proposed method is effective for describing the particle charging status in electrostatic separation.

  4. Pressure-induced emission band separation of the hybridized local and charge transfer excited state in a TPE-based crystal.

    PubMed

    Liu, Xuedan; Li, Aisen; Xu, Weiqing; Ma, Zhiyong; Jia, Xinru

    2018-05-08

    We herein report a newly synthesized simple molecule, named TPE[double bond, length as m-dash]C4, with twisted D-A structure. TPE[double bond, length as m-dash]C4 showed two intrinsic emission bands ascribed to the locally excited (LE) state and the intramolecular charge transfer (ICT) state, respectively. In the crystal state, the LE emission band is usually observed. However, by applying hydrostatic pressure to the powder sample and the single crystal sample of TPE[double bond, length as m-dash]C4, dual-fluorescence (445 nm and 532 nm) was emerged under high pressure, owing to the pressure-induced emission band separation of the hybridized local and charge transfer excited state (HLCT). It is found that the emission of TPE[double bond, length as m-dash]C4 is generally determined by the ratio of the LE state to the ICT state. The ICT emission band is much more sensitive to the external pressure than the LE emission band. The HLCT state leads to a sample with different responsiveness to grinding and hydrostatic pressure. This study is of significance in the molecular design of such D-A type molecules and in the control of photoluminescence features by molecular structure. Such results are expected to pave a new way to further understand the relationship between the D-A molecular structure and stimuli-responsive properties.

  5. Detection of electromagnetic radiation using nonlinear materials

    DOEpatents

    Hwang, Harold Y.; Liu, Mengkun; Averitt, Richard D.; Nelson, Keith A.; Sternbach, Aaron; Fan, Kebin

    2016-06-14

    An apparatus for detecting electromagnetic radiation within a target frequency range is provided. The apparatus includes a substrate and one or more resonator structures disposed on the substrate. The substrate can be a dielectric or semiconductor material. Each of the one or more resonator structures has at least one dimension that is less than the wavelength of target electromagnetic radiation within the target frequency range, and each of the resonator structures includes at least two conductive structures separated by a spacing. Charge carriers are induced in the substrate near the spacing when the resonator structures are exposed to the target electromagnetic radiation. A measure of the change in conductivity of the substrate due to the induced charge carriers provides an indication of the presence of the target electromagnetic radiation.

  6. Inversion layer solar cell fabrication and evaluation. [measurement of response of inversion layer solar cell to light of different wavelengths

    NASA Technical Reports Server (NTRS)

    Call, R. L.

    1973-01-01

    Silicon solar cells operating with induced junctions rather than diffused junctions have been fabricated and tested. Induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. This charged layer was supplied through three mechanisms: (1) applying a positive potential to a transparent electrode separated from the silicon surface by a dielectric, (2) contaminating the oxide layer with positive ions, and (3) forming donor surface states that leave a positive charge on the surface. A movable semi-infinite shadow delineated the extent of sensitivity of the cell due to the inversion region. Measurements of the response of the inversion layer cell to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. The greater sensitivity occurs because of the shallow junction and the strong electric field at the surface.

  7. Alcohol--Induced Polyelectrolyte-Surfactant Complex Coacervate Systems: Characterization and Applications in Enzyme and Protein Extraction

    NASA Astrophysics Data System (ADS)

    Nejati Moshtaghin, Mahboubeh

    The focus of this thesis is to achieve a better understanding of the newly discovered surfactant-polyelectrolyte complex coacervate (SPCC) systems induced by fluoroalcohol/acid as well as short chain aliphatic alcohol; and to elucidate their applications in extraction and enrichment of proteins and enzyme. We have discovered that fluoroalcohols and --acids induce complex coacervation and phase separation in the aqueous mixtures of oppositely charged anionic polyelectrolytes; specifically, sodium salts of polyacrylic acid and polymethacrylic acid and cationic surfactant (cetyltrimethylammonium bromide, CTAB) over a broad range of concentrations of mole fractions of the oppositely charged amphiphiles. Accordingly, these new classes of coacervators will significantly broaden the scope and facilitate engineering of new coacervate phases. Toward these goals, we have inspected the formation of surfactant-polyelectrolyte complex coacervates in the presence of fluoroalcohols namely hexafluoroisopropanol (HFIP) and Trifluoroethanol (TFE). Furthermore, the extent of coacervation as a function of concentrations the system components, and charge ratios of the oppositely charged amphiphiles has been investigated. Polyelectrolytes are considered to be milder reagents, as compared to surfactants, regarding proteins denaturation. This highlights the importance of a detailed investigation of the efficiency of our coacervate systems for extraction and preconcentration of proteins and enzymes, especially, when the biological activity of the extracted proteins needs to be maintained based on the objectives mentioned above, the results of the investigations have been organized in four chapters. In Chapter II, the phase behavior of the FA-SPCC will be investigated. The objective is to examine the phase behavior and phase properties with respect to the extent of coacervation in different solution conditions. In particular, the effects of different solution variables such as concentration of FA, oppositely charged amphiphiles (surfactant-polyelectrolyte), and the charge ratio of the surfactant-polyelectrolyte on the extent of coacervation have been investigated. Furthermore, the chemical composition of each phase formed in the coacervate system was determined as a function of HFIP percentage. Phase diagrams of HFIP-PMA-CTAB and 2-propanol-PMA-CTAB were studied. The phase separation occurs over a wide range of polyelectrolyte, surfactant and alcohol concentration. In addition, a study of the dependence of coacervate volume on phase composition in different system (as defined by concentrations and mole charge ratio of amphihiles and alcohols) provided useful insight about possible underlying interactions and mechanisms. It has been concluded that neutralization favors coacervation in both systems. However, according to the compositional analysis of both HFIP and 2-propanol SPCC system, it seems that coacervation mechanisms are different. In Chapter III the properties of 2-propanol--SPCC, with analogous surfactant (CTAB) and polyelectrolyte (PMA) used in Chapter II, will be investigated. In particular, we are interested in examining the difference between the phase separation characteristics of the coacervates induced by 2-propanol and HFIP as coacervator. For this purpose, the phase behavior and the chemical composition of the phases will be analyzed as a function of 2-propanol and constituents concentrations. Chapter IV contains results of our investigations on the activity of a model enzyme (Trypsin) in 2-propanol- and FA-induced SPCC system. These investigations will facilitate understanding whether the aliphatic alcohol, AA- and FA-induced SPCC system denature the model enzymes. Such investigations also help in evaluation of the applicability of the coacervate systems developed in this work in proteomics where the proteolytic activity of enzymes is used for protein digestion. Finally, in Chapter V, the efficiency of the coacervate system (2-propanol-induced-PMA-CTAB) for extraction of cytochrome c, as a model protein, will be investigated.

  8. Long-range coupling between ATP-binding and lever-arm regions in myosin via dielectric allostery

    NASA Astrophysics Data System (ADS)

    Sato, Takato; Ohnuki, Jun; Takano, Mitsunori

    2017-12-01

    A protein molecule is a dielectric substance, so the binding of a ligand is expected to induce dielectric response in the protein molecule, considering that ligands are charged or polar in general. We previously reported that binding of adenosine triphosphate (ATP) to molecular motor myosin actually induces such a dielectric response in myosin due to the net negative charge of ATP. By this dielectric response, referred to as "dielectric allostery," spatially separated two regions in myosin, the ATP-binding region and the actin-binding region, are allosterically coupled. In this study, from the statistically stringent analyses of the extensive molecular dynamics simulation data obtained in the ATP-free and the ATP-bound states, we show that there exists the dielectric allostery that transmits the signal of ATP binding toward the distant lever-arm region. The ATP-binding-induced electrostatic potential change observed on the surface of the main domain induced a movement of the converter subdomain from which the lever arm extends. The dielectric response was found to be caused by an underlying large-scale concerted rearrangement of the electrostatic bond network, in which highly conserved charged/polar residues are involved. Our study suggests the importance of the dielectric property for molecular machines in exerting their function.

  9. Active space debris charging for contactless electrostatic disposal maneuvers

    NASA Astrophysics Data System (ADS)

    Schaub, Hanspeter; Sternovsky, Zoltán

    2014-01-01

    The remote charging of a passive object using an electron beam enables touchless re-orbiting of large space debris from geosynchronous orbit (GEO) using electrostatic forces. The advantage of this method is that it can operate with a separation distance of multiple craft radii, thus reducing the risk of collision. The charging of the tug-debris system to high potentials is achieved by active charge transfer using a directed electron beam. Optimal potential distributions using isolated- and coupled-sphere models are discussed. A simple charging model takes into account the primary electron beam current, ultra-violet radiation induced photoelectron emission, collection of plasma particles, secondary electron emission and the recapture of emitted particles. The results show that through active charging in a GEO space environment high potentials can be both achieved and maintained with about a 75% transfer efficiency. Further, the maximum electrostatic tractor force is shown to be insensitive to beam current levels. This latter later result is important when considering debris with unknown properties.

  10. Optical backbone-sidechain charge transfer transitions in proteins sensitive to secondary structure and modifications.

    PubMed

    Mandal, I; Paul, S; Venkatramani, R

    2018-04-17

    The absorption of light by proteins can induce charge transfer (CT) transitions in the UV-visible range of the electromagnetic spectrum. Metal-ligand complexes or active site prosthetic groups which absorb in the visible region exhibit prominent CT transitions. Furthermore, the protein backbone also exhibits CT transitions in the far UV range. In this manuscript, we present a detailed computational study of new near UV-visible CT transitions that involve amino acids with charged side chains. Specifically, using time dependent density functional theory calculations, we examine the absorption spectra of naturally charged amino acids (Lys, Glu, Arg, Asp and His), extracted from solution phase protein structures generated by classical molecular dynamics simulations, and phosphorylated amino acids (Tyr, Thr and Ser) from experimentally determined protein structures. We show that amino acids with charged sidechains present a directed electronic donor-bridge-acceptor paradigm, with the lowest energy optical excitations demonstrating peptide backbone-sidechain charge separations. The UV-visible spectral range of the backbone-sidechain CT transitions is determined by the chemical nature of the donor, bridge and acceptor groups within each amino acid, amino acid conformation and the protein secondary structure where the amino acids are located. Photoinduced CT occurs in opposite directions for the anionic and cationic amino acids along the ground state dipole moment vector for the chromophores. We find that photoinduced charge separation is more facile for the anionic amino acids (Asp, Glu, pSer, pThr and pTyr) relative to that for the cationic amino acids (Lys, Arg and Hsp). Our results provide a foundation for the development of spectroscopic markers based on the recently proposed Protein Charge Transfer Spectra (ProCharTS) which are relevant for the study of DNA-binding or intrinsically disordered proteins that are rich in charged amino acids.

  11. Elucidating the Ultrafast Dynamics of Photoinduced Charge Separation in Metalloporphyrin-Fullerene Dyads Across the Electromagnetic Spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J.; Pápai, M.; Hirsch, A.

    Metalloporphyrins are prominent building blocks in the synthetic toolbox of advanced photodriven molecular devices. When the central ion is paramagnetic, the relaxation pathways within the manifold of excited states are highly intricate so that unravelling the intramolecular energy and electron transfer processes is usually a very complex task. This fact is critically hampering the development of applications based on the enhanced coupling offered by the electronic exchange interaction. In this work, the dynamics of charge separation in a copper porphyrin-fullerene are studied with several complementary spectroscopic tools across the electromagnetic spectrum (from near infra-red to X-ray wavelengths), each of themmore » providing specific diagnostics. Correlating the various rates clearly demonstrates that the lifetime of the photoinduced charge-separated state exceeds by about 10 fold that of the isolated photoexcited CuII porphyrin. As revealed by the spectral modifications in the XANES region, this stabilization is accompanied by a transient change in covalency around the CuII center, which is induced by an enhanced interaction with the C60 moiety. This experimental finding is further confirmed by state-of-the art calculations using DFT and TD-DFT including dispersion effects that explain the electrostatic and structural origins of this interaction, as the CuIIP cation becomes ruffled and approaches closer to the fullerene in the charge-separated state. From a methodological point of view, these results exemplify the potential of multielectron excitation features in transient X-ray spectra as future diagnostics of sub-femtosecond electronic dynamics. From a practical point of view, this work is paving the way for elucidating out-of-equilibrium electron transfer events coupled to magnetic interaction processes on their intrinsic time-scales.« less

  12. Amphipathic peptide affects the lateral domain organization of lipid bilayers.

    PubMed

    Polozov, I V; Polozova, A I; Molotkovsky, J G; Epand, R M

    1997-09-04

    Using lipid-specific fluorescent probes, we studied the effects of amphipathic helical, membrane active peptides of the A- and L-type on membrane domain organization. In zwitterionic binary systems composed of mixtures of phosphatidylcholine and phosphatidylethanolamine, both types of peptides associated with the fluid phase. While binding with high affinity to fluid membranes, peptides were unable to penetrate into the lipid membrane in the gel state. If trapped kinetically by cooling from the fluid phase, peptides dissociated from the gel membrane on the time scale of several hours. While the geometrical shape of the alpha-helical peptides determines their interactions with membranes with non-bilayer phase propensity, the shape complementarity mechanism by itself is unable to induce lateral phase separation in a fluid membrane. Charge-charge interactions are capable of inducing lateral domain formation in fluid membranes. Both peptides had affinity for anionic lipids which resulted in about 30% enrichment of acidic lipids within several nanometers of the peptide's tryptophan, but there was no long-range order in peptide-induced lipid demixing. Peptide insertion in fluid acidic membranes was accompanied by only a small increase in bilayer surface and a decrease in polarity in the membrane core. Peptide-lipid charge-charge interactions were also capable of modulating existing domain composition in the course of the main phase transition in mixtures of anionic phosphatidylglycerol with zwitterionic phosphatidylcholine.

  13. Insights into collaborative separation process of photogenerated charges and superior performance of solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiangyang, E-mail: lxy081276@126.com; Wang, Shun; Zheng, Haiwu

    2016-07-25

    ZnO nanowires/Cu{sub 4}Bi{sub 4}S{sub 9} (ZnO/CBS) and ZnO nanowires/CBS-graphene nanoplates (ZnO/CBS-GNs), as well as two types of solar cells were prepared. The photovoltaic responses of CBS-GNs and ZnO/CBS-GNs can be improved with incorporation of GNs. The transient surface photovoltage (TPV) can provide detailed information on the separation and transport of photogenerated carriers. The multichannel separation process from the TPVs indicates that the macro-photoelectric signals can be attributed to the photogenerated charges separated at the interface of CBS/GNs, rather than CBS/ZnO. The multi-interfacial recombination is the major carrier loss, and the hole selective p-V{sub 2}O{sub 5} can efficiently accelerate the chargemore » extraction to the external circuit. The ZnO/CBS-GNs cell exhibits the superior performance, and the highest efficiency is 10.9%. With the adequate interfaces of CBS/GNs, GNs conductive network, energy level matching, etc., the excitons can easily diffuse to the interface of CBS/GNs, and the separated electrons and holes can be collected quickly, inducing the high photoelectric properties. Here, a facile strategy for solid state solar cells with superior performance presents a potential application.« less

  14. The CE-Way of Thinking: "All Is Relative!".

    PubMed

    Schmitt-Kopplin, Philippe; Fekete, Agnes

    2016-01-01

    Over the last two decades the development of capillary electrophoresis instruments lead to systems with programmable sampler, separation column, separation buffer, and detection devices comparable visually in many aspects to the setup of classical chromatography.Two processes make capillary electrophoresis essentially different from chromatography and are the basis of the CE-way of thinking, namely, the injection type and the liquid flow within the capillary. (1) When the injection is made hydrodynamically (such as in most of the found applications in the literature), the injected volumes are directly dependent on the type and size of the separation capillary. (2) The buffer velocity is not pressure driven as in liquid chromatography but electrokinetically governed by the quality of the capillary surface (separation buffer dependant surface charge) inducing an electroosmotic flow (EOF). The EOF undergoes small variations and is not necessarily identical from one separation or day to the other. The direct consequence is an apparent nonreproducible migration time of the analytes, even though the own velocity of the ions is the same.The effective mobility (field strength normalized velocity) of the ions is a possible parameterization from acquired timescale to effective mobility-scale electropherograms leading to a reproducible visualization and better quantification with a direct relation to structural characters of the analytes (i.e., charge and size-see chapter on semiempirical modelization).

  15. Surfactant Functionalization Induces Robust, Differential Adhesion of Tumor Cells and Blood Cells to Charged Nanotube-Coated Biomaterials Under Flow

    PubMed Central

    Mitchell, Michael J.; Castellanos, Carlos A.; King, Michael R.

    2015-01-01

    The metastatic spread of cancer cells from the primary tumor to distant sites leads to a poor prognosis in cancers originating from multiple organs. Increasing evidence has linked selectin-based adhesion between circulating tumor cells (CTCs) and endothelial cells of the microvasculature to metastatic dissemination, in a manner similar to leukocyte adhesion during inflammation. Functionalized biomaterial surfaces hold promise as a diagnostic tool to separate CTCs and potentially treat metastasis, utilizing antibody and selectin-mediated interactions for cell capture under flow. However, capture at high purity levels is challenged by the fact that CTCs and leukocytes both possess selectin ligands. Here, a straightforward technique to functionalize and alter the charge of naturally occurring halloysite nanotubes using surfactants is reported to induce robust, differential adhesion of tumor cells and blood cells to nanotube-coated surfaces under flow. Negatively charged sodium dodecanoate-functionalized nanotubes simultaneously enhanced tumor cell capture while negating leukocyte adhesion, both in the presence and absence of adhesion proteins, and can be utilized to isolate circulating tumor cells regardless of biomarker expression. Conversely, diminishing nanotube charge via functionalization with decyltrimethylammonium bromide both abolished tumor cell capture while promoting leukocyte adhesion. PMID:25934290

  16. Bimodal exciton-plasmon light sources controlled by local charge carrier injection.

    PubMed

    Merino, Pablo; Rosławska, Anna; Große, Christoph; Leon, Christopher C; Kuhnke, Klaus; Kern, Klaus

    2018-05-01

    Electrical charges can generate photon emission in nanoscale quantum systems by two independent mechanisms. First, radiative recombination of pairs of oppositely charged carriers generates sharp excitonic lines. Second, coupling between currents and collective charge oscillations results in broad plasmonic bands. Both luminescence modes can be simultaneously generated upon charge carrier injection into thin C 60 crystallites placed in the plasmonic nanocavity of a scanning tunneling microscope (STM). Using the sharp tip of the STM as a subnanometer-precise local electrode, we show that the two types of electroluminescence are induced by two separate charge transport channels. Holes injected into the valence band promote exciton generation, whereas electrons extracted from the conduction band cause plasmonic luminescence. The different dynamics of the two mechanisms permit controlling their relative contribution in the combined bimodal emission. Exciton recombination prevails for low charge injection rates, whereas plasmon decay outshines for high tunneling currents. The continuous transition between both regimes is described by a rate model characterizing emission dynamics on the nanoscale. Our work provides the basis for developing blended exciton-plasmon light sources with advanced functionalities.

  17. A solution-processed binary cathode interfacial layer facilitates electron extraction for inverted polymer solar cells.

    PubMed

    Zhang, Xinyuan; Li, Zhiqi; Liu, Chunyu; Guo, Jiaxin; Shen, Liang; Guo, Wenbin

    2018-03-15

    The charge transfer and separation are significantly affected by the electron properties of the interface between the electron-donor layer and the carrier-transporting layer in polymer solar cells (PSCs). In this study, we investigate the electron extraction mechanism of PSCs with a low temperature solution-processed ZnO/PEI as electron transport layer. The incorporation of PEI layer can decrease the work function of ZnO and reduce interfacial barrier, which facilitates electron extraction and suppresses bimolecular recombination, leading to a significant performance enhancement. Furthermore, PEI layer can induce phase separation and passivite inorganic surface trap states as well as shift the interfacial energy offset between metal oxide and organic materials. This work offers a simple and effective way to improve the charge transporting property of organic photovoltaic devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Separability of black holes in string theory

    NASA Astrophysics Data System (ADS)

    Keeler, Cynthia; Larsen, Finn

    2012-10-01

    We analyze the origin of separability for rotating black holes in string theory, considering both massless and massive geodesic equations as well as the corresponding wave equations. We construct a conformal Killing-Stackel tensor for a general class of black holes with four independent charges, then identify two-charge configurations where enhancement to an exact Killing-Stackel tensor is possible. We show that further enhancement to a conserved Killing-Yano tensor is possible only for the special case of Kerr-Newman black holes. We construct natural null congruences for all these black holes and use the results to show that only the Kerr-Newman black holes are algebraically special in the sense of Petrov. Modifying the asymptotic behavior by the subtraction procedure that induces an exact SL(2)2 also preserves only the conformal Killing-Stackel tensor. Similarly, we find that a rotating Kaluza-Klein black hole possesses a conformal Killing-Stackel tensor but has no further enhancements.

  19. Temperature evolution of polar states in GdMn2O5 and Gd0.8Ce0.2Mn2O5

    NASA Astrophysics Data System (ADS)

    Sanina, V. A.; Golovenchits, E. I.; Khannanov, B. Kh.; Scheglov, M. P.; Zalesskii, V. G.

    2014-11-01

    The polar order along the c axis is revealed in GdMn2O5 and Gd0.8Ce0.2Mn2O5 at T ≤ T C1 ≈ 160 K for the first time. This polar order is induced by the charge disproportion in the 2D superstructures emerged due to phase separation. The dynamic state with restricted polar domains of different sizes is found at T > T C1 which is typical of the diffuse ferroelectric phase transition. At the lowest temperatures ( T < 40 K) two polar orders of different origins with perpendicular orientations (along the b and c axes) coexist. The 1D superlattices studied by us earlier in the set of RMn2O5 multiferroics are the charged domain walls which separate of these polar order domains.

  20. Hour-glass magnetic excitations induced by nanoscopic phase separation in cobalt oxides.

    PubMed

    Drees, Y; Li, Z W; Ricci, A; Rotter, M; Schmidt, W; Lamago, D; Sobolev, O; Rütt, U; Gutowski, O; Sprung, M; Piovano, A; Castellan, J P; Komarek, A C

    2014-12-23

    The magnetic excitations in the cuprate superconductors might be essential for an understanding of high-temperature superconductivity. In these cuprate superconductors the magnetic excitation spectrum resembles an hour-glass and certain resonant magnetic excitations within are believed to be connected to the pairing mechanism, which is corroborated by the observation of a universal linear scaling of superconducting gap and magnetic resonance energy. So far, charge stripes are widely believed to be involved in the physics of hour-glass spectra. Here we study an isostructural cobaltate that also exhibits an hour-glass magnetic spectrum. Instead of the expected charge stripe order we observe nano phase separation and unravel a microscopically split origin of hour-glass spectra on the nano scale pointing to a connection between the magnetic resonance peak and the spin gap originating in islands of the antiferromagnetic parent insulator. Our findings open new ways to theories of magnetic excitations and superconductivity in cuprate superconductors.

  1. Efficient Solar-Induced Photoelectrochemical Response Using Coupling Semiconductor TiO2-ZnO Nanorod Film

    PubMed Central

    Abd Samad, Nur Azimah; Lai, Chin Wei; Lau, Kung Shiuh; Abd Hamid, Sharifah Bee

    2016-01-01

    Efficient solar driven photoelectrochemical (PEC) response by enhancing charge separation has attracted great interest in the hydrogen generation application. The formation of one-dimensional ZnO nanorod structure without bundling is essential for high efficiency in PEC response. In this present research work, ZnO nanorod with an average 500 nm in length and average diameter of about 75 nm was successfully formed via electrodeposition method in 0.05 mM ZnCl2 and 0.1 M KCl electrolyte at 1 V for 60 min under 70 °C condition. Continuous efforts have been exerted to further improve the solar driven PEC response by incorporating an optimum content of TiO2 into ZnO nanorod using dip-coating technique. It was found that 0.25 at % of TiO2 loaded on ZnO nanorod film demonstrated a maximum photocurrent density of 19.78 mA/cm2 (with V vs. Ag/AgCl) under UV illumination and 14.75 mA/cm2 (with V vs. Ag/AgCl) under solar illumination with photoconversion efficiency ~2.9% (UV illumination) and ~4.3% (solar illumination). This performance was approximately 3–4 times higher than ZnO film itself. An enhancement of photocurrent density and photoconversion efficiency occurred due to the sufficient Ti element within TiO2-ZnO nanorod film, which acted as an effective mediator to trap the photo-induced electrons and minimize the recombination of charge carriers. Besides, phenomenon of charge-separation effect at type-II band alignment of Zn and Ti could further enhance the charge carrier transportation during illumination. PMID:28774068

  2. Secondary ion emission from Ti, V, Cu, Ag and Au surfaces under KeV Cs + irradiation

    NASA Astrophysics Data System (ADS)

    van der Heide, P. A. W.

    2005-02-01

    Low energy mono-atomic singly charged secondary ion emissions from Ti, V, Cu, Ag and Au substrates during the initial stages of sputtering with Cs + primary ions have been studied. With the exception of the Ag - secondary ions, all exhibited exponential like correlations with the Cs induced work function changes. This, along with the lack of variations in the valence band structure around the Fermi edge, is consistent with resonance charge transfer to/from states located at the Fermi edge. The insensitivity of Ag - to work function appears to stem from the dominance of a separate ion formation process, namely charge transfer into vacant 4d states in the sputtered population, which themselves appear to be produced through collective oscillations. A similar excitation-mediated process involving different levels also appears to be active in the formation of other negatively charged transition metal ions, albeit to a much lesser degree.

  3. Vertical phase separation in bulk heterojunction solar cells formed by in situ polymerization of fulleride

    PubMed Central

    Zhang, Lipei; Xing, Xing; Zheng, Lingling; Chen, Zhijian; Xiao, Lixin; Qu, Bo; Gong, Qihuang

    2014-01-01

    Vertical phase separation of the donor and the acceptor in organic bulk heterojunction solar cells is crucial to improve the exciton dissociation and charge transport efficiencies. This is because whilst the exciton diffusion length is limited, the organic film must be thick enough to absorb sufficient light. However, it is still a challenge to control the phase separation of a binary blend in a bulk heterojunction device architecture. Here we report the realization of vertical phase separation induced by in situ photo-polymerization of the acrylate-based fulleride. The power conversion efficiency of the devices with vertical phase separation increased by 20%. By optimising the device architecture, the power conversion efficiency of the single junction device reached 8.47%. We believe that in situ photo-polymerization of acrylate-based fulleride is a universal and controllable way to realise vertical phase separation in organic blends. PMID:24861168

  4. Interfacial disorder drives charge separation in molecular semiconductors

    NASA Astrophysics Data System (ADS)

    Willard, Adam

    One of the fundamental microscopic processes in photocurrent generation is the dissociation of neutral photo-excitations (i.e., Frenkel excitons) into free charge carriers (i.e., electrons and holes). This process requires the physical separation of oppositely charged electrons and holes, which are held to together by an attractive electrostatic binding energy. In traditional inorganic-based photovoltaic (PV) materials, this binding energy is generally small and easily overcome, however, in organic-based PVs (OPVs) the exciton binding energy can significantly exceed thermal energies. The inability of bound charges to overcome this large binding energy has been implicated as a primary source of efficiency loss in OPVs. Here I present results from our recent efforts to explore the role of static molecular disorder in mediating this process. Using a simple lattice model of exciton dynamics we demonstrate that random spatial variations in the energetic landscape can mitigate the attractive Coulomb interaction between electrons and holes. We show that this effect manifests as a reduction in the free energy barrier for exciton dissociation that grows more pronounced with increasing disorder. By considering the competition between this thermodynamic effect and the disorder-induced slowing of dissociation kinetics we demonstrate that exciton dissociation yields are expected to depend non-monotonically on the degree of static disorder.

  5. Single-step electron transfer on the nanometer scale: ultra-fast charge shift in strongly coupled zinc porphyrin-gold porphyrin dyads.

    PubMed

    Fortage, Jérôme; Boixel, Julien; Blart, Errol; Hammarström, Leif; Becker, Hans Christian; Odobel, Fabrice

    2008-01-01

    The synthesis, electrochemical properties, and photoinduced electron transfer processes of a series of three novel zinc(II)-gold(III) bisporphyrin dyads (ZnP--S--AuP(+)) are described. The systems studied consist of two trisaryl porphyrins connected directly in the meso position via an alkyne unit to tert-(phenylenethynylene) or penta(phenylenethynylene) spacers. In these dyads, the estimated center to center interporphyrin separation distance varies from 32 to 45 A. The absorption, emission, and electrochemical data indicate that there are strong electronic interactions between the linked elements, thanks to the direct attachment of the spacer on the porphyrin ring through the alkyne unit. At room temperature in toluene, light excitation of the zinc porphyrin results in almost quantitative formation of the charge shifted state (.+)ZnP--S--AuP(.), whose lifetime is in the order of hundreds of picoseconds. In this solvent, the charge-separated state decays to the ground state through the intermediate population of the zinc porphyrin triplet excited state. Excitation of the gold porphyrin leads instead to rapid energy transfer to the triplet ZnP. In dichloromethane the charge shift reactions are even faster, with time constants down to 2 ps, and may be induced also by excitation of the gold porphyrin. In this latter solvent, the longest charge-shifted lifetime (tau=2.3 ns) was obtained with the penta-(phenylenethynylene) spacer. The charge shift reactions are discussed in terms of bridge-mediated super-exchange mechanisms as electron or hole transfer. These new bis-porphyrin arrays, with strong electronic coupling, represent interesting molecular systems in which extremely fast and efficient long-range photoinduced charge shift occurs over a long distance. The rate constants are two to three orders of magnitude larger than for corresponding ZnP--AuP(+) dyads linked via meso-phenyl groups to oligo-phenyleneethynylene spacers. This study demonstrates the critical impact of the attachment position of the spacer on the porphyrin on the electron transfer rate, and this strategy can represent a useful approach to develop molecular photonic devices for long-range charge separations.

  6. Physical stage of photosynthesis charge separation

    NASA Astrophysics Data System (ADS)

    Yakovlev, A. G.; Shuvalov, V. A.

    2016-06-01

    An analytical review is given concerning the biophysical aspects of light-driven primary charge separation in photosynthesis reaction centers (RCs) which are special pigment-protein complexes residing in a cell membrane. The primary (physical) stage of charge separation occurs in the pico- and femtosecond ranges and consists of transferring an electron along the active A-branch of pigments. The review presents vast factual material on both the general issues of primary photosynthesis and some more specific topics, including (1) the role of the inactive B-branch of pigments, (2) the effect of the protein environment on the charge separation, and (3) the participation of monomeric bacteriochlorophyll BA in primary electron acceptance. It is shown that the electron transfer and stabilization are strongly influenced by crystallographic water and tyrosine M210 molecules from the nearest environment of BA. A linkage between collective nuclear motions and electron transfer upon charge separation is demonstrated. The nature of the high quantum efficiency of primary charge separation reactions is discussed.

  7. Image method for induced surface charge from many-body system of dielectric spheres

    NASA Astrophysics Data System (ADS)

    Qin, Jian; de Pablo, Juan J.; Freed, Karl F.

    2016-09-01

    Charged dielectric spheres embedded in a dielectric medium provide the simplest model for many-body systems of polarizable ions and charged colloidal particles. We provide a multiple scattering formulation for the total electrostatic energy for such systems and demonstrate that the polarization energy can be rapidly evaluated by an image method that generalizes the image methods for conducting spheres. Individual contributions to the total electrostatic energy are ordered according to the number of polarized surfaces involved, and each additional surface polarization reduces the energy by a factor of (a/R)3ɛ, where a is the sphere radius, R the average inter-sphere separation, and ɛ the relevant dielectric mismatch at the interface. Explicit expressions are provided for both the energy and the forces acting on individual spheres, which can be readily implemented in Monte Carlo and molecular dynamics simulations of polarizable charged spheres, thereby avoiding costly computational techniques that introduce a surface charge distribution that requires numerical solution.

  8. IImage method for induced surface charge from many-body system of dielectric spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Jian; de Pablo, Juan J.; Freed, Karl F.

    2016-09-28

    Charged dielectric spheres embedded in a dielectric medium provide the simplest model for many-body systems of polarizable ions and charged colloidal particles. We provide a multiple scattering formulation for the total electrostatic energy for such systems and demonstrate that the polarization energy can be rapidly evaluated by an image method that generalizes the image methods for conducting spheres. Individual contributions to the total electrostatic energy are ordered according to the number of polarized surfaces involved, and each additional surface polarization reduces the energy by a factor of (a/R)(3) epsilon, where a is the sphere radius, R the average inter-sphere separation,more » and. the relevant dielectric mismatch at the interface. Explicit expressions are provided for both the energy and the forces acting on individual spheres, which can be readily implemented in Monte Carlo and molecular dynamics simulations of polarizable charged spheres, thereby avoiding costly computational techniques that introduce a surface charge distribution that requires numerical solution.« less

  9. Modeling the Electric Potential and Surface Charge Density near Charged Thunderclouds

    ERIC Educational Resources Information Center

    Neel, Matthew Stephen

    2018-01-01

    Thundercloud charge separation, or the process by which the bottom portion of a cloud gathers charge and the top portion of the cloud gathers the opposite charge, is still not thoroughly understood. Whatever the mechanism, though, a charge separation definitely exists and can lead to electrostatic discharge via cloud-to-cloud lightning and…

  10. Electrical stress and strain in lunar regolith simulants

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Richard, D.; Davis, S.

    2011-11-01

    Experiments to entrain dust with electrostatic and fluid-dynamic forces result in particulate clouds of aggregates rather than individual dust grains. This is explained within the framework of Griffith-flaw theory regarding the comminution/breakage of weak solids. Physical and electrical inhomogeneities in powders are equivalent to microcracks in solids insofar as they facilitate failure at stress risers. Electrical charging of powders induces bulk sample stresses similar to mechanical stresses experienced by strong solids, depending on the nature of the charging. A powder mass therefore "breaks" into clumps rather than separating into individual dust particles. This contrasts with the expectation that electrical forces on the Moon will eject a submicron population of dust from the regolith into the exosphere. A lunar regolith will contain physical and electrostatic inhomogeneities similar to those in most charged powders.

  11. Charge Separation and Exciton Dynamics at Polymer/ZnO Interface from First-Principles Simulations.

    PubMed

    Wu, Guangfen; Li, Zi; Zhang, Xu; Lu, Gang

    2014-08-07

    Charge separation and exciton dynamics play a crucial role in determining the performance of excitonic photovoltaics. Using time-dependent density functional theory with a range-separated exchange-correlation functional as well as nonadiabatic ab initio molecular dynamics, we have studied the formation and dynamics of charge-transfer (CT) excitons at polymer/ZnO interface. The interfacial atomic structure, exciton density of states and conversions between exciton species are examined from first-principles. The exciton dynamics exhibits both adiabatic and nonadiabatic characters. While the adiabatic transitions are facilitated by C═C vibrations along the polymer (P3HT) backbone, the nonadiabatic transitions are realized by exciton hopping between the excited states. We find that the localized ZnO surface states lead to localized low-energy CT states and poor charge separation. In contrast, the surface states of crystalline C60 are indistinguishable from the bulk states, resulting in delocalized CT states and efficient charge separation in polymer/fullerene (P3HT/PCBM) heterojunctions. The hot CT states are found to cool down in an ultrafast time scale and may not play a major role in charge separation of P3HT/ZnO. Finally we suggest that the dimensions of nanostructured acceptors can be tuned to obtain both efficient charge separation and high open circuit voltages.

  12. Long-lived charge carrier generation in ordered films of a covalent perylenediimide–diketopyrrolopyrrole–perylenediimide molecule

    DOE PAGES

    Hartnett, Patrick E.; Dyar, Scott M.; Margulies, Eric A.; ...

    2015-07-31

    The photophysics of a covalently linked perylenediimide–diketopyrrolopyrrole–perylenediimide acceptor–donor–acceptor molecule (PDI–DPP–PDI, 1) were investigated and found to be markedly different in solution versus in unannealed and solvent annealed films. Photoexcitation of 1 in toluene results in quantitative charge separation in τ = 3.1 ± 0.2 ps, with charge recombination in τ = 340 ± 10 ps, while in unannealed/disordered films of 1, charge separation occurs in τ < 250 fs, while charge recombination displays a multiexponential decay in ~6 ns. The absence of long-lived, charge separation in the disordered film suggests that few free charge carriers are generated. In contrast, uponmore » CH₂Cl₂ vapor annealing films of 1, grazing-incidence X-ray scattering shows that the molecules form a more ordered structure. Photoexcitation of the ordered films results in initial formation of a spin-correlated radical ion pair (electron–hole pair) as indicated by magnetic field effects on the formation of free charge carriers which live for ~4 μs. This result has significant implications for the design of organic solar cells based on covalent donor–acceptor systems and shows that long-lived, charge-separated states can be achieved by controlling intramolecular charge separation dynamics in well-ordered systems.« less

  13. Precambrian Lunar Volcanic Protolife

    PubMed Central

    Green, Jack

    2009-01-01

    Five representative terrestrial analogs of lunar craters are detailed relevant to Precambrian fumarolic activity. Fumarolic fluids contain the ingredients for protolife. Energy sources to derive formaldehyde, amino acids and related compounds could be by flow charging, charge separation and volcanic shock. With no photodecomposition in shadow, most fumarolic fluids at 40 K would persist over geologically long time periods. Relatively abundant tungsten would permit creation of critical enzymes, Fischer-Tropsch reactions could form polycyclic aromatic hydrocarbons and soluble volcanic polyphosphates would enable assembly of nucleic acids. Fumarolic stimuli factors are described. Orbital and lander sensors specific to protolife exploration including combined Raman/laser-induced breakdown spectrocsopy are evaluated. PMID:19582224

  14. Phénomènes d'électrisation des matériaux isolants pour transformateurs de puissance

    NASA Astrophysics Data System (ADS)

    Peyraque, L.; Béroual, A.; Boisdon, C.; Buret, F.

    1994-07-01

    In power transformers, the oil flowed through the cooling ducts in coil assembly induces a static charge separation. The study of this static electrification phenomena is presented through a device allowing to investigate the charge separation generated by the rotating motion of a transformer pressboard in oil. This permits to show the influence of various parameters such as velocity, temperature, moisture and processing of oils and pressboards as well as their nature on this electrical charge. We also present another device allowing to classify oils according to their level of charge production. It appears from our results that a correlation exists between the density of these charges and the characteristics of oil such as conductivity, electric strength and water content. Dans les transformateurs de puissance, la circulation d'huile à travers les canaux de refroidissement en fibre cellulosique (carton isolant) est à l'origine d'une séparation de charges. L'étude de ce phénomène d'électrisation statique est présentée, tout d'abord à travers un dispositif permettant d'étudier la séparation de charges créées par le mouvement du carton dans l'huile. Celui-ci a permis de mettre en évidence l'influence de plusieurs paramètres comme la vitesse, la température, l'humidité et le traitement des huiles et cartons ainsi que la nature du carton sur cette charge. Le second dispositif présenté permet de classer les huiles selon leur niveau de création de charges. Une corrélation semble s'établir entre la densité de ces charges et les grandeurs caractéristiques de l'huile telles que la conductivité, la rigidité diélectrique et la teneur en eau.

  15. Composition and structure of whey protein/gum arabic coacervates.

    PubMed

    Weinbreck, F; Tromp, R H; de Kruif, C G

    2004-01-01

    Complex coacervation in whey protein/gum arabic (WP/GA) mixtures was studied as a function of three main key parameters: pH, initial protein to polysaccharide mixing ratio (Pr:Ps)(ini), and ionic strength. Previous studies had already revealed under which conditions a coacervate phase was obtained. This study is aimed at understanding how these parameters influence the phase separation kinetics, the coacervate composition, and the internal coacervate structure. At a defined (Pr:Ps)(ini), an optimum pH of complex coacervation was found (pH(opt)), at which the strength of electrostatic interaction was maximum. For (Pr:Ps)(ini) = 2:1, the phase separation occurred the fastest and the final coacervate volume was the largest at pH(opt) = 4.0. The composition of the coacervate phase was determined after 48 h of phase separation and revealed that, at pH(opt), the coacervate phase was the most concentrated. Varying the (Pr:Ps)(ini) shifted the pH(opt) to higher values when (Pr:Ps)(ini) was increased and to lower values when (Pr:Ps)(ini) was decreased. This phenomenon was due to the level of charge compensation of the WP/GA complexes. Finally, the structure of the coacervate phase was studied with small-angle X-ray scattering (SAXS). SAXS data confirmed that at pH(opt) the coacervate phase was dense and structured. Model calculations revealed that the structure factor of WP induced a peak at Q = 0.7 nm(-1), illustrating that the coacervate phase was more structured, inducing the stronger correlation length of WP molecules. When the pH was changed to more acidic values, the correlation peak faded away, due to a more open structure of the coacervate. A shoulder in the scattering pattern of the coacervates was visible at small Q. This peak was attributed to the presence of residual charges on the GA. The peak intensity was reduced when the strength of interaction was increased, highlighting a greater charge compensation of the polyelectrolyte. Finally, increasing the ionic strength led to a less concentrated, a more heterogeneous, and a less structured coacervate phase, induced by the screening of the electrostatic interactions.

  16. MOS Circuitry Would Detect Low-Energy Charged Particles

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva; Wadsworth, Mark

    2003-01-01

    Metal oxide semiconductor (MOS) circuits for measuring spatially varying intensities of beams of low-energy charged particles have been developed. These circuits are intended especially for use in measuring fluxes of ions with spatial resolution along the focal planes of mass spectrometers. Unlike prior mass spectrometer focal-plane detectors, these MOS circuits would not be based on ion-induced generation of electrons, and photons; instead, they would be based on direct detection of the electric charges of the ions. Hence, there would be no need for microchannel plates (for ion-to-electron conversion), phosphors (for electron-to-photon conversion), and photodetectors (for final detection) -- components that degrade spatial resolution and contribute to complexity and size. The developmental circuits are based on linear arrays of charge-coupled devices (CCDs) with associated readout circuitry (see figure). They resemble linear CCD photodetector arrays, except that instead of a photodetector, each pixel contains a capacitive charge sensor. The capacitor in each sensor comprises two electrodes (typically made of aluminum) separated by a layer of insulating material. The exposed electrode captures ions and accumulates their electric charges during signal-integration periods.

  17. Interlayer‐State‐Coupling Dependent Ultrafast Charge Transfer in MoS2/WS2 Bilayers

    PubMed Central

    Zhang, Jin; Hong, Hao; Lian, Chao; Ma, Wei; Xu, Xiaozhi; Zhou, Xu; Fu, Huixia

    2017-01-01

    Light‐induced interlayer ultrafast charge transfer in 2D heterostructures provides a new platform for optoelectronic and photovoltaic applications. The charge separation process is generally hypothesized to be dependent on the interlayer stackings and interactions, however, the quantitative characteristic and detailed mechanism remain elusive. Here, a systematical study on the interlayer charge transfer in model MoS2/WS2 bilayer system with variable stacking configurations by time‐dependent density functional theory methods is demonstrated. The results show that the slight change of interlayer geometry can significantly modulate the charge transfer time from 100 fs to 1 ps scale. Detailed analysis further reveals that the transfer rate in MoS2/WS2 bilayers is governed by the electronic coupling between specific interlayer states, rather than the interlayer distances, and follows a universal dependence on the state‐coupling strength. The results establish the interlayer stacking as an effective freedom to control ultrafast charge transfer dynamics in 2D heterostructures and facilitate their future applications in optoelectronics and light harvesting. PMID:28932669

  18. Structural Variations in β-(BDA-TTP)2FeCl4 at Low Temperature and under Pressure: Charge-Ordered State with a Two-Fold Crystal Structure

    NASA Astrophysics Data System (ADS)

    Sasamori, Kota; Takahashi, Kazuyuki; Kodama, Takeshi; Fujita, Wataru; Kikuchi, Koichi; Yamada, Jun-ichi

    2013-05-01

    The pressure-induced organic superconductor β-(BDA-TTP)2FeCl4 [BDA-TTP = 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene], which shows a metal--insulator (MI) transition at TMI = 113 K under ambient pressure, has been found by X-ray study to have a two-fold crystal structure along the c-axis in the insulating state at 10 K. In the donor layer, there are four independent BDA-TTP molecules, which are divided into two charge-poor ones and two charge-rich ones on the basis of the folding dihedral angles around the intramolecular sulfur-to-sulfur axes of two outer dithiane rings in BDA-TTP. The charge separation leads to the formation of two types of dimers: a dimer consisting of two charge-poor donors and a dimer consisting of two charge-rich ones. The tight-binding band calculation revealed a band gap of 5.3 meV in the energy dispersion. The MI transition can be therefore accounted for by the charge separation. In addition, we investigated the crystal and electronic structures of β-(BDA-TTP)2FeCl4 at different pressures up to 21 kbar, and found that the application of pressures causes variations in both the conformation of donor molecule and the donor arrangement, which are responsible for almost uniform interaction in the donor stacking and for an increase in bandwidth (W). As a result, the suppression of MI transition and subsequent occurrence of superconductivity in β-(BDA-TTP)2FeCl4 would be observed with increasing pressure.

  19. The influence of charge and the distribution of charge in the polar region of phospholipids on the activity of UDP-glucuronosyltransferase.

    PubMed

    Zakim, D; Eibl, H

    1992-07-05

    Studies of the mechanism of lipid-induced regulation of the microsomal enzyme UDP-glucuronosyltransferase have been extended by examining the influence of charge within the polar region on the ability of lipids to activate delipidated pure enzyme. The effects of net negative charge, of charge separation in phosphocholine, and of the distribution of charge in the polar region of lipids were studied using the GT2p isoform isolated from pig liver. Prior experiments have shown that lipids with net negative charge inhibit the enzyme (Zakim, D., Cantor, M., and Eibl, H. (1988) J. Biol. Chem. 263, 5164-5169). The current experiments show that the extent of inhibition on a molar basis increases as the net negative charge increases from -1 to -2. The inhibitory effect of negatively charged lipids is on the functional state of the enzyme and is not due to electrostatic repulsion of negatively charged substrates of the enzyme. Although the inhibitory effect of net negative charge is removed when negative charge is balanced by a positive charge due to a quaternary nitrogen, neutrality of the polar region is not a sufficient condition for activation of the enzyme. In addition to a balance of charge between Pi and the quaternary nitrogen, the distance between the negative and positive charges and the orientation of the dipole created by them are critical for activation of GT2p. The negative and positive charges must be separated by the equivalent of three -CH2- groups for optimal activation by a lipid. Shortening this distance by one -CH2- unit leads to a lipid that is ineffective in activating the enzyme. Reversal of the orientation of the dipole in which the negative charge is on the polymethylene side of the lipid-water interface and the positive charge extends into water also produces a lipid that is not effective for activating GT2p. On the other hand, lipids with phosphoserine as the polar region, which has the "normal" P-N distance but carries a net negative charge, do not inhibit GT2p. This result again illustrates the importance of the dipole of phosphocholine for modulating the functional state of GT2p.

  20. Plasma production in carbon-based materials

    NASA Astrophysics Data System (ADS)

    Giuffreda, E.; Delle Side, D.; Nassisi, V.; Krása, J.

    2017-09-01

    High intensity lasers can induce in solid targets a charge separation resulting in a time-dependent induced polarization. In this work, the characterization of a plastic target subjected to a laser irradiation has been analysed. A focus was particularly devoted to the interaction of the target with the whole grounded chamber, manipulated through the change of the target-holder surface ratio. The targets are thick samples (thickness >1 mm) of polymers arranged in discs according to the metallic holder shape. A possible correlation between the target current and the main features of the produced plasma was analyzed, in order to acquire a deeper knowledge on laser-matter interactions with the laser pulse on the nanosecond scale. Collected signals were analyzed to reconstruct the time evolution of key observables as well as the charge space distribution in the chamber. The experimental setting allowing the target current observation and the measurement procedure is discussed.

  1. Pentachlorophenol removal from water using surfactant-enhanced filtration through low-pressure thin film composite membranes.

    PubMed

    Kumar, Yogesh; Popat, K M; Brahmbhatt, H; Ganguly, B; Bhattacharya, A

    2008-06-15

    Removal of pentachlorophenol from water is investigated using the surfactant-enhanced cross-flow membrane filtration technique in which anionic surfactant; sodium dodecyl sulfate (SDS) is the carrier of pentachlorophenol. The separation performances are studied by varying SDS concentrations (

  2. Electron beam induced strong organic/inorganic grafting for thermally stable lithium-ion battery separators

    NASA Astrophysics Data System (ADS)

    Choi, Yunah; Kim, Jin Il; Moon, Jungjin; Jeong, Jongyeob; Park, Jong Hyeok

    2018-06-01

    A tailored interface between organic and inorganic materials is of great importance to maximize the synergistic effects from hybridization. Polyethylene separators over-coated with inorganic thin films are the state-of-the art technology for preparing various secondary batteries with high safety. Unfortunately, the organic/inorganic hybrid separators have the drawback of a non-ideal interface, thus causing poor thermal/dimensional stability. Here, we report a straightforward method to resolve the drawback of the non-ideal interface between vapor deposited SiO2 and polyethylene separators, to produce a highly stable lithium-ion battery separator through strong chemical linking generated by direct electron beam irradiation. The simple treatment with an electron beam with an optimized dose generates thermally stable polymer separators, which may enhance battery safety under high-temperature conditions. Additionally, the newly formed Si-O-C or Si-CH3 chemical bonding enhances electrolyte-separator compatibility and thus may provide a better environment for ionic transport between the cathode and anode, thereby leading to better charge/discharge behaviors.

  3. The CE way of thinking: "all is relative!".

    PubMed

    Schmitt-Kopplin, Philippe; Fekete, Agnes

    2008-01-01

    Over the last two decades, the development of capillary electrophoresis (CE) instruments has lead to systems with programmable samplers, separation columns, separation buffers, and detection devices comparable visually in many aspects to the setup of classical chromatography. Two characteristics make CE essentially different from chromatography and are the basis of the CE way of thinking: first is the injection type and the liquid flow within the capillary. When the injection is made hydrodynamically (such as in most of the applications found in the literature), the injected volumes are directly dependent on the type and size of the separation capillary. The second characteristic is that in CE, buffer velocity is not pressure-driven, as in liquid chromatography, but is electrokinetically governed by the quality of the capillary surface (separation buffer dependent surface charge) inducing an electroosmotic flow (EOF). The EOF undergoes small variations and is not necessarily identical from one separation or day to the other. The direct consequence is that the migration time of the analytes apparently nonreproducible, although the velocity of the ions is the same. The effective mobility (field strength normalized velocity) of the ions is a possible parameterization from acquired time-scale to effective mobility-scale electropherograms leading to a reproducible visualization and better quantification with a direct relation to structural characters of the analytes (i.e., charge and size; see Chapter 23).

  4. First-principles prediction of new photocatalyst materials with visible-light absorption and improved charge separation: surface modification of rutile TiO₂ with nanoclusters of MgO and Ga₂O₃.

    PubMed

    Nolan, Michael

    2012-11-01

    Titanium dioxide is an important and widely studied photocatalytic material, but to achieve photocatalytic activity under visible-light absorption, it needs to have a narrower band gap and reduced charge carrier recombination. First-principles simulations are presented in this paper to show that heterostructures of rutil TiO₂ modified with nanoclusters of MgO and Ga₂O₃ will be new photocatalytically active materials in the UV (MgO-TiO₂) and visible (Ga₂O₃-TiO₂) regions of the solar spectrum. In particular, our investigations of a model of the excited state of the heterostructures demonstrate that upon light excitation electrons and holes can be separated onto the TiO₂ surface and the metal oxide nanocluster, which will reduce charge recombination and improve photocatalytic activity. For MgO-modified TiO₂, no significant band gap change is predicted, but for Ga₂O₃-modified TiO₂ we predict a band gap change of up to 0.6 eV, which is sufficient to induce visible light absorption. Comparisons with unmodified TiO₂ and other TiO₂-based photocatalyst structures are presented.

  5. Theoretical investigation of the electron transfer dynamics and photodegradation pathways in a hydrogen-evolving ruthenium-palladium photocatalyst.

    PubMed

    Staniszewska, Magdalena; Kupfer, Stephan; Guthmuller, Julien

    2018-05-16

    Time-dependent density functional theory calculations combined with the Marcus theory of electron transfer (ET) were applied on the molecular photocatalyst [(tbbpy)2Ru(tpphz)PdCl2]2+ in order to elucidate the light-induced relaxation pathways populated upon excitation in the longer wavelength range of its absorption spectrum. The computational results show that after the initial excitation, metal (Ru) to ligand (tpphz) charge transfer (MLCT) triplet states are energetically accessible, but that an ET toward the catalytic center (PdCl2) from these states is a slow process, with estimated time constants above 1 ns. Instead, the calculations predict that low-lying Pd-centered states are efficiently populated - associated to an energy transfer toward the catalytic center. Thus, it is postulated that these states lead to the dissociation of a Cl- and are consequently responsible for the experimentally observed degradation of the catalytic center. Following dissociation, it is shown that the ET rates from the MLCT states to the charge separated states are significantly increased (i.e. 10^5-10^6 times larger). This demonstrates that alteration of the catalytic center generates efficient charge separation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Spin-orbit coupling, electron transport and pairing instabilities in two-dimensional square structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocharian, Armen N.; Fernando, Gayanath W.; Fang, Kun

    Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges andmore » opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters) engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.« less

  7. Characterization of charge separation in the Array of Micromachined UltraSonic Electrospray (AMUSE) ion source for mass spectrometry.

    PubMed

    Forbes, Thomas P; Dixon, R Brent; Muddiman, David C; Degertekin, F Levent; Fedorov, Andrei G

    2009-09-01

    An initial investigation into the effects of charge separation in the Array of Micromachined UltraSonic Electrospray (AMUSE) ion source is reported to gain understanding of ionization mechanisms and to improve analyte ionization efficiency and operation stability. In RF-only mode, AMUSE ejects, on average, an equal number of slightly positive and slightly negative charged droplets due to random charge fluctuations, providing inefficient analyte ionization. Charge separation at the nozzle orifice is achieved by the application of an external electric field. By bringing the counter electrode close to the nozzle array, strong electric fields can be applied at relatively low DC potentials. It has been demonstrated, through a number of electrode/electrical potential configurations, that increasing charge separation leads to improvement in signal abundance, signal-to-noise ratio, and signal stability.

  8. Surfactant functionalization induces robust, differential adhesion of tumor cells and blood cells to charged nanotube-coated biomaterials under flow.

    PubMed

    Mitchell, Michael J; Castellanos, Carlos A; King, Michael R

    2015-07-01

    The metastatic spread of cancer cells from the primary tumor to distant sites leads to a poor prognosis in cancers originating from multiple organs. Increasing evidence has linked selectin-based adhesion between circulating tumor cells (CTCs) and endothelial cells of the microvasculature to metastatic dissemination, in a manner similar to leukocyte adhesion during inflammation. Functionalized biomaterial surfaces hold promise as a diagnostic tool to separate CTCs and potentially treat metastasis, utilizing antibody and selectin-mediated interactions for cell capture under flow. However, capture at high purity levels is challenged by the fact that CTCs and leukocytes both possess selectin ligands. Here, a straightforward technique to functionalize and alter the charge of naturally occurring halloysite nanotubes using surfactants is reported to induce robust, differential adhesion of tumor cells and blood cells to nanotube-coated surfaces under flow. Negatively charged sodium dodecanoate-functionalized nanotubes simultaneously enhanced tumor cell capture while negating leukocyte adhesion, both in the presence and absence of adhesion proteins, and can be utilized to isolate circulating tumor cells regardless of biomarker expression. Conversely, diminishing nanotube charge via functionalization with decyltrimethylammonium bromide both abolished tumor cell capture while promoting leukocyte adhesion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. A charge-polarized porous metal-organic framework for gas chromatographic separation of alcohols from water.

    PubMed

    Sun, Jian-Ke; Ji, Min; Chen, Cheng; Wang, Wu-Gen; Wang, Peng; Chen, Rui-Ping; Zhang, Jie

    2013-02-25

    A bipyridinium ligand with a charge separated skeleton has been introduced into a metal-organic framework to yield a porous material with charge-polarized pore space, which exhibits selective adsorption for polar guest molecules and can be further used in gas chromatography for the separation of alcohol-water mixtures.

  10. A Charge Separation Study to Enable the Design of a Complete Muon Cooling Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshikawa, C.; Ankenbrandt, Charles M.; Johnson, Rolland P.

    2013-12-01

    The most promising designs for 6D muon cooling channels operate on a specific sign of electric charge. In particular, the Helical Cooling Channel (HCC) and Rectilinear RFOFO designs are the leading candidates to become the baseline 6D cooling channel in the Muon Accelerator Program (MAP). Time constraints prevented the design of a realistic charge separator, so a simplified study was performed to emulate the effects of charge separation on muons exiting the front end of a muon collider. The output of the study provides particle distributions that the competing designs will use as input into their cooling channels. We reportmore » here on the study of the charge separator that created the simulated particles.« less

  11. Detuning dependence of Rabi oscillations in an InAs self-assembled quantum dot ensemble

    NASA Astrophysics Data System (ADS)

    Suzuki, Takeshi; Singh, Rohan; Bayer, Manfred; Ludzwig, Arne; Wieck, Andreas D.; Cundiff, Steven T.

    2018-04-01

    We study the coherent evolution of an InAs self-assembled quantum dot (QD) ensemble in the ultrafast regime. The evolution of the entire frequency distribution is revealed by performing prepulse two-dimensional (2D) coherent spectroscopy. Charged and neutral QDs display distinct nonlinear responses arising from two-level trion and four-level exciton-biexciton systems, respectively, and each signal is clearly separated in 2D spectra. Whereas the signals for charged QDs are symmetric with respect to the detuning, those for neutral QDs are asymmetric due to the asymmetric four-level energy structure. Experimental results for charged and neutral QDs are well reproduced by solving the optical Bloch equations, including detuning and excitation-induced dephasing (EID) effects. The temperature dependence suggests that wetting-layer carriers play an important role in EID.

  12. Laser desorption vs. electrospray of polyyne-threaded rotaxanes: Preventing covalent cross-linking and promoting noncovalent aggregation

    NASA Astrophysics Data System (ADS)

    Neugebauer, Thomas S.; Franz, Michael; Frankenberger, Stephanie; Tykwinski, Rik R.; Drewello, Thomas

    2018-02-01

    Laser-induced cross-linking of polyynes is successfully hindered when the polyyne is encapsulated as part of a rotaxane and therefore protected by a surrounding macrocycle. When the rotaxane is electrosprayed, however, noncovalent aggregate ions are efficiently formed. Aggregates of considerable size (including more than 50 rotaxane molecules with masses beyond 100k Da) and charge states (up to 13 charges and beyond) have been observed. Either protons or sodium cations act as the charge carriers. These aggregates are not formed when the individual components of the rotaxane, i.e., the macrocycle or the polyyne, are separately electrosprayed. This underlines the structural importance of the rotaxane for the aggregate formation. Straightforward force field calculations indicate that the polyyne thread hinders the folding of the macrocycles, which facilitates the bonding interaction between the two components.

  13. Structural dynamics of a noncovalent charge transfer complex from femtosecond stimulated Raman spectroscopy.

    PubMed

    Fujisawa, Tomotsumi; Creelman, Mark; Mathies, Richard A

    2012-09-06

    Femtosecond stimulated Raman spectroscopy is used to examine the structural dynamics of photoinduced charge transfer within a noncovalent electron acceptor/donor complex of pyromellitic dianhydride (PMDA, electron acceptor) and hexamethylbenzene (HMB, electron donor) in ethylacetate and acetonitrile. The evolution of the vibrational spectrum reveals the ultrafast structural changes that occur during the charge separation (Franck-Condon excited state complex → contact ion pair) and the subsequent charge recombination (contact ion pair → ground state complex). The Franck-Condon excited state is shown to have significant charge-separated character because its vibrational spectrum is similar to that of the ion pair. The charge separation rate (2.5 ps in ethylacetate and ∼0.5 ps in acetonitrile) is comparable to solvation dynamics and is unaffected by the perdeuteration of HMB, supporting the dominant role of solvent rearrangement in charge separation. On the other hand, the charge recombination slows by a factor of ∼1.4 when using perdeuterated HMB, indicating that methyl hydrogen motions of HMB mediate the charge recombination process. Resonance Raman enhancement of the HMB vibrations in the complex reveals that the ring stretches of HMB, and especially the C-CH(3) deformations are the primary acceptor modes promoting charge recombination.

  14. Magnetoresistance of vertical Co-graphene-NiFe junctions controlled by charge transfer and proximity-induced spin splitting in graphene

    NASA Astrophysics Data System (ADS)

    Asshoff, P. U.; Sambricio, J. L.; Rooney, A. P.; Slizovskiy, S.; Mishchenko, A.; Rakowski, A. M.; Hill, E. W.; Geim, A. K.; Haigh, S. J.; Fal'ko, V. I.; Vera-Marun, I. J.; Grigorieva, I. V.

    2017-09-01

    Graphene is hailed as an ideal material for spintronics due to weak intrinsic spin-orbit interaction that facilitates lateral spin transport and tunability of its electronic properties, including a possibility to induce magnetism in graphene. Another promising application of graphene is related to its use as a spacer separating ferromagnetic metals (FMs) in vertical magnetoresistive devices, the most prominent class of spintronic devices widely used as magnetic sensors. In particular, few-layer graphene was predicted to act as a perfect spin filter. Here we show that the role of graphene in such devices (at least in the absence of epitaxial alignment between graphene and the FMs) is different and determined by proximity-induced spin splitting and charge transfer with adjacent ferromagnetic metals, making graphene a weak FM electrode rather than a spin filter. To this end, we report observations of magnetoresistance (MR) in vertical Co-graphene-NiFe junctions with 1-4 graphene layers separating the ferromagnets, and demonstrate that the dependence of the MR sign on the number of layers and its inversion at relatively small bias voltages is consistent with spin transport between weakly doped and differently spin-polarized layers of graphene. The proposed interpretation is supported by the observation of an MR sign reversal in biased Co-graphene-hBN-NiFe devices and by comprehensive structural characterization. Our results suggest a new architecture for vertical devices with electrically controlled MR.

  15. Characterization of Charge Separation in the Array of Micromachined UltraSonic Electrospray (AMUSE) Ion Source for Mass Spectrometry

    PubMed Central

    Forbes, Thomas P.; Dixon, R. Brent; Muddiman, David C.; Degertekin, F. Levent; Fedorov, Andrei G.

    2009-01-01

    An initial investigation into the effects of charge separation in the Array of Micromachined UltraSonic Electrospray (AMUSE) ion source is reported in order to gain understanding of ionization mechanisms and to improve analyte ionization efficiency and operation stability. In RF-only mode, AMUSE ejects on average, an equal number of slightly positive and slightly negative charged droplets due to random charge fluctuations, providing inefficient analyte ionization. Charge separation at the nozzle orifice is achieved by the application of an external electric field. By bringing the counter electrode close to the nozzle array, strong electric fields can be applied at relatively low DC potentials. It has been demonstrated, through a number of electrode/electrical potential configurations that increasing charge separation leads to improvement in signal abundance, signal-to-noise ratio, and signal stability. PMID:19525123

  16. Wide size range fast integrated mobility spectrometer

    DOEpatents

    Wang, Jian

    2013-10-29

    A mobility spectrometer to measure a nanometer particle size distribution is disclosed. The mobility spectrometer includes a conduit and a detector. The conduit is configured to receive and provide fluid communication of a fluid stream having a charged nanometer particle mixture. The conduit includes a separator section configured to generate an electrical field of two dimensions transverse to a dimension associated with the flow of the charged nanometer particle mixture through the separator section to spatially separate charged nanometer particles of the charged nanometer particle mixture in said two dimensions. The detector is disposed downstream of the conduit to detect concentration and position of the spatially-separated nanometer particles.

  17. Charge separation and transport of the n=2 instability in C-2 FRC plasmas

    NASA Astrophysics Data System (ADS)

    Deng, Bihe; Sun, Xuan; Tuszewski, Michel

    2012-10-01

    Charge separation is critical in the positive feedback loop for gravitational type instabilities to grow [1], such as in the case of the n=2 mode in the C-2 field reversed configuration (FRC) experiment [2]. A fast time response Langmuir probe with minimum perturbation to the plasma is inserted into the edge of the C-2 plasma to measure the plasma floating potential. With the combined plasma wobble motion and spin motion, 2-D scans of the plasma floating potential are obtained, and evidence of charge separation associated with the n=2 instability is observed. The transport due to charge separation is estimated. Charge neutralization can provide an alternative method to stabilize the n=2 mode. An experiment is proposed to test this method with two probes inserted into the plasma from two azimuthally separated ports and an external shorting circuit, to constantly neutralize the charge separation, thus suppress the growth of the n=2 mode. [4pt] [1] R.J. Goldston and P.H. Rutherford, Introduction to Plasma Physics (Institute of Physics Publishing, Bristol, 2000).[0pt] [2]. M.W. Binderbauer et al, Phys. Rev. Lett. 105, 045003 (2010).

  18. Alloy and heterostructure architectures as promising tools for controlling electronic properties of semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Vaxenburg, Roman; Lifshitz, Efrat

    2012-02-01

    Tunability of energy levels and wavefunctions of carriers in colloidal quantum dots (CQDs) has a marked effect on numerous physical aspects, such as Coulomb interactions and charge separation, which in turn has a direct impact on the functioning of CQD-based opto-electronic devices. The electronic properties of CQDs are conventionally controlled by variation of their size. Here we demonstrate a theoretical approach to engineer the electronic properties of IV-VI CQDs by introducing an alloy composition in core and core/shell heterostructures, having the general chemical formula PbSexS1-x/PbSeyS1-y (0 ≤ x ≤ 1, 0 ≤ y ≤ 1), while maintaining a constant size. The theoretical model considered an effective mass anisotropy and smooth potential step at the core/shell interface. The model revealed the influence induced by variation of chemical composition and core-to-shell division on the band-gap energy, remote states’ density, internal charge separation, electron-hole Coulomb interaction, and optical transition oscillator strength.

  19. Electrical Contacts to Individual Colloidal Semiconductor Nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trudeau, Paul-Emile; Sheldon, Matt; Altoe, Virginia

    We report the results of charge transport studies on single CdTe nanocrystals contacted via evaporated Pd electrodes. Device charging energy, E{sub c}, monitored as a function of electrode separation drops suddenly at separations below {approx}55 nm. This drop can be explained by chemical changes induced by the metal electrodes. This explanation is corroborated by ensemble X-Ray photoelectron spectroscopy (XPS) studies of CdTe films as well as single particle measurements by transmission electron microscopy (TEM) and energy dispersive X-Rays (EDX). Similar to robust optical behavior obtained when Nanocrystals are coated with a protective shell, we find that a protective SiO2 layermore » deposited between the nanocrystal and the electrode prevents interface reactions and an associated drop in E{sub c,max}. This observation of interface reactivity and its effect on electrical properties has important implications for the integration of nanocrystals into conventional fabrication techniques and may enable novel nano-materials.« less

  20. Hydrogen bonding effects on the reorganization energy for photoinduced charge separation reaction between porphyrin and quinone studied by nanosecond laser flash photolysis.

    PubMed

    Yago, Tomoaki; Gohdo, Masao; Wakasa, Masanobu

    2010-02-25

    Alcohol concentration dependences of photoinduced charge separation (CS) reaction of zinc tetraphenyl-porphyrin (ZnTPP) and duroquinone (DQ) were investigated in benzonitrile by a nanosecond laser flash photolysis technique. The photoinduced CS reaction was accelerated by the addition of alcohols, whereas the addition of acetonitrile caused little effect on the CS reactions. The simple theory was developed to calculate an increase in reorganization energies induced by the hydrogen bonding interactions between DQ and alcohols using the chemical equilibrium constants for the hydrogen bonding complexes through the concerted pathway and the stepwise one. The experimental results were analyzed by using the Marcus equation where we took into account the hydrogen bonding effects on the reorganization energy and the reaction free energy for the CS reaction. The observed alcohol concentration dependence of the CS reaction rates was well explained by the formation of the hydrogen bonding complexes through the concerted pathway, demonstrating the increase in the reorganization energy by the hydrogen bonding interactions.

  1. The role of interfacial water layer in atmospherically relevant charge separation

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Indrani

    Charge separation at interfaces is important in various atmospheric processes, such as thunderstorms, lightning, and sand storms. It also plays a key role in several industrial processes, including ink-jet printing and electrostatic separation. Surprisingly, little is known about the underlying physics of these charging phenomena. Since thin films of water are ubiquitous, they may play a role in these charge separation processes. This talk will focus on the experimental investigation of the role of a water adlayer in interfacial charging, with relevance to meteorologically important phenomena, such as atmospheric charging due to wave actions on oceans and sand storms. An ocean wave generates thousands of bubbles, which upon bursting produce numerous large jet droplets and small film droplets that are charged. In the 1960s, Blanchard showed that the jet droplets are positively charged. However, the charge on the film droplets was not known. We designed an experiment to exclusively measure the charge on film droplets generated by bubble bursting on pure water and aqueous salt solution surfaces. We measured their charge to be negative and proposed a model where a slight excess of hydroxide ions in the interfacial water layer is responsible for generating these negatively charged droplets. The findings from this research led to a better understanding of the ionic disposition at the air-water interface. Sand particles in a wind-blown sand layer, or 'saltation' layer, become charged due to collisions, so much so, that it can cause lightning. Silica, being hydrophilic, is coated with a water layer even under low-humidity conditions. To investigate the importance of this water adlayer in charging the silica surfaces, we performed experiments to measure the charge on silica surfaces due to contact and collision processes. In case of contact charging, the maximum charge separation occurred at an optimum relative humidity. On the contrary, in collisional charging process, no humidity effect was observed. We proposed an ion transfer mechanism in case of contact charging. However, an electron transfer mechanism explained the collisional charging process. The effects of temperature, surface roughness, and chemical nature of surface were also studied for both contact and collisional charging processes.

  2. Electromagnetic pulse-induced current measurement device

    NASA Astrophysics Data System (ADS)

    Gandhi, Om P.; Chen, Jin Y.

    1991-08-01

    To develop safety guidelines for exposure to high fields associated with an electromagnetic pulse (EMP), it is necessary to devise techniques that would measure the peak current induced in the human body. The main focus of this project was to design, fabricate, and test a portable, self-contained stand-on device that would measure and hold the peak current and the integrated change Q. The design specifications of the EMP-Induced Current Measurement Device are as follows: rise time of the current pulse, 5 ns; peak current, 20-600 A; charge Q, 0-20 microcoulombs. The device uses a stand-on parallel-plate bilayer sensor and fast high-frequency circuit that are well-shielded against spurious responses to high incident fields. Since the polarity of the incident peak electric field of the EMP may be either positive or negative, the induced peak current can also be positive or negative. Therefore, the device is designed to respond to either of these polarities and measure and hold both the peak current and the integrated charge which are simultaneously displayed on two separate 3-1/2 digit displays. The prototype device has been preliminarily tested with the EMP's generated at the Air Force Weapons Laboratory (ALECS facility) at Kirtland AFB, New Mexico.

  3. Charge Separation and Recombination at Polymer-Fullerene Heterojunctions: Delocalization and Hybridization Effects.

    PubMed

    D'Avino, Gabriele; Muccioli, Luca; Olivier, Yoann; Beljonne, David

    2016-02-04

    We address charge separation and recombination in polymer/fullerene solar cells with a multiscale modeling built from accurate atomistic inputs and accounting for disorder, interface electrostatics and genuine quantum effects on equal footings. Our results show that bound localized charge transfer states at the interface coexist with a large majority of thermally accessible delocalized space-separated states that can be also reached by direct photoexcitation, thanks to their strong hybridization with singlet polymer excitons. These findings reconcile the recent experimental reports of ultrafast exciton separation ("hot" process) with the evidence that high quantum yields do not require excess electronic or vibrational energy ("cold" process), and show that delocalization, by shifting the density of charge transfer states toward larger effective electron-hole radii, may reduce energy losses through charge recombination.

  4. Electrophoretic separation of gold nanoparticles according to bifunctional molecules-induced charge and size.

    PubMed

    Kim, Jong-Yeob; Kim, Hyung-Bae; Jang, Du-Jeon

    2013-03-01

    Gold nanospheres modified with bifunctional molecules have been separated and characterized by using agarose gel electrophoresis as well as optical spectroscopy and electron microscopy. The electrophoretic mobility of a gold nanosphere capped with 11-mercaptoundecanoic acid (MUA) has been found to depend on the number of MUA molecules per gold nanosphere, indicating that it increases with the surface charge of the nanoparticle. The extinction spectrum of gold nanospheres capped with MUA at an MUA molecules per gold nanosphere value of 1000 and connected via 1,6-hexanedithiol (HDT) decreases by 33% in magnitude and shifts to the red as largely as 22 nm with the increase of the molar ratio of HDT to MUA (R(HM)). Gold nanospheres capped with MUA and connected via HDT have been separated successfully using gel electrophoresis and characterized by measuring reflectance spectra of discrete electrophoretic bands directly in the gel and by monitoring transmission electron microscope images of gold nanoparticles collected from the discrete bands. Electrophoretic mobility has been found to decrease substantially with the increment of HDT to MUA, indicating that the size of aggregated gold nanoparticles increases with the concentration of HDT. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Photon induced non-linear quantized double layer charging in quaternary semiconducting quantum dots.

    PubMed

    Nair, Vishnu; Ananthoju, Balakrishna; Mohapatra, Jeotikanta; Aslam, M

    2018-03-15

    Room temperature quantized double layer charging was observed in 2 nm Cu 2 ZnSnS 4 (CZTS) quantum dots. In addition to this we observed a distinct non-linearity in the quantized double layer charging arising from UV light modulation of double layer. UV light irradiation resulted in a 26% increase in the integral capacitance at the semiconductor-dielectric (CZTS-oleylamine) interface of the quantum dot without any change in its core size suggesting that the cause be photocapacitive. The increasing charge separation at the semiconductor-dielectric interface due to highly stable and mobile photogenerated carriers cause larger electrostatic forces between the quantum dot and electrolyte leading to an enhanced double layer. This idea was supported by a decrease in the differential capacitance possible due to an enhanced double layer. Furthermore the UV illumination enhanced double layer gives us an AC excitation dependent differential double layer capacitance which confirms that the charging process is non-linear. This ultimately illustrates the utility of a colloidal quantum dot-electrolyte interface as a non-linear photocapacitor. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Charge segregation in weakly ionized microgels

    DOE PAGES

    Hyatt, John S.; Douglas, Alison M.; Stanley, Chris; ...

    2017-01-19

    Here we investigate microgels synthesized from N-isopropylacrylamide (NIPAM) copolymerized with a large mol% of acrylic acid, finding that when the acid groups are partially ionized at high temperatures, competition between ion-induced swelling and hydrophobic deswelling of poly(NIPAM) chains results in microphase separation. In cross-linked microgels, this manifests as a dramatic decrease in the ratio between the radius of gyration and the hydrodynamic radius to ~0.2, indicating that almost all the mass of the microgel is concentrated near the particle center. We also observe a concurrent decrease of the polymer network length scale via small-angle neutron scattering, confirming the presence ofmore » a dense, deswollen core surrounded by a diffuse, charged periphery. We compare these results to those obtained for a system of charged ultralow-cross-linked microgels; the form factor shows a distinct peak at high q when the temperature exceeds a threshold value. Lastly, we successfully fit the form factor to theory developed to describe scattering from weakly charged gels in poor solvents, and we tie this behavior to charge segregation in the case of the cross-linked microgels.« less

  7. Exploring what prompts ITIC to become a superior acceptor in organic solar cell by combining molecular dynamics simulation with quantum chemistry calculation.

    PubMed

    Pan, Qing-Qing; Li, Shuang-Bao; Duan, Ying-Chen; Wu, Yong; Zhang, Ji; Geng, Yun; Zhao, Liang; Su, Zhong-Min

    2017-11-29

    The interface characteristic is a crucial factor determining the power conversion efficiency of organic solar cells (OSCs). In this work, our aim is to conduct a comparative study on the interface characteristics between the very famous non-fullerene acceptor, ITIC, and a fullerene acceptor, PC71BM by combining molecular dynamics simulations with density functional theory. Based on some typical interface models of the acceptor ITIC or PC71BM and the donor PBDB-T selected from MD simulation, besides the evaluation of charge separation/recombination rates, the relative positions of Frenkel exciton (FE) states and the charge transfer states along with their oscillator strengths are also employed to estimate the charge separation abilities. The results show that, when compared with those for the PBDB-T/PC71BM interface, the CT states are more easily formed for the PBDB-T/ITIC interface by either the electron transfer from the FE state or direct excitation, indicating the better charge separation ability of the former. Moreover, the estimation of the charge separation efficiency manifests that although these two types of interfaces have similar charge recombination rates, the PBDB-T/ITIC interface possesses the larger charge separation rates than those of the PBDB-T/PC71BM interface. Therefore, the better match between PBDB-T and ITIC together with a larger charge separation efficiency at the interface are considered to be the reasons for the prominent performance of ITIC in OSCs.

  8. 77 FR 69522 - Self-Regulatory Organizations; National Stock Exchange, Inc.; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-19

    ... participants to: (1) Charge a flat fee per quotation update; (2) charge a separate flat fee per quotation... to: (1) Charge a flat fee per quotation update; (2) charge a separate flat fee per quotation update... fund the NSX's regulatory oversight of Order Delivery participants. Quotation Update Fee for Existing...

  9. Multifunctional Fe3O4@SiO2-Au Satellite Structured SERS Probe for Charge Selective Detection of Food Dyes.

    PubMed

    Sun, Zhenli; Du, Jingjing; Yan, Li; Chen, Shu; Yang, Zhilin; Jing, Chuanyong

    2016-02-10

    Nanofabrication of multifunctional surface-enhanced Raman scattering (SERS) substrates is strongly desirable but currently remains a challenge. The motivation of this study was to design such a substrate, a versatile core-satellite Fe3O4@SiO2-Au (FA) hetero-nanostructure, and demonstrate its use for charge-selective detection of food dye molecules as an exemplary application. Our experimental results and three-dimensional finite difference time domain (FDTD) simulation suggest that tuning the Au nanoparticle (NP) gap to sub-10 nm, which could be readily accomplished, substantially enhanced the Raman signals. Further layer-by-layer deposition of a charged polyelectrolyte on this magnetic SERS substrate induced active adsorption and selective detection of food dye molecules of opposite charge on the substrates. Molecular dynamics (MD) simulations suggest that the selective SERS enhancement could be attributed to the high affinity and close contact (within a 20 Å range) between the substrate and molecules. Density function theory (DFT) calculations confirm the charge transfer from food dye molecules to Au NPs via the polyelectrolytes. This multifunctional SERS platform provides easy separation and selective detection of charged molecules from complex chemical mixtures.

  10. Photoinduced electron transfer in a molecular dyad by nanosecond pump-pump-probe spectroscopy.

    PubMed

    Ha-Thi, M-H; Pham, V-T; Pino, T; Maslova, V; Quaranta, A; Lefumeux, C; Leibl, W; Aukauloo, A

    2018-06-01

    The design of robust and inexpensive molecular photocatalysts for the conversion of abundant stable molecules like H2O and CO2 into an energetic carrier is one of the major fundamental questions for scientists nowadays. The outstanding challenge is to couple single photoinduced charge separation events with the sequential accumulation of redox equivalents at the catalytic unit for performing multielectronic catalytic reactions. Herein, double excitation by nanosecond pump-pump-probe experiments was used to interrogate the photoinduced charge transfer and charge accumulation on a molecular dyad composed of a porphyrin chromophore and a ruthenium-based catalyst in the presence of a reversible electron acceptor. An accumulative charge transfer state is unattainable because of rapid reverse electron transfer to the photosensitizer upon the second excitation and the low driving force of the forward photodriven electron transfer reaction. Such a method allows the fundamental understanding of the relaxation mechanism after two sequential photon absorptions, deciphering the undesired electron transfer reactions that limit the charge accumulation efficiency. This study is a step toward the improvement of synthetic strategies of molecular photocatalysts for light-induced charge accumulation and more generally, for solar energy conversion.

  11. Water-mediated interactions between hydrophobic and ionic species in cylindrical nanopores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaitheeswaran, S.; Reddy, G.; Thirumalai, D.

    2009-03-07

    We use Metropolis Monte Carlo and umbrella sampling to calculate the free energies of interaction of two methane molecules and their charged derivatives in cylindrical water-filled pores. Confinement strongly alters the interactions between the nonpolar solutes and completely eliminates the solvent separated minimum (SSM) that is seen in bulk water. The free energy profiles show that the methane molecules are either in contact or at separations corresponding to the diameter and the length of the cylindrical pore. Analytic calculations that estimate the entropy of the solutes, which are solvated at the pore surface, qualitatively explain the shape of the freemore » energy profiles. Adding charges of opposite sign and magnitude 0.4e or e (where e is the electronic charge) to the methane molecules decreases their tendency for surface solvation and restores the SSM. We show that confinement induced ion-pair formation occurs whenever l{sub B}/D{approx}O(1), where l{sub B} is the Bjerrum length and D is the pore diameter. The extent of stabilization of the SSM increases with ion charge density as long as l{sub B}/D<1. In pores with D{<=}1.2 nm, in which the water is strongly layered, increasing the charge magnitude from 0.4e to e reduces the stability of the SSM. As a result, ion-pair formation that occurs with negligible probability in the bulk is promoted. In larger diameter pores that can accommodate a complete hydration layer around the solutes, the stability of the SSM is enhanced.« less

  12. Distorted Carbon Nitride Structure with Substituted Benzene Moieties for Enhanced Visible Light Photocatalytic Activities.

    PubMed

    Kim, Hyejin; Gim, Suji; Jeon, Tae Hwa; Kim, Hyungjun; Choi, Wonyong

    2017-11-22

    Carbon nitride (CN) is being intensively investigated as a low-cost visible light active photocatalyst, but its practical applications are limited because of the fast charge pair recombination and low visible light absorption. Here, we introduce a new strategy for enhancing its visible light photocatalytic activity by designing the CN structure in which the nitrogen of tertiary amine is substituted with a benzene molecule connected by three heptazine rings. The intramolecular benzene doping induced the structural changes from planar symmetric structure to distorted geometry, which could be predicted by density functional theory calculation. This structural distortion facilitated the spatial separation of photogenerated charge pairs and retarded charge recombination via exciton dissociation. Such unique properties of the benzene-incorporated CN were confirmed by the photoluminescence (PL) and photoelectrochemical analyses. The optimal loading of benzene doping reduced the PL of the conjugated ring system (π → π* transition) but enhanced the PL of the forbidden n → π* transition at the nitrogen atoms with lone pair electrons due to the distortion from the planar geometry. The photoelectrode of benzene-doped CN exhibited higher photocurrent and lower charge transfer resistance than bare CN electrode, indicating that the photogenerated charge pairs are more efficiently separated. As a result, the benzene-doped CN markedly increased the photocatalytic activity for the degradation of various organic pollutants and that for H 2 O 2 production (via O 2 reduction). This study proposes a simple strategy for chemical structural modification of carbon nitride to boost the visible light photocatalytic activity.

  13. The Cutting Edge of Affinity Electrophoresis Technology

    PubMed Central

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru

    2015-01-01

    Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years. PMID:28248262

  14. Exceptionally Long-Lived Charge Separated State in Zeolitic Imidazolate Framework: Implication for Photocatalytic Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pattengale, Brian; Yang, Sizhuo; Ludwig, John

    2016-06-22

    Zeolitic Imidazolate Frameworks (ZIFs) have emerged as a novel class of porous metal-organic frameworks (MOFs) for catalysis application because of their exceptional thermal and chemical stability. Inspired by the broad absorption of ZIF-67 in UV-visible-near IR region, we explored its excited state and charge separation dynamics, properties essential for photocatalytic applications, using optical (OTA) and X-ray transient absorption (XTA) spectroscopy. OTA results show that an exceptionally long-lived excited state is formed after photoexcitation. This long-lived excited state was confirmed to be the charge separated state with ligandto-metal charge transfer character using XTA. The surprisingly long-lived charge separated state, together withmore » its intrinsic hybrid nature, all point to its potential application in heterogeneous photocatalysis and energy conversion.« less

  15. Separation of organic cations using novel background electrolytes by capillary electrophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, S.; Fritz, J.

    2008-02-12

    A background electrolyte for capillary electrophoresis containing tris(-hydroxymethyl) aminomethane (THAM) and ethanesulfonic acid (ESA) gives excellent efficiency for separation of drug cations with actual theoretical plate numbers as high as 300,000. However, the analyte cations often elute too quickly and consequently offer only a narrow window for separation. The best way to correct this is to induce a reverse electroosmotic flow (EOF) that will spread out the peaks by slowing their migration rates, but this has always been difficult to accomplish in a controlled manner. A new method for producing a variable EOF is described in which a low variablemore » concentration of tributylammonium- or triethylammonium ESA is added to the BGE. The additive equilibrates with the capillary wall to give it a positive charge and thereby produce a controlled opposing EOF. Excellent separations of complex drug mixtures were obtained by this method.« less

  16. Separating large microscale particles by exploiting charge differences with dielectrophoresis.

    PubMed

    Polniak, Danielle V; Goodrich, Eric; Hill, Nicole; Lapizco-Encinas, Blanca H

    2018-04-13

    Dielectrophoresis (DEP), the migration of particles due to polarization effects under the influence of a nonuniform electric field, was employed for characterizing the behavior and achieving the separation of larger (diameter >5 μm) microparticles by exploiting differences in electrical charge. Usually, electrophoresis (EP) is the method of choice for separating particles based on differences in electrical charge; however, larger particles, which have low electrophoretic mobilities, cannot be easily separated with EP-based techniques. This study presents an alternative for the characterization, assessment, and separation of larger microparticles, where charge differences are exploited with DEP instead of EP. Polystyrene microparticles with sizes varying from 5 to 10 μm were characterized employing microdevices for insulator-based dielectrophoresis (iDEP). Particles within an iDEP microchannel were exposed simultaneously to DEP, EP, and electroosmotic (EO) forces. The electrokinetic behavior of four distinct types of microparticles was carefully characterized by means of velocimetry and dielectrophoretic capture assessments. As a final step, a dielectropherogram separation of two distinct types of 10 μm particles was devised by first characterizing the particles and then performing the separation. The two types of 10 μm particles were eluted from the iDEP device as two separate peaks of enriched particles in less than 80 s. It was demonstrated that particles with the same size, shape, surface functionalization, and made from the same bulk material can be separated with iDEP by exploiting slight differences in the magnitude of particle charge. The results from this study open the possibility for iDEP to be used as a technique for the assessment and separation of biological cells that have very similar characteristics (shape, size, similar make-up), but slight variance in surface electrical charge. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. A Nonmetal Plasmonic Z-Scheme Photocatalyst with UV- to NIR-Driven Photocatalytic Protons Reduction.

    PubMed

    Zhang, Zhenyi; Huang, Jindou; Fang, Yurui; Zhang, Mingyi; Liu, Kuichao; Dong, Bin

    2017-05-01

    Ultrabroad-spectrum absorption and highly efficient generation of available charge carriers are two essential requirements for promising semiconductor-based photocatalysts, towards achieving the ultimate goal of solar-to-fuel conversion. Here, a fascinating nonmetal plasmonic Z-scheme photocatalyst with the W 18 O 49 /g-C 3 N 4 heterostructure is reported, which can effectively harvest photon energies spanning from the UV to the nearinfrared region and simultaneously possesses improved charge-carrier dynamics to boost the generation of long-lived active electrons for the photocatalytic reduction of protons into H 2 . By combining with theoretical simulations, a unique synergistic photocatalysis effect between the semiconductive Z-scheme charge-carrier separation and metal-like localized-surface-plasmon-resonance-induced "hot electrons" injection process is demonstrated within this binary heterostructure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Photoinduced electron transfer in a ferrocene-distyryl BODIPY dyad and a ferrocene-distyryl BODIPY-C60 triad.

    PubMed

    Liu, Jian-Yong; El-Khouly, Mohamed E; Fukuzumi, Shunichi; Ng, Dennis K P

    2012-06-04

    A ferrocene-distyryl BODIPY dyad and a ferrocene-distyryl BODIPY-C(60) triad are synthesized and characterized. Upon photoexcitation at the distyryl BODIPY unit, these arrays undergo photoinduced electron transfer to form the corresponding charge-separated species. Based on their redox potentials, determined by cyclic voltammetry, the direction of the charge separation and the energies of these states are revealed. Femtosecond transient spectroscopic studies reveal that a fast charge separation (k(CS) =1.0×10(10) s(-1)) occurs for both the ferrocene-distyryl BODIPY dyad and the ferrocene-distyryl BODIPY-C(60) triad, but that a relatively slow charge recombination is observed only for the triad. The lifetime of the charge-separated state is 500 ps. Charge recombination of the dyad and triad leads to population of the triplet excited sate of ferrocene and the ground state, respectively. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Describing long-range charge-separation processes with subsystem density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solovyeva, Alisa; Neugebauer, Johannes, E-mail: j.neugebauer@uni-muenster.de; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu

    2014-04-28

    Long-range charge-transfer processes in extended systems are difficult to describe with quantum chemical methods. In particular, cost-effective (non-hybrid) approximations within time-dependent density functional theory (DFT) are not applicable unless special precautions are taken. Here, we show that the efficient subsystem DFT can be employed as a constrained DFT variant to describe the energetics of long-range charge-separation processes. A formal analysis of the energy components in subsystem DFT for such excitation energies is presented, which demonstrates that both the distance dependence and the long-range limit are correctly described. In addition, electronic couplings for these processes as needed for rate constants inmore » Marcus theory can be obtained from this method. It is shown that the electronic structure of charge-separated states constructed by a positively charged subsystem interacting with a negatively charged one is difficult to converge — charge leaking from the negative subsystem to the positive one can occur. This problem is related to the delocalization error in DFT and can be overcome with asymptotically correct exchange–correlation (XC) potentials or XC potentials including a sufficiently large amount of exact exchange. We also outline an approximate way to obtain charge-transfer couplings between locally excited and charge-separated states.« less

  20. Polymer depletion-driven cluster aggregation and initial phase separation in charged nanosized colloids

    NASA Astrophysics Data System (ADS)

    Gögelein, Christoph; Nägele, Gerhard; Buitenhuis, Johan; Tuinier, Remco; Dhont, Jan K. G.

    2009-05-01

    We study polymer depletion-driven cluster aggregation and initial phase separation in aqueous dispersions of charge-stabilized silica spheres, where the ionic strength and polymer (dextran) concentration are systematically varied, using dynamic light scattering and visual observation. Without polymers and for increasing salt and colloid content, the dispersions become increasingly unstable against irreversible cluster formation. By adding nonadsorbing polymers, a depletion-driven attraction is induced, which lowers the stabilizing Coulomb barrier and enhances the cluster growth rate. The initial growth rate increases with increasing polymer concentration and decreases with increasing polymer molar mass. These observations can be quantitatively understood by an irreversible dimer formation theory based on the classical Derjaguin, Landau, Verwey, and Overbeek pair potential, with the depletion attraction modeled by the Asakura-Oosawa-Vrij potential. At low colloid concentration, we observe an exponential cluster growth rate for all polymer concentrations considered, indicating a reaction-limited aggregation mechanism. At sufficiently high polymer and colloid concentrations, and lower salt content, a gas-liquidlike demixing is observed initially. Later on, the system separates into a gel and fluidlike phase. The experimental time-dependent state diagram is compared to the theoretical equilibrium phase diagram obtained from a generalized free-volume theory and is discussed in terms of an initial reversible phase separation process in combination with irreversible aggregation at later times.

  1. Polymer depletion-driven cluster aggregation and initial phase separation in charged nanosized colloids.

    PubMed

    Gögelein, Christoph; Nägele, Gerhard; Buitenhuis, Johan; Tuinier, Remco; Dhont, Jan K G

    2009-05-28

    We study polymer depletion-driven cluster aggregation and initial phase separation in aqueous dispersions of charge-stabilized silica spheres, where the ionic strength and polymer (dextran) concentration are systematically varied, using dynamic light scattering and visual observation. Without polymers and for increasing salt and colloid content, the dispersions become increasingly unstable against irreversible cluster formation. By adding nonadsorbing polymers, a depletion-driven attraction is induced, which lowers the stabilizing Coulomb barrier and enhances the cluster growth rate. The initial growth rate increases with increasing polymer concentration and decreases with increasing polymer molar mass. These observations can be quantitatively understood by an irreversible dimer formation theory based on the classical Derjaguin, Landau, Verwey, and Overbeek pair potential, with the depletion attraction modeled by the Asakura-Oosawa-Vrij potential. At low colloid concentration, we observe an exponential cluster growth rate for all polymer concentrations considered, indicating a reaction-limited aggregation mechanism. At sufficiently high polymer and colloid concentrations, and lower salt content, a gas-liquidlike demixing is observed initially. Later on, the system separates into a gel and fluidlike phase. The experimental time-dependent state diagram is compared to the theoretical equilibrium phase diagram obtained from a generalized free-volume theory and is discussed in terms of an initial reversible phase separation process in combination with irreversible aggregation at later times.

  2. Formation of ion clusters in the phase separated structures of neutral-charged polymer blends

    NASA Astrophysics Data System (ADS)

    Kwon, Ha-Kyung; Olvera de La Cruz, Monica

    2015-03-01

    Polyelectrolyte blends, consisting of at least one charged species, are promising candidate materials for fuel cell membranes, for their mechanical stability and high selectivity for proton conduction. The phase behavior of the blends is important to understand, as this can significantly affect the performance of the device. The phase behavior is controlled by χN, the Flory-Huggins parameter multiplied by the number of mers, as well as the electrostatic interactions between the charged backbone and the counterions. It has recently been shown that local ionic correlations, incorporated via liquid state (LS) theory, enhance phase separation of the blend, even in the absence of polymer interactions. In this study, we show phase diagrams of neutral-charged polymer blends including ionic correlations via LS theory. In addition to enhanced phase separation at low χN, the blends show liquid-liquid phase separation at high electrostatic interaction strengths. Above the critical strength, the charged polymer phase separates into ion-rich and ion-poor regions, resulting in the formation of ion clusters within the charged polymer phase. This can be shown by the appearance of multiple spinodal and critical points, indicating the coexistence of several charge separated phases. This work was performed under the following financial assistance award 70NANB14H012 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD).

  3. Photoelectrodes based on 2D opals assembled from Cu-delafossite double-shelled microspheres for an enhanced photoelectrochemical response.

    PubMed

    Oh, Yunjung; Yang, Wooseok; Tan, Jeiwan; Lee, Hyungsoo; Park, Jaemin; Moon, Jooho

    2018-02-22

    Although a unique light-harvesting property was recently demonstrated in a photocathode based on 2-dimensional (2D) opals of CuFeO 2 -shelled SiO 2 microspheres, the performance of a monolayer of ultra-thin CuFeO 2 -shelled microspheres is limited by ineffective charge separation. Herein, we propose an innovative design rule, in which an inner CuFeO 2 /outer CuAlO 2 double-shelled heterojunction is formed on each partially etched microsphere to obtain a hexagonally assembled 2D opal photoelectrode. Our Cu-delafossite double-shelled photocathode shows a dramatically improved charge separation capability, with a 9-fold increase in the photocurrent compared to that of the single-shelled counterpart. Electrochemical impedance spectroscopy clearly confirms the reduced charge transport/transfer resistance associated with the Cu-delafossite double-shelled photocathode, while surface photovoltage spectra reveal enhanced polarization of the photogenerated carrier, indicating improved charge separation capability with the aid of the heterojunction. Our finding sheds light on the importance of heterojunction interfaces in achieving optimal charge separation in opal architectures as well as the inner-shell/electrolyte interface to expedite charge separation/transport.

  4. Quantum modeling of ultrafast photoinduced charge separation

    NASA Astrophysics Data System (ADS)

    Rozzi, Carlo Andrea; Troiani, Filippo; Tavernelli, Ivano

    2018-01-01

    Phenomena involving electron transfer are ubiquitous in nature, photosynthesis and enzymes or protein activity being prominent examples. Their deep understanding thus represents a mandatory scientific goal. Moreover, controlling the separation of photogenerated charges is a crucial prerequisite in many applicative contexts, including quantum electronics, photo-electrochemical water splitting, photocatalytic dye degradation, and energy conversion. In particular, photoinduced charge separation is the pivotal step driving the storage of sun light into electrical or chemical energy. If properly mastered, these processes may also allow us to achieve a better command of information storage at the nanoscale, as required for the development of molecular electronics, optical switching, or quantum technologies, amongst others. In this Topical Review we survey recent progress in the understanding of ultrafast charge separation from photoexcited states. We report the state-of-the-art of the observation and theoretical description of charge separation phenomena in the ultrafast regime mainly focusing on molecular- and nano-sized solar energy conversion systems. In particular, we examine different proposed mechanisms driving ultrafast charge dynamics, with particular regard to the role of quantum coherence and electron-nuclear coupling, and link experimental observations to theoretical approaches based either on model Hamiltonians or on first principles simulations.

  5. Acquisition of a High Performance Computer Cluster for Materials Research and Education

    DTIC Science & Technology

    2015-04-17

    separation in all-organic and hybrid organic- inorganic solar cells. The outcome of the project 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13...diffusion and interfacial charge separation in all-organic and hybrid organic- inorganic solar cells. The outcome of the project is the development...simulations to predict charge carrier mobilities, exciton diffusion and interfacial charge separation in all- organic and hybrid organic- inorganic solar

  6. Charge separation at nanoscale interfaces: energy-level alignment including two-quasiparticle interactions.

    PubMed

    Li, Huashan; Lin, Zhibin; Lusk, Mark T; Wu, Zhigang

    2014-10-21

    The universal and fundamental criteria for charge separation at interfaces involving nanoscale materials are investigated. In addition to the single-quasiparticle excitation, all the two-quasiparticle effects including exciton binding, Coulomb stabilization, and exciton transfer are considered, which play critical roles on nanoscale interfaces for optoelectronic applications. We propose a scheme allowing adding these two-quasiparticle interactions on top of the single-quasiparticle energy level alignment for determining and illuminating charge separation at nanoscale interfaces. Employing the many-body perturbation theory based on Green's functions, we quantitatively demonstrate that neglecting or simplifying these crucial two-quasiparticle interactions using less accurate methods is likely to predict qualitatively incorrect charge separation behaviors at nanoscale interfaces where quantum confinement dominates.

  7. Directional charge separation in isolated organic semiconductor crystalline nanowires

    DOE PAGES

    Labastide, J. A.; Thompson, H. B.; Marques, S. R.; ...

    2016-02-25

    One of the fundamental design paradigms in organic photovoltaic device engineering is based on the idea that charge separation is an extrinsically driven process requiring an interface for exciton fission. This idea has driven an enormous materials science engineering effort focused on construction of domain sizes commensurate with a nominal exciton diffusion length of order 10 nm. Here, we show that polarized optical excitation of isolated pristine crystalline nanowires of a small molecule n-type organic semiconductor, 7,8,15,16-tetraazaterrylene, generates a significant population of charge-separated polaron pairs along the π-stacking direction. Charge separation was signalled by pronounced power-law photoluminescence decay polarized alongmore » the same axis. In the transverse direction, we observed exponential decay associated with excitons localized on individual monomers. We propose that this effect derives from an intrinsic directional charge-transfer interaction that can ultimately be programmed by molecular packing geometry.« less

  8. Interaction of slow highly charged ions with hard dental tissue: studies of fluoride uptake and reminalization efficacy

    NASA Astrophysics Data System (ADS)

    Daskalova, A.; Kasperski, G.; Rousseau, P.; Domaracka, A.; Lawicki, A.

    2014-05-01

    TOF-SIMS mass spectroscopy data are presented on ion irradiation of hard dental tissue using a beam of 129Xe20+ (15 kV) ions delivered in the ARIBE facility by an ECR source. The investigation was focused on the mass distribution of the fragment ions. A comparison is made between the mass spectra from hard dental tissue treated by olaflur-(C27H60F2N2O3) and untreated hard dental tissue obtained under irradiation by low-energy highly-charged ions (HCIs). We found significant differences between the mass spectra of enamel after introducing amine fluoride (olaflur) and the mass spectra of pure untreated enamel. Further, we separated out the effects caused by radiation induced in the tooth enamel from those induced in dentin, which has not been performed before. In order to conduct a further detailed analysis, it is necessary to extend the research scope to include the influence of fluorine compounds on enamel and dentin.

  9. Means and method of detection in chemical separation procedures

    DOEpatents

    Yeung, Edward S.; Koutny, Lance B.; Hogan, Barry L.; Cheung, Chan K.; Ma, Yinfa

    1993-03-09

    A means and method for indirect detection of constituent components of a mixture separated in a chemical separation process. Fluorescing ions are distributed across the area in which separation of the mixture will occur to provide a generally uniform background fluorescence intensity. For example, the mixture is comprised of one or more charged analytes which displace fluorescing ions where its constituent components separate to. Fluorescing ions of the same charge as the charged analyte components cause a displacement. The displacement results in the location of the separated components having a reduced fluorescence intensity to the remainder of the background. Detection of the lower fluorescence intensity areas can be visually, by photographic means and methods, or by automated laser scanning.

  10. Means and method of detection in chemical separation procedures

    DOEpatents

    Yeung, E.S.; Koutny, L.B.; Hogan, B.L.; Cheung, C.K.; Yinfa Ma.

    1993-03-09

    A means and method are described for indirect detection of constituent components of a mixture separated in a chemical separation process. Fluorescing ions are distributed across the area in which separation of the mixture will occur to provide a generally uniform background fluorescence intensity. For example, the mixture is comprised of one or more charged analytes which displace fluorescing ions where its constituent components separate to. Fluorescing ions of the same charge as the charged analyte components cause a displacement. The displacement results in the location of the separated components having a reduced fluorescence intensity to the remainder of the background. Detection of the lower fluorescence intensity areas can be visually, by photographic means and methods, or by automated laser scanning.

  11. Electrophoretic sample insertion. [device for uniformly distributing samples in flow path

    NASA Technical Reports Server (NTRS)

    Mccreight, L. R. (Inventor)

    1974-01-01

    Two conductive screens located in the flow path of an electrophoresis sample separation apparatus are charged electrically. The sample is introduced between the screens, and the charge is sufficient to disperse and hold the samples across the screens. When the charge is terminated, the samples are uniformly distributed in the flow path. Additionally, a first separation by charged properties has been accomplished.

  12. Freezing, fragmentation, and charge separation in sonic sprayed water droplets

    NASA Astrophysics Data System (ADS)

    Zilch, Lloyd W.; Maze, Joshua T.; Smith, John W.; Jarrold, Martin F.

    2009-06-01

    Water droplets are generated by sonic spray, transferred into vacuum through a capillary interface, and then passed through two image charge detectors separated by a drift region. The image charge detectors measure the charge and velocity of each droplet. For around 1% of the droplets, the charge changes significantly between the detectors. In some cases it increases, in others it decreases, and for some droplets the charge changes polarity. We attribute the charge changing behavior to fragmentation caused by freezing. Simulations indicate that the time required for a droplet to cool and freeze in vacuum depends on its size, and that droplets with radii of 1-2 [mu]m have the right size to freeze between the two detectors. These sizes correspond to the smaller end of the distribution present in the experiment. When the charge on a droplet increases or changes polarity, fragmentation must be accompanied by charge separation where fragments carry away opposite charges. In some cases, two fission fragments were observed in the second charge detector. We show examples where the droplet breaks apart to give fragments of the same charge and opposite charges. The fragmentation and charge changing behavior found here is consistent with what has been found in the freezing of larger suspended and supported droplets.

  13. Device and method for separating minerals, carbon and cement additives from fly ash

    DOEpatents

    Link, Thomas A.; Schoffstall, Micael R.; Soong, Yee

    2004-01-27

    A process for separating organic and inorganic particles from a dry mixture by sizing the particles into isolated fractions, contacting the sized particles to a charged substrate and subjecting the charged particles to an electric field to separate the particles.

  14. The Rocket Electric Field Sounding (REFS) Program: Prototype Design and Successful First Launch

    DTIC Science & Technology

    1992-01-15

    insulators surrounding the stators, and stator edges themselves, are fully covered by the rotor , so that any effects of charge on the insulators are...Jumper performed a separate analysis of the aerodynamics (primarily the " Magnus effect ") induced by the relative rotation of rocket body and shell. The...significant advantages over an aircraft in simplicity and calibration. A single cylindrical rotor covering most of the payload acts as the shutter for all

  15. Facile fabrication of BiVO4 nanofilms with controlled pore size and their photoelectrochemical performances.

    PubMed

    Feng, Chenchen; Jiao, Zhengbo; Li, Shaopeng; Zhang, Yan; Bi, Yingpu

    2015-12-28

    We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO(4) photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures.

  16. Tribo-charging properties of waste plastic granules in process of tribo-electrostatic separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jia, E-mail: weee@sjtu.edu.cn; Wu, Guiqing; Xu, Zhenming

    Highlights: • The cyclone charging was more effective and stable than vibrating charging. • The small particle size was better changed than large ones and was more suitable recycled by TES. • The drying pretreatment is good for improving the short-term charging effect. - Abstract: Plastic products can be found everywhere in people’s daily life. With the consistent growth of plastic consumption, more and more plastic waste is generated. Considering the stable chemical and physics characteristics of plastic, regular waste management methods are not suitable for recycling economic strategy of each government, which has become a serious environmental problem. Recyclingmore » plastic waste is considered to be the best way to treat it, because it cannot only deduce the waste but also save the energy to produce new virgin plastic. Tribo-electrostatic separation is strongly recommended for plastic separation as it can preserve the original properties of plastic and has little additional pollution. In this study, plastic granules are generated by crushing plastic waste in waste electric and electronic equipment. The tribo-charging properties of plastic waste were studied by vibrating tribo-charging and cyclone tribo-charging. The triboelectric series obtained by vibrating was: (−)-PE–PS–PC–PVC–ABS–PP-(+), while the triboelectric series obtained by cyclone was (−)-PE–PS–PC–PVC–ABS–PP-(+). Further, the cyclone charging was more effective and stable than vibrating charging. The impact factors experiments showed that small particle size was better changed than large ones and were more suitable recycled by tribo-electrostatic separation. High relative humidity was identified as impede charging effect. The results of this study will help defining the operating parameters of subsequent separator.« less

  17. Femtosecond Visible Transient Absorption Spectroscopy of Chlorophyll f-Containing Photosystem I.

    PubMed

    Kaucikas, Marius; Nürnberg, Dennis; Dorlhiac, Gabriel; Rutherford, A William; van Thor, Jasper J

    2017-01-24

    Photosystem I (PSI) from Chroococcidiopsis thermalis PCC 7203 grown under far-red light (FRL; >725 nm) contains both chlorophyll a and a small proportion of chlorophyll f. Here, we investigated excitation energy transfer and charge separation using this FRL-grown form of PSI (FRL-PSI). We compared femtosecond transient visible absorption changes of normal, white-light (WL)-grown PSI (WL-PSI) with those of FRL-PSI using excitation at 670 nm, 700 nm, and (in the case of FRL-PSI) 740 nm. The possibility that chlorophyll f participates in energy transfer or charge separation is discussed on the basis of spectral assignments. With selective pumping of chlorophyll f at 740 nm, we observe a final ∼150 ps decay assigned to trapping by charge separation, and the amplitude of the resulting P700 +• A 1 -• charge-separated state indicates that the yield is directly comparable to that of WL-PSI. The kinetics shows a rapid 2 ps time constant for almost complete transfer to chlorophyll f if chlorophyll a is pumped with a wavelength of 670 nm or 700 nm. Although the physical role of chlorophyll f is best supported as a low-energy radiative trap, the physical location should be close to or potentially within the charge-separating pigments to allow efficient transfer for charge separation on the 150 ps timescale. Target models can be developed that include a branching in the formation of the charge separation for either WL-PSI or FRL-PSI. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Utilization of photoinduced charge-separated state of donor-acceptor-linked molecules for regulation of cell membrane potential and ion transport.

    PubMed

    Numata, Tomohiro; Murakami, Tatsuya; Kawashima, Fumiaki; Morone, Nobuhiro; Heuser, John E; Takano, Yuta; Ohkubo, Kei; Fukuzumi, Shunichi; Mori, Yasuo; Imahori, Hiroshi

    2012-04-11

    The control of ion transport across cell membranes by light is an attractive strategy that allows targeted, fast control of precisely defined events in the biological membrane. Here we report a novel general strategy for the control of membrane potential and ion transport by using charge-separation molecules and light. Delivery of charge-separation molecules to the plasma membrane of PC12 cells by a membranous nanocarrier and subsequent light irradiation led to depolarization of the membrane potential as well as inhibition of the potassium ion flow across the membrane. Photoregulation of the cell membrane potential and ion transport by using charge-separation molecules is highly promising for control of cell functions. © 2012 American Chemical Society

  19. Prevention of redox shuttle using electropolymerized polypyrrole film in a lithium-oxygen battery

    NASA Astrophysics Data System (ADS)

    Togasaki, Norihiro; Shibamura, Ryuji; Naruse, Takuya; Momma, Toshiyuki; Osaka, Tetsuya

    2018-04-01

    Among the recent advancements in lithium-oxygen (Li-O2) chemistries, redox mediators (RMs) have been revealed to play a significant role in decreasing overpotential on charging and in improving cycling performance. However, an intrinsic problem is redox shuttle of RMs, which leads to degraded RM utilization and induces the accumulation of discharge products on the cathode surface; this remains a significant issue in the current battery cell configuration (Li anode/separator/cathode). To address this detrimental problem, herein we propose a novel Li-O2 cell incorporating a freestanding electropolymerized polypyrrole (PPy) film for the restriction of the redox-shuttle phenomenon of lithium iodide (Li anode/separator/PPy film/cathode). In this study, a PPy film, which is prepared through oxidative electropolymerization using an ionic liquid of 1-methyl-1-butylpyrrolidinium mixed with pyrrole and lithium bis(trifluoromethanesulfonyl)imide, is introduced between the cathode and the separator. From the charge-discharge voltage profile, it is confirmed that the PPy film suppresses the diffusion of the oxidized I3- to the Li anode, while allowing Li ion transport. Secondary scanning electron microscope measurements confirm that the chemical reactions between I3- and Li2O2 are facilitated by the presence of the PPy film because I3- remains near the cathode surface during the charging process. As a result, the cycling performance in the Li-O2 cells with PPy film exhibits a cycling life four times as long as that of the Li-O2 cells without PPy film.

  20. Enhanced separation of membranes during free flow zonal electrophoresis in plants.

    PubMed

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2007-07-15

    Free flow zonal electrophoresis (FFZE) is a versatile technique that allows for the separation of cells, organelles, membranes, and proteins based on net surface charge during laminar flow through a thin aqueous layer. We have been optimizing the FFZE technique to enhance separation of plant vacuolar membranes (tonoplast) from other endomembranes to pursue a directed proteomics approach to identify novel tonoplast transporters. Addition of ATP to a mixture of endomembranes selectively enhanced electrophoretic mobility of acidic vesicular compartments during FFZE toward the positive electrode. This has been attributed to activation of the V-ATPase generating a more negative membrane potential outside the vesicles, resulting in enhanced migration of acidic vesicles, including tonoplast, to the anode (Morré, D. J.; Lawrence, J.; Safranski, K.; Hammond, T.; Morré, D. M. J. Chromatogr., A 1994, 668, 201-213). We confirm that ATP does induce a redistribution of membranes during FFZE of microsomal membranes isolated from several plant species, including Arabidopsis thaliana, Thellungiella halophila, Mesembryanthemum crystallinum, and Ananas comosus. However, we demonstrate, using V-ATPase-specific inhibitors, nonhydrolyzable ATP analogs, and ionophores to dissipate membrane potential, that the ATP-dependent migrational shift of membranes under FFZE is not due to activation of the V-ATPase. Addition of EDTA to chelate Mg2+, leading to the production of the tetravalent anionic form of ATP, resulted in a further enhancement of membrane migration toward the anode, and manipulation of cell surface charge by addition of polycations also influenced the ATP-dependent migration of membranes. We propose that ATP enhances the mobility of endomembranes by screening positive surface charges on the membrane surface.

  1. Modular Homogeneous Chromophore–Catalyst Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulfort, Karen L.; Utschig, Lisa M.

    2016-05-17

    Photosynthetic reaction center (RC) proteins convert incident solar energy to chemical energy through a network of molecular cofactors which have been evolutionarily tuned to couple efficient light-harvesting, directional electron transfer, and long-lived charge separation with secondary reaction sequences. These molecular cofactors are embedded within a complex protein environment which precisely positions each cofactor in optimal geometries along efficient electron transfer pathways with localized protein environments facilitating sequential and accumulative charge transfer. By contrast, it is difficult to approach a similar level of structural complexity in synthetic architectures for solar energy conversion. However, by using appropriate self-assembly strategies, we anticipate thatmore » molecular modules, which are independently synthesized and optimized for either light-harvesting or redox catalysis, can be organized into spatial arrangements that functionally mimic natural photosynthesis. In this Account, we describe a modular approach to new structural designs for artificial photosynthesis which is largely inspired by photosynthetic RC proteins. We focus on recent work from our lab which uses molecular modules for light-harvesting or proton reduction catalysis in different coordination geometries and different platforms, spanning from discrete supramolecular assemblies to molecule–nanoparticle hybrids to protein-based biohybrids. Molecular modules are particularly amenable to high-resolution characterization of the ground and excited state of each module using a variety of physical techniques; such spectroscopic interrogation helps our understanding of primary artificial photosynthetic mechanisms. In particular, we discuss the use of transient optical spectroscopy, EPR, and X-ray scattering techniques to elucidate dynamic structural behavior and light-induced kinetics and the impact on photocatalytic mechanism. Two different coordination geometries of supramolecular photocatalyst based on the [Ru(bpy)3]2+ (bpy = 2,2'-bipyridine) light-harvesting module with cobaloxime-based catalyst module are compared, with progress in stabilizing photoinduced charge separation identified. These same modules embedded in the small electron transfer protein ferredoxin exhibit much longer charge-separation, enabled by stepwise electron transfer through the native [2Fe-2S] cofactor. We anticipate that the use of interchangeable, molecular modules which can interact in different coordination geometries or within entirely different structural platforms will provide important fundamental insights into the effect of environment on parameters such as electron transfer and charge separation, and ultimately drive more efficient designs for artificial photosynthesis.« less

  2. Motion-based, high-yielding, and fast separation of different charged organics in water.

    PubMed

    Xuan, Mingjun; Lin, Xiankun; Shao, Jingxin; Dai, Luru; He, Qiang

    2015-01-12

    We report a self-propelled Janus silica micromotor as a motion-based analytical method for achieving fast target separation of polyelectrolyte microcapsules, enriching different charged organics with low molecular weights in water. The self-propelled Janus silica micromotor catalytically decomposes a hydrogen peroxide fuel and moves along the direction of the catalyst face at a speed of 126.3 μm s(-1) . Biotin-functionalized Janus micromotors can specifically capture and rapidly transport streptavidin-modified polyelectrolyte multilayer capsules, which could effectively enrich and separate different charged organics in water. The interior of the polyelectrolyte multilayer microcapsules were filled with a strong charged polyelectrolyte, and thus a Donnan equilibrium is favorable between the inner solution within the capsules and the bulk solution to entrap oppositely charged organics in water. The integration of these self-propelled Janus silica micromotors and polyelectrolyte multilayer capsules into a lab-on-chip device that enables the separation and analysis of charged organics could be attractive for a diverse range of applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Promoting Charge Separation and Injection by Optimizing the Interfaces of GaN:ZnO Photoanode for Efficient Solar Water Oxidation.

    PubMed

    Wang, Zhiliang; Zong, Xu; Gao, Yuying; Han, Jingfeng; Xu, Zhiqiang; Li, Zheng; Ding, Chunmei; Wang, Shengyang; Li, Can

    2017-09-13

    Photoelectrochemical water splitting provides an attractive way to store solar energy in molecular hydrogen as a kind of sustainable fuel. To achieve high solar conversion efficiency, the most stringent criteria are effective charge separation and injection in electrodes. Herein, efficient photoelectrochemical water oxidation is realized by optimizing charge separation and surface charge transfer of GaN:ZnO photoanode. The charge separation can be greatly improved through modified moisture-assisted nitridation and HCl acid treatment, by which the interfaces in GaN:ZnO solid solution particles are optimized and recombination centers existing at the interfaces are depressed in GaN:ZnO photoanode. Moreover, a multimetal phosphide of NiCoFeP was employed as water oxidation cocatalyst to improve the charge injection at the photoanode/electrolyte interface. Consequently, it significantly decreases the overpotential and brings the photocurrent to a benchmark of 3.9 mA cm -2 at 1.23 V vs RHE and a solar conversion efficiency over 1% was obtained.

  4. Capillary electrophoresis for drug analysis

    NASA Astrophysics Data System (ADS)

    Lurie, Ira S.

    1999-02-01

    Capillary electrophoresis (CE) is a high resolution separation technique which is amenable to a wide variety of solutes, including compounds which are thermally degradable, non-volatile and highly polar, and is therefore well suited for drug analysis. Techniques which have been used in our laboratory include electrokinetic chromatography (ECC), free zone electrophoresis (CZE) and capillary electrochromatography (CEC). ECC, which uses a charged run buffer additive which migrates counter to osmotic flow, is excellent for many applications, including, drug screening and analyses of heroin, cocaine and methamphetamine samples. ECC approaches include the use of micelles and charged cyclodextrins, which allow for the separation of complex mixtures. Simultaneous separation of acidic, neutral and basic solutes and the resolution of optical isomers and positional isomers are possible. CZE has been used for the analysis of small ions (cations and anions) in heroin exhibits. For the ECC and CZE experiments performed in our laboratory, uncoated capillaries were used. In contrast, CEC uses capillaries packed with high performance liquid chromatography stationary phases, and offers both high peak capacities and unique selectivities. Applications include the analysis of cannabinoids and drug screening. Although CE suffers from limited concentration sensitivity, it is still applicable to trace analysis of drug samples, especially when using injection techniques such as stacking, or detection schemes such as laser induced fluorescence and extended pathlength UV.

  5. Electron in higher-dimensional weakly charged rotating black hole spacetimes

    NASA Astrophysics Data System (ADS)

    Cariglia, Marco; Frolov, Valeri P.; Krtouš, Pavel; Kubizňák, David

    2013-03-01

    We demonstrate separability of the Dirac equation in weakly charged rotating black hole spacetimes in all dimensions. The electromagnetic field of the black hole is described by a test field approximation, with the vector potential proportional to the primary Killing vector field. It is shown that the demonstrated separability can be intrinsically characterized by the existence of a complete set of mutually commuting first-order symmetry operators generated from the principal Killing-Yano tensor. The presented results generalize the results on integrability of charged particle motion and separability of charged scalar field studied in V. P. Frolov and P. Krtous [Phys. Rev. D 83, 024016 (2011)].

  6. Active Space Debris Charging for Contactless Electrostatic Disposal Maneuvers

    NASA Astrophysics Data System (ADS)

    Schaub, H.; Sternovsky, Z.

    2013-08-01

    We assess the feasibility of removing large space debris from geosynchronous orbit (GEO) by means of a tug spacecraft that uses electrostatic forces to pull the debris without touching. The advantage of this method is that it can operate with a separation distance of multiple craft radii, thus reducing the risk of collision. Further, the debris does not have to be detumbled first to engage the re-orbit maneuver. The charging of the tug-debris system to high potentials is achieved by active charge transfer using a directed electron beam and an auxiliary ion bleeder. Our simple charging model takes into account the primary electron beam current, UV induced photoelectron emission, collection of plasma particles, secondary electron emission and the recapture of emitted particles. The results show that by active charging high potentials can be both achieved and maintained. The resulting mN level electrostatic force is sufficient for the safe re-orbiting of debris objects over an acceptable period of a few months. The capability of debris removal is becoming a pressing need as the increasing population of dysfunctional satellites poses a threat to the future of satellite operations at GEO.

  7. Design rules for charge-transport efficient host materials for phosphorescent organic light-emitting diodes.

    PubMed

    May, Falk; Al-Helwi, Mustapha; Baumeier, Björn; Kowalsky, Wolfgang; Fuchs, Evelyn; Lennartz, Christian; Andrienko, Denis

    2012-08-22

    The use of blue phosphorescent emitters in organic light-emitting diodes (OLEDs) imposes demanding requirements on a host material. Among these are large triplet energies, the alignment of levels with respect to the emitter, the ability to form and sustain amorphous order, material processability, and an adequate charge carrier mobility. A possible design strategy is to choose a π-conjugated core with a high triplet level and to fulfill the other requirements by using suitable substituents. Bulky substituents, however, induce large spatial separations between conjugated cores, can substantially reduce intermolecular electronic couplings, and decrease the charge mobility of the host. In this work we analyze charge transport in amorphous 2,8-bis(triphenylsilyl)dibenzofuran, an electron-transporting material synthesized to serve as a host in deep-blue OLEDs. We show that mesomeric effects delocalize the frontier orbitals over the substituents recovering strong electronic couplings and lowering reorganization energies, especially for electrons, while keeping energetic disorder small. Admittance spectroscopy measurements reveal that the material has indeed a high electron mobility and a small Poole-Frenkel slope, supporting our conclusions. By linking electronic structure, molecular packing, and mobility, we provide a pathway to the rational design of hosts with high charge mobilities.

  8. Origin of Reversible Photoinduced Phase Separation in Hybrid Perovskites.

    PubMed

    Bischak, Connor G; Hetherington, Craig L; Wu, Hao; Aloni, Shaul; Ogletree, D Frank; Limmer, David T; Ginsberg, Naomi S

    2017-02-08

    The distinct physical properties of hybrid organic-inorganic materials can lead to unexpected nonequilibrium phenomena that are difficult to characterize due to the broad range of length and time scales involved. For instance, mixed halide hybrid perovskites are promising materials for optoelectronics, yet bulk measurements suggest the halides reversibly phase separate upon photoexcitation. By combining nanoscale imaging and multiscale modeling, we find that the nature of halide demixing in these materials is distinct from macroscopic phase separation. We propose that the localized strain induced by a single photoexcited charge interacting with the soft, ionic lattice is sufficient to promote halide phase separation and nucleate a light-stabilized, low-bandgap, ∼8 nm iodide-rich cluster. The limited extent of this polaron is essential to promote demixing because by contrast bulk strain would simply be relaxed. Photoinduced phase separation is therefore a consequence of the unique electromechanical properties of this hybrid class of materials. Exploiting photoinduced phase separation and other nonequilibrium phenomena in hybrid materials more generally could expand applications in sensing, switching, memory, and energy storage.

  9. Charge collection and SEU mechanisms

    NASA Astrophysics Data System (ADS)

    Musseau, O.

    1994-01-01

    In the interaction of cosmic ions with microelectronic devices a dense electron-hole plasma is created along the ion track. Carriers are separated and transported by the electric field and under the action of the concentration gradient. The subsequent collection of these carriers induces a transient current at some electrical node of the device. This "ionocurrent" (single ion induced current) acts as any electrical perturbation in the device, propagating in the circuit and inducing failures. In bistable systems (registers, memories) the stored data can be upset. In clocked devices (microprocessors) the parasitic perturbation may propagate through the device to the outputs. This type of failure only effects the information, and do not degrade the functionally of the device. The purpose of this paper is to review the mechanisms of single event upset in microelectronic devices. Experimental and theoretical results are presented, and actual questions and problems are discussed. A brief introduction recalls the creation of the dense plasma of electron-hole pairs. The basic processes for charge collection in a simple np junction (drift and diffusion) are presented. The funneling-field effect is discussed and experimental results are compared to numerical simulations and semi-empirical models. Charge collection in actual microelectronic structures is then presented. Due to the parasitic elements, coupling effects are observed. Geometrical effects, in densely packed structures, results in multiple errors. Electronic couplings are due to the carriers in excess, acting as minority carriers, that trigger parasitic bipolar transistors. Single event upset of memory cells is discussed, based on numerical and experimental data. The main parameters for device characterization are presented. From the physical interpretation of charge collection mechanisms, the intrinsic sensitivity of various microelectronic technologies is determined and compared to experimental data. Scaling laws and future trends are finally discussed.

  10. Out-of-equilibrium chiral magnetic effect from chiral kinetic theory

    NASA Astrophysics Data System (ADS)

    Huang, Anping; Jiang, Yin; Shi, Shuzhe; Liao, Jinfeng; Zhuang, Pengfei

    2018-02-01

    Recently there has been significant interest in the macroscopic manifestation of chiral anomaly in many-body systems of chiral fermions. A notable example is the Chiral Magnetic Effect (CME). Enthusiastic efforts have been made to search for the CME in the quark-gluon plasma created in heavy ion collisions. A crucial challenge is that the extremely strong magnetic field in such collisions may last only for a brief moment and the CME current may have to occur at so early a stage that the quark-gluon matter is still far from thermal equilibrium. This thus requires modeling of the CME in an out-of-equilibrium setting. With the recently developed theoretical tool of chiral kinetic theory, we make a first phenomenological study of the CME-induced charge separation during the pre-thermal stage in heavy ion collisions. The effect is found to be very sensitive to the time dependence of the magnetic field and also influenced by the initial quark momentum spectrum as well as the relaxation time of the system evolution toward thermal equilibrium. Within the present approach, such pre-thermal charge separation is found to be modest.

  11. Integrating Semiconducting Catalyst of ReS2 Nanosheets into P-silicon Photocathode toward Enhanced Solar Water Reduction.

    PubMed

    Zhao, Heng; Dai, Zhengyi; Xu, Xiaoyong; Pan, Jing; Hu, Jingguo

    2018-06-22

    Loading the electro-catalysts at the semiconductor-electrolyte interface is one of promising strategies to develop photoelectrochemical (PEC) water splitting cells. However, the assembly of compatible and synergistic heterojunction between the semiconductor and the selected catalyst remains challenging. Here, we report a hierarchical p-Si/ReS2 heterojunction photocathode fabricated through uniform growth vertically standing ReS2 nanosheets (NSs) on planar p-Si substrate for solar-driven hydrogen evolution reaction (HER). The laden ReS2 NSs not only serve as a high-activity HER catalyst but also render a suitable electronic band coupled with p-Si into a Ⅱ-type heterojunction, which facilitates the photo-induced charge production, separation and utilization. As a result, the assembled p-Si/ReS2 photocathode exhibits a 23-fold-increased photocurrent density at 0 VRHE and a 35-fold-enhanced photoconversion efficiency compared to pure p-Si counterpart. The bifunctional ReS2 as catalyst and semiconductor enables multi effects in improving light harvesting, charge separation and catalytic kinetics, highlighting the potential of semiconducting catalysts integrated into solar water splitting devices.

  12. Artificial Photosynthetic Reaction Center Exhibiting Acid-Responsive Regulation of Photoinduced Charge Separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pahk, Ian; Kodis, Gerdenis; Fleming, Graham R.

    Charge separation (CS) is the primary light-driven reaction in photosynthesis whereas onphotochemical quenching (NPQ) is a photoprotective regulatory mechanism employed by many photosynthetic organisms to dynamically modulate energy flow within the photosynthetic apparatus in response to fluctuating light conditions. Activated by decreases in lumen pH produced during periods of high photon flux, NPQ induces rapid thermal dissipation of excess excitation energy. As a result, the rate of CS decreases, thereby limiting the accumulation of potentially deleterious reactive intermediates and byproducts. In this article, a molecular triad that functionally mimics the effects of NPQ associated with an artificial photosynthetic reaction centermore » is described. Steady-state absorption and emission, time-resolved fluorescence, and transient absorption spectroscopies have been used to demonstrate a 1 order of magnitude reduction in the CS quantum yield via reversible protonation of an excited-state-quenching molecular switch moiety. As in the natural system, the populations of unquenched and quenched states and therefore the overall yields of CS were found to be dependent on acid concentration.« less

  13. Using quantum dot photoluminescence for load detection

    NASA Astrophysics Data System (ADS)

    Moebius, M.; Martin, J.; Hartwig, M.; Baumann, R. R.; Otto, T.; Gessner, T.

    2016-08-01

    We propose a novel concept for an integrable and flexible sensor capable to visualize mechanical impacts on lightweight structures by quenching the photoluminescence (PL) of CdSe quantum dots. Considering the requirements such as visibility, storage time and high optical contrast of PL quenching with low power consumption, we have investigated a symmetrical and an asymmetrical layer stack consisting of semiconductor organic N,N,N',N'-Tetrakis(3-methylphenyl)-3,3'-dimethylbenzidine (HMTPD) and CdSe quantum dots with elongated CdS shell. Time-resolved series of PL spectra from layer stacks with applied voltages of different polarity and simultaneous observation of power consumption have shown that a variety of mechanisms such as photo-induced charge separation and charge injection, cause PL quenching. However, mechanisms such as screening of external field as well as Auger-assisted charge ejection is working contrary to that. Investigations regarding the influence of illumination revealed that the positive biased asymmetrical layer stack is the preferred sensor configuration, due to a charge carrier injection at voltages of 10 V without the need of coincident illumination.

  14. Characterization and correction of charge-induced pixel shifts in DECam

    DOE PAGES

    Gruen, D.; Bernstein, G. M.; Jarvis, M.; ...

    2015-05-28

    Interaction of charges in CCDs with the already accumulated charge distribution causes both a flux dependence of the point-spread function (an increase of observed size with flux, also known as the brighter/fatter effect) and pixel-to-pixel correlations of the Poissonian noise in flat fields. We describe these effects in the Dark Energy Camera (DECam) with charge dependent shifts of effective pixel borders, i.e. the Antilogus et al. (2014) model, which we fit to measurements of flat-field Poissonian noise correlations. The latter fall off approximately as a power-law r -2.5 with pixel separation r, are isotropic except for an asymmetry in themore » direct neighbors along rows and columns, are stable in time, and are weakly dependent on wavelength. They show variations from chip to chip at the 20% level that correlate with the silicon resistivity. The charge shifts predicted by the model cause biased shape measurements, primarily due to their effect on bright stars, at levels exceeding weak lensing science requirements. We measure the flux dependence of star images and show that the effect can be mitigated by applying the reverse charge shifts at the pixel level during image processing. Differences in stellar size, however, remain significant due to residuals at larger distance from the centroid.« less

  15. Understanding How Isotopes Affect Charge Transfer in P3HT/PCBM: A Quantum Trajectory-Electronic Structure Study with Nonlinear Quantum Corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lei; Jakowski, Jacek; Garashchuk, Sophya

    The experimentally observed effect of selective deuterium substitution on the open circuit voltage for a blend of poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl-C 61- butyric acid methyl ester (PCBM) (Nat. Commun. 5:3180, 2014) is explored using a 221-atom model of a polymer-wrapped PCBM molecule. We describe the protonic and deuteronic wavefunctions for the H/D isotopologues of the hexyl side chains within a Quantum Trajectory/Electronic Structure approach where the dynamics is performed with newly developed nonlinear corrections to the quantum forces, necessary to describe the nuclear wavefunctions; the classical forces are generated with a Density Functional Tight Binding method. We used the resulting protonicmore » and deuteronic time-dependent wavefunctions to assess the effects of isotopic substitution (deuteration) on the energy gaps relevant to the charge transfer for the donor and acceptor electronic states. Furthermore, while the isotope effect on the electronic energy levels is found negligible, the quantum-induced fluctuations of the energy gap between the charge transfer and charge separated states due to nuclear wavefunctions may account for experimental trends by promoting charge transfer in P3HT/PCBM and increasing charge recombination on the donor in the deuterium substituted P3HT/PCBM.« less

  16. Understanding How Isotopes Affect Charge Transfer in P3HT/PCBM: A Quantum Trajectory-Electronic Structure Study with Nonlinear Quantum Corrections

    DOE PAGES

    Wang, Lei; Jakowski, Jacek; Garashchuk, Sophya; ...

    2016-08-09

    The experimentally observed effect of selective deuterium substitution on the open circuit voltage for a blend of poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl-C 61- butyric acid methyl ester (PCBM) (Nat. Commun. 5:3180, 2014) is explored using a 221-atom model of a polymer-wrapped PCBM molecule. We describe the protonic and deuteronic wavefunctions for the H/D isotopologues of the hexyl side chains within a Quantum Trajectory/Electronic Structure approach where the dynamics is performed with newly developed nonlinear corrections to the quantum forces, necessary to describe the nuclear wavefunctions; the classical forces are generated with a Density Functional Tight Binding method. We used the resulting protonicmore » and deuteronic time-dependent wavefunctions to assess the effects of isotopic substitution (deuteration) on the energy gaps relevant to the charge transfer for the donor and acceptor electronic states. Furthermore, while the isotope effect on the electronic energy levels is found negligible, the quantum-induced fluctuations of the energy gap between the charge transfer and charge separated states due to nuclear wavefunctions may account for experimental trends by promoting charge transfer in P3HT/PCBM and increasing charge recombination on the donor in the deuterium substituted P3HT/PCBM.« less

  17. The physics of charge separation preceding lightning strokes in thunderclouds

    NASA Technical Reports Server (NTRS)

    Kyrala, Ali

    1987-01-01

    The physics of charge separation preceding lightning strokes in thunderclouds is presented by three types of arguments: An explanation is given for the aggregation of electrical charges of like sign overcoming Coulomb repulsion by attraction due to exchange interaction. The latter is well known in quantum mechanics from the theories of the nuclear bond and the covalent bond. A classical electrostatic model of charge balls of segregated positive and negative charges in the thundercloud is presented. These charge balls can only be maintained in temporarily stable locations by a containing vortex. Because they will be of different sizes and masses, they will stabilize at different altitudes when drag forces are included with the given electrostatic force. The question of how the charges become concentrated again after lightning discharges is approached by means of the collisional Boltzmann transport equation to explain quasi-periodic recharging. It is shown that solutions cannot be separable in both position and time if they are to represent aggregation.

  18. Directional Charge Separation in Isolated Organic Semiconductor Crystalline Nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Michael; Labastide, Joelle; Bond-Thompson, Hilary

    2017-03-01

    In the conventional view of organic photovoltaics (OPV), localized electronic excitations (excitons) formed in the active layer are transported by random 3D diffusion to an interface where charge separation and extraction take place. Because radiative de-excitation is usually strongly allowed in organic semiconductors, efficient charge separation requires high exciton mobility, with much of the diffusive motion ‘wasted’ in directions that don’t result in an interface encounter. Our research efforts are focused on ways to enforce a preferred directionality in energy and/or charge transport using ordered crystalline nanowires in which the intermolecular interactions that facilitate transport along, for example, the pi-stackingmore » axis, can be made several orders of magnitude stronger than those in a transverse direction. The results presented in our recent work (Nature Communications) is a first step towards realizing the goal of directional control of both energy transport and charge separation, where excitons shared between adjacent molecules dissociate exclusively along the pi-stacking direction.« less

  19. Charge-specific size-dependent separation of water-soluble organic molecules by fluorinated nanoporous networks

    NASA Astrophysics Data System (ADS)

    Byun, Jeehye; Patel, Hasmukh A.; Thirion, Damien; Yavuz, Cafer T.

    2016-11-01

    Molecular architecture in nanoscale spaces can lead to selective chemical interactions and separation of species with similar sizes and functionality. Substrate specific sorbent chemistry is well known through highly crystalline ordered structures such as zeolites, metal organic frameworks and widely available nanoporous carbons. Size and charge-dependent separation of aqueous molecular contaminants, on the contrary, have not been adequately developed. Here we report a charge-specific size-dependent separation of water-soluble molecules through an ultra-microporous polymeric network that features fluorines as the predominant surface functional groups. Treatment of similarly sized organic molecules with and without charges shows that fluorine interacts with charges favourably. Control experiments using similarly constructed frameworks with or without fluorines verify the fluorine-cation interactions. Lack of a σ-hole for fluorine atoms is suggested to be responsible for this distinct property, and future applications of this discovery, such as desalination and mixed matrix membranes, may be expected to follow.

  20. Charge-specific size-dependent separation of water-soluble organic molecules by fluorinated nanoporous networks

    PubMed Central

    Byun, Jeehye; Patel, Hasmukh A.; Thirion, Damien; Yavuz, Cafer T.

    2016-01-01

    Molecular architecture in nanoscale spaces can lead to selective chemical interactions and separation of species with similar sizes and functionality. Substrate specific sorbent chemistry is well known through highly crystalline ordered structures such as zeolites, metal organic frameworks and widely available nanoporous carbons. Size and charge-dependent separation of aqueous molecular contaminants, on the contrary, have not been adequately developed. Here we report a charge-specific size-dependent separation of water-soluble molecules through an ultra-microporous polymeric network that features fluorines as the predominant surface functional groups. Treatment of similarly sized organic molecules with and without charges shows that fluorine interacts with charges favourably. Control experiments using similarly constructed frameworks with or without fluorines verify the fluorine-cation interactions. Lack of a σ-hole for fluorine atoms is suggested to be responsible for this distinct property, and future applications of this discovery, such as desalination and mixed matrix membranes, may be expected to follow. PMID:27830697

  1. The impact of long-range electron-hole interaction on the charge separation yield of molecular photocells

    NASA Astrophysics Data System (ADS)

    Nemati Aram, Tahereh; Ernzerhof, Matthias; Asgari, Asghar; Mayou, Didier

    2017-01-01

    We discuss the effects of charge carrier interaction and recombination on the operation of molecular photocells. Molecular photocells are devices where the energy conversion process takes place in a single molecular donor-acceptor complex attached to electrodes. Our investigation is based on the quantum scattering theory, in particular on the Lippmann-Schwinger equation; this minimizes the complexity of the problem while providing useful and non-trivial insight into the mechanism governing photocell operation. In this study, both exciton pair creation and dissociation are treated in the energy domain, and therefore there is access to detailed spectral information, which can be used as a framework to interpret the charge separation yield. We demonstrate that the charge carrier separation is a complex process that is affected by different parameters, such as the strength of the electron-hole interaction and the non-radiative recombination rate. Our analysis helps to optimize the charge separation process and the energy transfer in organic solar cells and in molecular photocells.

  2. Electrokinetic dispersion in microfluidic separation systems

    NASA Astrophysics Data System (ADS)

    Molho, Joshua Irving

    Numerous efforts have focused on engineering miniaturized chemical analysis devices that are faster, more portable and consume smaller volumes of expensive reagents than their macroscale counterparts. Many of these analysis devices employ electrokinetic effects to transport picoliter volumes of liquids and to separate chemical species from an initially mixed sample volume. In these microfluidic separation systems, dispersion must be minimized to obtain the highest resolution separation possible. This work focuses on modeling, simulation and experimental measurement of two electrokinetic dispersion mechanisms that can reduce the effectiveness of microfluidic separation systems: dispersion resulting from non-uniform wall zeta-potential, and dispersion caused by microchannel turns. When the surface of a microchannel has non-uniform zeta-potential (e.g., if the surface charge varies along the length of the microchannel), an applied electric field creates both electroosmotic and pressure-driven flow. A caged-fluorescence imaging technique was used to visualize the dispersion caused by this electrokinetically induced pressure-driven flow. A simple model for a single channel with an axially varying surface charge is presented and compared to experimental measurements. Microchannel turns have been shown to create dispersion of electrokinetically transported analyte bands. Using a method of moments analysis, a model is developed that quantifies this dispersion and identifies the conditions under which turn dispersion limits the resolution of a microfluidic separation system. Measurements using the caged-fluorescence visualization technique were used to verify this model. New turn geometries are presented and were optimized using both a reduced parameter technique as well as a more generalized, numerical shape optimization approach. These improved turn designs were manufactured using two fabrication techniques and then tested experimentally. The turn optimization approaches and resulting turn geometries described here are shown to reduce turn dispersion to less than 1% of the dispersion caused by unoptimized, constant-width turns.

  3. "Light sail" acceleration reexamined.

    PubMed

    Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco

    2009-08-21

    The dynamics of the acceleration of ultrathin foil targets by the radiation pressure of superintense, circularly polarized laser pulses is investigated by analytical modeling and particle-in-cell simulations. By addressing self-induced transparency and charge separation effects, it is shown that for "optimal" values of the foil thickness only a thin layer at the rear side is accelerated by radiation pressure. The simple "light sail" model gives a good estimate of the energy per nucleon, but overestimates the conversion efficiency of laser energy into monoenergetic ions.

  4. Inherent Driving Force for Charge Separation in Curved Stacks of Oligothiophenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qin

    Coexistence of high local charge mobility and an energy gradient can lead to efficient free charge carrier generation from geminate charge transfer states at the donor–acceptor interface in bulk heterojunction organic photovoltaics. It is, however, not clear what polymer microstructures can support such coexistence. Using recent methods from density functional theory, we propose that a stack of similarly curved oligothiophene chains can deliver the requirements for efficient charge separation. Curved stacks are stable because of the polymer’s strong π-stacking ability and because backbone torsions are flexible in neutral chains. However, energy of a charge in a polymer chain has remarkablymore » stronger dependence on torsions. The trend of increasing planarity in curved stacks effectively creates an energy gradient that drives charge in one direction. The curvature of these partially ordered stacks is found to beneficially interact with fullerenes for charge separation. The curved stacks, therefore, are identified as possible building blocks for interfacial structures that lead to efficient free carrier generation in high-performing organic photovoltaic systems.« less

  5. Inherent Driving Force for Charge Separation in Curved Stacks of Oligothiophenes

    DOE PAGES

    Wu, Qin

    2015-01-30

    Coexistence of high local charge mobility and an energy gradient can lead to efficient free charge carrier generation from geminate charge transfer states at the donor–acceptor interface in bulk heterojunction organic photovoltaics. It is, however, not clear what polymer microstructures can support such coexistence. Using recent methods from density functional theory, we propose that a stack of similarly curved oligothiophene chains can deliver the requirements for efficient charge separation. Curved stacks are stable because of the polymer’s strong π-stacking ability and because backbone torsions are flexible in neutral chains. However, energy of a charge in a polymer chain has remarkablymore » stronger dependence on torsions. The trend of increasing planarity in curved stacks effectively creates an energy gradient that drives charge in one direction. The curvature of these partially ordered stacks is found to beneficially interact with fullerenes for charge separation. The curved stacks, therefore, are identified as possible building blocks for interfacial structures that lead to efficient free carrier generation in high-performing organic photovoltaic systems.« less

  6. Surface and structure modification induced by high energy and highly charged uranium ion irradiation in monocrystal spinel

    NASA Astrophysics Data System (ADS)

    Yang, Yitao; Zhang, Chonghong; Song, Yin; Gou, Jie; Zhang, Liqing; Meng, Yancheng; Zhang, Hengqing; Ma, Yizhun

    2014-05-01

    Due to its high temperature properties and relatively good behavior under irradiation, magnesium aluminate spinel (MgAl2O4) is considered as a possible material to be used as inert matrix for the minor actinides burning. In this case, irradiation damage is an unavoidable problem. In this study, high energy and highly charged uranium ions (290 MeV U32+) were used to irradiate monocrystal spinel to the fluence of 1.0 × 1013 ions/cm2 to study the modification of surface and structure. Highly charged ions carry large potential energy, when they interact with a surface, the release of potential energy results in the modification of surface. Atomic force microscopy (AFM) results showed the occurrence of etching on surface after uranium ion irradiation. The etching depth reached 540 nm. The surprising efficiency of etching is considered to be induced by the deposition of potential energy with high density. The X-ray diffraction results showed that the (4 4 0) diffraction peak obviously broadened after irradiation, which indicated that the distortion of lattice has occurred. After multi-peak Gaussian fitting, four Gaussian peaks were separated, which implied that a structure with different damage layers could be formed after irradiation.

  7. Tribo-charging properties of waste plastic granules in process of tribo-electrostatic separation.

    PubMed

    Li, Jia; Wu, Guiqing; Xu, Zhenming

    2015-01-01

    Plastic products can be found everywhere in people's daily life. With the consistent growth of plastic consumption, more and more plastic waste is generated. Considering the stable chemical and physics characteristics of plastic, regular waste management methods are not suitable for recycling economic strategy of each government, which has become a serious environmental problem. Recycling plastic waste is considered to be the best way to treat it, because it cannot only deduce the waste but also save the energy to produce new virgin plastic. Tribo-electrostatic separation is strongly recommended for plastic separation as it can preserve the original properties of plastic and has little additional pollution. In this study, plastic granules are generated by crushing plastic waste in waste electric and electronic equipment. The tribo-charging properties of plastic waste were studied by vibrating tribo-charging and cyclone tribo-charging. The triboelectric series obtained by vibrating was: (-)-PE-PS-PC-PVC-ABS-PP-(+), while the triboelectric series obtained by cyclone was (-)-PE-PS-PC-PVC-ABS-PP-(+). Further, the cyclone charging was more effective and stable than vibrating charging. The impact factors experiments showed that small particle size was better changed than large ones and were more suitable recycled by tribo-electrostatic separation. High relative humidity was identified as impede charging effect. The results of this study will help defining the operating parameters of subsequent separator. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Charge and spin in low-dimensional cuprates

    NASA Astrophysics Data System (ADS)

    Maekawa, Sadamichi; Tohyama, Takami

    2001-03-01

    One of the central issues in the study of high-temperature superconducting cuprates which are composed of two-dimensional (2D) CuO2 planes is whether the 2D systems with strong electron correlation behave as a Fermi liquid or a non-Fermi-liquid-like one-dimensional (1D) system with electron correlation. In this article, we start with the detailed examination of the electronic structure in cuprates and study theoretically the spin and charge dynamics in 1D and 2D cuprates. The theoretical background of spin-charge separation in the 1D model systems including the Hubbard and t-J models is presented. The first direct observation of collective modes of spin and charge excitations in a 1D cuprate, which are called spinons and holons respectively, in angle-resolved photoemission spectroscopy (ARPES) experiments is reviewed in the light of the theoretical results based on the numerically exact-diagonalization method. The charge and spin dynamics in 1D insulating cuprates is also discussed in connection with the spin-charge separation. The arguments are extended to the 2D cuprates, and the unique aspects of the electronic properties of high-temperature superconductors are discussed. Special emphasis is placed on the d-wave-like excitations in insulating 2D cuprates observed in ARPES experiments. We explain how the excitations are caused by the spin-charge separation. The charge stripes observed in the underdoped cuprates are examined in connection with spin-charge separation in real space.

  9. Computational modeling of electrostatic charge and fields produced by hypervelocity impact

    DOE PAGES

    Crawford, David A.

    2015-05-19

    Following prior experimental evidence of electrostatic charge separation, electric and magnetic fields produced by hypervelocity impact, we have developed a model of electrostatic charge separation based on plasma sheath theory and implemented it into the CTH shock physics code. Preliminary assessment of the model shows good qualitative and quantitative agreement between the model and prior experiments at least in the hypervelocity regime for the porous carbonate material tested. The model agrees with the scaling analysis of experimental data performed in the prior work, suggesting that electric charge separation and the resulting electric and magnetic fields can be a substantial effectmore » at larger scales, higher impact velocities, or both.« less

  10. A charge-stabilizing, multimodular, ferrocene-bis(triphenylamine)-zinc-porphyrin-fullerene polyad.

    PubMed

    Wijesinghe, Channa A; El-Khouly, Mohamed E; Zandler, Melvin E; Fukuzumi, Shunichi; D'Souza, Francis

    2013-07-15

    A novel multimodular donor-acceptor polyad featuring zinc porphyrin, fullerene, ferrocene, and triphenylamine entities was designed, synthesized, and studied as a charge-stabilizing, photosynthetic-antenna/reaction-center mimic. The ferrocene and fullerene entities, covalently linked to the porphyrin ring, were distantly separated to accomplish the charge-separation/hole-migration events leading to the creation of a long-lived charge-separated state. The geometry and electronic structures of the newly synthesized compound was deduced by B3LYP/3-21G(*) optimization, while the energy levels for different photochemical events was established using data from the optical absorption and emission, and electrochemical studies. Excitation of the triphenylamine entities revealed singlet-singlet energy transfer to the appended zinc porphyrin. As predicted from the energy levels, photoinduced electron transfer from both the singlet and triplet excited states of the zinc porphyrin to fullerene followed by subsequent hole migration involving ferrocene was witnessed from the transient absorption studies. The charge-separated state persisted for about 8.5 μs and was governed by the distance between the final charge-transfer product, that is, a species involving a ferrocenium cation and a fullerene radical anion, with additional influence from the charge-stabilizing triphenylamine entities located on the zinc-porphyrin macrocycle. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Field induced ferromagnetic fraction enlargement in phase separated La_0.5Ca_0.5MnO_3

    NASA Astrophysics Data System (ADS)

    Ghivelder, Luis; Freitas, R. S.; Sacanel, J.; Parisi, F.; Levy, P.

    2001-03-01

    A systematic study of the magnetic and transport properties of a series of phase separated La_0.5Ca_0.5MnO3 compounds is reported. The investigated samples all have the same composition but different grain sizes, which modifies the volume fraction of the coexisting ferromagnetic (FM) and antiferromagnetic charge-ordered (AFM-CO) phases. Magnetoresistance and magnetization measurements were performed with two different experimental procedures: a standard field-cooled cooling (FC) mode, and a second method in which the field is turned on only while measuring each data point, and switched off while cooling the samples. Magnetization and magnetoresistance measurements display big differences when comparing the data obtained with the different procedures. The overall results are interpret in terms of a field induced FM fraction enlargement. In transport measurements this effect yield a percolative transition. Magnetization data shows evidence for the formation of AFM-CO regions within the FM phase. * e-mail: luisghiv@if.ufrj.br

  12. Photochemical charge separation in zeolites: Electron transfer dynamics, nanocrystals and zeolitic membranes. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Prabir K.

    2001-09-30

    Aluminosilicate zeolites provide an excellent host for photochemical charge separation. Because of the constraints provided by the zeolite, the back electron transfer from the reduced acceptor to the oxidized sensitizer is slowed down. This provides the opportunity to separate the charge and use it in a subsequent reaction for water oxidation and reduction. Zeolite-based ruthenium oxide catalysts have been found to be efficient for the water splitting process. This project has demonstrated the usefulness of zeolite hosts for photolytic splitting of water.

  13. Impact of charge-transfer excitons in regioregular polythiophene on the charge separation at polythiophene-fullerene heterojunctions

    NASA Astrophysics Data System (ADS)

    Polkehn, M.; Tamura, H.; Burghardt, I.

    2018-01-01

    This study addresses the mechanism of ultrafast charge separation in regioregular oligothiophene-fullerene assemblies representative of poly-3-hexylthiophene (P3HT)-[6,6]-phenyl-C61 butyric acid methyl ester (PCBM) heterojunctions, with special emphasis on the inclusion of charge transfer excitons in the oligothiophene phase. The formation of polaronic inter-chain charge separated species in highly ordered oligothiophene has been demonstrated in recent experiments and could have a significant impact on the net charge transfer to the fullerene acceptor. The present approach combines a first-principles parametrized multi-site Hamiltonian, based on time-dependent density functional theory calculations, with accurate quantum dynamics simulations using the multi-layer multi-configuration time-dependent Hartree method. Quantum dynamical studies are carried out for up to 182 electronic states and 112 phonon modes. The present analysis follows up on our previous study of (Huix-Rotllant et al 2015 J. Phys. Chem. Lett. 6 1702) and significantly expands the scope of this analysis by including the dynamical role of charge transfer excitons. Our investigation highlights the pronounced mixing of photogenerated Frenkel excitons with charge transfer excitons in the oligothiophene domain, and the opening of new transfer channels due the creation of such charge-separated species. As a result, it turns out that the interfacial donor/acceptor charge transfer state can be largely circumvented due to the presence of charge transfer excitons. However, the latter states in turn act as a trap, such that the free carrier yield observed on ultrafast time scales is tangibly reduced. The present analysis underscores the complexity of the transfer pathways at P3HT-PCBM type junctions.

  14. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    NASA Astrophysics Data System (ADS)

    Oganessian, Yu. Ts.; Shchepunov, V. A.; Dmitriev, S. N.; Itkis, M. G.; Gulbekyan, G. G.; Khabarov, M. V.; Bekhterev, V. V.; Bogomolov, S. L.; Efremov, A. A.; Pashenko, S. V.; Stepantsov, S. V.; Yeremin, A. V.; Yavor, M. I.; Kalimov, A. G.

    2003-05-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10 -3. The set up can work in the wide mass range from A≈20 to A≈500, its mass acceptance is as large as ±2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90° electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considered. Description of its elements and subsystems is given.

  15. Multimodal charge-induction chromatography for antibody purification.

    PubMed

    Tong, Hong-Fei; Lin, Dong-Qiang; Chu, Wen-Ning; Zhang, Qi-Lei; Gao, Dong; Wang, Rong-Zhu; Yao, Shan-Jing

    2016-01-15

    Hydrophobic charge-induction chromatography (HCIC) has advantages of high capacity, salt-tolerance and convenient pH-controlled elution. However, the binding specificity might be improved with multimodal molecular interactions. New ligand W-ABI that combining tryptophan and 5-amino-benzimidazole was designed with the concept of mutimodal charge-induction chromatography (MCIC). The indole and benzimidazole groups of the ligand could provide orientated mutimodal binding to target IgG under neutral pH, while the imidazole groups could induce the electrostatic repulsion forces for efficient elution under acidic pH. W-ABI ligand was coupled successfully onto agarose gel, and IgG adsorption behaviors were investigated. High affinity to IgG was found with the saturated adsorption capacity of 70.4 mg/ml at pH 7, and the flow rate of mobile phase showed little impact on the dynamic binding capacity. In addition, efficient elution could be achieved at mild acidic pH with high recovery. Two separation cases (IgG separation from albumin containing feedstock and monoclonal antibody purification from cell culture supernatant) were verified with high purity and recovery. In general, MCIC with the specially-designed ligand is an expanding of HCIC with improved adsorption selectivity, which would be a potential alternative to Protein A-based capture for the cost-effective purification of antibodies. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Electrophoresis demonstration on Apollo 16

    NASA Technical Reports Server (NTRS)

    Snyder, R. S.

    1972-01-01

    Free fluid electrophoresis, a process used to separate particulate species according to surface charge, size, or shape was suggested as a promising technique to utilize the near zero gravity condition of space. Fluid electrophoresis on earth is disturbed by gravity-induced thermal convection and sedimentation. An apparatus was developed to demonstrate the principle and possible problems of electrophoresis on Apollo 14 and the separation boundary between red and blue dye was photographed in space. The basic operating elements of the Apollo 14 unit were used for a second flight demonstration on Apollo 16. Polystyrene latex particles of two different sizes were used to simulate the electrophoresis of large biological particles. The particle bands in space were extremely stable compared to ground operation because convection in the fluid was negligible. Electrophoresis of the polystyrene latex particle groups according to size was accomplished although electro-osmosis in the flight apparatus prevented the clear separation of two particle bands.

  17. Inversion layer solar cell fabrication and evaluation

    NASA Technical Reports Server (NTRS)

    Call, R. L.

    1972-01-01

    Silicon solar cells with induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. This charged layer was supplied through three mechanisms: (1) supplying a positive potential to a transparent electrode separated from the silicon surface by a dielectric, (2) contaminating the oxide layer with positive ions, and (3) forming donor surface states that leave a positive charge on the surface. A movable semi-infinite shadow delineated the extent of sensitivity of the cell due to the inversion region. Measurements of the inversion layer cell response to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. Theory of the conductance of the inversion layer vs. strength of the inversion layer was compared with experiment and found to match. Theoretical determinations of junction depth and inversion layer strength were made as a function of the surface potential for the transparent electrode cell.

  18. Disentangling overlapping high-field EPR spectra of organic radicals: Identification of light-induced polarons in the record fullerene-free solar cell blend PBDB-T:ITIC

    NASA Astrophysics Data System (ADS)

    Van Landeghem, Melissa; Maes, Wouter; Goovaerts, Etienne; Van Doorslaer, Sabine

    2018-03-01

    We present a combined high-field EPR and DFT study of light-induced radicals in the bulk heterojunction blend of PBDB-T:ITIC, currently one of the highest efficiency non-fullerene donor:acceptor combinations in organic photovoltaics. We demonstrate two different approaches for disentangling the strongly overlapping high-field EPR spectra of the positive and negative polarons after charge separation: (1) relaxation-filtered field-swept EPR based on the difference in T1 spin-relaxation times and (2) field-swept EDNMR-induced EPR by exploiting the presence of 14N hyperfine couplings in only one of the radical species, the small molecule acceptor radical. The approach is validated by light-induced EPR spectra on related blends and the spectral assignment is underpinned by DFT computations. The broader applicability of the spectral disentangling methods is discussed.

  19. Simulations of stretching a flexible polyelectrolyte with varying charge separation

    DOE PAGES

    Stevens, Mark J.; Saleh, Omar A.

    2016-07-22

    We calculated the force-extension curves for a flexible polyelectrolyte chain with varying charge separations by performing Monte Carlo simulations of a 5000 bead chain using a screened Coulomb interaction. At all charge separations, the force-extension curves exhibit a Pincus-like scaling regime at intermediate forces and a logarithmic regime at large forces. As the charge separation increases, the Pincus regime shifts to a larger range of forces and the logarithmic regime starts are larger forces. We also found that force-extension curve for the corresponding neutral chain has a logarithmic regime. Decreasing the diameter of bead in the neutral chain simulations removedmore » the logarithmic regime, and the force-extension curve tends to the freely jointed chain limit. In conclusion, this result shows that only excluded volume is required for the high force logarithmic regime to occur.« less

  20. Charge exchange molecular ion source

    DOEpatents

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  1. Separation of heat and charge currents for boosted thermoelectric conversion

    NASA Astrophysics Data System (ADS)

    Mazza, Francesco; Valentini, Stefano; Bosisio, Riccardo; Benenti, Giuliano; Giovannetti, Vittorio; Fazio, Rosario; Taddei, Fabio

    2015-06-01

    In a multiterminal device the (electronic) heat and charge currents can follow different paths. In this paper we introduce and analyze a class of multiterminal devices where this property is pushed to its extreme limits, with charge and heat currents flowing in different reservoirs. After introducing the main characteristics of this heat-charge current separation regime, we show how to realize it in a multiterminal device with normal and superconducting leads. We demonstrate that this regime allows us to control independently heat and charge flows and to greatly enhance thermoelectric performances at low temperatures. We analyze in detail a three-terminal setup involving a superconducting lead, a normal lead, and a voltage probe. For a generic scattering region we show that in the regime of heat-charge current separation both the power factor and the figure of merit Z T are highly increased with respect to a standard two-terminal system. These results are confirmed for the specific case of a system consisting of three coupled quantum dots.

  2. Excited state electron transfer in systems with a well-defined geometry. [cyclophane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufmann, K.J.

    1980-12-01

    The effect of temperature, dielectric strength and ligand on the structure of the mesopyropheophorbide cyclophanes will be studied. ESR, NMR, emission and absorption spectroscopy, as well as circular dichroism will be used. The changes in structure will be correlated with changes in the photochemical activity. Electron acceptors such as benzoquinone will be utilized to stabilize the charge separation. Charge separation in porphyrin quinone dimers will also be studied. It was found that electron transfer in the cyclophane system is relatively slow. This is presumably due to an orientation requirement for fast electron transfer. Solvent dielectric also is important in producingmore » a charge separation. Decreasing the temperature effects the yield of charge transfer, but not the kinetics.« less

  3. Superconductivity, phase separation, and charge-transfer instability in the U = infinity limit of the three-band model of the CuO sub 2 planes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grilli, M.; Raimondi, R.; Castellani, C.

    1991-07-08

    The {ital U}={infinity} limit of the three-band Hubbard model with nearest-neighbor repulsion {ital V} is studied using the slave-boson approach and the large-{ital N} expansion technique to order 1/{ital N}. A charge-transfer instability is found as in weak-coupling theory. The charge-transfer instability is always associated with a diverging compressibility leading to a phase separation. Near the phase-separation, charge-transfer-instability region we find superconducting instabilities in the {ital s}- and {ital d}-wave channel. The requirement for superconductivity is that {ital V} be on the scale of the Cu-O hopping as suggested by Varma, Schmitt-Rink, and Abrahams.

  4. Rapid preparative separation of monoclonal antibody charge variants using laterally-fed membrane chromatography.

    PubMed

    Sadavarte, Rahul; Madadkar, Pedram; Filipe, Carlos Dm; Ghosh, Raja

    2018-01-15

    Monoclonal antibodies undergo various forms of chemical transformation which have been shown to cause loss in efficacy and alteration in pharmacokinetic properties of these molecules. Such modified antibody molecules are known as variants. They also display physical properties such as charge that are different from intact antibody molecules. However, the difference in charge is very subtle and separation based on it is quite challenging. Charge variants are usually separated using ion-exchange column chromatography or isoelectric focusing. In this paper, we report a rapid and scalable method for fractionating monoclonal antibody charge variants, based on the use of cation exchange laterally-fed membrane chromatography (LFMC). Starting with a sample of monoclonal antibody hIgG1-CD4, three well-resolved fractions were obtained using either pH or salt gradient. These fractions were identified as acidic, neutral and basic variants. Each of these fractions contained intact heavy and light chains and so antibody fragmentation had no role in variant generation. The separation was comparable to that using column chromatography but was an order of magnitude faster. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effect of the charge surface distribution on the flow field induced by a dielectric barrier discharge actuator

    NASA Astrophysics Data System (ADS)

    Cristofolini, Andrea; Neretti, Gabriele; Borghi, Carlo A.

    2013-08-01

    The Electro-Hydro-Dynamics (EHD) interaction induced by a surface dielectric barrier discharge in the aerodynamic boundary layer at one atmosphere still air has been investigated. Three different geometrical configurations of the actuator have been utilized. In the first configuration, an electrode pair separated by a 2 mm dielectric sheet has been used. The second and the third configurations have been obtained by adding a third electrode on the upper side of the dielectric surface. This electrode has been placed downstream of the upper electrode and has been connected to ground or has been left floating. Three different dielectric materials have been utilized. The high voltage upper electrode was fed by an a.c. electric tension. Measurements of the dielectric surface potential generated by the charge deposition have been done. The discharge has been switched off after positive and negative phases of the plasma current (the current phase was characterized by a positive or a negative value, respectively). The measurements have been carried out after both phases. The charge distribution strongly depended on the switching off phase and was heavily affected by the geometrical configuration. A remarkable decrease of the charge deposited on the dielectric surface has been detected when the third electrode was connected to ground. Velocity profiles were obtained by using a Pitot probe. They showed that the presence of the third electrode limits the fluid dynamics performance of the actuator. A relation between the charge surface distribution and the EHD interaction phenomenon has been found. Imaging of the plasma has been done to evaluate the discharge structure and the extension of the plasma in the configurations investigated.

  6. Non-aqueous capillary electrophoretic separation of cholesterol and 25-hydroxycholesterol after derivatization with Girard P reagent.

    PubMed

    Gregus, Michal; Roberg-Larsen, Hanne; Lundanes, Elsa; Foret, Frantisek; Kuban, Petr; Wilson, Steven Ray

    2017-10-01

    Capillary electrophoresis (CE) can provide high separation efficiency with very simple instrumentation, but has yet to be explored regarding oxysterols/cholesterol. Cholesterol and 25-hydroxycholesterol (both are 4-ene-3-ketosteroids) were quantitatively transformed into hydrazones using Girard P reagent after enzymatic oxidation by cholesterol oxidase. Separation was achieved using non-aqueous capillary electrophoresis with UV detection at 280nm; the "charge-tagging" Girard P reagent ensured both charge and chromophore (which are requirements for CE-UV). Excess reagent was also separated from the two analytes, eliminating the need for removal prior to the analysis. The compounds were separated in less than 5min with excellent separation efficiency, using separation electrolytes fully compatible with mass spectrometry. The CE-UV method was used to optimize steps for charge-tagging, revealing that the procedure is affected by the analyte/reagent ratio and reaction time, but also the analyte structure. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Understanding the free energy barrier and multiple timescale dynamics of charge separation in organic photovoltaic cells.

    PubMed

    Yan, Yaming; Song, Linze; Shi, Qiang

    2018-02-28

    By employing several lattice model systems, we investigate the free energy barrier and real-time dynamics of charge separation in organic photovoltaic (OPV) cells. It is found that the combined effects of the external electric field, entropy, and charge delocalization reduce the free energy barrier significantly. The dynamic disorder reduces charge carrier delocalization and results in the increased charge separation barrier, while the effect of static disorder is more complicated. Simulation of the real-time dynamics indicates that the free charge generation process involves multiple time scales, including an ultrafast component within hundreds of femtoseconds, an intermediate component related to the relaxation of the hot charge transfer (CT) state, and a slow component on the time scale of tens of picoseconds from the thermally equilibrated CT state. Effects of hot exciton dissociation as well as its dependence on the energy offset between the Frenkel exciton and the CT state are also analyzed. The current results indicate that only a small energy offset between the band gap and the lowest energy CT state is needed to achieve efficient free charge generation in OPV devices, which agrees with recent experimental findings.

  8. Magnetic field enhancement of organic photovoltaic cells performance.

    PubMed

    Oviedo-Casado, S; Urbina, A; Prior, J

    2017-06-27

    Charge separation is a critical process for achieving high efficiencies in organic photovoltaic cells. The initial tightly bound excitonic electron-hole pair has to dissociate fast enough in order to avoid photocurrent generation and thus power conversion efficiency loss via geminate recombination. Such process takes place assisted by transitional states that lie between the initial exciton and the free charge state. Due to spin conservation rules these intermediate charge transfer states typically have singlet character. Here we propose a donor-acceptor model for a generic organic photovoltaic cell in which the process of charge separation is modulated by a magnetic field which tunes the energy levels. The impact of a magnetic field is to intensify the generation of charge transfer states with triplet character via inter-system crossing. As the ground state of the system has singlet character, triplet states are recombination-protected, thus leading to a higher probability of successful charge separation. Using the open quantum systems formalism we demonstrate that the population of triplet charge transfer states grows in the presence of a magnetic field, and discuss the impact on carrier population and hence photocurrent, highlighting its potential as a tool for research on charge transfer kinetics in this complex systems.

  9. Understanding the free energy barrier and multiple timescale dynamics of charge separation in organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Yan, Yaming; Song, Linze; Shi, Qiang

    2018-02-01

    By employing several lattice model systems, we investigate the free energy barrier and real-time dynamics of charge separation in organic photovoltaic (OPV) cells. It is found that the combined effects of the external electric field, entropy, and charge delocalization reduce the free energy barrier significantly. The dynamic disorder reduces charge carrier delocalization and results in the increased charge separation barrier, while the effect of static disorder is more complicated. Simulation of the real-time dynamics indicates that the free charge generation process involves multiple time scales, including an ultrafast component within hundreds of femtoseconds, an intermediate component related to the relaxation of the hot charge transfer (CT) state, and a slow component on the time scale of tens of picoseconds from the thermally equilibrated CT state. Effects of hot exciton dissociation as well as its dependence on the energy offset between the Frenkel exciton and the CT state are also analyzed. The current results indicate that only a small energy offset between the band gap and the lowest energy CT state is needed to achieve efficient free charge generation in OPV devices, which agrees with recent experimental findings.

  10. Method development of enantiomer separations by affinity capillary electrophoresis, cyclodextrin electrokinetic chromatography and capillary electrophoresis-mass spectrometry.

    PubMed

    Tanaka, Yoshihide

    2002-07-01

    Capillary electrophoresis (CE) has become a powerful tool for enantiomer separations during the last decade. Since 1993, the author has investigated enantiomer separations by affinity capillary electrophoresis (affinity CE) with some proteins and by cyclodextrin electrokinetic chromatography (CDEKC) with some charged cyclodextrins (CDs). Many successful enantiomer separations are demonstrated from our study in this review article. In the enantiomer separations by affinity CE, the deterioration of detection sensitivity was observed under high concentration of the protein in running solutions. The partial filling technique was practically useful to solve the serious problem. It allowed operation at high protein concentrations, such as 500 mumol/L, without the detection problem. Charged CDs had several advantages for the enantiomer separations over neutral ones. Strong electrostatic interactions between a charged CD and oppositely charged analytes should be effective for the formation of the complex. A large difference in electrophoretic mobility between the free analyte and the inclusion complex should also enhance the enantiomeric resolution. In CE-mass spectrometry (CE-MS), the partial filling technique was applied to avoid the introduction of nonvolatile chiral selectors into the CE-MS interface. By replacing the nonvolatile electrolytes in the running buffer by volatile ones, the separation conditions employed in CE with the UV detection method could be transferred to CE-MS.

  11. Self-assembled photosynthesis-inspired light harvesting material and solar cells containing the same

    DOEpatents

    Lindsey, Jonathan S [Raleigh, NC; Chinnasamy, Muthiah [Raleigh, NC; Fan, Dazhong [Raleigh, NC

    2009-12-15

    A solar cell is described that comprises: (a) a semiconductor charge separation material; (b) at least one electrode connected to the charge separation material; and (c) a light-harvesting film on the charge separation material, the light-harvesting film comprising non-covalently coupled, self-assembled units of porphyrinic macrocycles. The porphyrinic macrocycles preferably comprise: (i) an intramolecularly coordinated metal; (ii) a first coordinating substituent; and (iii) a second coordinating substituent opposite the first coordinating substituent. The porphyrinic macrocycles can be assembled by repeating intermolecular coordination complexes of the metal, the first coordinating substituent and the second coordinating substituent.

  12. Local electric field direct writing – Electron-beam lithography and mechanism

    DOE PAGES

    Jiang, Nan; Su, Dong; Spence, John C. H.

    2017-08-24

    Local electric field induced by a focused electron probe in silicate glass thin films is evaluated in this paper by the migration of cations. Extremely strong local electric fields can be obtained by the focused electron probe from a scanning transmission electron microscope. As a result, collective atomic displacements occur. This newly revised mechanism provides an efficient tool to write patterned nanostructures directly, and thus overcome the low efficiency of the conventional electron-beam lithography. Applying this technique to silicate glass thin films, as an example, a grid of rods of nanometer dimension can be efficiently produced by rapidly scanning amore » focused electron probe. This nanopatterning is achieved through swift phase separation in the sample, without any post-development processes. The controlled phase separation is induced by massive displacements of cations (glass modifiers) within the glass-former network, driven by the strong local electric fields. The electric field is induced by accumulated charge within the electron probed region, which is generated by the excitation of atomic electrons by the incident electron. Throughput is much improved compared to other scanning probe techniques. Finally, the half-pitch spatial resolution of nanostructure in this particular specimen is 2.5 nm.« less

  13. From hydration repulsion to dry adhesion between asymmetric hydrophilic and hydrophobic surfaces

    PubMed Central

    Kanduč, Matej; Netz, Roland R.

    2015-01-01

    Using all-atom molecular dynamics (MD) simulations at constant water chemical potential in combination with basic theoretical arguments, we study hydration-induced interactions between two overall charge-neutral yet polar planar surfaces with different wetting properties. Whether the water film between the two surfaces becomes unstable below a threshold separation and cavitation gives rise to long-range attraction, depends on the sum of the two individual surface contact angles. Consequently, cavitation-induced attraction also occurs for a mildly hydrophilic surface interacting with a very hydrophobic surface. If both surfaces are very hydrophilic, hydration repulsion dominates at small separations and direct attractive force contribution can—if strong enough—give rise to wet adhesion in this case. In between the regimes of cavitation-induced attraction and hydration repulsion we find a narrow range of contact angle combinations where the surfaces adhere at contact in the absence of cavitation. This dry adhesion regime is driven by direct surface–surface interactions. We derive simple laws for the cavitation transition as well as for the transition between hydration repulsion and dry adhesion, which favorably compare with simulation results in a generic adhesion state diagram as a function of the two surface contact angles. PMID:26392526

  14. Local electric field direct writing – Electron-beam lithography and mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Nan; Su, Dong; Spence, John C. H.

    Local electric field induced by a focused electron probe in silicate glass thin films is evaluated in this paper by the migration of cations. Extremely strong local electric fields can be obtained by the focused electron probe from a scanning transmission electron microscope. As a result, collective atomic displacements occur. This newly revised mechanism provides an efficient tool to write patterned nanostructures directly, and thus overcome the low efficiency of the conventional electron-beam lithography. Applying this technique to silicate glass thin films, as an example, a grid of rods of nanometer dimension can be efficiently produced by rapidly scanning amore » focused electron probe. This nanopatterning is achieved through swift phase separation in the sample, without any post-development processes. The controlled phase separation is induced by massive displacements of cations (glass modifiers) within the glass-former network, driven by the strong local electric fields. The electric field is induced by accumulated charge within the electron probed region, which is generated by the excitation of atomic electrons by the incident electron. Throughput is much improved compared to other scanning probe techniques. Finally, the half-pitch spatial resolution of nanostructure in this particular specimen is 2.5 nm.« less

  15. CHARGE BOTTLE FOR A MASS SEPARATOR

    DOEpatents

    Davidson, P.H.

    1959-07-01

    Improved mass separator charge bottles are described for containing a dense charge of a chemical compound of copper, nickel, lead or other useful substance which is to be vaporized, and to the method of utilizing such improvcd charge bottles so that the chemical compound is vaporized from the under surface of the charge and thus permits the non-volatile portion thereof to fall to the bottom of the charge bottle where it does not form an obstacle to further evaporation. The charge bottle comprises a vertically disposed cylindrical portion, an inner re-entrant cylindrical portion extending axially and downwardly into the same from the upper end thereof, and evaporative source material in the form of a chemical compound compacted within the upper annular pontion of the charge bottle formed by the re-entrant cylindrical portion, whereby vapor from the chemical compound will pass outwardly from the charge bottle through an apertured closure.

  16. Charge Weld Effects on High Cycle Fatigue Behavior of a Hollow Extruded AA6082 Profile

    NASA Astrophysics Data System (ADS)

    Nanninga, N.; White, C.; Dickson, R.

    2011-10-01

    Fatigue properties of specimens taken from different locations along the length of a hollow AA6082 extrusion, where charge weld (interface between successive billets in multi-billet extrusions) properties and the degree of coring (accumulation of highly sheared billet surface material at back end of billet) are expected to vary, have been evaluated. The fatigue strength of transverse specimens containing charge welds is lower near the front of the extrusion where the charge weld separation is relatively large. The relationship between fatigue failure and charge weld separation appears to be directly related to charge weld properties. The lower fatigue properties of the specimens are likely associated with early overload fatigue failure along the charge weld interface. Coring does not appear to have significantly affected fatigue behavior.

  17. Particle separation

    NASA Technical Reports Server (NTRS)

    Arnott, W. Patrick (Inventor); Chakrabarty, Rajan K. (Inventor); Moosmuller, Hans (Inventor)

    2011-01-01

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  18. Particle separation

    DOEpatents

    Moosmuller, Hans [Reno, NV; Chakrabarty, Rajan K [Reno, NV; Arnott, W Patrick [Reno, NV

    2011-04-26

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  19. The effect of cosmic rays on thunderstorm electricity

    NASA Technical Reports Server (NTRS)

    Bragin, Y. A.

    1975-01-01

    The inflow of charges of small ions, formed by cosmic rays, into thunderstorm cells is estimated on the basis of rocket measurements of ionic concentrations below 90 km. Out of the two processes that form the thunderstorm charge (generation and separation of charges), the former is supposed to be caused by cosmic rays, and the nature of separation is assumed to be the same as in other thunderstorm theories.

  20. 17 CFR 270.26a-2 - Exemptions from certain provisions of sections 26 and 27 for registered separate accounts and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... deduction of certain fees and charges from the assets of such accounts. 270.26a-2 Section 270.26a-2... registered separate accounts and others regarding custodianship of and deduction of certain fees and charges... by any State or other governmental entity and, if the separate account is registered under the Act as...

  1. Swelling kinetics and electrical charge transport in PEDOT:PSS thin films exposed to water vapor.

    PubMed

    Sarkar, Biporjoy; Jaiswal, Manu; Satapathy, Dillip K

    2018-06-06

    We report the swelling kinetics and evolution of the electrical charge transport in poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS) thin films subjected to water vapor. Polymer films swell by the diffusion of water vapor and are found to undergo structural relaxations. Upon exposure to water vapor, primarily the hygroscopic PSS shell, which surrounds the conducting PEDOT-rich cores, takes up water vapor and subsequently swells. We found that the degree of swelling largely depends on the PEDOT to PSS ratio. Swelling driven microscopic rearrangement of the conducting PEDOT-rich cores in the PSS matrix strongly influences the electrical charge transport of the polymer film. Swelling induced increase as well as decrease of electrical resistance are observed in polymer films having different PEDOT to PSS ratio. This anomalous charge transport behavior in PEDOT:PSS films is reconciled by taking into account the contrasting swelling behavior of the PSS and the conducting PEDOT-rich cores leading to spatial segregation of PSS in films with PSS as a minority phase and by a net increase in mean separation between conducting PEDOT-rich cores for films having abundance of PSS.

  2. Swelling kinetics and electrical charge transport in PEDOT:PSS thin films exposed to water vapor

    NASA Astrophysics Data System (ADS)

    Sarkar, Biporjoy; Jaiswal, Manu; Satapathy, Dillip K.

    2018-06-01

    We report the swelling kinetics and evolution of the electrical charge transport in poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS) thin films subjected to water vapor. Polymer films swell by the diffusion of water vapor and are found to undergo structural relaxations. Upon exposure to water vapor, primarily the hygroscopic PSS shell, which surrounds the conducting PEDOT-rich cores, takes up water vapor and subsequently swells. We found that the degree of swelling largely depends on the PEDOT to PSS ratio. Swelling driven microscopic rearrangement of the conducting PEDOT-rich cores in the PSS matrix strongly influences the electrical charge transport of the polymer film. Swelling induced increase as well as decrease of electrical resistance are observed in polymer films having different PEDOT to PSS ratio. This anomalous charge transport behavior in PEDOT:PSS films is reconciled by taking into account the contrasting swelling behavior of the PSS and the conducting PEDOT-rich cores leading to spatial segregation of PSS in films with PSS as a minority phase and by a net increase in mean separation between conducting PEDOT-rich cores for films having abundance of PSS.

  3. Tuning Light Emission of a Pressure-Sensitive Silicon/ZnO Nanowires Heterostructure Matrix through Piezo-phototronic Effects.

    PubMed

    Chen, Mengxiao; Pan, Caofeng; Zhang, Taiping; Li, Xiaoyi; Liang, Renrong; Wang, Zhong Lin

    2016-06-28

    Based on white light emission at silicon (Si)/ZnO hetrerojunction, a pressure-sensitive Si/ZnO nanowires heterostructure matrix light emitting diode (LED) array is developed. The light emission intensity of a single heterostructure LED is tuned by external strain: when the applied stress keeps increasing, the emission intensity first increases and then decreases with a maximum value at a compressive strain of 0.15-0.2%. This result is attributed to the piezo-phototronic effect, which can efficiently modulate the LED emission intensity by utilizing the strain-induced piezo-polarization charges. It could tune the energy band diagrams at the junction area and regulate the optoelectronic processes such as charge carriers generation, separation, recombination, and transport. This study achieves tuning silicon based devices through piezo-phototronic effect.

  4. Pentacene Excitons in Strong Electric Fields.

    PubMed

    Kuhnke, Klaus; Turkowski, Volodymyr; Kabakchiev, Alexander; Lutz, Theresa; Rahman, Talat S; Kern, Klaus

    2018-02-05

    Electroluminescence spectroscopy of organic semiconductors in the junction of a scanning tunneling microscope (STM) provides access to the polarizability of neutral excited states in a well-characterized molecular geometry. We study the Stark shift of the self-trapped lowest singlet exciton at 1.6 eV in a pentacene nanocrystal. Combination of density functional theory (DFT) and time-dependent DFT (TDDFT) with experiment allows for assignment of the observation to a charge-transfer (CT) exciton. Its charge separation is perpendicular to the applied field, as the measured polarizability is moderate and the electric field in the STM junction is strong enough to dissociate a CT exciton polarized parallel to the applied field. The calculated electric-field-induced anisotropy of the exciton potential energy surface will also be of relevance to photovoltaic applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Field-modulation spectroscopy of pentacene thin films using field-effect devices: Reconsideration of the excitonic structure

    NASA Astrophysics Data System (ADS)

    Haas, Simon; Matsui, Hiroyuki; Hasegawa, Tatsuo

    2010-10-01

    We report pure electric-field effects on the excitonic absorbance of pentacene thin films as measured by unipolar field-effect devices that allowed us to separate the charge accumulation effects. The field-modulated spectra between 1.8 and 2.6 eV can be well fitted with the first derivative curve of Frenkel exciton absorption and its vibronic progression, and at higher energy a field-induced feature appears at around 2.95 eV. The results are in sharp contrast to the electroabsorption spectra reported by Sebastian in previous studies [Chem. Phys. 61, 125 (1981)10.1016/0301-0104(81)85055-0], and leads us to reconsider the excitonic structure including the location of charge-transfer excitons. Nonlinear π -electronic response is discussed based on second-order electro-optic (Kerr) spectra.

  6. Do diabetes group visits lead to lower medical care charges?

    PubMed

    Clancy, Dawn E; Dismuke, Clara E; Magruder, Kathryn Marley; Simpson, Kit N; Bradford, David

    2008-01-01

    To evaluate whether attending diabetes group visits (GVs) leads to lower medical care charges for inadequately insured patients with type 2 diabetes mellitus (DM). Randomized controlled clinical trial. Data were abstracted from financial records for 186 patients with uncontrolled type 2 DM randomized to receive care in GVs or usual care for 12 months. Mann-Whitney tests for differences of means for outpatient visits (primary and specialty care), emergency department (ED) visits, and inpatient stays were performed. Separate charge models were developed for primary and specialty outpatient visits. Because GV adherence is potentially dependent on unobserved patient characteristics, treatment effect models of outpatient charges and specialty care visits were estimated using maximum likelihood methods. Mann-Whitney test results indicated that GV patients had reduced ED and total charges but more outpatient charges than usual care patients. Ordinary least squares estimations confirmed that GVs increased outpatient visit charges; however, controlling for endogeneity by estimating a treatment effect model of outpatient visit charges showed that GVs statistically significantly reduced outpatient charges (P <.001). Estimation of a separate treatment effect model of specialty care visits confirmed that GV effects on outpatient visit charges occurred via a reduction in specialty care visits. After controlling for endogeneity via estimation of a treatment effect model, GVs statistically significantly reduced outpatient visit charges. Estimation of a separate treatment effect model of specialty care visits indicated that GVs likely substitute for more expensive specialty care visits.

  7. Design and engineering of water-soluble light-harvesting protein maquettes

    DOE PAGES

    Kodali, Goutham; Mancini, Joshua A.; Solomon, Lee A.; ...

    2017-01-01

    Natural selection in photosynthesis has engineered tetrapyrrole based, nanometer scale, light harvesting and energy capture in light-induced charge separation. By designing and creating nanometer scale artificial light harvesting and charge separating proteins, we have the opportunity to reengineer and overcome the limitations of natural selection to extend energy capture to new wavelengths and to tailor efficient systems that better meet human as opposed to cellular energetic needs. While tetrapyrrole cofactor incorporation in natural proteins is complex and often assisted by accessory proteins for cofactor transport and insertion, artificial protein functionalization relies on a practical understanding of the basic physical chemistrymore » of protein and cofactors that drive nanometer scale self-assembly. Patterning and balancing of hydrophobic and hydrophilic tetrapyrrole substituents is critical to avoid natural or synthetic porphyrin and chlorin aggregation in aqueous media and speed cofactor partitioning into the non-polar core of a man-made water soluble protein designed according to elementary first principles of protein folding. In conclusion, this partitioning is followed by site-specific anchoring of tetrapyrroles to histidine ligands strategically placed for design control of rates and efficiencies of light energy and electron transfer while orienting at least one polar group towards the aqueous phase.« less

  8. Design and engineering of water-soluble light-harvesting protein maquettes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodali, Goutham; Mancini, Joshua A.; Solomon, Lee A.

    Natural selection in photosynthesis has engineered tetrapyrrole based, nanometer scale, light harvesting and energy capture in light-induced charge separation. By designing and creating nanometer scale artificial light harvesting and charge separating proteins, we have the opportunity to reengineer and overcome the limitations of natural selection to extend energy capture to new wavelengths and to tailor efficient systems that better meet human as opposed to cellular energetic needs. While tetrapyrrole cofactor incorporation in natural proteins is complex and often assisted by accessory proteins for cofactor transport and insertion, artificial protein functionalization relies on a practical understanding of the basic physical chemistrymore » of protein and cofactors that drive nanometer scale self-assembly. Patterning and balancing of hydrophobic and hydrophilic tetrapyrrole substituents is critical to avoid natural or synthetic porphyrin and chlorin aggregation in aqueous media and speed cofactor partitioning into the non-polar core of a man-made water soluble protein designed according to elementary first principles of protein folding. In conclusion, this partitioning is followed by site-specific anchoring of tetrapyrroles to histidine ligands strategically placed for design control of rates and efficiencies of light energy and electron transfer while orienting at least one polar group towards the aqueous phase.« less

  9. DNA Damage by Ionizing Radiation: Tandem Double Lesions by Charged Particles

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Chaban, Galina M.; Wang, Dunyou; Dateo, Christopher E.

    2005-01-01

    Oxidative damages by ionizing radiation are the source of radiation-induced carcinogenesis, damage to the central nervous system, lowering of the immune response, as well as other radiation-induced damages to human health. Monte Carlo track simulations and kinetic modeling of radiation damages to the DNA employ available molecular and cellular data to simulate the biological effect of high and low LET radiation io the DNA. While the simulations predict single and double strand breaks and base damages, so far all complex lesions are the result of stochastic coincidence from independent processes. Tandem double lesions have not yet been taken into account. Unlike the standard double lesions that are produced by two separate attacks by charged particles or radicals, tandem double lesions are produced by one single attack. The standard double lesions dominate at the high dosage regime. On the other hand, tandem double lesions do not depend on stochastic coincidences and become important at the low dosage regime of particular interest to NASA. Tandem double lesions by hydroxyl radical attack of guanine in isolated DNA have been reported at a dosage of radiation as low as 10 Gy. The formation of two tandem base lesions was found to be linear with the applied doses, a characteristic of tandem lesions. However, tandem double lesions from attack by a charged particle have not been reported.

  10. First-principles studies of interfacial charge separation in nano-materials photovoltaic heterojunction

    NASA Astrophysics Data System (ADS)

    Kanai, Yosuke

    2009-03-01

    Charge separation is a crucial process that must be understood in order to make substantial improvements in nano-materials based PV cells. In our work, first principles quantum mechanical calculations are employed to shed light on this process for some important nano-material heterojunctions. I will first present our work on the interfacial charge separation in Fullerene/P3HT and CNT/P3HT heterojunctions. Our findings indicate that in the fullerene system a two-step process is operative, involving an adiabatic electron transfer and an exciton dissociation via quasi-degenerate states localized on the fullerene. For the nanotubes, on the other hand, while such a two-step process is not necessary for efficient charge separation, the presence of metallic nanotubes lead to undesirable charge traps. Secondly, I will discuss how we are addressing the difficulty in employing standard DFT approaches for investigating inorganic-organic PV interfaces, which are composed of two distinct materials with very different electronic environments. I will discuss a QMC scheme for obtaining many-body corrections to the Kohn-Sham level alignments and its application to a CdSe/Oligothiophene hybrid PV interface, with the aim of tailoring its behavior by controlling the conjugation length.

  11. Long-Lived Photoinduced Charge Separation in a Trinuclear Iron-μ 3 -oxo-based Metal–Organic Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanna, Lauren; Kucheryavy, Pavel; Liu, Cunming

    2017-06-14

    The presence of long-lived charge-separated excited states in metal-organic frameworks (MOFs) can enhance their photocatalytic activity by decreasing the probability that photogenerated electrons and holes recombine before accessing adsorbed reactants. Detecting these charge separated states via optical transient absorption, however, can be challenging when they lack definitive optical signatures. Here, we investigate the long-lived excited state of a MOF with such vague optical properties, MIL-100(Fe), comprised of Fe3-μ3-oxo clusters and trimesic acid linkers using Fe K-edge X-ray transient absorption (XTA) spectroscopy, to unambiguously determine its ligand-to-metal charge transfer character. Spectra measured at time delays up to 3.6 μs confirm themore » long lived nature of the charge separated excited state. Several trinuclear iron μ3- oxo carboxylate complexes, which model the trinuclear cores of the MOF structure, are measured for comparison using both steady state XAS and XTA to further support this assignment and corresponding decay time. The MOF is prepared as a colloidal nanoparticle suspension for these measurements so both its fabrication and particle size analysis are presented, as well.« less

  12. Charge separation and charge delocalization identified in long-living states of photoexcited DNA

    PubMed Central

    Bucher, Dominik B.; Pilles, Bert M.; Carell, Thomas; Zinth, Wolfgang

    2014-01-01

    Base stacking in DNA is related to long-living excited states whose molecular nature is still under debate. To elucidate the molecular background we study well-defined oligonucleotides with natural bases, which allow selective UV excitation of one single base in the strand. IR probing in the picosecond regime enables us to dissect the contribution of different single bases to the excited state. All investigated oligonucleotides show long-living states on the 100-ps time scale, which are not observable in a mixture of single bases. The fraction of these states is well correlated with the stacking probabilities and reaches values up to 0.4. The long-living states show characteristic absorbance bands that can be assigned to charge-transfer states by comparing them to marker bands of radical cation and anion spectra. The charge separation is directed by the redox potential of the involved bases and thus controlled by the sequence. The spatial dimension of this charge separation was investigated in longer oligonucleotides, where bridging sequences separate the excited base from a sensor base with a characteristic marker band. After excitation we observe a bleach of all involved bases. The contribution of the sensor base is observable even if the bridge is composed of several bases. This result can be explained by a charge delocalization along a well-stacked domain in the strand. The presence of charged radicals in DNA strands after light absorption may cause reactions—oxidative or reductive damage—currently not considered in DNA photochemistry. PMID:24616517

  13. Simulations to Predict the Phase Behavior and Structure of Multipolar Colloidal Particles

    NASA Astrophysics Data System (ADS)

    Rutkowski, David Matthew

    Colloidal particles with anisotropic charge distributions can assemble into a number of interesting structures including chains, lattices and micelles that could be useful in biotechnology, optics and electronics. The goal of this work is to understand how the properties of the colloidal particles, such as their charge distribution or shape, affect the selfassembly and phase behavior of collections of such particles. The specific aim of this work is to understand how the separation between a pair of oppositely signed charges affects the phase behavior and structure of assemblies of colloidal particles. To examine these particles, we have used both discontinuous molecular dynamics (DMD) and Monte Carlo (MC) simulation techniques. In our first study of colloidal particles with finite charge separation, we simulate systems of 2-D colloidal rods with four possible charge separations. Our simulations show that the charge separation does indeed have a large effect on the phase behavior as can be seen in the phase diagrams we construct for these four systems in the area fraction-reduced temperature plane. The phase diagrams delineate the boundaries between isotropic fluid, string-fluid and percolated fluid for all systems considered. In particular, we find that coarse gel-like structures tend to form at large charge separations while denser aggregates form at small charge separations, suggesting a route to forming low volume gels by focusing on systems with large charge separations. Next we examine systems of circular particles with four embedded charges of alternating sign fixed to a triangular lattice. This system is found to form a limit periodic structure, a theoretical structure with an infinite number of phase transitions, under specific conditions. The limit-periodic structure only forms when the rotation of the particles in the system is restricted to increments of pi/3. When the rotation is restricted to increments of th/6 or the rotation is continuous, related structures form including a striped phase and a phase with nematic order. Neither the distance from the point charges to the center of the particle nor the angle between the charges influences whether the system forms a limit-periodic structure, suggesting that point quadrupoles may also be able to form limit-periodic structures. Results from these simulations will likely aid in the quest to find an experimental realization of a limit-periodic structure. Next we examine the effect of charge separation on the self-assembly of systems of 2-D colloidal particles with off-center extended dipoles. We simulate systems with both small and large charge separations for a set of displacements of the dipole from the particle center. Upon cooling, these particles self-assemble into closed, cyclic structures at large displacements including dimers, triangular shapes and square shapes, and chain-like structures at small displacements. At extremely low temperatures, the cyclic structures form interesting lattices with particles of similar chirality grouped together. Results from this work could aid in the experimental construction of open lattice-like structures that could find use in photonic applications. Finally, we present work in collaboration with Drs. Bhuvnesh Bharti and Orlin Velev in which we investigate how the surface coverage affects the self-assembly of systems of Janus particles coated with both an iron oxide and fatty acid chain layer. We model these particles by decorating a sphere with evenly dispersed points that interact with points on other spheres through square-well interactions. The interactions are designed to mimic specific coverage values for the iron oxide/fatty acid chain layer. Structures similar to those found in experiment form readily in the simulations. The number of clusters formed as a function of surface coverage agrees well with experiment. The aggregation behavior of these novel particles can therefore, be described by a relatively simple model.

  14. Microscopic dynamics of charge separation at the aqueous electrochemical interface.

    PubMed

    Kattirtzi, John A; Limmer, David T; Willard, Adam P

    2017-12-19

    We have used molecular simulation and methods of importance sampling to study the thermodynamics and kinetics of ionic charge separation at a liquid water-metal interface. We have considered this process using canonical examples of two different classes of ions: a simple alkali-halide pair, Na + I - , or classical ions, and the products of water autoionization, H 3 O + OH - , or water ions. We find that for both ion classes, the microscopic mechanism of charge separation, including water's collective role in the process, is conserved between the bulk liquid and the electrode interface. However, the thermodynamic and kinetic details of the process differ between these two environments in a way that depends on ion type. In the case of the classical ion pairs, a higher free-energy barrier to charge separation and a smaller flux over that barrier at the interface result in a rate of dissociation that is 40 times slower relative to the bulk. For water ions, a slightly higher free-energy barrier is offset by a higher flux over the barrier from longer lived hydrogen-bonding patterns at the interface, resulting in a rate of association that is similar both at and away from the interface. We find that these differences in rates and stabilities of charge separation are due to the altered ability of water to solvate and reorganize in the vicinity of the metal interface.

  15. Microscopic dynamics of charge separation at the aqueous electrochemical interface

    PubMed Central

    Kattirtzi, John A.; Limmer, David T.; Willard, Adam P.

    2017-01-01

    We have used molecular simulation and methods of importance sampling to study the thermodynamics and kinetics of ionic charge separation at a liquid water–metal interface. We have considered this process using canonical examples of two different classes of ions: a simple alkali–halide pair, Na+I−, or classical ions, and the products of water autoionization, H3O+OH−, or water ions. We find that for both ion classes, the microscopic mechanism of charge separation, including water’s collective role in the process, is conserved between the bulk liquid and the electrode interface. However, the thermodynamic and kinetic details of the process differ between these two environments in a way that depends on ion type. In the case of the classical ion pairs, a higher free-energy barrier to charge separation and a smaller flux over that barrier at the interface result in a rate of dissociation that is 40 times slower relative to the bulk. For water ions, a slightly higher free-energy barrier is offset by a higher flux over the barrier from longer lived hydrogen-bonding patterns at the interface, resulting in a rate of association that is similar both at and away from the interface. We find that these differences in rates and stabilities of charge separation are due to the altered ability of water to solvate and reorganize in the vicinity of the metal interface. PMID:28698368

  16. Surface morphology effects in a vibration based triboelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Nafari, A.; Sodano, H. A.

    2018-01-01

    Despite the abundance of ambient mechanical energy in our environment, it is often neglected and left unused. However, recent studies have demonstrated that mechanical vibrations can be harvested and used to power small wireless electronic devices, such as micro electromechanical sensors (MEMS) and actuators. Most commonly, these energy harvesters convert vibration into electrical energy by utilizing piezoelectric, electromagnetic or electrostatic effects. Recently, triboelectric based energy harvesters have shown to be among the simplest and most cost-effective techniques for scavenging mechanical energy. The basis of triboelectric energy harvesters is the periodic contact and separation of two surfaces with opposite triboelectric properties which results in induced charge flow through an external load. Here, a vibration driven triboelectric nanogenerator (TENG) is fabricated and the effect of micro/nano scale surface modification is studied. The TENG produces electrical energy on the basis of periodic out-of-plane charge separation between gold and polydimethylsiloxane (PDMS) with opposite triboelectric charge polarities. By introducing micro/nano scale surface modifications to the PDMS and gold, the TENG’s power output is further enhanced. This work demonstrates that the morphology of the surfaces in a TENG device is important and by increasing the effective surface area through micro/nano scale modification, the power output of the device can increase by 118%. Moreover, it is shown that unlike many TENGs proposed in the literature, the fabricated device has a high RMS open circuit voltage and short circuit current and can perform for an extended period of time.

  17. Spiderweb deformation induced by electrostatically charged insects

    PubMed Central

    Ortega-Jimenez, Victor Manuel; Dudley, Robert

    2013-01-01

    Capture success of spider webs has been associated with their microstructure, ornamentation, and wind-induced vibrations. Indirect evidence suggests that statically charged objects can attract silk thread, but web deformations induced by charged insects have not yet been described. Here, we show under laboratory conditions that electrostatically charged honeybees, green bottle flies, fruit flies, aphids, and also water drops falling near webs of cross-spiders (Araneus diadematus) induce rapid thread deformation that enhances the likelihood of physical contact, and thus of prey capture. PMID:23828093

  18. A SONOS device with a separated charge trapping layer for improvement of charge injection

    NASA Astrophysics Data System (ADS)

    Ahn, Jae-Hyuk; Moon, Dong-Il; Ko, Seung-Won; Kim, Chang-Hoon; Kim, Jee-Yeon; Kim, Moon-Seok; Seol, Myeong-Lok; Moon, Joon-Bae; Choi, Ji-Min; Oh, Jae-Sub; Choi, Sung-Jin; Choi, Yang-Kyu

    2017-03-01

    A charge trapping layer that is separated from the primary gate dielectric is implemented on a FinFET SONOS structure. By virtue of the reduced effective oxide thickness of the primary gate dielectric, a strong gate-to-channel coupling is obtained and thus short-channel effects in the proposed device are effectively suppressed. Moreover, a high program/erase speed and a large shift in the threshold voltage are achieved due to the improved charge injection by the reduced effective oxide thickness. The proposed structure has potential for use in high speed flash memory.

  19. Solid state electrochromic light modulator

    DOEpatents

    Cogan, Stuart F.; Rauh, R. David

    1993-01-01

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

  20. Solid state electrochromic light modulator

    DOEpatents

    Cogan, Stuart F.; Rauh, R. David

    1993-12-07

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

  1. Solid state electrochromic light modulator

    DOEpatents

    Cogan, Stuart F.; Rauh, R. David

    1990-01-01

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

  2. Solid state electrochromic light modulator

    DOEpatents

    Cogan, S.F.; Rauh, R.D.

    1990-07-03

    An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counter electrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films. 4 figs.

  3. On the role of local charge carrier mobility in the charge separation mechanism of organic photovoltaics.

    PubMed

    Yoshikawa, Saya; Saeki, Akinori; Saito, Masahiko; Osaka, Itaru; Seki, Shu

    2015-07-21

    Although the charge separation (CS) and transport processes that compete with geminate and non-geminate recombination are commonly regarded as the governing factors of organic photovoltaic (OPV) efficiency, the details of the CS mechanism remain largely unexplored. Here we provide a systematic investigation on the role of local charge carrier mobility in bulk heterojunction films of ten different low-bandgap polymers and polythiophene analogues blended with methanofullerene (PCBM). By correlating with the OPV performances, we demonstrated that the local mobility of the blend measured by time-resolved microwave conductivity is more important for the OPV output than those of the pure polymers. Furthermore, the results revealed two separate trends for crystalline and semi-crystalline polymers. This work offers guidance in the design of high-performance organic solar cells.

  4. A theoretical study on hot charge-transfer states and dimensional effects of organic photocells based on an ideal diode model.

    PubMed

    Shimazaki, Tomomi; Nakajima, Takahito

    2017-05-21

    This paper discusses an ideal diode model with hot charge-transfer (CT) states to analyze the power conversion efficiency of an organic photocell. A free carrier generation mechanism via sunlight in an organic photocell consists of four microscopic processes: photon absorption, exciton dissociation, CT, and charge separation. The hot CT state effect has been actively investigated to understand the charge separation process. We previously reported a theoretical method to calculate the efficiency of the charge separation process via a hot CT state (T. Shimazaki et al., Phys. Chem. Chem. Phys., 2015, 17, 12538 and J. Chem. Phys., 2016, 144, 234906). In this paper, we integrate the simulation method into the ideal photocell diode model and calculate several properties such as short circuit current, open circuit voltage, and power conversion efficiency. Our results highlight that utilizing the dimensional (entropy) effect together with the hot CT state can play an essential role in developing more efficient organic photocell devices.

  5. Influence of Crystallinity and Energetics on Charge Separation in Polymer–Inorganic Nanocomposite Films for Solar Cells

    PubMed Central

    Bansal, Neha; Reynolds, Luke X.; MacLachlan, Andrew; Lutz, Thierry; Ashraf, Raja Shahid; Zhang, Weimin; Nielsen, Christian B.; McCulloch, Iain; Rebois, Dylan G.; Kirchartz, Thomas; Hill, Michael S.; Molloy, Kieran C.; Nelson, Jenny; Haque, Saif A.

    2013-01-01

    The dissociation of photogenerated excitons and the subsequent spatial separation of the charges are of crucial importance to the design of efficient donor-acceptor heterojunction solar cells. While huge progress has been made in understanding charge generation at all-organic junctions, the process in hybrid organic:inorganic systems has barely been addressed. Here, we explore the influence of energetic driving force and local crystallinity on the efficiency of charge pair generation at hybrid organic:inorganic semiconductor heterojunctions. We use x-ray diffraction, photoluminescence quenching, transient absorption spectroscopy, photovoltaic device and electroluminescence measurements to demonstrate that the dissociation of photogenerated polaron pairs at hybrid heterojunctions is assisted by the presence of crystalline electron acceptor domains. We propose that such domains encourage delocalization of the geminate pair state. The present findings suggest that the requirement for a large driving energy for charge separation is relaxed when a more crystalline electron acceptor is used. PMID:23524906

  6. Spontaneous Charge Separation and Sublimation Processes are Ubiquitous in Nature and in Ionization Processes in Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah; Lu, I.-Chung; Rauschenbach, Stephan; Hoang, Khoa; Wang, Beixi; Chubatyi, Nicholas D.; Zhang, Wen-Jing; Inutan, Ellen D.; Pophristic, Milan; Sidorenko, Alexander; McEwen, Charles N.

    2018-02-01

    Ionization processes have been discovered by which small and large as well as volatile and nonvolatile compounds are converted to gas-phase ions when associated with a matrix and exposed to sub-atmospheric pressure. Here, we discuss experiments further defining these simple and unexpected processes. Charge separation is found to be a common process for small molecule chemicals, solids and liquids, passed through an inlet tube from a higher to a lower pressure region, with and without heat applied. This charge separation process produces positively- and negatively-charged particles with widely different efficiencies depending on the compound and its physical state. Circumstantial evidence is presented suggesting that in the new ionization process, charged particles carry analyte into the gas phase, and desolvation of these particles produce the bare ions similar to electrospray ionization, except that solid particles appear likely to be involved. This mechanistic proposition is in agreement with previous theoretical work related to ion emission from ice.

  7. Hydrodynamics with chiral anomaly and charge separation in relativistic heavy ion collisions

    DOE PAGES

    Yin, Yi; Liao, Jinfeng

    2016-03-03

    Matter with chiral fermions is microscopically described by theory with quantum anomaly and macroscopically described (at low energy) by anomalous hydrodynamics. For such systems in the presence of external magnetic field and chirality imbalance, a charge current is generated along the magnetic field direction ₋ a phenomenon known as the Chiral Magnetic Effect (CME). The quark- gluon plasma created in relativistic heavy ion collisions provides an (approximate) example, for which the CME predicts a charge separation perpendicular to the collisional reaction plane. Charge correlation measurements designed for the search of such signal have been done at RHIC and the LHCmore » for which the interpretations, however, remain unclear due to contamination by background effects that are collective flow driven, theoretically poorly constrained, and experimentally hard to separate. Using anomalous (and viscous) hydrodynamic simulations, we make a first attempt at quantifying contributions to observed charge correlations from both CME and background effects in one and same framework. We discuss the implications for the search of CME.« less

  8. Fast charge separation in a non-fullerene organic solar cell with a small driving force

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Chen, Shangshang; Qian, Deping; Gautam, Bhoj; Yang, Guofang; Zhao, Jingbo; Bergqvist, Jonas; Zhang, Fengling; Ma, Wei; Ade, Harald; Inganäs, Olle; Gundogdu, Kenan; Gao, Feng; Yan, He

    2016-07-01

    Fast and efficient charge separation is essential to achieve high power conversion efficiency in organic solar cells (OSCs). In state-of-the-art OSCs, this is usually achieved by a significant driving force, defined as the offset between the bandgap (Egap) of the donor/acceptor materials and the energy of the charge transfer (CT) state (ECT), which is typically greater than 0.3 eV. The large driving force causes a relatively large voltage loss that hinders performance. Here, we report non-fullerene OSCs that exhibit ultrafast and efficient charge separation despite a negligible driving force, as ECT is nearly identical to Egap. Moreover, the small driving force is found to have minimal detrimental effects on charge transfer dynamics of the OSCs. We demonstrate a non-fullerene OSC with 9.5% efficiency and nearly 90% internal quantum efficiency despite a low voltage loss of 0.61 V. This creates a path towards highly efficient OSCs with a low voltage loss.

  9. Photoinduced charge separation at polymer-fullerene interfaces of BHJ solar cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Poluektov, Oleg G.; Niklas, Jens; Mardis, Kristy

    2016-09-01

    While photovoltaic cells are highly promising man-made devices for direct solar energy utilization, a number of fundamental questions about how the organic bulk heterojunction cell enables efficient long-lived and long-range charge separation remain unanswered. These questions were address by employing an advanced suite of EPR spectroscopy in combination with DFT calculations to study mechanism of charge separation at the polymer-fullerene interfaces of photo-active BHJ. Observed charge delocalization in BHJ upon photoinduced ET is analogous to that in organic donor-acceptor material. This is an efficient mechanism of charge stabilization in photosynthetic assemblies. Time-resolved EPR spectra show a strong polarization pattern for all polymer-fullerene blends under study, which is caused by non-Boltzmann population of the electron spin energy levels in the radical pairs. The first observation of this phenomenon was reported in natural and artificial photosynthetic assemblies, and comparison with these systems allows us to better understand charge separation processes in OPVs. The spectral analysis presented here, in combination with DFT calculations, shows that CS processes in OPV materials are similar to that in organic photosynthetic systems. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract DE-AC02-06CH11357 at Argonne National Laboratory.

  10. Electrochromatographic retention of peptides on strong cation-exchange stationary phases.

    PubMed

    Nischang, Ivo; Höltzel, Alexandra; Tallarek, Ulrich

    2010-03-01

    We analyze the systematic and substantial electrical field-dependence of electrochromatographic retention for four counterionic peptides ([Met5]enkephalin, oxytocin, [Arg8]vasopressin, and luteinizing hormone releasing hormone (LHRH) ) on a strong cation-exchange (SCX) stationary phase. Our experiments show that retention behavior in the studied system depends on the charge-selectivity of the stationary phase particles, the applied voltage, and the peptides' net charge. Retention factors of twice positively charged peptides ([Arg8]vasopressin and LHRH at pH 2.7) decrease with increasing applied voltage, whereas lower charged peptides (oxytocin and [Met5]enkephalin at pH 2.7, [Arg8]vasopressin and LHRH at pH 7.0) show a concomitant increase in their retention factors. The observed behavior is explained on the basis of electrical field-induced concentration polarization (CP) that develops around the SCX particles of the packing. The intraparticle concentration of charged species (buffer ions, peptides) increases with increasing applied voltage due to diffusive backflux from the enriched CP zone associated with each SCX particle. For twice charged and on the SCX phase strongly retained peptides the local increase in mobile phase ionic strength reduces the electrostatic interactions with the stationary phase, which explains the decrease of retention factors with increasing applied voltage and CP intensity. Lower charged and weaker retained peptides experience a much stronger relative intraparticle enrichment than the twice-charged peptides, which results in a net increase of retention factors with increasing applied voltage. The CP-related contribution to electrochromatographic retention of peptides on the SCX stationary phase is modulated by the applied voltage, the mobile phase ionic strength, and the peptides' net charge and could be used for selectivity tuning in difficult separations.

  11. Analysis of oligonucleotide photoproducts produced by UV-A light and a riboflavin photosensitizer

    NASA Astrophysics Data System (ADS)

    Gelhaus, Stacy L.; LaCourse, William R.

    2004-12-01

    DNA damage is caused by a variety of foreign and endogenous compounds. There are endogenous photosensitizers in cells, such as porphyrins and flavins, which may create damage in the presence of UV-A light. Typically, samples are analyzed by 32P-postlabelling and electrophoretic separation or by LC-MS separation and detection. Separation by HPLC is common; however, in all instances, the DNA sample is hydrolyzed down to nucleosides prior to analysis. It will be shown here that ion-pairing reversed phase high performance liquid chromatography (IP-RPLC) has the ability to provide biophysical information concerning the sites of UV-A induced photosensitizer damage on an intact oligonucleotide concurrent with the separation. IP-RPLC is less labor intensive and faster than electrophoretic methods and it is less costly than LC-MS. IP-RPLC can also be used to purify modified oligonucleotides for further use and analysis. This technique is sensitive to the charge, conformation, and sequence characteristics of the nucleic acid sample and may be used to determine the damage or modifications made to DNA by a variety of compounds.

  12. Anomalous transport from holography. Part I

    NASA Astrophysics Data System (ADS)

    Bu, Yanyan; Lublinsky, Michael; Sharon, Amir

    2016-11-01

    We revisit the transport properties induced by the chiral anomaly in a charged plasma holographically dual to anomalous U(1) V ×U(1) A Maxwell theory in Schwarzschild-AdS5. Off-shell constitutive relations for vector and axial currents are derived using various approximations generalising most of known in the literature anomaly-induced phenomena and revealing some new ones. In a weak external field approximation, the constitutive relations have all-order derivatives resummed into six momenta-dependent transport co-efficient functions: the diffusion, the electric/magnetic conductivity, and three anomaly induced functions. The latter generalise the chiral magnetic and chiral separation effects. Nonlinear transport is studied assuming presence of constant background external fields. The chiral magnetic effect, including all order nonlinearity in magnetic field, is proven to be exact when the magnetic field is the only external field that is turned on. Non-linear corrections to the constitutive relations due to electric and axial external fields are computed.

  13. Crystal orientation induced spin Rabi beat oscillations of point defects at the c-Si(111)/ SiO 2 interface

    NASA Astrophysics Data System (ADS)

    Paik, Seoyoung; Lee, Sang-Yun; Boehme, Christoph

    2011-03-01

    Spin-dependent electronic transitions such as certain charge carrier recombination and transport processes in semiconductors are usually governed by the Pauli blockade within pairs of two paramagnetic centers. One implication of this is that the manipulation of spin states, e.g. by magnetic resonant excitation, can produce changes to electric currents of the given semiconductor material. If both spins are changed at the same time, quantum beat effects such as beat oscillation between resonantly induced spin Rabi nutation becomes detectable through current measurements. Here, we report on electrically detected spin Rabi beat oscillation caused by pairs of 31 P donor states and Pb interface defects at the phosphorous doped Si(111)/ Si O2 interface. Due to the g-factor anisotropy of the Pb center we can tune the intra pair Larmor frequency difference (so called Larmor separation) through orientation of the sample with regard to the external magnetic field. As the Larmor separation governs the spin Rabi beat oscillation, we show experimentally how the crystal orientation can influence the beat effect.

  14. Synthesis and Characterization of a Novel -D-B-A-B- Block Copolymer System for Light Harvesting Applications

    NASA Technical Reports Server (NTRS)

    Sun, Sam-Shajing; Fan, Zhen; Wang, Yiqing; Taft, Charles; Haliburton, James; Maaref, Shahin

    2002-01-01

    Supra-molecular or nano-structured electro-active polymers are potentially useful for developing variety inexpensive and flexible shaped opto-electronic devices. In the case of organic photovoltaic materials or devices, for instance, photo induced electrons and holes need to be separated and transported in organic acceptor (A) and donor (D) phases respectively. In this paper, preliminary results of synthesis and characterizations of a coupled block copolymers containing a conjugated donor block RO-PPV and a conjugated acceptor block SF-PPV and some of their electronic/optical properties are presented. While the donor block film has a strong PL emission at around 570 nm, and acceptor block film has a strong PL emission at around 590 nm, the PL emissions of final -B-D-B-A- block copolymer films were quenched over 99%. Experimental results demonstrated an effective photo induced electron transfer and charge separation due to the interfaces of donor and acceptor blocks. The system is very promising for variety light harvesting applications, including "plastic" photovoltaic devices.

  15. Progress in piezo-phototronic effect modulated photovoltaics.

    PubMed

    Que, Miaoling; Zhou, Ranran; Wang, Xiandi; Yuan, Zuqing; Hu, Guofeng; Pan, Caofeng

    2016-11-02

    Wurtzite structured materials, like ZnO, GaN, CdS, and InN, simultaneously possess semiconductor and piezoelectric properties. The inner-crystal piezopotential induced by external strain can effectively tune/control the carrier generation, transport and separation/combination processes at the metal-semiconductor contact or p-n junction, which is called the piezo-phototronic effect. This effect can efficiently enhance the performance of photovoltaic devices based on piezoelectric semiconductor materials by utilizing the piezo-polarization charges at the junction induced by straining, which can modulate the energy band of the piezoelectric material and then accelerate or prevent the separation process of the photon-generated electrons and vacancies. This paper introduces the fundamental physics principles of the piezo-phototronic effect, and reviews recent progress in piezo-phototronic effect enhanced solar cells, including solar cells based on semiconductor nanowire, organic/inorganic materials, quantum dots, and perovskite. The piezo-phototronic effect is suggested as a suitable basis for the development of an innovative method to enhance the performance of solar cells based on piezoelectric semiconductors by applied extrinsic strains, which might be appropriate for fundamental research and potential applications in various areas of optoelectronics.

  16. Progress in piezo-phototronic effect modulated photovoltaics

    NASA Astrophysics Data System (ADS)

    Que, Miaoling; Zhou, Ranran; Wang, Xiandi; Yuan, Zuqing; Hu, Guofeng; Pan, Caofeng

    2016-11-01

    Wurtzite structured materials, like ZnO, GaN, CdS, and InN, simultaneously possess semiconductor and piezoelectric properties. The inner-crystal piezopotential induced by external strain can effectively tune/control the carrier generation, transport and separation/combination processes at the metal-semiconductor contact or p-n junction, which is called the piezo-phototronic effect. This effect can efficiently enhance the performance of photovoltaic devices based on piezoelectric semiconductor materials by utilizing the piezo-polarization charges at the junction induced by straining, which can modulate the energy band of the piezoelectric material and then accelerate or prevent the separation process of the photon-generated electrons and vacancies. This paper introduces the fundamental physics principles of the piezo-phototronic effect, and reviews recent progress in piezo-phototronic effect enhanced solar cells, including solar cells based on semiconductor nanowire, organic/inorganic materials, quantum dots, and perovskite. The piezo-phototronic effect is suggested as a suitable basis for the development of an innovative method to enhance the performance of solar cells based on piezoelectric semiconductors by applied extrinsic strains, which might be appropriate for fundamental research and potential applications in various areas of optoelectronics.

  17. Concurrent DNA Preconcentration and Separation in Bipolar Electrode-Based Microfluidic Device

    PubMed Central

    Song, Hongjun; Wang, Yi; Garson, Charles; Pant, Kapil

    2015-01-01

    This paper presents a bipolar electrode (BPE) device in a microfluidic dual-channel design for concurrent preconcentration and separation of composite DNA containing samples. The novelty of the present effort relies on the combination of BPE-induced ion concentration polarization (ICP) and end-labeled free-solution electrophoresis (ELFSE). The ion concentration polarization effect arising from the faradaic reaction on the BPE is utilized to exert opposing electrophoretic and electroosmotic forces on the DNA samples. Meanwhile, end-labeled free-solution electrophoresis alters the mass-charge ratio to enable simultaneous DNA separation in free solution. The microfluidic device was fabricated using standard and soft lithography techniques to form gold-on-glass electrode capped with a PDMS microfluidic channel. Experimental testing with various DNA samples was carried out over a range of applied electric field. Concentration ratios up to 285× within 5 minutes for a 102-mer DNA, and concurrent preconcentration and free-solution separation of binary mixture of free and bound 102-mer DNA within 6 minutes was demonstrated. The effect of applied electric field was also interrogated with respect to pertinent performance metrics of preconcentration and separation. PMID:26005497

  18. Sodium triflate decreases interaggregate repulsion and induces phase separation in cationic micelles.

    PubMed

    Lima, Filipe S; Cuccovia, Iolanda M; Buchner, Richard; Antunes, Filipe E; Lindman, Björn; Miguel, Maria G; Horinek, Dominik; Chaimovich, Hernan

    2015-03-10

    Dodecyltrimethylammonium triflate (DTATf) micelles possess lower degree of counterion dissociation (α), lower hydration, and higher packing of monomers than other micelles of similar structure. Addition of sodium triflate ([NaTf] > 0.05 M) to DTATf solutions promotes phase separation. This phenomenon is commonly observed in oppositely charged surfactant mixtures, but it is rare for ionic surfactants and relatively simple counterions. While the properties of DTATf have already been reported, the driving forces for the observed phase separation with added salt remain unclear. Thus, we propose an interpretation for the observed phase separation in cationic surfactant solutions. Addition of up to 0.03 M NaTf to micellar DTATf solutions led to a limited increase of the aggregation number, to interface dehydration, and to a progressive decrease in α. The viscosity of DTATf solutions of higher concentration ([DTATf] ≥ 0.06 M) reached a maximum with increasing [NaTf], though the aggregation number slightly increased, and no shape change occurred. We hypothesize that this maximum results from a decrease in interaggregate repulsion, as a consequence of increased ion binding. This reduction in micellar repulsion without simultaneous infinite micellar growth is, probably, the major driving force for phase separation at higher [NaTf].

  19. Vesicle Adhesion and Fusion Studied by Small-Angle X-Ray Scattering.

    PubMed

    Komorowski, Karlo; Salditt, Annalena; Xu, Yihui; Yavuz, Halenur; Brennich, Martha; Jahn, Reinhard; Salditt, Tim

    2018-04-24

    We have studied the adhesion state (also denoted by docking state) of lipid vesicles as induced by the divalent ions Ca 2+ or Mg 2+ at well-controlled ion concentration, lipid composition, and charge density. The bilayer structure and the interbilayer distance in the docking state were analyzed by small-angle x-ray scattering. A strong adhesion state was observed for DOPC:DOPS vesicles, indicating like-charge attraction resulting from ion correlations. The observed interbilayer separations of ∼1.6 nm agree quantitatively with the predictions of electrostatics in the strong coupling regime. Although this phenomenon was observed when mixing anionic and zwitterionic (or neutral) lipids, pure anionic membranes (DOPS) with highest charge density σ resulted in a direct phase transition to a multilamellar state, which must be accompanied by rupture and fusion of vesicles. To extend the structural assay toward protein-controlled docking and fusion, we have characterized reconstituted N-ethylmaleimide-sensitive factor attachment protein receptors in controlled proteoliposome suspensions by small-angle x-ray scattering. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Enhancing the Efficiency of Silicon-Based Solar Cells by the Piezo-Phototronic Effect.

    PubMed

    Zhu, Laipan; Wang, Longfei; Pan, Caofeng; Chen, Libo; Xue, Fei; Chen, Baodong; Yang, Leijing; Su, Li; Wang, Zhong Lin

    2017-02-28

    Although there are numerous approaches for fabricating solar cells, the silicon-based photovoltaics are still the most widely used in industry and around the world. A small increase in the efficiency of silicon-based solar cells has a huge economic impact and practical importance. We fabricate a silicon-based nanoheterostructure (p + -Si/p-Si/n + -Si (and n-Si)/n-ZnO nanowire (NW) array) photovoltaic device and demonstrate the enhanced device performance through significantly enhanced light absorption by NW array and effective charge carrier separation by the piezo-phototronic effect. The strain-induced piezoelectric polarization charges created at n-doped Si-ZnO interfaces can effectively modulate the corresponding band structure and electron gas trapped in the n + -Si/n-ZnO NW nanoheterostructure and thus enhance the transport process of local charge carriers. The efficiency of the solar cell was improved from 8.97% to 9.51% by simply applying a static compress strain. This study indicates that the piezo-phototronic effect can enhance the performance of a large-scale silicon-based solar cell, with great potential for industrial applications.

  1. State of charge indicators for a battery

    DOEpatents

    Rouhani, S. Zia

    1999-01-01

    The present invention relates to state of charge indicators for a battery. One aspect of the present invention utilizes expansion and contraction displacements of an electrode plate of a battery to gauge the state of charge in the battery. One embodiment of a battery of the present invention includes an anodic plate; a cathodic plate; an electrolyte in contact with the anodic and cathodic plates; plural terminals individually coupled with one of the anodic and cathodic plates; a separator intermediate the anodic and cathodic plates; an indicator configured to indicate an energy level of the battery responsive to movement of the separator; and a casing configured to house the anodic and cathodic plates, electrolyte, and separator.

  2. Anisotropic Metal Deposition on TiO2 Particles by Electric-Field-Induced Charge Separation.

    PubMed

    Tiewcharoen, Supakit; Warakulwit, Chompunuch; Lapeyre, Veronique; Garrigue, Patrick; Fourier, Lucas; Elissalde, Catherine; Buffière, Sonia; Legros, Philippe; Gayot, Marion; Limtrakul, Jumras; Kuhn, Alexander

    2017-09-11

    Deposition of metals on TiO 2 semiconductor particles (M-TiO 2 ) results in hybrid Janus objects combining the properties of both materials. One of the techniques proposed to generate Janus particles is bipolar electrochemistry (BPE). The concept can be applied in a straightforward way for the site-selective modification of conducting particles, but is much less obvious to use for semiconductors. Herein we report the bulk synthesis of anisotropic M-TiO 2 particles based on the synergy of BPE and photochemistry, allowing the intrinsic limitations, when they are used separately, to be overcome. When applying electric fields during irradiation, electrons and holes can be efficiently separated, thus breaking the symmetry of particles by modifying them selectively and in a wireless way on one side with either gold or platinum. Such hybrid materials are an important first step towards high-performance designer catalyst particles, for example for photosplitting of water. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Disentangling overlapping high-field EPR spectra of organic radicals: Identification of light-induced polarons in the record fullerene-free solar cell blend PBDB-T:ITIC.

    PubMed

    Van Landeghem, Melissa; Maes, Wouter; Goovaerts, Etienne; Van Doorslaer, Sabine

    2018-03-01

    We present a combined high-field EPR and DFT study of light-induced radicals in the bulk heterojunction blend of PBDB-T:ITIC, currently one of the highest efficiency non-fullerene donor:acceptor combinations in organic photovoltaics. We demonstrate two different approaches for disentangling the strongly overlapping high-field EPR spectra of the positive and negative polarons after charge separation: (1) relaxation-filtered field-swept EPR based on the difference in T 1 spin-relaxation times and (2) field-swept EDNMR-induced EPR by exploiting the presence of 14 N hyperfine couplings in only one of the radical species, the small molecule acceptor radical. The approach is validated by light-induced EPR spectra on related blends and the spectral assignment is underpinned by DFT computations. The broader applicability of the spectral disentangling methods is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Charge Transfer from n-Doped Nanocrystals: Mimicking Intermediate Events in Multielectron Photocatalysis.

    PubMed

    Wang, Junhui; Ding, Tao; Wu, Kaifeng

    2018-06-12

    In multielectron photocatalytic reactions, an absorbed photon triggers charge transfer from the light-harvester to the attached catalyst, leaving behind a charge of the opposite sign in the light-harvester. If this charge is not scavenged before the absorption of the following photons, photoexcitation generates not neutral but charged excitons from which the extraction of charges should become more difficult. This is potentially an efficiency-limiting intermediate event in multielectron photocatalysis. To study the charge dynamics in this event, we doped CdS nanocrystal quantum dots (QDs) with an extra electron and measured hole transfer from n-doped QDs to attached acceptors. We find that the Auger decay of charged excitons lowers the charge separation yield to 68.6% from 98.4% for neutral excitons. In addition, the hole transfer rate in the presence of two electrons (1290 ps) is slower than that in the presence one electron (776 ps), and the recombination rate of charge separated states is about 2 times faster in the former case. This model study provides important insights into possible efficiency-limiting intermediate events involved in photocatalysis.

  5. Fabrication and assembly of two-dimensional TiO2/WO3·H2O heterostructures with type II band alignment for enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Wang, Yun; Zhou, Xiaofang; Zheng, Xiaoli; Xu, Qun; Chen, Zhimin; Ren, Yumei; Yan, Bo

    2017-05-01

    The recombination of photo-induced charges is one of the main issues to limit the large-scale applications in photocatalysis and photoelectrocatalysis. To improve the charge separation, we fabricate a novel type II 2D ultrathin TiO2/WO3·H2O heterostructures with the assistance of supercritical CO2 (SC CO2) in this work. The as-fabricated heterostructures possess high photocatalytic activity for the degradation of methyl orange(MO) and high photocurrent response under simulated solar light (AM 1.5). For the TiO2/WO3·H2O heterostructures, the MO solution could be degraded by 95.5% in 150 min, and the photocurrent density reaches to 6.5 μA cm-2, exhibiting a significant enhancement compared with pure TiO2 and WO3·H2O nanosheets.

  6. Dynamics of localized charges in dopamine-modified TiO{sub 2} and their effect on the formation of reactive oxygen species.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimitrijevic, N.; Rozhkova, E.; Rajh, T.

    Modification of TiO{sub 2} nanoparticles with dopamine enables harvesting of visible light and promotes spatial separation of charges. The formation of reactive oxygen species (OH, {sup 1}O{sub 2}, O{sub 2}{sup -}, HO{sub 2}, H{sub 2}O{sub 2}) upon illumination of TiO{sub 2}/dopamine was studied using complementary spin-trap EPR and radical-induced fluorescence techniques. The localization of holes on dopamine suppresses oxidation of adsorbed water molecules at the surface of nanoparticles, and thus formation of OH radicals. At the same time, dopamine does not affect electronic properties of photogenerated electrons and their reaction with dissolved oxygen to produce superoxide anions. Superoxide anions aremore » proposed to generate singlet oxygen through dismutation reaction, resulting in a low yield of {sup 1}O{sub 2} detected.« less

  7. Observation of self-excited acoustic vortices in defect-mediated dust acoustic wave turbulence.

    PubMed

    Tsai, Ya-Yi; I, Lin

    2014-07-01

    Using the self-excited dust acoustic wave as a platform, we demonstrate experimental observation of self-excited fluctuating acoustic vortex pairs with ± 1 topological charges through spontaneous waveform undulation in defect-mediated turbulence for three-dimensional traveling nonlinear longitudinal waves. The acoustic vortex pair has helical waveforms with opposite chirality around the low-density hole filament pair in xyt space (the xy plane is the plane normal to the wave propagation direction). It is generated through ruptures of sequential crest surfaces and reconnections with their trailing ruptured crest surfaces. The initial rupture is originated from the amplitude reduction induced by the formation of the kinked wave crest strip with strong stretching through the undulation instability. Increasing rupture causes the separation of the acoustic vortex pair after generation. A similar reverse process is followed for the acoustic vortex annihilating with the opposite-charged acoustic vortex from the same or another pair generation.

  8. Polymeric efficiency in remove impurities during cottonseed biodiesel production

    NASA Astrophysics Data System (ADS)

    Lin, H. L.; Liang, Y. H.; Yan, J.; Lin, H. D.; Espinosa, A. R.

    2016-07-01

    This paper describes a new process for developing biodiesel by polymer from crude cottonseed oil. The study was conducted to examine the effectiveness of the alkali transesterification-flocculation-sedimentation process on fast glycerol and other impurities in the separation from biodiesel by using quaternary polyamine-based cationic polymers SL2700 and polyacylamide cationic polymer SAL1100. The settling velocity of glycerol and other impurities in biodiesel was investigated through settling test experiments; the quality of the biodiesel was investigated by evaluating the viscosity and density. The results revealed that SL2700, SAL1100 and their combination dramatically improved the settling velocity of glycerol and other impurities materials than traditional method. SL 2700 with molecular weight of 0.2 million Da and charge density of 50% then plus SAL1100 with molecular weight of 11 million Da and charge density of 10% induced observable particle aggregation with the best settling performance.

  9. Transient and modulated charge separation at CuInSe2/C60 and CuInSe2/ZnPc hybrid interfaces

    NASA Astrophysics Data System (ADS)

    von Morzé, Natascha; Dittrich, Thomas; Calvet, Wolfram; Lauermann, Iver; Rusu, Marin

    2017-02-01

    Spectral dependent charge transfer and exciton dissociation have been investigated at hybrid interfaces between inorganic polycrystalline CuInSe2 (untreated and Na-conditioned) thin films and organic C60 as well as zinc phthalocyanine (ZnPc) layers by transient and modulated surface photovoltage measurements. The stoichiometry and electronic properties of the bare CuInSe2 surface were characterized by photoelectron spectroscopy which revealed a Cu-poor phase with n-type features. After the deposition of the C60 layer, a strong band bending at the CuInSe2 surface was observed. Evidence for dissociation of excitons followed by charge separation was found at the CuInSe2/ZnPc interface. The Cu-poor layer at the CuInSe2 surface was found to be crucial for transient and modulated charge separation at CuInSe2/organic hybrid interfaces.

  10. AlInAsSb separate absorption, charge, and multiplication avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Ren, Min; Maddox, Scott J.; Woodson, Madison E.; Chen, Yaojia; Bank, Seth R.; Campbell, Joe C.

    2016-05-01

    We report AlxIn1-xAsySb1-y separate absorption, charge, and multiplication avalanche photodiodes (APDs) that operate in the short-wavelength infrared spectrum. They exhibit excess noise factor less or equal to that of Si and the low dark currents typical of III-V compound APDs.

  11. Molecular approaches to solar energy conversion: the energetic cost of charge separation from molecular-excited states.

    PubMed

    Durrant, James R

    2013-08-13

    This review starts with a brief overview of the technological potential of molecular-based solar cell technologies. It then goes on to focus on the core scientific challenge associated with using molecular light-absorbing materials for solar energy conversion, namely the separation of short-lived, molecular-excited states into sufficiently long-lived, energetic, separated charges capable of generating an external photocurrent. Comparisons are made between different molecular-based solar cell technologies, with particular focus on the function of dye-sensitized photoelectrochemical solar cells as well as parallels with the function of photosynthetic reaction centres. The core theme of this review is that generating charge carriers with sufficient lifetime and a high quantum yield from molecular-excited states comes at a significant energetic cost-such that the energy stored in these charge-separated states is typically substantially less than the energy of the initially generated excited state. The role of this energetic loss in limiting the efficiency of solar energy conversion by such devices is emphasized, and strategies to minimize this energy loss are compared and contrasted.

  12. Conserved interdomain linker promotes phase separation of the multivalent adaptor protein Nck

    PubMed Central

    Banjade, Sudeep; Wu, Qiong; Mittal, Anuradha; Peeples, William B.; Pappu, Rohit V.; Rosen, Michael K.

    2015-01-01

    The organization of membranes, the cytosol, and the nucleus of eukaryotic cells can be controlled through phase separation of lipids, proteins, and nucleic acids. Collective interactions of multivalent molecules mediated by modular binding domains can induce gelation and phase separation in several cytosolic and membrane-associated systems. The adaptor protein Nck has three SRC-homology 3 (SH3) domains that bind multiple proline-rich segments in the actin regulatory protein neuronal Wiskott-Aldrich syndrome protein (N-WASP) and an SH2 domain that binds to multiple phosphotyrosine sites in the adhesion protein nephrin, leading to phase separation. Here, we show that the 50-residue linker between the first two SH3 domains of Nck enhances phase separation of Nck/N-WASP/nephrin assemblies. Two linear motifs within this element, as well as its overall positively charged character, are important for this effect. The linker increases the driving force for self-assembly of Nck, likely through weak interactions with the second SH3 domain, and this effect appears to promote phase separation. The linker sequence is highly conserved, suggesting that the sequence determinants of the driving forces for phase separation may be generally important to Nck functions. Our studies demonstrate that linker regions between modular domains can contribute to the driving forces for self-assembly and phase separation of multivalent proteins. PMID:26553976

  13. Microgravity Experiments to Evaluate Electrostatic Forces in Controlling Cohesion and Adhesion of Granular Materials

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Weislogel, M.; Jacobson, T.

    1999-01-01

    The bulk behavior of dispersed, fluidized, or undispersed stationary granular systems cannot be fully understood in terms of adhesive/cohesive properties without understanding the role of electrostatic forces acting at the level of the grains themselves. When grains adhere to a surface, or come in contact with one another in a stationary bulk mass, it is difficult to measure the forces acting on the grains, and the forces themselves that induced the cohesion and adhesion are changed. Even if a single grain were to be scrutinized in the laboratory, it might be difficult, perhaps impossible, to define the distribution and character of surface charging and the three-dimensional relationship that charges (electrons, holes) have to one another. The hypothesis that we propose to test in microgravity (for dielectric materials) is that adhesion and cohesion of granular matter are mediated primarily by dipole forces that do not require the presence of a net charge; in fact, nominally electrically neutral materials should express adhesive and cohesive behavior when the neutrality results from a balance of positive and negative charge carriers. Moreover, the use of net charge alone as a measure of the electrical nature of grain-to-grain relationships within a granular mass may be misleading. We believe that the dipole forces arise from the presence of randomly-distributed positive and negative fixed charge carriers on grains that give rise to a resultant dipole moment. These dipole forces have long-range attraction. Random charges are created whenever there is triboelectrical activity of a granular mass, that is, whenever the grains experience contact/separation sequences or friction.

  14. Guest and solvent modulated photo-driven charge separation and triplet generation in a perylene bisimide cyclophane

    DOE PAGES

    Spenst, Peter; Young, Ryan M.; Wasielewski, Michael R.; ...

    2016-05-18

    Cofacial positioning of two perylene bisimide (PBI) chromophores at a distance of 6.5 Å in a cyclophane structure prohibits the otherwise common excimer formation and directs photoexcited singlet state relaxation towards intramolecular symmetry-breaking charge separation (τ CS = 161 ± 4 ps) in polar CH 2Cl 2, which is thermodynamically favored with a Gibbs free energy of ΔG CS = –0.32 eV. The charges then recombine slowly in τ CR = 8.90 ± 0.06 ns to form the PBI triplet excited state, which can be used subsequently to generate singlet oxygen in 27% quantum yield. This sequence of events ismore » eliminated by dissolving the PBI cyclophane in non-polar toluene, where only excited singlet state decay occurs. In contrast, complexation of electron-rich aromatic hydrocarbons by the host PBI cyclophane followed by photoexcitation of PBI results in ultrafast electron transfer (<10 ps) from the guest to the PBI in CH 2Cl 2. As a result, the rate constants for charge separation and recombination increase as the guest molecules become easier to oxidize, demonstrating that charge separation occurs close to the peak of the Marcus curve and the recombination lies far into the Marcus inverted region.« less

  15. Controlling electrostatic charging of nanocrystalline diamond at nanoscale.

    PubMed

    Verveniotis, Elisseos; Kromka, Alexander; Rezek, Bohuslav

    2013-06-11

    Constant electrical current in the range of -1 to -200 pA is applied by an atomic force microscope (AFM) in contact mode regime to induce and study local electrostatic charging of oxygen-terminated nanocrystalline diamond (NCD) thin films. The NCD films are deposited on silicon in 70 nm thickness and with 60% relative sp(2) phase content. Charging current is monitored by conductive AFM. Electric potential contrast induced by the current is evaluated by Kelvin force microscopy (KFM). KFM shows well-defined, homogeneous, and reproducible microscopic patterns that are not influenced by inherent tip-surface junction fluctuations during the charging process. The charged patterns are persistent for at least 72 h due to charge trapping inside the NCD film. The current-induced charging also clearly reveals field-induced detrapping at current amplitudes >-50 pA and tip instability at >-150 pA, both of which limit the achievable potential contrast. In addition, we show that the field also determines the range of electronic states that can trap the charge. We present a model and discuss implications for control of the nanoscale charging process.

  16. Gradient Self-Doped CuBi2O4 with Highly Improved Charge Separation Efficiency.

    PubMed

    Wang, Fuxian; Septina, Wilman; Chemseddine, Abdelkrim; Abdi, Fatwa F; Friedrich, Dennis; Bogdanoff, Peter; van de Krol, Roel; Tilley, S David; Berglund, Sean P

    2017-10-25

    A new strategy of using forward gradient self-doping to improve the charge separation efficiency in metal oxide photoelectrodes is proposed. Gradient self-doped CuBi 2 O 4 photocathodes are prepared with forward and reverse gradients in copper vacancies using a two-step, diffusion-assisted spray pyrolysis process. Decreasing the Cu/Bi ratio of the CuBi 2 O 4 photocathodes introduces Cu vacancies that increase the carrier (hole) concentration and lowers the Fermi level, as evidenced by a shift in the flat band toward more positive potentials. Thus, a gradient in Cu vacancies leads to an internal electric field within CuBi 2 O 4 , which can facilitate charge separation. Compared to homogeneous CuBi 2 O 4 photocathodes, CuBi 2 O 4 photocathodes with a forward gradient show highly improved charge separation efficiency and enhanced photoelectrochemical performance for reduction reactions, while CuBi 2 O 4 photocathodes with a reverse gradient show significantly reduced charge separation efficiency and photoelectrochemical performance. The CuBi 2 O 4 photocathodes with a forward gradient produce record AM 1.5 photocurrent densities for CuBi 2 O 4 up to -2.5 mA/cm 2 at 0.6 V vs RHE with H 2 O 2 as an electron scavenger, and they show a charge separation efficiency of 34% for 550 nm light. The gradient self-doping accomplishes this without the introduction of external dopants, and therefore the tetragonal crystal structure and carrier mobility of CuBi 2 O 4 are maintained. Lastly, forward gradient self-doped CuBi 2 O 4 photocathodes are protected with a CdS/TiO 2 heterojunction and coated with Pt as an electrocatalyst. These photocathodes demonstrate photocurrent densities on the order of -1.0 mA/cm 2 at 0.0 V vs RHE and evolve hydrogen with a faradaic efficiency of ∼91%.

  17. Facile synthesis of bismuth oxyhalide nanosheet films with distinct conduction type and photo-induced charge carrier behavior

    NASA Astrophysics Data System (ADS)

    Jia, Huimin; He, Weiwei; Zhang, Beibei; Yao, Lei; Yang, Xiaokai; Zheng, Zhi

    2018-05-01

    A modified successive ionic layer adsorption and reaction (SILAR) method was developed to fabricate 2D ordered BiOX (X = CI, Br, I) nanosheet array films on FTO substrates at room temperature. The formation of BiOX films were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), UV-vis absorption spectroscopy, and X-ray photoelectron spectroscopy (XPS). The semiconductor surface states determine the type of semiconductor. Although BiOCI, BiOBr and BiOI belong to the bismuth oxyhalide semiconductor family and possess similar crystal and electronic structures, they show different conductivity types due to their respective surface states. Mott-Schottky curve results demonstrate that the BiOCl and BiOI nanosheet arrays display n-type semiconductor properties, while the BiOBr films exhibit p-type semiconductor properties. Assisted by surface photovoltage (SPV) and transient photovoltage (TPV) techniques, the photoinduced charge transfer dynamics on the surface/interface of the BiOX/FTO nanosheet films were systematically and comparatively investigated. As revealed by the results, both the separation and transfer dynamics of the photo-induced carrier are influenced by film thickness.

  18. [Cloning, expressing of exendin-4 analogue and bioactivity analysis in vivo].

    PubMed

    Li, Taiming; Gu, Chunjiao; Ge, Xiaoyu; Li, Zhezhe; Wang, Dan; Ma, Yanhong; Liu, Tao; Zhang, Meiyou; Li, Li; Liu, Jingjing

    2012-07-01

    To construct, express and purify Exendin-4 analogue and detect its biological activity in vivo. Insert gene sequence into fusion partner ofpED plasmid which is helped to purification, entitled the new recombinant plasmid 5 Exendin-4 analogue polypeptide gene and fusion partner gene was linked by acid hydrolysisgene, transformed to E. coli BL21 and the fusion protein was induced by lactose. After acid hydrolysis, the Exendin-4 analogue polypeptide separated from fusion chaperon. Anion charge chromatography were used to further purification. 6 to 8 week-old ICR mice were injected (s.c) with Exendin-4 analogue, blood glucose and plasma insulin level was detected in different period after oral glucose tolerance test. The results show that high expression of inclusion body was induced by lactose, which accounted for 40% of germ proteins, the Exendin-4 analogue was obtained with the purity of 91.8% after being purified by anion charge chromatography. Bioactivity assay showed that the level of blood glucose of mouse which treated with exendin-4 analogue was obviously decreased to normal (P < 0.01), and the level of plasma insulin was increased obviously (P < 0.01).

  19. Foam separation of Rhodamine-G and Evans Blue using a simple separatory bottle system.

    PubMed

    Dasarathy, Dhweeja; Ito, Yoichiro

    2017-09-29

    A simple separatory glass bottle was used to improve separation effectiveness and cost efficiency while simultaneously creating a simpler system for separating biological compounds. Additionally, it was important to develop a scalable separation method so this would be applicable to both analytical and preparative separations. Compared to conventional foam separation methods, this method easily forms stable dry foam which ensures high purity of yielded fractions. A negatively charged surfactant, sodium dodecyl sulfate (SDS), was used as the ligand to carry a positively charged Rhodamine-G, leaving a negatively charged Evans Blue in the bottle. The performance of the separatory bottle was tested for separating Rhodamine-G from Evans Blue with sample sizes ranged from 1 to 12mg in preparative separations and 1-20μg in analytical separations under optimum conditions. These conditions including N 2 gas pressure, spinning speed of contents with a magnetic stirrer, concentration of the ligand, volume of the solvent, and concentration of the sample, were all modified and optimized. Based on the calculations at their peak absorbances, Rhodamine-G and Evans Blue were efficiently separated in times ranging from 1h to 3h, depending on sample volume. Optimal conditions were found to be 60psi N 2 pressure and 2mM SDS for the affinity ligand. This novel separation method will allow for rapid separation of biological compounds while simultaneously being scalable and cost effective. Published by Elsevier B.V.

  20. Stacking fault induced tunnel barrier in platelet graphite nanofiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Yann-Wen, E-mail: chiidong@phys.sinica.edu.tw, E-mail: ywlan@phys.sinica.edu.tw; Chang, Yuan-Chih; Chang, Chia-Seng

    A correlation study using image inspection and electrical characterization of platelet graphite nanofiber devices is conducted. Close transmission electron microscopy and diffraction pattern inspection reveal layers with inflection angles appearing in otherwise perfectly stacked graphene platelets, separating nanofibers into two domains. Electrical measurement gives a stability diagram consisting of alternating small-large Coulomb blockade diamonds, suggesting that there are two charging islands coupled together through a tunnel junction. Based on these two findings, we propose that a stacking fault can behave as a tunnel barrier for conducting electrons and is responsible for the observed double-island single electron transistor characteristics.

  1. Experimental Analysis of Proton-Induced Displacement and Ionization Damage Using Gate-Controlled Lateral PNP Bipolar Transistors

    NASA Technical Reports Server (NTRS)

    Ball, D. R.; Schrimpf, R. D.; Barnaby, H. J.

    2006-01-01

    The electrical characteristics of proton-irradiated bipolar transistors are affected by ionization damage to the insulating oxide and displacement damage to the semiconductor bulk. While both types of damage degrade the transistor, it is important to understand the mechanisms individually and to be able to analyze them separately. In this paper, a method for analyzing the effects of ionization and displacement damage using gate-controlled lateral PNP bipolar junction transistors is described. This technique allows the effects of oxide charge, surface recombination velocity, and bulk traps to be measured independently.

  2. Concentration polarization-based nonlinear electrokinetics in porous media: induced-charge electroosmosis.

    PubMed

    Leinweber, Felix C; Tallarek, Ulrich

    2005-11-24

    We have investigated induced-charge electroosmotic flow in a fixed bed of ion-permselective glass beads by quantitative confocal laser scanning microscopy. Externally applied electrical fields induce concentration polarization (CP) in the porous medium due to coupled mass and charge transport normal to the charge-selective interfaces. These data reveal the generation of a nonequilibrium electrical double layer in the depleted CP zones and the adjoining anodic hemispheres of the (cation-selective) glass beads above a critical field strength. This initiates CP-based induced-charge electroosmosis along curved interfaces of the quasi-electroneutral macropore space between glass beads. Caused by mutual interference of resulting nonlinear flow with (flow-inducing) space charge regions, an electrohydrodynamic instability can appear locally and realize turbulent flow behavior at low Reynolds numbers. It is characterized by a local destruction of the CP zones and concomitant removal of diffusion-limited mass transfer. More efficient pore-scale lateral mixing also improves macroscopic transport, which is reflected in the significantly reduced axial dispersion of a passive tracer.

  3. An Analytical Model of Tribocharging in Regolith

    NASA Astrophysics Data System (ADS)

    Carter, D. P.; Hartzell, C. M.

    2015-12-01

    Nongravitational forces, including electrostatic forces and cohesion, can drive the behavior of regolith in low gravity environments such as the Moon and asteroids. Regolith is the 'skin' of solid planetary bodies: it is the outer coating that is observed by orbiters and the first material contacted by landers. Triboelectric charging, the phenomenon by which electrical charge accumulates during the collision or rubbing of two surfaces, has been found to occur in initially electrically neutral granular mixtures. Although charge transfer is often attributed to chemical differences between the different materials, charge separation has also been found to occur in mixtures containing grains of a single material, but with a variety of grain sizes. In such cases, the charge always separates according to grain size; typically the smaller grains acquire a more negative charge than the larger grains. Triboelectric charging may occur in a variety of planetary phenomena (including mass wasting and dust storms) as well as during spacecraft-surface interactions (including sample collection and wheel motion). Interactions between charged grains or with the solar wind plasma could produce regolith motion. However, a validated, predictive model of triboelectric charging between dielectric grains has not yet been developed. A model for such size-dependent charge separation will be presented, demonstrating how random collisions between initially electrically neutral grains lead to net migration of electrons toward the smaller grains. The model is applicable to a wide range of single-material granular mixtures, including those with unusual or wildly varying size distributions, and suggests a possible mechanism for the reversal of the usual size-dependent charge polarity described above. This is a significant improvement over existing charge exchange models, which are restricted to two discrete grains sizes and provide severely limited estimates for charge magnitude. We will also discuss the design of an experiment planned to test the charging estimates provided by the model presented and the potential implications for our understanding of regolith behavior.

  4. Strong field gravitational lensing by a charged Galileon black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shan-Shan; Xie, Yi, E-mail: clefairy035@163.com, E-mail: yixie@nju.edu.cn

    Strong field gravitational lensings are dramatically disparate from those in the weak field by representing relativistic images due to light winds one to infinity loops around a lens before escaping. We study such a lensing caused by a charged Galileon black hole, which is expected to have possibility to evade no-hair theorem. We calculate the angular separations and time delays between different relativistic images of the charged Galileon black hole. All these observables can potentially be used to discriminate a charged Galileon black hole from others. We estimate the magnitudes of these observables for the closest supermassive black hole Sgrmore » A*. The strong field lensing observables of the charged Galileon black hole can be close to those of a tidal Reissner-Nordström black hole or those of a Reissner-Nordström black hole. It will be helpful to distinguish these black holes if we can separate the outermost relativistic images and determine their angular separation, brightness difference and time delay, although it requires techniques beyond the current limit.« less

  5. Solution-Processed Wide-Bandgap Organic Semiconductor Nanostructures Arrays for Nonvolatile Organic Field-Effect Transistor Memory.

    PubMed

    Li, Wen; Guo, Fengning; Ling, Haifeng; Liu, Hui; Yi, Mingdong; Zhang, Peng; Wang, Wenjun; Xie, Linghai; Huang, Wei

    2018-01-01

    In this paper, the development of organic field-effect transistor (OFET) memory device based on isolated and ordered nanostructures (NSs) arrays of wide-bandgap (WBG) small-molecule organic semiconductor material [2-(9-(4-(octyloxy)phenyl)-9H-fluoren-2-yl)thiophene]3 (WG 3 ) is reported. The WG 3 NSs are prepared from phase separation by spin-coating blend solutions of WG 3 /trimethylolpropane (TMP), and then introduced as charge storage elements for nonvolatile OFET memory devices. Compared to the OFET memory device with smooth WG 3 film, the device based on WG 3 NSs arrays exhibits significant improvements in memory performance including larger memory window (≈45 V), faster switching speed (≈1 s), stable retention capability (>10 4 s), and reliable switching properties. A quantitative study of the WG 3 NSs morphology reveals that enhanced memory performance is attributed to the improved charge trapping/charge-exciton annihilation efficiency induced by increased contact area between the WG 3 NSs and pentacene layer. This versatile solution-processing approach to preparing WG 3 NSs arrays as charge trapping sites allows for fabrication of high-performance nonvolatile OFET memory devices, which could be applicable to a wide range of WBG organic semiconductor materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Energy storage device with large charge separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei T.

    High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.

  7. Energy storage device with large charge separation

    DOEpatents

    Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei

    2016-04-12

    High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.

  8. Polarization-induced surface charges in hydroxyapatite ceramics

    NASA Astrophysics Data System (ADS)

    Horiuchi, N.; Nakaguki, S.; Wada, N.; Nozaki, K.; Nakamura, M.; Nagai, A.; Katayama, K.; Yamashita, K.

    2014-07-01

    Calcium hydroxyapatite (HAp; Ca10(PO4)6(OH)2) is a well-known biomaterial that is the main inorganic component of bones and teeth. Control over the surface charge on HAp would be a key advance in the development of the material for tissue engineering. We demonstrate here that surface charge can be induced by an electrical poling process using the Kelvin method. Positive and negative charges were induced on the HAp surface in response to the applied electric field in the poling process. The surface charging is attributed to dipole polarization that is homogeneously distributed in HAp. Additionally, the surface charging is considered to originate from the organization of OH- ions into a polar phase in the structure.

  9. Capillary electrophoresis electrospray ionization mass spectrometry interface

    DOEpatents

    Smith, Richard D.; Severs, Joanne C.

    1999-01-01

    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an anolyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  10. Final Technical Report for the Energy Frontier Research Center Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanden Bout, David A.

    2015-09-14

    Our EFRC was founded with the vision of creating a broadly collaborative and synergistic program that would lead to major breakthroughs in the molecular-level understanding of the critical interfacial charge separation and charge transfer (CST) processes that underpin the function of candidate materials for organic photovoltaic (OPV) and electrical-energy-storage (EES) applications. Research in these energy contexts shares an imposing challenge: How can we understand charge separation and transfer mechanisms in the presence of immense materials complexity that spans multiple length scales? To address this challenge, our 50-member Center undertook a total of 28 coordinated research projects aimed at unraveling themore » CST mechanisms that occur at interfaces in these nanostructured materials. This rigorous multi-year study of CST interfaces has greatly illuminated our understanding of early-timescale processes (e.g., exciton generation and dissociation dynamics at OPV heterojunctions; control of Li+-ion charging kinetics by surface chemistry) occurring in the immediate vicinity of interfaces. Program outcomes included: training of 72 graduate student and postdoctoral energy researchers at 5 institutions and spanning 7 academic disciplines in science and engineering; publication of 94 peer-reviewed journal articles; and dissemination of research outcomes via 340 conference, poster and other presentations. Major scientific outcomes included: implementation of a hierarchical strategy for understanding the electronic communication mechanisms and ultimate fate of charge carriers in bulk heterojunction OPV materials; systematic investigation of ion-coupled electron transfer processes in model Li-ion battery electrode/electrolyte systems; and the development and implementation of 14 unique technologies and instrumentation capabilities to aid in probing sub-ensemble charge separation and transfer mechanisms.« less

  11. Reduced order modeling of mechanical degradation induced performance decay in lithium-ion battery porous electrodes

    DOE PAGES

    Barai, Pallab; Smith, Kandler; Chen, Chien -Fan; ...

    2015-06-17

    In this paper, a one-dimensional computational framework is developed that can solve for the evolution of voltage and current in a lithium-ion battery electrode under different operating conditions. A reduced order model is specifically constructed to predict the growth of mechanical degradation within the active particles of the carbon anode as a function of particle size and C-rate. Using an effective diffusivity relation, the impact of microcracks on the diffusivity of the active particles has been captured. Reduction in capacity due to formation of microcracks within the negative electrode under different operating conditions (constant current discharge and constant current constantmore » voltage charge) has been investigated. At the beginning of constant current discharge, mechanical damage to electrode particles predominantly occurs near the separator. As the reaction front shifts, mechanical damage spreads across the thickness of the negative electrode and becomes relatively uniform under multiple discharge/charge cycles. Mechanical degradation under different drive cycle conditions has been explored. It is observed that electrodes with larger particle sizes are prone to capacity fade due to microcrack formation. Finally, under drive cycle conditions, small particles close to the separator and large particles close to the current collector can help in reducing the capacity fade due to mechanical degradation.« less

  12. Creating and optimizing interfaces for electric-field and photon-induced charge transfer.

    PubMed

    Park, Byoungnam; Whitham, Kevin; Cho, Jiung; Reichmanis, Elsa

    2012-11-27

    We create and optimize a structurally well-defined electron donor-acceptor planar heterojunction interface in which electric-field and/or photon-induced charge transfer occurs. Electric-field-induced charge transfer in the dark and exciton dissociation at a pentacene/PCBM interface were probed by in situ thickness-dependent threshold voltage shift measurements in field-effect transistor devices during the formation of the interface. Electric-field-induced charge transfer at the interface in the dark is correlated with development of the pentacene accumulation layer close to PCBM, that is, including interface area, and dielectric relaxation time in PCBM. Further, we demonstrate an in situ test structure that allows probing of both exciton diffusion length and charge transport properties, crucial for optimizing optoelectronic devices. Competition between the optical absorption length and the exciton diffusion length in pentacene governs exciton dissociation at the interface. Charge transfer mechanisms in the dark and under illumination are detailed.

  13. Separation and Purification of Mineral Salts from Spacecraft Wastewater Processing via Electrostatic Beneficiation

    NASA Technical Reports Server (NTRS)

    Miles, John D., II; Lunn, Griffin

    2013-01-01

    Electrostatic separation is a class of material processing technologies commonly used for the sorting of coarse mixtures by means of electrical forces acting on charged or polarized particles. Most if not all of the existing tribo-electrostatic separators had been initially developed for mineral ores beneficiation. It is a well-known process that has been successfully used to separate coal from minerals. Potash (potassium) enrichment where underground salt mines containing large amounts of sodium is another use of this techno logy. Through modification this technology can be used for spacecraft wastewater brine beneficiation. This will add in closing the gap beeen traveling around Earth's Gravity well and long-term space explorations. Food has been brought on all man missions, which is why plant growth for food crops continues to be of interest to NASA. For long-term mission considerations food productions is one of the top priorities. Nutrient recovery is essential for surviving in or past low earth orbit. In our advance bio-regenerative process instead of nitrogen gas produced; soluble nitrate salts that can be recovered for plant fertilizer would be produced instead. The only part missing is the beneficiation of brine to separate the potassium from the sodium. The use of electrostatic beneficiation in this experiment utilizes the electrical charge differences between aluminum and dried brine by surface contact. The helixes within the aluminum tribocharger allows for more surface contact when being agitated. When two materials are in contact, the material with the highest affinity for electrons becomes negatively charged, while the other becomes positively charged. This contact exchange of charge may cause the particles to agglomerate depending on their residence time within the tribocharger, compromising the efficiency of separation. The aim of this experiment is to further the development in electrostatic beneficiation by optimizing the separation of ersatz and possibly real wastewater brine residues. In doing so, ideally it will yield a high potassium enrichment for use in spacecraft plant systems.

  14. Photosystem II-cyclic electron flow powers exceptional photoprotection and record growth in the microalga Chlorella ohadii.

    PubMed

    Ananyev, Gennady; Gates, Colin; Kaplan, Aaron; Dismukes, G Charles

    2017-11-01

    The desert microalga Chlorella ohadii was reported to grow at extreme light intensities with minimal photoinhibition, tolerate frequent de/re-hydrations, yet minimally employs antenna-based non-photochemical quenching for photoprotection. Here we investigate the molecular mechanisms by measuring Photosystem II charge separation yield (chlorophyll variable fluorescence, Fv/Fm) and flash-induced O 2 yield to measure the contributions from both linear (PSII-LEF) and cyclic (PSII-CEF) electron flow within PSII. Cells grow increasingly faster at higher light intensities (μE/m 2 /s) from low (20) to high (200) to extreme (2000) by escalating photoprotection via shifting from PSII-LEF to PSII-CEF. This shifts PSII charge separation from plastoquinone reduction (PSII-LEF) to plastoquinol oxidation (PSII-CEF), here postulated to enable proton gradient and ATP generation that powers photoprotection. Low light-grown cells have unusually small antennae (332 Chl/PSII), use mainly PSII-LEF (95%) and convert 40% of PSII charge separations into O 2 (a high O 2 quantum yield of 0.06mol/mol PSII/flash). High light-grown cells have smaller antenna and lower PSII-LEF (63%). Extreme light-grown cells have only 42 Chl/PSII (no LHCII antenna), minimal PSII-LEF (10%), and grow faster than any known phototroph (doubling time 1.3h). Adding a synthetic quinone in excess to supplement the PQ pool fully uncouples PSII-CEF from its natural regulation and produces maximum PSII-LEF. Upon dark adaptation PSII-LEF rapidly reverts to PSII-CEF, a transient protection mechanism to conserve water and minimize the cost of antenna biosynthesis. The capacity of the electron acceptor pool (plastoquinone pool), and the characteristic times for exchange of (PQH 2 ) B with PQ pool and reoxidation of (PQH 2 ) pool were determined. Copyright © 2017. Published by Elsevier B.V.

  15. Electron-induced electron yields of uncharged insulating materials

    NASA Astrophysics Data System (ADS)

    Hoffmann, Ryan Carl

    Presented here are electron-induced electron yield measurements from high-resistivity, high-yield materials to support a model for the yield of uncharged insulators. These measurements are made using a low-fluence, pulsed electron beam and charge neutralization to minimize charge accumulation. They show charging induced changes in the total yield, as much as 75%, even for incident electron fluences of <3 fC/mm2, when compared to an uncharged yield. The evolution of the yield as charge accumulates in the material is described in terms of electron recapture, based on the extended Chung and Everhart model of the electron emission spectrum and the dual dynamic layer model for internal charge distribution. This model is used to explain charge-induced total yield modification measured in high-yield ceramics, and to provide a method for determining electron yield of uncharged, highly insulating, high-yield materials. A sequence of materials with progressively greater charge susceptibility is presented. This series starts with low-yield Kapton derivative called CP1, then considers a moderate-yield material, Kapton HN, and ends with a high-yield ceramic, polycrystalline aluminum oxide. Applicability of conductivity (both radiation induced conductivity (RIC) and dark current conductivity) to the yield is addressed. Relevance of these results to spacecraft charging is also discussed.

  16. Multi-frequency inversion-charge pumping for charge separation and mobility analysis in high-k/InGaAs metal-oxide-semiconductor field-effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djara, V.; Cherkaoui, K.; Negara, M. A.

    2015-11-28

    An alternative multi-frequency inversion-charge pumping (MFICP) technique was developed to directly separate the inversion charge density (N{sub inv}) from the trapped charge density in high-k/InGaAs metal-oxide-semiconductor field-effect transistors (MOSFETs). This approach relies on the fitting of the frequency response of border traps, obtained from inversion-charge pumping measurements performed over a wide range of frequencies at room temperature on a single MOSFET, using a modified charge trapping model. The obtained model yielded the capture time constant and density of border traps located at energy levels aligned with the InGaAs conduction band. Moreover, the combination of MFICP and pulsed I{sub d}-V{sub g}more » measurements enabled an accurate effective mobility vs N{sub inv} extraction and analysis. The data obtained using the MFICP approach are consistent with the most recent reports on high-k/InGaAs.« less

  17. Composite tin and zinc oxide nanocrystalline particles for enhanced charge separation in sensitized degradation of dyes.

    PubMed

    Bandara, J; Tennakone, K; Jayatilaka, P P B

    2002-10-01

    Composite ZnO/SnO2 catalyst has been studied for the sensitized degradation of dyes e.g. Eosin Y (2', 4', 5', 7'-tetrabromofluorescein disodium salt) in relation to efficient charge separation properties of the catalyst. Improved photocatalytic activity was observed in the case of ZnO/SnO2 composite catalyst compared to the catalytic activity of ZnO, SnO2 or TiO2 powder. The suppression of charge recombination in the composite ZnO/SnO2 catalyst led to higher catalytic activity for the degradation of Eosin Y. Degradation of Eosin follows concomitant formation of CO2 and formation of CO2 followed a pseudo-first-order rate. Photoelectrochemical cells constructed using SnO2, ZnO, ZnO/SnO2 sensitized with Eosin Y showed V(oc) of 175, 306, 512 mV/cm2 and I(sc) of 50, 70, 200 microA/cm2 respectively. A higher irreversible degradation of Eosin Y and higher V(oc) observed on composite ZnO/SnO2 than ZnO and SnO2 separately can be considered as a proof of enhanced charge separation of ZnO/SnO2 catalyst. Eosin Y showed a higher emission decreases on ZnO/SnO2 composite than on individual ZnO, SnO2 or TiO2 indicating dominance of the charge injection process. Photoinjected electrons are tunneled from ZnO to SnO2 particles accumulating injected electrons in the conduction bands allowing wider separation of excited carriers.

  18. Charge separation at disordered semiconductor heterojunctions from random walk numerical simulations.

    PubMed

    Mandujano-Ramírez, Humberto J; González-Vázquez, José P; Oskam, Gerko; Dittrich, Thomas; Garcia-Belmonte, Germa; Mora-Seró, Iván; Bisquert, Juan; Anta, Juan A

    2014-03-07

    Many recent advances in novel solar cell technologies are based on charge separation in disordered semiconductor heterojunctions. In this work we use the Random Walk Numerical Simulation (RWNS) method to model the dynamics of electrons and holes in two disordered semiconductors in contact. Miller-Abrahams hopping rates and a tunnelling distance-dependent electron-hole annihilation mechanism are used to model transport and recombination, respectively. To test the validity of the model, three numerical "experiments" have been devised: (1) in the absence of constant illumination, charge separation has been quantified by computing surface photovoltage (SPV) transients. (2) By applying a continuous generation of electron-hole pairs, the model can be used to simulate a solar cell under steady-state conditions. This has been exploited to calculate open-circuit voltages and recombination currents for an archetypical bulk heterojunction solar cell (BHJ). (3) The calculations have been extended to nanostructured solar cells with inorganic sensitizers to study, specifically, non-ideality in the recombination rate. The RWNS model in combination with exponential disorder and an activated tunnelling mechanism for transport and recombination is shown to reproduce correctly charge separation parameters in these three "experiments". This provides a theoretical basis to study relevant features of novel solar cell technologies.

  19. Capillary electrophoresis of covalently functionalized single-chirality carbon nanotubes.

    PubMed

    He, Pingli; Meany, Brendan; Wang, Chunyan; Piao, Yanmei; Kwon, Hyejin; Deng, Shunliu; Wang, YuHuang

    2017-07-01

    We demonstrate the separation of chirality-enriched single-walled carbon nanotubes (SWCNTs) by degree of surface functionalization using high-performance CE. Controlled amounts of negatively charged and positively charged functional groups were attached to the sidewall of chirality-enriched SWCNTs through covalent functionalization using 4-carboxybenzenediazonium tetrafluoroborate or 4-diazo-N,N-diethylaniline tetrafluoroborate, respectively. Surfactant- and pH-dependent studies confirmed that under conditions that minimized ionic screening effects, separation of these functionalized SWCNTs was strongly dependent on the surface charge density introduced through covalent surface chemistry. For both heterogeneous mixtures and single-chirality-enriched samples, covalently functionalized SWCNTs showed substantially increased peak width in electropherogram spectra compared to nonfunctionalized SWCNTs, which can be attributed to a distribution of surface charges along the functionalized nanotubes. Successful separation of functionalized single-chirality SWCNTs by functional density was confirmed with UV-Vis-NIR absorption and Raman scattering spectroscopies of fraction collected samples. These results suggest a high degree of structural heterogeneity in covalently functionalized SWCNTs, even for chirality-enriched samples, and show the feasibility of applying CE for high-performance separation of nanomaterials based on differences in surface functional density. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Mark J.; Saleh, Omar A.

    We calculated the force-extension curves for a flexible polyelectrolyte chain with varying charge separations by performing Monte Carlo simulations of a 5000 bead chain using a screened Coulomb interaction. At all charge separations, the force-extension curves exhibit a Pincus-like scaling regime at intermediate forces and a logarithmic regime at large forces. As the charge separation increases, the Pincus regime shifts to a larger range of forces and the logarithmic regime starts are larger forces. We also found that force-extension curve for the corresponding neutral chain has a logarithmic regime. Decreasing the diameter of bead in the neutral chain simulations removedmore » the logarithmic regime, and the force-extension curve tends to the freely jointed chain limit. In conclusion, this result shows that only excluded volume is required for the high force logarithmic regime to occur.« less

  1. Separations by supported liquid membrane cascades

    DOEpatents

    Danesi, P.R.

    1983-09-01

    The invention describes a new separation technique which leads to multi-stage operations by the use of a series (a cascade) of alternated carrier-containing supported-liquid cation exchanger extractant and a liquid anion exchanger extractant (or a neutral extractant) as carrier. The membranes are spaced between alternated aqueous electrolytic solutions of different composition which alternatively provide positively charged extractable species and negatively charged (or zero charged) extractable species, of the chemical species to be separated. The alternated aqueous electrolytic solutions in addition to providing the driving force to the process, simultaneously function as a stripping solution from one type of membrane and as an extraction-promoting solution for the other type of membrane. The aqueous electrolytic solution and the supported liquid membranes are arranged to provide a continuous process.

  2. Electrostatic attraction between overall neutral surfaces.

    PubMed

    Adar, Ram M; Andelman, David; Diamant, Haim

    2016-08-01

    Two overall neutral surfaces with positively and negatively charged domains ("patches") have been shown in recent experiments to exhibit long-range attraction when immersed in an ionic solution. Motivated by the experiments, we calculate analytically the osmotic pressure between such surfaces within the Poisson-Boltzmann framework, using a variational principle for the surface-averaged free energy. The electrostatic potential, calculated beyond the linear Debye-Hückel theory, yields an overall attraction at large intersurface separations, over a wide range of the system's controlled length scales. In particular, the attraction is stronger and occurs at smaller separations for surface patches of larger size and charge density. In this large patch limit, we find that the attraction-repulsion crossover separation is inversely proportional to the square of the patch-charge density and to the Debye screening length.

  3. Gas-phase synthesis of singly and multiply charged polyoxovanadate anions employing electrospray ionization and collision induced dissociation.

    PubMed

    Al Hasan, Naila M; Johnson, Grant E; Laskin, Julia

    2013-09-01

    Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including VxOy(n-) and VxOyCl(n-) ions (x = 1-14, y = 2-36, n = 1-3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V14O36Cl(L)5 (L = Et4N(+), tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged VxOyCl(n-) and VxOyCl(L)((n-1)-) clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller VxOyCl((1-2)-) and VxOy ((1-2)-) anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged VxOyCl and VxOy species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of VxOyCl and VxOy anions through low-energy CID. Furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.

  4. Gas-Phase Synthesis of Singly and Multiply Charged Polyoxovanadate Anions Employing Electrospray Ionization and Collision Induced Dissociation

    NASA Astrophysics Data System (ADS)

    Al Hasan, Naila M.; Johnson, Grant E.; Laskin, Julia

    2013-09-01

    Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including VxOy n- and VxOyCln- ions (x = 1-14, y = 2-36, n = 1-3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V14O36Cl(L)5 (L = Et4N+, tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged VxOyCln- and VxOyCl(L)(n-1)- clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller VxOyCl(1-2)- and VxOy (1-2)- anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged VxOyCl and VxOy species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of VxOyCl and VxOy anions through low-energy CID. Furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.

  5. Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates.

    PubMed

    Banerjee-Ghosh, Koyel; Ben Dor, Oren; Tassinari, Francesco; Capua, Eyal; Yochelis, Shira; Capua, Amir; Yang, See-Hun; Parkin, Stuart S P; Sarkar, Soumyajit; Kronik, Leeor; Baczewski, Lech Tomasz; Naaman, Ron; Paltiel, Yossi

    2018-06-22

    It is commonly assumed that recognition and discrimination of chirality, both in nature and in artificial systems, depend solely on spatial effects. However, recent studies have suggested that charge redistribution in chiral molecules manifests an enantiospecific preference in electron spin orientation. We therefore reasoned that the induced spin polarization may affect enantiorecognition through exchange interactions. Here we show experimentally that the interaction of chiral molecules with a perpendicularly magnetized substrate is enantiospecific. Thus, one enantiomer adsorbs preferentially when the magnetic dipole is pointing up, whereas the other adsorbs faster for the opposite alignment of the magnetization. The interaction is not controlled by the magnetic field per se, but rather by the electron spin orientations, and opens prospects for a distinct approach to enantiomeric separations. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. Measuring the Density of States of the Inner and Outer Wall of Double-Walled Carbon Nanotubes.

    PubMed

    Chambers, Benjamin A; Shearer, Cameron J; Yu, LePing; Gibson, Christopher T; Andersson, Gunther G

    2018-06-19

    The combination of ultraviolet photoelectron spectroscopy and metastable helium induced electron spectroscopy is used to determine the density of states of the inner and outer coaxial carbon nanotubes. Ultraviolet photoelectron spectroscopy typically measures the density of states across the entire carbon nanotube, while metastable helium induced electron spectroscopy measures the density of states of the outermost layer alone. The use of double-walled carbon nanotubes in electronic devices allows for the outer wall to be functionalised whilst the inner wall remains defect free and the density of states is kept intact for electron transport. Separating the information of the inner and outer walls enables development of double-walled carbon nanotubes to be independent, such that the charge transport of the inner wall is maintained and confirmed whilst the outer wall is modified for functional purposes.

  7. Origin of bias-stress induced instability in organic thin-film transistors with semiconducting small-molecule/insulating polymer blend channel.

    PubMed

    Park, Ji Hoon; Lee, Young Tack; Lee, Hee Sung; Lee, Jun Young; Lee, Kimoon; Lee, Gyu Baek; Han, Jiwon; Kim, Tae Woong; Im, Seongil

    2013-03-13

    The stabilities of a blending type organic thin-film transistor with phase-separated TIPS-pentacene channel layer were characterized under the conditions of negative-bias-stress (NBS) and positive-bias-stress (PBS). During NBS, threshold voltage (Vth) shifts noticeably. NBS-imposed devices revealed interfacial trap density-of-states (DOS) at 1.56 and 1.66 eV, whereas initial device showed the DOS at only 1.56 eV, as measured by photoexcited charge-collection spectroscopy (PECCS) method. Possible origin of this newly created defect is related to ester group in PMMA, which induces some hole traps at the TIPS-pentacene/i-PMMA interface. PBS-imposed device showed little Vth shift but visible off-current increase as "back-channel" effect, which is attributed to the water molecules trapped on the TFT surface.

  8. Ion transport restriction in mechanically strained separator membranes

    NASA Astrophysics Data System (ADS)

    Cannarella, John; Arnold, Craig B.

    2013-03-01

    We use AC impedance methods to investigate the effect of mechanical deformation on ion transport in commercial separator membranes and lithium-ion cells as a whole. A Bruggeman type power law relationship is found to provide an accurate correlation between porosity and tortuosity of deformed separators, which allows the impedance of a separator membrane to be predicted as a function of deformation. By using mechanical compression to vary the porosity of the separator membranes during impedance measurements it is possible to determine both the α and γ parameters from the modified Bruggeman relation for individual separator membranes. From impedance testing of compressed pouch cells it is found that separator deformation accounts for the majority of the transport restrictions arising from compressive stress in a lithium-ion cell. Finally, a charge state dependent increase in the impedance associated with charge transfer is observed with increasing cell compression.

  9. Two-dimensional porous architecture of protonated GCN and reduced graphene oxide via electrostatic self-assembly strategy for high photocatalytic hydrogen evolution under visible light

    NASA Astrophysics Data System (ADS)

    Pu, Chenchen; Wan, Jun; Liu, Enzhou; Yin, Yunchao; Li, Juan; Ma, Yongning; Fan, Jun; Hu, Xiaoyun

    2017-03-01

    Herein, porous protonated graphitic carbon nitride (pGCN) is prepared from bulk g-C3N4 (GCN) directly by acidic cutting and hydrothermal process. The holey structure not only provides a lot of bounds on the accelerated and photo induced charge transfer and thus reduce the aggregation, but also endows the GCN with more exposure to the active site. The pGCN is obtained with an increased band gap of 2.91 eV together with a higher specific surface area of 82.76 m2g-1. Meanwhile, the positively charged GCN resulted from the protonation pretreatment is beneficial for improving the interaction with negatively charged GO sheets. Compared with GCN, pGCN-rGO displays a significant decrease of PL intensities and an apparently enhancement of visible-light absorption, resulting a lower charge recombination rate and a better light absorption. Besides, the enhanced charge separation is demonstrated by photoluminescence emission spectroscopy and the transient photocurrent measurement. The photocatalytic performance studies for the degradation of MB indicate that pGCN-rGO exhibits the highest adsorption ability towards dye molecules. In addition, the pGCN-5 wt% rGO composite shows the optimal photocatalytic activity, the photodegradation rate of MB is 99.4% after 80 min of irradiation and the H2 evolution performance up to 557 μmol g-1h-1 under visible light, which is much higher than the other control samples.

  10. ELECTROSTATIC SURFACE STRUCTURES OF COAL AND MINERAL PARTICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    It is the purpose of this research to study electrostatic charging mechanisms related to electrostatic beneficiation of coal with the goal of improving models of separation and the design of electrostatic separators. Areas addressed in this technical progress report are (a) electrostatic beneficiation of Pittsburgh #8 coal powders as a function of grind size and processing atmosphere; (b) the use of fluorescent micro-spheres to probe the charge distribution on the surfaces of coal particles; (c) the use of electrostatic beneficiation to recover unburned carbon from flyash; (d) the development of research instruments for investigation of charging properties of coal. Pittsburghmore » #8 powders were beneficiated as a function of grind size and under three atmosphere conditions: fresh ground in air , after 24 hours of air exposure, or under N2 atmosphere. The feed and processed powders were analyzed by a variety of methods including moisture, ash, total sulfur, and pyritic sulfur content. Mass distribution and cumulative charge of the processed powders were also measured. Fresh ground coal performed the best in electrostatic beneficiation. Results are compared with those of similar studies conducted on Pittsburgh #8 powders last year (April 1, 1997 to September 30, 1997). Polystyrene latex spheres were charged and deposited onto coal particles that had been passed through the electrostatic separator and collected onto insulating filters. The observations suggest bipolar charging of individual particles and patches of charge on the particles which may be associated with particular maceral types or with mineral inclusions. A preliminary investigation was performed on eletrostatic separation of unburned carbon particles from flyash. Approximately 25% of the flyash acquired positive charge in the copper tribocharger. This compares with 75% of fresh ground coal. The negatively charged material had a slightly reduced ash content suggesting some enrichment of carbonaceous material. There was also evidence that the carbon is present at a higher ratio in larger particles than in small particles. An ultraviolet photoelectron counter for use in ambient atmosphere is nearing completion. The counter will be used to measure work functions of different maceral and mineral types in the coal matrix. A Particle Image Analyzer for measuring size and charge of airborne particles is also under contruction and its current status is presented. A charged, monodisperse, droplet generator is also being constructed for calibration of the Particle Image Analyzer and other airborne particle analyzers in our labs.« less

  11. Enhanced Internal Quantum Efficiency in Dye-Sensitized Solar Cells: Effect of Long-Lived Charge-Separated State of Sensitizers.

    PubMed

    Sun, Haiya; Liu, Dongzhi; Wang, Tianyang; Lu, Ting; Li, Wei; Ren, Siyao; Hu, Wenping; Wang, Lichang; Zhou, Xueqin

    2017-03-22

    Effective charge separation is one of the key determinants for the photovoltaic performance of the dye-sensitized solar cells (DSSCs). Herein, two charge-separated (CS) sensitizers, MTPA-Pyc and YD-Pyc, have been synthesized and applied in DSSCs to investigate the effect of the CS states of the sensitizers on the device's efficiency. The CS states with lifetimes of 64 and 177 ns for MTPA-Pyc and YD-Pyc, respectively, are formed via the photoinduced electron transfer (PET) from the 4-styryltriphenylamine (MTPA) or 4-styrylindoline (YD) donor to the pyrimidine cyanoacrylic acid (Pyc) acceptor. DSSCs based on MTPA-Pyc and YD-Pyc exhibit high internal quantum efficiency (IQE) values of over 80% from 400 to 600 nm. In comparison, the IQEs of the charge transfer (CT) sensitizer cells are 10-30% lower in the same wavelength range. The enhanced IQE values in the devices based on the CS sensitizers are ascribed to the higher electron injection efficiencies and slower charge recombination. The results demonstrate that taking advantage of the CS states in the sensitizers can be a promising strategy to improve the IQEs and further enhance the overall efficiencies of the DSSCs.

  12. Extension of the charge separated-state lifetime by supramolecular association of a tetrathiafulvalene electron donor to a zinc/gold bisporphyrin.

    PubMed

    Boixel, Julien; Fortage, Jérôme; Blart, Errol; Pellegrin, Yann; Hammarström, Leif; Becker, Hans-Christian; Odobel, Fabrice

    2010-02-14

    Supramolecular triads were prepared by self-assembly of 4'-pyridyl-2-tetrathiafulvalene axially bound on ZnP-spacer-AuP(+) dyads; the lifetime of the charge separated state ((+)TTF-ZnP-Spacer-AuP ) formed upon light excitation of the triad is greatly increased with respect to that found in the parent dyad.

  13. Therapeutic Antibody Engineering To Improve Viscosity and Phase Separation Guided by Crystal Structure.

    PubMed

    Chow, Chi-Kin; Allan, Barrett W; Chai, Qing; Atwell, Shane; Lu, Jirong

    2016-03-07

    Antibodies at high concentrations often reveal unanticipated biophysical properties suboptimal for therapeutic development. The purpose of this work was to explore the use of point mutations based on crystal structure information to improve antibody physical properties such as viscosity and phase separation (LLPS) at high concentrations. An IgG4 monoclonal antibody (Mab4) that exhibited high viscosity and phase separation at high concentration was used as a model system. Guided by the crystal structure, four CDR point mutants were made to evaluate the role of hydrophobic and charge interactions on solution behavior. Surprisingly and unpredictably, two of the charge mutants, R33G and N35E, showed a reduction in viscosity and a lower propensity to form LLPS at high concentration compared to the wild-type (WT), while a third charge mutant S28K showed an increased propensity to form LLPS compared to the WT. A fourth mutant, F102H, had reduced hydrophobicity, but unchanged viscosity and phase separation behavior. We further evaluated the correlation of various biophysical measurements including second virial coefficient (A2), interaction parameter (kD), weight-average molecular weight (WAMW), and hydrodynamic diameters (DH), at relatively low protein concentration (4 to 15 mg/mL) to physical properties, such as viscosity and liquid-liquid phase separation (LLPS), at high concentration. Surprisingly, kD measured using dynamic light scattering (DLS) at low antibody concentration correlated better with viscosity and phase separation than did A2 for Mab4. Our results suggest that the high viscosity and phase separation observed at high concentration for Mab4 are mainly driven by charge and not hydrophobicity.

  14. Charge carrier concentration dependence of encounter-limited bimolecular recombination in phase-separated organic semiconductor blends

    NASA Astrophysics Data System (ADS)

    Heiber, Michael C.; Nguyen, Thuc-Quyen; Deibel, Carsten

    2016-05-01

    Understanding how the complex intermolecular configurations and nanostructure present in organic semiconductor donor-acceptor blends impacts charge carrier motion, interactions, and recombination behavior is a critical fundamental issue with a particularly major impact on organic photovoltaic applications. In this study, kinetic Monte Carlo (KMC) simulations are used to numerically quantify the complex bimolecular charge carrier recombination behavior in idealized phase-separated blends. Recent KMC simulations have identified how the encounter-limited bimolecular recombination rate in these blends deviates from the often used Langevin model and have been used to construct the new power mean mobility model. Here, we make a challenging but crucial expansion to this work by determining the charge carrier concentration dependence of the encounter-limited bimolecular recombination coefficient. In doing so, we find that an accurate treatment of the long-range electrostatic interactions between charge carriers is critical, and we further argue that many previous KMC simulation studies have used a Coulomb cutoff radius that is too small, which causes a significant overestimation of the recombination rate. To shed more light on this issue, we determine the minimum cutoff radius required to reach an accuracy of less than ±10 % as a function of the domain size and the charge carrier concentration and then use this knowledge to accurately quantify the charge carrier concentration dependence of the recombination rate. Using these rigorous methods, we finally show that the parameters of the power mean mobility model are determined by a newly identified dimensionless ratio of the domain size to the average charge carrier separation distance.

  15. Retentivity, selectivity and thermodynamic behavior of polycyclic aromatic hydrocarbons on charge-transfer and hypercrosslinked stationary phases under conditions of normal phase high performance liquid chromatography.

    PubMed

    Jiang, Ping; Lucy, Charles A

    2016-03-11

    Charge-transfer and hypercrosslinked polystyrene phases offer retention and separation for polycyclic aromatic hydrocarbons (PAHs) and thus have potential for petroleum analysis. The size, shape and planarity selectivity for PAH standards on charge-transfer (DNAP column) and hypercrosslinked polystyrene (HC-Tol and 5HGN columns) phases are different under normal phase liquid chromatography (NPLC). The HC-Tol column behaves like a conventional NPLC column with low retention of PAHs. Retention of PAHs on the DNAP and 5HGN are strong and increases with the number of aromatic rings. The main retention mechanism is through π-π interactions and dipole-induced dipole interaction. Thermodynamics indicates that the retention mechanism of PAHs remains unchanged over the temperature range 20-60°C. In addition, on either DNAP or 5HGN column, both linear and bent PAHs are retained through the same mechanism. But DNAP possesses smaller π-π interaction and higher planarity selectivity than 5HGN for PAHs. This is suggestive that DNAP interacts with PAHs through a disordered phase arrangement, while 5HGN behaves as an ordered adsorption phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Profiling of Current Transients in Capacitor Type Diamond Sensors.

    PubMed

    Gaubas, Eugenijus; Ceponis, Tomas; Meskauskaite, Dovile; Kazuchits, Nikolai

    2015-06-08

    The operational characteristics of capacitor-type detectors based on HPHT and CVD diamond have been investigated using perpendicular and parallel injection of carrier domain regimes. Simulations of the drift-diffusion current transients have been implemented by using dynamic models based on Shockley-Ramo's theorem, under injection of localized surface domains and of bulk charge carriers. The bipolar drift-diffusion regimes have been analyzed for the photo-induced bulk domain (packet) of excess carriers. The surface charge formation and polarization effects dependent on detector biasing voltage have been revealed. The screening effects ascribed to surface charge and to dynamics of extraction of the injected bulk excess carrier domain have been separated and explained. The parameters of drift mobility of the electrons μ(e) = 4000 cm2/Vs and holes μ(h) = 3800 cm2/Vs have been evaluated for CVD diamond using the perpendicular profiling of currents. The coefficient of carrier ambipolar diffusion D(a) = 97 cm2/s and the carrier recombination lifetime τ(R,CVD) ≌ 110 ns in CVD diamond were extracted by combining analysis of the transients of the sensor current and the microwave probed photoconductivity. The carrier trapping with inherent lifetime τR,HPHT ≌ 2 ns prevails in HPHT diamond.

  17. Formation, Structure and Electrochemical Impedance Analysis of Microporous Polyelectrolyte Multilayers

    NASA Astrophysics Data System (ADS)

    Lutkenhaus, Jodie; McEnnis, Kathleen; Hammond, Paula

    2007-03-01

    Microporous networks are of interest as electrolyte materials, gas separation membranes and catalytic nanoparticle templates. Here, we create microporous polyelectrolyte networks of tunable pore size and connectivity using the layer-by-layer (LBL) technique. In this method, a film is formed from the alternate adsorption of oppositely charged polyelectrolytes from aqueous solution to create a cohesive thin film. Using poly(ethylene imine) (PEI) and poly(acrylic acid) (PAA), LBL thin films of variable composition and charge density were assembled; then, the films were treated in an acidic bath, which ionizes PEI and de-ionizes PAA. This shift in charge density induces morphological rearrangement realized by a microporous network. Depending on the assembly pH and acidic bath pH, we are able to precisely tune the morphology, which is characterized by atomic force microscopy and scanning electron microscopy. To demonstrate the porous nature of the polyelectrolyte multilayer, the pores were filled with non-aqueous electrolyte (i.e. ethylene carbonate, dimethyl carbonate and lithium hexafluorophosphate) and probed with electrochemical impedance spectroscopy. These microporous networks exhibited two time constants, indicative of ions traveling through the liquid-filled pores and ions traveling through the polyelectrolyte matrix.

  18. Trapping in irradiated p +-n-n - silicon sensors at fluences anticipated at the HL-LHC outer tracker

    DOE PAGES

    Adam, W.

    2016-04-22

    The degradation of signal in silicon sensors is studied under conditions expected at the CERN High-Luminosity LHC. 200μm thick n-type silicon sensors are irradiated with protons of different energies to fluences of up to 3 x 10 15 neq/cm 2. Pulsed red laser light with a wavelength of 672 nm is used to generate electron-hole pairs in the sensors. The induced signals are used to determine the charge collection efficiencies separately for electrons and holes drifting through the sensor. The effective trapping rates are extracted by comparing the results to simulation. The electric field is simulated using Synopsys device simulationmore » assuming two effective defects. The generation and drift of charge carriers are simulated in an independent simulation based on PixelAV. The effective trapping rates are determined from the measured charge collection efficiencies and the simulated and measured time-resolved current pulses are compared. Furthermore, the effective trapping rates determined for both electrons and holes are about 50% smaller than those obtained using standard extrapolations of studies at low fluences and suggests an improved tracker performance over initial expectations.« less

  19. Computing the nucleon charge and axial radii directly at Q2=0 in lattice QCD

    NASA Astrophysics Data System (ADS)

    Hasan, Nesreen; Green, Jeremy; Meinel, Stefan; Engelhardt, Michael; Krieg, Stefan; Negele, John; Pochinsky, Andrew; Syritsyn, Sergey

    2018-02-01

    We describe a procedure for extracting momentum derivatives of nucleon matrix elements on the lattice directly at Q2=0 . This is based on the Rome method for computing momentum derivatives of quark propagators. We apply this procedure to extract the nucleon isovector magnetic moment and charge radius as well as the isovector induced pseudoscalar form factor at Q2=0 and the axial radius. For comparison, we also determine these quantities with the traditional approach of computing the corresponding form factors, i.e. GEv(Q2) and GMv(Q2) for the case of the vector current and GPv(Q2) and GAv(Q2) for the axial current, at multiple Q2 values followed by z -expansion fits. We perform our calculations at the physical pion mass using a 2HEX-smeared Wilson-clover action. To control the effects of excited-state contamination, the calculations were done at three source-sink separations and the summation method was used. The derivative method produces results consistent with those from the traditional approach but with larger statistical uncertainties especially for the isovector charge and axial radii.

  20. Cascading electron and hole transfer dynamics in a CdS/CdTe core-shell sensitized with bromo-pyrogallol red (Br-PGR): slow charge recombination in type II regime.

    PubMed

    Maity, Partha; Debnath, Tushar; Chopra, Uday; Ghosh, Hirendra Nath

    2015-02-14

    Ultrafast cascading hole and electron transfer dynamics have been demonstrated in a CdS/CdTe type II core-shell sensitized with Br-PGR using transient absorption spectroscopy and the charge recombination dynamics have been compared with those of CdS/Br-PGR composite materials. Steady state optical absorption studies suggest that Br-PGR forms strong charge transfer (CT) complexes with both the CdS QD and CdS/CdTe core-shell. Hole transfer from the photo-excited QD and QD core-shell to Br-PGR was confirmed by both steady state and time-resolved emission spectroscopy. Charge separation was also confirmed by detecting electrons in the conduction band of the QD and the cation radical of Br-PGR as measured from femtosecond transient absorption spectroscopy. Charge separation in the CdS/Br-PGR composite materials was found to take place in three different pathways, by transferring the photo-excited hole of CdS to Br-PGR, electron injection from the photo-excited Br-PGR to the CdS QD, and direct electron transfer from the HOMO of Br-PGR to the conduction band of the CdS QD. However, in the CdS/CdTe/Br-PGR system hole transfer from the photo-excited CdS to Br-PGR and electron injection from the photo-excited Br-PGR to CdS take place after cascading through the CdTe shell QD. Charge separation also takes place via direct electron transfer from the Br-PGR HOMO to the conduction band of CdS/CdTe. Charge recombination (CR) dynamics between the electron in the conduction band of the CdS QD and the Br-PGR cation radical were determined by monitoring the bleach recovery kinetics. The CR dynamics were found to be much slower in the CdS/CdTe/Br-PGR system than in the CdS/Br-PGR system. The formation of the strong CT complex and the separation of charges cascading through the CdTe shell help to slow down charge recombination in the type II regime.

  1. Double heterojunction nanowire photocatalysts for hydrogen generation.

    PubMed

    Tongying, P; Vietmeyer, F; Aleksiuk, D; Ferraudi, G J; Krylova, G; Kuno, M

    2014-04-21

    Charge separation and charge transfer across interfaces are key aspects in the design of efficient photocatalysts for solar energy conversion. In this study, we investigate the hydrogen generating capabilities and underlying photophysics of nanostructured photocatalysts based on CdSe nanowires (NWs). Systems studied include CdSe, CdSe/CdS core/shell nanowires and their Pt nanoparticle-decorated counterparts. Femtosecond transient differential absorption measurements reveal how semiconductor/semiconductor and metal/semiconductor heterojunctions affect the charge separation and hydrogen generation efficiencies of these hybrid photocatalysts. In turn, we unravel the role of surface passivation, charge separation at semiconductor interfaces and charge transfer to metal co-catalysts in determining photocatalytic H2 generation efficiencies. This allows us to rationalize why Pt nanoparticle decorated CdSe/CdS NWs, a double heterojunction system, performs best with H2 generation rates of ∼434.29 ± 27.40 μmol h(-1) g(-1) under UV/Visible irradiation. In particular, we conclude that the CdS shell of this double heterojunction system serves two purposes. The first is to passivate CdSe NW surface defects, leading to long-lived charges at the CdSe/CdS interface capable of carrying out reduction chemistries. Upon photoexcitation, we also find that CdS selectively injects charges into Pt NPs, enabling simultaneous reduction chemistries at the Pt NP/solvent interface. Pt nanoparticle decorated CdSe/CdS NWs thus enable reduction chemistries at not one, but rather two interfaces, taking advantage of each junction's optimal catalytic activities.

  2. Revealing the Double-Edged Sword Role of Graphene on Boosted Charge Transfer versus Active Site Control in TiO2 Nanotube Arrays@RGO/MoS2 Heterostructure.

    PubMed

    Quan, Quan; Xie, Shunji; Weng, Bo; Wang, Ye; Xu, Yi-Jun

    2018-05-01

    Charge separation/transfer is generally believed to be the most key factor affecting the efficiency of photocatalysis, which however will be counteracted if not taking the active site engineering into account for a specific photoredox reaction. Here, a 3D heterostructure composite is designed consisting of MoS 2 nanoplatelets decorated on reduced graphene oxide-wrapped TiO 2 nanotube arrays (TNTAs@RGO/MoS 2 ). Such a cascade configuration renders a directional migration of charge carriers and controlled immobilization of active sites, thereby showing much higher photoactivity for water splitting to H 2 than binary TNTAs@RGO and TNTAs/MoS 2 . The photoactivity comparison and mechanistic analysis reveal the double-edged sword role of RGO on boosted charge separation/transfer versus active site control in this composite system. The as-observed inconsistency between boosted charge transfer and lowered photoactivity over TNTAs@RGO is attributed to the decrease of active sites for H 2 evolution, which is significantly different from the previous reports in literature. The findings of the intrinsic relationship of balanced benefits from charge separation/transfer and active site control could promote the rational optimization of photocatalyst design by cooperatively manipulating charge flow and active site control, thereby improving the efficiency of photocatalysis for target photoredox processes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Evaluation of newly synthesized and commercially available charged cyclomaltooligosaccharides (cyclodextrins) for capillary electrokinetic chromatography.

    PubMed

    Culha, Mustafa; Schell, Fred M; Fox, Shannon; Green, Thomas; Betts, Thomas; Sepaniak, Michael J

    2004-01-22

    A highly new charged cyclodextrin (CD) derivatives, (6-O-carboxymethyl-2,3-di-O-methyl)cyclomaltoheptaoses (CDM-beta-CDs), was synthesized and characterized as anionic reagents for capillary electrophoresis (CE) in an electrokinetic chromatography mode of separation. Substitution with dimethyl groups at the secondary hydroxyl sites of the CD is aimed at influencing the magnitude and selectivity of analyte-CD interactions, while substitution by carboxymethyl groups at the primary hydroxyl sites provides for high charge and electrophoretic mobility. Full regioselective methylation at the secondary hydroxyl sites was achieved in this work, while substitution at the primary hydroxyl sites generated a mixture of multiply charged products. The separation performance of CDM-beta-CD was evaluated using a variety of analyte mixtures. The results obtained from commercially available negatively charged cyclodextrins, heptakis(2,3-di-O-methyl-6-O-sulfo)cyclomaltoheptaose (HDMS-beta-CD) and O-(carboxymethyl)cyclomaltoheptaose (CM-beta-CD) with an average degree of substitution one (DS 1), were compared to CDM-beta-CD using a sample composed of eight positional isomers of dihydroxynaphthalene. Four hydroxylated polychlorobiphenyl derivatives, a group of chiral and isomeric catchecins, and chiral binaphthyl compounds were also separated with CDM-beta-CD. The effect of adding neutral beta-cyclodextrin (beta-CD) into the running buffer containing charged cyclodextrins was investigated and provided evidence of significant inter-CD interactions. Under certain running buffer conditions, the charged cyclodextrins also appear to adsorb to the capillary walls to various degrees.

  4. Investigating Premature Ignition of Thruster Pressure Cartridges by Vibration-Induced Electrostatic Discharge

    NASA Technical Reports Server (NTRS)

    Woods, Stephen S.; Saulsberry, Regor

    2010-01-01

    Pyrotechnic thruster pressure cartridges (TPCs) are used for aeroshell separation on a new NASA crew launch vehicle. Nondestructive evaluation (NDE) during TPC acceptance testing indicated that internal assemblies moved during shock and vibration testing due to an internal bond anomaly. This caused concerns that the launch environment might produce the same movement and release propellant grains that might be prematurely ignited through impact or through electrostatic discharge (ESD) as grains vibrated against internal surfaces. Since a new lot could not be fabricated in time, a determination had to be made as to whether the lot was acceptable to fly. This paper discusses the ESD evaluation and a separate paper addresses the impact problem. A challenge to straight forward assessment existed due to the unavailability of triboelectric data characterizing the static charging characteristics of the propellants within the TPC. The approach examined the physical limitations for charge buildup within the TPC system geometry and evaluated it for discharge under simulated vibrations used to qualify components for launch. A facsimile TPC was fabricated using SS 301 for the case and surrogate worst case materials for the propellants based on triboelectric data. System discharge behavior was evaluated by applying high voltage to the point of discharge in air and by placing worst case charge accumulations within the facsimile TPC and forcing discharge. The facsimile TPC contained simulated propellant grains and lycopodium, a well characterized indicator for static discharge in dust explosions, and was subjected to accelerations equivalent to the maximum accelerations possible during launch. The magnitude of charge generated within the facsimile TPC system was demonstrated to lie in a range of 100 to 10,000 times smaller than the spark energies measured to ignite propellant grains in industry standard discharge tests. The test apparatus, methodology, and results are described in this paper.

  5. Versatile organic (fullerene)-inorganic (CdTe nanoparticle) nanoensembles.

    PubMed

    Guldi, Dirk M; Zilbermann, Israel; Anderson, Greg; Kotov, Nicholas A; Tagmatarchis, Nikos; Prato, Maurizio

    2004-11-10

    Novel organic (positively charged fullerene)-inorganic (negatively charged CdTe nanoparticle) nanoensembles were devised through electrostatic interactions and probed as versatile donor-acceptor hybrids. Photoirradiation of their homogeneous solutions, containing the electrostatically packed components, let to very long-lived (1.3 ms) charge separated states.

  6. The effect of charged quantum dots on the mobility of a two-dimensional electron gas: How important is the Coulomb scattering?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurzmann, A., E-mail: annika.kurzmann@uni-due.de; Beckel, A.; Lorke, A.

    2015-02-07

    We have investigated the influence of a layer of charged self-assembled quantum dots (QDs) on the mobility of a nearby two-dimensional electron gas (2DEG). Time-resolved transconductance spectroscopy was used to separate the two contributions of the change in mobility, which are: (i) The electrons in the QDs act as Coulomb scatterers for the electrons in the 2DEG. (ii) The screening ability and, hence, the mobility of the 2DEG decreases when the charge carrier density is reduced by the charged QDs, i.e., the mobility itself depends on the charge carrier concentration. Surprisingly, we find a negligible influence of the Coulomb scatteringmore » on the mobility for a 2DEG, separated by a 30 nm tunneling barrier to the layer of QDs. This means that the mobility change is completely caused by depletion, i.e., reduction of the charge carrier density in the 2DEG, which indirectly influences the mobility.« less

  7. Electrostatic Separator for Beneficiation of Lunar Soil

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Arens, Ellen; Trigwell, Steve; Captain, James

    2010-01-01

    A charge separator has been constructed for use in a lunar environment that will allow for separation of minerals from lunar soil. In the present experiments, whole lunar dust as received was used. The approach taken here was that beneficiation of ores into an industrial feedstock grade may be more efficient. Refinement or enrichment of specific minerals in the soil before it is chemically processed may be more desirable as it would reduce the size and energy requirements necessary to produce the virgin material, and it may significantly reduce the process complexity. The principle is that minerals of different composition and work function will charge differently when tribocharged against different materials, and hence be separated in an electric field.

  8. Charged-pion cross sections and double-helicity asymmetries in polarized p + p collisions at √s = 200 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adare, A.; Aidala, C.; Ajitanand, N. N.

    2015-02-02

    We present midrapidity charged-pion invariant cross sections, the ratio of the π⁻ to π⁺ cross sections and the charge-separated double-spin asymmetries in polarized p+p collisions at √s = 200 GeV. While the cross section measurements are consistent within the errors of next-to-leadingorder (NLO) perturbative quantum chromodynamics predictions (pQCD), the same calculations over estimate the ratio of the charged-pion cross sections. This discrepancy arises from the cancellation of the substantial systematic errors associated with the NLO-pQCD predictions in the ratio and highlights the constraints these data will place on flavor dependent pion fragmentation functions. Thus, the charge-separated pion asymmetries presented heremore » sample an x range of ~0.03–0.16 and provide unique information on the sign of the gluon-helicity distribution.« less

  9. Charged-pion cross sections and double-helicity asymmetries in polarized p +p collisions at √{s }=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Ta'Ani, H.; Alexander, J.; Andrews, K. R.; Angerami, A.; Aoki, K.; Apadula, N.; Appelt, E.; Aramaki, Y.; Armendariz, R.; Aschenauer, E. C.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Bazilevsky, A.; Belmont, R.; Ben-Benjamin, J.; Bennett, R.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Broxmeyer, D.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Campbell, S.; Castera, P.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Conesa Del Valle, Z.; Connors, M.; Csanád, M.; Csörgő, T.; Dairaku, S.; Datta, A.; David, G.; Dayananda, M. K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Dion, A.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; D'Orazio, L.; Efremenko, Y. V.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fusayasu, T.; Gal, C.; Garishvili, I.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Guo, L.; Gustafsson, H.-Å.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Hanks, J.; Harper, C.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Huang, S.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Ikeda, Y.; Imai, K.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ishihara, M.; Issah, M.; Ivanischev, D.; Iwanaga, Y.; Jacak, B. V.; Jia, J.; Jiang, X.; John, D.; Johnson, B. M.; Jones, T.; Joo, K. S.; Jouan, D.; Kamin, J.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, D. J.; Kim, E.-J.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiss, Á.; Kistenev, E.; Kleinjan, D.; Kline, P.; Kochenda, L.; Komkov, B.; Konno, M.; Koster, J.; Kotov, D.; Král, A.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Li, X.; Lim, S. H.; Linden Levy, L. A.; Liu, H.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Masui, H.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Miki, K.; Milov, A.; Mitchell, J. T.; Miyachi, Y.; Mohanty, A. K.; Moon, H. J.; Morino, Y.; Morreale, A.; Morrison, D. P.; Motschwiller, S.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Nagamiya, S.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Newby, J.; Nguyen, M.; Nihashi, M.; Nouicer, R.; Nyanin, A. S.; Oakley, C.; O'Brien, E.; Ogilvie, C. A.; Oka, M.; Okada, K.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, S. K.; Pate, S. F.; Patel, L.; Pei, H.; Peng, J.-C.; Pereira, H.; Peressounko, D. Yu.; Petti, R.; Pinkenburg, C.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Reygers, K.; Riabov, V.; Riabov, Y.; Richardson, E.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosendahl, S. S. E.; Rubin, J. G.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Samsonov, V.; Sano, S.; Sarsour, M.; Sato, T.; Savastio, M.; Sawada, S.; Sedgwick, K.; Seidl, R.; Seto, R.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shim, H. H.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Sodre, T.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stenlund, E.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Themann, H.; Thomas, D.; Togawa, M.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Utsunomiya, K.; Vale, C.; van Hecke, H. W.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; White, S. N.; Winter, D.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Yamaguchi, Y. L.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. S.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Phenix Collaboration

    2015-02-01

    We present midrapidity charged-pion invariant cross sections, the ratio of the π- to π+ cross sections and the charge-separated double-spin asymmetries in polarized p +p collisions at √{s }=200 GeV . While the cross section measurements are consistent within the errors of next-to-leading-order (NLO) perturbative quantum chromodynamics predictions (pQCD), the same calculations overestimate the ratio of the charged-pion cross sections. This discrepancy arises from the cancellation of the substantial systematic errors associated with the NLO-pQCD predictions in the ratio and highlights the constraints these data will place on flavor-dependent pion fragmentation functions. The charge-separated pion asymmetries presented here sample an x range of ˜0.03 - 0.16 and provide unique information on the sign of the gluon-helicity distribution.

  10. Review on charge transfer and chemical activity of TiO2: Mechanism and applications

    NASA Astrophysics Data System (ADS)

    Cai, Yongqing; Feng, Yuan Ping

    2016-12-01

    Charge separation and transfer at the interface between two materials play a significant role in various atomic-scale processes and energy conversion systems. In this review, we present the mechanism and outcome of charge transfer in TiO2, which is extensively explored for photocatalytic applications in the field of environmental science. We list several experimental and computational methods to estimate the amount of charge transfer. The effects of the work function, defects and doping, and employment of external electric field on modulating the charge transfer are presented. The interplay between the band bending and carrier transport across the surface and interface consisting of TiO2 is discussed. We show that the charge transfer can also strongly affect the behavior of deposited nanoparticles on TiO2 through built-in electric field that it creates. This review encompasses several advances of composite materials where TiO2 is combined with two-dimensional materials like graphene, MoS2, phosphorene, etc. The charge transport in the TiO2-organohalide perovskite with respect to the electron-hole separation at the interface is also discussed.

  11. All-SPEEK flexible supercapacitor exploiting laser-induced graphenization

    NASA Astrophysics Data System (ADS)

    Lamberti, A.; Serrapede, M.; Ferraro, G.; Fontana, M.; Perrucci, F.; Bianco, S.; Chiolerio, A.; Bocchini, S.

    2017-09-01

    Flexible supercapacitors have emerged as one of the more promising and efficient space-saving energy storage system for portable and wearable electronics. Laser-induced graphenization has been recently proposed as a powerful and scalable method to directly convert a polymeric substrate into a 3D network of few layer graphene as high-performance supercapacitor electrode. Unfortunately this outstanding process has been reported to be feasible only for few thermoplastic polymers, strongly limiting its future developments. Here we show that laser induced graphenization of sulfonated poly(ether ether ketone) (SPEEK) can be obtained and the mechanism of this novel process is proposed. The resulting material can act at the same time as binder-free electrode and current collector. Moreover SPEEK is also used both as separator and polymeric electrolyte allowing the assembling of an all-SPEEK flexible supercapacitor. Chemico-physical characterization provides deep understanding of the laser-induced graphenization process, reported on this polymer for the first time, while the device performance studied by cyclic voltammetry, charging-discharging, and impedance spectroscopy prove the enormous potential of the proposed approach.

  12. Three-Dimensional Self-Organization in Nanocomposite Layered Systems by Ultrafast Laser Pulses.

    PubMed

    Liu, Zeming; Siegel, Jan; Garcia-Lechuga, Mario; Epicier, Thierry; Lefkir, Yaya; Reynaud, Stéphanie; Bugnet, Matthieu; Vocanson, Francis; Solis, Javier; Vitrant, Guy; Destouches, Nathalie

    2017-05-23

    Controlling plasmonic systems with nanometer resolution in transparent films and their colors over large nonplanar areas is a key issue for spreading their use in various industrial fields. Using light to direct self-organization mechanisms provides high-speed and flexible processes to meet this challenge. Here, we describe a route for the laser-induced self-organization of metallic nanostructures in 3D. Going beyond the production of planar nanopatterns, we demonstrate that ultrafast laser-induced excitation combined with nonlinear feedback mechanisms in a nanocomposite thin film can lead to 3D self-organized nanostructured films. The process, which can be extended to complex layered composite systems, produces highly uniform large-area nanopatterns. We show that 3D self-organization originates from the simultaneous excitation of independent optical modes at different depths in the film and is activated by the plasmon-induced charge separation and thermally induced NP growth mechanisms. This laser color marking technique enables multiplexed optical image encoding and the generated nanostructured Ag NPs:TiO 2 films offer great promise for applications in solar energy harvesting, photocatalysis, or photochromic devices.

  13. Control of gel swelling and phase separation of weakly charged thermoreversible gels by salt addition

    PubMed Central

    Solis, Francisco J.; Vernon, Brent

    2009-01-01

    Doping of thermoreversible polymer gels with charged monomers provides a way to control phase separation and gelation conditions by coupling the properties of the gel with a tunable ionic environment. We analyze the dependence of the gelation and phase separation conditions on the amount of salt present using a mean field model of weakly charged associative polymers. The ions and co-ions present are explicitly considered at the mean field level, and we determine their concentrations in the different equilibrium phases when the system undergoes phase separation. For weak polymer charge, the entropic contributions of the ions to the free energy of the system play a central role in the determination of the location of phase equilibrium. In the simplest case, when the associative interaction responsible for gel formation is independent of the electrostatic interaction, the addition of salt changes the polymer equilibrium concentrations and indirectly changes the measurable swelling of the gel. We construct phase diagrams of these systems showing the location of the coexistence region, the gel-sol boundary and the location of the tie-lines. We determine the swelling of the gel within the co-existence region. Our main result is that the description of the effect of the salt on the properties of the weakly charged gel can be described through an extra contribution to the effective immiscibility parameter χ proportional to the square of the doping degree f2 and to the inverse square of the added salt concentration s−2. PMID:19759854

  14. Effect of the molecular weight of a neutral polysaccharide on soy protein gelation.

    PubMed

    Monteiro, Sónia R; Lopes-da-Silva, José A

    2017-12-01

    The effects of galactomannans with different molecular weights on the heat-induced gelation characteristics of soybean protein were investigated using dynamic small-strain rheometry, under conditions where the proteins carry a net negative charge (pH7). Microstructure of the resulting gels was investigated by confocal laser scanning microscopy. Phase-separated systems were obtained with different morphologies and degree of phase separation, depending on both biopolymer concentrations and polysaccharide molecular weight. In general, a gelling enhancing effect on soy proteins was verified, despite extensive phase-separation processes observed at the higher polysaccharide molecular weight. This effect was demonstrated by an increase of the gelation rate, a decrease in the temperature at the onset of gelation, and an increase of gel stiffness and elastic character, with the length of polysaccharide chains. Overall, the results obtained established that the judicious selection of the galactomannan molecular weight may be used to modify the structure and gelation properties of soy proteins, originating a diversity of rheological characteristics and microstructures that will impact on the design of novel food formulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Ferroelastically and magnetically co-coupled resistive switching in Nd0.5Sr0.5MnO3/PMN-PT(011) multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Zheng, Ming; Xu, Xiao-Ke; Ni, Hao; Qi, Ya-Ping; Li, Xiao-Min; Gao, Ju

    2018-03-01

    The phase separation, i.e., the competition between coexisting multi-phases, can be adjusted by external stimuli, such as magnetic field, electric field, current, light, and strain. Here, a multiferroic heterostructure composed of a charge-ordered Nd0.5Sr0.5MnO3 thin film and a ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal is fabricated to investigate the lattice strain and magnetic field co-control of phase separation in resistive switching. The stable and nonvolatile resistance tuning is realized at room temperature using the electric-field-induced reversible ferroelastic strain effect, which can be enhanced by 84% under the magnetic field. Moreover, the magnetoresistance can be effectively tuned by the electrically driven ferroelastic strain. These findings reveal that the ferroelastic strain and the magnetic field strongly correlate with each other and are mediated by phase separation. Our work provides an approach to design strain-engineered multifunctional memory devices based on complex oxides by introducing an extra magnetic field stimulus.

  16. A Novel, In-solution Separation of Endogenous Cardiac Sarcomeric Proteins and Identification of Distinct Charged Variants of Regulatory Light Chain*

    PubMed Central

    Scruggs, Sarah B.; Reisdorph, Rick; Armstrong, Mike L.; Warren, Chad M.; Reisdorph, Nichole; Solaro, R. John; Buttrick, Peter M.

    2010-01-01

    The molecular conformation of the cardiac myosin motor is modulated by intermolecular interactions among the heavy chain, the light chains, myosin binding protein-C, and titin and is governed by post-translational modifications (PTMs). In-gel digestion followed by LC/MS/MS has classically been applied to identify cardiac sarcomeric PTMs; however, this approach is limited by protein size, pI, and difficulties in peptide extraction. We report a solution-based work flow for global separation of endogenous cardiac sarcomeric proteins with a focus on the regulatory light chain (RLC) in which specific sites of phosphorylation have been unclear. Subcellular fractionation followed by OFFGEL electrophoresis resulted in isolation of endogenous charge variants of sarcomeric proteins, including regulatory and essential light chains, myosin heavy chain, and myosin-binding protein-C of the thick filament. Further purification of RLC using reverse-phase HPLC separation and UV detection enriched for RLC PTMs at the intact protein level and provided a stoichiometric and quantitative assessment of endogenous RLC charge variants. Digestion and subsequent LC/MS/MS unequivocally identified that the endogenous charge variants of cardiac RLC focused in unique OFFGEL electrophoresis fractions were unphosphorylated (78.8%), singly phosphorylated (18.1%), and doubly phosphorylated (3.1%) RLC. The novel aspects of this study are that 1) milligram amounts of endogenous cardiac sarcomeric subproteome were focused with resolution comparable with two-dimensional electrophoresis, 2) separation and quantification of post-translationally modified variants were achieved at the intact protein level, 3) separation of intact high molecular weight thick filament proteins was achieved in solution, and 4) endogenous charge variants of RLC were separated; a novel doubly phosphorylated form was identified in mouse, and singly phosphorylated, singly deamidated, and deamidated/phosphorylated forms were identified and quantified in human non-failing and failing heart samples, thus demonstrating the clinical utility of the method. PMID:20445002

  17. The rates of charge separation and energy destructive charge recombination processes within an organic dyad in presence of metal-semiconductor core shell nanocomposites.

    PubMed

    Mandal, Gopa; Bhattacharya, Sudeshna; Das, Subrata; Ganguly, Tapan

    2012-01-01

    Steady state and time resolved spectroscopic measurements were made at the ambient temperature on an organic dyad, 1-(4-Chloro-phenyl)-3-(4-methoxy-naphthalen-1-yl)-propenone (MNCA), where the donor 1-methoxynaphthalene (1 MNT) is connected with the acceptor p-chloroacetophenone (PCA) by an unsaturated olefinic bond, in presence of Ag@TiO2 nanoparticles. Time resolved fluorescence and absorption measurements reveal that the rate parameters associated with charge separation, k(CS), within the dyad increases whereas charge recombination rate k(CR) reduces significantly when the surrounding medium is changed from only chloroform to mixture of chloroform and Ag@TiO2 (noble metal-semiconductor) nanocomposites. The observed results indicate that the dyad being combined with core-shell nanocomposites may form organic-inorganic nanocomposite system useful for developing light energy conversion devices. Use of metal-semiconductor nanoparticles may provide thus new ways to modulate charge recombination processes in light energy conversion devices. From comparison with the results obtained in our earlier investigations with only TiO2 nanoparticles, it is inferred that much improved version of light energy conversion device, where charge-separated species could be protected for longer period of time of the order of millisecond, could be designed by using metal-semiconductor core-shell nanocomposites rather than semiconductor nanoparticles only.

  18. Pulsed laser synthesis in liquid of efficient visible-light-active ZnO/rGO nanocomposites for improved photo-catalytic activity

    NASA Astrophysics Data System (ADS)

    Moqbel, Redhwan A.; Gondal, Mohammed A.; Qahtan, Talal F.; Dastageer, Mohamed A.

    2018-03-01

    In this work the synthesis of visible light active zinc oxide/reduced graphene oxide (ZnO/rGO) nanocomposite by laser induced fragmentation of particulates in liquid, its morphological/optical characterizations, and its application in the process of photo-catalytic degradation of toxic Rhodamine B (RhB) dye under visible radiation were studied. It is observed from the optical and morphological characterization that the anchoring of ZnO on the rGO sheets in ZnO/rGO nanocomposite considerably reduced the aggregation of ZnO (increased surface area), reduced the recombination of photo-induced charge carriers, promoted more adsorption of reactants on the catalytic surface and also enhanced and extended the light absorption in the visible spectral region. With all these improved characteristics of ZnO/rGO nanocomposite, it was found that this material as a photo-catalyst yielded an RhB degradation efficiency of 86%, as compared to the 40% degradation with pure ZnO NPs under the same experimental conditions. In the ZnO/rGO nanocomposite, rGO functions as an electron acceptor to promote charge separation, an aggregation inhibitor to enhance the active surface area, a co-catalyst, a good dye adsorber and also as a supporting matrix for ZnO.

  19. Simple luminescence detectors using a light-emitting diode or a Xe lamp, optical fiber and charge-coupled device, or photomultiplier for determining proteins in capillary electrophoresis: a critical comparison.

    PubMed

    Casado-Terrones, Silvia; Fernández-Sánchez, Jorge F; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2007-06-01

    The performance of two homemade fluorescence-induced capillary electrophoresis detectors, one based on light-emitting diode (LED) as the excitation source and a charge-coupled device (CCD) photodetector and the other based on a commercial luminescence spectrometer (Xe lamp) as the excitation source and a photomultiplier tube as a detector, were compared for the determination of fluorescent proteins R-phycoerythrin and B-phycoerythrin. Both devices use commercially available, reasonably priced optical components that can be used by nonexperts. After fine optimization of several optical and separation parameters in both devices, a zone capillary electrophoresis methodology was achieved with 50mM borate buffer (pH 8.4) and 10mM phytic acid for the determination of two phycobiliproteins. Detection limits of 0.50 and 0.64microg/ml for R-phycoerythrin and B-phycoerythrin, respectively, were achieved by using the LED-induced fluorescence capillary electrophoresis (LED-IF-CE) system, and corresponding detection limits of 2.73 and 2.16microg/ml were achieved by using the Xe lamp-IF-CE system. Analytical performance and other parameters, such as cost and potential to miniaturization, are compared for both devices.

  20. Rapid Substrate-Induced Charge Movements of the GABA Transporter GAT1

    PubMed Central

    Bicho, Ana; Grewer, Christof

    2005-01-01

    The GABA transporter GAT1 removes the neurotransmitter GABA from the synaptic cleft by coupling of GABA uptake to the co-transport of two sodium ions and one chloride ion. The aim of this work was to investigate the individual reaction steps of GAT1 after a GABA concentration jump. GAT1 was transiently expressed in HEK293 cells and its pre-steady-state kinetics were studied by combining the patch-clamp technique with the laser-pulse photolysis of caged GABA, which allowed us to generate GABA concentration jumps within <100 μs. Recordings of transport currents generated by GAT1, both in forward and exchange transport modes, showed multiple charge movements that can be separated along the time axis. The individual reactions associated with these charge movements differ from the well-characterized electrogenic “sodium-occlusion” reaction by GAT1. One of the observed electrogenic reactions is shown to be associated with the GABA-translocating half-cycle of the transporter, in contradiction to previous studies that showed no charge movements associated with these reactions. Interestingly, reactions of the GABA-bound transporter were not affected by the absence of extracellular chloride, suggesting that Cl− may not be co-translocated with GABA. Based on the results, a new alternating access sequential-binding model is proposed for GAT1's transport cycle that describes the results presented here and those by others. PMID:15849242

  1. Effects of ion size and charge asymmetry on the salt distribution in polyelectrolyte blends and block copolymers

    NASA Astrophysics Data System (ADS)

    Kwon, Ha-Kyung; Shull, Kenneth R.; Zwanikken, Jos W.; Olvera de La Cruz, Monica

    Polyelectrolytes have received much attention as potential candidates for rechargeable batteries, membrane fuel cells, and drug delivery carriers, as they can combine the electrochemical properties of the charged components with the mechanical stability and biocompatibility of the polymer backbone. The role of salt in determining the bulk and interfacial behaviors of polyelectrolytes has been of particular interest, as the miscibility has shown to depend significantly on salt identity and concentration. Recent studies employing the SCFT-LS method have shown that ionic correlations can enhance phase separation in polyelectrolytes and can induce selectivity in neutral solvents. Here, we extend the theory to investigate the role of salt in strongly correlated polyelectrolytes. We find that in lamellae-forming block copolymers, the addition of monovalent, symmetric salt can lead to a decreased lamellar spacing due to increased selectivity of the salt. When multiple electrostatic interactions are introduced via size and valency asymmetry in the salt pair, the bulk phase behavior and salt distribution across interfaces are significantly altered, as size and charge mismatch can transform the charge ordering seen in monovalent, symmetric salts. This work was performed under the following financial assistance award 70NANB14H012 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD).

  2. Charge state breeding experiences and plans at TRIUMF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ames, F., E-mail: ames@triumf.ca; Marchetto, M.; Mjøs, A.

    At the Isotope Separation and ACceleration (ISAC) facility at TRIUMF, an electron cyclotron resonance ion source (ECRIS) has been set up for the charge state breeding of radioactive ions. In order to reduce background from stable ions generated in the ECRIS, several measures, including changing materials for the plasma chamber and the surrounding components, have been implemented. Further reduction has been achieved by using the post-accelerator chain as a mass filter. Since the implementation of those measures in 2013, physics experiments with accelerated radioactive isotopes of Rb, Sr, K, and Mg have been performed. In most cases, a charge breedingmore » efficiency of several percent has been achieved. With the planned expansion of the isotope production capabilities at TRIUMF within the Advanced Rare IsotopE Laboratory project, two new target stations, one using photo-fission induced by a high-power electron beam at 50 MeV and the other one using 480 MeV protons as at ISAC, will be put into operation within the next 5 yr. Additionally, a new electron beam ion source (EBIS) based charge state breeding system will be installed. Background from such a source is expected to be much lower. The drawback is that for the efficient operation of such a system, pulsed beam operation is required, which makes the installation of an additional ion buncher in front of the EBIS necessary.« less

  3. Design principle for efficient charge separation at the donor-acceptor interface for high performance organic solar cell device

    NASA Astrophysics Data System (ADS)

    Nie, Wanyi; Gupta, Gautam; Crone, Brian; Wang, Hsing-Lin; Mohite, Aditya; MPA-11 Material synthesis and integrated device Team; MPA-chemistry Team

    2014-03-01

    The performance of donor (D) /acceptor (A) structure based organic electronic devices, such as solar cell, light emitting devices etc., relays on the charge transfer process at the interface dramatically. In organic solar cell, the photo-induced electron-hole pair is tightly bonded and will form a charge transfer (CT) state at the D/A interface after dissociation. There is a large chance for them to recombine through CT state and thus is a major loss that limit the overall performance. Here, we report three different strategies that allow us to completely suppress the exciplex (or charge transfer state) recombination between any D/A system. We observe that the photocurrent increases by 300% and the power conversion efficiency increases by 4-5 times simply by inserting a spacer layer in the form of an a) insulator b) Oliogomer or using a c) heavy atom at the donor-acceptor interface in a P3HT/C60 bilayer device. By using those different functional mono layers, we successfully suppressed the exciplex recombination in evidence of increased photocurrent and open circuit voltage. Moreover, these strategies are applicable universally to any donor-acceptor interface. And we demonstrated such strategies in a bulk-heterojunction device which improved the power conversion efficiency from 3.5% up to 4.6%.

  4. NEUDOSE: A CubeSat Mission for Dosimetry of Charged Particles and Neutrons in Low-Earth Orbit.

    PubMed

    Hanu, A R; Barberiz, J; Bonneville, D; Byun, S H; Chen, L; Ciambella, C; Dao, E; Deshpande, V; Garnett, R; Hunter, S D; Jhirad, A; Johnston, E M; Kordic, M; Kurnell, M; Lopera, L; McFadden, M; Melnichuk, A; Nguyen, J; Otto, A; Scott, R; Wagner, D L; Wiendels, M

    2017-01-01

    During space missions, astronauts are exposed to a stream of energetic and highly ionizing radiation particles that can suppress immune system function, increase cancer risks and even induce acute radiation syndrome if the exposure is large enough. As human exploration goals shift from missions in low-Earth orbit (LEO) to long-duration interplanetary missions, radiation protection remains one of the key technological issues that must be resolved. In this work, we introduce the NEUtron DOSimetry & Exploration (NEUDOSE) CubeSat mission, which will provide new measurements of dose and space radiation quality factors to improve the accuracy of cancer risk projections for current and future space missions. The primary objective of the NEUDOSE CubeSat is to map the in situ lineal energy spectra produced by charged particles and neutrons in LEO where most of the preparatory activities for future interplanetary missions are currently taking place. To perform these measurements, the NEUDOSE CubeSat is equipped with the Charged & Neutral Particle Tissue Equivalent Proportional Counter (CNP-TEPC), an advanced radiation monitoring instrument that uses active coincidence techniques to separate the interactions of charged particles and neutrons in real time. The NEUDOSE CubeSat, currently under development at McMaster University, provides a modern approach to test the CNP-TEPC instrument directly in the unique environment of outer space while simultaneously collecting new georeferenced lineal energy spectra of the radiation environment in LEO.

  5. Electrospun nylon 6/zinc doped hydroxyapatite membrane for protein separation: Mechanism of fouling and blocking model.

    PubMed

    Esfahani, Hamid; Prabhakaran, Molamma P; Salahi, Esmaeil; Tayebifard, Ali; Rahimipour, Mohamad Reza; Keyanpour-Rad, Mansour; Ramakrishna, Seeram

    2016-02-01

    Development of composite nanofibrous membrane via electrospinning a polymer with ceramic nanoparticles (NPs) for application in protein separation systems is explored during this study. Positively charged zinc doped hydroxyapatite (xZH) NPs were prepared in three different compositions via chemical precipitation method. Herein, we created a positively charged surface containing nanoparticles on electrospun Nylon-6 nanofibers (NFs) to improve the separation and selectivity properties for adsorption of negatively charged protein, namely bovine serum albumin (BSA). The decline in permeate flux was analyzed using the framework of classical blocking models and fitting, demonstrated that the transition of fouling mechanisms was dominated during the filtration process. The standard blocking model provided the best fit of the experimental results during the mid-filtration period. The membrane decorated by NPs containing 4at.% zinc cations not only provided maximum BSA separation but also capable of separating higher amounts of BSA molecules (even after 1h filtration) than the pure Nylon membrane. Protein separation was achieved through this membrane with the incorporation of NPs that had high zeta potential (+5.9±0.2mV) and lower particle area (22,155nm(2)). The developed membrane has great potential to act as a high efficiency membrane for capturing BSA. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Simultaneous separation and analysis of water- and fat-soluble vitamins on multi-modal reversed-phase weak anion exchange material by HPLC-UV.

    PubMed

    Dabre, Romain; Azad, Nazanin; Schwämmle, Achim; Lämmerhofer, Michael; Lindner, Wolfgang

    2011-04-01

    Several methods for the separation of vitamins on HPLC columns were already validated in the last 20 years. However, most of the techniques focus on separating either fat- or water-soluble vitamins and only few methods are intended to separate lipophilic and hydrophilic vitamins simultaneously. A mixed-mode reversed-phase weak anion exchange (RP-WAX) stationary phase was developed in our laboratory in order to address such mixture of analytes with different chemical characteristics, which are difficult to separate on standard columns. The high versatility in usage of the RP-WAX chromatographic material allowed a baseline separation of ten vitamins within a single run, seven water-soluble and three fat-soluble, using three different chromatographic modes: some positively charged vitamins are eluted in ion exclusion and ion repulsion modes whereas the negatively charged molecules are eluted in the ion exchange mechanism. The non-charged molecules are eluted in a classical reversed-phase mode, regarding their polarities. The method was validated for the vitamin analysis in tablets, evaluating selectivity, robustness, linearity, accuracy, and precision. The validated method was finally employed for the analysis of the vitamin content of some commercially available supplement tablets. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Chiral magnetic effect search in p+Au, d+Au and Au+Au collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Zhao, Jie

    2018-01-01

    Metastable domains of fluctuating topological charges can change the chirality of quarks and induce local parity violation in quantum chromodynamics. This can lead to observable charge separation along the direction of the strong magnetic field produced by spectator protons in relativistic heavy-ion collisions, a phenomenon called the chiral magnetic effect (CME). A major background source for CME measurements using the charge-dependent azimuthal correlator (Δϒ) is the intrinsic particle correlations (such as resonance decays) coupled with the azimuthal elliptical anisotropy (v2). In heavy-ion collisions, the magnetic field direction and event plane angle are correlated, thus the CME and the v2-induced background are entangled. In this report, we present two studies from STAR to shed further lights on the background issue. (1) The Δϒ should be all background in small system p+Au and d+Au collisions, because the event plane angles are dominated by geometry fluctuations uncorrelated to the magnetic field direction. However, significant Δϒ is observed, comparable to the peripheral Au+Au data, suggesting a background dominance in the latter, and likely also in the mid-central Au+Au collisions where the multiplicity and v2 scaled correlator is similar. (2) A new approach is devised to study Δϒ as a function of the particle pair invariant mass (minv) to identify the resonance backgrounds and hence to extract the possible CME signal. Signal is consistent with zero within uncertainties at high minv. Signal at low minv, extracted from a two-component model assuming smooth mass dependence, is consistent with zero within uncertainties.

  8. Evidence for charge-trapping inducing polymorphic structural-phase transition in pentacene.

    PubMed

    Ando, Masahiko; Kehoe, Tom B; Yoneya, Makoto; Ishii, Hiroyuki; Kawasaki, Masahiro; Duffy, Claudia M; Minakata, Takashi; Phillips, Richard T; Sirringhaus, Henning

    2015-01-07

    Trapped-charge-induced transformation of pentacene polymorphs is observed by using in situ Raman spectroscopy and molecular dynamics simulations reveal that the charge should be localized in pentacene molecules at the interface with static intermolecular disorder along the long axis. Quantum chemical calculations of the intermolecular transfer integrals suggest the disorder to be large enough to induce Anderson-type localization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions.

    PubMed

    Williams, Peggy E; Marshall, David L; Poad, Berwyck L J; Narreddula, Venkateswara R; Kirk, Benjamin B; Trevitt, Adam J; Blanksby, Stephen J

    2018-06-04

    In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions. Graphical Abstract.

  10. Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions

    NASA Astrophysics Data System (ADS)

    Williams, Peggy E.; Marshall, David L.; Poad, Berwyck L. J.; Narreddula, Venkateswara R.; Kirk, Benjamin B.; Trevitt, Adam J.; Blanksby, Stephen J.

    2018-06-01

    In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions.

  11. Plasmonic Photovoltaic Cells with Dual-Functional Gold, Silver, and Copper Half-Shell Arrays.

    PubMed

    Wu, Ling; Kim, Gyu Min; Nishi, Hiroyasu; Tatsuma, Tetsu

    2017-09-12

    Solid-state photovoltaic cells based on plasmon-induced charge separation (PICS) have attracted growing attention during the past decade. However, the power conversion efficiency (PCE) of the previously reported devices, which are generally loaded with dispersed metal nanoparticles as light absorbers, has not been sufficiently high. Here we report simpler plasmonic photovoltaic cells with interconnected Au, Ag, and Cu half-shell arrays deposited on SiO 2 @TiO 2 colloidal crystals, which serve both as a plasmonic light absorber and as a current collector. The well-controlled and easily prepared plasmonic structure allows precise comparison of the PICS efficiency between different plasmonic metal species. The cell with the Ag half-shell array has higher photovoltaic performance than the cells with Au and Cu half-shell arrays because of the high population of photogenerated energetic electrons, which gives a high electron injection efficiency and suppressed charge recombination probability, achieving the highest PCE among the solid-state PICS devices even without a hole transport layer.

  12. Mechanical abuse simulation and thermal runaway risks of large-format Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Hsin; Lara-Curzio, Edgar; Rule, Evan T.; Winchester, Clinton S.

    2017-02-01

    Internal short circuit of large-format Li-ion pouch cells induced by mechanical abuse was simulated using a modified mechanical pinch test. A torsion force was added manually at ∼40% maximum compressive loading force during the pinch test. The cell was twisted about 5° to the side by horizontally pulling a wire attached to the anode tab. The combined torsion-compression force created small failure at the separator yet allowed testing of fully charged large format Li-ion cells without triggering thermal runaway. Two types of commercial cells were tested using 4-6 cells at each state-of-charge (SOC). Commercially available 18 Ahr LiFePO4 (LFP) and 25 Ahr Li(NiMnCo)1/3O2 (NMC) cells were tested, and a thermal runaway risk (TRR) score system was used to evaluate the safety of the cells under the same testing conditions. The aim was to provide the cell manufacturers and end users with a tool to compare different designs and safety features.

  13. Transition-Metal Chalcogenide/Graphene Ensembles for Light-Induced Energy Applications.

    PubMed

    Kagkoura, Antonia; Skaltsas, Theodosis; Tagmatarchis, Nikos

    2017-09-21

    Recently, nanomaterials that harvest solar energy and convert it to other forms of energy are of great interest. In this context, transition metal chalcogenides (TMCs) have recently been in the spotlight due to their optoelectronic properties that render them potential candidates mainly in energy conversion applications. Integration of TMCs onto a strong electron-accepting material, such as graphene, yielding novel TMC/graphene ensembles is of high significance, since photoinduced charge-transfer phenomena, leading to intra-ensemble charge separation, may occur. In this review, we highlight the utility of TMC/graphene ensembles, with a specific focus on latest trends in applications, while their synthetic routes are also discussed. In fact, TMC/graphene ensembles are photocatalytically active and superior as compared to intact TMCs analogues, when examined toward photocatalytic H 2 evolution, dye degradation and redox transformations of organic compounds. Moreover, TMC/graphene ensembles have shown excellent prospect when employed in photovoltaics and biosensing applications. Finally, the future prospects of such materials are outlined. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Charge carriers' trapping states in pentacene films studied by modulated photocurrent

    NASA Astrophysics Data System (ADS)

    Gorgolis, S.; Giannopoulou, A.; Kounavis, P.

    2013-03-01

    The modulated photocurrent (MPC) technique is employed to study the charge carriers' trapping states of pentacene films. The characteristics of the experimental MPC spectra were found to be compatible with trapping-detrapping process of holes in gap states in which their occupancy can be modified by the bias illumination. A demarcation energy level separating empty from partially occupied traps was deduced from the MPC spectra, which can be used to monitor bias-light induced changes in the quasi Fermi level. An exponential trap distribution from structural disorder and a deep metastable gaussian trap distribution from adsorbed environmental impurities were extracted by means of the MPC spectroscopy. An attempt to escape frequency of the order of 1010s-1 was deduced for the gap sates. The derived trap distributions agree with those found before by means of other techniques. The present results indicate that the MPC technique can be used as a valuable tool for pentacene films characterization since it can be also applied to field effect samples.

  15. Greatly Increasing Trapped Ion Populations for Mobility Separations Using Traveling Waves in Structures for Lossless Ion Manipulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Liulin; Ibrahim, Yehia M.; Garimella, Sandilya V. B.

    The initial use of traveling waves (TW) for ion mobility (IM) separations using a structures for lossless ion manipulations (SLIM) employed an ion funnel trap (IFT) to accumulate ions from a continuous electrospray ionization source, and limited to injected ion populations of ~106 charges due to the onset of space charge effects in the trapping region. Additional limitations arise due to the loss of resolution for the injection of ions over longer periods (e.g. in extended pulses). In this work a new SLIM ‘flat funnel’ (FF) module has been developed and demonstrated to enable the accumulation of much larger ionmore » populations and their injection for IM separations. Ion current measurements indicate a capacity of ~3.2×108 charges for the extended trapping volume, over an order of magnitude greater than the IFT. The orthogonal ion injection into a funnel shaped separation region can greatly reduce space charge effects during the initial IM separation stage, and the gradually reduced width of the path allows the ion packet to be increasingly compressed in the lateral dimension as the separation progresses, allowing e.g. efficient transmission through conductance limits or compatibility with subsequent ion manipulations. This work examined the TW, RF, and DC confining field SLIM parameters involved in ion accumulation, injection, transmission and separation in the FF IM module using both direct ion current and MS measurements. Wide m/z range ion transmission is demonstrated, along with significant increases in signal to noise (S/N) ratios due to the larger ion populations injected. Additionally, we observed a reduction in the chemical background, which was attributed to more efficient desolvation of solvent related clusters over the extended ion accumulation periods. The TW SLIM FF IM module is anticipated to be especially effective as a front end for long path SLIM IM separation modules.« less

  16. Electrokinetic Supercapacitor for Simultaneous Harvesting and Storage of Mechanical Energy.

    PubMed

    Yang, Peihua; Qu, Xiaopeng; Liu, Kang; Duan, Jiangjiang; Li, Jia; Chen, Qian; Xue, Guobin; Xie, Wenke; Xu, Zhimou; Zhou, Jun

    2018-03-07

    Energy harvesting and storage are two distinct processes that are generally achieved using two separated parts based on different physical and chemical principles. Here we report a self-charging electrokinetic supercapacitor that directly couples the energy harvesting and storage processes into one device. The device consists of two identical carbon nanotube/titanium electrodes, separated by a piece of anodic aluminum oxide nanochannels membrane. Pressure-driven electrolyte flow through the nanochannels generates streaming potential, which can be used to charge the capacitive electrodes, accomplishing simultaneous energy generation and storage. The device stores electric charge density of 0.4 mC cm -2 after fully charging under pressure of 2.5 bar. This work may offer a train of thought for the development of a new type of energy unit for self-powered systems.

  17. Separations by supported liquid membrane cascades

    DOEpatents

    Danesi, Pier R.

    1986-01-01

    The invention describes a new separation technique which leads to multi-stage operations by the use of a series (a cascade) of alternated carrier-containing supported-liquid membranes. The membranes contain alternatively a liquid cation exchanger extractant and a liquid anion exchanger extractant (or a neutral extractant) as carrier. The membranes are spaced between alternated aqueous electrolytic solutions of different composition which alternatively provide positively charged extractable species and negatively charged (or zero charged) extractable species, of the chemical species to be separated. The alternated aqueous electrolytic solutions in addition to providing the driving force to the process, simultaneously function as a stripping solution from one type of membrane and as an extraction-promoting solution for the other type of membrane. The aqueous electrolytic solutions and the supported liquid membranes are arranged in such a way to provide a continuous process which leads to the continuous enrichment of the species which show the highest permeability coefficients. By virtue of the very high number of stages which can be arranged, even chemical species having very similar chemical behavior (and consequently very similar permeability coefficients) can be completely separated. The invention also provide a way to concentrate the separated species.

  18. Electron emission from ferroelectrics - a review

    NASA Astrophysics Data System (ADS)

    Riege, H.

    1994-02-01

    The strong pulsed emission of electrons from the surface of ferroelectric (FE) materials was discovered at CERN in 1987. Since then many aspects and properties of the method of generation and propagation of electron beams from FE have been studied experimentally. The method is based on macroscopic charge separation and self-emission of electrons under the influence of their own space-charge fields. Hence, this type of emission is not limited by the Langmuir-Child law as are conventional emission methods. Charge separation and electron emission can be achieved by rapid switching of the spontaneous, ferroelectric polarization. Polarization switching may be induced by application of electrical-field or mechanical-pressure pulses, as well as by thermal heating or laser illumination of the ferroelectric emitter. At higher emission intensities plasma formation assists the FE emission and leads to a strong growth of emitted current amplitude, which is no longer limited by the FE material and the surface properties. The most attractive features of FE emission are robustness and ease of manipulation of the emitter cathodes which can be transported through atmospheric air and used without any problems in vacuum, low-pressure gas or plasma environments. Large-area arrangements of multiple emitters, switched in interleaved mode, can produce electron beams of any shape, current amplitude or time structure. The successful application of FE emission in accelerator technology has been demonstrated experimentally in several cases, e.g. for triggering high-power gas switches, for photocathodes in electron guns, and for electron-beam generators intended to generate, neutralize and enhance ion beams in ion sources and ion linacs. Other applications can be envisaged in microwave power generators and in the fields of electronics and vacuum microelectronics.

  19. 48 CFR 871.201-2 - Requirements when contracts are not required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., fees, and charges for books, supplies, or services necessary to train or educate an eligible veteran..., including the rate of tuition, fees, and separate charges, if any, for books, supplies, and equipment... accordance with catalog or other published document (identify publication). The statement of charges may not...

  20. Stacked white OLED having separate red, green and blue sub-elements

    DOEpatents

    Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael

    2014-07-01

    The present invention relates to efficient organic light emitting devices (OLEDs). The devices employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. Thus, the devices may be white-emitting OLEDs, or WOLEDs. Each sub-element comprises at least one organic layer which is an emissive layer--i.e., the layer is capable of emitting light when a voltage is applied across the stacked device. The sub-elements are vertically stacked and are separated by charge generating layers. The charge-generating layers are layers that inject charge carriers into the adjacent layer(s) but do not have a direct external connection.

  1. Evaluation of plasma-induced damage and bias temperature instability depending on type of antenna layer using current-starved ring oscillators

    NASA Astrophysics Data System (ADS)

    Kishida, Ryo; Furuta, Jun; Kobayashi, Kazutoshi

    2018-04-01

    Plasma-induced damage (PID) and bias temperature instability (BTI) are inevitable reliability issues that degrade the performance of transistors. In this study, PID and BTI, depending on the type of antenna layer, are evaluated in current-starved ring oscillators (ROs) to separate degradations in PMOS and NMOS transistors in a 65 nm silicon-on-insulator (SOI) process. Oscillation frequencies of ROs fluctuate with the performance of MOSFET switches between power/ground rails and virtual power/ground nodes. The initial frequencies of ROs with PMOS switches having antennas on upper layers decrease. However, those with NMOS switches become higher than those without PID because high-k dielectrics are damaged by positive charges. The degradation induced by negative BTI (NBTI) in PMOS is 1.5 times larger than that induced by positive BTI (PBTI) in NMOS. However, both NBTI- and PBTI-induced degradations are the same among different antenna layers. The frequency fluctuation caused by PID is converted to threshold voltage shifts by circuit simulations. Threshold voltages shift by 8.4 and 11% owing to PID in PMOS and NMOS transistors, respectively.

  2. Electrostatic Beneficiation of Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Trigwell, Steve; Captain, James; Captain, Janine; Arens, Ellen; Quinn, Jacqueline; Calle, Carlos

    2006-01-01

    Electrostatic beneficiation of lunar regolith is a method allowing refinement of specific minerals in the material for processing on the moon. The use of tribocharging the regolith prior to separation was investigated on the lunar simulant MLS-I by passing the dust through static mixers constructed from different materials; aluminum, copper, stainless steel, and polytetrafluoroethylene (PTFE). The amount of charge acquired by the simulant was dependent upon the difference in the work function of the dust and the charging material. XPS and SEM were used to characterize the simulant after it was sieved into five size fractions (> 100 pm, 75-100 pm, 50- 75 pm, 50-25 pm, and < 25 pm), where very little difference in surface composition was observed between the sizes. Samples of the smallest (< 25 pm) and largest (> 100 pm) size fractions were beneficiated through a charge separator using the aluminum (charged the simulant negatively) and PTFE (charged positively) mixers. The mass fractions of the separated simulant revealed that for the larger particle size, significant unipolar charging was observed for both mixers, whereas for the smaller particle sizes, more bipolar charging was observed, probably due to the finer simulant adhering to the inside of the mixers shielding the dust from the charging material. Subsequent XPS analysis of the beneficiated fractions showed the larger particle size fraction having some species differentiation, but very little difference for the smaller.size. Although MLS-1 was made to have similar chemistry to actual lunar dust, its mineralogy is quite different. On-going experiments are using NASA JSC-1 lunar simulant. A vacuum chamber has been constructed, and future experiments are planned in a simulated lunar environment.

  3. Oxidation driven ZnS Core-ZnO shell photocatalysts under controlled oxygen atmosphere for improved photocatalytic solar water splitting

    NASA Astrophysics Data System (ADS)

    Bak, Daegil; Kim, Jung Hyeun

    2018-06-01

    Zinc type photocatalysts attract great attentions in solar hydrogen production due to their easy availability and benign environmental characteristics. Spherical ZnS particles are synthesized with a facile hydrothermal method, and they are further used as core materials to introduce ZnO shell layer surrounding the core part by partial oxidation under controlled oxygen contents. The resulting ZnS core-ZnO shell photocatalysts represent the heterostructural type II band alignment. The existence of oxide layer also influences on proton adsorption power with an aid of strong base cites derived from highly electronegative oxygen atoms in ZnO shell layer. Photocatalytic water splitting reaction is performed to evaluate catalyst efficiency under standard one sun condition, and the highest hydrogen evolution rate (1665 μmolg-1h-1) is achieved from the sample oxidized at 16.2 kPa oxygen pressure. This highest hydrogen production rate is achieved in cooperation with increased light absorption and promoted charge separations. Photoluminescence analysis reveals that the improved visible light response is obtained after thermal oxidation process due to the oxygen vacancy states in the ZnO shell layer. Therefore, overall photocatalytic efficiency in solar hydrogen production is enhanced by improved charge separations, crystallinity, and visible light responses from the ZnS core-ZnO shell structures induced by thermal oxidation.

  4. Enhanced sunlight-driven photocatalytic performance of Bi-doped CdMoO4 benefited from efficient separation of photogenerated charge pairs

    NASA Astrophysics Data System (ADS)

    Huang, Jiao; Liu, Huanhuan; Zhong, Junbo; Yang, Qi; Chen, Jiufu; Li, Jianzhang; Ma, Dongmei; duan, Ran

    2018-06-01

    In this paper, to further boost the photocatalytic performance of CdMoO4, Bi3+ was successfully doped into CdMoO4 by a facile microwave hydrothermal method. The Bi-doped CdMoO4 photocatalysts prepared were characterized by Brunauer-Emmett-Teller (BET) method, X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), electron spin-resonance (ESR) and surface photovoltage spectroscopy (SPS). The results exhibit that doping Bi3+ into CdMoO4 remarkably boosts the separation rate of photoinduced charge pairs and the specific surface area, decrease the crystal size, narrows the band gap of the CdMoO4 and induces the binding energy shift of Cd, all these advantageous factors result in the promoted photocatalytic performance of CdMoO4. Using rhodamine B (RhB) as model toxic pollutant, the photocatalytic activities of the photocatalysts were evaluated under a 500 W Xe lamp irradiation. When the molar ratio of Bi/Cd is 0.2%, Bi-CdMoO4 prepared displays the best photocatalytic performance, the photocatalytic performance of the 0.2% sample is more than twice of that of the reference CdMoO4.

  5. The effect of solvent relaxation time constants on free energy gap law for ultrafast charge recombination following photoinduced charge separation.

    PubMed

    Mikhailova, Valentina A; Malykhin, Roman E; Ivanov, Anatoly I

    2018-05-16

    To elucidate the regularities inherent in the kinetics of ultrafast charge recombination following photoinduced charge separation in donor-acceptor dyads in solutions, the simulations of the kinetics have been performed within the stochastic multichannel point-transition model. Increasing the solvent relaxation time scales has been shown to strongly vary the dependence of the charge recombination rate constant on the free energy gap. In slow relaxing solvents the non-equilibrium charge recombination occurring in parallel with solvent relaxation is very effective so that the charge recombination terminates at the non-equilibrium stage. This results in a crucial difference between the free energy gap laws for the ultrafast charge recombination and the thermal charge transfer. For the thermal reactions the well-known Marcus bell-shaped dependence of the rate constant on the free energy gap is realized while for the ultrafast charge recombination only a descending branch is predicted in the whole area of the free energy gap exceeding 0.2 eV. From the available experimental data on the population kinetics of the second and first excited states for a series of Zn-porphyrin-imide dyads in toluene and tetrahydrofuran solutions, an effective rate constant of the charge recombination into the first excited state has been calculated. The obtained rate constant being very high is nearly invariable in the area of the charge recombination free energy gap from 0.2 to 0.6 eV that supports the theoretical prediction.

  6. Enhanced charge separation of rutile TiO2 nanorods by trapping holes and transferring electrons for efficient cocatalyst-free photocatalytic conversion of CO2 to fuels.

    PubMed

    Wu, Jing; Lu, Hongwei; Zhang, Xuliang; Raziq, Fazal; Qu, Yang; Jing, Liqiang

    2016-04-11

    Modification with chloride and phosphate anions, and coupling with carbon nanotubes could effectively trap holes and transfer the electrons of rutile nanorods, respectively, so as to greatly promote photogenerated charge separation, leading to an obviously-improved cocatalyst-free photocatalytic conversion of CO2 to CH4 and CO, along with the positive effects of constructed phosphate bridges.

  7. Report of investigations into charge cadmium reactivity: Nickel-cadmium cell ESD 91-86

    NASA Technical Reports Server (NTRS)

    Lewis, Harlan L.

    1992-01-01

    In Aug. 1990, a presentation was given at the 25th Ann. IECEC meeting on the results of Destructive Physical Analysis (DPA) on two successive sets of Ni-Cd cells. The cells were of two different separator types, Pellon 2505 and 2536. One cell of each separator type was analyzed on two occasions; the first pair were analyzed to establish baseline data on essentially new cells; the second pair were analyzed after the cells had been on charge-discharge cycling for a year in connection with a satellite simulation study. The gas composition found in the cells, the absence of charged cadmium in the analytical data, and the appearance of dried out portions on the Cd plates in the one year cell S/N 7 which used Pellon 2505 as its separator material, were questions which arose. These concerns are answered and the observational results are clarified.

  8. Worm Algorithm simulations of the hole dynamics in the t-J model

    NASA Astrophysics Data System (ADS)

    Prokof'ev, Nikolai; Ruebenacker, Oliver

    2001-03-01

    In the limit of small J << t, relevant for HTSC materials and Mott-Hubbard systems, computer simulations have to be performed for large systems and at low temperatures. Despite convincing evidence against spin-charge separation obtained by various methods for J > 0.4t there is an ongoing argument that at smaller J spin-charge separation is still possible. Worm algorithm Monte Carlo simulations of the hole Green function for 0.1 < J/t < 0.4 were performed on lattices with up to 32x32 sites, and at temperature J/T = 40 (for the largest size). Spectral analysis reveals a single, delta-function sharp quasiparticle peak at the lowest edge of the spectrum and two distinct peaks above it at all studied J. We rule out the possibility of spin-charge separation in this parameter range, and present, apparently, the hole spectral function in the thermodynamic limit.

  9. Picosecond absorption studies of photoinduced charge separation in polyelectrolyte bound aromatic chromophores

    NASA Astrophysics Data System (ADS)

    Shand, M. A.; Rodgers, M. A. J.; Webber, S. E.

    1991-02-01

    Picosecond absorption studies of photoinduced electron transfer between aromatic chromophores bound to polymethacrylic acid (P) and methylviologen (MV 2+ have been carried out in aqueous solution. The diphenylanthracene copolymer/viologen system at pH 2.8 shows the corresponding redox products DPA + rad and MV + rad arising from the singlet state of DPA with a forward rate constant of electron transfer of 2.6 × 10 9 s -1. At pH 9.0 the quenching of the S 1 state of DPA occurs with no charge separated products being observed. The pyrene copolymer shows no evidence of charge separated products at any pH in the range 2.8-9.0. It is proposed that the differences in the radical pair kinetics arise from differences in the degree of binding of the ground state complexes formed by the donor and acceptor species.

  10. Inactivation of Gating Currents of L-Type Calcium Channels

    PubMed Central

    Shirokov, Roman; Ferreira, Gonzalo; Yi, Jianxun; Ríos, Eduardo

    1998-01-01

    In studies of gating currents of rabbit cardiac Ca channels expressed as α1C/β2a or α1C/β2a/α2δ subunit combinations in tsA201 cells, we found that long-lasting depolarization shifted the distribution of mobile charge to very negative potentials. The phenomenon has been termed charge interconversion in native skeletal muscle (Brum, G., and E. Ríos. 1987. J. Physiol. (Camb.). 387:489–517) and cardiac Ca channels (Shirokov, R., R. Levis, N. Shirokova, and E. Ríos. 1992. J. Gen. Physiol. 99:863–895). Charge 1 (voltage of half-maximal transfer, V1/2 ≃ 0 mV) gates noninactivated channels, while charge 2 (V1/2 ≃ −90 mV) is generated in inactivated channels. In α1C/β2a cells, the available charge 1 decreased upon inactivating depolarization with a time constant τ ≃ 8, while the available charge 2 decreased upon recovery from inactivation (at −200 mV) with τ ≃ 0.3 s. These processes therefore are much slower than charge movement, which takes <50 ms. This separation between the time scale of measurable charge movement and that of changes in their availability, which was even wider in the presence of α2δ, implies that charges 1 and 2 originate from separate channel modes. Because clear modal separation characterizes slow (C-type) inactivation of Na and K channels, this observation establishes the nature of voltage-dependent inactivation of L-type Ca channels as slow or C-type. The presence of the α2δ subunit did not change the V1/2 of charge 2, but sped up the reduction of charge 1 upon inactivation at 40 mV (to τ ≃ 2 s), while slowing the reduction of charge 2 upon recovery (τ ≃ 2 s). The observations were well simulated with a model that describes activation as continuous electrodiffusion (Levitt, D. 1989. Biophys. J. 55:489–498) and inactivation as discrete modal change. The effects of α2δ are reproduced assuming that the subunit lowers the free energy of the inactivated mode. PMID:9607938

  11. The Pressure induced by salt crystallization in confinement.

    PubMed

    Desarnaud, J; Bonn, D; Shahidzadeh, N

    2016-08-05

    Salt crystallization is a major cause of weathering of rocks, artworks and monuments. Damage can only occur if crystals continue to grow in confinement, i.e. within the pore space of these materials, thus generating mechanical stress. We report the direct measurement, at the microscale, of the force exerted by growing alkali halide salt crystals while visualizing their spontaneous nucleation and growth. The experiments reveal the crucial role of the wetting films between the growing crystal and the confining walls for the development of the pressure. Our results suggest that the measured force originates from repulsion between the similarly charged confining wall and the salt crystal separated by a ~1.5 nm liquid film. Indeed, if the walls are made hydrophobic, no film is observed and no repulsive forces are detected. We also show that the magnitude of the induced pressure is system specific explaining why different salts lead to different amounts of damage to porous materials.

  12. 47 CFR 69.121 - Connection charges for expanded interconnection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... separations. (2) Charges for subelements associated with physical collocation or virtual collocation, other... of the virtual collocation equipment described in § 64.1401(e)(1) of this chapter, may reasonably...

  13. 77 FR 19425 - Prescription Drugs Not Administered During Treatment; Update to Administrative Cost for Calendar...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... that requires automobile accident reparations insurance. This updated administrative cost charge was... automobile accident reparations insurance, ``charges billed separately for such prescription drugs will...

  14. Charging YOYO-1 on Capillary Wall for Online DNA Intercalation and Integrating This Approach with Multiplex PCR and Bare Narrow Capillary–Hydrodynamic Chromatography for Online DNA Analysis

    PubMed Central

    2016-01-01

    Multiplex polymerase chain reaction (PCR) has been widely utilized for high-throughput pathogen identification. Often, a dye is used to intercalate the amplified DNA fragments, and identifications of the pathogens are carried out by DNA melting curve analysis or gel electrophoresis. Integrating DNA amplification and identification is a logic path toward maximizing the benefit of multiplex PCR. Although PCR and gel electrophoresis have been integrated, replenishing the gels after each run is tedious and time-consuming. In this technical note, we develop an approach to address this issue. We perform multiplex PCR inside a capillary, transfer the amplified fragments to a bare narrow capillary, and measure their lengths online using bare narrow capillary–hydrodynamic chromatography (BaNC-HDC), a new technique recently developed in our laboratory for free-solution DNA separation. To intercalate the DNA with YOYO-1 (a fluorescent dye) for BaNC-HDC, we flush the capillary column with a YOYO-1 solution; positively charged YOYO-1 is adsorbed (or charged) onto the negatively charged capillary wall. As DNA molecules are driven down the column for separation, they react with the YOYO-1 stored on the capillary wall and are online-intercalated with the dye. With a single YOYO-1 charging, the column can be used for more than 40 runs, although the fluorescence signal intensities of the DNA peaks decrease gradually. Although the dye-DNA intercalation occurs during the separation, it does not affect the retention times, separation efficiencies, or resolutions. PMID:25555111

  15. Experimental Evidence for Space-Charge Effects between Ions of the Same Mass-to-Charge in Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry

    PubMed Central

    Wong, Richard L.; Amster, I. Jonathan

    2009-01-01

    It is often stated that ions of the same mass-to-charge do not induce space-charge frequency shifts among themselves in an ion cyclotron resonance mass spectrometry measurement. Here, we demonstrate space-charge induced frequency shifts for ions of a single mass-to-charge. The monoisotopic atomic ion, Cs+, was used for this study. The measured frequency is observed to decrease linearly with an increase in the number of ions, as has been reported previously for space-charge effects between ions of different mass-to-charge. The frequency shift between ions of the same m/z value are compared to that induced between ions of different m/z value, and is found to be 7.5 times smaller. Control experiments were performed to ensure that the observed space-charge effects are not artifacts of the measurement or of experimental design. The results can be rationalized by recognizing that the electric forces between ions in a magnetic field conform to the weak form of the Newton's third law, where the action and reaction forces do not cancel exactly. PMID:19562102

  16. Model improvements to simulate charging in SEM

    NASA Astrophysics Data System (ADS)

    Arat, K. T.; Klimpel, T.; Hagen, C. W.

    2018-03-01

    Charging of insulators is a complex phenomenon to simulate since the accuracy of the simulations is very sensitive to the interaction of electrons with matter and electric fields. In this study, we report model improvements for a previously developed Monte-Carlo simulator to more accurately simulate samples that charge. The improvements include both modelling of low energy electron scattering and charging of insulators. The new first-principle scattering models provide a more realistic charge distribution cloud in the material, and a better match between non-charging simulations and experimental results. Improvements on charging models mainly focus on redistribution of the charge carriers in the material with an induced conductivity (EBIC) and a breakdown model, leading to a smoother distribution of the charges. Combined with a more accurate tracing of low energy electrons in the electric field, we managed to reproduce the dynamically changing charging contrast due to an induced positive surface potential.

  17. The electrification of stratiform anvils

    NASA Astrophysics Data System (ADS)

    Boccippio, Dennis J.

    1997-10-01

    Stratiform precipitation regions accompany convective activity on many spatial scales. The electrification of these regions is anomalous in a number of ways. Surface and above-cloud fields are often 'inverted' from normal thunderstorm conditions. Unusually large, bright, horizontal 'spider' lightning and high current and charge transfer positive cloud-to-ground (CC) lightning dominates in these regions. Mesospheric 'red sprite' emissions have to date been observed exclusively over stratiform cloud shields. We postulate that a dominant 'inverted dipole' charge structure may account for this anomalous electrification. This is based upon laboratory observations of charge separation which show that in low liquid water content (LWC) environments, or dry but ice- supersaturated environments, precipitation ice tends to charge positively (instead of negatively) upon collision with smaller crystals. Under typical stratiform cloud conditions, liquid water should be depleted and this charging regime favored. An inverted dipole would be the natural consequence of large-scale charge separation (net flux divergence of charged ice), given typical hydrometeor profiles. The inverted dipole hypothesis is tested using radar and electrical observations of four weakly organized, late- stage systems in Orlando, Albuquerque and the Western Pacific. Time-evolving, area-average vertical velocity profiles are inferred from single Doppler radar data. These profiles provide the forcing for a 1-D steady state micro-physical retrieval, which yields vertical hydrometeor profiles and ice/water saturation conditions. The retrieved microphysical parameters are then combined with laboratory charge transfer measurements to infer the instantaneous charging behavior of the systems. Despite limitations in the analysis technique, the retrievals yield useful results. Total charge transfer drops only modestly as the storm enters the late (stratiform) stage, suggesting a continued active generator is plausible. Generator currents show an enhanced lowermost inverted dipole charging structure, which we may infer will result in a comparable inverted dipole charge structure, consistent with surface, in-situ and remote observations. Fine-scale vertical variations in ice and liquid water content may yield multipolar generator current profiles, despite unipolar charge transfer regimes. This suggests that multipoles observed in balloon soundings may not necessarily conflict with the simple ice-ice collisional charge separation mechanism. Overall, the results are consistent with, but not proof of, the inverted dipole model. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253- 1690.)

  18. Modeling the Electric Potential and Surface Charge Density Near Charged Thunderclouds

    NASA Astrophysics Data System (ADS)

    Neel, Matthew Stephen

    2018-03-01

    Thundercloud charge separation, or the process by which the bottom portion of a cloud gathers charge and the top portion of the cloud gathers the opposite charge, is still not thoroughly understood. Whatever the mechanism, though, a charge separation definitely exists and can lead to electrostatic discharge via cloud-to-cloud lightning and cloud-to-ground lightning. We wish to examine the latter form, in which upward leaders from Earth connect with downward leaders from the cloud to form a plasma channel and produce lightning. Much of the literature indicates that the lower part of a thundercloud becomes negatively charged while the upper part becomes positively charged via convective charging, although the opposite polarity can certainly exist along with various, complex intra-cloud currents. It is estimated that >90% of cloud-to-ground lightning is "negative lightning," or the flow of charges from the bottom of the cloud, while the remaining <10% of lightning strikes is "positive lightning," or the flow of charges from the top of the cloud. We wish to understand the electric potential surrounding charged thunderclouds as well as the resulting charge density on the surface of Earth below them. In this paper we construct a simple and adaptable model that captures the very basic features of the cloud/ground system and that exhibits conditions favorable for both forms of lightning. In this way, we provide a practical application of electrostatic dipole physics as well as the method of images that can serve as a starting point for further modeling and analysis by students.

  19. Photo-electrochemical properties of graphene wrapped hierarchically branched nanostructures obtained through hydrothermally transformed TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Rambabu, Y.; Jaiswal, Manu; Roy, Somnath C.

    2017-10-01

    Hierarchically structured nanomaterials play an important role in both light absorption and separation of photo-generated charges. In the present study, hierarchically branched TiO2 nanostructures (HB-MLNTs) are obtained through hydrothermal transformation of electrochemically anodized TiO2 multi-leg nanotubes (MLNT) arrays. Photo-anodes based on HB-MLNTs demonstrated 5 fold increase in applied bias to photo-conversion efficiency (%ABPE) over that of TiO2 MLNTs without branches. Further, such nanostructures are wrapped with reduced graphene oxide (rGO) films to enhance the charge separation, which resulted in ∼6.5 times enhancement in %ABPE over that of bare MLNTs. We estimated charge transport (η tr) and charge transfer (η ct) efficiencies by analyzing the photo-current data. The ultra-fine nano branches grown on the MLNTs are effective in increasing light absorption through multiple scattering and improving charge transport/transfer efficiencies by enlarging semiconductor/electrolyte interface area. The charge transfer resistance, interfacial capacitance and electron decay time have been estimated through electrochemical impedance measurements which correlate with the results obtained from photocurrent measurements.

  20. Non-Faradaic Li + Migration and Chemical Coordination across Solid-State Battery Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gittleson, Forrest S.; El Gabaly, Farid

    Efficient and reversible charge transfer is essential to realizing high-performance solid-state batteries. Efforts to enhance charge transfer at critical electrode–electrolyte interfaces have proven successful, yet interfacial chemistry and its impact on cell function remains poorly understood. Using X-ray photoelectron spectroscopy combined with electrochemical techniques, we elucidate chemical coordination near the LiCoO 2–LIPON interface, providing experimental validation of space-charge separation. Space-charge layers, defined by local enrichment and depletion of charges, have previously been theorized and modeled, but the unique chemistry of solid-state battery interfaces is now revealed. Here we highlight the non-Faradaic migration of Li+ ions from the electrode to themore » electrolyte, which reduces reversible cathodic capacity by ~15%. Inserting a thin, ion-conducting LiNbO 3 interlayer between the electrode and electrolyte, however, can reduce space-charge separation, mitigate the loss of Li+ from LiCoO 2, and return cathodic capacity to its theoretical value. This work illustrates the importance of interfacial chemistry in understanding and improving solid-state batteries.« less

  1. 5 CFR 842.404 - Reductions in basic annuity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... by removal for cause on charges of misconduct or delinquency; (2) A firefighter and/or law enforcement officer, except one separated by removal for cause on charges of misconduct of delinquency; or (3...

  2. Efficient charge-carrier extraction from Ag₂S quantum dots prepared by the SILAR method for utilization of multiple exciton generation.

    PubMed

    Zhang, Xiaoliang; Liu, Jianhua; Johansson, Erik M J

    2015-01-28

    The utilization of electron-hole pairs (EHPs) generated from multiple excitons in quantum dots (QDs) is of great interest toward efficient photovoltaic devices and other optoelectronic devices; however, extraction of charge carriers remains difficult. Herein, we extract photocharges from Ag2S QDs and investigate the dependence of the electric field on the extraction of charges from multiple exciton generation (MEG). Low toxic Ag2S QDs are directly grown on TiO2 mesoporous substrates by employing the successive ionic layer adsorption and reaction (SILAR) method. The contact between QDs is important for the initial charge separation after MEG and for the carrier transport, and the space between neighbor QDs decreases with more SILAR cycles, resulting in better charge extraction. At the optimal electric field for extraction of photocharges, the results suggest that the threshold energy (hνth) for MEG is 2.41Eg. The results reveal that Ag2S QD is a promising material for efficient extraction of charges from MEG and that QDs prepared by SILAR have an advantageous electrical contact facilitating charge separation and extraction.

  3. An exploration into municipal waste charges for environmental management at local level: The case of Spain.

    PubMed

    Puig-Ventosa, Ignasi; Sastre Sanz, Sergio

    2017-11-01

    Municipal waste charges have been widely acknowledged as a crucial tool for waste management at the local level. This is because they contribute to financing the costly provision of waste collection and treatment services and they can be designed to provide an economic stimulus to encourage citizens and local businesses to improve separate collection and recycling. This work presents a methodology to evaluate a sample of 125 municipal waste charges in Spain for the year 2015, covering 33.91% of the Spanish population. The qualitative benchmarking of municipal waste charges shows that flat fees are frequent, whereas variable fees are set according to criteria that are weakly related to waste generation. The average fee per household is €82.2 per year, which does not provide full cost recovery. The current configuration of municipal waste charges penalises taxpayers contributing to source separation of waste, while subsidising less environmentally friendly behaviours. In this sense, municipal waste charges in Spain are far from applying the polluter pays principle. Furthermore, it is argued that municipal waste charges are ineffective for promoting the proper application of the so-called 'waste hierarchy'.

  4. On the theory of polarization radiation in media with sharp boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karlovets, D. V., E-mail: d.karlovets@gmail.com

    2011-07-15

    Polarization radiation generated when a point charge moves uniformly along a straight line in vacuum in the vicinity of media with a finite permittivity {epsilon}({omega}) = {epsilon} Prime + i{epsilon} Double-Prime and sharp boundaries is considered. A method is developed in which polarization radiation is represented as the field of the current induced in the substance by the field of the moving charge. The solution to the problem of radiation induced when a charge moves along the axis of a cylindrical vacuum channel in a thin screen with a finite radius and a finite permittivity is obtained. Depending on themore » parameters of the problem, this solution describes various types of radiation (Cherenkov, transition, and diffraction radiation). In particular, when the channel radius tends to zero and the outer radius of the screen tends to infinity, the expression derived for the emitted energy coincides with the known solution for transition radiation in a plate. In another particular case of ideal conductivity ({epsilon} Double-Prime {yields} {infinity}), the relevant formula coincides with the known results for diffraction radiation from a circular aperture in an infinitely thin screen. The solution is obtained to the problem of radiation generated when the charge flies near a thin rectangular screen with a finite permittivity. This solution describes the diffraction and Cherenkov mechanisms of radiation and takes into account possible multiple re-reflections of radiation in the screen. The solution to the problem of radiation generated when a particles flies near a thin grating consisting of a finite number of strips having a rectangular cross section and a finite permittivity and separated by vacuum gaps (Smith-Purcell radiation) is also obtained. In the special case of ideal conductivity, the expression derived for the emitted energy coincides with the known result in the model of surface currents.« less

  5. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes.

    PubMed

    Li, Yiyang; El Gabaly, Farid; Ferguson, Todd R; Smith, Raymond B; Bartelt, Norman C; Sugar, Joshua D; Fenton, Kyle R; Cogswell, Daniel A; Kilcoyne, A L David; Tyliszczak, Tolek; Bazant, Martin Z; Chueh, William C

    2014-12-01

    Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.

  6. Single-hole spectral function and spin-charge separation in the t-J model

    NASA Astrophysics Data System (ADS)

    Mishchenko, A. S.; Prokof'ev, N. V.; Svistunov, B. V.

    2001-07-01

    Worm algorithm Monte Carlo simulations of the hole Green function with subsequent spectral analysis were performed for 0.1<=J/t<=0.4 on lattices with up to L×L=32×32 sites at a temperature as low as T=J/40, and present, apparently, the hole spectral function in the thermodynamic limit. Spectral analysis reveals a δ-function-sharp quasiparticle peak at the lower edge of the spectrum that is incompatible with the power-law singularity and thus rules out the possibility of spin-charge separation in this parameter range. Spectral continuum features two peaks separated by a gap ~4÷5 t.

  7. Charge recombination in organic photovoltaic devices with high open-circuit voltages.

    PubMed

    Westenhoff, Sebastian; Howard, Ian A; Hodgkiss, Justin M; Kirov, Kiril R; Bronstein, Hugo A; Williams, Charlotte K; Greenham, Neil C; Friend, Richard H

    2008-10-15

    A detailed charge recombination mechanism is presented for organic photovoltaic devices with a high open-circuit voltage. In a binary blend comprised of polyfluorene copolymers, the performance-limiting process is found to be the efficient recombination of tightly bound charge pairs into neutral triplet excitons. We arrive at this conclusion using optical transient absorption (TA) spectroscopy with visible and IR probes and over seven decades of time resolution. By resolving the polarization of the TA signal, we track the movement of polaronic states generated at the heterojunction not only in time but also in space. It is found that the photogenerated charge pairs are remarkably immobile at the heterojunction during their lifetime. The charge pairs are shown to be subject to efficient intersystem crossing and terminally recombine into F8BT triplet excitons within approximately 40 ns. Long-range charge separation competes rather unfavorably with intersystem crossing--75% of all charge pairs decay into triplet excitons. Triplet exciton states are thermodynamically accessible in polymer solar cells with high open circuit voltage, and we therefore suggest this loss mechanism to be general. We discuss guidelines for the design of the next generation of organic photovoltaic materials where separating the metastable interfacial charge pairs within approximately 40 ns is paramount.

  8. How to harvest solar energy with the photosynthetic reaction center

    NASA Astrophysics Data System (ADS)

    Balaeff, Alexander; Reyes, Justin

    Photosynthetic reaction center (PRC) is a protein complex that performs a key step in photosynthesis: the electron-hole separation driven by photon absorbtion. The PRC has a great promise for applications in solar energy harvesting and photosensing. Such applications, however, are hampered by the difficulty in extracting the photogenerated electric charge from the PRC. To that end, it was proposed to attach the PRC to a molecular wire through which the charge could be collected. In order to find the attachment point for the wire that would maximize the rate of charge outflow from the PRC, we performed a computational study of the PRC from the R. virdis bacterium. An ensemble of PRC structures generated by a molecular dynamics simulation was used to calculate the rate of charge transport from the site of initial charge separation to several trial sites on the protein surface. The Pathways model was used to calculate the charge transfer rate in each step of the network of heme co-factors through which the charge transport was presumed to proceed. A simple kinetic model was then used to determine the overall rate of the multistep charge transport. The calculations revealed several candidate sites for the molecular wire attachment, recommended for experimental verification.

  9. Evidence for a Peierls phase-transition in a three-dimensional multiple charge-density waves solid

    PubMed Central

    Mansart, Barbara; Cottet, Mathieu J. G.; Penfold, Thomas J.; Dugdale, Stephen B.; Tediosi, Riccardo; Chergui, Majed; Carbone, Fabrizio

    2012-01-01

    The effect of dimensionality on materials properties has become strikingly evident with the recent discovery of graphene. Charge ordering phenomena can be induced in one dimension by periodic distortions of a material’s crystal structure, termed Peierls ordering transition. Charge-density waves can also be induced in solids by strong coulomb repulsion between carriers, and at the extreme limit, Wigner predicted that crystallization itself can be induced in an electrons gas in free space close to the absolute zero of temperature. Similar phenomena are observed also in higher dimensions, but the microscopic description of the corresponding phase transition is often controversial, and remains an open field of research for fundamental physics. Here, we photoinduce the melting of the charge ordering in a complex three-dimensional solid and monitor the consequent charge redistribution by probing the optical response over a broad spectral range with ultrashort laser pulses. Although the photoinduced electronic temperature far exceeds the critical value, the charge-density wave is preserved until the lattice is sufficiently distorted to induce the phase transition. Combining this result with ab initio electronic structure calculations, we identified the Peierls origin of multiple charge-density waves in a three-dimensional system for the first time. PMID:22451898

  10. Explicit symplectic algorithms based on generating functions for charged particle dynamics.

    PubMed

    Zhang, Ruili; Qin, Hong; Tang, Yifa; Liu, Jian; He, Yang; Xiao, Jianyuan

    2016-07-01

    Dynamics of a charged particle in the canonical coordinates is a Hamiltonian system, and the well-known symplectic algorithm has been regarded as the de facto method for numerical integration of Hamiltonian systems due to its long-term accuracy and fidelity. For long-term simulations with high efficiency, explicit symplectic algorithms are desirable. However, it is generally believed that explicit symplectic algorithms are only available for sum-separable Hamiltonians, and this restriction limits the application of explicit symplectic algorithms to charged particle dynamics. To overcome this difficulty, we combine the familiar sum-split method and a generating function method to construct second- and third-order explicit symplectic algorithms for dynamics of charged particle. The generating function method is designed to generate explicit symplectic algorithms for product-separable Hamiltonian with form of H(x,p)=p_{i}f(x) or H(x,p)=x_{i}g(p). Applied to the simulations of charged particle dynamics, the explicit symplectic algorithms based on generating functions demonstrate superiorities in conservation and efficiency.

  11. Explicit symplectic algorithms based on generating functions for charged particle dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Ruili; Qin, Hong; Tang, Yifa; Liu, Jian; He, Yang; Xiao, Jianyuan

    2016-07-01

    Dynamics of a charged particle in the canonical coordinates is a Hamiltonian system, and the well-known symplectic algorithm has been regarded as the de facto method for numerical integration of Hamiltonian systems due to its long-term accuracy and fidelity. For long-term simulations with high efficiency, explicit symplectic algorithms are desirable. However, it is generally believed that explicit symplectic algorithms are only available for sum-separable Hamiltonians, and this restriction limits the application of explicit symplectic algorithms to charged particle dynamics. To overcome this difficulty, we combine the familiar sum-split method and a generating function method to construct second- and third-order explicit symplectic algorithms for dynamics of charged particle. The generating function method is designed to generate explicit symplectic algorithms for product-separable Hamiltonian with form of H (x ,p ) =pif (x ) or H (x ,p ) =xig (p ) . Applied to the simulations of charged particle dynamics, the explicit symplectic algorithms based on generating functions demonstrate superiorities in conservation and efficiency.

  12. Cationic polyelectrolyte induced separation of some inorganic contaminants and their mixture (zirconium silicate, kaolin, K-feldspar, zinc oxide) as well as of the paraffin oil from water.

    PubMed

    Ghimici, Luminita

    2016-03-15

    The flocculation efficiency of a cationic polyelectrolyte with quaternary ammonium salt groups in the backbone, namely PCA5 was evaluated on zirconium silicate (kreutzonit), kaolin, K- feldspar and zinc oxide (ZnO) suspensions prepared either with each pollutant or with their mixture. The effect of several parameters such as settling time, polymer dose and the pollutant type on the separation efficacy was evaluated and followed by optical density and zeta potential measurements. Except for ZnO, the interactions between PCA5 and suspended particles led to low residual turbidity values (around 4% for kreutzonit, 5% for kaolin and 8% for K-feldspar) as well as to the reduction of flocs settling time (from 1200 min to 30 min and 120 min in case of kaolinit and K-feldspar, respectively), that meant a high efficiency in their separation. The negative value of the zeta potential and flocs size measurements, at the optimum polymer dose, point to contribution from charge patch mechanism for the particles flocculation. A good efficiency of PCA5 in separation of paraffin oil (a minimum residual turbidity of 9.8%) has been also found. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Preconcentration and Separation of Mixed-Species Samples Near a Nano-Junction in a Convergent Microchannel

    PubMed Central

    Chiu, Ping-Hsien; Weng, Chen-Hsun; Yang, Ruey-Jen

    2015-01-01

    A fluidic microchip incorporating a convergent microchannel and a Nafion-nanoporous membrane is proposed for the preconcentration and separation of multi-species samples on a single platform. In the device, sample preconcentration is achieved by means of the ion concentration polarization effect induced at the micro/nano interface under the application of an external electric field, while species separation is achieved by exploiting the different electrophoretic mobilities of the sample components. The experimental results show that the device is capable of detecting C-reactive protein (CRP) with an initial concentration as low as 9.50 × 10−6 mg/L given a sufficient preconcentration time and driving voltage. In addition, it is shown that a mixed-species sample consisting of three negatively-charged components (bovine serum albumin (BSA), tetramethylrhodamine(TAMRA) isothiocyanate-Dextran and fluorescent polymer beads) can be separated and preconcentrated within 20 min given a driving voltage of 100 V across 1 cm microchannel in length. In general, the present results confirm the feasibility of the device for the immunoassay or detection of various multi-species samples under low concentration in the biochemical and biomedical fields. The novel device can therefore improve the detection limit of traditional medical facilities. PMID:26690167

  14. The impact of chemical structure and molecular packing on the electronic polarisation of fullerene arrays.

    PubMed

    Few, Sheridan; Chia, Cleaven; Teo, Daniel; Kirkpatrick, James; Nelson, Jenny

    2017-07-19

    Electronic polarisation contributes to the electronic landscape as seen by separating charges in organic materials. The nature of electronic polarisation depends on the polarisability, density, and arrangement of polarisable molecules. In this paper, we introduce a microscopic, coarse-grained model in which we treat each molecule as a polarisable site, and use an array of such polarisable dipoles to calculate the electric field and associated energy of any arrangement of charges in the medium. The model incorporates chemical structure via the molecular polarisability and molecular packing patterns via the structure of the array. We use this model to calculate energies of charge pairs undergoing separation in finite fullerene lattices of different chemical and crystal structures. The effective dielectric constants that we estimate from this approach are in good quantitative agreement with those measured experimentally in C 60 and phenyl-C 61 -butyric acid methyl ester (PCBM) films, but we find significant differences in dielectric constant depending on packing and on direction of separation, which we rationalise in terms of density of polarisable fullerene cages in regions of high field. In general, we find lattices containing molecules of more isotropic polarisability tensors exhibit higher dielectric constants. By exploring several model systems we conclude that differences in molecular polarisability (and therefore, chemical structure) appear to be less important than differences in molecular packing and separation direction in determining the energetic landscape for charge separation. We note that the results are relevant for finite lattices, but not necessarily for infinite systems. We propose that the model could be used to design molecular systems for effective electronic screening.

  15. Application of ion mobility-mass spectrometry to microRNA analysis.

    PubMed

    Takebayashi, Kosuke; Hirose, Kenji; Izumi, Yoshihiro; Bamba, Takeshi; Fukusaki, Eiichiro

    2013-03-01

    Liquid chromatography/mass spectrometry is widely used for studying sequence determination and modification analysis of small RNAs. However, the efficiency of liquid chromatography-based separation of intact small RNA species is insufficient, since the physiochemical properties among small RNAs are very similar. In this study, we focused on ion mobility-mass spectrometry (IM-MS), which is a gas-phase separation technique coupled with mass spectrometry; we have evaluated the utility of IM-MS for microRNA (miRNA) analysis. A multiply charged deprotonated ion derived from an 18-24-nt-long miRNA was formed by electrospray ionization, and then the time, called the "drift time", taken by each ion to migrate through a buffer gas was measured. Each multivalent ion was temporally separated on the basis of the charge state and structural formation; 3 types of unique mass-mobility correlation patterns (i.e., chainlike-form, hairpin-form, and dimer-form) were present on the two-dimensional mobility-mass spectrum. Moreover, we found that the ion size (sequence length) and the secondary structures of the small RNAs strongly contributed to the IM-MS-based separation, although solvent conditions such as pH had no effect. Therefore, sequence isomers could also be discerned by the selection of each specific charged ion, i.e., the 6(-) charged ion reflected a majority among chainlike-, hairpin-, and other structures. We concluded that the IM-MS provides additional capability for separation; thus, this analytical method will be a powerful tool for comprehensive small RNA analysis. Copyright © 2012. Published by Elsevier B.V.

  16. In-field X-ray and neutron diffraction studies of re-entrant charge-ordering and field induced metastability in La0.175Pr0.45Ca0.375MnO3-δ

    NASA Astrophysics Data System (ADS)

    Sharma, Shivani; Shahee, Aga; Yadav, Poonam; da Silva, Ivan; Lalla, N. P.

    2017-11-01

    Low-temperature high-magnetic field (2 K, 8 T) (LTHM) powder X-ray diffraction (XRD) and time of flight powder neutron diffraction (NPD), low-temperature transmission electron microscopic (TEM), and resistivity and magnetization measurements have been carried out to investigate the re-entrant charge ordering (CO), field induced structural phase transitions, and metastability in phase-separated La0.175Pr0.45Ca0.375MnO3-δ (LPCMO). Low-temperature TEM and XRD studies reveal that on cooling under zero-field, paramagnetic Pnma phase transforms to P21/m CO antiferromagnetic (AFM) insulating phase below ˜233 K. Unlike reported literature, no structural signature of CO AFM P21/m to ferromagnetic (FM) Pnma phase-transition during cooling down to 2 K under zero-field was observed. However, the CO phase was found to undergo a re-entrant transition at ˜40 K. Neutron diffraction studies revealed a pseudo CE type spin arrangement of the observed CO phase. The low-temperature resistance, while cooled under zero-field, shows insulator to metal like transition below ˜105 K with minima at ˜25 K. On application of field, the CO P21/m phase was found to undergo field-induced transition to FM Pnma phase, which shows irreversibility on field removal below ˜40 K. Zero-field warming XRD and NPD studies reveal that field-induced FM Pnma phase is a metastable phase, which arise due to the arrest of kinetics of the first-order phase transition of FM Pnma to CO-AFM P21/m phase, below 40 K. Thus, a strong magneto-structural coupling is observed for this system. A field-temperature (H-T) phase-diagram has been constructed based on the LTHM-XRD, which matches very nicely with the reported H-T phase-diagram constructed based on magnetic measurements. Due to the occurrence of gradual growth of the re-entrant CO phase and the absence of a clear structural signature of phase-separation of CO-AFM P21/m and FM Pnma phases, the H-T minima in the phase-diagram of the present LPCMO sample has been attributed to the strengthening of AFM interaction during re-entrant CO transition and not to glass like "dynamic to frozen" transition.

  17. Patents -- Georges Charpak (1981-1988)

    Science.gov Websites

    to the sheet and means to measure the charges induced on this probe. In addition, by means of charges induced on said probe. This electronic circuit comprises an operational transimpedance amplifier

  18. Stress Induced Charge-Ordering Process in LiMn 2O 4

    DOE PAGES

    Chen, Yan; Yu, Dunji; An, Ke

    2016-07-25

    In this letter we report the stress-induced Mn charge-ordering process in the LiMn 2O 4 spinel, evidenced by the lattice strain evolutions due to the Jahn–Teller effects. In situ neutron diffraction reveals the initial stage of this process at low stress, indicating the eg electron localization at the preferential Mn sites during the early phase transition as an underlying charge-ordering mechanism in the charge-frustrated LiMn 2O 4. The initial stage of this transition exhibits as a progressive lattice and charge evolution, without showing a first-order behavior.

  19. Microneedle-mediated transcutaneous immunization with plasmid DNA coated on cationic PLGA nanoparticles

    PubMed Central

    Kumar, Amit; Wonganan, Piyanuch; Sandoval, Michael A.; Li, Xinran; Zhu, Saijie; Cui, Zhengrong

    2012-01-01

    Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surface charge of the DNA-coated nanoparticles significantly affected their in vitro skin permeation and their ability to induce immune responses in vivo. Transcutaneous immunization with plasmid DNA-coated net positively charged anoparticles elicited a stronger immune response than with plasmid DNA-coated net negatively charged nanoparticles or by intramuscular immunization with plasmid DNA alone. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles induced comparable immune responses as intramuscular injection of them, but transcutaneous immunization was able to induce specific mucosal immunity and a more balanced T helper type 1 and type 2 response. The ability of the net positively charged DNA-coated nanoparticles to induce a strong immune response through microneedle-mediated transcutaneous immunization may be attributed to their ability to increase the expression of the antigen gene encoded by the plasmid and to more effectively stimulate the maturation of antigen-presenting cells. PMID:22921518

  20. Combined electrophoretic-separation and electrospray method and system

    DOEpatents

    Smith, Richard D.; Olivares, Jose A.

    1989-01-01

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary zone electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5-100 KVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., .+-.2-8 KVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit.

  1. Inversion layer solar cell fabrication and evaluation. [etching on silicon films

    NASA Technical Reports Server (NTRS)

    Call, R. L.

    1974-01-01

    Inversion layer solar cells were fabricated by etching through the diffused layer on p-type silicon wafers in a comb-like contact pattern. The charge separation comes from an induced p-n junction at the surface. The inverted surface is caused by a layer of transparent material applied to the surface that either contains free positive ions or that creates donor states at the interface. Cells are increased from 3 ma I sub sc to 100 ma by application of sodium silicate. The action is unstable, however, and decays. Non-mesa contaminated oxide cells were fabricated with short circuit currents of over 100 ma measured in the sun. Cells of this type have demonstrated stability.

  2. Electrophoretic Separation of Single Particles Using Nanoscale Thermoplastic Columns.

    PubMed

    Weerakoon-Ratnayake, Kumuditha M; Uba, Franklin I; Oliver-Calixte, Nyoté J; Soper, Steven A

    2016-04-05

    Phenomena associated with microscale electrophoresis separations cannot, in many cases, be applied to the nanoscale. Thus, understanding the electrophoretic characteristics associated with the nanoscale will help formulate relevant strategies that can optimize the performance of separations carried out on columns with at least one dimension below 150 nm. Electric double layer (EDL) overlap, diffusion, and adsorption/desorption properties and/or dielectrophoretic effects giving rise to stick/slip motion are some of the processes that can play a role in determining the efficiency of nanoscale electrophoretic separations. We investigated the performance characteristics of electrophoretic separations carried out in nanoslits fabricated in poly(methyl methacrylate), PMMA, devices. Silver nanoparticles (AgNPs) were used as the model system with tracking of their transport via dark field microscopy and localized surface plasmon resonance. AgNPs capped with citrate groups and the negatively charged PMMA walls (induced by O2 plasma modification of the nanoslit walls) enabled separations that were not apparent when these particles were electrophoresed in microscale columns. The separation of AgNPs based on their size without the need for buffer additives using PMMA nanoslit devices is demonstrated herein. Operational parameters such as the electric field strength, nanoslit dimensions, and buffer composition were evaluated as to their effects on the electrophoretic performance, both in terms of efficiency (plate numbers) and resolution. Electrophoretic separations performed at high electric field strengths (>200 V/cm) resulted in higher plate numbers compared to lower fields due to the absence of stick/slip motion at the higher electric field strengths. Indeed, 60 nm AgNPs could be separated from 100 nm particles in free solution using nanoscale electrophoresis with 100 μm long columns.

  3. A semiempirical study for the ground and excited states of free-base and zinc porphyrin-fullerene dyads

    NASA Technical Reports Server (NTRS)

    Parusel, A. B.

    2000-01-01

    The ground and excited states of a covalently linked porphyrin-fullerene dyad in both its free-base and zinc forms (D. Kuciauskas et al., J. Phys. Chem. 100 (1996) 15926) have been investigated by semiempirical methods. The excited-state properties are discussed by investigation of the character of the molecular orbitals. All frontier MOs are mainly localized on either the donor or the acceptor subunit. Thus, the absorption spectra of both systems are best described as the sum of the spectra of the single components. The experimentally observed spectra are well reproduced by the theoretical computations. Both molecules undergo efficient electron transfer in polar but not in apolar solvents. This experimental finding is explained theoretically by explicitly considering solvent effects. The tenth excited state in the gas phase is of charge-separated character where an electron is transferred from the porphyrin donor to the fullerene acceptor subunit. This state is stabilized in energy in polar solvents due to its large formal dipole moment. The stabilization energy for an apolar environment such as benzene is not sufficient to lower this state to become the first excited singlet state. Thus, no electron transfer is observed, in agreement with experiment. In a polar environment such as acetonitrile, the charge-separated state becomes the S, state and electron transfer takes place, as observed experimentally. The flexible single bond connecting both the donor and acceptor subunits allows free rotation by ca. +/- 30 degrees about the optimized ground-state conformation. For the charge-separated state this optimized geometry has a maximum dipole moment. The geometry of the charge-separated state thus does not change relatively to the ground-state conformation. The electron-donating properties of porphyrin are enhanced in the zinc derivative due to a reduced porphyrin HOMO-LUMO energy gap. This yields a lower energy for the charge-separated state compared to the free-base dyad.

  4. Gas-Phase Synthesis of Singly and Multiply Charged Polyoxovanadate Anions Employing Electrospray Ionization and Collision Induced Dissociation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al Hasan, Naila M.; Johnson, Grant E.; Laskin, Julia

    2013-07-02

    Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including V xO y n– and V xO yCl n– ions (x = 1–14, y = 2–36, n = 1–3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V 14O 36Cl(L) 5 (L = Et 4N +, tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged V xO yCl n– and V xOmore » yCl(L) (n–1)– clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller V xO yCl (1–2)– and V xO y (1–2)– anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged V xO yCl and V xO y species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of V xO yCl and V xO y anions through low-energy CID. Finally and furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.« less

  5. System and method for charging a plug-in electric vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bassham, Marjorie A.; Spigno, Jr., Ciro A.; Muller, Brett T.

    2017-05-02

    A charging system and method that may be used to automatically apply customized charging settings to a plug-in electric vehicle, where application of the settings is based on the vehicle's location. According to an exemplary embodiment, a user may establish and save a separate charging profile with certain customized charging settings for each geographic location where they plan to charge their plug-in electric vehicle. Whenever the plug-in electric vehicle enters a new geographic area, the charging method may automatically apply the charging profile that corresponds to that area. Thus, the user does not have to manually change or manipulate themore » charging settings every time they charge the plug-in electric vehicle in a new location.« less

  6. Selective, ultrathin membrane skins prepared by deposition of novel polymer films on porous alumina supports

    NASA Astrophysics Data System (ADS)

    Balachandra, Anagi Manjula

    Membrane-based separations are attractive in industrial processes because of their low energy costs and simple operation. However, low permeabilities often make membrane processes uneconomical. Since flux is inversely proportional to membrane thickness, composite membranes consisting of ultrathin, selective skins on highly permeable supports are required to simultaneously achieve high throughput and high selectivity. However, the synthesis of defect-free skins with thicknesses less than 50 nm is difficult, and thus flux is often limited. Layer-by-layer deposition of oppositely charged polyelectrolytes on porous supports is an attractive method to synthesize ultrathin ion-separation membranes with high flux and high selectivity. The ion-transport selectivity of multilayer polyelectrolyte membranes (MPMs) is primarily due to Donnan exclusion; therefore increase in fixed charge density should yield high selectivity. However, control over charge density in MPMs is difficult because charges on polycations are electrostatically compensated by charges on polyanions, and the net charge in the bulk of these films is small. To overcome this problem, we introduced a templating method to create ion-exchange sites in the bulk of the membrane. This strategy involves alternating deposition of a Cu2+-poly(acrylic acid) complex and poly(allylamine hydrochloride) on a porous alumina support followed by removal of Cu2+ and deprotonation to yield free -COO- ion-exchange sites. Diffusion dialysis studies showed that the Cl-/SO42-. Selectivity of Cu2+-templated membranes is 4-fold higher than that of membranes prepared in the absence of Cu2+. Post-deposition cross-linking of these membranes by heat-induced amide bond formation further increased Cl-/SO42- selectivity to values as high as 600. Room-temperature, surface-initiated atom transfer radical polymerization (ATRP) provides another convenient method for formation of ultrathin polymer skins. This process involves attachment of polymerization initiators to a porous alumina support and subsequent polymerization from these initiators. Because ATRP is a controlled polymerization technique, it yields well-defined polymer films with low polydispersity indices (narrow molecular weight distributions). Additionally, this method is attractive because film thickness can be easily controlled by adjusting polymerization time. Gas-permeability data showed that grafted poly(ethylene glycol dimethacrylate) membranes have a CO 2/CH4 selectivity of 20, whereas poly(2-hydroxyethyl methacrylate) (PHEMA) films grown from a surface have negligible selectivity. However, derivatization of PHEMA with pentadecafluorooctanoyl chloride increases the solubility of CO2 in the membrane and results in a CO2/CH4 selectivity of 9. Although composite PHEMA membranes have no significant gas-transport selectivity, diffusion dialysis studies with PHEMA membranes showed moderate ion-transport selectivities. Cross-linking of PHEMA membranes by reaction with succinyl chloride greatly enhanced anion-transport selectivities while maintaining reasonable flux. The selectivities of these systems demonstrate that alternating polyelectrolyte deposition and surface-initiated ATRP are indeed capable of forming ultrathin, defect-free membrane skins that can potentially be modified for specific separations.

  7. Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells.

    PubMed

    Wang, Jin; Mora-Seró, Iván; Pan, Zhenxiao; Zhao, Ke; Zhang, Hua; Feng, Yaoyu; Yang, Guang; Zhong, Xinhua; Bisquert, Juan

    2013-10-23

    Searching suitable panchromatic QD sensitizers for expanding the light-harvesting range, accelerating charge separation, and retarding charge recombination is an effective way to improve power conversion efficiency (PCE) of quantum-dot-sensitized solar cells (QDSCs). One possible way to obtain a wide absorption range is to use the exciplex state of a type-II core/shell-structured QDs. In addition, this system could also provide a fast charge separation and low charge-recombination rate. Herein, we report on using a CdTe/CdSe type-II core/shell QD sensitizer with an absorption range extending into the infrared region because of its exciplex state, which is covalently linked to TiO2 mesoporous electrodes by dropping a bifunctional linker molecule mercaptopropionic acid (MPA)-capped QD aqueous solution onto the film electrode. High loading and a uniform distribution of QD sensitizer throughout the film electrode thickness have been confirmed by energy dispersive X-ray (EDX) elemental mapping. The accelerated electron injection and retarded charge-recombination pathway in the built CdTe/CdSe QD cells in comparison with reference CdSe QD-based cells have been confirmed by impedance spectroscopy, fluorescence decay, and intensity-modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS) analysis. With the combination of the high QD loading and intrinsically superior optoelectronic properties of type-II core/shell QD (wide absorption range, fast charge separation, and slow charge recombination), the resulting CdTe/CdSe QD-based regenerative sandwich solar cells exhibit a record PCE of 6.76% (J(sc) = 19.59 mA cm(-2), V(oc) = 0.606 V, and FF = 0.569) with a mask around the active film under a full 1 sun illumination (simulated AM 1.5), which is the highest reported to date for liquid-junction QDSCs.

  8. Interfacial charge separation and recombination in InP and quasi-type II InP/CdS core/shell quantum dot-molecular acceptor complexes.

    PubMed

    Wu, Kaifeng; Song, Nianhui; Liu, Zheng; Zhu, Haiming; Rodríguez-Córdoba, William; Lian, Tianquan

    2013-08-15

    Recent studies of group II-VI colloidal semiconductor heterostuctures, such as CdSe/CdS core/shell quantum dots (QDs) or dot-in-rod nanorods, show that type II and quasi-type II band alignment can facilitate electron transfer and slow down charge recombination in QD-molecular electron acceptor complexes. To explore the general applicability of this wave function engineering approach for controlling charge transfer properties, we investigate exciton relaxation and dissociation dynamics in InP (a group III-V semiconductor) and InP/CdS core/shell (a heterostructure beween group III-V and II-VI semiconductors) QDs by transient absorption spectroscopy. We show that InP/CdS QDs exhibit a quasi-type II band alignment with the 1S electron delocalized throughout the core and shell and the 1S hole confined in the InP core. In InP-methylviologen (MV(2+)) complexes, excitons in the QD can be dissociated by ultrafast electron transfer to MV(2+) from the 1S electron level (with an average time constant of 11.4 ps) as well as 1P and higher electron levels (with a time constant of 0.39 ps), which is followed by charge recombination to regenerate the complex in its ground state (with an average time constant of 47.1 ns). In comparison, InP/CdS-MV(2+) complexes show similar ultrafast charge separation and 5-fold slower charge recombination rates, consistent with the quasi-type II band alignment in these heterostructures. This result demonstrates that wave function engineering in nanoheterostructures of group III-V and II-VI semiconductors provides a promising approach for optimizing their light harvesting and charge separation for solar energy conversion applications.

  9. Profiling of Current Transients in Capacitor Type Diamond Sensors

    PubMed Central

    Gaubas, Eugenijus; Ceponis, Tomas; Meskauskaite, Dovile; Kazuchits, Nikolai

    2015-01-01

    The operational characteristics of capacitor-type detectors based on HPHT and CVD diamond have been investigated using perpendicular and parallel injection of carrier domain regimes. Simulations of the drift-diffusion current transients have been implemented by using dynamic models based on Shockley-Ramo’s theorem, under injection of localized surface domains and of bulk charge carriers. The bipolar drift-diffusion regimes have been analyzed for the photo-induced bulk domain (packet) of excess carriers. The surface charge formation and polarization effects dependent on detector biasing voltage have been revealed. The screening effects ascribed to surface charge and to dynamics of extraction of the injected bulk excess carrier domain have been separated and explained. The parameters of drift mobility of the electrons μe = 4000 cm2/Vs and holes μh = 3800 cm2/Vs have been evaluated for CVD diamond using the perpendicular profiling of currents. The coefficient of carrier ambipolar diffusion Da = 97 cm2/s and the carrier recombination lifetime τR,CVD ≌ 110 ns in CVD diamond were extracted by combining analysis of the transients of the sensor current and the microwave probed photoconductivity. The carrier trapping with inherent lifetime τR,HPHT ≌ 2 ns prevails in HPHT diamond. PMID:26061200

  10. Protein Separation by Electrophoretic-Electroosmotic Focusing on Supported Lipid Bilayers

    PubMed Central

    Liu, Chunming; Monson, Christopher F.; Yang, Tinglu; Pace, Hudson; Cremer, Paul S.

    2011-01-01

    An electrophoretic-electroosmotic focusing (EEF) method was developed and used to separate membrane-bound proteins and charged lipids based on their charge-to-size ratio from an initially homogeneous mixture. EEF uses opposing electrophoretic and electroosmotic forces to focus and separate proteins and lipids into narrow bands on supported lipid bilayers (SLBs). Membrane-associated species were focused into specific positions within the SLB in a highly repeatable fashion. The steady-state focusing positions of the proteins could be predicted and controlled by tuning experimental conditions, such as buffer pH, ionic strength, electric field and temperature. Careful tuning of the variables should enable one to separate mixtures of membrane proteins with only subtle differences. The EEF technique was found to be an effective way to separate protein mixtures with low initial concentrations, and it overcame diffusive peak broadening to allow four bands to be separated simultaneously within a 380 μm wide isolated supported membrane patch. PMID:21958061

  11. 27 CFR 53.91 - Charges to be included in sale price.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the Code and § 53.100. In the case of sales on credit, a carrying, finance, or service charge is... connection with collection). (b) Tools and dies. Separate charges for tools and dies used in the manufacture... manufacture taxable articles, the tools and dies used in production pass to the purchaser, only the amount of...

  12. Energy level engineering in ternary organic solar cells: Evaluating exciton dissociation at organic semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Feron, Krishna; Thameel, Mahir N.; Al-Mudhaffer, Mohammed F.; Zhou, Xiaojing; Belcher, Warwick J.; Fell, Christopher J.; Dastoor, Paul C.

    2017-03-01

    Electronic energy level engineering, with the aim to improve the power conversion efficiency in ternary organic solar cells, is a complex problem since multiple charge transfer steps and exciton dissociation driving forces must be considered. Here, we examine exciton dissociation in the ternary system poly(3-hexylthiophene): [6,6]-phenyl-C61-butyric acid methyl ester:2,4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl] squaraine (P3HT:PCBM:DIBSq). Even though the energy level diagram suggests that exciton dissociation at the P3HT:DIBSq interface should be efficient, electron paramagnetic resonance and external quantum efficiency measurements of planar devices show that this interface is not capable of generating separated charge carriers. Efficient exciton dissociation is still realised via energy transfer, which transports excitons from the P3HT:DIBSq interface to the DIBSq:PCBM interface, where separated charge carriers can be generated efficiently. This work demonstrates that energy level diagrams alone cannot be relied upon to predict the exciton dissociation and charge separation capability of an organic semiconductor interface and that energy transfer relaxes the energy level constraints for optimised multi-component organic solar cells.

  13. Analysis of pharmaceutical impurities using multi-heartcutting 2D LC coupled with UV-charged aerosol MS detection.

    PubMed

    Zhang, Kelly; Li, Yi; Tsang, Midco; Chetwyn, Nik P

    2013-09-01

    To overcome challenges in HPLC impurity analysis of pharmaceuticals, we developed an automated online multi-heartcutting 2D HPLC system with hyphenated UV-charged aerosol MS detection. The first dimension has a primary column and the second dimension has six orthogonal columns to enhance flexibility and selectivity. The two dimensions were interfaced by a pair of switching valves equipped with six trapping loops that allow multi-heartcutting of peaks of interest in the first dimension and also allow "peak parking." The hyphenated UV-charged aerosol MS detection provides comprehensive detection for compounds with and without UV chromophores, organics, and inorganics. It also provides structural information for impurity identification. A hidden degradation product that co-eluted with the drug main peak was revealed by RP × RP separation and thus enabled the stability-indicating method development. A poorly retained polar component with no UV chromophores was analyzed by RP × hydrophilic interaction liquid chromatography separation with charged aerosol detection. Furthermore, using this system, the structures of low-level impurities separated by a method using nonvolatile phosphate buffer were identified and tracked by MS in the second dimension. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The behavior of exciplex decay processes and interplay of radiationless transition and preliminary reorganization mechanisms of electron transfer in loose and tight pairs of reactants.

    PubMed

    Kuzmin, Michael G; Soboleva, Irina V; Dolotova, Elena V

    2007-01-18

    Exciplex emission spectra and rate constants of their decay via internal conversion and intersystem crossing are studied and discussed in terms of conventional radiationless transition approach. Exciplexes of 9-cyanophenanthrene with 1,2,3-trimethoxybenzene and 1,3,5-trimethoxybenzene were studied in heptane, toluene, butyl acetate, dichloromethane, butyronitrile, and acetonitrile. A better description of spectra and rate constants is obtained using 0-0 transition energy and Gauss broadening of vibrational bands rather than the free energy of electron transfer and reorganization energy. The coincidence of parameters describing exciplex emission spectra and dependence of exciplex decay rate constants on energy gap gives the evidence of radiationless quantum transition mechanism rather than thermally activated medium reorganization mechanism of charge recombination in exciplexes and excited charge transfer complexes (contact radical ion pairs) as well as in solvent separated radical ion pairs. Radiationless quantum transition mechanism is shown to provide an appropriate description also for the main features of exergonic excited-state charge separation reactions if fast mutual transformations of loose and tight pairs of reactants are considered. In particular, very fast electron transfer (ET) in tight pairs of reactants with strong electronic coupling of locally excited and charge transfer states can prevent the observation of an inverted region in bimolecular excited-state charge separation even for highly exergonic reactions.

  15. Terahertz Emission from Hybrid Perovskites Driven by Ultrafast Charge Separation and Strong Electron-Phonon Coupling.

    PubMed

    Guzelturk, Burak; Belisle, Rebecca A; Smith, Matthew D; Bruening, Karsten; Prasanna, Rohit; Yuan, Yakun; Gopalan, Venkatraman; Tassone, Christopher J; Karunadasa, Hemamala I; McGehee, Michael D; Lindenberg, Aaron M

    2018-03-01

    Unusual photophysical properties of organic-inorganic hybrid perovskites have not only enabled exceptional performance in optoelectronic devices, but also led to debates on the nature of charge carriers in these materials. This study makes the first observation of intense terahertz (THz) emission from the hybrid perovskite methylammonium lead iodide (CH 3 NH 3 PbI 3 ) following photoexcitation, enabling an ultrafast probe of charge separation, hot-carrier transport, and carrier-lattice coupling under 1-sun-equivalent illumination conditions. Using this approach, the initial charge separation/transport in the hybrid perovskites is shown to be driven by diffusion and not by surface fields or intrinsic ferroelectricity. Diffusivities of the hot and band-edge carriers along the surface normal direction are calculated by analyzing the emitted THz transients, with direct implications for hot-carrier device applications. Furthermore, photogenerated carriers are found to drive coherent terahertz-frequency lattice distortions, associated with reorganizations of the lead-iodide octahedra as well as coupled vibrations of the organic and inorganic sublattices. This strong and coherent carrier-lattice coupling is resolved on femtosecond timescales and found to be important both for resonant and far-above-gap photoexcitation. This study indicates that ultrafast lattice distortions play a key role in the initial processes associated with charge transport. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ultrafast Exciton Dissociation and Long-Lived Charge Separation in a Photovoltaic Pentacene-MoS2 van der Waals Heterojunction.

    PubMed

    Bettis Homan, Stephanie; Sangwan, Vinod K; Balla, Itamar; Bergeron, Hadallia; Weiss, Emily A; Hersam, Mark C

    2017-01-11

    van der Waals heterojunctions between two-dimensional (2D) layered materials and nanomaterials of different dimensions present unique opportunities for gate-tunable optoelectronic devices. Mixed-dimensional p-n heterojunction diodes, such as p-type pentacene (0D) and n-type monolayer MoS 2 (2D), are especially interesting for photovoltaic applications where the absorption cross-section and charge transfer processes can be tailored by rational selection from the vast library of organic molecules and 2D materials. Here, we study the kinetics of excited carriers in pentacene-MoS 2 p-n type-II heterojunctions by transient absorption spectroscopy. These measurements show that the dissociation of MoS 2 excitons occurs by hole transfer to pentacene on the time scale of 6.7 ps. In addition, the charge-separated state lives for 5.1 ns, up to an order of magnitude longer than the recombination lifetimes from previously reported 2D material heterojunctions. By studying the fractional amplitudes of the MoS 2 decay processes, the hole transfer yield from MoS 2 to pentacene is found to be ∼50%, with the remaining holes undergoing trapping due to surface defects. Overall, the ultrafast charge transfer and long-lived charge-separated state in pentacene-MoS 2 p-n heterojunctions suggest significant promise for mixed-dimensional van der Waals heterostructures in photovoltaics, photodetectors, and related optoelectronic technologies.

  17. Terahertz Emission from Hybrid Perovskites Driven by Ultrafast Charge Separation and Strong Electron-Phonon Coupling

    DOE PAGES

    Guzelturk, Burak; Belisle, Rebecca A.; Smith, Matthew D.; ...

    2018-01-23

    Unusual photophysical properties of organic–inorganic hybrid perovskites have not only enabled exceptional performance in optoelectronic devices, but also led to debates on the nature of charge carriers in these materials. This study makes the first observation of intense terahertz (THz) emission from the hybrid perovskite methylammonium lead iodide (CH 3NH 3PbI 3) following photoexcitation, enabling an ultrafast probe of charge separation, hot–carrier transport, and carrier–lattice coupling under 1–sun–equivalent illumination conditions. Using this approach, the initial charge separation/transport in the hybrid perovskites is shown to be driven by diffusion and not by surface fields or intrinsic ferroelectricity. Diffusivities of the hotmore » and band–edge carriers along the surface normal direction are calculated by analyzing the emitted THz transients, with direct implications for hot–carrier device applications. Furthermore, photogenerated carriers are found to drive coherent terahertz–frequency lattice distortions, associated with reorganizations of the lead–iodide octahedra as well as coupled vibrations of the organic and inorganic sublattices. This strong and coherent carrier–lattice coupling is resolved on femtosecond timescales and found to be important both for resonant and far–above–gap photoexcitation. As a result, this study indicates that ultrafast lattice distortions play a key role in the initial processes associated with charge transport.« less

  18. Particle astronomy with a superconducting magnet.

    NASA Technical Reports Server (NTRS)

    Buffington, A.

    1972-01-01

    The magnetic spectrometer measures deflections of charged particles moving in a magnetic field and provides a direct means of determining the rigidity of charged primary cosmic rays up to about 100 GV/c rigidity. The underlying concepts of the method are reviewed, and factors delineating the applicable momentum range and accuracy are described along with calibration techniques. Previous experiments employing this technique are summarized, and prospects for future applications are evaluated with emphasis on separate measurement of electron and positron spectra and on isotopic separation.

  19. Self-Assembly Strategies for Integrating Light Harvesting and Charge Separation in Artificial Photosynthetic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasielewski, Michael R.

    In natural photosynthesis, organisms optimize solar energy conversion through organized assemblies of photofunctional chromophores and catalysts within proteins that provide specifically tailored environments for chemical reactions. As with their natural counterparts, artificial photosynthetic systems for practical solar fuels production must collect light energy, separate charge, and transport charge to catalytic sites where multielectron redox processes will occur. While encouraging progress has been made on each aspect of this complex problem, researchers have not yet developed self-ordering and self-assembling components and the tailored environments necessary to realize a fully-functional artificial system. Previously researchers have used complex, covalent molecular systems comprised ofmore » chromophores, electron donors, and electron acceptors to mimic both the light-harvesting and the charge separation functions of photosynthetic proteins. These systems allow for study of the dependencies of electron transfer rate constants on donor?acceptor distance and orientation, electronic interaction, and the free energy of the reaction. The most useful and informative systems are those in which structural constraints control both the distance and the orientation between the electron donors and acceptors. Self-assembly provides a facile means for organizing large numbers of molecules into supramolecular structures that can bridge length scales from nanometers to macroscopic dimensions. The resulting structures must provide pathways for migration of light excitation energy among antenna chromophores, and from antennas to reaction centers. They also must incorporate charge conduits, that is, molecular 'wires' that can efficiently move electrons and holes between reaction centers and catalytic sites. The central scientific challenge is to develop small, functional building blocks with a minimum number of covalent linkages, which also have the appropriate molecular recognition properties to facilitate self-assembly of complete, functional artificial photosynthetic systems. In this Account, we explore how self-assembly strategies involving ?-stacking can be used to integrate light harvesting with charge separation and transport.« less

  20. Manipulating particles for micro- and nano-fluidics via floating electrodes and diffusiophoresis

    NASA Astrophysics Data System (ADS)

    Yalcin, Sinan Eren

    The ability to accurately control micro- and nano-particles in a liquid is fundamentally useful for many applications in biology, medicine, pharmacology, tissue engineering, and microelectronics. Therefore, first particle manipulations are experimentally studied using electrodes attached to the bottom of a straight microchannel under an imposed DC or AC electric field. In contrast to a dielectric microchannel possessing a nearly-uniform surface charge, a floating electrode is polarized under the imposed electric field. The purpose is to create a non-uniform distribution of the induced surface charge, with a zero-net-surface charge along the floating electrode's surface. Such a field, in turn, generates an induced-charge electro-osmotic (ICED) flow near the metal strip. The demonstrations by using single and multiple floating electrodes at the bottom of a straight microchannel, with induced DC electric field, include particle enrichment, movement, trapping, reversal of motion, separation, and particle focusing. A flexible strategy for the on-demand control of the particle enrichment and positioning is also proposed and demonstrated by using a locally-controlled floating metal electrode. Then, under an externally imposed AC electric field, the particle deposition onto a floating electrode, which is placed in a closed circular cavity, has been experimentally investigated. In the second part of the study, another particle manipulation method was computationally investigated. The diffusiophoretic and electrodiffusiophoretic motion of a charged spherical particle in a nanopore is subjected to an axial electrolyte concentration gradient. The charged particle experiences electrophoresis because of the imposed electric field and the diffusiophoresis is caused solely by the imposed concentration gradient. Depending on the magnitude and direction of the imposed concentration gradient, the particle's electrophoretic motion can be accelerated, decelerated, and even reversed in a nanopore by the superimposed diffusiophoresis. Based on the results demonstrated in the present study, it is entirely conceivable to extend the development to design devices for the following objectives: (1) to enrich the concentration of, say, DNA or RNA, and to increase their concentrations at a desired location. (2) to act as a filtration device, wherin the filtration can be achieved without blocking the microfluidic channel and without any porous material. (3) to act as a microfluidic valve, where the particles can be locally trapped in any desired location and the direction can be switched as desired. (4) to create nanocomposite material formation or even a thin nanocomposite film formation on the floating electrode. (5) to create a continuous concentration-gradient-generator nanofluidic device that may be obtained for nanoparticle translocation process. This may achieve nanometer-scale spatial accuracy sample sequencing by simultaneously controlling the electric field and concentration gradient.

  1. Direct evidence of charge separation in a metal-organic framework: efficient and selective photocatalytic oxidative coupling of amines via charge and energy transfer.

    PubMed

    Xu, Caiyun; Liu, Hang; Li, Dandan; Su, Ji-Hu; Jiang, Hai-Long

    2018-03-28

    The selective aerobic oxidative coupling of amines under mild conditions is an important laboratory and commercial procedure yet a great challenge. In this work, a porphyrinic metal-organic framework, PCN-222, was employed to catalyze the reaction. Upon visible light irradiation, the semiconductor-like behavior of PCN-222 initiates charge separation, evidently generating oxygen-centered active sites in Zr-oxo clusters indicated by enhanced porphyrin π-cation radical signals. The photogenerated electrons and holes further activate oxygen and amines, respectively, to give the corresponding redox products, both of which have been detected for the first time. The porphyrin motifs generate singlet oxygen based on energy transfer to further promote the reaction. As a result, PCN-222 exhibits excellent photocatalytic activity, selectivity and recyclability, far superior to its organic counterpart, for the reaction under ambient conditions via combined energy and charge transfer.

  2. A submicron device to rectify a square-wave angular velocity.

    PubMed

    Moradian, A; Miri, M F

    2011-02-01

    We study a system composed of two thick dielectric disks separated by a thin layer of an electrolyte solution. Initially both plates have the same surface charge distribution. The surface charge distribution has no rotational symmetry. We show that the top plate experiences a torque [Formula: see text]([Formula: see text]) if it rotates about its axis by an angle [Formula: see text] . The torque can be controlled by varying the electrolyte concentration, the separation and the surface charge density of the plates. For a specific example of charged rods attached to the plates, we find [Formula: see text]([Formula: see text]) [Formula: see text] sin(4[Formula: see text]) . We also study the dynamics of the system. We consider the case where the angular velocity of the bottom disk is a square-wave signal. We find that the average angular velocity of the top disk is not zero.

  3. Fingerprints of electronic, spin and structural dynamics from resonant inelastic soft X-ray scattering in transient photo-chemical species

    DOE PAGES

    Norell, Jesper; Jay, Raphael M.; Hantschmann, Markus; ...

    2018-02-20

    Here, we describe how inversion symmetry separation of electronic state manifolds in resonant inelastic soft X-ray scattering (RIXS) can be applied to probe excited-state dynamics with compelling selectivity. In a case study of Fe L 3-edge RIXS in the ferricyanide complex Fe(CN) 6 3-, we demonstrate with multi-configurational restricted active space spectrum simulations how the information content of RIXS spectral fingerprints can be used to unambiguously separate species of different electronic configurations, spin multiplicities, and structures, with possible involvement in the decay dynamics of photo-excited ligand-to-metal charge-transfer. Specifically, we propose that this could be applied to confirm or reject themore » presence of a hitherto elusive transient Quartet species. Thus, RIXS offers a particular possibility to settle a recent controversy regarding the decay pathway, and we expect the technique to be similarly applicable in other model systems of photo-induced dynamics.« less

  4. Fingerprints of electronic, spin and structural dynamics from resonant inelastic soft X-ray scattering in transient photo-chemical species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norell, Jesper; Jay, Raphael M.; Hantschmann, Markus

    Here, we describe how inversion symmetry separation of electronic state manifolds in resonant inelastic soft X-ray scattering (RIXS) can be applied to probe excited-state dynamics with compelling selectivity. In a case study of Fe L 3-edge RIXS in the ferricyanide complex Fe(CN) 6 3-, we demonstrate with multi-configurational restricted active space spectrum simulations how the information content of RIXS spectral fingerprints can be used to unambiguously separate species of different electronic configurations, spin multiplicities, and structures, with possible involvement in the decay dynamics of photo-excited ligand-to-metal charge-transfer. Specifically, we propose that this could be applied to confirm or reject themore » presence of a hitherto elusive transient Quartet species. Thus, RIXS offers a particular possibility to settle a recent controversy regarding the decay pathway, and we expect the technique to be similarly applicable in other model systems of photo-induced dynamics.« less

  5. Improved Photoresponse Performance of Self-Powered ZnO/Spiro-MeOTAD Heterojunction Ultraviolet Photodetector by Piezo-Phototronic Effect.

    PubMed

    Shen, Yanwei; Yan, Xiaoqin; Si, Haonan; Lin, Pei; Liu, Yichong; Sun, Yihui; Zhang, Yue

    2016-03-09

    Strain-induced piezoelectric potential (piezopotential) within wurtzite-structured ZnO can engineer the energy-band structure at a contact or a junction and, thus, enhance the performance of corresponding optoelectronic devices by effectively tuning the charge carriers' separation and transport. Here, we report the fabrication of a flexible self-powered ZnO/Spiro-MeOTAD hybrid heterojunction ultraviolet photodetector (UV PD). The obtained device has a fast and stable response to the UV light illumination at zero bias. Together with responsivity and detectivity, the photocurrent can be increased about 1-fold upon applying a 0.753% tensile strain. The enhanced performance can be attributed to more efficient separation and transport of photogenerated electron-hole pairs, which is favored by the positive piezopotential modulated energy-band structure at the ZnO-Spiro-MeOTAD interface. This study demonstrates a promising approach to optimize the performance of a photodetector made of piezoelectric semiconductor materials through straining.

  6. Pulse-shape discrimination with Cs2HfCl6 crystal scintillator

    NASA Astrophysics Data System (ADS)

    Cardenas, C.; Burger, A.; Goodwin, B.; Groza, M.; Laubenstein, M.; Nagorny, S.; Rowe, E.

    2017-10-01

    The results of investigation into cesium hafnium chloride (Cs2HfCl6) scintillating crystals as a promising detector to search for rare nuclear processes occurring in Hf isotopes is reported. The light output, quenching factor, and pulse-shape characteristics have been investigated at room temperature. The scintillation response of the crystal induced by α-particles and γ-quanta were studied to determine possibility of particle discrimination. Using the optimal filter method we obtained clear separation between signals with a factor of merit (FOM) = 9.3. This indicates that we are able to fully separate signals originating from α-particles and γ-quanta. Similar fruitful discrimination power was obtained by applying the mean time method (FOM = 7) and charge integration method (FOM = 7.5). The quenching factor for collimated 4 MeV α-particles is found to be 0.36, showing that α-particles generate more than a third of the light compared to γ-quanta at the same energy.

  7. Strategies towards controlling strain-induced mesoscopic phase separation in manganite thin films

    NASA Astrophysics Data System (ADS)

    Habermeier, H.-U.

    2008-10-01

    Complex oxides represent a class of materials with a plethora of fascinating intrinsic physical functionalities. The intriguing interplay of charge, spin and orbital ordering in these systems superimposed by lattice effects opens a scientifically rewarding playground for both fundamental as well as application oriented research. The existence of nanoscale electronic phase separation in correlated complex oxides is one of the areas in this field whose impact on the current understanding of their physics and potential applications is not yet clear. In this paper this issue is treated from the point of view of complex oxide thin film technology. Commenting on aspects of complex oxide thin film growth gives an insight into the complexity of a reliable thin film technology for these materials. Exploring fundamentals of interfacial strain generation and strain accommodation paves the way to intentionally manipulate thin film properties. Furthermore, examples are given for an extrinsic continuous tuning of intrinsic electronic inhomogeneities in perovskite-type complex oxide thin films.

  8. Separability of massive field equations for spin-0 and spin-1/2 charged particles in the general nonextremal rotating charged black hole spacetimes in minimal five-dimensional gauged supergravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Shuangqing

    We continue to investigate the separability of massive field equations for spin-0 and spin-1/2 charged particles in the general, nonextremal, rotating, charged, Chong-Cvetic-Lue-Pope black holes with two independent angular momenta and a nonzero cosmological constant in minimal D=5 gauged supergravity theory. We show that the complex Klein-Gordon equation and the modified Dirac equation with the inclusion of an extra counterterm can be separated by variables into purely radial and purely angular parts in this general Einstein-Maxwell-Chern-Simons background spacetime. A second-order symmetry operator that commutes with the complex Laplacian operator is constructed from the separated solutions and expressed compactly in termsmore » of a rank-2 Staeckel-Killing tensor which admits a simple diagonal form in the chosen pentad one-forms so that it can be understood as the square of a rank-3 totally antisymmetric tensor. A first-order symmetry operator that commutes with the modified Dirac operator is expressed in terms of a rank-3 generalized Killing-Yano tensor and its covariant derivative. The Hodge dual of this generalized Killing-Yano tensor is a generalized principal conformal Killing-Yano tensor of rank-2, which can generate a 'tower' of generalized (conformal) Killing-Yano and Staeckel-Killing tensors that are responsible for the whole hidden symmetries of this general, rotating, charged, Kerr-anti-de Sitter black hole geometry. In addition, the first laws of black hole thermodynamics have been generalized to the case that the cosmological constant can be viewed as a thermodynamical variable.« less

  9. Ab initio treatment of ion-induced charge transfer dynamics of isolated 2-deoxy-D-ribose.

    PubMed

    Bacchus-Montabonel, Marie-Christine

    2014-08-21

    Modeling-induced radiation damage in biological systems, in particular, in DNA building blocks, is of major concern in cancer therapy studies. Ion-induced charge-transfer dynamics may indeed be involved in proton and hadrontherapy treatments. We have thus performed a theoretical approach of the charge-transfer dynamics in collision of C(4+) ions and protons with isolated 2-deoxy-D-ribose in a wide collision energy range by means of ab initio quantum chemistry molecular methods. The comparison of both projectile ions has been performed with regard to previous theoretical and experimental results. The charge transfer appears markedly less efficient with the 2-deoxy-D-ribose target than that with pyrimidine nucleobases, which would induce an enhancement of the fragmentation process in agreement with experimental measurements. The mechanism has been analyzed with regard to inner orbital excitations, and qualitative tendencies have been pointed out for studies on DNA buiding block damage.

  10. Induced polymersome formation from a diblock PS-b-PAA polymer via encapsulation of positively charged proteins and peptides.

    PubMed

    Hvasanov, David; Wiedenmann, Jörg; Braet, Filip; Thordarson, Pall

    2011-06-14

    In contrast to simple salts or negatively charged macromolecules, positively charged proteins and peptides including cytochrome c (yeast) and poly-L-lysine are efficiently encapsulated while inducing the formation of polymersomes from polystyrene(140)-b-poly(acrylic acid)(48) (PS(140)-b-PAA(48)). This journal is © The Royal Society of Chemistry 2011

  11. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets

    NASA Astrophysics Data System (ADS)

    Liu, Mingjie; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Takata, Masaki; Aida, Takuzo

    2015-01-01

    Machine technology frequently puts magnetic or electrostatic repulsive forces to practical use, as in maglev trains, vehicle suspensions or non-contact bearings. In contrast, materials design overwhelmingly focuses on attractive interactions, such as in the many advanced polymer-based composites, where inorganic fillers interact with a polymer matrix to improve mechanical properties. However, articular cartilage strikingly illustrates how electrostatic repulsion can be harnessed to achieve unparalleled functional efficiency: it permits virtually frictionless mechanical motion within joints, even under high compression. Here we describe a composite hydrogel with anisotropic mechanical properties dominated by electrostatic repulsion between negatively charged unilamellar titanate nanosheets embedded within it. Crucial to the behaviour of this hydrogel is the serendipitous discovery of cofacial nanosheet alignment in aqueous colloidal dispersions subjected to a strong magnetic field, which maximizes electrostatic repulsion and thereby induces a quasi-crystalline structural ordering over macroscopic length scales and with uniformly large face-to-face nanosheet separation. We fix this transiently induced structural order by transforming the dispersion into a hydrogel using light-triggered in situ vinyl polymerization. The resultant hydrogel, containing charged inorganic structures that align cofacially in a magnetic flux, deforms easily under shear forces applied parallel to the embedded nanosheets yet resists compressive forces applied orthogonally. We anticipate that the concept of embedding anisotropic repulsive electrostatics within a composite material, inspired by articular cartilage, will open up new possibilities for developing soft materials with unusual functions.

  12. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets.

    PubMed

    Liu, Mingjie; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Takata, Masaki; Aida, Takuzo

    2015-01-01

    Machine technology frequently puts magnetic or electrostatic repulsive forces to practical use, as in maglev trains, vehicle suspensions or non-contact bearings. In contrast, materials design overwhelmingly focuses on attractive interactions, such as in the many advanced polymer-based composites, where inorganic fillers interact with a polymer matrix to improve mechanical properties. However, articular cartilage strikingly illustrates how electrostatic repulsion can be harnessed to achieve unparalleled functional efficiency: it permits virtually frictionless mechanical motion within joints, even under high compression. Here we describe a composite hydrogel with anisotropic mechanical properties dominated by electrostatic repulsion between negatively charged unilamellar titanate nanosheets embedded within it. Crucial to the behaviour of this hydrogel is the serendipitous discovery of cofacial nanosheet alignment in aqueous colloidal dispersions subjected to a strong magnetic field, which maximizes electrostatic repulsion and thereby induces a quasi-crystalline structural ordering over macroscopic length scales and with uniformly large face-to-face nanosheet separation. We fix this transiently induced structural order by transforming the dispersion into a hydrogel using light-triggered in situ vinyl polymerization. The resultant hydrogel, containing charged inorganic structures that align cofacially in a magnetic flux, deforms easily under shear forces applied parallel to the embedded nanosheets yet resists compressive forces applied orthogonally. We anticipate that the concept of embedding anisotropic repulsive electrostatics within a composite material, inspired by articular cartilage, will open up new possibilities for developing soft materials with unusual functions.

  13. Radio Frequency Trap for Containment of Plasmas in Antimatter Propulsion Systems Using Rotating Wall Electric Fields

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert, III (Inventor); Martin, James Joseph (Inventor); Lewis, Raymond A. (Inventor)

    2003-01-01

    A containment apparatus for containing a cloud of charged particles comprises a cylindrical vacuum chamber having a longitudinal axis. Within the vacuum chamber is a containment region. A magnetic field is aligned with the longitudinal axis of the vacuum chamber. The magnetic field is time invariant and uniform in strength over the containment region. An electric field is also aligned with the longitudinal axis of the vacuum chamber and the magnetic field. The electric field is time invariant, and forms a potential well over the containment region. One or more means are disposed around the cloud of particles for inducing a rotating electric field internal to the vacuum chamber. The rotating electric field imparts energy to the charged particles within the containment region and compress the cloud of particles. The means disposed around the outer surface of the vacuum chamber for inducing a rotating electric field are four or more segments forming a segmented ring, the segments conforming to the outer surface of the vacuum chamber. Each of the segments is energized by a separate alternating voltage. The sum of the voltages imposed on each segment establishes the rotating field. When four segments form a ring, the rotating field is obtained by a signal generator applying a sinusoidal signal phase delayed by 90,180 and 270 degrees in sequence to the four segments.

  14. Microencapsulation and Electrostatic Processing Device

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor); Cassanto, John M. (Inventor)

    2001-01-01

    A microencapsulation and electrostatic processing (MEP) device is provided for forming microcapsules. In one embodiment, the device comprises a chamber having a filter which separates a first region in the chamber from a second region in the chamber. An aqueous solution is introduced into the first region through an inlet port, and a hydrocarbon/ polymer solution is introduced into the second region through another inlet port. The filter acts to stabilize the interface and suppress mixing between the two immiscible solutions as they are being introduced into their respective regions. After the solutions have been introduced and have become quiescent, the interface is gently separated from the filter. At this point, spontaneous formation of microcapsules at the interface may begin to occur, or some fluid motion may be provided to induce microcapsule formation. In any case, the fluid shear force at the interface is limited to less than 100 dynes/sq cm. This low-shear approach to microcapsule formation yields microcapsules with good sphericity and desirable size distribution. The MEP device is also capable of downstream processing of microcapsules, including rinsing, re-suspension in tertiary fluids, electrostatic deposition of ancillary coatings, and free-fluid electrophoretic separation of charged microcapsules.

  15. Charge transfer induced by MoO3 at boron subphthalocyanine chloride/α-sexithiophene heterojunction interface

    NASA Astrophysics Data System (ADS)

    Foggiatto, Alexandre L.; Sakurai, Takeaki

    2018-03-01

    The energy-level alignment of boron subphthalocyanine chloride (SubPc)/α-sexithiophene (6T) grown on MoO3 was investigated using ultraviolet and X-ray photoelectron spectroscopy (UPS and XPS). We demonstrated that the p-doping effect generated by the MoO3 layer can induce charge transfer at the organic-organic heterojunction interface. After the deposition of 6T on MoO3, the fermi level becomes pinned close to the 6T highest occupied molecular orbital (HOMO) level and when SubPc is deposited, owing to its tail states, charge transfer occurs in order to achieve thermodynamic equilibrium. We also demonstrated that the charge transfer can be reduced by annealing the film. We suggested that the reduction of the misalignment on the film induces a reduction in the density of gap states, which controls the charge transfer.

  16. Insight into induced charges at metal surfaces and biointerfaces using a polarizable Lennard-Jones potential.

    PubMed

    Geada, Isidro Lorenzo; Ramezani-Dakhel, Hadi; Jamil, Tariq; Sulpizi, Marialore; Heinz, Hendrik

    2018-02-19

    Metallic nanostructures have become popular for applications in therapeutics, catalysts, imaging, and gene delivery. Molecular dynamics simulations are gaining influence to predict nanostructure assembly and performance; however, instantaneous polarization effects due to induced charges in the free electron gas are not routinely included. Here we present a simple, compatible, and accurate polarizable potential for gold that consists of a Lennard-Jones potential and a harmonically coupled core-shell charge pair for every metal atom. The model reproduces the classical image potential of adsorbed ions as well as surface, bulk, and aqueous interfacial properties in excellent agreement with experiment. Induced charges affect the adsorption of ions onto gold surfaces in the gas phase at a strength similar to chemical bonds while ions and charged peptides in solution are influenced at a strength similar to intermolecular bonds. The proposed model can be applied to complex gold interfaces, electrode processes, and extended to other metals.

  17. Charge separation and carrier dynamics in donor-acceptor heterojunction photovoltaic systems.

    PubMed

    Teuscher, Joël; Brauer, Jan C; Stepanov, Andrey; Solano, Alicia; Boziki, Ariadni; Chergui, Majed; Wolf, Jean-Pierre; Rothlisberger, Ursula; Banerji, Natalie; Moser, Jacques-E

    2017-11-01

    Electron transfer and subsequent charge separation across donor-acceptor heterojunctions remain the most important areas of study in the field of third-generation photovoltaics. In this context, it is particularly important to unravel the dynamics of individual ultrafast processes (such as photoinduced electron transfer, carrier trapping and association, and energy transfer and relaxation), which prevail in materials and at their interfaces. In the frame of the National Center of Competence in Research "Molecular Ultrafast Science and Technology," a research instrument of the Swiss National Science Foundation, several groups active in the field of ultrafast science in Switzerland have applied a number of complementary experimental techniques and computational simulation tools to scrutinize these critical photophysical phenomena. Structural, electronic, and transport properties of the materials and the detailed mechanisms of photoinduced charge separation in dye-sensitized solar cells, conjugated polymer- and small molecule-based organic photovoltaics, and high-efficiency lead halide perovskite solar energy converters have been scrutinized. Results yielded more than thirty research articles, an overview of which is provided here.

  18. New Techniques to Evaluate the Incendiary Behavior of Insulators

    NASA Technical Reports Server (NTRS)

    Buhler, Charles; Calle, Carlos; Clements, Sid; Trigwell, Steve; Ritz, Mindy

    2008-01-01

    New techniques for evaluating the incendiary behavior of insulators is presented. The onset of incendive brush discharges in air is evaluated using standard spark probe techniques for the case simulating approaches of an electrically grounded sphere to a charged insulator in the presence of a flammable atmosphere. However, this standard technique is unsuitable for the case of brush discharges that may occur during the charging-separation process for two insulator materials. We present experimental techniques to evaluate this hazard in the presence of a flammable atmosphere which is ideally suited to measure the incendiary nature of micro-discharges upon separation, a measurement never before performed. Other measurement techniques unique to this study include; surface potential measurements of insulators before, during and after contact and separation, as well as methods to verify fieldmeter calibrations using a charge insulator surface opposed to standard high voltage plates. Key words: Kapton polyimide film, incendiary discharges, brush discharges, contact and frictional electrification, ignition hazards, insulators, contact angle, surface potential measurements.

  19. Currents Induced by Injected Charge in Junction Detectors

    PubMed Central

    Gaubas, Eugenijus; Ceponis, Tomas; Kalesinskas, Vidas

    2013-01-01

    The problem of drifting charge-induced currents is considered in order to predict the pulsed operational characteristics in photo- and particle-detectors with a junction controlled active area. The direct analysis of the field changes induced by drifting charge in the abrupt junction devices with a plane-parallel geometry of finite area electrodes is presented. The problem is solved using the one-dimensional approach. The models of the formation of the induced pulsed currents have been analyzed for the regimes of partial and full depletion. The obtained solutions for the current density contain expressions of a velocity field dependence on the applied voltage, location of the injected surface charge domain and carrier capture parameters. The drift component of this current coincides with Ramo's expression. It has been illustrated, that the synchronous action of carrier drift, trapping, generation and diffusion can lead to a vast variety of possible current pulse waveforms. Experimental illustrations of the current pulse variations determined by either the rather small or large carrier density within the photo-injected charge domain are presented, based on a study of Si detectors. PMID:24036586

  20. Design and Synthesis of Novel Block Copolymers for Efficient Opto-Electronic Applications

    NASA Technical Reports Server (NTRS)

    Sun, Sam-Shajing; Fan, Zhen; Wang, Yiqing; Taft, Charles; Haliburton, James; Maaref, Shahin

    2002-01-01

    It has been predicted that nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks may facilitate the charge carrier separation and migration in organic photovoltaic devices due to improved morphology in comparison to polymer blend system. This paper presents preliminary data describing the design and synthesis of a novel Donor-Bridge-Acceptor (D-B-A) block copolymer system for potential high efficient organic optoelectronic applications. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene (PPV), the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene (PPV), and the bridge block contains an electronically neutral non-conjugated aliphatic hydrocarbon chain. The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block stabilizes and facilitates the transport of the holes, the acceptor block stabilizes and facilitates the transport of the electrons, the bridge block is designed to hinder the probability of electron-hole recombination. Thus, improved charge separation and stability are expected with this system. In addition, charge migration toward electrodes may also be facilitated due to the potential nano-phase separated and highly ordered block copolymer ultra-structure.

  1. Disentangling flow and signals of Chiral Magnetic Effect in U+U, Au+Au and p+Au collisions

    NASA Astrophysics Data System (ADS)

    Tribedy, Prithwish; STAR Collaboration

    2017-11-01

    We present STAR measurements of the charge-dependent three-particle correlator γ a , b = 〈 cos ⁡ (ϕ1a + ϕ2b - 2ϕ3) 〉 /v2 { 2 } and elliptic flow v2 { 2 } in U+U, Au+Au and p+Au collisions at RHIC. The difference Δγ = γ (opposite-sign) - γ (same-sign) measures charge separation across the reaction plane, a predicted signal of the Chiral Magnetic Effect (CME). Although charge separation has been observed, it has been argued that the measured separation can also be explained by elliptic flow related backgrounds. In order to separate the two effects we perform measurements of the γ-correlator where background expectations differ from magnetic field driven effects. A differential measurement of γ with the relative pseudorapidity (Δη) between the first and second particles indicate that Δγ in peripheral A+A and p+A collisions are dominated by short-range correlations in Δη. However, a relatively wider component of the correlation in Δη tends to vanish the same way as projected magnetic field as predicted by MC-Glauber simulations.

  2. Optical excitations dynamics at hetero-interfaces fullerene/quantum dots

    NASA Astrophysics Data System (ADS)

    Righetto, Marcello; Privitera, Alberto; Franco, Lorenzo; Bozio, Renato

    2017-08-01

    Embedding Semiconductor Quantum Dots (QDs) into hybrid organic-inorganic solar cell holds promises for improving photovoltaic performances. Thanks to their strong coupling with electro-magnetic radiation field, QDs represent paradigmatic photon absorbers. Nevertheless, the quest for suitable charge separating hetero-interfaces is still an open challenge. Within this framework, the excited state interactions between QDs and fullerene derivatives are of great interest for ternary solar cells (polymer:QDs:fullerene). In this work, we investigated the exciton dynamics of core/shell CdSe/CdS QDs both in solution and in blends with fullerene derivative (PCBM). By means of transient optical techniques, we aimed to unveil the dynamics of the QDs-PCBM interaction. Indeed, the observed excited state depopulation of QDs in blends is compatible with an excited state interaction living on picosecond timescale. Through electron paramagnetic resonance, we delved into the nature of this interaction, identifying the presence of charge separated states. The concurrence of these observations suggest a fast electron transfer process, where QDs act as donors and PCBM molecules as acceptors, followed by effective charge separation. Therefore, our experimental results indicate the QDs-PCBM heterointerface as suitable exciton separating interface, paving the way for possible applications in photovoltaics.

  3. Explicit Solvent Simulations of Friction between Brush Layers of Charged and Neutral Bottle-Brush Macromolecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrillo, Jan-Michael; Brown, W Michael; Dobrynin, Andrey

    2012-01-01

    We study friction between charged and neutral brush layers of bottle-brush macromolecules using molecular dynamics simulations. In our simulations the solvent molecules were treated explicitly. The deformation of the bottle-brush macromolecules under the shear were studied as a function of the substrate separation and shear stress. For charged bottle-brush layers we study effect of the added salt on the brush lubricating properties to elucidate factors responsible for energy dissipation in charged and neutral brush systems. Our simulations have shown that for both charged and neutral brush systems the main deformation mode of the bottle-brush macromolecule is associated with the backbonemore » deformation. This deformation mode manifests itself in the backbone deformation ratio, , and shear viscosity, , to be universal functions of the Weissenberg number W. The value of the friction coefficient, , and viscosity, , are larger for the charged bottle-brush coatings in comparison with those for neutral brushes at the same separation distance, D, between substrates. The additional energy dissipation generated by brush sliding in charged bottle-brush systems is due to electrostatic coupling between bottle-brush and counterion motion. This coupling weakens as salt concentration, cs, increases resulting in values of the viscosity, , and friction coefficient, , approaching corresponding values obtained for neutral brush systems.« less

  4. Engine Tune-up Service. Unit 2: Charging System. Review Exercise Book. Automotive Mechanics Curriculum.

    ERIC Educational Resources Information Center

    Richardson, Roger L.; Bacon, E. Miles

    This book of pretests and review exercises is designed to accompany the Engine Tune-Up Service Student Guide for Unit 2, Charging System, available separately as CE 031 208. Focus of the exercises and pretests is testing the charging system. Pretests and performance checklists are provided for each of the three performance objectives contained in…

  5. Engine Tune-up Service. Unit 2: Charging System. Posttests. Automotive Mechanics Curriculum.

    ERIC Educational Resources Information Center

    Richardson, Roger L.; Bacon, E. Miles

    This book of posttests is designed to accompany the Engine Tune-Up Service Student Guide for Unit 2, Charging System, available separately as CE 031 208. Focus of the posttest is on the testing of the charging system. One multiple choice posttest is provided, that covers the three performance objectives contained in the unit. (No answer key is…

  6. 26 CFR 48.4216(a)-1 - Charges to be included in sale price.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... sales promotion programs, or otherwise. With respect to the rules relating to exclusion (in the case of... section 4216(e) and § 48.4216(e)-1. In the case of sales on credit, a carrying, finance, or service charge... communication in connection with collection). (b) Tools and dies. Separate charges for tools and dies used in...

  7. Repulsion Between Finite Charged Plates with Strongly Overlapped Electric Double Layers.

    PubMed

    Ghosal, Sandip; Sherwood, John D

    2016-09-20

    Screened Coulomb interactions between uniformly charged flat plates are considered at very small plate separations for which the Debye layers are strongly overlapped, in the limit of small electrical potentials. If the plates are of infinite length, the disjoining pressure between the plates decays as an inverse power of the plate separation. If the plates are of finite length, we show that screening Debye layer charges close to the edge of the plates are no longer constrained to stay between the plates, but instead spill out into the surrounding electrolyte. The resulting change in the disjoining pressure is calculated analytically: the force between the plates is reduced by this edge correction when the charge density is uniform over the surface of the plates, and is increased when the surface is at constant potential. A similar change in disjoining pressure due to loss of lateral confinement of the Debye layer charges should occur whenever the sizes of the interacting charged objects become small enough to approach the Debye scale. We investigate the effect here in the context of a two-dimensional model problem that is sufficiently simple to yield analytical results.

  8. Hot kinetic model as a guide to improve organic photovoltaic materials.

    PubMed

    Sosorev, Andrey Yu; Godovsky, Dmitry Yu; Paraschuk, Dmitry Yu

    2018-01-31

    The modeling of organic solar cells (OSCs) can provide a roadmap for their further improvement. Many OSC models have been proposed in recent years; however, the impact of the key intermediates from photons to electricity-hot charge-transfer (CT) states-on the OSC efficiency is highly ambiguous. In this study, we suggest an analytical kinetic model for OSC that considers a two-step charge generation via hot CT states. This hot kinetic model allowed us to evaluate the impact of different material parameters on the OSC performance: the driving force for charge separation, optical bandgap, charge mobility, geminate recombination rate, thermalization rate, average electron-hole separation distance in the CT state, dielectric permittivity, reorganization energy and charge delocalization. In contrast to a widespread trend of lowering the material bandgap, the model predicts that this approach is only efficient along with improvement of the other material properties. The most promising ways to increase the OSC performance are decreasing the reorganization energy, i.e., an energy change accompanying CT from the donor molecule to the acceptor, increasing the dielectric permittivity and charge delocalization. The model suggests that there are no fundamental limitations that can prevent achieving the OSC efficiency above 20%.

  9. Modulating interactions between ligand-coated nanoparticles and phase-separated lipid bilayers by varying the ligand density and the surface charge.

    PubMed

    Chen, Xiaojie; Tieleman, D Peter; Liang, Qing

    2018-02-01

    The interactions between nanoparticles and lipid bilayers are critical in applications of nanoparticles in nanomedicine, cell imaging, toxicology, and elsewhere. Here, we investigate the interactions between nanoparticles coated with neutral and/or charged ligands and phase-separated lipid bilayers using coarse-grained molecular dynamics simulation. Both penetration and adsorption processes as well as the final distribution of the nanoparticles can be readily modulated by varying the ligand density and the surface charge of the nanoparticles. Completely hydrophobic (neutral) nanoparticles with larger size initially preferentially penetrate into the liquid-disordered region of the lipid bilayer and finally transfer into the liquid-ordered region; partially hydrophilic nanoparticles with low or moderate surface charge tend to either distribute in the liquid-disordered region or be adsorbed on the surface of the lipid bilayer, while strongly hydrophilic nanoparticles with high surface charge always reside on the surface of the lipid bilayer. Interactions of the nanoparticles with the lipid bilayers are affected by the surface charge of nanoparticles, hydrophobic mismatch, bending of the ligands, and the packing state of the lipids. Insight in these factors can be used to improve the efficiency of designing nanoparticles for specific applications.

  10. One-dimension modeling on the parallel-plate ion extraction process based on a non-electron-equilibrium fluid model

    NASA Astrophysics Data System (ADS)

    Li, He-Ping; Chen, Jian; Guo, Heng; Jiang, Dong-Jun; Zhou, Ming-Sheng; Department of Engineering Physics Team

    2017-10-01

    Ion extraction from a plasma under an externally applied electric field involve multi-particle and multi-field interactions, and has wide applications in the fields of materials processing, etching, chemical analysis, etc. In order to develop the high-efficiency ion extraction methods, it is indispensable to establish a feasible model to understand the non-equilibrium transportation processes of the charged particles and the evolutions of the space charge sheath during the extraction process. Most of the previous studies on the ion extraction process are mainly based on the electron-equilibrium fluid model, which assumed that the electrons are in the thermodynamic equilibrium state. However, it may lead to some confusions with neglecting the electron movement during the sheath formation process. In this study, a non-electron-equilibrium model is established to describe the transportation of the charged particles in a parallel-plate ion extraction process. The numerical results show that the formation of the Child-Langmuir sheath is mainly caused by the charge separation. And thus, the sheath shielding effect will be significantly weakened if the charge separation is suppressed during the extraction process of the charged particles.

  11. Combined electrophoretic-separation and electrospray method and system

    DOEpatents

    Smith, R.D.; Olivares, J.A.

    1989-06-27

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary zone electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5--100 kVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., [+-]2--8 kVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit. 10 figs.

  12. Microneedle-mediated transcutaneous immunization with plasmid DNA coated on cationic PLGA nanoparticles.

    PubMed

    Kumar, Amit; Wonganan, Piyanuch; Sandoval, Michael A; Li, Xinran; Zhu, Saijie; Cui, Zhengrong

    2012-10-28

    Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surface charge of the DNA-coated nanoparticles significantly affected their in vitro skin permeation and their ability to induce immune responses in vivo. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles elicited a stronger immune response than with plasmid DNA-coated net negatively charged nanoparticles or by intramuscular immunization with plasmid DNA alone. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles induced comparable immune responses as intramuscular injection of them, but transcutaneous immunization was able to induce specific mucosal immunity and a more balanced T helper type 1 and type 2 response. The ability of the net positively charged DNA-coated nanoparticles to induce a strong immune response through microneedle-mediated transcutaneous immunization may be attributed to their ability to increase the expression of the antigen gene encoded by the plasmid and to more effectively stimulate the maturation of antigen-presenting cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Separation of Albumin, Ceruloplasmin, and Transferrin from Human Plasma.

    ERIC Educational Resources Information Center

    Barnes, Grady; Frieden, Earl

    1982-01-01

    Procedures are provided for separating the principal metalloproteins (albumin, ceruloplasmin, and transferrin) from plasma using column chromatographic techniques. The experiment can be completed in two separate three-hour laboratory periods during which column chromatography is illustrated and the effect of pH on charge and affinity of a protein…

  14. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions

    ERIC Educational Resources Information Center

    Johnson, Brian J.

    2014-01-01

    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  15. Improvement of charge separation in TiO{sub 2} by its modification with different tungsten compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tryba, B., E-mail: beata.tryba@zut.edu.pl; Tygielska, M.; Grzeskowiak, M.

    2016-04-15

    Highlights: • Ammonium m-tungstate doped to TiO{sub 2} highly improved charge separation in TiO{sub 2}. • Negative electrokinetic potential of TiO{sub 2} facilitates holes migration to its surface. • Fast migration of holes to TiO{sub 2} surfaces increased yield of OH radicals formation. • Adsorption of dyes on photocatalyst increased its decomposition under visible light. - Abstract: Three different tungsten precursors were used for TiO{sub 2} modification: H{sub 2}WO{sub 4}, WO{sub 2}, and ammonium m-tungstate. It was proved that modification of TiO{sub 2} with tungsten compounds enhanced its photocatalytic activity through the improvement of charge separation. This effect was obtainedmore » by coating of TiO{sub 2} particles with tungsten compound, which changed their surficial electrokinetical potential from positive onto negative. The most efficient tungsten compound, which caused enhanced separation of free carriers was ammonium m-tungstate (AMT). Two dyes with different ionic potential were used for the photocatalytic decomposition. It appeared that cationic dye—Methylene Blue was highly adsorbed on the negatively charged surface of TiO{sub 2} modified by AMT and decomposed, however this photocatalyst was quickly deactivated whereas anionic dye—acid red was better adsorbed on the less acidic surface of TiO{sub 2} and was rapidly decomposed with almost the same rate in the five following cycles.« less

  16. Ru–protein–Co biohybrids designed for solar hydrogen production: understanding electron transfer pathways related to photocatalytic function† †Electronic supplementary information (ESI) available: Time traces of photocatalysis, additional EPR spectra and parameters, UV-visible spectroscopy data, and kinetic fits of TA traces. See DOI: 10.1039/c6sc03121h Click here for additional data file.

    PubMed Central

    Soltau, Sarah R.; Dahlberg, Peter D.; Niklas, Jens; Poluektov, Oleg G.; Mulfort, Karen L.

    2016-01-01

    A series of Ru–protein–Co biohybrids have been prepared using the electron transfer proteins ferredoxin (Fd) and flavodoxin (Fld) as scaffolds for photocatalytic hydrogen production. The light-generated charge separation within these hybrids has been monitored by transient optical and electron paramagnetic resonance spectroscopies. Two distinct electron transfer pathways are observed. The Ru–Fd–Co biohybrid produces up to 650 turnovers of H2 utilizing an oxidative quenching mechanism for Ru(ii)* and a sequential electron transfer pathway via the native [2Fe–2S] cluster to generate a Ru(iii)–Fd–Co(i) charge separated state that lasts for ∼6 ms. In contrast, a direct electron transfer pathway occurs for the Ru–ApoFld–Co biohybrid, which lacks an internal electron relay, generating Ru(i)–ApoFld–Co(i) charge separated state that persists for ∼800 μs and produces 85 turnovers of H2 by a reductive quenching mechanism for Ru(ii)*. This work demonstrates the utility of protein architectures for linking donor and catalytic function via direct or sequential electron transfer pathways to enable stabilized charge separation which facilitates photocatalysis for solar fuel production. PMID:28451142

  17. Effects of urea induced protein conformational changes on ion exchange chromatographic behavior.

    PubMed

    Hou, Ying; Hansen, Thomas B; Staby, Arne; Cramer, Steven M

    2010-11-19

    Urea is widely employed to facilitate protein separations in ion exchange chromatography at various scales. In this work, five model proteins were used to examine the chromatographic effects of protein conformational changes induced by urea in ion exchange chromatography. Linear gradient experiments were carried out at various urea concentrations and the protein secondary and tertiary structures were evaluated by far UV CD and fluorescence measurements, respectively. The results indicated that chromatographic retention times were well correlated with structural changes and that they were more sensitive to tertiary structural change. Steric Mass Action (SMA) isotherm parameters were also examined and the results indicated that urea induced protein conformational changes could affect both the characteristic charge and equilibrium constants in these systems. Dynamic light scattering analysis of changes in protein size due to urea-induced unfolding indicated that the size of the protein was not correlated with SMA parameter changes. These results indicate that while urea-induced structural changes can have a marked effect on protein chromatographic behavior in IEX, this behavior can be quite complicated and protein specific. These differences in protein behavior may provide insight into how these partially unfolded proteins are interacting with the resin material. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Microphysical and Kinematic Characteristics of Regions of Flash Initiation in a Supercell Storm and a Multicell Storm Observed During the DC3 Field Program

    NASA Astrophysics Data System (ADS)

    DiGangi, E.; MacGorman, D. R.; Ziegler, C.; Betten, D.; Biggerstaff, M. I.

    2017-12-01

    Lightning initiation in thunderstorms requires that the local electric field magnitude exceed breakdown values somewhere, and this tends to occur between regions of positive and negative charge, where the largest electric field magnitudes tend to occur. Past studies have demonstrated that, near updrafts, storms with very strong updrafts tend to elevate regions of charge and of flash initiations higher, as well as to have more flashes initiated by small pockets of charge, than in storms with much weaker updrafts. In all thunderstorms, the source of these charge regions is generally thought to be microscopic charge separation via the relative growth rate noninductive mechanism, followed by macroscopic charge separation via sedimentation, although other charge generation mechanisms can contribute to charge in some regions. Charge generation and lightning initiation are therefore inherently dependent on the microphysical and kinematic characteristics of a given storm. This study compares the results of a hydrometeor classification algorithm applied to C-band mobile radar data with mixing ratios calculated by a diabatic Lagrangian analysis retrieval from the dual-Doppler wind fields for two storms, the 29-30 May 2012 supercell storm and the 21 June 2012 multicell storm, observed during the Deep Convective Clouds and Chemistry experiment. Using these data, we then compare the inferred microphysical and kinematic characteristics of regions in which the Oklahoma Lightning Mapping Array indicated that flashes were initiated in these two very different storms.

  19. An Electrostatic Charge Partitioning Model for the Dissociation of Protein Complexes in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Sciuto, Stephen V.; Liu, Jiangjiang; Konermann, Lars

    2011-10-01

    Electrosprayed multi-protein complexes can be dissociated by collisional activation in the gas phase. Typically, these processes follow a mechanism whereby a single subunit gets ejected with a disproportionately high amount of charge relative to its mass. This asymmetric behavior suggests that the departing subunit undergoes some degree of unfolding prior to being separated from the residual complex. These structural changes occur concomitantly with charge (proton) transfer towards the subunit that is being unraveled. Charge accumulation takes place up to the point where the subunit loses physical contact with the residual complex. This work develops a simple electrostatic model for studying the relationship between conformational changes and charge enrichment during collisional activation. Folded subunits are described as spheres that carry continuum surface charge. The unfolded chain is envisioned as random coil bead string. Simulations are guided by the principle that the system will adopt the charge configuration with the lowest potential energy for any backbone conformation. A finite-difference gradient algorithm is used to determine the charge on each subunit throughout the dissociation process. Both dimeric and tetrameric protein complexes are investigated. The model reproduces the occurrence of asymmetric charge partitioning for dissociation events that are preceded by subunit unfolding. Quantitative comparisons of experimental MS/MS data with model predictions yield estimates of the structural changes that occur during collisional activation. Our findings suggest that subunit separation can occur over a wide range of scission point structures that correspond to different degrees of unfolding.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samedov, V. V., E-mail: v-samedov@yandex.ru

    Fluctuations of charge induced by charge carriers on the detector electrodes make a significant contribution to the energy resolution of ionization detectors, namely, semiconductor detectors and gas and liquid ionization chambers. These fluctuations are determined by the capture of charge carriers, as they drift in the bulk of the detector under the action of an electric field, by traps. In this study, we give a correct mathematical description of charge induction on electrodes of an ionization detector for an arbitrary electric field distribution in the detector with consideration of charge carrier capture by traps. The characteristic function obtained in thismore » study yields the general expression for the distribution function of the charge induced on the detector electrodes. The formulas obtained in this study are useful for analysis of the influence of charge carrier transport on energy resolution of ionization detectors.« less

  1. Characterization of plasma processing induced charging damage to MOS devices

    NASA Astrophysics Data System (ADS)

    Ma, Shawming

    1997-12-01

    Plasma processing has become an integral part of the fabrication of integrated circuits and takes at least 30% of whole process steps since it offers advantages in terms of directionality, low temperature and process convenience. However, wafer charging during plasma processes is a significant concern for both thin oxide damage and profile distortion. In this work, the factors affecting this damage will be explained by plasma issues, device structure and oxide quality. The SPORT (Stanford Plasma On-wafer Real Time) charging probe was developed to investigate the charging mechanism of different plasma processes including poly-Si etching, resist ashing and PECVD. The basic idea of this probe is that it simulates a real device structure in the plasma environment and allows measurement of plasma induced charging voltages and currents directly in real time. This measurement is fully compatible with other charging voltage measurement but it is the only one to do in real-time. Effect of magnetic field induced plasma nonuniformity on spatial dependent charging is well understood by this measurement. In addition, the plasma parameters including ion current density and electron temperature can also be extracted from the probe's plasma I-V characteristics using a dc Langmuir probe like theory. It will be shown that the MOS device tunneling current from charging, the dependence on antenna ratio and the etch uniformity can all be predicted by using this measurement. Moreover, the real-time measurement reveals transient and electrode edge effect during processing. Furthermore, high aspect ratio pattern induced electron shading effects can also be characterized by the probe. On the oxide quality issue, wafer temperature during plasma processing has been experimentally shown to be critical to charging damage. Finally, different MOS capacitor testing methods including breakdown voltage, charge-to-breakdown, gate leakage current and voltage-time at constant current bias were compared to find the optimum method for charging device reliability testing.

  2. Fabrication of highly active Melem/Zn0.25Cd0.75S composites for the degradation of bisphenol A and methyl orange under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Yan, Tao; Liu, Xiaohuan; Ji, Pengge; Sun, Meng; Wei, Dong; Yan, Liangguo; Du, Bin

    2016-11-01

    Metal-free polymeric catalyst hold great promise owing to their abundant sources, low-cost fabrication and easy processibility. Melem, an important intermediate during condensation of melamine rings to graphitic carbon nitride (g-C3N4), was synthesized by simple solid phase polymerization process. A novel Melem/Zn0.25Cd0.75S composite was fabricated through a facile one-step hydrothermal method. The as-products were characterized by X-ray diffraction (XRD), UV-vis DRS spectroscopy, fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM). The TEM and HRTEM results reveal that Zn0.25Cd0.75S nanoparticles and Melem closely contact with each other to form an intimate interface. The as-prepared composites exhibit significantly enhanced visible light photocatalytic performance for the degradation of Methyl orange (MO) and Bisphenol A (BPA), which could be attributed to the effective photo-induced charges transfer and separation in Melem/Zn0.25Cd0.75S composites. On the basis of radical scavenger experiments, superoxide radicals and holes are suggested to play a critical role in MO degradation over Melem/Zn0.25Cd0.75S heterojunctions. A possible mechanism for charge separation and transfer in the Melem/Zn0.25Cd0.75S composites was proposed to explain the enhanced photocatalytic performance.

  3. Understanding space charge and controlling beam loss in high intensity synchrotrons

    NASA Astrophysics Data System (ADS)

    Cousineau, Sarah M.

    Future high intensity synchrotrons will require unprecedented control of beam loss in order to comply with radiation safety regulations and to allow for safe, hands-on maintenance of machine hardware. A major cause of beam loss in high intensity synchrotrons is the space charge force of the beam, which can lead to beam halo and emittance dilution. This dissertation presents a comprehensive study of space charge effects in high intensity synchrotron beams. Experimental measurements taken at the Proton Storage Ring (PSR) in Los Alamos National Laboratory and detailed simulations of the experiments are used to identify and characterize resonances that affect these beams. The collective motion of the beam is extensively studied and is shown to be more relevant than the single particle dynamics in describing the resonance response. The emittance evolution of the PSR beam and methods for reducing the space-charge-induced emittance growth are addressed. In a separate study, the emittance evolution of an intense space charge beam is experimentally measured at the Cooler Injector Synchrotron (CIS) at Indiana University. This dissertation also investigates the sophisticated two-stage collimation system of the future Spallation Neutron Source (SNS) high intensity accumulator ring. A realistic Monte-Carlo collimation simulation is developed and used to optimize the SNS ring collimation system parameters. The finalized parameters and predicted beam loss distribution around the ring are presented. The collimators will additionally be used in conjunction with a set of fast kickers to remove the beam from the gap region before the rise of the extraction magnets. The gap cleaning process is optimized and the cleaning efficiency versus momentum spread of the beam is examined.

  4. Exploring the Electronic Landscape at Interfaces and Junctions in Semiconductor Nanowire Devices with Subsurface Local Probing of Carrier Dynamics

    NASA Astrophysics Data System (ADS)

    McGuckin, Terrence

    The solid state devices that are pervasive in our society, are based on building blocks composed of interfaces between materials and junctions that manipulate how charge carriers behave in a device. As the dimensions of these devices are reduced to the nanoscale, surfaces and interfaces play a larger role in the behavior of carriers in devices and must be thoroughly investigated to understand not only the material properties but how these materials interact. Separating the effects of these different building blocks is a challenge, as most testing methods measure the performance of the whole device. Semiconductor nanowires represent an excellent test system to explore the limits of size and novel device structures. The behavior of charge carriers in semiconductor nanowire devices under operational conditions is investigated using local probing technique electron beam induced current (EBIC). The behavior of locally excited carriers are driven by the forces of drift, from electric fields within a device at junctions, surfaces, contacts and, applied voltage bias, and diffusion. This thesis presents the results of directly measuring these effects spatially with nanometer resolution, using EBIC in Ge, Si, and complex heterostructure GaAs/AlGaAs nanowire devices. Advancements to the EBIC technique, have pushed the resolution from tens of nanometers down to 1 to 2 nanometers. Depth profiling and tuning of the interaction volume allows for the separating the signal originating from the surface and the interior of the nanowire. Radial junctions and variations in bands can now be analyzed including core/shell hetero-structures. This local carrier probing reveals a number of surprising behaviors; Most notably, directly imaging the evolution of surface traps filling with electrons causing bandbending at the surface of Ge nanowires that leads to an enhancement in the charge separation of electrons and holes, and extracting different characteristic lengths from GaAs and AlGaAs in core/shell nanowires. For new and emerging solid state materials, understanding charge carrier dynamics is crucial to designing functional devices. Presented here are examples of the wide application of EBIC, and its variants, through imaging domains in ferroelectric materials, local electric fields and defects in 2D semiconductor material MoS2, and gradients in doping profiles of solar cells. Measuring the local behavior of carrier dynamics, EBIC has the potential to be a key metrology technique in correlative microscopy, enabling a deeper understanding of materials and how they interact within devices.

  5. Nanoporous carbon actuator and methods of use thereof

    DOEpatents

    Biener, Juergen [San Leandro, CA; Baumann, Theodore F [Discovery Bay, CA; Shao, Lihua [Karlsruhe, DE; Weissmueller, Joerg [Stutensee, DE

    2012-07-31

    An electrochemically driveable actuator according to one embodiment includes a nanoporous carbon aerogel composition capable of exhibiting charge-induced reversible strain when wetted by an electrolyte and a voltage is applied thereto. An electrochemically driven actuator according to another embodiment includes a nanoporous carbon aerogel composition wetted by an electrolyte; and a mechanism for causing charge-induced reversible strain of the composition. A method for electrochemically actuating an object according to one embodiment includes causing charge-induced reversible strain of a nanoporous carbon aerogel composition wetted with an electrolyte to actuate the object by the strain.

  6. Breaking the barriers of all-polymer solar cells: Solving electron transporter and morphology problems

    NASA Astrophysics Data System (ADS)

    Gavvalapalli, Nagarjuna

    All-polymer solar cells (APSC) are a class of organic solar cells in which hole and electron transporting phases are made of conjugated polymers. Unlike polymer/fullerene solar cell, photoactive material of APSC can be designed to have hole and electron transporting polymers with complementary absorption range and proper frontier energy level offset. However, the highest reported PCE of APSC is 5 times less than that of polymer/fullerene solar cell. The low PCE of APSC is mainly due to: i) low charge separation efficiency; and ii) lack of optimal morphology to facilitate charge transfer and transport; and iii) lack of control over the exciton and charge transport in each phase. My research work is focused towards addressing these issues. The charge separation efficiency of APSC can be enhanced by designing novel electron transporting polymers with: i) broad absorption range; ii) high electron mobility; and iii) high dielectric constant. In addition to with the above parameters chemical and electronic structure of the repeating unit of conjugated polymer also plays a role in charge separation efficiency. So far only three classes of electron transporting polymers, CN substituted PPV, 2,1,3-benzothiadiazole derived polymers and rylene diimide derived polymers, are used in APSC. Thus to enhance the charge separation efficiency new classes of electron transporting polymers with the above characteristics need to be synthesized. I have developed a new straightforward synthetic strategy to rapidly generate new classes of electron transporting polymers with different chemical and electronic structure, broad absorption range, and high electron mobility from readily available electron deficient monomers. In APSCs due to low entropy of mixing, polymers tend to micro-phase segregate rather than forming the more useful nano-phase segregation. Optimizing the polymer blend morphology to obtain nano-phase segregation is specific to the system under study, time consuming, and not trivial. Thus to avoid micro-phase segregation, nanoparticles of hole and electron transporters are synthesized and blended. But the PCE of nanoparticle blends are far less than those of polymer blends. This is mainly due to the: i) lack of optimal assembly of nanoparticles to facilitate charge transfer and transport processes; and ii) lack of control over the exciton and charge transport properties within the nanoparticles. Polymer packing within the nanoparticle controls the optoelectronic and charge transport properties of the nanoparticle. In this work I have shown that the solvent used to synthesize nanoparticles plays a crucial role in determining the assembly of polymer chains inside the nanoparticle there by affecting its exciton and charge transport processes. To obtain the optimal morphology for better charge transfer and transport, we have also synthesized nanoparticles of different radius with surfactants of opposite charge. We propose that depending on the radius and/or Coulombic interactions these nanoparticles can be assembled into mineral structure-types that are useful for photovoltaic devices.

  7. Measurement of Minority Charge Carrier Diffusion Length in Gallium Nitride Nanowires Using Electron Beam Induced Current (EBIC)

    DTIC Science & Technology

    2009-12-01

    MINORITY CHARGE CARRIER DIFFUSION LENGTH IN GALLIUM NITRIDE NANOWIRES USING ELECTRON BEAM INDUCED CURRENT (EBIC) by Chiou Perng Ong December... Gallium Nitride Nanowires Using Electron Beam Induced Current (EBIC) 6. AUTHOR(S) Ong, Chiou Perng 5. FUNDING NUMBERS DMR 0804527 7. PERFORMING...CARRIER DIFFUSION LENGTH IN GALLIUM NITRIDE NANOWIRES USING ELECTRON BEAM INDUCED CURRENT (EBIC) Chiou Perng Ong Major, Singapore Armed Forces B

  8. Single Event Upset in Static Random Access Memories in Atmospheric Neutron Environments

    NASA Astrophysics Data System (ADS)

    Arita, Yutaka; Takai, Mikio; Ogawa, Izumi; Kishimoto, Tadafumi

    2003-07-01

    Single-event upsets (SEUs) in a 0.4 μm 4 Mbit complementary metal oxide semiconductor (CMOS) static random access memory (SRAM) were investigated in various atmospheric neutron environments at sea level, at an altitude of 2612 m mountain, at an altitude of commercial airplane, and at an underground depth of 476 m. Neutron-induced SEUs increase with the increase in altitude. For a device with a borophosphosilicate glass (BPSG) film, SEU rates induced by thermal neutrons increase with the decrease in the cell charge of a memory cell. A thermal neutron-induced SEU is significant in SRAMs with a small cell charge. With the conditions of small cell charge, thermal neutron-induced SEUs account for 60% or more of the total neutron-induced SEUs. The SEU rate induced by atmospheric thermal neutrons can be estimated by an acceleration test using 252Cf.

  9. Origin of two time-scale regimes in potentiometric titration of metal oxides. A replica kinetic Monte Carlo study.

    PubMed

    Zarzycki, Piotr; Rosso, Kevin M

    2009-06-16

    Replica kinetic Monte Carlo simulations were used to study the characteristic time scales of potentiometric titration of the metal oxides and (oxy)hydroxides. The effect of surface heterogeneity and surface transformation on the titration kinetics were also examined. Two characteristic relaxation times are often observed experimentally, with the trailing slower part attributed to surface nonuniformity, porosity, polymerization, amorphization, and other dynamic surface processes induced by unbalanced surface charge. However, our simulations show that these two characteristic relaxation times are intrinsic to the proton-binding reaction for energetically homogeneous surfaces, and therefore surface heterogeneity or transformation does not necessarily need to be invoked. However, all such second-order surface processes are found to intensify the separation and distinction of the two kinetic regimes. The effect of surface energetic-topographic nonuniformity, as well dynamic surface transformation, interface roughening/smoothing were described in a statistical fashion. Furthermore, our simulations show that a shift in the point-of-zero charge is expected from increased titration speed, and the pH-dependence of the titration measurement error is in excellent agreement with experimental studies.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarzycki, Piotr P.; Rosso, Kevin M.

    Replica Kinetic Monte Carlo simulations were used to study the characteristic time scales of potentiometric titration of the metal oxides and (oxy)hydroxides. The effect of surface heterogeneity and surface transformation on the titration kinetics were also examined. Two characteristic relaxation times are often observed experimentally, with the trailing slower part attributed to surface non-uniformity, porosity, polymerization, amorphization, and other dynamic surface processes induced by unbalanced surface charge. However, our simulations show that these two characteristic relaxation times are intrinsic to the proton binding reaction for energetically homogeneous surfaces, and therefore surface heterogeneity or transformation do not necessarily need to bemore » invoked. However, all such second-order surface processes are found to intensify the separation and distinction of the two kinetic regimes. The effect of surface energetic-topographic non-uniformity, as well dynamic surface transformation, interface roughening/smoothing were described in a statistical fashion. Furthermore, our simulations show that a shift in the point-of-zero charge is expected from increased titration speed and the pH-dependence of the titration measurement error is in excellent agreement with experimental studies.« less

  11. Mechanical Abuse Simulation and Thermal Runaway Risks of Large-Format Li-ion Batteries

    DOE PAGES

    Wang, Hsin; Lara-Curzio, Edgar; Rule, Evan; ...

    2017-01-11

    Internal short circuit of large-format Li-ion cells induced by mechanical abuse was simulated using a modified mechanical pinch test. A torsion force was added manually at ~40% maximum compressive loading force during the pinch test. The cell was twisted about 5 degrees to the side by horizontally pulling a wire attached to the anode tab. The combined torsion-compression force created small enough failure at the separator and allowed testing of fully charged large format Li-ion cells without triggering thermal runaway. Two types of commercial cells were tested using 4-6 cells at each state-of-charge (SOC). The 18 Ah LiFePO 4 (LFP)more » and 25 Ah Li(NiMnCo) 1/3O 2 (NMC) cells were tested and the thermal runaway risk (TRR) score system was used to evaluate the safety risk of the cells under the same testing conditions. The aim is to provide the cell manufacturers and end users a tool to compare different designs and safety features.« less

  12. Mechanical Abuse Simulation and Thermal Runaway Risks of Large-Format Li-ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsin; Lara-Curzio, Edgar; Rule, Evan

    Internal short circuit of large-format Li-ion cells induced by mechanical abuse was simulated using a modified mechanical pinch test. A torsion force was added manually at ~40% maximum compressive loading force during the pinch test. The cell was twisted about 5 degrees to the side by horizontally pulling a wire attached to the anode tab. The combined torsion-compression force created small enough failure at the separator and allowed testing of fully charged large format Li-ion cells without triggering thermal runaway. Two types of commercial cells were tested using 4-6 cells at each state-of-charge (SOC). The 18 Ah LiFePO 4 (LFP)more » and 25 Ah Li(NiMnCo) 1/3O 2 (NMC) cells were tested and the thermal runaway risk (TRR) score system was used to evaluate the safety risk of the cells under the same testing conditions. The aim is to provide the cell manufacturers and end users a tool to compare different designs and safety features.« less

  13. Metal-semiconductor barrier modulation for high photoresponse in transition metal dichalcogenide field effect transistors.

    PubMed

    Li, Hua-Min; Lee, Dae-Yeong; Choi, Min Sup; Qu, Deshun; Liu, Xiaochi; Ra, Chang-Ho; Yoo, Won Jong

    2014-02-10

    A gate-controlled metal-semiconductor barrier modulation and its effect on carrier transport were investigated in two-dimensional (2D) transition metal dichalcogenide (TMDC) field effect transistors (FETs). A strong photoresponse was observed in both unipolar MoS2 and ambipolar WSe2 FETs (i) at the high drain voltage due to a high electric field along the channel for separating photo-excited charge carriers and (ii) at the certain gate voltage due to the optimized barriers for the collection of photo-excited charge carriers at metal contacts. The effective barrier height between Ti/Au and TMDCs was estimated by a low temperature measurement. An ohmic contact behavior and drain-induced barrier lowering (DIBL) were clearly observed in MoS2 FET. In contrast, a Schottky-to-ohmic contact transition was observed in WSe2 FET as the gate voltage increases, due to the change of majority carrier transport from holes to electrons. The gate-dependent barrier modulation effectively controls the carrier transport, demonstrating its great potential in 2D TMDCs for electronic and optoelectronic applications.

  14. Photocatalytic activity of self-assembled porous TiO2 nano-columns array fabricated by oblique angle sputter deposition

    NASA Astrophysics Data System (ADS)

    Shi, Pengjun; Li, Xibo; Zhang, Qiuju; Yi, Zao; Luo, Jiangshan

    2018-04-01

    A well-separated and oriented TiO2 nano-columns arrays with porous structure were fabricated by the oblique angle sputter deposition technique and subsequently annealing at 450 °C in Ar/O2 mixed atmosphere. The deposited substrate was firstly modified by a template of self-assembled close-packed arrays of 500 nm-diameter silica (SiO2) spheres. Scanning electronic microscopic (SEM) images show that the porous columnar nanostructure is formed as a result of the geometric shadowing effect and surface diffusion of the adatoms in oblique angle deposition (OAD). X-ray diffraction (XRD) measurements reveal that the physically OAD film with annealing treatment are generally mixed phase of rutile and anatase TiO2 polymorphic forms. The morphology induced absorbance and band gap tuning by different substrates was demonstrated by the UV–vis spectroscopy. The well-separated one-dimensional (1D) nano-columns array with specific large porous surface area is beneficial for charge separation in photocatalytic degradation. Compared with compact thin film, such self-assembled porous TiO2 nano-columns array fabricated by oblique angle sputter deposition performed an enhanced visible light induced photocatalytic activity by decomposing methyl orange (MO) solution. The well-designed periodic array-structured porous TiO2 films by using modified patterned substrates has been demonstrated significantly increased absorption edge in the UV-visible light region with a narrower optical band gap, which are expected to be favorable for application in photovoltaic, lithium-ion insertion and photocatalytic, etc.

  15. Effect of incorporation of nitrogen atoms in Al2O3 gate dielectric of wide-bandgap-semiconductor MOSFET on gate leakage current and negative fixed charge

    NASA Astrophysics Data System (ADS)

    Kojima, Eiji; Chokawa, Kenta; Shirakawa, Hiroki; Araidai, Masaaki; Hosoi, Takuji; Watanabe, Heiji; Shiraishi, Kenji

    2018-06-01

    We performed first-principle calculations to investigate the effect of incorporation of N atoms into Al2O3 gate dielectrics. Our calculations show that the defect levels generated by VO in Al2O3 are the origin of the stress-induced gate leakage current and that VOVAl complexes in Al2O3 cause negative fixed charge. We revealed that the incorporation of N atoms into Al2O3 eliminates the VO defect levels, reducing the stress-induced gate leakage current. Moreover, this suppresses the formation of negatively charged VOVAl complexes. Therefore, AlON can reduce both stress-induced gate leakage current and negative fixed charge in wide-bandgap-semiconductor MOSFETs.

  16. Charge sniffer for electrostatics demonstrations

    NASA Astrophysics Data System (ADS)

    Dinca, Mihai P.

    2011-02-01

    An electronic electroscope with a special design for demonstrations and experiments on static electricity is described. It operates as an electric charge sniffer by detecting slightly charged objects when they are brought to the front of its sensing electrode. The sniffer has the advantage of combining high directional sensitivity with a logarithmic bar display. It allows for the identification of electric charge polarity during charge separation by friction, peeling, electrostatic induction, batteries, or secondary coils of power transformers. Other experiments in electrostatics, such as observing the electric field of an oscillating dipole and the distance dependence of the electric field generated by simple charge configurations, are also described.

  17. Charge-Induced Force Noise on Free-Falling Test Masses: Results from LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Armano, M.; Audley, H.; Auger, G.; Baird, J. T.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; de Deus Silva, M.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E. D.; Flatscher, R.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Grzymisch, J.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Killow, C. J.; Korsakova, N.; Lloro, I.; Liu, L.; López-Zaragoza, J. P.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martín, V.; Martin-Polo, L.; Martino, J.; Martin-Porqueras, F.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D. I.; Rozemeijer, H.; Rivas, F.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C.; Sumner, T. J.; Texier, D.; Thorpe, J. I.; Trenkel, C.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Wass, P. J.; Wealthy, D.; Weber, W. J.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.; LISA Pathfinder Collaboration

    2017-04-01

    We report on electrostatic measurements made on board the European Space Agency mission LISA Pathfinder. Detailed measurements of the charge-induced electrostatic forces exerted on free-falling test masses (TMs) inside the capacitive gravitational reference sensor are the first made in a relevant environment for a space-based gravitational wave detector. Employing a combination of charge control and electric-field compensation, we show that the level of charge-induced acceleration noise on a single TM can be maintained at a level close to 1.0 fm s-2 Hz-1 /2 across the 0.1-100 mHz frequency band that is crucial to an observatory such as the Laser Interferometer Space Antenna (LISA). Using dedicated measurements that detect these effects in the differential acceleration between the two test masses, we resolve the stochastic nature of the TM charge buildup due to interplanetary cosmic rays and the TM charge-to-force coupling through stray electric fields in the sensor. All our measurements are in good agreement with predictions based on a relatively simple electrostatic model of the LISA Pathfinder instrument.

  18. Charge-Induced Force Noise on Free-Falling Test Masses: Results from LISA Pathfinder.

    PubMed

    Armano, M; Audley, H; Auger, G; Baird, J T; Binetruy, P; Born, M; Bortoluzzi, D; Brandt, N; Bursi, A; Caleno, M; Cavalleri, A; Cesarini, A; Cruise, M; Danzmann, K; de Deus Silva, M; Diepholz, I; Dolesi, R; Dunbar, N; Ferraioli, L; Ferroni, V; Fitzsimons, E D; Flatscher, R; Freschi, M; Gallegos, J; García Marirrodriga, C; Gerndt, R; Gesa, L; Gibert, F; Giardini, D; Giusteri, R; Grimani, C; Grzymisch, J; Harrison, I; Heinzel, G; Hewitson, M; Hollington, D; Hueller, M; Huesler, J; Inchauspé, H; Jennrich, O; Jetzer, P; Johlander, B; Karnesis, N; Kaune, B; Killow, C J; Korsakova, N; Lloro, I; Liu, L; López-Zaragoza, J P; Maarschalkerweerd, R; Madden, S; Mance, D; Martín, V; Martin-Polo, L; Martino, J; Martin-Porqueras, F; Mateos, I; McNamara, P W; Mendes, J; Mendes, L; Moroni, A; Nofrarias, M; Paczkowski, S; Perreur-Lloyd, M; Petiteau, A; Pivato, P; Plagnol, E; Prat, P; Ragnit, U; Ramos-Castro, J; Reiche, J; Romera Perez, J A; Robertson, D I; Rozemeijer, H; Rivas, F; Russano, G; Sarra, P; Schleicher, A; Slutsky, J; Sopuerta, C; Sumner, T J; Texier, D; Thorpe, J I; Trenkel, C; Vetrugno, D; Vitale, S; Wanner, G; Ward, H; Wass, P J; Wealthy, D; Weber, W J; Wittchen, A; Zanoni, C; Ziegler, T; Zweifel, P

    2017-04-28

    We report on electrostatic measurements made on board the European Space Agency mission LISA Pathfinder. Detailed measurements of the charge-induced electrostatic forces exerted on free-falling test masses (TMs) inside the capacitive gravitational reference sensor are the first made in a relevant environment for a space-based gravitational wave detector. Employing a combination of charge control and electric-field compensation, we show that the level of charge-induced acceleration noise on a single TM can be maintained at a level close to 1.0  fm s^{-2} Hz^{-1/2} across the 0.1-100 mHz frequency band that is crucial to an observatory such as the Laser Interferometer Space Antenna (LISA). Using dedicated measurements that detect these effects in the differential acceleration between the two test masses, we resolve the stochastic nature of the TM charge buildup due to interplanetary cosmic rays and the TM charge-to-force coupling through stray electric fields in the sensor. All our measurements are in good agreement with predictions based on a relatively simple electrostatic model of the LISA Pathfinder instrument.

  19. Energetics of bacterial photosynthesis.

    PubMed

    Lebard, David N; Matyushov, Dmitry V

    2009-09-10

    We report the results of extensive numerical simulations and theoretical calculations of electronic transitions in the reaction center of Rhodobacter sphaeroides photosynthetic bacterium. The energetics and kinetics of five electronic transitions related to the kinetic scheme of primary charge separation have been analyzed and compared to experimental observations. Nonergodic formulation of the reaction kinetics is required for the calculation of the rates due to a severe breakdown of the system ergodicity on the time scale of primary charge separation, with the consequent inapplicability of the standard canonical prescription to calculate the activation barrier. Common to all reactions studied is a significant excess of the charge-transfer reorganization energy from the width of the energy gap fluctuations over that from the Stokes shift of the transition. This property of the hydrated proteins, breaking the linear response of the thermal bath, allows the reaction center to significantly reduce the reaction free energy of near-activationless electron hops and thus raise the overall energetic efficiency of the biological charge-transfer chain. The increase of the rate of primary charge separation with cooling is explained in terms of the temperature variation of induction solvation, which dominates the average donor-acceptor energy gap for all electronic transitions in the reaction center. It is also suggested that the experimentally observed break in the Arrhenius slope of the primary recombination rate, occurring near the temperature of the dynamical transition in proteins, can be traced back to a significant drop of the solvent reorganization energy close to that temperature.

  20. A more than six orders of magnitude UV-responsive organic field-effect transistor utilizing a benzothiophene semiconductor and Disperse Red 1 for enhanced charge separation.

    PubMed

    Smithson, Chad S; Wu, Yiliang; Wigglesworth, Tony; Zhu, Shiping

    2015-01-14

    A more than six orders of magnitude UV-responsive organic field-effect transistor is developed using a benzothiophene (BTBT) semiconductor and strong donor-acceptor Disperse Red 1 as the traps to enhance charge separation. The device can be returned to its low drain current state by applying a short gate bias, and is completely reversible with excellent stability under ambient conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Top